
On Some Estimation Problems through

the Sub-linear Lens
By

Gopinath Mishra

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

at Indian Statistical Institute

Supervisors

Arijit Bishnu and Arijit Ghosh
Advanced Computing and Microelectronics Unit

Indian Statistical Institute

203 B. T. Road, Kolkata-700108

December, 2021

ACKNOWLEDGEMENTS

First, I would like to thank my supervisors Dr. Arijit Bishnu and Dr. Arijit Ghosh for

introducing me to the wonderful area of sub-linear algorithms. I express my sincere

gratitude to my supervisors for their guidance, constant support, motivation, encourage-

ment, and enthusiasm in all aspects of my Ph.D. The philosophical discussions about

research and teaching, with my supervisors, helped me being motivated throughout the

period, and certainly, it will help me in my future endeavors. Full freedom from my

supervisors to work on whatever I liked and felt motivated to work on, along with their

student friendly nature, helped me to enjoy my work and my entire Ph.D. days in general.

I thank my coauthors – Dr. Anup Bhattacharya, Dr. Sudeshna Kolay, Dr. Saket

Saurabh, and Ms. Anannya Upasana for giving their consent to add the joint works with

them as part of my thesis. Also, I thank my other coauthors – Dr. Sourav Chakraborty,

Dr. Sameer Desai, Dr. Rogers Mathew, Ms. Subhra Mazumdar, Dr. Arindam Pal, Mr. Man-

aswi Paraashar, Dr. Subhabrata Paul, Dr. Sandeep Sen, and Mr. Sayantan Sen, for giving

me opportunities to work with them. All of my coauthors played a unique role in my

academic development.

I also thank all the faculty members of the Indian Statistical Institute, particularly

of Advanced Computing and Microelectronics Unit, for their support, motivation, help,

and encouragement. I would also like to thank Dr. Krishanu Maulick and Dr. Partha

Pratim Mohanta for their personal help.

I am very thankful to the Indian Statistical Institute for funding me for the entire

duration of Ph.D. Also, I thank the office staffs of the Indian Statistical Institute, par-

ticularly of Advanced Computing and Microelectronics Unit, for their help in making

non-academic things very smooth. This in turn helped me to focus on my research. I

also thank all my research scholar friends for many valuable discussions, arguments, and

for making my days wonderful.

At last but not the least, I am thankful to my parents and family members for their

constant support and having faith in me during my Ph.D.

i

(Gopinath Mishra)

ii

Abstract

The way the data is processed or some computation done over it has changed drastically

over time with the advent of the paradigm of big data. The study of model-centric com-

putation gives the theoretical underpinning to the machine models that abstract such data

processing or computation. Of the many such models, this thesis focuses on the follow-

ing models: (i) sub-linear time and query complexity, (ii) sub-linear space or streaming.

The main focus of this thesis is on estimating some parameters of graphs using the above

mentioned models.

In the query complexity framework, this thesis starts with a query oracle called BI-

PARTITE INDEPENDENT SET (BIS) on graphs introduced by Beame et al.[ITCS’20] to

estimate the number of edges in a graph with polylogarithmic BIS queries. In BIS, the

input to the oracle is two disjoint subsets of vertices of the graph, and the oracle reports

if there exists an edge with vertices in both of the sets. In this thesis, we first general-

ized BIS to TRIPARTITE INDEPENDENT SET oracle (TIS) to estimate the number of

triangles using polylogarithmic TIS queries. In TIS, the input to the oracle is three

pairwise disjoint subsets of vertices of the graph, and the oracle reports if there exists

a triangle with vertices in each of the three sets. BIS oracle is further generalized to

GENERALIZED D-PARTITE INDEPENDENT SET oracle (GPIS) for a d-uniform hyper-

graph, where we give d disjoint vertex sets of the hypergraph as input to the oracle, and

the oracle reports if there exists a hyperedge having one vertex in each of the d sets. We

show that the number of hyperedges can be estimated using polylogarithmically many

queries to GPIS oracle. Note that BIS is a special case of GPIS when d = 2. Also,

triangle estimation using TIS queries is essentially the same as that of hyperedge esti-

mation in a 3-uniform hypergraph using GPIS queries when d = 3, where the vertex

set of the hypergraph is same as that of the graph and three vertices form a hyperedge in

the hypergraph if they form a triangle in the original graph. This thesis also considers a

problem with a parameterization flavor in the query setting – the d-HITTING SET prob-

lem. Here, a parameter k ∈ N is given as input along with GPIS query oracle access

to a d-uniform hypergraph; k is a parameter related to the hitting set. We show that

iii

d-HITTING SET can be solved by using O
(

min{kd log n, k2d2} · log k
)

GPIS queries,

and Ω(kd) GPIS queries are necessary to solve the problem.

In the streaming framework, we consider two problems in this thesis. The first one

is about parameterized graph deletion problems in all standard graph streaming models

like DYNAMIC EDGE ARRIVAL, EDGE ARRIVAL, VERTEX ARRIVAL and ADJA-

CENCY LIST. The main upper bound result is that SUBGRAPH DELETION and MINOR

DELETION problem can be solved by using f(K) space in ADJACENCY LIST model,

where the parameter K ∈ N is the vertex cover size of the input graph and f is a polyno-

mial function. We complement the upper bound results by a set of lower bound results

when we take solution size as our parameter for most of the streaming models.

The second problem, in the streaming framework, is a graph coloring problem that is

otherwise easy in the RAM model but becomes quite non-trivial in the one-pass stream-

ing model. In contrast to previous graph coloring problems in streaming that try to find

an assignment of colors to vertices, our main work is on estimating the number of con-

flicting or monochromatic edges given a coloring function that is streaming along with

the graph; we call the problem CONFLICT-EST. The coloring function on a vertex can be

read or accessed only when the vertex is revealed in the stream. We provide algorithms

for a graph that is streaming in different variants of the one-pass vertex arrival streaming

model, viz. the VERTEX ARRIVAL (VA), Vertex Arrival With Degree Oracle (VADEG),

VERTEX ARRIVAL IN RANDOM ORDER (VARAND) models, with special focus on the

random order model and the model with degree oracle. We also provide matching lower

bounds for most of the cases.

iv

Contents

1 Introduction 1

1.1 Models of computation . 2

1.1.1 Sub-linear time and query complexity 2

1.1.2 Streaming model . 5

1.2 Problems considered and our results 7

1.2.1 Triangle estimation using TIS queries 7

1.2.2 Hyperedge estimation using GPIS queries 8

1.2.3 Hitting Set estimation using GPIS queries 8

1.2.4 Streaming algorithms for graph deletion problems 9

1.2.5 Monochromatic edge estimation when both vertices and colors

stream . 10

1.3 Generic notations . 11

2 Preliminaries 13

2.1 Some probability results . 13

2.2 Communication complexity . 16

3 Triangle Estimation using TIS Queries 19

3.1 Brief description of the problem . 19

3.2 Related works . 22

3.3 Overview of the algorithm . 23

3.4 Sparsification step . 29

v

3.5 Estimation: exact and approximate . 37

3.6 Coarse estimation . 40

3.7 The final triangle estimation algorithm: Proof of Theorem 3.2 46

3.8 Discussion . 50

4 Hyperedge Estimation Using GPIS Queries 53

4.1 Brief description of the problem . 54

4.2 Preliminaries . 57

4.2.1 GPIS oracle and its variants 57

4.3 Technical overview . 60

4.3.1 The context of our work . 60

4.3.2 Our work in a nutshell . 62

4.3.3 Our work vis-a-vis some recent works 67

4.4 Sparsification: Proof of Lemma 4.7 . 69

4.4.1 The role of the hash function in sparsification 70

4.4.2 Proof of the lemma . 72

4.5 Proof of lemma for exact estimation 77

4.6 Proof of lemma for coarse estimation 79

4.7 Algorithm . 88

4.8 Proof of correctness . 90

4.9 Conclusion . 95

5 Hitting Set Estimation using GPIS Queries 97

5.1 Introduction . 98

5.1.1 Problem definition and our results 99

5.2 Related works . 100

5.3 Preliminaries . 102

5.3.1 Technical preliminary . 103

5.4 Algorithm for d-HITTING-SET . 105

5.4.1 GAP-d-HITTING-SET problem 106

5.4.2 Algorithm for d-HITTING-SET via d-PROMISED-HITTING-SET 107

vi

5.4.3 Proof of Lemma 5.12 . 110

5.5 Algorithms for d-DECISION-HITTING-SET 121

5.6 Lower bound for d-DECISION-HITTING-SET 123

5.7 Discussion . 125

6 Streaming Algorithm for Graph Deletion Problems 127

6.1 Introduction . 128

6.1.1 The parameterization problems 128

6.1.2 Parametrized streaming algorithm 130

6.1.3 Our results . 132

6.1.4 Other related works . 135

6.2 Preliminaries . 136

6.2.1 Notion of streamability and hardness 136

6.2.2 Relation between streaming models 137

6.2.3 Notations . 138

6.3 Deterministic algorithms in the AL model 139

6.3.1 COMMON NEIGHBOR problem 139

6.3.2 Streamability results forF -SUBGRAPH DELETION andF -MINOR

DELETION . 143

6.3.3 Algorithm for F -MINOR DELETION 144

6.4 CVD in the DEA model . 145

6.5 The lower bounds . 150

6.5.1 A discussion on communication complexity 151

6.5.2 Proofs of Theorems 6.19, 6.20 and 6.21 152

6.6 Conclusion . 163

7 Monochromatic Edge Estimation when the Coloring Function also Streams165

7.1 Brief description of the problem and related works 166

7.1.1 Notations, problem definition, results and the ideas 167

7.1.2 Prior works on graph coloring in semi-streaming model. 171

7.2 CONFLICT-EST in VARAND model 172

vii

7.2.1 The proof idea of Theorem 7.3 for CONFLICT-EST in VARAND

model . 173

7.2.2 Proof of correctness . 177

7.3 Lower bound for CONFLICT-EST in VARAND model 182

7.4 CONFLICT-EST in VA and VADEG models 185

7.4.1 Motivating ideas for the algorithms 185

7.4.2 Proof of Theorem 7.11 . 186

7.4.3 Proof of Theorem 7.12 . 187

7.4.3.1 Algorithm for CONFLICT-EST in VADEG model when

|E| is known . 187

7.4.3.2 Modifying the algorithm in Section 7.4.3.1 when |E|
is unknown . 189

7.5 Conclusion and discussion . 194

8 Conclusion and Future Directions 197

A Appendix for Chapter 7 199

A.1 Lower bounds for CONFLICT-EST in VA and VADEG models 199

A.1.1 Lower bound for CONFLICT-EST in VA model 199

A.1.2 Lower bound for CONFLICT-EST in VADEG model 201

viii

Chapter 1

Introduction

Contents
1.1 Models of computation . 2

1.1.1 Sub-linear time and query complexity 2

1.1.2 Streaming model . 5

1.2 Problems considered and our results 7

1.2.1 Triangle estimation using TIS queries 7

1.2.2 Hyperedge estimation using GPIS queries 8

1.2.3 Hitting Set estimation using GPIS queries 8

1.2.4 Streaming algorithms for graph deletion problems 9

1.2.5 Monochromatic edge estimation when both vertices and col-

ors stream . 10

1.3 Generic notations . 11

With the advent of the paradigm of big data, the way the data is processed or some com-

putation is done over it, has also become important. The data may arrive in a sequence.

In some cases, the data may be too big so that reading it even once may be infeasible.

The study of model-centric computation gives the theoretical underpinning to the ma-

chine models that abstract such data processing or computation. In effect, while solving

1

a problem, not only the characterization of the problem is important, but also the ma-

chine model for computation becomes important. Of the many such models, this thesis

focusses on the following models:

• sub-linear time and query complexity

• sub-linear space or streaming.

The main focus of this thesis is in solving some estimation problems on the above

mentioned models.

1.1 Models of computation

While discussing models, we use the following terminologies and notations for graphs

and hypergraphs. A simple and undirected graph is a tuple (V (G), E(G)), denoted

as G(V (G), E(G)) or G(V,E), where V (G) denotes the set of vertices and E(G) ⊆
{{u, v} : u, v ∈ V (G)} denotes the set of edges. An edge formed by two vertices u and

v is denoted by {u, v} or (u, v). The degree of a vertex is the number of edges incident

on that vertex.

A hypergraph is a set system (U(H),F(H)), denoted asH(U(H),F(H)) orH(U,F),

where U(H) denotes the set of vertices and F(H) ⊆ 2U(H) 1 denotes the set of hyper-

edges. For a hyperedge F ∈ F(H), U(F) or simply F denotes the subset of vertices

that form the hyperedge. A hypergraph is said to be a d-uniform hypergraph if each

hyperedge has exactly d vertices. Note that a graph is a 2-uniform hypergraph.

1.1.1 Sub-linear time and query complexity

In situations where a graph cannot be accessed fully, the access is provided to the un-

known graph through query oracles that can access the graph only through some pre-

specified queries. In this context, the complexity of the algorithm is measured in terms

of the number of queries made to the oracle, which is known as the query complexity

12S denotes the power set of set S.

2

of the algorithm. The time spent by the algorithm for the computational purposes (that

do not involve any query to the oracle) is not counted in the query complexity of the

algorithm [Gol17, Rub20]. The query complexity of a problem, using a particular query

oracle O, is the query complexity of the best algorithm to solve the problem at hand,

using query oracle O.

Estimation of graph parameters like the number of edges, triangles, cliques, etc.,

where the graph can be accessed through query oracles only, has been an active area

of research in sub-linear time algorithms for a while [Fei06, GR08, ELRS15, ERS18,

RSW18, AKK19, ABG+18, CGR+14, GRS11, ORRR12]. The query oracle can access

the graph at different granularities – it can answer properties about the graph that are

local or global in nature. By now, the LOCAL queries have been used for edge [GR08],

triangle [ELRS15], clique estimation [ERS18] and have been widely accepted among

researchers. The local queries for a graph G = (V (G), E(G)) are:

(i) DEGREE query: given u ∈ V (G), the oracle reports the degree of u in V (G);

(ii) NEIGHBOR query: given u ∈ V (G) and an integer i, the oracle reports the i-th

neighbor of u, if it exists; otherwise, the oracle reports that the degree of u is less

than i 2;

(iii) ADJACENCY query: given u, v ∈ V (G), the oracle reports whether {u, v} ∈
E(G).

Apart from the above local queries, in the last few years, researchers have also used

the RANDOM EDGE query [ABG+18, AKK19], where the oracle returns an edge in the

graph G uniformly at random. Notice that the randomness will be over the probability

space of all edges, and hence, it is not completely justified to classify a random edge

query as a local query. On the other hand, global queries come in different forms. The

global queries considered in this thesis fall under the big umbrella of subset queries.

Before discussing the global query oracles considered in this thesis, we briefly discuss

the subset query oracle. In the subset size estimation problem using the query model of
2The ordering of the neighbors of the vertices are unknown to the algorithm.

3

computation, the subset query oracle is used to estimate the size of an unknown subset

S ⊆ U , where U is a known universe of elements. A subset query with a subset T ⊆ U

asks whether S∩T is empty or not. At its core, a subset query essentially enquires about

the existence of an intersection between two sets – a set chosen by the algorithm designer

and an unknown set whose size we want to estimate. The study of subset queries was

initiated in a breakthrough work by Stockmeyer [Sto83, Sto85] and later formalized by

Ron and Tsur [RT16]. The following query oracles, which can be thought of as subset

queries in the context of graphs, have been considered in the literature.

Bipartite independent set oracle (BIS) [BHR+18]: Given two disjoint subsets A, B

of the vertex set V of a graph G(V,E), the BIS oracle reports whether there exists

an edge with one endpoint in A and one in B.

Independent set oracle (IS) [BHR+18]: Given a subset A of the vertex set V of a

graph G(V,E), the IS oracle answers whether A is an independent set.

The BIS and IS oracles have been used to estimate the size of the edge set of a graph

G(V,E) [BHR+18, CLW20]. The edge set is the unknown set whose size one wants to

estimate and the known set is formed out of subsets of the vertex set. The BIS and IS

oracles report whether there is any interaction or intersection among the edge and vertex

sets.

In this thesis, we focus on a generalization of the bipartite independent set oracle

(BIS). BIS was introduced by Beame et al. [BHR+18] to estimate the number of edges

in the unknown graph. We first generalize BIS to Tripartite independent set oracle

(TIS), to estimate the number of triangles in the (unknown) graph. It is defined as

follows.

Tripartite independent set oracle (TIS) [BBGM19b]: Given three disjoint subsetsA,

B, C of the vertex set V of a graph G(V,E), the TIS oracle reports whether there

exists a triangle with one endpoint in A, one in B and one in C.

Then we further generalize BIS to Generalized d-partite independent set oracle

(GPIS) to (i) estimate the number of hyperedges in a d-uniform hypergraph [BBGM19a],

4

and (ii) to study the optimization and decision version of the parameterized hitting set

problem [BGK+18a].

Generalized d-partite independent set oracle (GPIS) [BGK+18a]: Given d pairwise

disjoint subsets of vertices A1, . . . , Ad of a d-uniform hypergraph H(U,F) as in-

put, GPIS query oracle answers whetherm(A1, . . . , Ad) 6= 0, wherem(A1, . . . , Ad)

denotes the number of hyperedges in H having exactly one vertex in each Ai,

∀i ∈ {1, 2, . . . , d}.

Note that GPIS oracle was introduced by Bishnu et al. [BGK+18a], and later considered

by Bishnu et al. [BBGM19a] and Dell et al. [DLM20b]; though Dell et al. used it under

the name of colorful independence oracle.

1.1.2 Streaming model

A data stream P = {p1, . . . , pi, . . . , pn} is a sequence of data that can be read in in-

creasing order of its indices i (i = 1, . . . , n) in one or more passes. In this thesis,

we consider the one-pass, insertion only streaming model. Here (i) one-pass means

that we can access the data only once one by one, and (ii) insertion only stream means

that there is no deletion of data, there is only insertion 3. In streaming, only a sketch

S of P is stored; |S| � |P|. A sketch is either a subset of P or some information

derived from it. As a machine model, streaming has just the bare essentials. Thus,

impossibility results, in terms of lower bounds on the sketch size, become extremely

important. The seminal work of Alon et al. [AMS99] introduced the idea of lower

bounds on space for approximating frequency moments. In this thesis, the focus is on

graph streaming. In graph streaming, a graph is presented as a sequence of edges. In

the simplest of this model, we have a stream of edge arrivals, where each edge in the

stream is added to the graph seen so far, or the stream may include a dynamic mixture

of arrivals and departures of edges. In either case, the primary objective is to quickly

3There are streaming models where we can make multiple passes over the data, and there is a streaming
model (known as turnstile model) in which deletion is also allowed

5

answer some basic questions over the current state of the graph, such as finding a (maxi-

mal) matching over the current graph edges, or finding a (minimum) vertex cover, while

storing only a small amount of information. In the most restrictive model, we only al-

low O(logO(1) n) bits of space for storage 4. However, using standard techniques from

communication complexity one can show that most problems do not admit such algo-

rithms. Thus one relaxes this notion and defines what is called a semi-streaming model,

which allows O(n logO(1) n) bits of space. This model has been extremely successful

for graph streaming algorithms and many non-trivial algorithms have been designed in

this model [AKL16, GVV17, KKSV17]. There is a vast literature on graph streaming

and we refer to the survey by McGregor [McG14a] for more details. There is a wide

range of different graph streaming models [CDK19, McG14a, MVV16]. In this thesis,

we consider the following standard streaming models for graph problems. The general

description of the following models allow self loops and multiple parallel edges between

two vertices. But this thesis considers simple graphs with no self loops and no parallel

edges.

(i) EDGE ARRIVAL (EA) model: The stream consists of edges ofG in an arbitrary order.

(ii) DYNAMIC EDGE ARRIVAL (DEA) model: Each element of the input stream is a

pair (e, state), where e ∈ E(G) and state ∈ {insert, delete} describes whether e is

being inserted into or deleted from the current graph.

(iii) VERTEX ARRIVAL (VA) model: The vertices of V (G) are exposed in an arbitrary

order. After a vertex v is exposed, all the edges between v and neighbors of v that

have already been exposed, are revealed. This set of edges are revealed one by one in

an arbitrary order.

(iv) VERTEX ARRIVAL WITH DEGREE ORACLE (VADEG) [MVV16,BS20]: This model

works the same as the VA model in terms of exposure of the vertex v; but we are al-

lowed to know the degree of the currently exposed vertex v from a degree oracle on

G.

4Here n denotes the number of vertices in a graph.

6

(v) VERTEX ARRIVAL IN RANDOM ORDER (VARAND) [SK12,TGRV14]: This model

works in the same way as the VA model but the vertex sequence revealed is equally

likely to be any one of the permutations of the vertices.

(vi) ADJACENCY LIST (AL) model: The vertices of V (G) are exposed in an arbitrary

order. When a vertex v is exposed, all the edges that are incident to v, are revealed

one by one in an arbitrary order. Note that in this model each edge is exposed twice,

once for each exposure of an endpoint.

1.2 Problems considered and our results

This thesis addresses several estimation problems across different computing models

like streaming and query complexity. In this subsection, we describe the problems that

we solve in this thesis and mention the models used for the specific problem. For ease

of reading and proper contextualization, we will not put all relevant literature review in

one place; rather we postpone it to relevant chapters.

1.2.1 Triangle estimation using TIS queries

Estimating the number of triangles in a graph is one of the most fundamental problems in

sub-linear algorithms and it has been solved in the local query model [ELRS15]. In this

thesis, we extend non-trivially the algorithmic framework of Beame et al. [BHR+18].

Beame et al. used the BIPARTITE INDEPENDENT SET (BIS) query to estimate the num-

ber of edges in a graph; our extension is to use the TRIPARTITE INDEPENDENT SET

query to estimate the number of triangles in a graph. In particular, we provide an al-

gorithm that approximately counts the number of triangles in a graph using only poly-

logarithmic TIS queries; we work under the assumption that the number of triangles on

any edge in the graph is polylogarithmically bounded 5. This problem has been dealt in

Chapter 3, and it has been accepted in ISAAC’19 [BBGM19b] and TOCS’21 [BBGM21].

5Here, polylogarithmic refers to a polynomial in log n and 1/ε, where n is the number of vertices in
the graph and ε is the approximation parameter.

7

1.2.2 Hyperedge estimation using GPIS queries

In this work, we estimate the number of hyperedges in a d-uniform hypergraphH(U(H),

F(H)), where U(H) denotes the set of vertices and F(H) denotes the set of hyper-

edges. We assume a GPIS query oracle access to the hypergraph H. Our randomized

algorithm (for the hyperedge estimation problem using the GPIS query oracle) outputs

m̂ for m(H) satisfying (1− ε) ·m(H) ≤ m̂ ≤ (1 + ε) ·m(H), where m(H) = |F(H)|.
Moreover, the number of queries made by our algorithm, assuming d to be a constant, is

polylogarithmic in the number of vertices of the hypergraph. This work can be thought

of as a full generalization of Beame et al. [BHR+18] and the previously mentioned

work [BBGM19b] to estimate the number of edges and triangles in a graph using queries

to the BIPARTITE INDEPENDENT SET (BIS) and the TRIPARTITE INDEPENDENT SET

(TIS) oracles, respectively. We discuss this problem in Chapter 4. This work is in

arXiv [BBGM19a] and under review. Note that, independent to us, there is a similar

result by Dell et al. [DLM20b], and they have acknowledged that our work is indepen-

dent of them. Though the final results in both the works are essentially the same, the

algorithms and correctness are different. We elaborate on this more later.

1.2.3 Hitting Set estimation using GPIS queries

HITTING SET is a very fundamental problem. HITTING-SET of a hypergraph H(U,F)

refers to the minimum cardinality subset U ′ of U that intersects with all hyperedges in

F . In this work, we focus on HITTING-SET of a d-uniform hypergraph through the

lens of sub-linear time algorithms. Given access to the d-uniform hypergraph through

GPIS query oracle, we show that sub-linear time algorithms for hitting set have al-

most tight parameterized query complexity. By parameterized query complexity, we

mean that the number of queries to the oracle is computed based on the parameter k,

the size of the HITTING-SET. We consider both the parameterized decision and opti-

mization versions of the HITTING-SET problem. d-HITTING-SET, the hitting set prob-

lem for d-uniform hypergraphs, can be solved with Õd(kd log n) 6 GPIS queries. d-

6Here Õ(·) hides a log k factor.

8

DECISION-HITTING-SET, the decision version of d-HITTING-SET can be solved with

Õd
(

min
{
kd log n, k2d2

})
GPIS queries. We use color coding and queries to the ora-

cles to generate subsamples from the hypergraph, that retain some structural properties

of the original hypergraph. We use the stability of the sunflowers in a non-trivial way

to do so. We complement these parameterized upper bounds with an almost match-

ing parameterized lower bound that states that any algorithm that solves d-DECISION-

HITTING-SET requires Ω
((
k+d
d

))
GPIS queries. Chapter 5 discusses these problems,

and the work has been accepted in ISAAC’18 [BGK+18b].

1.2.4 Streaming algorithms for graph deletion problems

The study of parameterized streaming complexity on graph problems was initiated by

Fafianie et al. [FK14], Chitnis et al. [CCHM15] and Chitnis et al. [CCE+16]. Simply

put, the main goal is to design streaming algorithms for parameterized problems such

that O(f(k) logO(1) n) space suffices, where f is an arbitrary computable function de-

pending only on the parameter k that depends on the problem at hand. However, in the

past few years, very few positive results have been established. Most of the graph prob-

lems that do have streaming algorithms of the above nature are the ones where localized

checking is required, like VERTEX COVER or MAXIMUM MATCHING parameterized

by the size k of the solution we are seeking. Many important parameterized problems

that form the backbone of traditional parameterized complexity are known to require

Ω(n) bits of storage for any streaming algorithm; e.g. FEEDBACK VERTEX SET, EVEN

CYCLE TRANSVERSAL, ODD CYCLE TRANSVERSAL, TRIANGLE DELETION or the

more general F -SUBGRAPH DELETION when parameterized by solution size k. The

problems mentioned here are defined in the respective chapter.

To overcome the obstacles of Ω(n) lower bound to efficient parameterized stream-

ing algorithms, we utilize the power of structural parameterization. We focus on the

vertex cover size K as the parameter for the parameterized graph deletion problems we

consider. At the same time, most of the previous works in parameterized streaming com-

plexity were restricted to the EA (edge arrival) or DEA (dynamic edge arrival) models.

9

We consider the four most well-studied streaming models: the EA, DEA, VA (vertex

arrival) and AL (adjacency list) models. We show that F -SUBGRAPH DELETION and

F -MINOR DELETION do not admit streaming algorithms with space complexity o(n)

unless we consider AL model and vertex cover size K as the parameter. But both the

problems can be solved using f(K) space when we we consider AL model and ver-

tex cover size K as the parameter. Note that TRIANGLE DELETION is a special case

of F -SUBGRAPH DELETION. CLUSTER VERTEX DELETION is very closely related

to TRIANGLE DELETION, and both of them admit the same time complexity in the

RAM model [CFK+15]. However, CLUSTER VERTEX DELETION admits space effi-

cient streaming algorithm in the DEA model when parameterized by vertex coverK. The

details of the streaming algorithms for the above problems are discussed in Chapter 6,

and the work has been accepted in COCOON’20 [BGK+20].

1.2.5 Monochromatic edge estimation when both vertices and colors

stream

We study a graph coloring problem that is otherwise easy in the RAM model but be-

comes quite non-trivial in the one-pass streaming model. In contrast to previous graph

coloring problems in streaming that try to find an assignment of colors to vertices [ACK19,

AA20a,BCG19], our main focus is on estimating the number of conflicting or monochro-

matic edges given a coloring function that is streaming along with the graph; we call the

problem CONFLICT-EST. The coloring function on a vertex can be read or accessed

only when the vertex is revealed in the stream. If we need the color on a vertex that has

streamed past, then that color, along with its vertex, has to be stored explicitly. We pro-

vide algorithms for a graph that is streaming in different variants of the one-pass vertex

arrival streaming model, viz. the VERTEX ARRIVAL (VA), Vertex Arrival With Degree

Oracle (VADEG), VERTEX ARRIVAL IN RANDOM ORDER (VARAND) models, with

special focus on the random order model and the model with degree oracle. We also

provide matching lower bounds for most of the cases. The mainstay of our work is in

showing that the properties of a random order stream can be exploited to design stream-

10

ing algorithms for estimating the number of conflicting edges. We have also obtained a

lower bound, though not matching the upper bound, for the random order model. Among

all the three models vis-a-vis this problem, we can show a clear separation of power in

favor of the VARAND model. Chapter 7 discusses these problems. This work has been

accepted in ITCS’21 [BBMU21].

1.3 Generic notations

For x ∈ R, exp(x) denotes the standard exponential function ex. We denote the sets

{1, . . . , n} and {0, . . . , n} by [n] and [n∗], respectively. Without loss of generality, as-

sume that n is as a power of 2 whenever required. Let E[X] and V[X] denote the

expectation and variance of a random variable X . For an event E , Ec denotes the com-

plement of E . Throughout the thesis, the statement that “event E occurs with high

probability” is equivalent to P(E) ≥ 1 − 1
nc

, where c is an absolute constant, unless

otherwise mentioned, where n is clear from the context. The statement “a is a (1 ± ε)-

multiplicative approximation of b” means |b− a| ≤ ε · b. By polylogarithmic, we mean

O
(

(log n/ε)O(1)
)

. Unless otherwise mentioned, the notation Õ(·) hides a polylogarith-

mic term in O(·).

11

Chapter 2

Preliminaries

Contents
2.1 Some probability results . 13

2.2 Communication complexity . 16

2.1 Some probability results

The upper bounds we prove in different chapters uses a number of probability results

that are stated in this section.

Proposition 2.1. Let X be a random variable. Then E[X] ≤
√
E[X2].

Lemma 2.2. ([DP09, Theorem 7.1]). Let f be a function of n random variables

X1, . . . , Xn such that

(i) Each Xi takes values from a set Ai,

(ii) E[f] is bounded, i.e., 0 ≤ E[f] ≤M ,

(iii) B be any event satisfying the following for each i ∈ [n].

|E[f | X1, . . . , Xi−1, Xi = ai,Bc]− E[f | X1, . . . , Xi−1, Xi = a′i,Bc]| ≤ ci.

13

Then for any δ ≥ 0,

P (|f − E[f]| > δ +MP(B)) ≤ e
−δ2/

n∑
i=1

c2i
+ P(B).

Lemma 2.3 (Hoeffding’s inequality [DP09]). Let X1, . . . , Xn be n independent random

variables such that Xi ∈ [ai, bi]. Then for X =
n∑
i=1

Xi, the following is true for any

δ > 0.

P (|X − E[X]| ≥ δ) ≤ 2 · e
−2δ2/

n∑
i=1

(bi−ai)2

.

Lemma 2.4 (Chernoff-Hoeffding bound [DP09]). Let X1, . . . , Xn be independent ran-

dom variables such that Xi ∈ [0, 1]. For X =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the

followings hold for any δ > 0.

(i) P (X > µh + δ) ≤ e−2δ2/n.

(ii) P (X < µl − δ) ≤ e−2δ2/n.

Lemma 2.5 ([DP09](Chernoff-Hoeffding bound)). Let X1, . . . , XN be independent

random variables such that Xi ∈ [0, 1]. For X =
N∑
i=1

Xi and µ = E[X], the follow-

ing holds for any 0 ≤ δ ≤ 1:

(i) P(X ≥ (1 + δ)µ) ≤ exp
(
−µδ2

3

)
;

(ii) P(X ≤ (1− δ)µ) ≤ exp
(
−µδ2

3

)
;

(iii) Furthermore, if µ ≤ t, then the following holds.

P(X ≥ (1 + ε)t) ≤ exp

(
−tδ2

3

)
.

Lemma 2.6 ([Mul18]). Let I = {1, . . . , N}, r ∈ [N] be a given parameter. If we

sample a subset R without replacement, then the following holds for any J ⊂ I and

δ ∈ (0, 1).

(i) P
(
|J ∩R| ≥ (1 + δ) |J | r

N

)
≤ exp

(
− δ2|J |r

3N

)
;

14

(ii) P
(
|J ∩R| ≤ (1− δ) |J | r

N

)
≤ exp

(
− δ2|J |r

3N

)
;

(iii) Further more, we have the following if |J | ≤ k, then the following holds.

P
(
|J ∩R| ≥ (1 + δ)k

r

N

)
≤ exp

(
−δ

2kr

3N

)

Lemma 2.7. ([DP09, Theorem 3.2]). Let X1, . . . , Xn be random variables such that

ai ≤ Xi ≤ bi and X =
n∑
i=1

Xi. Let D be the dependent graph, where V (D) =

{X1, . . . , Xn} and E(D) = {(Xi, Xj) : Xi and Xj are dependent}. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e
−2δ2/χ∗(D)

n∑
i=1

(bi−ai)2

,

where χ∗(D) denotes the fractional chromatic number of D.

The following lemma directly follows from Lemma 2.7.

Lemma 2.8. Let X1, . . . , Xn be indicator random variables such that there are at most

d Xj’s on which an Xi depends and X =
n∑
i=1

Xi. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e−2δ2/(d+1)n.

Lemma 2.9 (Importance sampling [BHR+18]). Let (D1, w1, e1), . . . , (Dr, wr, er) are

the given structures and each Di has an associated weight c(Di) satisfying

(i) wi, ei ≥ 1,∀i ∈ [r];

(ii) ei
ρ
≤ c(Di) ≤ eiρ for some ρ > 0 and all i ∈ [r]; and

(iii)
r∑
i=1

wi · c(Di) ≤M .

Note that the exact values c(Di)’s are not known to us. Then there exists an algorithm

that finds (D′1, w
′
1, e
′
1), . . . , (D′s, w

′
s, e
′
s) such that, with probability at least 1 − δ, all of

15

the above three conditions hold and∣∣∣∣∣
t∑
i=1

w′i · c(D′i)−
r∑
i=1

wi · c(Di)

∣∣∣∣∣ ≤ λS,

where S =
r∑
i=1

wi · c(Di) and λ, δ > 0. The time complexity of the algorithm is O(r)

and s = O
(
ρ4 logM(log logM+log 1

δ)
λ2

)
.

2.2 Communication complexity

The lower bounds we prove in different chapters are by reductions from problems in

communication complexity. Here, we briefly review the results we need. We refer the

reader to [KN97] for details.

Let f : Ω1×Ω2 → Ω. Usually, Ω1,Ω2 ∈ {0, 1}n and Ω ∈ {0, 1}. In communication

complexity, two players Alice and Bob get as inputs x ∈ Ω1 and y ∈ Ω2, respectively,

and the goal for the players is to devise a protocol to compute f(x,y) by exchanging

as few bits of information between themselves as possible. Since its introduction by

Yao [Yao79], communication complexity has found many applications in different areas

of computer science like streaming algorithms, property testing, sketching, data struc-

ture, circuit complexity and auction theory [KN97, Rou16].

The deterministic communication complexity D(f) of a function f is the minimum

number of bits Alice and Bob exchange in the worst case to compute the function f .

Note that in the deterministic setting, the goal is to correctly compute f(x,y) for all

x ∈ Ω1 and y ∈ Ω2. We will denote by D→(f) the one round deterministic communi-

cation complexity of f where only Alice sends a single message consisting of possibly

multiple bits to Bob, and Bob computes the output; there is no communication from

Bob to Alice. In the randomized setting, both Alice and Bob share an infinite random

source. For example, both Alice and Bob can share a uniformly random infinite string of

zeros and ones. The goal in the randomized setting is to give the correct answer with a

probability of at least 2/3. Note that the number 2/3 is arbitrary and any constant more

16

than 1/2 will be good enough. The randomized communication complexity R(f) of f

denotes the minimum number of bits exchanged by the players for the worst case input

by the best randomized protocol computing f . We will denote by R→(f) the one round

randomized communication complexity of f where only Alice sends a single message

to Bob, and Bob computes the output. In the randomized communication complexity

setting, it is also usually assumed that both the players have an infinite source of (free)

common random bits termed as public coin random bits, and the algorithm or protocol

is termed as public coin randomized protocol. Moreover, the number of public coin

random bits used by the players is not counted as the communication complexity of the

function of interest. Note that the protocol where the players do not have access to pub-

lic randomness (but each player has his or her own randomness) is known as private

coin randomized protocol. Unless otherwise mentioned, randomized protocols in com-

munication complexity are always public coin protocols. Communication complexity

has found numerous applications in areas like streaming algorithms and property testing

etc. for proving lower bounds [Rou16, RY20, Gol17].

Now let us discuss and define the following three fundamental problems and their

communication complexity.

DISJOINTNESSn: Here Alice gets a string x ∈ {0, 1}n and Bob gets a string y ∈
{0, 1}n. Their objective is to decide whether there exists an i ∈ [n] such that

xi = yi = 1 1. Formally, DISJn : {0, 1}n×{0, 1}n → {0, 1}, and DISJn(x,y) = 0

if and only if there exists an i ∈ [n] such that xi = yi = 1.

The {0, 1}n vector can be thought of as representing the characteristic vector of a set

formed from an universe [n].

INDEXn: Here Alice gets x ∈ {0, 1}n and Bob gets an index j ∈ [n] and the objective

of Bob is to determine if the value of xj = 1. Formally, INDEXn : {0, 1}n× [n]→
{0, 1}, and INDEXn(x, j) = xj .

1xi denotes the i-th bit of x ∈ {0, 1}n. Also, [n] denotes {1, . . . , n}

17

EQUALITYn: Here Alice gets a string x ∈ {0, 1}n and Bob gets a string y ∈ {0, 1}n.

Their objective is to decide whether x = y. Formally, EQn : {0, 1}n × {0, 1}n →
{0, 1}, and EQn(x,y) = 0 if and only if x = y.

The following theorem describes the communication complexities of DISJOINTNESSn.

Theorem 2.10. [KN97] R(DISJn) = D(DISJn) = R→(DISJn) = D→(DISJn) = Ω(n).

Though there is no difference between one way and two way communication com-

plexities of DISJOINTNESSn, there are problems in communication complexity (for ex-

ample INDEXn) where there is a difference between one way and two way communica-

tion complexities.

Theorem 2.11. [KN97] R(INDEXn) = D(INDEXn) = Θ(log n). But R→(INDEXn) =

D→(INDEXn) = Ω(n).

Note that the randomized and deterministic communication of both DISJOINTNESSn

and INDEXn are the same, but there are some problems (for example EQUALITYn) where

the randomized complexity is much less than the deterministic counterpart.

Theorem 2.12. [KN97] D(EQn) = D→(EQn) = Ω(n). But R(EQn) = R→(EQn) =

Θ(1).

18

Chapter 3

Triangle Estimation using TIS Queries

Contents
3.1 Brief description of the problem 19

3.2 Related works . 22

3.3 Overview of the algorithm . 23

3.4 Sparsification step . 29

3.5 Estimation: exact and approximate 37

3.6 Coarse estimation . 40

3.7 The final triangle estimation algorithm: Proof of Theorem 3.2 . . 46

3.8 Discussion . 50

3.1 Brief description of the problem

Counting or estimating the number of triangles in a graph is a fundamental algorithmic

problem in the RAM model [AYZ97, BPWZ14, IR78], streaming [ADNK14, AGM12,

BKS02, BFL+06, CJ17, JSP13, JG05, KP17, KMSS12, PTTW13, TPT13] and the query

model [ELRS15,GRS11]. We name this problem as TRIANGLE-ESTIMATION problem,

19

where we are given an ε ∈ (0, 1) as input and the objective is to report a (1 ± ε)-

multiplicative approximation of the number of triangles.

Notations, the query model, the problem and the result

Let V (G), E(G) and T (G) denote the set of vertices, edges and triangles in the input

graph G, respectively. When the graph G is explicit, we may write only V , E and T

for the set of vertices, edges and triangles. Let t(G) = |T (G)|. The statement A, B, C

are disjoint, means A, B, C are pairwise disjoint. For three non-empty disjoint sets

A, B, C ⊆ V (G), G(A, B, C), termed as a tripartite subgraph of G, denotes the in-

duced subgraph of A ∪ B ∪ C in G minus the edges having both endpoints in A or

B or C. The number of triangles in G(A,B,C) is denoted as t(A,B,C). We use the

triplet (a, b, c) to denote the triangle having a, b, c as its vertices. Let ∆u denote the

number of triangles having u as one of its vertices. Let ∆(u,v) be the number of triangles

having (u, v) as one of its edges and ∆E = max(u,v)∈E(G) ∆(u,v), the maximum number

of triangles on any edge of G. For a set U , “U is COLORED with [n]”, means that

each member of U is assigned a color out of [n] colors independently and uniformly at

random.

In this work, we provide the first algorithm for TRIANGLE-ESTIMATION that uses

only polylogarithmic queries to query oracle TRIPARTITE INDEPENDENT SET (TIS).

Recall that TIS functions as follows.

Definition 3.1 (Tripartite independent set oracle (TIS)). Given three non-empty disjoint

subsets V1, V2, V3 ⊆ V (G) of a graph G, TIS query oracle answers ‘YES’ if and only if

t(V1, V2, V3) 6= 0.

Notice that the query oracle looks at only those triangles that have vertices in all of

these sets V1, V2, V3.

The result we prove in this chapter is formally stated in the following theorem. Note

that the query complexity of the algorithm depends on ∆E , where ∆E denotes the max-

imum number of triangles on an edge.

20

Theorem 3.2 (Triangle Estimation using TIS). LetG be a graph with ∆E ≤ ℘, |V (G)| =
n ≥ 64. For any ε > 0, TRIANGLE-ESTIMATION can be solved using O

(
℘2 log18 n

ε4

)
TIS queries with probability at least 1− O(1)

n2 .

Note that the query complexity stated in Theorem 3.2 is poly(log n, 1
ε
), even if ℘

is O(logc n), where c is a positive constant. We reiterate that the only bound we re-

quire is on the number of triangles on an edge; neither do we require any bound on the

maximum degree of the graph, nor do we require any bound on the number of triangles

incident on a vertex. It is also worth to note that, the dependecy on ℘ will be removed in

Chapter 4. Moreover, in Chapter 4, we generalize TRIANGLE-ESTIMATION problem to

HYPEREDGE-ESTIMATION problem. However, the TRIANGLE ESTIMATION problem

considered in this chapter stands in its own right as there are some scenarios where the

number of triangles sharing an edge is bounded. An obvious example for such graphs

are graphs with bounded degree. The followings are some of the other scenarios:

(i) Consider a graph G(P,E) such that the vertex set P corresponds to a subset of

(points in) R2 and (u, v) ∈ E if and only if the distance between u and v is exactly

1. The objective is to compute the number of triples of points from P forming

an equilateral triangle having side length 1, that is, the number of triangles in

G. Observe that there can be at most two triangles sharing an edge in G, that is,

∆E ≤ 2.

(ii) Consider a graph G(P,E) such that the vertex set P corresponds to a set of points

inside an N ×N square in R2 and (u, v) ∈ E if and only if the distance between

u and v is at most 1. The objective is to compute the number of triples of points

from P forming a triangle having each side length at most 1, that is, the number

of triangles in G. For large enough N there can be bounded number of triangles

sharing an edge in G with high probability.

(iii) Consider a graph G(V,E) representing a community sharing information. Each

node has some information and two nodes are connected if and only if there exists

an edge between the nodes. Nodes increase their information by sharing informa-

tion among their neighbors inG. Observe that the information of a node is derived

21

by the set of neighbors. So, if two nodes have large number of common neighbors

in G, then there is no need of an edge between the two nodes. So, the number of

triangles on any edge in the graph is bounded. The objective is to compute the

number of triangles in G, that is, the number of triples of nodes in G such that

each pair of vertices are connected.

In (i) and (ii), TIS oracle can be implemented very efficiently. We can report a TIS

query by just running a standard plane sweep algorithm in Computational Geometry

that takes O(n log n) running time.

Organization of the chapter

To start with, we review relevant literature in Section 3.2. We give a broad overview

of the algorithm in Section 3.3. Section 3.4 gives the details of sparsification. In Sec-

tion 3.5, we give exact/approximate estimation algorithm with respect to a threshold.

Section 3.6 discusses about the algorithm for coarse estimation of the number of trian-

gles. The final algorithm is given in Section 3.7. Section 3.8 concludes the chapter with

some discussions about future improvements.

3.2 Related works

The following literature review is for both Chapters 3 and 4 as these two chapters con-

sider related problems.

Graph parameter estimation, where one wants to estimate the number of edges, tri-

angles or small subgraphs in a graph, is a well-studied area of research in sub-linear al-

gorithms. Feige [Fei06], and Goldreich and Ron [GR08] gave algorithms to estimate the

number of edges in a graph using degree, and degree and neighbour queries, respectively.

Eden et al. [ELRS15] estimated the number of triangles in a graph using degree, neigh-

bour and edge existence queries, and gave almost matching lower bound on the query

complexity. This result was generalized for estimating the number of cliques of size k

in [ERS18]. Since the information revealed by degree, neighbour and edge existence

22

queries is limited to the locality of the queried vertices, these queries are known as local

queries [Gol17]. The subset queries, used in [BHR+18,BBGM18,BBGM19b,DLM19],

are examples of global queries, where a global query can reveal information of the graph

at a much broader level.

Goldreich and Ron [GR08] solved the edge estimation problem in undirected graphs

using Õ(n/
√
m) local queries. Dell and Lapinskas [DL18] used the INDEPENDENT SET

(IS) oracle to estimate the number of edges in bipartite graphs, where an IS oracle takes

a subset S of the vertex set as input and outputs whether S is an independent set or not.

Their algorithm for edge estimation in bipartite graphs makes polylogarithmic IS queries

and O(n) edge existence queries. Beame et al. [BHR+18] extended the above result for

the edge estimation problem in bipartite graphs to general graphs, and showed that the

edge estimation problem in general graphs can be solved using Õ (min{
√
m,n2/m}) 1

IS queries. Recently, Chen et al. [CLW20] improved this result to solve the edge esti-

mation problem using only Õ (min{
√
m,n/

√
m}) IS queries.

3.3 Overview of the algorithm

We start with a brief overview of the algorithmic framework of Beame et al. [BHR+18,

BHR+20]. It consists of subroutines for sparsifying a graph into a number of subgraphs

each with reduced number of edges, and exactly or approximately counting the number

of edges in these subgraphs. Sparsification constitutes the main building block of this

framework. The graph is sparsified by coloring the vertices of the graph, and by looking

at only those edges that exist between those pairs that are a matching of the color classes.

It can be proved, by a suitable Chernoff bound, that counting the edges between the

matched color classes suffice with a suitable scaling. We can ignore the other edges.

Therefore, the original problem reduces to the problem of counting the number of edges

in bipartite subgraphs. The next step of coarse estimation involves coarsely estimating

the number of edges in each colored subgraph. Next, these subgraphs are grouped based

on their coarse estimates, and subsampling is done from the groups with a relatively

1Õ(·) hides a polylogarithmic term.

23

large number of edges. As these bipartite subgraphs become manageable in their sizes,

the edges are exactly counted in the sparse subgraphs. On the dense subgraphs, the

recursive procedure continues.

Our algorithmic framework is inspired by [BHR+18] but the detailed analysis is

markedly different, like the use of a relatively new concentration inequality, due to Jan-

son [Jan04], for handling sums of random variables with bounded dependency. Apart

from Lemmas 3.6 and 3.9, all other proofs require different ideas.

In Figure 3.1, we give a flowchart of the algorithm and show the corresponding lem-

mas that support the steps of the algorithm. We would like to note that the sparsification

(Lemma 3.3) and the algorithm (Lemma 3.4) to estimate the number of triangles in a

graph when the number of triangles is less than a threshold, are the main novel contri-

butions.

The main idea of our algorithm is as follows. We can figure out for a given G, if

the number of triangles t(G) is greater than a threshold τ ((Lemma 3.4)). If t(G) ≤ τ ,

i.e., G is sparse in triangles, we compute a (1± ε)-approximation of t(G) (Lemma 3.4).

Otherwise, we sparsifyG to get a disjoint union of tripartite subgraphs ofG that maintain

t(G) up to a scaling factor (Lemma 3.3). For each tripartite subgraph, if the subgraph is

sparse (decided by Lemma 3.5), we count the number of triangles exactly (Lemma 3.6).

Otherwise, we again sparsify (Lemma 3.7). This repeated process of sparsification may

create a huge number of tripartite subgraphs. Counting the number of triangles in them is

managed by doing a coarse estimation (Lemma 3.8) and taking a sample of the subgraph

that maintains the number of triangles approximately. Each time we sparsify, we ensure

that the sum of the number of triangles in the subgraphs generated by sparsification is

a constant fraction of the number of triangles in the graph before sparsification, making

the number of iterations O(log n).

We sparsify G by considering the partition obtained when V (G) is COLORED with

[3k]. This sparsification is done such that: (i) the sparsified graph is a union of a set of

vertex disjoint tripartite subgraphs and (ii) a proper scaling of the number of triangles

in the sparsified graph is a good estimate of t(G) with high probability2. The proof of

2High probability means that the probability of success is at least 1− 1
nc for some constant c.

24

Yes

No

For each tripartite subgraph G(A,B,C)
check whether t(A,B,C) ≤ threshold ;

Compute t(A,B,C) if it is less than
the threshold and remove G(A,B,C).

Is there any tripartite
subgraph left?

No

Yes

Sparsify G such that the sparsified graph G′ is a
union of vertex disjoint tripartite subgraphs and a
proper scaling of t(G′) approximates t(G).

Compute t(A,B,C)

Is t(G) ≤ threshold?

Terminate.

Start.

Compute t(G) exactly.Compute t(G) approximately.

subgraphs present large?
Is the number of tripartite

No

Yes

Sample a bounded number of
subgraphs such that a proper
weighted scaling of the number

is approximately same as that of
the number of triangles in the

of triangles in the subgraphs

original set of subgraphs.

Sample

For each subgraph G(A,B,C), use a coarse estimator

for t(A,B,C) that is correct upto O(log2 n) factor.

coarse estimator

For each subgraph G(A,B,C),

in H, formed formed by sparsification.
Replace G(A,B,C) by the tripartite subgraphs,

such that the sparsified graph H is a union of
vertex disjoint tripartite subgraphs and a proper
scaling of t(H) is t(A,B,C), approximately.

Sparsify G(A,B,C)

Sparsify G

Lemma 3.4

Lemma 3.4

Lemma 3.9

Lemma 3.8

Lemma 3.5 and 3.6

Lemma 3.3

Lemma 3.7

Figure 3.1: Flow chart of the algorithm. The highlighted texts indicate the basic
building blocks of the algorithm. We also indicate the corresponding lemmas that

support the building blocks.

the sparsification result stated next uses the method of averaged bounded differences and

Chernoff-Hoeffding type inequality in bounded dependency setting by Janson [Jan04].

The detailed proof is in Section 3.4. Recall that ∆E is the maximum number of triangles

on a particular edge.

Lemma 3.3 (General Sparsification). Let k, ℘ ∈ N. There exists a constant κ1 such that

25

for any graph G with ∆E ≤ ℘, if V1, . . . , V3k is a random partition of V (G) obtained by

V (G) being COLORED with [3k], then

P

(∣∣∣∣∣9k2

2

k∑
i=1

t(Vi, Vk+i, V2k+i)− t(G)

∣∣∣∣∣ > κ1℘k
2
√
t(G) log n

)
≤ 2

n4
.

We apply the sparsification corresponding to Lemma 3.3 only when t(G) is above a

threshold3 to ensure that the relative error is bounded. We can decide whether t(G) is

at most the threshold and if it is so, we estimate the value of t(G), using the following

lemma, whose proof is given in Section 3.5.

Lemma 3.4 (Estimation with respect to a threshold). There exists an algorithm that for

any graph G, a threshold parameter τ ∈ N and an ε ∈ (0, 1), determines whether

t(G) > τ . If t(G) ≤ τ , the algorithm gives a (1 ± ε)-approximation to t(G) by using

O(τ log2 n
ε2

) TIS queries with probability at least 1− n−10.

Assume that t(G) is large 4 and G has undergone sparsification. We initialize a data

structure with a set of vertex disjoint tripartite graphs that are obtained after the sparsifi-

cation step. For each tripartite graphG(A,B,C) in the data structure, we check whether

t(A,B,C) is less than a threshold using the algorithm corresponding to Lemma 3.5. If

it is less than a threshold, we compute the exact value of t(A,B,C) using Lemma 3.6

and remove G(A,B,C) from the data structure. The proofs of Lemmas 3.5 and 3.6 are

given in Section 3.5.

Lemma 3.5 (Threshold for Tripartite Graph). There exists a deterministic algorithm that

given any disjoint subsets A,B,C ⊂ V (G) of any graph G and a threshold parameter

τ ∈ N, can decide whether t(A,B,C) ≤ τ using O(τ log n) TIS queries.

Lemma 3.6 (Exact Counting in Tripartite Graphs). There exists a deterministic algo-

rithm that given any disjoint subsets A,B,C ⊂ V (G) of any graph G, can determine

the exact value of t(A,B,C) using O(t(A,B,C) log n) TIS queries.

3The threshold is a fixed polynomial in ℘, log n and 1
ε .

4Large refers to a fixed polynomial in ℘, log n and 1
ε

26

Now we are left with some tripartite graphs such that the number of triangles in

each graph is more than a threshold. If the number of such graphs is not large, then

we sparsify each tripartite graph G(A,B,C) in a fashion almost similar to the earlier

sparsification. This sparsification result formally stated in the following Lemma, has a

proof similar to Lemma 3.3. We replace G(A,B,C) by a constant (say, k) 5 number of

tripartite subgraphs formed after sparsification.

