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Introduction

The classical notion of convexity has played a very important role in understanding the structure
of various objects in mathematical analysis as well as in the foundation of quantum physics. In
modern mathematics however, in order to capture higher order convexity structure, certain
quantization (or noncommutative analogue) of this notion is required. Perhaps the defining
moment in quantization of functional analysis came through the work of von Neumann and
Murray on rings of operators in late 1930s and early 1940s, where noncommutative probability
and integration theory was formulated by replacing functions with operators. Gelfand-Naimark-
Segal construction for C*-algebras, the introduction of theory of matrix ordered spaces by Choi-
Effros [14], matrix normed spaces by Ruan [70], operator theoretic states by Stinespring [75]
and Hahn-Banach type theorems by Arveson [5] were some of the notable developments in this
direction. At the same time, a growing need to establish noncommutative analogue of convexity
theory in linear spaces gained momentum among operator algebraists. Several attempts have
been made to introduce operator version of convex analysis, most notably being matrix convexity
by Wittstock [79] and Effros-Winkler [23], C*-convexity by Loebl-Paulsen [19] and Farenick-
Morenz [28], CP-convexity by Fujimoto [31], and nc-convexity by Davidson-Kennedy [18].

A widely studied notion which fits very naturally in the framework of noncommutative con-
vexity is the concept of C*-convexity. The prominent idea here is to replace scalar-valued convex
combinations > i ; A;x; for \; € [0, 1] satisfying Y i~ A\; = 1, by C*-convex combinations of the
form Y ", afxicy for C*-conver coefficients a; in a unital C*-algebra satisfying > i ofay = 1.
Subsequently, one defines a notion of C*-convex sets and an appropriate notion of extreme
points, called C*-extreme points (see Definition 2.1.2). Loebl and Paulsen [419] while trying to
understand the generalized numerical range of an operator introduced the notion of C*-convexity
and C*-extreme points for subsets of C*-algebras. Subsequent study followed from the work of
Hopenwasser-Moore-Paulsen [41] and Farenick-Morenz [25-28,55]. The notion of C*-convexity
in due course got generalized on similar lines in different contexts; for subsets of bimodules over
C*-algebras [50-52], spaces of completely positive maps [28,29,33], and positive operator valued
measures [24]. Our main interest in this thesis lies in the setting of C*-convexity structure of
spaces of unital completely positive maps on unital C*-algebras as well as spaces of normalized

positive operator valued measures.

Ever since Stinespring [75] introduced the notion of completely positive (CP) maps on C*-



Introduction

algebras and their dilation theory, there has been strong interest in their study. Arveson’s
seminal paper [5] provided a systematic and deep structure theory of CP maps, whereas its
applications among many others to multivariate operator theory followed in his successive work.
Since then CP maps have found a number of important applications in various contexts of
operator algebras. For example CP maps play a central role in understanding the structure
of nuclear and injective C*-algebras, while Markov maps and trace preserving CP maps are
among the most fundamental tools in quantum probability and quantum information theory
respectively. Often an important approach that many researchers adopt while analyzing these
objects is via the study of the convexity (both classical as well as operator theoretic) structure
of the spaces of CP maps and their subclasses (see [5,7,13,23,28,31,41,49,52,59,60] for some
general references.)

Given a unital C*-algebra A and a complex separable Hilbert space H, the generalized state
space Sy (\A) is the set of all unital completely positive (UCP) maps from A to the algebra B(H)
of all bounded linear operators on H. Note that Sc(A) is the usual state space, so the generalized
state spaces are perceived as the quantization of usual state spaces. Motivated by the ideas of
Loebl and Paulsen, the notion of C*-convexity and C*-extreme points of Sy(.,A) was initiated
and studied by Farenick and Morenz [28] (occasionally we will also use the term C*-extreme maps
for C*-extreme points of Sy(.A)). Initial and some later developments in the theory by Farenick
et al [24,28,29] remained limited under the assumption of finite dimensionality of Hilbert spaces.
Although an abstract characterization of C*-extreme points of Sy (.A) due to Farenick-Zhou [29]
and a sufficient condition for C*-extreme maps on commutative C*-algebras due to Gregg [33]
did appear in general Hilbert space settings, so far a proper and systematic study on the structure
of C*-extreme points of Sy(A) for H infinite dimensional has been missing in literature. The
main objective of this thesis is to investigate the structure of C*-extreme points of Sy (A) for
arbitrary C*-algebra A and arbitrary dimensional Hilbert space H, along with a wide variety of

concepts associated with them.

We now outline the main contents of this thesis. Chapter 1 is devoted to the review of
necessary underlying concepts in functional analysis on which most of the material is based.
Specifically we recollect basic concepts from the theory of C*-algebras and von Neumann al-
gebras, and describe CP maps defined on them along with their dilation theory. The notion
of positive operator valued measures and their correspondence with CP maps on commuta-
tive C'*-algebras are outlined. Finally we comment on factorization property of non-selfadjoint

subalgebras of C*-algebras, particularly the results involving nest algebras.

In Chapter 2, we begin by formally defining the notion of C*-convexity and C*-extreme
points of the generalized state space Sy (A), and study some general properties. As often is the
case, in the context of UCP maps it is the structure theorem of Stinespring through which we
explore our results. As a byproduct of a result from Farenick-Zhou [29], we provide a slightly
different but powerful abstract characterization of C*-extreme points of Sy(.A). This in essence
implies that if ¢ is a C*-extreme point of Sy (A) with minimal Stinespring triple (m, V, H),
then the algebra M = {T € n(A); TVV* = VV*TVV*} has factorization in the von Neumann
algebra 7(A)" (see Definition 1.5.1). We exploit this criteria in our study of direct sums of
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pure UCP maps, where a complete description is given for such maps to be C*-extreme. This
significantly extends a result of [29] from finite to infinite dimensional Hilbert space settings.

In the course of our research of certain C*-extreme maps, we are naturally led to the study
of nests of subspaces and associated nest algebras. We discover a strong mathematical link
between the theory of C*-extreme maps and factorization property of nest algebras. The theory
of nest algebras and triangular form for operators began in late 1950’s and early 1960’s with the
work of Gohberg-Krein [32], Ringrose [69] and Kadison-Singer [46]. Since then its literature has
grown immensely. The similarity problem and its close relation to factorization property of nest
algebras have attracted considerable interest from several researchers [1,2,17,32,47, 48 64-66,69].
Some of these factorization results play very important roles in the development of our theory.

The aim of Chapter 3 is to analyze normal C*-extreme maps of the set Sy (A) for a von
Neumann algebra A, more specifically for A of the form B(G) for some Hilbert space G. Making
use of the connection between C*-extreme maps and factorization property of the algebra M
(as mentioned above), we give a necessary and sufficient criterion for a normal C*-extreme map
in Sy (B(G)) to be direct sum of pure normal UCP maps. Somewhat surprisingly, this criteria
pertains to reflexivity of the algebra M in a type I factor and the lattices of its invariant
subspaces. More precisely, it is shown that the lattice of invariant subspaces under an algebra
with factorization property in B(H), is a complete countable and atomic nest. The proof of this
assertion is relegated to Chapter 6, where we study a more general notion called logmodular

algebras and their lattices.

An in-depth study has been carried out in Chapter 4 on the structure of C*-extreme points
of the space Py (X) of B(H)-valued normalized positive operator valued measures (POVMs) on
a measurable space (X, O(X)). Our motivation to independently examine spaces of POVMs
and their C*-convexity structure stems from their eventual applications to the study of C*-
extreme maps on the commutative C*-algebra C'(X) of all continuous functions on a compact
Hausdorff space X. POVMs are called generalized measurements in quantum mechanics and
are basic mathematical tools in quantum information theory. The notions of C*-convexity
and C*-extreme points have natural extensions to POVMs. We first describe some abstract
characterization of C*-extreme POVMs parallel to those of UCP maps. An important path
that we adopt is via decomposing a POVM into a sum of atomic and non-atomic POVMs, and
analyze them separately. The main result of this chapter shows that all atomic C*-extreme
points of Py (X) are spectral measures. As a special case, it follows that C*-extreme points
of Py (X), when X is countable, are spectral. Moreover this says that in order to completely
characterize C*-extreme POVMs, it will be enough just to understand the behaviour of non-
atomic C*-extreme POVMs. We also discuss the notions of mutually singular POVMs and
measure isomorphic POVMSs, and their implications to C*-convexity.

The main theme of Chapter 5 is to analyze C*-extreme UCP maps on the commutative
C*-algebra C(X) for a compact Hausdorff space X. Like the extremal points of usual state
space on C(X), it is known that C*-extreme points of Sgn(C(X)) are *-homomorphism as well.
In contrast, there exist non-homomorphic C*-extreme points in Sy (C(X)) for infinite dimen-
sional Hilbert space H. Nevertheless it is seen here that in a lot of cases, C*-extreme points of
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Sy (C(X)) are *-homomorphisms even when # is infinite dimensional. The well-known corre-
spondence of (unital) CP maps on C'(X) and (normalized) regular POVMs on Borel o-algebra
of X is very crucial in our approach. The theory developed in the previous chapter regarding
POVMs is developed further here, where we examine regular POVMs on general topological
Hausdorff spaces, only to be applied back to the study of C*-extreme maps on commutative C*-
algebras. Our result on POVMs on countable spaces translates to saying that C*-extreme points
of Sy (C(X)) for X countable (in particular for Sy (C")) are *-homomorphisms. The problem
of characterizing C*-extreme points of Sz (C™) for infinite dimensional Hilbert space
‘H has been open for over two decades, and we have settled it here.

One of the most fundamental results in classical convexity theory is Krein-Milman theorem
for compact convex sets in locally convex topological vector spaces, where one can extract infor-
mation about the points of the convex sets using their extreme points. Naturally an analogue of
Krein-Milman theorem is expected as well in non-commutative convex spaces under some appro-
priate topology. Several researchers have been quite successful in reaching this goal in varying
set-ups, particularly when the operator-valued coefficients are taken from finite dimensional
C*-algebras: see for example, for compact C*-convex subsets of M, [55], for compact matrix
convex sets in locally convex spaces [78], and for weak*-compact C*-convex sets in hyperfinite
factors [50]. However there are instances where such theorems fail to hold. In fact Magajna
[52] produced an example of a weak*-compact C*-convex subset of an operator B-bimodule over
a commutative von Neumann algebra B which does not even possess any C*-extreme point.
Nevertheless, for the C*-convex spaces of UCP maps equipped with bounded weak topology,
some promising results have appeared in restricted cases. More specifically a generalized Krein-
Milman theorem is known to be true for C*-convexity of the space Scn (A) when A is an arbitrary
C*-algebra [28]. We provide some significant new results in this line of research by showing a
Krein-Milman type theorem for C*-convexity of Sy (A) (for H separably infinite dimensional)
in the following three cases, spread across different chapters: (1) A is a separable C*-algebra
(Theorem 2.4.3), (2) A is a type I factor (Theorem 3.2.2), and (3) A is a commutative C*-
algebra (Theorem 5.4.10). Whether the same holds for Sy (.A) in full generality is a question

which remains open.

The primary goal of Chapter 6 is to prove the aforementioned result in Chapter 3 about
lattices of algebras having factorization property. Such algebras are special case of a notion
called logmodular algebra, and here we undertake an independent study of logmodular algebras
in von Neumann algebras. The main result shows that the lattice of projections in a factor von
Neumann algebra M whose ranges are invariant under a logmodular algebra in M, is always a
nest. As a special case, it follows that all reflexive (in particular, completely distributive CSL)
logmodular subalgebras of type I factors are nest algebras. This answers in the affirmative
a conjecture by Paulsen and Raghupathi [62]. Moreover this assertion when applied
to algebras having factorization strengthens a well-known result about factorization property
of nest algebras due to Larson [417]. We also explore some criteria under which a logmodular
algebra is automatically reflexive and a nest algebra.



Chapter 1

Preliminaries

We briefly review some of the fundamental results in operator algebra literature on which the
content of this thesis hinges upon. This will also help us in fixing notations and terminologies
to be followed.

We will stick to the following convention throughout. All Hilbert spaces considered here are
complex and separable, where the inner product is linear in second variable while antilinear in
the first variable. We denote by B(H) the algebra of all bounded linear operators on a Hilbert
space H. If H and K are two Hilbert spaces, then B(H, K) denotes the space of all bounded linear
operators from H to K. By subspaces, projections and operators, we mean closed subspaces,
orthogonal projections and bounded operators respectively. For any subset E of H, [E] denotes
the closed subspace of H generated by E. The orthogonal complement of a subspace F' in a
subspace F will be denoted by E © F, whereas E- denotes the orthogonal complement of F in
H i.e. B+ =% o E. For any subspace E, we denote by P the projection onto E. All algebras
(self-adjoint or non self-adjoint) considered are subalgebras of B(#), and are assumed to contain
identity of B(#) which is denoted by 1 or Iy;. For other notations, we refer the readers to ‘List
of Symbols’ at the end.

