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Abstract

A real 2n × 2n matrix M is called a symplectic matrix if MTJM = J, where J is the

2n × 2n matrix given by J =
(

O In
−In O

)
and In is the n × n identity matrix. A result on

symplectic matrices, generally known as Williamson’s theorem, states that for any 2n × 2n

positive definite matrix A there exists a symplectic matrix M such that MTAM = D ⊕ D

where D is an n× n positive diagonal matrix with diagonal entries 0 < d1(A) ≤ · · · ≤ dn(A)

called the symplectic eigenvalues of A. In this thesis, we study differentiability and analyticity

properties of symplectic eigenvalues and corresponding symplectic eigenbasis. In particular,

we prove that simple symplectic eigenvalues are infinitely differentiable and compute their

first order derivative. We also prove that symplectic eigenvalues and corresponding symplectic

eigenbasis for a real analytic curve of positive definite matrices can be chosen real analytically.

We then derive an analogue of Lidskii’s theorem for symplectic eigenvalues as an application

of our analysis. We study various subdifferential properties of symplectic eigenvalues such as

Fenchel subdifferentials, Clarke subdifferentials and Michel-Penot subdifferentials. We show

that symplectic eigenvalues are directionally differentiable and derive the expression of their first

order directional derivatives.
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Notations
Rn The set of ordered n tuples of real numbers

Cn The set of ordered n tuples of complex numbers

convK The closed convex set generated by any subset K of a Euclidean space

intK The interior of any subset K of a Euclidean space

Mm,n(R) The set of m× n real matrices

Mn(C) The set of n× n complex matrices

Hn(C) The set of n× n Hermitian matrices

Sn(R) The set of n× n real symmetric matrices

Pn(R) The set of n× n real positive definite matrices

Diag(x) The diagonal matrix whose diagonal entries are the components of x

trA The trace of any square matrix A

detA The determinant of any square matrix A

kerA The kernel of any matrix A

In The identity matrix of size n

J2n The 2n× 2n block matrix
(

O In
−In O

)
, denoted by J when n is clear from the context

Sp(2n) The set of 2n× 2n symplectic matrices

‖A‖ The operator norm of any matrix A

‖A‖F The Frobenius norm of any matrix A

|||A||| A unitarily invariant norm of any matrix A

κ(A) The condition number of any invertible matrix A

∂Φ(x) The Fenchel subdifferential of Φ at x

∂◦Φ(x) The Clarke subdifferential of Φ at x

∂�Φ(x) The Michel-Penot subdifferential of Φ at x
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Introduction

A real 2n× 2n matrix M is called a symplectic matrix if MTJM = J, where J is the 2n× 2n

matrix given by J =
(

O In
−In O

)
, In is the n × n identity matrix. Symplectic matrices are

ubiquitous in various fields such as symplectic geometry [21], quantum optics [67, 69], quantum

information [24, 62], hamiltonian dynamics [37] and optimization problems [16, 26]. A well

known class of matrices in classical linear algebra is the set of orthogonal matrices. Replacing J

by the identity matrix in the definition of symplectic matrices yields orthogonal matrices. As

the orthogonal matrices form a group under matrix multiplication so do the symplectic matrices.

The group of 2n × 2n symplectic matrices is called the symplectic group and is denoted by

Sp(2n). The symplectic group exhibits some similar properties as the orthogonal group, e.g.,

M ∈ Sp(2n) implies MT ∈ Sp(2n) and detM = 1. But unlike the orthogonal group, this

group is not compact. See [23].

By the spectral theorem we know that any positive definite matrix can be reduced to a

diagonal matrix by an orthogonal congruence. The diagonal entries of the diagonal matrix are

called the eigenvalues of the given matrix. A symplectic counterpart of the spectral theorem,

generally known as Williamson’s theorem, states that for any 2n× 2n positive definite matrix A

there exists M ∈ Sp(2n) such that

MTAM =

D O

O D

 , (1)

where D is an n× n positive diagonal matrix with diagonal entries d1(A) ≤ · · · ≤ dn(A). The

positive numbers d1(A), . . . , dn(A) are uniquely determined by (1). These are the complete

invariants of A under the action of the symplectic group Sp(2n) and are called the symplectic

1
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eigenvalues of A. See [21, 36].

Symplectic eigenvalues appear in various applications such as classical and quantum me-

chanics [21], symplectic topology [37] and harmonic oscillator systems [1, 58]. Recently there

has been a heightened interest in the study of symplectic eigenvalues by both physicists and

mathematicians. A particular reason for this being their growing importance and applications in

quantum information. Associated with an n mode quantum state is a 2n× 2n positive definite

matrix known as the covariance matrix of the quantum state. The Heisenberg uncertainty prin-

ciple tells us that a 2n × 2n positive definite matrix A is the covariance matrix of a Gaussian

state if and only if dj(A) ≥ 1
2 for all j = 1, . . . , n. See [2, 23]. The class of Gaussian states

in a quantum system is being widely studied. Of interest there are various entropy functions

associated with Gaussian states that are useful in measurement of the degree of mixedness

and entanglement of the Gaussian states. These entropy functions can be expressed as smooth

maps of symplectic eigenvalues of the covariance matrices. See [3, 36, 45]. So it is useful and

important to have a well developed theory for symplectic eigenvalues as we have for eigenvalues.

Eigenvalue problems can be classified as quantitative and qualitative in nature. The quantita-

tive problems include variational principles, eigenvalues of functions of matrices, majorisation

inequalities and computation of eigenvalues and eigenvectors. See [9, 41]. There has been much

interest in the study of relationships between the eigenvalues of Hermitian matrices A and B

and those of their sum A + B. Suppose λ↑(A) =
(
λ↑1(A), . . . , λ↑n(A)

)
denotes the tuple of

eigenvalues of an n × n Hermitian matrix A arranged in increasing order. In 1912, H. Weyl

discovered several relationships between the eigenvalues of sums of Hermitian matrices one of

which states that

λ↑j (A+B) ≥ λ↑j (A) + λ↑1(B), 1 ≤ j ≤ n. (2)

The maximum principle given by Ky Fan [25] in 1949 implies that for all 1 ≤ k ≤ n,

k∑
j=1

λ↑j (A+B) ≥
k∑
j=1

λ↑j (A) +

k∑
j=1

λ↑j (B). (3)
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In 1950, V. B. Lidskii [50] proved the inequalities

k∑
j=1

λ↑ij (A+B) ≥
k∑
j=1

λ↑ij (A) +
k∑
j=1

λ↑j (B) (4)

for all k = 1, . . . , n and 1 ≤ i1 < i2 < · · · < ik ≤ n. Inequalities (2) and (3) are special cases

of (4). Lidskii’s inequalities played a fundamental role in the study of eigenvalues of sums of

matrices and proved to be an important stimulant for the much celebrated Horn’s conjecture.

See, for instance, [8, 28]. These inequalities have attracted much attention and a number of

different proofs for these are now available in literature. See [7, 48]. But all the proofs are

generally more difficult than those for the earlier two families of inequalities (2) and (3). An

example of qualitative problems is the study of continuity, differentiability, subdifferentiability

and analyticity of eigenvalues and eigenvectors as functions of matrices. These problems have

been studied for a long time. See the classical books by Kato [43] and Rellich [64]. See also

[33, 34, 42, 44, 51, 66, 73, 74]. These have applications in optimisation [20], linear programming

[49], numerical analysis [53, 74] and physics [70]. It is natural and fundamental to study the

analogous quantitative and qualitative problems of symplectic eigenvalues.

A positive number d is a symplectic eigenvalue of A if and only if ±d is an eigenvalue

of the Hermitian matrix ıA1/2JA1/2 and of the matrix ıJA. This connection has been used to

study various quantitative properties of symplectic eigenvalues such as perturbation theorems,

majorisation inequalities, variational principles and an interlacing theorem in the past few years.

See [10, 11, 38]. For instance, the following minmax principles for symplectic eigenvalues were

given in [37]. For all 1 ≤ j ≤ n, we have

1

dj(A)
= max
M⊂C2n

dimM=j

min
x∈M
〈x,Ax〉=1

〈x, iJx〉, (5)

and also
1

dj(A)
= min

M⊂C2n

dimM=2n−j+1

max
x∈M
〈x,Ax〉=1

〈x, iJx〉. (6)
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T. Hiroshima [36] gave the following symplectic counterpart of Ky Fan’s extremal principle

2

m∑
j=1

dj(A) = min
M

trMTAM, (7)

for all 1 ≤ m ≤ n where the minimum is taken over 2n × 2m real matrices M satisfying

MTJ2nM = J2m with J2k =
(

O Ik
−Ik O

)
. Using equation (7) he also derived a symplectic

analogue of the inequalities (3) which states that

k∑
j=1

dj(A+B) ≥
k∑
j=1

dj(A) +
k∑
j=1

dj(B) (8)

for 1 ≤ k ≤ n. However, some quantitative results on symplectic eigenvalues are not easy to

derive using the theory of eigenvalues. The Weyl’s inequalities (2) are a direct consequence of the

Courant-Fischer-Weyl minmax principle. But it is difficult to obtain a symplectic analogue of the

Weyl’s inequalities using the minmax principles (5) and (6) because these involve 1
dj(A)

and the

minmax conditions are dependent on A. The fact that the symplectic group is not compact makes

it tricky to get a nice analogue of the Courant-Fischer-Weyl minmax principle for symplectic

eigenvalues. Using the connection that ±dj(A) are the eigenvalues of ıA1/2JA1/2, a symplectic

analogue of the Weyl’s inequalities for a special class of positive definite matrices appeared in

[10] which states that for all j = 1, . . . , n

dj(A+B) ≥ dj(A) + d1(B) (9)

when A and B are of the form A =
[
D O
O D

]
, B =

[
X O
O X−1

]
, where D is an n × n positive

diagonal matrix andX is any n×n positive definite matrix. A generalisation of the inequalities (9)

to any 2n× 2n positive definite matrices A,B was derived recently in [13] using an independent

theory of symplectic eigenvalues.

There have not been any explicit study of the qualitative properties of symplectic eigenvalues

in the literature to the best of our knowledge. In principle, it could be possible to study qualitative

properties of symplectic eigenvalues by using their connection with eigenvalues but it is not

feasible in practice. The matrix ıJA is not even normal, and the matrix ıA1/2JA1/2 has a

complicated form which makes it difficult to obtain results for symplectic eigenvalues from
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the well-developed theory of eigenvalues of Hermitian matrices. For instance, even though the

matrix square root map is differentiable [22], no closed-form expression for its derivative is

known. Therefore, it is difficult to compute derivative and generalised derivative expressions

of dj when treating dj(A) as eigenvalues of ıA1/2JA1/2. Moreover, the appearance of A1/2

obscures even the simplest properties of symplectic eigenvalues. By the characterisation (7),

it is easy to verify that dj is a difference of concave functions. On the other hand, the map

A 7→ ıA1/2JA1/2 is neither convex nor concave as illustrated by the following example.

Example 1. For any 2 × 2 positive definite matrix A, define φ(A) = ıA1/2JA1/2. Let A =

Diag(1, 4). We have φ(I2) = ıJ, φ(A) = 2ıJ and φ ((I2 +A)/2) = (ı
√

10/2)J. This gives

φ

(
I2 +A

2

)
− 1

2
(φ(I2) + φ(A)) =

ı(
√

10− 3)

2
J

which is neither negative nor positive semidefinite. This implies φ is neither convex nor concave.

This makes it difficult to establish the fact that dj is a difference of concave functions from

the corresponding properties of eigenvalues of Hermitian matrices. Therefore, it is important

and necessary to develop a theory for symplectic eigenvalues independent of eigenvalues. Very

recently, some quantitative results on symplectic eigenvalues using an independent theory of

symplectic eigenvalues were given in [12, 13].

In this thesis, we study various qualitative properties of symplectic eigenvalues such as differ-

entiability, subdifferentiability and analyticity as well as some fundamental class of inequalities

on symplectic eigenvalues. We also develop, in the course of the thesis, a novel theory and

techniques that can be used to study symplectic eigenvalues further. The symplectic eigenvalue

maps dj are known to be continuous. See for example Theorem 7 of [11]. But the following

example shows that they are not differentiable in general.

Example 2. Let B be the 4× 4 matrix B = I2 ⊗
(−1 0

0 1

)
. We have d1(I4 + tB) = 1− |t| and

d2(I4 + tB) = 1 + |t| for any t ∈ (−1, 1). The modulus function is not differentiable at t = 0.

So d1 and d2 are not differentiable at I4.

We show that dj is infinitely differentiable at A if dj(A) is a simple symplectic eigenvalue,

i.e., di(A) 6= dj(A) for all i 6= j, and derive its first order derivative expression. We also

study the differentiability and analyticity property of symplectic eigenvalues of positive definite
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matrices depending on a real parameter. In particular, we prove that symplectic eigenvalues

of a real analytic curve of positive definite matrices can be chosen real analytically. Even

though the symplectic eigenvalue maps are not differentiable, we can talk about generalised

derivatives of symplectic eigenvalues. Generalised derivatives are weaker versions of derivatives.

In non-smooth optimisation, one often deals with non-differentiable functions. In the absence of

differentiability, generalised derivatives play important roles. See [17, 19, 32, 52]. Among some

useful generalised derivatives are directional derivative, Clarke directional derivative and Michel-

Penot directional derivative. Using the generalised derivatives, several notions of generalised

gradients or subdifferentials are defined for various class of functions, e.g., convex functions,

locally Lipschitz functions. These include Fenchel subdifferential, Clarke subdifferential and

Michel-Penot subdifferential. Subdifferentials are useful in obtaining various optimality con-

ditions in non-smooth optimisation, see e.g., [5, 19, 65]. Let σm(A) = −2

m∑
j=1

dj(A). By the

extremal characterisation (7), it is easy to see that σm is a convex function. We use this fact to

show that σm is directionally differentiable and derive the expressions for its Fenchel subdif-

ferential and directional derivative. We also show that symplectic eigenvalues are directionally

differentiable and compute the expressions for their directional derivatives. We use the fact

that symplectic eigenvalues are locally Lipschitz to derive the expressions for their Clarke and

Michel-Penot directional derivatives and subdifferentials. We also derive a quantitative property

of symplectic eigenvalues, an analogue of the Lidskii’s inequalities (4), using the analyticity of

symplectic eigenvalues. We show that for all k = 1, . . . , n and all 1 ≤ i1 < · · · < ik ≤ n,

k∑
j=1

dij (A+B) ≥
k∑
j=1

dij (A) +
k∑
j=1

dj(B). (10)

As for the case of eigenvalues of Hermitian matrices, these greatly generalise the inequalities (8)

and (9). We emphasise that the proofs of Lidskii’s inequalities (4) for eigenvalues are non-trivial.

So deriving the inequalities (10) using the connection of symplectic eigenvalues with eigenvalues

would be a more difficult problem.

The thesis is organised as follows. In Chapter 1, we introduce the notion of symplectic

eigenvector pairs, and give some preliminary results on symplectic eigenvalues and symplectic
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eigenvector pairs. We introduce the notion of symplectic projection in Section 1.3 and give

an extension of the Williamson’s theorem to a class of positive semidefinite matrices. In the

beginning of Chapter 2, we recall some basic definitions on differentiability of functions on

Banach spaces. We review the theory of differentiability and analyticity of eigenvalues of

Hermitian matrices in Section 2.2. In Section 2.3, we prove that dj is infinitely differentiable

at A if dj(A) is simple, and also derive its derivative expression. We study the differentiability

and analyticity properties of symplectic eigenvalues of curves of positive definite matrices in

Section 2.4. We prove that the symplectic eigenvalues and symplectic eigenvector pairs for a

real analytic curve of positive definite matrices can be chosen analytically. In Section 2.5, we

derive the majorisation inequalities (10) and give some other applications of our analysis of

symplectic eigenvalues. In Chapter 3, we recall some basic theory of Fenchel subdifferentials and

directional derivatives of convex functions. We also review the theory of directional derivatives

of eigenvalues of symmetric matrices. In Section 3.3, we derive the expression for the Fenchel

subdifferential and the first order directional derivative of σm. We then show in Section 3.4

that the directional derivative of dj exists and compute its expression. In Chapter 4, we review

the theory of Clarke and Michel-Penot directional derivatives and subdifferenatials of locally

Lipschitz functions on real Banach spaces. In Section 4.2, we compute the expressions for

their Clarke and Michel-Penot subdifferentials and also the expressions for the Clarke and

Michel-Penot directional derivatives. We use these subdifferentials to give an alternate proof of

the monotonicity principle of symplectic eigenvalues.
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Chapter 1

Preliminaries

In this chapter, we recall the theory of symplectic spaces and symplectic matrices. We establish

some preliminary results that is fundamental to our study of symplectic eigenvalues.

We review some basic properties of real symplectic spaces in Section 1.1. In Section 1.2 we

recall the definition of symplectic matrices and discuss some useful results on these matrices.

We state a fundamental result on symplectic matrices known as Williamson’s theorem, recall the

definition of symplectic eigenvalues and introduce the notion of symplectic eigenvector pairs. We

also derive some preliminary results on symplectic eigenvalues and symplectic eigenvector pairs.

In Section 1.3, we introduce the notion of symplectic projection that is useful in our analysis of

symplectic eigenvalues. We give an extension of Williamson’s theorem to a class of semidefinite

matrices at the end of the section.

Throughout the chapter, we only deal with finite dimensional real vector spaces and real

matrices unless stated otherwise.

1.1 Symplectic spaces

In this section, we discuss some geometrical properties of symplectic spaces useful in our present

work. These properties are in contrast to the properties of inner product spaces familiar to us.

This section is based on Chapter 1 of [21].

9
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1.1.1 Symplectic forms

Let X be a vector space. A symplectic form ω on X is a mapping ω : X × X → R that is

(i) bilinear:

ω(au+ bv, w) = aω(u,w) + bω(v, w),

ω(w, au+ bv) = aω(w, u) + bω(w, v)

for all u, v, w ∈ X and a, b ∈ R;

(ii) antisymmetric: ω(u, v) = −ω(v, u) for all u, v ∈ X ;

(iii) non-degenerate: ω(u, v) = 0 for all v ∈ X if and only if u = 0.

By virtue of bilinearity, the antisymmetric property is equivalent to the condition ω(u, u) = 0

for all u ∈ X . A symplectic space (X , ω) is a vector space X equipped with a symplectic form

ω.

Example 3. Let K be a 2n× 2n skew-symmetric and non-singular matrix. The K induced map
(x, y) 7→ xTKy for all x, y ∈ R2n is a symplectic form on R2n. The map is clearly bilinear. Its
antisymmetry follows from KT = −K, and non-degeneracy is a consequence of the fact that K
is non-singular.

Symplectic spaces are even dimensional. Let (X , ω) be a symplectic space and dimX = m.

Fix a basis B = {u1, . . . , um} of X . Let Ω be the m×m matrix with the ijth entry given by

ω(ui, uj) for 1 ≤ i, j ≤ m. By antisymmetry of ω, the matrix Ω is skew-symmetric. Also,

bilinearity and non-degeneracy of ω imply that kerΩ is trivial. So, Ω is a non-singular skew-

symmetric matrix and therefore its size m must be even.

1.1.2 Symplectic orthogonality and symplectic basis

Let (X , ω) be a symplectic space and uj , vj ∈ X for j = 1, 2. We say that the pairs (u1, v1) and

(u2, v2) are symplectically orthogonal to each other if

ω(ui, vj) = ω(ui, uj) = ω(vi, vj) = 0,
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for i 6= j, i, j = 1, 2. We call a set of vectors {u1, . . . , um, v1, . . . , vm} of X symplectically

orthogonal if the pairs of vectors (uj , vj) are mutually symplectically orthogonal to each other.

We call the set {u1, . . . , um, v1, . . . , vm} symplectically orthonormal if it is symplectically

orthogonal as well as satisfies ω(uj , vj) = 1 for all j = 1, . . . ,m.

Symplectically orthonormal sets are linearly independent. Let {u1, . . . , um, v1, . . . , vm} be

a symplectically orthonormal set. Let x =
∑m

j=1(αjuj + βjvj), where αj , βj be real numbers

for j = 1, . . . ,m. By the definition of symplectically orthonormal sets we have,

αj = ω(x, vj), βj = ω(uj , x) (1.1)

for all j = 1, . . . ,m. So, x = 0 implies αj = βj = 0 for all j = 1, . . . ,m. Consequently, a

symplectically orthonormal set containing dimX number of vectors is a basis to the symplectic

space.

Definition 1.1.1. A basis of a symplectic space is said to be symplectic basis if it is a symplecti-
cally orthonormal set.

In Theorem 1.1.3 we prove that every symplectic space has a symplectic basis. Symplectic

bases are analogous to orthonormal bases in inner product spaces. For a fixed symplectic basis, ev-

ery element in the symplectic space has a canonical representation. Let {u1, . . . , un, v1, . . . , vn}

be a symplectic basis of (X , ω) and x be any vector in X . Suppose x =
∑n

j=1(αjuj + βjvj),

where αj , βj are real numbers for j = 1, . . . , n. By relations (1.1) we have

x =

n∑
j=1

(ω(x, vj)uj − ω(x, uj)vj) .

1.1.3 Symplectic subspaces

Let X be any subset of a symplectic space (X , ω). Define a set

X⊥s = {u ∈ X : ω(u, x) = 0 ∀x ∈ X}.

The set X⊥s is known by various names in the literature [21, 23], we call it the symplectic

complement of X. A subspace W of X is called a symplectic subspace if the restriction of the
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symplectic form ω on W is again a symplectic form. The symplectic form ω is bilinear and

antisymmetric onW by definition. This meansW is a symplectic subspace if ω is non-degenerate

on W. Therefore, W is a symplectic subspace if and only if W ∩W⊥s = {0}.

We know that every subspace of an inner product space decomposes the space into the direct

sum between the subspace and its orthogonal complement. Symplectic complements show an

analogous property.

Proposition 1.1.2. Let (X , ω) be a symplectic space and W be a subset of X . The set W⊥s is a
subspace of X . If W is a subspace of X then

dimW + dimW⊥s = dimX and (W⊥s)⊥s = W.

Also, the following statements are equivalent.

(i) W is a symplectic subspace.

(ii) W⊥s is a symplectic space.

(iii) X = W ⊕W⊥s .

Proof. It is easy to verify that W⊥s is a subspace of X . Suppose W is a subspace of X . Let
{w1, . . . , wk} be a basis of W. The symplectic complement of W is given by

W⊥s = {u ∈ X : ω(wj , u) = 0, 1 ≤ j ≤ k}. (1.2)

Extend the basis of W to a basis {w1, . . . , w2n} of X . Define the vector space isomorphism
Ψ : R2n → X by

Ψ(x) =
2n∑
j=1

xjwj

for all x = (x1, . . . , x2n) ∈ R2n. Let Tj : R2n → R be the linear functional given by

Tj(x) = ω(wj ,Ψ(x))

for all x ∈ R2n and 1 ≤ j ≤ k. By (1.2) we have

W⊥s = {u ∈ X : Tj(Ψ
−1(u)) = 0, 1 ≤ j ≤ k}

=
k⋂
j=1

Ψ (kerTj)

= Ψ

 k⋂
j=1

kerTj

 .
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Thus we have

dimW⊥s = dim

 k⋂
j=1

kerTj

 . (1.3)

It follows from the linear independence of {w1, . . . , wk} and non-degeneracy of the symplectic
form that T1, . . . , Tk are linearly independent. Thus

⋂k
j=1 kerTj is the set of solutions of a

system of k independent linear equations in 2n variables. Therefore by (1.3) we have dimW⊥s =

2n− k = dimX − dimW. Thus we have proved that

dimW⊥s + dimW = dimX . (1.4)

Similarly we have
dimW⊥s + dim(W⊥s)⊥s = dimX .

Thus we have dim(W⊥s)⊥s = dimW. By definition W ⊆ (W⊥s)⊥s . This implies (W⊥s)⊥s =

W.

We know that W is a symplectic subspace of X if and only if W ∩ W⊥s = {0}. But
(W⊥s)⊥s = W. Therefore the statements (i) and (ii) are equivalent. It follows from (1.4) that
X = W ⊕W⊥s if and only if W ∩W⊥s = {0}. This proves the equivalence of the statements
(i) and (iii).

Theorem 1.1.3. Every non-zero symplectic space has a symplectic basis.

Proof. Let (X , ω) be any non-zero symplectic space of dimension 2n. Let u1 be any non-
zero element of X . By non-degeneracy of ω and a suitable scaling, we get v1 ∈ X such that
ω(u1, v1) = 1. The set {u1, v1} is a symplectically orthonormal set. Let W1 = span{u1, v1}⊥s .

By Proposition 1.1.2, W1 is a symplectic subspace of X of dimension 2n−2. IfW1 is a non-zero
subspace, we similarly get u2, v2 ∈ W1 such that ω(u2, v2) = 1. The set {u1, u2, v1, v2} is
a symplectically orthonormal set. Repeat this process to get at the kth step a symplectically
orthonormal set {u1, . . . , uk, v1, . . . , vk}. LetWk = span{u1, . . . , uk, v1, . . . , vk}⊥s . By Propo-
sition 1.1.2 we have dimWk = 2n − 2k. The process stops when Wk is the zero subspace of
X in which case k = n. The set {u1, . . . , un, v1, . . . , vn} so obtained is a symplectic basis of
(X , ω).