Lemma 3.7 (Sparsification for Tripartite Graphs). Let k, ℘ ∈ N. There exists a constant

κ2 such that

P

(∣∣∣∣∣k2

k∑
i=1

t(Ai, Bi, Ci)− t(A,B,C)

∣∣∣∣∣ > κ2℘k
2
√
t(G) log n

)
≤ 1

n8

where A, B and C are disjoint subsets of V (G) for any graph G with ∆E ≤ ℘, and

A1, . . . , Ak, B1, . . . , Bk and C1, . . . , Ck are the partitions of A,B,C formed uniformly

at random, respectively.

If we have a large number of vertex disjoint tripartite subgraphs of G and each sub-

graph contains a large number of triangles, then we coarsely estimate the number of

triangles in each subgraph which is correct up to O(log2 n) factor by using the algo-

rithm corresponding to the following Lemma, whose proof is in Section 3.6.

Lemma 3.8 (Coarse Estimation). There exists an algorithm that given disjoint subsets

A,B,C ⊂ V (G) of any graph G, returns an estimate t̃ satisfying

t(A,B,C)

64 log2 n
≤ t̃ ≤ 64t(A,B,C) log2 n

with probability at least 1 − n−9. Moreover, the query complexity of the algorithm is

O(log4 n).

Remark 3.1. The coarse estimation algorithm for the number of edges by Beame et

al. [BHR+18] takes two disjoint sets A and B and reports ẽ such that e(A,B)
c logn

≤ ẽ ≤

5In our algorithm, k is a constant. However, Lemma 3.7 and Lemma 3.3 holds for any k ∈ N.

27

c log n, where c is a constant and e(A,B) denotes the number of edges with one end-

point in A and one in B. Our COARSE-ESTIMATE-TRIANGLE algorithm is similar in

structure to the coarse estimation algorithm for edge estimation, but a suitable extension

for triangle via delicate parameter setting and careful analysis. The difficulty in exten-

sion is inherent as triangles are more complicated structures than that of edges. One

may think that we are estimating triangle using TIS which is powerful than that of BIS.

However, the relative power hierarchy of BIS and TIS is not at all clear.

After estimating the number of triangles in each subgraph coarsely, we approxi-

mately maintain the triangle count using the following sampling result which is a direct

consequence of the Importance Sampling Lemma of [BHR+18]. 6

Lemma 3.9 ([BHR+18]). Let (A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the tuples present

in the data structure and ei be the corresponding coarse estimation for t(Ai, Bi, Ci), i ∈
[r], such that

(i) ∀i ∈ [r], we have wi, ei ≥ 1;

(ii) ∀i ∈ [r], we have ei
ρ
≤ t(Ai, Bi, Ci) ≤ eiρ for some ρ > 0; and

(iii)
∑r

i=1 wi · t(Ai, Bi, Ci) ≤M .

Note that the exact values t(Ai, Bi, Ci)’s are not known to us. Then there exists an al-

gorithm that finds (A′1, B
′
1, C

′
1, w

′
1), . . . , (A′s, B

′
s, C

′
s, w

′
s) such that all of the above three

conditions hold and∣∣∣∣∣
s∑
i=1

w′i · t(A′i, B′i, C ′i)−
r∑
i=1

wi · t(Ai, Bi, Ci)

∣∣∣∣∣ ≤ λS,

with probability at least 1− δ, where S =
∑r

i=1wi · t(Ai, Bi, Ci) and λ, δ > 0. Also,

s = O
(
λ−2ρ4 logM

(
log logM + log

1

δ

))
.

6For the exact statement of the Importance Sampling Lemma see Lemma 2.9 in Section 2.1.

28

Now again, for each tripartite graph G(A,B,C), we check whether t(A,B,C) is

less than a threshold using the algorithm corresponding to Lemma 3.5. If yes, then we

can compute the exact value of t(A,B,C) using Lemma 3.6 and remove G(A,B,C)

from the data structure. Otherwise, we iterate on all the required steps discussed above

as shown in Figure 3.1. Observe that each iteration uses polylogarithmically 7 many

queries. Now, note that the number of triangles reduces by a constant factor after each

sparsification step. So, the number of iterations is bounded by O(log n). Hence, the

query complexity of our algorithm is polylogarithmic. This completes the high level

description of our algorithm.

3.4 Sparsification step

In this Section, we prove Lemma 3.3. The proof of Lemma 3.7 is similar.

Lemma 3.10 (Lemma 3.3 restated). Let k, ℘ ∈ N. There exists a constant κ1 such that

for any graph G with ∆E ≤ ℘, if V1, . . . , V3k is a random partition of V (G) obtained by

V (G) being COLORED with [3k], then

P

(∣∣∣∣∣9k2

2

k∑
i=1

t(Vi, Vk+i, V2k+i)− t(G)

∣∣∣∣∣ > κ1℘k
2
√
t(G) log n

)
≤ 2

n4
.

Proof. V (G) is COLORED with [3k]. Let V1, . . . , V3k be the resulting partition of

V (G). Let Zi be the random variable that denotes the color assigned to the ith vertex.

For i ∈ [3k], π(i) is a set of three colors defined as follows: π(i) = {i, (1 + (i + k −
1) mod 3k), (1 + (i+ 2k − 1) mod 3k)}.

Definition 3.11. A triangle (a, b, c) is said to be properly colored if there exists a bijec-

tion in terms of coloring from {a, b, c} to π(i).

Let f(Z1, . . . , Zn) =
∑k

i=1 t(Vi, Vk+i, V2k+i). Note that f is the number of triangles

that are properly colored. The probability that a triangle is properly colored is 2
9k2 . So,

E[f] = 2t(G)
9k2 .

7Polylogarithmic refers to a polynomial in ℘, log n and 1
ε

29

Let us focus on the instance when vertices 1, . . . , t − 1 are already colored and we

are going to color vertex t. Let S` (resp., Sr) be the set of triangles in G having t as one

of the vertices and other two vertices are from [t− 1] (resp., [n] \ [t]). S`r be the set of

triangles in G such that t is a vertex and the second and third vertices are from [t − 1]

and [n] \ [t], respectively.

Given that the vertex t is colored with color c ∈ [3k], let N c
` , N

c
r , N

c
`r be the random

variables that denote the number of triangles in S`, Sr and S`r that are properly colored,

respectively. Also, let Etf be a random variable that is a function of f , random variables

Z1, . . . , Zt−1, and at, a′t ∈ [3k]. Moreover, Etf denotes the absolute difference in the

conditional expectation of the number of triangles that are properly colored when vertex

t is colored with color at and when vertex t is colored with color a′t. By considering the

vertices in S`, Sr and S`r separately, we can bound Etf .

Etf = |E [f | Z1, . . . , Zt−1, Zt = at]− E [f | Z1, . . . , Zt−1, Zt = a′t]|

=
∣∣∣Nat

` −N
a′t
` + E

[
Nat
r −Na′t

r

]
+ E

[
Nat
`r −N

a′t
`r

]∣∣∣
≤

∣∣∣Nat
` −N

a′t
`

∣∣∣+ E
[∣∣∣Nat

r −Na′t
r

∣∣∣]+ E
[∣∣∣Nat

`r −N
a′t
`r

∣∣∣]
Now, consider the following claim, which we prove later.

Claim 3.12. (a) P(| Nat
` −N

a′t
` |< 8

√
℘∆t log n) ≥ 1− 4n−8;

(b) E[| Nat
r −N

a′t
r |] ≤

√
℘∆t/k;

(c) E[| Nat
`r −N

a′t
`r |] < 6℘

√
∆t log n.

Note that ∆t is the number of triangles having t as one of its vertices and we are not

assuming any bound on ∆t. We assume ∆E , that is the number of triangles on any edge,

is bounded.

Let ct = 15℘
√

∆t log n. From the above claim, we have

Etf < 8
√
℘∆t log n+

√
℘∆t

k
+ 6℘

√
∆t log n ≤ 15℘

√
∆t log n = ct

30

with probability at least 1 − 4
n8 . Let B be the event that there exists t ∈ [n] such that

Etf > ct. By the union bound over all t ∈ [n], P(B) ≤ 4
n7 .

Using the method of averaged bounded difference [DP09] (See Lemma 2.2 in Ap-

pendix 2.1), we have

P (|f − E[f]| > δ + t(G)P(B)) ≤ e
−δ2/

n∑
t=1

c2t
+ P(B).

We set δ = 60℘
√
t(G) log n. Observe that

n∑
t=1

c2
t = 225℘2 log n

n∑
t=1

∆t = 675℘2t(G) log n.

Hence,

P
(∣∣∣∣f − 2t(G)

9k2

∣∣∣∣ > 60℘
√
t(G) log n+ t(G)P(B)

)
≤ 1

n4
+

1

n7
,

that is,

P
(∣∣∣∣9k2

2
f − t(G)

∣∣∣∣ > 270℘k2
√
t(G) log n+

9k2

2
· t(G)

n7

)
≤ 1

n4
+

1

n7
.

Since, 9k2

2
· t(G)
n7 < ℘k2

√
t(G) log n, we get

P
(∣∣∣∣9k2

2
f − t(G)

∣∣∣∣ > 271℘k2
√
t(G) log n

)
≤ 2

n4
.

To finish the proof of Lemma 3.3, we need to prove Claim 3.12. For that, we need

the following definition and intermediate result (Lemma 3.14) that is stated in terms of

objects, which in the current context can be thought of as vertices.

Definition 3.13. Let X be a set of u objects COLORED with [3k]. Let α, β ∈ [3k] and

α 6= β. A pair of objects {a, b} is said to be colored with {α, β} if there is a bijection

in terms of coloring from {a, b} to {α, β}. For a single object o ∈ X , o is colored with

{α, β} means o is either colored with α or β.

31

Example: Let us take u = 5, χ = {o1, . . . , o5} and k = 1. Let c : χ → [3] be the

coloring function assigned to the objects in χ such that c(o1) = 2, c(o2) = 3, c(o3) =

3, c(o4) = 1 and c(o5) = 2. So, we can say that, {o2, o5} is colored with {2, 3} and

{o1, o4} is colored with {1, 2}, but {o4, o5} is not colored with {1, 3}, etc. For a single

object, say o3, we can say that o3 is colored with {3, 2}.
Recall Definition 3.11. A triangle incident on t is properly colored if the pair of

vertices in the triangle other than t, is colored with π(Zt) \ {Zt}. Note that, Claim 3.12

bounds the difference in the number of properly colored triangles incident on t when

Zt = at and when Zt = a′t, that is, the difference in the number of triangles whose pair

of vertices other than t is colored with π(at) \ {at} and that is colored with π(a′t) \ {a′t}.
As, a vertex can be present in many pairs, proper coloring of one triangle, incident on

t, is dependent on the proper coloring of another triangle. However, this dependency is

bounded due to our assumption ∆E ≤ ℘. Now, let us consider the following Lemma.

Lemma 3.14. Let X be a set of u objects COLORED with [3k]. F be a set of v pairs

of objects such that an object is present in at most ℘ (℘ ≤ v) pairs and P ⊆ X be a

set of w objects, F{α,β} ⊆ F be a set of pairs of objects that are colored with {α, β},
M{α,β} =

∣∣F{α,β}∣∣, and P{α,β} ⊆ P be the set of objects that are colored with {α, β}
and N{α,β} =

∣∣P{α,β}∣∣. Then, we have

(i) P
(∣∣M{α,β} −M{α′,β′}∣∣ ≥ 8

√
℘v log u

)
≤ 4

u8 ,

(ii) E
[∣∣M{α,β} −M{α′,β′}∣∣] ≤ √

℘v

k
, and

(iii) P
(∣∣N{α,β} −N{α′,β′}∣∣ ≥ 4

√
w log u

)
≤ 4

u8 .

Proof. (i) Let F = {{a1, b1}, . . . , {av, bv}}. Let Xi be the indicator random variable

such that Xi = 1 if and only if {ai, bi} is colored with {α, β}, where i ∈ [v]. Note

that M{α,β} =
∑v

i=1 Xi. Also, E[Xi] = 2
9k2 , hence E[M{α,β}] = 2v

9k2 .

Xi and Xj are dependent if and only if {ai, bi} ∩ {aj, bj} 6= ∅. As each object can

be present in at most ℘ pairs of objects, there are at most 2℘ Xj’s on which an Xi

32

depends. Now using Chernoff-Hoeffding’s type bound in the bounded dependent

setting [DP09] (see Lemma 2.8 in Section 2.1), we have

P
(∣∣∣∣M{α,β} − 2v

9k2

∣∣∣∣ ≥ 4
√
℘v log u

)
≤ 2

u8
.

Similarly, one can also show that P
(∣∣M{α′,β′} − 2v

9k2

∣∣ ≥ 4
√
℘v log u

)
≤ 2

u8 . Note

that ∣∣M{α,β} −M{α′,β′}∣∣ ≤ ∣∣∣∣M{α,β} − 2v

9k2

∣∣∣∣+

∣∣∣∣M{α′,β′} − 2v

9k2

∣∣∣∣ .
Hence,

P
(∣∣M{α,β} −M{α′,β′}∣∣ ≥ 8

√
℘v log u

)
≤ P

(∣∣∣∣M{α,β} − 2v

9k2

∣∣∣∣+

∣∣∣∣M{α′,β′} − 2v

9k2

∣∣∣∣ ≥ 8
√
℘v log u

)
≤ P

(∣∣∣∣M{α,β} − 2v

9k2

∣∣∣∣ ≥ 4
√
℘v log u

)
+ P

(∣∣∣∣M{α′,β′} − 2v

9k2

∣∣∣∣ ≥ 4
√
℘v log u

)
≤ 4u−8.

(ii) Let Xi, i ∈ [v], be the random variable such that Xi = 1 if {ai, bi} is colored

with {α, β}; Xi = −1 if {ai, bi} is colored with {α′, β′}; Xi = 0, otherwise. Let

X =
v∑
i=1

Xi. Note that M{α,β} −M{α′,β′} = X =
v∑
i=1

Xi.

So, we need to bound E[|X|] to prove the claim.

The random variables Xi and Xj are dependent if and only if {ai, bi}∩ {aj, bj} 6=
∅. As each object can be present in at most ℘ pairs of objects, there are at most 2℘

Xj’s on which an Xi depends. Observe that

P(Xi = 1) = P(Xi = −1) =
2

9k2
.

So, E[Xi] = 0 and E[X2
i] = 4

9k2 .

33

If Xi and Xj are independent, then

E[XiXj] = E[Xi] · E[Xj] = 0.

If Xi and Xj are dependent, then

E[XiXj] ≤ P(XiXj = 1).

P(XiXj = 1) = P(Xi = 1, Xj = 1) + P(Xi = −1, Xj = −1)

= P(Xi = 1) · P(Xj = 1 | Xi = 1)

+ P(Xi = −1) · P(Xj = −1 | Xi = −1)

=
2

9k2
· 1

3k
+

2

9k2
· 1

3k
=

4

27k3

Using the expression E[X2] =
∑v

i=1 E[X2
i] + 2 ·

∑
1≤i<j≤v E[XiXj] and recalling

the fact that each Xi depends on at most 2℘ other Xj’s, we get

E[X2] ≤ v · 4

9k2
+ 2℘v · 4

27k3
≤ 8℘v

9k2
.

Now, using E[|X|] ≤
√

E[X2], we get E[|X|] <
√
℘v

k
.

(iii) Let P = {o1, . . . , ow} be the set of w objects. Let Xi, i ∈ [w], be the indicator

random variable such thatXi = 1 if and ony if oi is colored with {α, β}. Note that

N{α,β} =
w∑
i=1

Xi. Observe that E[Xi] = 2
3k

and hence, E
[
N{α,β}

]
= 2w

3k
. Note that

Xi and Xj are independent. Applying Hoeffding’s inequality (See Lemma 2.3 in

Section 2.1), we get

P
(∣∣∣∣N{α,β} − 2w

3k

∣∣∣∣ ≥ 2
√
w log u

)
≤ 2

u8
.

34

Similarly, we can aso show that P
(∣∣N{α′,β′} − 2w

3k

∣∣ ≥ 2
√
w log u

)
≤ 2

u8 . Hence,

P(
∣∣N{α,β} −N{α′,β′}∣∣ ≥ 4

√
w log u)

≤ P
(∣∣∣∣N{α,β} − 2w

3k

∣∣∣∣+

∣∣∣∣N{α′,β′} − 2w

3k

∣∣∣∣ ≥ 4
√
w log u

)
≤ P

(∣∣∣∣N{α,β} − 2w

3k

∣∣∣∣ ≥ 2
√
w log u

)
+ P

(∣∣∣∣N{α′,β′} − 2w

3k

∣∣∣∣ ≥ 2
√
w log u

)
≤ 4

u8
.

We will now give the proof of Claim 3.12.

Proof of Claim 3.12. (a) Let S` = {(a1, b1, t), . . . , (av, bv, t)}. Note that v ≤ ∆t. As

∆E ≤ ℘, each vertex in [n] can be present in at most ℘ pairs of S`. Now we

apply Lemma 3.14. Set X = [n] and F = S` in Lemma 3.14. Observe that

Nat
` = Mπ(at)\{at} and Na′t

` = Mπ(a′t)\{a′t}. So, by of Lemma 3.14 (i),

P
(∣∣∣Nat

` −N
a′t
`

∣∣∣ ≥ 8
√
℘v log n

)
≤ 4

n8
.

This implies P
(∣∣∣Nat

` −N
a′t
`

∣∣∣ ≥ 8
√
℘∆t log n

)
≤ 4

n8 .

(b) Let Sr = {(t, a1, b1), . . . , (t, av, bv)}. Note that v ≤ ∆t, the number of triangles

incident on vertex t. As ∆E ≤ ℘, each vertex in [n] can be present in at most ℘

pairs of Sr. Now we apply Lemma 3.14. Set X = [n] and F = Sr in Lemma 3.14.

Observe that Nat
r = Mπ(at)\{at} and Na′t

r = Mπ(a′t)\{a′t}. By Lemma 3.14 (ii), we

get

E
[∣∣∣Nat

r −Na′t
r

∣∣∣] ≤ √℘v
k
≤
√
℘∆t

k
.

(c) Let S`r = {(a1, t, b1), . . . , (aw, t, bw)}. Without loss of generality, assume that

ai ∈ [t−1] and bi ∈ [n]\ [t]. Note that w ≤ ∆t. Given that the vertex t is colored

35

with color c and we know Z1, . . . , Zt−1, define the set Pc as

Pc := {(a, t, b) ∈ S`r : t is colored with c and P((a, t, b) is properly colored) > 0}.

Let Qc = |Pc|. Observe that for (a, t, b) ∈ S`r, P((a, t, b) is properly colored) >

0 if and only if a is colored with some color in π(c) \ {c}. Now we apply

Lemma 3.14. Set X = [n], P = {a1, . . . , aw}. Observe that Pπ(at)\at = Pat

and Pπ(a′t)\a′t = Pa′t . By (iii) of Lemma 3.14,

P
(∣∣Qat −Qa′t

∣∣ ≥ 4
√
w log n

)
≤ 4

n8
.

Let E be the event that
∣∣Qat −Qa′t

∣∣ ≥ 4
√
w log n. So, P(E) ≤ 4

n8 . Assume that

E has not occurred. Let P = Pat ∩ Pa′t = {(x1, t, y1), . . . , (xq, t, yq)}. Note that

q ≤ w ≤ ∆t. Recall that Zx is the random variable that denotes the color assigned

to vertex x ∈ [n]. Let Xi, i ∈ [q], be the random variable such that Xi = 1 if yi
is colored with π(at) \ {Zxi , at}; Xi = −1 if yi is colored with π(a′t) \ {Zxi , a′t};
Xi = 0, otherwise. Let X =

∑q
i=1 Xi. Observe that Xi and Xj are dependent if

and only if yi = yj . As ∆E ≤ ℘, there can be at most ℘ yj’s such that yi = yj . So,

an Xi depends on at most ℘ other Xj’s.

Observe that P(Xi = 1) = P(Xi = −1) = 1
3k

. So, E[Xi = 0] and E[X2
i] = 2

3k
. If

Xi and Xj are independent, then E[XiXj] = 0. If Xi and Xj are dependent, then

E[XiXj] ≤ P(Xi = 1, Xj = 1) + P(Xi = −1, Xj = −1)

≤ P(Xi = 1) + P(Xj = −1)

=
2

3k
.

Using the expression E[X2] =
∑v

i=1 E[X2
i] + 2 ·

∑
1≤i<j≤v E[XiXj] and the fact

that each Xi depends on at most ℘ other Xj’s, we get

E[X2] ≤ v · 2

3k
+ ℘v · 2

3k
≤ ℘v

k
≤ ℘∆t

k
.

36

Since, E[|X|] ≤
√

E[X2], we get E[|X|] ≤
√

℘∆t

k
. Using ∆E ≤ ℘, we have

E[| Nat
`r −N

a′t
`r | | E

c] = ℘· | Qat −Qa′t
| +E[|X|]

< 4℘
√

∆t log n+

√
℘∆t

k
< 5℘

√
∆t log n.

Observe that E[| Nat
`r −N

a′t
`r | | E] ≤ w ≤ ∆t. Putting everything together,

E
[
| Nat

`r −N
a′t
`r |
]

= P(E) · E
[
| Nat

`r −N
a′t
`r | | E

]
+ P(Ec) · E

[
| Nat

`r −N
a′t
`r | | E

c
]

<
4

n8
·∆t + 1 · 5℘

√
∆t log n ≤ 6℘

√
∆t log n

3.5 Estimation: exact and approximate

In this Section, we prove Lemmas 3.4 (restated as Lemma 3.17), 3.5 (restated as Lemma 3.16)

and 3.6 (restated as Lemma 3.15). We first prove Lemmas 3.5 and 3.6, whose proofs

are very similar. Then we prove Lemma 3.4 that in turn uses Lemma 3.5.

Lemma 3.15 (Lemma 3.6 restated). There exists a deterministic algorithm that given

any disjoint subsets A,B,C ⊂ V (G) of any graph G, can determine the exact value of

t(A,B,C) using O(t(A,B,C) log n) TIS queries.

Proof. We initialize a tree T with (A,B,C) as the root. We build the tree such that

each node is labeled with either 0 or 1. If t(A,B,C) = 0, we label the root with 0 and

terminate. Otherwise, we label the root with 1 and do the following as long as there is a

leaf node (U, V,W) labeled with 1.

(i) If t(U, V,W) = 0, then we label (U, V,W) with 0 and go to other leaf node labeled

as 1 if any. Otherwise, we label (U, V,W) as 1 and do the following.

(ii) If |U | = |V | = |W | = 1, then we add one node (U, V,W) as a child of (U, V,W)

and label the new node as 0. Then we go to other leaf node labeled as 1 if any.

37

(iii) If |U | = 1, |V | = 1 and |W | > 1, then we partition the set W into W1 and

W2 such that |W1| =
⌈
|W |

2

⌉
and |W2| =

⌊
|W |

2

⌋
; and we add (U, V,W1) and

(U, V,W2) as two children of (U, V,W). The case |U | = 1, |V | > 1, |W | = 1 and

|U | > 1, |V | = 1, |W | = 1 are handled similarly.

(iv) If |U | = 1, |V | > 1 and |W | > 1, then we partition the set V into V1 and V2

(similarly, W into W1 and W2) such that |V1| =
⌈
|V |
2

⌉
and |V2| =

⌊
|V |
2

⌋
(|W1| =⌈

|W |
2

⌉
and |W2| =

⌊
|W |

2

⌋
); and we add (U, V1,W1), (U, V1,W2), (U, V2,W1) and

(U, V2,W2) as four children of (U, V,W). The case |U | > 1, |V | > 1, |W | = 1

and |U | > 1, |V | = 1 |W | > 1 are handled similarly.

(v) If |U | > 1, |V | > 1 and |W | > 1, then we partition the sets U, V,W into U1 and

U2; V1 and V2; W1 and W2, respectively, such that |U1| =
⌈
|U |
2

⌉
and |U2| =

⌊
|U |
2

⌋
;

|V1| =
⌈
|V |
2

⌉
and |V2| =

⌊
|V |
2

⌋
; |W1| =

⌈
|W |

2

⌉
and |W2| =

⌊
|W |

2

⌋
. We add

(U1, V1,W1), (U1, V1,W2), (U1, V2,W1), (U1, V2,W2) (U2, V1,W1), (U2, V1,W2),

(U2, V2,W1) and (U2, V2,W2) as eight children of (U, V,W).

Let T ′ be the tree after deleting all the leaf nodes in T . Observe that t(A,B,C) is the

number of leaf nodes in T ′; and

• the height of T is bounded by max{log |A| , log |B| , log |C|}+ 1 ≤ 2 log n,

• the query complexity of the above procedure is bounded by the number of nodes

in T as we make at most one query per node of T .

The number of nodes in T ′, equal to the number of internal nodes of T , is bounded by

2t(A,B,C) log n. So, the number of leaf nodes in T is at most 16t(A,B,C) log n and

hence the total number of nodes in T is at most 16t(U, V,W) log n. Putting everything

together, the required query complexity is O(t(A,B,C) log n).

Lemma 3.16 (Lemma 3.5 restated). There exists a deterministic algorithm that given

any disjoint subsets A,B,C ⊂ V (G) of any graph G and a threshold parameter τ ∈ N,

can decide whether t(A,B,C) ≤ τ using O(τ log n) TIS queries.

38

Proof. The algorithm proceeds similar to the one presented in the Proof of Lemma 3.6

by initializing a tree T with (A,B,C) as the root. If t(A,B,C) ≤ τ , then we can find

t(A,B,C) by using 16t(A,B,C) log n queries and the number of nodes in T is bounded

by 16t(A,B,C) log n. So, if the number of nodes in T is more than 16τ log n at any in-

stance during the execution of the algorithm, we report t(G) > τ and terminate. Hence,

the query complexity is bounded by the number of nodes in T , which isO(τ log n).

Algorithm 3.1: THRESHOLD-APPROX-TRIANGLE-ESTIMATE(G, τ, ε)
Input: A parameter τ and an ε ∈ (0, 1).
Output: Either report t(G) > τ or find a (1± ε)-approximation of t(G).

1 for (i = 1 to N = 18 logn
ε2

) do
2 Partition V (G) into three parts such that each vertex is present in one of

Ai, Bi, Ci with probability 1/3 independent of the other vertices.
3 Run the algorithm corresponding to Lemma 3.5 to determine if

t(Ai, Bi, Ci) > τ . If yes, we report t(G) > τ and QUIT. Otherwise, we
have the exact vale of t(Ai, Bi, Ci)

4 Report t̂ =
9
N∑
i
t(Ai,Bi,Ci)

2N as the output.

Lemma 3.17 (Lemma 3.4 restated). There exists an algorithm that for any graph G,

a threshold parameter τ ∈ N and an ε ∈ (0, 1), determines whether t(G) > τ . If

t(G) ≤ τ , the algorithm gives a (1± ε)-approximation to t(G) by usingO(τ log2 n
ε2

) TIS

queries with probability at least 1− n−10.

Proof. We show that Algorithm 3.1 satisfies the given condition in the statement of

Lemma 3.5. Note that THRESHOLD-APPROX-TRIANGLE-ESTIMATE calls the algo-

rithm corresponding to Lemma 3.5 at most N = 18 logn
ε2

times, where each call can be

executed by O(τ log n) TIS queries. So, the total query complexity of THRESHOLD-

APPROX-TRIANGLE-ESTIMATE is O(N · τ log n) = O
(
τ log2 n
ε2

)
.

Now, we show the correctness of THRESHOLD-APPROX-TRIANGLE-ESTIMATE. If

there exists an i ∈ [N], such that t(Ai, Bi, Ci) > τ , then we report t(G) > τ and QUIT.

Otherwise, by Lemma 3.5, we have the exact values of t(Ai, Bi, Ci)’s. We will be done

39

by showing that t̂ is a (1± ε)-approximation to t(G) with probability at least 1− n−10.

From the description of the algorithm, each triangle in G will be counted in t(Ai, Bi, Ci)

with probability 2
9
. We have E[t(Ai, Bi, Ci)] = 2

9
t(G), and the expectation of the sum

and the estimate t̂ is

E

[
N∑
i=1

t(Ai, Bi, Ci)

]
=

2

9
N · t(G) and E[t̂] = t(G).

Therefore, we have

P
(∣∣t̂− t(G)

∣∣ ≥ ε · t(G)
)

= P

(∣∣∣∣∣
N∑
i=1

t(Ai, Bi, Ci)−
2

9
N · t(G)

∣∣∣∣∣ ≥ 2ε

9
N · t(G)

)

To bound the above probability, we apply Hoeffding’s inequality (See Lemma 2.3 in

Section 2.1) along with the fact that 0 ≤ t(Ai, Bi, Ci) ≤ τ for all i ∈ [N], and we get

P
(∣∣t̂− t(G)

∣∣ ≥ ε · t(G)
)
≤ 1

n10
.

3.6 Coarse estimation

We now prove Lemma 3.8. Algorithm 3.3 corresponds to Lemma 3.8. Algorithm 3.2 is

a subroutine in Algorithm 3.3. Algorithm 3.2 determines whether a given estimate t̂ is

correct upto a O(log2 n) factor. Lemmas 3.18 and 3.19 are intermediate results needed

to prove Lemma 3.8.

Lemma 3.18. If t̂ ≥ 64t(A,B,C) log3 n,

P(VERIFY-ESTIMATE-TRIANGLE (A,B,C, t̂) accepts) ≤ 1

20

.

Proof. Let T (A,B,C) denote the set of triangles having vertices a ∈ A, b ∈ B and c ∈

40

Algorithm 3.2: VERIFY-ESTIMATE-TRIANGLE (A,B,C, t̂)

Input: Three pairwise disjoint set A,B,C ⊆ V (G) and t̂.
Output: If t̂ is a good estimate, then ACCEPT. Otherwise, REJECT.

1 begin
2 for (i = 2 log n to 0) do
3 Find Ai ⊆ A by sampling each element of A with probability

min{2i

t̂
, 1}.

4 for (j = log n to 0) do
5 Set Aij = Ai.
6 Find Bij ⊆ B and Cij ⊆ C by sampling each element of B and C

with probability min{2j

2i
log n, 1} and 1

2j
, respectively.

7 if (t(Aij, Bij, Cij) 6= 0) then
8 ACCEPT

9 REJECT

C, where A,B and C are disjoint subsets of V (G). For (a, b, c) ∈ T (A,B,C) such that

a ∈ A, b ∈ B, c ∈ C, letX ij
(a,b,c) denote the indicator random variable such thatX ij

(a,b,c) =

1 if and only if (a, b, c) ∈ T (Aij, Bij, Cij) and Xij =
∑

(a,b,c)∈T (A,B,C)

X ij
(a,b,c). Here,

Aij, Bij, Cij are as in the Algorithm 3.2. Note that the number of triangles t(Aij, Bij, Cij) =

Xij . The triangle (a, b, c) is present in T (Aij, Bij, Cij) if a ∈ Aij , b ∈ Bij and c ∈ Cij .
So,

P
(
X ij

(a,b,c) = 1
)
≤ 2i

t̂
· 2j

2i
log n · 1

2j
=

log n

t̂
and E [Xij] ≤

t(A,B,C)

t̂
log n.

As Xij ≥ 0,

P (Xij 6= 0) = P(Xij ≥ 1) ≤ E [Xij] ≤
t(A,B,C)

t̂
log n.

Now using the fact that t̂ ≥ 64t(A,B,C) log3 n, we have P (Xij 6= 0) ≤ 1
64 log2 n

.

Observe that VERIFY-ESTIMATE-TRIANGLE accepts if and only if there exists i, j ∈

41

{0, . . . , log n} such that Xij 6= 0. Using the union bound, we get

P (VERIFY-ESTIMATE-TRIANGLE accepts) ≤
∑

0≤i≤2 logn

∑
0≤j≤logn

P (Xij 6= 0)

≤ (2 log n+ 1)(log n+ 1)

32 log2 n

≤ 1

20
.

Lemma 3.19. If t̂ ≤ t(A,B,C)
32 logn

,

P(VERIFY-ESTIMATE-TRIANGLE (A,B,C, t̂) accepts) ≥ 1

5
.

Proof. For p ∈ {0, . . . , 2 log n}, let Ap ⊆ A be the set of vertices such that for each

a ∈ Ap, the number of triangles of the form (a, b, c) with (b, c) ∈ B × C, lies between

2p and 2p+1 − 1.

For a ∈ Ap and q ∈ {0, . . . , log n}, let Bpq(a) ⊆ B is the set of vertices such that

for each b ∈ B, the number of triangles of the form (a, b, c) with c ∈ C lies between 2q

and 2q+1 − 1 We need the following Claim to proceed further.

Claim 3.20. (i) There exists p ∈ {0, . . . , 2 log n} such that |Ap| > t(A,B,C)
2p+1(2 logn+1)

.

(ii) For each a ∈ Ap, there exists q ∈ {0, . . . , log n} such that |Bpq(a)| > 2p

2q+1(logn+1)
.

Proof. (i) Observe that t(A,B,C) =
∑2 logn

p=0 t(Ap, B, C) as the sum takes into ac-

count all incidences of vertices in A. So, there exists p ∈ {0, . . . , 2 log n} such

that t(Ap, B, C) ≥ t(A,B,C)
2 logn+1

. From the definition of Ap, t(Ap, B, C) < |Ap| · 2p+1.

Hence, there exists p ∈ {0, . . . , 2 log n} such that

|Ap| > t(Ap, B, C)

2p+1
≥ t(A,B,C)

2p+1(2 log n+ 1)
.

(ii) Observe that
∑logn

q=0 t({a}, Bpq(a), C) = t({a}, B, C). So, there exists q ∈ {0,

42

. . . , log n} such that t({a}, Bpq(a), C) ≥ t({a},B,C)
logn+1

. From the definition ofBpq(a),

t({a}, Bpq(a), C) < |Bpq(a)| · 2q+1. Hence, there exists q ∈ {0, . . . , log n} such

that

|Bpq(a)| > t({a}, Bpq(a), C)

2q+1
≥ t({a}, B, C)

2q+1(log n+ 1)
≥ 2p

2q+1(log n+ 1)
.

We come back to the proof of Lemma 3.19. We will show that VERIFY-ESTIMATE-

TRIANGLE accepts with probability at least 1
5

when loop executes for i = p, where p is

such that |Ap| > t(A,B,C)
2p+1(2 logn+1)

. The existence of such a p is evident from Claim 3.20 (i).

Recall that Apq ⊆ A,Bpq ⊆ B and Cpq ⊆ C are the samples obtained when the loop

variables i and j in Algorithm 3.2 attain values p and q, respectively. Observe that

P (Apq ∩ Ap = ∅) ≤
(

1− 2p

t̂

)|Ap|
≤ e−

2p

t̂
|Ap| ≤ e

− 2p

t̂

t(A,B,C)

2p+1 logn = e
− t(A,B,C)

2t̂(2 logn+1) .

Now using the fact that t̂ ≤ t(A,B,C)
32 logn

and n ≥ 64,

P (Apq ∩ Ap = ∅) ≤ 1

e6
.

Assume that Apq ∩ Ap 6= ∅ and a ∈ Apq ∩ Ap. By Claim 3.20 (ii), there exists

q ∈ {0, . . . , log n}, such that Bpq(a) ≥ 2p

2q+1(logn+1)
. Note that q depends on a. Observe

that we will be done, if we can show that VERIFY-ESTIMATE-TRIANGLE accepts when

loop executes for i = p and j = q. Now,

P (Bpq ∩Bpq(a) = ∅ | Apq ∩ Ap 6= ∅) ≤
(

1− 2q

2p
log n

)|Bpq(a)|

≤ 1

e3/7
.

Assume that Apq ∩ Ap 6= ∅, Bpq ∩ Bpq(a) 6= ∅ and b ∈ Bpq ∩ Bpq(a). Let S be the

set such that (a, b, s) is a triangle in G for each s ∈ S. Note that |S| ≥ 2q. So,

P (Cpq ∩ S = ∅ | Apq ∩ Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅) ≤
(

1− 1

2q

)2q

≤ 1

e
.

43

Observe that VERIFY-ESTIMATE-TRIANGLE accepts if t(Apq, Bpq, Cpq) 6= 0. Also,

t(Apq, Bpq, Cpq) 6= 0 if Apq ∩ Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅. Hence,

P(VERIFY-ESTIMATE-TRIANGLE accepts)

≥ P (Apq ∩ Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅)

= P (Apq ∩ Ap 6= ∅) · P (Bpq ∩Bpq(a) 6= ∅ | Apq ∩ Ap 6= ∅)

·P (Cpq ∩ S 6= ∅ | Apq ∩ Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅)

>

(
1− 1

e6

)(
1− 1

e3/7

)(
1− 1

e

)
>

1

5
.

Algorithm 3.3: COARSE-ESTIMATE-TRIANGLE (A,B,C)
Input: Three pairwise disjoint sets A,B,C ⊂ V (G).
Output: An estimate t̂ for t(A,B,C).

1 begin
2 for (t̂ = n3, n3/2, . . . , 1) do
3 Repeat VERIFY-ESTIMATE-TRIANGLE (A,B,C, t̂) for Γ = 2000 log n

times. If at least Γ
10

runs of VERIFY-ESTIMATE-TRIANGLE accepts,
then output t̃ = t̂

logn
.

Lemma 3.21 (Lemma 3.8 restated). There exists an algorithm that given disjoint subsets

A,B,C ⊂ V (G) of any graph G, returns an estimate t̃ satisfying

t(A,B,C)

64 log2 n
≤ t̃ ≤ 64 t(A,B,C) log2 n

with probability at least 1 − n−9. Moreover, the query complexity of the algorithm is

O(log4 n).

Proof. Note that an execution of COARSE-ESTIMATE-TRIANGLE for a particular t̂,

repeats VERIFY-ESTIMATE-TRIANGLE for Γ = 2000 log n times and gives output t̂

if at least Γ
10

runs of VERIFY-ESTIMATE-TRIANGLE accepts. For a particular t̂, let

44

Xi be the indicator random variable such that Xi = 1 if and only if the ith execu-

tion of VERIFY-ESTIMATE-TRIANGLE accepts. Also take X =
∑Γ

i=1Xi. COARSE-

ESTIMATE-TRIANGLE gives output t̂ if X > Γ
10

.

Consider the execution of COARSE-ESTIMATE-TRIANGLE for a particular t̂. If t̂ ≥
32t(A,B,C) log3 n, we first show that COARSE-ESTIMATE-TRIANGLE accepts with

probability at least 1− 1
n5 . Recall Lemma 3.18. If t̂ ≥ 64t(A,B,C) log3 n, P(Xi = 1) ≤

1
20

and hence E[X] ≤ Γ
20

. By using Chernoff-Hoeffding’s inequality (See Lemma 2.4 (i)

in Section 2.1),

P
(
X >

Γ

10

)
= P

(
X >

Γ

20
+

Γ

20

)
≤ 1

n10
.

By using the union bound for all t̂, the probability that COARSE-ESTIMATE-TRIANGLE

outputs some t̃ = t̂
logn
≥ 16t(A,B,C) log2 n, is at most 3 logn

n10 .

Now consider the instance when the for loop in COARSE-ESTIMATE-TRIANGLE

executes for a t̂ such that t̂ ≤ t(A,B,C)
32 logn

. In this situation, P(Xi = 1) ≥ 1
5
. So, E[X] ≥ Γ

5
.

By using Chernoff-Hoeffding’s inequality (Lemma 2.4 (ii) in Section 2.1),

P
(
X ≤ Γ

10

)
≤ P

(
X <

3Γ

20

)
= P

(
X <

Γ

5
− Γ

20

)
≤ 1

n10
.

By using the union bound for all t̂, the probability that COARSE-ESTIMATE-TRIANGLE

outputs some t̃ = t̂
logn
≤ t(A,B,C)

16 log2 n
, is at most 3 logn

n10 .

Observe that, the probability of COARSE-ESTIMATE-TRIANGLE giving an output of

t̃, such that t̃ 6∈
[
t(A,B,C)

32 log2 n
, 64 t(A,B,C) log2 n

]
, is at most 3 logn

n10 + 3 logn
n10 ≤ 1

n9 .

Putting everything together, COARSE-ESTIMATE-TRIANGLE gives some t̃ as output

with probability at least 1− 1
n9 satisfying

t(A,B,C)

64 log2 n
≤ t̃ ≤ 64 t(A,B,C) log2 n.

From the description of VERIFY-ESTIMATE-TRIANGLE and COARSE-ESTIMATE-

TRIANGLE, the query complexity of VERIFY-ESTIMATE-TRIANGLE is O(log2 n) and

COARSE-ESTIMATE-TRIANGLE calls VERIFY-ESTIMATE-TRIANGLEO(log2 n) times.

45

Hence, COARSE-ESTIMATE-TRIANGLE makes O(log4 n) queries.

3.7 The final triangle estimation algorithm: Proof of The-

orem 3.2

Now we design an algorithm for a (1 ± ε)-multiplicative approximation of t(G). If

ε ≤
√
℘ log9/2 n

n3/4 , we query for t({a}, {b}, {c}) for all distinct a, b, c ∈ V (G) and compute

the exact value of t(G). So, we assume that ε >
√
℘ log9/2 n

n3/4 .

We build a data structure such that it maintains two things at any point of time.

(i) An accumulator ψ for the number of triangles. We initialize ψ = 0.

(ii) A set of tuples (A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ), where tuple (Ai, Bi, Ci) cor-

responds to the tripartite subgraph G(Ai, Bi, Ci) and wi is the weight associated

to G(Ai, Bi, Ci). Initially, there is no tuple in our data structure.

Before discussing the steps of our algorithm, some remarks about our sparsification

lemmas (Lemmas 3.3 and 3.7) are in order.

Remark 3.2. (i) In Lemma 3.3, 9k2

2

k∑
i=1

t(Vi, Vk+i, V2k+i) is a (1 ± λ)-approximation

of t(G) when

κ1℘k
2
√
t(G) log n ≤ λ t(G)⇔ t(G) ≥ κ2

1℘
2k4 log2 n

λ2
.

In our algorithm, we apply Lemma 3.3 for k = 1. Also, we require λ = ε
6 logn

. So,

Lemma 3.3 gives useful result in our algorithm when t(G) ≥ 36κ2
1℘

2 log4 n

ε2
.

(ii) In Lemma 3.7, k2
k∑
i=1

t(Vi, Vk+i, V2k+i) is a (1 ± λ)-approximation of t(A,B,C)

when

κ2℘k
2
√
t(G) log n ≤ λt(G)⇔ t(G) ≥ κ2

2℘
2k4 log2 n

λ2
.

46

In our algorithm, we apply Lemma 3.7 for k = 3. Also, we will require θ =
ε

6 logn
. So, the above sparsification lemma gives useful result in our algorithm

when t(A,B,C) ≥ 324κ2
2℘

2 log4 n

ε2
.

The algorithm sets a threshold τ = max
{

36κ2
1℘

2 log4 n

ε2
,

324κ2
2℘

2 log4 n

ε2

}
and will proceed

as follows:

Step 1: (Threshold-Approx-Triangle-Estimation) Run the algorithm THRESHOLD-

APPROX-TRIANGLE-ESTIMATION, presented in Section 3.5 with parameters τ

and ε. By Lemma 3.4, we either decide t(G) > τ or we have t̂ which is a (1± ε)-

approximation to t(G). If t(G) > τ , we go to Step 2. Otherwise, we terminate by

reporting an estimate t̂. The query complexity of Step 1 is O
(
τ log2 n
ε2

)
.

Step 2: (General Sparsification) V (G) is COLORED with [3k] for k = 1. Let

A, B, C be the partition generated by the coloring of V (G). We initialize the

data structure by setting ψ = 0 and adding the tuple (A, B, C, 9/2) to the data

structure. Note that no query is required in this step. The constant 9/2 is obtained

by putting k = 1 in Lemma 3.3.

Step 3: We repeat Steps 4 to 7 until there is no tuple left in the data structure. We

maintain an invariant that the number of tuples stored in the data structure, is

O(N), where N = κ3 log12 n
ε2

. Note that κ3 is a constant to be fixed later.

Step 4: (Threshold for Tripartite Graph and Exact Counting in Tripartite Graphs)

For each tuple (A,B,C,w) in the data structure, we determine whether t(A,B,C) ≤
τ , the threshold, by using the deterministic algorithm corresponding to Lemma 3.5

with O(τ log n) queries. If yes, we find the exact value of t(A, B, C) by using

the deterministic algorithm corresponding to Lemma 3.6 with O(τ log n) queries.

Then the algorithm adds w · t(A, B, C) to ψ. We remove all (A, B, C)’s for

which the algorithm found that t(A, B, C) is below the threshold. As there are

O(N) triples at any time, the number of queries made in each iteration of the

algorithm is O (τ log n ·N) = O (τN log n).

47

Step 5: Note that each tuple (A,B,C,w) in this step is such that t(A,B,C) > τ . Let

(A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the set of tuples stored at the current

instant. If r > 10N 8, we go to Step 6. Otherwise, we go to Step 7.

Step 6 (Coarse Estimation and Sampling) For each tuple (A, B, C, w) in the data

structure, we find an estimate t̃ such that t(A,B,C)

64 log2 n
< t̃ < 64t(A, B, C) log2 n.

This can be done due to Lemma 3.8 and the number of queries is O
(
log4 n

)
per

tuple. As the algorithm executes the current step, the number of tuples in our data

structure is more than 10N . We take a sample from the set of tuples such that the

sample maintains the required estimate approximately by using Lemma 3.9. We

use the algorithm corresponding to Lemma 3.9 with λ = ε
6 logn

, ρ = 64 log2 n and

δ = 1
n10 to find a new set of tuples (A′1, B

′
1, C

′
1, w

′
1), . . . , (A′s, B

′
s, C

′
s, w

′
s) such

that ∣∣∣∣∣S −
s∑
i=1

w′i t(A
′, B′, C ′)

∣∣∣∣∣ ≤ λS

with probability 1− 1
n10 , where S =

∑r
i=1wit(Ai, Bi, Ci) and s = κ3 log12 n

ε2
9 for

some constant κ3 > 0. This κ3 is same as the one mentioned in Step 3. Also,

note that, N = s = κ3 log12 n
ε2

. No query is required to execute the algorithm

of Lemma 3.9. Recall that the number of tuples present at any time is O (N).

Also, the coarse estimation for each tuple can be done by using O(log4 n) queries

(Lemma 3.8). Hence, the number of queries in this step in each iteration, isO(N ·
log4 n).

Step 7: (Sparsification for Tripartite Graphs) We partition each of A, B and C into

3 parts uniformly at random. Let A = U1] U2] U3; V = V1] V2] V3 and

W = W1] W2] W3. We delete (A,B,C,w) from the data structure and add

(Ui, Vi,Wi, 9w) for each i ∈ [3] to our data structure. Note that no query is made

in this step.

Step 8: Report ψ as the estimate for the number of triangles in G, when no tuples are
8The constant 10 is arbitrary. Any absolute constant more than 1 would have been good enough.
9s is set according to Lemma 3.9.

48

left.

First, we prove that the above algorithm produces a (1±ε) multiplicative approxima-

tion to t(G) for any ε > 0 with high probability. Recall the description of Step 1 of the

algorithm. If the algorithm terminates in Step 1, then we have a (1 ± ε) approximation

to t(G) by Lemma 3.4. Otherwise, we decide that t(G) > τ and proceed to Step 2. In

Step 2, the algorithm colors V (G) using three colors and incurs a multiplicative error of

1± ε0 to t(G), where ε0 = κ1℘ logn√
t(G)

. This is because of Remark 3.2 and our choice of τ .

As t(G) > τ and n ≥ 64, ε0 ≤ λ = ε
6 logn

. Note that the algorithm possibly performs

Step 4 to Step 7 multiple times, but not more than O(log n) times, as explained below.

Let (A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ) are the set of tuples present in the data

structure currently. We define
∑ζ

i=1 t(Ai, Bi, Ci) as the number of active triangles. Let

ACTi be the number of triangles that are active in the ith iteration. Note that ACT1 ≤
t(G) ≤ n3. By Lemma 3.7 and Step 7, observe that ACTi+1 ≤ ACTi

2
. So, after 3 log n

iterations there will be at most constant number of active triangles and then we can

compute the exact number of active triangles and add it to ψ. In each iteration, there

can be a multiplicative error of 1 ± λ in Step 5 and 1 ± ε0 due to Step 4. So, using the

fact that ε0 ≤ λ, the multiplicative approximation factor lies between (1−λ)3 logn+1 and

(1 + λ)3 logn+1. As λ = ε
6 logn

, the required approximation factor is 1± ε.
The query complexity of Step 1 is O

(
τ logn
ε2

)
. Steps 2, 3, 5, 7 and 8 do not make any

query to the oracle. The query complexity of Step 4 is O (τN log n) in each iteration

and that of Step 6 is O(N log4 n) in each iteration. The total number of iterations is

O(log n). Hence, the total query complexity of the algorithm is

O
(
ε−2τ log n+ (τ log n+ τN log n+N log4 n) log n

)
= O(ε−4℘2 log18 n).

In the above expression, we have put τ = max
{

36κ2
1℘

2 log4 n

ε2
,

324κ2
2℘

2 log4 n

ε2

}
and N =

κ3 log12 n
ε2

.

Now, we bound the failure probability of the algorithm. The algorithm can fail in

Step 1 with probability at most 1
n10 , Step 2 with probability at most 2

n4 , Step 6 with

probability at most 10κ3 log12 n
ε4

· 1
n9 + 1

n10 , and Step 7 with probability at most 10κ3 log12 n
ε4

· 1
n8 .

49

As the algorithm might execute Steps 4 to 6 for 3 log n times, the total failure probability

is bounded by

1

n10
+

2

n4
+ 3 log n

(
10κ3 log12 n

ε4
· 1

n8
+

10κ3 log12 n

ε4
· 1

n9
+

1

n10

)
≤ c

n2
.

Note that the above inequality holds because ε >
√
℘ log9/2 n

n3/4 and n ≥ 64.

We end this Section by restating our main result.

Theorem 3.22 (Restatement of Theorem 3.2). LetG be a graph with ∆E ≤ ℘, |V (G)| =
n ≥ 64. For any ε > 0, TRIANGLE-ESTIMATION can be solved using O

(
℘2 log18 n

ε4

)
TIS queries with probability at least 1− O(1)

n2 .

3.8 Discussion

In this work, we generalize the framework of Beame et al [BHR+18] of EDGE ESTI-

MATION to solve TRIANGLE-ESTIMATION by using TIS queries. Our algorithm makes

O(ε−4℘2 log18 n) TIS queries and returns a (1± ε)-approximation to the number of tri-

angles with high probability, where ℘ is the upper bound on ∆E . The downside of our

work is the assumption ∆E ≤ ℘. Note that Beame et al. [BHR+18] had no such assum-

tion. Removing the assumption is non-trivial mainly due to the fact that, unlike the case

for edges where two edges can share a common vertex, two triangles can share an edge.

Our sparsification algorithm crucially uses the assumption on ∆E and that remains the

main barrier to cross. Recall our sparsification lemma (Lemma 3.3) and the definition of

properly colored triangles (Definition 3.11). Roughly speaking, our sparsification algo-

rithm first colors the vertices of the graph, then counts the number of properly colored

triangles, and finally scales it to have an estimation of the total number of triangles in the

graph. Consider the situation when all the triangles in the graph have a common edge e.

If e is not properly colored, then we can not keep track of any triangle in G. As a follow

up to this work, Dell et al. [DLM20b] and Bhattacharya et al. [BBGM19a] 10, inde-

10This work is to be discussed in Chapter 4.

50

pendently, generalized our result to d-uniform hypergraphs, where d ∈ N is a constant.

Note that TRIANGLE-ESTIMATION can also be thought of as HYPEREDGE ESTIMA-

TION problem in a 3-uniform hypergrah. Their results showed that the bound on ∆E

is not necessary to solve TRIANGLE-ESTIMATION by using polylogarithmically many

TIS queries. The main technical result in both the works is to come up with a sparsi-

fication algorithm that can take care of the case when ∆E is not necessarily bounded.

Note the sparsification algorithms in both the works are completely different and give

different insights.

Bhattacharya et al. [BBGM19a] and Dell et al. [DLM20b] refer the generalized or-

acle as GENERALISED PARTITE INDEPENDENT SET (GPIS) oracle and COLORFUL

DECISION (CD) oracle, respectively. Bhattacharya et al. [BBGM19a] showed that HY-

PEREDGE ESTIMATION can be solved by using Od
(
ε−4log5d+5 n

)
GPIS queries and

Dell et al. [DLM20b] showed that it can be solved by using Od
(
ε−2log4d+8 n

)
CD

queries 11, with high probability. Substituting d = 3 in their algorithm, we can have two

different algorithms for TRIANGLE-ESTIMATION. Let us compare our result (stated in

Theorem 3.22) with the results of [BBGM19a] and Dell et al. [DLM20b] in the con-

text of TRIANGLE-ESTIMATION. If ∆E = o(log n), our algorithm for TRIANGLE-

ESTIMATION have less query complexity than that of Bhattacharya et al. [BBGM19a]

for any given ε > 0. Also, when ∆E = o(log n) and ε > 0 is a fixed constant, our

algorithm for TRIANGLE-ESTIMATION has smaller query complexity than that of Dell

et al. [DLM20b].

11The constant in Oc(·) is a function of d. The result of Bhattacharya et al. is a high probability result.
The exact bound in the paper of Dell et al. is Od

(
ε−2log4d+7 n log 1

δ

)
, where the probability of success

of their algorithm is 1− δ.