1.1 (*-algebras

The concept of C*-algebras plays a fundamental role in the study of noncommutative functional
analysis. A thorough treatment on the theory of C*-algebras can be found in introductory
textbooks such as Arveson [3], Conway [15,16], Douglas [22], Kadison-Ringrose [45], and Takesaki
[77].

A Banach algebra is an algebra A over C which is also a Banach space such that ||ab|| <
||lal/||b]| for all a,b € A.

Definition 1.1.1. A C*-algebra A is a Banach algebra with a map a — a* from A to A (called
involution) such that

(i) (Na+~b)* = \a* + Ab*, (ab)* = b*a*, (a*)* = a,
(i) [la*all = [lal®

for all A,y € C and a,b € A. A C*-algebra is called unital if it contains an identity, which is

5
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denoted by 1.

Let A and B be two unital C*-algebras. A linear map ¢ : A — B is unital if (1) = 1. A
linear map ¢ : A — B is called a x-homomorphism if ¢(ab) = ¢(a)p(b) and ¢(a*) = ¢(a)* for all
a,b € A. A bijective *-homomorphism between two C*-algebras is called *-isomorphism. Two

C*-algebras are isomorphic if there is a *-isomorphism between them.

Remark 1.1.2. A well-known fact says that any injective x-homomorphism between two C*-
algebras is isometric. In particular, there is exactly one norm on an algebra with involution
which makes it into a C*-algebra.

Example 1.1.3. Let H be a Hilbert space, and let B(H) be the algebra of all bounded linear
operators on H. Then B(#) is a unital C*-algebra endowed with the operator norm. Further,
any subalgebra of B(?) which preserves x-operation and is closed in norm topology, is a C*-
algebra equipped with the inherited operator norm.

A C*-algebra A is called commutative or abelian if ab = ba for all a,b € A. Following is a
general example of commutative C*-algebras.

Example 1.1.4. For any compact Hausdorff space X, let C(X) denote the the space of all
continuous functions from X to C. Then C(X) is a unital commutative C*-algebra, where
multiplication and scalar multiplication are pointwise, while involution is given by f*(z) = f(x)
for all f € C(X),z € X. The norm is the sup norm given by || f|| = sup,cx |f(x)| for f € C(X).

The following theorem due to Gelfand says that Example 1.1.4 provides all unital commu-
tative C*-algebras upto isomorphism.

Theorem 1.1.5. If A is a unital commutative C*-algebra, then A is isomorphic to C(X) for

some compact Hausdorff space X.

The topological space X in above theorem is nothing but the maximal ideal space of all
non-zero complex homomorphisms on A equipped with weak*-topology. The space X is called
the spectrum of the commutative algebra A.

Definition 1.1.6. Let A be a unital C*-algebra. An element a € A is called
(i) self-adjoint (or hermitian) if a* = a,
(ii) normal if a*a = aa®,
(iii) projection if a®> = a and a* = a,

)
)
(iv) isometry if a*a =1,
)
)

—~

v) co-isometry if aa* =1,

(vi) wnitary if a*a = aa* = 1.

Now let A be a unital C*-algebra, and let a € A. For any scalar A € C, we will always
denote the element A - 14 of A by A only. The spectrum of a, denoted o(a), is defined by

o(a) = {\ € C;a — X is invertible in A}.
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The spectrum of an element is always non-empty and compact.

Definition 1.1.7. A self-adjoint element a in a C*-algebra A is called positive if a = b*b for
some b € A; equivalently, o(a) C [0, 00).

Proposition 1.1.8. Let a be a positive element in a C*-algebra, then there exists a unique
positive element b (called square root) such that b* = a.

For any element a in a C*-algebra A, we denote by C*(a) the smallest unital C*-subalgebra
of A generated by a and 1. Note that if a is normal, then C*(a) is commutative.

Theorem 1.1.9 (Continuous functional calculus). Let a be a normal element in a C*-algebra.

Then there is a unique x-isomorphism p: f +— f(a) from C(o(a)) to C*(a) such that p(z) = a.

Theorem 1.1.10 (Spectral Mapping Theorem). If a is a normal element in a C*-algebra, then

for any continuous function f : o(a) — C.

Also see Section 1.4 below for discussions on Borel functional calculus and the corresponding
Spectral mapping theorem.

We now state the classical Gelfand-Naimark-Segal (GNS) theorem, which says that every
C*-algebra can be concretely realized as a C*-subalgebra of B(H) as in Example 1.1.3.

Theorem 1.1.11 (GNS Theorem). Every C*-algebra is isometrically isomorphic to a C*-
subalgebra of B(H) for some Hilbert space H.

We now consider the notion of minimal tensor products between two C*-algebras. In order to
construct the minimal C*-cross-norm, we recall the theory of tensor products of Hilbert spaces.
Given two Hilbert spaces H and KC, the assignment

(h1 @ k1, he ® ko) = (h1, ha){k1, k2)

extends linearly to define an inner product on the algebraic tensor product H ® K. The com-
pletion of H ® K with respect to this inner product is a Hilbert space, which we still denote by
H K. If T and S are bounded operators on H and K respectively, then setting

T®Shek)=The Sk

extends to define a bounded, linear operator on H ® K satisfying || 7" ® S|| = ||T']|||S]|. It is easy
to check that

(T1 X Sl)(T2 & 52) =T1Th, ® 5152 and (T X S)* =T"® S*.

We refer the readers to Paulsen [61], Pisier [63] and Takesaki [77] for more details for the notions
of tensor products.
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Definition 1.1.12. Given two C*-algebras A; C B(H;), i = 1,2 we define the minimal tensor
product of A; and Ag, denoted A; ® Ag, as the C*-subalgebra of B(H1 ® H2) generated by the
operators T1 ® T for T; € A;, i = 1, 2.

It is a fact that the definition of minimal tensor product does not depend on the representing
Hilbert spaces on which the C*-algebras act.

von Neumann algebras

We now move to a special kind of C*-algebras called von Neumann algebras. This notion was
originally introduced by von Neumann and Murray motivated by their study of ergodic theory
and quantum mechanics in a series of papers written under the name rings of operators in 1930s
and 1940s. For basic development of the theory, one may refer to Conway [16], Dixmier [20],
Kadison-Ringrose [45], and Takesaki [77].

We first define three very important topologies on B(H). The weak operator topology (WOT)
is the smallest topology on B(#) such that the seminorms py,  : B(H) — [0, 00) given by

pui(T) = [(h, TR)|, T € B(H)

is continuous for all h,k € H. The strong operator topology (SOT) is the smallest topology on
B(#) such that the seminorms pj, : B(H) — [0, 00) defined by

po(T) = [[Thll, T € B(H)

is continuous for all h € H. It is known that WOT and SOT closure of a convex subset of B(H)
coincide. Further, the o-weak or ultraweak topology is the smallest topology on B(H) such that
the seminorms pg : B(H) — [0, 00) defined by

ps(T) = |Tx(TS)|, T € B(H)

is continuous for all trace class operators S on H. Here and elsewhere, Tr denotes the trace of
a trace-class operator.

A subset S of B(H) is called self-adjoint if S is closed under *-operation i.e. §* =S, where
S* ={z"2 e S} (1.1.1)
A self-adjoint subalgebra is also called *-subalgebra.

Definition 1.1.13. A von Neumann algebra is a unital x-subalgebra of B(#) which is closed in
WOT.

For any subset S of B(H), the commutant of S is defined by
S ={T € B(H);TS = ST for all S € S}. (1.1.2)

The double commutant of S is defined by §” = (S’)’. The following theorem provides a relation-
ship between algebraic and analytic structure of x-subalgebras of B(#). This also gives other
equivalent definitions of von Neumann algebras.

8



1.1. C*-algebras

Theorem 1.1.14 (Double commutant theorem). Let B be a unital x-subalgebra of B(H). The

following are equivalent:

(i) B is a von Neumann algebra i.e. B is closed in WOT,
(ii) B is closed in SOT,
(iii) B is o-weakly closed,

(iv) B" = B.

Definition 1.1.15. A von Neumann algebra B C B(H) is called factor if its center BN B’
consists of the scalar multiples of the identity.

For any projection p € B, we denote by pBp the algebra

pBp = {pxp;x € B}. (1.1.3)

Proposition 1.1.16. pBp is a von Neumann algebra which is x-isomorphic to a von Neumann

subalgebra of B(K), where K is the range subspace of p.

A partial isometry is an operator W on a Hilbert space H such that [|[Wh| = ||h| for all
h € (ker W)+, The space (ker W)= is called initial space and R(W) is called final space for W.
Here ker W and R(W) denote respectively kernel and range of the operator W.

Theorem 1.1.17 (Polar decomposition). Let T' € B(H). Then there is a partial isometry W
with initial space (ker T)* and final space R(T) such that T = W|T|, where |T| is the square
root of T*T. Moreover, W belongs the von Neumann algebra generated by T'.

We recall some notions on projections in von Neumann algebras. Below and elsewhere <
denotes the usual order of self-adjoint operators i.e A < B if A — B is positive. And < will
denote the strict order.

Definition 1.1.18. Two projections p and ¢ in a von Neumann algebra B are said to be (Murray-
von Neumann) equivalent, denoted p ~ ¢, if there exists a partial isometry v € M such that
v*v = p and vv* = q. We say p =< ¢ if there is a projection ¢; € B such that ¢; < ¢ and p ~ ¢;.

See Corollary 47.9, [16] for proof of the following comparison result for projections in a factor.

Theorem 1.1.19. If B is a factor and p,q are two non-zero projections in B, then either p < ¢

or ¢ X p i.e. there is a non-zero partial isometry v € B such that v*v < p and vv* <gq.

A projection p € M is called finite if the only projection ¢ in M such that ¢ < p and ¢ ~ p
is p.

Definition 1.1.20. A von Neumann algebra B is called finite if the projection 1 € B is finite.

A bounded linear map ¢ : A — B between two von Neumann algebras is called a trace if
¢(ab) = ¢(ba) for all a,b € A. The following theorem tells of existence of tracial states on finite
von Neumann algebras (see Corollary 50.13, [16]).
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Theorem 1.1.21. If B is a finite von Neumann algebra, then there exists a faithful tracial state
7:B—Cie 7(1) =1, 7(a*a) > 0, and 7(a*a) = 0 implies a = 0.

We have already seen above the notion of minimal tensor products of two C*-algebras. Given
two von Neumann algebras B; C B(H;),i = 1,2, we denote by B1®B; the von Neumann algebra
generated by By ® Bs in B(H1 ® Ha). The following theorem talks about commutant of such
tensor products (see Theorem IV.5.9, [77] for proof).

Theorem 1.1.22. If By and Bs are two von Neumann algebras, then (B @ B2)' = B{®B5.

1.2 Completely positive maps

The concept of completely positive (CP) maps on C*-algebras and their dilation originates from
the work of Stinespring [75]. A significant development in the theory and applications of CP
maps came from Arveson in his seminal paper [5]. Over the years, it has attracted fair amount of
attention in the context of quantum probability and quantum information theory. See Paulsen
[61] for a detailed exposition of the theory of CP maps and related topics.

Let A be a unital C*-algebra. Then by GNS theorem, 4 can be realized as a C*-subalgebra
of B(H) for some Hilbert space H. Consider the set M, (.A) of all n xn matrices with entries from
A. Then M, (A) is a unital *-algebra with usual matrix multiplication, involution, pointwise
addition and scalar multiplication. Since A acts on ‘H, M, (A) acts on the Hilbert space H)
of n-times direct sum of H. Hence M, (A) is a *-subalgebra of B(H(™), so that it inherits the
operator norm from B (H(")). It is straightforward to verify that with respect to this norm,
M,,(A) is closed and hence a unital C*-algebra.

Let A and B be two unital C*-algebras. For any linear map ¢ : A — B and n > 1, we define
the map ¢, : Mp(A) = M, (B), called ampliation, by

on([aij]) = [#(aij)],  for all [a;;] € My (A). (1.2.1)
Definition 1.2.1. A linear map ¢ : A — B is called positive if ¢(a) > 0 in B, for all a > 0 in

A. The map ¢ is called completely positive (CP) if ¢,, is positive for all n > 1.

Remark 1.2.2. Throughout the thesis, we shall be using the abbreviated form ‘CP’ for com-
pletely positive, while ‘UCP’ will be used for unital completely positive. The readers are cau-
tioned here that both the terminologies will keep appearing, and hence proper attention should
be paid.