Corollary 1.1.4. Any symplectically orthonormal subset of a symplectic space can be extended
to a symplectic basis.

Proof. Let (X , ω) be a symplectic space and let {u1, . . . , uk, v1, . . . , vk} be any symplectically
orthonormal set. If it is a symplectic basis then there is nothing to prove. Otherwise, let W =

span{u1, . . . , uk, v1, . . . , vk}. The subspace W is symplectic. Therefore W⊥s is symplectic
and X = W ⊕W⊥s by Proposition 1.1.2. By Theorem 1.1.3, there exists a symplectic basis
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{uk+1, . . . , un, vk+1, . . . , vn} of W⊥s . The set {u1, . . . , un, v1, . . . , vn} is a symplectic basis
of X extending the given symplectically orthonormal set.

We say that two symplectic spaces (X , ω) and (Y, η) are isomorphic if there exists a vector

space isomorphism Φ : X → Y such that η(Φ(u),Φ(v)) = ω(u, v) for all u, v ∈ X . In the

view of Theorem 1.1.3, we prove in the next theorem that two symplectic spaces of the same

dimension are essentially the same.

Theorem 1.1.5. Two symplectic spaces of the same dimension are isomorphic.

Proof. Let (X , ω) and (Y, η) be symplectic spaces of dimension 2n. By Theorem 1.1.3, choose
symplectic bases {u1, . . . , un, v1, . . . , vn} and {w1, . . . , wn, x1, . . . , xn} of (X , ω) and (Y, η)

respectively. Let Φ : X → Y be the vector space isomorphism given by Φ(uj) = wj and
Φ(vj) = xj for all j = 1, . . . , n. By definition we have η(Φ(x),Φ(y)) = ω(x, y), for all
x, y ∈ {u1, . . . , un, v1, . . . , vn}. By using linearity of Φ and bilinearity of the symplectic forms
we get η(Φ(u),Φ(v)) = ω(u, v) for all u, v ∈ X .

By Theorem 1.1.5 it thus suffices to study only one symplectic space of a given dimension.

Let J be the 2n×2n skew-symmetric matrix defined as
(

O In
−In O

)
, where In is the n×n identity

matrix. Let 〈·, ·〉s : R2n × R2n → R be the symplectic form on R2n induced by J. More

precisely,

〈x, y〉s = 〈x, Jy〉 for all x, y ∈ R2n.

Here 〈·, ·〉 is the Euclidean inner product on Rn. Let x, y ∈ R2n with components x1, . . . , x2n

and y1, . . . , y2n respectively. We have

〈x, y〉s =
n∑
j=1

(xjyn+j − xn+jyj) =
n∑
j=1

det

xj xn+j

yj yn+j

 . (1.5)

The symplectic space (R2n, 〈·, ·〉s) is called the standard symplectic space. We call the symplectic

form 〈·, ·〉s the symplectic inner product on R2n. The symplectic inner product is also known as

the standard symplectic form [21]. The geometrical properties of symplectic spaces are quite

different from that of inner product spaces. For example, the oriented area of a parallelogram

in R2 made by two vectors (a, b) and (c, d) is given by det
(
a b
c d

)
. So by equation (1.5), the

symplectic inner product of x, y is the sum of the oriented areas of the parallelograms in R2
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made by the pair of vectors (xj , xn+j) and (yj , yn+j) for all j = 1, . . . , n. The geometrical

properties of inner product spaces such as length of a vector, angle between two vectors are

missing in symplectic spaces. Despite these differences, we prove several results in symplectic

spaces analogous to some well known results in inner product spaces. For our present work we

only deal with the standard symplectic space in the latter part of the thesis.

1.2 The symplectic group and Williamson’s theorem

1.2.1 Symplectic and orthosymplectic matrices

A 2n× 2n matrix M is called a symplectic matrix if

MTJM = J. (1.6)

The matrix J is a symplectic matrix. By (1.6) we have (detM)2 = 1 which implies detM =

±1. It turns out that the determinant of symplectic matrices is always equal to one, a non-trivial

fact discussed in [23]. We denote by Sp(2n) the set of 2n × 2n symplectic matrices. The

set Sp(2n) forms a group under multiplication, it is closed under transpose, and is called the

symplectic group. The symplectic group Sp(2n) is precisely the set of 2n× 2n matrices M that

preserve the symplectic inner product on R2n, i.e.,

〈Mx,My〉s = 〈x, y〉s for all x, y ∈ R2n.

The symplectic group is analogous to the group of orthogonal matrices in the sense that orthogonal

matrices preserve the Euclidean inner product. But unlike the set of orthogonal matrices, Sp(2n)

is not compact as it contains the matrices of the form kIn⊕k−1In where k is any positive integer.

The symplectic group occurs naturally in quantum mechanics and optics [29]. In an n mode

quantum continuous variable system we have self adjoint operators x1, . . . , xn and p1, . . . , pn

on a suitable Hilbert spaceH called the position and momentum operators. These operators obey

the Canonical Commutation Relations (CCR) given by

[xj , pk] = ıδjk~, [xj , xk] = [pj , pk] = 0 for k, j = 1, . . . , n
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where ~ = h/2π, h is the Planck’s constant, δjk = 1 if j = k, and 0 otherwise. Here

[p, q] = pq−qp for all operators p, q on the Hilbert spaceH.Any linear canonical transformation

xj 7→ yj , pj 7→ qj such that y1, . . . , yn and q1, . . . , qn are functions of x1, . . . , xn, p1, . . . , pn

and satisfy the CCR can be specified by a symplectic matrix S ∈ Sp(2n). See [23, 68].

Let M ∈ Sp(2n). Suppose u1, . . . un, v1, . . . , vn are the 2n columns of M. The condition

MTJM = J is equivalent to the set {u1, . . . , un, v1, . . . , vn} being a symplectic basis. This

gives a one to one correspondence between Sp(2n) and the set of all symplectic bases of the

standard symplectic space (R2n, 〈·, ·〉s). Consider M in the following block matrix form

M =

A B

C G

 , (1.7)

where A,B,C,G are n× n matrices. The condition MTJM = J is equivalent to the following

conditions on the blocks:

ATC = CTA, BTG = GTB, ATG− CTB = I. (1.8)

We call a matrix orthosymplectic if it is symplectic as well as orthogonal. Orthosymplectic

matrices have a specific structure stated in the following proposition. See ([23], Sec. 4).

Proposition 1.2.1. An element M of Sp(2n) is orthogonal if and only if M is of the form

M =

(
U V

−V U

)
,

where U, V are n× n real matrices such that U + ıV is a unitary matrix.

Proof. Consider the block decomposition of M given by equation (1.7). Suppose M is or-
thosymplectic. We have MJ = JM which implies A = G and B = −C. Therefore from (1.8)
we get

ATB = BTA, ATA+BTB = I, (1.9)

where I is the n×n identity matrix. The matrix A+ ıB is unitary precisely when the conditions
in (1.9) are satisfied. By choosing U = A and V = B we get the desired form of M. Conversely,
suppose U, V are n× n real matrices such that U + ıV is unitary. This implies that U and V
satisfy the conditions

UTV = V TU, UTU + V TV = I. (1.10)
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By (1.10) and (1.8) it directly follows that

(
U V

−V U

)
is orthosymplectic.

1.2.2 Doubly superstochastic matrices associated with symplectic matrices

An n× n matrix A with non-negative entries is said to be doubly stochastic if

n∑
i=1

aij = 1 for all j = 1, . . . , n;

n∑
j=1

aij = 1 for all i = 1, . . . , n.

An n×n matrix B is said to be doubly superstochastic if there exists an n×n doubly stochastic

matrix A such that bij ≥ aij for all i, j = 1, . . . , n. Let x = (x1, . . . , xn) be an element of

Rn. We denote by x↑ = (x↑1, . . . , x
↑
n) the vector obtained by arranging the components of x in

increasing order. Let x, y ∈ Rn. We say x is supermajorised by y if

k∑
j=1

x↑j ≥
k∑
j=1

y↑j (1.11)

for 1 ≤ k ≤ n, and is denoted by x ≺w y. We say that x is majorised by y (or y majorises x) if

equality holds in (1.11) for k = n, and is denoted by x ≺ y. There is an intimate relationship

between doubly stochastic matrices and majorisation, and between doubly superstochastic

matrices and supermajorisation. A well known characterisation of doubly stochastic and doubly

superstochastic matrices in the theory of majorisation is stated in the following result. See ([6],

Sec. 2).

Theorem 1.2.2. An n× n matrix B is doubly superstochastic if and only if Bx ≺w x for every
vector x ∈ Rn with non-negative components. Further, B is doubly stochastic if and only if
Bx ≺ x for every vector x ∈ Rn.

Let M be any element of Sp(2n), and consider the block form of M given by the equation

(1.7). Suppose aij , bij , cij , gij are the ijth entries of the n× n matrices A,B,C,G respectively.

Let M̃ be the n× n matrix whose ijth entry is given by

m̃ij =
1

2
(a2ij + b2ij + c2ij + g2ij). (1.12)
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The matrix M̃ is doubly superstochastic as stated in the next result. See ([11], Theorem 6).

Theorem 1.2.3. Let M be an element of Sp(2n) and M̃ be the n × n matrix associated with
M by the rule (1.12). The matrix M̃ is doubly superstochastic. Further, M̃ is doubly stochastic
if and only if M is orthogonal.

1.2.3 Symplectic eigenvalues and symplectic eigenvector pairs

The following result is of fundamental importance in our present study, it is known as

Williamson’s theorem. There are multiple proofs of Williamson’s theorem available in the

literature. See [21, 72]. The proofs discussed here is based on [72]. We denote by Pn(R) the set

of n× n real positive definite matrices.

Theorem 1.2.4. For every A ∈ P2n(R) there exists an M ∈ Sp(2n) such that

MTAM =

(
D O

O D

)
, (1.13)

where D is an n× n positive diagonal matrix with diagonal entries d1(A) ≤ · · · ≤ dn(A).

Proof. Let A be an element of P2n(R). The matrix A−1/2JA−1/2 is a 2n × 2n non-singular
skew-symmetric matrix. Therefore we get a 2n× 2n orthogonal matrix R and an n×n diagonal
matrix D with positive diagonal entries d1(A) ≤ · · · ≤ dn(A) such that,

RTA−1/2JA−1/2R =

(
O D−1

−D−1 O

)

=

(
D−1/2 O

O D−1/2

)
J

(
D−1/2 O

O D−1/2

)
.

This gives (
D1/2 O

O D1/2

)
RTA−1/2JA−1/2R

(
D1/2 O

O D1/2

)
= J. (1.14)

Choose M = A−1/2R
(
D1/2 O
O D1/2

)
. The relation (1.14) implies that M is a symplectic matrix.

One can easily verify that M and D satisfy (1.13).

The numbers d1(A), . . . , dn(A) are called the symplectic eigenvalues of A. See [36]. These

numbers are the complete invariants of A under the action of the symplectic group Sp(2n). By

the spectral theorem we know that Hermitian matrices can be diagonalised by unitary matrices.
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Williamson’s theorem is analogous to the spectral theorem in the sense that positive definite

matrices of even size can be diagonalised by symplectic matrices.

Symplectic eigenvalues appear in various applications such as classical and quantum mechan-

ics [21], symplectic topology [37] and harmonic oscillator systems [1, 58]. See also [24, 45, 67].

Recently there has been a heightened interest in the study of symplectic eigenvalues by both

physicists and mathematicians. A particular reason for this being their growing importance and

applications in quantum information. See, for instance, [23, 62]. In quantum mechanics, an

object of importance is the class of Gaussian states in a quantum system. Associated with every

n mode quantum state is a 2n×2n positive definite matrix known as the covariance matrix of the

state. Gaussian states are completely characterised by their covariance matrices. By Heisenberg

uncertainty principle, a quantum state with the associated covariance matrix A is Gaussian if and

only if

A− ı

2
J ≥ 0. (1.15)

The condition (1.15) is equivalent to dj(A) ≥ 1
2 for all j = 1, . . . , n which follows from

Williamson’s theorem.

The class of Gaussian states in a quantum system is being widely studied. Of interest there

are various entropy functions associated with Gaussian states that are useful in measurement

of the degree of mixedness and entanglement of the Gaussian states. Let A be the covariance

matrix associated with an n mode Gaussian state. The von-Neuman entropy of the Gaussian

state can be expressed as

S(A) =
n∑
j=1

H(dj). (1.16)

Here H : [12 ,∞)→ R is the smooth function given by

H(t) =

(
2t+ 1

2

)
log2

(
2t+ 1

2

)
−
(

2t− 1

2

)
log2

(
2t− 1

2

)
for t > 1/2,

and H(12) = 0. Another useful entropy function is Rényi-α entropy for α > 1 which can be

expressed as

Rα(A) =
n∑
j=1

G(dj). (1.17)
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Here G : [12 ,∞)→ R is the smooth function

G(t) =

(
1

α− 1

)
log2

((
2t+ 1

2

)α
−
(

2t− 1

2

)α)
.

Both the entropies are smooth functions of the symplectic eigenvalues of the covariance matrices

of Gaussian states. A detailed account of applications of symplectic eigenvalues in quantum

mechanics is given in [68]. So it is useful and important to have a well developed theory for

symplectic eigenvalues as we have for eigenvalues.

The following proposition is a direct consequence of Williamson’s theorem.

Proposition 1.2.5. LetA be an element of P2n(R). There exists a symplectic basis {u1, . . . , un, v1, . . . , vn}
of R2n such that for each i = 1, . . . , n

Aui = di(A)Jvi, Avi = −di(A)Jui. (1.18)

Proof. Let M be a symplectic matrix that diagonalises A in the Williamson’s theorem. Let
{u1, . . . , un, v1, . . . , vn} to be the set of columns ofM.We know that the set {u1, . . . , un, v1, . . . , vn}
is a symplectic basis of R2n. We also have M−T = JMJT . By (1.13) we get

AM = JMJT

(
D O

O D

)

which is equivalent to (1.18).

We call a pair of vectors (uj , vj) satisfying the conditions (1.18) symplectic eigenvector pair

of A corresponding to the symplectic eigenvalue dj(A), and normalised symplectic eigenvector

pair if it also satisfies 〈uj , vj〉s = 1. For any positive integer m ≤ n, denote by Sp(2n, 2m) the

set of 2n × 2m matrices S = [u1, . . . , um, v1, . . . , vm] such that {u1, . . . , um, v1, . . . , vm}

is a symplectically orthonormal set. In particular, Sp(2n, 2n) = Sp(2n). We denote by

Sp(2n, 2m,A) the subset of Sp(2n, 2m) consisting of matrices S = [u1, . . . , um, v1, . . . , vm]

such that (uj , vj) is a symplectic eigenvector pair of A corresponding to dj(A). We write

Sp(2n,A) = Sp(2n, 2n,A). A symplectic basis consisting of symplectic eigenvector pairs of

A is called a symplectic eigenbasis corresponding to A.

Example 4. Let A be the 2n × 2n matrix of the form
(
P O
O P

)
where P is an n × n positive

definite matrix. Let U be an orthogonal matrix of size n such that UTPU is the diagonal matrix
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with diagonal entries α1 ≤ . . . ≤ αn. The matrix M =
(
U O
O U

)
is an (ortho)symplectic matrix

that diagonalises A as in (1.13). The symplectic eigenvalues of A are given by α1, . . . , αn.

Example 5. Let A be of the form
(
D1 O
O D2

)
where D1, D2 are diagonal matrices with positive

diagonal entries α1, . . . , αn, and β1, . . . , βn respectively. Let M = A−1/2JA1/4JA1/4J. One
can verify that M is a symplectic matrix and

MTAM =

(
D O

O D

)
,

where D is the diagonal matrix with diagonal entries
√
α1β1, . . . ,

√
αnβn, and hence these are

the symplectic eigenvalues of A.

1.2.4 Preliminary results on symplectic eigenvalues and symplectic eigenvector
pairs

The results of this subsection are based on Section 2 of [39].

Lemma 1.2.6. Let A ∈ P2n(R) and let d be a positive number. The following statements are
equivalent.

(i) d is a symplectic eigenvalue of A and (u, v) is a corresponding symplectic eigenvector
pair.

(ii) ±d is an eigenvalue of ıJA and u∓ ıv is a corresponding eigenvector.

(iii) ±d is an eigenvalue of ıA1/2JA1/2 and A1/2u∓ ıA1/2v is a corresponding eigenvector.

Proof. For any two matrices X and Y, the spectrum (accounting multiplicities) of XY is the
same as that of Y X. Hence d is an eigenvalue of ıJA if and only if it is so for the matrix
ıA1/2JA1/2. Further ıJA(u− ıv) = d(u− ıv) if and only if ıA1/2JA1/2(A1/2u− ıA1/2v) =

d(A1/2u− ıA1/2v). Hence (ii) and (iii) are equivalent.
We next prove the equivalence of (i) and (ii). It is easy to see that

Au = dJv and Av = −dJu

if and only if
(ıJA)u = −dıv and (ıJA)ıv = −du. (1.19)

The two expressions in (1.19) can equivalently be written as

ıJA(u− ıv) = d(u− ıv).

This proves the required equivalence.
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Since d1, . . . , dn denote the symplectic eigenvalues arranged in increasing order, we usually

denote any collection of symplectic eigenvalues by d̃1, . . . , d̃n.

Proposition 1.2.7. For A in P2n(R), the set {ũ1, . . . , ũm, ṽ1, . . . , ṽm} is a symplectically or-
thogonal set of symplectic eigenvector pairs of A corresponding to the symplectic eigenvalues
d̃1, . . . , d̃m, respectively, if and only if {A1/2ũj − ıA1/2ṽj : j = 1, . . . ,m} is an orthogonal
set of eigenvectors of ıA1/2JA1/2 corresponding to the eigenvalues d̃1, . . . , d̃m respectively.
Further, for each j = 1, . . . , k

‖A1/2ũj − ıA1/2ṽj‖2 = 2d̃j〈ũj , Jṽj〉. (1.20)

Proof. We know by Lemma 1.2.6 that (ũj , ṽj) is a symplectic eigenvector of A corresponding
to d̃j if and only if A1/2ũj − ıA1/2ṽj is an eigenvector of ıA1/2JA1/2 corresponding to d̃j . For
j, k = 1, . . . ,m, we have

〈A1/2ũj − ıA1/2ṽj , A
1/2ũk − ıA1/2ṽk〉

= 〈ũj − ıṽj , A(ũk − ıṽk)〉

= 〈ũj , Aũk〉+ 〈ṽj , Aṽk〉 − ı〈ũj , Aṽk〉+ ı〈ṽj , Aũk〉

= d̃k (〈ũj , Jṽk〉+ 〈ũk, Jṽj〉+ ı〈ũj , Jũk〉+ ı〈ṽj , Jṽk〉) . (1.21)

If {ũ1, . . . , ũm, ṽ1, . . . , ṽm} is symplectically orthogonal, then from (1.21) we see that the set
{A1/2ũj−ıA1/2ṽj : j = 1, . . . ,m} is orthogonal. When j = k in (1.21), we get (1.20). It is easy
to see that d̃j is an eigenvalue of ıA1/2JA1/2 with corresponding eigenvector A1/2ũj − ıA1/2ṽj

if and only if −d̃j is its eigenvalue with corresponding eigenvector A1/2ũj + ıA1/2ṽj . So, in a
way similar to as in (1.21), we can have

〈A1/2ũj − ıA1/2ṽj , A
1/2ũk + ıA1/2ṽk〉

= d̃k (〈ũj , Jṽk〉 − 〈ũk, Jṽj〉 − ı〈ũj , Jũk〉+ ı〈ṽj , Jṽk〉) . (1.22)

Let {A1/2ũj − ıA1/2ṽj : j = 1, . . . ,m} be orthogonal. Since eigenvectors corresponding to
distinct eigenvalues of a Hermitian matrix are orthogonal, A1/2ũj − ıA1/2ṽj and A1/2ũk +

ıA1/2ṽk are orthogonal for all j, k = 1, . . . ,m. Hence from (1.21) and (1.22), we get the
symplectic orthogonality of the set {ũ1, . . . , ũm, ṽ1, . . . , ṽm}.

Corollary 1.2.8. Any two symplectic eigenvector pairs corresponding to two distinct symplectic
eigenvalues of a positive definite matrix are symplectically orthogonal.

Proof. It follows immediately from the above result using the fact that eigenvectors correspond-
ing to distinct eigenvalues of a Hermitian matrix are orthogonal.
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We know that any orthogonal (orthonormal) set of eigenvectors of a Hermitian matrix can be

extended to an orthogonal (orthonormal) eigenbasis. The following proposition is a symplectic

analogue of this fact.

Proposition 1.2.9. Let A be an element of P2n(R). Every symplectically orthogonal set consist-
ing of symplectic eigenvector pairs of A can be extended to a symplectically orthogonal basis
consisting of symplectic eigenvector pairs of A.

Proof. We know that any orthogonal subset of C2n consisting of eigenvectors of a Hermitian
matrix can be extended to an orthogonal basis of C2n. So the result directly follows from
Proposition 1.2.7.

Corollary 1.2.10. Every symplectically orthonormal set consisting of symplectic eigevector
pairs of A can be extended to a symplectic eigenbasis corresponding to A.

Proof. Let {u1, . . . , um, v1, . . . , vm} be a symplectically orthonormal subset of R2n consist-
ing of m symplectic eigenvector pairs of A. By Proposition 1.2.9, extend the above set to a
symplectically orthogonal set

{u1, . . . , um, v1, . . . , vm} ∪ {ũm+1, . . . , ũn, ṽm+1, . . . , ṽn}

consisting of n symplectic eigenvector pairs ofA. By Proposition 1.2.7 we know that 〈ũj , Jṽj〉 >
0. Let uj = 〈ũj , Jṽj〉−1/2ũj and vj = 〈ũj , Jṽj〉−1/2ṽj for all j = m + 1,m + 2, . . . , n. The
set {u1, . . . , un, v1, . . . , vn} is a symplectic eigenbasis corresponding to A.

1.3 Symplectic projection

We are familiar with orthogonal projections in classical linear algebra. One can state the spectral

theorem for Hermitian matrices in terms of orthogonal projections. We introduce a symplectic

analogue of orthogonal projections and state Williamson’s theorem in terms of symplectic

projection. This section is based on our work in Section 5 of [39].

1.3.1 Symplectic projections associated with symplectically orthonormal sets

Let S = {x1, . . . , xk, y1, . . . , yk} be a symplectically orthonormal subset of R2n. We introduce

a map PS on R2n given by

PS(x) =
k∑
i=1

(〈x, Jxi〉Jxi + 〈x, Jyi〉Jyi) . (1.23)
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Suppose M is the 2n× 2k matrix

M =

[
Jx1, . . . , Jxk, Jy1, . . . , Jyk

]
. (1.24)

We have

PS(x) =
k∑
i=1

(〈x, Jxi〉Jxi + 〈x, Jyi〉Jyi)

=
k∑
i=1

J
(
(xTJxi)xi + (xTJyi)yi

)
=

k∑
i=1

J
(
xix

T
i J

Tx+ yiy
T
i J

Tx
)

=
k∑
i=1

(
(Jxi)(Jxi)

T + (Jyi)(Jyi)
T
)
x

= MMTx.

Therefore PS is a positive semidefinite matrix. We call PS the symplectic projection associated

with the set S. One can verify that the kernel of PS is the symplectic complement of S. If k = n,

i.e., S is a symplectic basis of R2n, then PS is a positive definite symplectic matrix with all

its symplectic eigenvalues 1. The symplectic projections associated with two symplectically

orthonormal sets spanning the same space need not be equal. This can be seen by the following

example.

Example 6. Let S = {(1, 0)T , (0, 1)T } and T = {(1, 0)T , (1, 1)T }. The sets S and T are
symplectically orthonormal and span R2. The symplectic projection PS is the 2 × 2 identity

matrix whereas the symplectic projection PT is the matrix

(
1 −1

−1 2

)
.

In the following proposition we give a necessary and sufficient condition for the equality of

two symplectic projections.

Proposition 1.3.1. Let S = {u1, . . . , uk, v1, . . . , vk} and T = {x1, . . . , xm, y1, . . . , ym} be
two symplectically orthonormal subsets of R2n, and let P and Q be the symplectic projections
associated with them. Let M and N be the 2n × 2k and 2n × 2m matrices given by (1.24)
corresponding to the sets S and T, respectively. Then P = Q if and only if k = m andM = NU

for some 2k × 2k orthosymplectic matrix U.
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Proof. If k = m and M = NU, the equality P = Q easily follows from the orthogonality of U,
and the fact that P = MMT and Q = NNT .