51

Chapter 4

Hyperedge Estimation Using GPIS

Queries

Contents
4.1 Brief description of the problem 54

4.2 Preliminaries . 57

4.2.1 GPIS oracle and its variants 57

4.3 Technical overview . 60

4.3.1 The context of our work . 60

4.3.2 Our work in a nutshell . 62

4.3.3 Our work vis-a-vis some recent works 67

4.4 Sparsification: Proof of Lemma 4.7 69

4.4.1 The role of the hash function in sparsification 70

4.4.2 Proof of the lemma . 72

4.5 Proof of lemma for exact estimation 77

4.6 Proof of lemma for coarse estimation 79

4.7 Algorithm . 88

4.8 Proof of correctness . 90

53

4.9 Conclusion . 95

4.1 Brief description of the problem

In Chapter 3, we discussed the problem of TRIANGLE ESTIMATION in a graph when

we have TRIPARTITE INDEPENDENT SET (TIS) oracle access to the graph. Here we

generalize the problem of TRIANGLE ESTIMATION in a graph using TIS oracle to

HYPEREDGE-ESTIMATION problem in a d-uniform hypergraph using GENERALIZED

PARTITE INDEPENDENT SET oracle, a suitable generalization of TIS.

Recall that a hypergraph H is a set system (U(H),F(H)), where U(H) denotes a

set of n vertices and F(H), a set of subsets of U(H), denotes the set of hyperedges.

A hypergraph H is said to be d-uniform if every hyperedge in H consists of exactly d

vertices. The cardinality of the hyperedge set is denoted as m(H) = |F(H)|. Also,

recall the formal definition of GPIS oracle.

Definition 4.1. Generalized d-partite independent set oracle (GPIS) [BGK+18a]: Given

d pairwise disjoint subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H as input,

GPIS query oracle answers YES if and only ifm(A1, . . . , Ad) 6= 0, wherem(A1, . . . , Ad)

denotes the number of hyperedges in H having exactly one vertex in each Ai, ∀i ∈
{1, 2, . . . , d}.

We now state the precise problem that we solve in the GPIS oracle framework and

present our main result in Theorem 4.2.

HYPEREDGE-ESTIMATION

Input: A set of n vertices U(H) of a hypergraphH, a GPIS oracle access toH, and

ε ∈ (0, 1).

Output: An estimate m̂ of m(H) such that (1− ε) ·m(H) ≤ m̂ ≤ (1− ε) ·m(H).

Theorem 4.2. LetH be a hypergraph with |U(H)| = n. For any ε ∈ (0, 1), HYPEREDGE-

ESTIMATION can be solved using Od
(

log5d+5 n
ε4

)
GPIS queries with high probability1,

where the constant in Od(·) is a function of d.
1high probability means a probability of at least 1− n−O(1)

54

Here, we note that concurrently and independently, Dell et al. [DLM19] obtained

polylogarithmic query complexity for the hyperedge estimation problem using a similar

oracle. They called the query oracle a colorful decision oracle. We will discuss their

result shortly.

Beame et al. [BHR+18] used a subset query oracle, named BIPARTITE INDEPEN-

DENT SET (BIS) query oracle to estimate the number of edges in a graph using poly-

logarithmic query complexity2. The BIS query oracle answers a YES/NO question on

the existence of an edge between two disjoint subsets of vertices of a graph G. Having

estimated the number of edges in a graph using BIS queries, a very natural question was

to estimate the number of hyperedges in a hypergraph using an appropriate query oracle.

The answer to the above question is not obvious as two edges in a graph can intersect in

at most one vertex but the intersection between two hyperedges in a hypergraph can be

an arbitrary set. As a first step towards resolving this generalized question, Bhattacharya

et al. [BBGM18,BBGM19b] considered the hyperedge estimation problem using a TRI-

PARTITE INDEPENDENT SET (TIS) oracle in 3-uniform hypergraphs. Recall that a TIS

query oracle takes three disjoint subsets of vertices as input and reports whether there

exists a hyperedge having a vertex in each of the three sets. It was shown that when the

number of hyperedges having two vertices in common is bounded above (polylogarith-

mic in n), then the number of hyperedges in a 3-uniform hypergraph can be estimated

using polylogarithmic TIS queries. This leads us to ask the next set of questions given

as follows.

• Question 1: For a 3-uniform hypergraph, is the dependence of the TIS query

complexity on the number of hyperedges with two common vertices inherent as in

Bhattacharya et al. [BBGM18, BBGM19b]?

• Question 2: Can the subset query oracle framework of Beame et al. be extended

to estimate the number of hyperedges in a d-uniform hypergraph using only poly-

logarithmically many queries?

In this work, we give positive answers to both these questions. We show that the
2query complexity means the number of queries used by the corresponding query oracle

55

number of hyperedges in a d-uniform hypergraph can be estimated using polylogarith-

mically 3 many GPIS queries.

Setup and notations

We denote the sets {1, . . . , n} and {0, . . . , n} by [n] and [n∗], respectively. A hypergraph

H is a set system (U(H),F(H)), where U(H) denotes the set of vertices and F(H)

denotes the set of hyperedges. The set of vertices present in a hyperedge F ∈ F(H)

is denoted by U(F) or simply F . A hypergraph H is said to be d-uniform if all the

hyperedges in H consist of exactly d vertices. The cardinality of the hyperedge set is

m(H) = |F(H)|. For u ∈ U(H), F(u) denote the set of hyperedges that are incident

on u. For u ∈ U(H), the degree of u in H, denoted as degH(u) = |F(u)| is the number

of hyperedges incident on u. For a set A and a ∈ N, A, . . . , A (a times) will be denoted

as A[a]. Let A1, . . . , Ad ⊆ U(H) be such that for every i, j ∈ [d] either Ai = Aj or Ai ∩
Aj = ∅. This has a bearing on the GPIS oracle queries we make; either the sets we query

with are disjoint, or are the same. Consider the following d-partite sub-hypergraph of

H: (U(A1, . . . , Ad),F(A1, . . . , Ad)) where the vertex set is U(A1, . . . , Ad) =
⋃d
i=1Ai

and the hyperedge set is F(A1, . . . , Ad) = {{i1, . . . , id} | ij ∈ Aj}; we will denote this

d-partite sub-hypergraph of H as H(A1, . . . , Ad). With this notation, H
(
U [d]
)

makes

sense as a d-partite sub-hypergraph on a vertex set U . The number of hyperedges in

H(A1, . . . , Ad) is denoted by m(A1, . . . , Ad).

Ordered hyperedge We will use the subscript o to denote the set of ordered hy-

peredges. For example, Fo(H) denotes the set of ordered hyperedges, mo(H) denote

|Fo(H)|, Fo(u) denote the set of ordered hyperedges incident on u. The ordered hyper-

edge set puts an order on the vertices such that i-th vertex of a hyperedge comes fromAi.

Formally, Fo(A1, . . . , Ad) = {Fo ∈ Fo(H) : the i-th vertex of Fo is in Ai,∀i ∈ [d]}.
The corresponding number for ordered hyperedges is mo(A1, . . . , Ad). We have the

following relation between m(A1, . . . , Ad) and mo(A1, . . . , Ad).

3Here the exponent of log n is O(d), but the exponent of ε is an absolute constant.

56

Fact 4.3. For s ∈ [d], mo(A
[a1]
1 , . . . , A

[as]
s) = m(A

[a1]
1 , . . . , A

[as]
s) ×

s∏
i=1

ai!, where

ai ∈ [d] such that
∑s

i=1 ai = d , and A1, . . . , As are pairwise disjoint sets.

For a set P , “P is COLORED with [n]” means that elements of P is assigned a

color out of [n] colors independently and uniformly at random. We denote [k] × · · · ×
[k] (p times) using [k]p, where p ∈ N. For us, d is a constant. Od(·) denotes the standard

O(·) where the constant depends on d. By polylogarithmic, in this chapter, we mean

Od
(

(logn)Od(1)

εO(1)

)
. The notation Õd(·) hides a polylogarithmic term in Od(·).

Organization of the chapter

We discuss about ordered hyperedges, that will be useful in our algorithm and analysis,

and define in Section 4.2 two other query oracles, GPIS1 and GPIS2 that can be sim-

ulated by using polylogarithmic GPIS queries. The role of these two oracles is mostly

expository – they help us to describe our algorithms and the calculations in a neater

way. Section 4.3 gives a broad overview of our query algorithm that involves exact es-

timation, sparsification, coarse estimation and sampling. Section 4.3.3 contextualizes

our work vis-a-vis recent works [BHR+18, BBGM19a, BBGM19b, DLM19]. The novel

contribution of this work is sparsification which is given in detail in Section 4.4. Sec-

tions 4.5 and 4.6 consider the proofs for exact and coarse estimation, respectively. The

algorithm and its proof of correctness are discussed in Sections 4.7 and 4.8, respectively.

4.2 Preliminaries

4.2.1 GPIS oracle and its variants

Note that the GPIS query oracle takes as input d pairwise disjoint subsets of vertices.

We now define two related query oracles GPIS1 and GPIS2 that remove the disjointness

criteria on the input. We show that both these query oracles can be simulated by making

polylogarithmic number of queries to the GPIS oracle with high probability.

57

GPIS1 and GPIS2 oracles will be used in the description of the algorithm for ease

of exposition.

(GPIS1) Given s pairwise disjoint subsets of vertices A1, . . . , As ⊆ U(H) of a hyper-

graphH and a1, . . . , as ∈ [d] such that
∑s

i=1 ai = d, GPIS1 query oracle on input

A
[a1]
1 , A

[a2]
2 , · · · , A[as]

s answers YES if and only if m(A
[a1]
1 , . . . , A

[as]
s) 6= 0.

(GPIS2) Given any d subsets of verticesA1, . . . , Ad ⊆ U(H) of a hypergraphH, GPIS2

query oracle on input A1, . . . , Ad answers YES if and only if m(A1, . . . , Ad) 6= 0.

Observe that the GPIS2 query oracle is the same as the GPIS query oracle without

the requirement that the input sets are disjoint. For the GPIS1 query oracle, multiple

repetitions of the same set is allowed in the input. It is obvious that a GPIS query can

be simulated by a GPIS1 or GPIS2 query oracle. Using the following observations, we

show how a GPIS1 or a GPIS2 query can be simulated by making polylogarithmically

many GPIS queries.

Observation 4.4. (i) A GPIS1 query can be simulated using polylogarithmic GPIS

queries with high probability.

(ii) A GPIS2 query can be simulated using 2O(d2) GPIS1 queries.

(iii) A GPIS2 query can be simulated using polylogarithmic GPIS queries with high

probability.

Proof. (i) Let the input of GPIS1 query oracle be A[a1]
1 , . . . , A

[as]
s such that ai ∈

[d] ∀i ∈ [s] and
s∑
i=1

ai = d. For each i ∈ [s], we partition Ai (only one copy of Ai,

and not ai copies of Ai) randomly into ai parts, let {Bj
i : j ∈ [ai]} be the resulting

partition ofAi. Then we make a GPIS query with inputB1
1 , . . . , B

a1
1 , . . . , B

1
s , . . . , B

as
s .

Note that

F(B1
1 , . . . , B

a1
1 , . . . , B

1
s , . . . , B

as
s) ⊆ F(A

[a1]
1 , . . . , A[as]

s).

58

So, if GPIS1 outputs ‘NO’ to query A[a1]
1 , . . . , A

[as]
s , then the above GPIS query

will also report ‘NO’ as its answer. If GPIS1 answers ‘YES’, then consider a

particular hyperedge F ∈ F(A
[a1]
1 , . . . , A

[as]
s). Observe that

P(GPIS oracle answers ‘YES’)

≥ P(F is present in F(B1
1 , . . . , B

a1
1 , , B

1
s , . . . , B

as
s))

≥
s∏
i=1

1

aaii

≥
s∏
i=1

1

dai
(∵ ai ≤ d for all i ∈ [d])

=
1

dd
(∵

s∑
i=1

ai = d)

We can boost up the success probability arbitrarily by repeating the above proce-

dure polylogarithmically many times.

(ii) Let the input to GPIS2 query oracle be A1, . . . , Ad. Let us partition each set Ai
into at most 2d−1 − 1 subsets depending on Ai’s intersection with Aj’s for j 6= i.

Let Pi denote the corresponding partition of Ai, i ∈ [d]. In particular, Pi contains

any maximal set B ⊂ Ai such that B is also the subset of ` A′js for some ` with

1 ≤ ` ≤ d− 1, where j 6= i .

Observe that for any i 6= j, if we take any Bi ∈ Pi and Bj ∈ Pj , then either

Bi = Bj or Bi ∩Bj = ∅.

For each (B1, . . . , Bd) ∈ P1 × . . . × Pd, we make a GPIS1 query with input

(B1, . . . , Bd). Total number of such GPIS1 queries is at most 2O(d2), and we

report ‘YES’ to the GPIS2 query if and only if at least one GPIS1 query, out of

the 2O(d2) queries, reports ‘YES’.

(iii) It follows from (i) and (ii).

59

To prove Theorem 4.2, we first consider the following lemma. This lemma is the

central result of the chapter and from it, the main theorem (Theorem 4.2) follows.

Lemma 4.5. Let H = (U(H),F(H)) be a hypergraph with n vertices, i.e., |U(H)| =

n. For any ε >
(
n−d log5d+5 n

)1/4
, HYPEREDGE-ESTIMATION can be solved with

probability at least 1 − 1
n4d and using O

(
ε−4 log5d+4 n

)
queries, where each query is

either a GPIS1 query or a GPIS2 query.

Assuming Lemma 4.5 to be true, we now prove Theorem 4.2.

Proof of Theorem 4.2 . If ε ≤
(
n−d log5d+5 n

)1/4
, we make a GPIS query with ({a1}, . . . ,

{ad}) for all distinct a1, . . . , ad ∈ U(H) = U and enumerate by brute force the ex-

act value of mo(H). So, we make at most nd = Od
(
ε−4 log5d+5 n

)
GPIS queries as

ε ≤
(
n−d log5d+5 n

)1/4
. If ε >

(
n−d log5d+5 n

)1/4
, we use the algorithm corresponding

to Lemma 4.5, where each query is either a GPIS1 query or a GPIS2 query. However,

by Observation 4.4, each GPIS1 and GPIS2 query can be simulated byOd(log n) GPIS

queries with high probability. So, we can replace each step of the algorithm, where we

make either GPIS1 or GPIS2 query, by Od(log n) GPIS queries. Hence, we are done

with the proof of Theorem 4.2.

In the rest of the chapter, we mainly focus on proving Lemma 4.5. Now we discuss

some notations that will be needed to describe the algorithm and analysis.

4.3 Technical overview

We briefly describe the overview of our work and put our work in context with works in

the literature.

4.3.1 The context of our work

Beame et al. [BHR+18] developed a framework to estimate the number of edges in a

graph using BIS queries. This framework involves subroutines for sparsifying a graph

60

into a number of subgraphs each with reduced number of edges, and exactly or approx-

imately counting the number of edges in these subgraphs. Sparsification constitutes the

main building block of this framework. The sparsification routine of Beame et al. ran-

domly colors the vertices of a graph with 2k colors where k ∈ N is a constant. Let

Ai denote the set of vertices colored with color i. Beame et al. argued that the sum of

the number of edges between Ai and Ak+i for 1 ≤ i ≤ k approximates the total num-

ber of edges in the graph within a constant factor with high probability. Therefore, the

original problem reduces to the problem of counting the number of edges in bipartite

subgraphs. Here, we have k bipartite subgraphs and it suffices to count the number of

edges in these bipartite subgraphs. With this method, they obtained a query complexity

of O(ε−4 log14 n) with high probability.

Bhattacharya et al. [BBGM19b] extended this framework to estimate the number of

triangles in a graph using TIS queries, where given three disjoint subsets of vertices

A, B, C, a TIS query with inputs A, B, C answers whether there exists a triangle with

one endpoint in each of A,B,C. The sparsification routine now requires to color the

vertices randomly using 3k colors and counts the number of properly colored triangles

where a properly colored triangle has one endpoint each in Ai, Ak+i, and A2k+i for any

1 ≤ i ≤ k. Unlike the scenario in Beame et al. where two edges intersect in at most one

vertex, here two triangles can share an edge. Therefore, the random variables used to

estimate the number of properly colored triangles are not independent. Bhattacharya et

al. estimated the number of triangles assuming that the number of triangles incident on

any edge is bounded by a parameter ∆. In this way, they obtained a query complexity of

O(ε−12∆12 log25 n).

In this work, we fully generalize the frameworks of Stockmeyer [Sto83,Sto85], Ron

and Tsur [RT16], Beame et al. [BHR+18] and Bhattacharya et al. [BBGM19b] to esti-

mate the number of hyperedges in a d-uniform hypergraph using GPIS queries.

61

No

Yes

For each d-partite sub-hypergraph H(A
[a1]
1 , . . . , A

[as]
s),

decide whether mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ? If yes,

compute mo(A
[a1]
1 , . . . , A

[as]
s) exactly and remove

Is there any d-partite
Report the estimate and terminate.

Lemma 4.9

Start by adding d- partite hypergraph.
H(U [d]) to the data structure D.

sub-hypergraph left?

H(A
[a1]
1 , . . . , A

[as]
s) from the data structure.

sub-hypergraph present ≥ N ?
Is the number of d-partite

No

Yes

For each d-partite sub-hypergraph H(A
[a1]
1 , . . . , A

[as]
s),

-hypergraphs in H, formed by sparsification.
Replace H(A

[a1]
1 , . . . , A

[as]
s) by the d-partite sub-,

we sparsify it such that the sparsified hypergraph H′
is a union of d-partite sub-hypergraphs and a proper
scaling of H′ is mo(A

[a1]
1 , . . . , A

[as]
s), approximately.

For each sub-hypergraph H(A
[a1]
1 , . . . , A

[as]
s),

use a coarse estimator for mo(A
[a1]
1 , . . . , A

[as]
s)

that is correct upto O(logd−1 n) factor.

Sample a bounded number of
sub-hypergraphs such that a proper
weighted scaling of the number

is approximately same as that of
the number of hyperedges in the

of hyperedges in the sub-hypergraphs

original set of subgraphs.

Sample

Lemma 4.6

compute mo(A
[a1]
1 , . . . , A

[as]
s) exactly

sparsify Sample

coarse estimatorLemma 4.7

Lemma 4.8

?

?

Figure 4.1: Flow chart of the algorithm. The highlighted texts indicate the basic
building blocks of the algorithm. We also indicate the corresponding lemmas that

support the building blocks. The building blocks marked with ? correspond to the steps
that make queries.

4.3.2 Our work in a nutshell

The algorithmic framework In Figure 4.1, we give a flowchart of the algorithm. In

this chapter, sparsification (Lemma 4.7) and coarse estimation (Lemma 4.8) are our

main non-trivial contributions. Our algorithm begins by adding the d-partite hypergraph

62

H(U [d]) in a suitable data structure, let us call it D. For each hypergraph in D, using the

exact estimation process, we exactly count the number of hyperedges in a hypergraph

if the number of hyperedges is less than a threshold τ and remove the corresponding

hypergraph from D. For hypergraphs in which the number of hyperedges is more than

τ , we can not do exact estimation. So, we resort to sparsification if the number of hyper-

graphs left inD is not large, i.e., below a threshold N . Hypergraph sparsification breaks

a d-partite hypergraph into a disjoint union of d-partite sub-hypergraphs. As sparsifica-

tion goes on in iterations, it may populate the data structure D with significantly many

hypergraphs. In that case, we do a coarse estimation followed by sampling to have a

reasonable number of sub-hypergraphs and then go back to the exact estimation step and

continue in a loop. GPIS1 and GPIS2 queries will be used for exact and coarse estima-

tions, respectively; their logarithmic equivalence with GPIS will prove the final result.

For ease of analysis, we consider ordered hyperedges. Fact 4.3 relates m(A1, . . . , Ad)

and mo(A1, . . . , Ad), the number of unordered and ordered hyperedges, respectively.

Exact estimation. In this step, we look at a d-partite sub-hypergraphH(A
[a1]
1 , . . . , A

[as]
s)

and decide whether mo(A
[a1]
1 , . . . , A

[as]
s), the number of ordered hyperedges, is larger or

smaller than a threshold τ 4, and if mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ , compute the exact value of

mo(A
[a1]
1 , . . . , A

[as]
s) using Lemma 4.6, whose proof is in Section 4.5, and then delete it

from D. If the number of hypergraphs in D is below the threshold N , with the number

of ordered hyperedges in it more than τ , we move to the sparsification step, else to the

coarse estimation step.

Lemma 4.6 (Exact Estimation). There exists a deterministic algorithm Aexact that takes

as input – a d-uniform hypergraph H, constants a1, . . . , as ∈ [d] such that
∑s

i=1 ai = d

where s ∈ [d], pairwise disjoint subsets A1, . . . , As of U(H), and a threshold parameter

τ ∈ N – and decides whether the number of ordered hyperedges mo(A
[a1]
1 , . . . , A

[as]
s) ≤

τ usingOd(τ log n) GPIS1 queries. Moreover,Aexact finds the exact value ofmo(A
[a1]
1 , . . . , A

[as]
s)

when mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ .

4Threshold τ will be fixed later in Section 4.5.

63

Sparsification. We COLOR U(H), the vertices of hypergraph, with [k] colors to spar-

sify the d-partite hypergraphH(U [d]) so that

(i) the sparsified hypergraph consists of a set of d-partite sub-hypergraphs and

(ii) a proper scaling of the sum of the number of ordered hyperedges in the sub-

hypergraphs is a good estimate of mo(U
[d]), U = U(H), with high probability.

The sparsification result is formally stated next. The proof uses the method of averaged

bounded differences and Chernoff-Hoeffding inequality. The detailed proof is given in

Section 4.4. The heart of our work is the general sparsification routine that we believe

will find independent uses.

Lemma 4.7 (Sparsification). Let H be any d-uniform hypergraph and k ≥ 1 be any

positive integer. Let

• hd : [k]d → {0, 1} be a hash function such that P[hd(a) = 1] = 1
k

and the set of

random variables {hd(a) : a ∈ [k]d} are mutually independent.

• A1, . . . , As be any pairwise disjoint subsets of the vertex set U(H), where 1 ≤
s ≤ d. Let us choose any ai ∈ [d] vertices from Ai such that

∑s
i=1 ai = d.

• Vertices in A =
⋃s
i=1Ai are COLORED with [k]. χ(i, j)’s denote the color

classes for each Ai, that is, χ(i, j) = {v ∈ Ai : v is COLORED with color j},
where i ∈ [s] and j ∈ [k].

• An ordered hyperedge (x1, . . . , xd) is said to be properly colored if hd(c1, . . . , cd) =

1 where ci is the color of xi. LetRd denote the number of properly colored hyper-

edges defined as follows. Rd =

∑
(c1,...,cd)∈[k]d

hd(c1, . . . , cd)×mo

χ(1, c1), . . . , χ(1, ca1)︸ ︷︷ ︸
color classes for A[a1]

1

, . . . , χ(s, cd−as+1), . . . , χ(s, cd︸ ︷︷ ︸
color classes for A[as]

s

)

 .

64

Then, for a suitable constant θ > d and pd = d!
n4θ−2d ,

P

(∣∣∣∣∣Rd −
mo(A

[a1]
1 , . . . , A

[as]
s)

k

∣∣∣∣∣ ≥ 22dθd
√
d! mo(A

[a1]
1 , . . . , A

[as]
s) logd n

)
≤ pd.

Sparsification ensures that mo(U
[d]), the number of ordered hyperedges between

A
[a1]
1 , . . . , A

[as]
s , is approximately preserved when mo(U

[d]) is above a threshold τ .

Assume that mo(U
[d]) is large 5 and H(U [d]) has been sparsified. We add to the

data structure D a set of d-partite sub-hypergraphs obtained from the sparsification step.

Refer to the flowchart in Figure 4.1 again. With the new d-partite sub-hypergraphs, we

loop back to the exact estimation step. After the exact estimation step, we are left

with some d-partite hypergraphs such that the number of ordered hyperedges in each

hypergraph is more than the threshold τ . If the number of such hypergraphs present in

D is not large, i.e., belowN , then we sparsify each hypergraphH(A
[a1]
1 , . . . , A

[as]
s) using

the algorithm corresponding to Lemma 4.7.

Coarse estimation and sampling. If we have a large number of d-partite sub-hypergraphs

of H(U [d]) and each sub-hypergraph contains a large number of ordered hyperedges,

then we coarsely estimate the number of ordered hyperedges in each sub-hypergraph;

see Figure 4.1. Our estimator is correct up to a Od(logd−1 n) factor using the algorithm

corresponding to the following lemma, whose proof is given in Section 4.6.

Lemma 4.8 (Coarse Estimation). There exists an algorithm Acoarse that takes as input d

subsets A1, . . . , Ad of vertex set U(H) of a d-uniform hypergraph H and returns Ê as

an estimate for mo(A1, . . . , Ad) such that

mo(A1, . . . , Ad)

8dd−12d logd−1 n
≤ Ê ≤ 20dd−12d ·mo(A1, . . . , Ad) logd−1 n

with probability at least 1− n−8d. Moreover, the number of GPIS2 queries made by the

algorithm is Od(logd+1 n).

5A fixed polylogarithmic quantity to be decided later in Section 4.7.

65

First, we coarsely estimate the number of ordered hyperedges in each sub-hypergraph.

Then we sample a set of sub-hypergraphs such that a weighted sum of the number of hy-

peredges in the sample approximately preserves the sum of the number of ordered hyper-

edges in the sub-hypergraphs. This kind of sampling technique, also known as the im-

portance sampling, is given for the edge estimation problem by Beame et al. [BHR+18].

The lemma corresponding to this sampling technique is formally stated as Lemma 2.9

in Section 2.1. The importance sampling lemma that we require is stated as follows.

Lemma 4.9 (Importance Sampling). Let {(Ai1, . . . , Aid, wi) : i ∈ [r]} be the set of

tuples in the data structure D and ei be the coarse estimate for mo(Ai1, . . . , Aid, wi)

such that

(i) wi, ei ≥ 1 ∀i ∈ [r],

(ii) ei
α
≤ mo(Ai1, . . . , Aid) ≤ ei · α for some α > 0 and ∀ i ∈ [r],

(iii) S =
∑r

i=1wi ·mo(Ai1, . . . , Aid) ≤M .

Then, there exists an algorithm that finds a set {(A′i1, . . . , A′id, w′i) : i ∈ [r′]} of tuples,

with probability at least 1− δ, such that the above three conditions hold and∣∣∣∣∣
r′∑
i=1

w′i ·mo(A
′
i1, . . . , A

′
id)−

r∑
i=1

wi ·mo(Ai1, . . . , Aid)

∣∣∣∣∣ ≤ λS ,

where r′ = O
(
α4 logM

λ2

(
log logM + log 1

δ

))
.

Putting things together. The data structure D that our iterative algorithm uses (see

the flowchart in Figure 4.1) has an accumulator Ψ for the number of hyperedges and

a set of tuples representing the d-partite sub-hypergraphs along with their weights –

these d-partite sub-hypergraphs are generated from sparsification. The algorithm uses

the exact estimation step (viz. Algorithm 4.1) to figure out if the number of hyper-

edges mo(A1, . . . , Ad) ≤ τ using Lemma 4.6. If mo(A1, . . . , Ad) ≤ τ , we add w ·
mo(A1, . . . , Ad) to Ψ and remove the tuple (A1, . . . , Ad, w) from D. If the number of

66

tuples in D is at most N = κd · log4d n
ε2

, then we carry out a sparsification step, else

we do an importance sampling; a coarse estimation step (viz. Algorithms 4.2 and 4.3)

acts as a pre-processing step for importance sampling. We do either sparsification or

coarse estimation followed by importance sampling in an iteration because their roles

are complementary. While successive sparsifications ease estimating the number of

hyperedges by breaking a d-partite hypergraph into a disjoint union of d-partite sub-

hypergraphs, the number of such d-partite sub-hypergraphs may be as high as 4d · N =

4dκd · log4d n
ε2

(see Observation 4.20). Coarse estimation followed by importance sam-

pling (see Lemma 4.9) ensures that the effect of sparsification is neutralized so that the

number of tuples in D is at most N . This ensures that out of two successive iterations

of the algorithm, there is at least one sparsification step. The coarse estimation applies

when the number of tuples r > N = κd log4d n
ε2

. For each tuple in D, we find an estimate

Êi using Od(logd+1 n) GPIS2 queries per tuple (see Lemma 4.8). This estimate serves

as condition (ii) for the application of Lemma 4.9. Because of the importance sampling

(see Lemma 4.9), one can replace the r tuples in D with a sample of r′ tuples such that

the required estimate is approximately maintained. Since r′ ≤ κd · log4d n
ε2

= N , the next

step will be sparsification.

Observe that the query complexity of each iteration is polylogarithmic. Note that

the number of ordered hyperedges reduces by a constant factor after each sparsification

step. So, the number of iterations is bounded byOd(log n). Hence, the query complexity

of our algorithm is polylogarithmic. This completes a high level description of our

algorithm.

4.3.3 Our work vis-a-vis some recent works

Comparison with Beame et al. [BHR+18] and Bhattacharya et al. [BBGM18,BBGM19b]:

Beame et al. [BHR+18] showed that EDGE ESTIMATION problem can be solved using

O(ε−4 log14 n) BIS queries. Note that a BIS query is a special case of GPIS query for

d = 2. Bhattacharya et al. [BBGM18, BBGM19b] first considered the TRIANGLE ES-

TIMATION problem in graphs using a TIS query oracle, a generalization of BIS query

67

oracle. They showed that a (1 ± ε)-approximation to the number of triangles can be

found by usingO(∆12ε−12 log25 n) TIS queries, where ∆ denotes the maximum number

of triangles sharing an edge. Note that the TRIANGLE ESTIMATION problem in graphs

using TIS queries is analogous to the HYPEREDGE-ESTIMATION problem in 3-uniform

hypergraphs using a special GPIS query when d = 3. In this work, we build on the

works of Beame et al. [BHR+18] and Bhattacharya et al. [BBGM18, BBGM19b] for

HYPEREDGE-ESTIMATION using GPIS queries. Our main contribution in this work is

twofold and that answers Questions 1 and 2 posed in Section 4.1. Firstly, our query

complexity bounds are independent of ∆, this dependence on ∆ was present in the work

of Bhattacharya et al. [BBGM18, BBGM19b]. Secondly, our work can be seen as a

complete generalization of the works of Beame et al. [BHR+18] and Bhattacharya et

al. [BBGM18, BBGM19b] to d-uniform hypergraphs. As mentioned earlier, the exten-

sion from the EDGE ESTIMATION problem using BIS queries to the HYPEREDGE ES-

TIMATION problem using GPIS queries is not obvious as edges in a graph can intersect

in at most one vertex, but the intersection pattern of hyperedges in hypergraphs is com-

plicated. The main building blocks of the algorithms of Beame et al. and Bhattacharya

et al. are sparsification, exact estimation and coarse estimation. We generalize their

exact estimation and coarse estimation algorithms by more detailed and careful analysis.

The sparsification algorithm in the work of Beame et al. [BHR+18] uses heavily the fact

that two edges in a graph can intersect at most one vertex. This may be the reason why

Bhattacharya et al. [BBGM18, BBGM19b] required a bound on the number of triangles

sharing an edge. In this work, we show that an ingenious way of coloring the hyperedges

in a d-uniform hypergraph and an involved use of induction on d generalize the results

of both Beame et al. [BHR+18] and Bhattacharya et al. [BBGM18, BBGM19b]. The

main technical and non-trivial contribution in this work is the sparsification algorithm,

which enables us to generalize the works of Beame et al. [BHR+18] and Bhattacharya

et al. [BBGM18, BBGM19b]. Their sparsification results do not generalize for arbitrary

d without any assumptions on the intersection pattern of the hyperedges.

68

Comparison with Dell et al. [DLM19]: Concurrently and independently, Dell et

al. [DLM19] obtained similar results for the hyperedge estimation problem. They showed

that one can find a (1 ± ε)-approximation to the number of hyperedges in a d-uniform

hypergraph by usingOd
(

log4d+7 n
ε2

log 1
δ

)
colorful independent set queries with probabil-

ity at least 1−δ. A colorful independent set query is same as that of a GPIS query oracle

considered in this work; GPIS query was introduced by Bishnu et al. [BGK+18a]. Note

that the algorithm of Dell et al. [DLM19] for HYPEREDGE-ESTIMATION uses com-

parable but fewer number of GPIS queries. However, our algorithm is different and

conceptually much simpler than that of Dell et al. [DLM19]. Most importantly, the main

technical tool, our sparsification step is completely different from theirs.

4.4 Sparsification: Proof of Lemma 4.7

We start by reproducing the statement of the Lemma 4.7 below. Sparsification ensures

that the number of ordered hyperedges mo(A
[a1]
1 , . . . , A

[as]
s) is approximately preserved

across any pairwise disjoint subsets of vertices A1, . . . , As and integers a1, . . . , as such

that
∑s

i=1 ai = d.

Lemma 4.10 (Sparsification). Let H be any d-uniform hypergraph and k ≥ 1 be any

positive integer. Let

• hd : [k]d → {0, 1} be a hash function such that P[hd(a) = 1] = 1
k

and the set of

random variables {hd(a) : a ∈ [k]d} are mutually independent.

• A1, . . . , As be any pairwise disjoint subsets of U(H), where 1 ≤ s ≤ d. Let us

choose any ai ∈ [d] vertices from Ai such that
∑s

i=1 ai = d.

• Vertices in A =
⋃s
i=1Ai are COLORED with [k]. χ(i, j)’s denote the color

classes for each Ai, that is, χ(i, j) = {v ∈ Ai : v is COLORED with color j},
where i ∈ [s] and j ∈ [k].

• An ordered hyperedge (x1, . . . , xd) is said to be properly colored if hd(c1, . . . , cd) =

69

1 where ci is the color of xi. LetRd denote the number of properly colored hyper-

edges defined as follows andRd =

∑
(c1,...,cd)∈[k]d

mo

χ(1, c1), . . . , χ(1, ca1)︸ ︷︷ ︸
color classes for A[a1]

1

, . . . , χ(s, cd−as+1), . . . , χ(s, cd︸ ︷︷ ︸
color classes for A[as]

s

)

×hd(c1, . . . , cd).

Then, for a suitable constant θ > d and pd = d!
n4θ−2d ,

P

(∣∣∣∣∣Rd −
mo(A

[a1]
1 , . . . , A

[as]
s)

k

∣∣∣∣∣ ≥ 22dθd
√
d!mo(A

[a1]
1 , . . . , A

[as]
s) logd n

)
≤ pd.

The above lemma says that the properly colored hyperedges approximate the number

of ordered hyperedges upto a scaling factor when the number of (ordered) hyperedges is

above a thershold. Before getting into the formal proof of the lemma, let us explore the

role of the hash function in sparsification.

4.4.1 The role of the hash function in sparsification

We feel our work could generalize the framework of Beame et al. [BHR+18] to hyper-

edge estimation mainly because of the new sparsification result aided by an involved use

of induction. The sparsification result depends on the particular choice of hash function.

As we move from edge to triangle and then to hyperedge in a d-uniform hypergraph, im-

plicit structures blow up, and managing their interrelations also become difficult. Con-

sider the following. Two edges can intersect in at most one vertex. Two triangles can

intersect in at most two vertices and two hyperedges in d-uniform hypergraph intersect

in at most d− 1 vertices.

To count the number of edges in G using sparsification, Beame et al. [BHR+18]

COLORED the vertices with k colors and looked at the edges between certain pairs

of color classes. So, it boils down to counting the number of properly colored edges.

This random coloring process can be encoded by the hash function h : [k] → [k]. In

70

an effort to generalize Beame et al.’s [BHR+18] work to count the number of triangles

in a graph in Chapter 3, we colored the vertices of the graph for sparsification in a

specific way. Though we have not described the sparsification in Chapter 3 in terms of

hash function, the coloring function can be thought of as a hash function of the form —

h : [k] × [k] → [k] in [BBGM18, BBGM19b]. Look at any edge (a, b) in this graph

under the above hash function. The edge is properly colored if the colors on the vertices

of the edge come from specified color classes. We count all triangles on these properly

colored edges, and scale it appropriately. Once an edge is not properly colored, we may

miss it and hence, all triangles incident on that edge. This is why we need a bound on

the number of triangles incident on an edge in [BBGM18, BBGM19b], otherwise the

variance blows up and the concentration inequality gives poor result.

In this work, we consider a different hashing scheme with the hash function h :

[k]d → {0, 1}, in the d-uniform hypergraph setting, with a suitable probability of hash

values becoming 1. For triangles (3-uniform hypergraph), the particular hash function is

thus h : [k]3 → {0, 1}. So, there is no concept of proper and improper edges. All edges

are taken into consideration and then all triangles, and we can work with any number of

triangles incident on an edge. Moreover, there is an inductive nature to this particular

choice of hash function. Consider fixing the color of a vertex of a triangle. Then the

hash function h : [k] × [k] → {0, 1} behaves as a random coloring on the other two

vertices of the triangle.

To elaborate further, our sparsification algorithm independently colors the vertices

of the hypergraph by selecting a color uniformly at random from {1, . . . , k}, and colors

each d-tuple in {1, . . . , k}d (i.e., {1, . . . , k} × · · · × {1, . . . , k}) randomly with a color

out of two colors, say 0 and 1, such that the probability of each d-tuple being colored

with 1 is 1
k
. We say that an ordered hyperedge Fo is properly colored if the d-tuple of

colors, assigned to the vertices of Fo, is colored with 1. The main insight is that, when

the number of hyperedges is above a threshold, a suitable scaling of properly colored

hyperedges, will approximate the number of hyperedges. The case when the number

of hyperedges is below a threshold can be taken care of by the exact estimation step.

Indeed, we overcome the bottleneck of arbitrary intersection patterns in the case of d-

71

uniform hyperedges by the two levels of randomness.

4.4.2 Proof of the lemma

Proof. We prove this lemma using induction on d.

The base case: For d = 1, the hash function is h1 : [k] → {0, 1}. The vertices in

A1 are COLORED with [k]. So, R1 =
∑
c1∈[k]

mo(χ(1, c1)) × h1(c1). We have E[R1] =

mo(A1)
k

. Note that the set of 1-uniform hyperedges Fo(A1) is a subset of A1. Consider

F ∈ Fo(A1). Let x ∈ [k] be the color assigned to the single element present in F .

Let XF be the indicator random variable such that XF = 1 if and only if h1(x) =

1. Therefore, P(XF = 1) = 1
k
. Observe that the random variables XF are mutually

independent as F depends only on A1. The number of properly colored hyperedges R1

can be expressed as the sum of the mutually independent random variables XF , i.e.,

R1 =
∑

F∈Fo(A1)

XF . Now, applying Hoeffding’s bound (see Lemma 2.3 in Section 2.1),

we get

P
(∣∣∣∣R1 −

mo(A1)

k

∣∣∣∣ ≥ 4θ ·
√

log n ·mo(A1)

)
≤ 2

n16θ2 ≤ p1.

The inductive case: Observe that the probability that a hyperedge is properly col-

ored with a color tuple (c1, . . . , cd) is same as the probability of the hash function

evaluating to 1 for that color tuple and is equal to 1
k
. Rd, as defined in the statement

of Lemma 4.10, represents the number of properly colored hyperedges. So, E[Rd] =

mo(A
[a1]
1 , . . . , A

[as]
s)/k.

Note that A = ∪si=1Ai. Without loss of generality, assume that the vertices in A

are 1, . . . , n′, where n′ ≤ n. Viewing the coloring process as a random process, let

us focus on the instance when, in some arbitrary order, vertices 1, . . . , t − 1 have been

colored and we are exposing the vertex t for coloring, where 2 ≤ t ≤ n′ − 1. Recall

that Fo(t) denotes the set of ordered hyperedges incident on t. We classify the ordered

hyperedges Fo(t) based on the position of t, i.e., let Fo(t, µ) ⊆ Fo(t) be the set of

ordered hyperedges where t is fixed as the µ-th vertex, µ ∈ [d]. As |Fo(t)| = d!F(t) and

72

|Fo(t, µ)| = (d − 1)!F(t), we have the following observation that will be used later in

the proof.

Observation 4.11. |Fo(t, µ)| = (d−1)! |Fo(t)|
d!

= |Fo(t)|
d

where µ ∈ [d].

Next, we bring in a definition that would allow us to capture the randomness in the

coloring process when the vertex t is colored.

Definition 4.12. An ordered hyperedge F ∈ Fo(t, µ) is said to be of type-λ if F has

exactly λ vertices from the set [t], where λ ∈ [d].

To get a sense of the above definition, consider the cases λ < d and λ = d; the second

case fixes all vertices in F to be from [t], while in the first case, there is room for vertices

beyond [t]. For µ, λ ∈ [d], let Fλo (t) and Fλo (t, µ) be the set of ordered hyperedges

of type-λ in Fo(t) and Fo(t, µ), respectively. Given that the vertex t is colored with

color c ∈ [k], let Nλ
c (t) and Nλ

c (t, µ) be the random variables that denote the number

of ordered hyperedges in Fλo (t) and Fλo (t, µ) that are properly colored, respectively.

Let Zi ∈ [k] be the random variable that denotes the color assigned to the vertex i ∈
A (recall A =

⋃s
i=1Ai) = [n′], where n′ ≤ n. Note thatRd is a function of Z1, . . . , Zn′ ,

that is,Rd = f(Z1, . . . , Zn′).

Let EtRd denote the difference in the conditional expectation of the number of prop-

erly colored ordered hyperedges given that the t-th vertex is differently colored by con-

sidering the hyperedges in each Fλo (t, µ), where λ, µ ∈ [d].

EtRd = |E [Rd | Z1, . . . , Zt−1, Zt = ρ]− E [Rd | Z1, . . . , Zt−1, Zt = ν]| (4.1)

=

∣∣∣∣∣
d∑

λ=1

E
[
Nλ
ρ (t)−Nλ

ν (t)
]∣∣∣∣∣ (4.2)

=

∣∣∣∣∣(Nd
ρ (t)−Nd

ν (t)
)

+
d−1∑
λ=1

E
[
Nλ
ρ (t)−Nλ

ν (t)
]∣∣∣∣∣ (4.3)

(4.4)

73

=

∣∣∣∣∣
d∑

µ=1

(
Nd
ρ (t, µ)−Nd

ν (t, µ)
)

+
d−1∑
λ=1

E
[
Nλ
ρ (t)−Nλ

ν (t)
]∣∣∣∣∣ (4.5)

≤
d∑

µ=1

∣∣Nd
ρ (t, µ)−Nd

ν (t, µ)
∣∣+

∣∣∣∣∣
d−1∑
λ=1

E
[
Nλ
ρ (t)−Nλ

ν (t)
]∣∣∣∣∣ (4.6)

Since the hyperedges without having t as one of its vertex have the same contribution

to both E [Rd | Z1, . . . , Zt−1, Zt = ρ] and E [Rd | Z1, . . . , Zt−1, Zt = ν], Equation 4.2

follows from Equation 4.1.

Now, consider the following claim.

Claim 4.13. (a) P
(∣∣Nd

ρ (t, µ)−Nd
ν (t, µ)

∣∣ ≤ 22d−1θd−1

√
(d− 1)!Fo(t, µ) logd−1 n

)
≥

1− 2pd−1, where µ ∈ [d] and θ > d is the constant mentioned in the statement of

Lemma 4.10.

(b) E
[
Nλ
ρ (t)−Nλ

ν (t)
]

= 0, ∀λ ∈ [d− 1].

Proof of Claim 4.13. (a) For simplicity, we argue for µ = 1, i.e., t appears at the

first position. However, the argument will be similar for any µ ∈ [d]. Consider a

(d − 1)-uniform hypergraph H′ such that U(H′) = {1, . . . , t − 1}and Fo(H′) =

{(x1, . . . , xd−1) : (t, x1, . . . , xd−1) ∈ Fdo (t, 1)}. Let hd−1 : [k]d−1 → {0, 1} be

a hash function such that hd−1(x1, . . . , xd−1) = hd(t, x1, . . . , xd). Observe that

P(hd−1(a) = 1) = 1
k

for each tuple a ∈ [k]d−1. Consider the (d − 1)-partite

hypergraph H′
(
B

[a1−1]
1 B

[a2]
2 · · ·B[as]

s

)
, where Bi = Ai ∩ [t − 1] 6. Observe that

mo

(
B

[a1−1]
1 B

[a2]
2 · · ·B[as]

s

)
=
∣∣Fdo (t, 1)

∣∣. Recall that the vertices in ∪si=1Ai are

COLORED with [k]. Let χ′(i, j) = {v ∈ Bi : v is COLORED with color j}.
LetRd−1 =

∑
(c1,...,cd−1)∈[k]d−1

mo (χ′(1, c1), . . . , χ′(1, ca1−1), . . . , χ′(s, cd−as) . . . χ
′(s, cd−1))

× hd−1(c1, . . . , cd−1).

6Recall that B[b] denotes B...B(b times).

74

Observe that the random variables Nd
ρ (t, 1) and Nd

ν (t, 1) follow the distribution of

the random variableRd−1. By the induction hypothesis,

P

∣∣∣∣∣∣Rd−1 −
mo

(
B

[a1−1]
1 B

[a2]
2 · · ·B[as]

s

)
k

∣∣∣∣∣∣ ≥ ℵ
 ≤ pd−1,

where ℵ = 22d−2θd−1

√
(d− 1)!mo

(
B

[a1−1]
1 B

[a2]
2 · · ·B[as]

s

)
logd−1 n.

Using mo

(
B

[a1−1]
1 B

[a2]
2 · · ·B[as]

s

)
=
∣∣Fdo (t, 1)

∣∣, we have

P

(∣∣∣∣∣Rd−1 −
∣∣Fdo (t, 1)

∣∣
k

∣∣∣∣∣ ≥ 22d−2θd−1

√
(d− 1)!Fdo (t, 1) logd−1 n

)
≤ pd−1

(4.7)

Using the above equation, the claim follows using the following.

P
(∣∣Nd

ρ (t, 1)−Nd
ν (t, 1)

∣∣ ≥ 22d−1θd−1

√
(d− 1)!Fo(t, 1) logd−1 n

)
≤ 2pd−1.

Let L = 22d−1θd−1

√
(d− 1)!Fo(t, 1) logd−1 n. Now,

P
(∣∣Nd

ρ (t, 1)−Nd
ν (t, 1)

∣∣ ≥ 22d−1θd−1

√
(d− 1)!Fo(t, 1) logd−1 n

)
≤ P

(∣∣∣∣∣Nd
ρ (t, 1)−

∣∣Fdo (t, 1)
∣∣

k

∣∣∣∣∣ ≥ L

2

)
+ P

(∣∣∣∣∣Nd
ν (t, 1)−

∣∣Fdo (t, 1)
∣∣

k

∣∣∣∣∣ ≥ L

2

)

= 2 · P

(∣∣∣∣∣Nd
ρ (t, 1)−

∣∣Fdo (t, 1)
∣∣

k

∣∣∣∣∣ ≥ 22d−2θd−1

√
(d− 1)!Fo(t, 1) logd−1 n

)

≤ 2 · P

(∣∣∣∣∣Nd
ρ (t, 1)−

∣∣Fdo (t, 1)
∣∣

k

∣∣∣∣∣ ≥ 22d−2θd−1

√
(d− 1)!Fdo (t, 1) logd−1 n

)
(∵ Fdo (t, 1) ≤ Fo(t, 1))

≤ 2pd−1 (By Equation 4.7)

75

(b) First, consider the case when t is COLORED with color ρ. For F ∈ Fλo (t), λ ∈
[d−1], letXF be the indicator random variable such thatXF = 1 if and only if F is

properly colored. As F is of type λ, there exists at least one vertex in F that is not

colored yet, that is, P(XF = 1) = 1
k
. Observe that Nλ

ρ (t) =
∑

F∈Fλo (t)

XF . Hence,

E
[
Nλ
ρ (t)

]
=
∣∣Fλo (t)

∣∣ /k. Similarly, one can show that E
[
Nλ
ν (t)

]
=
∣∣Fλo (t)

∣∣ /k.

Hence, E
[
Nλ
ρ (t)−Nλ

ν (t)
]

= 0.

Now, let us come back to the proof of Lemma 4.10. By Claim 4.13 and Observa-

tion 4.11, we have the following with probability at least 1− 2d · pd−1.

EtRd ≤ 22d−1θd−1 · d ·
√

(d− 1)!
Fo(t)
d

logd−1 n = 22d−1θd−1

√
d!Fo(t) logd−1 n = ct,

where ct = 22d−1θd−1

√
d!Fo(t) logd−1 n.

Let B be the event that there exists t ∈ [n] such that EtRd > ct. By the union bound

over all t ∈ [n], P(B) ≤ 2dnpd−1 = 2dn (d−1)!

n4θ−2(d−1) ≤ 2d!
n4θ−2d+1 . Using the method of

averaged bounded difference [DP09] (See Lemma 2.2 in Section 2.1), we have

P
(
|Rd − E[Rd]| > δ +mo(A

[a1]
1 , . . . , A[as]

s)P(B)
)
≤ e

−δ2/
n∑
t=1

c2t
+ P(B)

We set δ = 2
√
θ log n ·

∑
t∈[n]

c2
t = 22dθd−1/2

√
d!mo(A

[a1]
1 , . . . , A

[as]
s) logd n. Using

mo(A
[a1]
1 , . . . , A

[as]
s) ≤ nd and P(B) ≤ 2d!

n4θ−4d+1 , and taking

a = 22dθd−1/2

√
d!mo(A

[a1]
1 , . . . , A

[as]
s) logd n+

2d!nd

n4θ−2d+1
,

we have

P

(∣∣∣∣∣Rd −
mo(A

[a1]
1 , . . . , A

[as]
s)

k

∣∣∣∣∣ > a

)
≤ 1

n4θ
+

2d!

n4θ−2d+1
.

76

Assuming n� d,

P

(∣∣∣∣∣Rd −
mo(A

[a1]
1 , . . . , A

[as]
s)

k

∣∣∣∣∣ ≥ 22dθd
√
d!mo(A

[a1]
1 , . . . , A

[as]
s) logd n

)
≤ d!

n4θ−2d
= pd.

4.5 Proof of lemma for exact estimation

In this Section, we prove Lemma 4.6. We restate the lemma for easy reference.

Lemma 4.14 (Exact Estimation: Lemma 4.6 restated). There exists a deterministic algo-

rithm Aexact that takes as input — a d-uniform hypergraphH, constants a1, . . . , as ∈ [d]

such that
∑s

i=1 ai = d where s ∈ [d], pairwise disjoint subsets A1, . . . , As of U(H), and

threshold parameter τ ∈ N — and decides whether the number of ordered hyperedges

mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ using Od(τ log n) GPIS1 queries. Moreover, the algorithm

finds the exact value of mo(A
[a1]
1 , . . . , A

[as]
s) when mo(A

[a1]
1 , . . . , A

[as]
s) ≤ τ .

Proof. First, we discuss an algorithm that determines the exact value ofmo(A
[a1]
1 , . . . , A

[as]
s)

using Od(mo(A
[a1]
1 , . . . , A

[as]
s) log n) GPIS1 queries. Then, we argue how to modify it

to obtain the desired bound. We initialize a multi-ary tree T with (A
[a1]
1 , . . . , A

[as]
s) as

the root and then build it level by level. At the next level, each Ai is split into two halves

– Ai,1 and Ai,2 and each node in the next level is labeled with Ai,j , i ∈ {1, . . . , s},
j ∈ {1, 2}; so in the next level there are 2s ≤ 2d nodes. Notice that as we go down

the levels in T , each node corresponds to GPIS1 queries with smaller and smaller sets.

The nodes of the tree are labeled with either 0 or 1. If mo(A
[a1]
1 , . . . , A

[as]
s) = 0, we

label the root with 0 and terminate. Otherwise, we label the root (node) with 1 and keep

branching, and as long as there is a leaf node (B
[b1]
1 , . . . , B

[bt]
t) in this branch labeled

with 1, we do the following. Note that 0 ≤ bi ≤ d and
t∑
i=1

bi = d. Also, for i 6= j, either

Bi ∩Bj = ∅ or Bi = Bj because it is a tree-based disjoint partitioning.

77

Algorithm 4.1: Aexact(A1, . . . , Ad, τ)
Input: Subsets A1, . . . , Ad of vertex set U(H) of a d-uniform hypergraphH

and a threshold τ .
Output: Check if mo(A

[a1]
1 , . . . , A

[as]
s) ≤ τ . If Yes, return the exact value of

mo(A
[a1]
1 , . . . , A

[as]
s).

1 Initialize a tree T with (A
[a1]
1 , . . . , A

[as]
s) as the root and label the root with 1.

2 if the number of nodes in T is more than 2d+2τ log n then
3 Report that mo(A

[a1]
1 , . . . , A

[as]
s) > τ as the output.

4 end
5 while there is a leaf node mo(B

[b1]
1 , . . . , B

[bt]
t) in the tree with label 1 do

6 Note that 0 ≤ bi ≤ d and
t∑
i=1

bi = d. Also, for i 6= j, either Bi ∩Bj = ∅ or

Bi = Bj .
7 if mo(B

[b1]
1 , . . . , B

[bt]
t) = 0 or there exists an i ∈ [t] such that |Bi| < bi then

8 Label (B
[b1]
1 , . . . , B

[bt]
t) with 0.

9 end
10 else
11 Label (B

[b1]
1 , . . . , B

[bt]
t) with 1.

12 Partition each Bi into two parts Bi1 and Bi2 such that |Bi1| = dBi2 e and
|Bi2| = bBi2 c.

13 Add nodes of the form (C11j, . . . , C1b1j, . . . , Ct1j, . . . , Ctbtj) as children
of (B

[b1]
1 , . . . , B

[bt]
t) and label them 1, for j ∈ {1, 2}, where

Cibi1 = dCibi
2
e and Cibi2 = bCibi

2
c.

14 end
15 end
16 Generate T ′ as the tree after deleting all the leaf nodes in T .
17 Report the number of leafs in T ′ as mo(A

[a1]
1 , . . . , A

[as]
s) as the output.

(i) If mo(B
[b1]
1 , . . . , B

[bt]
t) = 0 or there exists an i ∈ [t] such that |Bi| < bi, then we

label (B
[b1]
1 , . . . , B

[bt]
t) with 0. Otherwise, we label (B

[b1]
1 , . . . , B

[bt]
t) with 1.