A positive map is automatically bounded. In fact we have the following (see Proposition 3.6,
[61]).

Proposition 1.2.3. Let ¢ be a positive map between unital C*-algebras. Then ||¢] = ||¢(1)||
(moreover, if ¢ is CP, then sup,>q ||¢nll = |¢(1)]|). Conversely, if ¢ is a linear map such that
#(1) =1 and ||¢]| < 1, then ¢ is positive.

Definition 1.2.4. Let A be a unital C*-algebra. A representation of A is a pair (H, ) consisting
of a Hilbert space H and a unital x-homomorphism from 4 to B(H).

10
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Example 1.2.5. Any representation is a UCP map. Further, if 7 : A — B(K) is a representation
and V is a bounded map from H to K, then the map ¢ : A — B(H) defined by ¢(a) = V*m(a)V
for all a € A, is a CP map. Moreover, ¢ is unital if and only if V' is an isometry.

Conversely, Stinespring [75] showed that all CP maps are of the form as in Example 1.2.5.
The proof (see Theorem 4.1, [61]) follows the usual GNS construction method.

Theorem 1.2.6 (Stinespring dilation theorem). Let A be a unital C*-algebra, and let ¢ : A —
B(H) be a CP map. Then there exists a triple (m,V,K), where K is a Hilbert space, 7 : A — B(K)
is a representation and V € B(H,K) such that

é(a) = V*r(a)V (1.2.2)

for all a € A, and satisfies the minimality condition: I = [w(A)VH]. Moreover any such triple
is unique up to unitary equivalence i.e. if (m,V1,K1) is another such triple, then there is a

unitary U : K — KC1 such that UV = Vi and m1(a)U = Un(a) for all a € A.

The triple (7, V, H,) in Stinespring dilation theorem above is called the minimal Stinespring
triple for the CP map ¢.

Remark 1.2.7. For our purposes, all CP maps will be acting on separable Hilbert spaces.
But note that the Hilbert space H, in the minimal Stinespring triple (7, V,H) for a CP map
¢ : A — B(H) need not be separable. But one can easily verify (through the proof of above
theorem) that whenever the C*-algebra A is separable and H is separable, then the Hilbert
space H, is also separable.

In the same paper [75], Stinespring showed that positive maps on commutative C*-algebras
are automatically CP (see Theorem 4.11, [61] for proof).

Proposition 1.2.8. Let X be a compact Hausdorff space, and let A be a unital C*-algebra.
Then any positive map ¢ : C(X) — A is CP.

The notion of compression of operators is very common in functional analysis. The same

can be defined for CP maps as follows:

Definition 1.2.9. Let ¢; : A — B(H;), i = 1,2 be two CP maps. We say ¢ is a compression
of ¢1 if there exists an isometry W : Ho — H; such that ¢o(a) = W*¢1(a)W for all a € A.

Stinespring dilation theorem says that any unital completely positive (UCP) map is a com-

pression of a representation.

The following proposition talks about elements of something called multiplicative domains
of a UCP map. See Theorem 3.18, [61].

Proposition 1.2.10. Let (7, V,H) be the minimal Stinespring triple for a UCP map ¢ : A —
B(H). Then for any a € A, ¢(a)*¢(a) = ¢p(a*a) if and only if Vo(a) = m(a)V.

11
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Proof. Since V is an isometry, we first note that
(I, = VVI)m(@)VI (I, = VV)(a)V] = Vir(a®) Iy, — VVF)7(a)V
= ¢(a”a) — ¢(a)"¢(a).
Hence ¢(a*a) = ¢(a)*¢(a) if and only if (I, — VV*)r(a)V =0ie. m(a)V = Vo(a). O

As usually is the case, our study of the structure of C*-extreme UCP maps in this thesis is

upto unitarily equivalence of two UCP maps, which we formally define below:

Definition 1.2.11. Two UCP maps ¢; : A — B(H;), i = 1,2, are called unitarily equivalent if
there is a unitary operator U : H; — Ha such that ¢1(a) = U*¢2(a)U for all a € A.

Remark 1.2.12. If ¢ : A — B(H) is a UCP map with minimal Stinespring triple (m, V, H),
then it is easy to verify that ¢ is unitarily equivalent to the UCP map a — Py(v)ﬂ'(a)
A to B(R(V)).

V) from

We now consider tensor products of CP maps on minimal tensor products of C*-algebras.
See Theorem 12.3, [61] for proof of the following.

Theorem 1.2.13. Let A; be C*-algebras and H; be Hilbert spaces fori = 1,2. If ¢; : A; — B(H,;)
are (unital) CP maps, then the assignment a1 @ ag — ¢1(a1) ® ¢(az) extends to a (unital) CP
map from A1 ® Ay to B(H1 @ Ha).

Disjoint representations

Let 7 : A — B(H) be a representation, and let K be a closed subspace of H, such that K is

invariant under 7(a) (i.e. m(a)KC C K) for all a € A. Then the mapping a — m(a)|,. gives rise to

Ik
another representation from A to B(K), called a sub-representation of .

Definition 1.2.14. Two representations m; : A — B(Hx,), i = 1,2 are said to be disjoint if no
non-zero sub-representation of m; is unitarily equivalent to any sub-representation of ms.

The following proposition provides an equivalent criterion for disjoint representations (see

Proposition 2.1.4, [3] for proof).

Proposition 1.2.15. Let m; : A — B(Hax,), i = 1,2 be two representations. Then m and 7o
are disjoint if and only if for any S € B(Hx,, Hxr,) satisfying Smi(a) = m2(a)S for all a € A,
implies S = 0.

Definition 1.2.16. A representation (7, ) on A is called irreducible if m has no non-zero proper
sub-representation i.e. T(A) = C- Iy, .

Remark 1.2.17. Given two irreducible representations, they are either unitarily equivalent or
disjoint. Also if m; and w9 are two non-unitarily equivalent irreducible representations, then the
representations 7 (-) ® Ix, and ma(-) ® Ik, are disjoint (for any Hilbert spaces K; and Ka).

12
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Radon-Nikodym type Theorem

Some very important theorems on CP maps proved by Arveson [5] are listed below. To this end,

we consider some relevant terminologies.

Definition 1.2.18. For any two CP maps ¢, : A — B(H), we say @ is dominated by ¢,
denoted ¥ < ¢, if ¢ — 1 is CP.

Inspired from Radon-Nikodym theorem from measure theory, Arveson proved the following
version of the theorem for comparison of two CP maps (Theorem 1.4.2, [5]):

Theorem 1.2.19 (Radon-Nikodym type theorem). Let ¢ : A — B(H) be a CP map with
minimal Stinespring triple (w,V,Hz). Then a CP map ¢ : A — B(H) satisfies ¢ < ¢ if and
only if there is a positive contraction T € m(A)" such that (a) = V*Tr(a)V for all a € A.

A large part of our major results revolves around the notion of pure UCP maps which we
define below.

Definition 1.2.20. A CP map ¢ is called pure if whenever 1 is a CP map with ¢ < ¢, then
1 = ¢ for some A € [0,1].

The following proposition (see Corollary 1.4.3, [5]) characterizes pure CP maps in terms of
their Stinespring decomposition, which follows directly from Radon-Nikodym type theorem.

Proposition 1.2.21. If ¢ is a CP map with minimal Stinespring triple (7,V,H), then ¢ is
pure if and only if w is irreducible.

Extreme point condition

The classical convexity structure of spaces of UCP maps and their subclasses has garnered
considerable attention. In this thesis, we are not focusing much on extreme UCP maps. Nev-
ertheless, we provide some results for the sake of comparison with C*-extreme points (which is

our main theme).

Recall that a subset C of a vector space (or an affine space) is called a convez set if whenever
x; € C and t; € [0,1] with Y7 ¢; = 1, then Y>7* | t;z; € C. A point z in a convex set C is called
an extreme point if whenever

n
r = Z til'z'
=1

for z; € C and t; € (0,1] with >.7* ; t; = 1, then = = z; for every i.

We fix the following notation to be followed throughout the thesis. This set is our main
focus for its convexity (and its quantum variant) structure.

Notation. We denote by Sy (A) the collection of all UCP maps from a unital C*-algebra A to
B(H).

13
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The set Sy (A) is called generalized state space on the C*-algebra A taking values in B(H).
Note that Sc(.A) is the usual state space of A.

Note that Sy(A) is a convex set because if ¢; € Sy(A) and t; € [0,1] with > ¢, = 1,
then > it tip; € Sy (A). The following characterization of extreme points of Sy (A) is due to
Arveson (Theorem 1.4.6, [5]).

Theorem 1.2.22 (Extreme point condition). Let ¢ € Sy(A), and let (m,V,Hx) be its minimal
Stinespring triple. Then ¢ is extreme in Sy (A) if and only if the map T — V*TV from w(A)
to B(H) is injective.

BW (bounded weak) topology

We now describe a topology on the generalized state space Sy(.A), whose definition is inspired
from the weak*-topology on usual state spaces. We define the topology using convergence of
nets in Sy (A). This topology first appeared in Arveson [5].

Definition 1.2.23. A net {¢;} converges to ¢ in Sy (A) in bounded weak (BW) topology if
di(a) = ¢(a) in WOT
for all a € A.

Note that for any ¢¢ € Sy(A), the sets of the form

{6 € Su(A);1((9(a) — golai))hi, ki)| < e},

for hiki € H, a; € A, 1 < i < k and € > 0, forms a basis for BW-topology on Sy(A). As
one would expect, the generalized state space Sy(\A) is compact in BW-topology, just like usual
state spaces are compact in weak*-topology. See Theorem 7.4, [G1] for proof of the following.

Theorem 1.2.24. Let A be a unital C*-algebra, and H a Hilbert space. Then the set Sy(A) of
all UCP maps on A is compact in BW-topology.

Normal UCP maps
We now discuss structure of normal UCP maps on von Neumann algebras.

Definition 1.2.25. Let A, B be two von Neumann algebras. A positive linear map ¢ : A — B
is called normal if whenever {X;} is a net of increasing self-adjoint operators (i.e. X; < X; for
i < j) converging to X in SOT, then ¢(X;) — ¢(X) in SOT.

The following theorem describes the general structure of normal UCP maps on B(G) for some
separable Hilbert space G via Stinespring dilation (see Theorem 1.41, [63]).

Theorem 1.2.26. Let G and H be separable Hilbert spaces, and let ¢ : B(G) — B(H) be a
normal UCP map. Then there exist a Hilbert space K and an isometry V : H — GRK such that

(X)) =V (X®I)V forall X € B(G),

and satisfies the minimality condition: G ® K =span{(X ® Ixx)Vh;h € H,X € B(G)}.

14
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In above Theorem if we recognize the Hilbert space G ® K with dim /C-times direct sum of
G, then we get the following structure of normal UCP maps (see Theorem 2.3, [19]).

Corollary 1.2.27. Let ¢ : B(G) — B(H) be a normal UCP map. Then there exists a finite or
countable sequence {Vy}n>1 of operators in B(H,G) such that

(X)) =Y ViXV, in SOT, (1.2.3)
n>1
for all X € B(G).
Remark 1.2.28. Note that the commutator of the set {X ® Ic; X € B(G)} in B(G ® K) is the

algebra {Ig @ T;T € B(K)}. So ¢ is a normal pure UCP map on B(G) if and only if dim K =1
ie. ¢(X)=V*XV for some isometry V from H to G.

1.3 Positive operator valued measures

In this section, we review the theory of positive operator valued measures (POVMs). POVMs
play integral role in various areas of mathematics including quantum computing, quantum in-
formation theory and operator algebras. Some references on POVMs are Davies [19], Holevo
[40], Schroeck [71], Paulsen [61] and Han-Larson-Liu-Liu [36].

Unless stated otherwise, X is a non-empty set and O(X) denotes a o-algebra of subsets of X.
The pair (X, O(X)) is called a measurable space and the elements of O(X) are called measurable
subsets. We shall simply call X a measurable space without always mentioning the underlying
o-algebra O(X), if there is no point of confusion.

Definition 1.3.1. Let (X,O(X)) be a measurable space and let H be a Hilbert space. A
positive operator valued measure (POVM) on X with values in B(H) is amap p: O(X) — B(H)
satisfying the following:

e u(A) >0in B(H) for all A € O(X), and
o for every h,k € H, the map pp 1 : O(X) — C defined by
pnk(A) = (h, u(A)k) for all A e O(X), (1.3.1)
is a complex measure.

Moreover, a POVM p is called

(i) normalized if u(X) = Iy, the identity operator on H.
(ii) projection valued measure (PVM) if u(A) is a projection for each A € O(X).
(iii) spectral measure if p is a PVM and is normalized.

