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Abstract

An image of a rack in a supermarket displays a number of retail products. The identification and localiza-
tion of these individual products from the images of racks is a challenge for any machine vision system.
In this thesis, we aim to address this problem and suggest a set of computer vision based solutions for
automatic identification of these retail products. We design a novel classifier that differentiates the sim-
ilarly looking yet non-identical (fine-grained) products for improving the performance of our machine
vision system. The proposed fine-grained classifier simultaneously captures both object-level and part-
level (image of an object consists of multiple parts or image patches) cues of the products for accurately
distinguishing the fine-grained products. A graph-based non-maximal suppression strategy is proposed
that selects a winner region proposal among a group of proposals representing a product. This solves an
important bottleneck of conventional greedy non-maximal suppression algorithm for disambiguation of
overlapping region proposals generated in an intermediate step of our proposed system. We initiate the
solution of the problem of automatic product identification by developing an end-to-end annotation-free
machine vision system for recognition and localization of products on the rack. The proposed system in-
troduces a novel exemplar-driven region proposal strategy that overcomes the shortcomings of traditional
exemplar-independent region proposal schemes like selective window search. Finally, we find the empty
spaces (or gaps between products) in each shelf of any rack by creating a graph of superpixels for the
rack. We extract the visual features of superpixels from our graph convolutional and Siamese networks.
Subsequently, we send the graph along with the features of superpixels to a structural support vector
machine for discovering the empty spaces of the shelves. The efficacy of the proposed approaches are
established through various experiments on our In-house dataset and three publicly available benchmark
datasets: Grozi-120 [Merler et al., IEEE CVPR 2007, 1-8], Grocery Products [George et al., Springer
ECCV 2014, 440-455], and WebMarket [Zhang et al., Springer ACCV 2007, 800-810].
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C H A P T E R 1

Introduction

For a long time, computer vision practitioners have been attempting to build machine vision system to

automatically detect merchandise stacked in the racks of supermarket. By detection (or identification), we

refer to recognition and precise localization of products visible in the images of racks in a supermarket.

It is assumed that an ideal marketing image of the individual product is available to the vision system.

The objective of such a vision system is (1) to generate an inventory of products available in the store

at any point of time from the images of racks stacked with products (referred as out-of-stock detection

problem), (2) to validate the plan of product display (often referred as planogram) with the actual display

of merchandise (referred as planogram compliance problem), and finally (3) to provide a value-added

experience to users (referred as shopping assistance problem).

The block diagram of the machine vision system under discussion is shown in Figure 1.1. In this

chapter, we interchangeably use rack image as shelf image and product image as product template. A set

of typical product images from the publicly available GroZi-120 dataset [Merler et al., 2007] is shown in

Figure 1.1: A typical computer vision system for detection of products in supermarkets

1
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(a) (b)

Figure 1.2: GroZi-120 dataset [Merler et al., 2007]: (a) sample product images typically used for market-
ing, (b) sample rack images where products are to be recognized and localized. (x1, y1) and (x2, y2) are
the spatial co-ordinates of upper-left and bottom-right corners of a detected bounding box respectively.

Figure 1.2(a). Example rack images, where the product images of Figure 1.2(a) are to be detected, are

shown in Figure 1.2(b).

Few attempts have been made to solve the above-mentioned problem using RFID, sensors, or bar-

codes [López-de Ipiña et al., 2011, Kulyukin and Kutiyanawala, 2010, Nicholson et al., 2009]. There

are ubiquitous sensor based system (like AmazonGo [Bishop, 2016]) to monitor recognition and selec-

tion of products by a consumer. Most sensor based systems require fabrication at the manufacturer’s

end resulting in cost escalation of the product. Moreover, to assess the out-of-stock problem, a retailer

needs to wait till the product leaves the store. Consequently, planogram compliance problem cannot be

addressed with such sensors. Individual product based sensor has the problem of assessing the status of

multiple products at one go. Devices for ubiquitous system have scalability issue and require significant

investment. In contrast, computer vision based methods use hand phone camera or rack mounted camera

to collect data. Overall, computer vision based approaches provide an inexpensive feasible alternative

compared to sensor based approaches for automatic identification of retail products in the supermarkets.

Given this, we explain why automatic identification of products is important.

1.1 Why Automatic Identification of Retail Products?

Commercial Benefits An estimate by Metzger et al. shows that out-of-stocks in supermarkets gener-

ally remain within a range of 5 to 10% [Metzger, 2008]. In [Gruen et al., 2002], Gruen et al. conduct a

research on the impacts of out-of-stocks in retail stores worldwide. They find the following statistics due

to out-of-stock situation: 31% shoppers move to another stores, 22% shoppers purchase another brand of

the products, and 11% customers do not buy at all. The strategy for arrangement (planogram) of products

in one or consecutive racks increases sales. Planogram establishes a close relation between shoppers,

retailers, distributors, and manufacturers. It is observed that 100% optimized planogram compliance can

increase sales up to 7 to 8% [Shapiro, 2009]. Hence, out-of-stock detection and checking of planogram

compliance contribute to profit in retail businesses [Medina et al., 2015].

2



1.2 Challenges in Identifying Retail Products

Table 1.1: Challenges in automatic recognition of retail products

Category Sub-category

Retail Store Environment

Complexity of scene
Data distribution
Variability of products
Fine-grained classification

Imaging in Retail Store

Blurring
Uneven lighting conditions
Unusual viewing angle
Specularity

Enhanced Consumer Experience Real time information of availability of a particular product at a

given location of the store reduces shopping time of a buyer. For visually challenged customers, in-

formation of availability of a particular product is a valuable consumer experience. There are close to

30 million people in the world who are suffering from blindness [WHO, 2014] and product availability

information is always a value-added service for them. Next we discuss the challenges in designing a

machine vision system for automatic identification of retail products.

1.2 Challenges in Identifying Retail Products

Table 1.1 summarizes the possible challenges of the product detection system. The racks are typically

cluttered and often not organized in a regular fashion. Ideal marketing images of different products avail-

able to the vision system are often taken using different cameras resulting in different distributions of

image intensities. Also, due to different imaging parameters, length of the product package (in some unit

of length, say, cm) is mapped to different pixel resolutions for product and rack images. Examples of

differences between product templates and rack images are evident in Figure 1.2(a) and 1.2(b). Product

packages come in different shapes and sizes. There are minor promotional variations in product packag-

ing and a product detection system must differentiate such minor variations. This identification of minor

(a) (b)

Figure 1.3: Fine-grained variations (a) color and text, and (b) size
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Figure 1.4: Rack image with vertically stacked products

signature variation in shape or color for a wide variety of products demand fine-grained classification.

Figure 1.3 demonstrates a few examples of visually similar products having minute changes in color, text

or size.

The rack images are captured using handheld devices. This often results in image blur due to camera

shake and jitter (see the rack image in the middle in Figure 1.2(b)). Identification of products becomes

difficult due to uneven illumination at the stores (see Figure 1.4). The challenge often extends to a sce-

nario when the images of racks sometimes get distorted due to the glossy product packages and stacking

(see Figure 1.4).

These reasons altogether pose significant challenge on top of typical object detection system studied

in computer vision. The retail product detection problem bundles up various modalities of object detec-

tion problems like multiple object detection [Vo et al., 2010, Villamizar et al., 2016, Oh et al., 2016],

detection of the multiple instances of the same object [Haladová and Šikudová, 2014, Aragon-Camarasa

and Siebert, 2010], multiple object localization [He and Chen, 2008, Foresti and Regazzoni, 1994], multi-

view object detection [Torralba et al., 2007], and fine-grained classification [Ge et al., 2016, Yao et al.,

2017, Sun et al., 2017, Huang et al., 2017]. Next we analyze the features used in the attempts to recognize

retail products.

1.3 Features for Detection of Retail Products

The feature descriptors for the problem under consideration are broadly classified as key-point based,

gradient based, pattern based, color based and deep learning based features. The related works under

these classifications are tabulated in Table 1.2. Next, we present a brief discussion on each of the groups.

1.3.1 Key-point based Features

Key-point based features are the most used for recognition of retail products. Retail merchandises are

packaged in colorful and catchy outfits. As a result, the image of product package generates a number

4



1.3 Features for Detection of Retail Products

Table 1.2: Feature descriptors and corresponding approaches where these features are used.
Categories Feature Descriptors Approaches

Key-point
based Features

SIFT [Lowe, 1999, 2004]
[Merler et al., 2007, Auclair et al., 2007, Zhang et al., 2007, 2009],
[George and Floerkemeier, 2014, Varol et al., 2014, Bao et al., 2014],
[Baz et al., 2016, Zhang et al., 2016b,a, Tonioni and Di Stefano, 2017]

Dense SIFT [Bosch et al., 2007] [Cleveland et al., 2016]

SURF [Bay et al., 2006, 2008]
[Bigham et al., 2010, Winlock et al., 2010, Kejriwal et al., 2015],
[Saran et al., 2015, Alhalabi and Attas, 2016, Brenner et al., 2016],
[Yörük et al., 2016, Zientara et al., 2017b,a, Franco et al., 2017]

AB SURF [Thakoor et al., 2013] [Thakoor et al., 2013]
Neo SURF [Ray et al., 2018] [Ray et al., 2018]
BRIGHT [Iwamoto et al., 2013] [Higa et al., 2013]

Gradient
based Features

Morphological Gradient [Dougherty, 1992] [Frontoni et al., 2014]
HOG [Dalal and Triggs, 2005] [Marder et al., 2015, Varol and Kuzu, 2015, Pietrini et al., 2019]
Sobel Operator [Sobel, 2014] [Saran et al., 2015]
Canny Edge Detector [Canny, 1987] [Varol and Kuzu, 2015]

Pattern
based Features

Haar-like Features [Papageorgiou et al., 1998] [Merler et al., 2007]
Recurring Patterns [Liu and Liu, 2013] [Liu and Tian, 2015, Liu et al., 2016a, Goldman and Goldberger, 2017]

Color
based Features

Color Histogram [Novak and Shafer, 1992]
[Merler et al., 2007, Bigham et al., 2010, Winlock et al., 2010],
[Varol et al., 2014, Saran et al., 2015, Pietrini et al., 2019]

Saliency [Itti et al., 1998] [Thakoor et al., 2013, Marder et al., 2015, Zientara et al., 2017a]

Color Constancy Model [Jameson and Hurvich, 1989]
[Gevers and Smeulders, 1999a,b, 2000, Gevers, 2001],
[Diplaros et al., 2003, Gevers and Stokman, 2004, Diplaros et al., 2006]

Deep Learning
based Features

CaffeNet [Jia et al., 2014] [Dingli and Mercieca, 2016, Jund et al., 2016]
AlexNet [Krizhevsky et al., 2012] [Franco et al., 2017, Goldman and Goldberger, 2017]
Inception-V3 [Szegedy et al., 2016] [Chong et al.]
VGG-f [Chatfield et al., 2014] [Karlinsky et al., 2017]
CNN [LeCun et al., 2012, Bengio et al., 2013] [Zientara et al., 2017a, Sun et al., 2020, Yılmazer and Birant, 2021]

of key-points suitable for image matching. The key-points in most cases are detected using SIFT [Lowe,

1999, 2004] and SURF [Bay et al., 2006, 2008]. The methods in this category that deserve special

attention are [Thakoor et al., 2013, Ray et al., 2018]. These approaches propose new variants of SURF

namely AB-SURF [Thakoor et al., 2013] and NSURF [Ray et al., 2018] in detecting products. Overall

Table 1.2 shows the importance of key-point based features. Local image characteristics in and around

key-points are captured using a histogram [Lowe, 1999, 2004, Bay et al., 2006, 2008]. Stability of these

histograms as features is one of the reasons for popularity of key-point based features for detecting retail

products.

(a) (b)

Figure 1.5: Example images indicating recurring patterns by circles: the images are taken from [Liu and
Tian, 2015].
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1.3.2 Gradient based Features

Gradient based features (e.g., histogram of oriented gradients (HOG) or Sobel operator) are used for

template based matching of product images extracted from images of racks. The geometric shapes like

corners or edges embedded in product and rack images are also utilized for template matching. Similarly,

as in case of key-point based features, gradient based local image characteristics are also captured using

a histogram for detecting retail products [Marder et al., 2015, Varol and Kuzu, 2015].

1.3.3 Pattern based Features

In identifying retail products, the most common pattern based features are Haar or Haar-like features

[Papageorgiou et al., 1998] and recurring patterns [Liu and Liu, 2013]. In this category, the recurring

patterns play a vital role in detecting products as in [Liu and Tian, 2015, Liu et al., 2016a, Goldman and

Goldberger, 2017]. In many real-life situation, similar yet non-identical objects often appear in a group

like cars on the street, faces in a crowd and in context of this paper, products on a supermarket rack.

The authors of [Liu and Liu, 2013] state that much of our understanding of the world is based on the

perception and recognition of shared or repeated structures. In order to capture such repeated structures

or recurrence nature, each product in a supermarket rack, act as a unit in a recurring pattern. Figure 1.5

demonstrates two example images of rack where the circles indicate recurring patterns. Recently, the

authors of [Goldman and Goldberger, 2017] utilize the concept of recurring patterns in their proposed

solution.

1.3.4 Color based Features

In detecting products, the color histogram [Novak and Shafer, 1992] and classical saliency features [Treis-

man and Gelade, 1980, Itti et al., 1998, Bruce and Tsotsos, 2007] of products can be considered as color

based features. However, saliency and color histogram are sensitive to illumination changes common to

a retail store. In order to tackle such illumination effects in color images, the authors of [Gevers and

Smeulders, 1999a,b, 2000, Gevers, 2001, Diplaros et al., 2003, Gevers and Stokman, 2004, Diplaros

et al., 2006] present various color based features using color constancy models for recognition of objects.

List of color based features for product identification are given in Table 1.2.

1.3.5 Deep Learning based Features

In detecting retail products, all previously discussed four categories of features are hand crafted. In

contrast, deep learning based features are derived from CNN pipeline [LeCun et al., 2012, Bengio et al.,

2013]. For retail product detection, either the outputs of an intermediate layer [Franco et al., 2017, Dingli
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and Mercieca, 2016, Goldman and Goldberger, 2017] of a network are used as features or the network as

a whole is utilized for both feature extraction and classification [Zientara et al., 2017a, Karlinsky et al.,

2017, Dingli and Mercieca, 2016, Jund et al., 2016, Chong et al.]. In Table 1.2, we have compiled deep

learning related references. Next we present the taxonomy of the state-of-the-art methods of recognition

system of retail products.

1.4 A Taxonomy for Detecting Retail Products

The first serious attempt [Gevers and Smeulders, 1999a] of recognition of retail products in isolation

(i. e., identification of individual product image cropped from the rack image) was in 1999. Naturally,

localization issue is not addressed in this work. It took almost another eight years to take a more involved

approach for recognition and localization of multiple retail products. In 2007, Merler et al. [Merler et al.,

2007] introduce the retail product detection problem along with a dataset containing rack and product

images. Since then many research papers have been published directly related to retail product detection

system. In Table 1.3, we propose a taxonomy for automatic detection of retail products.

From the pattern of development over the last decade, we find two major sequential steps as noted in

Table 1.3. In the first layer of taxonomy, a probable region (containing a product) on the rack is identified

based on an objectness (or productness) measure. We group the methods in the first layer in five different

approaches: block, geometric transformation, saliency, detector, and user-in-the-loop based methods.

Moreover, block based methods are classified into sliding window and grid based methods.

In the second layer of taxonomy, each method is partitioned into two groups namely unsupervised

and supervised approaches of object detection. While using the terms supervised and unsupervised ap-

proaches, we have relied on the classical definitions used in the machine learning literature [Szeliski,

2010]. The unsupervised methods mainly include template based matching. The supervised methods

refer to building a model using a train-set. The trained model is used to test a new set of data unseen to

the model.

The Table 1.3 also presents different areas of applications and corresponding categories of the prob-

lem. The areas of applications are (AI) Shopping assistive system (AII) Out-of-stock detection (AIII)

Planogram compliance. The categories of the detection problem addressed in the listed papers in Table

1.3 are:

(DI) Detection of single product: This relates to accurate identification and localization of only one

product at a time in a rack image.

(DII) Detection of multiple products: This relates to accurate identification and localization of all the

products in a rack image in one go.

(DIII) Recognition of products: This relates to recognition or classification of isolated products where
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Table 1.3: Taxonomy of computer vision based approaches for product detection in retail stores (∗: these
methods crop product images from rack image either manually or using planogram information): for
details, refer to text in Section 1.4.

Automatic
Product
Detection
in Retail
Stores

Unsupervised
Methods

Supervised
Methods

Area of
Application

Category
of Problem

Block based
Methods

Sliding Window
based Methods

[Merler et al., 2007] AI DII
[Marder et al., 2015] AII DII
[Saran et al., 2015] AIII DII
[Ray et al., 2018] AIII DII

[Pietrini et al., 2019] AII, AIII DII

Grid based
Methods

[Zhang et al., 2007] AI DIV
[Zhang et al., 2009] - DIV
[Bigham et al., 2010] AI DI
[Higa et al., 2013] AII DII

[George and Floerkemeier, 2014] AI DII
[George et al., 2015] AI DII

Geometric Transformation
based Methods

[Merler et al., 2007] AI DII
[Auclair et al., 2007] - DII
[Bao et al., 2014] AIII DII
[Kejriwal et al., 2015] AII DII
[Alhalabi and Attas, 2016] AI DI
[Brenner et al., 2016] AI DI
[Yörük et al., 2016] - DII
[Zhang et al., 2016b] AIII DII
[Zhang et al., 2016a] - DII
[Zientara et al., 2017b] AI DI
[Tonioni and Di Stefano, 2017] AIII DII

[Cleveland et al., 2016] AIII DII

Saliency
based Methods

[Winlock et al., 2010] AI DII
[Thakoor et al., 2013] AIII DI
[Frontoni et al., 2014] AIII DI
[Franco et al., 2017] AI DII

[Zientara et al., 2017a] AI, AIII DII
[Franco et al., 2017] AI DII
[Goldman and Goldberger, 2017] - DII
[Sun et al., 2020] - DII
[Yılmazer and Birant, 2021] AII DII

Detector based
Methods

[Merler et al., 2007] AI DII
[Varol et al., 2014] AIII DII
[Varol and Kuzu, 2015] AIII DII
[Karlinsky et al., 2017] - DII

User-in-the-loop
Methods

[Liu and Tian, 2015]∗ AIII DIII
[Liu et al., 2016a]∗ AIII DIII
[Gevers and Smeulders, 1999a] - DIII
[Gevers and Smeulders, 1999b] - DIII
[Gevers and Smeulders, 2000] - DIII
[Gevers, 2001] - DIII
[Diplaros et al., 2003] - DIII
[Gevers and Stokman, 2004] - DIII
[Diplaros et al., 2006] - DIII

[Advani et al., 2015]∗ - DIII
[Baz et al., 2016]∗ - DIII
[Dingli and Mercieca, 2016]∗ AI DIII
[Jund et al., 2016]∗ - DIII
[Chong et al.] AIII DIII
[Santra et al., 2020a]∗ - DIII
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localization is not important.

(DIV) Retrieval of rack images: Given a pool of rack images, the goal is to retrieve the rack images

containing the query product.

Note that out of all state-of-the-art methods for detecting retail products (provided in Table 1.3), only

five methods [Zientara et al., 2017b, Tonioni and Di Stefano, 2017, Liu and Tian, 2015, Liu et al., 2016a,

Baz et al., 2016] assume the presence of planogram in order to locate the products in a rack. In these

methods, planogram informs the algorithm about the particular product expected in a given location of

the rack. Naturally, test for absence or presence of the expected product at a given location reduces the

challenge of discovering a product in absence of planogram information. Next we briefly discuss and

assess each group of the taxonomy. We start with the first approach, block based methods.

1.4.1 Block based Methods

In block based methods, several overlapping or non-overlapping blocks are selected from the rack image

as potential regions containing products. Consequently, local features (like SIFT [Lowe, 1999, 2004], and

SURF [Bay et al., 2006, 2008]) are computed from each such block and also from each of the product

templates. For each block of rack image, the features are matched with those of product images. The

product image with highest matching score is selected as the product for the block. The final detection

result is generated after applications of various post processing techniques [Franco et al., 2017]. As

mentioned earlier, the block based methods are classified into two categories: (a) Sliding window, and

(b) Grid based methods. A graphical illustration of sliding window based methods is presented in Figure

1.6 while the overview of grid based methods is graphically demonstrated in Figure 1.7.

PROS AND CONS: The primary advantages of block based methods are that the schemes are simple

and easy to implement. The critical disadvantage is: how to choose the number and size of overlapping

or non-overlapping blocks? In most cases, authors have chosen these parameters either experimentally

or from prior knowledge. Thus, accurate localization of products cannot be guaranteed in many cases.

Moreover, the overlapping block based methods are computationally expensive.

Figure 1.6: Block diagram of a sliding window based method
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The block based methods consider enormous number of sliding windows of different scales and sizes

to locate the products in a rack. In other words, these methods exhaustively search for the products in the

rack. As a result, these methods are robust against rotation and scaling of products in the rack.

On a different point, the slow execution of these methods is a major drawback in designing a real

time system like shopping assistive application. To avoid exhaustive search for products in a rack, the

geometric transformation based matching or graph theoretic approach looks like a promising direction of

research. Next section presents the geometric transformation based methods.

1.4.2 Geometric Transformation based Methods

In retail store setting, images of racks captured by a handheld device undergo geometric transformation

due to oblique view of camera with respect to the rack. As a result approaches in this group attempt to

calculate features which are invariant to affine or projective object to image transformation. Most of the

approaches in this group evaluate key-point based local features (using SIFT, SURF etc.) for the rack and

product images. The key-point correspondences between rack image and product images are obtained

using various techniques like clustering of key-points or Hough voting. Finally, using these key-point

correspondences, products are recognized and localized in the rack image. In Figure 1.8, we demonstrate

a typical geometric transformation based method.

PROS AND CONS: Geometric transformation based methods typically assume that the key-points are

identified correctly and key-point correspondences are established accurately. Naturally, the performance

of the schemes discussed above are dependent on assumptions related to key-points.

If the products displayed on a rack are planar, homography estimation is not strictly necessary. Also,

SIFT and SURF features are not sensitive to affine transformations between product and rack images.

Unfortunately in retail store setting it is difficult to ensure the correct estimation of key-points. key-

points in a rack image are often missed due to poor illumination. On the other hand, more than desired

number of key-points are detected in a noisy rack image with cluttered background. This yields many

incorrect geometric transformations between products and rack images.

Figure 1.7: Block diagram of a grid based method
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Figure 1.8: Block diagram of a geometric transformation based method: colored dots denote the key-
points, P1 represents a product and A1, A2 are the homographies between the product P1 & rack.

However, for correct estimation of geometric transformations, scaling and rotation issues between

product and rack images are automatically addressed. The entire approach is fast and suitable for real time

implementation. Overall, geometric transformation based methods are promising and can be integrated

with other approaches for a reliable result. Next we present saliency based methods.

1.4.3 Saliency based Methods

Saliency based methods localize products in a rack image by utilizing saliency maps [Treisman and

Gelade, 1980, Zientara et al., 2017a], gradient image [Frontoni et al., 2014], or by finding out potential

regions [Franco et al., 2017] of rack image. Once the salient region of a rack image is determined, the

local features of those interest regions are calculated and matched with that of product images. The block

diagram of a typical saliency based method is presented in Figure 1.9.

PROS AND CONS: Saliency based methods are two-layered. In the first layer, the salient regions are

identified in a rack image. The second layer matches the salient regions with products. In most cases, the

first layer of these methods do not miss to identify regions containing products. But at the same time, the

first layer tends to over-estimate the salient regions. As a result the saliency based localization methods

usually fail when rack image contains partially-occluded products.

The second layer minimizes false detection due to cluttered background of the rack image. Like

block and geometric transformation based methods, the salient region based methods also take care of

rotations and scaling of products in rack. The implementation of second layer is relatively fast as the

recognition is executed only for the salient regions. Shopping assistive system implemented with any of

these methods can always be operated in real time.

Newer salinecy based deep learning tools like R-CNN [Girshick et al., 2014], Fast R-CNN [Girshick,

2015], Faster R-CNN [Ren et al., 2015], Mask R-CNN [He et al., 2017], and SSD [Liu et al., 2016c] are

yet to be explored for the problem under consideration. These methods require training data comprises
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Figure 1.9: Block diagram of a saliency based method: P1, P2, · · · , Pn are the products.

of annotated rack images where each product is labeled with bounding boxes. However, in a retail store

environment, capturing images of racks and annotating the same for building a significant training dataset,

is a painstaking activity. In contrast, the template of the new packaging of a product is made publicly

available before its actual arrival at the store. Therefore, template driven approaches are preferred for

detecting products in supermarket.

Overall, saliency based methods require attention for detecting partially-occluded products, which is

a normal situation in a retail store. Next section presents detector based methods.

1.4.4 Detector based Methods

For various real world objects like face [Viola and Jones, 2001] or pedestrian [Papageorgiou and Poggio,

1999], there exists reliable dedicated detectors. Detector based methods (e.g. [Merler et al., 2007]) sep-

arately train a machine learning tool (like AdaBoost [Freund et al., 1999]) with certain domain-specific

visual features (e.g. Haar-like features [Papageorgiou et al., 1998]) of product images to find out bound-

ing boxes of products in the rack image. Once the bounding boxes are detected, the local visual features

are extracted from the regions of rack image for matching with the product images. Figure 1.10 demon-

strates a graphical illustration of detector based methods.

PROS AND CONS: Like saliency based methods, these are also two-layered approaches. First layer

detects the bounding boxes using a object detector while the second layer takes care of the classification

Figure 1.10: Block diagram of a detector based method: P1, P2, · · · , Pn are the products.
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of products. The object detector trained with partially-occluded objects can determine the bounding

boxes for partially-occluded products in a rack. The object detector of the first layer could also identify

the product class for a bounding box. Utilizing this class information, the second layer may even perform

finer classification of products (e.g. challenges shown in Figure 1.3). However, this is not yet explored for

methods in this category. The object detector trained with rotated and scaled objects could be a promising

application. These approaches are suitable for real time applications.

In retail store setting, the intensity distributions of training and test images are not necessarily iden-

tical (as discussed in Section 1.2). As a result, the detector based approaches, especially those using

learning schemes like AdaBoost, may fail to identify the bounding boxes. However, the statistical learn-

ing based object detector as in [Karlinsky et al., 2017] does not suffer seriously from such problems.

Next we present user-in-the-loop based methods.

1.4.5 User-in-the-loop Methods

User-in-the-loop methods do not automatically localize products on the rack. In the rack image, prod-

ucts are cropped out either manually or by utilizing product’s information provided in a planogram.

Subsequently, local features of cropped products are matched with that of product images. Thus, user-in-

the-loop methods do not address primary challenges of localization of products on the rack.

PROS AND CONS: These methods do not localize products in a rack image. Only classification or

recognition performances (not detection) are judged using these user-in-the-loop approaches. As a result,

these methods always show better detection performances than other related methods. In a realistic store

level scenario with difficult challenges like identification of multiple shelves in a rack or identification

of rack start and rack end points in a rack image, user-in-the-loop looks like a promising approach. This

approach has the potential to detect a novel product (not already available with product dataset) or to

identify a gap (missing product) in the rack space. Both these applications of novel product identification

(a) (b)

Figure 1.11: (a) Graphical illustration of scale between the template of a product and the product present
in a rack, and (b) empty spaces marked with the green polygon in a shelf image where red and yellow
dotted circles show different textures.
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and gap identification have major commercial impacts for retailers.

Next we discuss the objective of the thesis which addresses a few unsolved issues that the above

mentioned state-of-the-art methods (see Table 1.3) have somehow missed or failed to address in context

of identification of retail products.

1.5 Objective of the Thesis

The objective of this thesis is to design an end-to-end efficient solution that should achieve better per-

formance in identifying retail products in the supermarkets. The thesis goes into details of important

building blocks of this end-to-end solution and offer both theoretical and practical solutions.

The performance limit of object recognition systems using computer vision is being pushed con-

stantly for over last 50 years now [Andreopoulos and Tsotsos, 2013]. In contrast, the community is not

that active in this particular problem space that we have been discussing in this thesis. In this context,

there exists many challenges [Santra and Mukherjee, 2019], some of which we address in this thesis.

First of all, we intend to generate some exemplar-driven region proposals estimating the scale between

product templates and rack in order to detect products on the rack. Note that the region proposals are

generated from the examples of product templates. Hence, this process is referred to as exemplar-driven.

We then aim to classify the fine-grained products with uneven illuminations. Next we plan to accurately

detect the vertically stacked products on the rack introducing a graph theoretic approach. Finally, we try

to identify the empty spaces in each shelf of any rack. In a nutshell, the building blocks of this thesis are

as follows:

• Estimate the scale between product templates and rack (see Figure 1.11(a))

• Generate exemplar-driven region proposals

• Classify fine-grained products (refer Figure 1.3)

• Classify the products with uneven illuminations (see Figure 1.4)

• Identify vertically stacked products (look at Figure 1.4)

• Identify empty spaces on the shelves (see Figure 1.11(b))

In order to fulfil the above objectives, the proposed solutions should have the following key charac-

teristics [Santra and Mukherjee, 2019]:

• Real-time From the consumer perspective, the system must operate in real-time such that avail-

ability of products can be checked immediately. From the retailer’s stand point, the system should

operate close to real-time given that the store must respond to consumer need for replenishing the
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stock. From the perspective of system integrator, there is always a trade off between processing the

image at the hand held device (where the rack image is captured) or at the background or cloud.

• Accuracy The system should consistently operate at high level of accuracy for a wide range of

products in order to establish its acceptability within the consumers and retailers. There should be

minimum or no user interaction.

• Robustness The key challenges come from mismatch in scale between a product template and

the rack image, uneven illumination, variation in camera angle, and unstable image capturing due

to hand held devices. From the machine learning stand point (especially considering deep learning

architecture), the major bottleneck is the availability of single instance of the product image. Nat-

urally, synthetic generation of training images using data augmentation technique requires special

attention for machine learning based technique to improve its performance.

Organization of the thesis and chapter-wise contributions are described next.

1.6 Organization of the Thesis and Chapter-wise Contributions

The overall plan of the entire thesis is shown in Figure 1.12, where the contributory chapters are high-

lighted with blue color. Following this introductory Chapter 1, we present an end-to-end annotation-free

machine vision system by introducing our novel exemplar-driven region proposal scheme in Chapter 2.