(ii) We partition eachBi into two partsBi1 andBi2 such that |Bi1| =
⌈
Bi
2

⌉
and |Bi2| =⌊

Bi
2

⌋
. There may exist some Bi for which Bi2 = ∅. We add nodes of the form

(C11j, . . . , C1b1j︸ ︷︷ ︸, . . . , Ct1j, . . . , Ctbtj︸ ︷︷ ︸) as the children of (B
[b1]
1 , . . . , B

[bt]
t) and label

them 1, for j ∈ {1, 2} where Cibi1 =
⌈
Cibi

2

⌉
and Cibi2 =

⌊
Cibi

2

⌋
. Note that for

78

each node (B
[b1]
1 , . . . , B

[bt]
t) with label 1, we add

t∏
i=1

2bi = 2d nodes as children of

it.

Note that the algorithm stops when all the leaf nodes of tree T are labeled with 0.

Let T ′ be the tree after deleting all the leaf nodes in T . Observe thatmo(B
[b1]
1 , . . . , B

[bt]
t)

is the number of leaf nodes in T ′ and

• the height of T is bounded by log

(
max
i∈[t]
|Ai|
)

+ 1 ≤ log n+ 1.

• the query complexity of the above procedure is bounded by the number of nodes

in T as we make at most one query per node of T .

The number of nodes in T ′ which equals the number of internal nodes of T is

bounded by (log n + 1) · mo(B
[b1]
1 , . . . , B

[bt]
t). Hence, the number of leaf nodes in T

is at most 2d(log n+ 1) ·mo(A
[a1]
1 , . . . , A

[as]
s). The total number of nodes in T is at most

(2d + 1)(log n + 1) · mo(A
[a1]
1 , . . . , A

[as]
s) ≤ 2d+2 · mo(A

[a1]
1 , . . . , A

[as]
s) log n. Putting

everything together, the number of GPIS1 queries made by our algorithm is at most

2d+2 ·mo(A
[a1]
1 , . . . , A

[as]
s) log n.

The algorithm, as claimed in the statement of Lemma 4.14, proceeds similar to

the one presented above by initializing a tree T with (A
[a1]
1 , . . . , A

[as]
s) as the root. If

mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ , then we can find the exact value of mo(A

[a1]
1 , . . . , A

[as]
s) us-

ing at most 2d+2τ log n GPIS1 queries and the number of nodes in T is bounded by

2d+2τ log n. So, if the number of nodes in T is more than 2d+2 ·mo(A
[a1]
1 , . . . , A

[as]
s) log n

at any instance during the execution of the algorithm, we reportmo(A
[a1]
1 , . . . , A

[as]
s) > τ

and terminate. Hence, our algorithm makesOd(τ log n) GPIS1 queries, decides whether

mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ , and determines the exact value of mo(A

[a1]
1 , . . . , A

[as]
s) in the

case mo(A
[a1]
1 , . . . , A

[as]
s) ≤ τ .

4.6 Proof of lemma for coarse estimation

We now prove Lemma 4.8. The algorithm corresponding to Lemma 4.8 is Algorithm 4.3

(named COARSE-ESTIMATE). Algorithm 4.2 (named VERIFY-ESTIMATE) is a subrou-

79

tine of Algorithm 4.3. Algorithm 4.2 determines whether a given estimate R̂ is correct

up to Od(log2d−3 n) factor. Lemma 4.15 and 4.16 are intermediate results needed to

prove Lemma 4.8; they bound the probability from above and below, respectively of

VERIFY-ESTIMATE accepting the estimate R̂.

Lemma 4.15. If R̂ ≥ 20d2d−34d mo(A1, . . . , Ad) log2d−3 n, then

P(VERIFY-ESTIMATE (A1, . . . , Ad, R̂) accepts the estimate R̂) ≤ 1

20 · 2d

Proof. Consider the set of ordered hyperedges Fo(A1, . . . , Ad) in H(A1, . . . , Ad). Al-

gorithm VERIFY-ESTIMATE taking parameters A1, . . . , Ad, and R̂ and described in Al-

gorithm 4.2, loops over all possible j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1 8. For each

j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1, VERIFY-ESTIMATE (A1, . . . , Ad, R̂) samples ver-

tices in each Ai with suitable probability values p(i, j), depending on j, R̂, d and log n,

to generate the sets Bi,j for 1 ≤ i ≤ d. See Algorithm 4.2 for the exact values

of p(i, j)’s. VERIFY-ESTIMATE (A1, . . . , Ad, R̂) reports ACCEPT if there exists one

j ∈ [(d log n)∗]d−1 such that mo (B1,j, . . . , Bd,j) 6= 0. Otherwise, REJECT is reported by

VERIFY-ESTIMATE (A1, . . . , Ad, R̂).

For an ordered hyperedge Fo ∈ Fo(A[a1]
1 , . . . , A

[as]
s) and j ∈ [(d log n)∗]d−1, let

X j
Fo

denote the indicator random variable such that X j
Fo

= 1 if and only if Fo ∈
Fo(B1,j, . . . , Bd,j). Let Xj =

∑
Fo∈Fo(A1,...,Ad)

X j
Fo

. Note that mo(B1,j, . . . , Bd,j) = Xj.

We have,

P
(
X j
Fo

= 1
)

=
d∏
i=1

(p(i, j)) 9 ≤ 2j1

R̂
· 2

j2

2j1
d log n····· 2

jd−1

2jd−2
d log n· 1

2jd−1
=
dd−2 logd−2 n

R̂

Then, E [Xj] ≤ mo(A1,...,Ad)

R̂
dd−2 logd−2 n, and since Xj ≥ 0,

P (Xj 6= 0) = P(Xj ≥ 1) ≤ E [Xj] ≤
mo(A1, . . . , Ad)

R̂
dd−2 logd−2 n

8Recall that [n]∗ denotes the set {0, . . . , n}
9See Algorithm 4.2 for the values of p(i, j)’s

80

Algorithm 4.2: VERIFY-ESTIMATE (A1, . . . , Ad, R̂)
Input: d subsets A1, . . . , Ad of the vertex set U(H) of a d-uniform hypergraph

H and an estimate R̂
Output: If R̂ is a good7 estimate, then ACCEPT. Otherwise, REJECT

1 for (j1 = d log n to 0) do
2 find B1 ⊆ A1 by sampling every element of A1 with probability

p1 = min{2j1

R̂
, 1} independently of other elements.

3 for (j2 = d log n to 0) do
4 find B2 ⊆ A2 by sampling every element of A2 with probability

p2 = min{2j2−j1 · d log n, 1} independently of other elements.

5
...
...

6 for (jd−1 = d log n to 0) do
7 find Bd−1 ⊆ Ad−1 by sampling every element of Ad−1 with

probability pd−1 = min{2jd−1−jd−2 · d log n, 1} independently of
other elements.

8 Let j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1

9 Let p(i, j) = pi, where 1 ≤ i ≤ d− 1
10 Let B(i, j) = Bi, where 1 ≤ i ≤ d− 1
11 find B(d, j) = Bd ⊆ Ad by sampling every element of Ad with

probability pd = min{2−jd−1 , 1} independently of other elements.
12 if (m(B1,j, . . . , Bd,j) 6= 0) then
13 ACCEPT /*[Note that GPIS2 query is called in the above line.]*/
14 end
15 end
16 end
17 end
18 REJECT

Now, using the fact that R̂ ≥ 20d2d−3 · 4d ·mo(A1, . . . , Ad) log2d−3 n, we have

P (Xj 6= 0) ≤ 1

20dd−1 · 4d · logd−1 n
.

Recall that VERIFY-ESTIMATE accepts if and only if there exists j such that Xj 6=

81

0 10. Using the union bound, we get

P(VERIFY-ESTIMATE (A1, . . . , Ad, R̂) accepts the estimate R̂)

≤
∑

j∈[(d logn)∗]d−1

P(Xj 6= 0)

≤ (d log n+ 1)d−1

20 · 4d · (d log n)d−1

≤ 1

20 · 2d
.

Lemma 4.16. If R̂ ≤ mo(A1,...,Ad)
4d logn

,

P(VERIFY-ESTIMATE (A1, . . . , Ad, R̂) accepts the estimate R̂) ≥ 1

2d
.

Proof. To build up towards the proof of Lemma 4.16, we first define some quantities and

prove Claim 4.17. For that, let us think of partitioning the vertex set in A1 into buckets

such that the vertices in each bucket are present in approximately the same number of

hyperedges inH(A1, . . . , Ad) as the first vertex. Similarly, we extend the bucketing idea

to tuples as follows. Consider a vertex u1 in a particular bucket of A1 and consider

all the hyperedges F(u1) containing u1 as the first vertex. We can bucket the vertices

in A2 such that the vertices in each bucket of A2 are present in approximately the same

number of hyperedges inF(u1) as the second vertex. We generalize the above bucketing

strategy with the vertices in Ais, which is formally described below. Notice that this

way of bucketing will allow us to use conditionals.

For q1 ∈ [(d log n)∗] 11, let A1(q1) ⊆ A1 be the set of vertices in A1 such that

for each u1 ∈ A1(q1), the number of hyperedges in Fo(A1, . . . , Ad), containing u1

as the first vertex, lies between 2q1 and 2q1+1 − 1. For 2 ≤ i ≤ d − 1, and qj ∈
[(d log n)∗] ∀j ∈ [i − 1], consider u1 ∈ A1(q1), u2 ∈ A2((q1, u1), q2), . . . , ui−1 ∈
Ai−1((q1, u1), . . . , (qi−2, ui−2), qi−1). Let Ai((q1, u1), . . . , (qi−1, ui−1), qi) be the set of

10Note that j is a vector but Xj is a scalar.
11Recall that [n]∗ = {0, 1, . . . , n}

82

vertices in Ai such that for each ui ∈ Ai((q1, u1), . . . , (qi−1, ui−1), qi), the number of

ordered hyperedges in Fo(A1, . . . , Ad), containing uj as the j-th vertex for all j ∈ [i],

lies between 2qi and 2qi+1− 1. We need the following result to proceed further. For ease

of presentation, we use (Qi, Ui) to denote (q1, u1), . . . , (qi−1, ui−1) for 2 ≤ i ≤ d − 1.

Informally, Claim 4.17 says that for each i ∈ [d− 1], there exists a bucket in Ai having

a large number of vertices contributing approximately the same number of hyperedges.

Claim 4.17. (i) There exists q1 ∈ [(d log n)∗] such that |A1(q1)| > mo(A1,...,Ad)
2q1+1(d logn+1)

.

(ii) Let 2 ≤ i ≤ d − 1 and qj ∈ [(d log n)∗] ∀j ∈ [i − 1]. Let u1 ∈ A1(q1), uj ∈
Aj((Qj−1, Uj−1), qj) ∀j 6= 1 and j < i. There exists qi ∈ [(d log n)∗] such that

|Ai((Qi, Ui), qi)| > 2qi−1

2qi+1(d logn+1)
.

Proof. (i) Observe that mo(A1, . . . , Ad) =
d logn∑
q1=0

mo(A1(q1), A2, . . . , Ad). So, there

exists q1 ∈ [(d log n)∗] such that mo(A1(q1), A2, . . . , Ad) ≥ mo(A1,...,Ad)
d logn+1

. From

the definition of A1(q1), mo(A1(q1), A2, . . . , Ad) < |A1(q1)| · 2q1+1. Hence, there

exists q1 ∈ [(d log n)∗] such that

|A1(q1)| > mo(A1(q1), A2, . . . , Ad)

2q1+1
≥ mo(A1, . . . , Ad)

2q1+1(d log n+ 1)
.

(ii)

Note that mo({u1}, . . . , {ui−1}, Ai, . . . , Ad)

=

d logn∑
qi=0

mo({u1}, . . . , {ui−1}, Ai((Qi−1, Ui−1), qi), . . . , Ad).

So, there exists qi ∈ [(d log n)∗] such that

mo({u1}, . . . , {ui−1}, Ai((Qi−1, Ui−1), qi), . . . , Ad)

≥ mo({u1}, . . . , {ui−1}, Ai, . . . , Ad)
d log n+ 1

.

83

From the definition of Ai((Qi−1, Ui−1), qi), we have

mo({u1}, . . . , {ui−1}, Ai((Qi−1, Ui−1), qi), . . . , Ad) < |Ai((Qi−1, Ui), qi)| · 2qi+1

Hence, there exists qi ∈ [(d log n)∗] such that

|Ai((Qi−1, Ui), qi)| >
mo({u1}, . . . , {ui−1}, Ai((Qi−1, Ui−1), qi), . . . , Ad})

2qi+1

≥ mo({u1}, . . . , {ui−1}, Ai, . . . , Ad})
2qi+1(d log n+ 1)

≥ 2qi−1

2qi+1(d log n+ 1)

Coming back to the proof of Lemma 4.16, we will be done by showing the follow-

ing. VERIFY-ESTIMATE accepts with probability at least 1/5 when the loop variables

j1, . . . , jd−1 respectively attain values q1, . . . , qd−1 such that |A1(q1)| > mo(A1,...,Ad)
2q1+1(d logn+1)

and |Ai((Qi, Ui), qi)| > 2qi−1

2qi+1(d logn+1)
∀i ∈ [d − 1] \ {1}. The existence of such jis is

evident from Claim 4.17. Let q = (q1, . . . , qd−1). Recall that Bi,q ⊆ Ai is the sample

obtained when the loop variables j1, . . . , jd−1 attain values q1, . . . , qd−1, respectively.

Let Ei, i ∈ [d− 1], be the events defined as follows.

• E1 : A1(q1) ∩B1,q 6= ∅.

• Ei : Aj((Qj−1, Uj−1), qj) ∩Bj,q 6= ∅, where 2 ≤ i ≤ d− 1.

As noted earlier, Claim 4.17 says that for each i ∈ [d − 1], there exists a bucket in

Ai having a large number of vertices contributing approximately the same number of

hyperedges. The above events correspond to the nonempty intersection of vertices in

heavy buckets corresponding to Ai and the sampled vertices Bi,j, where i ∈ [d − 1].

Observe that

P(E1) ≤
(

1− 2q1

R̂

)|A1(q1)|

≤ exp

(
−2q1

R̂
|A1(q1)|

)
≤ exp

(
−2q1

R̂
· mo(A1, . . . , Ad)

2q1+1(d log n+ 1)

)
≤ exp (−1).

84

The last inequality uses the fact that R̂ ≤ mo(A1,...,Ad)
4d logn

, from the condition of the lemma.

Assume that E1 occurs and u1 ∈ A1(q1) ∩ B1,q. We will bound the probability that

A2(Q1, U1), q2)∩A2,q = ∅, that is E2. Note that, by Claim 4.17 (ii), |A2(Q1, U1), q2)| ≥
2q1

2q2+1(d logn+1)
. So,

P
(
E2 | E1

)
≤
(

1− 2q2

2q1
log n

)|A2(Q1,U1),q2)|

≤ exp (−1)

Assume that E1, . . . , Ei−1 hold, where 3 ≤ i ∈ [d − 1]. Let u1 ∈ A1(q1) and ui−1 ∈
Ai−1((Qi−2, Ui−2), qi−1). We will bound the probability thatAi((Qi−1, Ui−1), qi)∩Bi,q =

∅, that is Ei. Note that |Ai((Qi−1, Ui−1), qi)| ≥ 2qi−1

2qi+1(d logn+1)
. So, for 3 ≤ i ∈ [d− 1],

P
(
Ei | E1, . . . , Ei−1

)
≤
(

1− 2qi

2qi−1
log n

)|Ai(Qi−1,Ui−1),qi)|

≤ exp (−1)

Assume that E1, . . . , Ed−1 hold. Let u1 ∈ A1(q1) and ui−1 ∈ Ai−1((Qi−2, Ui−2), qi−1)

for all i ∈ [d] \ {1}. Let S ⊆ Ad be the set of d-th vertex of the ordered hyperedges in

Fo(A1, . . . , Ad) having uj as the j-th vertex for all j ∈ [d − 1]. Note that |S| ≥ 2qd−1 .

Let Ed be the event that represents the fact S ∩Bd,q 6= ∅. So,

P(Ed | E1, . . . , Ed−1) ≤
(

1− 1

2qd−1

)qd−1

≤ exp (−1)

Observe that VERIFY-ESTIMATE accepts if m(AB,q, . . . , Bd,q) 6= 0. Also,

m(B1,q, . . . , Bd,q) 6= 0 if
d⋂
i=1

Ei occurs.

85

Hence,

P(VERIFY-ESTIMATE (A1, . . . , Ad, R̂) accepts) ≥ P

(
d⋂
i=1

Ei

)

= P(E1)
d∏
i=2

P(Ei |
i−1⋂
j=1

Ej)

> (1− exp (−1))d ≥ 1

2d

Now, we will prove Lemma 4.8 that will be based on Algorithm 4.3. We restate the

lemma.

Lemma 4.18 (Coarse estimation : Lemma 4.8 restated). There exists an algorithmA that

takes as input d subsets A1, . . . , Ad of the vertex set U(H) of a d-uniform hypergraph

H. The algorithm A returns Ê as an estimate for mo(A1, . . . , Ad) such that

mo(A1, . . . , Ad)

8dd−12d logd−1 n
≤ Ê ≤ 20dd−12d ·mo(A1, . . . , Ad) logd−1 n

with probability 1−n−8d. Moreover, the number of GPIS2 queries made by the algorithm

is Od(logd+1 n).

Algorithm 4.3: COARSE-ESTIMATE (A1, . . . , Ad)
Input: d subsets A1, . . . , Ad ⊆ U(H).
Output: An estimate Ê for mo(A1, . . . , Ad).

1 for (R̂ = nd, nd/2, . . . , 1) do
2 Repeat VERIFY-ESTIMATE (A1, . . . , Ad, R̂) for Γ = d · 4d · 2000 log n

times. If more than Γ
10·2d runs of VERIFY-ESTIMATE accepts, then output

Ê = R̂
dd−2·2d .

Proof. Note that an execution of COARSE-ESTIMATE for a particular R̂ repeats VERIFY-

ESTIMATE for Γ = d · 4d · 2000 log n times and gives output R̂ if more than Γ
10·2d runs of

86

VERIFY-ESTIMATE accepts. For a particular R̂, let Xi be the indicator random variable

such that Xi = 1 if and only if the i-th execution of VERIFY-ESTIMATE accepts. Also

take X =
∑Γ

i=1Xi. COARSE-ESTIMATE gives output R̂ if X > Γ
10·2d .

Consider the execution of COARSE-ESTIMATE for a particular R̂. If R̂ ≥ 20d2d−34d·
mo(A1, . . . , Ad)· log2d−3 n, we first show that COARSE-ESTIMATE does not accept with

high probability. Recall Lemma 4.15. If R̂ ≥ 20d2d−34d · mo(A1, . . . , Ad) log2d−3 n,

P(Xi = 1) ≤ 1
20·2d and hence E[X] ≤ Γ

20·2d . By using Chernoff-Hoeffding’s inequal-

ity (See Lemma 2.4 (i) in Section 2.1),

P
(
X >

Γ

10 · 2d

)
= P

(
X >

Γ

20 · 2d
+

Γ

20 · 2d

)
≤ 1

n10d

Using the union bound for all R̂, the probability that COARSE-ESTIMATE outputs

some Ê = R̂
dd−2·2d such that R̂ ≥ 20d2d−34d ·mo(A1, . . . , Ad) log2d−3 n, is at most d logn

n10 .

Now consider the instance when the for loop in COARSE-ESTIMATE executes for a R̂
such that R̂ ≤ mo(A1,...,Ad)

4d logn
. In this situation, P(Xi = 1) ≥ 1

2d
. So, E[X] ≥ Γ

2d
. By using

Chernoff-Hoeffding’s inequality (See Lemma 2.4 (ii) in Section 2.1),

P
(
X ≤ Γ

10 · 2d

)
≤ P

(
X <

Γ

2d
− 4

5
· Γ

2d

)
≤ 1

n100d

By using the union bound for all R̂, the probability that COARSE-ESTIMATE out-

puts some Ê = R̂
dd−2·2d such that R̂ ≤ mo(A1,...,Ad)

4d logn
, is at most d logn

n100d . Observe that,

the probability that COARSE-ESTIMATE outputs some Ê = R̂
dd−2·2d such that R̂ ≥

d2d−34dmo(A1, . . . , Ad) log2d−3 n or R̂ ≤ mo(A1,...,Ad)
4d logn

, is at most d logn
n10d + d logn

n100d ≤ 1
n8d .

Putting everything together, COARSE-ESTIMATE gives some Ê = R̂
dd−2·2d as the output

with probability at least 1− 1
n8d satisfying

mo(A1, . . . , Ad)

8dd−12d logd−1 n
≤ Ê =

R̂
dd−2 · 2d

≤ 20dd−12d ·mo(A1, . . . , Ad) logd−1 n

From the pseudocode of VERIFY-ESTIMATE (Algorithm 4.2), we call for GPIS2

queries only at line number 12. In the worst case, VERIFY-ESTIMATE executes line

87

number 12 for each j ∈ [(d log n)∗]. That is, the query complexity of VERIFY-ESTIMATE

isO(logd−1 n). From the description of COARSE-ESTIMATE, COARSE-ESTIMATE calls

VERIFY-ESTIMATE Od(log n) times for each choice of R̂. Hence, COARSE-ESTIMATE

makes Od(logd+1 n) GPIS2 queries.

4.7 Algorithm

In this section, we describe our algorithm for a (1 ± ε) multiplicative approximation

of the number of hyperedges mo(H) in a hypergraph H. As mentioned earlier, when

ε ≤
(
n−d log5d+5 n

)1/4
, we compute mo(H) exactly by querying mo({a1}, . . . , {ad})

for all distinct a1, . . . , ad ∈ U(H), and this requires only polylogarithmic number of

queries. We do the following when ε >
(
n−d log5d+5 n

)1/4
. We build a data structure D

that maintains the following two quantities at any point of time.

(i) An accumulator Ψ for the number of hyperedges. We initialize Ψ = 0.

(ii) A set of tuples (A11, . . . , A1d, w1), . . . , (Aζ1, . . . , Aζd, wζ) for some ζ > 0, where

tuple (Ai1, . . . , Aid) corresponds to the d-partite subgraphH(Ai1, . . . , Aid) and wi
is the weight associated toH(Ai1, . . . , Aid).

The data structure is initialized with Ψ = 0, and only one tuple (U [d], 1). The Algorithm

performs the following steps.

(1) When there are no tuples left in the data structure D, the Algorithm outputs Ψ as

the estimate.

(2) (Exact Counting) Fix a threshold τ as k2·42dθ2d·16d2·d! logd+2 n
ε2

, where k = 4 12.

For each tuple (A1, . . . , Ad, w) in D, decide whether mo(A1, . . . , Ad) ≤ τ using

Lemma 4.6. If mo(A1, . . . , Ad) ≤ τ , we add the weighted number of ordered

hyperedges w ·mo(A1, . . . , Ad) to Ψ and remove (A1, . . . , Ad, w) fromD. If there

are no tuples left in D, then go to Step 1. Otherwise, if the number of tuples is

12We take k = 4 for ease of calculations. The argument works for any k.

88

at most N = κd · log4d n
ε2

, then go to Step 3, else go to Step 4. Note that κd is

a constant to be fixed later. By Lemma 4.6, the query complexity of Step 2 is

Od(τ log n) = Od
(

logd+3 n
ε2

)
per tuple.

(3) (Sparsification) For any tuple (A
[a1]
1 , . . . , A

[as]
s , w) here we havemo(A

[a1]
1 , . . . , A

[as]
s)

> τ . Note that Ai and Aj are pairwise disjoint subsets for each 1 ≤ i < j ≤ s.

We take hd : [k]d → {0, 1} to be a hash function such that P (hd(a = 1)) = 1/k

independently for each tuple a ∈ [k]d. The vertices in A =
s⋃
i=1

Ai are COLORED

with [k] = [4], and let χ(i, j) = {v ∈ Ai : v is COLORED with color j}, where

i ∈ [s] and j ∈ [k].

We add each tuple (χ(1, c1), . . . , χ(1, ca1), . . . , χ(s, cd−as+1), . . . , χ(s, cd), 4w) to

D for which hd(c1, . . . , cd) = 1. We remove the tuple (A
[a1]
1 , . . . , A

[as]
s , w) from

D. After processing all the tuples, we go to Step 2. Note that no query is required

in Step 3. The constant 4 is obtained by putting k = 4 in Lemma 4.10.

(4) (Coarse Estimation) Let r > N = κd log4d n
ε2

. Let {(Ai1, . . . , Aid, wi) : i ∈ [r]}
be the set of tuples stored in D. For each tuple (Ai1, . . . , Aid, wi) in D, we find an

estimate Êi such that mo(A1,...,Ad)

8·2ddd−1 logd−1 n
≤ Êi ≤ 20·2ddd−1 logd−1 n·mo(A1, . . . , Ad).

Lemma 4.8 proves that this can be done with Od(logd+1 n) GPIS2 queries per

tuple. We know that the number of tuples in D is more than N = κd
log4d n
ε2

. We

take a sample from the set of tuples such that the sample maintains the required

estimate approximately using Lemma 4.19. This lemma follows from a lemma by

Beame et al. [BHR+18]. The original statement of the lemma by Beame et al. is

given in Lemma 2.9 in Section 2.1.

Lemma 4.19. Let {(Ai1, . . . , Aid, wi) : i ∈ [r]} be the set of tuples in the data

structure D and ei be the coarse estimation for mo(Ai1, . . . , Aid, wi) such that

(i) wi, ei ≥ 1 ∀i ∈ [r]

(ii) ei
α
≤ mo(Ai1, . . . , Aid) ≤ ei · α for some α > 0 and ∀ i ∈ [r]

(iii)
∑r

i=1wi ·mo(Ai1, . . . , Aid) ≤M

89

There exists an algorithm that finds a set {(A′i1, . . . , A′id, w′i) : i ∈ [r′]} of tuples

such that the above three conditions hold and∣∣∣∣∣
r′∑
i=1

w′i ·mo(A
′
i1, . . . , A

′
id)−

r∑
i=1

wi ·mo(Ai1, . . . , Aid)

∣∣∣∣∣ ≤ λS

with probability 1− δ where S =
∑r

i=1 wi ·mo(Ai1, . . . , Aid) and λ, δ > 0. Also,

r′ = O
(
λ−2α4 logM

(
log logM + log 1

δ

))
.

We use the algorithm for Lemma 4.19 with λ = ε
4d logn

, α = 20 · 2ddd−1 logd−1 n

and δ = 1
n6d to find a new set {(A′i1, . . . , A′id, w′i) : i ∈ [r′]} of tuples satisfying the

following:
∣∣∣S −∑r′

i=1w
′
imo(A

′
i1, . . . , A

′
id)
∣∣∣ ≤ λS with probability 1− 1

n6d , where

S =
∑r

i=1 wi · mo(Ai1, . . . , Aid). Here, r′ ≤ κd · log4d n
ε2

. This κd is same as the

one mentioned in Step 2. We remove the set of r tuples, r > N , from D and add

the set of r′ tuples, where r′ ≤ κd · log4d n
ε2

= N . As no query is required to execute

the algorithm of Lemma 4.19, the number of GPIS2 queries in this step in each

iteration, is Od(logd+1 n) per tuple.

4.8 Proof of correctness

We start with the following observation for the proof of correctness.

Observation 4.20. There are at most 4d · N = 4dκd · log4d n
ε2

tuples in the data structure

D during the execution of the algorithm.

Proof. The number of tuples inD can increase by a factor of 4d in the sparsification step.

Note that we apply the sparsification step only when there are at most N = κ2 · log4d n
ε2

tuples in D. Hence, the number of tuples in D is at most 4d · N .

Now we prove Lemma 4.5. We restate the lemma for easy reference.

Lemma 4.21 (Lemma 4.5 restated). If ε ≥
(
n−d log5d+5 n

)1/4
, our algorithm produces a

(1±ε)-approximation tomo(H) with probability at least 1− 1
n4d and makesO

(
log5d+4 n

ε4

)
queries, where each query is either a GPIS1 query or a GPIS2 query.

90

To prove the above lemma, we need the following definition 4.22 along with Obser-

vations 4.23 and 4.24.

Definition 4.22. Let TUPLEi be the set of tuples in D at the end of the i-th iteration.

We partition them into two parts — a set of tuples TUPLE≤τi and TUPLE>τi contributing

less than and more than τ ordered hyperedges, respectively. Formally, TUPLE≤τi =

{(A1, . . . , Ad, w) : mo(A1, . . . , Ad) ≤ τ} and TUPLE>τi = TUPLEi \ TUPLE≤τi . Let Ψi

denote the value of Ψ after the i-th iteration where i ∈ N. The estimate for mo(H) =

mo(U
[d]) after the i-th iteration is given as

ESTi = Ψi +
∑

(A1,...,Ad,w)∈TUPLEi

w ·mo(A1, . . . , Ad).

The number of active hyperedges after the i-th iteration is given as

ACTi =
∑

(A1,...,Ad,w)∈TUPLEi

mo(A1, . . . , Ad).

Note that if there are some tuples left in D at the end of the i-th iteration, we do not

know the value of ESTi and ACTi. However, we know Ψi. Observe that Ψ0 = 0 and

EST0 = ACT0 = mo(H).

Observation 4.23. Let there be only one tuple in D after the i-th iteration for any non-

negative integer i. Then, ESTi+1 is a (1 + λ)-approximation to ESTi with probability at

least 1− 1
n5d , where λ = ε

4d logn
.

Proof. From Definition 4.22,

ESTi = Ψi +
∑

(A1,...,Ad,w)∈TUPLEi

w ·mo(A1, . . . , Ad)

= Ψi +
∑

(A1,...,Ad,w)∈TUPLE≤τi

w ·mo(A1, . . . , Ad) +

∑
(A1,...,Ad,w)∈TUPLE>τi

w ·mo(A1, . . . , Ad)

91

In Step 2 (that is the sparsification step) of the algorithm, for each tuple (A1, . . . , Ad, w) ∈
TUPLE≤τi , we determine the exact value of mo(A1, . . . , Ad), add w ·mo(A1, . . . , Ad) to

the current value of Ψ and remove the tuple from D. Observe that

Ψi+1 −Ψi =
∑

(A1,...,Ad,w)∈TUPLE≤τi

w ·mo(A1, . . . , Ad) (4.8)

If TUPLE>τi is empty, we go to Step 1 to report the output. Observe that in that case

ESTi+1 = ESTi, and we are done. If TUPLE>τi is non-empty, then we go to either Step

3 (as mentioned in Case 1 below) or Step 4 (as mentioned in Case 2 below) depending

on whether the number of tuples in D is at mostN or more than N , respectively, where

N = κd
log4d n
ε2

.

Case 1 (Go to Step 3): Note that for each tuple (A1, . . . , Ad, w) in D, we have

TUPLE≥τi . We apply the sparsification step (Step 3) for each tuple. For each tuple

(A1, . . . , Ad, w), we add a set of tuplesZ (each tuple inZ is of the form (B1, . . . , Bd, 4w))

by removing (A1, . . . , Ad, w) fromD. By Lemma 4.7, we have the following with prob-

ability 1− 1
n4θ−2d .∣∣∣∣∣∣k

∑
(B1,...,Bd,4w)∈Z

mo(B1, . . . , Bd)−mo(A1, . . . , Ad)

∣∣∣∣∣∣ ≤ k22dθd
√
d!mo(A1, . . . , Ad) logd n.

Note that this is the same k as that mentioned in Step 2 of our algorithm (see Section 4.7).

Moreover, k = 4.

Now using mo(A1, . . . , Ad) ≥ τ = k2·42dθ2d·16d2·d! logd+2 n
ε2

and k = 4 and taking

θ = 2d, we have Equation 4.9 holding with probability 1− 1
n6d .

∣∣∣∣∣∣
∑

(B1,...,Bd,4w)∈Z

4w ·mo(B1, . . . , Bd)− w ·mo(A1, . . . , Ad)

∣∣∣∣∣∣ ≤ ε

4d log n
·w·mo(A1, . . . , Ad)

(4.9)

Since we are in Step 3, there are at most N = κd
log4d n
ε2

tuples in TUPLE>τi . As

92

ε >
(

log5d+5

nd

)1/4

, the probability that Equation 4.9 holds for each tuple in TUPLE>τi is at

least 1− 1
n5d .

By Definition 4.22,

ESTi+1 = Ψi+1 +
∑

(B1,...,Bd,w′)∈TUPLEi+1

w′ ·mo(B1, . . . , Bd)

Using Equations 4.8 and 4.9, we can show that ESTi+1 is a (1 +λ)-approximation to

ESTi, where λ = ε
4d logn

, and the probability of success is 1− 1
n5d .

Case 2 (Go to Step 4): Here, we apply coarse estimation algorithm for each tuple

(A1, . . . , Ad, w) present in D to find Ê such that mo(A1,...,Ad)
α

≤ Ê ≤ α ·mo(A1, . . . , Ad)

as described in Step-4. By Lemma 4.8, the probability of success of finding the required

coarse estimation for a particular tuple, is at least 1 − 1
n8d . By Observation 4.20, we

have at most 4dN = κd4d log4d n
ε2

tuples at any instance of the algorithm. Hence, as

ε >
(

log5d+5 n
nd

)1/4

, the probability that we have the desired coarse estimation for all

tuples present in D, is at least 1 − 1
n6d . We have r > N = κd

log4d n
ε2

tuples in D. Under

the conditional space that we have the desired coarse estimation for all tuples present

in D, we apply the algorithm ALG corresponding to Lemma 4.19. In doing so, we

get r′ ≤ N tuples, as described in the Step-4, with probability 1 − 1
n6d . Observe that

TUPLEi+1 is the set of r′ tuples returned by ALG satisfying∣∣∣∣∣∣
∑

(B1,...,Bd,w′)

w′ ·mo(B1, . . . , Bd)− S

∣∣∣∣∣∣ ≤ λS, (4.10)

where λ = ε
4d logn

and
∑

(A1,...,Ad,w)∈TUPLE>τi

w·mo(A1, . . . , Ad). Now, by Definition 4.22,

ESTi+1 = Ψi+1 +
∑

(B1,...,Bd,w′)∈TUPLEi+1

w′ ·mo(B1, . . . , Bd)

Using Equations 4.8 and 4.10, we can show that ESTi+1 is a (1 + λ)-approximation to

ESTi and the probability of success is 1−
(

1
n6d + 1

n6d

)
≥ 1− 1

n6d−1 .

93

Observation 4.24. Let there be at least one tuple (A1, . . . , Ad, w) in the data structure

D after the i-th iteration such that mo(A1, . . . , Ad) > τ for any integer i > 0. Then,

ACTi+2 ≤ ACTi
2

with probability at least 1− 2
n5d .

Proof. As there exists one tuple in TUPLE>τi , our algorithm will not terminate in Step-

2. It will determine the exact values of mo(A1, . . . , Ad) for each (A1, . . . , Ad, w) ∈
TUPLE≤τi , and then will go to either Step-2 or Step-3 depending on the cardinality of

TUPLE≤τi . By adapting the same approach as that in the proof of Observation 4.23, we

can show that

(i) in the (i + 1)-th iteration, if our algorithm goes to Step-3, then ACTi+1 ≤ ACTi
2

with probability 1− 1
n5d ; and

(ii) in the (i + 1)-th iteration, if our algorithm goes to Step-4, then ACTi+1 ≤ ACTi

with probability 1− 1
n6d−1 .

From the description of the algorithm, it is clear that we apply sparsification either in

iteration (i + 1) or (i + 2). That is, either we do sparsification in both the iterations, or

we do sparsification in one iteration and coarse estimation in the other iteration, or we

do sparsification in (i + 1)-th iteration and termination of the algorithm after executing

Step-2 in the (i+ 2)-th iteration. Observe that in the last case, that is, if we terminate in

the (i+ 2)-th iteration, then ACTi+2 = 0 ≤ ACTi
2

. In the other two cases, by (i) and (ii),

we have ACTi+2 ≤ ACTi
2

with probability at least 1− 2
n5d .

Now, we are ready to prove Lemma 4.21.

Proof of Lemma 4.21. Let i∗ be the largest integer such that there exists at least one tuple

(A1, . . . , Ad, w) in the data structureD in the i∗-th iteration such that mo(A1, . . . , Ad) >

τ . That is ACTi∗ > τ . For ease of analysis, let us define the two following events.

• E1 : i∗ ≤ 2d log n.

• E2 : ESTi∗ is a (1± ε)-approximation to mo(H).

94

Using the fact ACT0 = mo(H) ≤ nd along with the Observation 4.24, we have i∗ ≤
2d log n with probability at least 1− 2d log n 2

n5d . That is P(E1) ≥ 1− 4d logn
n5d .

Now let us condition on the event E1. By the definition of i∗, we do the following

in the (i∗ + 1)-th iteration. In Step 2, for each tuple (A1, . . . , Ad, w) present in D, we

determine m0(A1, . . . , Ad) exactly, add it to Ψ and remove (A1, . . . , Ad, w) from D.

Observe that ACTi∗+1 = 0, that is, ESTi∗+1 = Ψi∗+1 = ESTi∗ . Since there are no tuples

left inD, we go to Step 1. At the start of the (i∗+2)-th iteration, we report Ψi∗+1 = ESTi∗

as the output. Using Observation 4.23, ESTi∗ is a (1± λ)i
∗
-approximation to EST0 with

probability at least 1 − 2d logn
n5d . As EST0 = mo(H), λ = ε

4d logn
, and E1 has occurred,

we have ESTi∗ is a (1± ε)-approximation to mo(H) with probability at least 1− 2d logn
n3d+1 .

That is P(E2 | E1) ≥ 1− 2d logn
n5d .

Now, we analyze the query complexity of the algorithm on the conditional space

that the events E1 and E2 have occurred. By the description of the algorithm, we make

Od
(

logd+3 n
ε2

)
GPIS1 queries per tuple in Step 2, and Od(logd+1 n) GPIS2 queries per

tuple in Step 4. Using Observation 4.20, there can be Od
(

log4d n
ε2

)
tuples present in

any iteration. Recall that the number of iterations is (i∗ + 2), that is, Od(log n). Since

i∗ ≤ 2d log n, the query complexity of our algorithm is

Od
(

log n · log4d n

ε2
·
(

logd+3 n

ε2
+ logd+1 n

))
= Od

(
log5d+4 n

ε4

)
,

where each query is either a GPIS1 or a GPIS2 query.

Now we compute the probability of success of our algorithm. Observe that

P(SUCCESS) ≥ P(E1∩E2) = P(E1) ·P(E2 | E1) ≥
(
1− 4d logn

n5d

)
·
(
1− 2d logn

n5d

)
≥ 1− 1

n4d

4.9 Conclusion

This chapter generalizes the results of [BHR+18,BHR+20] and the results of [BBGM21]

presented in Chapter 3. The bottleneck to this generalization was discussed at the end of

95

Chapter 3. We believe we could overcome this bottleneck because of our sparsification

technique which we believe might find other uses. We gave some justification in the

chapter as to why this sparsification technique could overcome the bottleneck. Apart

from the sparsification technique, our other non-trivial contribution was in coarse esti-

mation. We would like to again note that the query complexity of Dell et al. [DLM20a],

though polylogarithmic, is better than us in the exponent of the logarithmic term. Im-

proving the query complexity of Dell et al. [DLM20a] remains an interesting future

direction.

96

Chapter 5

Hitting Set Estimation using GPIS

Queries

Contents
5.1 Introduction . 98

5.1.1 Problem definition and our results 99

5.2 Related works . 100

5.3 Preliminaries . 102

5.3.1 Technical preliminary . 103

5.4 Algorithm for d-HITTING-SET . 105

5.4.1 GAP-d-HITTING-SET problem 106

5.4.2 Algorithm for d-HITTING-SET via d-PROMISED-HITTING-

SET . 107

5.4.3 Proof of Lemma 5.12 . 110

5.5 Algorithms for d-DECISION-HITTING-SET 121

5.6 Lower bound for d-DECISION-HITTING-SET 123

5.7 Discussion . 125

97

5.1 Introduction

There is a vast literature available on the query complexity of graph problems with clas-

sical polynomial time algorithms (refer to book [Gol17]). There have been works that

look at algorithmically hard problems through the lens of query complexity [IMR+18,

IY18, ORRR12]. In this work, we use ideas of parameterized complexity in order to

study the query complexity of an NP-hard problem. The HITTING SET (and VERTEX

COVER) problem is a test problem for all new techniques of parameterized complex-

ity and also in every subarea that parameterized complexity has explored. We continue

the tradition and study the query complexity of such a problem. Our query model is

Generalized Partite Independent Set Query (GPIS) oracle discussed in Chapter 4.

Independent set based oracles mostly report on the intersection of the edge set with

set(s) of vertices – the oracles give a YES/NO answer to the existence of an intersec-

tion, in a few cases they even count the number of such intersections. Lately, there

has been a wide range of interest in them. By now, they have been used for solving a

lot of problems – edge and hyperedge estimation in graphs and hypergraphs [BHR+20,

CLW20, DLM20b, BBGM19a], sampling edges and hyperedges [CLW20, DLM20b],

fine-grained complexity of approximate counting problems [DL21], computing mini-

mum cut [RSW18] and submodular function minimization [GPRW20] using CUT queries;

in the CUT query for a graph G, the oracle took as input a vertex subset S ⊆ V (G) and

outputs the number of cut edges between S and V (G) \ S.

Pushing the frontiers of the use of independent set based oracles into the context of

NP-Hard problems, it is reasonable to study query complexity of their parameterized ver-

sions. Before we move forward, let us introduce a few basic definitions in parameterized

complexity. The goal of parameterized complexity is to find ways of solving NP-hard

problems more efficiently than brute force: the aim is to restrict the combinatorial ex-

plosion to a parameter that is hopefully much smaller than the input size. Formally, a

parameterization of a problem is assigning an integer k to each input instance. A param-

eterized problem is said to be fixed-parameter tractable (FPT) if there is an algorithm

that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input and f is

98

an arbitrary computable function depending only on the parameter k. There is a long

list of NP-hard graph problems that are FPT under various parameterizations: finding

a vertex cover of size k, finding a cycle of length k, finding a maximum independent

set in a graph of treewidth at most k, etc. For more details, the reader is referred to the

monograph [CFK+15].

As HITTING SET has been a kind of a test problem for any new area that parameter-

ized complexity has explored, our focus in this thesis is on

• GPIS oracle to study parameterized decision (optimization) version of HITTING

SET;

In this context, it may be mentioned that Iwama et al. [IY18] initiated the study of

parameterized version of some NP-Hard problems in the graph property testing frame-

work with access to standard oracles, like degree query and neighbor query along with

some added power to the oracle. We will give the details of their work in Section 5.2.

We believe that apart from the oracles used in [IY18], these independent set based query

models will be useful to study the (parameterized) query complexity of other NP-Hard

problems.

5.1.1 Problem definition and our results

Definition 5.1 (d-hitting set of a d-uniform hypergraph). Let us consider a d-uniform

hypergraph H(U(H),F(H)). The d-hitting set of H, denoted by HS(H), is defined

as a subset of U(H), of minimum cardinality, that intersects with every hyperedge in

F(H).

The d-HITTING-SET problem (we consider in this chapter) is defined as follows.

d-HITTING-SET

Input: The set of n vertices U(H) of a d-uniform hypergraph H, access to a GPIS

oracle, and a positive integer k.

Output: A d-hitting set HS(H) such that |HS(H)| ≤ k if such a set exists. Other-

wise, we report such a set does not exist.

99

Throughout this chapter, n denotes the number of vertices in the graph or hypergraph

that can be understood from the context. Note that d-HITTING-SET is the generalization

of vertex cover in graphs. d-DECISION-HITTING-SET is the usual decision version of

d-HITTING-SET, respectively. The main results of our work are as follows; they include

both upper and matching lower bounds for the HITTING-SET problem.

Theorem 5.2 (Upper bounds). (i) d-HITTING-SET can be solved with Õd(kd log n) GPIS

queries.

(ii) d-DECISION-HITTING-SET can be solved with Õd
(

min
{
kd log n, k2d2

})
GPIS

queries.

Theorem 5.3 (Lower bound). Any algorithm that solves d-DECISION-HITTING-SET

requires Ω
((
k+d
d

))
GPIS queries.

Organization of the chapter

We start this chapter by reviewing relevant literature in Section 5.2. We discuss prelimi-

naries in Section 5.3.. In Section 5.4, we deal with the promised version (in the promised

version of d-HITTING-SET, there is a promise that the size of the minimum hitting set

is at most k) of the problem leading to the hitting set problem. The decision version of

the hitting set problem is discussed in Section 5.5. Section 5.6 has details on the lower

bound proof. Section 5.7 concludes this chapter with a discussion.

5.2 Related works

To the best of our knowledge, the only work prior to ours related to parameterization

in the query complexity model was by Iwama and Yoshida [IY18]. They studied prop-

erty testing for several parameterized NP optimization problems in the query complexity

model. For the query, they could ask for the degree of a vertex, neighbors of a vertex –

both local queries and had an added power of sampling an edge uniformly at random. As

100

the probability space is over the entire edge set, asking for a random edge does not qual-

ify as a local query. To justify the added power of the oracle to sample edges uniformly

at random, they have shown that Ω(
√
n) degree and neighbor queries are required to

solve VERTEX-COVER. Apart from that, an important assumption in their work is that

the algorithms knew the number of edges, which is not what is usually done in query

complexity models. Also, the algorithms that are designed gives correct answer only for

stable instances 1. Under these assumptions, they study the parameterized query com-

plexity of vertex cover, feedback vertex set, multicut, dominating set and non-existence

of paths of specific length and give constant query testable algorithms if the parameter k

is treated to be a constant.

Note that our query oracles can access some global information. However, our or-

acles do not use any randomness, does not know the number of edges, consider all

instances, and have a simple unifying structure in terms of asking for the existence of

an edge between disjoint sets of vertices. We feel that our work marked by its use

of independent set based oracle queries is not comparable to the work by Iwama and

Yoshida [IY18]. We mention in passing that their vertex cover algorithm admits a query

complexity of Õ(2k

ε2
) and either finds a vertex cover of size at most k or decides that

there is no vertex cover of size bounded by k even if we delete εm edges, where the

number of edges m is known in advance. In contrast to the work of Iwama and Yoshida,

our algorithm uses BIS query for the vertex cover problem; it neither knows the number

of edges, nor estimates it. Our algorithm admits a query complexity of Õ(k4) and we

either find a vertex cover of size at most k if it exists or decide that there is no vertex

cover of size bounded by k. We also provide lower bound arguments.

1If the input is stable, then there are large number of interesting objects of interest. So, random
sampling of edges will work well if the input is stable. Stable instance assumption, which is standard
in property testing, is necessary in the work by Iwama and Yoshida [IY18] as they consider only local
queries.

101

5.3 Preliminaries

Recall once again that a hypergraph is a set system (U(H),F(H)), where U(H) is the

set of vertices and F(H) is the set of hyperedges. Given hypergraphsH1,H2 defined on

the same set of n vertices, the hypergraphH1∪H2 is such that U(H1∪H2) = U(H1) =

U(H2) and F(H1 ∪ H2) = F(H1) ∪ F(H2). A hypergraph H′ is a sub-hypergraph of

H if U(H′) ⊆ U(H) and F(H′) ⊆ F(H). For a hyperedge F ∈ F(H), U(F) or simply

F denotes the subset of vertices that form the hyperedge. All hyperedges of a d-uniform

hypergraph have exactly d vertices. HS(H) denotes a minimum d-HITTING SET of the

d-uniform hypergraphH.

For us “choose a random hash function h : V → [N]”, means that each vertex in V is

colored with one of theN colors uniformly and independently at random. In this chapter,

for a problem instance (I, k) of a parameterized problem Π, a high probability event

means that it occurs with probability at least 1− 1
kc

, where k is the given parameter and

c is a positive constant. The following known observation is important for the analysis

of algorithms described in this work.

Observation 5.4. (i) Let Π be a parameterized maximization (minimization) prob-

lem and let (I, k) be an instance of Π. Let A be a randomized algorithm for

Π, with success probability at least p, where 0 < p < 1 is a constant. Then,

if we repeat A for C log k times for a suitably large constant C and report the

maximum (minimum) sized output over C log k outcomes, then the event that A
succeeds occurs with high probability. If the query complexity of algorithm A is

q, then the query complexity of the C log k repetitions of A is Õ(q).

(ii) Let Π be a parameterized decision problem and let (I, k) be an instance of Π. Let

A be a randomized algorithm for Π, with success probability at least p, where
1
2
< p < 1 is a constant. Then, if we repeatA for C log k times for a suitably large

constant C and report the majority of the C log k outcomes, then the event that A
succeeds occurs with high probability. If the query complexity of algorithm A is

q, then the query complexity of the C log k repetitions of A is Õ(q).

102

Representative Sets2: In the following, we formally define representative set for hy-

pergraphs.

For the hypergraphH, F ′ ⊆ F(H) is said to be a k-representative set corresponding

to H if the following is satisfied for any X ⊂ U(H) of size k. If there is an F ∈ F(H)

satisfying X ∩ F = ∅, then there exists F ′ ∈ F ′ such that X ∩ F ′ = ∅.
The following proposition gives a bound on the size of a k-representative set corre-

sponding to a d-uniform hypergraph.

Proposition 5.5 ([BT81]). If H is a d-uniform hypergraph, then there exists a
(
k+d
d

)
sized k-representative set corresponding toH.

Corollary 5.6 ([CFK+15]). For a set system H as above, consider the family Z =

{U(F) | F ∈ F(H)} and let Ẑ be a k-representative set of Z as obtained in Propo-

sition 5.5. Let H′ be the set system where U(H′) =
⋃
Z∈Ẑ S and F(H′) = {F ∈

F | U(F) ∈ Ŝ}. (H, k) is a YES instance of d-DECISION-HITTING-SET if and only if

(H′, k) is a YES instance of d-DECISION-HITTING-SET.

We will use this fact of representative set crucially to solve d-DECISION-HITTING-

SET using GPIS oracle.

5.3.1 Technical preliminary

For ease of exposition, we now define a query oracle GPISE which is equivalent to

GPIS upto O(log n) factor. GPISE returns a witness hyperedge for a YES answer of

GPIS and returns NULL, otherwise. The formal definition follows.

Generalized d-partite independent set edge oracle (GPISE): For a d-uniform hypergraph

H, given d pairwise non-empty disjoint subsets A1, A2, . . . , Ad ⊆ U(H) as in-

put, a GPISE query oracle outputs a hyperedge (u1, . . . , ud) ∈ F(H) such that

ui ∈ Ai, for each i ∈ [d]; otherwise, the GPISE oracle reports NULL.
2Informally speaking, representative set in parameterized complexity is analogous to coreset in com-

putational geometry.

103

Observation 5.7. Let A1, . . . , Ad be d pairwise disjoint subsets of U(H). A GPISE

query with input A1, . . . , Ad can be simulated by using Od(log n) GPIS queries.

Proof. We describe the simulation process in a recursive fashion. We first make a

GPIS query with input A1, . . . , Ad. If GPIS reports there is no hyperedge spanning

the sets A1, . . . , Ad, then we report NULL as the answer to the GPISE query. Other-

wise, for each i ∈ [d], we partition each Ai into two parts, that is, Ai1 and Ai2 such that

|Ai1| =
⌈
|Ai|

2

⌉
and |Ai2| =

⌊
|Ai|

2

⌋
. For each A1j, . . . , Adj with j ∈ {1, 2}, we make

a GPIS query with input A1j, . . . , Adj . Note that we make 2d GPIS queries. Observe

that there exists at least one combination of A1j, . . . , Adj such that GPIS reports that

m(A1j, . . . , Adj) 6= 0 3. Now we call for GPISE query with one suchA1j, . . . , Adj (such

that m(A1j, . . . , Adj) 6= 0) as input, and reports the answer of the GPISE query with

input A1j, . . . , Adj as the answer to the GPISE query with input A1, . . . , Ad. The cor-

rectness of the answer to the GPISE query follows from the description of the simulation

process. Let QE(A1, . . . , Ad) denotes the number of GPIS query, that our simulation

process makes, to answer GPISE query with input A1, . . . , Ad. Hence,

QE(A1, . . . , Ad) ≤ 1 + 2d + max
A1j ,...,Adj

QE (A1j, . . . , Adj)

Observe that QE(A1, . . . , Ad) = Od(log n).

Observation 5.8. Let G be a subgraph, of a d uniform hypergraph H, induced by

V ⊆ U(H). There exists an algorithm A that makes Od
(
log 1

δ

)
GPISE queries and

performs as follows: if there exists at least one hyperedge in G, then A returns a (ar-

bitrary) hyperedge in G with probability 1 − δ; otherwise, A reports that there is no

hyperedge in G.

Remark 5.1. By Observation 5.7, the above algorithmA implies an algorithm that uses

Od
(
log n log 1

δ

)
GPIS queries and gives an output that is same as that of A.

3m(A1j , . . . , Adj) is the number of hyperedges having a vertex in Aij’s for each i ∈ [d]

104

Proof of Observation 5.8. Let us consider partitioning the vertex set V into d partsB1, . . . , Bd

such that each vertex in V is present in one of the Bis uniformly at random. Then let

us make a GPISE query with input B1, . . . , Bd. If there exists a hyperedge in G, then

the probability that all of the d vertices of a particular hyperedge are in different Bis is
(d−1)!
dd

and the GPISE query reports such an edge with probability at least (d−1)!
dd

. If there

is no hyperedge in G, then the GPISE query reports NULL.

The algorithm A repeats the above procedure R = O
(

dd

(d−1)!
log 1

δ

)
times, that is,

partitions the vertices in V (into d parts) R times. A reports a hyperedge if at least

one of the R GPISE queries reports a hyperedge. Otherwise, A′ reports that there is

no hyperedge in G. The correctness of the algorithm A follows from its description.