Notation. Let Py (X) denote the collection of all normalized POVMs from O(X) to B(H).

It follows from the definition of a POVM p that, for any increasing (resp. decreasing)
sequence {A,} of measurable subsets converging to A i.e. A, C A,4; and U, A, = A (resp.
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Ay D Apyr and NA,, = A), we have u(A,) — p(A) in weak operator topology (WOT) in B(H).
Since convergence of an increasing or decreasing sequence of bounded operators is equivalent for
both weak operator topology and strong operator topology (SOT), it follows that p(A,) — w(A)
in SOT. Also since on bounded subsets of B(H), WOT and o-weak topology agree, we infer that
u(Ay) = u(A) in o-weak topology. Therefore, in the countable additivity of POVM:

i (U Bn> = Zu(Bn), B, € O(X),B, N B, =0 for n # m,
n=1 n=1

the convergence of the series holds in WOT, SOT and o-weak topologies. So for POVMs such
sums can be considered in any of the three topologies.

Remark 1.3.2. For any POVM p, by pp, we would mean the complex measures defined in
(1.3.1). It is clear that a POVM p is determined by its associated family of complex measures
{tnp = hok € H}.

The following proposition gives an equivalent criteria for a POVM to be PVM. See page 34,
[71] for a proof.

Proposition 1.3.3. For a POVM p, u(A) is a projection for all A € O(X) (i.e. u is a PVM)
if and only if u(BNC) = pu(B)u(C) for all B,C € O(X)

Naimark’s dilation theorem

The classical dilation theorem of Naimark [56] shows that POVMs can be dilated to spectral
measures. This result is often considered the beginning of dilation theory. Naimark showed the
result in more general set up for finitely additive POVMs on measurable spaces. Compare the
following with Stinespring dilation theorem (Theorem 1.2.6).

Theorem 1.3.4 (Naimark dilation theorem). Let 1 : O(X) — B(H) be a POVM. Then there
exists a triple (m,V, Hr) where Hr is a Hilbert space, m : O(X) — B(Hxz) is a spectral measure
and V€ B(H,H,) such that

W(A) = V*r(A)V, for all A € O(X) (1.3.2)

and the minimality condition: H. = [7(O(X))VH] is satisfied. Moreover such a dilation is
unique up to unitary equivalence i.e. if (w1, Vi, Hr,) is another such triple, then there is a
unitary U : Hy — Hax, such that UV = Vi and Un(A) = 71 (A)U for all A € O(X).

The triple (m,V,H,) is called the minimal Naimark triple of . Since 7 is spectral, we note
that V is an isometry if and only if i is a normalized POVM.

Naimark’s theorem is text book material. The proof generally uses the usual GNS construc-
tion method. Some possible references are (Theorem II.11.F, [71]) and (Theorem 2.1.1, [410]).
A proof using the Stinespring dilation theorem for CP maps is also well-known (Theorem 4.6,
[61]), but then POVMs under consideration will have to be assumed to be regular on the Borel
o-algebra of some compact Hausdorff space. As an immediate application of Naimark’s dilation
theorem we have the following result.
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Proposition 1.3.5. Let p: O(X) — B(H) be a normalized POVM and p(E) a projection for
some E € O(X). Then p(ENA) = u(E)u(A) = uw(A)u(E) for every A € O(X). In particular,
w(E) and p(F) have orthogonal ranges for any F € O(X) with ENF = .

Proof. Let (m,V,H,) be the minimal Naimark triple of . As noticed earlier, since y is normal-
ized and 7 is spectral, it follows that V' is an isometry. Then for any A € O(X), we have

Vi(A) = (V] - [Vi(A) = m(A)V] = [u(A)V" = Vix(A)] - [Vi(A) — m(A)V]
2

In particular, since p(E) is a projection, we get Vu(E) = m(E)V. For any A € O(X), therefore
p(A)(E) = Vir(A)V(E) = Vin(A)r(E)V = V(AN E)V = u(ANE).
Similarly or by taking adjoint of the last equation we get p(E)u(A) = p(E N A). O

Definition 1.3.6. A POVM p is concentrated on a measurable subset E if u(A) = p(ANE)
for all A € O(X).

Note that a POVM p being concentrated on a subset E just means that u(X \ E) = 0. This
is not same as saying that E is the support of . In fact when X is a topological space, the
support of p is defined as the smallest closed subset C' such that pu(C) = pu(X).

Proposition 1.3.7. Let p : O(X) — B(H) be a POVM with the minimal Naimark triple
(m,V,Hz). Then for any A € O(X), p(A) = 0 if and only if 7(A) = 0. In particular, p is
concentrated on E € O(X) if and only if 7 is concentrated on E.

Proof. Let 1(A) = 0. Then for any B € O(X) and h € H, we get
(r(A)m(B)Vh,n(B)Vh) = (V*m(BNA)Vh,h) = (u(BNA)h,h) < (u(A)h,h) = 0.

Since {m(B)Vh;h € H,B € O(X)} is total in H, by the minimality condition, we conclude that
m(A) = 0. The converse is obvious. The second assertion follows from the first. O

Radon-Nikodym type theorem

In classical measure theory, the Radon-Nikodym derivative of a (o-finite) positive measure ab-
solutely continuous with respect to another (o-finite) positive measure is a well-established fact.
There have been several attempts to generalize it to the case of absolutely continuous POV Ms
(which is defined in a similar way as usual positive measures), especially for finite dimensional
Hilbert spaces; see for example [24], [54]. In this thesis however, we consider a different notion
of comparison of POVMs.

Definition 1.3.8. We say a POVM v is dominated by another POVM p, denoted by v < p, if
@ —visa POVM.
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Here also a Radon-Nikodym type of theorem is known and is well studied. It is analogous to
the Radon-Nikodym type theorem for CP maps by Arveson (see Theorem 1.2.19). First consider
the following lemma:

Lemma 1.3.9. If p : O(X) — B(H) is a POVM, then [1(A; N Aj)] is a positive matriz in
M, (B(H)) for any finite collection Ay, ..., A, € O(X).

Proof. Let (m,V,H,) be the minimal Naimark triple for p. Then
[1(Ai N Aj)] = [VTir(A;i 0 Aj)V] = [VIr (A7 (A4;)V],

which is of the form [T;*Tj] for T; = m(A;)V, and hence it is clearly positive. O

For readers convenience we present an outline of the proof as we couldn’t trace a proper
citation. Here the operator D can be thought of as the Radon-Nikodym derivative of v with
respect to u.

Theorem 1.3.10 (Radon-Nikodym type theorem). Let p : O(X) — B(H) be a POVM with
the minimal Naimark triple (7,V,Hz). Then for a POVM v : O(X) — B(H), v < p if and
only if there exists a positive contraction D € n(O(X))" such that v(A) = V*Dr(A)V for all
Aec O(X).

Proof. The proof of ‘if’ part is obvious. For the converse, assume that u — v is a POVM. Let
(p, W,H,) be the minimal Naimark triple for v. Define an operator T' : H, — H, as follows:
first define T" on the subspace span{n(A)Vh; A € O(X),h € H} of Hr by

T (r(A)Vh) = p(A)Wh, foral AecO(X),hecH

and extend it linearly. Then since p — v is a POVM, we note from Lemma 1.3.9 that

I T (w(A)Vh) |2 = > (p(A)Why, p(A)Whi) = > (W*p(Ai 0 Aj)Why, hs)
=1 i,j=1 ij=1
= > W(Ain Ajhj,hi) < 7 (u(Ai 0V Ajhg, he) = || Y w(A)Vhil?
ij=1 ij=1 i—1

for any A; € O(X), h; € H, 1 < i < n. This shows that T is a well-defined operator which
extends to a contraction on [7(O(X))VH]| = Hr. Set

D=T"T.
Then D is a positive contraction. Since for all A € O(X), we have T'n(A) = p(A)T, it is
immediate that Dr(A) = w(A)D; hence D € n(O(X))’. Also it is easy to verify that v(A) =
V*Dr(A)V for all A € O(X). O

18



1.3. Positive operator valued measures

Extreme POVMs

The set Py (X), which is the collection of all normalized POVMs on X with values in B(H) is
clearly a convex set. Extreme points of this set are well studied especially when X is a finite set or
a compact Hausdorff space, and H is a finite dimensional Hilbert space (see [12,24,37,60]). The
following abstract characterization of extreme points of Py (X) is again inspired by Arveson’s
corresponding result (see Theorem 1.2.22) on UCP maps. This must have been noted by several
researchers for the case of POVMs and so we just outline the proof.

Theorem 1.3.11 (Extreme point condition). Suppose that i € Py (X) has the minimal Naimark
triple (m,V,Hz). Then a necessary and sufficient criterion for u to be extreme in Py(X) is that
the map D — V*DV from w(O(X)) to B(H) is injective.

Proof. First assume that u is extreme in Py (X). Let V*DV = 0 for some D € 7 (O(X))".
Without loss of generality, we can assume that —Iy,, < D < Ip;_. Write yu = (u 4 p~)/2 where

() =V (I, & D)m()V.
Then as p is extreme in Py(X), we must have p = p*. Hence V*Dr(-)V = 0, which implies
D =0.
For the converse, assume the injectivity of the map D — V*DV and let u = (u1 + p2)/2

for pi,pu2 € Py(X). By Radon-Nikodym type theorem (Theorem 1.3.10), there are positive
contractions D; € 7 (O(X)), i = 1,2 such that

pi(+)/2 =V*Dim(-)V.

But as p; is normalized, we have V*(2D; — Iy, )V = 0 and hence the hypothesis implies 2D; =
Iy,. Thus we get p;(-) = V*n(-)V = p(-) for ¢ = 1,2, which proves that p is extreme in
Py (X). O

The following is an immediate corollary of this theorem. It can also be seen directly, as

projections are extremal in the set of positive contractions.

Corollary 1.3.12. Every spectral measure is extreme in P (X).

Atomic and non-atomic POVMs

One of the approaches that we take in this thesis for exploring C*-extreme POVMs is via the
decomposition of POVMs into atomic and non-atomic POVMs and analyzing them separately.
So we recall here the definitions and give some of their properties. These notions have been

widely studied in classical measure theory. See [43] for a very general exposition.

Definition 1.3.13. Let p: O(X) — B(H) be a POVM. A subset A € O(X) is called an atom
for p if u(A) # 0 and whenever B C A in O(X),

either pu(B) =0 or u(B) = u(A).

A POVM vy is called atomic if every A € O(X) with u(A) # 0 contains an atom. A POVM p
is called non-atomic if it has no atom.

19



Chapter 1. Preliminaries

Remark 1.3.14. If A is an atom for a POVM p then it is easy to verify that for any B € O(X)
with B C A, either u(B) =0 or AN B is an atom for .

The following proposition gives an equivalent condition for a POVM to be atomic.

Proposition 1.3.15. Let pn: O(X) — B(H) be a POVM. Then p is atomic if and only if there
is a countable collection {By}n>1 of mutually disjoint atoms such that u(A) = 32,1 u(AN By)
forall A € O(X).

Proof. Firstly assume that u(A) = 32,5, u(A N By), A € O(X), for a collection of mutually
disjoint atoms {By}n>1. Let A € O(X) be such that pu(A) # 0. Then u(AN By) # 0 for some
n. But then it follows from Remark 1.3.14 that A N B,, is an atom, which is contained in A.
Since A is arbitrary, this shows that p is atomic.

Conversely let u be atomic, and let {B;};cp be a maximal family of mutually disjoint atoms
of p, which exists due to Zorn’s Lemma. Clearly A is non-empty, as y is atomic. Also we have
wu(B;) # 0 for all i € A, so it follows from Proposition 1.3.19 (see below) that A is countable.
Now for any A € O(X), we note that

(AN (Uiea(AN By))) =0,

otherwise there is an atom, say A; C A\ (Ujea(A N B;)) for p, but then {B;};ep U{A1} is
a family of mutually disjoint atoms, violating the maximality of the collection {B;};cp. This
shows that
w(A) = p(Uiea(AN Bi)) = > u(AN By)
€A
for all A € O(X). O

It is a well-known fact that every finite (more generally o-finite) positive measure decomposes
uniquely as a sum of an atomic positive measure and a non-atomic positive measure. We have a
similar decomposition for POVMs as well. Even though the proof in [54] (which itself is inspired
from the classical case) is for POVMs on locally compact Hausdorff spaces, the same proof will
work for general measurable spaces (see the proof of Theorem 4.4.10 below). We state it here.

Theorem 1.3.16 (Theorem 3.10, [54]). Every POVM decomposes uniquely as a sum of an
atomic POVM and a non-atomic POVM.

We make an useful observation on atoms of POVMs which shall be frequently used.

