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Abstract

This thesis considers the task of thorax disease classification on Chest
X-Ray images using transfer learning. The thorax or chest is a part of
the anatomy of humans and various other animals located between the
neck and the abdomen. The thorax contains organs including the heart,
lungs, and thymus gland, as well as muscles and various other internal
structures. Transfer learning from natural image datasets, particularly
ImageNet, using models (VGG16, DenseNet, GoogLeNet etc.) and cor-
responding pretrained weights are used for deep learning applications to
medical imaging. In this thesis, VGG16 network, which is pretrained on
ImageNet data is explored. In Chest X-Ray14 dataset there are localized
areas which are signs of abnormalities, whereas in ImageNet dataset,
there is often a clear global subject of the image. Pretrained VGG16
had 1000 nodes in the output layer, one for each class. We change it to
14 nodes, one for each pathology: Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation,
Edema,Emphysema, Fibrosis, Pleural_Thickening, Hernia. We experi-
ment with the strategy that CNN should act as a feature extractor. A
performance evaluation shows that transfer offers little benefit to perfor-
mance. We plot Receiver Operating Characteristic (ROC) curve for each
of the pathologies. The area under the roc curve (AUROC) is calculated
for each class. Average AUROC is calculated by taking the mean of all
the classes. The average AUROC of our model is 0.715.
Keywords: VGG16, Transfer learning
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Chapter 1

Introduction

Thorax diseases are very common in India. There are many reasons for
that. Some of the reasons are outdoor air pollution, fire crackers, indoor
air pollution due to the use of mosquito coils. The Chest X-Ray (CXR)
is one of the most common radiological examinations in lung and heart
disease diagnosis. Currently, interpreting CXRs mainly relies on profes-
sional knowledge and careful manual observation. Due to the complex
pathologies and subtle texture changes of different lung lesion in images,
radiologists may make mistakes even when they have long-term clini-
cal training and professional guidance. Therefore, it is of importance to
develop the CXR image classification methods to support clinical prac-
titioners. The noticeable progress in deep learning has benefited many
trials in medical image analysis, such as diseases classification [10],[16],
image annotation [9] and so on. In this thesis, we investigate the CXR
classification task using transfer learning. The advantage of using this
approach is that we do not need to train the entire model. We take
advantage of the pretrained weights of the model. These weights are
reused. We use VGG16 as a feature extractor. All but the last feed-
forward layer(s) of the network are frozen. The only weights that are
trained are those in the last layers.
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1.1 Objective

1. To provide radiologists and medical experts a low cost tool to cross
check their interpretations.

2. Many people in our country do not have access to radiologist due to
high cost. This tool can help them use telemedicine so that scarce
medical resources can be accessed and used in a number of remote
locations.

1.2 Related Work

1.2.1 Chest X-Ray datasets

The problem of Chest X-Ray image classification has been extensively ex-
plored in the field of medical image analysis. Several datasets have been
released in this context. For example, the JSRT dataset [18] contains 247
Chest X-Ray images. The Shenzhen [1] Chest X-Ray set has a total of
662 images belonging to two categories (normal and tuberculosis (TB)).
Among them, 326 are normal cases and 336 are cases with TB. The In-
diana University Chest X-Ray collection [2] dataset has 3,955 radiology
reports and the corresponding 7,470 Chest X-Ray images. Wang et al.
[20] released the Chest X-Ray14 dataset, which is the largest Chest X-
Ray dataset by far. Chest X-Ray14 collects 112,120 frontal-view Chest
X-Ray images of 30,805 unique patients. Each radiography is labeled
with one or more types of 14 common thorax diseases [3]. The 14 dis-
eases are Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule,
Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibro-
sis, Pleural_Thickening, Hernia. Examples of 14 pathologies are shown
in Figure 1.1.
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(a) Atelectasis (b) Cardiomegaly (c) Effusion (d) Infiltration