Moreover, note that A makes R = Od
(
log 1

δ

)
GPISE queries.

5.4 Algorithm for d-HITTING-SET

In this Section, we will prove the following result. The oracle access will be to GPISE

(instead of GPIS) and because of the already proved equivalence of them in Section 5.3.1,

the final results will follow.

Theorem 5.9 (Restatement of Theorem 5.2 (i) in terms of GPISE queries). d-HITTING-

SET can be solved with Õd
(
kd
)

GPISE queries.

Observe that Theorem 5.2 (i) directly follows from the above theorem and Observa-

tion 5.7.

The algorithm for d-HITTING-SET, having a query complexity of Õ(k2d) GPISE

queries, will use an algorithm admitting a query complexity of Õ(kd) for a version of

this problem where the input instance is promised to have a hitting set of size at most

k. The main idea to solve the version is to sample a suitable sub-hypergraph having

a bounded number of hyperedges, using GPISE queries on the input hypergraph, such

that the hitting set of the sampled hypergraph is a hitting set of the original hypergraph

and vice versa. Two main ingredients in the proof of Theorem 5.9 are the following:

105

1. Structure of a sunflower in a hypergraph [ER60].

2. An algorithm for GAP-d-HITTING-SET problem using Õ (k) GPISE queries.

The d-HITTING SET problem can be solved by using the algorithm for the promised

version of the d-HITTING SET problem along with the algorithm for GAP-d-HITTING-

SET problem.

5.4.1 GAP-d-HITTING-SET problem

In GAP-d-HITTING-SET on a d-uniform hypergraph H, the objective is to report AC-

CEPT ifH has a hitting set of size at most k, to report REJECT if the size of any minimum

hitting set ofH is more than dk, and to report ACCEPT or REJECT arbitrarily if the hitting

set lies between k and dk. We will show (in Observation 5.10) that GAP-d-HITTING-

SET can be solved by using Õ(k) GPISE queries. For the d-HITTING SET problem,

we first solve GAP-d-HITTING-SET. If the algorithm for GAP-d-HITTING-SET reports

REJECT, then we conclude that the size of the minimum hitting set of H is at least k. If

algorithm for GAP-d-HITTING-SET reports ACCEPT, then H has a hitting set of size at

most dk. Now we can use our algorithm for the promised version of d-HITTING SET to

give the final answer to the non-promised d-HITTING SET.

Observation 5.10. GAP-d-HITTING-SET can be solved by using Õ(k) GPISE queries.

Proof. We find a packing 4 of size at most k + 1 in a greedy fashion, by using Õ(k)

GPISE queries as follows.

(i) Set V = U(H), G = H.

(ii) Run algorithm A (the algorithm corresponding to Observation 5.8) on G with pa-

rameter δ = 1
kc

, where c is a suitably large constant more than 1.

(iii) If A reports that there is no edge in G, then report ACCEPT and QUIT.

4Packing refers to a set of hyperedges that are vertex disjoint.

106

(iv) Let F be the hyperedge in G that is returned byA. If we have seen k+1 hyperedges

(including F), then we report REJECT and QUIT.

(v) Otherwise, we delete all the vertices in F from G, that is, we set G = G \ F . Go

to Step (ii).

The above algorithm calls algorithm A with parameter δ = 1
kc

at most k + 1 times.

From Observation 5.8, each call of algorithm A requires Od(log k) GPISE queries and

succeeds with probability at least 1 − δ = 1 − 1
kc

. So, the above algorithm for GAP-d-

HITTING-SET makes Õ(k) GPISE queries and succeeds with probability at least 1 −
1

kc−1 . Now we discuss the correctness proof of our algorithm for GAP-d-HITTING-

SET assuming all calls to algorithm A suceed. Observe that our algorithm (for GAP-

d-HITTING-SET) finds a packing of size at most k + 1. Moreover, if the algorithm

stops after finding a packing of size at most k, then those set of at most k hyperedges

correspond to a maximal packing. If hypergraph H has a hitting set of size at most k,

then the size of any (maximal) packing is at most k. In this case, our algorithm quits

after finding at most k hyperedges that correspond to a maximal packing, and we report

ACCEPT. Now, if the size of the minimum hitting set ofH is more than dk, then the size

of any maximal packing is at least k + 1. In this case, our algorithm will be able to find

a packing of size at least k + 1, and we report REJECT.

5.4.2 Algorithm for d-HITTING-SET via d-PROMISED-HITTING-SET

In this Section, we begin by studying the following promised problem.

d-PROMISED-HITTING-SET

Input: The set of vertices U(H) of a d-uniform hypergraphH such that |HS(H)| ≤
k and the access to a GPISE oracle.

Output: A hitting set ofH that is of size at most k.

We will show at the end of this section that the algorithm for d-HITTING-SET fol-

lows from the algorithms for GAP-d-HITTING-SET and d-PROMISED-HITTING-SET

problems.

107

For d-PROMISED-HITTING-SET, we design an algorithm with query complexity

Õ(kd). See Algorithm 5.1 for the pseudocode of d-PROMISED-HITTING-SET.

Algorithm 5.1: Algorithm for d-PROMISED-HITTING-SET

Input: The set of vertices U(H) of a d-uniform hypergraphH such that
|HS(H)| ≤ k and the access to a GPISE oracle.

Output: A hitting set ofH that is of size at most k.
1 begin
2 Take α log k random hash functions of the form h : U(H)→ [βk], where

α = 100d2 and β = 100d32d+5.
3 for (each hash function h) do
4 Find Ui = {u ∈ U(H) : h(u) = i}, where i ∈ [βk].
5 Make a GPISE query with input (Ui1 , . . . , Uid) for each

1 ≤ i1 < . . . < id ≤ βk such that Uij 6= ∅ ∀j ∈ [d].
6 Let F ′ be the set of hyperedges that are output by the O(kd) GPISE

queries.
7 Generate a subhypergraphHh ofH such that U(Hh) = U(H) and

F(Hh) = F ′.
8 LetH1, . . . ,Hα log k be the subhypergraphs generated by α log k hash

functions.
9 Find Ĥ = H1 ∪ · · · ∪ Hα log k.

10 Report HS(Ĥ) as the output.

Theorem 5.11. d-PROMISED-HITTING-SET can be solved with Õ(kd) GPISE queries.

Here, we give an outline of the algorithm. The first step of the algorithm involves, for

a positive integer b, a sampling primitive Lb for the problem. This sampling primitive

was used in a streaming setting in [CCE+16]. We extend it to our setting of query

complexity. Let H be the d-uniform hypergraph whose vertex set U(H) is known and

hyperedge set F(H) is unknown to us. Let h : U(H)→ [b] be a random hash function.

Let Ui = {u ∈ U(H) : h(u) = i}, where i ∈ [b]. Note that U1, . . . , Ub form a partition of

U(H), some of the Uis can be empty. We make a GPISE query with input (Ui1 , . . . , Uid)

for each 1 ≤ i1 < . . . < id ≤ b such that Uij 6= ∅ ∀j ∈ [d]. Observe that we make O(bd)

queries to the oracle. LetF ′ be the set of hyperedges that are output by theO(bd) GPISE

108

queries. Now, we can generate a subhypergraphHh ofH such that U(Hh) = U(H) and

F(Hh) = F ′.
In the rest of this section, we abuse the standard graph theoretic terminology by

sometimes calling a d-uniform hypergraph as a graph and a hyperedge as an edge, re-

spectively.

We find α log k samples by calling the sampling primitive Sβk for α log k times,

where α = 100d2 and β = 100d32d+5. Let the subgraphs resulting from the sampling be

H1, . . . ,Hα log k. Let Ĥ = H1 ∪ · · · ∪ Hα log k. Note that we can construct Ĥ by making

Õ(kd) GPISE queries. For completeness, the detailed proof of Theorem 5.11 is given

at the end of Section 5.4.2. Observe that if we prove the following lemma, then we are

done with the proof of Theorem 5.11. Recall that HS(H) denotes a minimum hitting

set ofH.

Lemma 5.12 (Proof in Section 5.4.3). If |HS(H)| ≤ k, then HS(H) = HS(Ĥ) with

high probability.

Remark 5.2. The statement of our Lemma 5.12 is same as that of Theorem 3.2 of [CCE+16],

but the proof is not. We feel the proof of Theorem 3.2 in [CCE+16] is incomplete be-

cause of the following reason. The authors argue that HS(G) = HS(U ∪ F) where G

denotes the hypergraph, U is the set of large cores and F is the set of hyperedges that do

not include any significant core. Next, the authors argue thatHS(U∪F) = HS(U ′∪F)

where U ′ is the set of large cores that do not contain significant cores. We feel that their

statement is correct but the part of the proof meant for this, is sketchy. This is mainly

because HS(U ′∪F) may not hit some hyperedges in G that contain a large core C such

that C contains a core significant but not large core C ′. As Lemma 5.12 is crucial for us,

we leave nothing for chance and give an alternate, detailed proof in Section 5.12.

Now, we will show that Theorem 5.11 follows from Lemma 5.12.

Proof of Theorem 5.11. Our query procedure will be as follows. We find α log k samples

using the primitive Sdβk, where α = 100d2 and β = 100d32d+5. Let those subgraphs be

H1, . . . ,Hα log k. Let Ĥ = H1 ∪ · · · ∪ Hα log k. We find a minimum hitting set of Ĥ. We

109

report HS(Ĥ) as HS(H). The correctness of the algorithm follows from Lemma 5.12.

The query complexity of the algorithm is Õ(kd), which is evident from the sampling

primitive described at the beginning of this Section.

We finally come to the proof of Theorem 5.2 (restated as Theorem 5.9). Recall that

for a hypergraphH, HS(H) denotes a minimum hitting set ofH.

Proof of Theorem 5.9. We first run the algorithm of GAP-d-HITTING-SET that succeeds

with high probability (see Observation 5.10). Under the assumption that the algorithm

of GAP-d-HITTING-SET succeeds, it reports ACCEPT if H has a hitting set of size at

most k, reports REJECT if the size of any minimum hitting set ofH is more than dk, and

it reports ACCEPT or REJECT arbitrarily if the hitting set is more than k and at most dk.

If the algorithm of GAP-d-HITTING-SET reports REJECT, we conclude that |HS(H)|
≥ k + 1. So, in this case we report that there does not exist any hitting set of size

at most k. Otherwise, if the algorithm of GAP-d-HITTING-SET reports ACCEPT, then

|HS(H)| ≤ dk. As |HS(H)| ≤ dk, HS(H) can be found using our algorithm for

d-PROMISED-HITTING-SET by making Õd(kd) GPISE queries. If |HS(H)| ≤ k, we

output HS(H) and if |HS(H)| > k, we report that there does not exist a hitting set

of size at most k. The total number of GPISE queries made by our algorithm for d-

HITTING-SET is Õd(kd).

Only thing that is left to show is the proof of Lemma 5.12.

5.4.3 Proof of Lemma 5.12

To prove Lemma 5.12, we need some intermediate definitions and results. As mentioned

earlier, we use the structure of the sunflower in a hypergraph [ER60].

Some definitions

The core of a sunflower is the pairwise intersection of the hyperedges present in the

sunflower, which is formally defined as follows.

110

Definition 5.13. Let H be a d-uniform hypergraph; S = {F1, . . . , Fr} ⊆ F(H) is a

r-sunflower inH if there exists C ⊆ U(H) such that Fi ∩Fj = C for all 1 ≤ i < j ≤ r.

C is defined to be the core of the sunflower in H and P = {Fi \ C : i ∈ [r]} is defined

as the set of petals of the sunflower S inH.

Based on the number of hyperedges forming the sunflower, the core of a sunflower

can be large, significant, or small. We fix them in such a way that each large core is

significant and each significant core (and hence, large core also) must intersect with any

hitting set. The formal definition follows.

Definition 5.14. Let SH(C) denote the maximum integer r such that C is the core of a

r-sunflower inH. If SH(C) > 10dk, C is large. If SH(C) > k, C is significant.

The promise that the hitting set is bounded by k, will help us

(i) to bound the number of hyperedges that do not contain any large core as a subset,

(ii) to guarantee that all the large cores in the original hypergraph, that do not contain

any significant cores as a subset, are significant in the sampled hypergraph with

high probability. This will ensure that the large cores in the original hypergraph

will intersect any hitting set of the sampled hypergraph, and

(iii) to guarantee that all the hyperedges that do not contain any large core as a subset,

are present in the sampled hypergraph with high probability.

Using the above observations, we can prove that the hitting set of the sampled hyper-

graph is the hitting set of the original graph with high probability. To formalize the above

discussion, we state the following proposition and then define some sets, which will be

needed for our analysis.

Proposition 5.15 ([ER60]). Let H be a d-uniform hypergraph. If |F(H)| > d!kd, then

there exists a (k + 1)-sunflower inH.

Definition 5.16. In the hypergraph H, C is the set of large cores; Fs is the family of

edges that do not contain any large core; C ′ is the family of large cores none of which

contain a significant core as a subset.

111

Bounding |FS| and C ′ when HS(H) ≤ k

The following two results (Lemma 5.17 and 5.18) give useful bounds on |FS| and C ′

with respect to the input instances of d-PROMISED-HITTING-SET.

Lemma 5.17. If |HS(H)| ≤ k, then |Fs| ≤ d!(10dk)d. That is, if the hitting set of the

hypergraph H is bounded by k, then the number of hyperedges that do not contain any

large core is at most d!(10dk)d.

Proof. If |Fs| > d!(10dk)d, then there exists a (10dk + 1)-sunflower S in H by Propo-

sition 5.15 such that each edge in S belongs to Fs. First, since |HS(H)| ≤ k, the core

CH(S) of S must be non-empty. Note that CH(S) is a large core and CH(S) is contained

in every edge in S. Observe that we arrived at a contradiction, because any edge in S is

also an edge in Fs and any edge in Fs does not contain a large core by definition. Hence,

|Fs| ≤ d!(10dk)d.

Lemma 5.18. If |HS(H)| ≤ k, then |C ′| ≤ (d− 1)!kd−1. That is, if the hitting set of the

hypergraph H is bounded by k, then the number of large cores without containing any

significant core as a subset is at most (d− 1)!kd−1.

Proof. Let us consider the set system of all cores in C ′. Note that the number of elements

present in each core in C ′ is at most d − 1. If |C ′| > (d − 1)! · kd−1, then there exists a

(k + 1)-sunflower S ′, by Proposition 5.15. Let C1, . . . , Ck+1 be the sets present in the

sunflower S ′ and let CS′ be the core of S ′. Observe that if CS′ = C1 ∩ · · · ∩ Ck+1 = ∅,
then |HS(H)| > k.

To complete the proof of this lemma, we consider the following observation when

CS′ is non-empty.

Observation 5.19. If CS′ is non-empty, then CS′ is the pair-wise intersection of a family

of k + 1 edges inH.

Proof. Let Ai be the set of at least 10dk edges that form a sunflower with core Ci, where

i ∈ [k + 1]. Observe that this is possible as each Ci is a large core. Before proceeding

112

further, note that Ci ∩ Cj = CS′ and (Ci \ CS′) ∩ (Cj \ CS′) = ∅ for all i, j ∈ [k + 1]

and i 6= j.

Consider Bi ⊆ Ai such that for each F ∈ Bi, F ∩ Cj = CS′ ∀j 6= i and |Bi| ≥ 9dk.

First, we argue that Bi exists for each i ∈ [k + 1]. Recall that for each j ∈ [k + 1],

|Cj| ≤ d− 1. Also, for any pair of edges F1, F2 ∈ Ai, (F1 \ Ci) ∩ (F2 \ Ci) = ∅. Thus,

using the fact that Ci ∩ Cj = CS′ for i 6= j, a vertex in Cj \ CS′ can belong to at most

one edge in Ai. This implies that there are at most (d − 1)k < dk sets F in Ai such

that F ∩ Cj 6= CS′ for some j 6= i ∈ [k + 1]. We can safely assume that k + 1 ≥ d

and therefore, the number of edges F ∈ Ai such that F ∩ Cj = CS′ ∀j 6= i ∈ [k + 1]

is at least 10dk − dk = 9dk. Next, we argue that there exists k + 1 edges F1, . . . , Fk+1

such that Fi ∈ Bi ∀i ∈ [k + 1] and Fi ∩ Fj = CS′ for all i, j ∈ [k + 1] and i 6= j.

We show the existence of the Fi’s inductively. For the base case, take any arbitrary edge

in B1 as F1. Assume that we have chosen F1, . . . , Fp, where 1 ≤ p ≤ k, such that

the required conditions hold. We will show that there exists Fp+1 ∈ Bp+1 such that

Fi ∩ Fp+1 = CS′ for each i ∈ [p]. By construction of Bi’s, no edge in Bp+1 intersects

withCi\CS′ , i ≤ p; but every edge inBp+1 containsCS′ . Also, none of the chosen edges

out of F1, . . . , Fp, intersects Cp+1 \CS′ . So, if we can select an edge F ∈ Bp+1 such that

F \ Cp+1 is disjoint from Fi \ Ci, ∀i ∈ [p], then we are done. Note that for two edges

F ′, F ′′ ∈ Bp+1, F ′ \ Cp+1 and F ′′ \ Cp+1 are disjoint. Consider the set B′p+1 ⊆ Bp+1

such that each edge F ∈ B′p+1 intersects with at least one out of {F1 \C1, . . . , Fp \Cp}.∣∣B′p+1

∣∣ ≤ dp ≤ dk, because (Fi \Ci)∩ (Fj \Cj) = ∅, ∀i 6= j ∈ [p] and |Fi| ≤ d, i ∈ [p].

As |Bp+1| ≥ 9dk, we select any edge in Bp+1 \B′p+1 as Fp+1.

The above observation implies the following. If CS′ is non-empty, then there exists a

(k+ 1)-sunflower inH. So, SH(CS′) > k or equivalently CS′ is a significant core. Note

that each Ci contains CS′ , which is a significant core; which contradicts the definition of

C ′. Hence, |C ′| ≤ (d− 1)!kd−1.

Remark 5.3. In [CCE+16], the statement of Lemma 3.5 is same as the combination of

our Lemma 5.17 and 5.18. The proof of our Lemma 5.17 is same as that of the corre-

sponding part of the proof Lemma 3.5 in [CCE+16]. However, the corresponding part

113

of our Lemma 5.18 in the proof of Lemma 3.5 of [CCE+16] is sketchy and incomplete.

That is why, we give the complete proof of Lemma 5.17 and 5.18 in this thesis. In par-

ticular, inside the proof of Lemma 3.5 in [CCE+16], they have an equivalent statement

of Observation 5.19, whose proof is sketchy.

The structure of Ĥ

The following lemma provides insight into the structure of Ĥ and thereby is the most

important part of proving Lemma 5.12.

Lemma 5.20. Let Ĥ = H1 ∪ · · · ∪ Hα log k. If |HS(H)| ≤ k, then the followings hold

with high probability.

(a) Fs ⊆ F(Ĥ), that is, any hyperedge of the hypergraphH that does not contain any

large core is a hyperedge in the sampled hypergraph Ĥ;

(b) SĤ(C) > k, ∀C ∈ C ′, that is, every large core in the hypergraph H that does

not contain any significant core as a subset is a significant core in the sampled

hypergraph Ĥ.

Proof. First, consider the two claims stated below.

Claim 5.21. ∀i ∈ [α log k], P(F ∈ F(Hi) | F ∈ Fs) ≥ 1
2
.

Claim 5.22. ∀i ∈ [α log k], P(SHi(C) > k | C ∈ C ′) ≥ 1
2
.

Claim 5.21 says that any herperedge in Fs is also a hyperedge inHi with probability

at least 1/2. Claim 5.22 says that any large core in C ′ is a significant core in Hi with

probability at least 1/2. The proofs of Claims 5.21 and 5.22 are involved which we hold

back for now and see its implications.

Recall that Ĥ = H1 ∪ · · · ∪ Hα log k. Using Claims 5.21 and 5.22, we get

P(F /∈ F(Ĥ) | F ∈ Fs) ≤
(

1− 1

2

)α log k

≤ 1

kα

114

and

P(SĤ(C) ≤ k | C ∈ C ′) ≤
(

1− 1

2

)α log k

≤ 1

kα

Using the union bound together with Lemma 5.17, we can deduce the following

P(Fs * F(Ĥ)) ≤
∑
F∈Fs

P(F /∈ F(Ĥ) | F ∈ Fs)

≤ d!(10k)d

kα
≤ 1

k98

and

P(∃ C ∈ C ′ such that SĤ(C) ≤ k) ≤
∑
C∈C′

P(SĤ(C) ≤ k | C ∈ C ′)

≤ (d− 1)!kd−1

kα
≤ 1

k99
.

Hence,

P(Fs * F(Ĥ) or ∃ C ∈ C ′ such that SĤ(C) ≤ k) ≤ 2

k98
.

This implies that with high probability, Fs ⊆ F(Ĥ) and SĤ(C) > k, ∀C ∈ C ′

Proofs of Claims 5.21 and 5.22

We now come back to the proofs of Claims 5.21 and 5.22.

Proof of Claim 5.21. Without loss of generality, we will prove the statement for the

graph H1. Let h : U(H) → [βk] be the random hash function used in the sampling

of H1. Observe that by the construction of H1, F ∈ F(H1) if the following two condi-

tions hold.

• h(u) = h(v) if and only if u = v, where u, v ∈ F .

115

• For any F ′ 6= F and F ′ ∈ F(H), F ′ and F differ in the color of at least one

vertex.

Hence,

P(F /∈ F(H1) | F ∈ Fs) ≤
∑

u,v∈F :u6=v

P(h(u) = h(v)) + P(E1),

where E1 is the event defined as follows

E1: ∃ an edge F ′ ∈ F(H) such that F ′ 6= F and {h(z) : z ∈ F} = {h(z) : z ∈ F ′}.

Before we bound the probability of the occurrence of E1, we show the existence of a

set D ⊆ U(H) \F of bounded cardinality such that each edge in F(H) \ {F} intersects

with D.

Observation 5.23. Let F ∈ Fs. There exists a set D ⊆ U(H) \ F such that each edge

in F(H) \ {F} intersects with D and |D| ≤ 2d+5d2k.

Proof. For each C ⊂ F , consider the hypergraph HC such that U(HC) = U(H) \ C
and F(Hc) = {F ′ \ C : F ′ ∈ F(H) and F ′ ∩ F = C}. First, we prove that the size of

HS(HC) is at most dSH(C). For the sake of contradiction, assume that |HS(HC)| >
dSH(C). Then we argue that there existsF ′ ⊆ F(HC) such that each pair of hyperedges

in F ′ are vertex disjoint and |F ′| > SH(C). If |F ′| ≤ SH(C), then the vertex set

{w : w ∈ F ′, F ′ ∈ F ′} is a hitting set of Hc and it has size at most dSH(C), which is a

contradiction. Therefore, there is aF ′ ⊆ F(HC) such that each pair of hyperedges inF ′

is vertex disjoint and |F ′| > SH(C). Observe that the set of edges {F ′′ ∪ C : F ′′ ∈ F ′}
forms a t-sunflower inH, where t > SH(C); which contradicts the definition of SH(C).

The required set D is defined as D = (HS(H) \ F) ∪
⋃
C⊂F

HS(HC).

If a hyperedge F ∗ in F(H) \ {F} intersects with F , then it must intersect with

HS(HC) for someC ⊂ F ; otherwise F ∗ intersects withHS(H)\F . So, each hyperedge

in F(H) \ {F}, intersects with D. Now, we bound the size of D. Since |HS(H)| ≤ k

116

and |HS(HC)| ≤ dSH(C)), we have

|D| ≤ |HS(H)|+

∣∣∣∣∣ ⋃
C⊂F

HS(HC)

∣∣∣∣∣
≤ k +

∑
C⊂F

dSH(C)

≤ k + 2d · d · 10dk ≤ 2d+5d2k.

The last inequality follows from the fact that F does not contain any large core.

With respect to the set D, we define another event E2 ⊇ E1 and we bound P(E2). Let

E2: ∃ z ∈ D such that h(z) = h(y) for some y ∈ F .

So,

P(E2) ≤ d
|D|
βk

=
d · 2d+5d2k

βk
=
d32d+5

β
<

1

10
.

The last inequality holds as β = 100d32d+5. Putting everything together,

P(F /∈ F(H1)|F ∈ Fs) ≤
∑

u,v∈F :u6=v

P(h(u) = h(v)) + P(E1)

≤ d2

βk
+ P(E2)

≤ d2

βk
+

1

10

<
1

2
.

Proof of Claim 5.22. Without loss of generality, we will prove the statement for the

graph H1. Let h : U(H) → [βk] be the random hash function used in the sampling

ofH1.

117

Let S be the sunflower with core C and F ′ be the arbitrary set of 10dk hyperedges

corresponding to sunflower S. Let us consider a partition of a subset of {F \C : F ∈ F ′}
into equivalence classes T1, . . . , Tt such that

•
⋃

x∈F1\C
h(x) =

⋃
x∈F2\C

h(x) if F1 and F2 belong to the same equivalence class, and

•

(⋃
x∈F1\C

h(x)

)
∩

(⋃
x∈F2\C

h(x)

)
= ∅ if F1 and F2 belong to different equivalence

classes.

Before proceeding further, we have the following observation.

Observation 5.24. P(t > 2k) ≥ 3
4
.

Proof. For F ∈ F ′, let XF be the indicator random variable that takes value 1 if and

only if

(⋃
x∈F1\C

h(x)

)
∩

(⋃
x∈F2\C

h(x)

)
6= ∅ for some F1 ∈ F ′ \ F . Observe that

t ≥ 10dk −X , where

X =
∑
F∈F ′

XF .

Observe

P(XF = 1) ≤
∑
F1∈F ′

P

 ⋃
x∈F1\C

h(x)

 ∩
 ⋃
x∈F2\C

h(x)

 6= ∅

≤ 10dk · d2 · 1

βk
≤ 1

20
. (5.1)

So, E[X] ≤ 1
20
· 10dk ≤ dk

2
. Now,

P (t ≤ 2k) = P (X ≥ 10dk − 2k) (∵ t = 10dk −X)

≤ E[X]

10dk − 2k
(Markov Ineqality)

<
1

4
(E[X] ≤ dk

2
)

118

Let h(T) =
⋃
x∈F

h(x), where F ∈ T . Let T be the equivalence classes such that the

following holds for each T ∈ T , h(T) ∩

(⋃
x∈HS(H)\C

h(x)

)
= ∅. As |HS(H)| ≤ k,

|T | > k holds with probability at least 3/4. Now, consider the following observation.

Observation 5.25. For each T ∈ T , there exists a hyperedgeF inH1 such that
⋃

x∈F\C
h(x) =

h(T) with probability at least 1− 1
100k

.

Proof. Consider the set of hyperedges F ′′ = {F :
⋃

x∈F\C
h(x) = h(T)}. Any edge

outside F ′′ has one vertex z such that z ∈ HS(H) \ C or h(z) ∈ h(T ′) for some

T ′ ∈ T \ {T}. By the construction of T and by the description of the algorithm, there

exists a hyperedge F in H1 such that
⋃

x∈F\C
h(x) = h(T) and the following event E

holds. E : h(u) = h(v) if and only if u = v for all u, v ∈ F .

P(Ec) ≤
∑
u,v∈F

P(h(u) = h(v)) ≤ d2

βk
≤ 1

100k
.

So, P(E) ≥ 1− 1
100k

.

From the above Observation, there exist at least |T | hyperedges in H1 that form a

sunflower with C with probability at least 1 − 1
100k

(k + 1) ≥ 49
50

. As P(|T | > k) ≥ 3
4
,

SH1(C) > k holds with probability 49
50
· 3

4
> 1

2
.

Now, we have all the ingredients to prove Lemma 5.12.

The proof of Lemma 5.12

Proof of Lemma 5.12. First, since Ĥ is a subgraph of H, a minimum hitting set of H is

also a hitting set of Ĥ. To prove this Lemma, it remains to show that when |HS(H)| ≤ k,

then a minimum hitting set of Ĥ is also a hitting set ofH. By Lemma 5.20, it is true that

with high probability Fs ⊆ F(Ĥ) and SĤ(C) > k if C ∈ C ′. It is enough to show that

119

when Fs ⊆ F(Ĥ) and SĤ(C) > k, ∀C ∈ C ′, then a minimum hitting set of Ĥ is also a

minimum hitting set ofH.

First we show that each significant core intersects withHS(H). Suppose there exists

a significant core C that does not intersect with HS(H). Let S be a r-sunflower in H,

r > k, such that C is the core of S. Then each of the r petals of S must intersect with

HS(H). But the petals of any sunflower are disjoint. This implies |HS(H)| ≥ r > k,

which is a contradiction. So, each significant core intersects with HS(H). As large

cores are significant, each large core also intersects with HS(H).

Let us consider a subhypergraph ofH, say H̃1, with the following definition. Take a

large core C1 in H that contains a significant core C2 as a subset. Let S1 be a sunflower

with core C1. Let S2 be a sunflower with core C2 that has more than k petals. Note that

there can be at most one hyperedge F1 of S1 that is also present in S2. We delete all

hyperedges participating in S1 except F1. The remaining hyperedges remain the same

as in H. Notice that a hitting set of H̃1 is also a hitting set of H; the significant core

C2 remains significant in H̃1. Thus, any hitting set of H̃1 must intersect with C and

therefore, must hit all the hyperedges of S1. We can think of this as a reduction rule,

where the input hypergraph and the output hypergraph have the same sized minimum

hitting sets. Let H̃ be a hypergraph obtained after applying the above reduction rule

exhaustively on H. The following properties must hold for H̃: (i) HS(H) = HS(H̃),

(ii) all large cores in H̃ do not contain significant cores as subsets. (iii) all hyperedges

of Fs inH are still present in H̃.

By Lemma 5.20, it is also true with high probability that SĤ(C) > k when C is

a large core of H̃ that does not contain any significant core as a subset. Note that the

arguments in Lemma 5.20 can be made for such large cores without significant cores in

H̃. Thus, we continue the arguments with the assumption that SĤ(C) > k when C is a

large core of H̃ that does not contain any significant core as a subset.

Now we show that when |HS(H)| ≤ k, HS(H̃) = HS(Ĥ). We know that Fs ⊆
F(H̃). That is, any edge that does not contain any large core as a subset, is present in

H̃. Each hyperedge in Fs must be covered by any hitting set ofH, as well as any hitting

set of H̃ and Ĥ. Now, it is enough to argue that a hyperedge F ∈ F(H̃) \ Fs, must be

120

covered by any hitting set of Ĥ. Note that each F ∈ F(H̃) \ Fs contains a large core,

say Ĉ, which does not contain a significant core as a subset. By our assumption, Ĉ is a

significant core in Ĥ and therefore, must be hit by any hitting set of Ĥ.

Putting everything together, when |HS(H|) ≤ k, each edge in H is covered by any

hitting set of Ĥ. Thus, HS(H) = HS(Ĥ).

5.5 Algorithms for d-DECISION-HITTING-SET

In this Section, we will prove the following result.

Theorem 5.26. d-DECISION-HITTING-SET can be solved with Õd(k2d2
) GPIS queries.

Note that the above result together with the algorithm for d-HITTING-SET that makes

Õd
(
kd log n

)
GPIS queries (Theorem 5.2(i)), implies an algorithm for d-DECISION-

HITTING-SET that makes Õd
(

min
{
kd log n, k2d2

})
GPIS queries proving the result

in Theorem 5.2(ii).

Proof of Theorem 5.26. By Observation 5.4, it is enough to give an algorithm that solves

d-DECISION-HITTING-SET with probability at least 2/3 by usingO
(
k2d2

)
GPIS queries.

We choose a random hash function h : U(H)→ [γk2d] 5, where γ = 1009dd2 (recall

from Section 2.1 that choosing a said random hash function is about coloring the vertices

uniformly and independently at random). Let Ui = {u ∈ U(H) : h(u) = i}, where

i ∈
[
γk2d

]
. Note that Uis form a partition of U(H), where some of the Uis can be empty.

We make a GPIS query with input (Ui1 , . . . , Uid) for each 1 ≤ i1 < . . . < id ≤ γk2d

such that Uij 6= ∅ for all j ∈ [d]. Recall that the output of a GPIS query is Yes or No.

We create a hypergraph Ĥ where we create a vertex for each part Ui, i ∈ [γk2d]. By

abuse of notations, we will denote by

U(Ĥ) =
{
U1, . . . , Uγk2d

}
5For us (in this chapter) “choose a random hash function h : V → [N]”, means that each vertex in V

is colored with one of the N colors uniformly and independently at random.

121

and

F(Ĥ) = {(Ui1 , . . . , Uid) : GPIS answers “yes” to the input (Ui1 , . . . , Uid)} .

Observe that we makeO
(
k2d2

)
queries to the GPIS oracle. We find HS(Ĥ) and report

|HS(H)| ≤ k if and only if
∣∣∣HS(Ĥ)

∣∣∣ ≤ k.

For the hitting set HS(H), consider the set S ′ = {Ui | ∃u ∈ HS(H), h(u) = i}.
Then S ′ is a hitting set for Ĥ. So,

∣∣∣HS(Ĥ)
∣∣∣ ≤ |HS(H)|, and if |HS(H)| ≤ k, then∣∣∣HS(Ĥ)

∣∣∣ ≤ k. Now, the correctness of our query procedure follows directly from the

following claim.

Claim 5.27. If
∣∣∣HS(Ĥ)

∣∣∣ ≤ k, then |HS(H)| ≤ k with probability at least 2/3.

The remaining part of the proof will prove the above claim.

Let R be a fixed k-representative set corresponding to H obtained from Proposi-

tion 5.5 and let H′ be a set system obtained from R as described in Corollary 5.6. Con-

sider the set U(H′). Note that |F(H′)| ≤
(
k+d
d

)
and |U(H′)| ≤ d ·

(
k+d
d

)
. Let E1 be the

event that all the vertices in U(H′) are uniquely colored, i.e., E1: h(u) = h(v) if and

only if u = v, where u, v ∈ U(H′).

Now we lower bound the probability of the event E1. As usual, let Ec1 denote the

complement of the event E1. Therefore,

P(Ec1) ≤
∑

u,v∈U(H′)

P(h(u) = h(v)) ≤
∑

u,v∈U(H′)

1

γk2d
≤ |U(H′)|2

γk2d
<

1

3
.

So, P(E1) ≥ 2
3
. Let Prop be the property that for each F ∈ F(H′), there is an “e

From the definition of the GPIS query oracle, observe that the property Prop is true

whenever the event E1 occurs. If we show that the occurrence of Prop implies that

|HS(H)| ≤ k if and only if
∣∣∣HS(Ĥ)

∣∣∣ ≤ k, we are done.

For the rest of the proof, assume that Prop holds. Let us define a function f :

U(Ĥ)→ U(H′)∪{ψ} as follows. For each i ∈ [γk2d], if h(u) = i and u ∈ U(H′), then

f(Ui) = u. Otherwise, f(Ui) = ψ.

122

Let
∣∣∣HS(Ĥ)

∣∣∣ = k′ ≤ k. Let HS(Ĥ) = {X1, . . . , Xk′} ⊆ U(Ĥ). Consider the

vertex set U ′ = {f(Xi) : i ∈ [k′], f(Xi) 6= ψ} ⊆ U(H′) which is of size at most k. As

HS(Ĥ) is a hitting set of Ĥ, U ′ covers all the hyperedges present in F(H′). Hence by

Corollary 5.6, |HS(H)| ≤ k.

5.6 Lower bound for d-DECISION-HITTING-SET

We will prove the following result in this Section.

Theorem 5.28 (Restatement of Theorem 5.3). Let n, k, d ∈ N with d ≤ k ≤ n. Any

algorithm, with GPIS query access to a hypergraph H having n vertices, that decides

whether HS(H) ≤ k or HS(H) ≥ k+ 1 with probability 2/3, makes at least Ω
((
k+d
d

))
queries.

We use the framework by Eden and Rosenbaum [ER18] to prove the above Theo-

rem 5.28 via a reduction from DISJOINTNESSN problem in the Yao’s two party com-

munication model. Recall from Section 2.2, in the DISJOINTNESSN problem, we have

two players Alice and Bob, where Alice has a vector x ∈ {0, 1}N and Bob has a vector

y ∈ {0, 1}N . The goal of the DISJOINTNESSN problem is for Alice and Bob to commu-

nicate bits between each other following a pre-decided protocol in order to decide if x

and y intersect or not. Given two vectors x and y in {0, 1}N , we say x and y intersect

if there exists i ∈ [N] such that xi = yi = 16. Otherwise, we say x and y are disjoint.

From Theorem 2.10 in Section 2.2, the communication complexity of DISJOINTNESSN

is Ω(N) [KN97]. The lower bound holds even if it is known from beforehand that ei-

ther x and y are disjoint, or there exists exactly one i ∈ [N] such that xi = yi = 1,

see [KN97].

Proof of Theorem 5.28. Let x ∈ {0, 1}N and y ∈ {0, 1}N , where N =
(
k+d
d

)
be the

inputs of Alice and Bob, respectively. Moreover, assume that either x and y are disjoint

or there exists exactly one i ∈ [N] such that xi = yi = 1. Fix a bijection φ : N → Σd,

6For a vector z ∈ {0, 1}N , zi denotes the i-th coordinate of the vector z.

123

where Σd denote the collection of all d-sized subsets of [k + d]. Let H(x,y) be the

hypergraph (with [n] as the vertex set), that can be uniquely determined from x and

y, having hyperedges according to the following rule: for each i ∈ [N], the particular

combination of
(
k+d
d

)
indicated by φ(i) is a hyperedge inH(x,y) if at least one of xi and

yi is 0. Note that no hyperedge inH(x,y) contains a vertex from [n]\ [k+d]. Moreover,

H(x,y) satisfies the following observation because of the particular nature of x and y.

Observation 5.29. (i) There exists at most one d-sized subset of [k + d] that is not a

hyperedge inH(x,y).

(ii) If x and y are disjoint then each d-sized subsets of [k + d] is a hyperedge in

H(x,y), and therefore the minimum size of any hitting set of H(x,y) is k + 1.

Otherwise, there is exactly one d-sized subset of [k + d] that is not a hyperedge in

H(x,y), and thereforeH(x,y) has a hitting set of size k.

The above observation follows from the construction of H(x,y) along with the fact

that either x and y are disjoint or there exists exactly one i ∈ [N] such that xi = yi = 1.

To reach a contradiction, assume that there exists an algorithm ALG that makes

o
((
k+d
d

))
GPIS query access to H(x,y) and decides whether HS(H(x,y)) ≤ k or

HS(H(x,y)) = k + 1. Now we give a protocol for DISJOINTNESSN with o
((
k+d
d

))
=

o (N) bits of communication. Alice and Bob run ALG on H(x,y). Let ALG ask for

GPIS query with some input instance A1, . . . , Ad. Note that A1, . . . , Ad are non-empty

and pairwise disjoint. Without loss of generality, we can assume that A1, . . . , Ad ⊂
[k + d] as no hyperedge in H(x,y) contains any vertex from [n] \ [k + d]. Now, we

describe how Alice and Bob simulate each GPIS query by communicating at most 2

bits.

At least one Ai has at least two vertices from [k+d]: By Observation 5.29 (i), in this

case, there exists a hyperedge having a vertex in each Ai. So, Alice and Bob can

answer to any such GPIS query without any communication.

Each Ai is a set of singleton vertex from [k + d]: In this case, Alice and Bob need

to determine whether the vertices in A =
d⋃
i=1

Ai ⊆ [k + d] form a hyperedge in

124

H(x,y). Let j = φ−1 (A). From the description of H(x,y), A is a hyperedge if

and only if at least one of xj and yj is 0. So, Alice and Bob can know the answer

to any such GPIS query by communicating their bits at j-th index, which is 2 bits

of communication.

Hence, Alice and Bob can simulate algorithm ALG by using o(N) bits of communi-

cation. After simulating ALG, Alice and Bob reports x and y intersect if ALG reports

thatHS(H(x,y)) ≤ k. Otherwise, if ALG reports thatHS(H(x,y)) = k+1, Alice and

Bob report x and y are disjoint. The correctness of the protocol for DISJOINTNESSN

follows from the existence of algorithm ALG and Observation 5.29 (ii).

5.7 Discussion

In this chapter, we proved that the query complexities of d-DECISION-HITTING-SET

and d-HITTING-SET problems, using GPIS query, to be Õd
(

min
{
kd log n, k2d2

})
and

Õd
(
kd log n

)
respectively. We proved an almost matching lower bound of Ω

((
k+d
d

))
for

both of these problems.

We think that the log n term in the query complexity of d-DECISION-HITTING-SET

is not required, and therefore, we believe that the query complexity of d-DECISION-

HITTING-SET using GPIS query should be Θ̃d

(
kd
)
. Unlike the d-DECISION-HITTING-

SET problem, we believe that the query complexity of d-HITTING-SET should be Θ̃d

(
kd log n

)
.

125

Chapter 6

Streaming Algorithm for Graph

Deletion Problems

Contents
6.1 Introduction . 128

6.1.1 The parameterization problems 128

6.1.2 Parametrized streaming algorithm 130

6.1.3 Our results . 132

6.1.4 Other related works . 135

6.2 Preliminaries . 136

6.2.1 Notion of streamability and hardness 136

6.2.2 Relation between streaming models 137

6.2.3 Notations . 138

6.3 Deterministic algorithms in the AL model 139

6.3.1 COMMON NEIGHBOR problem 139

6.3.2 Streamability results for F -SUBGRAPH DELETION and F -

MINOR DELETION . 143

6.3.3 Algorithm for F -MINOR DELETION 144

127

6.4 CVD in the DEA model . 145

6.5 The lower bounds . 150

6.5.1 A discussion on communication complexity 151

6.5.2 Proofs of Theorems 6.19, 6.20 and 6.21 152

6.6 Conclusion . 163

6.1 Introduction

We have discussed the streaming models for graph problems in Chapter 1 (see Sec-

tion 1.1.2). In streaming algorithms, a graph is presented as a sequence of edges. In

the simplest of this model, we have a stream of edge arrivals, where each edge adds to

the graph seen so far, or may include a dynamic mixture of arrivals and departures of

edges. In either case, the primary objective is to quickly answer some basic questions

over the current state of the graph, such as finding a (maximal) matching over the current

graph edges, or finding a (minimum) vertex cover, while storing only a small amount of

information. In the most restrictive model, we only allow O(logO(1) n) bits of space for

storage. However, using standard techniques from communication complexity one can

show that most problems do not admit such algorithms. Thus one relaxes this notion and

defines what is called a semi-streaming model, which allowsO(n logO(1) n) bits of space.

This model has been extremely successful for graph streaming algorithms and a plethora

of non-trivial algorithms have been designed in this model [AKL16,GVV17,KKSV17].

There is a vast literature on graph streaming and we refer to the survey by McGre-

gor [McG14a] for more details.

6.1.1 The parameterization problems

The theme of this chapter is parameterized streaming algorithms. Recall the basic no-

tions of parameterized complexity and FPT that we discussed in Section 5.1. Given the

definition of FPT for parameterized problems, it is natural to seek an efficient algorithm

128

for the corresponding parameterized streaming versions to allow O(f(k) logO(1) n) bits

of space, where f is an arbitrary computable function depending on the parameter k.

This chapter discusses about the following parameterized problems.

F -SUBGRAPH DELETION

Input: A graph G, a family F of connected graphs, and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any graph from F as a subgraph?

F -MINOR DELETION

Input: A graph G, a family F of connected graphs, and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any graph from F as a minor?

FVS

Input: A graph G and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any cycle?

ECT

Input: A graph G and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any cycle of even length?

OCT

Input: A graph G and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any cycle of odd length, i.e., G \X is bipartite?

TD

Input: A graph G and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \ X does not

contain any triangle?

129

CVD

Input: A graph G and a non-negative integer k.

Output: Does there exist a set X ⊂ V (G) of k vertices such that G \X is a cluster

graph, i.e., G \X does not contain any induced P3?

6.1.2 Parametrized streaming algorithm

There are several ways to formalize the parameterized streaming question, and in lit-

erature certain natural models are considered. The basic case is when the input of a

given problem consists of a sequence of edge arrivals only, for which one seeks a pa-

rameterized streaming algorithm (PSA). It is more challenging when the input stream

is dynamic, and contains both deletions and insertions of edges. In this case one seeks

a dynamic parameterized streaming algorithm (DPSA). Notice that when an edge in

the matching is deleted, we sometimes need substantial work to repair the solution

and have to ensure that the algorithm has enough information to do so, while keep-

ing only a bounded amount of working space. If we are promised that at every times-

tamp there is a solution of cost k, then we seek a promised dynamic parameterized

streaming algorithm (PDPSA). These notions were formalized in the following two

papers [CCHM15, CCE+16] and several results for VERTEX COVER and MAXIMUM

MATCHING were presented there. Unfortunately, this relaxation to O(f(k) logO(1) n)

bits of space does not buy us too many new results. Most of the problems for which pa-

rameterized streaming algorithms are known are “local problems”. Other local problems

like CLUSTER VERTEX DELETION and TRIANGLE DELETION do not have positive re-

sults. Also, problems that require some global checking – such as FEEDBACK VERTEX

SET, EVEN CYCLE TRANSVERSAL, ODD CYCLE TRANSVERSAL etc. remain elusive.

In fact, one can show that, when edges of the graph arrive in an arbitrary order, using

reductions from communication complexity all of the above problems will require Ω(n)

space even if we allow a constant number of passes over the data stream [CCE+16].

The starting point of this work is the above mentioned Ω(n) lower bounds on ba-

sic graph problems. We ask the most natural question – how do we deconstruct these

130

intractability results? When we look deeper we realize that, to the best of our knowl-

edge, the only parameter that has been used in parameterized streaming algorithms is

the size of the solution that we are seeking in most of the works. Indeed this is the most

well-studied parameter, but there is no reason to only use solution size as a parameter.

The only works that came to our notice using structural parameters in parameterized

streaming were [EHL+18, CCE+16] – they used bounded arboricity.

In parameterized complexity, when faced with obstacles, we either study a problem with

respect to parameters larger than the solution size or consider some structural

parameters. We export this approach to parameterized streaming algorithms with focus

to graph deletion problems. This is our main conceptual contribution, that is, to

introduce the concept of structural parameterizations, in our case vertex cover size, to

the study of parameterized streaming algorithms.

What parameters to use? In parameterized complexity, after solution size and treewidth,

arguably the most notable structural parameter is vertex cover size K [CFK+15,FJP14].

For all the vertex deletion problems that we consider in this thesis, a vertex cover is also

a solution. Thus, the vertex cover size K is always larger than the solution size k for

all the above problems. We do a thorough study of vertex deletion problems from the

view point of parameterized streaming in all known models and show dichotomy when

moving across parameters and streaming models. The main conceptual contribution of

this work is to carry forward the use of structural parameters in parameterized streaming

algorithms as done earlier in [EHL+18, CCE+16].

Streaming models considered in this chapter The models that we consider are: (1)

EDGE ARRIVAL (EA) model; (2) DYNAMIC EDGE ARRIVAL (DEA) model; (3) VER-

TEX ARRIVAL (VA) model; and (4) ADJACENCY LIST (AL) model. For formal defini-

tions of these models, see Section 1.1.2.

What problems to study? We study the streaming complexity of parameterized ver-

sions ofF -SUBGRAPH DELETION,F -MINOR DELETION and CLUSTER VERTEX DELE-

TION (CVD). These problems are one of the most well studied ones in parameterized

complexity [Cai96, CM15, CM16, FJP14, FLM+16, FLMS12, KLP+16, KP14, Mar10,

131

RSV04, Tho10] and have led to development of the field. The parameters we consider

in this thesis are (i) the solution size k and (ii) the size K of the vertex cover of the

input graph G. In F -SUBGRAPH DELETION, F -MINOR DELETION and CVD, the ob-

jective is to decide whether there exists X ⊂ V (G) of size at most k such that G \ X
has no graphs in F as a subgraph, has no graphs in F as a minor and has no induced

P3, respectively. F -SUBGRAPH DELETION, F -MINOR DELETION and CVD are inter-

esting due to the following reasons. FEEDBACK VERTEX SET (FVS), EVEN CYCLE

TRANSVERSAL (ECT), ODD CYCLE TRANSVERSAL (OCT) and TRIANGLE DELE-

TION (TD) are special cases of F -SUBGRAPH DELETION when F = {C3, C4, C5, . . .},
F = {C3, C5, . . .}, F = {C4, C6, . . .} and F = {C3}, respectively. FVS is also a spe-

cial case of F -MINOR DELETION when F = {C3}. CVD is different as we are looking

for induced structures.

6.1.3 Our results

Let a graph G and a non-negative integer k be the inputs to the graph problems we

consider. Notice that for F -SUBGRAPH DELETION, F -MINOR DELETION and CVD,

K ≥ k. Interestingly, the parameter K also has different effects on the above mentioned

problems in the different streaming models. We show that structural parameters help to

obtain efficient parameterized streaming algorithms for some of the problems, while no

such effect is observed for other problems. This throws up the more general and deeper

question in parameterized streaming complexity of classification of problems based on

the different graph streaming models and different parameterization. We believe that our

results and concepts will be instrumental in opening up the avenue for such studies in

future.

In particular, we obtain a range of streaming algorithms as well as lower bounds on

streaming complexity for the problems we consider. Informally, for a streaming model

M and a parameterized problem Π, if there is a p-pass randomized streaming algorithm

for Π that usesO(`) space then we say that Π is (M, `, p)-streamable. Similarly, if there

132

is no p-pass algorithm using o(`) bits1 of storage then Π is said to be (M, `, p)-hard.

For formal definitions please refer to Section 6.2. When we omit p, it means we are

considering one pass of the input stream. The highlight of our results are captured by

the F -SUBGRAPH DELETION, F -MINOR DELETION and CVD problems.

Theorem 6.1. Consider F -SUBGRAPH DELETION in the AL model. Parameterized by

solution size k, F -SUBGRAPH DELETION is (AL,Ω(n log n))-hard. However, when pa-

rameterized by vertex coverK,F -SUBGRAPH DELETION is (AL,O
(
∆(F) ·K∆(F)+1

)
)-

streamable. Here ∆(F) is the maximum degree of any graph in F .

The above Theorem is in contrast to results shown in [CCE+16]. First, we would like

to point out that to the best of our knowledge this is the first set of results on hardness

in the AL model. The results in [CCE+16] showed that F -SUBGRAPH DELETION

is (EA,Ω(n))-hard. A hardness result in the AL model implies one in the EA model

(Refer to Section 6.2). Thus, our result (Proof in Theorem 6.19) implies a stronger lower

bound for F -SUBGRAPH DELETION particularly in the EA model. On the positive side,

we show that F -SUBGRAPH DELETION parameterized by the vertex cover size K, is(
AL,∆(F) ·K∆(F)+1

)
-streamable (Proof in Theorem 6.12).

Our hardness results are obtained from reductions from well- known problems in

communication complexity. The problems we reduced from are INDEXn, DISJn and

PERMn (Please refer to Section 6.5.1 for details). In order to obtain the algorithm, one

of the main technical contributions of this work is the introduction of the COMMON

NEIGHBOR problem which plays a crucial role in designing streaming algorithms in

this chapter. We show that F -SUBGRAPH DELETION and many of the other consid-

ered problems, like F -MINOR DELETION parameterized by vertex cover size K, have a

unifying structure that can be solved via COMMON NEIGHBOR, when the edges of the

graph are arriving in the AL model. In COMMON NEIGHBOR, the objective is to obtain

a subgraph H of the input graph G such that the subgraph contains a maximal match-

ing M of G. Also, for each pair of vertices a, b ∈ V (M) 2, the edge (a, b) is present

1It is standard in streaming that lower bound results are in bits, and the upper bound results are in
words.

2V (M) denotes the set of all vertices present in the matching M

133

in H if and only if (a, b) ∈ E(G), and enough 3 common neighbors of all subsets of

at most ∆(F) vertices of V (M) are retained in H . Using structural properties of such

a subgraph, called the common neighbor subgraph, we show that it is enough to solve

F -SUBGRAPH DELETION on the common neighbor subgraph. Similar algorithmic and

lower bound results can be obtained for F -MINOR DELETION. The following theorem

can be proven using Theorem 6.15 in Section 6.3 and Theorem 6.19 in Section 6.5.

Theorem 6.2. Consider F -MINOR DELETION in the AL model. Parameterized by

solution size k, F -MINOR DELETION is (AL,Ω(n log n))-hard. However, when pa-

rameterized by vertex cover K, F -MINOR DELETION is (AL,O
(
∆(F) ·K∆(F)+1

)
)-

streamable. Here ∆(F) is the maximum degree of any graph in F .

The result on CVD is stated in the following Theorem.

Theorem 6.3. Parameterized by solution size k, CVD is (VA,Ω(n))-hard. However,

when parameterized by vertex cover K, CVD is (DEA,O
(
K2 log4 n

)
)-streamable.

The CVD problem behaves very differently from the above two problems. We show

that the problem is (VA, n)-hard (Theorem 6.21). In contrast, in [CCE+16] the (EA, n)-

hardness for the problem was shown, and we are able to extend this result to the VA

model (Refer to Section 6.2 for relations between the models considered). Surprisingly,

when we parameterize by K, CVD is (DEA, K2 log4 n)-streamable (Theorem 6.16). In

fact, this implies (M, K2 log4 n)-streamability forM ∈ {AL,VA,EA}. To design our

algorithm, we build on the sampling technique for VERTEX COVER [CCE+16] to solve

CVD in DEA model. Our analysis of the sampling technique exploits the structure of a

cluster graph.

Though we have mentioned the main algorithmic and lower bound results in the

above theorems, we have a list of other algorithmic and lower bound results in the dif-

ferent streaming models. The full list of results are summed up in Table 6.1. To un-

derstand the full strength of our contribution, we request the reader to go to Section 6.2

to see the relations between different streaming models and the notion of hardness and

streamability.
3By enough, we mean O(K) in this case.