Conversely, let P = Q. Clearly the subspaces spanned by S and T are the same, and hence
k = m. By equation (1.23) we have

Pxj =
k∑
i=1

(αijJui + βijJvi)

for all j = 1, . . . , k. Here αij = 〈xj , Jui〉 and βij = 〈xj , Jvi〉, 1 ≤ i, j ≤ k. Since P = Q,

Pxi = Jyi. This gives

yj =
k∑
i=1

(αijui + βijvi) . (1.25)

Also since xj belongs to the span of the symplectically orthonormal vectors u1, . . . , uk, v1, . . . , vk,

xj =
k∑
i=1

(〈xj , Jvi〉ui − 〈xj , Jui〉vi) (1.26)

=

k∑
i=1

(βijui − αijvi) . (1.27)

Let X and Y be the k × k matrices X =
[
αij

]
and Y =

[
βij

]
, and U be the 2k × 2k matrix

U =

[
Y X

−X Y

]T
.

Using the fact that x1, . . . , xk, y1, . . . , yk are symplectically orthonormal, we can see that the
columns of U are orthonormal as well as symplectically orthonormal vectors in R2k. Finally,
from (1.25) and (1.27) we obtain M = NU.

1.3.2 Williamson’s theorem through symplectic projection

Let H be an m×m Hermitian matrix and η1, . . . , ηk be the distinct eigenvalues of H. Suppose

E1, . . . , Ek are the orthogonal projections onto the eigenspaces of H corresponding to the

eigenvalues η1, . . . , ηk respectively. The spectral decomposition of H is also given by

H =

k∑
j=1

ηjEj .
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In the same spirit, we give an alternate statement for Williamson’s theorem which states that

every element of P2n(R) can be written as a linear combination of symplectic projections.

Proposition 1.3.2. For every A in P2n(R) there exist distinct positive numbers µ1, . . . , µm and
symplectic projections P1, . . . , Pm that satisfy the following conditions.

(i) PjJPk = 0 for all j 6= k, j, k = 1, . . . ,m.

(ii)
m∑
k=1

PkJPk = J.

(iii) A =
m∑
k=1

µkPk.

The numbers µ1, . . . , µm and the symplectic projections P1, . . . , Pm are uniquely determined
by the above conditions. Further, for every 1 ≤ j ≤ m, µj is a symplectic eigenvalue of A and
Pj is the symplectic projection associated with a symplectically orthonormal set of eigenvector
pairs of A corresponding to µj .

Proof. Let µ1, . . . , µm be the distinct symplectic eigenvalues ofAwith multiplicities k1, . . . , km,
respectively. For every j = 1, . . . ,m let Sj = {uj,1, . . . , uj,kj , vj,1, . . . , vj,kj} be a symplec-
tically orthonormal set of symplectic eigenvector pairs of A corresponding to µj . Let Pj be
the symplectic projection associated with Sj . By the definition of symplectic projections and
Williamson’s theorem, we can see that µ1, . . . , µm and P1, . . . , Pm satisfy (i)-(iii).

Now, let η1, . . . , ηl be l distinct positive numbers and Q1, . . . , Ql be symplectic projections
that also satisfy (i)-(iii). For every j = 1, . . . , l, let Tj = {xj,1, . . . , xj,rj , yj,1, . . . , yj,rj} be a
symplectically orthonormal set corresponding toQj . By using (i) and (iii), we can see that each ηj
is a symplectic eigenvalue of A, and (xj,i, yj,i), 1 ≤ i ≤ rj , are the symplectically orthonormal
symplectic eigenvector pairs corresponding to ηj . Condition (ii) implies that {η1, . . . , ηl} forms
the set of all distinct symplectic eigenvalues of A. By the uniqueness of symplectic eigenvalues,
we have l = m and {µ1, . . . , µm} = {η1, . . . , ηl}. We can assume that µj = ηj for all
j = 1, . . . ,m. By (iii) we see that rj is equal to the multiplicity of µj . Since symplectic
eigenvector pairs corresponding to different eigenvalues are symplectically orthogonal, Sj is
symplectically orthogonal to Tk for all j 6= k. Consequently Pjx = 0 for all x ∈ Tk and for all
k 6= j. Thus for every (xj,i, yj,i) in Tj we have

µjQjxj,i = µjJyj,i = Axj,i = µjPjxj,i.

and since µj 6= 0, Pjxj,i = Qjxj,i. Similarly Pjyj,i = Qjyj,i. Since ∪Tj forms a basis for R2n,

we get Pj = Qj for all j = 1, . . . ,m.

We can see that if d1(B), . . . , dn(B) are the symplectic eigenvalues ofB and {u1, . . . , un, v1, . . . , vn}
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is a corresponding symplectic eigenbasis, then

B =

n∑
j=1

dj(B)Pj ,

where Pj is the symplectic projection corresponding to {uj , vj}.

Corollary 1.3.3. Let A ∈ P2n(R), and let d be its symplectic eigenvalue with multiplicity k.
Let S = {w1, . . . , wk, z1, . . . , zk} be a symplectically orthonormal set of symplectic eigenvector
pairs ofA corresponding to d. Then the set T = {x1, . . . , xk, y1, . . . , yk} is also a symplectically
orthonormal set of symplectic eigenvector pairs corresponding to d if and only if there exists a
2k × 2k orthosymplectic matrix U such that

N = MU,

whereM andN are 2n×2mmatrices with columnsw1, . . . , wk, z1, . . . , zk and x1, . . . , xk, y1, . . . , yk,
respectively.

Proof. Let P andQ be the symplectic projections associated with the symplectically orthonormal
sets S and T respectively. By the uniqueness of symplectic projections in Proposition 1.3.2 we
have P = Q. Therefore by Proposition 1.3.1 we get a 2k × 2k orthosymplectic matrix U such
that

[Jx1, . . . , Jxk, Jy1, . . . , Jyk] = [Jw1, . . . , Jwk, Jz1, . . . , Jzk]U,

which is the same as N = MU.

1.3.3 An extension of Williamson’s theorem

The proof of Proposition 1.3.2 is based mainly on the fact that there is a symplectically or-

thonormal set Sj = {uj,1, . . . , uj,kj , vj,1, . . . , vj,kj} associated with each distinct symplectic

eigenvalue µj of multiplicity kj . The arguments in the proof hold even if we assume one of the

symplectic eigenvalues µj = 0. In that case A is a positive semidefinite matrix whose kernel is

the symplectic subspace spanned by Sj . This observation leads to an extension of Williamson’s

theorem to 2n × 2n positive semidefinite matrices whose kernel is a symplectic subspace of

R2n. A statement of the extended result is given in ([39], Remark 2.6) without proof. We set up

some notations and definitions for convenience.

Let Z be any matrix with m columns and let J any subset of the index set {1, . . . ,m}. We

denote by ZJ the submatrix of Z obtained by removing those columns of Z with indices not in
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J . Let m1, . . . ,mk be positive integers with m1 + . . .+mk = n. For all j = 1, . . . , k define

Ij = {mj−1 + i : 1 ≤ i ≤ mj} ∪ {n+ (mj−1 + i) : 1 ≤ i ≤ mj}

with m0 = 0. The sets I1, . . . , Ik form a partition of {1, . . . , 2n}. Given a matrix S with 2n

columns, we say that

S = SI1 � . . . � SIk (1.28)

is the symplectic column partition of S of order (m1, . . . ,mk).

Example 7. Let n = 6 and m1 = 2,m2 = 3,m3 = 1. Then we have I1 = {1, 2} ∪ {7, 8},
I2 = {3, 4, 5} ∪ {9, 10, 11}, I3 = {6} ∪ {12}.

Proposition 1.3.4. Let S be a matrix with 2n columns and m1, . . . ,mk be positive integers
whose sum is n. Let S = SI1 � . . . � SIk be the symplectic column partition of S of order
(m1, . . . ,mk). We have

TS = TSI1 � . . . � TSIk , (1.29)

where T is a matrix of appropriate size.

Proof. We know that the jth column of TS is given by Tsj , where sj is the jth column of S.
Therefore we have (TS)Ij = TSIj for all j, and this implies that (1.29) holds.

We recall a symplectic version of matrix direct sum introduced by Bhatia and Jain in [11]. If

Aj are mj ×mj matrices for j = 1, . . . , k then ⊕Aj is their usual direct sum. It is the n× n

block-matrix with A1, . . . , Ak on its diagonal and zeros elsewhere. Let

Aj =

Pj Qj

Rj Sj

 , j = 1, . . . , k

be 2mj × 2mj block-matrices with each block of size mj × mj . The s-direct sum of Aj is

defined as the 2n× 2n matrix

⊕sAj =

⊕Pj ⊕Qj
⊕Rj ⊕Sj

 , j = 1, . . . , k.

Theorem 1.3.5. Let A be a 2n× 2n positive semidefinite matrix. Then there exists a symplectic
matrix M such that (1.13) holds for some n× n nonnegative diagonal matrix D if and only if
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the kernel of A is a symplectic subspace of R2n. If dim KerA = 2m, then exactly m diagonal
entries of D are zero. In this case, we call the nonnegative diagonal entries of D to be the
symplectic eigenvalues of the positive semidefinite matrix A.

Proof. The result is trivial for m = 0, n. So we assume 1 < m < n. Suppose kerA
is a symplectic subspace of R2n of dimension 2m. By Proposition 1.1.2 we know that
dim(kerA)⊥s = 2(n −m). Let {x1, . . . , xm, y1, . . . , ym} and {xm+1, . . . , xn, ym+1, . . . , yn}
be symplectic bases of kerA and (kerA)⊥s respectively. Let S be the element of Sp(2n) whose
ith column is xi and (n+ i)th column is yi for i = 1, . . . , n. Let S = S � S̃ be the symplectic
column partition of S of order (m,n−m). We have

STAS = S
T
AS ⊕s S̃TAS̃

= O2m ⊕s S̃TAS̃,

where O2m is the 2m× 2m zero matrix. The columns of S̃ form a symplectic basis of (kerA)⊥s

and kerA ∩ (kerA)⊥s = {0}. This implies S̃TAS̃ is a 2(n−m)× 2(n−m) positive definite
matrix. By Williamson’s theorem get Q ∈ Sp(2(n−m)) such that

QT S̃TAS̃Q =

(
D̃ O

O D̃

)
,

where D̃ is the (n−m)× (n−m) diagonal matrix with diagonal entries α1, . . . , αn−m. Let
M be the 2n× 2n matrix with symplectic column partition M = S � S̃Q of order (m,n−m).

The matrix M is symplectic and we have

MTAM = S
T
AS ⊕s QT S̃TAS̃Q

= O2m ⊕s

(
D̃ O

O D̃

)
.

Choose D as the n× n diagonal matrix with diagonal entries 0, . . . , 0︸ ︷︷ ︸
m times

, α1, . . . , αn−m.

Conversely, supposeMTAM is a diagonal matrix given by (1.13),whereD is a non-negative
diagonal matrix with exactlym zero entries. LetM = M �M̃ be the symplectic column partition
ofM of order (m,m−n). The kernel ofA is spanned by the columns ofM which is a symplectic
subspace of R2n of dimension 2m.
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Chapter 2

Differentiability and analyticity of
symplectic eigenvalues

This chapter is based on our work in the paper [39]. The main aim of the chapter is to investigate

the differential properties of symplectic eigenvalues and symplectic eigenvector pair maps

on P2n(R), and on a curve in P2n(R). We recall some preliminary definitions and results on

differentiability of functions on real Banach spaces in Section 2.1. In particular, we discuss

the matrix square root function and the Implicit Function Theorem. We review the theory

of differentiability and analyticity of eigenvalues of Hermitian matrices in Section 2.2. The

results in this section are useful later in the chapter. In Section 2.3, we prove that if dj(A) is a

simple symplectic eigenvalue of A then dj is smooth at A and there exists a smooth symplectic

eigenvector pair map corresponding to dj . We also compute the first order derivative expressions

for these maps. In Section 2.4, we show that if t 7→ A(t) is a real analytic curve in P2n(R)

over an open interval J, then one can choose symplectic eigenvalues and symplectic eigenbasis

real analytically over the interval J. Further, the symplectic eigenvalue maps t 7→ dj (A(t)) are

piecewise real analytic over any subinterval [a, b] of J. In Section 2.5, we give some applications

of our analysis of symplectic eigenvalues. In particular, we prove a symplectic analogue of

Lidskii’s theorem that gives a majorisation inequality between the symplectic eigenvalues of two

positive definite matrices and their sum.

We denote by Mn(C) the set of n × n complex matrices equipped with the usual inner

product 〈A,B〉 = tr A∗B for all A,B ∈ Mn(C). Let Hn(C) and Sn(R) be the real subspaces

31
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of Mn(C) consisting of Hermitian matrices and real symmetric matrices respectively.

2.1 Differentiability of functions on real Banach spaces

Let X,Y be real Banach spaces and U be an open subset of X. A function Ψ : U → Y is said

to be differentiable at a ∈ U if there exists T ∈ B(X,Y ) such that

lim
‖h‖→0

‖Ψ(a+ h)−Ψ(a)− T (h)‖
‖h‖

= 0,

where B(X,Y ) is the Banach space of bounded linear maps from X to Y and ‖ · ‖ is the norm

in the appropriate Banach space. The linear map T is unique and it is called the derivative of Ψ

at a. It is also known as the Fréchet derivative of Ψ at a and is usually denoted by DΨ(a). If Ψ

is differentiable at every point of U, we say that it is differentiable on U. The map Ψ is said to

be continuously differentiable at a if it is differentiable on an open neighbourhood V ⊂ U of a

and the map DΨ : V → B(X,Y ) is continuous at a. The higher order derivatives are defined

inductively. Suppose for some p ≥ 2 and all 1 ≤ k < p, the kth order derivative has been defined;

the kth order derivative of Ψ at a being an element DkΨ(a) ∈ Bk(X,Y ) where Bk(X,Y ) is

the Banach space of bounded k-linear maps from the k-fold Cartesian product of X to Y. Here

D1Ψ(a) = DΨ(a) and B1(X,Y ) = B(X,Y ). The map Ψ is pth order differentiable at a if it is

(p− 1)th order differentiable on an open neighbourhood of a and Dp−1Ψ is differentiable at a.

The pth order derivative of Ψ at a is given by DpΨ(a) = D(Dp−1Ψ)(a).

The map Ψ is said to be Cp or p-times continuously differentiable at a if it is pth order

differentiable on an open neighbourhood V of a and the map DpΨ : V → Bp(X,Y ) is

continuous at a; it is said to be Cp on U if it is Cp at every point in U. If the map is Cp at a for

all p ≥ 1, it is said to be C∞ at a; and if it is C∞ at every point in U then it is said to be C∞ on

U. C∞ maps are also known as infinitely differentiable or smooth maps.

Example 8 (Constant maps). Let κ : X → Y be a constant map and a be any element of X.
We have κ(a + h) − κ(a) = 0 for all h ∈ X. So, the constant map is differentiable at a and
Dκ(a) = 0.

Example 9 (Linear maps). Let L be any element of B(X,Y ) and a be any element of X.
We have L(a + h) − L(a) − L(h) = 0 for all h ∈ X. Therefore L is differentiable at a and
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DL(a) = L. Since DL is a constant map, we have DpL(a) = 0 for all p ≥ 2.

Example 10 (The matrix square map). Let Φ : Mn(C) → Mn(C) be the matrix square map
and A ∈Mn(C). For any B ∈Mn(C) we have

Φ(A+B) = (A+B)2 = Φ(A) + (AB +BA) +B2.

Note thatB 7→ AB+BA is a linear map and lim
B→0
‖B2‖/‖B‖ = 0. Therefore Φ is differentiable

at A and we have DΦ(A)(B) = AB +BA.

Example 11 (The matrix inverse map). Let Ψ : GLn(C)→Mn(C) be the matrix inverse map,
where GLn(C) is the complex general linear group. Let A ∈ GLn(C) and B ∈ Mn(C) such
that ‖B‖ < 1/‖A−1‖. We then have A+B ∈ GLn(C), and

Ψ(A+B) = (A+B)−1

= A−1(I +BA−1)−1

= A−1

(
I −BA−1 +

∞∑
k=2

(−1)k(BA−1)k

)
.

By using the geometric sum we get

‖Ψ(A+B)−Ψ(A) +A−1BA−1‖ ≤ ‖A−1‖
(1− ‖B‖‖A−1‖)

‖B‖2.

This gives

lim
‖B‖→0

‖Ψ(A+B)−Ψ(A) +A−1BA−1‖
‖B‖

= 0.

Therefore, Ψ is differentiable and we have DΨ(A)(C) = −A−1CA−1 for all C ∈Mn(C).

2.1.1 The matrix square root function

The set P2n(R) is open in S2n(R). Let % : P2n(R)→ S2n(R) be the matrix square root map and

A ∈ P2n(R). The map % is infinitely differentiable on P2n(R), and its first order derivative at A

is given by

D%(A)(H) =

∫ ∞
0

e−t%(A)He−t%(A)dt (2.1)

for all H ∈ S2n(R). See Moral and Niclas ([22], Theorem 1.1). We know by Lemma 1.2.6 that

the symplectic eigenvalues of A are eigenvalues of ı%(A)J%(A). Therefore the regularity proper-

ties of symplectic eigenvalues follow directly from the corresponding properties of eigenvalues.



34 Chapter 2: Differentiability and analyticity of symplectic eigenvalues

But getting a closed form for the derivative expression (2.1) of % is a non-trivial problem. So the

computation of derivatives of symplectic eigenvalues demands a different approach to dealing

with symplectic eigenvalues.

In the latter part of the chapter, we use the fact that if A : J → P2n(R) is a real analytic

curve on an open interval J then the composite map % ◦A : J→ P2n(R) is also real analytic.

Since we could not find an explicit proof of this in the literature, we include its proof in here for

the sake of completeness. The following two results can be found in the appendix of [39].

Lemma 2.1.1. Let X and Y be Banach spaces, and let T : X k → Y be a bounded k-linear map.

Suppose
∞∑
n=0

ajn is an absolutely convergent series in X with sum aj for all j = 1, . . . , k. For

each n, let cn =
∑

j1+···+jk=n
T (a1j1 , . . . , akjk). Then the series

∞∑
n=0

cn is absolutely convergent

in Y and has sum T (a1, . . . , ak).

Proof. The absolute convergence of the series
∞∑
n=0

cn follows from Merten’s theorem for Cauchy

products of series of real numbers. We shall prove that its sum is T (a1, . . . , ak) by induction on
k. When k = 1, the statement directly follows from the boundedness and linearity of T. Assume

that the result holds for k. Let
∞∑
n=0

ajn (1 ≤ j ≤ k) and
∞∑
n=0

bn be absolutely convergent series

in X such that aj =
∞∑
n=0

ajn and b =
∞∑
n=0

bn.

For each m, define the map T̃m from X → Y as

T̃m(x) =
∑

j1+···+jk=m
T (a1j1 , . . . , akjk , x).

It is easy to see that T̃m is linear and bounded with ‖T̃m‖ ≤ ‖T‖
∑

j1+···+jk=m
‖a1j1‖ · · · ‖akjk‖.

Since each
∞∑
n=0
‖ajn‖ is convergent, by Merten’s theorem for Cauchy products of series of real

numbers, we see that
∞∑
m=0
‖T̃m‖ converges. Let K =

∞∑
m=0
‖T̃m‖. For each j ≥ 0, let

xj = T̃j(b),

and

cj =

j∑
l=0

T̃j−l(bl).

Clearly cj =
∑

j1+···+jk+l=j
T (a1j1 , . . . , akjk , bl). We need to show that

∞∑
j=0

cj is convergent to
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T (a1, . . . , ak, b). Let (Xn), (Cn) and (Bn) be the sequences of partial sums of the series
∞∑
j=0

xj ,

∞∑
j=0

cj and
∞∑
j=0

bj , respectively. By induction hypothesis,
∞∑
j=0

xj is absolutely convergent and its

sum equals T (a1, . . . , aj , b). Take dn = b−Bn and En =
n∑
j=0

T̃j(dn−j). We have

Cn =
n∑
j=0

j∑
l=0

T̃l(bj−l)

=
n∑
l=0

n∑
j=l

T̃l(bj−l)

=

n∑
l=0

T̃l

n−l∑
j=0

bj

 =

n∑
l=0

T̃l(Bn−l)

=
n∑
l=0

T̃l(b)−
n∑
l=0

T̃l(dn−l)

= Xn − En.

It suffices to show that En → 0 as n → ∞. Since dn → 0, we can find a positive number M
such that ‖dn‖ ≤M for all n ≥ 0. Given an ε > 0, choose N in N such that for all n ≥ N

‖dn‖ <
ε

2(K + 1)

and
∞∑

j=n+1

‖T̃j‖ <
ε

2M
.

Then for all n > 2N we can write

‖En‖ ≤
N∑
j=0

‖T̃j‖‖dn−j‖+

n∑
j=N+1

‖T̃j‖‖dn−j‖

<
ε

2(K + 1)

N∑
j=0

‖T̃j‖+M

n∑
j=N+1

‖T̃j‖

<
ε

2(K + 1)
K +M

ε

2M
≤ ε.

This proves lim
n→∞

Cn = lim
n→∞

Xn = T (a1, . . . , ak, b).

Proposition 2.1.2. Let A : J→ P2n(R) be a curve on an open interval J that is real analytic at
t0 ∈ J. Then the composite map % ◦A is also real analytic at t0.

Proof. Without loss of generality, we can assume that J = (−1, 1) and t0 = 0. Since the
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curve A is real analytic at t = 0, there exists an r > 0 such that A(t) can be expressed as

A(t) = A(0) +
∞∑
j=1

Cjt
j for all |t| < r. Here

∞∑
j=1

Cjt
j is absolutely convergent for |t| < r.

Since each kth order derivative Dk% ◦A(0) is k-linear and bounded, by Lemma 2.1.1 we have

Dk% ◦A(0)(A(t)−A(0), . . . ,A(t)−A(0))

=

∞∑
n=0

∑
j1+···+jk=n

tnDk% ◦A(0)(Cj1 , . . . , Cjk).

Let Bk,n denote the matrix
∑

j1+···+jk=n
Dk% ◦A(0)(Cj1 , · · · , Cjk) for k ≤ n, the zero matrix

otherwise. We have the Taylor expansion of % at A(0) in a neighbourhood U ⊆ P2n(R) of A(0)

[22].

%(A) = %(A(0)) +
∞∑
k=1

1

k!
Dk%(A(0))(A−A(0), · · · , A−A(0)).

We use the same notation % to denote the square root function on positive real numbers for
convenience. Suppose λ0 is the minimum eigenvalue of A(0). Since λ0 > 0, the square root

function % is real analytic at λ0, i.e., there exists an r0 > 0 such that the series
∞∑
k=1

1
k!%

(k)(λ0)(t−

λ0)
k is absolutely and locally uniformly convergent in (λ0 − r0, λ0 + r0). Choose δ, 0 < δ < r

such that
∞∑
j=1
‖Cj‖δj < r0 and A(t) ∈ U for all t ∈ (−δ, δ). Thus for all |t| < δ,

%(A(t)) = %(A(0)) +

∞∑
k=1

1

k!

∞∑
n=k

Bk,nt
n. (2.2)

We show that the iterated sum
∞∑
k=1

1
k!

∞∑
n=k

‖Bk,n‖|t|n < ∞. Let C be the sum
∞∑
j=1
‖Cj‖δj . For

|t| < δ, we have

∞∑
n=k

‖Bk,n‖|t|n ≤
∞∑
n=k

‖Bk,n‖δn

≤
∞∑
n=k

∑
j1+···+jk=n

‖Dk% ◦A(0)(Cj1 , . . . , Cjk)‖δn

≤ ‖Dk% ◦A(0)‖
∞∑
n=k

∑
j1+···+jk=n

(‖Cj1‖δj1) · · · (‖Cjk‖δ
jk)

= ‖Dk% ◦A(0)‖Ck.

The last equality follows from the convergence of Cauchy product of the series
∞∑
j=1
‖Cj‖δj . By



2.1 Differentiability of functions on real Banach spaces 37

[14] we have
‖Dk% ◦A(0)‖ = ‖%(k)(A(0))‖ = |%(k)(λ0)|.

For |t| < δ, we have C < r0 and hence

∞∑
k=1

1

k!

∞∑
n=k

‖Bk,n‖|t|n ≤
∞∑
k=1

1

k!
|%(k)(λ0)|Ck <∞.

This implies that the iterated sum on the right hand side of (2.2) is equal to the sum
∞∑
n=1

n∑
k=1

1
k!Bk,nt

n. This shows that
√

A(t) can be expressed as the power series

√
A(t) =

√
A(0) +

∞∑
n=1

(
n∑
k=1

1

k!
Bk,n

)
tn for all |t| < δ.

2.1.2 Implicit Function Theorem

We use the Implicit function Theorem for maps on real Banach spaces in the main result of

Section 2.3. Let us recall the statement of the theorem. We refer the reader to [57] for a detailed

account of differential calculus in real Banach spaces.

LetX,Y, Z be real Banach spaces andO ⊂ X×Y be an open set containing a point (x0, y0).