Proposition 1.3.17. Let p : O(X) — B(H) be a POVM with the minimal Naimark triple
(m,V,Hy). Then a subset A € O(X) is an atom for p if and only if A is an atom for w. In

particular, p is atomic (non-atomic) if and only if w is atomic (non-atomic).

Proof. For any subset A € O(X) , A is an atom for p if and only if u(A) # 0 and for each
A" C A in O(X), we have either pu(A’) = 0 or u(A\ A’) = 0. Equivalently 7(A) # 0 and we
have either m(A") = 0 or m(A\ A’) = 0 from Proposition 1.3.7, which in turn is same as saying
that A is an atom for 7. The second assertion easily follows from the first. O
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Positive measures induced from POVMs

Let p: O(X) — B(H) be a POVM, and let S € B(H) be a strictly positive density operator i.e.
S is a positive trace class operator such that for any positive operator T', we have Tr(ST) = 0
if and only if T'= 0 (where Tr denotes the trace of an operator). Such S can always be found;
for example choose a countable orthonormal basis {e, }n,>1 of H (as H is separable), and define
S € B(H) by

Sh=>" 2%<en,h>en, for all h € H.

n>1

Now consider the positive measure pg : O(X) — [0, 00) defined by
ps(A) =Tr(u(A)S), forall Ae O(X). (1.3.3)

The way S has been chosen, we note that for any A € O(X), pus(A) = 0 if and only if pu(A4) =
0. The following proposition then follows easily from this observation, which compares the
properties of u and ug.

Proposition 1.3.18. Let u: O(X) — B(H) be a POVM, and let S € B(H) be a strictly positive
density operator. Then,

(i) for any A € O(X), p is concentrated on A if and only if ug is concentrated on A.
(ii) atoms of p and ps are same.
(iii) p is atomic (resp. non-atomic) if and only if pg is atomic (resp. non-atomic).

We make a useful observation regarding measures of mutually disjoint subsets, which would
be crucial.

Proposition 1.3.19 (Lemma 3.1, [21]). Let (X, O(X)) be a measurable space and H a separable
Hilbert space. If - O(X) — B(H) is a POVM and {B;}ica is a collection of mutually disjoint
measurable subsets such that u(B;) # 0 for each i € A, then A is countable.

Proof. Consider the positive measure pg : O(X) — [0,00) as in (1.3.3). Since ug(B;) # 0 for
all i € A by Proposition 1.3.18, and since > ;cp p15(B;) < ps(UieaBi) < 0o, we conclude that A

is countable. O

Regular POVMs on Topological Spaces

We now discuss POVMSs on topological spaces. Let X be a Hausdorff topological space, and let
O(X) denote the Borel o-algebra on X. In this case, an additional property of a POVM that
can be studied on X is that of regularity. Recall that a positive measure A is regular if it is
inner regular (or tight) with respect to compact subsets and outer regular with respect to open
subsets:
A(A) = sup{\(F) : E compact with £ C A}
= inf{\(G) : G open with A C G},

for every A € O(X).
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Definition 1.3.20. A POVM p : O(X) — B(H) on a topological space X is said to be regular
if pp p, as defined in equation (1.3.1), is a regular positive measure for each h € H.

Remark 1.3.21. The issue of regularity does not arise for complete separable metric spaces
(Theorem 3.2, [57]), as all Borel measures are automatically regular.

The following results discuss the preservation of regularity under various operations.

Proposition 1.3.22. Let p : O(X) — B(H) be a POVM with the minimal Naimark triple
(m,V,Hy). Then u is regular if and only if 7 is reqular.

Proof. 1f mis regular then, since pup, , = Ty p, vy, for each h € H, it is clear that y is regular. For the
converse, assume that p is regular. First note that, if & = 7(B)Vh for some B € O(X),h € H,
then for any A € O(X), we have

o (A) = (1(B)Vh, w(A)r(B)Vh) = (h, V*n(A)x(B)Vh) = pnn(AN B).

Since A +— pupp(A N B) is regular, it follows that mr(gyyp~(B)vh is regular. Consequently, m
is regular for all k € span{m(A)Vh: A€ O(X),h € H}. Now fix e > 0 and B € O(X). Then
for general k € H,, let {ko} be in span{n(A)Vh: A€ O(X),h € H} such that

Ik — koll < ve/2.

Since 7y, , is regular as shown above, there is a compact subset C' and an open subset O with
C C B C O such that

(ko, (O \ C)ko) < €/4.
Thus

(k, 7O\ C)k) = [[w(O\ C)k||* < 2||w(O\ C) ko[> + 2||w(O \ C)/* (ko — )|>
< 2(ko, m(O\ Cko) + 2||ko — k||* < 2 (/4 + €/4) = €.

Since € and B are arbitrary, we conclude that 7, is regular. O

Proposition 1.3.23. If u: O(X) — B(H) is a reqular POVM, then

(i) T*u(-)T is reqular for any T € B(K,H).
(ii) v is regular for any POVM v < p.

Proof. (i) Let v = T*u(-)T. Then for any k € K, we note that vy, = prw 7k, which is clearly
regular.

(ii) Since v < p, we have vy p < ppp for h € H. As pp is regular, it follows that vy, is
regular for all h € H; hence v is a regular POVM. O
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1.4 Correspondence between CP maps and POV Ms

Let X be a compact Hausdorff space and #H a Hilbert space. In this case, O(X) will denote the
Borel o-algebra of X. Let C(X) be the commutative C*-algebra of continuous functions on X.
We review the well-known correspondence between regular B(#)-valued POVMs on O(X) and
B(H)-valued CP maps on C(X). See Paulsen [61] and Hadwin [34] for discussions on this topic.
This correspondence in a way generalizes the classical Riesz-Markov theorem (Theorem I11.5.7,

[15]), which we state below.

Theorem 1.4.1 (Riesz-Markov representation theorem). Let X be a compact Hausdorff space.
Then a map ¢ : C(X) — C is linear and bounded if and only if there exists a unique regular
Borel complex measure j1y on X such that ¢(f) = [y fdue for all f € C(X), and ||¢]| = ||pel|-

Moreover, ¢ is a positive functional if and only if g is a positive measure.

We now describe the detailed procedure of the correspondence between CP maps on C'(X)
and regular POVMs on X (see Definition 1.3.20). Let u: O(X) — B(#H) be a regular POVM.
For any f € C(X), consider the map By : H x H — C defined by

Bf(h, k) = /X fd/Lth for all h, k € H,

where pu, j; denotes the complex measures as in (1.3.1). It is straightforward to check that By is a
sesquilinear form satisfying ||By| < || f||||#(X)]]; hence by Riesz Theorem (Theorem II1.2.2, [15]),
we obtain a unique bounded operator, call it ¢,(f) € B(H), satisfying By (h, k) = (h, ou(f)k).
Note that ¢, (f) > 0 in B(H), whenever f > 0 in C(X). Hence, the induced map ¢, : C(X) —
B(H) defines a CP map via the assignment

(h, du( k) = /X fdpng, forall f € C(X) and h,k € H. (1.4.1)

Conversely, let ¢ : C(X) — B(H) be a CP map. For each h, k € H, consider the bounded linear
functional on C(X) := f + (h,¢(f)k). Then by Theorem 1.4.1, we obtain a unique regular
Borel measure vy, , satisfying ||vy 1| < ||¢]l[|R]]| %] and

(h, (k) = /X fdvpye for all f € O(X).

Now for each bounded Borel measurable function g, consider the map: (h,k) — [y gdvp i from
H x H to C, which is sesquilinear as above and bounded by |[|¢]|||g]|. Hence again by Riesz
Theorem, we obtain a unique bounded operator é(g) € B(H) satisfying

(h, d(g)k) = / gdvpy, for all b,k € H. (1.4.2)
X

Note that ¢(g) > 0 in B(#H) whenever g > 0 in B(X). Here B(X) denotes the C*-algebra of all
bounded Borel measurable functions on X. In particular for A € O(X), if we set

ps(A) = ¢(xa), (1.4.3)
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where x4 € B(X) is the characteristic function of the subset A, then 114(A) is a positive operator
in B(H) and satisfies
vhi(A) = (h, up(A)k), forall h,k € H.

Note that for any countable collection { Ay, },>1 of disjoint measurable subsets, we have

<ha /’W’(U”ZlAn)k) = <h7 é(XUn21An)k> = Vh, k n>1A Z Vh, k Z<h7 M¢(A7l>k>

n>1 n>1

for all h, k € H. Because v}, is a regular Borel positive measure for h € H, it is immediate that
g defines a POVM which satisfies the equality pg(X) = ¢(1), where 1 denotes the constant
function 1 on X.

Notation. For a POVM p: O(X) — B(H), and any bounded Borel function f on X, we denote
by [y fdp the operator on B(H) satisfying

o ([ gam) ) = [ s (1.4.4)

for all h, k € H.

The following theorem summarises some basic properties of this correspondence (see Propo-
sition 4.5, [61]).

Theorem 1.4.2. Let X be a compact Hausdorff space, and let H be a Hilbert space. Then the
correspondence described above between POVMs on X and CP maps on C(X) taking values in
B(H), satisfies the following:

(i) du, = ¢ and pg, = pu.
(i6) $(1) = ().
(1it) p is a projection valued measure (resp. spectral measure) if and only if ¢,, is a x-homomorphism
(resp. representation,).

(iv) Purtps = Gpy + Guy and i, 46, = Pg, + Hgs -
(v) ¢repcyr = T*0u()T and pppyr = T ug(-)T for any T € B(K,H), where K is a Hilbert
space.

Proof. (i) This is just uniqueness of the correspondence.
(ii) This follows from the discussion above.

(iii) Assume that ¢, is a *-homomorphism. Then for all f,g € C(X) and h,k € H, we have

| Sadins = th.6,(F9)k) = (.6, £)o(0)k) = [ Fdin, 5

Since f € C(X) is arbitrary, it follows from uniqueness of regular Borel measures in Riesz-Markov
theorem that gdup . = dp, g, (g)k as complex measures. Equivalently for any A € O(X), we have

/Agdﬂh,k = Wh,,(g)k(A);
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that is
[ axadin = (. ()8, K) = (k.0 @K) = [ gty

Again, since g € C(X) is arbitrary, we conclude that x adpnr, = dpt(a)n,, as complex measures.
Equivalently for any B € O(X), we get

/X XANBAfn k= /X XAXBAfth g = fruaynk(B) = (u(A)h, p(B)k),

which further implies
(h, (AN BYR) = (b su(A)u(B)R).

Since h, k € ‘H are arbitrary, we conclude that
w(ANB) = p(A)u(B) for all A,B € O(X),

that is, p is a projection valued measure. The converse of the statement follows just by reversing
of the argument above.

(iv) This directly follows from the assignment in (1.4.1).
(v) Let T € B(K,H), and set v : O(X) — B(K) defined by v(A) = T*u(A)T for all
A € O(X). Clearly v is a POVM. Now for any h,k € K and B € O(X), we have

(h, v(B)k) = (h, T*u(B)Tk) = (Th, u(B)Tk),

which equivalently says vy, = prn, 7% Therefore for any f € C(X), we get

(6, (P = [ g = [ faurnian = Th6,(£)TR) = (b, T*6,(5)TE)
which proves that ¢, (-) = T*¢,(-)T. The other equality follows similarly. O

Remark 1.4.3. Note that for a compact Hausdorftf space X, if u is a regular POVM with a
Naimark dilation (m, V,H,) then (¢, V,Hr) is a Stinespring dilation for the corresponding CP
map ¢, (follows directly from part (v) of Theorem 1.4.2). Further, minimality conditions match:

[T(O(X)VH] = [ox(C(X))VH] (1.4.5)

and therefore, the Stinespring dilation ¢, = V*¢.(-)V is minimal if and only if the Naimark
dilation p = V*r(-)V is minimal.

Here we have some additional technical properties of this correspondence which are quite
useful for us.

Proposition 1.4.4. Let X be a compact Hausdorff space and p : O(X) — B(H) a regular
POVM. Then pu(O(X)) = ¢,(C(X)). Moreover, u(A) € WOT-¢,(C(X)) and ¢,.(f) € WOT-
span p(O(X)) for all A € O(X) and f € C(X) and in particular, WOT-¢,(C(X))=WOT-
spanp(O(X)).
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Proof. First assume T € pu(O(X))". Then pu(A)T = Tu(A) for all A € O(X) and hence
(T, j(AYK) = (b, TH(AYR) = (h, W AYTR),

for all h,k € H, which is equivalent to p7«pr = pp i as complex measures. Therefore for all
f e C(X), it follows that

b 60 = [ faurona = [ fdmna = b6, £)TH).
Since h, k € H are arbitrary, we conclude that

Tou(f) = ou(f)T forall f e C(X),

which implies T € ¢,(C(X))". Thus we have proved the inclusion p(O(X))" € ¢,(C(X))". The

other way of the inclusion is similarly proved just by reversing the implications above.