134

Problem Parameter AL model VA model EA/DEA model

F -SUBGRAPH
k

(AL, n logn)-hard (VA, n logn)-hard (EA, n logn)-hard
(AL, n/p, p)-hard (VA, n/p, p)-hard (EA, n/p, p)-hard†

DELETION

K (AL,∆(F) ·K∆(F)+1)-str.∗ (VA, n/p, p)-hard (EA, n/p, p)-hard
(Theorem 6.12)

F -MINOR
k

(AL, n logn)-hard (VA, n logn)-hard (EA, n logn)-hard
(AL, n/p, p)-hard (VA, n/p, p)-hard (EA, n/p, p)-hard

DELETION

K (AL,∆(F) ·K∆(F)+1)-str.∗ (VA, n/p, p)-hard (EA, n/p, p)-hard
(Theorem 6.15)

FVS,
k

(AL, n logn)-hard (VA, n logn)-hard (EA, n logn)-hard
ECT, (AL, n/p, p)-hard (VA, n/p, p)-hard (EA, n/p, p)-hard†

OCT K (AL,K3)-str.∗ (VA, n/p, p)-hard (EA, n/p, p)-hard
(Corollary 6.13)

TD k OPEN (VA, n logn)-hard (EA, n logn)-hard
(VA, n/p, p)-hard (EA, n/p, p)-hard†

K (AL,K3)-str.∗ (VA, n/p, p)-hard (EA, n/p, p)-hard
(Corollary 6.13)

CVD
k OPEN (VA, n/p, p)-hard (EA, n/p, p)-hard†

K (AL,K2 log4 n)-str. (VA,K2 log4 n)-str. (DEA,K2 log4 n)-str.
(Theorem 6.16)

Table 6.1: A summary of our results. “str.” means streamable. The results marked with
† in Table 6.1 are lower bound results of Chitnis et al. [CCE+16]. The other lower

bound results are ours, some of them being improvements over the lower bound results
of Chitnis et al. [CCE+16]. The full set of lower bound results for FVS, ECT, OCT
are proven in Theorem 6.19. The lower bound results for TD and CVD are proven in

Theorem 6.20 and Theorem 6.21, respectively. Notice that the lower bound results
depend only on n. The hardness results are even stronger than what is mentioned in the

above table. The nuances are mentioned in respective Theorems 6.19, 6.20, 6.21 in
Section 6.5. Algorithmic results marked ∗ are deterministic.

6.1.4 Other related works

Problems in class P have been extensively studied in streaming complexity [McG14a]

in the last decade. Recently, there has been a lot of interest in studying streaming com-

plexity of NP-hard problems like HITTING SET, SET COVER, MAX CUT and MAX

CSP [GVV17, KKSV17, AKL16]. Structural parameters have been considered to study

MATCHING in streaming [BGM+19,EHL+18,MV18,MV16,CJMM17,CCE+16]. Fafi-

anie and Kratsch [FK14] were the first to study parameterized streaming complexity of

NP-hard problems like d-HITTING SET and EDGE DOMINATING SET in graphs. Chitnis

et al. [CCHM15, CCE+16] developed a sampling technique to design efficient parame-

135

terized streaming algorithms for promised variants of VERTEX COVER, d-HITTING SET

problem, b-MATCHING etc. They also proved lower bounds for problems like G-FREE

DELETION, G-EDITING, CLUSTER VERTEX DELETION etc. [CCE+16].

Organisation of the chapter

Section 6.2 contains preliminary definitions. The algorithms for COMMON NEIGHBOR,

F -SUBGRAPH DELETION and F -MINOR DELETION are given in Section 6.3. Our al-

gorithm for CVD is described in Section 6.4. The lower bound results are mentioned in

Section 6.5. Section 6.6 concludes this chapter with a discussion.

6.2 Preliminaries

In this section, we explore the relative order of the power of the graph streaming models

in use in this chapter. This information allows us to prove our result for one model so that

it carries over to other models. Apart from that, we mention some preliminary notations

that we make use of.

6.2.1 Notion of streamability and hardness

Let Π be a parameterized graph problem that takes as input a graph on n vertices

and a parameter k. Let f : N × N → R be a computable function. For a model

M ∈ {DEA, EA, VA, AL}, whenever we say that an algorithm A solves Π with com-

plexity f(n, k) in model M, we mean A is a randomized algorithm that for any input

instance of Π in modelM gives the correct output with probability 2/3 and has stream-

ing complexity f(n, k).

Definition 6.4. A parameterized graph problem Π, that takes an n-vertex graph and a

parameter k as input, is Ω(f) p-pass hard in the EDGE ARRIVAL model, or in short Π

is (EA, f, p)-hard, if there does not exist any p-pass streaming algorithm of streaming

complexity O(f(n, k)) bits that can solve Π in modelM.

136

Analogously, (DEA, f, p)-hard, (VA, f, p)-hard and (AL, f, p)-hard are defined.

Definition 6.5. A graph problem Π, that takes an n-vertex graph and a parameter k as

input, is O(f) p-pass streamable in EDGE ARRIVAL model, or in short Π is (EA, f, p)-

streamable if there exists a p-pass streaming algorithm of streaming complexityO(f(n, k))

words 4 that can solve Π in EDGE ARRIVAL model.

(DEA, f, p)-streamable, (VA, f, p)-streamable and (AL, f, p)-streamable are defined

analogously. For simplicity, we refer to (M, f, 1)-hard and (M, f, 1)-streamable as

(M, f)-hard and (M, f)-streamable, respectively, whereM∈ {DEA, EA,VA,AL}.

6.2.2 Relation between streaming models

Definition 6.6. LetM1,M2 ∈ {DEA,EA,VA,AL} be two streaming models, f : N ×
N→ R be a computable function, and p ∈ N.

(i) If for any parameterized graph problem Π, (M1, f, p)-hardness of Π implies (M2, f, p)-

hardness of Π, then we sayM1 ≤hM2.

(ii) If for any parameterized graph problem Π, (M1, f, p)-streamability of Π implies

(M2, f, p)-streamability of Π, then we sayM1 ≤sM2.

Now, from Definitions 6.4, 6.5 and 6.6, we have the following Observation.

Observation 6.7. AL ≤h EA ≤h DEA; VA ≤h EA ≤h DEA; DEA ≤s EA ≤s VA;

DEA ≤s EA ≤s AL.

This observation has the following implication. If we prove a lower (upper) bound result

for some problem Π in modelM, then it also holds in any modelM′ such thatM ≤h
M′ (M ≤sM′). For example, if we prove a lower bound result in AL or VA model, it

also holds in EA and DEA model; if we prove an upper bound result in DEA model, it

also holds in EA, VA and AL model. In general, there is no direct connection between

AL and VA. In AL and VA, the vertices are exposed in an arbitrary order. However, we

can say the following when the vertices arrive in a fixed (known) order.
4It is usual in streaming that the lower bound results are in bits, and the upper bound results are in

words.

137

Observation 6.8. Let AL′ (VA′) be the restricted version of AL (VA), where the vertices

are exposed in a fixed (known) order. Then AL′ ≤h VA′ and VA′ ≤s AL′.

Now, we remark the implication of the relation between different models discussed

in this section to our results mentioned in Table 6.1.

Remark 6.1. In Table 6.1 (that gives our full set of results of this chapter), the lower

bound results in VA and AL hold even if we know the sequence in which vertices are

exposed, and the upper bound results hold even if the vertices arrive in an arbitrary order.

In general, the lower bound in the AL model for some problem Π does not imply the

lower bound in the VA model for Π. However, our lower bound proofs in the AL model

hold even if we know the order in which vertices are exposed. So, the lower bounds

for FVS, ECT, OCT in the AL model imply the lower bound in the VA model. By

Observations 6.7 and 6.8, we will be done by showing a subset of the algorithmic and

lower bound results mentioned in the Table 6.1.

6.2.3 Notations

The union of two graphs G1 and G2 with V (G1) = V (G2), is G1 ∪ G2, where V (G1 ∪
G2) = V (G1) = V (G2) and E(G1 ∪G2) = E(G1) ∪E(G2). For X ⊆ V (G), G \X is

the subgraph ofG induced by V (G)\X . The degree of a vertex u ∈ V (G), is denoted by

degG(u). The maximum and average degrees of the vertices in G are denoted as ∆(G)

and ∆av(G), respectively. For a family of graphs F , ∆(F) = max
F∈F

∆(F). A graph F

is a subgraph of a graph G if V (F) ⊆ V (G) and E(F) ⊆ E(G) be the set of edges

that can be formed only between vertices of V (F). A graph F is said to be a minor of a

graph G if F can be obtained from G by deleting edges and vertices and by contracting

edges. The neighborhood of a vertex v ∈ V (G) is denoted by NG(v). For S ⊆ V (G),

NG(S) denotes the set of vertices in V (G) \S that are neighbors of every vertex in S. A

vertex v ∈ NG(S) is said to be a common neighbor of S in G. The size of any minimum

vertex cover in G is denoted by VC(G). A cycle on the sequence of vertices v1, . . . , vn

is denoted as C(v1, . . . , vn). For a matching M in G, the vertices in the matching are

denoted by V (M). Ct denotes a cycle of length t. Pt denotes a path having t vertices.

138

A graph G is said to a cluster graph if G is a disjoint union of cliques, that is, no three

vertices of G can form an induced P3.

6.3 Deterministic algorithms in the AL model

In this Section, we show that F -SUBGRAPH DELETION is (AL,∆(F) · K∆(F)+1)-

streamable when the vertex cover of the input graph is parameterized byK. This will im-

ply that FVS, ECT, OCT and TD parameterized by vertex cover size K, are (AL, K3)-

streamable. This complements the results in Theorems 6.19 and 6.20 (in Section 6.5) that

show that the problems parameterized by vertex cover size K are (VA, n/p, p)-hard (see

also Table 1). Note that by Observation 6.7, this also implies that the problems param-

eterized by vertex cover size K are (M, n/p, p)-hard whenM ∈ {EA,DEA}. Finally,

we design an algorithm for F -MINOR DELETION that is inspired by the algorithm for

F -SUBGRAPH DELETION.

For the algorithm for F -SUBGRAPH DELETION, we define an auxiliary problem

COMMON NEIGHBOR and a streaming algorithm for it. This works as a subroutine for

our algorithm for F -SUBGRAPH DELETION.

6.3.1 COMMON NEIGHBOR problem

For a graph G and a parameter ` ∈ N, H will be called a common neighbor subgraph

for G if

(i) V (H) ⊆ V (G) such that H has no isolated vertex.

(ii) E(H) contains the edges of a maximal matching M of G along with the edges

where both the endpoints are from V (M), such that for all subsets S ⊆ V (M),

with |S| ≤ d, we have |NH(S) \ V (M)| = min{|NG(S) \ V (M)| , `}. That is,

E(H) contains edges to at most ` common neighbors of S in NG(S) \ V (M).

In simple words, a common neighbor subgraph H of G contains the subgraph of G

induced by V (M) as a subgraph of H for some maximal matching M in G. Also, for

139

each subset S of at most d vertices in V (M), H contains edges to sufficiently many

common neighbors of S in G. The parameters d ≤ K and ` are referred to as the degree

parameter and common neighbor parameter, respectively.

The COMMON NEIGHBOR problem is formally defined as follows. It takes as input

a graphGwith VC(G) ≤ K, degree parameter d ≤ K and common neighbor parameter

` and produces a common neighbor subgraph of G as the output. COMMON NEIGHBOR

parameterized by vertex cover size K, admits Algorithm 6.1.

Algorithm 6.1: COMMON NEIGHBOR

Input: A graph G, with VC(G) ≤ K, in the AL model, a degree parameter d
(which is at most K), and a common neighbor parameter `.

Output: A common neighbor subgraph H of G.
1 begin
2 Initialize M = ∅ and V (M) = ∅, where M denotes the current maximal

matching.
3 Initialize a temporary storage T = ∅.
4 for (each vertex u ∈ V (G) exposed in the stream) do
5 for (each (u, x) ∈ E(G) in the stream) do
6 if (u /∈ V (M) and x /∈ V (M)) then
7 Add (u, x) to M and both u, x to V (M).

8 if (x ∈ V (M)) then
9 Add (u, x) to T .

10 if (If u is added to V (M) during the exposure of u) then
11 Add all the edges present in T to E(H).

12 else
13 for (each S ⊆ V (M) such that |S| ≤ d and (u, z) ∈ T ∀z ∈ S) do
14 if (NH(S) is less than `) then
15 Add the edges (u, z) ∀z ∈ S to E(H).

16 Reset T to ∅.

Lemma 6.9. COMMON NEIGHBOR, with a commmon neighbor parameter ` and pa-

rameterized by vertex cover size K, is (AL, K2`)-streamable.

Proof. We start our algorithm by initializing M = ∅ and construct a matching in G that

140

is maximal under inclusion; See Algorithm 6.1. As |VC(G)| ≤ K, |M | ≤ K. Recall

that we are considering the AL model here. Let Mu and M ′
u be the maximal matchings

just before and after the exposure of the vertex u (including the processing of the edges

adjacent to u), respectively. Note that, by construction these partial matchings Mu and

M ′
u are also maximal matchings in the subgraph exposed so far. The following Lemma

will be useful for the proof.

Claim 6.10. Let u ∈ NG(S) \ V (M) for some S ⊆ V (M). Then S ⊆ V (Mu), that is,

u is exposed, after all the vertices in S are declared as vertices of V (M).

Proof. Observe that if there exists x ∈ S such that x /∈ V (Mu), then after u is exposed,

there exists y ∈ NG(u) such that (u, y) is present in M ′
u. This implies u ∈ V (M ′

u) ⊆
V (M), which is a contradiction to u ∈ NG(S) \ V (M).

Now, we describe what our algorithm does when a vertex u is exposed. The complete

pseudocode of our algorithm for COMMON NEIGHBOR is given in Algorithm 6.1. When

a vertex u is exposed in the stream, we try to extend the maximal matching Mu. Also,

we store all the edges of the form (u, x) such that x ∈ V (Mu), in a temporary memory

T . As |Mu| ≤ K, we are storing at most 2K edges in T . Now, there are the following

possibilities.

• If u ∈ V (M ′
u), that is, either u ∈ V (Mu) or the matching Mu is extended by one of

the edges stored in T , then we add all the edges stored in T to E(H).

• Otherwise, for each S ⊆ V (Mu) such that |S| ≤ d and S ⊆ NG(u), we check whether

the number of common neighbors of the vertices present in S, that are already stored,

is less than `. If yes, we add all the edges of the form (u, z) such that z ∈ S to E(H);

else, we do nothing. Now, we reset T to ∅.

As |M | ≤ K, |V (M)| ≤ 2K. We are storing at most ` common neighbors for each

S ⊆ V (M) with |S| ≤ d and the number of edges having both the endpoints in M is at

most O(K2), the total amount of space used is at most O(Kd`).

We call our algorithm described in the proof of Lemma 6.9 and given in Algo-

rithm 6.1, as Acn. The following structural Lemma of the common neighbor subgraph

141

of G, obtained by algorithm Acn is important for the design and analysis of streaming

algorithms for F -SUBGRAPH DELETION.

Lemma 6.11. Let G be a graph with VC(G) ≤ K and let F be a connected graph with

∆(F) ≤ d ≤ K. Let H be the common neighbor subgraph of G with degree parameter

d and common neighbor parameter (d + 2)K, obtained by running the algorithm Acn.

Then the following holds in H: For any subset X ⊆ V (H), where |X| ≤ K, F is a

subgraph of G \ X if and only if F ′ is a subgraph of H \ X , such that F and F ′ are

isomorphic.

Proof. Let the common neighbor subgraph H , obtained by algorithm Acn, contain a

maximal matchingM ofG. First, observe that since VC(G) ≤ K, the size of a subgraph

F in G is at most dK. Now let us consider a subset X ⊆ V (H) such that |X| ≤ K.

First, suppose that F ′ is a subgraph of H \X and F ′ is isomorphic to F . Then since H

is a subgraph of G, F ′ is also a subgraph of G \X . Therefore, F = F ′ and we are done.

Conversely, suppose F is a subgraph of G \X that is not a subgraph in H \X . We

show that there is a subgraph F ′ of H \ X such that F ′ is isomorphic to F . Consider

an arbitrary ordering {e1, e2, . . . , es} ⊆ (E(G) \ E(H)) ∩ E(F); note that s ≤ |E(F)|.
We describe an iterative subroutine that converts the subgraph F to F ′ through s steps,

or equivalently, through a sequence of isomorphic subgraphs F0, F1, F2, . . . Fs inG such

that F0 = F and Fs = F ′.

Let us discuss the consequence of such an iterative routine. Just before the starting

of step i ∈ [s], we have the subgraph Fi−1 such that Fi−1 is isomorphic to F and the

set of edges in (E(G) \ E(H)) ∩ E(Fi−1) is a subset of {ei, ei+1, . . . , es}. In step i, we

convert the subgraph Fi−1 into Fi such that Fi−1 is isomorphic to Fi. Just after the step

i ∈ [s], we have the subgraph Fi such that Fi is isomorphic to F and the set of edges

in (E(G) \ E(H)) ∩ E(Fi) is a subset of {ei+1, ei+2, . . . , es}. In particular, in the end

Fs = F ′ is a subgraph both in G and H .

Now consider the instance just before step i. We show how we select the subgraph

Fi from Fi−1. Let ei = (u, v). Note that ei /∈ E(H). By the definition of the maximal

matching M in G, it must be the case that |{u, v} ∩ V (M)| ≥ 1. From the construction

142

of the common neighbor subgraph H , if both u and v are in V (M), then ei = (u, v) ∈
E(H). So, exactly one of u and v is present in V (M). Without loss of generality, let

u ∈ V (M). Observe that v is a common neighbor of NG(v) in G. Because of the

maximality of M , each vertex in NG(v) is present in V (M). Now, as (u, v) /∈ E(H),

v is not a common neighbor of NG(v) in H . From the construction of the common

neighbor subgraph, H contains (d + 2)K common neighbors of all the vertices present

in NG(v). Of these common neighbors, at most (d + 1)K common neighbors can be

vertices inX∪Fi. Thus, there is a vertex v′ that is a common neighbor of all the vertices

present in NG(v) in H such that Fi+1 is a subgraph that is isomorphic to Fi. Moreover,

(E(G) \ E(H)) ∩ E(Fi+1) ⊆ {ei+2, ei+3 . . . , es}. Thus, this leads to the fact that there

is a subgraph F ′ in H \X that is isomorphic to the subgraph F in G \X .

6.3.2 Streamability results forF -SUBGRAPH DELETION andF -MINOR

DELETION

Our result on COMMON NEIGHBOR leads us to the following streamability result for

F -SUBGRAPH DELETION and F -MINOR DELETION. We first discuss the result on

F -SUBGRAPH DELETION, which is stated in the following theorem.

Theorem 6.12. F -SUBGRAPH DELETION parameterized by vertex cover size K is

(AL, d ·Kd+1)-streamable, where d = ∆(F) ≤ K.

Proof. Let (G, k,K) be an input for F -SUBGRAPH DELETION, where G is the input

graph, k ≤ K is the size of the solution of F -SUBGRAPH DELETION, and the parameter

K is at least VC(G).

Now, we describe the streaming algorithm for F -SUBGRAPH DELETION. First, we

run the COMMON NEIGHBOR streaming algorithm described in Lemma 6.9 (and given

in Algorithm 6.1) with degree parameter d and common neighbor parameter (d + 2)K,

and let the common neighbor subgraph obtained be H . We run a traditional FPT algo-

rithm for F -SUBGRAPH DELETION [CFK+15] on H and output YES if and only if the

output on H is YES.

143

Let us argue the correctness of this algorithm. By Lemma 6.11, for any subset X ⊆
V (H), where |X| ≤ K, F ∈ F is a subgraph of G \ X if and only if F ′, such that F ′

is isomorphic to F ′, is a subgraph of H \ X . In particular, let X be a k-sized vertex

set of G. As mentioned before, k ≤ K. Thus, by Lemma 6.11, X is a solution of F -

SUBGRAPH DELETION in H if and only if X is a solution of F -SUBGRAPH DELETION

in G. Therefore, we are done with the correctness of the streaming algorithm for F -

SUBGRAPH DELETION.

The streaming complexity of F -SUBGRAPH DELETION is same as the streaming

complexity for the algorithm Acn from Lemma 6.9 with degree parameter d = ∆(F)

and common neighbor parameter (d + 2)K. Therefore, the streaming complexity of

F -SUBGRAPH DELETION is O(d ·Kd+1).

Corollary 6.13. FVS, ECT, OCT and TD parameterized by vertex cover size K are

(AL, K3)-streamable due to deterministic algorithms.

6.3.3 Algorithm for F -MINOR DELETION

Finally, we describe a streaming algorithm for F -MINOR DELETION that works similar

to that of F -SUBGRAPH DELETION due to the following proposition and the result is

stated in Theorem 6.15.

Proposition 6.14 ([FJP14]). Let G be a graph with F as a minor and VC(G) ≤ K.

Then there exists a subgraph G∗ of G that has F as a minor such that ∆(G∗) ≤ ∆(F)

and V (G∗) ≤ V (F) +K(∆(F) + 1).

Theorem 6.15. F -MINOR DELETION parameterized by vertex cover sizeK are (AL, d·
Kd+1)-streamable, where d = ∆(F) ≤ K.

Proof. Let (G, k,K) be an input for F -MINOR DELETION, where G is the input graph,

k is the size of the solution of F -MINOR DELETION we are looking for, and the param-

eter K is such that VC(G) ≤ K. Note that, k ≤ K.

Now, we describe the streaming algorithm for F -MINOR DELETION. First, we run

the COMMON NEIGHBOR streaming algorithm described in Lemma 6.9 with degree pa-

144

rameter d and common neighbor parameter (d + 2)K, and let the common neighbor

subgraph obtained be H . We run a traditional FPT algorithm for F -MINOR DELE-

TION [CFK+15] and output YES if and only if the output on H is YES.

Let us argue the correctness of this algorithm, that is, we prove the following for any

F ∈ F . G\X contains F as a minor if and only ifH\X contains F ′ as a minor such that

F and F ′ are isomorphic, where X ⊆ V (G) is of size at most K. For the only if part,

suppose H \X contains F ′ as a minor. Then since H is a subgraph of G, G\X contains

F ′ as a minor. For the if part, let G \ X contains F as a minor. By Proposition 6.14,

G \X conatins a subgraph G∗ such that G∗ contains F as a minor and ∆(G∗) ≤ ∆(F).

Now, Lemma 6.11 implies that H \X also contains a subgraph Ĝ∗ that is isomorphic to

G∗. Hence, H \X contains F ′ as a monor such that F ′ is isomorphic to F .

The streaming complexity of the streaming algorithm for F -MINOR DELETION is

same as the streaming complexity for the algorithm Acn from Lemma 6.9 with degree

parameter d = ∆(F) and common neighbor parameter (d+2)K. Therefore, the stream-

ing complexity for F -MINOR DELETION is O(d ·Kd+1).

6.4 CVD in the DEA model

In this Section, we show that CVD parameterized by vertex cover sizeK, is (DEA, K2 log4 n)-

streamable. By Observation 6.7, this implies (M, K2 log4 n)-streamability for allM ∈
{EA,VA,AL}. The sketch of the algorithm for CVD parameterized by vertex cover size

K in the DEA model is in Algorithm 6.2. The algorithm is inspired by the streaming al-

gorithm for VERTEX COVER [CCE+16]. Before discussing the algorithm, let us discuss

some terms.

A family of hash functions of the form h : [n] → [m] is said to be pairwise inde-

pendent hash family if for a pair i, j ∈ [n] and a randomly chosen h from the family,

P(h(i) = h(j)) ≤ 1
m

. Such a hash function h can be stored efficiently by usingO(log n)

bits [MR95].

145

`0-sampler [CF14]: Given a dynamic graph stream, an `0-sampler does the following:

with probability at least 1 − 1
nc

, where c is a positive constant, it produces an edge

uniformly at random from the set of edges that have been inserted so far but not deleted.

If no such edge exists, `0-sampler reports NULL. The total space used by the sampler is

O(log3 n).

Algorithm 6.2: CVD
Input: A graph G having n vertices in the DEA model, with vertex cover size at

most K ∈ N, solution parameter k ∈ N, such that k ≤ K.
Output: A set X ⊂ V (G) of k vertices such that G \X is a cluster graph if

such a set exists. Otherwise, the output is NULL

1 begin
2 From a pairwise independent family of hash functions that map V (G) to

[βK], choose h1, . . . , hα logn such that each hi is chosen uniformly and
independently at random, where α and β are suitable large constants.

3 For each i ∈ [α log n] and r, s ∈ [βK], initiate an `0 sampler Lir,s.
4 for (each (u, v) in the stream) do
5 Irrespective of (u, v) being inserted or deleted, give the respective input

to the `0-samplers Lihi(u),hi(v) for each i ∈ [α log n].

6 For each i ∈ [α log n], construct a subgraph Hi by taking the outputs of all
the `0-samplers corresponding to the hash function hi.

7 Construct H = H1 ∪ · · · ∪Hα logn.
8 Run the classical FPT algorithm for CVD on the subgraph H and solution

size bound k [CFK+15].
9 if (H has a solution S of size at most k) then

10 Report S as the solution to G.

11 else
12 Report NULL

Theorem 6.16. CVD, parameterized by vertex cover sizeK, is (DEA, K2 log4 n)-streamable.

Proof. LetG be the input graph of the streaming algorithm and by assumption VC(G) ≤
K. Let h1, . . . , hα logn be a set of α log n pairwise independent hash functions such that

each hi chosen uniformly and independently at random from a pairwise independent

family of hash functions, where h : V (G) → [βK], α and β are suitable constants.

146

For each hash function hi and pair r, s ∈ [βK], let Gi
r,s be the subgraph of G induced

by the vertex set {v ∈ V (G) : hi(v) ∈ {r, s}}. For the hash function hi and for each

pair r, s ∈ [βK], we initiate an `0 sampler for the dynamic stream restricted to the

subgraph Gi
r,s. Therefore, there is a set of O(K2) `0-samplers {Lir,s : r, s ∈ [βK]}

corresponding to the hash function hi. Now, we describe what our algorithm does when

an edge is either inserted or deleted. A pseudocode of our algorithm for CVD is given

in Algorithm 6.2. When an edge (u, v) arrives in the stream, that is (u, v) is inserted or

deleted, we give the respective input to Lihi(u),hi(v), where i ∈ [α log n]. At the end of the

stream, for each i ∈ [α log n], we construct a subgraph Hi by taking the outputs of all

the `0-samplers corresponding to the hash function hi. Let H = H1 ∪ · · · ∪Hα logn. We

run the classical FPT algorithm for CVD on the subgraph H and solution size bound

k [CFK+15], and report YES to CVD if and only if we get YES as answer from the

above FPT algorithm on H . If we output YES , then we also give the solution on H as

our solution to G.

The correctness of the algorithm needs an existential structural result onG (Claim 6.17)

and the fact that if there exists a set X ⊂ V (G) whose deletion turns H into a cluster

graph, then the same X deleted from G will turn it into a cluster graph with high proba-

bility (Claim 6.18).

Claim 6.17. There exists a partitionP of V (G) intoZ1, . . . , Zt, I such that the subgraph

induced in G by each Zi, is a clique with at least 2 vertices, and the subgraph induced

by I is the empty graph.

Proof. We start with a partition which may not have the properties of the claim and

modify it iteratively such that the final partition does have all the properties of the Claim.

Let us start with a partition P that does not satisfy the given condition. First, if there

exists a part Zi having one vertex v, we create a new partition by adding v to I . Next, if

there exists a part Zi having at least two vertices and the subgraph induced by Zi is not a

clique, then we partitionZi into smaller parts such that each smaller part is either a clique

having at least two vertices or a singleton vertex. We create a new partition by replacing

Zi with the smaller cliques of size at least 2 and adding all the singleton vertices to I .

147

Now, let P ′ be the new partition of V (G) obtained after all the above modifications. In

P ′, each part except I is a clique of at least two vertices. If the subgraph induced by

I has no edges, P ′ satisfies the properties in the Claim and we are done. Otherwise,

there exists u, v ∈ I such that (u, v) ∈ E(G). In this case, we create a new part with

{u, v}, and remove both u and v from I . Note that in the above iterative description,

each vertex goes to a new part at most 2 times - (i) it can move at most once from a part

Zi to a smaller part Zj that is a clique on at least 2 vertices and such a vertex will remain

in the same part in all steps afterwards, or it can move at most once from a Zi to I , and

(ii) a vertex can move at most once from I to become a part of a clique Zi with at least 2

vertices and such a vertex will remain in the same part in all steps after that. Therefore,

this process is finite and there is a final partition that we obtain in the end. This final

partition has all the properties of the claim.

Claim 6.18. Let X ⊂ V (H) be such that H \ X is a cluster graph. Then G \ X is a

cluster graph with high probability.

Proof. Consider a partition P of V (G) into Z1, . . . , Zt, I as mentioned in Claim 6.17.

Note that our algorithm does not need to find such a partition. The existence of P will

be used only for the analysis purpose. Let Z = ∪ti=1Zi. Note that since VC(G) ≤ K,

each Zi can have at most K + 1 vertices, and it must be true that t ≤ VC(G) ≤ K. In

fact, we can obtain the following stronger bound that |Z| ≤ 2K. The total number of

vertices in Z is at most VC(G)+ t. Since t ≤ VC(G) ≤ K, the total number of vertices

in Z is at most 2K.

A vertex u ∈ V (G), is said to be of high degree if degG(u) ≥ 40K, and low degree,

otherwise. Let Vh ⊆ V (G) be the set of all high degree vertices and V` be the set of low

degree vertices in G. Let E` be the set of edges in G having both the endpoints in V`. It

can be shown [CCE+16] that

(i) Fact-1: |Vh| ≤ K, E` = O(K2);

(ii) Fact-2: E` ⊆ E(H), and degH(u) ≥ 4K for each u ∈ Vh, with probability at

least 1− 1
nO(1) .

148

Note that Fact-2 makes our algorithmic result for CVD probabilistic.

Let CVD(G) ⊂ V (G) denote a minimum set of vertices such that G \ CVD(G)

is a cluster graph. Our parametric assumption says that |CVD(G)| ≤ VC(G) ≤ K.

Now consider the fact that a graph is a cluster graph if and only if it does not have any

induced P3. First, we show that the high degree vertices in G surely need to be deleted

to make it a cluster graph, i.e., Vh ⊆ CVD(G). Let us consider a vertex u ∈ Vh. As the

subgraph induced by I has no edges and |Z| ≤ 2K, each vertex in I is of degree at most

|Z| ≤ 2K. So, u must be in some Zi in the partition P . As degG(u) ≥ 40K, using

|Z| ≤ 2K, u must have at least 38K vertices from I as its neighbors in G. Thus, there

are at least 19K edge disjoint induced P3’s that are formed with u and its neighbors in

I . If u /∈ CVD(G), then more than K neighbors of u that are in I must be present in

CVD(G). It will contradict the fact that |CVD(G)| ≤ VC(G) ≤ K. Similarly, we can

also argue that Vh ⊆ CVD(H) = X as degH(u) ≥ 4K by Fact-2.

Next, we show that an induced P3 is present in G \ Vh if and only if it is present in

H \ Vh. Removal of Vh from G (or H) removes all the induced P3’s in G (or H) having

at least one vertex in Vh. Any induced P3 in G \ Vh (or H \ Vh) must have all of its

vertices as low degree vertices. Now, using Fact-2, note that all the edges, in G, between

low degree vertices are in H . In other words, an induced P3 is present in G \ Vh if and

only if it is present in H \ Vh. Thus for a set X ⊆ V (G), if (H \ Vh) \ X is a cluster

graph then (G \ Vh) \X is also a cluster graph.

Putting everything together, if X ⊆ V (G) is such that H \X is a cluster graph, then

G \X is also a cluster graph.

Coming back to the proof of Theorem 6.16, we are using O(log n) hash functions,

and each hash function requires a storage ofO(log n) bits. There areO(K2) `0-samplers

for each hash function and each `0-sampler needs O(log3 n) bits of storage. Thus, the

total space used by our algorithm is O(K2 log4 n).

149

6.5 The lower bounds

We finish with lower bounds that complement the upper bound results and complete the

picture presented in Table 6.1. Before we explicitly give the statements of the stated

lower bound results presented in Table 6.1, we want to note that a lower bound on

FEEDBACK VERTEX SET is also a lower bound for F -SUBGRAPH DELETION (dele-

tion of cycles as subgraphs) and F -MINOR DELETION (deletion of 3-cycles as minors).

Observe that we will be done by proving the following theorems, and the rest of the

lower bound results will follow from Observations 6.7 and 6.8.

Theorem 6.19. FEEDBACK VERTEX SET, EVEN CYCLE TRANSVERSAL and ODD

CYCLE TRANSVERSAL are

(I) (AL, n log n)-hard parameterized by solution size k and even if ∆av(G) = O(1),

(II) (AL, n/p, p)-hard parameterized by solution size k and even if ∆(G) = O(1),

and

(III) (VA, n/p, p)-hard parameterized by vertex cover size K and even if ∆av(G) =

O(1).

Theorem 6.20. TD is

(I) (VA, n log n)-hard parameterized by solution size k and even if ∆av(G) = O(1),

(II) (VA, n/p, p)-hard parameterized by solution size k and even if ∆(G) = O(1), and

(III) (VA, n/p, p)-hard parameterized by vertex cover size K and even if ∆av(G) =

O(1).

Theorem 6.21. CVD is (VA, n/p, p)-hard parameterized by solution size k and even if

∆(G) = O(1).

Remark 6.2. (i) The proofs of part (I) of Theorems 6.19 and 6.20 use the lower

bound constructions given in [SW15].

150

(ii) To the best of our knowledge, this is the first set of results on hardness in the AL

model.

(iii) The proofs of parts (II) and (III) of Theorems 6.19 and 6.20 use the lower bound

constructions given in [CCE+16].

(iv) The proof of Theorem 6.21 uses the lower bound constructions given in [CCE+16].

The following theorems will be proved by using reductions from communication

complexity. We need some more results on communication complexity than those dis-

cussed in Section 2.2.

6.5.1 A discussion on communication complexity

We have discussed about INDEXn and DISJn (along with their communication com-

plexities) in Section 2.2. Here, we define another problem known as PERMUTATION

(PERMn), and state its communication complexity. PERMn along with INDEXn and

DISJn will be useful to establish the lower bounds.

• PERMn [SW15] : Alice gets a permutation π : [n] → [n] and Bob gets an index

j ∈ [n log n]. The objective of Bob is to decide the value of PERMn(π, j), defined as

the j-th bit in the string of 0’s and 1’s obtained by concatenating the bit expansions

of π(1) . . . π(n). In other words, let Φ : [n log n] → [n] × [log n] be a bijective

function defined as Φ(j) =
(
d j

logn
e, j + log n− d j

logn
e × log n

)
. For a permutation

π : [n] → [n], Bob needs to determine the value of the γ-th bit of π
(
d j

logn
e
)

, where

γ =
(
j + log n− d j

logn
e × log n

)
.

Proposition 6.22 ([SW15]). The one way communication complexity of PERMn is

Ω(n log n).

Here, we outline the meaning of reduction from the communication complexity prob-

lems to streaming problems.

151

A note on reduction from INDEXn, DISJn, PERMn: A reduction from a problem Π1

in one/two way communication complexity to a problem Π2 in streaming algorithms is

typically as follows: The two players Alice and Bob device a communication protocol

for Π1 that uses a streaming algorithm for Π2 as a subroutine. Typically in a round of

communication, a player gives inputs to the input stream of the streaming algorithm,

obtains the compact sketch produced by the streaming algorithm and communicates

this sketch to the other player. This implies that a lower bound on the communication

complexity of Π1 also gives a lower bound on the streaming complexity of Π2.

The following Proposition summarizes a few important consequences of reductions

from problems in communication complexity to problems for streaming algorithms:

Proposition 6.23. (i) If we can show a reduction from INDEXn to a problem Π in model

M such that the reduction uses a 1-pass streaming algorithm of Π as a subroutine,

then Π is (M, n)-hard.

(ii) If we can show a reduction from DISJn to a problem Π in model M such that

the reduction uses a 1-pass streaming algorithm of Π as a subroutine, then Π is

(M, n/p, p)-hard, for any p ∈ N [CCE+16, BGMS18, AMP+06].

(iii) If we can show a reduction from PERMn to a problem Π in model M such that

the reduction uses a 1-pass streaming algorithm of Π as a subroutine, then Π is

(M, n log n)-hard.

6.5.2 Proofs of Theorems 6.19, 6.20 and 6.21

Proof of Theorem 6.19. The proofs for all three problems are similar. We first consider

FEEDBACK VERTEX SET. To begin with, we show the hardness results of FVS for

solution size k = 0.

Proof of Theorem 6.19 (I). We give a reduction from PERMn to FVS in the AL model

when the solution size parameter k = 0. The idea is to build a graph G with ∆av(G) =

4Recall that we take n as a power of 2. For 1 ≤ i ≤ n − 1, the bit expansion of i is the usual bit
notation of i using log2 n bits; the bit expansion of n is log2 n consecutive zeros. For example: Take
n = 32. The bit expansion of 32 is 100000. We ignore the bit 1 and say that the bit expansion of 32 is
00000.

152

w′ w

u′1

u′2

u′3

u′4

u1 v1 v′1

u2 v2 v′2

u3 v3 v′3

u4 v4 v′4

(a) (b)

w′ w

u′1

u′2

u′3

u′4

u1 v1 v′1

u2 v2 v′2

u3 v3 v′3

u4 v4 v′4

Figure 6.1: Illustration of Proof of Theorem 6.19 (I). Consider n = 4. Let π : [4]→ [4]
such that π(1) = 3, π(2) = 4, π(3) = 2 and π(4) = 1. So the concatenated bit string is
110010012. In (a), j = 5, Φ(j) = (ψ, γ) = (3, 1), PERMn(π, j) = 1, and G contains a
cycle. In (b), j = 4, Φ(j) = (ψ, γ) = (2, 2), PERMn(π, j) = 0, and G does not contain

a cycle.

O(1) and construct edges according to the input of PERMn, such that the output of

PERMn is 0 if and only if G is cycle-free.

LetA be a one pass streaming algorithm that solves FVS in AL model using o(n log n)

space. LetG be a graph with 4n+2 vertices u1, . . . , un, v1, . . . , vn, u
′
1, . . . , u

′
n, v

′
1, . . . , v

′
n,

w, w′. Let π be the input of Alice for PERMn. See Figure 6.1 for an illustration.

Alice’s input to A: Alice inputs the graph G first by exposing the vertices u1, . . . , un,

v1, . . . , vn, sequentially. (i) While exposing the vertex ui, Alice gives as input to A
the edges (ui, u

′
i), (ui, vπ(i)); (ii) while exposing the vertex vi, Alice gives the edges

(vi, v
′
i), (vi, uπ−1(i)) to the input stream of A.

After the exposure of u1, . . . , un, v1, . . . , vn as per the AL model, Alice sends the

current memory state of A, i.e the sketch generated by A, to Bob. Let j ∈ [n log n] be

the input of Bob and let (ψ, γ) = Φ(j).

Bob’s input to A: Bob exposes the vertices u′1 . . . , u
′
n, v

′
1, . . . , v

′
n, w, w

′, sequentially.

(i) While exposing a vertex u′i where i 6= ψ, Bob gives the edge (u′i, ui) to the input

stream of A; (ii) while exposing u′ψ, Bob gives the edges (u′ψ, uψ) and (u′ψ, w
′); (iii)

while exposing a vertex v′i, Bob gives the edge (v′i, vi), and the edge (v′i, w) if and only

153

if bit(i, γ) = 1; (iv) while exposing w, Bob gives the edge (w,w′), and the edge (w, v′i)

if and only if bit(i, γ) = 1; (v) while exposing w′, Bob gives the edges (w′, w) and

(w′, u′ψ).

Observe that ∆av(G) = O(1). Now we show that the output of FVS is NO if and

only if PERMn(π, j) = 1. Recall that k = 0.

From the construction, observe that (w,w′), (w′, u′ψ), (u′ψ, uψ), (uψ, vπ(ψ)), (vπ(ψ), v
′
π(ψ))

∈ E(G). When PERMn(π, j) = 1, the edge (v′π(ψ), w) is present in G. So, G contains

the cycle C(w,w′, u′ψ, uψ, vπ(ψ), v
′
π(ψ)), that is, the output of FVS is NO.

On the other hand, if the output of FVS is NO, then there is a cycle in G. From the

construction, the cycle is C(w,w′, u′ψ, uψ, vπ(ψ), v
′
π(ψ)). As (v′π(ψ), w) is an edge, the γ-th

bit of π(ψ) is 1, that is PERMn(π, j) = 1. Now by Propositions 6.22 and 6.23(iii), we

obtain that FEEDBACK VERTEX SET is (AL, n log n)-hard even if ∆av(G) = O(1) and

when k = 0.

u11 u12

u13 u14

u21 u22

u23 u24

u31 u32

u33 u34

u41 u42

u43 u44

u11 u12

u13 u14

u21 u22

u23 u24

u31 u32

u33 u34

u41 u42

u43 u44

(a)

(b)

Figure 6.2: Illustration of Proof of Theorem 6.19 (II). Consider n = 4. In (a), x = 1001
and y = 0100, that is, DISJn(x,y) = 1, and G does not contain a cycle. In (b),
x = 1100 and y = 0110, that is, DISJn(x,y) = 0, and G contains a cycle.

Proof of Theorem 6.19 (II). We give a reduction from DISJn to FVS in the AL model

when the solution size parameter k = 0. The idea is to build a graph G with ∆(G) =

154

O(1) and construct edges according to the input of DISJn, such that the output of DISJn

is 1 if and only if G is cycle-free.

Let A be a one pass streaming algorithm that solves FVS in AL model, such that

∆(G) = O(1), and the space used is o(n). LetG be a graph with 4n vertices u11, u12, u13,

u14, . . . , un1, un2, un3, un4. Let x,y be the input of Alice and Bob for DISJn, respec-

tively. See Figure 6.2 for an illustration.

Alice’s input toA: Alice inputs the graphG by exposing the vertices u11, u12, u21, u22

. . . , un1, un2, sequentially. (i) While exposing ui1, Alice gives as input to A the edge

(ui1, ui3). Also, Alice gives the edge (ui1, ui2) as input to A if and only if xi = 1; (ii)

while exposing ui2, Alice gives the edge (ui2, ui4) as input to A. Also, Alice gives the

edge (ui2, ui1) as input to A if and only if xi = 1.

After the exposure of u11, u12, u21, u22 . . . , un1, un2 as per the AL model, Alice sends

current memory state of A, i.e. the sketch generated by A, to Bob.

Bob’s input to A: Bob exposes the vertices u13, u14, u23, u24 . . . , un3, un4 sequen-

tially. (i) While exposing ui3, Bob gives the edge (ui3, ui1) as input to A, and gives the

edge (ui3, ui4) if and only if yi = 1; (ii) while exposing ui4, Bob gives the edge (ui4, ui2)

as input to A, and gives the edge (ui4, ui3) if and only if yi = 1.

Observe that ∆(G) ≤ 4. Recall that k = 0. Now we show that the output of FVS is

NO if and only if DISJn(x,y) = 0.

From the construction, (ui1, ui3), (ui2, ui4) ∈ E(G), for each i ∈ [n]. If DISJn(x,y) =

0, there exists i ∈ [n] such that xi = yi = 1. This implies the edges (ui1, ui2) and

(ui3, ui4) are present in G. So, the cycle C(ui1, ui2, ui3, ui4) is present in G, that is, the

output of FVS is NO.

Conversely, if the output of FVS is NO, there exists a cycle inG. From the construc-

tion, the cycle must be C(ui1, ui2, ui3, ui4) for some i ∈ [n]. As the edges (ui1, ui2) and

(ui3, ui4) are present in G, xi = yi = 1, that is, DISJn(x,y) = 0.

Now by Propositions 6.22 and 6.23(ii), we obtain that FEEDBACK VERTEX SET is

(AL, n/p, p)-hard even if ∆(G) = O(1) and when k = 0.

155

Proof of Theorem 6.19 (III). We give a reduction from DISJn to FVS in the VA model

when the solution size parameter k = 0. The idea is to build a graph G with vertex cover

size bounded by K and ∆(G) = O(1), and construct edges according to the input of

DISJn, such that the output of DISJn is 1 if and only if G is cycle-free.

ua ub

w

v1

v2

v3

v4

ua ub

w

v1

v2

v3

v4

(a) (b)

Figure 6.3: Illustration of Proof of Theorem 6.19 (III). Consider n = 4. In (a),
x = 1000 and y = 0101, that is, DISJn(x,y) = 1, and G does not contain a cycle. In

(b), x = 0011 and y = 1010, that is, DISJn(x,y) = 0, and G contains a cycle.

Let A be a one pass streaming algorithm that solves FVS in VA model, such that

VC(G) ≤ K and ∆av(G) = O(1), and the space used is o(n). Let G be a graph with

n + 3 vertices ua, v1, . . . , vn, ub, w. Let x,y be the input of Alice and Bob for DISJn,

respectively. See Figure 6.3 for an illustration.

Alice’s input toA: Alice inputs the graphG first by exposing the vertices ua, v1, . . . , vn,

sequentially. (i) While exposing ua, Alice does not give any edge; (ii) while exposing

vi, Alice gives the edge (vi, ua), as input to A, if and only if xi = 1.

After the exposure of ua, v1, . . . , vn as per VA model, Alice sends the current mem-

ory state of A, i.e., the sketch generated by A, to Bob.

156

Bob’s input to A: Bob first exposes ub and then exposes w. (i) While exposing ub,

Bob gives the edge (ub, vi) if and only if yi = 1; (ii) while exposing w, Bob gives the

edges (w, ua) and (w, ub), as inputs to A.

From the construction, observe that VC(G) ≤ 2 ≤ K and ∆av(G) = O(1). Recall

that k = 0. Now we show that the output of FVS is NO if and only if DISJn(x,y) = 0.

From the construction, (ua, w), (ub, w) ∈ E(G). If DISJn(x,y) = 0, there exists

i ∈ [n] such that xi = yi = 1. This implies the edges (ua, vi) and (ub, vi) are present in

G. So, the cycle C(ua, vi, ub, w) is present in G, that is, the output of FVS is NO.

Conversely, if the output of FVS is NO, there exists a cycle in G. From the con-

struction, the cycle must be C(ua, vi, ub, w) for some i ∈ [n]. As the edges (ua, vi) and

(ub, vi) are present in G, xi = yi = 1, that is, DISJn(x,y) = 0.

Now by Propositions 6.22 and 6.23(ii), we obtain that FEEDBACK VERTEX SET

parameterized by vertex cover size K is (VA, n/p, p)-hard even if ∆av(G) = O(1), and

when k = 0.

In each of the above three cases, we can make the reduction work for any k, by

adding k vertex disjoint cycles of length 4, i.e. C4’s, to G. In Theorem 6.19 (III), the

vertex cover must be bounded. In the given reduction for Theorem 6.19 (III), the vertex

cover of the constructed graph is at most 2. Note that by the addition of k edge disjoint

C4’s, the vertex cover of the constructed graph in the modified reduction is at most 2k+2,

and is therefore still a parameter independent of the input instance size.

This completes the proof of the Theorem 6.19 with respect to FVS.

If the graph constructed in the reduction, in any of the above three cases for FEED-

BACK VERTEX SET, contains a cycle, then it is of even length. Otherwise, the graph is

cycle free. Hence, the proof of this Theorem with respect to ECT is same as the proof

for FVS.

Similarly, a slight modification can be made to the constructed graph, in all three of

the above cases, such that a cycle in the graph is of odd length if a cycle exists. Thereby,

the proof of this Theorem with respect to OCT also is very similar to the proof for

FVS.

157

Proof of Theorem 6.20. We first show the hardness results of TD for k = 0 in all three

cases.

w

(a) (b)

u1 v1

u2 v2

u3 v3

u4 v4

u1 v1

u2 v2

u3 v3

u4 v4

w

Figure 6.4: Illustration of Proof of Theorem 6.20 (I). Consider n = 4. Let π : [4]→ [4]
such that π(1) = 3, π(2) = 4, π(3) = 2, and π(4) = 1. So the concatenated bit string is

11001001. In (a), j = 5, Φ(j) = (ψ, γ) = (3, 1), PERMn(π, j) = 1 and G contains a
triangle. In (b), j = 4, Φ(j) = (ψ, γ) = (2, 2), PERMn(π, j) = 0, and G does not

contain any triangle.

Proof of Theorem 6.20 (I). We give a reduction from PERMn to TD when the solution

size parameter k = 0. Let A be a one pass streaming algorithm that solves TD in VA

model, such that ∆av(G) = O(1), and the space used is o(n log n). Let G be a graph

with 2n + 1 vertices u1, . . . , un, v1, . . . , vn, w. Let π be the input of Alice for PERMn.

See Figure 6.4 for an illustration.

Alice’s input toA: Alice inputs the graphG by exposing the vertices u1, . . . , un, v1, . . . ,

vn, sequentially. (i) While exposing the vertex ui, Alice does not give any edge; (ii) while

exposing the vertex vi, Alice gives the edges (vπ(i), ui) as an input to the stream of A.

After the exposure of u1, . . . , un, v1, . . . , vn as per the VA model, Alice sends the

current memory state of A, i.e. the sketch generated by A, to Bob. Let j ∈ [n log n] be

the input of Bob and let (ψ, γ) = Φ(j).

Bob’s input to A: Bob exposes only the vertex w. Bob gives the edge (w, uψ), and

the edge (w, vi) if and only if bit(i, γ) = 1, as input to the stream of A.

158

From the construction, note that ∆av(G) = O(1). Recall that k = 0. Now we show

that, the output of TD is NO if and only if PERMn(π, j) = 1.

From the construction, the edges (uψ, vπ(ψ)) and (w, uψ) are present inG. If PERMn(π, j)

= 1, then (vπ(ψ), w) ∈ E(G). So, there exists a triangle in G, that is, the output of TD

is NO.

On the other hand, if the output of TD is NO, then there exists a triangle in G.

From the construction, the triangle is formed with the vertices uψ, vπ(ψ) and w. As

(vπ(ψ), w) ∈ E(G), the γ-th bit of π(ψ) is 1, that is, PERMn(π, j) = 1.

Now by Propositions 6.22 and 6.23(iii), we obtain that TD is (VA, n log n)-hard even

if ∆av(G) = O(1), and when k = 0.

u21 u22

u23

u31 u32

u33

u41 u42

u43

u21 u22

u23

u31 u32

u33

u41 u42

u43

u11 u12

u13

u11 u12

u13

(a)

(b)

Figure 6.5: Illustration of Proof of Theorem 6.20 (II). Consider n = 4. In (a), x = 1001
and y = 0100, that is, DISJn(x,y) = 1, and G does not contain any triangle. In (b),

x = 0110 and y = 1010, that is, DISJn(x,y) = 0, and G contains a triangle.

Proof of Theorem 6.20 (II). We give a reduction from DISJn to TD when the solution

size parameter k = 0. Let A be a one pass streaming algorithm that solves TD in VA

model, such that ∆(G) = O(1), and the space used is o(n). Let G be a graph with

3n vertices u11, u12, u13, . . . , un1, un2, un3. Let x,y be the input of Alice and Bob for

DISJn. See Figure 6.5 for an illustration.

159

Alice’s input to A: Alice inputs the graph G first by exposing the vertices u11, u12,

u21, u22, . . . , un1, un2, sequentially. (i) While exposing ui1, Alice does not give any

edge; (ii) while exposing ui2, Alice gives the edge (ui2, ui1), if and only if xi = 1, as

inputs to A.

After the exposure of u11, u12, u21, u22 . . . , un1, un2 as per the VA model, Alice sends

current memory state of A, i.e. the sketch generated by A, to Bob.

Bob’s input toA: Bob exposes the vertices u13, . . . , un3, sequentially. While exposing

ui3, Bob gives the edges (ui3, ui1) and (ui3, ui2) as two inputs to A if and only if yi = 1.

From the construction, note that ∆(G) ≤ 2. Recall that k = 0. Now we show that

the output of TD is NO if and only if DISJn(x,y) = 0.

If DISJn(x,y) = 0, there exists i ∈ [n] such that xi = yi = 1. From the construction,

the edges (ui2, ui1), (ui3, ui1) and (ui3, ui2) are present in G. So, there exists a triangle

in G, that is, the output of TD is NO.

Conversely, if the output of TD is NO, there exists a triangle in G. From the con-

struction, the triangle is (ui1, ui2, ui3) for some i ∈ [n]. As the edge (ui2, ui1) ∈ E(G),

xi = 1; and as the edges (ui3, ui1) and (ui3, ui2) are in G, yi = 1. So, DISJn(x,y) = 0.

Now by Propositions 6.22 and 6.23(ii), we obtain that TD is (VA, n/p, p)-hard even

if ∆(G) = O(1), and when k = 0.

Proof of Theorem 6.20 (III). We give a reduction from DISJn to TD parameterized by

vertex cover size K, where A is a one pass streaming algorithm that solves TD parame-

terized by K in VA model such that ∆av(G) = O(1), and the space used is o(n). Let G

be a graph with n+ 2 vertices ua, v1, . . . , vn, ub. Let x,y be the input of Alice and Bob

for DISJn. See Figure 6.6 for an illustration.

Alice’s input toA: Alice inputs the graphG first by exposing the vertices ua, v1, . . . , vn

sequentially. (i) While exposing ua, Alice does not give any edge; (ii) while exposing

vi, Alice gives the edge (vi, ua) as input to A if and only if xi = 1.

160

ua ub

v1

v2

v3

v4

ua ub

v1

v2

v3

v4

(a) (b)

Figure 6.6: Illustration of Proof of Theorem 6.20 (III). Consider n = 4. In (a),
x = 1000 and y = 0101, that is, DISJn(x,y) = 1, and G does not contain any triangle.