Let f : O → Z be a Cp-map for some p ≥ 1. We denote by (x, y) any element of X × Y. The

derivative of f at (x0, y0) is a linear map Df(x0, y0) : X × Y → Z. The partial derivative of f

at (x0, y0) with respect to the first component x is the linear map D1f(x0, y0) : X → Z given

by

D1f(x0, y0)(x) = Df(x0, y0)(x, 0),

and with respect to the second component y is the linear map D2f(x0, y0) : Y → Z given by

D2f(x0, y0)(y) = Df(x0, y0)(0, y)

for all (x, y) ∈ X × Y. The Implicit Function Theorem states that if

(i) f(x0, y0) = z0,

(ii) D2f(x0, y0) : Y → Z is an isomorphism,
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then there exists an open set U ⊂ X containing x0 and a Cp-map φ : U → Y such that φ(x0) =

y0 and for all x ∈ U, (x, φ(x)) ∈ O and f(x, φ(x)) = z0. Further, D2f(x, φ(x)) : Y → Z is

an isomorphism for all x ∈ U and the derivative of φ at x is given by

Dφ(x) = −D2f(x, φ(x))−1 ◦D2f(x, φ(x)).

2.2 Differentiability and analyticity of eigenvalues and eigenvec-
tors of Hermitian matrices

Given H ∈ Hn(C), we denote by λ1(H) ≤ . . . ≤ λn(H) the eigenvalues of H arranged in

increasing order. This defines n eigenvalue maps λ1, . . . , λn which are continuous on Hn(C).

In fact, by the well known Weyl’s Perturbation Theorem ([9], Corollary III.2.6), the eigenvalue

maps are Lipschitz continuous on Hn(C). The following simple example of Rellich [64] shows

that the eigenvalue maps λj are not differentiable in general.

Example 12. Define a map H(t) =

(
t 0

0 −t

)
for t ∈ (−1, 1). This is a C∞ curve in H2(C).

The eigenvalues of H(t) in increasing order are given by λ1(H(t)) = −|t|, λ2(H(t)) = |t|. So
the composite maps λ1 ◦H and λ2 ◦H are not differentiable at 0. This implies that both the
eigenvalue maps λ1 and λ2 are non-differentiable at H(0).

Let H ∈ Hn(C) and λ be an eigenvalue of H. The cardinality of the set {j : λj(H) =

λ, 1 ≤ j ≤ n} is called the multiplicity of the eigenvalue λ. An eigenvalue with multiplicity one

is called a simple eigenvalue. The multiplicity of eigenvalues plays an important role in their

differentiability. If λj(H) is a simple eigenvalue H, then λj is infinitely differentiable at H. A

proof of this result using complex function theory is given by Kato ([43], Ch.II, Theorem 5.16).

Furthermore, Magnus ([51], Theorem 2) also proved the existence of infinitely differentiable

eigenvector maps corresponding to simple eigenvalues of Hermitian matrices, and derived the

derivative expressions for simple eigenvalues and the corresponding eigenvector maps. We state

this result in the following theorem. The Implicit Function Theorem is used in proving the

existence of the smooth eigenvalue and eigenvector maps.

Theorem 2.2.1. Let H ∈ Hn(C) and λj(H) be a simple eigenvalue for some j = 1, . . . , n. Let
x0 ∈ Cn be a unit eigenvector of H corresponding to λj(H). There exists a neighbourhood
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U ⊆ Hn(C) of H and a map x : U → Cn such that for every A ∈ U and B ∈ Hn(C) we have

(i) λj and x are C∞ on U with x(H) = x0;

(ii) the eigenvalue λj(A) is simple and x(A) is a corresponding unit eigenvector of A;

(iii) the derivative of λj at H is given by

Dλj(H)(B) = 〈x(H), Bx(H)〉; (2.3)

(iv) the derivative of x at H is given by

Dx(H)(B) = (λj(H)I −H)†Bx0,

where I is the n× n identity matrix and (λj(H)I −H)† is the Moore-Penrose inverse of
λj(H)I −H.

Eigenvalues and eigenvectors of one parameter family of Hermitian matrices are widely

studied in the literature and several interesting results have been obtained [34, 43, 44, 64, 73]. Let

J be an open interval in R and H : J→ Hn(C) be a curve. We know that the eigenvalue maps

obtained by arranging eigenvalues in increasing order are continuous functions of Hermitian

matrices. Therefore, the maps given by λj(t) = λj(H(t)) are continuous on J for all j =

1, . . . , n.We know by Example 12 that the eigenvalue curves λj : J→ R are not differentiable in

general even though H is infinitely differentiable. But a suitable arrangement of the eigenvalues

given by λ̃1(t) = t and λ̃2(t) = −t gives differentiable eigenvalue maps λ̃1 and λ̃2, not

necessarily in order. This suggests that fixing eigenvalues in increasing or decreasing order can

compromise their differentiability properties. In the following theorem, we see the existence of

eigenvalue maps that inherit the differentiability of curves in Hn(C). See Kato([43], pp.111-114).

Theorem 2.2.2. Let J be an open interval and H : J→ Hn(C) be a curve. If H is differentiable
at t0 ∈ J, then there exist n real valued functions λ̃1, . . . , λ̃n on J differentiable at t0 such that
λ̃1(t), . . . , λ̃n(t) are the n eigenvalues of H(t), not necessarily in increasing or decreasing order,
for all t ∈ J. Further, if H is C1 on J, then we can choose the aforementioned eigenvalue maps
to be C1 on J as well.

By Theorem 2.2.2, we get C1 eigenvalue maps for C1 curves in Hn(C). Also, for the C∞

curve in Example 12, we get C∞ eigenvalue maps by a suitable arrangement of the eigenvalues.
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So, one would expect the existence of Ck eigenvalue maps for Ck curves in Hn(C) for all

1 ≤ k ≤ ∞. But this is not true. The following example illustrates that there do not exist C2

eigenvalue maps for C∞ curves in Hn(C).

Example 13. Let H : (−1, 1)→ H2(C) be the C∞ curve given by

H(t) =

(
sin(1/t)e−1/2t e−1/t

e−1/t − sin(1/t)e−1/2t

)
for t > 0, H(t) = 0 for t ≤ 0.

The characteristic equation of H(t) is given by λ2 − f(t), where

f(t) = sin2(1/t)e−1/t + e−2/t for t > 0, f(t) = 0 for t ≤ 0.

Therefore, the eigenvalues of H(t) are given by the square roots of f(t). But the function f does
not possess a C2 square root on the interval as shown in ([4], Sec. 2).

The differentiability properties of eigenvectors of curves of Hermitian matrices are rather

pathological in nature. The following example due to Rellich [64] shows that one cannot even

guarantee continuous eigenvector functions for C∞ curves in Hn(C), much less differentiable.

Example 14. Let H : (−1, 1)→ H2(C) be given by

H(t) = e−
1
t2

(
cos 2

t sin 2
t

sin 2
t − cos 2

t

)
for t 6= 0, H(0) = 0.

The eigenvalues of H(t) are given by e−
1
t2 and −e−

1
t2 with corresponding eigenvectors x(t) =(

cos 1
t , sin

1
t

)
and y(t) =

(
− sin 1

t , cos 1
t

)
respectively for t 6= 0. These eigenvalues are simple

and hence any other eigenvectors are scalar multiples of one of the two vectors x(t), y(t). The
functions cos 1

t and sin 1
t oscillate near zero. By elementary real analysis arguments one can

show that there does not exist any eigenvector curve for H that is continuous and does not vanish
at t = 0.

Alekseevsky, et al. ([4], Theorem 7.6) showed that under an additional condition, both

eigenvalues and eigenvectors can be chosen smoothly for smooth curves in Hn(C). We say that

two functions f and g continuous at t0 meet with infinite order if for every p ∈ N there exists a

function hp continuous at t0 such that f(t)− g(t) = tphp(t).

Theorem 2.2.3. Let J be an open interval and H : J→ Hn(C) be a smooth curve such that for
all 1 ≤ i 6= j ≤ n either λi(t) = λj(t) for all t ∈ J or λi(t) and λj(t) do not meet with infinite
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order at any point in J. Then all the eigenvalues and corresponding eigenbasis can be chosen
smoothly in t on J.

Eigenvalues and eigenvectors exhibit nicer regularity properties for real analytic curves. If

H is a curve in Hn(C) that is real analytic at a point, then there exist eigenvalue and eigenvector

maps real analytic at the given point. See Kato ([43], Ch.II, Sec.6) and Rellich ([64], Ch.1, Sec.1,

Theorem 1).

Theorem 2.2.4. Let J be an open interval and t0 ∈ J. Suppose H : J→ Hn(C) is a curve real
analytic at t0. If λ is an eigenvalue of H(t0) with multiplicity m, then there exists an ε > 0 so
that we can find m eigenvalue functions λ1, . . . , λm : (t0− ε, t0 + ε)→ R and m corresponding
orthonormal eigenvector functions x1, . . . , xm : (t0 − ε, t0 + ε)→ Cn that are real analytic at
t0. Also λi(t0) = λ for all i = 1, . . . ,m.

The following result shows that eigenvalue and eigenvector maps can be chosen analytically

over an interval for real analytic curves in Hn(C). A proof of this result is given in Kato ([43],

Ch.VII, Theorem 3.9).

Theorem 2.2.5. Let J be an open interval and H : J → Hn(C) be a real analytic curve on
J. Then there exist real analytic curves λj : J → R and xj : J → Cn for j = 1, . . . , n such
that λ1(t), . . . , λn(t) are the eigenvalues of H(t) with a corresponding set of orthonormal
eigenvectors x1(t), . . . , xn(t) for all t ∈ J.

As an application of the analysis of eigenvalues and eigenvectors of analytic curves of

Hermitian matrices, Kato ([43], Ch.II, Sec.6.5) gives an analytic proof of the well known

Lidskii’s theorem which states that for any two matrices A,B ∈ Hn(C) we have

λ↑(A+B)− λ↑(A) ≺ λ↑(B). (2.4)

Here λ↑(A) denotes the n tuple whose jth component is λj(A).

2.3 Differentiability of simple symplectic eigenvalues

This section is based on our work in Section 3 of [39]. Given A ∈ P2n(R) and a symplectic

eigenvalue d of A, we say that m is the multiplicity of d if the set {j : dj(A) = d, 1 ≤ j ≤ n}

has exactly m elements. A symplectic eigenvalue is called simple if its multiplicity is one. Recall
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that d1(A) ≤ . . . ≤ dn(A) denote the symplectic eigenvalues of A in increasing order. So we

have the symplectic eigenvalue maps dj : P2n(R)→ R for j = 1, . . . , n.

A result on symplectic eigenvalues analogous to the Weyl’s perturbation theorem states that

for A,B ∈ P2n(R) we have

max
1≤j≤n

|dj(A)− dj(B)| ≤ (κ(A)κ(B))1/2 ‖A−B‖, (2.5)

where κ(A) is the condition number of A. Also, one can not replace (κ(A)κ(B))1/2 in (2.5)

with any constant independent of A,B. See [38]. Therefore the symplectic eigenvalue maps

dj are locally Lipschitz (but not Lipschitz), and hence continuous on P2n(R). The following

example is based on Example 12. It shows that dj are not differentiable in general.

Example 15. Let B be the 4× 4 matrix B = I2 ⊗
(−1 0

0 1

)
. We have d1(I4 + tB) = 1− |t| and

d2(I4 + tB) = 1 + |t| for any t ∈ (−1, 1). The modulus function is not differentiable at t = 0.

So d1 and d2 are not differentiable at I4.

The multiplicity of dj(A) determines the differentiability of dj at A. We prove in this section

that simple symplectic eigenvalues are infinitely differentiable. Observe that in Example 15 that

the symplectic eigenvalues of I4 are not simple.

2.3.1 Infinite differentiability

The following proposition is an easy consequence of continuity of symplectic eigenvalues that is

useful later in the chapter.

Proposition 2.3.1. Let A be a 2n× 2n real positive definite matrix, and let d be a symplectic
eigenvalue ofAwith multiplicitym. Let r0 = min{|d−d̃| : d̃ is a symplectic eigenvalue of A, d̃ 6=
d}. Then for any positive number r < r0, there exists an open neighbourhood U of A in P2n(R)

such that every P in U has exactly m symplectic eigenvalues (counted with multiplicities) in
(d− r, d+ r).

Proof. Let di(A) < di+1(A) = · · · = di+m(A) < di+m+1(A) such that di+1(A) = · · · =

di+m(A) = d. By our choice of r we see that

di(A) < d− r < d+ r < di+m+1(A).

Since each dj is continuous, we can find an open neighbourhood U of A such that for every
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P ∈ U,
di+1(P ), . . . , di+m(P ) ∈ (d− r, d+ r),

di(P ) < d− r and di+m+1(P ) > d+ r.

Thus for every P ∈ U, there are exactly m symplectic eigenvalues di+1(P ), . . . , di+m(P ) of P
that are contained in (d − r, d + r). The cases d = d1 and d = dn can be proved in a similar
way.

In the following lemma, we use the Implicit Function Theorem and the proof idea of Theorem

2.2.1 by Magnus [51]. Here we prove that simple symplectic eigenvalues are smooth. Moreover,

we prove the existence of smooth symplectic eigenvector pair maps corresponding to simple

symplectic eigenvalues. Recall that P2n(R) is an open subset of the real Banach space S2n(R).

We view C2n × C as a real Banach space in the proof of the following lemma.

Lemma 2.3.2. LetA be a 2n×2n real positive definite matrix. Suppose d0 is a simple symplectic
eigenvalue of A with corresponding normalised symplectic eigenvector pair (u0, v0). Then there
exists an open subset U of P2n(R) containing A, and C∞ maps d : U → R and u, v : U → R2n

that satisfy the following conditions.

(i) For every P ∈ U, d(P ) is a simple symplectic eigenvalue of P with the corresponding
normalised symplectic eigenvector pair (u(P ), v(P )).

(ii) d(A) = d0, u(A) = u0 and v(A) = v0.

(iii)
〈u0, Ju(P )〉+ 〈v0, Jv(P )〉 = 0. (2.6)

Proof. Since d0 is a simple symplectic eigenvalue ofAwith symplectic eigenvector pair (u0, v0),

by Lemma 1.2.6, it is a simple eigenvalue of ıJA with eigenvector x0 = u0 − ıv0. Also
〈x0, Jx0〉 = −2ı〈u0, Jv0〉 = −2ı. Define the map ϕ : P2n(R)× C2n × C→ C2n × C as

ϕ(P, x, d) = ((ıJP − d)x, 〈x0, Jx〉+ 2ı) .

Clearly, ϕ is a C∞ map and ϕ(A, x0, d0) = 0. Let D2ϕ denote the partial derivative of ϕ with
respect to (x, d). Then

D2ϕ(A, x0, d0) =

(
ıJA− d0 −x0
x∗0J 0

)
.

Thus det D2ϕ(A, x0, d0) = −〈x0, J(ıJA− d0)adjx0〉. For any m×m matrix X, Xadj denotes
the adjoint of X. This is the m ×m matrix with the ijth entry (−1)i+jX(j, i), where X(j, i)
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is the (j, i) minor of X. Since d0 is a simple eigenvalue of ıJA, 0 is a simple eigenvalue of
ıJA− d0. So we have (ıJA− d0)adjx0 = cx0, where c is the product of all nonzero eigenvalues
of ıJA− d0. This gives

〈x0, J(ıJA− d0)adjx0〉 = c〈x0, Jx0〉 = −2ıc 6= 0.

By the Implicit Function Theorem, there exists an open subset U of P2n(R) containing A, and
C∞ maps d : U → C and x : U → C2n that satisfy ıJPx(P ) = d(P )x(P ), 〈x0, Jx(P )〉 =

−2ı, x(A) = x0 and d(A) = d0. Clearly x(P ) 6= 0, and hence d(P ) is an eigenvalue of ıJP.All
the eigenvalues of ıJP are real. Hence d(P ) is real. Since d0 > 0, we can assume that d(P ) > 0

for all P ∈ U. By Lemma 1.2.6, we see that d(P ) is a symplectic eigenvalue of P for every
P ∈ U. Also since D2ϕ(P, x(P ), d(P )) is invertible, (ıJP − d(P ))adj 6= 0 and this implies that
d(P ) has multiplicity 1. Let x(P ) = ũ(P )− ıṽ(P ) be the Cartesian decomposition of x(P ). By
Lemma 1.2.6 we see that (ũ(P ), ṽ(P )) is a symplectic eigenvector pair of P corresponding to
d(P ). Also, the maps P 7→ ũ(P ) and P 7→ ṽ(P ) are C∞ on U, and ũ(A) = u0 and ṽ(A) = v0.

We know that 〈u0, Jv0〉 = 1. Hence we can assume that 〈ũ(P ), Jṽ(P )〉 > 0 for all P ∈ U. This
implies that the map P 7→ 〈ũ(P ), Jṽ(P )〉−1/2 is C∞ on U. Define the maps u, v : U → R2n as

u(P ) = 〈ũ(P ), Jṽ(P )〉−1/2ũ(P )

and
v(P ) = 〈ũ(P ), Jṽ(P )〉−1/2ṽ(P ).

The maps u and v are C∞ and (u(P ), v(P )) forms a normalised symplectic eigenvector pair of
P corresponding to d(P ). This shows the existence of infinitely differentiable maps d, u, v on U
that satisfy (i) and (ii). Moreover, since the real part of 〈x0, Jx(P )〉 is zero,

〈u0, Ju(P )〉+ 〈v0, Jv(P )〉 = 0

This proves (iii).

Remark 2.3.3. By Proposition 1.2.7, d0 is a simple symplectic eigenvalue of A if and only if it is
a simple eigenvalue of ıA1/2JA1/2. We also know that the matrix square root map is infinitely
differentiable on P2n(R). So we can obtain (i) and (ii) of Lemma 2.3.2 from the corresponding
differentiability properties of simple eigenvalues given in (i), (ii) of Theorem 2.2.1. But we give
an independent proof as (2.6) is required in the computation of the derivatives of symplectic
eigenvector pair in Theorem 2.3.5.

Theorem 2.3.4. Let A ∈ P2n(R), and suppose that dj(A) is simple. Then there exists a
neighbourhood U of A in P2n(R) such that for every P ∈ U, dj(P ) is simple and the map
P 7→ dj(P ) is smooth on U. Further, if (u0, v0) is a normalised symplectic eigenvector pair of A
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corresponding to dj(A), then there exist smooth maps uj , vj : U → R2n such that for every P
in U, (uj(P ), vj(P )) is a normalised symplectic eigenvector pair of P corresponding to dj(P ),

uj(A) = u0 and vj(A) = v0, and uj(P ), vj(P ) satisfy (2.6).

Proof. If dj(A) is a simple symplectic eigenvalue of A, then by Lemma 2.3.2, we can find
an open neighbourhood V of A in P2n(R), and C∞ maps d : V → R and u, v : V → R2n

that satisfy (i)-(iii) of Lemma 2.3.2; i.e., d(P ) is a simple symplectic eigenvalue of P and
(u(P ), v(P )) is a corresponding normalised symplectic eigenvector pair such that d(A) =

dj(A), u(A) = u0, v(A) = v0, and u(P ), v(P ) satisfy (2.6). Let r be a positive number with
r < min{dj+1(A)− dj(A), dj(A)− dj−1(A)}. By the continuity of the map P 7→ d(P ) and
Proposition 2.3.1, we can assume that for every P in V, d(P ) is the only symplectic eigenvalue
of P contained in (dj(A) − r, dj(A) + r). We know that the map P 7→ dj(P ) is continuous.
Hence there exists an open neighbourhood W of A such that dj(P ) ∈ (dj(A)− r, dj(A) + r)

for every P in W. But this implies that d(P ) = dj(P ) for every P ∈ V ∩W. Take U = V ∩W.
Hence the map dj is infinitely differentiable on U with the corresponding normalised symplectic
eigenvector maps u, v that satisfy the required conditions.

2.3.2 Computation of first order derivatives

Let d be a simple symplectic eigenvalue of A and (u, v) be a normalised symplectic eigenvector

pair of A corresponding to d. We know by Proposition 1.2.1 and Corollary 1.3.3 that if (x, y) is

any normalised symplectic eigenvector pair ofA corresponding to d then there exist real numbers

a, b with a2 + b2 = 1 such that

[x, y] = [u, v]

 a b

−b a

 .

Therefore we have

x = au− bv and y = bu+ av.

Using this observation, we now compute the first order derivative expressions for simple sym-

plectic eigenvalues and a corresponding symplectic eigenvector pair maps.

Theorem 2.3.5. Let A ∈ P2n(R) be such that dj(A) is simple, and let (uj , vj) be a normalised
symplectic eigenvector pair map through (uj(A), vj(A)) obtained from Theorem 2.3.4. Let
M ∈ Sp(2n,A) be fixed. Then the derivatives of dj , uj and vj at A are given as follows: for all
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B ∈ S2n(R) we have

Ddj(A)(B) =
〈uj(A), Buj(A)〉+ 〈vj(A), Bvj(A)〉

2
, (2.7)

Duj(A)(B) = MD̂MTBuj(A) +MDJMTBvj(A), (2.8)

and
Dvj(A)(B) = MD̂MTBvj(A)−MDJMTBuj(A), (2.9)

where D̂ and D are the 2n× 2n diagonal matrices with respective diagonal entries given by

(
D̂
)
kk

=


dk(A)

d2j (A)−d2k(A)
k 6= j, 1 ≤ k ≤ n

− 1
4dj(A)

k = j, 1 ≤ k ≤ n(
D̂
)
ii

k = n+ i, 1 ≤ i ≤ n,

(2.10)

and

(
D
)
kk

=


dj(A)

d2j (A)−d2k(A)
k 6= j, 1 ≤ k ≤ n

1
4dj(A)

k = j, 1 ≤ k ≤ n(
D
)
ii

k = n+ i, 1 ≤ i ≤ n.

(2.11)

Proof. Since dj(A) is simple, by Theorem 2.3.4, we know that the map dj is infinitely differ-
entiable at A. Since (uj , vj) is a normalised symplectic eigenvector pair map obtained from
Theorem 2.3.4, we have

Puj(P ) = dj(P )Jvj(P ), (2.12)

Pvj(P ) = −dj(P )Juj(P ), (2.13)

〈uj(P ), Jvj(P )〉 = 1, (2.14)

〈uj(A), Juj(P )〉+ 〈vj(A), Jvj(P )〉 = 0. (2.15)

Let B ∈ S(2n) be arbitrary. Differentiating (2.12) and (2.13) at A we have

Buj(A) +ADuj(A)(B) = Ddj(A)(B)Jvj(A) + dj(A)JDvj(A)(B), (2.16)

and

Bvj(A) +ADvj(A)(B) = −Ddj(A)(B)Juj(A)− dj(A)JDuj(A)(B). (2.17)

Taking the inner product of (2.16) with uj(A) and using the fact that 〈uj(A), Jvj(A)〉 = 1, we



2.3 Differentiability of simple symplectic eigenvalues 47

get

〈uj(A), Buj(A)〉+ 〈uj(A), ADuj(A)(B)〉

= Ddj(A)(B) + 〈uj(A), dj(A)JDvj(A)(B)〉. (2.18)

Since

〈uj(A), ADuj(A)(B)〉 = 〈Auj(A), Duj(A)(B)〉

= dj(A)〈Duj(A)(B), Jvj(A)〉,

we can write (2.18) as

Ddj(A)(B) = 〈uj(A), Buj(A)〉+ dj(A)〈Duj(A)(B), Jvj(A)〉

−dj(A)〈uj(A), JDvj(A)(B)〉. (2.19)

Similarly, taking the inner product of (2.17) with vj(A), we get

Ddj(A)(B) = 〈vj(A), Bvj(A)〉 − dj(A)〈Duj(A)(B), Jvj(A)〉

+dj(A)〈uj(A), JDvj(A)(B)〉. (2.20)

Adding (2.19) and (2.20) finally gives (2.7).
We next compute the derivatives Duj(A) and Dvj(A).

Let the columns of M be ũ1, . . . , ũn, ṽ1, . . . , ṽn. We know that the columns of M form a
symplectic basis of R2n. We can express Duj(A)(B) and Dvj(A)(B) uniquely as

Duj(A)(B) =

n∑
k=1

αkũk +

n∑
k=1

βkṽk

and

Dvj(A)(B) =
n∑
k=1

γkũj +
n∑
k=1

δkṽk,

where αk = 〈Duj(A)(B), Jṽk〉, βk = −〈Duj(A)(B), Jũk〉, γk = 〈Dvj(A)(B), Jṽk〉 and
δk = −〈Dvj(A)(B), Jũk〉 for all k = 1, . . . , n. Since dj(A) is simple, we can assume that
ũj = auj(A)− bvj(A) and ṽj = buj(A) + avj(A) for some a, b ∈ R with a2 + b2 = 1. Thus

〈ũk, Jvj(A)〉 = 〈uj(A), Jṽk〉 = δkja (2.21)

and
〈ũk, Juj(A)〉 = 〈ṽk, Jvj(A)〉 = δkjb (2.22)
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for all k = 1, . . . , n. Here δjk = 0 if j 6= k and δjk = 1 otherwise. Taking inner product of
(2.16) with ũk we get

〈ũk, Buj(A)〉+ 〈ũk, ADuj(A)(B)〉

= Ddj(A)(B)〈ũk, Jvj(A)〉+ dj(A)〈ũk, JDvj(A)(B)〉.