(e) Mass (f) Nodule (g) Pneumonia (h) Pneumothorax

(i) Consolidation (j) Edema (k) Emphysema (l) Fibrosis

(m) Hernia (n) Pleuralthickening

Figure 1.1: Examples of pathologies [20]

1.2.2 Transfer Learning in medical imaging tasks

The use of ImageNet pretrained networks is becoming widespread in the
medical imaging community. Lakhani et al. have [17] demonstrated
the advantage of using ImageNet [11] pre-trained architectures for TB
detection on small-scale datasets. They have used four datasets. This
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includes two publicly available datasets maintained by the National Insti-
tutes of Health, which are from Montgomery County, Maryland [12], and
Shenzhen, China [1]. The other two datasets are from Thomas Jefferson
University Hospital, Philadelphia, and the Belarus Tuberculosis Portal
maintained by the Belarus TB public health program [17]. These four
datasets have 1007 Chest X-Rays in total. They have shown that two dif-
ferent deep convolutional neural networks, AlexNet [15] and GoogLeNet
[19], pretrained on ImageNet dataset works better than AlexNet and
GoogLeNet when they are not pretrained. Our work is different from
the above work. We have studied VGG16 pretrained model on Chest
X-Ray14 dataset [20] to diagnose 14 different thoracic pathologies: At-
electasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumo-
nia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleu-
ral_Thickening, Hernia.

1.3 Overview of the Proposed Approach

In computer vision applications, deep learning models are rarely trained
from scratch, but instead transfer learning is used. In order to use a
CNN pre-trained from ImageNet, the last fully-connected layer of the
pretrained model is modified. Figure 1.2 is a diagram of VGG16 archi-
tecture which we have used in our thesis. The last layer (the last Dense
layer as shown in Figure 1.2) is modified to the number of classes of
the given problem. The stack of convolution layers (which are shown
in Figure 1.2 as Conv1-1, Conv1-2 etc) are kept frozen meaning we do
not train them as they are already trained by ImageNet data and we
only reuse the weights of these layers. We have only trained the fully
connected classifier (the last three Dense layers as shown in Figure 1.2)
by NIH Chest X-Ray14 [20] dataset.
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Figure 1.2: Diagram of VGG16 architecture [4]

1.4 Contribution

We have used transfer learning for Chest X-Ray classification. We have
done the following things:

• VGG16 had 1000 way output to classify 1000 classes. We have
changed it to 14 way output to classify 14 classes as we have 14
pathologies.

• Initially VGG16 has a stack of convolutional layers and it has a
fully connected classifier on top of that. We have not trained the
convolutional layers and only trained the fully connected classifier.

• We have studied the performance of the proposed modification of
VGG16 using Chest X-Ray14 [20] dataset.

1.5 Organization of the thesis

This thesis is divided into 4 chapters. The layout of every chapter is
given in the following:

• Chapter 1: Contains an introduction, objective and an overview of
the proposed approach to solve the problem.

• Chapter 2: Presents the overall approach, motivation, architecture
used, experimental setup, training, validation and test.
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• Chapter 3: Presents the training, validation and test result and dis-
cussion on results.

• Chapter 4: This chapter concludes our work. This chapter contains
the summary of our work done and future directions.
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Chapter 2

Methodology

2.1 Overall Approach

We adopt an approach known as transfer learning. We have not trained
an entire Convolutional Neural Network from scratch. All but the last
feed-forward layers of the network were frozen. The only weights that
are trained are those in the last layers [14].

2.2 Motivation

Motivation of using transfer learning comes from the following fact that
the earlier layers of a Convolutionl Neural Network contain more generic
features, but later layers of the Convolutionl Neural Network becomes
progressively more specific to the details of the classes contained in the
original dataset.