In (b), x = 0011 and y = 1010, that is, DISJn(x,y) = 0, and G contains a triangle.

After the exposure of ua, v1, . . . , vn as per the VA model, Alice sends current mem-

ory state of A, i.e. the sketch generated by A, to Bob.

Bob’s input to A: Bob exposes ub only. Bob gives the edge (ub, ua) unconditionally,

and an edge (ub, vi) as input to A if and only if yi = 1.

From the construction, observe that VC(G) ≤ 2 ≤ K and ∆av(G) = O(1). Recall

that k = 0. Now we show that the output of TD is NO if and only if DISJn(x,y) = 0.

Observe that (ua, ub) ∈ E(G). If DISJn(x,y) = 0, there exists an i ∈ [n] such that

xi = yi = 1. From the construction, the edges (vi, ua) and (ub, vi) are present in G. So,

G contains the triangle with vertices ua, ub and w, i.e., the output of TD is NO.

On the other hand, if the output of TD is NO, there exists a triangle in G. From the

construction, the triangle is formed with the vertices ua, ub and vi. As (vi, ua) ∈ E(G)

implies xi = 1, and (vi, ua) ∈ E(G) implies yi = 1. So, DISJn(x,y) = 0.

Now by Propositions 6.22 and 6.23(ii), we obtain that TD parameterized by vertex

cover size K is (VA, n/p, p)-hard even if ∆av(G) = O(1), and when k = 0.

In each of the above cases, we can make the reductions work for any k, by adding k

vertex disjoint triangles to G. In Theorem 6.20 (III), the vertex cover must be bounded.

In the given reduction for Theorem 6.20 (III), the vertex cover of the constructed graph

161

is at most 2. Note that by the addition of k edge disjoint C4’s, the vertex cover of the

constructed graph in the modified reduction is at most 2k + 2, and is therefore still a

parameter independent of the input instance size.

Hence, we are done with the proof of the Theorem 6.20.

u11

u12

u13

u21

u22

u23

u31

u32

u33

u41

u42

u43

u21

u22

u23

u31

u32

u33

u41

u42

u43

u11

u12

u13

(a) (b)

Figure 6.7: Illustration of Proof of Theorem 6.21. Consider n = 4. In (a), x = 0101
and y = 1000, that is, DISJn(x,y) = 1, and G does not have any induced P3. In (b),
x = 1100 and y = 0112, that is, DISJn(x,y) = 0, and G contains an induced P3.

Proof of Theorem 6.21. We give a reduction from DISJn to CVD for solution size pa-

rameter k = 0. Let A be a one pass streaming algorithm that solves CVD in VA model,

such that ∆(G) = O(1), and the space used is o(n). Consider a graphGwith 3n vertices

u11, u12, u13, . . . , un1, un2, un3. Let x,y be the input of Alice and Bob for DISJn. See

Figure 6.7 for an illustration.

Alice’s input toA: Alice inputs the graphG by exposing the vertices u11, u12, u21, u22

. . . , un1, un2, sequentially. (i) While exposing ui1, Alice does not give any edge; (ii)

while exposing ui2, Alice gives the edge (ui2, ui1) as input to A if and only if xi = 1.

After the exposure of u11, u12, u21, u22 . . . , un1, un2 as per the VA model, Alice sends

current memory state of A, i.e., the sketch generated by A, to Bob.

Bob’s input toA: Bob exposes the vertices u13, . . . , un3, sequentially. While exposing

ui3, Bob gives the edges (ui3, ui2) as an input to A if and only if yi = 1.

162

From the construction, note that ∆(G) ≤ 2. Observe that, there exists a P3 in G if

and only if there exists an i ∈ [n] such that xi = yi = 1. Hence, the output of CVD is

NO if and only if DISJn(x,y) = 0.

Now by Propositions 6.22 and 6.23(ii), we obtain that CVD is (VA, n/p, p)-hard

even if ∆(G) = O(1), and when k = 0.

We can make the reduction work for any k, by adding k vertex disjoint P3’s toG.

6.6 Conclusion

In this chapter, we initiated the study of parameterized streaming complexity with struc-

tural parameters for graph deletion problems. Our study also compares the parameter-

ized streaming complexity of several graph deletion problems in the different streaming

models. In future, we wish to investigate why such a classification exists for seemingly

similar graph deletion problems, and conduct a systematic study of other graph deletion

problems as well.

163

Chapter 7

Monochromatic Edge Estimation when

the Coloring Function also Streams

Contents
7.1 Brief description of the problem and related works 166

7.1.1 Notations, problem definition, results and the ideas 167

7.1.2 Prior works on graph coloring in semi-streaming model. . . . 171

7.2 CONFLICT-EST in VARAND model 172

7.2.1 The proof idea of Theorem 7.3 for CONFLICT-EST in VARAND

model . 173

7.2.2 Proof of correctness . 177

7.3 Lower bound for CONFLICT-EST in VARAND model 182

7.4 CONFLICT-EST in VA and VADEG models 185

7.4.1 Motivating ideas for the algorithms 185

7.4.2 Proof of Theorem 7.11 . 186

7.4.3 Proof of Theorem 7.12 . 187

7.5 Conclusion and discussion . 194

165

7.1 Brief description of the problem and related works

The chromatic number χ(G) of an n-vertex graph G = (V,E) is the minimum number

of colors needed to color the vertices of V so that no two adjacent vertices get the same

color. The chromatic number problem is NP-hard and even hard to approximate within

a factor of n1−ε for any constant ε > 0 [FK98, Zuc07, KP06]. For any connected undi-

rected graphGwith maximum degree ∆, χ(G) is at most ∆+1 [Viz64]. This existential

coloring scheme can be made constructive across different models of computation. A

seminal result of recent vintage is that the ∆ + 1 coloring can be done in the stream-

ing model [ACK19]. Of late, there has been interest in graph coloring problems in the

sub-linear regime across a variety of models [AA20a,ACK19,BDH+19,BG18,BCG19].

Keeping with the trend of coloring problems, these works look at assigning colors to ver-

tices. Since the size of the output will be as large as the number of vertices, reseachers

study the semi-streaming model [McG14b] for streaming graphs. In the semi-streaming

model, Õ(n)1 space is allowed.

In a marked departure from the above works that look at the classical coloring prob-

lem, the starting point of our work is (inarguably?) the easiest question one can ask in

graph coloring – given a coloring function f : V → {1, . . . , C} on the vertex set V of

a graph G = (V,E), is f a valid coloring, i.e., does every edge have its two endpoints

colored with different colors? This is the problem one encounters while proving that

the problem of chromatic number belongs to the class NP [GJ79]. CONFLICT-EST, the

problem of estimating the number of monochromatic (or, conflicting) edges for a graph

G given a coloring function f , remains a simple problem in the RAM model; it even

remains simple in the one-pass streaming model if the coloring function f is marked on

a public board, readable at all times. We show that the problem throws up interesting

consequences if the coloring function f on a vertex is revealed only when the vertex is

exposed in the stream.

Our work can also be viewed from a contrary perspective as follows. For a streaming

graph, if the vertices are assigned colors arbitrarily or randomly on-the-fly while the

1Õ(·) hides a polylogarithmic factor.

166

vertex is exposed, our results can also be used to estimate the number of conflicting

edges. These problems also find their use in estimating the number of conflicts in a job

schedule and verifying a given job schedule in a streaming setting. This can also be

extended to problems in various domains like frequency assignment in wireless mobile

networks and register allocation [EHKR09]. As the problem, by its definition, finds an

estimate, we can try for space efficient algorithms in the conventional graph streaming

models like VERTEX ARRIVAL [CDK19]. We also note in passing that many of the trend

setting problems in streaming, like frequency moments, distinct elements, majority, etc.

have been simple problems in the ubiquitous RAM model as the coloring problem we

solve here.

Recall the definitions of VERTEX ARRIVAL (VA), VERTEX ARRIVAL WITH DE-

GREE ORACLE (VADEG), VERTEX ARRIVAL IN RANDOM ORDER (VARAND), EDGE

ARRIVAL (EA) and ADJACENCY LIST (AL) models for graph streaming discussed in

Section 1.1.2. As the conflicts can be checked easily in the EA model in O(1) space, a

logarithmic counter is enough to count the number of monochromatic edges. Note that

we can count the number of monochromatic edges in a graph by using Õ(n) space in VA,

VADEG and VARAND model, by storing each vertex and its color. The AL model works

almost the same as the VADEG model. So, we focus on the three models – VA, VADEG

and VARAND in this work and show that they have a clear separation in their power

vis-a-vis the problem we solve. A crucial takeaway from our work is that the random

order assumption on exposure of vertices has huge improvements in space complexity.

7.1.1 Notations, problem definition, results and the ideas

Notations. G(V (G), E(G)) denotes a graph where V (G) and E(G) denote the set of

vertices and edges of G, respectively; |V | = n and |E| = m. We will write only V and

E for vertices and edges when the graph is clear from the context. We denote EM ⊆ E

as the set of monochromatic edges. The set of neighbors of a vertex u ∈ V (G) is

denoted by NG(u) and the degree of a vertex u ∈ V (G) is denoted by dG(u). Let

NG(u) = N−G (u)] N+
G (u) where N−G (u) and N+

G (u) denote the set of neighbors of u

167

that have been exposed already and are yet to be exposed, respectively in the stream.

Also, dG(u) = d−G(u) + d+
G(u) where d−G(u) =

∣∣N−G (u)
∣∣ and d+

G(u) =
∣∣N+

G (u)
∣∣. For a

monochromatic edge (u, v) ∈ EM , we refer to u and v as monochromatic neighbors of

each other. We define dM(u) to be the number of monochromatic neighbors of u and

hence, the monochromatic degree of u.

Problem definition. Let the vertices ofG be colored with a function f : V (G)→ [C],

for C ∈ N. An edge (u, v) ∈ E(G) is said to be monochromatic or conflicting with

respect to f if f(u) = f(v). A coloring function f is called valid if no edge in E(G) is

monochromatic with respect to f . For a given parameter ε ∈ (0, 1), f is said to be ε-far

from being valid if at least ε · |E(G)| edges are monochromatic with respect to f . We

study the following problem.

Problem 7.1 (CONFLICT ESTIMATION aka CONFLICT-EST). A graph G = (V,E) and

a coloring function f : V (G) → [C] are streaming inputs. Given an input parameter

ε > 0, the objective is to estimate the number of monochromatic edges in G within a

(1± ε)-factor.

An easier variant of the above problem, CONFLICT-SEP (defined below), was con-

sidered by Upasana [Upa20]. Table 7.1 shows the results about CONFLICT-SEP (in

different graph models) from the work by Upasana [Upa20].

Problem 7.2 (CONFLICT SEPARATION aka CONFLICT-SEP). A graph G = (V,E) and

a coloring function f : V (G) → [C] are streaming inputs. Given an input parameter

ε > 0, the objective is to distinguish if the coloring function f is valid or is ε-far from

being valid.

Our results Table 7.2 states our results for the CONFLICT-EST problem, the main

problem we solve in this work, across different variants of the VA model. The main

thrust of our work is on estimating monochromatic edges under random order stream.

For random order stream, we present both upper and lower bounds in Sections 7.2 and

168

Model VA VADEG VARAND

Upper Bound Õ
(

min{|V | , |V |
2

ε|E|}
)
Õ
(
min{|V | , 1

ε
}
)
Õ
(
|V |√
ε|E|

)

Lower Bound Ω

(
|V |√
|E|

)
Ω
(

1
ε

)
—

Table 7.1: This table shows results on CONFLICT-SEP presented in [Upa20]. All of the
above upper and lower bounds on space are for one-pass streaming algorithms.

7.3, respectively. There is a gap between the upper and lower bounds in the VARAND

model, though we have a strong hunch that our upper bound is tight. Lower bounds for

VA and VADEG models have been presented in [Upa20] and [BBMU21]. We show

matching upper bounds for the VA and VADEG models in Section 7.4.

Comparison of our results with [Upa20]: As noted earlier, the space complexity of

CONFLICT-EST is at least as large as the space complexity of CONFLICT-SEP. We would

like to note that both lower and upper bound results of [Upa20] on CONFLICT-SEP in

VA and VADEG models can be suitably generalized to that for CONFLICT-EST in VA

and VADEG model, respectively, as presented in Table 7.2. In Section 7.4 of this thesis,

we present upper bound results on CONFLICT-EST for the VA and VADEG models that

match the lower bounds presented in [Upa20] and [BBMU21]. These lower bound re-

sults do not form part of this thesis but are presented in Appendix A.1 for easy reference.

However, the upper bound result on CONFLICT-SEP in VARAND model by [Upa20]

cannot be easily generalized for CONFLICT-EST in VARAND model. Note that the al-

gorithm for CONFLICT-EST in VARAND model is the main upper bound contribution

in this chapter. Also, there was no lower bound for CONFLICT-SEP in VARAND model

by [Upa20]. But we have a lower bound as presented in Table 7.2.

169

Model VA VADEG VARAND

Upper
Õ
(

min{|V | , |V |
2

T }
)

Õ
(

min{|V | , |E|T }
)

Õ
(
|V |√
T

)
Bound (Sec. 7.4, Thm. 7.11) (Sec. 7.4, Thm. 7.12) (Sec. 7.2, Thm. 7.3)

Lower
Ω
(

min{|V | , |V |
2

T }
)†

Ω
(

min{|V | , |E|T }
)†

Ω
(
|V |
T 2

)∗
Bound (see [Upa20] and [BBMU21]) (see [Upa20] and [BBMU21]) (Sec. 7.3, Thm. 7.10)

Table 7.2: This table shows our results on CONFLICT-EST on a graph G(V,E) across
different VERTEX ARRIVAL models. The lower bound results marked with † were

presented in [Upa20] and [BBMU21]. We mention it here to give an overall picture of
the bounds. Here, T > 0 denotes the promised lower bound on the number of

monochromatic edges. The trivial algorithm has space complexity of O(n) in all the
three models, we are also proving Ω(n) lower bound when T = 1 in all the three
models. This justifies the assumption of a lower bound T in this work. The result
marked with * is for constant pass streaming algorithms; the rest are for one pass

streaming algorithm.

The ideas involved. Note that T in Table 7.2 denotes a promised lower bound on

the number of monochromatic edges in the graph. The promise T (on the number of

monochromatic edges) is a very standard assumption for estimating substructures in the

world of graph streaming algorithm [KKP18, KMSS12, KMPV19, MVV16, BC17]. 2

We now briefly mention the salient ideas involved. For the simpler variant of CONFLICT-

EST in VA model, we first check if |V | ≤ T . If yes, we store all the vertices and their

colors in the stream to determine the exact value of the number of monochromatic edges.

Otherwise, we sample each pair of vertices {u, v} in
(
V
2

)
3, with probability Õ (1/T) in-

dependently 4 before the stream starts. When the stream comes, we compute the number

of monochromatic edges from this sample. The details are in Section 7.4. Though the

algorithm looks extremely simple, it matches the lower bound result for CONFLICT-EST

in VA model, presented in Appendix A.1. The VADEG model with its added power of

2Here we have cited a few. However, there are huge amount of relevant literature.
3
(
V
2

)
denotes the set of all size 2 subsets of V (G).

4Note that we might sample some pairs that are not forming edges in the graph.

170

a degree oracle, allows us to know dG(u) for a vertex u and as edges to pre-exposed

vertices are revealed, we also know d−G(u) and d+
G(u). This allows us to use sampling

to store vertices and to use a technique which we call sampling into the future where

indices of random neighbors, out of d+
G(u) neighbors, are selected for future checking.

The one-pass algorithm has a dependence on |E| but can work without the knowledge

of |E|; and this has to be handled in a non-trivial way. The upper bound result, for

CONFLICT-EST in VADEG model, is presented in Section 7.4, and it is tight as can be

seen from a matching lower bound in Appendix A.1.

The algorithm for CONFLICT-EST in VARAND model is the mainstay of our work

and is presented in Section 7.2. We redefine the degree in terms of the number of

monochromatic neighbors a vertex has in the randomly sampled set. Here, we estimate

the high monochromatic degree and low monochromatic degree vertices separately by

sampling a random subset of vertices. While the monochromatic degree for the high

degree vertices can be extrapolated from the sample, handling low monochromatic de-

gree vertices individually in the same way does not work. To get around, we group

such vertices having similar monochromatic degress and treat them as an entity. We also

provide a lower bound for the VARAND model, in Section 7.3, using a reduction from

multi-party set disjointness; though there is a gap in terms of the exponent in T .

7.1.2 Prior works on graph coloring in semi-streaming model.

Bera and Ghosh [BG18] commenced the study of vertex coloring in the semi-streaming

model. They devise a randomized one-pass streaming algorithm that finds a (1 + ε)∆

vertex coloring in Õ(n) space. They do this in two phases by first randomly partition-

ing the vertex set into O(∆
logn

) subsets where the subgraph induced by each subset has

a maximum degree of log n with high probability. Then, every vertex of the random

partitioning is colored independently and uniformly at random using a O(∆
logn

) sized

color palette. Assadi et al. [ACK19] find a proper vertex coloring using ∆ + 1 colors

via various classes of sublinear algorithms. Their state of the art contributions can be

attributed to a key result called the palette-sparsification theorem which states that for an

171

n-vertex graph with maximum degree ∆, if O(log n) colors are sampled independently

and uniformly at random for each vertex from a list of ∆ + 1 colors, then with a high

probability, a proper ∆ + 1 coloring exists for the graph. They design a randomized

one-pass dynamic streaming algorithm for the ∆ + 1 coloring using Õ(n) space. The

algorithm takes post-processing Õ(n
√

∆) time and assumes a prior knowledge of ∆.

Alon and Assadi [AA20b] improve the palette sparsification result of [ACK19]. They

consider situations where the number of colors available is both more than and less than

∆ + 1 colors. They show that sampling Oε(
√

log n) colors 5 per vertex is sufficient

and necessary for a (1 + ε)∆ coloring. Bera et al. [BCG19] give a new graph coloring

algorithm in the semi-streaming model where the number of colors used is parameter-

ized by the degeneracy κ. The key idea is a low degeneracy partition, also employed

in [BG18]. The numbers of colors used to properly color the graph is κ + o(κ) and

post-processing time of the algorithm is improved to Õ(n), without any prior knowl-

edge about κ. Behnezhad et al. [BDH+19] were the first to give one-pass W-streaming

algorithms (streaming algorithms where outputs are produced in a streaming fashion as

opposed to outputs given finally at the end) for edge coloring both when the edges arrive

in a random order or in an adversarial fashion.

7.2 CONFLICT-EST in VARAND model

In this Section, we mainly show that the power of randomness can be used to design a

better solution for the CONFLICT-EST problem in the VARAND model. The CONFLICT-

EST problem is the main highlight of our work. We feel that the crucial use of random-

ness in the input that is used to estimate a substructure (here, monochromatic edges) in

a graph, will be of independent interest.

In this variant, we are given an ε ∈ (0, 1) and a promised lower bound T on |EM |,
the number of monochromatic edges in G, as input and our objective is to determine a

(1± ε)-approximation to |EM |.

5The constant in O(·) depends on ε.

172

Theorem 7.3. Given any graphG = (V,E) and a coloring function f : V (G)→ [C] as

input in the stream, the CONFLICT-EST problem in the VARAND model can be solved

with high probability in Õ
(
|V |√
T

)
space, where T is a lower bound on the number of

monochromatic edges in the graph.

We discuss the algorithm and its proof idea in Section 7.2.1 and the formal proof is

in Section 7.2.2.

7.2.1 The proof idea of Theorem 7.3 for CONFLICT-EST in VARAND

model

A random sample comes for free – pick the first few vertices: Let v1, . . . , vn be the

random ordering in which the vertices of V are revealed. Let R be a random subset of

Γ = Θ̃
(

n√
T

)
vertices of G sampled without replacement 6. As we are dealing with a

random order stream, consider the first Γ vertices in the stream; they can be treated as

R, the random sample. We start by storing all the vertices in R as well as their colors.

Observe that if the monochromatic degree of any vertex vi is large (say roughly more

than
√
T), then it can be well approximated by looking at the number of monochromatic

neighbors that vi has in R. As a vertex vi streams past, there is no way we can figure

out its monochromatic degree, unless we store its monochromatic neighbors that appear

before it in the stream; if we could, we were done. Our only savior is the stored random

subset R.

Classifying the vertices of the random sample R based on its monochromatic de-

gree: Our algorithm proceeds by figuring out the influence of the color of vi on the

monochromatic degrees of vertices in R. To estimate this, let κvi denote the number

of monochromatic neighbors that vi has in R. We set a threshold τ = |R|
n

√
εT
8t

, where

t = dlog1+ ε
10
ne. The significance of t will be clear from the discussion below. Any

vertex vi will be classified as a high-mR or low-mR degree vertex depending on its

monochromatic degree within R, i.e., if κvi ≥ τ , then vi is a high-mR vertex, else it

6Θ̃(·) hides a polynomial factor of log n and 1
ε in the upper bound.

173

is a low-mR vertex, respectively. (We use the subscripts mR to stress the fact that the

monochromatic degrees are induced by the set R.) Let H and L be the partition of V

into the set of high-mR and low-mR degree vertices in G. Let HR and LR denote the

set of high-mR and low-mR degree vertices in R. Notice that, because of the definition

of high-mR and low-mR degree vertices, not only the sets HR, LR are subsets of R, but

they are determined by the vertices of R only.

Let mh and m` denote the sum of the monochromatic degrees of all the high-mR

degree vertices and low-mR degree vertices in G, respectively. So, mh =
∑

v∈H dM(v)

and m` =
∑

v∈L dM(v). Note that

m̂ = |EM | =
1

2

∑
v∈V

dM(v) =
1

2
(mh +m`) . (7.1)

We will describe how to approximate mh and m` separately. The formal algorithm

is described in Algorithm 7.1 as RANDOM-ORDER-EST(ε, T) that basically executes

steps to approximate mh and m` in parallel.

To approximate mh, the random sample R comes to rescue: We can find m̂h, that

is, a
(
1± ε

10

)
approximation of mh as described below. For each vertex vi ∈ R and

each monochromatic edge (u, vi), u ∈ R, we see in the stream, we increase the value

of κu for u and κvi for vi. After all the vertices in R are revealed, we can determine

HR by checking whether κvi ≥ τ for each vi ∈ R. For each vertex vi ∈ HR, we set

its approximate monochromatic degree d̂vi to be n
|R|κvi . We initialize the estimated sum

of the monochromatic degree of high degree vertices as m̂h =
∑

vi∈HR d̂vi . For each

vertex vi /∈ R in the stream, we can determine κvi , as we have stored all the vertices

in R along with their colors, and hence we can also determine whether vi is a high-mR

degree vertex in G. If vi /∈ R is a high-mR degree vertex, we determine d̂vi = n
|R|κvi and

update m̂h by m̂h + d̂vi . Observe that, at the end, m̂h is
∑

vi∈H d̂vi . Recall that H is the

set of all high-mR degree vertices in G. For each vi ∈ H , we will show, as in Claim 7.5,

that d̂vi is a
(
1± ε

10

)
-approximation to dM(vi) with high probability. This implies that

174

Algorithm 7.1: RANDOM-ORDER-EST(ε, T): CONFLICT-EST in VARAND

model
Input: G = (V,E) and a coloring function f on V in the VARAND model, parameters T and ε.
Output: m̂, that is, a (1± ε) approximation to |EM |.

1 Γ = Θ̃
(

n√
T

)
; v1, . . . , vn be the random ordering in which vertices are revealed and

R = {v1, . . . , vΓ};
2 κvi , i ∈ [n], denotes the number of monochromatic neighbors of vi in R,
3 d̂vi , i ∈ [n], denotes the (estimated) monochromatic neighbors of vertices in G. H denotes the

set of high degree vertex in R, i.e., H = {vi : κvi ≥
|R|
n

√
εT
8t } and L = V \H; LR = L ∩R

and HR = H ∩R;
4 The vertices in L are partitioned into t buckets as follows:

5 Bj = {vi ∈ L :
(
1 + ε

10

)j−1 ≤ dM (vi) <
(
1 + ε

10

)j}, where j ∈ [t].
6 Set t = dlog1+ ε

10
ne. If T < 63t2, then store all the vertices in G along with their colors. At the

end, report the exact value of |EM |. Otherwise, we proceed through via three building blocks
described below and marked as (1),(2), (3) and (4).

7 (1) Processing the vertices in R, the first Γ vertices, in the stream:
8 for (each vertex vi ∈ R exposed in the stream) do
9 Store vi as well as its color f(vi).

10 For each edge (vi′ , vi) that arrives in the stream, increase the values of κvi′ and κvi .

11 (2)Computation of some parameters based on vertices in R and their colors:
12 for (each vi ∈ R with κvi ≥

|R|
n

√
εT
8t) do

13 Add vi to HR, and set d̂vi = n
|R|κvi .

14 m̂h =
∑
vi∈H

d̂vi . Let LR = R \HR.

15 for (each vi ∈ LR) do
16 Set d̂vi = κvi .

17 (3)Processing the vertices in V (G) \R in the stream:
18 for (each vertex vi /∈ R exposed in the stream) do
19 Determine the value of κvi .

20 If κvi ≥
|R|
n

√
εT
8t , find d̂vi = n

|R|κvi and add d̂vi to the current m̂h.

21 Also, for each vi′ ∈ LR, increase the value of d̂vi′ if (vi′ , vi) is an edge.

22 (4)Post processing, after the stream ends, to return the output:
23 From the values of d̂vi for all vi ∈ LR, determine the buckets for each vertex in LR. Also, for

each j ∈ [t], find |Aj | = |LR ∩Bj |. Then determine
24 m̂` = n

|R|
∑
j∈[t]

|Aj |
(
1 + ε

10

)j
.

25 Report m̂ = m̂h+m̂`

2 as the final OUTPUT. // See Equation 7.1.

175

(
1− ε

10

)
mh ≤ m̂h ≤

(
1 +

ε

10

)
mh (7.2)

To approximate m`, group the vertices in L based on similar monochromatic de-

gree: Recall that m` =
∑

vi∈L dM(vi). Unlike the high-mR degree vertices, it is not

possible to approximate the monochromatic degree of vi ∈ L from κvi . To cope up with

this problem, we partition the vertices ofL into t bucketsB1, . . . , Bt such that all the ver-

tices present in a bucket have similar monochromatic degrees, where t = dlog1+ ε
10
ne.

The bucket Bj is defined as follows: Bj = {vi ∈ L :
(
1 + ε

10

)j−1 ≤ dM(vi) <(
1 + ε

10

)j}.
Note that our algorithm will not find the buckets explicitly. It will be used for the

analysis only. Observe that
∑

j∈[t] |Bj|
(
1 + ε

10

)j−1 ≤ m` <
∑

j∈[t] |Bj|
(
1 + ε

10

)j . We

can surely approximate m` by approximating |Bj|s suitably. We estimate |Bj|s as fol-

lows. After the stream of the vertices in R has gone past, we have the set of low-mR

degree vertices LR in R and d̂vi = κvi for each vi ∈ LR. For each vi /∈ R in the

stream, we determine the monochromatic neighbors of vi in LR. It is possible as we

have stored all the vertices in R and their colors. For each monochromatic neighbor

vi′ ∈ LR of vi, we increase the value of d̂vi′ of vi′ . Observe that, at the end of the

stream, d̂vi′ = dM(vi′) for each vi′ ∈ LR, i.e., we can accurately estimate the monochro-

matic degree of each vi′ ∈ LR. So, we can determine the bucket where each vertex in

LR belongs. Let Aj (= LR ∩ Bj) be the bucket Bj projected onto LR in the random

sample; note that as Bj ⊆ L and LR = L ∩ R, Aj = R ∩ Bj also. We determine

m̂` = n
|R|
∑

j∈[t] |Aj|
(
1 + ε

10

)j . We can show that n
|R| |Aj| is a

(
1 + ε

10

)
-approximation

of |Bj|, with high probability, if |Bj| ≥
√
εT

10t
. Also, we can show that, if |Bj| <

√
εT

10t
,

then |Aj| ≤ |R|
n

√
εT
8t

with high probability. Now using the fact that we consider bucketing

of only low-mR degree vertices (LR), we can show that

(
1− ε

10

)(
m` −

εT

63t

)
≤ m̂` ≤

(
1 +

ε

10

)2
(
m` +

εT

56t

)
. (7.3)

Note that ε ∈ (0, 1) and t = dlog1+ ε
10
ne. Assuming T ≥ 63t2, Equations 7.2 and 7.3

176

imply that m̂ = 1
2
(m̂h + m̂`) is a (1± ε)-approximation to |EM |. If T < 63t2, then note

that n = Õ
(

n√
T

)
. So, in that case, we store all the vertices along with their colors and

compute the exact value of |EM |.

7.2.2 Proof of correctness

The correctness of the algorithm follows trivially if T < 63t2. So, let us assume that

T ≥ 63t2. In the VARAND model, we consider the first Θ̃
(

n√
T

)
vertices as the random

sampleR without replacement. Using the Chernoff bound for sampling without replace-

ment (See Lemma 2.6 in Section 2.1), we can have the following lemma, which will be

useful for the correctness proof of Algorithm 7.1 (RANDOM-ORDER-EST(ε, T)) in case

of T ≥ 63t2.

Lemma 7.4. (i) For each j ∈ [t] with |Bj| ≥
√
εT

10t
, P
(∣∣∣|Bj ∩R| − |R||Bj |n

∣∣∣ ≥ ε
10

|R||Bj |
n

)
≤ 1

n10 .

(ii) For each j ∈ [t] with |Bj| <
√
εT

10t
, P
(
|Bj ∩R| ≥ |R|

n

√
εT
8t

)
≤ 1

n10 .

(iii) For each vertex vi with dM(vi) ≥
√
εT

10t
, P
(∣∣∣κvi − |R|dM (vi)

n

∣∣∣ ≥ ε
10
|R|dM (vi)

n

)
≤ 1

n10 .

(iv) For each vertex vi with dM(vi) <
√
εT

10t
, P
(
κvi ≥

|R|
n

√
εT
8t

)
≤ 1

n10 .

Proof. Let us take N = n, r = |R| = Γ = Θ̃
(

n√
T

)
, I = {v1, . . . , vn} in Lemma 2.6.

(i) Setting J = Bj and δ = ε
10

in Lemma 2.6 (i) and (ii), we have

P
(∣∣∣∣|Bj ∩R| −

|R| |Bj|
n

∣∣∣∣ ≥ ε

10

|R| |Bj|
n

)
≤ 2 exp

(
−(ε/10)2 |Bj|Γ

3n

)
≤ 1

n10
.

The last inequality holds as |Bj| ≥
√
εT

10t
, t = dlog1+ ε

10
ne = Θ

(
logn
ε

)
and Γ =

Θ̃
(

n√
T

)
.

(ii) Set J = Bj , k =
√
εT

10t
, δ = 1

4
in Lemma 2.6 (iii). As |Bj| ≤

√
εT

10t
, |J | ≤ k. Hence,

P

(
|Bj ∩R| ≥

|R|
n

√
εT

8t

)
≤ exp

(
−(1/4)2(

√
εT/10t)Γ

3n

)
≤ 1

n10
.

177

(iii) Setting J as the set of monochromatic neighbors of vi inR and δ = ε
10

in Lemma 2.6

(i) and (ii), we get

P
(∣∣∣∣κvi − |R| dM(vi)

n

∣∣∣∣ ≥ ε

10

|R| dM(vi)

n

)
≤ exp

(
−(ε/10)2|J |Γ

3n

)
≤ 1

n10
.

The last inequality holds as |J | = dM(vi) ≥
√
εT

10t
, t = dlog1+ ε

10
ne = Θ

(
logn
ε

)
and Γ = Θ̃

(
n√
T

)
.

(iv) Set J as the set of monochromatic neighbors of vi in R, k =
√
εT

10t
, δ = 1

4
in

Lemma 2.6 (iii). Note that |J | = dM(vi) ≤
√
εT

10t
= k. Hence,

P

(
κvi ≥

|R|
n

√
εT

8t

)
≤ exp

(
−(1/4)2(

√
εT/10t)Γ

3n

)
≤ 1

n10
.

The correctness proof of the algorithm is divided into the following two claims.

Claim 7.5.
(
1− ε

10

)
mh ≤ m̂h ≤

(
1 + ε

10

)
mh with probability at least 1− 1

n9 .

Claim 7.6.
(
1− ε

10

) (
m` − εT

63t

)
≤ m̂` ≤

(
1 + ε

10

)2 (
m` + εT

56t

)
with probability at least

1− 1
n7 .

Assuming the above two claims hold and taking ε ∈ (0, 1), t = dlog1+ ε
10
ne and

T ≥ 63t2, observe that m̂ = 1
2
(m̂h+m̂`) is a (1±ε) approximation of |EM | = mh+m`

with high probability. Thus, it remains to prove Claims 7.5 and 7.6.

Proof of Claim 7.5. Note that mh =
∑

vi:κvi≥
|R|
n

√
εT
8t

dM(vi) and m̂h =
∑

vi:κvi≥
|R|
n

√
εT
8t

d̂vi .

From Lemma 7.4 (iv) and (iii), κvi ≥
|R|
n

√
εT
8t

implies that d̂vi is an
(
1± ε

10

)
approxi-

mation to dM(vi) with probability at least 1− 2
n10 . Hence, we have

(
1− ε

10

)
mh ≤ m̂h ≤(

1 + ε
10

)
mh with probability at least 1− 1

n9 .

178

Proof of Claim 7.6. Note that

m` =
∑
vi∈L

dM(vi) =
∑

vi:κvi<
|R|
n

√
εT
8t

dM(vi)

and

m̂` =
n

|R|
∑
j∈[t]

|Aj|
(

1 +
ε

10

)j

Recall that the vertices in L are partitioned into t buckets as follows:

Bj = {vi ∈ L :
(
1 + ε

10

)j−1 ≤ dM(vi) <
(
1 + ε

10

)j}, where j ∈ [t]. By Lemma 7.4

(iv), κvi <
|R|
n

√
εT
8t

implies that dM(vi) ≤
√
εT
7t

with probability 1− 1
n10 . So, we have the

following observation.

Observation 7.7. Let j ∈ [t] be such that |Aj| 6= 0 (|Bj| 6= 0). Then, with probability

at least 1− 1
n10 , the monochromatic degree of each vertex in Aj as well as Bj is at most

√
εT
7t

, that is,
(
1 + ε

10

)j ≤ √
εT
7t

.

To upper and lower bound m̂` in terms of m`, we upper and lower bound m` in terms

of |Bj|’s as follows; for the upper bound, we break the sum into two parts corresponding

to large and small sized buckets:

∑
j∈[t]

|Bj|
(

1 +
ε

10

)j−1

≤ m` <
∑
j∈[t]

|Bj|
(

1 +
ε

10

)j
∑
j∈[t]

|Bj|
(

1 +
ε

10

)j−1

≤ m` <
∑

j∈[t]:|Bj |≥
√
εT
9t

|Bj|
(

1 +
ε

10

)j
+

∑
j∈[t]:|Bj |<

√
εT
9t

|Bj|
(

1 +
ε

10

)j

179

By Observation 7.7, we bound m` in terms of |Bj|’s with probability 1− 1
n9 .

∑
j∈[t]

|Bj|
(

1 +
ε

10

)j−1

≤ m` <
∑

j∈[t]:|Bj |≥
√
εT
9t

|Bj|
(

1 +
ε

10

)j
+ t ·

√
εT

9t

√
εT

7t

This implies the following Observation:

Observation 7.8.
∑
j∈[t]

|Bj|
(
1 + ε

10

)j−1 ≤ m` <
∑

j∈[t]:|Bj |≥
√
εT
9t

|Bj|
(
1 + ε

10

)j
+ εT

63t
holds

with probability at least 1− 1
n9 .

Now, we have all the ingredients to show that m̂` is a (1 ± ε) approximation of

m`. To get to m̂`, we need to focus on low-mR vertices of R, i.e., Aj’s. Breaking

m̂` = n
|R|
∑
j∈[t]

|Aj|
(
1 + ε

10

)j depending on small and large values of |Aj|’s (recall Aj =

LR ∩Bj = R ∩Bj), we have

m̂` =
n

|R|

 ∑
j∈[t]:|Aj |≥ |R|n

√
εT
8t

|Aj|
(

1 +
ε

10

)j
+

∑
j∈[t]:|Aj |< |R|n

√
εT
8t

|Aj|
(

1 +
ε

10

)j (7.4)

Note that Aj = Bj ∩ R. By Lemma 7.4 (ii), |Aj| ≥ |R|
n

√
εT
8t

implies |Bj| ≥
√
εT

10t
with

probability at least 1 − 1
n10 . Also, applying Lemma 7.4 (i), |Bj| ≥

√
εT

10t
implies |Aj| is

an
(
1± ε

10

)
-approximation to |R||Bj |

n
with probability at least 1 − 1

n10 . So, we have the

following observation.

Observation 7.9. Let j ∈ [t] be such that |Aj| ≥ |R|
n

√
εT
8t

. Then |Aj| is an
(
1± ε

10

)
-

approximation to |R||Bj |
n

with probability at least 1− 2
n10 , that is, n

|R| |Aj| is an
(
1± ε

10

)
-

approximation to |Bj| with probability at least 1− 2
n10

By the above observation along with Equation 7.4, we have the following upper

bound on m̂` with probability at least 1− 1
n9 .

180

m̂` ≤
∑

j∈[t]:|Aj |≥ |R|n
√
εT
8t

(
1 +

ε

10

)
|Bj|

(
1 +

ε

10

)j
+

∑
j∈[t]:|Aj |< |R|n

√
εT
8t

n

|R|
|Aj|

(
1 +

ε

10

)j

≤
(

1 +
ε

10

)2

 ∑
j∈[t]:|Aj |≥ |R|n

√
εT
8t

|Bj|
(

1 +
ε

10

)j−1

+
∑

j∈[t]:|Aj |< |R|n
√
εT
8t

√
εT

8t

(
1 +

ε

10

)j−2

Now by Observations 7.8 and 7.7, we have the following with probability at least 1− 1

n8 .

m̂` ≤
(

1 +
ε

10

)2
(
m` + t ·

√
εT

8t

√
εT

7t

)

=
(

1 +
ε

10

)2
(
m` +

εT

56t

)
Now, we will lower bound m̂`. From Equation 7.4, we have

m̂` ≥
n

|R|
∑

j∈[t]:|Aj |≥ |R|n
√
εT
8t

|Aj|
(

1 +
ε

10

)j

By Observation 7.9, |Aj| ≥ |R|
n

√
εT
8t

implies n
|R| |Aj| is an

(
1± ε

10

)
-approximation to

|Bj| with probability at least 1 − 2
n10 . So, the following lower bound on m̂` holds with

probability at least 1− 1
n9 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Aj |≥ |R|n

√
εT
8t

|Bj|
(

1 +
ε

10

)j

By Lemma 7.4 (i), if |Bj| ≥
√
εT
9t

, then |Aj| ≥
√
εT
8t

with probability at least 1 − 1
n10 .

Hence, we have the following lower bound on m` with probability at least 1− 1
n8 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Bj |≥

√
εT
9t

|Bj|
(

1 +
ε

10

)j

181

Now by Observation 7.8, we have the following with probability at least 1− 1
n7 .

m̂` ≥
(

1− ε

10

)(
m` −

εT

63t

)
.

7.3 Lower bound for CONFLICT-EST in VARAND model

In this Section, we show a lower bound of Ω
(
n
T 2

)
for CONFLICT-EST in VERTEX AR-

RIVAL IN RANDOM ORDER via a reduction from a variation of MULTIPARTY SET DIS-

JOINTNESS problem called DISJOINTNESSR(t, n, p), played among p players: Consider

a matrix of order t × n having t (rows) vectors M1, . . . ,Mt ∈ {0, 1}n such that each

entry of matrix M is given to one of the p players chosen uniformly at random. The

objective is to determine whether there exists a column where all the entries are 1s. If

t ≥ 2 and p = Ω(t2), Chakrabarti et al. showed that any randomized protocol requires

Ω
(
n
t

)
bits of communication [CCM16]. They showed that the lower bound holds under

a promise called the UNIQUE INTERSECTION PROMISE which states that there exists at

most a single column where all the entries are 1s and every other column of the matrix

has Hamming weight either 0 or 1. Moreover, the lower bound holds even if all the p

players know the random partition of the entries of matrix M .

Theorem 7.10. Let n, T ∈ N be such that 4 ≤ T ≤
(
n
2

)
. Any constant pass streaming

algorithm that takes the vertices and edges of a graph G(V,E) (with |V | = Θ(n) and

|E| = Θ(m)) and a coloring function f : V → [C] in the VARAND model, and deter-

mines whether the number of monochromatic edges in G is 0 or Ω(T) with probability

2/3, requires Ω
(
n
T 2

)
bits of space.

Proof. Without loss of generality, assume that
√
T ∈ N. Consider the DISJOINTNESSR(√

T , n√
T
, p
)

problem with UNIQUE INTERSECTION PROMISE when all of the p players

know the random partition of the entries of the relevant matrix M . Note that M is of

order [
√
T] ×

[
n√
T

]
and p = AT for some suitable constant A ∈ N. Also, consider a

182

graph G, with V (G) = {vij : i ∈
[√

T
]
, j ∈

[
n√
T

]
}, having n√

T
vertex disjoint cliques

such that {v1j, . . . , v√Tj} forms a clique for each j ∈ [n], i.e., a column of M forms

a clique. Also, notice that each clique has Θ(T) edges. Let us assume that there is

an r-pass streaming algorithm S, with space complexity s bits, that solves CONFLICT-

EST for the above graph G in the VARAND model. Now, we give a protocol A for

DISJOINTNESSR

(√
T , n√

T
, p
)

with communication cost O(rsp). Using the fact that

the lower bound of DISJOINTNESS
(√

T , n√
T
, p
)

is Ω
(
n/
√
T√
T

)
along with the fact that

p = AT and r is a constant, we get s = Ω
(
n
T 2

)
.

Protocol A for DISJOINTNESSR

(√
T , n√

T
, p
)

: Let P1, . . . , Pp denote the set of p

players. For k ∈ [p], Vk = {vij : Mij is with Pk}, where Mij denotes the element

present in the i-th row and j-th column of matrix M . Note that there is a one-to-one

correspondence between the entries of M and the vertices in V (G). Furthermore, there

is a one-to-one correspondence between the columns of matrix M and the cliques in

graph G. We assume that all the p players know the graph structure completely as well

as both the one-to-one correspondences. The protocol proceeds as follows: for each

k ∈ [p], player Pk determines a random permutation πk of the vertices in Vk. Also, for

each k ∈ [p], player Pk determines the colors of the vertices in Vk by the following rule:

if Mij = 1, then color vertex vij with color C∗. Otherwise, for Mij = 0, color vertex vij
with color Ci. Player P1 initiates the streaming algorithm and it goes over r-rounds.

Rounds 1 to r − 1: For k ∈ [p], each player resumes the streaming algorithm by expos-

ing the vertices in Vk, along with their colors, in the order dictated by πk. Also, Pk
adds the respective edges to previously exposed vertices when the current vertex

is exposed to satisfy the basic requirement of VA model. This is possible because

all players know the graph G and the random partition of the entries of matrix M

among p players. After exposing all the vertices in Vk, as described, Pk sends the

current memory state to player Pk+1. Assume that P1 = Pp+1.

Round r: All the players behave similarly as in the previous rounds, except that, the

player Pp does not send the current memory state to P1. Rather, Pp decides

183

whether there is a column in M with all 1s if the streaming algorithm S decides

that there are Ω(T) monochromatic edges in G. Otherwise, if S decides that there

is no monochromatic edge in G, then Pp decides that all the columns of M have

weight either 0 or 1. Then Pp sends the output to all other players.

The vertices of graph G are indeed exposed randomly to the streaming algorithm. It is

because the entries of matrix M are randomly partitioned among the players and each

player also generates a random permutation of the vertices corresponding to the entries

of matrixM available to them. From the description of the protocolA, the memory state

of the streaming algorithm (of space complexity s) is communicated (r− 1)p+ (p− 1)

times and p − 1 bits are communicated at the end by player Pp to broadcast the output.

Hence, the communication cost of the protocol A is at most O(rsp).

Now we are left to prove the correctness of the protocol A. If there is a column in

M with all 1s, then all the vertices corresponding to entries of that column are colored

with color C∗. Recall that there is a one-to-one correspondence between the columns in

matrix M and cliques in the graph G. So, all the vertices of the clique, corresponding

to the column having all 1s, are colored with the color C∗. As the size of each clique

in the graph G is
√
T , there are at least Ω(T) monochromatic edges. To prove the

converse, assume that there is no column in the matrix M having all 1s. By UNIQUE

INTERSECTION PROMISE, all the columns have Hamming weight at most 1. We will

argue that there is no monochromatic edge in G. Consider an edge e in G. By the

structure of G, the two vertices of e must be in the same clique, say the j-th clique, that

is, let e = {vi1j, vi2j}. By the coloring scheme used by the protocols, vi1j and vi2j are

colored according to the values of Mi1j and Mi2j , respectively. Note that both Mi1j and

Mi2j belong to j-th column. As the Hamming weight of every column is at most 1, there

are three possibilities:

(i) Mi1j = Mi2j = 0, that is, vi1j and vi2j are colored with color Ci1 and Ci2 , respec-

tively;

(ii) Mi1j = 0 and Mi2j = 1, that is, vi1j and vi2j are colored with color Ci1 and C∗,

respectively;

184

(iii) Mi1j = 1 and Mi2j = 0, that is, vi1j and vi2j are colored with color C∗ and Ci2 ,

respectively.

In any case, the edge e = {vi1j, vi2j} is not monochromatic. This establishes the cor-

rectness of protocol A for DISJOINTNESSR

(√
T , n√

T
, p
)

.

7.4 CONFLICT-EST in VA and VADEG models

In this Section, we design algorithms for CONFLICT-EST problem in the VA and VADEG

models. Mainly, we prove the following two theorems here. We show matching lower

bounds in Appendix A.1.

Theorem 7.11. Given any graph G = (V,E) and a coloring function f : V → [C] as

input in the stream, there exists an algorithm that solves the CONFLICT-EST problem in

the VA model with high probability in Õ
(

min
(
|V | , |V |

2

T

))
space, where T is a lower

bound on the number of monochromatic edges in the graph.

Theorem 7.12. Given any graph G = (V,E) and a coloring function f : V → [C] as

input in the stream, there exists an algorithm that solves the CONFLICT-EST problem

in the VADEG model with high probability in Õ
(

min{|V | , |E|
T
}
)

space, where T is a

lower bound on the number of monochromatic edges in the graph.

7.4.1 Motivating ideas for the algorithms

Before going to the algorithms for CONFLICT-EST problem in the VA and VADEG

model, we discuss as a warm-up, a two-pass algorithm for CONFLICT-EST in the VA

model that uses Õ
(

min{|V | , |E|
T
}
)

space, where T is the promised lower bound on the

number of monochromatic edges in the graph. Here we assume that |E| is known to the

algorithm. However, this assumption can be removed easily in a setting with two passes.

A two-pass algorithm for CONFLICT-EST in VA model (an informal description):

185

If T ≤ |E|
|V | : Our algorithm stores all the vertices and their colors. Thus we can determine

the number of monochromatic edges exactly. The algorithm in this case is one pass

and uses Õ(|V |) space.

If T > |E|
|V | : In the first pass, store each edge with probability Õ

(
1
T

)
. In the second pass,

we check each edge stored in the first pass for conflict. In this way, we determine

the number of monochromatic edges in the sample, from which, we can obtain a

desired approximation of the number of monochromatic edges in the graph. The

space complexity of our algorithm in this case is Õ
(
|E|
T

)
.

If only one pass is allowed, the above algorithm, when T > |E|
|V | , can not be simulated in

the VA model because of the following reason. Consider an edge (u, v) ∈ EM such that

u is exposed before v. Note that we will be able to know about the edge only when v is

exposed but we will be able to check whether (u, v) ∈ EM only when we have stored

u and its color. However, there is no clue about the edge (u, v) when u is exposed. So,

to solve it in one-pass, we sample each pair of vertices (without bothering if there is an

edge between them) with probability Õ
(

1
T

)
, before the start of the stream, and determine

the number of monochromatic edges in the sample to get an estimate of the number of

monochromatic edges in G. This implies that the space complexity of the algorithm for

CONFLICT-EST in VA model is Õ
(
|V |2
T

)
as stated in Theorem 7.11. In the VADEG

model, when u is exposed we learn dG(u) and hence d+
G(u). The degree information,

when u is exposed, gives some statistics regarding how the vertex u might be useful in

the future. We exploit this advantage of the VADEG model over the VA model to get an

algorithm for CONFLICT-EST that has better space complexity (See Theorem 7.12).

7.4.2 Proof of Theorem 7.11

Our algorithm for CONFLICT-EST for the VA model- first checks if T ≤ |V |. If yes, we

store all the vertices along with their colors to estimate the number of monochromatic

edges in the graph exactly. So, the space used by the algorithm is Õ(|V |) when T ≤ |V |.
We will be done by giving an algorithm for CONFLICT-EST in VA model that uses

Õ
(
|V |2
T

)
space. This algorithm will only be executed when T > |V |.

186

Let V = {v1, . . . , vn} be the vertices of the graph. Our algorithm starts by generating

a sample Z of vertex pairs where each {vi, vj} is added to Z, independently, with proba-

bility 30 logn
ε2T

. Note that Z is obtained before the start of the stream. Over the stream, we

check the following for each {vi, vj} ∈ Z: whether (vi, vj) ∈ E and is monochromatic.

Let S ⊆ Z be the set of monochromatic edges in Z. Note that the expected value of |S|
is given by E[|S|] = 30 logn

ε2T
|EM |.

We report m̂ = ε2T
30 logn

|S| as our estimate for |EM |. Applying Chernoff bound (See

Lemma 2.5 in Section 2.1), we guarantee that

P (|m̂− |EM || ≥ ε |EM |) ≤ P (||S| − E[|S|]| ≥ εE[|S|]) ≤ exp

(
−E[|S|]ε2

3

)
≤ 1

n10
.

Note that the last inequality holds as E[|S|] = 30 logn
ε2T

|EM | and |EM | ≥ T .

Observe that the space used by our algorithm is O(|Z|) when T > |E|
|V | . Notice that

E[|Z|] = 30 logn
ε2T

(
n
2

)
. Applying Chernoff bound (See Lemma 2.5 in Section 2.1), we can

show that |Z| = Õ
(
n2

T

)
with high probability.

Putting together the space complexities of our algorithms for the case T ≤ |V | and

T > |V |, we have the desired bound on the space.

7.4.3 Proof of Theorem 7.12

For simplicity of presentation, assume that we know the number of edges |E| in the

graph. We will discuss ways to remove this assumption later in Section 7.4.3.2.

7.4.3.1 Algorithm for CONFLICT-EST in VADEG model when |E| is known

Our algorithm for CONFLICT-EST for the VADEG model first checks if T ≤ |E|
|V | . If

T ≤ |E|
|V | , we store all the vertices along with their colors to estimate the number of

monochromatic edges in the graph exactly. So, the space used by the algorithm is Õ(|V |)
when T ≤ |E|

|V | . We will be done by giving an algorithm for CONFLICT-EST in VADEG

model that uses Õ
(
|E|
T

)
space. This algorithm will be executed only when T > |E|

|V | .

187

Let V = {v1, . . . , vn} and without loss of generality, the vertices are exposed in

the order v1, . . . , vn. However, our algorithm does not know about the ordering of the

vertices in the stream. Our algorithm stores the following information.

• A random subset Y ⊂ V × [n] that will be generated over the stream;

• a subset A of vertices formed from the first elements in the pairs present in Y ; the

colors of the vertices are also stored;

• for each vertex v ∈ A, a number `v that denotes the number of neighbors inN+
G (v)

that have been exposed. So, `v is initialized to 0 when v gets exposed in the stream

and is at most
∣∣N+

G (v)
∣∣ at any instance of the stream;

• a subset S ⊆ EM of the set of monochromatic edges in G.

When a vertex vj is exposed, our algorithm performs the following steps:

(i) Get dG(vj) from the degree oracle and d−G(vj) from the exposed edges and com-

pute d+
G(vj);

(ii) Add (vj, k), k ∈
[
d+
G(vj)

]
, with probability 30 logn

ε2T
to Y , independently;

(iii) Add vj along with its color to A if at least one (vj, k) is added to Y .

(iv) For each vi ∈ A such that (vi, vj) ∈ E, increment `vi by 1.

(v) For each vi ∈ A such that (vi, `vi) ∈ Y , check whether (vi, vj) forms a monochro-

matic edge. If yes, add (vi, vj) to S. (This step ensures independence so that

Chernoff bounds can be used. See Remark 7.1 below.)

The main idea behind the algorithm for CONFLICT-EST in VADEG model is in Step-(ii).

Due to the added power of degree oracle, we are able to sample edges that have not

arrived explicitly in the stream. We referred to this phenomenon as sampling into the

future in Section 7.1.1.

At the end of the stream, we report m̂ = ε2T
30 logn

|S| as the estimate of |EM |. Now, we

show that P (|m̂− |EM || ≥ ε |EM |) ≤ 1
n10 . Consider a monochromatic edge (vi, vj) ∈

188

EM . W.l.o.g., assume that vj is exposed sometime after vi is exposed in the stream. Let

r ∈
[
d+
G(vi)

]
be such that vi has r − 1 neighbors in {vi+1, . . . , vj−1}. So, vj is the r-th

neighbor of vi exposed after the exposure of vi. From the description of the algorithm,

(vi, vj) is added to S if and only if (vi, r) is added to Y . Note that (vi, r) can be added

to Y only when the vertex vi is exposed in the stream. Before calculating E[|S|] and

applying a Chernoff bound, we focus on the following remark.