Now let (m,V,Hr) be the minimal Naimark triple for p. To show that u(A) € WOT-
¢u(C(X)) for A € O(X), firstly note that

m(O(X))" = ¢=(C(X))",

the double commutant of the respective sets in B(H ), which follows from first part of the proof.
Therefore, since 7(4) € 7(O(X)) and 7(O(X)) C 7(O(X))" = ¢.(C(X))", it follows from
Double commutant theorem (Theorem 1.1.14) for the *-algebra ¢,(C(X)), that there is a net
{fi} in C(X) such that

¢x(fi) > m(A) in WOT.

This implies
ou(fi) = V*or(fi)V — V*n(A)V = p(A) in WOT

and so we conclude that ;(A) € WOT-¢,(C(X)). Other assertions follow similarly. O

Spectral Theory

Finally in this section, we recall the Spectral theorem and Borel functional calculus of normal
operators on Hilbert spaces.

Theorem 1.4.5 (Spectral theorem). Let N be a normal operator on a Hilbert space H. Then
there is a spectral measure p on the Borel o-algebra O(o(N)) of the spectrum of N such that

N = zdpu.
o(N)

For any normal operator N on ‘H with spectral measure p, and any bounded Borel function
f on o(N), we define the operator f(IN) by

FIN) = /J oy T (1.4.6)

For any operator T', let W*(T') denote the smallest von Neumann algebra generated by T'. Note
that W*(N) is a commutative von Neumann algebra if N is a normal operator.
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Theorem 1.4.6 (Borel functional calculus). If N is a normal operator with spectral measure p,
and B(o(N)) is the C*-algebra of bounded Borel functions on o(N), then the map p: f — f(N)
from B(o(N)) to W*(N) is a representation, extending the continuous functional calculus from

C(o(N)).

Theorem 1.4.7 (Spectral mapping theorem). Let N be a normal operator with spectral measure
w. Then for any bounded Borel function f on o(N), the spectrum of f(N) is the essential range
of f with respect to u i.e.

o(f(N) ={reCiu({yeaN);|f(v) = Al <€}) #0 foralle>0}.

1.5 Nest algebras and factorization property

We digress from earlier discussion on *-algebras, and review the theory of certain non self-adjoint
subalgebras of B(H). We are mainly concerned about factorization property of non self-adjoint
algebras, particularly nest algebras. The study of non self-adjoint algebras goes back to Gohberg-
Krein [32], Kadison-Singer [46], Ringrose [69] and Arveson [4]. A thorough treatment to the
theory of nest algebras are given in the beautiful book by Davidson [17].

All algebras considered here will be norm closed subalgebras of B(H) containing the identity.
For any subalgebra M in a C*-algebra A, denote by M ™! the set

M=t ={A € A; Ais invertible with A, A™1 € M}.

Definition 1.5.1. Let M be a subalgebra of a C*-algebra A. Then M has factorization in
A if for any positive and invertible element D in A, there is an invertible element S such that
Se M tand D= S*S.

We shall consider this notion in a more general form in Chapter 6, where one will find a
number of interesting examples of such algebras. We now consider some equivalent properties
of algebras having factorization in von Neumann algebras. Compare the following result with
Proposition 6.1.3. Also see Lemma 1.2 in Larson [47].

Proposition 1.5.2. Let M be a closed subalgebra of a von Neumann algebra B. The following

are equivalent:

(i) M has factorization in B.
(ii) For every invertible T € B, there exists a unitary U € B such that UT € M~1.
(iii) For every invertible T € B, there exists a unitary U € B such that TU € M~1.
(iv) M* has factorization in B i.e. for each positive and invertible operator D € B, there exists
an invertible operator S such that S € M~ and D = SS*.
(v) For every positive and invertible operator D € B, there exist invertible operators S and T

such that S, T € M~" and D = ST*.

Proof. (i) = (ii). Let T" be an invertible operator in B. Then T*T is positive and invertible;
hence there exists an operator A € M~! such that T*T = A*A. By polar decomposition, there
is a unitary U € B such that A = UT. In particular, UT € M~
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(ii) = (iii) If T is an invertible operator, then there is a unitary V € B such that VT~! €
ML IfU=V* then TU = (VT )"t e M~L.

(iii) = (iv). Let D be a positive and invertible operator. Then there is a unitary U such
that DY2U € ML, If we set S = DY2U, then we have S € Mt and D = S5*.

(iv) = (v). This is obvious.

(v) = (i). Let D be a positive and invertible operator. Then D~! is positive and invertible,
hence we get S,T € M~! such that D~! = ST*. Since D is self adjoint, we have ST* = T'S*,
that is, 7*S* ™t = SIT. Set A = S~!T. Clearly then A € M~! and A is self adjoint. Also
SA = T which implies that SAS* = ST* = D~!. Thus we get A = S~!D~1(S71)* which
says that A is positive; hence we have A € M N M*. But M N M* is a C*-algebra (as M is
closed), which implies that A'/2 and A='/2 ¢ M N M* C M. Now if we set C = A~1/285-1,
then C € M~! and we get C*C = §*t4A-15-1 = D. O

We are mostly concerned with factorization property of nest algebras. To this end, we review
the theory of nests of subspaces and associated nest algebras. See [17,47,48,65,69] for many

interesting results.

Definition 1.5.3. A nest £ is a family of closed subspaces of a Hilbert space H, which is totally
ordered with respect to inclusion i.e. £ C For FF C E for any E,F' € £. A nest £ is called
complete if 0, H € £ and

\/ E and /\ E e &

Eeé&y Eeé&y

for any subfamily & of £.

If £ is a nest in H, then there is a maximal nest containing £. Note that a maximal nest

must be complete, so there exists at least one complete nest containing £.

Definition 1.5.4. The smallest complete nest containing a nest &£, denoted &, is called the

completion of £.

Lemma 1.5.5 (Lemma 2.2, [69]). Let € be a nest in H. Then the members of the completion
& are {0}, H and all subspaces of the form

NE VE

Ee&y Eecé&y

for some arbitrary subfamily & of £.

Definition 1.5.6. A nest algebra associated with a nest £ on H, denoted Alg £, is the subalgebra

of B(H) of all operators which leave subspaces of £ invariant i.e.
AlgE ={T € B(H);T(E)CFE forall E € £}

Remark 1.5.7. For any nest £, we note that Alg€ = Alg€&. Also a nest algebra is always
unital and WOT closed.

28



1.5. Nest algebras and factorization property

Example 1.5.8. Let H be a Hilbert space, and let {E, },,>1 be an increasing sequence of finite
dimensional subspaces whose union is dense in H. Then & = {{0},H, E,;n > 1} is a complete
nest.

If {en}n>1 is an orthonormal basis for H, and E, = span{e,;m < n}, then we note that
Alg € is the nest algebra of upper triangular matrices in B(H) with respect to the basis {ep }n>1.

Example 1.5.9. Let H = L*([0,1]) with Lebesgue measure. For each t € [0,1], let E; =
L?([0,t]) considered as a subspace of H. Then {E;;t € [0,1]} is a complete nest in H.

Example 1.5.10. Let {e,},cq be an orthonormal basis for a Hilbert space, where Q is the set
of rational numbers. For each g € Q, set

E, = span{ey;p < q}.

Then {E,},cq is a countable nest, which is not complete. In fact, its completion is given by the
uncountable nest {{0}, H, Eq, Fr;q € Q,r € R}, where F, = span{ep;p < r} for r € R.

Notation. For any nest £, we denote by £ the nest {E+; E € £}.

It is easy to verify that AlgEL = (Alg&)*. The following is immediate from Proposition
1.5.2.

Proposition 1.5.11 (Lemma 1.1, [17]). Let £ be a nest of subspaces of H, and let T be an
invertible operator in B(H). The following are equivalent:

(i) T*T = A*A for some A € (Alg&)~L.

(ii) There exists a unitary U € B(H) such that T(E) = U(E) for all E € £.
(iii) There exists a unitary U € B(H) such that UT € (Alg &)~ L.

Proposition 1.5.12. If £ is a nest in H, then AlgE has factorization in B(H) if and only if
Alg L has factorization in B(H).

The following theorem is a deep result due to Larson [47] which gives a complete charac-
terization of those nest algebras which have factorization in B(#H). We have cleverly used the
countability criteria of this result in the proof of Theorem 2.3.10, which is one of the main results
of this thesis.

Theorem 1.5.13 (Theorem 4.6, [17]). Let £ be a nest in a separable Hilbert space H. Then
Alg & has factorization in B(H) if and only if the completion € of the nest € is countable.

Let £ be a complete nest on a separable Hilbert space ‘H. For any E € £, define
E_=V{Fe& FCFE} and By =N{Feé&, ECF}.

Definition 1.5.14. Let £ be a complete nest on a Hilbert space H. An atom of £ is a subspace
of the form F & E_, for some E € £ with E # E_. The nest £ of H is called atomic if there is
a countable collection of atoms {H, },>1 of € such that H = @®p>1H,.
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Nest algebras belong to an important class of algebras called reflexive algebras. Let M be a
subalgebra of B(H) for some Hilbert space H. Then its lattice Lat M is defined by

Lat M = {E C H; E is a subspace such that T'(E) C E for all T' € M}.

Dually, for any collection £ of subspaces of H, consider the unital closed algebra Alg & defined
by
AlgE ={T € B(K); T(F) C E for all E € £}.

It is clear that M C AlgLat M. This inclusion may be strict (see Radjavi-Rosenthal [68] for
more details).

Definition 1.5.15. A subalgebra M is called refiexive if M = Alg Lat M.

Example 1.5.16. If £ is a collection of subspaces in a Hilbert space, then Alg& is a reflexive
algebra. This easily follows from the fact that Lat Alg £ is the smallest complete lattice, say F,
containing £. But then Alg F = Alg&. In particular, any nest algebra is reflexive.

Remark 1.5.17. We shall revisit most of the terminologies of this section in Chapter 6, albeit
in the language of projections rather than subspaces.

30



Chapter 2

C*-convexity Structure of Generalized
State Spaces

The set Sy(A) of all unital completely positive (UCP) maps from a unital C*-algebra A to
the algebra B(H) of bounded linear operators on a Hilbert space H is called generalized state
space, as UCP maps taking values in B(H) with H one dimensional are just usual states. The
study of convexity structure and extremal points of the set Sy(.A) and its subclasses is classical,
which began with the seminal paper by Arveson [5] and subsequently several studies followed
in [7,13,59,60,76]. The natural operator version of convexity of the set Sy (A) has equally
attracted fair amount of attention as well (see [18,23,28,29,31,33,49,51,80]), with particular
emphasis coming from C*-convexity theory.

Let us first consider an abstract context of occurrence of C*-convexity. Let Y be a non-
empty set, and let H be a Hilbert space. Consider the vector space Vi (Y) of all functions
from Y to B(H) (with pointwise addition and scalar multiplication). The space Vy(Y) has a
natural B(H)-bimodule structure via the action T1¢(-)T5 : y — T1¢(y)Ts, for any ¢ € Vy(Y)
and T1, T € B(H). A subset C of V4 (Y) is called a C*-convex set if

n
Y T T ecC
i=1
for any ¢; € C and T; € B(H) with >i* | T;*T; = I;. We then define an appropriate notion of
extreme point for a given C*-convex set, which we call C*-extreme point (see Definition 2.1.2).
Our main interest in this thesis lies in the following two settings: (1) Y is a unital C*-algebra
and C is the set of all UCP maps, (2) Y is a o-algebra of subsets of a set and C is the set of
normalized positive operator valued measures. The theme of this chapter and Chapter 3 follows
the first setting, while that of Chapter 4 and Chapter 5 follows the second. We shall see a strong

connection between the two scenarios in Chapter 5.

We now return to the case of the generalized state space Sy (A) and its C*-convexity struc-
ture. Taking cue from the ideas of Loebl-Paulsen [19], the notion of C*-extreme points of the
space Sy (A) was defined and studied by Farenick and Morenz [28]. We give a brief history
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Chapter 2. C*-convexity Structure of Generalized State Spaces

of some of the well-known results on C*-extreme points that exist in literature. Most of the
research so far have focused on the case when H is a finite dimensional Hilbert space i.e. the case
when H = C",n € N. In [28], one can see some general properties and a complete description
of C*-extreme points of Scn(A), n € N, whenever A is a commutative C*-algebra or a finite-
dimensional matrix algebra. All C*-extreme points of Scn(A) (for A an arbitrary C*-algebra)
are shown to be extreme in the usual sense. A Krein-Milman type theorem for C*-convexity of
the space Scn(A) equipped with bounded weak-topology is also established.