2.3 Description of Architecture

VGG16 architecture have been used as a backbone. The VGG16 archi-
tecture was introduced by Simonyan and Zisserman in their 2014 paper
[13]. We have kept the VGG16 architecture same except the last layer.
We have changed the 1000 way output to 14 way output as we have 14
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pathologies to classify. Description of layers and the output dimension
for each layer is shown in Table 2.1. The modified VGG16 architecture
is shown in Figure 2.1.

Figure 2.1: Modified VGG16 architecture

All the convolutional layers have kernel size 3×3 with pad = 1 and stride
= 1. All pool layers shown in Figure 2.1 are maxpool layers with kernel
size 2×2 with stride = 2. All convolutional layers and fully-connected
layers have ReLU activation function. The input to the network is an
image of dimension 224×224×3 meaning height 224, width 224 and three
color channels R, G, B.
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Layers Output dimension (height × width × no of filters)
conv1_1, conv1_2 224 × 224 × 64

pool 112 × 112 × 64
conv2_1, conv2_2 112 × 112 × 128

pool 56 × 56 × 128
conv3_1, conv3_2, conv3_3 56 × 56 × 256

pool 28 × 28 × 256
conv4_1, conv4_2, conv4_3 28 × 28 × 512

pool 14 × 14 × 512
conv5_1, conv5_2, conv5_3 14 × 14 × 512

pool 7 × 7 × 512
fully-connected layer 1 1 × 1 × 4096
fully-connected layer 2 1 × 1 × 4096
fully-connected layer 3 1 × 1 × 14

Table 2.1: Description of layers and output dimension for each layer

2.4 Datasets

In transfer learning there are two tasks: the “source” task, generally a
large dataset on which pre-training is performed (e.g., ImageNet, which
contains 1.2 million images with 1000 categories), and the “target” task
of interest. In this work, source refers to the dataset or task with which
the network is first trained, and target refers to the dataset or task with
which the network is fine-tuned. The following describes the datasets
used in this study:

2.4.1 Source Dataset

• ImageNet dataset: ImageNet [11] is a large dataset of annotated pho-
tographs intended for computer vision research. There are a little
more than 14 million images in the dataset, a little more than 21
thousand groups or classes and a little more than 1 million images
that have bounding box annotations. Figure 2.2 is an example of
the ImageNet data.
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Figure 2.2: Examples of the ImageNet dataset [5]
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2.4.2 Target Dataset

• Chest X-Ray14 dataset: Chest X-Ray14 [3] collects 112,120 frontal-
view images of 30,805 unique patients. 51,708 images of them are
labeled with up to 14 pathologies, while the others are labeled as
“No Finding”.

2.5 Experimental Setup

2.5.1 Multilabel Setup:

Each image is labeled with a 14-dim vector L = [l1,l2,l3,. . . ,lC ] in which
lC∈ {0, 1}, C = 14. lC represents whether there is any pathology, i.e., 1
for presence and 0 for absence.

2.6 Data Resize and Mapping

We use the following data resizing and mapping for training as well as
testing.

1. Resize the images from 1024×1024 to 224×224.

2. Map each pixel value from 0 to 255 to 0 to 1

2.7 Training and Testing/Validation

2.7.1 Data Split

In our experiment, we randomly shuffled the dataset into three subsets:
70% for training, 10% for validation and 20% for testing.

2.7.2 Loss Function

In this thesis we have used binary cross entropy (BCE) loss because
in binary cross entropy loss the loss is small for correct classification
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and large for misclassification. This is a medical imaging task and we
want to penalise our proposed model for misclassification. I is the input
image. p̃g(c|I) is the probability score of I belonging to the cth class,
c∈ {1, 2, ..., C}. We optimize our model by minimizing the binary cross-
entropy (BCE) loss:

Loss =
−1
C

C∑
c=1

lclog(p̃g(c|I)) + (1− lc)log(1− p̃g(c|I)) (2.1)

where lc is the groundtruth label of the cth class, C is the number of
pathologies.