In Chapter 3, we propose a fine-grained classifier for improving the product detection performance of

our system (presented in Chapter 2). In Chapter 4, we propose an efficient graph-based non-maximal

suppression of region proposals for accurately detecting stacked products using our system (proposed

in Chapter 2). In Chapter 5, we provide a unique solution for identification of the empty spaces on

the shelves of a rack in supermarket. Finally, Chapter 6 presents the concluding remarks along with

On Automatic
Identification of Retail
Products in Images

 of Racks in
Supermarkets

Chapter 3
Fine-grained

Classification of
Products

Chapter 4
Graph-based Non-

maximal Suppression
of Region Proposals

Chapter 2
An End-to-End
Annotation-free

Machine Vision System

Chapter 5
Identification of Empty

Spaces on Shelves

Chapter 1
Introduction

Chapter 6
Conclusions

Figure 1.12: Chapter-wise organization of the thesis
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the possible future scopes of research for the problem of retail product detection. Next we discuss the

chapter-wise summary and contributions.

1.6.1 Contributions of Chapter 2

In this chapter, we build an end-to-end machine vision system [Santra et al., 2021b] for detecting products

in the supermarkets given a single instance (or template image) per product. Recent deep learning based

solutions [Girshick et al., 2014, Girshick, 2015, Redmon et al., 2016] can efficiently detect the products

utilizing annotated images of racks (marking each product by rectangular bounding boxes) during training

of these methods. But (manually) annotating the images of racks is an infeasible step with the fast

changing line of products. Thus, as an alternative, we propose an efficient annotation-free system for

identification of products by introducing an exemplar-driven region proposal approach (i.e., the process

of generating region proposals in a shelf image with the help of an example of template of each product).

We find that the exemplar-independent region proposal schemes (where the region proposals are extracted

from the entire rack image without the help of product templates) like selective window search in R-CNN

[Uijlings et al., 2013, Girshick et al., 2014] often generates multiple region proposals on the background

region of the rack image. And this leads to false detections in the rack images. On the contrary, the

proposed exemplar-driven region proposal approach generates region proposals around the products and

hence, our method overcomes the false detection issue of exemplar-independent region proposal schemes.

The proposed two-stage exemplar-driven region proposal works with the example or template of the

product. The first stage estimates the scale (see Figure 1.11(a)) between the template images of products

and the rack image. The second stage generates proposals of potential regions using the estimated scale.

Subsequently, the potential regions are classified using convolutional neural network. The generation and

classification of region proposal do not need annotation of rack image in which products are recognized.

In the end, the products are identified removing ambiguous overlapped region proposals using greedy

non-maximal suppression.

1.6.2 Contributions of Chapter 3

The proposed product identification system of Chapter 2 often shows poor performance due to mis-

classification of similar yet non-identical (i.e fine-grained) products. A few such fine-grained products

are illustrated in Figure 1.3. Therefore, in this chapter, we look into the classification of very similar

images (fine-grained classification) of variants of retail products. We propose a novel solution that simul-

taneously captures object-level and part-level cues of the product images. The object-level cues of the

product images are captured with our novel reconstruction-classification network (RC-Net). The market-

ing images of these products captured in a studio-like environment, are the templates for this recognition
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problem. The variation in the quality and illumination between a rack image and corresponding template

images are difficult to bridge. The generalization ability of a classifier tackles this variation in quality be-

tween rack and template images. The proposed RC-Net, being a supervised convolutional auto-encoder

(SCAE), has the generalization ability and hence, resolves the illumination difference between product

templates and rack images to some extent. An SCAE essentially optimizes both reconstruction and clas-

sification losses to recognize the objects. We show that a linear SCAE becomes uniformly stable [Le

et al., 2018] and provides a necessary generalization bound that we derive in this chapter. Further, we

derive the generalization bound for a non-linear SCAE (consisting of single hidden layer) with RELU

activation function. On the other hand, the fine-grained differences between the products are addressed

by capturing the part-level cues of the products. For annotation-free modelling of part-level cues, the dis-

criminatory parts of the product images are identified around the key-points in an unsupervised manner.

The ordered sequences of these discriminatory parts, encoded using convolutional LSTM [Xingjian et al.,

2015], describe the products uniquely. Finally, the part-level and object-level models jointly determine

the products explicitly explaining coarse to finer descriptions of the products. This bi-level architecture

is embedded in our product detection system (developed in Chapter 2) for recognizing variants of retail

products on the rack.

1.6.3 Contributions of Chapter 4

The proposed exemplar-driven region proposal scheme (in Chapter 2) [Santra et al., 2021b] generates

(mostly overlapped) region proposals around the products on the rack. Subsequently, the region propos-

als are classified using our fine-grained classifier (proposed in Chapter 3). Finally, we had implemented

a greedy non-maximal suppression (greedy-NMS) [Felzenszwalb et al., 2010] to disambiguate the over-

lapping proposals in Chapters 2 and 3. Greedy-NMS discards the proposals (with lower classification

scores) that are overlapped with the proposal with higher classification score. This greedy approach

sometimes eliminates the (geometrically) better fitted region proposals with (marginally) lower classi-

fication scores. In this chapter, we introduce a novel graph-based non-maximal suppression (G-NMS)

[Santra et al., 2020b] that removes this critical bottleneck of greedy-NMS by looking not only at the

classification scores but also at the product classes of the overlapping region proposals. G-NMS first

determines the potential confidence scores (pc-scores) of the region proposals by defining the groups of

overlapping regions. The pc-scores of the proposals elegantly combine classification scores, class labels

and extent of overlaps of the proposals to accurately disambiguate the overlapping proposals. Subse-

quently, a directed acyclic graph (DAG) is strategically constructed with the proposals utilizing their

pc-scores and overlapping groups. Unlike the DAG in [Ray et al., 2018], we build the DAG in a way

that all the vertically stacked products (see Figure 1.4) are correctly identified. Finally, the maximum

weighted path of the DAG detects the products that are present in the rack.
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1.6.4 Contributions of Chapter 5

The discussions so far have concentrated on designing an efficient product detection system. However,

automatic detection of empty spaces in the images of the shelves is an uncharted territory. In this chapter,

our objective is to automatically identify the empty spaces anywhere on the shelves. Different empty

spaces may have different textures, colors or other features. For example, in Figure 1.11(b), the regions

highlighted by the red and yellow dotted circles on the shelf present different textures. The absence of

unique inherent characteristics of empty spaces amplify the challenges to solve gap detection problem.

Note that, gap, empty region and empty space are interchangeably used in this thesis. In order to tackle

every type of empty spaces, we pose this challenge as a segmentation problem and propose a unique

solution which automatically identifies the gaps/empty spaces anywhere in the entire image of a shelf.

Recent advanced deep learning based image segmentation approaches [Ronneberger et al., 2015, Chen

et al., 2017, Chaurasia and Culurciello, 2017, Lin et al., 2017, Zhao et al., 2017, Chen et al., 2018,

Li et al., 2018, Fan et al., 2020] show excellent performance, but with enormous amount of annotated

images. For the empty space identification problem, benchmark labeled data (i.e., the annotated shelf

image) is still not available. However, the publicly available benchmark datasets of retail products include

a limited number of images of shelves. We release few annotated images of these selves for identification

of empty spaces at https://github.com/gapDetection/gapDetectionDatasets. This

chapter introduces an efficient graph-based method of superpixels of the shelf images modelled with a

minimal set of annotated shelf images. First, an image of a shelf is over-segmented into a number of

superpixels to construct a graph of superpixels. Subsequently, a graph convolutional network [Kipf and

Welling, 2016] and a Siamese network [Koch et al., 2015] architecture are uniquely built for extracting

the features representing nodes and edges of the graph respectively. Finally, a structural support vector

machine [Xue et al., 2008] based inference model formulated based on the graph of superpixels, is solved

as a one-slack support vector machine [Joachims et al., 2009] for segmenting the empty and non-empty

regions from the shelf image.

1.6.5 Contributions of Chapter 6

In this chapter, we conclude our thesis by summarizing our contributions and future directions of re-

search in context of the problem under discussion. Further at the end of this chapter, we highlight some

challenges that originate due to the developments explored in this thesis.
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C H A P T E R 2

An End-to-End Annotation-free Machine

Vision System

2.1 Introduction

Humans effortlessly identify merchandise displayed on the racks in a supermarket. But the integration

of such skill in a smart machine vision system poses many challenges [Santra and Mukherjee, 2019].

In the previous chapter, we have listed a number of works like [Merler et al., 2007, Zhang et al., 2007,

George and Floerkemeier, 2014, Marder et al., 2015, Franco et al., 2017, Ray et al., 2018] which focused

on creating machine vision system for automatic identification of retail products. In this chapter, we

introduce a machine vision system that improves the product detection performance compared to previous

attempts.

The advent of deep learning based schemes like R-CNN [Girshick et al., 2014], Fast R-CNN [Gir-

shick, 2015], YOLO [Redmon et al., 2016], SSD [Liu et al., 2016c] and Mask R-CNN [He et al., 2017]

shows significant improvement in performance for object detection. These methods cannot be used

straightway as they need annotated rack images for training. These annotations are difficult to obtain

with frequent changes in promotional packages and product display plan. The exemplar-independent

R-CNN [Girshick et al., 2014] and its variants do not use the product template for generating region

proposals. Rather they depend on the annotation of the rack image to learn shape and scale of different

products. In order to rectify the generated product proposals, exemplar-independent R-CNN optionally

implements bounding box regression which again demands annotated rack images. On the contrary, the

proposed annotation-free system (which does not require annotated rack images) introduces an exemplar-
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Figure 2.1: Illustration of fronto-parallel imaging of a rack.

driven region proposal scheme to extract the region proposals around the products displayed on the rack

using individual marketing images of the products.

The proposed solution is obtained under the following assumptions: (i) All rack images are captured

where the camera is nearly fronto-parallel with respect to face of the rack. Assume that n f is the normal

to the plane representing the face of the rack. Also assume that the normal to the image (camera) plane

is nc. If n f and nc are either collinear or mutually parallel contained in a plane, say π, and the plane

π is parallel to the ground plane (on which the cameraman and the racks are standing), then the image

capturing position is fronto-parallel. In connection to this, we assume that perspective effects and pro-

jective transforms are not considered during capturing of the images of racks. This is shown in Figure

2.1. (ii) The physical dimension of each product template is available in some suitable unit of length. In

case of absence of physical dimension of the products, we use the context information of retail store. The

context information assume similar products are arranged together in rack for shopper’s convenience.

This context information essentially helps us to assume that the physical dimension is equivalent to the

dimensions of a product in pixels. The use of physical dimensions is based on the previous assumption

of fronto-parallel viewing. If the images of racks are fronto-parallel, then the object-to-image scale is

accurately evaluated. Subsequently, accurate estimation of scale leads to generation of tight-fit region

proposals for the products on shelves leading to better recognition.

As shown in Figure 2.2, our proposed system first introduces a two-stage exemplar-driven region

proposal algorithm using the information of individual product images. The region proposal is exemplar-

driven as the proposals are generated based on individual example or image templates of products. Each

proposal is then classified by a convolutional neural network (CNN) [He et al., 2016]. The product classi-

fication does not need any annotation of the rack image from where the individual products are identified.

Classification and Non-
maximal Suppression of

Region Proposal
Rack
Image

Exemplar-driven
Region Proposal

Rack with
Detected
Products

Figure 2.2: Flow chart of the proposed scheme, blue colored dotted-rectangle highlights our contribution.
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Subsequently, greedy non-maximal suppression technique [Felzenszwalb et al., 2010] is implemented to

remove the overlapping and ambiguous region proposals. The contribution of this work compared to

state-of-the-art methods is two fold:

(a) We propose an automated approach to estimate the scale between product(s) and rack image. The

previous attempts either move windows of different scales over the rack image [Ray et al., 2018,

Marder et al., 2015, Merler et al., 2007] or divide the rack image into a number of grids of different

resolutions [George and Floerkemeier, 2014, Zhang et al., 2007] to find out potential regions in the

rack.

(b) We introduce an exemplar-driven region proposal scheme for detecting objects in a scene crowded

with products in contrast to annotation based region proposal scheme (without taking the help of

product images) using bounding box regression [Girshick et al., 2014] in R-CNN or its variants.

The rest of the chapter is structured as follows. Section 2.2 describes the proposed system. The

experimental analysis is performed in Section 2.3. Finally, Section 2.4 summarizes the chapter with

concluding remarks.

2.2 Method M1: Annotation-free Product Identification

Overall methodology of the proposed scheme is demonstrated in Figure 2.2. Our solution takes care

of both recognition and localization of products (including multiple products stacked horizontally or

vertically) in the rack. The following subsections present the modules of our scheme.

2.2.1 Exemplar-driven Region Proposal

The probable locations of products in a rack are determined through the proposed exemplar-driven re-

gional proposal (ERP) scheme. As shown in Figure 2.3, the proposed ERP takes a rack image as input

and returns a number of region proposals for the rack (green rectangular boxes in Figure 2.3). This re-

gion proposal scheme is a two-stage process: estimation of scale between the product image and the rack

image, and the extraction of region proposal (see Figure 2.3).

Let m be the number of individual products in a database of product templates D. In other words,

Scale
Estimation

Region
Extraction

Exemplar-driven Region Proposal

Rack Image Rack Image with
Region Proposals

Figure 2.3: Flow chart of the proposed two-stage exemplar-driven regional proposal. Green rectangular
boxes on the rack are the regional proposals generated by our ERP.
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Figure 2.4: Scale estimation procedure: black dots and lines represent key-points and matched correspon-
dences. Blue, red, and green circles indicate the clusters of matched key-points in rack. Correspondences
of the clustered key-points in the product are also highlighted using the respective colors of clusters.
s1, s2 are the scores of sub-images H1, H2 extracted from rack respectively.

m is the number of product classes. We refer each product template as Dt, t = 1, 2, · · · , m. A few

examples of Dt are displayed in Figure 1.2(a). Let the physical dimensions of the products be available

in some unit of length (say cm). Assume the given rack image is I which displays multiple products.

Figure 1.2(b) illustrates three examples of such I. However, the physical dimension of the rack I is

unknown. Given this setting, our aim is to localize the products Dt in rack I.

We first extract the Binary Robust Invariant Scalable Key-points (BRISK) [Leutenegger et al., 2011,

Mukherjee et al., 2015] descriptors of all the template images of products and rack image. A BRISK

descriptor finds key-points in the image and defines a 64-dimensional feature vector per key-point. In

the feature vector, each feature value is a 8-bit number. Hence the feature vector is a 512-bit number.

Assume we obtain ϖ and κ BRISK key-points in the tth product Dt and the rack I respectively. Let

(xi
t, yi

t) and fit, i = 1, 2, · · · , ϖ be the BRISK key-points and corresponding feature vectors of the tth

product. Also let (xj
I , yj

I) and f
j
I , j = 1, 2, · · · ,κ be the BRISK key-points and corresponding feature

vectors of the rack image I. Using these BRISK key-points, we generate a set of region proposals for the

rack image I through two successive stages: scale estimation and region extraction that are explained in

the following sections.

Stage-1: Scale Estimation

The scale between the products and rack plays an important role in extracting the potential regions. The

computer vision practitioners in their previous attempts take care of the scale between the products and

rack considering variable sizes of search windows [Merler et al., 2007, Franco et al., 2017, Ray et al.,

2018] or grids [George and Floerkemeier, 2014, Marder et al., 2015, Zhang et al., 2007] on the rack. On

the contrary, we estimate k possible scales between the m number of products Dt and rack image I using
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the physical dimensions of products.

The scale estimation process starts by calculating the geometric transformations between the images

of products and rack. Each transformation is assigned a classification score. Using transformations

with top-k scores, we estimate the k possible scales between products and shelf. The overall process of

estimating scale is demonstrated in Figure 2.4. In the following paragraphs, we detail the entire process

of estimation of scales.

Step 1: Matching of Key-points The BRISK key-points of the tth product with those of the rack I are

first matched using the approach presented in [Lowe, 2004]. Note that the matching of the key-points

refers to the matching of the feature vectors at those key-points. The procedure of matching the BRISK

key-points is clearly explained through the following example.

Assume we have a feature vector ft (in the product Dt) which we want to match with the two feature

vectors f1I and f2I in the rack image I. Further assume, the Hamming distance between ft and f1I is d1 while

the Hamming distance between ft and f2I is d2 and let d1 > d2. Given this, we aim to find out the correct

match of ft in the rack I.

Since the BRISK feature vectors are 512-bit binary numbers, the Hamming distance between ft and

any one of f1I and f2I could be maximum 512-bit binary number. However, we assume that a potential

match between two feature vectors is valid only when the distance between the two feature vectors is

much less compared to their maximum distance (which is 512 bits). The distance between two feature

vectors eligible to be a match is taken as M = matchThreshold× 512, where matchThreshold ∈ [0, 1].

Therefore, if both d1 and d2 are lower than M, then both f1I and f2I are eligible to be the potential

matches of ft. Next we move to another test (which is called ratio test) for finding out the correct match

of ft in the rack I.

Since d1 > d2, f2I is the better match of ft compared to the match of f1I with ft. If d1 and d2 values

are close, this implies that f1I and f2I both are the potential matches of ft. This results in an ambigu-

ity. To address this, we allow only one match of ft in the rack I for accurately identifying the unique

correspondences between the key-points of Dt and I.

We remove this ambiguity by rejecting both f1I and f2I as a match of ft if the ratio d2
d1

is greater than a

threshold, ratioThreshold ∈ [0, 1]. Else the better match f2I is defined as the correct match for ft in I.

Step 2: Clustering of Matched Key-points in Rack The matching of BRISK key-points is performed

to find out the probable locations of the tth product Dt in the rack I. But the matching of key-points is

not sufficient to correctly determine the locations of the Dt in I when I contains multiple instances of the

Dt. In other words, the matched key-points of Dt in I can represent multiple instances of Dt. Thus we

cluster ζ number of key-points in I to locate the multiple instances of Dt. More formally, the matched
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key-points (xj
I , yj

I), j = 1, 2, · · · , ζ in I are clustered using the DBSCAN [Ester et al., 1996, Shen et al.,

2016] clustering technique.

The DBSCAN clustering method is implemented with two parameters minimumPoints and

maximumRadius. We require at least minimumPoints number of points to form a cluster. And

for each point (xj
I , yj

I) in a cluster, there exists at least one point (xj′
I , yj′

I ) in the cluster such that

∥(xj′
I , yj′

I ) − (xj
I , yj

I)∥ ≤ maximumRadius. This stage of our region proposal scheme aims to deter-

mine an affine transformation A of the tth product Dt with its potential match in the rack I. We set

minimumPoints = 3 as we require exactly three point correspondences to determine an affine transfor-

mation. Note that, the number of matches of the product Dt in I is the number of clusters determined by

the DBSCAN algorithm. In the second block of Figure 2.4, the clusters defined by blue and green circles

are selected for the next step of our algorithm as these clusters have exactly three or more than three point

correspondences. The clusters denoted by red circles (containing less than three points) are discarded.

Step 3: Determining Affine Transformations of Products Assume we obtain ρt clusters of matched

key-points (xj
I , yj

I) in the rack I for the tth product Dt. In Figure 2.4, ρt = 2. Let (xn
I , ynI ), and (xn

t , yn
t
),

n = 1, 2, · · · , φ be the key-points in the cth cluster of I and corresponding matched key-points in the

tth product Dt. Let XI = [xn
I ynI 1]T and Xt = [xn

t ynt 1]T be the representations of the key-points.

Given this, we aim to determine the affine transformation matrix A with six unknowns between Dt and

cth cluster of I such that

XI ≡ AXt. (2.1)

While minimumPoints is set to 3 during clustering of key-points, we can have more than three

correspondences of key-points between the tth product and cth cluster in I i.e., φ ≥ 3. In that case (2.1)

is solved as an over-determined problem, minimizing the least squared sum S(A) using Levenberg-

Marquardt algorithm [Levenberg, 1944, Marquardt, 1963], where

S(A) ≡ argminA

φ

∑
n=1
∥Xn

I − AXn
t ∥

2
2 . (2.2)

Step 4: Extracting Sub-images from Rack Once the affine matrix A is obtained, we transform the

four corner points (0, 0), (w, 0), (0, h), and (w, h) of the tth product template Dt on I, where h and w

are the width and height (in pixels) of Dt. Using these four transformed points, we fit the largest possible

rectangular bounding box and crop the region covered by the bounding box from I. Let the cropped

sub-image be H. If the sub-image H matches (with high classification score) with the product Dt, the

transformation is acceptable. Thus the sub-image H determines the correctness of the transformation A.

Examples of this sub-image extraction are illustrated in the third block of Figure 2.4 (see H1 and H2).
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Step 5: Scoring the Sub-images As the sub-image H is obtained from Dt, the class label of H should

be Dt. In order to match labels of H with Dt, we obtain the class label and classification score of H

using our classification module. The pre-trained CNN model [He et al., 2016] fine-tuned for product

classification is detailed in Section 2.3. H is fed into the fine-tuned pre-trained CNN classifier to obtain

the class label and classification score of H. If the label of H matches with Dt, then H is considered as

a valid sub-image and sent for further processing in estimating scale between the products and rack.

In this way, we perform the extraction and scoring of sub-images for all the clusters corresponding

to all the products Dt. Finally, we get a set of τ valid sub-images H = {Hg} with the set L = {lg}
of corresponding class labels, and the set S = {sg} of corresponding classification scores, where g =

1, 2, 3, · · · , τ. The Figure 2.4 shows two valid sub-images H1 and H2 (along with the classification

scores s1 and s2) extracted from the rack for the products D1 and D2 respectively.

Step 6: Estimating k Possible Scales A number of sub-images H1, H2, H3, . . . with respective clas-

sification scores are obtained after Step 5. Top k number of sub-images Hg sorted based on descending

classification scores are selected to define k different scales between sub-images Hg and corresponding

products Dt.

Let S′ ⊆ S containing top-k scores. Hence we obtain the sets H′ ⊆ H and L′ ⊆ L corresponding

to S′. For each H ∈H′, we obtain the label l of H from L′ and determine the cm-to-pixel ratio of width

(or x-scale) and height (or y-scale) using the physical dimensions of lth labeled product Dl and pixel

dimensions of the sub-image H of I. Consequently, we get k number of cm-to-pixel x-scales, scu
x and

y-scales, scu
y , u = 1, 2, · · · , k.

Stage-2: Region Extraction

Figure 2.5 presents a few examples of transformed corner points of the products in a rack using the

affine matrices as described in the Stage-1 of our scheme (refer Section 2.2.1). We can see the incorrect

Figure 2.5: Examples of transformed corner points (highlighted with the quadrilaterals) of products in
rack using estimated affine transformations. The tight fitted rectangle, which covers a quadrilateral, is
cropped and classified. Green and yellow rectangles provide correct and incorrect classifications respec-
tively.
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Figure 2.6: The process of generating region proposals. Blue dots represent the key-points. Black dots
show the centroid of the key-points.

transformations of corner points (which produce yellow quadrilaterals in the figure) of the products in

rack. These incorrect transformations extract many sub-images which either do not cover any product

or display a tilted/skewed image of the true product. Furthermore, the affine transformations are not

calculated in Stage-1 when there exists only one or two matches of the key-points between the products

and the rack image. This necessitates introduction of the Stage-2 of our region proposal algorithm. The

Stage-2 of the proposed region proposal scheme exhaustively searches for the potential regions around

the product displayed on the rack.

Similar to Stage-1, key-points of the products and rack are matched followed by clustering of key-

points in the rack as shown in 1st and 2nd block of Figure 2.4. But the minimumPoints parameter of

DBSCAN clustering algorithm is set to 1. In the second stage, in extracting potential regions from the

rack, we do not want to lose a single proposal even if that is due to the match of single key-point between

the products and the rack.

Let us assume that we obtain ρt clusters of the matched key-points in the rack image I. In Figure 2.6,

we show only one cluster (say, cth cluster) for the tth product Dt. As shown in Figure 2.6, let (xn
I , ynI ) and

(xn
t , ynt ), n = 1, 2, 3, 4 be the matched key-points in the cth cluster of the rack I and the tth product Dt

respectively. For the cth cluster, we now extract potential regions from I using the geometric alignment of

the matched key-points and k estimated cm-to-pixel scales. In the procedure for extracting such potential

regions, we first calculate the centroids (xcent
I , ycent

I ) and (xcent
t , ycent

t ) of the matched key-points (xn
I , ynI )

in the cth cluster of I and (xn
t , ynt ) in the tth product (see the black dots in Figure 2.6).

In Section 2.2.1, we have already derived k number of cm-to-pixel x-scales scu
x and y-scales scu

y

between the products and rack, u = 1, 2, · · · , k. However, rest of the process is described for only uth

scale considering k = 1. Let h and w be the height and width in pixels of Dt while hp and wp be the

height and width in cm of Dt. For uth cm-to-pixel scale scu
x and scu

y , the transformed width and height
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Algorithm 1 Exemplar-driven Region Proposal
Input: The rack image I
Output: The region proposals H

1: for each product Dt in the database D do
2: Find the BRISK key-points of Dt
3: end for
4: Find the BRISK key-points of the rack image I

▷ STAGE-1: SCALE ESTIMATION

5: for each Dt in D do
6: Match the key-points of Dt with that of I
7: Find the clusters of matched key-points in I
8: end for
9: for each cluster do

10: Calculate affine matrix A between the cluster of matched key-points of Dt and I using (2.1)
11: Extract a sub-image H of I applying A on Dt
12: Find the class label and classification score of H from CNN
13: end for
14: Find top-k classification scores and corresponding labels from all H
15: Find k cm-to-pixel scales between the products and rack using physical dimensions of the products

in the database D

▷ STAGE-2: REGION EXTRACTION

16: for each Dt in D do
17: Match the key-points of Dt with that of I
18: Find the clusters of matched key-points in I
19: end for
20: for each cluster do
21: for each cm-to-pixel scale do
22: Extract potential region H from I using (2.3)
23: end for
24: end for

of Dt in I are w′u = scu
x wp pixels and h′u = scu

y hp pixels respectively (see Figure 2.6). In case physical

dimensions, that is, hp and wp are not available, following assumption (ii) described in third paragraph

of Section 2.1, we set hp = h and wp = w.

As shown in Figure 2.6, let r1, r2, r3 and r4 be the four corner points of the tth product Dt. So,

r1 = (0, 0), r2 = (w, 0), r3 = (w, h), and r4 = (0, h). Therefore the centroid (xcent
t , ycent

t ) must lie

within the rectangle formed by these four corner points. Let the four corner points be transformed to

r′1, r′2, r′3 and r′4 in the rack I for the cth cluster (see Figure 2.6). Then for the uth scale, the co-ordinates

of the transformed points in I are determined as follows:

r′1 = (xcent
I − w′u

w
xcent

t , ycent
I − h′u

h
ycent

t ),

r′2 = (xcent
I − w′u

w
xcent

t + w′u, ycent
I − h′u

h
ycent

t ), (2.3)
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r′3 = (xcent
I − w′u

w
xcent

t + w′u, ycent
I − h′u

h
ycent

t + h′u),

r′4 = (xcent
I − w′u

w
xcent

t , ycent
I − h′u

h
ycent

t + h′u).

Let H1 be the rectangular region of I covered by these four points r′1, r′2, r′3 and r′4 (refer Figure 2.6).

This H1 is essentially a region proposal. The process is repeated for all k scales, and ρt clusters for the

tth product. The number of clusters varies from one product to another. Thus, for the m number of

products, the total number of clusters can be determined as e = ∑m
t=1 ρt. By iterating the process for m

products, our exemplar-driven region proposal scheme generates χ = mke number of region proposals

Hz, z = 1, 2, · · · , χ. The Algorithm 1 summarizes the proposed region proposal scheme. Next we

discuss the classification and non-maximal suppression of the region proposals.

2.2.2 Classification and Non-maximal Suppression

Figure 2.7 demonstrates the initial set of overlapping region proposals obtained from the previous step.

These initial proposals with their classification scores and labels (obtained from the pre-trained CNN [He

et al., 2016] classifier which is adapted for our product classification task as described in Section 2.3)

are input to greedy non-maximal suppression (greedy-NMS) [Felzenszwalb et al., 2010] scheme. Con-

sequently, the greedy-NMS provides the final output with detected products as shown in Figure 2.7.

Note that we interchangeably use the words proposal, region and detection. The goal of greedy-NMS

is to retain at most one detection per group of overlapping detection. The intersection-over-union (IoU)

[Girshick et al., 2014] between two regions defines the overlap amount (between those two regions).

The overlapping group of any proposal Hz is a set of proposals which overlap with Hz by an amount

more than a preset IoU value IoUthresh. Example group of overlapping detection can be seen in Figure

2.7. The greedy-NMS retains at most one detection (having highest classification score) per overlapping

Non-maximal 
Suppression

0.89

Scores of Proposals

0.94 0.980.75... Detected Products
BC20 BC20

Labels of Proposals

BC2
0
BC2

0
BC2

0
BC2

0...

Figure 2.7: Flow chart of the non-maximal suppression scheme. BC20 and 0.89, 0.94, · · · , 0.98 are the
class labels and classification scores of the proposals respectively obtained from the pre-trained CNN
[He et al., 2016] adapted to our product classification task.
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group of regions. In other words, greedy-NMS eliminates all regions having lower classification scores

and overlapping with a region with the higher score. Next section presents various experiments and their

results.

2.3 Experiments

The proposed solution is implemented in python and tested in a computing system with the following

specifications: 64 GB RAM, Intel Core i7-7700K CPU @ 4.2GHz×8 and 12GB TITAN XP GPU. The

following section presents the experimental settings and implementation details of the methods.

2.3.1 Experimental Settings

Exemplar-driven Region Proposal In the stage-1 of our algorithm (see Section 2.2.1), we choose

ratioThreshold = 0.73 and matchThreshold = 0.45 for matching the key-points between the products

and rack through the following experiment. Initially, we assume that the two key-points can be con-

sidered as a match if the difference between their feature vectors is lower than the 50% of maximum

possible distance i.e., lower than matchThreshold× 512, where matchThreshold = 0.5. On the other

hand, ratioThreshold is initially set to 0.8 following [20]. With this initialization of the parameters and

extensive experimentation with 180 product templates, we obtain the best result for matchThreshold

= 0.45 and ratioThreshold = 0.73.