Following this, Farenick and Zhou [29] came up with an abstract characterization of C*-
extreme points via Stinespring decomposition, while assessing the structure of C*-extreme points
of Scn(A) for an arbitrary C*-algebra A. In particular, it is shown that all such maps are direct
sums of pure UCP maps satisfying some ‘nested’ properties. Further, Gregg [33] studied sufficient
conditions for UCP maps on a commutative C*-algebra C'(X) to be C*-extreme in Sy (C(X))
for H arbitrary dimensional, where the techniques of positive operator valued measures on X
are exploited. In Farenick et al. [24], one can also see the study of C*-extreme points of positive

operator valued measures and its application to UCP maps.

In this chapter, we present a systematic study of the structure of C*-extreme points of
Sy (A) for arbitrary C*-algebra A and infinite dimensional separable Hilbert space H. Firstly,
we begin with definitions and describe some abstract characterizations of C*-extreme points.
A connection between C*-extreme maps and factorization property of an associated algebra is
established (Corollary 2.2.9). We then discuss direct sums of pure UCP maps and their C*-
extremity conditions. The main result (Theorem 2.3.10) determines conditions for such maps
to be C*-extreme, which inevitably involves the notions of nests of subspaces. The theory of
factorization property of associated nest algebras are very crucial to the study of such maps.
One of the main applications of our results on direct sums of pure UCP maps can be seen in the
proof of Krein-Milman type theorem for C*-convexity of Sy (A) equipped with BW-topology,
whenever A is a separable C*-algebra (Theorem 2.4.3). Finally we see a number of examples of
C*-extreme maps and their applications.

2.1 Definitions and general properties

Throughout this thesis, A denotes a unital C*-algebra and H a complex and separable Hilbert
space. The generalized state space Sy (A) denotes the collection of all unital completely positive
(UCP) maps from A to the algebra B(#H). We begin by formally defining the C*-convexity
notions of the set Sy (A).

Definition 2.1.1. For ¢; € Sy(A) and T; € B(H) for 1 <i < n with >}' | T;*T; = I3, a sum
of the form

n

o) = T ¢i()T;

i=1

is called C*-convex combination for ¢. The operators T;’s are called C*-coefficients . When T;’s
are invertible, the sum is called proper C*-convex combination for ¢.
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Observe that the space Sy (A) is a C*-convex set in the sense that it is closed under C*-convex
combinations. Following Farenick-Morenz [28], we consider the following definition:

Definition 2.1.2. A UCP map ¢ : A — B(H) is called C*-extreme point of Sy (A) if whenever
6() =D _T"6:i()T:,
=1

is a proper C*-convex combination of ¢, then ¢; is unitarily equivalent to ¢ for each 7 i.e. there
is a unitary U; € B(#H) such that ¢;(-) = U;*¢(-)U;.

It is clear that every map unitarily equivalent to a C*-extreme point is also C*-extreme. The
aim of this thesis is to understand the behaviour of C*-extreme points of Sy(.A), upto unitary

equivalence.

Remark 2.1.3. We will also use the term ‘C*-extreme maps’ for C*-extreme points of the
generalized state space Sy (.A).

Below we list some of known examples of C*-extreme points of Sy (A).

Theorem 2.1.4 (Proposition 1.2, [28]). Let A be a unital C*-algebra, and H a Hilbert space.
Then a UCP map ¢ : A — B(H) is C*-extreme (as well as extreme) in Sy(A) in the following

cases:

(i) ¢ is a x-homomorphism.
(ii) ¢ is the inflation of a pure state. i.e. ¢(a) = P(a)ly, a € A, for some pure state
Yp: A—C.
(iii) ¢ is pure.
(iv) VH is invariant under w(A)’', where (m,V, Hr) is the minimal Stinespring triple for ¢.
Moreover, it follows from condition (ii) and the existence of pure states on A that Sy (A) always
has C*-extreme points.

Example 2.1.5 (Example 2, [28]). Let T be the unit circle in the complex plane, and let L?(T)
be the Hilbert space of square integrable functions on T with one-dimensional Lebesgue measure.
Let H? = H?(T) denote the Hardy space on T. i.e.

2m . .
H2={feL¥T); | f(e?)e ™ dh =0 for all n < 0},
0
Let C(T) be the space of continuous functions on T. Define the map ¢ : C(T) — B(H?) by
o(f) = PHsz|H2, for all f € C(T). (2.1.1)

Here My is the multiplication operator on L*(T) given by My (g) = fg for all g € L*(T). Then
¢ is a C*-extreme point in Sy2(C(T)) (also see Corollary 2.5.7 below).

Below and elsewhere, M,, denotes the algebra of all n x n complex matrices.
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Chapter 2. C*-convexity Structure of Generalized State Spaces

Example 2.1.6 (Example 1, [28]). Define ¢ : My & C — My by

1
¢ an xu] & 9633) ==
Tol T2 2

Then ¢ is a C*-extreme point in Sg2(Mz @ C).

T11 +T33 T11 — X33
T11 — X33 T11 + X33

Example 2.1.7 (Example 4, [28]). Let K () denote the space of all compact operators on a
Hilbert spaces H, and let £ be a unit vector. Consider the UCP map ¢ : K(H) + Clyy — M>

defined by
«a 0
)= [0 <5,X£>]

for X =T + aly € K(H) + CIy. Then ¢ is C*-extreme in Sce (K (H) + Cly).

Example 2.1.8 (Theorem 3.3, [28]). Let £ € C" be a unit vector. Then the UCP map ¢ :
M, — M, & C C M, defined by

(X)) =X (£ XE), XeM,
is a C*-extreme point in Sgn+1(M,,).

Example 2.1.9 (Example 1, [28]). The map ¢ : My — My defined by

0
o(X) = |H , for X =|"1 T e
0 x99 T21 T22

is an example of a UCP map, which is not a C*-extreme point in Sg2(M2).

We shall provide many more examples of C*-extreme maps in Section 2.5 and Section 3.3.
2.2 Abstract characterizations of C*-extreme maps

A key ingredient in our approach is a result by Farenick-Zhou [29], who taking cue from Arveson’s
Extreme point condition provided an abstract characterization of C*-extreme points of Sy;(.A)
via their minimal Stinespring decomposition. However their proof seems to have an incomplete
argument. Therefore we restate their result with minor modifications in our notation and give

an outline of the proof. Here R(T') denotes the range of an operator T'.

Theorem 2.2.1 (Theorem 3.1, [29]). Let ¢ : A — B(H) be a UCP map with the minimal
Stinespring triple (w,V,Hr). Then ¢ is C*-extreme in Sy (A) if and only if for any positive
operator D € n(A) with V*DV invertible, there exist a partial isometry U € w(A)" with R(U*) =

R(U*U) = R(DY/2) and an invertible Z € B(H) such that UDY?V =V Z.

Proof. = Let ¢ be C*-extreme in Sy(A), and let D € w(.A)" be positive with V*DV invertible.
Choose o > 0 small enough so that ||aD| < 1. Then ||aV*DV| < 1, which ensures that
Iy — aV* DYV is positive and invertible. Set

Ty = (aV*DV)z and Ty = (I, — aV*DV)/2.
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2.2. Abstract characterizations of C*-extreme maps

Then both 77 and 7% are invertible such that 7771 + 151> = V*V = Iy. Now we define
¢1, 92 A — B(H) by

b1(a) = Ty (aV*Dr(a)V)TT ! and ¢o(a) = Ty 'V*(Iy, — aD)w(a)VTy!
for all a € A. Clearly, ¢1 and ¢ are UCP maps such that
d(a) =T p1(a)Th + Ty pa(a)Ta, for all a € A.

Since ¢ is a C*-extreme point in Sy (A), there exists a unitary W € B(H) such that for all
a € A, we have ¢(a) = W*¢pq(a)W, that is,

d(a) = WY (aV*Dr(a)V)T7IW = (VaDY2VT W) n(a)(v/aDY2VT W) = X*n(a) X,
where X = /aDY2VT'W. Since T, W are onto and [r(A)VH] = H,, we note that

[(A)X (H)] = [x(A)DYV2VT W (H)] = [DV?*7(A)VH] = R(DY/2).

Thus if we set K = R(D1/2), then K is an invariant subspace for m(A). And if we think X
as an operator from H to K, then we note that (7r(')|,c, X, K) is another minimal Stinespring
triple for ¢; hence by uniqueness of minimal Stinespring triple, there exists a unitary operator
U:K— H.. such that

UX =V, and n(a)U = (,~77r(a)‘ for all a € A.

K

Extend U to Hx by assigning 0 on the complement of K, and call this map U. Then U is a
partial isometry (in fact, a co-isometry) with R(U*) = K. Also, we note that UX = V and

7(a)U = Un(a) for all a € A, so U € n(A). Further, we set Z = ﬁW*Tl € B(H), then Z is

invertible and satisfies
VZ=UXZ=UyaD"?VT]'Wy/a 'W*Ty = UD'/?V.

<= Assume the ‘only if’ condition, and let ¢(-) = >i; T;*¢i(-)T; be a proper C*-convex com-
bination of ¢. Then for each 4, we have T;"¢;(-)T; < ¢(-), so by Radon-Nikodym type theorem
(Theorem 1.2.19) there exists D; € m(A) with 0 < D; < I, such that

T:;*¢i(a)T; = V*Dym(a)V, for all a € A.

Note that V*D;V = T;*T;, so V*D;V is invertible; hence by our hypothesis, there exist a
partial isometry U; € 7(A)" with R(U;*U;) = R(D;*/?) and an invertible Z; € B(#) such that
U;D;'?V =V Z;. Note that U;*U; D;'/? = D;'/?; hence for all a € A, we have
Ti* ¢i(a)T; = V*Dim(a)V = V* DY ?x(a) D2V = V* D 21 (a)U;* U DV
= V*D2U r(a)U; D2V = (U:DM*V ) e (a) (U D2V
which in other words says ¢;(a) = fl’i*_lZZ—*qS(a)Zﬂ’fl = W;*n(a)W;, where W; = Z;T;~*. Note
that W;*W,; = ¢;(1) = I, and since Wj is invertible, it follows that W; is unitary. Thus ¢; is
unitarily equivalent to ¢ for each i, which concludes that ¢ is a C*-extreme point in Sy (A). O

35
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Remark 2.2.2. In the statement of Theorem 2.2.1, U is a partial isometry. At this point, it is
not clear whether U can be chosen to be unitary as claimed in [29]. Of course this is automatic
if H, is finite dimensional.

Remark 2.2.3. We again emphasize here that although we consider mainly UCP maps, state-
ments and proofs of some theorems may include CP maps which are not unital. In such situa-
tions, the readers should pay proper attention to the use of the terms ‘UCP’ and ‘CP".

The following corollary is a characterization of C*-extreme points provided by Zhou [80].
The proof follows directly from Theorem 2.2.1 and Radon-Nikodym type theorem (Theorem
1.2.19). However, the statement as written in [80] has a minor error (see Example 2.2.5 below),

so we reproduce the proof here.

Corollary 2.2.4 (Theorem 3.1.5, [80]). Let ¢ € Sy(A). Then ¢ is C*-extreme in Sy (A) if
and only if for any CP map 1 satisfying ¥ < ¢ with (1) invertible, there exists an invertible
operator S € B(H) such that ¥(a) = S*¢(a)S for all a € A.

Proof. First assume that ¢ is a C*-extreme point in Sy (A). Let ¢ : A — B(H) be a CP map
such that ¥ < ¢ and (1) is invertible. Let (m,V, H ) be the minimal Stinespring triple for ¢. By
/

Radon-Nikodym type theorem (Theorem 1.2.19), there exists a positive contraction D € 7(.A)
such that

Y(a) =V*Dn(a)V, for all a € A.

Since V*DV = (1) and (1) is invertible, it follows that V*DV is invertible. Therefore, by
Theorem 2.2.1 there exist a partial isometry U € w(A)’ satisfying U*UD'? = D2 and an
invertible operator S € B(H) such that UD'Y2V =V S. So for any a € A, we get

¢(a) = V*Dr(a)V = V*DY2x(a) D2V = V*DY2x(a)U*UDY?V
= (UDY?V) n(a) (UDY?V) = (VS)*(a)(V'S) = §"¢(a)S.