Using (2.21) and the values of αk and δk, this reduces to

dk(A)αk − dj(A)δk = aDdj(A)(B)δkj − 〈ũk, Buj(A)〉. (2.23)

Similarly, taking inner products of (2.16) with ṽk, and of (2.17) with ũk and ṽk, and using (2.21)
and (2.22), we obtain the expressions

dk(A)βk + dj(A)γk = bDdj(A)(B)δkj − 〈ṽk, Buj(A)〉, (2.24)

dj(A)βk + dk(A)γk = −bDdj(A)(B)δkj − 〈ũk, Bvj(A)〉, (2.25)

−dj(A)αk + dk(A)δk = aDdj(A)(B)δkj − 〈ṽk, Bvj(A)〉. (2.26)

Thus for each k = 1, . . . , n we have a system of four linear equations in four unknowns
αk, βk, γk and δk. When k 6= j, this system is

dk(A) 0 0 −dj(A)

0 dk(A) dj(A) 0

0 dj(A) dk(A) 0

−dj(A) 0 0 dk(A)



αk

βk

γk

δk

 = −


〈ũk, Buj(A)〉
〈ṽk, Buj(A)〉
〈ũk, Bvj(A)〉
〈ṽk, Bvj(A)〉

 .

Here dj(A) 6= dk(A) therefore the coefficient matrix above is invertible. Left multiplying by the
inverse we get

αk

βk

γk

δk

 = (d2j (A)− d2k(A))−1


dk(A) 0 0 dj(A)

0 dk(A) −dj(A) 0

0 −dj(A) dk(A) 0

dj(A) 0 0 dk(A)



〈ũk, Buj(A)〉
〈ṽk, Buj(A)〉
〈ũk, Bvj(A)〉
〈ṽk, Bvj(A)〉

 .

The solution is thus given by the following equations

αk =
1

d2j (A)− d2k(A)
(dk(A)〈ũk, Buj(A)〉+ dj(A)〈ṽk, Bvj(A)〉) , (2.27)

βk =
1

d2j (A)− d2k(A)
(dk(A)〈ṽk, Buj(A)〉 − dj(A)〈ũk, Bvj(A)〉) , (2.28)



2.3 Differentiability of simple symplectic eigenvalues 49

γk =
1

d2j (A)− d2k(A)
(dk(A)〈ũk, Bvj(A)〉 − dj(A)〈ṽk, Buj(A)〉) , (2.29)

δk =
1

d2j (A)− d2k(A)
(dk(A)〈ṽk, Bvj(A)〉+ dj(A)〈ũk, Buj(A)〉) . (2.30)

Now, for k = j we have the following system
dj(A) 0 0 −dj(A)

0 dj(A) dj(A) 0

0 dj(A) dj(A) 0

−dj(A) 0 0 dj(A)



αj

βj

γj

δj

 = −


〈ũj , Buj(A)〉 − aDdj(A)(B)

〈ṽj , Buj(A)〉 − bDdj(A)(B)

〈ũj , Bvj(A) + bDdj(A)(B)〉
〈ṽj , Bvj(A)〉 − aDdj(A)(B)

 .

Using the expression for Ddj(A)(B), the fact that B is symmetric, and the relationship between
(ũj , ṽj) and (uj(A), vj(A)) one can see that the solution to the above system exists and is given
by

αj − δj =
1

2dj(A)
(〈ṽj(A), Bvj(A)〉 − 〈ũj(A), Buj(A)〉) , (2.31)

βj + γj =
−1

2dj(A)
(〈ṽj(A), Buj(A)〉) +

−1

2dj(A)
(〈ũj(A), Bvj(A)〉). (2.32)

Differentiating (2.14) and (2.15), respectively, gives

〈Duj(A)(B), Jvj(A)〉+ 〈uj(A), JDvj(A)(B)〉 = 0

and
〈uj(A), JDuj(A)(B)〉+ 〈vj(A), JDvj(A)(B)〉 = 0.

These in turn imply αj + δj = 0 and βj − γj = 0. Thus

αj = −δj =
1

4dj(A)
(〈ṽj(A), Bvj(A)〉 − 〈ũj(A), Buj(A)〉) (2.33)

and
βj = γj =

−1

4dj(A)
(〈ṽj(A), Buj(A)〉) +

−1

4dj(A)
(〈ũj(A), Bvj(A)〉). (2.34)

Simplifying the above expressions we get for k 6= j,

αk =
1

d2j (A)− d2k(A)

(
d2k(A)〈Jṽk, A−1Buj(A)〉+ dj(A)〈Jṽk, JBvj(A)〉

)
,

βk = − 1

d2j (A)− d2k(A)

(
d2k(A)〈Jũk, A−1Buj(A)〉+ dj(A)〈Jũk, JBvj(A)〉

)
,
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αj = −1

4
〈Jṽj , A−1Buj(A)〉+

1

4dj(A)
〈Jṽj , JBvj(A)〉,

βj =
1

4
〈Jũj , A−1Buj(A)〉 − 1

4dj(A)
〈Jũj , JBvj(A)〉.

Let x be the 2n real vector with components α1, . . . , αn, β1, . . . , βn. Then we see that x can
be written as

x = D̂D̃M−1A−1Buj(A) +DM−1JBvj(A),

where D̃ is the 2n× 2n diagonal matrix with diagonal entries the symplectic eigenvalues of A,
d1(A), . . . , dn(A), d1(A), . . . , dn(A), and D̂ and D are the diagonal matrices given by (2.10)
and (2.11), respectively. Therefore

Duj(A)(B) = MD̂D̃M−1A−1Buj(A) +MDM−1JBvj(A)

= MD̂MTBuj(A) +MDJMTBvj(A).

The last equality follows from the fact that MTAM = D̃ and MJMT = J. This proves (2.8).
Similar computations give (2.9).

The derivative expressions for simple eigenvalues and simple symplectic eigenvalues are

similar. The role of the eigenvector in (2.3) is played by a symplectic eigenvector pair in (2.7).

Remark 2.3.6. Let A ∈ P2n(R), and let d, u, v be maps on a neighbourhood U of A such that
d(P ) is a symplectic eigenvalue of P and (u(P ), v(P )) is a pair of normalised symplectic
eigenvectors. If d, u, v are differentiable at A, then by following the same steps used to prove
(2.7), we can compute the derivative of d at A, even if d(A) is not simple, as

Dd(A)(B) =
1

2
(〈u(A), Bu(A)〉+ 〈v(A), Bv(A)〉) . (2.35)

As a corollary to Theorem 2.3.5 we compute the first order derivative for simple symplectic

eigenvalues of differentiable curves of positive definite matrices. For a given curve A : J →

P2n(R) we denote the symplectic eigenvalue dj(A(t)) by dj(t), 1 ≤ j ≤ n and t ∈ J.

Corollary 2.3.7. Let J be an open interval and A : J → P2n(R) be a curve that is infinitely
differentiable at t0 ∈ J. Suppose that dj(t0) is simple. Then there exists an open interval
J0 ⊂ J containing t0 such that the map dj is infinitely differentiable on J0. If (u0, v0) is a
corresponding normalised symplectic eigenvector pair of A(t0), then we can find an infinitely
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differentiable normalised symplectic eigenvector pair map (uj , vj) on J0 corresponding to dj
such that (uj(t0), vj(t0)) = (u0, v0), and (uj(t), vj(t)) satisfies

〈u0, Juj(t)〉+ 〈v0, Jvj(t)〉 = 0

for all t ∈ J0. Further, for any fixed M ∈ Sp(2n,A(t0)),

d′j(t) =
〈uj(t),A′(t)uj(t)〉+ 〈uj(t),A′(t)uj(t)〉

2
for all t ∈ J0, (2.36)

u′j(t0) = MD̂MTA′(t0)u0 +MDJMTA′(t0)v0, (2.37)

and
v′j(t0) = MD̂MTA′(0)v0 −MDJMTA′(t0)u0, (2.38)

where D̂ and D are the diagonal matrices associated with A(t0) given by (2.10) and (2.11),
respectively.

Theorem 2.3.8. Following the notations of Corollary 2.3.7, the second order derivative of dj at
t0 is given by

d′′j (t0) =
1

2

(
〈u0,A′′(t0)u0〉+ 〈v0,A′′(t0)v0〉

)
+ 2〈A′(t0)u0,MDJMTA′(t0)v0〉

+ 〈A′(t0)u0,MD̂MTA′(t0)u0〉+ 〈A′(t0)v0,MD̂MTA′(t0)v0〉, (2.39)

where D̂ and D are the diagonal matrices associated with A(t0) given by (2.10) and (2.11),
respectively.

Proof. By (2.36), we have

d′j(t) =
〈uj(t),A′(t)uj(t)〉+ 〈vj(t),A′(t)vj(t)〉

2
(2.40)

for every t in J0. Differentiating (2.40) at t = t0 and using the fact that A′(t0) is real symmetric,
we get

d′′j (t0) =
1

2

(
〈u0,A′′(t0)u0〉+ 〈v0,A′′(t0)u0〉

)
+〈u′j(t0),A′(t0)u0〉+ 〈v′j(t0),A′(t0)v0〉. (2.41)

Using the expression (2.37) for the derivative u′j(t0), we get

〈u′j(t0),A′(t0)u0〉 =〈MD̂MTA′(t0)u0,A
′(t0)u0〉

+ 〈MDJMTA′(t0)v0,A
′(t0)u0〉. (2.42)
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Similarly using (2.38), we have

〈v′j(t0),A′(t0)v0〉 =〈MD̂MTA′(t0)v0,A
′(t0)v0〉

− 〈MDJMTA′(t0)u0,A
′(t0)v0〉.

Since DJ = JD, we have

〈v′j(t0),A′(t0)v0〉 =〈MD̂MTA′(t0)v0,A
′(t0)v0〉

+ 〈MDJMTA′(t0)v0,A
′(t0)u0〉. (2.43)

Using (2.42) and (2.43) in (2.41), we obtain (2.39).

2.4 Symplectic eigenvalues of curves of positive definite matrices

This section is based on our work in Section 4 of [39]. In this section, we study the regularity

properties of symplectic eigenvalues and symplectic eigenvector pairs for curves in P2n(R).

Here we use the results on eigenvalues and eigenvectors discussed in Section 2.2.

2.4.1 Differentiable curves in P2n(R)

The following result is a symplectic analogue of Theorem 2.2.2. We shall use d̃1, . . . , d̃n to

represent symplectic eigenvalues in any order.

Theorem 2.4.1. Let J be an open interval and A : J→ P2n(R) be a curve that is differentiable
at t0 ∈ J. Then all the symplectic eigenvalues of A(t) can be chosen to be differentiable at t0,
i.e., we can find n functions d̃1, . . . , d̃n in a neighbourhood of t0 that are differentiable at t0 such
that d̃1(t), . . . , d̃n(t) are the symplectic eigenvalues of A(t). If, in addition, A is C1 on J, then
d̃1, . . . , d̃n can be chosen to be C1 on J.

Proof. We know that the matrix square root map is C∞ on P2n(R). So the differentiability of
A at t0 ∈ J implies that t 7→ ıA(t)1/2JA(t)1/2 is also differentiable at t0. By Theorem 2.2.2,
we get functions λ̃1, . . . , λ̃2n : J → R differentiable at t0 such that λ̃1(t), . . . , λ̃2n(t) are the
eigenvalues of ıA(t)1/2JA(t)1/2. By reordering, suppose λ̃1(t0), . . . , λ̃n(t0) are the symplectic
eigenvalues of A(t0). Let J0 ⊂ J be an open subinterval containing t0 such that for t ∈ J0,

λ̃1(t), . . . , λ̃n(t) are all positive, and hence these are the symplectic eigenvalues of A(t). Define

d̃j(t) =

λ̃j(t) t ∈ J0,

dj(A(t)) t /∈ J0.
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Thus, d̃1, . . . , d̃n are the required symplectic eigenvalue maps on J differentiable at t0.
If A is C1 on J we again get by Theorem 2.2.2 eigenvalue functions λ̃1, . . . , λ̃2n : J→ R

that are C1 on J. We know that all the eigenvalues of ıA(t)1/2JA(t)1/2 are non-zero for all
t ∈ J. In fact, there are equal number of positive and negative eigenvalues. Therefore we can
assume, by reordering, that λ̃1(t), . . . , λ̃n(t) are positive for all t ∈ J. Choose d̃j(t) = λ̃j(t) for
all t ∈ J. Hence d̃1, . . . , d̃n are C1 on J such that d̃1(t), . . . , d̃n(t) are the symplectic eigenvalues
of A(t) for all t ∈ J.

We see the existence of C1 symplectic eigenvalue maps for C1 curves in P2n(R). But in

general, there do not exist Ck symplectic eigenvalue maps corresponding to Ck curves in P2n(R)

for k ≥ 2. Let A : (−1, 1)→ P4(R) be the C∞ curve given by

A(t) = I2 ⊗ (αI2 + H(t)) for all t ∈ (−1, 1),

where H is the curve given in Example 13, and α > 0 is such that the translated matrices

αI2 + H(t) have positive eigenvalues for all t ∈ (−1, 1). The symplectic eigenvalues of A(t)

are given by α ±
√
f(t), where f(t) = sin2(1/t)e−1/t + e−2/t for t > 0 and f(t) = 0 for

t ≤ 0. So the existence of a C2 symplectic eigenvalue curve corresponding to A would give a

C2 square root of f. But we know by Example 13 that f does not possess a C2 square root.

Symplectic eigenvectors show the similar pathological behaviour as eigenvectors. We have

a C∞ curve in P4(R) for which there does not exist even continuous selection of symplectic

eigenvector pair maps. Let B : (−1, 1)→ P4(R) be the C∞ curve given by

B(t) = I2 ⊗ (I2 + H(t)) for all t ∈ (−1, 1)

where H is the curve given in Example 14. The symplectic eigenvalues of B(t) are given

by d1(t) = 1 − e−1/t2 , d2(t) = 1 + e−1/t
2

for t 6= 0, and d1(0) = d2(0) = 1. Let u1(t) =

e1⊗[cos 1
t , sin

1
t ]
T , v1(t) = e2⊗[cos 1

t , sin
1
t ]
T and u2(t) = e1⊗[sin 1

t ,− cos 1
t ]
T , v2(t) = e2⊗

[sin 1
t ,− cos 1

t ]
T where e1 = [1, 0]T , e2 = [0, 1]T . One can easily verify that (u1(t), v1(t))and

(u2(t), v2(t)) are normalised symplectic eigenvector pairs corresponding to d1(t) and d2(t)

respectively. Suppose that there exist functions ũ, ṽ : (−1, 1)→ R4 continuous at 0 such that

(ũ(t), ṽ(t)) is a normalised symplectic eigenvector pair of B(t) corresponding either to d1(t),
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or to d2(t). Therefore we can get a sequence (tj)j∈N of nonzero terms in (−1, 1) converging

to 0 such that for all j ∈ N, the pair (ũ(tj), ṽ(tj)) corresponds either to d1(tj) or to d2(tj).

Consider the case when (ũ(tj), ṽ(tj)) corresponds to d1(tj) for all j. For each j, d1(tj) is a

simple symplectic eigenvalue of B(tj). This implies that the normalised symplectic eigenvector

pair (ũ(tj), ṽ(tj)) is of the form ũ(tj) = aju1(tj) − bjv1(tj), ṽ(tj) = bju1(tj) + ajv1(tj)

where aj , bj ∈ R and a2j + b2j = 1. The continuity of ũ and ṽ at t = 0 implies that the limits

lim
j→∞

aj sin(1/tj) and lim
j→∞

bj sin(1/tj) exist, which in turn imply that lim
j→∞

sin2(1/tj) exists.

This is a contradiction.

We use Theorem 2.2.3 to show that under some additional conditions, symplectic eigenvalues

and corresponding symplectic eigenvector pairs can be chosen smoothly for smooth curves in

P2n(R). Recall that two functions f and g continuous at t0 meet with infinite order if for every

p ∈ N there exists a function hp continuous at t0 such that f(t)− g(t) = tphp(t).

Theorem 2.4.2. Let J be an open interval and A : J → P2n(R) be a smooth curve such that
for all 1 ≤ i 6= j ≤ n either di(t) = dj(t) for all t ∈ J or di(t) and dj(t) do not meet with
infinite order at any point in J. Then all the symplectic eigenvalues and corresponding symplectic
eigenbasis can be chosen smoothly in t on J.

Proof. By the smoothness of the matrix square root map, we know that t 7→ ıA(t)1/2JA(t)1/2 is
also smooth on J. The eigenvalues of ıA(t)1/2JA(t)1/2 are ±dj(t) for j = 1, . . . , n. Therefore,
no two of the ordered eigenvalues meet with infinite order at any point in J unless they are
equal on whole J. By Theorem 2.2.3 we get smooth maps λ̃j : J → R and uj , vj : J → R2n

for all j = 1, . . . , 2n such that λ̃1(t), . . . , λ̃2n(t) are the eigenvalues of ıA(t)1/2JA(t)1/2 with
corresponding orthonormal eigenvectors u1(t)− ıv1(t), . . . , u2n(t)− ıv2n(t) for all t ∈ J. The
eigenvalues of ıA(t)1/2JA(t)1/2 are all non-zero for every t ∈ J. Therefore, by continuity
and reordering, we can assume that λ̃1(t), . . . , λ̃n(t) are the positive eigenvalues for all t ∈ J.

Choose d̃j = λ̃j , and define

ũj(t) =

√
2d̃j(t)A(t)−1/2uj(t),

ṽj(t) =

√
2d̃j(t)A(t)−1/2vj(t)

for j = 1, . . . , n and t ∈ J. By Proposition 1.2.7 we know that (ũj(t), ṽj(t))

is a normalised pair of symplectic eigenvectors of A(t) corresponding to d̃j(t), and
{ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)} is a symplectic basis of R2n for all t ∈ J. Also, the maps
d̃j , ũj and ṽj are smooth on J. This proves the existence of the required smooth maps.
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2.4.2 Analytic curves in P2n(R)

Symplectic eigenvalues and symplectic eigenvector pairs inherit the regularity properties of real

analytic curves in P2n(R) as we show in the next theorem.

Theorem 2.4.3. Let J be an open interval and A : J → P2n(R) be a curve real analytic at
t0 ∈ J.

(i) If d is a symplectic eigenvalue of A(t0) with multiplicitym, then for some ε > 0, there exist
m symplectic eigenvalue maps d̃1, . . . , d̃m : (t0 − ε, t0 + ε)→ R, and m corresponding
symplectically orthonormal symplectic eigenvector pair maps (ũ1, ṽ1), . . . , (ũm, ṽm) :

(t0 − ε, t0 + ε)→ R2n × R2n that are real analytic at t0 with each d̃j(t0) = d.

(ii) There exists an ε > 0 such that all the n symplectic eigenvalues of A(t) and a corre-
sponding symplectic eigenbasis can be chosen on (t0 − ε, t0 + ε) to be real analytic at
t0.

Proof. Let H : J → H2n(C) be the map given by H(t) = ıA1/2(t)JA1/2(t). Since A is
real analytic at t0, by Proposition 2.1.2, the map H is also real analytic at t0. By Proposition
1.2.7, the multiplicity of the eigenvalue d of H(t0) is m. Hence by Theorem 2.2.4, there exists
an ε > 0, and m functions d̃1, . . . , d̃m : (t0 − ε, t0 + ε) → R and m functions x1, . . . , xm :

(t0 − ε, t0 + ε)→ C2n that are real analytic at t0 such that d̃1(t), . . . , d̃m(t) are m eigenvalues
of H(t) and {x1(t), x2(t), . . . , xm(t)} is a corresponding orthonormal set of eigenvectors.
Also d̃j(t0) = d for all j = 1, . . . ,m. Since H(t) is invertible for every t and d > 0, each
d̃j(t) > 0. Hence d̃j(t) is a symplectic eigenvalue of A(t) for every t ∈ (t0 − ε, t0 + ε) and
j = 1, . . . ,m. Let xj(t) = uj(t) − ıvj(t) be the Cartesian decomposition of xj(t). For every

t ∈ (t0 − ε, t0 + ε) let ũj(t) =
√

2d̃j(t)A
−1/2(t)uj(t) and ṽj(t) =

√
2d̃j(t)A

−1/2(t)vj(t).

Since d̃j(t) and A−1/2(t) are real analytic at t0, ũj(t) and ṽj(t) are real analytic at t0. Finally
by Proposition 1.2.7, {ũ1(t), . . . , ũm(t), ṽ1(t), . . . , ṽm(t)} is a symplectically orthonormal set
of symplectic eigenvector pairs of A(t) corresponding to d̃1(t), . . . , d̃m(t). This proves (i).

Let d1 < · · · < dk be distinct symplectic eigenvalues of A(t0) with multiplicities
m1, . . . ,mk, respectively. By statement (i) of the theorem, we can find an ε > 0 and n symplectic
eigenvalue functions d̃1,1(t), . . . , d̃1,m1(t), . . . , d̃k,1(t), . . . , d̃k,mk

(t) of A(t) on (t0 − ε, t0 + ε)

that are real analytic at t0. Also for each j = 1, . . . , k, we can choose corresponding symplec-
tically orthonormal symplectic eigenvector pairs (ũj,i(t), ṽj,i(t)), 1 ≤ i ≤ mj , that are real
analytic at t0.Using Proposition 2.3.1, we can assume that ε > 0 is small enough so that for
all t ∈ (t0 − ε, t0 + ε) d̃r,i(t) 6= d̃s,j(t) for all 1 ≤ i ≤ mr and 1 ≤ j ≤ ms, r 6= s. Thus by
Corollary 1.2.8 the symplectic eigenvector pairs (ũj,i(t), ṽj,i(t)), 1 ≤ i ≤ mj , 1 ≤ j ≤ k, form
the required symplectic eigenbasis.
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We now prove that one can choose symplectic eigenvalues and a symplectic eigenbasis real

analytically for real analytic curves in P2n(R) over an interval. We only provide an outline of

the proof since it is similar to that of Theorem 2.4.3.

Theorem 2.4.4. Let J be an open interval and A : J→ P2n(R) be a curve real analytic on J.

We can choose n symplectic eigenvalue functions and a corresponding symplectic eigenbasis
map such that they are real analytic on J.

Proof. The curve A being analytic on the whole interval J implies that the curve t 7→
ıA(t)1/2JA(t)1/2 is analytic on J. By Theorem 2.2.5, the eigenvalues and a correspond-
ing eigenbasis can be chosen analytically on J. By arguing in a similar way as in the proof
of Theorem 2.4.3(i), we get real analytic maps d̃j : J → (0,∞), and ũj , ṽj : J → R2n

for j = 1, . . . , n such that d̃1(t), . . . , d̃n(t) are the symplectic eigenvalues of A(t) with
{ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)} corresponding symplectic basis for all t ∈ J.

We know that the symplectic eigenvalue maps d1, · · · , dn are not differentiable on P2n(R)

in general. But we show that they are piecewise real analytic for real analytic curves in P2n(R).

Theorem 2.4.5. Let A : J → P2n(R) be a curve real analytic on the open interval J and let
[a, b] be any compact interval contained in J. Then for each j = 1, . . . , n, the map t 7→ dj(t) =

dj(A(t)) is piecewise real analytic on [a, b]. Further for each t ∈ [a, b], we can find a symplectic
eigenbasis {u1(t), . . . , un(t), v1(t), . . . , vn(t)} of A(t) corresponding to d1(t), . . . , dn(t) such
that the maps u1, . . . , un, v1, . . . , vn are also piecewise real analytic on [a, b].

Proof. By Theorem 2.4.4, we can find n symplectic eigenvalues d̃1(t), . . . , d̃n(t) of A(t) and a
corresponding symplectic eigenbasis {ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)} such that each of the
maps d̃j , ũj and ṽj are real analytic on J.

Define I to be the set of all ordered pairs (i, j), 1 ≤ i 6= j ≤ n, such that d̃i(t) 6= d̃j(t) for
at least one t in [a, b]. Let E be the set of all points t in [a, b] such that d̃i(t) = d̃j(t) for some
(i, j) ∈ I. By using the real analyticity of the maps d̃1, . . . , d̃n and the definition of the set I,
we can see that E is finite. Then for every i = 1, . . . , n the multiplicity of d̃i(t) is the same for
all t in [a, b] \ E. Hence d̃1, . . . , d̃n can be reordered so that d̃i(t) = di(t) for all t ∈ [a, b] \ E.
The theorem thus follows by suitably reordering the symplectic eigenvalues d̃1, . . . , d̃n and
correspondingly reordering the symplectic eigenvalue pairs ũ1, . . . , ũn, ṽ1, . . . , ṽn.
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2.5 Symplectic analogue of Lidskii’s theorem and other applica-
tions

This section is based on our work in Section 5 of [39]. Recall for elements x, y of Rn that x is

said to be supermajorised by y, in symbols x ≺w y, if for 1 ≤ k ≤ n

k∑
j=1

x↑j ≥
k∑
j=1

y↑j . (2.44)

Here x↑1 ≤ . . . ≤ x
↑
n are the components of x arranged in increasing order. For a positive definite

matrix A, we denote by d↑(A) the n-tuple of symplectic eigenvalues arranged in increasing

order, i.e.,

d↑(A) = (d1(A), . . . , dn(A)).