As mentioned in Section 2.2.1, minimumPoints of the DBSCAN algorithm is always 3 and

maximumRadius of the same is empirically set to 60 pixels for clustering the matched key-points in

the rack. We consider one estimated scale (k = 1) for generating region proposals. In the stage-2 of our

algorithm (see Section 2.2.1), the values of ratioThreshold and matchThreshold parameters are same

as these are in the stage-1. For clustering the key-points in rack, minimumPoints = 1 (as mentioned

in Section 2.2.1) to obtain the exhaustive set of proposals and maximumRadius = 60 pixels to execute

DBSCAN.

Classification of Regions Here we successively discuss the standardization of data, data augmenta-

tion, and domain adaptation of CNN for classification of regions.

Data Standardization By design [Paszke et al., 2019], the pytorch implementation of pre-trained

ResNet-101 CNN model requires input images of size 224× 224× 3 pixels. We transform the product

image into a fixed-size of 224× 224 color images without altering the aspect ratio (see Figure 2.8).

A product image of w × h × 3 pixels is first resized to 224 × 224 h
w × 3 pixels if w > h, else

resized to 224 w
h × 224× 3. The resized product image is then superimposed in a white frame of 224×

224× 3 pixels such a way so that the smaller side of the image is aligned in the middle of the frame
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Figure 2.8: Original (top-row) vs. transformed (bottom-row) product images

while other side perfectly fits the frame. Figure 2.8 demonstrates some examples of product images and

corresponding transformed product images. Consequently, the transformed product image is standardized

by normalizing each colour channel R, G and B of the image. Assume C denotes any color channel R,

G, or B. Let C′ be the normalized version of C such that C′ = C−µJ
σ , where µ and σ are the mean and

standard deviation of all pixel intensities of C over all training samples, and J is the 224× 224 all-ones

matrix.

Data Augmentation The detection of products is a problem where only one template image is

available per product class. But to train a learning-based scheme like CNN, we require a huge amount of

training samples per class. Thus using various photometric and geometric transformations, we generate

∼104 training samples from the single template of a product. The training samples are augmented using

three python libraries: keras 1, augmentor 2, and imgaug3. Considering supermarket like scenario, the

synthesis process applies the following photometric transformations: random contrast adjustment, ran-

dom brightness adjustment, noise (salt & pepper and Gaussian) addition, and blurring (Gaussian, mean

and median). Consequently the geometric transformations such as rotation, translation, shearing, and

distortion are applied on the photometrically transformed synthesized images. These augmented training

samples are used for training the CNN.

Domain Adaptation of CNN The classification of region proposal into any one of the product

classes uses pytorch [Paszke et al., 2017] implementation of the ResNet-101 CNN model [He et al., 2016].

The final layer (i.e., last fc layer) of the ResNet-101 network has 1000 nodes for 1000-way classification

of ImageNet [Deng et al., 2009] dataset. For our problem, let a product dataset has m product classes. In

order to adapt the network to our task, the last fc layer of the ResNet-101 network is replaced by a newly

introduced fc layer having m nodes. The weights of the new connections are initialized with random

values drawn from [−1, 1]. Now the entire network is trained with our augmented training samples.

The training of the CNN is performed by calculating cross-entropy loss and optimizing the loss using

mini-batch stochastic gradient descent (SGD) [Robbins and Monro, 1951, Ghassabeh and Moghaddam,

1https://github.com/keras-team/keras accessed as on 06/2021
2https://github.com/mdbloice/Augmentor accessed on 06/2021
3https://github.com/aleju/imgaug accessed as on 06/2021
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Table 2.1: Non-trainable parameters and their values in our implementation of the proposed algorithm

Building Blocks of the Proposed Scheme Parameters Values

Scale Estimation (Stage-1 of Section 2.2.1)

matchThreshold 0.45

ratioThreshold 0.73

minimumPoints 3

maximumRadius 60 pixels

number of scales, k 1

Region Extraction (Stage-2 of Section 2.2.1)

matchThreshold 0.45

ratioThreshold 0.73

minimumPoints 1

maximumRadius 60 pixels

Classifier (Section 2.2.2)
Initial Learning Rate 0.01

Momentum 0.9

greedy-NMS (Section 2.2.2)
scoreThresh 0.5

IoUthresh 0.07

2013]. We uniformly sample 25 augmented images to form a mini-batch in each iteration of SGD. The

SGD is started at a learning rate 0.01 and with a momentum of 0.9. After each 10 epoch, we update the

learning rate by a factor of 0.1. However, the parameters of the network have been trained for 200 epoch.

The adapted ResNet-101 propagates (in forward direction) the transformed product images through its

layers and the output of last fc layer is then passed through the softmax [Yu et al., 2018, Hu et al.,

2019] function to obtain the class probabilities for any region proposal. This classification strategy in

association with our exemplar-driven region proposal (ERP) scheme is referred to as ERP+CNN.

Non-maximal Suppression The greedy non-maximal suppression (greedy-NMS) are performed on

the proposals with the classification score above the threshold scoreThresh = 0.5. In greedy-NMS, we

empirically choose IoUthresh = 0.07 for detecting products. The values of the non-trainable parameters

of the proposed algorithm are listed in Table 2.1. Next we present the results and comparisons.

2.3.2 Results and Analysis

In order to perform experimental analysis and a comparative study, we reproduce the competing methods

in [Girshick et al., 2014, Ray et al., 2018, Marder et al., 2015, Merler et al., 2007, Franco et al., 2017,

George and Floerkemeier, 2014, Zhang et al., 2007]. The methods in [Girshick et al., 2014, Ray et al.,

2018, George and Floerkemeier, 2014] are referred to as R-CNN, U-PC and MLIC respectively. The

authors of [Marder et al., 2015, Merler et al., 2007, Zhang et al., 2007, Franco et al., 2017] present more

than one method. The histogram of oriented gradients (HOG) and bag of words (BoW) based schemes

are implemented from [Marder et al., 2015] while color histogram matching (CHM) based scheme is

reproduced from [Merler et al., 2007]. In case of [Zhang et al., 2007], we implement its best scheme S1.
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Table 2.2: Results of various methods on In-house dataset

Methods
F1 Score (%) on Categories of In-house Dataset

BC DEO LC OC PW MIX

S1 [Zhang et al., 2007] 41.01 45.21 47.87 48.08 54.91 49.01

CHM [Merler et al., 2007] 48.04 33.56 60.12 30.77 36.40 44.74

MLIC [George and Floerkemeier, 2014] 64.45 50.08 54.91 40.23 59.97 48.76

R-CNN [Girshick et al., 2014] 82.04 83.76 87.99 79.72 88.05 73.16

HOG [Marder et al., 2015] 62.00 28.52 49.37 28.73 44.06 50.62

BoW [Marder et al., 2015] 65.05 45.10 70.72 53.31 71.23 59.91

GBoW [Franco et al., 2017] 72.07 49.98 68.29 46.79 77.22 53.41

GDNN [Franco et al., 2017] 82.12 55.49 82.55 51.32 87.64 61.98

SET [Karlinsky et al., 2017] 83.61 83.95 88.36 81.77 88.16 74.22

U-PC [Ray et al., 2018] 84.77 52.59 86.29 55.65 81.15 65.49

ERP+CNN 90.86 83.76 92.49 89.80 92.12 82.98

From [Franco et al., 2017], we implement both bag of words (BoW) and deep neural network (DNN)

based methods which are referred to as GBoW and GDNN respectively. The method of [Karlinsky et al.,

2017] is denoted by SET for which the publicly available code is downloaded from github (https:

//github.com/leokarlin/msmo_star_model). All the competing deep networks are trained

under similar setup like ours as explained in the second last paragraph of the previous section. Note that

R-CNN refers to the vanilla R-CNN method as explained in [Girshick et al., 2014].

In [Santra and Mukherjee, 2019], we notice that different evaluation indicators are used in different

state-of-the-art methods for validating the solutions. Keeping context of retail products in mind, in this

thesis, the (product detection) accuracy of various methods are evaluated by calculating F1 score that we

discuss in Appendix A.

The experiments are carried out on one In-house and three publicly available benchmark datasets:

GroZi [Merler et al., 2007], WebMarket [Zhang et al., 2007], and Grocery Products [George and Flo-

erkemeier, 2014]. The In-house dataset consists of six categories of products: breakfast cereals (BC),

deodorant (DEO), lip care (LC), oral care (OC), personal wash (PW) and mixed (MIX). The detailed

descriptions of these datasets are provided in Appendix B. In all these datasets, the products are captured

in a controlled environment while the racks are imaged in the wild. So the product images differ from

rack images in scale, pose and illumination. Note that the benchmark datasets do not provide physical

dimensions of the products. So we use context information of retail store that similar products and the

products of similar shapes are put together for shopper’s convenience. Because of the context, we can

assume that the physical dimensions of the products displayed in a rack are almost similar. Next we

present the experimental results on these datasets.

Table 2.2 presents the average F1 scores of various methods for all the racks of six categories of
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2.3 Experiments

(a) R-CNN [Girshick et al., 2014] (b) ERP+CNN

Figure 2.9: Example output of (a) exemplar-independent region proposal (in R-CNN) and (b) proposed
exemplar-driven region proposal (in ERP+CNN) schemes. The red cross mark highlights the incor-
rect/false (see yellow arrow in (a)) detection by R-CNN while that false detection is removed by our
ERP+CNN (see the green tick mark in (b) pointed with yellow arrow).

the dataset. Table 2.2 shows that our proposed ERP based scheme ERP+CNN yields ∼4% higher F1

score than the best among other competing methods for five categories (BC, LC, OC, PW, MIX). An

example of the qualitative results of exemplar-independent region proposal based scheme (in R-CNN)

and our exemplar-driven region proposal based scheme (in ERP+CNN) are compared in Figure 2.9. In

case of exemplar-independent R-CNN, as shown using yellow arrow in Figure 2.9(a), the false detection

is marked by red cross. Whereas the green tick mark (pointed with yellow arrow) in Figure 2.9(a)

highlights that the proposed exemplar-driven region proposal scheme in ERP+CNN does not identify

that false detection from background regions as objects.

Repeatability Test We also perform the repeatability test of the proposed exemplar-driven region

proposal scheme in ERP+CNN and exemplar-independent region proposal scheme in R-CNN on the six

categories of the In-house dataset. For each category of the dataset, we collect images of a rack with

variations in illumination, scale & pose and group them together. For each of such groups, we determine

standard error of the mean (SEM) = σF1√
ϑ

of the F1 scores of rack images in the group, where σF1 defines

the standard deviation of F1 scores of ϑ number of rack images. Consequently, we find out average SEM

over all such groups for each category of the dataset. We have observed that lower the average SEM

Figure 2.10: Repeatability test: the average SEM of exemplar-independent (R-CNN) and exemplar-driven
region proposal (ERP+CNN) schemes on the In-house dataset
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Table 2.3: Performances of various methods on benchmark datasets

Methods
F1 Score (%) on Benchmark Datasets

Grocery Products WebMarket GroZi

S1 [Zhang et al., 2007] 58.39 49.19 31.71

CHM [Merler et al., 2007] 51.20 52.81 24.70

MLIC [George and Floerkemeier, 2014] 59.07 53.33 33.10

R-CNN [Girshick et al., 2014] 78.99 72.01 40.91

HOG [Marder et al., 2015] 58.11 43.03 28.33

BoW [Marder et al., 2015] 59.91 55.15 26.83

GBoW [Franco et al., 2017] 74.34 65.59 39.66

GDNN [Franco et al., 2017] 73.09 71.13 43.99

SET [Karlinsky et al., 2017] 79.05 72.13 43.78

U-PC [Ray et al., 2018] 76.20 67.79 40.10

ERP+CNN 81.05 78.76 47.49

is, higher repeatable the method is. In Figure 2.10, the average SEM of the exemplar-independent and

our exemplar-driven schemes are shown on six categories of In-house dataset. The figure infers that our

exemplar-driven region proposal scheme is more repeatable than exemplar-independent region proposal

scheme in detecting retail products.

We select 74 rack images (displaying 184 products), 36 rack images (displaying 155 products), and

28 rack images (displaying 20 products) respectively from Grocery Products, WebMarket, and GroZi

datasets. These rack images comply with our assumptions on physical dimensions mentioned in the 3rd

paragraph of Section 2.1. Second column of the Table 2.3 presents results of our proposed scheme and

other competing methods on the Grocery Products dataset. The proposed ERP+CNN scheme outper-

forms R-CNN by ∼2% and yields better results than other competing methods. Third column of the

Table 2.3 lists the results of various methods on the WebMarket dataset. The proposed ERP+CNN is

found to be the winner by at least a margin of ∼6%. The performances of various methods on the GroZi

dataset are inferior as compared in the fourth column of the Table 2.3. Like previous two benchmark

datasets, the proposed scheme shows its superiority over other methods for this dataset. Since the tem-

plate images are collected from the web, the products in rack mostly differ from the templates. This is

the primary challenge of this dataset and due to this, the accuracy does not cross 50%.

Time Analysis We also present an analysis on execution time of the proposed scheme ERP+CNN.

Figure 2.11(a) shows time taken by each module of our scheme for detecting products when the dataset

contains 180 products. In that case, the entire process of detecting products takes about 107 seconds

out of which scale estimation, region extraction, classification of region proposals and non-maximal

suppression of regions consume 31.17, 21.07, 54.14, and 0.62 secs, respectively. Thus the proposed ERP,

which includes scale estimation and region extraction procedures, takes about 31.17 + 21.07 = 52.24
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2.4 Summary

(a) (b)

Figure 2.11: (a) Execution time of different modules of the proposed ERP+CNN for processing one rack
with 180 products in the dataset and (b) number of products vs. number of region proposals (with corre-
sponding execution time for processing one rack) generated by R-CNN and the proposed ERP+CNN

sec. It can clearly be seen that the classification module of our scheme runs for a longer period of time

than other modules. Our analysis finds that the data standardization process in the classification module

is responsible for it.

However, the total execution time of our proposed scheme mainly depends on the number of region

proposals. The number of proposals again depends on the number of products in a dataset. This can

be clearly observed in Figure 2.11(b). For example, running time of the proposed scheme is 40 sec for

processing 500 proposals in a rack populated with 90 products in the dataset. The same is 48 sec for

handling 800 proposals generated with 120 products in the dataset. We have tested our scheme for at

most 180 products and the corresponding execution times are plotted in Figure 2.11(b). We find that

our exemplar-driven region proposal based scheme generates much lesser number of proposals and takes

lesser time than exemplar-independent region proposal based scheme R-CNN. This can be clearly seen

in Figure 2.11(b). Next section concludes the chapter.

2.4 Summary

In this chapter, we build a machine vision system for identifying the products (without using any anno-

tations of the rack images) given single instance (or template image) per product. The proposed machine

vision system implements a two-stage exemplar-driven region proposal scheme, where the first stage es-

timates the scale between products and rack, and the second stage generates region proposals (around the

products in the rack) with the estimated scale.

In this chapter, it is evident that the proposed exemplar-driven region proposal scheme shows its

superiority over exemplar-independent region proposal method, where the images of racks (i.e., test

images) are crowded with products. Since our exemplar-driven scheme elegantly generates proposals

35



An End-to-End Annotation-free Machine Vision System

around the products on the rack, the number of false region proposals are significantly reduced.

Since the physical dimensions of the products are available for In-house dataset, the scale between

templates of the products and the image of rack is correctly estimated. For benchmark datasets, the

context information of retail store is used for estimating the scale. The context information sometimes

lead to inferior result compared to using physical dimension of product template.

Our analysis finds that the proposed system occasionally results in inaccurate identification of prod-

ucts due to incorrect classification of (very) similar but non-identical products. We refer these similar but

non-identical products as fine-grained products. In the next chapter, we look into classification of fine-

grained products for improving the product detection performance of our system that we have introduced

in this chapter.

36



C H A P T E R 3

Fine-grained Classification of Products

3.1 Introduction

As mentioned in Chapter 1, classifying (very) similar (but non-identical) variants of products is one of the

most challenging tasks. We refer this task as fine-grained classification which is the focus of this chapter.

The fine-grained variations are usually due to slight variations in text, size, or color of the package. A

set of examples are shown in Figure 3.1. In Figure 3.1(a), only the sizes of the packets and the text

printed on the packets vary for 805g to 500g of the same product, Nutri Grain. In Figure 3.1(b) and (c),

the text and color vary due to change in the flavour of the same product, Nivea Men and Nivea deodorant

respectively. Note that one product (say, 50g of potato chip) from two different manufacturers, should

have two distinctly different packages. Hence, as per our definition, identification of distinctly different

packages is an example of coarse-grained classification. The proposal in this chapter classifies such

(a) (b) (c)

Figure 3.1: Top row presents examples of fine-grained products having minute differences (see red el-
lipses) in (a) size and text and, (b)-(c) color and text which are highlighted in bottom row.
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Template of
the Product

(a)

Rack
Product Cropped

Out from Rack

(b)

Figure 3.2: Differences in (a) training image (template of a product) and (b) test image (cropped product
from rack using green bounding box) from GroZi-120 [Merler et al., 2007] dataset

coarse-grained products along with the fine-grained products. The product images shown in Figure 3.1

are used as templates and used for training. In contrast the quality of rack images, from where the product

images are cropped and used as test images for our problem, is affected due to store level illuminations.

An example of such differences between training and test images are shown in Figure 3.2. Both marginal

variations in image content and illumination, make fine-grained classification of product images much

more challenging compared to classical fine-grained object classification [Huang et al., 2016, Ge et al.,

2019, Xiao et al., 2015, Peng et al., 2017, Flores et al., 2019, Xie et al., 2017].

This chapter presents a novel solution for the fine-grained classification of retail products utilizing

object-level and part-level cues. The solution emulates human-like approach. First, features due to

overall content of the product are captured followed by features for finer discriminating characteristics.

For example, in Figure 3.1(a), first product can be differentiated from the second by looking at the weights

805g and 500g mentioned on the package. Next we present an overview of our solution.

3.1.1 An Overview

The proposal is a two-step process comprising object-level classification and part-level classification, the

overviews of which are presented next.

Object-level Classification

In the first step of our proposed approach, we introduce a reconstruction-classification network (RC-Net)

which is essentially a deep supervised convolutional autoencoder (SCAE) similar to the supervised au-

toencoder (SAE) [Le et al., 2018]. RC-Net is introduced to address the illumination differences between

the train and test images (see Figure 3.2) for accurate classification of products. In other words, the RC-

Net is built in a way such that it should have the better generalization ability to resolve such differences

in appearance between the train and test images. Note that learning a model from a finite set of train-

ing images such that the model performs equally well on new images, possibly with wider variations in

appearance, is usually referred to as generalization.
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Background of RC-Net The generalization of neural net (NN) is often characterized through some

form of regularization [Bousquet and Elisseeff, 2002, Zhang, 2002, Mohri et al., 2015]. Both theoretical

[Liu et al., 2016b] and empirical [Maurer et al., 2016] studies show that the addition of auxiliary tasks

into an NN is an efficient regularization technique to ensure generalization of the network.

In [Le et al., 2018], Le et al. present an auxiliary task model for NN by adding a secondary task,

reconstruction of inputs (considered as a regularizer) along with the primary classification task. Their

auxiliary model is called supervised autoencoder (SAE). In [Le et al., 2018], it is theoretically shown

that linear SAE is uniformly stable. That means the difference between the performances of the models

trained with two subsets of a dataset (where the second subset is obtained by randomly replacing one

sample from any class of the first subset) is bounded in an interval. Subsequently, it is shown that linear

SAE provides a bound for the generalization. As shown in [Le et al., 2018], the primary advantage of

linear SAE is that it provides tighter bounds of generalization than that for learning with auxiliary tasks as

in [Liu et al., 2016b, Maurer et al., 2016]. Tighter generalization bounds indicate that the generalization

performance of a model varies less with different test samples.

SAE is a fully connected NN (or multi-layer perceptron) and SAE performs remarkably well for

one-dimensional data. On the other hand, the convolutional version of fully connected NN (i.e., CNN)

shows outstanding performance in classifying two-dimensional (or three-dimensional) data, particularly

the images [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, He et al., 2016, Luan et al., 2018,

Lyu et al., 2019]. Motivated by this fact, we present the convolutional version of SAE, which we call

supervised convolutional autoencoder (SCAE), for improving the classification performance of retail

products. The SCAE can handle wider variation of appearance including variation in illumination of

test images as shown in our experiments in Section 3.4. Moreover, we show that linear SCAE without

non-linear activation functions, provides a bound on generalization error like linear SAE.

Unlike linear SCAE, a generic formulation on the bound of generalization error for any non-linear

SCAE is not straightforward, as the formulation entirely depends on the type of activation functions

used in the different fully connected (fc) or convolution (conv) layers of the network. Since we often

utilize rectified linear unit (ReLU) activation function in CNN (in fact, our RC-Net also uses ReLU), we

theoretically show that a bound on generalization error can also be derived for a non-linear SCAE with

ReLU activation function. This somehow gives us an idea on the enhanced generalization ability of our

RC-Net, that essentially helps in product recognition under varying store-level illuminations.

Part-level Classification

The second step of our scheme essentially boosts the classification performance of the first step. The dis-

criminatory parts of the products are searched (in an unsupervised manner) and organized as an ordered

sequence to uniquely describe the products. These sequences of parts are modeled using convolutional
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LSTM (conv-LSTM) [Xingjian et al., 2015]. Note that part-level annotations are not used keeping in

mind implementation challenges of the system for fast changing product lines [Santra and Mukherjee,

2019]. Finally, classification scores from both the steps (object and part-level classification), jointly

decide labels of the products in the test images.

We have considered both fine-grained and coarse-grained products in this work. Our object-level

classifier i.e., RC-Net, efficiently classifies the coarse-grained products, and on top of that, our part-

level classifier differentiates the fine-grained products. We intentionally lay stress on the classification of

fine-grained products in this chapter, assuming coarse-grained classification is an obvious task to do.

The rest of the chapter is organized as follows. Related works and contributions are presented in

Section 3.2. Section 3.3 explains the proposed fine-grained classification scheme. Experiments and

results are provided in Section 3.4 followed by the summary in Section 3.5.

3.2 Related Work and Contributions

Generic Fine-grained Classification The state-of-the-art methods for fine-grained classification of

objects can be classified into three groups (a) part based models [Huang et al., 2016, Ge et al., 2019],

(b) two-level attention models [Xiao et al., 2015, Peng et al., 2017], and (c) CNN with second-order

pooling [Lin et al., 2015, Lin and Maji, 2017]. The part based models first determine the key parts of the

objects. These key parts are then used to design a CNN (like part-stacked CNN [Huang et al., 2016]) or

LSTM (like complementary parts model [Ge et al., 2019]) for classification. Two-level attention models

jointly learn object and part information to solve the problem under discussion [Xiao et al., 2015, Peng

et al., 2017]. The convolution layers at the bottom of a deep CNN capture the finer descriptions of an

object [Huang et al., 2016]. Moreover, in the CNN, second order pooling (like bilinear pooling [Lin

et al., 2015, Lin and Maji, 2017]) models local pairwise feature interactions in a translation invariant

manner. Due to this, bilinear pooling is integrated in our part-level modeling of the products. Compared

to deep CNNs, our proposed RC-Net performs better due to improvement in generalizability. Moreover,

our novel part-level module improves the overall fine-grained classification performance.

SegNet [Badrinarayanan et al., 2017] is a convolutional encoder-decoder architecture designed for seg-

mentation of images. Convolutional autoencoder (CAE) differs from SegNet as CAE reconstructs the

input while SegNet produces segmentation mask in its vanilla implementation [Badrinarayanan et al.,

2017]. As mentioned earlier in Section 3.1, the proposed RC-Net is a supervised CAE (SCAE). The

primary difference between SegNet and RC-Net is that the RC-Net not only reconstructs the input but

also determines the classification score for the input image. Therefore, unlike SegNet, RC-Net simulta-

neously performs the reconstruction and classification of input product images. Due to this, our proposed

network is referred to as reconstruction-classification network or RC-Net.
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Figure 3.3: (a) Flowchart and (b) corresponding block diagram (highlighting intermediate steps) of the
proposed scheme. For part-level classification, example input image is zoomed three times of its original
size (for details, see Section 3.3.2).

Deep Reconstruction-classification Network Ghifary et al. [Ghifary et al., 2016] present a deep

reconstruction-classification network (DRCN) for unsupervised domain adaptation. The architecture of

the proposed RC-Net (24 convolutional layers and 2 fully connected layers) is much more deeper than

DRCN (6 convolutional layers and 3 fully connected layers) for capturing the fine-grained representation

of the products. The layers in encoder-decoder module of DRCN include both convolutional and fully

connected layers. On the contrary, all the layers in encoder-decoder module of our proposed network are

convolutional like SegNet [Badrinarayanan et al., 2017]. This improves the reconstruction power of the

proposed network by preserving the local relationship between the neighboring pixels in the image. This

is evident in the results shown in Section 3.4.1.

Contributions The contributions of this work are six-folds.

(a) A deep SCAE i.e., the RC-Net for fine-grained classification of products is introduced. The

encoder-decoder architecture of RC-Net (or SCAE) significantly improves the classification per-

formance under varying illumination due to enhanced generalization ability of SCAE.

(b) A theoretical bound of generalization is derived for linear SCAE and non-linear SCAE with ReLU

activation function.

(c) For mathematical formulation of generalization error for SCAE, a uniform matrix multiplication

setup is introduced for both fc and conv layers.

(d) In order to boost the performance of fine-grained classification, we introduce a conv-LSTM

[Xingjian et al., 2015] based part-level classification model to encode discriminatory parts (identi-

fied by a unique unsupervised technique) of the products without using annotation of sub-parts of

the products.

(e) Overall, we propose a unique fine-grained classification scheme where proposed RC-Net, bilinear
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pooling [Lin et al., 2015, Lin and Maji, 2017] and Conv-LSTM are utilized in tandem for weighted

object-level and part-level classification.

(f) In order to improve the performance of our machine vision system (proposed in Chapter 2) for

detecting retail products, the proposed fine-grained classifier is embedded in the system without

using annotation of racks on which the products are being displayed. This will be discussed in

Section 3.4.2.

Next we present the proposed classification strategy.

3.3 Method M2: Classification of Fine-grained Products

As mentioned in Section 3.1, the proposed scheme first extracts the coarse representations (or object-level

features) of the products followed by detection of fine-grained representations (or local key features) of

the products. The schematic of the proposed scheme is shown in Figure 3.3. Next we explain the above-

mentioned modules of the proposed scheme.

3.3.1 Object-level Classification

The object-level classification of the products are performed using RC-Net that we explain next.

RC-Net

It consists of three modules: encoder, decoder and classifier as shown in Figure 3.4. The encoder-decoder

architecture of RC-Net is built following SegNet [Badrinarayanan et al., 2017] for reconstruction of the

product images. The classifier of RC-Net is a fully-connected network, which accepts the output of the

encoder for classification.
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Figure 3.4: Architecture of the proposed RC-Net. Colored bars denote the feature maps. The number of
feature maps is given just below the bar.
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Table 3.1: Various layers of RC-Net are shown in sequence. conv3-64 represents 3× 3 padded convolu-
tion operation performed 64 times, max-pool2 denotes 2× 2 max pooling (with stride 2), max-unpool2
indicates 2× 2 max unpooling (with stride 2), and fc-4096 represents fully connected layer with 4096
nodes. Similar interpretation is applicable for rest of the notations. After each conv layer, there exists
batch normalization and ReLU layers. The classifier includes batch normalization, ReLU and determin-
istic dropout [Santra et al., 2020a] layers after fc-4096. m is the number of classes.

Encoder→ conv3-64
conv3-64

max-
pool2

conv3-128
conv3-128

max-
pool2

conv3-256
conv3-256
conv3-256
conv3-256

max-
pool2

conv3-512
conv3-512
conv3-512
conv3-512

max-
pool4

Decoder→ max-
unpool4

conv3-512
conv3-512
conv3-512
conv3-512

max-
unpool2

conv3-256
conv3-256
conv3-256
conv3-256

max-
unpool2

conv3-128
conv3-128

max-
unpool2

conv3-64
conv3-64

Classifier→ fc-4096 fc-m

Let P be an image of a product labelled with the one-hot vector y = (y1,y2, · · · ,ym) such that,

each yi ∈ {0, 1} and ∑m
i=1 yi = 1, where m is the number of distinct products (or classes). Assume,

P(1), P(2), · · · , P(n) be the n number of training data with the true label vectors y(1), y(2), · · · , y(n)

for which RC-Net yields the reconstructed images P′(1), P′(2), · · · , P′(n) and predicted label vectors

y′(1), y′(2), · · · , y′(n) respectively.

Let θ and θ′ denote all the trainable parameters (i.e., weights and biases) of the encoder and decoder

respectively, and θ′′ represents the trainable parameters of the classifier of proposed RC-Net. Given this,

our objective is to optimize the parameters θ, θ′ and θ′′ for minimizing the average reconstruction loss

and the average classification loss simultaneously,

θ∗, θ′
∗, θ′′

∗
= arg min

θ,θ′,θ′′

1
2n

n

∑
j=1

[
Lrl

(
P(j), P′(j); θ, θ′

)
+Lcl

(
y(j), y′(j); θ′′

) ]
, (3.1)

where Lrl(·, ·; θ, θ′) and Lcl(·, ·; θ′′) are the reconstruction loss and classification loss respectively. In

the proposed RC-Net architecture, reconstruction loss Lrl(·, ·; θ, θ′) is the conventional binary cross-

entropy loss [Goodfellow et al., 2016, Pawara et al., 2020] and the classification loss Lcl(·, ·; θ′′) is the

cross-entropy loss [Goodfellow et al., 2016, Pawara et al., 2020].

The complete architecture of the proposed RC-Net is shown in Figure 3.4. The configurations of

various layers of the proposed RC-Net are further tabulated in Table 3.1. However, initialization of the

weights is important for any deep neural network with multiple numbers of layers, operations and paths.

The weights of our network are strategically initialized with the weights of a pre-trained network (which

is trained using the visual information of more than 14 million training images from 1000 classes of

ImageNet dataset [Deng et al., 2009]) as follows.