2.7.3 Optimizer

We have 78468 training images, so if we use a typical Gradient Descent
optimization technique, we have to go over all the training images before
updating the parameters, and it has to be done for every iteration until
the minima is reached. Hence, it becomes computationally very expen-
sive to perform. That is why we have used Stochastic Gradient Descent
so that we can have small batches and we go over the those small batches
before updating the parameters. We have used Stochastic Gradient De-
scent (SGD) with momentum. Momentum helps to accelerate gradients
in the right direction.

2.8 Experiment

For training, we have resized the original images to 224×224. We have
mapped each pixel values from 0 to 255 to 0 to 1. We have optimized
our network using SGD with batch size of 30. We have trained the
classifier for 50 epochs. The learning rate is 0.00001 and the momentum
is 0.9. During validation and testing, images are resized to 224×224.
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Batch size 30 is used during validation. Batch size 2 is used during test.
Implementation is done using the PyTorch framework [6].

2.9 Procedure

1. Pre-trained VGG16 model have been downloaded from [7].

2. Weights of the convolutional layers have not been trained.

3. The number of outputs of the classifier have been set equal to the
number of classes.

4. Only the classifier have been trained.

2.10 Evaluation Metrics

The quality our proposed model is evaluated in terms of two measures:
accuracy, area under receiver operating characteristics (AUROC) curve.
Receiver Operating Curve (ROC) is drawn using scikit-learn [8]. The
accuracy is the ratio of number of correctly classified samples to total
samples. ROC curve is the graphical plot of true positive rate (TPR) vs
false positive rate (FPR) of a binary classifier. Say, in a binary classifier
the outcomes are labeled either as positive (p) or negative (n). There
are four possible outcomes from a binary classifier. If the outcome from
a prediction is p and the actual value is also p, then it is called a true
positive (TP); however if the actual value is n then it is said to be a false
positive (FP). Conversely, a true negative (TN) has occurred when both
the prediction outcome and the actual value are n, and false negative
(FN) is when the prediction outcome is n while the actual value is p.
True positive rate (TPR), measures the proportion of positives (p) that
are correctly identified

TPR =
TP

TP + FN
(2.2)
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False positive rate (FPR), measures the proportion of negatives (n) in-
correctly identified as positives (p)

FPR =
FP

FP + TN
(2.3)

Figure 2.3: Example of correctly classified sample

Class Probability Score
Atelectasis 0.6784
Cardiomegaly 0.0372

Effusion 0.0367
Infiltration 0.1369

Mass 0.0170
Nodule 0.0283

Pneumonia 0.0074
Pneumothorax 0.0109
Consolidation 0.0168

Edema 0.0041
Emphysema 0.0069
Fibrosis 0.0058

Pleural_Thickening 0.0113
Hernia 0.0024

Table 2.2: Probability score for each class for the example shown in Figure 2.3

The true label of Figure 2.3 as given in the Chest X-Ray14 [20] is Atelec-
tasis. The image is fed to our proposed model. We have got a 14-dim
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ouput vector z = [z1,z2,z3,. . . ,z14], where ∀i ∈ {1, 2, 3, ..., 14}, zi ∈ R.
The softmax function σ : R14 → R14 is defined by the formula

σ(z)i =
ezi∑14
j=1 e

zj
(2.4)

for i = 1,2,...,14. We have calculated the probabilities for each class
using equation 2.4. We have showed probability score for each class in
Table 2.2. Probability score is the highest for Atelectasis. So, we have
considered Atelectasis class as the output of our proposed model. So in
this case the true label of our image is the same as the output. This is
an example of a correctly classified sample or True Postive (TP).