We give a symplectic analogue of the Lidskii’s theorem (2.4) as an application of our analysis of

symplectic eigenvalues for real analytic curves in P2n(R). The proof of the result is inspired by

the analytic proof of the Lidskii’s theorem by Kato ([43], Ch.II, Sec.6.5).

Theorem 2.5.1. Let A,B be two 2n× 2n positive definite matrices. Then

d↑(A+B)− d↑(A) ≺w d↑(B). (2.45)

Proof. Define the map ϕ : [0, 1]→ P2n(R) as

ϕ(t) = A+ tB.

Clearly ϕ is real analytic with ϕ′(t) = B. Let 1 ≤ j ≤ n, and let dj(t) = dj(ϕ(t)). By Theorem
2.4.5, dj is piecewise real analytic. Also by the same theorem, we can find a piecewise real ana-
lytic symplectic eigenbasis β(t) = {u1(t), . . . , un(t), v1(t), . . . , vn(t)} of ϕ(t) corresponding
to d1(t), . . . , dn(t). For any t in [0, 1] at which dj , uj and vj are real analytic, we have

d′j(t) =
1

2
(〈uj(t), Buj(t)〉+ 〈vj(t), Bvj(t)〉) . (2.46)

Let µ1 ≤ . . . ≤ µn be the symplectic eigenvalues of B and β = {x1, . . . , xn, y1, . . . , yn} be
a corresponding symplectic eigenbasis. Let Pj be the symplectic projection corresponding to

(xj , yj). Then B =
n∑
j=1

µjPj . Thus by using this expression for B and using (1.23) for Pk in
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(2.46), we get

d′j(t) =
n∑
k=1

µk
2

(〈uj(t), Pkuj(t)〉+ 〈vj(t), Pkvj(t)〉)

=
n∑
k=1

µk
2

(
〈uj(t), Jyk〉2 + 〈uj(t), Jxk〉2

+〈vj(t), Jyk〉2 + 〈vj(t), Jxk〉2
)
. (2.47)

Since β(t) and β are symplectic bases of P2n(R), the matrix M(t) with rsth entry

mrs(t) =



〈uj(t), Jxk〉 r = j, s = k, 1 ≤ j, k ≤ n

〈uj(t), Jyk〉 r = j, s = n+ k, 1 ≤ j, k ≤ n

〈vj(t), Jxk〉 r = n+ j, s = k, 1 ≤ j, k ≤ n

〈vj(t), Jyk〉 r = n+ j, s = n+ k, 1 ≤ j, k ≤ n

is a symplectic matrix. Let M̃(t) be the n× n matrix with jkth entry

m2
jk(t) +m2

j(n+k)(t) +m2
(n+j)k(t) +m2

(n+j)(n+k)(t)

2
.

Then by (2.47), we see that d′j(t) is the jth component of the vector M̃(t)d↑(B), i.e.,

d′(t) = M̃(t)d↑(B). (2.48)

where d′(t) = (d′1(t), . . . , d
′
n(t))T . Since dj , uj , vj are piecewise real analytic on [0, 1], the

maps dj and M̃ are integrable on [0, 1]. Denote by M, the n× n matrix

M =

1∫
0

M̃(t)dt.

We know by Theorem 1.2.3, each M̃(t) is doubly superstochastic. Since the set of doubly
superstochastic matrices is closed and convex, M is also doubly superstochastic. Integrating
(2.48), we get

d↑(A+B)− d↑(A) = Md↑(B).

We finally obtain (2.45) by Theorem 1.2.2.
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Corollary 2.5.2. For A,B ∈ P2n(R), and for all 1 ≤ i1 < · · · < ik ≤ n,

k∑
j=1

dij (A+B) ≥
k∑
j=1

dij (A) +
k∑
j=1

dj(B). (2.49)

In particular,
dj(A+B) ≥ dj(A) + d1(B), (2.50)

and
dj(A+ I) ≥ dj(A) + 1.

Here I denotes the 2n× 2n identity matrix.

Proof. Let x, y ∈ Rm and w = x↑ − y↑. Suppose z ∈ Rm is such that w ≺w z. Let 1 ≤ i1 <

. . . < ik ≤ m be any indices. We have

k∑
j=1

(
x↑ij − y

↑
ij

)
=

k∑
j=1

wij

≥
k∑
j=1

w↑j

≥
k∑
j=1

z↑j .

This gives
k∑
j=1

x↑ij ≥
k∑
j=1

y↑ij +
k∑
j=1

z↑j .

The assertion now follows directly from Theorem 2.5.1.

When {i1, . . . , ik} is the set {1, . . . , k} in (2.49), we obtain

k∑
j=1

dj(A+B) ≥
k∑
j=1

dj(A) +
k∑
j=1

dj(B),

the inequalities first proved by Hiroshima. See [11, 36]. Using eigenvalue inequalities and the

fact that dj(A) are eigenvalues of ıA1/2JA1/2, the inequalities (2.50) were proved recently by

R. Bhatia in [10] in the case when A and B are of the following type:

A =

D O

O D

 , B =

X O

O X−1


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where D is the n × n diagonal matrix with diagonal entries d1(A), . . . , dn(A) and X is any

n × n positive definite matrix. This also illustrates that treating dj(A) as eigenvalues of

ıA1/2JA1/2 and using eigenvalue inequalities makes it difficult to obtain general results on

symplectic eigenvalues. We point out that the supermajorisation in (2.45) cannot be replaced

by majorisation. Let A = ( 2 1
1 2 ) and B = I2, the 2 × 2 identity matrix. The only symplectic

eigenvalues of A,B and A+B are

d1(A) =
√

3, d1(B) = 1 and d1(A+B) = 2
√

2.

Clearly d1(A+B) > d1(A) + d1(B).

As a consequence of Theorem 2.5.1, we have the following local maximiser and local

minimiser properties on sums of symplectic eigenvalue maps.

Corollary 2.5.3. For all k = 1, . . . , n and 1 ≤ i1 < · · · < ik ≤ n, the map A 7→
k∑
j=1

dij (A)

on P2n(R) has neither a local minimiser nor a local maximiser in P2n(R). In particular, for
every j = 1, . . . , n, the map A 7→ dj(A) has neither a local minimiser nor a local maximiser in
P2n(R).

Proof. Let I denote the 2n × 2n identity matrix. Let A ∈ P2n(R) and ε > 0 be such that
A± εI ∈ P2n(R). Then replacing B by εI in (2.49) we get

k∑
j=1

dij (A+ εI) ≥
k∑
j=1

dij (A) + kε

Similarly, replacing A by A− εI and B by εI, we get

k∑
j=1

dij (A) ≥
k∑
j=1

dij (A− εI) + kε

Consequently, we get

k∑
j=1

dij (A+ εI) >

k∑
j=1

dij (A) >

k∑
j=1

dij (A− εI)

Recall that the von Neumann entropy of a Gaussian state with the covariance matrix A is
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given by

S(A) =

n∑
i=1

[(
di(A) +

1

2

)
log

(
di(A) +

1

2

)
−
(
di(A)− 1

2

)
log

(
di(A)− 1

2

)]
.

Theorem 2.5.4. Let G(2n) be the set of 2n× 2n Gaussian covariance matrices and A : J→
G(2n) be a real analytic curve on an open interval J. Then the entropy map S(t) = S(A(t)) is
monotonically increasing (decreasing) on J if A′(t) is positive (negative) semidefinite for all t in
J.

Proof. Since A is real analytic on J, by Theorem 2.4.4, we can choose the
symplectic eigenvalues d̃1(t), . . . , d̃n(t), and a corresponding symplectic eigenbasis
{ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)} of A(t) to be real analytic on J. By Remark 2.3.6, we
have

d̃′j(t) =
1

2

(
〈ũj(t),A′(t)ũj(t)〉+ 〈ṽj(t),A′(t)ṽj(t)〉

)
. (2.51)

If A′(t) is positive semidefinite, then each d̃′j(t) ≥ 0. Since the maps d̃j are continuous and
S is a continuous map of d̃j , t → S(t) is continuous on J. The matrices A(t) are Gaussian
covariance matrices for all t. Hence d̃j(t) ≥ 1/2 for all 1 ≤ j ≤ n and for all t ∈ J. Let F be
the set {i : d̃i(t) = 1/2 for all t ∈ J}. If F = {1, . . . , n}, then S(t) = 0 for all t ∈ J. So, let
F 6= {1, . . . , n}. Let J0 ⊆ J be any open bounded interval. Clearly it suffices to show that S(t)

is monotonically increasing on J0. Consider the set E = {t ∈ J0 : d̃j(t) = 1/2, 1 ≤ j ≤ n, j /∈
F}. By the analyticity of d̃j , we know that E is finite. For all t ∈ J0 \ E, we have

S′(t) =
∑

1≤j≤n
j /∈F

log

(
2d̃j(t) + 1

2d̃j(t)− 1

)
d̃′j(t),

By (2.51), S′(t) ≥ 0 if A′(t) ≥ 0 for all t ∈ J0 \ E. This together with the continuity of S(t)

proves the theorem.

In 2015, R. Bhatia and T. Jain [11] discovered a perturbation theorem for symplectic eigen-

values. Given any unitarily invariant norm ||| · ||| and A,B ∈ P2n(R), we have

|||Diag(d̂(A))− Diag(d̂(B))||| ≤
(
‖A‖1/2 + ‖B‖1/2

)
||| |A−B|1/2|||, (2.52)

where ‖ · ‖ is the operator norm and d̂(A) the 2n vector with components

d1(A), . . . , dn(A), d1(A), . . . , dn(A). Another perturbation theorem on symplectic eigenval-
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ues appeared in 2017 by M. Idel et al. [38] which states that

|||Diag(d̂(A))− Diag(d̂(B))||| ≤ (κ(A)κ(B))1/2 |||A−B|||. (2.53)

In deriving the results (2.52) and (2.53), the authors use several matrix inequalities for Hermitian

matrices and the fact that dj(A) are eigenvalues of ıA1/2JA1/2. We give another perturbation

theorem for symplectic eigenvalues using a completely different method.

Theorem 2.5.5. Let A,B ∈ P2n(R). Then

max
1≤j≤n

|dj(A)− dj(B)| ≤ K(A,B)‖A−B‖, (2.54)

where K(A,B) =
1∫
0

κ(A+ t(B −A))dt.

Proof. Define ϕ : [0, 1]→ P2n(R) as

ϕ(t) = A+ t(B −A).

As in the proof of Theorem 2.5.1, we see that dj(t) = dj(ϕ(t)) is piecewise real analytic
on [0, 1], and we can choose a corresponding piecewise real analytic symplectic eigenbasis
β(t) = {u1(t), . . . , un(t), v1(t), . . . , vn(t)}. Then for t where dj , uj , vj are real analytic, we
have

d′j(t) =
1

2
(〈uj(t), (B −A)uj(t)〉+ 〈vj(t), (B −A)vj(t)〉) .

Integrating the above equation, we get

|dj(B)− dj(A)|

= |
1∫

0

d′j(t)dt|

≤ 1

2

1∫
0

|〈uj(t), (B −A)uj(t)〉+ 〈vj(t), (B −A)vj(t)〉|dt

≤ 1

2

1∫
0

(
‖uj(t)‖2 + ‖vj(t)‖2

)
dt ‖A−B‖. (2.55)

Since (uj(t), vj(t)) is a normalised symplectic eigenvector pair of ϕ(t) corresponding to dj(t),

‖uj(t)‖2 + ‖vj(t)‖2 ≤ ‖ϕ(t)−1‖
(
‖ϕ(t)1/2uj(t)‖2 + ‖ϕ(t)1/2vj(t)‖2

)
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= ‖ϕ(t)−1‖2dj(t) ≤ 2κ(ϕ(t)).

Thus (2.55) gives (2.54).

Even though our perturbation bound in (2.54) does not improve the recently obtained

perturbation bound in [38], it does better in some cases. This is illustrated by the following

example.

Example 16. Let A =
(

1/2 0
0 1

)
and B = I2, the 2 × 2 identity matrix. For any t ∈ [0, 1] we

have κ(A+ t(B −A)) = 2
1+t which gives K(A,B) = 2 ln 2 ≈ 1.39. Also, (κ(A)κ(B))1/2 =√

2 ≈ 1.41. Thus we have K(A,B) < (κ(A)κ(B))1/2.
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Chapter 3

First order directional derivatives of
symplectic eigenvalues

We know that the symplectic eigenvalue maps dj are smooth at A ∈ P2n(R) whenever dj(A) is a

simple symplectic eigenvalue of A. But dj are not differentiable in general as we see in Example

15 that d1 and d2 fail to be differentiable at A(0) = I4. We study some weaker differentiability

properties of the symplectic eigenvalue maps dj . The main thrust of the chapter is to develop

tools using the theory of symplectic eigenvalues and convex analysis to show that the symplectic

eigenvalue maps are directionally differentiable, and derive the expressions for the directional

derivatives.

In Section 3.1 we summarize definitions and some interesting theory of Fenchel subdiffer-

entials for convex functions. We review the theory of Fenchel subdifferentials and directional

differentiability of eigenvalues of real symmetric matrices in Section 3.2. We begin Section 3.3

by establishing convexity of the maps σm = −2(d1 + . . .+ dm) and derive a simple expression

for the Fenchel subdifferentials of these maps in Theorem 3.3.3. In Section 3.4, we prove that σm

are directionally differentiable and derive the expression for their directional derivatives. We then

prove that dj are directionally differentiable and compute the expressions for their directional

derivatives in Theorem 3.4.3.

65
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3.1 Fenchel subdifferentials of convex functions

The theory of derivatives plays a significant role in studying minimisers and maximisers of

differentiable functions. Several optimality conditions of differentiable functions are expressed

in terms of their derivatives. Let O be an open subset of the Euclidean space Rn and a ∈ O. A

map f : O → R is said to be directionally differentiable at a in any direction d ∈ Rn if the limit

f ′(a; d) = lim
t↓0

f(a+ td)− f(a)

t
(3.1)

exists in R. We say that f is directionally differentiable at a if the limit (3.1) exists in R for all

d ∈ Rn. The map f ′(a; ·) : Rn → R is called the directional derivative of f at a. If f ′(a; ·) is

a linear map then f is said to be Gâteaux differentiable at a, and the vector ∇f(a) given by

〈∇f(a), d〉 = f ′(a; d) for all d ∈ Rn is called the gradient of f at a. The first order necessary

condition for local minimisers states that if f is Gâteaux differentiable at a ∈ O and a is a local

minimiser of f then ∇f(a) = 0.

In the theory of optimization, there often arise functions that are not Gâteaux differentiable.

The tools of derivatives can not be used to study such functions. Apart from the directional

derivatives, several other weaker notions of derivatives such as directional derivatives, Dini direc-

tional derivatives, Clarke directional derivatives and Michel-Penot directional derivatives have

been studied in the literature, and they are known as generelised derivatives. These generalised

derivatives give rise to Fenchel subdifferentials, Dini subdifferentials, Clarke subdifferentials

and Michel-Penot subdifferentials. See [17, 19, 52]. The generalised derivatives are useful in

obtaining optimality conditions for functions that are not necessarily differentiable. The utility

of each generalised derivative depends on the class of functions one aims to study. An important

class of functions that frequently arises in optimization problems is convex functions. But convex

functions are not Gâteaux differentiable in general. This is illustrated by the following simple

example.

Example 17. Let f : R → R be the modulus map f(x) = |x| for all x ∈ R. The function is
directionally differentiable at x = 0 and its directional derivative is given by f ′(0;α) = |α| for
all α ∈ R. But f ′(0;α) is not linear in α, therefore f is not Gâteaux differentiable at x = 0.
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Directional derivatives are also useful in obtaining optimality conditions. If a is a local

minimizer of f and the function is directionally differentiable at a then f ′(a; d) ≥ 0 for all

d ∈ Rn. So it is useful to develop tools to study directionally differentiable functions. We see in

Theorem 3.1.2 that convex functions are directionally differentiable. The Fenchel subdifferentials

of convex functions have been widely studied in the literature. See [17, 63, 65, 75]. We review

the theory of Fenchel subdifferentials for convex functions in this section. This section is based

on Chapter 3 of [17].

3.1.1 Directional differentiability of convex functions

Let f : Rn → (−∞,∞] be a map. Recall that f is said to be convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all α ∈ (0, 1) and x, y ∈ Rn. Here we use the convention 0 · ∞ = 0.

Lemma 3.1.1. Let h : R→ (−∞,∞] be a convex function such that h(0) = 0. Then, the map
g : R\{0} → (−∞,∞] defined by g(t) = h(t)

t is non-decreasing.

Proof. Let 0 < s ≤ t be arbitrary numbers. We have

h (s) = h

(
st

t

)
= h

((s
t

)
t+

(
1− s

t

)
0
)

≤ s

t
h(t) +

(
1− s

t

)
h(0)

=
s

t
h(t).

This implies g(s) ≤ g(t). Similarly, we get g(−t) ≤ g(−s). Also,

h(s) + h(−s) = 2

(
1

2
h(s) +

1

2
h(−s)

)
≥ 2h

(
s

2
+
−s
2

)
= 2h(0)

= 0.

This gives h(s) ≥ −h(−s), which implies g(s) ≥ g(−s) for all s > 0. Therefore, we have
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g(−t) ≤ g(−s) ≤ g(s) ≤ g(t) for all 0 < s ≤ t. This proves the monotonicity of g on
R− {0}.

The function f is said to be sublinear if it is positively homogenous and satisfies f(x+ y) ≤

f(x)+f(y) for all x, y ∈ Rn. Here positively homogenous means f(λx) = λf(x) for all λ > 0

and x ∈ Rn. Equivalently, f is sublinear if it is convex and positively homogeneous. We denote

by int K the interior of any subset K of the Euclidean space Rn.

Theorem 3.1.2. Let Φ : Rn → (−∞,∞] be a convex function and a ∈ int Φ−1(R). Then Φ is
directionally differentiable at a and Φ′(a; ·) is sublinear.

Proof. Let d ∈ Rn be arbitrary. Define h(s) = Φ(a+ sd)− Φ(a) for all t ∈ R. Clearly, h is a
convex function on R with h(0) = 0. By Lemma 3.1.1, the map s 7→ h(s)/s is non decreasing
on R\{0}. Choose t > 0 small enough to ensure that a± td ∈ int Φ−1(R). Thus we have

−∞ <
h(−t)
−t

≤ h(s)

s
≤ h(t)

t
<∞ (3.2)

for all 0 < s ≤ t. By (3.2), the map s 7→ h(s)/s is bounded below on (0, t] by a real number.
Therefore, the limit

lim
s↓0

h(s)

s
= lim

s↓0

Φ(a+ sd)− Φ(a)

s

exists in R. So, Φ is directionally differentiable at a.
For any λ > 0, we have

Φ′(a;λd) = lim
t↓0

Φ(a+ tλd)− Φ(a)

t

= λ

(
lim
t↓0

Φ(a+ tλd)− Φ(a)

tλ

)
= λΦ′(a; d).

Also, for any e ∈ Rn,

Φ′(a; d+ e) = lim
t↓0

Φ(a+ t(d+ e))− Φ(a)

t

= lim
t↓0

Φ(a+ 2t(d/2 + e/2))− Φ(a)

t

≤ lim
t↓0

1
2 (Φ(a+ 2td) + Φ(a+ 2te))− Φ(a)

t

= lim
t↓0

(
Φ(a+ 2td)− Φ(a)

2t
+

Φ(a+ 2te)− Φ(a)

2t

)
= Φ′(a; d) + Φ′(a; e).
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Therefore, Φ′(a; ·) is sublinear.

3.1.2 Fenchel subdifferentials of convex functions and Max formula

The theory of Fenchel subdifferentials of convex functions is used throughout the chapter. We

summarise the relevant results from convex analysis useful for our present work. In particular,

the Max formula plays an important role later in the chapter. We include a detailed proof of the

result to make the exposition self contained.

Definition 3.1.3. Let h : Rn → (−∞,∞] be a map. The Fenchel subdifferential of h at a ∈ Rn

is the closed convex set

∂h(a) = {φ ∈ Rn : 〈φ, x− a〉 ≤ h(x)− h(a), ∀x ∈ Rn}.

We illustrate the computation of the Fenchel subdifferential of some simple functions in the

following examples.

Example 18. Let h be the modulus map defined by h(x) = |x| for all x ∈ R. We have

∂h(0) = {α ∈ R : α · (β − 0) ≤ h(β)− h(0) ∀β ∈ R}

= {α ∈ R : αβ ≤ |β| ∀β ∈ R}

= [−1, 1].

Similarly, the Fenchel subdifferentials at other points are given by

∂h(a) =

{1} if a > 0,

{−1} if a < 0.

Example 19. Let ‖ · ‖∞ and ‖ · ‖1 be the norms on Rn given by

‖x‖∞ = max
1≤i≤n

|xi|, ‖x‖1 =

n∑
i=1

|xi|

for all x ∈ Rn. Let y ∈ ∂‖0‖∞. By definition we have 〈y, x〉 ≤ ‖x‖∞ for all x ∈ Rn.
This implies

∑n
i=1 yixi ≤ ‖x‖∞ for all x ∈ Rn. Choosing x with ith component ±1 implies

‖y‖1 ≤ 1. Conversely, if y ∈ Rn with ‖y‖1 ≤ 1 then 〈y, x〉 ≤ ‖y‖1‖x‖∞ ≤ ‖x‖∞. This
implies y ∈ ‖0‖∞. Thus we have

∂‖0‖∞ = {y ∈ Rn : ‖y‖1 ≤ 1}.
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One can similarly verify that

∂‖0‖1 = {y ∈ Rn : ‖y‖∞ ≤ 1}.

Proposition 3.1.4. Let Φ : Rn → (−∞,∞] be a convex function and a ∈ int Φ−1(R). The
Fenchel subdifferential of Φ at a is given by

∂Φ(a) = {φ ∈ Rn : 〈φ, d〉 ≤ Φ′(a; d) ∀d ∈ Rn}.

Proof. Suppose φ ∈ ∂Φ(a). By definition of Fenchel subdifferential we have 〈φ, td〉 ≤ Φ(a+

td)− Φ(a) for every d ∈ Rn and t > 0. Dividing the expression by t and then taking the limit
t ↓ 0, we get 〈φ, d〉 ≤ Φ′(a; d) for all d ∈ Rn. For the other side inclusion, suppose φ ∈ Rn

satisfies 〈φ, d〉 ≤ Φ′(a; d) for all d ∈ Rn. By Lemma 3.1.1 we have for all 0 < t < 1 and
x ∈ Rn,

Φ(a+ t(x− a))− Φ(a)

t
≤ Φ(x)− Φ(a).

Taking the limit t ↓ 0 we get

Φ′(a;x− a) ≤ Φ(x)− Φ(a).

This implies 〈φ, x− a〉 ≤ Φ′(a;x− a) ≤ Φ(x)− Φ(a).

For a sublinear function f : Rn → (−∞,∞], let lin f be the set

lin f = {x ∈ Rn : f(−x) = −f(x)}.

Proposition 3.1.5. Let f : Rn → (−∞,∞] be a sublinear function. The set lin f is the largest
subspace of Rn on which f is linear.

Proof. By definition, lin f contains all the subsapces of Rn on which f is linear. Thus, we only
need to prove that lin f is a vector subspace and f is linear on it. By sublinearity, we know that
f(0) = 0. This implies 0 ∈ lin f and hence lin f is non-empty. Let x, y ∈ lin f and α ∈ R.
We will show that αx + y ∈ lin f. We avoid triviality by assuming that α 6= 0. Observe that
f
(
α
|α|(−x)

)
= −f

(
α
|α|x

)
. Thus we get,

f(−αx− y) ≤ f(−αx) + f(−y)

= f

(
|α| α
|α|

(−x)

)
− f(y)

= |α|f
(
α

|α|
(−x)

)
− f(y)
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= −|α|f
(
α

|α|
x

)
− f(y)

= −f
(
|α| α
|α|

x

)
− f(y)

= − (f(αx) + f(y))

≤ −f(αx+ y).

Also, we have

f(−αx− y) + f(αx+ y) ≥ f(−αx− y + αx+ y) = f(0) = 0,

which implies f(−αx− y) ≥ −f(αx+ y). Therefore, we have f(−αx− y) = −f(αx+ y),

and hence αx+ y ∈ lin f. This proves that lin f is a vector subspace of Rn. Further,

f(x+ y) = −f(−x− y)

≥ −f(−x)− f(−y)

= f(x) + f(y),

and this implies f(x + y) = f(x) + f(y). By definition we have f(αx) = αf(x) provided
α ≥ 0. Otherwise,

f(αx) = −f(−αx) = −(−α)f(x) = αf(x).

Therefore f is linear on lin f.

The following lemma plays a key role in proving the Max formula.

Lemma 3.1.6. Suppose that p : Rn → (−∞,∞] is a sublinear map and a ∈ p−1(R). Then the
function q(·) = p′(a; ·) satisfies the following conditions

(i) q(λa) = λq(a) for all λ ∈ R,

(ii) q ≤ p, and

(iii) lin q ⊃ lin p+ span{a}.