The sequence of the convolution layers of encoder (see Figure 3.4) is identical with the sequence of
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first twelve convolution layers of the VGG-19 network [Simonyan and Zisserman, 2015]. So, the weights

of the convolution layers of the encoder are initialized with the weights of first twelve convolution layers

of the pre-trained pytorch [Paszke et al., 2017] implementation of VGG-19. In case of decoder, the initial

weights of eight convolution layers, which exactly adhere with that of VGG-19, are initialized with the

weights of pre-trained VGG-19. The adherence between the convolution layers of RC-Net and VGG-19

are 1 ←− 12, 2 ←− 11, 3 ←− 10, 5 ←− 8, 6 ←− 7, 7 ←− 6, 9 ←− 4, and 11 ←− 2, where ℓ ←− ℓ′ represents

that ℓth convolution layer of RC-Net is identical with ℓ′th convolution layer of VGG-19. The initial

weights of the remaining layers of decoder are set following [Ronneberger et al., 2015].

The ability of simultaneous reconstruction and classification of products makes the RC-Net differ-

ent from benchmark CNNs like VGG [Simonyan and Zisserman, 2015]. RC-Net is a combination of

convolutional autoencoder and CNN classifier. The convolutional autoencoder tries to optimize the re-

construction loss while the classifier wants to optimize the classification loss.

In RC-Net, the addition of classification loss (or supervised loss) to the reconstruction loss (or un-

supervised loss) makes the convolutional autoencoder capable of learning the underlying pattern of an

object with class information of the object. Conversely, the addition of reconstruction loss to the clas-

sification loss forces the classifier to learn class discriminatory information along with the underlying

pattern of an object. This way, the reconstruction and classification joint loss enforces RC-Net to balance

both extraction of underlying structure and inference of correct prediction of an object. In other words,

reconstruction loss regularizes the classification loss for the classification task. As discussed in Section

3.1, RC-Net is an SCAE. The theoretical justification for improvement of classification performance of

SCAE over a CNN is presented next.

Generalization Ability of SCAE

SCAE is a CNN based classifier including both conv and fc layers. Therefore it is essential to represent

both conv and fc in an uniform matrix multiplication setup for formulating the SCAE. Next we present

SCAE in an unified mathematical framework.

Assume X ∈ Rh×w×c and y ∈ Rm are the product image and the one-hot vector representing the

product class respectively. The height, width and color channels of the product image are h, w, and

c respectively and m is the number of product classes in a dataset. Given this, our aim is to learn a

classifier for the inputs X ∈ Rh×w×c to predict the targets y ∈ Rm. We train the classifier with a finite

batch of independent and identically distributed n training images of products. Before explaining our

CNN based classifier, we first formulate the matrix multiplication setup for performing conv operations.

Convolutional (conv) Operation Let Xin ∈ Rhin×win×cin be a product image which is the input to a

conv layer and we obtain a 3D output Xout ∈ Rhout×wout×cout , where hz, wz, and cz, z ∈ {in, out} are the
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Figure 3.5: Graphical illustration of conv layer as matrix multiplication

heights, widths and channels, respectively. Assume, κ ∈ R f×kh×kw×cin is the set of f number of conv

filters that belong to Rkh×kw×cin , where kh and kw are the height and width of a conv filter. Given that

the conv operation is denoted by ∗, Xout = Xin ∗ κ. The graphical illustration is shown in the middle

Convolution Layer block of Figure 3.5.

Assume sw and sh are the strides in horizontal and vertical directions respectively and s = sw = sh.

Let ψ be the number of rows or columns that are padded with zero in each side of the input in order to

produce the spatial size of the output identical to the size of input. Then the shape of the output can be

derived as: hout =
hin+2ψ−kh

s + 1, wout =
win+2ψ−kw

s + 1, and cout = f . Given this setting, the following

subsections successively present the procedure of converting the operations in conv [Ma and Lu, 2017]

and fc layers as matrix multiplications.

conv Operation as Matrix Multiplication Assume hin and win are the height and width of input

matrix after zero padding. The conv filters are moved across hin × win space of the input by stride s.

This process can be described as extracting houtwout numbers of kh × kw × cin patches from the product

image. Now each patch can be resized to a khkwcin × 1 column vector. Thus the input matrix Xin (with

the padded elements) can be represented as a khkwcin × houtwout matrix M as shown in the left Matrix

Representation block of Figure 3.5. Subsequently, each of f number of conv filters in κ, can be reshaped

to a 1 × khkwcin row vector. Thus, these f number of reshaped filters constitute a f × khkwcin filter

matrix K (refer to the left block of Figure 3.5). Finally the conv operations in a conv layer can be written

as the multiplication of two matrices as

Xout = KM, (3.2)

where the dimension of KM is f × houtwout as shown in the right block of Figure 3.5. By reshaping

KM, we can get back the output of size hout × wout × f of a conv layer. Similarly, the transposed conv
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operation [Dumoulin and Visin, 2016] can also be represented as a matrix multiplication. Next we define

the operations in fc layer as matrix multiplication operations.

fc Layer as Matrix Multiplication An fc layer can also be formulated in the similar way the conv layer

is defined as follows. Each channel (i.e., hout × wout matrix) in the conv layer (see the middle block of

Figure 3.5) can be visualized as a node of a fc layer. Thus hout = wout = 1. Similarly, the weights of the

connections from input vector to any node of the fc layer can be viewed as the weights of a kh× kw× cin

conv filter, where kh = kw = 1 and cin is the dimension of the input vector. Consequently the weight

matrix K of size f × khkwcin for this fc layer is eventually transformed into a f × cin matrix, where f

number of conv filters now turns out to be the number of neurons in the fc layer.

Therefore the input matrix M of size khkwcin × houtwout turns out to be a cin × 1 column matrix that

essentially represents the input vector to the fc layer. Thus for fc layers, the dimensions of K and M

become f × cin and cin × 1, respectively. Given this, the right hand side of (3.2) (i.e., KM) provides

f × 1 dimensional output vector of a fc layer. Therefore, the matrix multiplication KM works same as

the conv layer as defined in (3.2). Next we explain our proposed SCAE.

Supervised Convolutional Autoencoder (SCAE) Autoencoders (AE) reconstruct the inputs. An AE

with the addition of a classification task on the representation layer is defined as a SAE. The last layer of

encoder is usually considered as the representation layer from where the classification block (see Figure

3.6) is added to built a SAE. In this work, we introduce a convolutional framework for SAE which

we refer to as supervised convolutional AE (SCAE). The proposed SCAE can be defined as a CNN

classifier with an addition of a reconstruction block (see the decoder in Figure 3.6) for reconstructing the

input. Addition of reconstruction block into the CNN helps in establishing the generalizability, which

we address in the next section. The better generalizabality of SCAE tackles the illumination differences

between training and test images of retail product classification problem and improves the performance

Class 1

Class 2

Class 

Decoder

Classifier

Encoder

Figure 3.6: A linear supervised convolutional autoencoder (SCAE)
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of the product classification. Next we formally introduce SCAE.

Let us consider a linear SCAE with a single hidden conv layer with f number of conv maps as shown

in Figure 3.6. Assume the weights of the filters for the first conv layer are K ∈ R f×khkwcin for the input

image X as discussed in Section 3.3.1. The weights of the output conv and fc layers are Wr ∈ Rcin×khkw f

(to reconstruct the product image X) and Wp ∈ Rm×khkw f (to predict the product label y) respectively.

Let y′ and X′ be the predicted product label vector and reconstructed product image. Hence, for this

linear SCAE, y′ = WpKM and X′ = WrKM, where M is the matrix representation of the input

product image X and assume that KM includes necessary padding of rows and columns for performing

transposed conv operation (in decoder, refer Figure 3.6) as discussed in Section 3.3.1. Now assume,

Lp(·, ·) and Lr(·, ·) are the supervised/prediction and unsupervised/reconstruction losses respectively.

Since, classification of products is the primary task of our network, Lp(·, ·) is regarded as primary loss

while Lr(·, ·) is considered as secondary loss. Thus, given n number of training (product) images, our

objective is to minimize the expression

1
n

n

∑
i=1

Lp(WpKM(i), y(i)) + Lr(WrKM(i), X(i)). (3.3)

We aim to compare the proposed SCAE with the CNN. First, we theoretically show that the generalization

bound can be determined for SCAE. Second, we experimentally establish that SCAE performs better than

CNN. Next we present the theoretical results on generalization bounds for SCAE.

Generalization Bounds for SCAE In order to provide the theoretical guarantees of generalization of

linear SCAE, we show that the linear SCAE is uniformly stable. Rest of this section refers linear SCAE

as SCAE. Assume D1 and D2 are the two subsets of a (training) dataset of retail products having equal

number of images, where only one image in D2 is different from the images in D1.

An SCAE is said to be uniformly stable [Le et al., 2018] if the performances of product classification

by the SCAE models separately trained with D1 and D2, slightly differ from one another for a fixed number

of test images. In [Bousquet and Elisseeff, 2002], Bousquet et al. theoretically justify that the uniform

stability is one of the important notions for deriving generalization performance of learning algorithms.

This chapter establishes that the generalization bounds for SAE shown in [Le et al., 2018] is also satisfied

for the SCAE.

Now we show that the trainable parameters K (referred to as forward model), which are shared by

classification (supervised part) and reconstruction (unsupervised part) tasks of the SCAE, do not change

significantly (i.e., bounded by a positive real number ϱ) with the change of one sample in D1 (that

constitutes D2). Hence we can show that the SCAE is uniformly stable.

For ith training image of the dataset D1, y(i)
p and y(i)

r are the true product labels for the classification
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and reconstruction tasks respectively, the overall loss for the forward model K can be defined as

L(K) =
1
n

n

∑
i=1

Lp(WpKM(i), y(i)
p ) + Lr(WrKM(i), y(i)

r ). (3.4)

In our setting, y(i)
p = y(i) and y(i)

r = X(i). If we replace the tth training image (X(t), y(t)) by a random

new instance (X
′(t), y

′(t)), then we obtain the dataset D2, for which the loss can be written as

Lt(K) =
1
n

[
Lp(WpKM

′(t), y
′(t)
p ) + Lr(WrKM

′(t), y
′(t)
r )

+
n

∑
i=1,i ̸=t

Lp(WpKM(i), y(i)
p ) + Lr(WrKM(i), y(i)

r )
]
, (3.5)

where M(i) (or M
′(i)) is the matrix representation of X(i) (or X

′(i)) as defined earlier in Section 3.3.1.

Assume K (trained with D1) and Kt (trained with D2) correspond to the optimal forward models for the

two losses L(·) in (3.4) and Lt(·) in (3.5) respectively. Then the SCAE model is said to be ϱ-uniformly

stable, if the difference between the primary loss values for these two optimal models K and Kt for any

test data point (X, y) is bounded by ϱ i.e.,

|Lp(WpKtM, yp)− Lp(WpKM, yp)| ≤ ϱ. (3.6)

Given the matrix multiplication setting for conv layer in Section 3.3.1, without loss of generality, all

the six assumptions referred in [Le et al., 2018], are equally valid for the input matrix M corresponding

to input product image in the SCAE setting. The bound of generalization ϱ is determined based on

these six assumptions that essentially impose certain restrictions on the input product images, targets (or

class labels of the product images) and the trainable parameters of SCAE. The assumptions are formally

presented in Section C.1 of Appendix C.

By the definition of uniform stability, ϱ in (3.6), which defines the uniform stability of SCAE w.r.t.

the forward model (or shared parameters) K, is essentially the generalization bound of SCAE. Now, we

determine ϱ for SCAE using the following theorem.

Theorem 3.1. Under the Assumptions C.1 to C.6, for a randomly sampled data point (X, y),

|Lp(WpKtM, y)− Lp(WpKM, y)| ≤
a(σr + σp)n′σp

gn

(
r +

√
r2 +

4ϵgBWr BMr
a(σr + σp)n′

)

+
2ϵσpBWr BM

n
. (3.7)

RHS of (3.7) is essentially the ϱ which is the bound on the generalization error defined for a linear

SCAE in (3.6). That is, there exists a ϱ for which the classification error of SCAE lies within a closed
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interval. It indicates that the classification performances are consistent for SCAE. The complete proof

of the Theorem 3.1 is provided in Section C.2 of Appendix C. Note that (3.7) is valid in a probabilistic

sense. Next we find the generalization error for non-linear SCAE.

Non-linear SCAE The linear SCAE, as shown in Figure 3.6, becomes a non-linear SCAE if an activa-

tion function ϕ(·) is applied in the hidden conv layer. Then the prediction for linear SCAE, y′ = WpKM

and X′ = WrKM, become y′ = Wpϕ(KM) and X′ = Wrϕ(KM) for non-linear SCAE. In that case, a

generic bound on the generalization error for any non-linear SCAE cannot be drawn unlike linear SCAE.

The formulation of generalization error for non-linear SCAE depends on the type of activation function

ϕ(·). The activation function ReLU is a standard choice in designing a deep CNN. In fact, our RC-Net

utilizes ReLU in all the conv/fc layers. Therefore, we analyze the bound of generalization error for a

non-linear SCAE with the ReLU activation function.

For any x ∈ R, the activation function ReLU is defined as:

ϕ(x) =

x if x > 0,

0 Otherwise.
(3.8)

In that case, for any x1, x2 ∈ R, we get

ϕ(x1x2) =

x1x2 if x1x2 > 0,

0 Otherwise,
(3.9)

and

x2ϕ(x1) =

x1x2 if x1 > 0,

0 Otherwise.
(3.10)

Thus, we conclude that

x2ϕ(x1) ≤ ϕ(x1x2). (3.11)

Therefore, following (3.11), for our non-linear SCAE,

ϕ(K)M ≤ ϕ(KM) =⇒ ΦKM ≤ ϕ(KM), (3.12)

where ΦK denotes ϕ(K). Subsequently, similar to linear SCAE, all the aforementioned six assumptions

can be revised replacing Kt by ΦKt and K by ΦK. Thus, under these six assumptions, following (3.6)

and (3.7), the non-linear SCAE model with ReLU is also ϱ-uniformly stable,

|Lp(WpΦKt M, yp)− Lp(WpΦKM, yp)| ≤ ϱ. (3.13)
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Patch 1

Patch 2

Product Image

Figure 3.7: Patch 1 and Patch 2 are two arbitrary regions of the given product image. Intensity distribution
within Patch 1 is almost homogeneous. Naturally, Patch 1 does not include any key-point. However, there
is within-patch intensity variation in case of Patch 2. As a result, Patch 2 includes a number of key-points
(marked in red).

The inequality (3.7) in Theorem 3.1 defines ϱ. Following (3.12) and (3.13), we conclude that −ϱ is the

greatest lower bound (or infimum) while ϱ is the least upper bound (or supremum) of the generalization

error for a non-linear SCAE with ReLU activation function. On the other hand, −ϱ is the lower bound

and ϱ is the upper bound of the generalization error for a linear SCAE. Therefore, the generalization

bound for linear SCAE is tighter than that of non-linear SCAE. Note that this entire formulation is valid

for the non-linear SCAE with a single hidden layer. The non-linear SCAE with multiple hidden layers

needs further investigation. However, this analysis shows the benefit of a non-linear SCAE network.

Moreover, the improved generalizability of the RC-Net is experimentally validated with the ablation

study in Section 3.4.1. Next we present the part-level classification module of our solution.

3.3.2 Part-level Classification

The proposed part-level classification model (a) first generates the part proposals followed by (b) the

selection of discriminatory parts and (c) classification of the sequence of those parts using conv-LSTM

[Xingjian et al., 2015] as illustrated in Figure 3.3(b). Note that the input product image is first zoomed

three times and sent to our part-level classification model as shown in Figure 3.3(b). The motivation of

zooming of the input image is explained in the paragraph for Extracting Features from the Part Proposals

of this section.

Generating Part Proposals

We introduce an unsupervised key-point based approach for generating part proposals. We use BRISK

[Leutenegger et al., 2011] to find key-points on the product image I. We observe that these key-points are

the most important locations on the product image which require serious attention to derive the important

parts or components of the product. In a local neighborhood of the key-point, the change in intensity
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is higher than other regions which do not include key-points as demonstrated in Figure 3.7. In theory,

local maxima of gradient of image and its scale-space versions are precursor to localization of key-points

[Leutenegger et al., 2011]. Naturally, the change in intensity should be higher in and around a key-point

compared to a homogeneous region. This important observation drives us to extract the part proposals

around these key-points.

Assume that BRISK operator finds out η number of key-points on the image P. We extract a patch of

height h and width w from P centered at each qth key-point. In our implementation, only square patches

(i.e., h = w) are considered. In our implementation, the best result is obtained for h = w = 25 pixels as

detailed in the paragraph for Choice of h and w in Part-level Classifier in Section 3.4.1. The bounding

box defined by the tuple (xq, yq, hq, wq) extracts the patch (i.e., sub-image) Pq from P , where (xq, yq),

hq, and wq be the spatial location of the top left corner, height and width of the qth patch respectively,

where q = 1, 2, · · · , η. The patches {Pq} are considered as part proposals.

Determining Discriminatory Parts

Given patches or part proposals {Pq}, q = 1, 2, · · · , η, selection of discriminatory parts consists of two

steps, extraction of features from the part proposals followed by selection of winner proposals from the

groups of part proposals. These are detailed next.

Extracting Features from the Part Proposals The layers at the end of a CNN contain more discrim-

inatory information compared to the layers at the beginning [Huang et al., 2016]. This is an useful clue

for fine-grained classification of objects.

We extract features for each qth patch from the last convolution layer of encoder in the RC-Net. First

of all, the patch is resized to the size of receptive field of the last convolution layer. But the size of the

receptive field of the last layer of encoder in RC-Net is much larger. For example, the size of receptive

field is 160× 160 for 224× 224 input product image. Assume, the size of a patch extracted from the

224× 224 input product image is 25× 25. Then resizing 25× 25 patch into the size of receptive field

160× 160 destroys the spatial relationship between the neighboring pixels (or local features). This spatial

relationship essentially indicates the product’s part-level cue. In order to avoid this problem, we increase

the size of input product image during patch extraction (see Part-level Classification block of Figure

3.3(b)) so that the size of the patch becomes similar to that of the receptive field. Note that we obtain the

best performance when the input image is zoomed three times. This way the discriminating power of the

layers at the end is retained in our implementation.

Next the resized patch is forward propagated through the convolution layers of encoder in the RC-

Net to derive the features. Assume, for any patch P, we obtain a latent representation (or features)

xz1×z2× f1 from the last convolution layer of encoder in the RC-Net, where f1 is the number of 2D
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convolution feature maps, each with z1 rows and z2 columns. In other words, x contains z1z2 numbers

of f1-dimensional vectors vt, t = 1, 2, · · · ,z1z2.

As discussed in Section 3.2, bilinear (second order) pooling [Lin et al., 2015, Lin and Maji, 2017]

captures the local pairwise feature interactions in a translation invariant manner. The local pairwise

feature interactions will certainly encapsulate much more discriminatory information about the objects

than capturing same information without the pairwise features. The efficacy of bilinear pooling is evident

in our ablation study which is carried out in Section 3.4.1. The bilinear pooling on x results in A:

A =
1

z1z2

(
z1z2

∑
t=1

vtvT
t

)
+ diag(ϵ, ϵ, · · · , ϵ), (3.14)

where A is a matrix of size f1× f1, diag(ϵ, ϵ, · · · , ϵ) is a f1× f1 diagonal matrix and ϵ is a small positive

value. The matrix A is now flattened to form a f 2
1 -dimensional vector A = (a1, a2, · · · , a f 2

1
). Inspired

by [Perronnin et al., 2010], we then calculate the signed square-root of each element ai, i = 1, 2, · · · , f 2
1

of A as sign(ai)
√
|ai|, where sign(ai) and |ai| denote the sign and absolute value of ai respectively.

Consequently, the vector A is normalized into a unit vector by dividing A with its L2 norm ||A||2 i.e.,
A
||A||2 . This normalized Aq is now the feature vector for the qth patch Pq. The procedure for selecting

winner proposal is explained next.

Selection of Winner Proposal Assume β number of discriminatory parts are required to describe the

product (ablation study in Section 3.4.1 suggests β = 8). First η number of part proposals are spatially

clustered into β groups. The spatial clustering of part proposals essentially refers to the clustering of co-

ordinates of the key-points on the product. We implement k-means clustering algorithm [Lloyd, 1982]

to obtain the β group of key-points (or part proposals). Consequently, one proposal from each group is

selected for representing the parts as follows.

In each group, a proposal, which is visually similar with maximum number of proposals in the group,

is selected as the potential representative of a part. The visual similarity between the proposals Pq1 and

Pq2 is measured by calculating the cosine similarity between their features Aq1 and Aq2 .

Assume there are ν proposals in the bth group and S = [Sq1q2 ] is the ν× ν similarity matrix, where

Sq1q2 denotes the cosine similarity value between the proposals Pq1 and Pq2 . S is a symmetric matrix.

Then sum of all the elements in the qth
1 row (or qth

1 column) of S represents the overall similarity between

the proposal Pq1 and all other proposals in the group. The sum of elements in the qth
1 row (or column) is

referred to as the similarity index of the proposal Pq1 . Let us assume that the highest similarity index is

obtained for the qth
1 row over all the rows in S. Hence, the proposal Pq1 is visually most similar with the

other proposals in the bth group. Therefore, Pq1 is selected as a discriminatory part of the product.

Note that the part proposals may be overlapping. However, the actual parts of a product can never be
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overlapping as one part always exclusively denotes a specific important region of the product. We select

only one part proposal (or patch) from each group (or cluster) of part proposals. In our implementation,

there are 8 (i.e., the value of β) selected proposals. They hardly overlap. Even if they overlap, it does not

affect the classification accuracy at all.

Finally, we obtain β number of discriminatory parts and form a sequence, P = [P∗1 ,P∗2 , · · · ,P∗β ]

ordered by the location of the top-left corner of each patch within the product image P. The proposed

conv-LSTM network for encoding part-level cues of the products designed with this sequence P is dis-

cussed next.

Classification of Sequence of Parts using conv-LSTM Network

We present a stacked conv-LSTM [Xingjian et al., 2015] model for encoding the part-level features (see

Figure 3.3(b)) and boosting the overall performance of fine-grained classification of the products. The

proposed conv-LSTM network essentially works as a classifier. The block diagram of the proposed conv-

LSTM network is shown in Figure 3.8. A major benefit of using conv-LSTM over LSTM [Hochreiter

. . . . . .
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and Schmidhuber, 1997] is that the image can be directly fed to conv-LSTM without determining the

features.

From the previous step, we obtain the sequence of discriminatory parts P = [P∗1 ,P∗2 , · · · ,P∗β ]. In

the sequence P , the product image P is also included as the last member of the sequence to relate the parts

with the product image i.e., P∗β+1 = P. Thus the updated sequence is P = [P∗1 ,P∗2 ,P∗3 , · · · ,P∗β ,P∗β+1]

which is the input to the proposed conv-LSTM model.

As illustrated in Figure 3.8, we design a four-layered stacked conv-LSTM network for encoding the

part-level information. In the hidden states of the proposed conv-LSTM, we apply 64, 128, 256, and 512

convolution filters in the conv-LSTM layers (or units) from start to end respectively. Notably, 3 × 3

padded convolution operation is applied in the proposed conv-LSTM network. The hidden state of the

first conv-LSTM unit is essentially the output from the first conv-LSTM unit. The output from the first

conv-LSTM unit is then forwarded through a batch normalization and a max pooling layer. Subsequently,

the resultant output is set as input to the next conv-LSTM layer. Similar process is iterated for rest of the

layers.

The length of the sequence P (which is β + 1) is the number of time steps to unroll the conv-LSTM

units. The output of our conv-LSTM network at the last time step defines a feature vector z which is

further connected to a fc layer with 4096 neurons (referred to as hidden fc layer). Consequently, conv-

LSTM network performs batch normalization followed by ReLU and deterministic dropout [Santra et al.,

2020a] operations after the hidden fc layer successively. However, again these 4096 neurons of the hidden

fc layer are linked to another fc layer with c number of neurons equivalent to the number of classes

(referred to as output layer). The initial weights of the entire network are set following [Ronneberger

et al., 2015].

For the product image P, let ỹ be the predicted vector containing class confidence scores using our

conv-LSTM network. Assume θ̃ denotes the weights and biases of convolution and fc layers of our

conv-LSTM network. Now our intention is to train the network with n training samples to optimize the

parameter θ̃ for minimizing the average classification loss i.e.,

θ̃∗ = arg min
θ̃

1
n

n

∑
j=1

Llcl

(
y(j), ỹ(j); θ̃

)
, (3.15)

where y is the true label of P and Llcl(., .; θ̃) is the traditional cross-entropy loss [Goodfellow et al.,

2016]. The complete pipeline of classification is provided next.

3.3.3 Complete Classification Model

Both the modules (object-level and part-level) of the proposed solution perform the classification of fine-

grained products (see Figure 3.3(a)). The feature reconstruction mechanism of the object-level classifier
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RC-Net improves the classification performance over any standard CNN models like VGG [Simonyan

and Zisserman, 2015]. Similarly, encoding of part-level features using conv-LSTM helps in accurately

classifying fine-grained products. The classification potentiality of RC-Net is much higher than conv-

LSTM. But the proposed conv-LSTM network significantly boosts up the classification performance of

RC-Net. Therefore we combine them together for accurate classification of fine-grained products as

demonstrated in Figure 3.3.

The training of object-level and part-level networks are performed separately. Once training is com-

plete, a product image P (having label vector y) is fed to both the object-level and part-level classification

modules to obtain the predicted vectors y′ (see Section 3.3.1) and ỹ (see Section 3.3.2) containing class

confidence scores. The final classification scores yF for image P is obtained as

yF = y′ + γỹ, (3.16)

where γ ∈ [0, 1] is the weight of the part-level score to improve the object-level classification score for

recognition of fine-grained product. Thus, the predicted class confidence scores in yF carry both object-

level and part-level cues of the fine-grained products. The class probabilities for the image P is then

obtained by applying soft-max as

y′Fi =
expyFi

∑m
a=1 expyFa

, ∀yFi ∈ yF, i = 1, 2, · · · , m. (3.17)

The class with highest probability is the predicted label for the image P. Next we present experiments

and analysis.

3.4 Experiments

For our product classification task, training data consists of the product templates and the augmented

samples from these templates. On the other hand, the cropped (or extracted) products from rack images

are the test data. The size of the input image for the object-level classifier is 224×224 whereas the same

for part-level classifier is 672×672 after zooming the original input image by a scale of 3. This resizing

procedure of all products essentially takes care of correct classification of different sizes of same product.

For implementing part-level classifier, we experimentally set the number of discriminatory parts, β = 8

as detailed in the paragraph for Ablation Studies of this section. In our classification scheme, the weight

for part-level classification score is experimentally set as γ = 0.6. Next we describe the normalization

of data followed by data augmentation and learning approach of the networks.

Data Normalization The training/test images are first transformed into a fixed-size 224× 224 images

without altering the aspect ratio. We first resize a w̃× h̃ image to 224× 224 h̃
w̃ if w̃ > h̃, else 224 w̃

h̃
× 224.

55



Fine-grained Classification of Products

We then superimpose the resized image in a white 224× 224 frame in a way such that the center of the

resized image must coincide with the center of the white frame. Next the transformed product image

is normalized by dividing all pixel values of the image by the highest pixel value of the image. For

part-level classification, we resize the normalized image to the resolution of 672×672.

Data Augmentation For the problem under discussion, only one (or very few) template image(s) is

(are) available for each product. But training of deep learning model requires large amount of training

data per product class. So we synthetically augment ∼104 training samples for each product as we did in

the previous chapter (see Section 2.3.1 for details). We utilize these augmented samples for training the

object-level and part-level classifiers of the proposed solution.

Learning Approach The augmented product images (including the templates) and their class labels

are used to train the network with the pytorch implementation of mini-batch stochastic gradient descent

(SGD) [Robbins and Monro, 1951] optimization technique. The hyper-parameters of the SGD for our

networks are set experimentally following training algorithms of deep learning based methods [Le et al.,

2018, Santra et al., 2020a, Simonyan and Zisserman, 2015, He et al., 2016]. In our experiments, the

mini-batch size is set to 24. SGD initially starts with a momentum of 0.99, learning rate of 0.001, and

weight decay of 10−6. Further the learning rate is updated after each 10 epochs dividing it by 10. Both

object-level and part-level classifiers are trained for at most 60 epochs.

Competing Methods The pytorch implementation of pre-trained deep learning networks, VGG [Si-

monyan and Zisserman, 2015] and ResNet [He et al., 2016] are retrained with our training data for the

product classification task following the protocol discussed in the previous paragraph. These networks

are also trained for at most 60 epochs. Rest of the competing approaches discussed in Section 3.2 are

reproduced following the respective papers.

3.4.1 Results and Analysis

Assume we have nT number of test images out of which n′T are correctly classified by a specific method.

The accuracy of the method is defined as: n′T
nT
× 100 (%). Following the standard practice in reporting the

performance of deep learning architectures [Santra et al., 2020a, Wan et al., 2013], we determine five-fold

classification accuracy for each dataset and report the mean of these five accuracy values for each dataset.

This is done in order to consider (five different) random initialization of the deep learning networks. In

other words, all the experiments are repeated five times due to five different random initialization of the

training data. The average performance (or mean accuracy) of these five trials are shown in Table 3.2.

The fine-grained product classification performance on both In-house (comprising of six categories

breakfast cereals (BC), deodorant (DEO), lip care (LC), oral care (OC), personal wash (PW) and mixed

(MIX)) and benchmark datasets (Grocery Products (GP), WebMarket (WM) and GroZi (GZ)) are tabu-

lated in Table 3.2. The details of these datasets are provided in Appendix B. It is seen that our proposed
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Table 3.2: Product classification accuracy (in %) on various datasets. VGG, VGG+DD and ResNet refer
to VGG-19, VGG-19 with deterministic dropout (DD) [Santra et al., 2020a] and ResNet-101 respectively.
The results for DD [Santra et al., 2020a] are provided from respective paper.