Remark 7.1. At the first look, it might appear that the monochromatic edges are not

independently added to S. For example, let us consider the following situation. Let

(vi, r
′), with r′ ∈

[
d+
G(vi)

]
and r′ 6= r, is added to Y , that is, vi is present in A and the

color of vi is stored. So, when vj gets exposed along with its color, we can check whether

(vi, vj) is monochromatic irrespective of (vi, r) being added to Y . But the crucial point

is that we add (vi, vj) to S only when (vi, r) is added to Y . However, (vk, `)s, with

k ∈ [n] and ` ∈
[
d+
G(vk)

]
, are added to Y , independently. That is, each monochromatic

edge in EM is added to S, independently.

The probability that a monochromatic edge is added to S is 30 logn
ε2T

. That is, E[|S|] =
30 logn
ε2T

|EM |. Applying a Chernoff bound (See Lemma 2.5 in Section 2.1), we can guar-

antee that

P (|m̂− |EM || ≥ ε |EM |) ≤ P (||S| − E[|S|]| ≥ εE[|S|]) ≤ exp

(
−E[|S|]ε2

3

)
≤ 1

n10
.

Note that the last inequality holds as |EM | ≥ T . Observe that the space used by the

algorithm is Õ(|Y | + |A| + |S|) = Õ(|Y |). Note that E[|Y |] =
n∑
i=1

d+
G(vi) · 30 logn

ε2T
=

30|E| logn
ε2T

. Applying a Chernoff bound (See Lemma 2.5 in Section 2.1), we can say that

|Y | = Õ
(
|E|
T

)
with high probability. Putting together the space complexities of our

algorithms for the case T ≤ |E|
|V | and T > |E|

|V | , we have the desired bound on the space.

7.4.3.2 Modifying the algorithm in Section 7.4.3.1 when |E| is unknown

We now turn our attention to the real situation when |E| is unknown by modifying the

algorithm devised in Section 7.4.3.1. In the modified algorithm, we maintain a counter

189

defined as follows.

CNT :=
∑

v has been exposed
d+
G(v).

Consider the following observation about CNT that will be used in our analysis. As

mentioned earlier, |V | = n.

Observation 7.13. At any point of the streaming algorithm, CNT is a lower bound on

|E|, the number of edges in the graph. Moreover, at the end of the stream, CNT becomes

|E|. Also, CNT is non-decreasing.

We process the stream by maintaining Y, A and S, as defined in the algorithm in

Section 7.4.3.1, for the case T > |E|
|V | , until CNT reaches τ = 100 |V |T log n, with a

slight difference. Here, we add each (vj, `) to Y with probability 3000 logn
ε3T

instead of
30 logn
ε2T

as in Section 7.4.3.1, where vj is a vertex exposed while CNT is less than τ and

` ∈
[
d+
G(vj)

]
. So, we have the following observation that will be used later in our

analysis.

Observation 7.14. With high probability, |Y | = Õ (|V |) for all the instances in the

stream while CNT is less than τ .

Proof. Let vk be the first exposed vertex in the stream when CNT is more than τ . Also,

let U = tk−1
j=1{(vj, `) : ` ∈ [d+

G(vj)]}, where t denotes disjoint union. Observe that

|U | =
k−1∑
j=1

d+
G(vj) < τ . We construct Y by selecting independently each element of U

with probability 3000 logn
ε3T

. Recall that τ = 100|V |T log n. So, E [|Y |] = 3000|U | logn
ε3T

<
3000τ logn

ε3T
= 300000(logn)2|V |

ε3
. The observation follows by applying Chernoff bound (see

Lemma 2.5 (iii) in Section 2.1).

However, the modified algorithm behaves differently once CNT is more than τ =

100 |V |T log n. Let vk be as defined earlier. We maintain two extra objects, as de-

scribed below, after CNT crosses τ .

• The set of vertices B = {vk, . . . , vn} and their colors;

190

• A counter C>τ that denotes the number of monochromatic edges having both the

endpoints in B.

The formal description of the modified algorithm is presented in Algorithm 7.2.

Algorithm 7.2: CONFLICT-EST-DEG(ε, T): CONFLICT-EST problem in the

VADEG model
Input: G = (V,E) and a coloring function f on V in the VADEG model,

parameters T and ε where ε, T ≥ 0.

Output: m̂, that is, a (1± ε) approximation to |EM |.
1 for (each exposed vertex vj) do

2 For each vi ∈ A such that (vi, vj) ∈ E, increment `vi by 1;

3 For each vi ∈ A such that (vi, `vi) ∈ Y , check whether (vi, vj) forms a

monochromatic edge. If yes, add (vi, vj) to S;

4 Set d−G(vj) equals to the number of neighbors that vj has in {v1, . . . , vj−1}.
5 Get dG(vj) from the degree oracle and compute d+

G(vj). Set

CNT = CNT + d+
G(vj).

6 if (CNT ≤ τ) then
(i) Add (vj, `), ` ∈

[
d+
G(vj)

]
, with probability 3000 logn

ε3T
to Y , independently;

(ii) Add vj to A (with its color stored) if at least one (vj, `) is added to Y .

7 else if (CNT > τ) then

(i) Add vj to B (along with the color of vj);

(ii) For each vi ∈ B, check whether (vi, vj) forms a monochromatic edge. If yes,

increment C>τ by 1.

8 If |S| ≤ 60 logn
ε2

, then set C≤τ = 0. Otherwise, set C≤τ = ε3T
3000 logn

|S|.
9 Report m̂ = C≤τ + C>τ as the OUTPUT.

We describe the algorithm and its analysis by breaking the range of |E| into two

cases, that is, T ≥ |E|
100|V | logn

(or |E| ≤ 100T |V | log n = τ) and T < |E|
100|V | logn

(or |E| >
100T |V | log n = τ). We show that the space complexity of the modified algorithm is

191

Õ
(
|E|
T

)
in the first case and is Õ(|V |) in the latter case with high probability. Observe

that this will imply the desired result as claimed in Theorem 7.12.

|E| ≤ 100T |V | log n: In this case, by Observation 7.13, CNT never goes beyond τ =

100|V |T log n. That is, the algorithm behaves exactly same as that of the algo-

rithm presented in Section 7.4.3.1 for the case T > |E|
|V | . Hence, the algorithm

reports the desired output using Õ
(
|E|
|T |

)
space, with high probability.

|E| > 100T |V | log n: In this case, by Observation 7.13, there will be an instance (say

when vertex vk is exposed) such that CNT goes beyond τ for the first time. Then

we start storing all the vertices and their colors in B = {vk, . . . , vn}. We stop

updating Y and A after vk is exposed. However, we update S until end of the

stream as we were doing previously in Section 7.4.3.1. Along with S, we main-

tain the number of monochromatic edges (say C>τ) having both the endpoints

in B = {vk, . . . , vn}. Note that C>τ is maintained exactly. Finally, we report

m̂ = C≤τ + C>τ as the output, where 0 or C≤τ = ε3T
3000 logn

|S| depending on

whether |S| ≤ 60 logn
ε2

or not, respectively. By Observation 7.14, with high proba-

bility, |Y | = Õ (|V |) for all the instances when CNT is less than τ (that is before

the exposure of vk). Also, after the exposure of vk, we are storing all the vertices

along with their colors explicitly. So, the space used by the algorithm is Õ (|V |),

with high probability. To see the correctness of the algorithm, let EB
M be the set of

monochromatic edges having both the endpoints in B = {vk. . . . , vn}. Note that∣∣EB
M

∣∣ = C>τ . Let EV (G)\B
M be the set of monochromatic edges having at least one

vertex in the set V (G) \B = {v1, . . . , vk−1}, that is, EV (G)\B
M = EM \EB

M . Using

Chernoff bound arguments (see Lemma 2.5 in Section 2.1), we have the following

lemma.

Lemma 7.15. (i) If
∣∣∣EV (G)\B

M

∣∣∣ ≥ ε
100
T , then ε3T

3000 logn
|S| is a

(
1± ε

100

)
approx-

imation to
∣∣∣EV (G)\B

M

∣∣∣ with probability at least 1− 1
n10 .

(ii) If
∣∣∣EV (G)\B

M

∣∣∣ ≤ ε
100
T , |S| ≤ 60 logn

ε2
with probability at least 1− 1

n10 .

192

Proof. We use a similar argument as that of Section 7.4.3.1 to show m̂ is a (1±ε)-

approximation of |EM |.

Here, µ = E[|S|] = 3000 logn
ε3T

|Ea
m|. We prove (i) and (ii) separately.

(i) As |Ea
M | ≥ ε

100
T , E[|S|] ≥ 30 logn

ε2
. Applying Lemma 2.5 (i) and (ii),

P (||S| − E[|S|]| ≥ εE[|S|]) ≤ 2 exp

(
−ε

2E[|S|]
3

)
P
(∣∣∣∣ ε3T

3000 log n
|S| − |Ea

M |
∣∣∣∣ ≥ ε|Ea

M |
)
≤ 1

n10
.

Observe thet we are done with the claim.

(ii) As |Ea
M | ≤ ε

100
T , E[|S|] ≤ 30 logn

ε2
. Applying Lemma 2.5 (iii), by taking

t = 30 logn
ε2

and δ = 1, we have

P (||S| ≥ (1 + δ)t|) ≤ exp

(
−δ

2t

3

)
P
(
|S| ≥ 60 log n

ε2

)
≤ 1

n10
.

Observe that, we are done with the claim.

Now let us divide the analysis into two cases, that is, |S| ≥ 60 logn
ε2

and |S| <
60 logn
ε2

.

|S| ≤ 60 logn
ε2

: In this case, we set C≤τ = 0. So, m̂ = C>τ =
∣∣EB

M

∣∣ is the output,

which is always bounded above by |EM |. By Lemma 7.15 (i), |S| ≤ 60 logn
ε2

implies
∣∣∣EV (G)\B

M

∣∣∣ ≤ ε
25
T with probability at least 1− 1

n10 . Note that |EM | =∣∣∣EV (G)\B
M

∣∣∣+
∣∣EB

M

∣∣ and |EM | ≥ T . Putting everything together, m̂ = C≤τ +

C>τ lies between
(
1− ε

25

)
|EM | and |EM |, with probability at least 1− 1

n10 .

|S| > 60 logn
ε2

: In this case, we set C≤τ = ε3T
3000 logn

|S|. By Lemma 7.15 (ii),

|S| > 60 logn
ε2

implies
∣∣∣EV (G)\B

M

∣∣∣> ε
100
T with probability at least 1 − 1

n10 .

193

Also, by Lemma 7.15 (i),
∣∣∣EV (G)\B

M

∣∣∣ > ε
100
|T | implies C≤τ = ε3T

3000 logn
|S|

is a
(
1± ε

100

)
approximation to

∣∣∣EV (G)\B
M

∣∣∣ with probability at least 1 − 1
n10 .

Combining it with the fact that C>τ =
∣∣EB

M

∣∣, we have m̂ = C≤τ +C>τ is an

(1± ε)-approximation to |EM |, with probability at least 1− 2
n10 .

This finishes the proof for the case |E| > 100T |V | log n.

We have proved the correctness of Algorithm 7.2 by considering the cases |E| ≤ 100T |V | log n

and |E| > 100T |V | log n separately. We have also shown that the space complexity of

Algorithm 7.2 is Õ
(
|E|
T

)
in the former case and is Õ(|V |) in the latter case with high

probability. Hence, we are done with the proof of Theorem 7.12.

7.5 Conclusion and discussion

In this thesis, we introduced a graph coloring problem to streaming setting with a differ-

ent flavor – the coloring function streams along with the graph. We study the problem

of CONFLICT-EST in VA, VADEG, and VARAND models. Our algorithms for VA and

VADEG are tight upto polylogarithmic factors. However, a matching lower bound on the

space complexity for VARAND model is still elusive. There is a gap between our upper

and lower bound results for VARAND model in terms of the exponent in T . Our hunch

is that the upper bound is tight. Specifically, we obtained an upper bound of Õ
(

n√
T

)
and the lower bound is Ω

(
n
T 2

)
. However, we feel that our algorithm for CONFLICT-EST

in VARAND model is tight upto polylogarithmic factors. Two questions naturally follow

from our work. The first one is obvious – does CONFLICT-EST in VARAND model ad-

mit a lower bound of Ω
(

n√
T

)
? The second one is more model centric. If the VARAND

model is equipped with the degree oracle (let us call this model VADEGRAND), can we

have an algorithm, for CONFLICT-EST with space complexity o
(

n√
T

)
? Though we

do not have any answer to the above question, our hunch is in the negative direction,

that is, CONFLICT-EST will in all possibility admit a lower bound of Ω
(

n√
T

)
space in

the VADEGRAND model. Here, we would like to note that the lower bound of Ω
(
n
T 2

)
194

in VARAND model also holds in VADEGRAND. This is because all the vertices are of

degree
√
T − 1 in the graph considered in Theorem 7.10 (see Section 7.3).

We also feel the edge coloring counterpart of the vertex coloring problem proposed

in the work will be worthwhile to study. Let the edges of G be colored with a function

f : E(G) → [C], for C ∈ N. A vertex u ∈ V (G) is said to be a validly colored

vertex if no two edges incident on u have the same color. An edge coloring is valid if

all vertices are validly colored. Consider the AL model for the edge coloring problem.

As all edges incident on an exposed vertex u are revealed in the stream, if we can solve

a duplicate element finding problem on the colors of the edges incident on u, then we

are done, but duplicate finding is not an easy problem! It seems at a first glance that

all the three models of VA, AL and EA will be difficult to handle for the edge coloring

problem on streams of graph and edge colors. It would be interesting to see if the edge

coloring variant of the problems we considered in this thesis admit efficient streaming

algorithms. We plan to look at this problem next.

195

Chapter 8

Conclusion and Future Directions

In this thesis, we considered some estimation problems in the query complexity and

streaming framework. The relevant open problems corresponding to each problem are

discussed in the corresponding sections. Some more open problems are as follows:

BIS and higher order structures: BIS could estimate the number of edges in a graph,

while TIS and GPIS estimated the number of triangles and hyperedges, respec-

tively. The current trend seems to be that we had oracles specific to problems. We

would obviously want to get into newer territory for the oracles by asking what is

the query complexity of triangle estimation, clique estimation or in general sub-

graph estimation when we have BIS oracle access to the underlying graph?

Connection with other oracles: We would seek connections, if any, between BIS ora-

cle and other global queries or other models of computation.

Lower bounds: We still do not have any framework for lower bound proofs for BIS.

We would like to develop a general lower bound framework for global queries like

BIS.

Parameterized streaming: We would like to do an exhaustive study of parameterized

query complexity of NP-hard problems other than d-HITTING SET when we have

BIS or GPIS access to underlying graph or hypergraph.

197

Subgraph counting in streams: One of the findings of this thesis for a particular col-

oring problem was that random order stream gains a lot over other streaming for-

mats. We want to explore this further to find the streaming complexity of subgraph

counting in different random order streaming models for graphs?

Hypergraph coloring in streaming: Extending the work in this thesis, we want to find

the streaming complexity of monochromatic hyperedge estimation when hyper-

edges of a d-uniform hypergraph arrive in random order vertex arrival model.

198

Appendix A

Appendix for Chapter 7

A.1 Lower bounds for CONFLICT-EST in VA and VADEG

models

We show a tight lower bound of Ω
(

min{|V | , |V |
2

T
}
)

for the CONFLICT-EST problem in

the vertex arrival model in Section A.1.1. For the CONFLICT-EST problem in the vertex

arrival with degree oracle model, we show a tight lower bound of Ω
(

min{|V | , |E|
T
}
)

in Section A.1.2. These bounds are proved using reductions from INDEX problem, dis-

cussed in Section 2.2, in the one-way communication complexity model to the CONFLICT-

EST problem in graphs (in the vertex arrival streaming models). In INDEX problem on

N bits, Alice gets x ∈ {0, 1}N and Bob gets j ∈ [N], and the objective of Alice to send

a single message to Bob and the objective of Bob is to determine xj . Recall that (the one

way communication complexity) of INDEX problem on N bits is Ω(N).

A.1.1 Lower bound for CONFLICT-EST in VA model

Theorem A.1. Let n,m, T ∈ N be such that 1 ≤ T ≤
(
n
2

)
and m ≥ T . Any one

pass streaming algorithm; that takes the vertices and edges of a graph G(V,E) (with

|V | = Θ(n) and |E| = Θ(m)) and coloring function f : V → [C] on the vertices, in

199

VA model; and determines whether the number of monochromatic edges in G is 0 or T

with probability 2/3; requires Ω
(

min{n, n2

T
}
)

bits of space.

Proof. We show that the lower bound is Ω(n) when T ≤ n
2

and Ω
(
n2

T

)
when T > n

2
,

separately, to get the stated lower bound. We give a reduction from the INDEX problem

on N bits (N to be fixed later) to the CONFLICT-EST problem in graphs with Θ(n)

vertices, Θ(m) edges and having at least T conflicting edges, in the vertex arrival model.

We show our reduction when m = T , but we can modify it for any m ≥ T .

The reduction works as follows. For T ≤ n
2
, Alice has an N -bit input string x ∈

{0, 1}N . For each input bit xi, Alice creates a vertex pi. If xi equals 1, then vertex pi is

colored with color C1, else it is colored with color C0. After processing all bits of her

input, Alice sends the current memory state to Bob. Let j ∈ [N] be the input of Bob.

Bob constructs a gadget Q which is an independent set of (n−N) vertices and colors

all the vertices in the gadget with color C1. He adds all the edges from the vertex pj to

the gadgetQ. The number of vertices in the graph is (N)+(n−N) = n and the number

of edges in the graph is m = T . We set N = n− T . If xj = 0, then the color of pj is C0

and there are 0 conflicting edges, where as if xj = 1, then the color of pj is C1 and there

will be T conflicting edges. Therefore, for N = n− T , deciding whether the number of

monochromatic edges in the graph is 0 or T , requires Ω(n− T) or Ω(n) space.

For T ≥ n
2
, Alice has an N -bit input string x ∈ {0, 1}N . For each input bit xi,

Alice constructs an independent set Pi of size 2T
n

. If xi equals 1, then the vertices of Pi
are colored with color C1, else the vertices are colored with color C0. After processing

all bits of her input, Alice sends the current memory state to Bob. Let j ∈ [N] be the

input of Bob. Let j ∈ [N] be the input of Bob. Bob constructs a gadget Q which is an

independent set of n
2

vertices and colors all the vertices with the color C1. He adds all

the edges from the gadget Pj to the gadget Q. We set N = n2

T
. The number of vertices

in the graph is 2T
n
· (N) + n

2
= Θ(n) and the number of edges in the graph is m = T .

If xj = 0, then the color of vertices in Pj is C0 and there are 0 conflicting edges, where

as if xj = 1, then the color of vertices in Pj is C1 and there will be T conflicting edges.

Therefore, for N = n2

T
, deciding whether the number of monochromatic edges in the

200

graph is 0 or T , requires Ω
(
n2

T

)
space.

Recall that we are doing our reductions form = T . We make the above constructions

work for anym ≥ T by adding a complete subgraph on
√
m− T vertices such that none

of the edges of the complete subgraph are conflicting. 1

A.1.2 Lower bound for CONFLICT-EST in VADEG model

Theorem A.2. Let n, T ∈ N be such that 1 ≤ T ≤
(
n
2

)
. Then there exists an m with

T ≤ m ≤
(
n
2

)
such that the following happens. Any one pass streaming algorithm;

that takes the vertices and edges of a graph G(V,E) (with |V | = Θ(n) and |E| =

Θ(m)) and a coloring function f : V → [C] on the vertices, in VADEG model; and

determines whether the number of monochromatic edges in G is 0 or T with probability

2/3; requires Ω
(
min{n, m

T
}
)

bits of space.

Proof. We show that the lower bound is Ω(n) whenm > nT and Ω
(
m
T

)
when m ≤ nT ,

separately, to get the stated lower bound. We give a reduction from the INDEX problem

on N bits (N to be fixed later) to the CONFLICT-EST problem in graphs with Θ(n)

vertices, Θ(m) edges and having atleast T conflicting edges, in the vertex arrival model.

The existence of m will be evident from the construction.

The reduction works as follows. For m > nT , Alice has an N -bit input string

x ∈ {0, 1}N . For each input bit xi, Alice creates a vertex pi. If xi equals 1, then vertex

pi is colored with color Ci1, else it is colored with color Ci0. After processing all bits

of her input, Alice sends the current memory state to Bob. Let j ∈ [N] be the input of

Bob. Bob constructs a gadget Q of n −N vertices such that Q is an independent set of

(n−N) vertices. Bob colors all the vertices in the gadget Q with color Cj1. He adds

all the edges from Q to all the vertices in {li : i ∈ [N]}. The number of vertices in the

graph is N + (n − N) = Θ(n) and the number of edges in the graph is m = NT . We

set N = n − T . If xj = 0, then the color of pj is Cj0 and there are 0 conflicting edges,

where as if xj = 1, then the color of pj is Cj1 and there will be T conflicting edges.

1Note that
√
m− T = O(n).

201

Therefore, for N = n − T , deciding whether the number of monochromatic edges in

the graph is 0 or T , requires Ω(n − T) or Ω(n) space. Observe that, the degree of the

vertices are independent of the inputs of Alice and Bob. In particular, the degree of every

vertex in {pi : i ∈ [N]} is |Q| = n − N and the degree of every vertex in Q is N . So,

the availability of degree oracle will not help in the above construction.

For m ≤ nT , Alice has an N -bit input string x ∈ {0, 1}N . For each input bit xi,

Alice constructs an independent set Pi of size 2nT
m

. If xi equals 1, then the vertices of Pi
are colored with color Ci1, else the vertices are colored with color Ci0. After processing

all bits of her input, Alice sends the current memory state to Bob. Let j ∈ [N] be the

input of Bob. Let j ∈ [N]be the input of Bob. Bob constructs a gadget Q where Q is

an independent set of m
2n

vertices. Bob colors the vertices in Q with Cj1 and he adds all

the edges from Q to (P1 ∪ · · · ∪ PN). We set N = m
T

. The number of vertices in the

graph is 2nT
m
· N + m

2n
= Θ(n) as T ≥ n

2
and m ≥ T and the number of edges in the

graph is m = NT . If xj = 0, then the color of vertices in Pj is Cj0 and there are 0

conflicting edges, where as if xj = 1, then the color of vertices in Pj is Cj1 and there

will be T conflicting edges. Therefore, for N = m
T

, deciding whether the number of

monochromatic edges in the graph is 0 or T , requires Ω
(
m
T

)
space. Observe that, the

degree of the vertices are independent of the inputs of Alice and Bob. In particular, the

degree of every vertex in P1∪· · ·∪PN is |Q| = m
2n

, and the degree of every vertex inQ is

N · 2Tn
m

. So, the availability of degree oracle will not help in the above construction.

202

Bibliography

[AA20a] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) ver-

tex coloring. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques, APPROX/RANDOM 2020, August

17-19, 2020, Virtual Conference, volume 176 of LIPIcs, pages 6:1–6:22.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 10, 166

[AA20b] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex

coloring. CoRR, abs/2006.10456, 2020. 172

[ABG+18] Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis,

John Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee. Sublinear-time

algorithms for counting star subgraphs via edge sampling. Algorithmica,

80(2):668–697, 2018. 3

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for

(∆ + 1) vertex coloring. In Timothy M. Chan, editor, Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2019, San Diego, California, USA, January 6-9, 2019, pages 767–786.

SIAM, 2019. 10, 166, 171, 172

[ADNK14] Nesreen K. Ahmed, Nick G. Duffield, Jennifer Neville, and Ramana Rao

Kompella. Graph sample and hold: a framework for big-graph analytics.

In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and

Rayid Ghani, editors, The 20th ACM SIGKDD International Conference

203

on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA

- August 24 - 27, 2014, pages 1446–1455. ACM, 2014. 19

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:

sparsification, spanners, and subgraphs. In Michael Benedikt, Markus

Krötzsch, and Maurizio Lenzerini, editors, Proceedings of the 31st ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14.

ACM, 2012. 19

[AKK19] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple

sublinear-time algorithm for counting arbitrary subgraphs via edge sam-

pling. In Avrim Blum, editor, 10th Innovations in Theoretical Computer

Science Conference, ITCS 2019, January 10-12, 2019, San Diego, Cali-

fornia, USA, volume 124 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2019. 3

[AKL16] Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-

pass streaming complexity of the set cover problem. In Daniel Wichs and

Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,

June 18-21, 2016, pages 698–711. ACM, 2016. 6, 128, 135

[AMP+06] Deepak Agarwal, Andrew McGregor, Jeff M. Phillips, Suresh Venkata-

subramanian, and Zhengyuan Zhu. Spatial scan statistics: approxima-

tions and performance study. In Tina Eliassi-Rad, Lyle H. Ungar, Mark

Craven, and Dimitrios Gunopulos, editors, Proceedings of the Twelfth

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 24–33.

ACM, 2006. 152

204

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of

approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–

147, 1999. 5

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given

length cycles. Algorithmica, 17(3):209–223, 1997. 19

[BBGM18] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath

Mishra. Triangle estimation using polylogarithmic queries. CoRR,

abs/1808.00691, 2018. 23, 55, 67, 68, 71

[BBGM19a] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra.

Hyperedge estimation using polylogarithmic subset queries. CoRR,

abs/1908.04196, 2019. 4, 5, 8, 50, 51, 57, 98

[BBGM19b] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra.

Triangle estimation using tripartite independent set queries. In Pinyan

Lu and Guochuan Zhang, editors, 30th International Symposium on Algo-

rithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai

University of Finance and Economics, Shanghai, China, volume 149 of

LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2019. 4, 7, 8, 23, 55, 57, 61, 67, 68, 71

[BBGM21] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra.

On triangle estimation using tripartite independent set queries. Theory

Comput. Syst., 65(8):1165–1192, 2021. 7, 95

[BBMU21] Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Up-

asana. Even the easiest(?) graph coloring problem is not easy in stream-

ing! In James R. Lee, editor, 12th Innovations in Theoretical Computer

Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference,

volume 185 of LIPIcs, pages 15:1–15:19. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021. 11, 169, 170

205

[BC17] Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for

counting triangles and other substructures in graph streams. In Heribert

Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical As-

pects of Computer Science, STACS 2017, March 8-11, 2017, Hannover,

Germany, volume 66 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2017. 170

[BCG19] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring

via degeneracy in streaming and other space-conscious models. CoRR,

abs/1905.00566, 2019. 10, 166, 172

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi,

Marina Knittel, and Hamed Saleh. Streaming and massively parallel algo-

rithms for edge coloring. In Michael A. Bender, Ola Svensson, and Grze-

gorz Herman, editors, 27th Annual European Symposium on Algorithms,

ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume

144 of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019. 166, 172

[BFL+06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. Counting triangles in data streams.

In Stijn Vansummeren, editor, Proceedings of the Twenty-Fifth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, June 26-28, 2006, Chicago, Illinois, USA, pages 253–262. ACM,

2006. 19

[BG18] Suman Kalyan Bera and Prantar Ghosh. Coloring in graph streams. CoRR,

abs/1807.07640, 2018. 166, 171, 172

[BGK+18a] Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket

Saurabh. Parameterized query complexity of hitting set using stability

of sunflowers. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao,

206

editors, 29th International Symposium on Algorithms and Computation,

ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123

of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 2018. 5, 54, 69

[BGK+18b] Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket

Saurabh. Parameterized query complexity of hitting set using stability

of sunflowers. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao,

editors, 29th International Symposium on Algorithms and Computation,

ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123

of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 2018. 9

[BGK+20] Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket

Saurabh. Fixed parameter tractability of graph deletion problems over data

streams. In Donghyun Kim, R. N. Uma, Zhipeng Cai, and Dong Hoon

Lee, editors, Computing and Combinatorics - 26th International Confer-

ence, COCOON 2020, Atlanta, GA, USA, August 29-31, 2020, Proceed-

ings, volume 12273 of Lecture Notes in Computer Science, pages 652–

663. Springer, 2020. 10

[BGM+19] Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monem-

izadeh, Chris Schwiegelshohn, Sofya Vorotnikova, and Samson Zhou.

Structural Results on Matching Estimation with Applications to Stream-

ing. Algorithmica, 81(1):367–392, 2019. 135

[BGMS18] Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Sandeep Sen. On

the streaming complexity of fundamental geometric problems. CoRR,

abs/1803.06875, 2018. 152

[BHR+18] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoor-

thy, Cyrus Rashtchian, and Makrand Sinha. Edge estimation with inde-

207

pendent set oracles. In Anna R. Karlin, editor, 9th Innovations in Theo-

retical Computer Science Conference, ITCS 2018, January 11-14, 2018,

Cambridge, MA, USA, volume 94 of LIPIcs, pages 38:1–38:21. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 4, 7, 8, 15, 23, 24, 27,

28, 50, 55, 57, 60, 61, 66, 67, 68, 70, 71, 89, 95

[BHR+20] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoor-

thy, Cyrus Rashtchian, and Makrand Sinha. Edge estimation with inde-

pendent set oracles. ACM Trans. Algorithms, 16(4):52:1–52:27, 2020. 23,

95, 98

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In David

Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA,

USA, pages 623–632. ACM/SIAM, 2002. 19

[BPWZ14] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri

Zwick. Listing triangles. In Javier Esparza, Pierre Fraigniaud, Thore

Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Pro-

gramming - 41st International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture

Notes in Computer Science, pages 223–234. Springer, 2014. 19

[BS20] Suman K. Bera and C. Seshadhri. How the degeneracy helps for triangle

counting in graph streams. In Dan Suciu, Yufei Tao, and Zhewei Wei, ed-

itors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, PODS 2020, Portland, OR, USA, June

14-19, 2020, pages 457–467. ACM, 2020. 6

[BT81] Béla Bollobás and Carsten Thomassen. The size of connected hypergraphs

with prescribed covering number. J. Comb. Theory, Ser. B, 31(2):150–155,

1981. 103

208

[Cai96] Leizhen Cai. Fixed-Parameter Tractability of Graph Modification Prob-

lems for Hereditary Properties. Inf. Process. Lett., 58(4):171–176, 1996.

131

[CCE+16] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi

Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorot-

nikova. Kernelization via Sampling with Applications to Finding Match-

ings and Related Problems in Dynamic Graph Streams. In Proceedings

of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA, pages 1326–1344, 2016. 9, 108, 109, 113, 114, 130, 131,

133, 134, 135, 136, 145, 148, 151, 152

[CCHM15] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi,

and Morteza Monemizadeh. Parameterized Streaming: Maximal Match-

ing and Vertex Cover. In Proceedings of the Twenty-Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA, pages 1234–1251,

2015. 9, 130, 135

[CCM16] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust

lower bounds for communication and stream computation. Theory Com-

put., 12(1):1–35, 2016. 182

[CDK19] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets

in vertex-arrival streams. In Christel Baier, Ioannis Chatzigiannakis, Paola

Flocchini, and Stefano Leonardi, editors, 46th International Colloquium

on Automata, Languages, and Programming, ICALP 2019, July 9-12,

2019, Patras, Greece, volume 132 of LIPIcs, pages 45:1–45:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 6, 167

[CF14] Graham Cormode and Donatella Firmani. A Unifying Framework for `0-

Sampling Algorithms. Distributed and Parallel Databases, 32(3):315–

335, 2014. 146

209

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,

Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Pa-

rameterized Algorithms. Springer Publishing Company, Incorporated, 1st

edition, 2015. 10, 99, 103, 131, 143, 145, 146, 147

[CGR+14] Artur Czumaj, Oded Goldreich, Dana Ron, C. Seshadhri, Asaf Shapira,

and Christian Sohler. Finding cycles and trees in sublinear time. Random

Struct. Algorithms, 45(2):139–184, 2014. 3

[CJ17] Graham Cormode and Hossein Jowhari. A second look at counting trian-

gles in graph streams (corrected). Theor. Comput. Sci., 683:22–30, 2017.

19

[CJMM17] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and

S. Muthukrishnan. The Sparse Awakens: Streaming Algorithms for

Matching Size Estimation in Sparse Graphs. In Proceedings of the 25th

Annual European Symposium on Algorithms, ESA, volume 87, pages

29:1–29:15, 2017. 135

[CLW20] Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation

with independent set queries. In Shuchi Chawla, editor, Proceedings of the

2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt

Lake City, UT, USA, January 5-8, 2020, pages 2916–2935. SIAM, 2020.

4, 23, 98

[CM15] Yixin Cao and Dániel Marx. Interval Deletion Is Fixed-Parameter

Tractable. ACM Trans. Algorithms, 11(3):21:1–21:35, 2015. 131

[CM16] Yixin Cao and Dániel Marx. Chordal Editing is Fixed-Parameter

Tractable. Algorithmica, 75(1):118–137, 2016. 131

[DL18] Holger Dell and John Lapinskas. Fine-grained reductions from approx-

imate counting to decision. In Ilias Diakonikolas, David Kempe, and

210

Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,

June 25-29, 2018, pages 281–288. ACM, 2018. 23

[DL21] Holger Dell and John Lapinskas. Fine-grained reductions from approxi-

mate counting to decision. volume 13, pages 8:1–8:24, 2021. 98

[DLM19] Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting

and sampling small witnesses using a colourful decision oracle. CoRR,

abs/1907.04826, 2019. 23, 55, 57, 69

[DLM20a] H. Dell, J. Lapinskas, and K. Meeks. Approximately Counting and Sam-

pling Small Witnesses using a Colourful Decision Oracle. In Proceed-

ings of the ACM-SIAM Symposium on Discrete Algorithms, SODA, pages

2201–2211, 2020. 96

[DLM20b] Holger Dell, John Lapinskas, and Kitty Meeks. Approximately count-

ing and sampling small witnesses using a colourful decision oracle. In

Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium

on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January

5-8, 2020, pages 2201–2211. SIAM, 2020. 5, 8, 50, 51, 98

[DP09] D.P. Dubhashi and Alessandro Panconesi. Concentration of measure for

the analysis of randomized algoritms. In Cambridge, 2009. 13, 14, 15,

31, 33, 76

[EHKR09] Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron.

Scheduling with conflicts: online and offline algorithms. J. Sched.,

12(2):199–224, 2009. 167

[EHL+18] Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat, Morteza

Monemizadeh, and Krzysztof Onak. Streaming Algorithms for Estimat-

ing the Matching Size in Planar Graphs and Beyond. ACM Trans. Alg.,

14(4):1–23, 2018. 131, 135

211

[ELRS15] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately

counting triangles in sublinear time. In Venkatesan Guruswami, edi-

tor, IEEE 56th Annual Symposium on Foundations of Computer Science,

FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 614–633.

IEEE Computer Society, 2015. 3, 7, 19, 22

[ER60] Paul Erdős and Richard Rado. Intersection Theorems for Systems of Sets.

Journal of the London Mathematical Society, s1-35(1):85–90, 1960. 106,

110, 111

[ER18] T. Eden and W. Rosenbaum. Lower Bounds for Approximating Graph

Parameters via Communication Complexity. In Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques, AP-

PROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume

116, pages 11:1–11:18, 2018. 123

[ERS18] Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number

of k-cliques in sublinear time. In Ilias Diakonikolas, David Kempe, and

Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,

June 25-29, 2018, pages 722–734. ACM, 2018. 3, 22

[Fei06] Uriel Feige. On Sums of Independent Random Variables with Unbounded

Variance and Estimating the Average Degree in a Graph. SIAM J. Comput.,

35(4):964–984, 2006. 3, 22

[FJP14] Fedor V. Fomin, Bart M. P. Jansen, and Michal Pilipczuk. Preprocess-

ing subgraph and minor problems: When does a small vertex cover help?

Journal of Computer and System Sciences, 80(2):468–495, 2014. 131, 144

[FK98] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J.

Comput. Syst. Sci., 57(2):187–199, 1998. 166

212

[FK14] Stefan Fafianie and Stefan Kratsch. Streaming kernelization. In Proceed-

ings of the 39th International Symposium on Mathematical Foundations

of Computer Science, MFCS, pages 275–286, 2014. 9, 135

[FLM+16] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese

Philip, and Saket Saurabh. Hitting Forbidden Minors: Approximation

and Kernelization. SIAM J. Discrete Math., 30(1):383–410, 2016. 131

[FLMS12] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.

Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algo-

rithms. In Proceedings of the 53rd Annual IEEE Symposium on Founda-

tions of Computer Science, FOCS, pages 470–479, 2012. 131

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. 166

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University

Press, 2017. 3, 17, 23, 98

[GPRW20] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Wein-

berg. New query lower bounds for submodular function minimization. In

Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science

Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA,

volume 151 of LIPIcs, pages 64:1–64:16. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020. 98

[GR08] Oded Goldreich and Dana Ron. Approximating Average Parameters of

Graphs. Random Struct. Algorithms, 32(4):473–493, 2008. 3, 22, 23

[GRS11] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small

subgraphs in sublinear-time. SIAM J. Discret. Math., 25(3):1365–1411,

2011. 3, 19

213

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy.

Streaming Complexity of Approximating Max 2CSP and Max Acyclic

Subgraph. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques, APPROX/RANDOM, pages 8:1–

8:19, 2017. 6, 128, 135

[IMR+18] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Ali Vakilian, and Anak

Yodpinyanee. Set cover in sub-linear time. In Artur Czumaj, editor, Pro-

ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,

pages 2467–2486. SIAM, 2018. 98

[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM

J. Comput., 7(4):413–423, 1978. 19

[IY18] Kazuo Iwama and Yuichi Yoshida. Parameterized testability. ACM Trans.

Comput. Theory, 9(4):16:1–16:16, 2018. 98, 99, 100, 101

[Jan04] Svante Janson. Large deviations for sums of partly dependent random

variables. Random Struct. Algorithms, 24(3):234–248, 2004. 24, 25

[JG05] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for

counting triangles in graphs. In Lusheng Wang, editor, Computing and

Combinatorics, 11th Annual International Conference, COCOON 2005,

Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of Lec-

ture Notes in Computer Science, pages 710–716. Springer, 2005. 19

[JSP13] Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming

algorithm for triangle counting using the birthday paradox. In Inder-

jit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley,

Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthu-

rusamy, editors, The 19th ACM SIGKDD International Conference on

214

Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,

August 11-14, 2013, pages 589–597. ACM, 2013. 19

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching com-

plexity of graph and hypergraph counting. In Mikkel Thorup, editor, 59th

IEEE Annual Symposium on Foundations of Computer Science, FOCS

2018, Paris, France, October 7-9, 2018, pages 556–567. IEEE Computer

Society, 2018. 170

[KKSV17] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker.

1 + Ω(1) approximation to MAX-CUT Requires Linear Space. In Pro-

ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA, pages 1703–1722, 2017. 6, 128, 135

[KLP+16] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter

Rossmanith, Ignasi Sau, and Somnath Sikdar. Linear Kernels and Single-

Exponential Algorithms Via Protrusion Decompositions. ACM Trans. Al-

gorithms, 12(2):21:1–21:41, 2016. 131

[KMPV19] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova.

The complexity of counting cycles in the adjacency list streaming model.

In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceed-

ings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30

- July 5, 2019, pages 119–133. ACM, 2019. 170

[KMSS12] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Count-

ing arbitrary subgraphs in data streams. In Artur Czumaj, Kurt Mehlhorn,

Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages,

and Programming - 39th International Colloquium, ICALP 2012, War-

wick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture

Notes in Computer Science, pages 598–609. Springer, 2012. 19, 170

215

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cam-

bridge University Press, 1997. 16, 18, 123

[KP06] Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximabil-

ity results for maxclique, chromatic number and min-3lin-deletion. In

Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener,

editors, Automata, Languages and Programming, 33rd International Col-

loquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part

I, volume 4051 of Lecture Notes in Computer Science, pages 226–237.

Springer, 2006. 166

[KP14] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feedback

Vertex Set. Inf. Process. Lett., 114(10):556–560, 2014. 131

[KP17] John Kallaugher and Eric Price. A hybrid sampling scheme for trian-

gle counting. In Philip N. Klein, editor, Proceedings of the Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1778–

1797. SIAM, 2017. 19

[Mar10] Dániel Marx. Chordal Deletion is Fixed-Parameter Tractable. Algorith-

mica, 57(4):747–768, 2010. 131

[McG14a] Andrew McGregor. Graph Stream Algorithms: A Survey. SIGMOD

Record, 43(1):9–20, 2014. 6, 128, 135

[McG14b] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec.,

43(1):9–20, 2014. 166

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, New York, NY, USA, 1995. 145

[Mul18] Wolfgang Mulzer. Five proofs of chernoff’s bound with applications. Bull.

EATCS, 124, 2018. 14

216

[MV16] Andrew McGregor and Sofya Vorotnikova. Planar Matching in Streams

Revisited. In APPROX/RANDOM. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2016. 135

[MV18] Andrew McGregor and Sofya Vorotnikova. A Simple, Space-Efficient,

Streaming Algorithm for Matchings in Low Arboricity Graphs. In SOSA,

2018. 135

[MVV16] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms

for counting triangles in data streams. In Tova Milo and Wang-Chiew Tan,

editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-

sium on Principles of Database Systems, PODS 2016, San Francisco, CA,

USA, June 26 - July 01, 2016, pages 401–411. ACM, 2016. 6, 170

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-

optimal sublinear-time algorithm for approximating the minimum vertex

cover size. In Yuval Rabani, editor, Proceedings of the Twenty-Third An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,

Japan, January 17-19, 2012, pages 1123–1131. SIAM, 2012. 3, 98

[PTTW13] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung

Wu. Counting and sampling triangles from a graph stream. Proc. VLDB

Endow., 6(14):1870–1881, 2013. 19

[Rou16] Tim Roughgarden. Communication Complexity (for Algorithm Design-

ers). Foundations and Trends in Theoretical Computer Science, 11(3-

4):217–404, 2016. 16, 17

[RSV04] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle

transversals. Oper. Res. Lett., 32(4):299–301, 2004. 131

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing

exact minimum cuts without knowing the graph. In Anna R. Karlin, editor,

217

9th Innovations in Theoretical Computer Science Conference, ITCS 2018,

January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages

39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 3,

98

[RT16] Dana Ron and Gilad Tsur. The power of an example: Hidden set size

approximation using group queries and conditional sampling. ACM Trans.

Comput. Theory, 8(4):15:1–15:19, 2016. 4, 61

[Rub20] Ronitt Rubinfeld. Sublinear time algorithms. Lecture Notes, 2020. 3

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Ap-

plications. Cambridge University Press, 2020. 17

[SK12] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large

distributed graphs. In Qiang Yang, Deepak Agarwal, and Jian Pei, ed-

itors, The 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16,

2012, pages 1222–1230. ACM, 2012. 7

[Sto83] Larry J. Stockmeyer. The complexity of approximate counting (prelimi-

nary version). In David S. Johnson, Ronald Fagin, Michael L. Fredman,

David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadim-

itriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors,

Proceedings of the 15th Annual ACM Symposium on Theory of Com-

puting, 25-27 April, 1983, Boston, Massachusetts, USA, pages 118–126.

ACM, 1983. 4, 61

[Sto85] Larry J. Stockmeyer. On approximation algorithms for #p. SIAM J. Com-

put., 14(4):849–861, 1985. 4, 61

[SW15] Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems

in Insertion Streams. In Proceedings of the 18th International Workshop

218

on Approximation Algorithms for Combinatorial Optimization Problems,

APPROX, pages 435–448, 2015. 150, 151

[TGRV14] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic,

and Milan Vojnovic. FENNEL: streaming graph partitioning for mas-

sive scale graphs. In Ben Carterette, Fernando Diaz, Carlos Castillo, and

Donald Metzler, editors, Seventh ACM International Conference on Web

Search and Data Mining, WSDM 2014, New York, NY, USA, February

24-28, 2014, pages 333–342. ACM, 2014. 7

[Tho10] Stéphan Thomassé. A 4k2 Kernel for Feedback Vertex Set. ACM Trans.

Algorithms, 6(2):32:1–32:8, 2010. 131

[TPT13] Kanat Tangwongsan, Aduri Pavan, and Srikanta Tirthapura. Parallel trian-

gle counting in massive streaming graphs. In Qi He, Arun Iyengar, Wolf-

gang Nejdl, Jian Pei, and Rajeev Rastogi, editors, 22nd ACM International

Conference on Information and Knowledge Management, CIKM’13, San

Francisco, CA, USA, October 27 - November 1, 2013, pages 781–786.

ACM, 2013. 19

[Upa20] Anannya Upasana. The study of rainbow coloring of graphs and graph

coloring in streaming. In MTech Thesis, 2020. 168, 169, 170

[Viz64] Vadim G. Vizing. On an estimate of the chromatic class of a p-graph.

1964. 166

[Yao79] Andrew Chi-Chih Yao. Some Complexity Questions Related to Distribu-

tive Computing (Preliminary Report). In Proceedings of the 11h Annual

ACM Symposium on Theory of Computing, STOC, pages 209–213, 1979.

16

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of

max clique and chromatic number. Theory of Computing, 3(1):103–128,

2007. 166

219

List of Publications (Based on content of the thesis)

1. Parameterized Query Complexity of Hitting Set using Stability of Sunflowers,

with Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay and Saket Saurabh.

Proceedings of the 29th International Symposium on Algorithms and Computa-

tion, ISAAC, Volume 123, pp. 25:1 – 25:12, 2018.

Full version submitted to a journal.

2. Triangle Estimation using Tripartite Independent Set Queries,

with Anup Bhattacharya, Arijit Bishnu and Arijit Ghosh.

Theory of Computing Systems, online, 2021

Proceedings of the 30th International Symposium on Algorithms and Computa-

tion, ISAAC, Volume 149, pp. 19:1 – 19:17, 2019.

3. Hyperedge Estimation using Polylogarithmic Subset Queries,

with Anup Bhattacharya, Arijit Bishnu, and Arijit Ghosh.

CoRR abs/1908.04196, 2019. An improved version of this has recently been ac-

cepted in STACS’22.

4. Fixed-Parameter Tractability of Graph Deletion Problems over Data Streams,

with Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, and Saket Saurabh

In Proceedings of the 26th International Computing and Combinatorics Confer-

ence, COCOON, pp. 652–663, 2020.

Full version submitted to Journal.

5. Even the Easiest(?) Graph Coloring Problem is not Easy in Streaming!

with Anup Bhattacharya, Arijit Bishnu and Anannya Upasana.

Proceedings of the 12th Innovations in Theoretical Computer Science Conference,

Volume 185, pp. 15:1–15:19, 2021

Full version submitted to a Journal.

Full list of publications by the author (inclusive of the
above list)

Sub-linear Algorithms (Published)

1. Sublinear-Time Algorithm for Matrix Distance using Projections on Ham-

ming Cube

with Arijit Bishnu and Arijit Ghosh

To appear in RANDOM 2021: International Conference on Randomization and

Computation

Full version to be submitted to a Journal.

2. Interplay between Graph Isomorphism and Earth Mover’s Distance in the

Query and Communication Worlds

with Sourav Chakraborty, Arijit Ghosh and Sayantan Sen

To appear in RANDOM 2021: International Conference on Randomization and

Computation

Full version to be submitted to a Journal.

3. Query Complexity of Global Minimum Cut

with Arijit Bishnu, Arijit Ghosh and Manaswi Paraashar

To appear in APPROX 2021: International Conference on Approximation Algo-

rithms for Combinatorial Optimization Problems

Full version to be submitted to a Journal.

4. Even the Easiest(?) Graph Coloring Problem is not Easy in Streaming!

with Anup Bhattacharya, Arijit Bishnu and Anannya Upasana.

Proceedings of the 12th Innovations in Theoretical Computer Science Conference,

Volume 185, pp. 15:1–15:19, 2021

Full version submitted to a Journal.

5. Disjointness through the Lens of Vapnik–Chervonenkis Dimension: Sparsity

and Beyond,

with Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, and Manaswi Paraashar.

Proceedings of the 24th International Conference on Randomization and Compu-

tation, RANDOM, Volume 176, pp. 23:1–23:12, 2020.

Full version submitted to Journal.

6. Fixed-Parameter Tractability of Graph Deletion Problems over Data Streams,

with Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, and Saket Saurabh

In Proceedings of the 26th International Computing and Combinatorics Confer-

ence, COCOON, pp. 652–663, 2020.

Full version submitted to Journal.

7. Triangle Estimation using Tripartite Independent Set Queries,

with Anup Bhattacharya, Arijit Bishnu and Arijit Ghosh.

Theory of Computing Systems, online, 2021

Proceedings of the 30th International Symposium on Algorithms and Computa-

tion, ISAAC, Volume 149, pp. 19:1 – 19:17, 2019.

8. Parameterized Query Complexity of Hitting Set using Stability of Sunflowers,

with Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay and Saket Saurabh.

Proceedings of the 29th International Symposium on Algorithms and Computa-

tion, ISAAC, Volume 123, pp. 25:1 – 25:12, 2018.

Full version submitted to a journal.

Sublinear Algorithms (to be submitted)

9. Hyperedge Estimation using Polylogarithmic Subset Queries,

with Anup Bhattacharya, Arijit Bishnu, and Arijit Ghosh.

CoRR abs/1908.04196, 2019.

10. Inner Product Oracle can Estimate and Sample,

with Arijit Bishnu, Arijit Ghosh, and Manaswi Paraashar.

CoRR abs/1906.07398, 2019.

11. On the Streaming Complexity of Fundamental Geometric Problems,

with Arijit Bishnu, Arijit Ghosh and Sandeep Sen.

CoRR abs/1803.06875, 2018.

Others (Metric Embedding, Graph Theory and Combinatorial

Geometry)

12. Grid Obstacle Representation of Graphs,

with Arijit Bishnu, Arijit Ghosh,Rogers Mathew, and Subhabrata Paul.

Discrete Applied Mathematics, 296:39–51, 2021,

Preliminary version appeared as a poster in Proceedings of the 25th International

Symposium on Graph Drawing & Network Visualization, GD, pp. 603 – 605,

2017.

13. Existence of Planar Support for Geometric Hypergraphs using Elementary

Techniques,

with Arijit Bishnu, Sameer Desai, Arijit Ghosh and Subhabrata Paul.

Discrete Mathematics, Volume 343(6), pp 111853, 2020.

14. FPT Algorithms for Embedding into Low Complexity Graph Metrics,

with Arijit Ghosh and Sudeshna Kolay.

ACM Transactions on Computation Theory, 12(1): 1 – 41, 2020.

Preliminary version appeared in European Symposium on Algorithms (ESA), Vol-

ume 112, pp:35:1-35:13, 2018.

15. Improved Algorithms for Evacuation Route Planning Problem

with Subhra Mazumdar and Arindam Pal

Journal of Combinatorial Optimization, 36(1): 280 – 306, 2018.

Preliminary version appeared in Proceedings of the 9th Conference on Combina-

torial Optimization and Applications (COCOA), Volume 9486, pp. 3-16, 2015.

	Introduction
	Models of computation
	Sub-linear time and query complexity
	Streaming model

	Problems considered and our results
	Triangle estimation using TIS queries
	Hyperedge estimation using GPIS queries
	Hitting Set estimation using GPIS queries
	Streaming algorithms for graph deletion problems
	Monochromatic edge estimation when both vertices and colors stream

	Generic notations

	Preliminaries
	Some probability results
	Communication complexity

	Triangle Estimation using TIS Queries
	Brief description of the problem
	Related works
	Overview of the algorithm
	Sparsification step
	Estimation: exact and approximate
	Coarse estimation
	The final triangle estimation algorithm: Proof of Theorem 3.2
	Discussion

	Hyperedge Estimation Using GPIS Queries
	Brief description of the problem
	Preliminaries
	GPIS oracle and its variants

	Technical overview
	The context of our work
	Our work in a nutshell
	Our work vis-a-vis some recent works

	Sparsification: Proof of Lemma 4.7
	The role of the hash function in sparsification
	Proof of the lemma

	Proof of lemma for exact estimation
	Proof of lemma for coarse estimation
	Algorithm
	Proof of correctness
	Conclusion

	Hitting Set Estimation using GPIS Queries
	Introduction
	Problem definition and our results

	Related works
	Preliminaries
	Technical preliminary

	Algorithm for d-Hitting-Set
	Gap-d-Hitting-Set problem
	Algorithm for d-Hitting-Set via d-Promised-Hitting-Set
	Proof of Lemma 5.12

	Algorithms for d-Decision-Hitting-Set
	Lower bound for d-Decision-Hitting-Set
	Discussion

	Streaming Algorithm for Graph Deletion Problems
	Introduction
	The parameterization problems
	Parametrized streaming algorithm
	Our results
	Other related works

	Preliminaries
	Notion of streamability and hardness
	Relation between streaming models
	Notations

	Deterministic algorithms in the Al model
	Common Neighbor problem
	Streamability results for F-Subgraph deletion and F-Minor deletion
	Algorithm for F-Minor deletion

	CVD in the Dea model
	The lower bounds
	A discussion on communication complexity
	Proofs of Theorems 6.19, 6.20 and 6.21

	Conclusion

	Monochromatic Edge Estimation when the Coloring Function also Streams
	Brief description of the problem and related works
	Notations, problem definition, results and the ideas
	Prior works on graph coloring in semi-streaming model.

	Conflict-Est in VArand model
	The proof idea of Theorem 7.3 for Conflict-Est in VArand model
	Proof of correctness

	Lower bound for Conflict-Est in VArand model
	Conflict-Est in Va and VAdeg models
	Motivating ideas for the algorithms
	Proof of Theorem 7.11
	Proof of Theorem 7.12
	Algorithm for Conflict-Est in VAdeg model when |E| is known
	Modifying the algorithm in Section 7.4.3.1 when | E | is unknown

	Conclusion and discussion

	Conclusion and Future Directions
	Appendix for Chapter 7
	Lower bounds for Conflict-Est in Va and VAdeg models
	Lower bound for Conflict-Est in Va model
	Lower bound for Conflict-Est in VAdeg model