Figure 2.4: Example of incorrectly classified sample

The true label of Figure 2.4 as given in the Chest X-Ray14 [20] is Pneu-
monia. The image is fed to our proposed model. We have got a 14-dim
ouput vector z = [z1,z2,z3,. . . ,z14], where ∀i ∈ {1, 2, 3, ..., 14}, zi ∈ R.
We have calculated the probability score for each class using equation
2.4. We have showed probability score for each class in Table 2.3. Out-
put probability is the highest for Atelectasis. So, we have considered
Atelectasis class as the output of our proposed model. So in this case
the true label of our image is not the same as the model output. This is
an example of an incorrectly classified sample.
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Class Probability Score
Atelectasis 0.7382
Cardiomegaly 0.0273

Effusion 0.0170
Infiltration 0.0815

Mass 0.0246
Nodule 0.0545

Pneumonia 0.0084
Pneumothorax 0.0069
Consolidation 0.0125

Edema 0.0056
Emphysema 0.0046
Fibrosis 0.0065

Pleural_Thickening 0.0109
Hernia 0.0014

Table 2.3: Probability score for each class for the example shown in Figure 2.4

2.11 Summary

In this section the transfer learning approach has been discussed. How
the traditional VGG16 architecture have been modified to solve our prob-
lem. How the data is resized and mapped, how the data is divided into
three subsets such as training, testing and validation have been discussed.
There are other essential things such as the loss functions, optimizer, how
the experiment is done and also the details about the evaluation mea-
sures.
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Chapter 3

Results and Discussion

3.1 Training, Validation and Test data

1. No of Training images: 78468

2. No of Validation images:11219

3. No of Test images: 22433

3.2 Initialization Techniques

For the convolution layers the pretrained weights have been used. For
the classifier we have learned the weights. We have used default PyTorch
initialization.

3.3 Parameters

We have not trained the entire VGG16 network. Only the fully con-
nected classifier part is trained. The fully connected classifier part is
shown in Figure 3.1. The number of parameters per layer which we have
trained are shown in Table 3.1.
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Layer No of parameters
Fully-connected Layer 1 102,764,544
Fully-connected Layer 2 16,781,312
Fully-connected Layer 3 61,455

Table 3.1: No of trainable parameters of the last three fully-connected layers as shown in Figure
2.1

The number of parameters trained = 119607311

Figure 3.1: Fully Connected Classifier of our proposed model (last three fully-connected layers of
the architecture shown in Figure 2.1)
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3.4 Training, Validation and Test Result

3.4.1 Experimental Details

Batch Size = 30
No of images for training = 78468
No of images for validation = 11219
Optimizer Used = SGD
Momentum Used = 0.9
Learning Rate = 0.00001
Number of epochs = 50

3.4.2 Training, Validation Loss and Accuracy

Loss per batch = Average loss per batch× batch_size (3.1)

Total loss is calculated by finding out the Loss per batch by equation 3.1
for every batch and summing them up.

Loss per epoch =
Total loss

Number of images per epoch
(3.2)

Accuracy per epoch =
No of correctly classified images per epoch

Total no of images per epoch

×100%
(3.3)

Loss per epoch and Accuracy per epoch are computed by equations 3.2
and 3.3 respectively. Final loss and accuracy is the loss and accuracy
after the last epoch. Final training and validation loss is shown in Table
3.2. Final training and validation loss is shown in Table 3.3. Training
and validation accuracy per epoch is shown in Figure 3.2. There are
fluctuations in the accuracy curve. The reason could be that the size of
our training data is small. So the training accuracy curve is fluctuating.
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Some of the images in the validation set may be classified randomly by
our proposed model and this random classification causes fluctuations in
the validation accuracy curve. Training and validation loss per epoch is
shown in Figure 3.3. Training and validation loss both are decreasing
which means that our proposed model is learning from the training im-
ages and it is able to classify the unseen images of the validation set.

Training loss 1.2183
Validation loss 1.24310

Table 3.2: Final Training and Validation Loss

Training Accuracy 64.442 %
Validation Accuracy 64.114 %

Table 3.3: Training and Validation Accuracy

Figure 3.2: Accuracy vs epoch
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Figure 3.3: Loss vs epoch

3.4.3 Test Results

Test Loss per batch = Average loss per batch× batch_size (3.4)

Total loss is calculated by finding out the Test Loss per batch by equation
3.4 for every batch and summing them up.