Methods
Categories of In-house Dataset Benchmark Datasets

BC DEO LC OC PW MIX GP WM GZ

VGG [Simonyan and Zisserman, 2015] 86.03 88.75 85.19 72.01 78.12 63.29 66.05 64.48 36.17

TLA [Xiao et al., 2015] 86.82 88.12 85.40 72.69 78.46 64.00 70.32 68.21 39.92

PSCNN [Huang et al., 2016] 88.83 89.75 88.68 78.71 81.89 70.44 72.08 68.12 40.63

DRCN [Ghifary et al., 2016] 89.15 89.91 90.03 80.43 83.04 70.60 73.36 70.00 41.60

ResNet [He et al., 2016] 90.09 90.42 88.59 73.73 80.36 68.55 69.50 67.25 38.27

OPA [Peng et al., 2017] 90.13 89.91 89.91 79.58 83.85 73.64 71.77 69.52 41.57

IBP [Lin and Maji, 2017] 89.89 89.88 89.09 78.97 82.63 71.48 72.87 69.06 41.23

WSCP [Ge et al., 2019] 92.55 89.84 89.18 86.22 84.05 73.87 77.94 70.60 44.10

DD [Santra et al., 2020a] - - - - - - 81.62 - 45.15

VGG+DD 89.21 90.33 87.97 72.13 79.24 66.81 70.81 67.00 38.56

RC-Net 90.19 90.70 91.93 87.73 89.51 79.08 75.95 72.40 46.36

FGC 92.47 90.77 91.93 90.79 92.62 84.01 81.20 75.71 48.12

classification scheme, which captures the object and part-level cues, stands out as winner (in most of the

cases) among all the methods highlighted in Table 3.2. We find that the proposed RC-Net (object-level

classifier) and FGC classification scheme (object and part-level classifier) perform equally well when

there are a few number of fine-grained products in a dataset like LC and DEO of In-house dataset.

Our proposed approach also outperforms other methods for benchmark datasets except for GP dataset

that includes huge number of product classes (around 3K). Still, our FGC scheme (integrating part-level

classifier with RC-Net) performs similar to state-of-the-art methods on GP dataset. This supports the

potential of our FGC scheme that achieves similar performance like state-of-the-art approaches when the

number of classes is high. Overall, our FGC classification model significantly enhances the fine-grained

classification performance. However, Table 3.2 shows that the classification accuracy on In-house dataset

is higher compared to the accuracy on benchmark datasets for all the methods. In Table 3.3, we explain

why the performance on In-house datasets are impressive compared to the performance on benchmark

datasets. In Figure 3.9, example classification results due to various methods for some fine-grained

products are demonstrated. The superiority of our proposed scheme is also evident in these example

results.

Ablation Study The ablation study is carried out on both object-level and part-level classification

modules of the proposed scheme. We have performed ablation studies on (a) the influence of decoder

in RC-Net for improving performance, (b) the importance of part-level classifier along with object-level

classifier, (c) optimal number of discriminatory parts in building part-level classifier, and (d) effectiveness

of bilinear pooling.
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Table 3.3: Analysis of performance of the proposed approach on different datasets

Dataset Characteristics of training and test images
In-house To generate training images, the products arranged on the racks of a supermarket,

are taken out from the racks and imaged in isolation in the store environment. Thus,
the product templates used in training and product test images cropped from the rack
are nearly identical, captured under same lighting condition using the same camera.
As a result, there is minimal intensity variation between training and test images
and the classification performance for different categories of In-house dataset are
roughly between 84% to 92%.

B
en

ch
m

ar
k GP The product templates for training are high resolution images downloaded from the

web. Therefore, the intensity variations in the product templates and the cropped
product images from the supermarket rack are significant. The training and test im-
ages have different resolutions and are possibly captured using different cameras.
Further, the dataset includes around 3000+ product classes. As a result, the perfor-
mance of our method drops to around 81%.

WM The products are taken out from the racks and made to lie on the floor face up
to capture training images. The imaging system from the top introduces tilt and
skew. Naturally, the product templates are not ideally captured. The illumination
difference between the rack images and product template images is visible. We have
achieved around 75% classification accuracy on this dataset.

GZ The resolution of both product templates and rack images are poor. The product
template images are downloaded from the web and thus, most of the cases, they
are not entirely identical to the products displayed on the rack images. Therefore,
the test data largely differ from the training data. As a result, the accuracy on this
dataset is nearly 48%.

(a) Influence of decoder in RC-Net for improving performance In our object-level classifier RC-

Net, the contribution of reconstruction segment of the network is examined for classification of the prod-

ucts. Note that the reconstruction segment is the decoder of RC-Net (see Figure 3.4). The entire RC-

Net is referred to as Encoder+Decoder+Classifier while the network without reconstruction segment is

symbolized as Encoder+Classifier. Figure 3.10 presents the performance of these two networks on both

In-house and benchmark datasets. It can be seen that the improvement in classification performance is

8% to 18% when the reconstruction segment is integrated with the Encoder+Classifier network.

(b) Importance of part-level classifier along with object-level classifier From Table 3.2, it can be

clearly seen that the classification performance drops 1% to 5% for all the datasets except DEO and

LC, if we do not integrate part-level module with our object-level module. In Table 3.2, RC-Net refers

to object-level classifier while FGC denotes object-level with part-level classifier. Therefore, part-level

classifier indeed boosts up the performance of fine-grained classification.

(c) Optimal number of discriminatory parts in building part-level classifier Our study on optimal

number of discriminatory parts in building part-level classifier is performed on PW category of In-house

dataset. The experiments are carried out for β = 2, 4, 6, 8, 10, 12, 16, and 18 and the corresponding
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classification accuracy are provided in Figure 3.11 keeping other parameters unchanged. We can clearly

see that the optimal performance is obtained for β = 8. Moreover, if we do not consider ordered sequence

of the discriminatory parts, the performance drops from 92.62% (which is the highest accuracy obtained

with β = 8) to 88.93%. Thus ordered sequence of the parts is important in our model.

(d) Effectiveness of bilinear pooling Bilinear pooling shows good performance in representing

fine-grained features of the objects [Lin et al., 2015, Lin and Maji, 2017]. Here we carry out an important

ablation study for evaluating the effectiveness of bilinear pooling. Our experiments find that the perfor-

mance improvement (in %) is 2.05, 0.02, 0.59, 1.79, 2.41, 1.88, 3.67, 1.92 and 0.81 on BC, DEO, LC,

OC, PW, MIX, GP, WM, and GZ datasets respectively, if we use bilinear pooling in our part-level classi-

fier. These results exhibit the significant contribution of bilinear pooling in our part-level classifier. Since

bilinear pooling consumes insignificant processing time in GPU, this does not add any computational

overhead to our part-level classifier.

Choice of h and w in Part-level Classifier As discussed in Section 3.3.2, in our implementation

of part-level classification, we consider only square image patches (i.e., h = w) for the deep learning

framework of our proposal following [Simonyan and Zisserman, 2015, He et al., 2016]. The experiments

are carried out for various h (or w) such as h = 15, 20, 25, 30, 35, 40 on MIX category of In-house dataset

(as this category includes mostly fine-grained products). The respective receiver operating characteristic

(ROC) curves are drawn by plotting the true positive rate (TPR) against the false positive rate (FPR) in

Figure 3.12 during training. The figure clearly depicts that the area under the curve (AUC) for the ROC

curve with respect to h (or w) = 25 is higher than the AUCs for other ROC curves. Hence we have

chosen h = w =25 pixels in our implementation.

Notes on Test Time We implement the proposed algorithm in python in a computing system with the

specs as follows: 64GB RAM, Intel Core i7-7700K CPU @ 4.2GHz × 8 and TITAN XP GPU. Figure

3.13 illustrates the time (in milliseconds (ms)) consumed by different modules of the proposed classifier

for processing a single test image. Our classification algorithm recognizes an image of a retail product in

380ms. The object-level classifier consumes only 13ms to process its input image of resolution 224× 224.

Figure 3.10: Accuracy (in %) of RC-Net with (Encoder+Decoder+Classifier) and with (En-
coder+Classifier)
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Figure 3.11: Classification accuracy (%) for different values of β

While the part-level classifier completes its execution in 367ms, the part detection and part encoding

sub-modules take 300ms for processing 672× 672 image and 67ms for processing 224× 224 images

respectively. Note that part detection refers to the sub-routines generating part proposals and determining

discriminatory parts, and part encoding refers to conv-LSTM classification network explained in Section

3.3.2. Therefore, the part-level classifier improves the accuracy at least ∼2% (see Table 3.2) at the cost

of 367ms. Next we present the efficacy of our fine-grained classifier (refer to as FGC) when we embed

this in our system built in Chapter 2.

3.4.2 Performance Analysis with the Proposed Fine-grained Classifier

The block diagram of our product detection system (discussed in Chapter 2) is demonstrated in Figure

3.14. As discussed earlier in Chapter 2, it has three primary modules: (i) generation, (ii) classification and

(iii) non-maximal suppression of the region proposals. The proposed fine-grained classification module

is built inside the classification step (indicated by blue dotted rectangle in Figure 3.14) of the product

detection system. Thus in this chapter, we assess the performance of our product detection system with
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Part-level
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Figure 3.13: Execution time per test image (in ms) of various modules

our proposed fine-grained classifier (which we refer to as ERP+FGC) for detecting products.

We implement the proposed solution ERP+FGC for detecting products in a rack as follows. We first

run our ERP (see Section 2.2.1) algorithm on a rack image to generate a number of proposals which are

essentially the initial set of detected products. Each proposal is then fed to our FGC to determine the

class label and class confidence score. Finally, the products are detected by removing the overlapping

proposals using greedy non-maximal suppression (greedy-NMS) [Felzenszwalb et al., 2010] technique.

The same set of methods, which were compared with our system in Section 2.3.2 of Chapter 2, are

considered in this chapter for the comparative study. Additionally, we assess the efficacy of our FGC

embedding in R-CNN and hence, we implement the R-CNN [Girshick et al., 2014] by substituting its

classifier with our FGC, which we refer to as R-CNN-M.

Like the previous chapter, we calculate F1 score (see Appendix A) for analyzing the detection per-

formance. Table 3.4 tabulates the performance of the methods on both In-house and benchmark datasets.

Due to correct classification of products, the improvement in performance of R-CNN-M over R-CNN is

remarkable as shown in Table 3.4. On the other hand, it is seen that ERP+FGC improves the performance

of ERP+CNN by at least ∼1%. Furthermore, this is evident from the table that R-CNN-M outperforms

other methods (except our ERP+FGC and ERP+CNN) by at least ∼3% except GDNN [Franco et al.,

2017] on GroZi dataset. Our ERP+FGC beats all other methods and establishes its superiority.

When we embed the proposed fine-grained classifier in our system built in Chapter 2, our un-
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Figure 3.14: Pipeline of the proposed system (in Chapter 2, ERP is introduced for step (i) generation
of region proposals) for detecting fine-grained products on the rack. Dotted rectangle highlights our
contribution where the classification of products/region proposals are performed using our proposed fine-
grained classifier.

62



3.5 Summary

Table 3.4: Product detection results (F1 score in %) on In-house and benchmark datasets

Methods
Categories of In-house Dataset Benchmark Datasets

BC DEO LC OC PW MIX GP WM GZ

S1 [Zhang et al., 2007] 41.01 45.21 47.87 48.08 54.91 49.01 58.39 49.19 31.71

CHM [Merler et al., 2007] 48.04 33.56 60.12 30.77 36.40 44.74 51.20 52.81 24.70

MLIC [George and Floerkemeier, 2014] 64.45 50.08 54.91 40.23 59.97 48.76 59.07 53.33 33.10

R-CNN [Girshick et al., 2014] 82.04 83.76 87.99 79.72 88.05 73.16 78.99 72.01 40.91

HOG [Marder et al., 2015] 62.00 28.52 49.37 28.73 44.06 50.62 58.11 43.03 28.33

BoW [Marder et al., 2015] 65.05 45.10 70.72 53.31 71.23 59.91 59.91 55.15 26.83

GBoW [Franco et al., 2017] 72.07 49.98 68.29 46.79 77.22 53.41 74.34 65.59 39.66

GDNN [Franco et al., 2017] 82.12 55.49 82.55 51.32 87.64 61.98 73.09 71.13 43.99

SET [Karlinsky et al., 2017] 83.61 83.95 88.36 81.77 88.16 74.22 79.05 72.13 43.78

U-PC [Ray et al., 2018] 84.77 52.59 86.29 55.65 81.15 65.49 76.20 67.79 40.10

R-CNN-M 87.94 83.76 89.69 85.17 90.79 77.73 79.66 74.00 43.99

ERP+CNN (see Chapter 2) 90.86 83.76 92.49 89.80 92.12 82.98 81.05 78.76 47.49

ERP+FGC 91.26 85.02 92.83 90.87 93.02 85.12 82.45 80.22 47.84

optimized GPU code classifies 20 region proposals in parallel in 367ms. If our region proposal algo-

rithm generates 500 proposals per rack, the classification time for a rack is approximately 500
20 × 367ms

= 9.17s. We can see that significant improvement in product detection performance (refer Table 3.4) can

be obtained at the expense of ∼9s. Next we summarize the work done in this chapter.

3.5 Summary

In this chapter, we have addressed an important drawback of the proposed product identification system

of Chapter 2, which is mis-classification of fine-grained retail products under varying illumination. To

address this issue, we have designed a two-level fine-grained classification scheme considering both part

and object-level cues.

The object-level and part-level cues of the product are captured with our object-level and part-level

classifiers respectively. The proposed object-level classifier, the RC-Net being a SCAE has the gen-

eralization ability that somewhat resolves the illumination difference between training and test product

images. Further, RC-Net efficiently encodes the overall (or global) information of a product. This chapter

also theoretically shows the generalization ability of SCAE by deriving a bound of generalization error.

On the other hand, our unique annotation-free part-level classifier encodes the part-level cues (i.e., local

information of a product), where the discriminatory parts of the product images are first identified around

the key-points. Then the ordered sequences of these discriminatory parts, encoded using convolutional

LSTM, describe the products uniquely. Finally, the part-level and object-level models jointly determine

the products explicitly explaining coarse to finer descriptions of the products. Our study finds that the pro-
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posed object-level classifier RC-Net generalizes better while the part-level classifier significantly boosts

the overall fine-grained classification performance.

We have seen that the overall product classification accuracy is in the range of 90% for In-house

dataset. The accuracy is less for benchmark datasets due to large variations between training and test data.

However, at the end, we embed this fine-grained classifier in our product detection system (presented in

Chapter 2) and we have witnessed the performance improvement of our system. Our system implements

greedy-NMS as its last subroutine. It is noticed that there exists some confusion between the choice of

best (geometrically) fitted region proposal versus region proposal with higher classification score due to

greedy nature of non-maximal suppression (greedy-NMS). As a result, the proposed system sometimes,

either misses the best (geometrically) fitted region proposal resulting inaccurate identification of all the

(vertically) stacked products, or assigns incorrect class label to a product. In the next chapter, we resolve

this issue of greedy-NMS introducing our graph-based NMS posing the problem as a cost optimization

problem of a directed acyclic graph.
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C H A P T E R 4

Graph-based Non-maximal Suppression of

Region Proposals

4.1 Introduction

Figure 4.1 illustrates the block diagram of the product detection framework proposed in Chapter 2 and

modified in Chapter 3. In the previous two chapters, we have addressed two important issues of detecting

retail products: (a) successful generation of region proposals, and (b) classification of fine-grained prod-

ucts. There exists yet another important issue of selecting the right region proposal. The correct choice

between the best (geometrically) fitted region proposal versus region proposal with higher classification

score, determines the right region proposal. We address this issue of selection of right region proposal in

this chapter. After successful selection of region proposal, we are able to (i) accurately identify all the

Rack Image

(b)
Classification

of Region
Proposals

(c) 
Removal of
Overlapping
ProposalsC

la
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Kelloggs

Fruit Kelloggs

Forest

Figure 4.1: Flow chart of our system proposed in Chapter 2 for detecting products. This chapter addresses
the step (c) Removal of Overlapping Proposals of our system (highlighted by green dotted rectangle)
while the steps (a) Region Proposals and (b) Classification of Region proposals are respectively addressed
in Chapters 2 and 3.
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(vertically) stacked products and (ii) assign the appropriate class labels to the products present in a rack.

The system for product identification is divided into two phases. In the first phase, a number of

potential region proposals (where the potentiality is measured through classification scores) are generated

to capture products on the rack. In the second phase, the region proposals, which are unlikely to be a

product, are eliminated. Our previous attempts in Chapters 2 and 3 looked into the first phase while we

take care of the second phase in this chapter. We have introduced a graph based technique to eliminate

the region proposals which are unlikely to be a product. This second phase is the major contribution of

this chapter.

As shown in Figure 4.1, our system has three steps (a) generation, (b) classification, and (c) removal

of (overlapping) region proposals. Step (a) finds potential regions around the products on a rack image

using ERP (see Section 2.2.1). Subsequently step (b) assigns the classification (or confidence) scores and

product classes to the proposals using our FGC (see Section 3.3.1). In step (c), our system implements a

greedy non-maximal suppression (greedy-NMS) [Felzenszwalb et al., 2010] approach for removing the

overlapping proposals in Chapters 2 and 3. The classification scores of proposals are non-maximally

suppressed. The contribution of our method in this chapter is to devise a better graph-based non-maximal

suppression (G-NMS) strategy to select best potential region to describe a retail product sitting on the

rack.

The working principles of greedy-NMS and G-NMS are different. The advantages of G-NMS over

greedy-NMS are introduced in this paragraph. Greedy-NMS always eliminates the regions (with lower

scores) which are overlapped with the regions with higher scores. This greedy procedure often discards a

(geometrically) better fitted proposal (with lower score) which is overlapped with a proposal with higher

score. As a result, greedy-NMS does not provide satisfactory result in most cases. We introduce a novel

graph-based non-maximal suppression (G-NMS) technique using both classification scores and labels

of the proposals for removal of overlapping proposals. G-NMS first determines the potential confidence

score (pc-score) of a proposal H by finding out the set of proposals (referred to as overlapping group) that

are overlapped with H. Subsequently a directed acyclic graph (DAG) is constructed with the proposals

using their pc-scores and overlapping groups. Finally, we find out the maximum weighted path of the

DAG to find the products on the rack.

In [Ray et al., 2018], the authors eliminate overlapping detection by finding out the maximum

weighted path of a DAG constructed with the potential regions. But their DAG fails to detect verti-

cally stacked products while the DAG in our G-NMS can detect both horizontally and vertically stacked

products as explained and demonstrated in Section 4.2. With respect to state-of-the-art approaches, the

contributions of the proposed scheme are listed below:

(a) An unique approach to calculate potential confidence scores of the automatic identification of

stacked products in the rack images is proposed for modelling a directed acyclic graph.
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(b) The graph-based non-maximal suppression scheme is introduced for addressing a serious bottle-

neck of greedy non-maximal suppression technique.

The remainder of the chapter is structured as follows. Section 4.2 presents the proposed method. The

experimental study is carried out in Section 4.3. Finally, Section 4.4 summarizes the chapter.

4.2 Method M3: Graph-based Non-maximal Suppression

Let m be the number of individual products (i.e., product classes) in the database of product templates

D. Assume that the individual product be denoted as Dt, t = 1, 2, · · · , m. Let I be the given rack image

which displays multiple products. Given this setting, we aim to localize the products Dt in the rack I.

As illustrated in Figure 4.1, we first run region proposal algorithm, ERP to obtain χ number of region

proposals Hz, z = 1, 2, · · · , χ. These Hz are the initial set of detection, some of which are overlapping.

Each Hz is then fed into our classifier, FGC for determining the classification score and product class of

the proposal Hz. Next we introduce the G-NMS for removing overlapping/ambiguous detection.

The proposed G-NMS takes region proposals, scores and labels of those proposals and provides the

final output with detected products as shown in Figure 4.2. The goal of our G-NMS is to retain at most one

detection per group of overlapping detection. The intersection-over-union (IoU) [Girshick et al., 2014]

between two regions defines the overlap amount (between those two regions). The overlapping group of

any proposal Hz is a set of proposals which overlap with Hz by an amount more than a preset IoU value

IoUthresh. Example group of overlapping detection can be seen in Figures 4.2 and 4.3(a) (refer blue

arrow). The greedy non-maximal suppression (greedy-NMS) [Felzenszwalb et al., 2010] retains at most

one detection (having highest class confidence score) per overlapping group of regions.

Bottleneck of greedy-NMS In the procedure of greedy-NMS, eliminating all the regions with lower

scores that are overlapping with a region with the highest score may sometime remove a potential region

Graph-based 
Non-maximal 
Suppression

Scores of Proposals
Detected Products
BC12 BC13

Labels of Proposals

BC1
2

0.980.750.940.89 ...

BC1
2 ... BC1

3
BC1

3

Figure 4.2: Block diagram of the proposed G-NMS scheme. BC12, BC13 and 0.89, · · · , 0.98 are the
product classes and scores of the proposals respectively obtained from the classifier.
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(a) Region proposals (b) greedy-NMS (c) Proposed G-NMS

Figure 4.3: For an example rack image, (a) region proposals, and results of (b) greedy-NMS and (c) our
proposed G-NMS. Product classes are on the top-left corner of the rectangles.

that provides a better geometric fit for the true object. An example of this can be seen in Figure 4.3(b).

The detected region using greedy-NMS for the second product (from left) is incorrect even though the

region proposals (see Figure 4.3(a)) have provided a better geometric fit (by BC10) for the product. In

Figure 4.3(a), BC09 and BC10 are the similar yet non-identical products that are placed on the second

positions (from left) on the rack. The only difference between BC09 and BC10 is the higher dimension

of BC09. Due to this minor variation between products, the classifier often gets confused and assigns the

higher class confidence score to BC09 in the region marked by blue arrow in Figure 4.3(b) over all other

regions in the group shown in Figure 4.3(a). As a result, greedy-NMS wrongly detects the product as

BC09 (see Figure 4.3(b)).

Why G-NMS over greedy-NMS? The bottleneck of greedy-NMS (explained in the above paragraph

and shown in Figure 4.3(b)) is resolved by our G-NMS technique whose result can be seen in Figure

4.3(c). Let there be a region proposal H classified as a product D1. There are other region proposals

overlapping with H. If these other proposals are also identified as D1, then the classification scores

of these proposals are very close to that of H. Further, the variations of overlap amount between H and

these proposals should be low. With these two important findings, we first calculate a potential confidence

score (or pc-score) for each of the region proposals. The pc-score is derived by adding two penalty terms

with the classification scores of the proposals. The penalty terms essentially characterize previously

discussed two findings. Therefore, the pc-scores are the rectified classification scores of the proposals.

Subsequently, we model a directed acyclic graph (DAG) with the region proposals as the nodes of the

DAG. The maximum weighted path of the DAG provides the detected products (see Figure 4.3(c)).

Why G-NMS over DAG in [Ray et al., 2018]? The DAG in [Ray et al., 2018] always selects at most

one detection per group of overlapping detection aligned vertically. Their DAG approach fails in detecting

all stacked products (refer Figure 4.4(a)). In their method, DAG is designed considering proposals at each

and every locations of the rack horizontally. As a result the approach of [Ray et al., 2018] is constrained
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(a) (b)

Figure 4.4: Output of (a) DAG in [Ray et al., 2018] and (b) proposed DAG. Red boxes show the detec-
tions. Product classes are on top-left corner of the boxes.

by the horizontal alignment of proposals. In contrast, the present approach prepares DAG considering

overlapping groups of proposals where alignment of proposals does not matter. An example using DAG

modelled in [Ray et al., 2018] is shown in Figure 4.4(a). The result using our G-NMS approach, which

correctly identifies all the products present in the rack, is shown in Figure 4.4(b).

4.2.1 G-NMS with An Example

The proposed G-NMS is a two-step process. First, our G-NMS calculates potential confidence scores

(pc-scores) of the proposals. Next G-NMS models a DAG of the regions with the pc-scores and finds out

the maximum weighted path of the DAG. We now describe these steps using an example presented in

Figure 4.5.

In Figure 4.5(a), six region proposals are shown for a rack image I. The proposals are first ordered

by sorting their scores in descending order. Let H1, H2, · · · , H6 be the ordered proposals with the scores

s1, s2, · · · , s6 respectively, obtained from CNN as explained in the second paragraph of Section 4.2. Thus

s1 > s2 > · · · > s6. For each Hz, z = 1, 2, · · · , 6, we first find out the overlapped regions of Hz. As

shown in Figure 4.5(a), let H1, H3, H4, H5 be the overlapped regions of H2 with the overlap amounts

o1, o3, o4, o5 respectively, and H′2 = {H1, H3, H4, H5}.

Let the product class of H2 be D1. Now we find out other proposals which are also recognized as

 = { , , }ℍ
′

1 𝐻2 𝐻3 𝐻5

 = { , , , }ℍ
′

2 𝐻1 𝐻3 𝐻4 𝐻5

 = { , , , , }ℍ
′

3 𝐻1 𝐻2 𝐻4 𝐻5 𝐻6

 = { , }ℍ
′

4 𝐻2 𝐻3

 = { , , , }ℍ
′

5 𝐻1 𝐻2 𝐻3 𝐻6
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′
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(a)

H4
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Figure 4.5: (a) {Hq}, q = 1, 2, · · · 6 are the ordered proposals. H′z includes the overlapped regions of Hz
s.t. ∀Hq, IoU(Hq, Hz) > IoUthresh. (b) Graph G constructed with all Hq as shown in (a). Continuous
arrow (→): edges between regions, dashed arrow (99K): edges between source/sink and region.
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D1 in H′2. Let H1 and H5 be also classified as D1. Hence out of the four regions in the overlapping

group H′2, two regions {H1, H5} are classified as the same product and H′2 − {H1, H5} (≡ {H3, H4})
are the regions classified as the products other than D1. Assume H2 better fits a true product (i.e., IoU

value between H2 and the ground truth bounding box (GTBB) for the true product is greater than the IoU

values between other three proposals and the GTBB).

As mentioned earlier, the deviation of the classification scores s1, s5 of {H1, H5} in H′2 from the

classification score s2 of H2 is less than the deviation of the classification scores of {H3, H4} in H′2 from

the classification score of H2. And the standard deviation of the overlap amounts o1, o5 of the same is

less than that of {H3, H4}. These properties are taken into account when defining the pc-score for H2

(say psH2) as

psH2 = s2 −
|s1 − s2|+ |s5 − s2|

2
− std dev({o1, o5}), (4.1)

where std dev(·) computes the standard deviation of a set. The psH2 represents not only the class confi-

dence score but also the relative importance of the proposal in an overlapping group.

Using the potential confidence scores and overlapping groups of the regions, we now model a directed

acyclic graph (DAG) (say G) as follows. As demonstrated in Figure 4.5(b), the set of vertices in G includes

the proposals H1, H2, · · · , H6 and two dummy nodes: source S and sink T. First we draw the outgoing

edges from source S to all other vertices except T and assign a small number ϵ as the weights to all these

edges. Similarly, the edges are drawn from all the vertices except the source S (i.e., from all the proposals)

to the sink T and the weights of the edges are the pc-scores of the corresponding proposals. For example,

the weight of the edge from H1 to T is psH1 . All the connections from/to source/sink are shown using

dashed line in the graph in Figure 4.5(b). Rest of the vertices H1, H2, · · · , H6 in G are now sequentially

(starting from H1) selected to make connections between them (highlighted using continuous arrow in

Figure 4.5(b)). The weight of any such connection from Hz to Hz′ is the pc-score of Hz i.e., psHz .

However, the connections between the proposals in G are established in such a way that the graph G does

not contain any cycle. Any path of G includes at most one detection per overlapping group.

Therefore, by design, any edge of G should be from one region with higher pc-score to another region

having lower pc-score. This criterion enforces non-existence of cycles in G. The graph G must have an

outgoing edge from a region Hz to Hz′ only when the intersection of the overlapping groups of Hz and

Hz′ (i.e., H′z and H′z′) does not include any of these two proposals Hz and Hz′ . Further, the outgoing

edge connects Hz to Hz′ if any predecessor of Hz does not belong to the overlapping group of Hz′ . The

graph in Figure 4.5(b) satisfies these properties given the overlapping groups of Figure 4.5(a). The two

steps of the proposed G-NMS, determining potential confidence scores of proposals and construction of

directed acyclic graph (DAG) (the maximum weighted path of which essentially generates the output)

are formally described in the following two successive sections.
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4.2.2 Determining Potential Confidence Scores of Proposals:

Let H = {Hz}, z = 1, 2, · · · , χ be the sets of ordered proposals. For each Hz ∈H, we first find out the

set of overlapped regions H′z = {Hq}, q = 1, 2, · · · , χ′ ≤ χ. However out of χ′ number of elements

in H′z, let χ′′ number of regions and Hz are recognized as same product. Assume the scores and overlap

amount of these identically labelled χ′′ number of regions are defined by the sets S′z and Oz respectively.

For each Hz in H, we define a potential confidence score (pc-score), psHz
as follows:

psHz
= sz −

∑s∈S′z
|s− sz|
|S′z|

− std dev(Oz), (4.2)

where | · | denotes the cardinality of a set. If |Oz| = 0 or |Oz| = 1, we set std dev(Oz) = 0. If

|S′z| = 0, we set
∑s∈S′z

|s−sz|
|S′z| = 0. In (4.2), the second and third terms of the right hand side define

the consistency of scores and closeness of overlaps of the proposals of same class in a group. Thus the

proposal with higher pc-score in an overlapping group provide a better fit for the true product. Next we

present construction of DAG of proposals with the pc-score.

4.2.3 Construction of Directed Acyclic Graph (DAG):

The DAG is defined as G(V, E) of χ number of ordered region proposals Hz ∈H. Here V and E define

the set of vertices and edges of G respectively, where V = {S, T} ∪H and |V| = χ + 2.

The connections between the vertices must be made in a way such that (a) G is acyclic and (b) each

path of G includes at most one proposal per overlapping group of proposals. Thus the edges between the

vertices in G are drawn as follows.

(P1) Source vertex S has outgoing edges to each vertex in V− {S, T} (≡ H) with the edge weights

e 99K
SHz

= ϵ, ∀Hz ∈H.

(P2) Sink vertex T has incoming edges from each vertex in V− {S, T} (≡ H) with the edge weights

e 99K
HzT

= psHz
, ∀Hz ∈H.

(P3) For rest of the vertices Hz, a vertex is sequentially selected (starting from H1) and the outgoing

edges from the selected vertex are drawn as follows. For any two vertices Hz, Hz′ ∈ V− {S, T}
(≡ H), there exists an edge between them with the associated edge weight e−→Hz Hz′

= psHz
iff all

the following properties are satisfied.

(i) z′ > z

(ii) Hz, Hz′ /∈H′z ∩H′z′

(iii) H′z ∩Pz = ∅, where Pz be the set of predecessors of Hz in G

In the graph G, we determine the maximum weighted path which provides us the detected products

in the rack I. The maximum weighted path defines the maximum sum of the pc-scores of the region
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proposals selected from each of the overlapping group of proposals. However, in any graph, determining

a maximum weighted path is an NP-hard problem. As G is a DAG, after negating the weights of the

edges, we determine the minimum weighted path in G using Bellman-Ford algorithm [Bellman, 1958].