Proof. For arbitrary λ ∈ R, choose t > 0 small so that 1 + tλ > 0. This implies p(a+ tλa)−
p(a) = (1+tλ)p(a)−p(a) = tλp(a) for small t > 0. Thus we have p(a+tλa)−p(a) = tλp(a)

for small t > 0. Dividing both the sides by t and taking the limit t ↓ 0 gives q(λa) = λp(a).

Similarly, q ≤ p directly follows from the fact that p(a+ td) ≤ p(a) + tp(d) for all d ∈ R and
t > 0.

Let x ∈ lin p. From the second part, we have

q(−x) ≤ p(−x) = −p(x) ≤ −q(x). (3.3)
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By Theorem 3.1.2, we know that q sublinear and q(0) = 0. This gives

0 = q(0) = q(−x+ x) ≤ q(−x) + q(x).

Therefore we also have q(−x) ≥ −q(x). So, by (3.3) we have q(−x) = −q(x). Thus we have
lin p ⊂ lin q. From the first part, we have span{a} ⊂ lin q. We know by Proposition 3.1.5 that
lin p, lin q are vector subspaces. We conclude that lin p+ span{a} ⊂ lin q.

Theorem 3.1.7. (Max formula) Let Φ : Rn → (−∞,∞] be a convex function and a ∈
int Φ−1(R). Then, ∂Φ(a) is non-empty and we have

Φ′(a; d) = max{〈φ, d〉 : φ ∈ ∂Φ(a)}

for all d ∈ Rn.

Proof. In the view of Proposition 3.1.4 it suffices to show that for any d ∈ Rn, there exists
φ ∈ ∂Φ(a) such that 〈φ, d〉 = Φ′(a; d). Let d be a fixed unit vector of Rn.Choose an orthonormal
basis {e1, . . . , en} of Rn such that e1 = d. Define the function p0(·) = Φ′(a; ·). By Theorem
3.1.2 the function p0 is sublinear. Define the functions pk(·) = pk−1(ek; ·) for k = 1, . . . , n. By
part (iii) of Lemma 3.1.6, we know that pn is a linear functional on Rn. So, there exists φ ∈ Rn

such that pn(·) = 〈φ, ·〉. By part (ii) of Lemma 3.1.6, we have pn(x) ≤ p0(x), which implies
〈φ, x〉 ≤ Φ′(a;x) for all x ∈ Rn. Proposition 3.1.4 thus implies φ ∈ ∂Φ(a).

By Lemma 3.1.6 and sublinearity, we get the following set of inequalities

pn(d) ≤ p1(d) = p′0(d; d) = −p′0(d;−d) = −p1(−d) ≤ −pn(−d) = pn(d).

The above inequalities are thus equalities, and we get

〈φ, d〉 = p′0(d; d) = p0(d) = Φ′(a; d). (3.4)

The equality in (3.4) holds for all non-zero elements d if we take e1 = d/‖d‖. If d is zero, then
we could repeat the same process by taking the standard basis of Rn and the conclusion would
trivially hold.

In Example 18, the function h is convex and is Gâteaux differentiable at non-zero points. Its

derivatives at non-zero points are given by

h′(a) =


1 if a > 0,

−1 if a < 0.



3.2 Directional derivatives of eigenvalues of symmetric matrices 73

Therefore we have ∂h(a) = {h′(a)} for all a 6= 0. Thus, the Fenchel subdifferential of h is

singleton exactly at those points where the function is Gâteaux differentiable. In the following

corollary we see that this is the necessary and sufficient condition for Gâteaux differentiability of

convex functions.

Corollary 3.1.8. Let Φ : Rn → (−∞,∞] be a convex function and a ∈ int Φ−1(R). Φ is
Gâteaux differentiable at a if and only if ∂Φ(a) is a singleton set. In this case, ∂Φ(a) =

{∇Φ(a)}.

Proof. Suppose ∂Φ(a) is a singleton set given by {y}. By the Max formula, we have Φ′(a; d) =

〈y, d〉. So by definition Φ is Gâteaux differentiable at a and y = ∇Φ(a). Conversely, suppose Φ

is Gâteaux differentiable at a. By Lemma 3.1.1 we have for all 0 < t < 1 and x ∈ Rn,

Φ(a+ t(x− a))− Φ(a)

t
≤ Φ(x)− Φ(a).

Taking the limit t ↓ 0 we get

〈∇Φ(a), x− a〉 ≤ Φ(x)− Φ(a).

This implies∇Φ(a) ∈ ∂Φ(a). Let φ ∈ ∂Φ(a) be arbitrary. By the Max formula, we get

〈φ, d〉 ≤ Φ′(a; d) = 〈∇Φ(a), d〉

for all d ∈ Rn. This implies φ = ∇Φ(a). Thus we have ∂Φ(a) = {∇Φ(a)}.

3.2 Directional derivatives of eigenvalues of symmetric matrices

The theory of eigenvalues serves as a guiding tool in the present study of symplectic eigenvalues.

So, we review the theory of Fenchel subdifferentials for eigenvalues of symmetric matrices

and summarise the relevant results in this section. Eigenvalues arise in various applications

and optimisation problems. Among others are graph partitioning problems that deal with

the minimisation problem of the sums of m largest eigenvalues [20], optimisation problems

in structural systems where sensitivity of eigenvalues plays an important role [31, 46, 60],

medical imaging area where semismoothness of eigenvalues is applied [49]. Due to the growing

importance in the areas of nonsmooth optimisation problems several generalised differential
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properties of eigenvalues have been studied in the last few decades [33, 34, 73]. This section is

based on the work by Hiriart-Urruty and Ye [34].

For a given subset K of Sn(R), we denote by convK the closed convex set generated by K.

Let m ≤ n be any positive integer. Denote by Mn,m(R) the set of n ×m real matrices. Let

Λm : Sn(R) → R be the map given by Λm(A) = λ↓1(A) + . . . + λ↓m(A) for all A ∈ Sn(R).

Here we denote by λ↓1(A) ≥ . . . ≥ λ↓n(A) the eigenvalues of A arranged in decreasing order. By

Ky Fan’s maximum principle ([25], Theorem 1) we have

Λm(A) = max {tr XTAX : X ∈Mn,m(R), XTX = Im}. (3.5)

Using the characterisation (3.5) one can verify that Λm are sublinear functions. In particular, Λm

are convex functions. The expression for the Fenchel subdifferential of Λm is derived in two

steps. In the first step, it is proved that the Fenchel subdifferential expression for Λm at A is

given by

∂Λm(A) = conv{XXT : X ∈Mn,m(R), tr XTAX = Λm(A), XTX = Im}. (3.6)

A key role is played by Ky Fan’s maximum principle in deriving (3.6). In the second step,

the convex set on the right side of (3.6) is further simplified by using the multiplicities of the

eigenvalues of A and properties of matrices. A more transparent expression for ∂Λm(A) is

presented in the next theorem.

Let αm, βm, γm be non-negative integers where γm = αm+βm is the multiplicity of λm(A)

and αm ≥ 1. Further,

λ↓m−αm
(A) > λ↓m−αm+1(A) = . . . = λ↓m+βm

(A) > λ↓m+βm+1(A).

In particular, α1 = 1, β1 = γ1 − 1 and αn = γn, βn = 0. Here we assume λ↓0(A) = ∞ and

λ↓n+1(A) = −∞. Let ∇m(A) be the subset of Mn,m(R) consisting of matrices Z given in the
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block matrix form

Z =


Ik 0

0 W

0 0

 , (3.7)

where k = m − αm and W ∈ Mγm,αm(R) such that W TW = Iαm . Let U be an orthogonal

matrix such that UTAU is the diagonal matrix with diagonal entries λ↓1(A), . . . , λ↓n(A).

Theorem 3.2.1. The Fenchel subdifferential of Λm at A is given by

∂Λm(A) = conv{UZZTUT : Z ∈ ∇m(A)}. (3.8)

The Fenchel subdifferential expression (3.8) is characterised by the matrices of the set

∇m(A). Using the Max formula one can now derive the expression for the directional derivative

of Λm at A. Suppose u1, . . . , un are the columns of U. Let U1 = [u1, . . . , um−αm ] and U2 =

[um−αm+1, . . . , um+βm ].

Theorem 3.2.2. The first order directional derivative of Λm at A is given by

Λ′m(A;H) = tr UT1 HU1 +

αm∑
k=1

µk(U
T
2 HU2) (3.9)

for all H ∈ Sn(R). Here µk(UT2 HU2) denotes the kth largest eigenvalue of the matrix UT2 HU2.

The eigenvalue maps λ↓1, . . . , λ
↓
n can be written as a difference of the directionally differen-

tiable maps Λ1, . . . ,Λn. This implies that the eigenvalue maps are also directionally differen-

tiable. One can directly get λ↓
′
m(A; ·) using the expressions for Λ′m(A; ·).

Theorem 3.2.3. The first order directional derivative of λ↓m at A is given by

λ↓
′
m(A;H) = µαm(UT2 HU2) (3.10)

for all H ∈ Sn(R).
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3.3 Fenchel subdifferentials of the negative sums of symplectic
eigenvalues

In 2006, T. Hiroshima proved a symplectic analogue of Ky Fan’s maximum principle. Given any

P ∈ P2n(R) and positive integer m ≤ n we have

m∑
j=1

dj(P ) = min {tr STAS : S ∈ Sp(2n, 2m)}. (3.11)

See ([36], Sec. V, Lemma 1). This characterisation implies that the map P 7→
m∑
j=1

dj(P ) is a

concave function on P2n(R). Define the map σm : S2n(R)→ (−∞,∞] by

σm(P ) =


−2

m∑
j=1

dj(P ) if P ∈ P2n(R),

∞ otherwise.

The set P2n(R) is open and convex in S2n(R). Therefore σm are convex functions. We use the

theory of symplectic matrices and symplectic eigenvalues developed in the previous chapters to

derive the Fenchel subdifferentials of σm. This section is based on our work in Section 3 of [56].

We note a useful property of the space Sn(R) in the following lemma. A more general result

for locally convex topological vector spaces is given in Zălinescu ([75], Theorem 1.1.5).

Lemma 3.3.1. Let C and K be non-empty subsets of Sn(R). If C is closed, K is compact and
C ∩ K = ∅, then there exist C ∈ Sn(R) and δ > 0 such that

tr CX + δ ≤ tr CY

for all X ∈ C and Y ∈ K.

Let A be an element of P2n(R). We derive the expression for ∂σm(A) in two steps similar

to eigenvalues discussed in Section 3.2. We first compute a preliminary expression for ∂σm(A)

in the following proposition.

Proposition 3.3.2. The Fenchel subdifferential of σm at A is given by

∂σm(A) = conv
{
−SST : S ∈ Sp(2n, 2m,A)

}
. (3.12)
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Proof. Let Q = conv
{
−SST : S ∈ Sp(2n, 2m,A)

}
. For any S ∈ Sp(2n, 2m,A) and B ∈

S2n(R) we have

〈−SST , B −A〉 = −tr SSTB + tr SSTA

= −tr STBS + tr STAS

= −tr STBS − σm(A)

≤ σm(B)− σm(A).

The last equality follows from the fact that A ∈ Sp(2n, 2m,A) and the last inequality follows
by the definition by σm. This implies that −SST ∈ ∂σm(A). We know that ∂σm(A) is a closed
convex set. Thus we have Q ⊆ ∂σm(A).

For the other side inclusion, we assume ∂σm(A)\Q 6= ∅ and derive a contradiction. Let
B ∈ ∂σm(A)\Q. By Lemma 3.3.1 we get C ∈ S2n(R) and δ > 0 such that for all S ∈
Sp(2n, 2m,A) we have

〈B,C〉 ≥ 〈−SST , C〉+ δ. (3.13)

Let (a, b) be an open interval containing 0 such that A(t) = A + tC is in P2n(R) for all
t ∈ (a, b). By Theorem 2.4.5 we get an ε > 0 and continuous maps dj , uj , vj on [0, ε) ⊂ (a, b)

for j = 1, . . . , n such that dj(t) = dj(A(t)) and {u1(t), . . . , un(t), v1(t), . . . , vn(t)} is a
symplectic basis of R2n consisting of symplectic eigenvector pairs of A(t) for all t ∈ [0, ε).

Therefore the matrix
S(t) = [u1(t), . . . , un(t), v1(t), . . . , vn(t)]

is an element of Sp(2n,A(t)) for all t ∈ [0, ε). For any t in (0, ε) we have

〈−S(t)S(t)T , C〉 = −trS(t)TCS(t)

=
−tr S(t)T (A+ tC)S(t) + tr S(t)TAS(t)

t

=
−tr S(t)TA(t)S(t) + tr S(t)TAS(t)

t

=
σm(A(t)) + tr S(t)TAS(t)

t

≥ σm(A(t))− σm(A)

t

≥ 〈C,B〉.

The second last inequality follows because S(t) is an element of Sp(2n, 2m) for all t ∈ (0, ε),

and the last inequality follows from the fact that B ∈ ∂σm(A). By continuity we get

〈−S(0)S(0)T , C〉 ≥ 〈B,C〉.
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But S(0) ∈ Sp(2n, 2m,A) and hence we get a contradiction by (3.13). Therefore our assumption
∂σm(A)\Q 6= ∅ is false. This completes the proof.

We now simplify the convex set in the right side of the equation (3.12) and derive a simpler

expression for ∂σm(A). Let im, jm, rm be the non-negative integers given as follows. Let

rm = im + jm be the multiplicity of dm(A) and im ≥ 1. Further,

dm−im(A) < dm−im+1(A) = . . . = dm+jm(A) < dm+jm+1(A).

In particular, i1 = 1, j1 = r1 − 1 and in = rn, jn = 0. Define ∆m(A) to be the set of 2n× 2m

real matrices of the form 

I O O O

O U O V

O O O O

O O I O

O −V O U

O O O O


where I is the (m− im)× (m− im) identity matrix, and U, V are rm × im real matrices

such that the columns of U + ιV are orthonormal. Recall that if S is a matrix with 2n columns

and m1, . . . ,mk are positive integers with m1 + . . . + mk = n then the symplectic column

partition of S of order (m1, . . . ,mk) is given by (1.28).

Theorem 3.3.3. Let A ∈ P2n(R) and M ∈ Sp(2n,A) be fixed. The Fenchel subdifferential of
σm at A is given by

∂σm(A) = conv
{
−MHHTMT : H ∈ ∆m(A)

}
. (3.14)

Proof. We first show that

∂σm(A) ⊆ conv
{
−MHHTMT : H ∈ ∆m(A)

}
.

By Proposition 3.3.2 it suffices to show that for every S ∈ Sp(2n, 2m,A) there exists some
H ∈ ∆m(A) such that SST = MHHTMT . Let I denote the 2n × 2n identity matrix and
I = I � Ĩ � Î be the symplectic column partition of I of order (m− im, rm, n−m− jm). Let
M = MI, M̃ = MĨ and M̂ = MÎ. The columns of M̃ consist of symplectic eigenvector pairs
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of A corresponding to the symplectic eigenvalue dm(A). Let S ∈ Sp(2n, 2m,A) be arbitrary
and S = S � S̃1 be the symplectic column partition of S of order (m − im, im). Extend S to
a matrix S � S̃2 in Sp(2n, 2(m + jm), A) by Corollary 1.2.10. The columns of S consist of
symplectic eigenvector pairs of A corresponding to d1(A), . . . , dm−im(A), and the columns of
S̃1 � S̃2 consist of symplectic eigenvector pairs of A corresponding to dm(A). By Corollary 1.3.3
we can find orthosymplectic matrices Q and R of orders 2(m− im)×2(m− im) and 2rm×2rm

respectively such that S = MQ and S̃1 � S̃2 = M̃R. Let R = R � R̃ be the symplectic column
partition of R of order (im, jm). By Proposition 1.3.4 we have S̃1 � S̃2 = M̃R � M̃R̃. This
implies S̃1 = M̃R. Therefore

S = S � S̃1 = MQ � M̃R.

So we have
S = M(IQ � ĨR).

By Proposition 1.2.1 there exist rm × rm real matrices X,Y such that X + ιY is unitary and

R =

(
X Y

−Y X

)
.

Let U, V be the rm × im matrices consisting of the first im columns of X,Y respectively.
Therefore

R =

(
U V

−V U

)
. (3.15)

We have

SST = M(IQ � ĨR)(IQ � ĨR)TMT

= M
(

(IQ)(IQ)T + (ĨR)(ĨR)T
)
MT

= M
(
IQQT I

T
+ (ĨR)(ĨR)T

)
MT

= M
(
II

T
+ (ĨR)(ĨR)T

)
MT

= M(I � ĨR)(I � ĨR)TMT .

The second and the last equalities follow from Proposition 1.3.4. The fourth equality follows
from the fact that Q is an orthogonal matrix. Let H = I � ĨR. By the definition of ∆m(A) and
(3.15) we have H ∈ ∆m(A). Therefore SST = MHHTMT , where H ∈ ∆m(A).

We now prove the reverse inclusion. By definition, observe that any H ∈ ∆m(A) is of the
form

H = I � Ĩ

(
U V

−V U

)
.
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By Proposition 1.3.4 we thus have

MH = M � M̃

(
U V

−V U

)
.

We know that the columns of M correspond to the symplectic eigenvalues
d1(A), . . . , dm−im(A). By using the fact that the columns of M̃ correspond to the sym-
plectic eigenvalue dm(A) we get(

U V

−V U

)T
M̃TAM̃

(
U V

−V U

)
= dm(A)

(
U V

−V U

)T (
U V

−V U

)
= dm(A)I2im .

Here we used the fact that the columns of
(
U V
−V U

)
are orthonormal. The above relation implies

that the columns of M̃
(
U V
−V U

)
also correspond to the symplectic eigenvalue dm(A). Therefore

we have MH ∈ Sp(2n, 2m,A) for all H ∈ ∆m(A), and hence

∂σm(A) ⊇ conv
{
−MHHTMT : H ∈ ∆m(A)

}
.

This completes the proof.

It is interesting to see the similarities between the expressions for Fenchel subdifferentials

of σm and Λm. In particular, ∆m(A) in the expression (3.14) for ∂σm(A) plays similar role as

∇m(A) in the expression (3.8) for ∂Λm(A).

3.4 First order directional derivatives of symplectic eigenvalues

This section is based on our work in Section 4 of [56]. We know that convex functions are

directionally differentiable and σm are convex functions. Thus σm are directionally differentiable.

We use the expression (3.14) in computing the directional derivatives of σm.

We set up some notations for our convenience. Let A be an element of P2n(R) and M be

an element of Sp(2n,A). Let I denote the 2n × 2n identity matrix and I = I � Ĩ � Î be the

symplectic column partition of I of order (m− im, rm, n−m− jm). Let M = MI, M̃ = MĨ

and M̂ = MÎ. Let B be any element of S2n(R). Define B = −MT
BM and B̃ = −M̃TBM̃.

Note that B̃ is a 2rm × 2rm real symmetric matrix. Consider the block matrix form of B̃ given
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by

B̃ =

B̃11 B̃12

B̃T
12 B̃22

 ,

where each block has order rm×rm.Denote by ˜̃B the Hermitian matrix B̃11+B̃22+ι(B̃12−B̃T
12).

Theorem 3.4.1. The directional derivative of σm at A is given by

σ′m(A;B) = tr B +

im∑
j=1

λ↓j (
˜̃
B) (3.16)

for all B ∈ S2n(R). Here λ↓j (
˜̃
B) denotes the jth largest eigenvalue of ˜̃B.

Proof. By the Max formula we have

σ′m(A;B) = max {〈C,B〉 : C ∈ ∂σm(A)}

for all B ∈ S2n(R). It suffices to take the maximum in the above expression over a subset that
generates ∂σm(A). By Theorem 3.3.3 we have

σ′m(A;B) = max {〈−MHHTMT , B〉 : H ∈ ∆m(A)}. (3.17)

Every element of ∆m(A) is of the form I � ĨR where R is given by (3.15). Let H = I � ĨR be
an arbitrary element of ∆m(A). This gives

MHHTMT = (M(I � ĨR))(M(I � ĨR))T

= (MI �MĨR)(MI �MĨR)T

= (M � M̃R)(M � M̃R)T

= MM
T

+ M̃RR
T
M̃T . (3.18)

The second and the last equalities follow from Proposition 1.3.4. This implies

〈−MHHTMT , B〉 = tr (−MHHTMTB)

= tr (−MM
T
B) + tr (−M̃RR

T
M̃TB)

= tr (−MM
T
B) + tr (−RT M̃TBM̃R)

= tr (−MT
BM) + tr (R

T
B̃R)

= tr B + tr (UT B̃11U + V T B̃22V − 2UT B̃12V )

+ tr (V T B̃11V + UT B̃22U + 2UT B̃T
12V )

= tr B + tr (U + ιV )∗(B̃11 + B̃22 + ι(B̃12 − B̃T
12))(U + ιV )
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= tr B + tr (U + ιV )∗
˜̃
B(U + ιV ). (3.19)

Therefore by (3.17) and (3.19) we get

σ′m(A;B) = tr B + max
U+ιV

tr (U + ιV )∗
˜̃
B(U + ιV ),

where the maximum is taken over rm × im unitary matrices U + ιV. By Ky Fan’s extremal
characterisation ([25], Theorem 1) we have

max
U+ιV

tr (U + ιV )∗
˜̃
B(U + ιV ) =

im∑
j=1

λ↓j (
˜̃
B).

This completes the proof.

We see that the directional derivative expression (3.16) of σm has two terms, a linear term

and a sublinear term which is analogous to the directional derivative expression (3.9) of Λm for

eigenvalues.

Corollary 3.4.2. LetA be an element of P2n(R) andM be an element of Sp(2n,A). If dm(A) <

dm+1(A) then σm is Gâteaux differentiable at A with the gradient

∇σm(A) = −(M � M̃)(M � M̃)T .

Here we assume dm+1(A) =∞ for m = n.

Proof. If dm(A) < dm+1(A) then jm = 0 and im = rm. Therefore R is a 2rm × 2rm

orthosymplectic matrix in the proof of Theorem 3.4.1. By (3.18) we have

MHHTMT = MM
T

+ M̃M̃T

for all H ∈ ∆m(A). By Proposition 1.3.4 we have

−MM
T − M̃M̃T = −(M � M̃)(M � M̃)T .

Therefore we have by Theorem 3.3.3

∂σm(A) = {−(M � M̃)(M � M̃)T }.

By Corollary 3.1.8 we conclude that σm is Gâteaux differentiable with

∇σm(A) = −(M � M̃)(M � M̃)T .
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The symplectic eigenvalue maps d1, . . . , dn can be written as the difference of two direction-

ally differentiable functions. If σ0 is the zero map on S2n(R), we have

dm =
1

2
(σm−1 − σm) for 1 ≤ m ≤ n.

Therefore, the symplectic eigenvalue maps are also directionally differentiable. By definition we

get,

d′m(A; ·) =
1

2

(
σ′m−1(A; ·)− σ′m(A; ·)

)
.

Theorem 3.4.3. The directional derivative of dm at A is given by

d′m(A;B) = −1

2
λ↓im(

˜̃
B) (3.20)

for all B ∈ S2n(R).

Proof. By definition we have im ≥ 1. We deal with the following two possible cases separately.
Case: im ≥ 2

This is the case when dm(A) = dm−1(A). This implies

im−1 = im − 1, jm−1 = jm + 1, rm−1 = rm.

Therefore we have m− im = (m− 1)− im−1. From Theorem 3.4.1 we get,

d′m(A;B) =
1

2
σ′m−1(A;B)− 1

2
σ′m(A;B)

=
1

2
(tr B +

im−1∑
j=1

λ↓j (
˜̃
B))− 1

2
(tr B +

im∑
j=1

λ↓j (
˜̃
B))

= −1

2
λ↓im(

˜̃
B).

Case: im = 1

In this case we have dm−1(A) < dm(A). By Corollary 3.4.2 the map σm−1 is Gâteaux differen-
tiable at A and we have

∇σm−1(A) = −SST ,

where S is the submatrix consisting of columns with indices 1, . . . , (m− 1) + jm−1 of M. But
here we have jm−1 = 0 which means that (m− 1) + jm−1 = m− im. In other words, we have
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S = M. This gives

σ′m−1(A;B) = ∇σm−1(A)(B)

= 〈−MM
T
, B〉

= tr (−MM
T
B)

= tr (−MT
BM)

= tr B.

By Theorem 3.4.1 we have

σ′m(A;B) = σ′m−1(A;B) + λ↓1(
˜̃
B).

Therefore we get
2d′m(A;B) = −λ↓1(

˜̃
B)

which is the same as (3.20) for im = 1.

Suppose dm(A) is a simple symplectic eigenvalue of A. If u, v are the mth and (n+m)th

columns of M then we have M̃ = [u, v]. For any B ∈ Sn(R), we have

B̃ = −M̃TBM̃ = −

〈u,Bu〉 〈u,Bv〉
〈v,Bu〉 〈v,Bv〉

 .

Hence ˜̃B = −〈u,Bu〉 − 〈v,Bv〉 is a scalar. By (3.20) we thus have

d′m(A;B) =
〈u,Bu〉+ 〈v,Bv〉

2
.