Test Loss =
Total loss

Number of images
(3.5)

Test Accuracy =
No of correctly classified images

Total no of images
× 100% (3.6)

Test Loss and Test Accuracy are computed using the equations 3.5 and
3.6 respectively and shown in Table 3.4.
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Test Accuracy 63.843 %
Test Loss 1.27245

Table 3.4: Test Loss and Accuracy

3.5 Numerical Accuracy (in terms of Area Under the ROC
curve)

3.5.1 AUROC plot

We have 14 pathologies. ROC curve is a graphical plot where x-axis
is False Positive Rate (FPR) and y-axis is True Positive Rate (TPR).
Consider one class Edema. Now, we change the threshold value from 0 to
1 and calculate number of True Positive (TP), False Positive (FP), True
Negative (TN), False Negative (FN) for this one class. If the outcome
of our proposed model is Edema and the actual class is Edema then we
have True Positive (TP); if the outcome of our proposed model is Edema
but the true class is some class other than Edema then it is said to be a
False Positive (FP). When the outcome is some class other than Edema
and the actual class is also some class other than Edema then we have
True Negative (TN). When the actual class is Edema and the output of
our proposed model is some class other than Edema then we have False
Negative (FN). After we have calculated these four values we calculate
True Positive Rate (TPR) and False Positive Rate (FPR) for this class
using equations 2.2 and 2.3 and plot them for each threshold value. We
have similarly drawn ROC curves for other pathologies. We have plotted
ROC curve for each pathology and it is shown in Figure 3.4. AUROC is
the area under the ROC curve. AUROC is shown in Table 3.6 for each
class. Average AUROC is the mean of AUROC for all the classes. The
average AUROC is 0.715.
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Class No of images per class
Atelectasis 2420

Cardiomegaly 502
Effusion 1832

Infiltration 2700
Mass 657
Nodule 731

Pneumonia 86
Pneumothorax 539
Consolidation 274

Edema 116
Emphysema 206
Fibrosis 174

Pleural_Thickening 247
Hernia 21

Table 3.5: No of images per class in test set

Class AUROC
Atelectasis 0.46
Cardiomegaly 0.82
Effusion 0.84
Infiltration 0.50
Mass 0.71
Nodule 0.58
Pneumonia 0.69
Pneumothorax 0.77
Consolidation 0.76
Edema 0.83
Emphysema 0.83
Fibrosis 0.68
Pleural_Thickening 0.71
Hernia 0.82

Table 3.6: AUROC for each pathology
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Figure 3.4: ROC

3.5.2 Discussion on results

The accuracy of our proposed model is very poor. The reason for this is
we have used VGG16 architecture which is pretrained on the ImageNet
data. We are reusing ImageNet features. But ImageNet features and
Chest X-Ray image features are quite different. In Chest X-Ray images
the lesion areas can be very small, and the position is unpredictable.
Sometimes there are local white opaque patches which are signs of ab-
normalities. This is in contrast with ImageNet dataset, where there is
often a clear subject for the image.
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Chapter 4

Conclusions

4.1 Conclusions

In this thesis, we have used transfer learning approach for Chest X-
Ray classification. We have investigated the performance of a VGG16
architecture which is pretrained by the ImageNet data. We have modified
the last layer from 1000 way output to 14 way output. We have reused
the weights for the convolution layers and trained the fully connected
classifier by Chest X-Ray14 [20] data.

4.2 Future Directions

As it can be seen from the results that the accuracy is very poor and the
model cannot at all be deployed in the real world. That is where lies the
motivation to do future research on this topic. With the same dataset
and the same transfer learning approach we plan to evaluate every state
of the art architecture so that higher accuracy can be achieved.
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