The entire procedure of G-NMS is provided in Algorithm 2. Figure 4.3(c) shows correct output using

G-NMS compared to the result of Figure 4.3(b). The detail experiment with our proposed scheme is

presented next.

Algorithm 2 Graph-based Non-maximal Suppression
Input: Region proposals {Hz} (or H) with their classification scores and product classes
Output: Final detections determined from {Hz}

1: procedure IOU (Hz, Hz′)
2: return intersection-over-union between Hz and Hz′

3: end procedure
4: procedure OVERLAPPING-GROUP (Hz)
5: H′z ← ∅
6: for each Hz′ ∈H do
7: if IOU(Hz, Hz′) > IoUthresh then
8: H′z ←H′z ∪ {Hz′}
9: end if

10: end for
11: return H′z
12: end procedure
13: procedure PROPOSAL-WITH-IDENTICAL-LABEL (Hz)
14: Oz ← ∅, S′z ← ∅, H′z ← OVERLAPPING-GROUP(Hz)
15: for each Hz′ ∈H′z do
16: if product classes of Hz and Hz′ are equal then
17: Oz ← Oz ∪ {IOU(Hz, Hz′)}
18: S′z ← S′z ∪ {classification score of Hz′}
19: end if
20: end for
21: return [Oz, S′z]
22: end procedure
23: procedure POTENTIAL-CONFIDENCE-SCORE (Hz)
24: sz ← classification score of Hz
25: [Oz, S′z]← PROPOSAL-WITH-IDENTICAL-LABEL(Hz)

26: psHz
← sz −

∑s∈S′z
|s−sz|
|S′z| − std dev(Oz) ▷ [using (4.2)]

27: return psHz
28: end procedure
29: for each Hz ∈H do
30: H′z ← OVERLAPPING-GROUP(Hz)
31: psHz

← POTENTIAL-CONFIDENCE-SCORE(Hz)
32: end for
33: Using psHz

and H′z, ∀Hz ∈ H, construct a graph G(V, E), V = {S, T} ∪H with source S, sink T,
and edges e ∈ E drawn following (P1), (P2), and (P3) s.t. G becomes DAG.

34: Find out the proposals in the minimum weighted path of the negated G using [Bellman, 1958].
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4.3 Experiments

For a test rack image, ERP generates the region proposals as described in Chapter 2 and subsequently the

proposals are send to our FGC as described in Chapter 3 for obtaining the classification scores and class

labels. The proposals with scores less than 0.5 are discarded. Rest of the proposals alongwith their scores

and labels are passed to our G-NMS. This entire procedure is referred to as ERP+FGC+G-NMS. The

experiments for the selection of IoUthresh parameter of G-NMS is presented in the paragraph Choice of

IoUthresh.

The methods, that were considered for our comparative study in Chapters 2 and 3 (see Section 2.3.2

for more details), are also compared with our method in this chapter. In order to evaluate efficacy of G-

NMS in other methods, we substitute greedy-NMS in R-CNN [Girshick et al., 2014] with our proposed

G-NMS technique, which we refer to as R-CNN-G. Note that IoUthresh parameter of greedy-NMS is

equal to that of our G-NMS. We also consider soft-NMS [Bodla et al., 2017] in our comparative study.

The soft-NMS is embedded within our proposed ERP+FGC for evaluating the performance of soft-NMS.

This procedure is referred to as ERP+FGC+soft-NMS.

The results of all the methods are evaluated calculating F1 score, that we have explained in Appendix

A. Experiments are carried out on the six categories (breakfast cereals (BC), deodorant (DEO), lip care

(LC), oral care (OC), personal wash (PW) and mixed (MIX)) of one In-house and three benchmark

datasets Grocery Products (GP) [George and Floerkemeier, 2014], WebMarket (WM) [Zhang et al., 2007]

and GroZi (GZ) [Merler et al., 2007], which are detailed in Appendix B.

4.3.1 Results and Analysis

The performances of various schemes on the above mentioned datasets are tabulated in Table 4.1, where

best F1 score for each dataset is highlighted in bold. The proposed R-CNN-G (i.e., R-CNN with G-

NMS) outperforms all the methods for all the datasets except our methods ERP+CNN, ERP+FGC,

and ERP+FGC+G-NMS. As expected, ERP+FGC+G-NMS outperforms all other methods by at least

∼1% on all the datasets except on LC and PW categories of In-house and GZ datasets. ERP+FGC+G-

NMS shows similar performance like ERP+FGC on PW category of In-house dataset and marginal

improvement on LC and GZ from the performance of ERP+FGC. Maximum margin with respect to the

closest competitor is 3.31% achieved on MIX category of In-house dataset. However, Table 4.1 clearly

infers that the ERP module (proposed in Chapter 2) of our system contributes most in improving product

detection performance (w.r.t. competing methods) compared to other two modules FGC (proposed in

Chapter 3) and G-NMS (introduced in this chapter).

Further, in Table 4.1, we can clearly see that the proposed G-NMS (see row for ERP+FGC+G-

NMS) has established its superiority over greedy-NMS (see row for ERP+FGC) in almost all the cases
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Table 4.1: Product detection results (F1 score in %). R-CNN, ERP+CNN, R-CNN-M, and ERP+FGC
apply greedy-NMS while R-CNN-G and ERP+FGC+G-NMS implement our G-NMS for removing
overlapping proposals.

Methods
Categories of In-house Dataset Benchmark Datasets

BC DEO LC OC PW MIX GP WM GZ

S1 [Zhang et al., 2007] 41.01 45.21 47.87 48.08 54.91 49.01 58.39 49.19 31.71

CHM [Merler et al., 2007] 48.04 33.56 60.12 30.77 36.40 44.74 51.20 52.81 24.70

MLIC [George and Floerkemeier, 2014] 64.45 50.08 54.91 40.23 59.97 48.76 59.07 53.33 33.10

R-CNN [Girshick et al., 2014] 82.04 83.76 87.99 79.72 88.05 73.16 78.99 72.01 40.91

HOG [Marder et al., 2015] 62.00 28.52 49.37 28.73 44.06 50.62 58.11 43.03 28.33

BoW [Marder et al., 2015] 65.05 45.10 70.72 53.31 71.23 59.91 59.91 55.15 26.83

GBoW [Franco et al., 2017] 72.07 49.98 68.29 46.79 77.22 53.41 74.34 65.59 39.66

GDNN [Franco et al., 2017] 82.12 55.49 82.55 51.32 87.64 61.98 73.09 71.13 43.99

SET [Karlinsky et al., 2017] 83.61 83.95 88.36 81.77 88.16 74.22 79.05 72.13 43.78

U-PC [Ray et al., 2018] 84.77 52.59 86.29 55.65 81.15 65.49 76.20 67.79 40.10

ERP+CNN (see Chapter 2) 90.86 83.76 92.49 89.80 92.12 82.98 81.05 78.76 47.49

R-CNN-M (see Chapter 3) 87.94 83.76 89.69 85.17 90.79 77.73 79.66 74.00 43.99

ERP+FGC (see Chapter 3) 91.26 85.02 92.83 90.87 93.02 85.12 82.45 80.22 47.84

R-CNN-G 88.43 83.96 89.91 86.70 91.03 79.17 80.21 75.50 44.81

ERP+FGC+soft-NMS 91.61 85.81 92.88 91.23 92.78 86.13 82.79 81.03 47.67

ERP+FGC+G-NMS 92.29 87.31 92.98 92.13 93.02 88.43 83.87 82.30 48.68

for removing overlapping proposals which is our focus in this chapter. Similar observation can be noticed

when we embed our G-NMS with R-CNN. R-CNN-G outperforms both R-CNN and R-CNN-M. Figure

4.3 shows an example of such improvement. The incorrect identification of product (see blue arrow

in Figure 4.3(a)) with greedy-NMS is corrected (see blue arrow in Figure 4.3(b)) with our proposed

G-NMS.

Choice of IoUthresh For choosing the optimal value of IoUthresh in our G-NMS algorithm, we

draw a box-and-whisker diagram (see Figure 4.6(a)) for a set of IoUthresh values in between 0.0 and

(a) (b)

Figure 4.6: Box plot of F1 scores for different IoUthresh values used in (a) G-NMS and (b) greedy-NMS
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Figure 4.7: ROC plot for the proposed G-NMS and greedy-NMS approaches

0.19. Our experiment finds that the overall performance rapidly deteriorates when IoUthresh ≥ 0.2. So

0.19 is chosen as the upper bound of IoUthresh in our experiment. This experiment is carried out on

all the datasets of retail products. In Figure 4.6(a), each box visually represents F1 scores of G-NMS

with the specified IoUthresh on all the datasets. On each box, the central red line, bottom edge and top

edge respectively indicate the median, first quartile and third quartile of the F1 scores. The ’+’ symbol

denotes the outliers and the whiskers expand extreme F1 scores without considering outliers. In Figure

4.6(a), notice that the central red line, bottom edge, and top edge of the box for IoUthresh = 0.07 are

on the top of central red lines, bottom edges, and top edges of other boxes respectively. In other words,

median, first quartile and third quartile of F1 scores for G-NMS with IoUthresh = 0.07 are greater than

that of F1 scores for other IoUthresh values. From Figure 4.6(b), similar observations can also be seen

for greedy-NMS. We obtain the best performances for greedy-NMS also with IoUthresh = 0.07.

The superiority of our G-NMS approach over greedy-NMS is also established through the ROC plot

in Figure 4.7. ROC plot is drawn by plotting true positive rate (TPR) = TP
TP+FN vs. false positive rate

(FPR) = FP
FP+TN for both the approaches. TP, TN, FP, and FN are defined in Appendix A. TPR and FPR

are calculated for 457 rack images of In-house dataset by varying the IoUthresh parameter in the interval

[0, 0.19]. Figure 4.7 confirms that area under the ROC curve (AUC) for G-NMS is significantly higher

than AUC for greedy-NMS.

Notes on Test Time All the methods (including the proposed one) are implemented in python and

tested in a system with 64 GB RAM, Intel Core i7-7700K CPU @ 4.2GHz×8 and TITAN XP GPU. The

computational costs of our proposed G-NMS and greedy-NMS are analyzed in terms of execution time

of the respective algorithm. This study is carried out considering both our ERP and the region proposal

scheme in R-CNN/R-CNN-G in the following two ways. (a) For processing a rack image during test, our

ERP (in ERP+FGC+G-NMS) or the other region proposal algorithm (in both R-CNN and R-CNN-G)

75



Graph-based Non-maximal Suppression of Region Proposals

Figure 4.8: F1 Score vs. number of region proposals plot highlighting the execution time (s) for the
proposed G-NMS embedded with R-CNN and greedy-NMS embedded with R-CNN

takes almost similar time,∼40s for generating∼1500 proposals. However, our ERP generates much less

number of region proposals than R-CNN/R-CNN-G. The classification procedure takes ∼52s in case of

our ERP+FGC+G-NMS and ∼54s in case of R-CNN/R-CNN-G. The proposed G-NMS is executed

in ∼1.5s while greedy-NMS is completed in ∼0.5s in R-CNN for processing ∼1500 proposals. (b)

The second analysis is carried out only for R-CNN vs. R-CNN-G. Using the region proposal algorithm

in R-CNN or R-CNN-G, we can generate proposals as many as we want. We wish to examine the

effect of number of region proposals in the product detection performance for our G-NMS and greedy-

NMS. This is shown in the F1 score vs. number of region proposals plot in Figure 4.8, which also

highlights the execution time in seconds. F1 score and execution time are determined by varying the

number of proposals (changing the parameters of region proposal algorithm in R-CNN or R-CNN-G) for

a rack image. The above two experiments infer that the slight increase in time comes with the benefit of

significant improvement in product detection performance (see Table 4.1). Next we present the summary

of this chapter.

4.4 Summary

This chapter resolves a key bottleneck of the greedy-NMS approach that was implemented in Chapter 2.

Greedy-NMS discards the proposals (with lower classification scores) that are overlapped with the pro-

posal with higher classification score. This greedy approach often eliminates the (geometrically) better

fitted region proposals with (marginally) lower classification scores. Due to this confusion, we often fails

to accurately identify all the (vertically) stacked products displayed on the rack and we sometimes miss

to recognize the correct label of a product present in the rack. This chapter addresses these issues by

presenting a viable graph-based non-maximal suppression (G-NMS) technique.

Greedy-NMS always looks only at the classification scores of the proposals for removing overlapping
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proposals. Instead of looking only at classification scores, our method elegantly disambiguates overlap-

ping region proposals based on a combination of classification score, class label and extent of overlap.

Our proposal has the potential to handle object recognition in a crowded scene. G-NMS first determines

the potential confidence scores (pc-scores) of the region proposals by defining the groups of overlapping

regions. Subsequently, a directed acyclic graph (DAG) is strategically constructed with the proposals

utilizing their pc-scores and overlapping groups. Eventually the maximum weighted path of the DAG

provides the products that are present in the rack.

So far we have concentrated on designing a potential solution (or machine vision system) for the

automatic identification of retail products on the racks of supermarkets. The efficacy of our methods

are evident in our experiments for identification of products. However, we need to concentrate on yet

another important aspect of the product identification problem, the identification of empty spaces between

products or in the shelves of the racks. We address this challenge in the next chapter by segmenting empty

and non-empty spaces with our novel graph-based model.
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C H A P T E R 5

Identification of Empty Spaces on Shelves

5.1 Introduction

The state-of-the-art methods of Chapter 1 mostly address techniques to identify products. A key direction

of the application that needs attention is the automatic identification of gaps (between products) or empty

spaces anywhere on the shelves. This automatic identification of empty spaces on the shelves is the focus

of this chapter. In order to identify the gaps on the shelves, we can take the complement of product

detection results obtained in the previous three chapters. However, that complemented result should

detect promotional stickers, colorful or textured background, horizontal and vertical bars of the shelf,

etc. along with the gaps. Instead our gap identification approach in this chapter recognizes gap, just as

our approaches in previous chapters recognize products.

For planogram compliance, the store associate needs to manually identify the empty spaces. This is

time consuming and error prone. Delays in identifying out-of-stock (OOS) conditions lead to significant

loss in revenue, especially when the product is present in the inventory [Moorthy et al., 2015] but not

displayed on the rack. There exists several automated OOS detection systems like radio-frequency iden-

tification (RFID) tags [Michael and McCathie, 2005] and weighted sensor shelves [Moorthy et al., 2015].

They are expensive and difficult to reconfigure for fast changing retail product line. On the other hand,

there exists only one known published work [Yılmazer and Birant, 2021] that uses computer vision to

detect gaps between products automatically. The use of a camera, either hand-held by a store associate

or fixed on the facing rack, seems to be a feasible economic option for continuous monitoring of gap

and planogram compliance. In this chapter, we introduce a solution for detecting gaps in the images of

shelves. Figure 5.1 illustrates empty regions in an example shelf image.
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Figure 5.1: In an example shelf image, the regions covered with the green polygon represent the empty
spaces. Red and yellow dotted circles highlight different textures for empty space.

We define a gap as an empty space (or a region) created on the shelf after a product is picked up from

the shelf. Spaces on the shelf not covered by products (intentionally) are also considered empty spaces.

For example, the region covered by the green boundary in Figure 5.1 indicates that a (or few) product(s)

is (are) missing. Note that different empty regions may exist in the same image having different textures,

colors or features. For example, in Figure 5.1, the regions highlighted by the red and yellow dotted circles

on the shelf present different textures for gap. The absence of unique inherent characteristics of empty

regions amplify the challenges to solve gap detection problem. Note that, gap, empty region and empty

space are interchangeably used in this chapter.

More precisely, we have posed our task of identifying gaps in the shelf images as a segmentation

problem. The objective is to estimate the binary mask identifying the empty regions as white and re-

maining as black. Flow chart of our proposal is shown in Figure 5.2. Our scheme first over-segments

the entire image into superpixel regions and construct a graph of superpixels (say, G̃), where the edges

of G̃ captures the association between two superpixels. Subsequently, the features of each superpixel (or

each node of G̃) is extracted by feeding this G̃ as input to a graph convolutional network (GCN) [Kipf and

Welling, 2016] that imbibes the neighbourhood information of superpixels within the feature embedding

(or feature vector) by graph convolution. Further, the representation of the association/similarity between

superpixels i.e., the weights of the edges in G̃ (referred to as edge features) are encoded with a Siamese

Superpixel
Segmentation

Formulation
of SSVM

Node Feature Extraction
using Graph

Convolutional Network

Input Output

Construction of
Superpixel

Graph
Edge Feature Extraction
using Simaese Network

Architecture

Figure 5.2: Process flow of our proposed scheme for identification of empty spaces on the shelves

80



5.2 Benchmark Datasets for Identification of Gaps

network [Koch et al., 2015]. This way, our proposal establishes the relationship between the adjacent

superpixels being part of a empty or non-empty region in a shelf image using these novel node and edge

features of G̃. However, using these sets of features for the nodes and edges in G̃, we formulate a structural

support vector machine to generate a binary mask that classifies the empty region.

There exists many recent state-of-the-art deep learning based image segmentation approaches like

U-Net [Ronneberger et al., 2015], DeepLabV3 [Chen et al., 2017], LinkNet [Chaurasia and Culurciello,

2017], FPN [Lin et al., 2017], PSPNet [Zhao et al., 2017], DeepLabV3+ [Chen et al., 2018], PAN [Li

et al., 2018], MA-Net [Fan et al., 2020]. These approaches may be used for identification of empty

regions on the shelves. We compare these methods with our method in our comparative study in Section

5.4.2. These methods require a large number of training (shelf) images, which is difficult to obtain due

to fast changing line of products and display plan in retail stores. Contributions of our proposed scheme

compared to all these state-of-the-art approaches are two-folds:

1) We utilize a graph convolutional neural network and a Siamese network in the formulation of a

structural support vector machine for detection of empty and non-empty spaces on the shelves

with the limited set of training (shelf) images.

2) To the best of our knowledge, we are the first to release the benchmark datasets in GitHub [Santra

et al., 2021a] for identification of gaps in the shelves. The identified and annotated gaps are marked

in the publicly available datasets Grocery Products [George and Floerkemeier, 2014], WebMarket

[Zhang et al., 2007], and GroZi [Merler et al., 2007].

Rest of the chapter is organized as follows. The benchmarking procedure of the shelf images from

publicly available datasets are described in Section 5.2. Section 5.3 explains our proposed method. The

experiments are carried out in Section 5.4. Finally we summarize the chapter in Section 5.5.

5.2 Benchmark Datasets for Identification of Gaps

For designing and validating a model for automatic identification of gap, we require ground truth for each

shelf image specifying the empty and non-empty spaces. In order to generate ground truth, we manually

annotate the images of shelves by labelling the empty and non-empty spaces with the polygons.

We follow a certain convention and annotate the images with the two different labels: gap and non-gap

polygons drawn on the image. The empty space is defined by (a) the locations of shelf where background

of racks are visible and (b) the dark regions where the objects are invisible. In the end, we obtain a binary

mask (which we refer to as ground truth) for each shelf image with pixel value 1 as presence of a gap

and 0 as presence of a non-gap region (product/non-usable parts of shelf). A binary mask corresponding

to an example shelf image is shown in Figure 5.3(b). The regions other than gaps on the shelf image are

referred to as non-gap in this thesis.
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(a) (b)

Figure 5.3: (a) An example shelf image, and (b) the ground truth i.e., binary mask for the shelf image (a)
where white and black regions denote/highlight gap and non-gap respectively.

The images of shelves for manual annotation are from the publicly available datasets Grocery Prod-

ucts [George and Floerkemeier, 2014], WebMarket [Zhang et al., 2007], and GroZi [Merler et al., 2007],

the descriptions of which are provided in Appendix B. We have used the graphical annotation tool la-

belme [Wada, 2016]. Grocery Products dataset includes 680 images of shelves captured from different

supermarkets. We select 305 images where the empty regions are present. Similarly, we annotate 98 and

50 images of shelves from the WebMarket and GroZi datasets respectively. A part of these annotations

is made public as benchmark datasets for further studies on identification of gaps. The annotations are

available at GitHub [Santra et al., 2021a]. Next we present the proposed methodology.

5.3 Method M4: Identification of Empty Spaces on Shelves

We approach the problem under discussion as a binary segmentation problem in which pixels are classi-

fied into either of the two classes, 1 (gap) and 0 (non-gap). The overall block diagram of our proposed

scheme is illustrated in Figure 5.2. The steps of our scheme are explained in the following subsections.

5.3.1 Superpixel Segmentation

In order to identify the empty regions on the shelves, the proposed scheme aims to label each pixel of the

images of shelves. In our case, the number of pixels in the image of a shelf is in the order of 105. The

procedure for extracting features from each of these many pixels and labeling them is computationally

expensive. In order to reduce the complexity, all the images are initially over-segmented into a few

regions consisting of a group of pixels, called superpixels. Assume we obtain N number of superpixels in

the images of shelves and each superpixel is denoted as xi, ∀ i = {1, 2, . . . , N}. In our implementation,

we utilize the simple linear iterative clustering (SLIC) algorithm [Achanta et al., 2010] for generating

superpixels for a shelf image. Next we construct the graph of superpixels for each image.
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5.3.2 Construction of Graph of Superpixels

For every shelf image, we construct a graph with the superpixels as the nodes. The edges are connected

for the pairs of adjacent superpixels. It is evident that the graph will be a connected-graph as each

superpixel is adjacent to at least one other superpixel. We refer this graph of superpixels as superpixel

graph (SG) in rest of the chapter.

Assume, we have a shelf image I for which we have four superpixels x1, x2, x3, and x4 as illustrated

in Figure 5.4(a). Further assume, G̃ be the SG for the image I. Hence, the set of nodes of G̃ is Ṽ =

{x1, x2, x3, x4} and the set of edges is Ẽ = {e1 = (x1, x2), e2 = (x1, x3), e3 = (x2, x3), e4 = (x3, x4),

e5 = (x2, x4)} as shown in Figure 5.4(b). In this work, this SG is an equivalent representation of the

superpixels in I. Thus in rest of the chapter, the node xi of G̃ essentially refers to the superpixel xi of I.

In G̃, each node xi is characterized by the unary feature embedding u(xi), and each edge (xi, xj) is

characterized by the pairwise feature embedding p(xi, xj) for the adjacent superpixels xi and xj. Thus,

the unary feature embedding refers to the feature vector of a superpixel i.e., a node of G̃. The pairwise

feature embedding represents a feature vector for two adjacent superpixels i.e., an edge of G̃. In rest of

the chapter, node and unary features, and edge and pairwise features are interchangeably used. Given

these, for the example shown in Figure 5.4(a), we define a structured data X which consists of:

(a) Adjacency matrix A of G̃,

(b) Pairwise feature embeddings for the edges e1, e2, e3, e4, e5 and,

(c) Unary feature embeddings for the nodes x1, x2, x3, x4.

This X is essentially the input to Structural Support Vector Machine (SSVM) for identification of

gap/non-gap in I. But before discussing SSVM, we define the unary and pairwise feature embeddings

for nodes and edges using graph convolutional network (GCN) and a Siamese network respectively.

In our proposal, GCN or Siamese network learn the labels of the nodes (gap being labeled as 1, and

non-gap as 0) of G̃ (as described in the beginning of Section 5.3) for all the shelf images in the train-

set. We extract the feature embedding for nodes and edges of G̃ from learnt GCN and Siamese network

(a) (b) (c) (d)

Figure 5.4: (a) Image I segmented in superpixels. (b) Superpixel graph of (a). (c) Binary mask (i.e.,
ground truth) for (a) labelling each superpixel, where the white and black regions indicate empty and
non-empty spaces, respectively. (d) Label for the nodes of superpixel graph (b).
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(a) (b) (c)

Figure 5.5: (a) Image I segmented in superpixels as shown in Figure 5.4(a). (b) Ground truth pixels over-
layed on (a). (c) Label of each superpixel of (a), where the white and black regions indicate empty and
non-empty spaces, respectively. Majority of pixels in superpixel x1 is white as shown in (b). Therefore,
the label of superpixel x1 is given as white as shown in (c). Similarly, labels of superpixels x2, x3 and x4
are determined.

respectively. However, in order to learn GCN or Siamese network, an SG and the labels of superpixels are

required. We have already explained the procedure for constructing SG in the beginning of this section.

Next we describe the procedure for defining labels to the superpixels of a shelf image before extracting

features for the nodes and edges of G̃.

5.3.3 Labelling of Superpixels

The labelling of superpixels is demonstrated using an example in Figure 5.5. Figure 5.5(a) is a shelf

image I segmented in four superpixels x1, x2, x3 and x4. Figure 5.5(b) is a ground truth image (or

the binary mask Igt) with each pixel marked either as white or black representing empty or non-empty

regions respectively. Figure 5.5(b) shows that superpixel x1 has majority of white pixels. Therefore, the

label of superpixel x1 is assigned as white as shown in Figure 5.5(c). Similarly, based on majority voting

of white or black pixels, superpixels x2, x3 and x4 are labelled as black, white and black, respectively

as shown in Figure 5.5(c). This way the binary mask B labeling each superpixel of the shelf image I is

determined. In rest of this chapter, mask B is refereed to as structured ground truth mask. Next we extract

features for the nodes of G̃.

5.3.4 Feature Representation of the Nodes in SG

The unary feature embedding in the structured data X of G̃ is essentially the feature representation for

the nodes (i.e., superpixels) of G̃. Since we look for a novel feature representation for each superpixel of

I considering not only the superpixel itself but also its neighboring superpixels, we design a GCN [Kipf

and Welling, 2016] that principally accumulates the local neighborhood information of each superpixel

utilizing graph convolution. Naturally, the SG G̃ is input to the GCN.

The block diagram of the proposed GCN model is presented in Figure 5.6. The architecture of the

proposed three layered GCN is detailed in our implementation Section 5.4. However, a GCN usually

takes adjacency matrix of the graph G̃ and an initial feature vector for each node of G̃. In this work, the
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Figure 5.6: Flowchart of the proposed node feature extraction scheme. For the segmented image in Figure
5.4, superpixels x1, x2, x3, and x4 are sent to CNN-based feature extractor for determining respective
initial feature vectors f(1)L , f(2)L , f(2)L , and f(4)L . These initial feature vectors and the SG are passed through

the graph convolutional network for obtaining the features f(1)G , f(2)G , f(3)G , and f(4)G of the nodes x1, x2, x3,
and x4 respectively.

initial feature vectors for the nodes or superpixels are determined using a CNN based feature extractor

(referred to as initial feature extractor or IFE) designed on top of the pre-trained VGG-19 [Simonyan

and Zisserman, 2015] (see Figure 5.6). The architectural details of this IFE are also provided in the

implementation details in Section 5.4. Assume, IFE returns d1-dimensional feature vector f(i)L for each

ith node of G̃. In our implementation, d1 = 128.

Then G̃ along with the initial feature vectors for all its nodes f(i)L , i = 1, 2, . . . , N, are send to GCN

and layer-wise propagated in GCN [Kipf and Welling, 2016] as follows:

H(ℓ+1) = ϕ
(

D̃−
1
2 ÃD̃−

1
2 H(ℓ)W(ℓ)

)
(5.1)

where Ã = A + IN is the adjacency matrix of G̃ considering self loops, A is the adjacency matrix of

G̃, and IN is the identity matrix of size N. Here D̃ii = ∑
j
Ãij and D̃ij = 0, ∀i ̸= j. H(ℓ) is the input

to the ℓth layer of GCN and hence H(0) is the initial input to GCN. H(0) is the input matrix containing

the initial feature vectors f(i)L , i = 1, 2, · · · , N. W(ℓ) is the trainable weight matrix for layer ℓ and

ϕ(·) is the activation function. For extracting features of the nodes in SG (or superpixels), we build a

three-layered GCN. The last layer of GCN classifies the input superpixel (or the node of SG) to gap or

non-gap. Once GCN learns its parameters, the output of the penultimate layer can be considered as the

feature representation of a superpixel. This way GCN defines a d2-dimensional feature vector f(i)G for

each ith node of G̃ aggregating the local neighborhood information of a superpixel. The aggregation of

local information is ensured by the inclusion of Ã in (5.1). In our implementation, d2 = 16. In other

words, the unary feature embedding for each ith node xi of G̃ can be defined as u(xi) = f(i)G . Next we

present our method for finding out features of the edges of G̃.
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Figure 5.7: Schematic of the proposed Siamese network architecture for extraction of edge feature. For
the segmented image example in Figure 5.4, we illustrate the extraction of pairwise feature p(x2, x4) for
the edge (x2, x4) of SG, G̃.

5.3.5 Feature Representation of the Edges in SG

As mentioned earlier, there exists an edge between two nodes xi and xj in G̃, if the superpixels xi and xj

in I are adjacent. In this work, we aim to define a feature for the edge (xi, xj) that encodes the similarity

(or dissimilarity) between the two neighboring superpixels xi and xj in I. We can pose this as a two

class (similar or dissimilar) classification problem that takes two superpixels (or sub-images) as input.

We build a Siamese network architecture (SNA) [Koch et al., 2015] to classify a pair of superpixels as

similar or dissimilar. Once the SNA is learnt with the training examples, the features for the edges in G̃

are extracted from the SNA.

Each pair of adjacent superpixels (xi, xj) in I is the input to our SNA for finding out the feature for the

edge (xi, xj) in G̃. The schematic of our SNA is provided in Figure 5.7 and its architecture is detailed in

our implementation in Section 5.4. However, for any pair of adjacent superpixels (xi, xj), the superpixel

xi is fed to the first convolutional block, conv-block-1 while xj is sent to the second convolutional block,

conv-block-2. A convolutional block refers to a stack of convolutional layers. According to the principle

of Siamese network, the learnable weights of the blocks conv-block-1 and conv-block-2 are shared (see

Figure 5.7). The weights (i.e., convolutional filters) are shared in order to project both the input super-

pixels into a common feature space. Both the input superpixels are first transformed to their respective

covolutional maps using the shared weights. The outputs (i.e., convolutional (conv) maps) of both the

blocks are then concatenated and fed to the third block conv-block-3 of our SNA. The output of conv-

block-3 is finally passed through a fc-block comprising of three consecutive fully connected (fc) layers.

Last fc layer defines the classification score of similarity and dissimilarity between two input superpix-

els xi and xj. Once the SNA learns to classify a pair of superpixels as similar or dissimilar, the output

of penultimate layer of fc-block of SNA represents the features for the input superpixels. This is how

we obtain the feature representation for the edge between xi and xj. The SNA provides d3-dimensional

pairwise feature vector/embedding p(xi, xj) for each edge (xi, xj) in G̃. In our implementation, d3 = 16.