This verifies the fact that the directional derivative of dm at A reduces to its derivative (2.3.5)

whenever dm(A) is a simple symplectic eigenvalue.



Chapter 4

Clarke and Michel-Penot
subdifferentials of symplectic
eigenvalues

The theory of Fenchel subdifferentials for the class of convex functions has lead to new insights

and inspire new methods in nonsmooth analysis and optimization. A much successful attempt

in generalising the theory of subdifferentials to a larger class of functions has been for locally

Lipschitz functions and the ideas of F. H. Clarke have played a pioneering role. In 1983, F.

H. Clarke [18] introduced a notion of generalised gradient for locally Lipschitz functions

known as Clarke subdifferential. Let X be a real Banach space and φ be a locally Lipschitz

real valued function on X. The Clarke subdifferential of φ at x, denoted by ∂◦φ(x), is a

nonempty, convex, weak∗ compact set. Clarke subdifferential has found applications in various

fields such as optimal controls and mathematical programming [19]. It is also used in the

geometry of Banach spaces in studying the differentiability of distance functions [27], and in

establishing optimality conditions for weak efficient, global efficient and efficient solutions

in vector variational inequalities [30]. In 1992, Michel and Penot [54] introduced another

notion of generalised gradient called Michel-Penot subdifferential. We denote by ∂�φ(x) the

Michel-Penot subdifferential of φ at x which is also a nonempty, convex, weak∗ compact set

and ∂�φ(x) ⊆ ∂◦φ(x). Michel-Penot subdifferential has applications in optimization problems

such as the steepest descent direction and stochastic programming [15], composite nonsmooth

85
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programming [40], in global convergence of Newton’s method for nonsmooth equations [61],

optimality conditions in nonsmooth optimal control [71].

The main feature of Michel-Penot subdifferential lies in the fact that it is smaller than Clarke

subdifferential and hence easier to compute. In particular, if φ is Gâteaux differentiable at x

then ∂�φ(x) is the singleton set containing the Gâteaux derivative of φ at x but ∂◦φ(x) may

contain more elements. An advantage of Clarke subdifferential over Michel-Penot subdifferential

is that the map x 7→ ∂◦φ(x) is upper semicontinuous whereas x 7→ ∂�φ(x) is not. Michel-

Penot subdifferential can not be used to extend the Lagrange multiplier rule for nonsmooth

mathematical programming involving equality constraints due to the lack of upper semicontinuity

which is needed to handle the equality constraints. See [59]. Therefore it is fruitful to study both

the subdifferentials in order to develop a richer theory for nonsmooth functions. The aim of this

chapter is to discuss the Clarke and Michel-Penot subdifferentials of the symplectic eigenvalue

maps.

The work of Hiriart-Urruty and Lewis [33] on Clarke and Michel-Penot subdifferentials for

eigenvalues of symmetric matrices was a motivation for our work. Let B ∈ Sn(R) and m ≤ n

be a positive integer. Denote by Em(B) the eigenspace of B corresponding to the mth largest

eigenvalue λ↓m(B). We have

∂◦λ↓m(B) = ∂�λ↓m(B) = conv{xxT : x ∈ Em(B), ‖x‖ = 1}.

See ([33], Theorem 5.1). In particular, the Clarke and Michel-Penot subdifferentials of λ↓m

coincide at B and are independent of the choice of m corresponding to the equal eigenvalues of

B. We prove an analogous result for symplectic eigenvalues in Theorem 4.2.3.

The chapter is organised as follows. We summarise definitions and some basic theory of

Clarke and Michel-Penot subdifferentials for locally Lipschitz functions in Section 4.1. In

Section 4.2, we derive expressions for the Clarke and Michel-Penot subdifferentials of the

symplectic eigenvalue maps and show that both the subdifferentials coincide at every element of

P2n(R). As an application of Clarke and Michel-Penot subdifferentials, we give a new proof of

the well known monotonicity property of symplectic eigenvalues.
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4.1 Clarke and Michel-Penot subdifferentials of locally Lipschitz
functions

Let X be a real Banach space and O be an open subset of X. A function f : O → R is said to

be locally Lipschitz at x ∈ O if there exist K > 0 and r > 0 such that

|f(y)− f(z)| ≤ K‖y − z‖

for all y, z ∈ O satisfying ‖y − x‖ < r, ‖z − x‖ < r. If f is locally Lipschitz at every element

of O it is said to be locally Lipschitz on O.

Let f : O → R be locally Lipschitz on O and x be any element of O. The Clarke directional

derivative of f at x in the direction d ∈ X is defined by

f◦(x; d) = lim sup
y→x
t↓0

f(y + td)− f(y)

t
. (4.1)

The quotient in (4.1) is bounded byK‖d‖ for y near x and small t which implies that the quantity

f◦(x; d) is finite. The Clarke subdifferential of f at x is defined as

∂◦f(x) = {y ∈ X∗ : 〈y, h〉 ≤ f◦(x;h) ∀h ∈ X},

where X∗ is the dual of X and 〈y, h〉 = y(h). The Michel-Penot directional derivative of f at x

in the direction d is defined by

f�(x; d) = sup
y∈Rn

lim sup
t↓0

f(x+ ty + td)− f(x+ ty)

t
.

The locally Lipschitz property of f ensures that quantity f�(x; d) is finite. The Michel-Penot

subdifferential of f at x is defined by

∂�f(x) = {y ∈ X∗ : 〈y, h〉 ≤ f�(x;h) ∀h ∈ X}. (4.2)

The following result gives a relationship between the Clarke and Michel-Penot subdifferen-

tials. See ([17], Corollary 6.1.2).
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Theorem 4.1.1. Let φ : O → R be a function locally Lipschitz on O. Given any x ∈ O we have

∂�φ(x) ⊆ ∂◦φ(x). (4.3)

Furthermore, Clarke and Michel-Penot directional derivatives exhibit analogues of the Max
formula given by

φ◦(x; d) = max{〈y, d〉 : y ∈ ∂◦φ(x)}, (4.4)

φ�(x; d) = max{〈y, d〉 : y ∈ ∂�φ(x)} (4.5)

for all d ∈ X.

The Clarke and Michel-Penot subdifferentials also exhibit nice properties for scalar multiples

of locally Lipschitz functions. The proof of the following theorem can be found in [19, 55].

Theorem 4.1.2. Let φ : O → R be locally Lipschitz on O. Given any x ∈ O and any real
number r,

∂�(rφ)(x) = r∂�φ(x), (4.6)

∂◦(rφ)(x) = r∂◦φ(x). (4.7)

It can be easily verified for convex functions that both Clarke and Michel-Penot directional

derivatives are the same as the usual directional derivative. So Clarke, Michel-Penot and Fenchel

subdifferentials coincide for convex functions. See ([19], Proposition 2.3.6).

The following example illustrates the limitation of Fenchel subdifferential theory. It fails to

give any useful information about the directional differentiability of functions as simple as the

negative of the modulus function.

Example 20. Let g(x) = −|x| for all x ∈ R. A simple calculation shows that α ∈ ∂g(0) must
satisfy αβ ≤ −|β| for all β ∈ R. But this implies α ≤ −1 and α ≥ 1 which is absurd. Thus we
have ∂g(0) = ∅. One can easily compute the Clarke and Michel-Penot directional derivatives of
this function and get

g◦(0;α) = g�(0;α) = |α|

for all α ∈ R. This gives ∂◦g(0) = ∂�g(0) = [−1, 1].

The Clarke and Michel-Penot subdifferentials turn out to be equal in Example 20 but they

may be greatly different. This is illustrated by the following example of [30].
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Example 21. Let f : R→ R be the function defined by

f(x) =

x2| cos
(
π
x

)
| if x 6= 0,

0 if x = 0.

Here f�(0;α) = 0 and f◦(0;α) = π|α| for all α ∈ R. This gives ∂�f(0) = {0} and ∂◦f(0) =

[−π, π].

The following simple properties of Clarke and Michel-Penot directional derivatives are useful

later in the chapter.

Proposition 4.1.3. Let φ : O → R be locally Lipschitz on O. Let x ∈ O be fixed and d ∈ X be
arbitrary. If φ is directionally differentiable at x then

φ�(x; d) = sup
y∈X
{φ′(x; d+ y)− φ′(x; d)}. (4.8)

Furthermore, if φ is directionally differentiable in an open neighbourhood of x then

φ◦(x; d) = lim sup
y→x

φ′(y; d). (4.9)

Proof. For arbitrary y ∈ X and t > 0 we have

φ(x+ ty + td)− φ(x+ ty)

t
=
φ(x+ ty + td)− φ(x)

t
− φ(x+ ty)− φ(x)

t
.

Taking lim sup on both the sides as t ↓ 0 and using the fact that the directional derivative of φ
exists at x, we get

lim sup
t↓0

φ(x+ ty + td)− φ(x+ ty)

t
= φ′(x; y + d)− φ′(x; d).

By taking supremum over y ∈ X we get (4.8).
For the second part, we assume without loss that φ is directionally differentiable on O. Let

ε > 0 be arbitrary. By the definition of lim sup, for any δ > 0 and p ∈ N we get y0 ∈ O with
‖x− y0‖ < δ and tp ∈ (0, 1p) such that

φ◦(x; d)− ε < φ(y0 + tpd)− φ(y0)

tp
.

Since φ′(y0; d) exists, by taking the limit p→∞ we get

φ◦(x; d)− ε ≤ φ′(y0; d). (4.10)
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Again, by definition of lim sup we get δ0 > 0 and t0 > 0 such that for all y ∈ O with
‖x− y‖ < δ0 and t ∈ (0, t0) we have

φ(y + td)− φ(y)

t
< φ◦(x; d) + ε.

Taking the limit t→ 0 in the above inequality we get

φ′(y; d) ≤ φ◦(x; d) + ε. (4.11)

The conditions (4.10) and (4.11) imply (4.9).

4.2 Clarke and Michel-Penot subdifferentials of symplectic eigen-
values

We know by (7) that the symplectic eigenvalue maps are locally Lipschitz on P2n(R). We

use the theory of locally Lipschitz functions discussed in Section 4.1 to study the Clarke and

Michel-Penot subdifferentials of symplectic eigenvalues. The results of this section are based on

our work in Section 4 of [56].

Let A be an element of P2n(R). We denote by Sm(A) the set of normalised symplectic

eigenvector pairs (u, v) of A corresponding to the symplectic eigenvalue dm(A). Let m̂ be the

index of the smallest symplectic eigenvalue of A equal to dm(A). More precisely, dj(A) =

dm(A) implies j ≥ m̂. Let M ∈ Sp(2n,A) be fixed and M = M � M̃ � M̂ be the symplectic

column partition of M of order (m− im, rm, n−m− jm). For any B ∈ S2n(R) recall that ˜̃B
is the rm × rm Hermitian matrix given as follows. Let B̃ = −M̃TBM̃ in the block matrix form

be given by

B̃ =

B̃11 B̃12

B̃T
12 B̃22

 ,

where each block is of order rm × rm. The matrix ˜̃B is given by

˜̃
B = B̃11 + B̃22 + ι(B̃12 − B̃T

12).

The following result plays a key role in deriving the expression for the Michel-Penot
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subdifferential of symplectic eigenvalues. In the proof of the result, we use the fact that if

f is a sublinear map on X then we have

f(d) = sup{〈x, d〉 : x ∈ ∂f(0)} (4.12)

for all d ∈ X. See ([35], p.168, Remark 1.2.3). To keep notations simple, we use 〈·, ·〉 to denote

any inner product. Their meanings become clear from the context.

Proposition 4.2.1. Let A be an element of P2n(R). The function −d′m̂(A; ·) is sublinear and its
Fenchel subdifferential at zero is given by

∂(−d′m̂(A; ·))(0) = conv{−1

2
(xxT + yyT ) : (x, y) ∈ Sm(A)}.

Proof. By definition we have im̂ = 1. Therefore by Theorem 3.4.3 we have

−d′m̂(A;B) =
1

2
λ↓1(
˜̃
B)

for all B ∈ S2n(R). The map B 7→ ˜̃
B is linear and the largest eigenvalue map λ↓1 is sublinear.

Therefore −d′m̂(A; ·) is a sublinear map. By the property (4.12) of sublinear maps, it suffices to
show that

− d′m̂(A;B) = max{−1

2
〈xxT + yyT , B〉 : (x, y) ∈ Sm(A)} (4.13)

for all B ∈ S2n(R). Let (x, y) ∈ Sm(A) be arbitrary. By Corollary 1.2.10 extend [x, y] to S
in Sp(2n, 2rm) with columns consisting of symplectic eigenvector pairs of A corresponding to
dm(A). We get a 2rm × 2rm orthosymplectic matrix Q by Corollary 1.3.3 such that S = M̃Q.

We know that Q is of the form (
U V

−V U

)
,

where U, V are rm × rm real matrices such that U + ιV is unitary. Let u be the first column of
U and v be the first column of V. This implies

[x, y] = M̃

(
u v

−v u

)
. (4.14)

Conversely, if u+ ιv is a unit vector in Crm and x, y ∈ R2n satisfy the above relation (4.14),

then (x, y) ∈ Sm(A). Therefore (4.14) gives a one to one correspondence (x, y) 7→ u + ιv

between Sm(A) and the set of unit vectors in Crm . We consider Crm equipped with the usual
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inner product 〈z, w〉 = z∗w for all z, w ∈ Crm . We have

−1

2
〈xxT + yyT , B〉 = −1

2
〈[x, y][x, y]T , B〉

= −1

2
tr[x, y]TB[x, y]

= −1

2
tr

(
u v

−v u

)T
M̃TBM̃

(
u v

−v u

)

=
1

2
tr

(
u v

−v u

)T
B̃

(
u v

−v u

)
=

1

2
(u+ ιv)∗

˜̃
B(u+ ιv)

=
1

2
〈u+ ιv,

˜̃
B(u+ ιv)〉.

Therefore we get

−d′m̂(A;B) =
1

2
λ↓1(
˜̃
B)

=
1

2
max{〈u+ ιv,

˜̃
B(u+ ιv)〉 : ‖u+ ιv‖ = 1}

= max{−1

2
〈xxT + yyT , B〉 : (x, y) ∈ Sm(A)}.

The last equality follows from the above observation that (4.14) is a one to one correspondence
between Sm(A) and the set of unit vectors in Crm .

We give the expression for ∂�dm(A) in the following theorem and show that it is independent

of the choice of m corresponding to equal symplectic eigenvalues of A.

Theorem 4.2.2. The Michel-Penot subdifferentials of dm coincide at A for all the choices of m
corresponding to the equal symplectic eigenvalues of A, and are given by

∂�dm(A) = −∂(−d′m̂(A; ·))(0).

Proof. By the property (4.6) we have −∂�dm(A) = ∂�(−dm)(A). So, it is equivalent to
showing that

∂�(−dm)(A) = ∂(−d′m̂(A; ·))(0).

We know that −d′m̂(A; ·) is convex and takes value zero at zero. By Proposition 3.1.6 of [17]
we have

∂(−d′m̂(A; ·))(0) = conv{B ∈ S2n(R) : 〈B,H〉 ≤ −d′m̂(A;H) ∀H ∈ S2n(R)}.
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By the definition of Michel-Penot subdifferential it theorefore suffices to show that
(−dm)�(A;B) = −d′m̂(A;B) for all B in S2n(R). We know that −dm is directionally dif-
ferentiable at A. Therefore by the property (4.8) it is equivalent to showing

sup
H∈S2n(R)

{−d′m(A;B +H) + d′m(A;H)} = −d′m̂(A;B). (4.15)

Let B,H be elements of S2n(R). It is easy to see that

˜̃
B +H =

˜̃
B +

˜̃
H.

By Theorem 3.4.3 we get

−d′m(A;B +H) + d′m(A;H) =
1

2
λ↓im(

˜̃
B +H)− 1

2
λ↓im(

˜̃
H)

=
1

2
λ↓im(

˜̃
B +

˜̃
H)− 1

2
λ↓im(

˜̃
H).

It can be verified that { ˜̃H : H ∈ S2n(R)} = Hrm(C). Also, by Theorem 3.4.3 we have

−d′m̂(A;B) = 1
2λ
↓
1(
˜̃
B). By (4.15) we thus need to show that

sup
C∈Hrm (C)

{λ↓im(
˜̃
B + C)− λ↓im(C)} = λ↓1(

˜̃
B). (4.16)

The inequality
λ↓im(

˜̃
B + C)− λ↓im(C) ≤ λ↓1(

˜̃
B) (4.17)

is one of the Weyl’s inequalities. See ([9], Corollary III.2.2). To see the equality in
(4.17) is attained, choose a unitary matrix U such that UT ˜̃BU is the diagonal matrix
Diag(λ↓1(

˜̃
B), . . . , λ↓rm(

˜̃
B)). Let α > λ↓1(

˜̃
B)− λ↓rm(

˜̃
B) and C be the Hermitian matrix given by

C = UTDiag(0, . . . , 0, α, . . . , α︸ ︷︷ ︸
(im−1) times

)U.

This gives

˜̃
B + C = UTDiag(λ↓1(

˜̃
B), . . . λ↓rm−im+1(

˜̃
B), λ↓rm−im+2(

˜̃
B) + α, . . . , λ↓rm(

˜̃
B) + α)U.

We then have λ↓im(C) = 0 and λ↓im(
˜̃
B + C) = λ↓1(

˜̃
B). This proves the equality (4.16).

We now give the main result of this section. The highlight of the result is the coincidence

of the Clarke and Michel-Penot subdifferentials of symplectic eigenvalues. In particular, both
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the subdifferentials are independent of the choice of index corresponding to equal symplectic

eigenvalues.

Theorem 4.2.3. Let A be an element of P2n(R). The Clarke and Michel-Penot subdifferentials
of dm are equal at A and they are given by

∂◦dm(A) = ∂�dm(A) = conv{1

2
(xxT + yyT ) : (x, y) ∈ Sm(A)}.

In particular, the subdifferentials are independent of the choice of m corresponding to equal
symplectic eigenvalues of A.

Proof. By Proposition 4.2.1 and Theorem 4.2.2 we have

∂�dm(A) = conv{1

2
(xxT + yyT ) : (x, y) ∈ Sm(A)}.

By the relation (4.3) we have ∂�dm(A) ⊆ ∂◦dm(A). Therefore it only remains to prove
that ∂◦dm(A) ⊆ ∂�dm(A). Equivalently, using the properties (4.6), (4.7), we prove that
∂◦(−dm)(A) ⊆ ∂�(−dm)(A).

Let B in S2n(R) be fixed. By the property (4.9) we get a sequence A(p) ∈ P2n(R) for p ∈ N
such that limp→∞A(p) = A and

(−dm)◦(A;B) = − lim
p→∞

d′m(A(p);B). (4.18)

Let Ip = {i : di(A(p)) = dm(A(p))} for every p ∈ N. There are only finitely many choices for
Ip for each p. Therefore we can get a subsequence of (A(p))p∈N such that Ip is independent of
p. Let us denote the subsequence by the same sequence (A(p))p∈N for convenience and let I
denote the common index set Ip. Let M(p) be an element of Sp(2n,A(p)) for all p ∈ N. If (u, v)

is a normalized symplectic eigenvector pair of A(p) corresponding to a symplectic eigenvalue d,
we get

‖u‖2 + ‖v‖2 ≤ ‖A−1(p)‖(‖(A
1/2
(p) u‖

2 + ‖A1/2
(p) v‖

2)

= ‖A−1(p)‖ · ‖A
1/2
(p) u− ιA

1/2
(p) v‖

2

= 2d〈u, Jv〉‖A−1(p)‖

= 2d‖A−1(p)‖

≤ 2‖A(p)‖ · ‖A−1(p)‖

= 2κ(A(p)),

where ‖A(p)‖ and ‖A−1(p)‖ represent the operator norms of A(p) and A−1(p), and κ(A(p)) is the
condition number of A(p). The second equality follows from Proposition 1.2.7, and the second
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inequality follows from the fact that d ≤ ‖A(p)‖. Therefore we have

‖M(p)‖2F ≤ 2nκ(A(p)), (4.19)

where ‖M(p)‖F represents the Frobenius norm of M(p) for all p ∈ N. We know that κ is
a continuous function and the sequence (A(p))p∈N is convergent. Therefore the sequence
(κ(A(p)))p∈N is also convergent, and hence bounded. By (4.19) the sequence (M(p))p∈N of
2n × 2n real matrices is bounded as well. By taking a subsequence we can assume that
(M(p))p∈N converges to some 2n × 2n real matrix M. The set Sp(2n) is closed, therefore
M ∈ Sp(2n). By continuity of the symplectic eigenvalue maps we also have M ∈ Sp(2n,A).

Let m1 = min I and m2 = max I and M(p) = M (p) � M̃(p) � M̂(p) be the symplectic
column partition of M(p) of order (m1 − 1,m2 −m1 + 1, n−m2). Let

B̃(p) = −M̃T
(p)BM̃(p),

M̃(0) = lim
p→∞

M̃(p)

and
B̃(0) = lim

p→∞
B̃(p) = −M̃T

(0)BM̃(0). (4.20)

Consider the block matrix form of B̃(p) given by

B̃(p) =

(
(B̃(p))11 (B̃(p))12

(B̃(p))
T
12 (B̃(p))22

)
,

where each block has size m2 −m1 + 1. Let

˜̃
B(p) = (B̃(p))11 + (B̃(p))22 + ι((B̃(p))12 − (B̃(p))

T
12) (4.21)

be the Hermitian matrix associated with B̃(p) and define

˜̃
B(0) = lim

p→∞
˜̃
B(p).

Recall that M = M �M̃ �M̂ is the symplectic column partition of M of order (m− im, rm, n−
m− jm). The matrix M̃(0) is the submatrix of M consisting of the ith and (n+ i)th columns of
M for all i ∈ I. By continuity of the symplectic eigenvalues we have I ⊆ {m− im + 1,m−
im+2, . . . ,m+jm}. Therefore M̃(0) is also a submatrix of M̃. It thus follows by relation (4.20)

that each block of B̃(0) is obtained by removing ith row and ith column of B̃ for all i not in I.

Therefore ˜̃B(0) is a compression of ˜̃B. By Cauchy interlacing principle ([9], Corollary III.1.5)
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we have
λ↓1(
˜̃
B(p)) ≤ λ

↓
1(
˜̃
B).

Using equation (4.18) we get

(−dm)◦(A;B) = − lim
p→∞

d′m(A(p);B)

≤ 1

2
lim
p→∞

λ↓1(
˜̃
B(p))

=
1

2
λ↓1( lim

p→∞
˜̃
B(p))

=
1

2
λ↓1(
˜̃
B(0))

≤ 1

2
λ↓1(
˜̃
B)

= −d′m̂(A;B).

Thus we have proved that (−dm)◦(A;B) ≤ −d′m̂(A;B) for all B in S2n(R). By definition
this implies ∂◦(−dm)(A) ⊆ ∂(−d′m̂(A; ·))(0). By Theorem 4.2.2 we have ∂�(−dm)(A) =

∂(−d′m̂(A; ·))(0) which implies that ∂◦(−dm)(A) ⊆ ∂�(−dm)(A).

Corollary 4.2.4. Let A be an element of P2n(R). We have

d�m(A;H) = d◦m(A;H) = −d′m̂(A;−H).

for all H ∈ S2n(R).

Proof. By Theorem 4.2.3 and the formulae (4.4), (4.5) we get d�m(A; ·) = d◦m(A; ·). Also, for
any H ∈ S2n(R)

d�m(A;H) = max{1

2
〈xxT + yyT , H〉 : (x, y) ∈ Sm(A)}.

By (4.13) we have d�m(A;H) = −d′m̂(A;−H).

As an application of Clarke and Michel-Penot subdifferentials of dm we give a new proof of

the monotonicity principle of symplectic eigenvalues. We recall a result on Clarke subdifferentials

of locally Lipschitz functions known as Lebourg mean value theorem. Let U be an open subset

of a real Banach space X and φ : U → R be a locally Lipschitz function. Let x, y ∈ X such that

tx + (1 − t)y ∈ U for all t ∈ [0, 1]. Then there exists s ∈ (0, 1) and z ∈ ∂◦φ(sx + (1 − s)y)

such that φ(x)− φ(y) = 〈z, x− y〉. See ([47], Theorem 1.7).
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Corollary 4.2.5. For every A,B in P2n(R), we have dj(A) ≤ dj(B) for all j = 1, 2, . . . , n,

whenever A ≤ B.

Proof. By Lebourg mean value theorem, let P = sA + (1 − s)B for some s ∈ (0, 1) and
C ∈ ∂◦dm(P ) such that

dm(A)− dm(B) = 〈C,A−B〉.

By Theorem 4.2.3 we have

∂◦dm(P ) = conv{1

2
(xxT + yyT ) : (x, y) ∈ Sm(P )}.

Therefore we have

dm(A)− dm(B) ∈ conv{1

2
〈xxT + yyT , A−B〉 : (x, y) ∈ Sm(P )}. (4.22)

Thus, A ≤ B implies

conv{1

2
〈xxT + yyT , A−B〉 : (x, y) ∈ Sm(P )} ⊆ (−∞, 0].

By (4.22) we conclude dm(A) ≤ dm(B).
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