Next we present the SSVM for identification of gaps/non-gaps in the shelf images.
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5.3.6 SSVM for Identification of Empty Spaces

SSVM [Xue et al., 2008] is a classifier which predicts the labels for the nodes of G̃ minimizing the loss

between the predicted and true labels. In our problem, we utilize SSVM to learn the labels of the nodes

(i.e., 0 or 1) of the G̃ (as described in Section 5.3.2) for all the shelf images in the train-set. Once the

SSVM is learnt, we obtain the labels of the nodes which we assign to the corresponding superpixels of

a shelf image. In this way, the entire image is segmented into gaps and non-gaps (empty space being

labeled as 1, else 0). Next we formulate the SSVM with the structured data X (see Section 5.3.2) and the

labels of superpixels (see Section 5.3.3).

Formulation of SSVM

Assume, we have ϑtrn number shelf images I(k), k = 1, 2, . . . , ϑtrn in the train-set. Corresponding to

each training image I(k), we obtain the structured data X (k) and the true labels Y(k) for the superpixels.

Given these, the gap identification problem can be posed as follows.

Each of the superpixels of any shelf image I can be interpreted as a discrete random variable taking

values from the set Ω =
{

0, 1
}

, where 1 signifies gap and 0 denotes non-gap. Let us assume that

Y = {y1, y2, . . . , yN} ∈ Y = ΩN be a feasible label vector for the N number of nodes in G̃. In that

case, there exists 2N possible label vectors (or feasible labeling) for the G̃ with N number of nodes i.e.,

|Y| = 2N. Thus, the set of 2N feasible label vectors must include the true label (Boolean) vector (for the

SG). Now the gap identification problem boils down to finding out the true label vector from 2N possible

label vectors for the G̃. For example, the possible label vectors for the graph shown in Figure 5.4(b) is

Y = (y1, y2, y3, y4), where yi, i = 1, 2, 3, 4, can be 0 or 1. Then the number of possible label vectors for

this graph is 24 out of which we aim to find out the true label vector (1, 0, 1, 0) as shown in Figure 5.4(d).

In order to obtain the true label vector Y(k) for any input X (k), we define a potential function E(X , Y)

which will be maximized when Y = Y(k) for the given X = X (k) i.e.,

Y(k) = arg max
Y

E(X (k), Y), (5.2)

and the potential function E(X , Y) is formulated as:

E(X , Y) = wTω(X , Y), (5.3)

where w is the weight vector and ω is the joint feature vector for an input X and its possible label vector

Y. Our target is to learn this weight vector w with the train-set such that the potential function E is

maximized for the true label vector.

The potential function E(X , Y) can be defined as the sum of the potential functions Eu(xi, yi) and
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Ep(xi, xj, yi, yj) contributed by the unary and pairwise features as:

arg max
Y

E(X , Y) = arg max
Y

( N

∑
i=1

Eu(xi, yi) + ∑
(xi ,xj)∈Ẽ

Ep(xi, xj, yi, yj)

)
. (5.4)

Again Eu can be written as:

Eu(xi, yi) = wT
uωu(xi, yi), (5.5)

where ωu is the joint feature vector of the node xi and its label yi. ωu associates the unary features of

the nodes with their labels. ωu is defined as:

ωu(xi, yi) =
(

I(yi = 0)u(xi), I(yi = 1)u(xi)
)

, (5.6)

where I(·) is the indicator function that checks the condition and returns 1 if the condition holds and 0

otherwise. Again the potential function Ep contributed by pairwise features can be written as:

Ep(xi, xj, yi, yj) = wT
pωp(xi, xj, yi, yj), (5.7)

where ωp, which is the joint feature vector of the nodes xi, xj and their labels yi, yj for pairwise features,

is defined as:

ωp(xi, xj, yi, yj) =
(

I′(yi = 0, yj = 0)p(xi, xj), I′(yi = 0, yj = 1)p(xi, xj),

I′(yi = 1, yj = 0)p(xi, xj), I′(yi = 1, yj = 1)p(xi, xj)
)

, (5.8)

where I′(·, ·) is an indicator function that returns 1 if both the conditions (in its arguments) are true and

return 0 otherwise. As given in (5.6), ωu, which is a function of a node xi and its corresponding label yi

in SG, returns a vector of length 2d2 (as u(xi) is a d2-dimensional vector, see Section 5.3.4). Similarly

from (5.8), we can see that ωp is a function of a pair of adjacent nodes xi, xj and their corresponding

labels yi, yj in G̃ returning a vector of length 4d3 (as p(xi) is d3-dimensional vector, see Section 5.3.5).

Thus, the joint feature vector ω in (5.3) can be derived as:

ω(X , Y) =
( N

∑
i=1

ωu(xi, yi), ∑
(xi ,xj)∈Ẽ

ωp(xi, xj, yi, yj)
)

.

Given these, we aim to learn w in (5.3) with the SSVM [Xue et al., 2008]. However, before we train

the SSVM for determining w, we have to define the loss between the true and predicted label vectors for

any input X by the SSVM model. In order to do that, we calculate the Hamming loss between the true
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and predicted label vectors as:

∆(Y(k), Y) =
N

∑
i=1

I(y(k)
i ̸= yi), (5.9)

where Y and Y(k) are (any) feasible and true label vectors of an input X (k) respectively. Since Y and Y(k)

are the Boolean vectors (as mentioned in the second paragraph of this subsection) i.e., elements of which

are either 0 or 1, the Hamming loss is calculated. In (5.3), E(X , Y) eventually is the function which maps

each label vector Y of the SG in X to a scalar value (or score). Hence, SSVM is learnt in a way such that

(a) the true label vector has the highest score and (b) the score is lower when the Hamming loss defined

in (5.9) is higher. Keeping all these in mind, we define an SSVM with the formulation of one slack SVM

[Joachims et al., 2009] as:

min
w

λ||w||2 + 1
ϑtrn

ϑtrn

∑
k=1

εk, (5.10)

such that,

ϑtrn

∑
k=1

(
∆(Y(k), Ŷ(k))−wTω(X (k), Y(k)) + wTω(X (k), Ŷ(k))

)
≤

ϑtrn

∑
k=1

εk,

∀(Ŷ(1), Ŷ(2), ..., Ŷ(ϑtrn)) ∈Y ×Y × ...×Y, (5.11)

where εk are the slack variables, λ is a positive regularization constant, Y is the set of all possible label

vectors Ŷ(k) for X (k). The equation (5.10) is a convex quadratic optimization problem with |Y|ϑtrn

number of constraints, where (5.11) represents all the constraints. Finally, we obtain the weight vector w

which is learnt using the structured input data (as defined in the third paragraph of Section 5.3.2) of the

images of shelves from the train-set following the approach in [Joachims et al., 2009].

For any test shelf image I, we predict the empty/non-empty regions by creating the structured data

X as explained in Section 5.3.2 and using the trained SSVM as:

Ŷ = F(X ) = arg max
Y∈Y

wTω(X , Y). (5.12)

We solve (5.12) using AD3 algorithm [Martins et al., 2015]. Hence Ŷ = F(X ) is the predicted

label vector for the nodes of SG in X i.e., the labels of the superpixels in the shelf image I. Thus Ŷ

produces the predicted binary mask B̂ for any shelf image. Subsequently, the predicted label in B̂ for

each superpixel xi is assigned to all the pixels contained within the superpixel xi and thus finally the

binary mask is obtained with all pixels labeled either 0 (for non-gap) or 1 (for gap). Next we present the

experiments, results and analysis.
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5.4 Experiments

5.4.1 Implementation Details

First of all, any shelf image is resized into a fixed-size 700 × 460 image. Next SLIC segmentation

method [Achanta et al., 2010] is run for N = 1000 number of superpixels. The experiments for choosing

N is provided in the paragraph Choice of Number of Superpixels (N) of Section 5.4.2. The compactness

[Achanta et al., 2010] of SLIC method is experimentally set to 50 in this work.

The superpixels being of irregular shape cannot be send to a CNN based model (IFE and Siamese

network architecture in our scheme) directly as input. So in our implementation, a patch of shape 32× 32

is cropped out for each superpixel centred at the centroid of the superpixel. First, all these patches of

superpixels are fed to IFE for extracting initial feature vectors to fit into GCN.

The architecture of IFE is composed of a convolutional (conv) block (comprising of a number conv

and pooling layers) and two fc layers, fc-1 and fc-2 on top of the convolutional block. The architecture of

the conv block is identical to the entire conv block of VGG-19 [Simonyan and Zisserman, 2015]. fc-1 and

fc-2 layers have 128 and 2 nodes respectively. fc-2 classifies each superpixel patch to either gap or non-

gap. Further, we perform ReLU and dropout (with dropout probability 0.5) operations just after fc-1 and

before fc-2. However, the learnable weights of the conv block of IFE is initialized with the pre-trained

weights of pytorch [Paszke et al., 2017] implementation of VGG-19 while the weights of fc-1 and fc-2

layers are randomly initialized with the values in [−1, 1] drawn following normal distribution. In our

implementation, the input to fc-2 defines the 128-dimensional feature vectors for each of the superpixel.

The adjacency matrix of the SG and the 128-dimensional feature vectors of each superpixel are the

input to our GCN. The proposed GCN is comprised of 3 graph convolutional (gc) layers, namely gc-

1, gc-2 and gc-3 as shown in Figure 5.6. gc-1, gc-2 and gc-3 layers include 64, 16 and 2 number of

nodes. After each of gc-1 and gc-2 layers, we execute ReLU and dropout (with dropout probability

0.5) operations. Weights of all these gc layers are randomly initialized with the values in [−1, 1] drawn

following normal distribution. gc-3 layer eventually classifies each node of SG i.e., each superpixel to

gap or non-gap aggregating the features of adjacent superpixels in gc layers. In this work, the output

from gc-2 is the (unary) feature vector for any node of SG.

The feature vector for two adjacent superpixels or an edge of the SG is determined by sending their

patches to our SNA. As shown in Figure 5.7, SNA consists of 3 conv blocks: conv-block-1, conv-block-

2, conv-block-3 and 1 fc block: fc-block. Since, conv-block-1 and conv-block-2 share their weights,

they are essentially treated as one block whose architecture is identical to the conv block of VGG-16.

The outputs from conv-block-1 (which takes one superpixel as input) and conv-block-2 (which receives

another superpixel as its input) are concatenated and fed to conv-block-3. The structure of conv-block-3
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is identical to the chunk of 10-th to 16-th conv layers (including intermediate maxpool layer) of VGG-

19. The weights of these blocks are initialized with weights of respective blocks of the VGG pre-trained

models. The fc-block (consisting of 3 fc layers having 64, 16 and 2 nodes respectively) takes the output of

conv-block-3 and classifies the adjacent superpixels to be identically labeled or not (refer Section 5.3.5).

fc-block also performs ReLU and dropout (with dropout probability 0.5) operations after each of first

two fc layers. Weights of all these fc layers are randomly initialized with the values in [−1, 1] drawn

following normal distribution. In our model, the output from penultimate layer of fc-block is eventually

the (pairwise) feature vector for the edge between the adjacent superpixels in SG. The SG along with

these unary and pairwise feature vectors are sent to SSVM for identification of gaps and non-gaps in

shelf images.

All the above deep learning based models, IFE, GCN and SNA are implemented with pytorch library

[Paszke et al., 2017] while SSVM is designed with pystruct library [Müller and Behnke, 2014] of python

using Titan XP GPU. Next we explain the training strategies of the above models under discussion.

Training During training of the deep learning based models IFE, GCN, and SNA of our proposed

approach, approximately 80% images of the train-set are used for training while rest 20% images are

utilized for validation of the network. All the networks are trained by applying softmax function on

output (referred to as softmax output) and then calculating the cross-entropy loss between the softmax

output and one hot label vector. Adam optimizer at learning rate of 0.0001, weight decay of 5e-4, and

mini-batch (of shelf images) of 1 are used to learn the networks. IFE and SNA are optimized upto 150

epochs while GCN is trained for at most 400 epochs. On the other hand, for training of SSVM, the chosen

tunable parameters are maximum iteration of 100, a regularization parameter of 0.1 and a convergence

tolerance of 0.1. Next we present the competing methods.

Competing Methods We compare our proposal with the competing methods: U-Net [Ronneberger

et al., 2015], DeepLabV3 [Chen et al., 2017], LinkNet [Chaurasia and Culurciello, 2017], FPN [Lin et al.,

2017], PSPNet [Zhao et al., 2017], DeepLabV3+ [Chen et al., 2018], PAN [Li et al., 2018], MA-Net [Fan

et al., 2020]. We have used pytorch implementation of all these methods with default setup available in

GitHub [Yakubovskiy, 2020]. All these networks are trained for 100 epochs. Next we present the results

and analysis.

5.4.2 Results and Analysis

Performance Measure The methods are evaluated using the measure, intersection-over-union (IoU)

[Dice, 1945] used in evaluating the performances of the methods in semantic segmentation. The IoU

essentially determines the similarity between the predicted binary mask B̂ and true binary mask Igt of an

image of a shelf. Subsequently, the gap identification performance for the ϑtst number of test images in
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a dataset is defined by the mean IoU (mIoU) as :

mIoU =
1

ϑtst

(
|Igt ∩ B̂|
|Igt ∪ B̂|

)
. (5.13)

The experiments are carried out on three publicly available datasets Grocery Products (GP) [George

and Floerkemeier, 2014], WebMarket (WM) [Zhang et al., 2007], and GroZi (GZ) [Merler et al., 2007]

(see Appendix B for more details on these datasets) from which we select 305, 98, and 50 number of

shelf images and create ground truth specifying empty/non-empty regions as explained in Section 5.2.

For each dataset, we randomly choose approximately 60% of these shelf images as train-set and rest

40% as test-set. The train-set includes 184, 59, and 30 number of shelf images in GP, WM, and GZ

respectively while test-set contains 121, 39, and 20 number of images in the respective datasets. These

train-set and test-set containing images and their ground truths are made public in GitHub [Santra et al.,

2021a].

Table 5.1 presents the gap identification accuracy in terms of mIoU (%) of the proposed approach

including the competing ones. The proposed scheme outperforms deep learning based state-of-the-art

methods in all the evaluations by at least ∼1%. The maximum performance improvement from the

nearest competitor is ∼3% (see right most column for GZ in Table 5.1) which is indeed remarkable. In

fact, our method achieves the higher accuracy for GZ dataset. Our method performs equally well for the

datasets having larger or smaller number of training images (for GP there are 184 training images while

for GZ there are only 30 training images). On the contrary, the performance of purely deep learning

based methods deteriorates with the decreasing size of train-set, which is why, the margin of mIoU for

our method w.r.t. others becomes higher when train-set is smaller as witnessed for GZ. However, the

results for all the methods are inferior on the GP and WM datasets compared to GZ due to large variation

Table 5.1: Gap identification results of various methods on benchmark datasets. DLV3 and DLV3+
represents DeepLabV3 and DeepLabV3+ respectively.

Methods
mIoU (%)

GP WM GZ

U-Net [Ronneberger et al., 2015] 69.36 66.83 81.76
DLV3 [Chen et al., 2017] 67.82 64.89 78.47
LinkNet [Chaurasia and Culurciello, 2017] 68.73 66.28 79.25
FPN [Lin et al., 2017] 67.36 66.19 77.60
PSPNet [Zhao et al., 2017] 66.19 64.55 72.30
DLV3+ [Chen et al., 2018] 68.98 64.75 75.70
PAN [Li et al., 2018] 68.95 64.93 77.31
MA-Net [Fan et al., 2020] 69.64 63.60 81.66
Proposed 70.62 69.20 84.58
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Test Image Ground Truth Mask Predicted Mask

Figure 5.8: A few qualitative results from the test-set of various datasets. Top six rows (starting from
second row) show the efficacy of the proposed scheme while the last two rows present the failure cases
of our solution when the products with darker packaging appear like a gap.
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Table 5.2: Performances of our method removing or adding different components of it on test-set of our
benchmark datasets

Components in our scheme
mIoU (%)

GP WM GZ

(i) NFE 65.98 60.06 79.11
(ii) NFE + SSVM 66.75 63.76 79.89
(iii) Proposal: NFE + EFE + SSVM 70.62 69.20 84.58

in the texture of gaps and in the packaging of products.

A few example qualitative results of our method are provided in Figure 5.8. The efficiency of our

method is established in the eight example results shown in top six rows (displaying images) of Figure

5.8, where the predicted binary masks are almost similar to the true binary masks. The bottom two rows

of Figure 5.8 illustrate two notable failure cases. Our analysis finds that the non-gap is misidentified as

gap in both the images due to darkness in packaging of the product. Next we perform the ablation study.

Ablation Study The ablation study is carried out on all benchmark datasets for investigating the con-

tributions of different components of the proposed scheme. Our proposal has three primary components

such as: node feature extractor (NFE) i.e., IFE + GCN, edge feature extractor (EFE) i.e., GCN, and

SSVM i.e., our classifier. In the proposed scheme, NFE is the basic component without which SSVM

cannot be executed. Therefore, next we provide the efficacy of the remaining two components EFE and

SSVM of our proposal to identify the gaps or non-gaps in the shelf images.

Contribution of EFE SSVM can be modeled using the SG and its node features NFE, without

explicitly extracting edge features of SG. In that case, SSVM considers the adjacency value (1 or 0) in

the adjacency matrix of SG as edge feature. This setup, which can be denoted as NFE + SSVM, exam-

ines the necessity of EFE i.e., SNA in our proposal. If we remove EFE module from our proposal, the

performance drops at least ∼5% (compare rows (ii) and (iii) of Table 5.2) that clearly shows the impor-

tance of EFE. This happens because the Siamese network considers each pair of adjacent superpixels and

efficiently captures the discriminatory characteristics between them as the edge feature.

Contribution of SSVM We can use only NFE for obtaining the gap identification results. The

results of this model essentially illustrate the contribution of SSVM. If we look at the performances of

our proposal (row (iii)) and NFE (row (i)) in Table 5.2, the difference is at least∼5% and at most∼10%.

Thus the necessity of SSVM can be clearly noticed.

Hence, our ablation study suggests that all three components of our proposal are significant in accu-

rately identifying gaps and non-gaps in shelf images. To be specific, this study infers that SSVM con-

tributes most in achieving higher gap identification performance with respect to competing approaches.Next

we analyze the test time (or inference time) of the proposed method.
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Figure 5.9: The pie-chart representing the distribution of the execution time consumed by the different
building blocks of the proposed approach for identifying gaps in a shelf image

Notes on Inference Time The proposed algorithm is implemented in python and tested in a com-

puting system with the following specifications: 96GB RAM, Intel Core i9-9820X CPU 3.30GHz×20

and 24GB TITAN RTX GPU. The modules of the proposed approach involved during inference are: (a)

Superpixel Segmentation (Section 5.3.1), (b) Superpixel Graph Construction (Section 5.3.2), (c) Node

Feature Extraction (Section 5.3.4), (d) Edge Feature Extraction (Section 5.3.5) and (e) SSVM Infer-

ence (Section 5.3.6). For identifying the gaps in a (test) shelf image, the time consumed by each of

these modules of our scheme is presented using a pie-chart in Fig. 5.9. The total time taken by the

un-optimized code of the proposed approach is ∼0.93 seconds. Among all the modules, as expected,

Node Feature Extraction consumes the highest time due to the Graph Convolution process explained in

Section 5.3.4. Further, the CPU implementations of graph manipulation (Superpixel Segmentation and

Superpixel Graph Construction) and SSVM inference process have increased the overall execution time.

A shelf image is analyzed in less than a second with the un-optimized implementation of our algorithm.

However, the (deep learning based) competing methods take ∼0.45 seconds for identifying the gaps in

a (test) shelf image. All the competitive methods are end-to-end deep learning based methods, which

are entirely implemented in GPU. On the contrary, our current implementation of the proposed approach

involves CPU alongside the GPU, which essentially increases the test time. Our analysis finds that the

test time of our scheme should be close to that of the competitors if we implement the graph manipula-

tion and SSVM inference in the GPU. However, with this fraction of seconds increase of test time w.r.t.

the competing approaches, the proposed scheme yields a significantly better performances in almost all

the cases. Next we carry out the experiment for choosing the number of superpixels for creating the

superpixel graph.

Choice of Number of Superpixels (N) An example shelf image I, segmented into four superpixels is
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Figure 5.10: Peak signal-to-noise ratio (PSNR) (in dB) values between Igt and B for different numbers
of superpixels N generated by SLIC superpixel segmentation algorithm.

shown in Figure 5.4(a). The pixel-level ground truth of I is Igt as shown in Figure 5.5(b). In order to train

the SSVM, we label each superpixel by majority voting of white or black pixels to create the structured

ground truth mask B as explained in Section 5.3.3 and as shown in Figure 5.5.

The choice of number of superpixels (N) should be such that the (pixel-wise) difference between the

pixel-level ground truth mask I(k)gt and structured ground truth mask B(k) is minimum for the training

image I(k). That is, Figures 5.5(b) and 5.5(c) become almost identical. In order to ensure that, we choose

N in a way such that the peak signal-to-noise ratio (PSNR) [Welstead, 1999] (in db) between I(k)gt and

B(k) is maximum. Thus, we compute the mean PSNR for the images in the training set of the WM dataset

varying N from 200 to 1400 in intervals of 200. The mean PSNR for various N is plotted in Figure 5.10.

It can be seen that till about N = 1000, the PSNR increases. This means that more the granularity

in segmentation, more (pixel-wise) similar are I(k)gt and B(k). However, for N > 1000, PSNR starts to

fall due to the inconsistent superpixel boundaries determined by the SLIC algorithm. Therefore, we set

N = 1000 in our implementation. Next we discuss the importance of our method in context of retail

stores.
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5.4.3 Suitability of the Proposal for Retail Store Environment

The deep learning based approaches usually require enormous training data. Limited training images

result into over-fitting of the model during training and hence poor generalized performance. Due to

availability of limited training data for the application under consideration, we have used structural

support vector machine that learns lesser number of parameters (2 × number of node features + 4 ×
number of edge features) compared to competing deep learning based method.

The deep learning models, that we have utilized in this work, are GCN to extract the features of the

superpixels and a Siamese network to extract the features of a pair of superpixels. In order to train these

networks, a minimal set of labeled data (i.e., annotated shelf images) is good enough.

Assume there are 30 self images in the train-set, each of which has 1000 superpixels as set in our

implementation. In that case, the training data, which is used for training the node feature extractor

(GCN), contain 30× 1000 samples. For training the edge feature extractor (Siamese network), we have

30× number of edges in each SG (obviously more than 1000) training samples.

Such a training scheme is large enough to train the proposed GCN or Siamese network. On the

contrary, all other deep learning based segmentation methods considered in our comparative study (see

Table 5.1), require to train millions of parameters. As a result, the proposed scheme outperforms all these

methods as evident in Table 5.1. Hence, in the context of retail store with limited number of training

(shelf) images, given that the product display plan in supermarkets changes frequently, the proposed

scheme is expected to be a better choice for an application like identification of empty spaces. Next the

chapter is summarized.

5.5 Summary

This chapter looks into designing a pragmatic solution for automatically identifying gaps in the images

of shelves/racks captured in supermarkets. We have posed this gap identification problem as an image

segmentation problem. Capturing a large number of training images of shelves and annotating them is

next to impossible particularly with the fast changing line of products. Keeping this in mind, the proposed

method is built in a way such that it performs significantly well when it is trained with a minimal set of

images unlike widely used deep learning based image segmentation techniques.

The shelf image is first over-segmented into a number of superpixels to construct a graph of super-

pixels (SG). Subsequently, a graph convolutional network and a Siamese network are built to process the

SG. The method presented in this chapter uses graph convolutional network (GCN) for feature extraction

of the superpixels (to be used as node feature of SG) while Siamese network architecture (SNA) captures

the similarity of the neighbouring superpixels in a feature embedding (to be used as edge feature of the
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SG). Finally, an SSVM based inference model is formulated to segment the empty and non-empty regions

from the shelf image. Utilizing GCN and SNA to obtain the node and edge features of a superpixel graph

for training SSVM has never been attempted. We have shown their importance in classification of gaps

using SSVM. We consider this to be the key contribution of our proposal.

In order to validate our proposal and other competing approaches, we manually annotate the images

of shelves labeling empty and non-empty regions. We release a part of these annotated data at https://

github.com/gapDetection/gapDetectionDatasets for the publicly available benchmark

image datasets of retail products, namely Grocery Products, WebMarket and GroZi. We believe that the

release of this dataset for gap detection is an important milestone for application-driven computer vision

research community. The results obtained in this chapter indicate that the problem needs much more

attention from the community.

The previous three Chapters 2, 3, and 4 present our attempts for the automatic identification of prod-

ucts in the retail stores while this chapter proposes the first known attempt for segmentation of gaps/non-

gaps in the images of shelves of supermarkets. Finally, in the next chapter, we conclude the thesis.
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C H A P T E R 6

Conclusions

In this thesis, we have looked into two important aspects related to the products displayed on the racks

of supermarkets:

(a) identification and localization of the products, and

(b) identification of empty spaces on the shelves for automatic planogram compliance.

The proposed annotation-free machine vision system has three modules in sequence:

(i) generation

(ii) classification, and finally

(iii) non-maximal suppression of region proposals.

The region proposals originate from ideal marketing images of the products. While recognizing the

products, we take care of minor orientations of products on the shelves and variation of store level illu-

mination to certain extent. Finer distinctions between product packages and products vertically stacked

on the shelves, are also identified.

To identify empty spaces on the shelves automatically, we introduce a graph-based image segmenta-

tion approach. This is the first known attempt for identification of empty spaces on the shelves. In this

context, we release annotated data [Santra et al., 2021a] for some of the images from three benchmark

datasets detailed in Appendix B. This thesis introduces a few deep neural network models for some spe-

cific tasks related to the problem under discussion. Further, we have utilized a few state-of-the-art deep

neural architectures for solving the problem. All these deep learning architectures and their objectives

are tabulated in Table 6.1.

Based on the research conducted in this thesis, we reach to the following conclusions:
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Table 6.1: The deep learning models/architectures introduced or used in this thesis

Chapters Deep Learning Architectures Objectives Comments
Chapter 2,
Chapter 3,
Chapter 4

ResNet-101 [He et al., 2016] Classification of products Reused

Chapter 3,
Chapter 4

RC-Net Object-level or coarse-grained classifica-
tion of products

Newly introduced

conv-LSTM
[Xingjian et al., 2015]

Classification of sequence of image
patches for part-level or fine-grained
classification of products

Introduced a new ar-
chitecture of conv-
LSTM

Chapter 5

VGG-19
[Simonyan and Zisserman, 2015]

Classification of a superpixel as a gap or
non-gap

Reused

GCN
[Kipf and Welling, 2016]

Classification of superpixel associating
neighboring superpixels as a gap or non-
gap

Introduced a new ar-
chitecture of GCN

Siamese Network
[Koch et al., 2015]

Classification of a pair of superpixels as
a dissimilar or similar superpixels

Introduced a new ar-
chitecture of Siamese
Network

• The proposed exemplar-driven region proposal algorithm has proved its efficacy by generating

fewer number of proposals compared to an exemplar-independent region proposal scheme. Further,

our region proposal algorithm generates proposals around the products with the help of elegant

key-point matching based approach. As a result, our scheme generates very few false proposals

away from the products. In contrast, exemplar-independent approaches are responsible for higher

number of false positives.

• In generating exemplar-driven region proposals, we estimate scale between product templates and

rack. The quality of scale estimation depends on the availability of physical dimensions of product

templates.

• Automatic identification of stacked products is always a challenge. We manage region proposals

using a directed acyclic graph compensating classification score of a region proposal with the

quality of geometric fit of the proposals with the templates. Selection of region proposals using

graph based approaches shows improved result compared to greedy selection of region proposals.

• The proposed fine-grained classifier has looked at both object-level and part-level cues. As a result,

this bi-level approach enables us to efficiently differentiate the fine-grained products. Moreover,

our object-level classifier RC-Net (due to its enhanced generalization ability) resolves the effect

of illumination difference between training and test images. When we embed this in our product

detection system, we see a noticeable improvement in product detection performance.
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• In this thesis, we have developed an end-to-end system for automatic product identification. Each

of the three solutions ERP, FGC, and G-NMS contribute sufficiently well in the final result. In

particular, ERP plays the lead role in achieving significantly better results for our system than

other competing approaches.

• Identification of empty spaces on the shelves is an interesting image segmentation problem. We

have shown that the structural support vector machine is a viable option for achieving desired

image segmentation with the limited number of labelled data. Both the graph convolutional and

Siamese networks are integrated to obtain attractive empty space segmentation results.

Next we list a few challenges as possible future directions of research.

6.1 Future Directions of Research

We conceive the following set of challenges based on the work done in this thesis on product identification

system.

• Simultaneous detection of products and empty spaces in between could be an interesting research

problem. Fast changing line of products and unavailability of annotated shelf images restrict use

of efficient deep learning approaches. However, it would be an interesting challenge to recognize

products and empty spaces in one go using a minimal set of annotated images of racks/shelves (as

we did for identification of empty spaces). This challenge may be addressed using techniques of

semantic segmentation.

• Estimation of scale between the product templates and rack needs further attention. In many oc-

casions, the availability of physical dimensions of a product template is a serious restriction. In

that case, we may use involved context information. A potential direction of research could be

exploitation of texture based context information.

Figure 6.1: Empty spaces on stacked products marked by blue quadrilateral and arrow
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Conclusions

• The proposed G-NMS runs in quadratic time. The improvement in time complexity of the G-NMS

can be explored from different perspectives.

• Product packages change quickly. Number of products increases rapidly. Frequent retraining of

machine learning system is a serious bottleneck. These issues present interesting research prob-

lems in context of product identification challenge. A related difficult research problem is novelty

detection when a very similar but new product needs to be identified as novelty compared to the

existing product templates.

• The structural support vector machine along with graph convolutional and Siamese networks have

shown outstanding performance in identifying empty spaces using minimal set of labelled images.

However, these three machine learning models are trained separately in the proposal. An integrated

training framework for these three models in an end-to-end setup could be an interesting theoretical

research direction.

• The empty space identification in shelves, will always remain a difficult research problem due to

variation in definition of empty spaces on the shelves. Assume, a product is picked from the top of

a vertical stack of products. This results in an empty space (for example, see the regions covered

by blue quadrilateral and marked by blue arrow in Figure 6.1). Identification of such an empty

space is indeed difficult. One possible way to deal with this situation is to look at the depth of the

stack from temporal image frames. In such a scenario, depth estimation for stacked products on

the shelf images and continuous monitoring of sequences of images could be an exciting image

processing problem that may be explored.

• The application-driven research project that we have demonstrated in this thesis, has a number of

system management issues. Hardware and software management for real time implementation,

challenges in mapping and scaling of algorithm in GPU, and implementation strategy partially

in edge or hand held device and balance in backbone or in cloud, all these are important future

direction of research for this application.

Overall, these challenges suggest that the retail product identification system will continue to be an

exciting problem for research and development in computer vision with sufficient room for improvement

in the years to come.
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Evaluation Indicators for Assessing

Product Detection Performance

In [Santra and Mukherjee, 2019], we notice that different evaluation indicators are used in different

state-of-the-art methods (see Table 1.3) for validating the solutions. Keeping retail context in mind, in

this thesis, the efficiency of the methods are evaluated by calculating F1 score for measuring the perfor-

mance of detecting products on the shelves of the supermarkets. This score implicitly encapsulates the

standard measures, recall, precision, or intersection-over-union (IoU). For the problem under discussion,

each product sitting on a rack is defined using a rectangular bounding box and the class label of the prod-

uct. Thus TP (true positives), FN (false negatives), and FP (false positives) are defined for each labeled

product displayed on the rack. Subsequently, the F1 score is calculated for each rack in the test set.

Let a product Dt (ground truth) is present on the rack image I. Figure A.1 shows an example rack I

displaying two products D1 and D2 (see red boxes), for which we obtain three detected bounding boxes

(see green, blue, and yellow boxes detected using an algorithm). Given this, we find the counts of TP, FP,

and FN for the rack image I as follows.

If the center of any detected bounding box (i.e., detected by an algorithm) lies within Dt on the rack

and the label of the detected box is same as the label of Dt, the count of TP of the rack I is increased by

1. For example, the detected green box D1 for the red product D1 is the TP in Figure A.1.

If the center of the detection lies within Dt on the rack but its label is different from that of Dt, the

count of FP of the rack I is increased by 1. As an example, the detected blue box D3 for the red colored

product D1 is the FP in Figure A.1. If the center of a detection does not lie within any ground truth
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Rack 

Figure A.1: Example rack image displaying two products D1 and D2 (see the red boxes), for which the
green detected box labeled D1 is TP, the blue detected box labeled D3 is FP, and the yellow detected box
labeled D1 is also an FP.

product in I, the count of FP of the rack I is increased by 1, like the detected yellow box D1 in Figure

A.1.

If the center of any detection does not lie within the Dt in the rack (for example, see the red colored

product D2 in Figure A.1), the count of FN of the rack I is increased by 1. Given this, for the rack I, the

F1 score is derived as

F1 score =
2(recall × precision)

recall + precision
, (A.1)

where

recall =
TP

TP + FN
, and precision =

TP
TP + FP

.
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A P P E N D I X B

Datasets of Retail Products

B.1 In-house Dataset

We capture 457 rack images of 352 products in various supermarkets to create In-house dataset. This

collection of rack images display many fine-grained products. We capture one template image for each

product in a controlled scenario. The products belong to six larger classes of products such as breakfast

cereals (BC) (72 products and 151 racks), deodorant (DEO) (55 products and 100 racks), lip care (LC)

(20 products and 80 racks), oral care (OC) (51 products and 30 racks), personal wash (PW) (82 products

and 36 racks) and mixed (MIX) (72 products and 60 racks). Note that, mixed or MIX category refers to

a collection of products from other five categories of the dataset. For creating ground truth, all the racks

are manually annotated by labeling the products using tight rectangular bounding boxes. In addition, we

have used following three benchmark datasets.

B.2 Benchmark Datasets

In this thesis, we have evaluated various approaches on three benchmark datasets: Grocery Products1

[George and Floerkemeier, 2014], WebMarket2 [Zhang et al., 2007], and GroZi3 [Merler et al., 2007],

which are detailed in the following sections.

1http://people.inf.ethz.ch/mageorge/ accessed as on Dec, 2017
2http://yuhang.rsise.anu.edu.au/ accessed as on Jul, 2021
3http://grozi.calit2.net/grozi.html accessed as on Jul, 2021
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(a) (b) (c)

Figure B.1: Examples of rack (top-row) and product templates (bottom-row) from (a) Grocery Products,
(b) GroZi-120, and (c) WebMarket datasets

B.2.1 Grocery Products

The Grocery Products (GP) dataset consists of 680 rack images that exhibit 3235 products. The products

are collected from 27 categories. The rack images display 6 to 30 number of products. The product

templates, which are imaged in a controlled environment, are downloaded from the web. While the

rack images are clicked in the supermarket environment from various viewing angles with non-identical

magnification levels and lighting conditions. The dataset also presents many similar yet non-identical

(i.e., fine-grained) products (see Figure B.1(a)) which are displayed on the rack images. The classification

of fine-grained products is a challenge for this dataset. The dataset also includes ground truth for all the

rack images indicating similar group of products with tight bounding boxes.

B.2.2 WebMarket

The WebMarket (WM) dataset includes 3153 rack images captured from 18 shelves in a supermarket.

The dataset contains template images of 100 products which are present only in 402 (out of 3153) rack

images. There exists three instances for each of the products in the dataset. This dataset also provides

a few fine-grained products. The rack images are clicked when the products are on the shelf. On the

contrary, the products are imaged off the shelf. So scale, pose and illumination are not identical for rack

and product images. Examples of rack and a few products are shown in Figure B.1(c). The annotations,

for the bounding boxes of the products in the rack images, are not bundled with the dataset. We have

manually annotated the racks for evaluation of the methods.

B.2.3 GroZi

The GroZi (GZ) dataset provides 29 videos of racks, which display 120 products captured in a super-

market. The frames after each 5 consecutive frames (e.g., 1st, 6th, 11th, ... frames) are extracted from
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the videos and annotation for these frames are included in the dataset. The dataset distributes 2 to 14

template images for each product. In this dataset, each product is displayed in 14 to 814 rack images.

The dataset also provides (separately) the products cropped from the racks using the annotations for the

bounding boxes of the products in the rack images. Most of the products in rack differ from the templates

as shown in Figure B.1(b). This poses additional challenge for the dataset.
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A P P E N D I X C

Proof of the Theorem 3.1

C.1 Assumptions

The assumptions in proving the Theorem 3.1 are listed below.

Assumption C.1. Predicting class labels of the products is our primary target while reconstruction of

the input product images is our secondary (or auxiliary) target. The spaces containing product images

and primary targets are bounded. In other words, the input and primary target must satisfy ∥M∥F ≤ BM

and ∥yp∥2 ≤ By respectively. Similarly the spaces Wp,Wr, and K, where the learnable parameters

Wp, Wr, and K exist, respectively, are also bounded i.e.

Wp = {Wp ∈ Rm×khkw f : ∥Wp∥F ≤ BWp},

Wr = {Wr ∈ Rcin×khkw f : ∥Wr∥F ≤ BWr},

K = {K ∈ R f×khkwcin : ∥K∥F ≤ BK},

where BM, By, BK, BWp , BWr are the positive constants and ∥ · ∥F represents the Frobenius norm (which

is also referred to as y2 norm) of a matrix. In rest of the thesis, ∥ · ∥F and ∥ · ∥2 are interchangeably

used for denoting the y2 norm of a matrix.

Assumption C.2. The reconstruction error Lr(·, yr) is Lipschitz i.e., Lr(·, yr) is σr-admissible. For-

mally, for any two possible predictions ŷr and ŷ′r of yr (i.e. the input product image X), there exists a
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real positive constant σr such that

|Lr(ŷr, yr)− Lr(ŷ′r, yr)| ≤ σr∥ŷr − ŷ′r∥2.

Assumption C.3. The reconstruction error Lr(·, yr) is also g-strongly-convex i.e. for a real positive

constant g,

⟨ŷr − ŷ′r,∇Lr(ŷr, yr)−∇Lr(ŷ′r, yr)⟩ ≥ g∥ŷr − ŷ′r∥2
2.

Assumption C.4. There must be a bound for the growth of the primary loss Lp(., yp) i.e., for some

positive constant σp > 0 and for any K, Kt ∈K,

|Lp(WpKtM, yp)− Lp(WpKM, yp)| ≤ σp∥Wr(Kt −K)M∥2.

Assumption C.5. We must have a representative set E of the feature maps of the training images. For-

mally, there exists a subset

E = {E(1), E(2), · · · , E(n′)} ⊂ {X(1), X(2), · · · , X(n)}

≡ {M(E(1)), M(E(2)), · · · , M(E(n′))} ⊂ {M(1), M(2), · · · , M(n)},

such that the feature maps of any product image M that belongs to the training image set, can be re-

constructed by E with a small error i.e., M = ∑n′
i=1 α(i)M(E(i)) + ω, where α(i) ∈ R, ∑n′

i=1 α(i)2 ≤ r,

∥ω∥2 ≤ ϵ
n , ϵ is a positive constant.

Assumption C.6. The representative set E of the training images also have to be representative in terms

of reconstruction error i.e., the average reconstruction error of the images in E needs to be upper bounded

by some constant factor of the average reconstruction error. Consider any two datasets D1 and D2. The

dataset D2 is formed by replacing tth image in D1 with a random new instance. Let K and Kt be the

optimal forward models trained with D1 and D2 respectively. Let N(·) be the average reconstruction

error for the model K, without considering the image that is replaced,

N(K) =
1
n

n

∑
i=1,i ̸=t

Lr(WrKM(i), y(i)
r ),

and similarly the average reconstruction error for the representative images

NE(K) =
1
n′

n′

∑
i=1

Lr(WrKM(E(i)), y(E(i))
r ),

where y(E(i))
r is the reconstruction target for the representative image M(E(i)) ∈ E. Then, for any small
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α > 0, there exists a > 0 such that

[NE(K)− NE((1− α)K + αKt)] + [NE(Kt)− NE((1− α)Kt + αK)]

≤ a[N(K)− N((1− α)K + αKt)] + [N(Kt)− N((1− α)Kt + αK)].

This ensures that the increase or decrease in error for the forward models Kt and K are similar for N(·)
and NE(·).

C.2 Proof of the Theorem 1

We prove Theorem 3.1 under the Assumptions C.1 to C.6 as explained in Section 3.3.1 for the conv

operation defined in Section 3.3.1 [Le et al., 2018].

Proof. Assumption C.4 states that

|Lp(WpKtM, yp)− Lp(WpKM, yp)| ≤ σp∥Wr(Kt −K)M∥2. (C.1)

For any arbitrary data point (X, y), in order to bounding the LHS of (C.1), we first have to determine the

upper bound of LHS of (C.1) in terms of the representative data points, ∑n′
i=1 ∥Wr(Kt − K)M(E(i))∥2.

Note that, M and M(E(i)) are the matrix representations of the product images X and E(i) respectively.

This is the first part of the proof which we derive next.

Part 1: Upper bound of LHS of (C.1) in terms of representative points. From Assumption C.5, any

product image X (or M) can be represented as ∑n′
i=1 α(i)M(E(i)) + η (≡ ∑n′

i=1 α(i)E(i) + η). Then

∥Wr(Kt −K)M∥2 =

∥∥∥∥∥ n′

∑
i=1

α(i)Wr(Kt −K)M(E(i)) + Wr(Kt −K)η

∥∥∥∥∥
2

. (C.2)

Using triangle inequality, ∥C1 + C2∥ ≤ ∥C1∥+ ∥C2∥, we further obtain,

∥Wr(Kt −K)M∥2 ≤
∥∥∥∥∥ n′

∑
i=1

α(i)Wr(Kt −K)M(E(i))

∥∥∥∥∥
2

+ ∥Wr(Kt −K)η∥2.

Now using Cauchy-Schwarz inequality and the inequality, ∥C1C2∥ ≤ ∥C1∥∥C2∥, we get

∥Wr(Kt −K)M∥2 ≤

√√√√ n′

∑
i=1

α(i)
2
∥∥∥∥∥
√√√√ n′

∑
i=1

(
Wr(Kt −K)M(E(i))

)2
∥∥∥∥∥

2

+ ∥Wr∥2∥(Kt −K)∥2∥η∥2. (C.3)

From Assumption C.5, we get, ∑n′
i=1 α(i)2 ≤ r and ∥η∥2 ≤ ϵ

n while from Assumption C.1, we obtain,
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∥Wr∥2 ≤ BWr and ∥K∥2 ≤ BK, then

∥Kt −K∥2 = ∥Kt + (−K)∥2 ≤ ∥Kt∥2 + ∥ −K∥2 ≤ BK + BK = 2BK.

Therefore, (C.3) can be written as:

∥Wr(Kt −K)M∥2 ≤
√

r

√√√√ n′

∑
i=1

∥∥∥Wr(Kt −K)M(E(i))
∥∥∥2

2
+

2BWr BKϵ

n

≤
√

rΓ +
2BWr BKϵ

n
, (C.4)

where assume, Γ =
√

∑n′
i=1 ∥Wr(Kt −K)M(E(i))∥2

2. Now, we aim to bound this Γ which is the second

part of our proof.

Part 2: Bounding Γ =
√

∑n′
i=1 ∥Wr(Kt −K)M(E(i))∥2

2. Assume, for the overall loss L(K) for the

forward model K, the Bregman divergence is represented by DL(Kt∥K) and defined as:

DL(Kt∥K) = L(Kt)− L(K)−
〈
Kt −K,∇L(K)

〉
, (C.5)

where the inner product notation refers to summation of element-wise product for the matrices. Now, we

use following three bounds:

DN(Kt∥K) ≤ DL(Kt∥K), (C.6)

DN(K∥Kt) ≤ DLt(K∥Kt), (C.7)

DNE(Kt∥K) + DNE(K∥Kt) ≤ a[DN(Kt∥K) + DN(K∥Kt)]. (C.8)

Before utilizing the above three inequalities, we need to first prove above three inequalities.

Determining the inequalities (C.6) and (C.7): Since the sum of two strictly convex functions for N is a

strict subset of sum of strictly convex functions for L, L− N is strictly convex. Hence L− N provides

a valid potential for the Bregman divergence. Then, applying the properties of Bregman divergence, we

obtain

0 ≤ DL−N(Kt∥K) =⇒ DN(Kt∥K) ≤ DL(Kt∥K).

Hence the inequality (C.6) is proved and using the similar reasoning, the inequality (C.7) can also be

proved that

DN(K∥Kt) ≤ DLt(K∥Kt).

Determining the inequality (C.8): The LHS DNE(Kt∥K) + DNE(K∥Kt) of (C.8) can be simplified
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using the Bregman divergence (as defined in (C.5)) for NE (or N) as:

DNE(Kt∥K) + DNE(K∥Kt) =
〈
Kt −K,∇NE(Kt)−∇NE(K)

〉
. (C.9)

Now, by the definition of directional derivative, we obtain

〈
Kt −K,∇NE(K)

〉
= lim

α→0

NE

(
(1− α)K− αKt

)
− NE(K)

α
(C.10)

Using property of the inner product and since both the limit exists, we get

〈
Kt −K,∇NE(Kt)−∇NE(K)

〉
= −

〈
Kt −K,∇NE(K)

〉
−
〈
K−Kt,∇NE(Kt)

〉
= lim

α→0+

[
NE(K)− NE

(
(1− α)K + αKt

)
α

+
NE(Kt)− NE

(
(1− α)Kt + αK

)
α

]

≤ lim
α→0+

a

[
N(K)− N

(
(1− α)K + αKt

)
α

+
N(Kt)− N

(
(1− α)Kt + αK

)
α

]
(Assumption C.6)

= − lim
α→0

a

[
N
(
(1− α)K + αKt

)
− N(K)

α

]

− lim
α→0

a

[
N
(
(1− α)Kt + αK

)
− N(Kt)

α

]
= −a

〈
Kt −K,∇N(K)

〉
− a
〈
K−Kt,∇N(Kt)

〉
(using (C.10))

= a
[
DN(Kt∥K) + DN(K∥Kt)

]
.(using (C.9))

Hence, (C.9) now implies

DNE(Kt∥K) + DNE(K∥Kt) =
〈
Kt −K,∇NE(Kt)−∇NE(K)

〉
≤ a

〈
Kt −K,∇N(Kt)−∇N(K)

〉
i.e. DNE(Kt∥K) + DNE(K∥Kt) ≤ a

[
DN(Kt∥K) + DN(K∥Kt)

]
(C.11)

Hence, the inequality (C.8) is proved.

Bounding Γ using (C.6), (C.7), (C.8) and Assumptions C.2 and C.3: (C.11) gives

a
[
DL(Kt∥K) + DLt(K∥Kt)

]
≥ DNE(Kt∥K) + DNE(K∥Kt)

=
〈
Kt −K,∇NE(Kt)−∇NE(K)

〉
(using (C.9))
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=
〈
K−Kt,∇

1
n′

n′

∑
i=1

Lr(WrKM(E(i)), y(E(i))
r )

〉
−
〈
K−Kt,∇

1
n′

n′

∑
i=1

Lr(WrKtM(E(i)), y(E(i))
r )

〉
=

1
n′

n′

∑
i=1

〈
K−Kt,∇Lr(WrKM(E(i)), y(E(i))

r )
〉

− 1
n′

n′

∑
i=1

〈
K−Kt,∇Lr(WrKtM(E(i)), y(E(i))

r )
〉

=
1
n′

n′

∑
i=1

〈
Wr(K−Kt)E(i),∇Lr(WrKM(E(i)), y(E(i))

r )

−∇Lr(WrKtM(E(i)), y(E(i))
r )

〉
≥ g

n′
n′

∑
i=1
∥WrKM(E(i)) −WrKtM(E(i))∥2

2 (Assumption C.3)

=
g
n′

n′

∑
i=1
∥Wr(K−Kt)M(E(i))∥2

2. (C.12)

Since K and Kt are the optimal forward models, ∇L(K) = 0 and ∇Lt(Kt) = 0. In that case, using

(C.5), we get

DL(Kt∥K) + DLt(K∥Kt) =
(
L(Kt)− Lt(Kt)

)
+
(
Lt(K)− L(K)

)
. (C.13)

Using (3.4) and (3.5), we derive

L(Kt)− Lt(Kt) =
1
n

[
Lp(WpKM(t), y(t)

p )− Lp(WpKM
′(t), y

′(t)
p )

]
+

1
n

[
Lr(WrKM(t), y(t)

r )− Lr(WrKM
′(t), y

′(t)
r )

]
. (C.14)

Similarly,

Lt(K)− L(K) =
1
n

[
− Lp(WpKM(t), y(t)

p ) + Lp(WpKM
′(t), y

′(t)
p )

]
+

1
n

[
− Lr(WrKM(t), y(t)

r ) + Lr(WrKM
′(t), y

′(t)
r )

]
. (C.15)

Then (C.13) becomes

DL(Kt∥K) + DLt(K∥Kt) =
1
n

[
Lp(WpKM(t), y(t)

p )− Lp(WpKM
′(t), y

′(t)
p )

]
+

1
n

[
Lr(WrKM(t), y(t)

r )− Lr(WrKM
′(t), y

′(t)
r )

]
+

1
n

[
− Lp(WpKM(t), y(t)

p ) + Lp(WpKM
′(t), y

′(t)
p )

]
+

1
n

[
− Lr(WrKM(t), y(t)

r ) + Lr(WrKM
′(t), y

′(t)
r )

]
(C.16)
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By Assumption C.2, since Lr is σr-admissible, then we have

|Lr(WrKtM(t), y(t)
r )− Lr(WrKM(t), y(t)

r )| ≤ σr∥Wr(Kt −K)M(t)∥2 (C.17)

Similar result is obtained for Lr but with σp by Assumption C.4,

|Lp(WpKtM(t), y(t)
p )− Lp(WpKM(t), y(t)

p )| ≤ σp∥Wr(Kt −K)M(t)∥2 (C.18)

Now from (C.12), we have

g
n′

n′

∑
i=1
∥Wr(K−Kt)M(E(i))∥2

2 ≤ a
[(
L(Kt)− Lt(Kt)

)
+
(
Lt(K)− L(K)

)]
(using (C.13))

=
a
n

[[
Lp(WpKM(t), y(t)

p )− Lp(WpKM
′(t), y

′(t)
p )

]
−
[
Lp(WpKM(t), y(t)

p )− Lp(WpKM
′(t), y

′(t)
p )

]
+
[
Lr(WrKM(t), y(t)

r )− Lr(WrKM
′(t), y

′(t)
r )

]
−
[
− Lr(WrKM(t), y(t)

r )− Lr(WrKM
′(t), y

′(t)
r )

]]
(using (C.16))

≤ a
n

[
σp∥Wr(Kt −K)M(t)∥2 − σp∥Wr(Kt −K)M

′(t)∥2

+ σr∥Wr(Kt −K)M(t)∥2 − σr∥Wr(Kt −K)M
′(t)∥2

]
(using (C.17) and (C.18))

=
a(σp + σr)

n

[
∥Wr(Kt −K)M(t)∥2 − ∥Wr(Kt −K)M

′(t)∥2

]
(C.19)

Now the upper bound of

Γ =

√√√√ n′

∑
i=1
∥Wr(Kt −K)M(E(i))∥2

2

is obtained by putting all these together as follows

g
n′

Γ2 ≤
a(σp + σr)

n

[
∥Wr(Kt −K)M(t)∥2 − ∥Wr(Kt −K)M

′(t)∥2

]

≤
a(σp + σr)

n

[
∥Wr(Kt −K)M(t)∥2 + ∥Wr(Kt −K)M

′(t)∥2

]

≤
a(σp + σr)

n

[
2
(√

rΓ +
2BWr BKϵ

n

)]
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Therefore,

Γ2 ≤
a(σp + σr)n′

gn

[
2
(√

rΓ +
2BWr BKϵ

n

)]

=⇒ Γ2 −
2a(σp + σr)n′

√
rΓ

gn
≤

2a(σp + σr)n′

gn
· 2BWr BKϵ

n

=⇒ Γ2 − 2 · Γ ·
a(σp + σr)n′

√
r

gn
+

(
a(σp + σr)n′

√
r

gn

)2

≤
4a(σp + σr)n′BWr BKϵ

gn2 +

(
a(σp + σr)n′

√
r

gn

)2

=⇒
(

Γ−
a(σp + σr)n′

√
r

gn

)2

≤
a2(σp + σr)2n′2r

g2n2 +
4a(σp + σr)n′BWr BKϵ

gn2

=⇒
(

Γ−
a(σp + σr)n′

√
r

gn

)2

≤
a2(σp + σr)2n′2

g2n2

(
r +

4gBWr BKϵ

a(σp + σr)n

)

=⇒ Γ−
a(σp + σr)n′

√
r

gn
≤

a(σp + σr)n′

gn

√√√√(r +
4gBWr BKϵ

a(σp + σr)n

)
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a(σp + σr)n′

gn

(
√

r +

√
r +

4gBWr BKϵ

a(σp + σr)n

)
(C.20)

Thus, finally, from Assumption C.4, we obtain

|Lp(WpKtM, yp)− Lp(WpKM, yp)| ≤ σp∥Wr(Kt −K)M∥2

≤ σp
√

rΓ + σp
2BWr BKϵ

n
(using (C.4))

≤ σp
√

r
a(σp + σr)n′

gn

(
√

r +

√
r +

4gBWr BKϵ

a(σp + σr)n

)
+ σp

2BWr BKϵ

n

(using (C.20))

=
a(σp + σr)n′σp

gn

(
r +

√
r2 +

4ϵgBWr BKr
a(σp + σr)n

)
+

2ϵσpBWr BK

n

Hence, the theorem is proved.
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editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

P. Pawara, E. Okafor, M. Groefsema, S. He, L. R. Schomaker, and M. A. Wiering. One-vs-one classifi-
cation for deep neural networks. Pattern Recognition, 108:107528, 2020.

Y. Peng, X. He, and J. Zhao. Object-part attention model for fine-grained image classification. IEEE
Transactions on Image Processing, 27(3):1487–1500, 2017.

F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification.
In European conference on computer vision, pages 143–156. Springer, 2010.

R. Pietrini, D. Manco, M. Paolanti, V. Placidi, E. Frontoni, and P. Zingaretti. An iot edge-fog-cloud
architecture for vision based planogram integrity. In Proceedings of the 13th International Conference
on Distributed Smart Cameras, pages 1–5, 2019.

A. Ray, N. Kumar, A. Shaw, and D. Prasad Mukherjee. U-pc: Unsupervised planogram compliance. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 586–600, 2018.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
779–788. IEEE Conference on, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics,
pages 400–407, 1951.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image computing and computer-assisted intervention,
pages 234–241. Springer, 2015.

B. Santra and D. P. Mukherjee. A comprehensive survey on computer vision based approaches for
automatic identification of products in retail store. Image and Vision Computing, 86:45–63, 2019.

124



B. Santra, A. Paul, and D. P. Mukherjee. Deterministic dropout for deep neural networks using composite
random forest. Pattern Recognition Letters, 131:205 – 212, 2020a. ISSN 0167-8655. doi: https:
//doi.org/10.1016/j.patrec.2019.12.023.

B. Santra, A. K. Shaw, and D. P. Mukherjee. Graph-based non-maximal suppression for detecting
products on the rack. Pattern Recognition Letters, 140:73 – 80, 2020b. ISSN 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2020.09.023.

B. Santra, U. Ghosh, and D. P. Mukherjee. Datasets for identification of gaps in the images of shleves in
supermarkets. https://github.com/gapDetection/gapDetectionDatasets, 2021a.

B. Santra, A. K. Shaw, and D. P. Mukherjee. An end-to-end annotation-free machine vision system for
detection of products on the rack. Machine Vision and Applications, 32(3):1–13, 2021b.

A. Saran, E. Hassan, and A. K. Maurya. Robust visual analysis for planogram compliance problem. In
Machine Vision Applications (MVA), 2015 14th IAPR International Conference on, pages 576–579.
IEEE, 2015.

M. Shapiro. Executing the best planogram. In Professional Candy Buyer, Norwalk, CT, USA, Nov./Dec.
2009.

J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao. Real-time superpixel segmentation by dbscan
clustering algorithm. IEEE Transactions on Image Processing, 25(12):5933–5942, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, 2015.

I. Sobel. History and definition of the sobel operator. Retrieved from the World Wide Web, 2014.

H. Sun, J. Zhang, and T. Akashi. Templatefree: product detection on retail store shelves. IEEJ Transac-
tions on Electrical and Electronic Engineering, 15(2):242–251, 2020.

T. Sun, L. Sun, and D.-Y. Yeung. Fine-grained categorization via cnn-based automatic extraction and
integration of object-level and part-level features. Image and Vision Computing, 64:47–66, 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2818–2826, 2016.

R. Szeliski. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

K. A. Thakoor, S. Marat, P. J. Nasiatka, B. P. McIntosh, F. E. Sahin, A. R. Tanguay, J. D. Weiland, and
L. Itti. Attention biased speeded up robust features (ab-surf): a neurally-inspired object recognition
algorithm for a wearable aid for the visually-impaired. In Multimedia and Expo Workshops (ICMEW),
2013 IEEE International Conference on, pages 1–6. IEEE, 2013.

A. Tonioni and L. Di Stefano. Product recognition in store shelves as a sub-graph isomorphism problem.
In International Conference on Image Analysis and Processing, pages 682–693. Springer, 2017.

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for multiclass and multiview
object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5):854–869,
2007.

A. M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive psychology, 12(1):
97–136, 1980.

125

https://github.com/gapDetection/gapDetectionDatasets


References

J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Selective search for object recogni-
tion. International journal of computer vision, 104(2):154–171, 2013.

G. Varol and R. S. Kuzu. Toward retail product recognition on grocery shelves. In Sixth International
Conference on Graphic and Image Processing (ICGIP 2014), pages 944309–944309. International
Society for Optics and Photonics, 2015.

G. Varol, R. S. Kuzu, and Y. S. Akgiil. Product placement detection based on image processing. In Signal
Processing and Communications Applications Conference (SIU), 2014 22nd, pages 1031–1034. IEEE,
2014.

M. Villamizar, A. Garrell, A. Sanfeliu, and F. Moreno-Noguer. Interactive multiple object learning with
scanty human supervision. Computer Vision and Image Understanding, 149:51–64, 2016.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–I. IEEE, 2001.

B.-N. Vo, B.-T. Vo, N.-T. Pham, and D. Suter. Joint detection and estimation of multiple objects from
image observations. IEEE Transactions on Signal Processing, 58(10):5129–5141, 2010.

K. Wada. labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/
labelme, 2016.

L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regularization of neural networks using drop-
connect. In International conference on machine learning, pages 1058–1066, 2013.

S. T. Welstead. Fractal and wavelet image compression techniques, volume 40. Spie Press, 1999.

WHO. World health organization fact sheet, N◦ 282 (2014), 2014. URL http://www.who.int/
mediacentre/factsheets/fs282/en/. accessed on 24-Jun-2017.

T. Winlock, E. Christiansen, and S. Belongie. Toward real-time grocery detection for the visually im-
paired. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on, pages 49–56. IEEE, 2010.

T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The application of two-level attention models
in deep convolutional neural network for fine-grained image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 842–850, 2015.

G.-S. Xie, X.-Y. Zhang, W. Yang, M. Xu, S. Yan, and C.-L. Liu. Lg-cnn: From local parts to global
discrimination for fine-grained recognition. Pattern Recognition, 71:118–131, 2017.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm net-
work: A machine learning approach for precipitation nowcasting. In Advances in neural information
processing systems, pages 802–810, 2015.

H. Xue, S. Chen, and Q. Yang. Structural support vector machine. In F. Sun, J. Zhang, Y. Tan, J. Cao,
and W. Yu, editors, Advances in Neural Networks - ISNN 2008, pages 501–511, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. ISBN 978-3-540-87732-5.

P. Yakubovskiy. Segmentation models pytorch. https://github.com/qubvel/
segmentation_models.pytorch, 2020.

126

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
http://www.who.int/mediacentre/factsheets/fs282/en/
http://www.who.int/mediacentre/factsheets/fs282/en/
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch


H. Yao, D. Zhang, J. Li, J. Zhou, S. Zhang, and Y. Zhang. Dsp: Discriminative spatial part modeling for
fine-grained visual categorization. Image and Vision Computing, 63:24–37, 2017.
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