Conversely, assume the given statement in the ‘only if’ part is true. Let ¢ = >"1"; T;*¢i(-)T; be
a proper C*-convex combination. Then T;*¢;(-)T; < ¢ for each i. Also, since T;*¢;(1)T; = T;*T;
and T; is invertible, it follows that T;*¢;(1)T; is invertible. Hence using hypothesis, there exists
an invertible operator S; € B(H) such that for all a € A, we have T;*¢;(a)T; = S;*¢(a)S;, which
when put differently yields

¢i(a) = Ui"p(a)Us,

where U; = S;T; L. But, since U;*U; = U;*¢(1)U; = ¢;(1) = Iy and U; is invertible, it follows
that U; is a unitary. This shows that ¢; is unitarily equivalent to ¢, as was required. O

We wish to mention that the condition of (1) being invertible in Corollary 2.2.4 cannot
be dropped. The original statement (Theorem 3.1.5, [80]) is somewhat ambiguous about the
invertibility requirement in the characterization. But it is crucial as the following example shows.
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Example 2.2.5. Consider the C*-extreme map ¢ : C(T) — B(H?) as in Example 2.1.5:
(;5(f) = PHsz|H2 = Tf, for all f € C(T)

Let g,h : T — [0, 1] be two real-valued non-zero continuous functions such that g(z)h(z) = 0 for
all z € T (such functions can always be obtained). Note that the sets of zeros of both g and h
have positive Lebesgue measure. Consider the map 1 : C(T) — B(H?) defined by

@D(f) = Pszwgf‘H2 =lgf, for all f (S C(T)

It is clear that ¢ is a CP map and ¢ < ¢ (since 0 < g < 1). Also 9(1) = T, is not invertible (as
zero-set of g has positive measure). We claim that there is no operator S € B(H?) such that
¥(-) = 5"¢()S.

Suppose this is not the case and S is one such operator such that i(-) = S*¢(-)S. Then
S*S = (1) = T,. Since T, = Ty and Ty = T}, and g, h are non-zero, it follows from a fact
due to Coburn that T, and T}, are one-one operators (see Proposition 7.24, [22]). Hence S*S
is one-one, which further implies that S is one-one. In particular, T3S is one-one. But on the
other hand, since gh = 0, we have

(1:728)" (13/28) = $*TuS = §*6(h)S = () = Ty, =0,

which implies
T/%8 =0,

and hence TS = 0, contradicting the fact that 75,5 is one-one.

We now give another abstract characterization of C*-extreme points, whose proof follows
from a direct application of Theorem 2.2.1 and polar decomposition of operators. This powerful
characterization turns out to be the most useful for our purpose.

Corollary 2.2.6. Let ¢ : A — B(H) be a UCP map with minimal Stinespring triple (w,V, Hr).
Then ¢ is C*-extreme in Sy (A) if and only if for any positive operator D € w(A)" with V*DV
invertible, there exists S € w(A)" such that D = S*S, SVV* = VV*SVV* and V*SV is
invertible (i.e. S(VH) C VH and S),,,, is invertible).

Proof. = We use the equivalent conditions for C*-extreme points as in Theorem 2.2.1. Assume
first that ¢ is a C*-extreme point in Sy(A). Let D € w(A) be a positive operator such
that V*DV is invertible. By Theorem 2.2.1, there exist a partial isometry U € 7w(A) with
U*UD'Y? = D'/2 and an invertible Z € B(H) such that UD'Y/?V =V Z. Set S = UD'/2. Then

S*S = DY2U*UDY? = D and V*SV = V*UDY?V =V'VZ = Z.
Thus V*SV is invertible, and we get
SVV* =UDY?VV* = (VZ)V* = VV*(VZ)V* = VVH(UDY2V)V* = VI*SV V™,
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<= Assume the ‘only if’ conditions. To show that ¢ is C*-extreme in Sy (A), let D € 7(A)’
be positive with V*DV invertible. By hypothesis, there exists S € 7(A)" such that D = S*S,
SVV* = VV*SVV* and V*SV is invertible. Let S = UD/2 be the polar decomposition of S,

where U is a partial isometry with initial space R(D/2) i.e. R(U*) = R(D/2). Since S € 7(A)’,
and 7(A)’ is a von Neumann algebra, it follows that U € 7(A)’. Further, we have

UDY2V = SV = (SVV*)V = (VV*SVV*V = VV*SV =V Z,

where Z = V*SV € B(H), which is invertible. That ¢ is C*-extreme in Sy (A) now follows from
the equivalent criteria of Theorem 2.2.1. This completes the proof. O

In the corollary above, we cannot drop the assumption that V*DV is invertible as the

following example shows.
Example 2.2.7. Consider the C*-extreme map ¢ : C(T) — B(H?) as in Example 2.1.5 by
¢(f) = PH?MﬂH? = Tf, for all f € C(T) (2.2.1)

Note that ¢ is already in minimal Stinespring form with the representation 7 : C(T) — B(L?(T))
given by m(f) = M. Then it is well-known that m(C(T))’ = {My; f € L>=(T)} C B(L*(T))
(Theorem 52.8, [16]). Now let d € L*(T) be such that d > 0 a.e. and the subset {z € T;d(x) =
0} has positive one-dimensional Lebesgue measure. It is then clear that My is not invertible
which is equivalent to saying that Ppe Md|H2 is not invertible. Now let if possible, there exists
s € L>(T) such that d = ss and Ms(H?) C H2. This implies that s € H°°(T). But then the
zero set of any function in A% (in particular, s) has zero measure (Theorem 25.3, [16]). This
contradicts the assumption that zero set of the function d has positive measure.

Observation 1. Let ¢ be a C*-extreme point in Sy (A) with minimal Stinespring triple (7, V, H).
Then for any positive D € 7(A)" with V*DV invertible, we observe the following from the proof
of Theorem 2.2.1:

(i) There is a co-isometry U with R(U*) = R(D'/2) and invertible Z such that UDY?V =V Z.
In particular if D is one-one (equivalently, D has dense range), then U is unitary.
(ii) If S = UD?, then S* is one-one.
(iii) Also V*SV is invertible such that [[(V*SV)~Y|2 = |[(V*DV)7!|.

The next result provides a bridge between the theory of C*-extreme maps and factorization
property of associated algebras. For the reader’s convenience, we restate below the definition of
factorization of subalgebras in C*-algebras (Definition 1.5.1). See Section 1.5 for more details
on such algebras.

Definition 2.2.8. A subalgebra M of a C*-algebra A has factorization in A if for any positive
and invertible element D € A, there is an invertible element S such that S,5~! € M and
D = §5*S.

The following corollary turns out to be very crucial in our subsequent results on pure UCP
maps and determining nature of C*-extremity of UCP maps in general.
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Corollary 2.2.9. Let ¢ be a C*-extreme point in Sy(A), and let (mw,V,Hr) be its minimal
Stinespring triple. If D is any positive and invertible operator in w(A)', then there exists an
invertible operator S € w(A) such that D = S*S, SVV* = VV*SVV*, and V*SV is invertible
with inverse V*S~V . In particular, the algebra

M={T e n(A);TVV* =VV*TVV*} (2.2.2)
has factorization in w(A)'.

Proof. Let D be a positive and invertible operator in w(.A)’". Clearly V*DV is invertible; hence

by Theorem 2.2.1 and Observation 1, we get a co-isometry U € 7(A)’ with initial space R(D/2)
and an invertible Z € B(#) such that UDY?V = VZ. Note that R(DY2) = H, as D is
invertible; so U is unitary. Set S = UD/2. Then S € n(A)" and S is invertible. Also D = §*S

and SVV* = VV*SVV* with V*SV invertible. Note that
(V*STIV)(V*SV) = V*STHVV*SVVHV = VFSTHSVVH)V = VH(STISV = Iy,
and since V*SV is invertible, it follows that (V*SV)~! = V*S~1V. Further

(I, — VV)STW|(V*SV) = (I, — VVH)STHVV*SVVHV = (I, — VVHSHSVVHV
= (I, —VV)(SSTIWVV*V) = (I, —VVHVV*V = 0.

Since V*SV is invertible, it follows that (I3, —VV*)S™1V = 0; hence S~1VV* = VV*S- 1V V*,
In particular, S, S~! € M, so we conclude that M has factorization in 7(A)". O

With these abstract characterizations of C*-extreme maps in our hand, we are now ready
to explore some concrete structure of C*-extreme maps. We end this section by an immediate
application of this.

We consider the question of when a C*-extreme point is also extreme, and vice versa. If H
is a finite dimensional Hilbert space, then it was shown in [28] that every C*-extreme point of
Sy (A) is extreme as well. Whether this is true for infinite dimensional Hilbert spaces is not
known. Conversely, there are examples where an extreme point in Sy(A) is not C*-extreme
(see pg. 1470 in [29]). We discuss some sufficient criteria under which condition of C*-extremity

automatically implies extremity. Also see Corollary 2.3.18 below.

Proposition 2.2.10. Let ¢ € Sy(A) with minimal Stinespring triple (w,V, H,) such that 7 is
multiplicity-free (i.e. w(A)" is commutative). If ¢ is C*-extreme in Sy (A), then ¢ is extreme in

Sy (A).

Proof. To show ¢ is extreme in Sy(A), we use Arveson’s extreme point condition (Theorem
1.2.22). Let D be a self-adjoint operator in 7(A)" such that V*DV = 0. By multiplying by
small enough scalar, we assume without loss of generality that —%IHﬁ < DKL %IHW- Then
D + I is positive and invertible. By Corollary 2.2.9, there exists an invertible S € w(A)’
satisfying SVV* = VV*SVV* with V*SV invertible such that D + Iy, = S*S. Thus we have

(VESV)*(V*SV) = V*S*(VV*SVV*)V = V*S*(SVV*)V = V*S*SV = V*DV + V*V = I,
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Chapter 2. C*-convexity Structure of Generalized State Spaces

and since V*SV is invertible, it follows that V*SV is unitary, that is, V*SVV*S*V = Iy.
Further as w(A)’ is commutative by hypothesis, we have SS* = S*S = D+1y_; hence V*SS*V =
V*(D + Iy, )V = Ij;. Therefore we get

V*SIp, —VVI)V*SUp, —VV)  =V*S(Iy, —VVHS*V =V*SS*V - V*SVV*S*V = 0.
This implies V*S (I3, — VV*) = 0, which further yields
VV*S =VV*SVV* = SVV™.

In other words, S commutes with V'V* which also implies that S* commutes with V'V*; hence D
commutes with VV*. Therefore, we have DV = DVV*V = VV*DV = 0. But then Dn(A)V =
7(A)DV = 0 and since 7(A)VH is dense in H,, we conclude that D = 0. Since D is arbitrary,
this proves that ¢ is extreme in Sy;(A). O

2.3 Direct sums of pure UCP maps

The question of whether the direct sum of two C*-extreme points is also C*-extreme is very
natural. For the case when the Hilbert space is finite dimensional, a necessary and sufficient
criterion for the validity of the assertion is known due to Farenick-Zhou [29]. In fact if A is a
unital C*-algebra and n € N, then every C*-extreme point in Sgn(A) is a direct sum of pure
UCP maps (Theorem 2.1, [28]), so in this case the question reduces to finding conditions under
which direct sums of pure UCP maps are C*-extreme (which was exploited in [29]). Before we
talk about a similar result in infinite dimensional Hilbert space setting, we first formally define
the notion of direct sums of UCP maps.

Remark 2.3.1. In the rest of the thesis, A will usually be a countable indexing set for a family

of maps or subspaces.

Definition 2.3.2. For any family {¢; : A — B(H;)}ien of UCP maps, their direct sum @®;cp i
is the UCP map from A to B(®;cpH;) defined by (Bicpdi)(a) = Biepdi(a) for all a € A.

The following remark records the minimal Stinespring triple for a direct sum of UCP maps,
which is easy to verify.

Remark 2.3.3. Let ¢; : A — B(H;), i € A, be a collection of UCP maps with respective
minimal Stinespring triple (m;, Vi, K;). Then the minimal Stinespring triple for @;cx¢; is given
by (m,V,K), where K = ©;eai, V = @iepV; and m = @jepm;.

We now state the aforementioned result from [29] in the language of nests of subspaces (see
Definition 1.5.3), which provides a characterization of C*-extreme points in Scn(A) in terms of
direct sums of pure UCP maps. See Section 1.5 for more details on nests.

Theorem 2.3.4 (Theorem 2.1, [29]). Let A be a unital C*-algebra, and ¢ € Scn(A) for n € N.
Then ¢ is C*-extreme in Scn(A) if and only if there exists finitely many pairwise non unitarily
equivalent irreducible representations mi,ma, ..., 7, and pure UCP maps gﬁji of the form ¢ji =
V/m()Vj’ for1<j<mn;1<i<k such that
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2.3. Direct sums of pure UCP maps

(1) {R(V;");1 < j < n;} forms a nest of subspaces for each i, and
(i3) ¢ is unitarily equivalent to the UCP map ®F_, @?;1 qui.

When the Hilbert space H is infinite dimensional, it is no longer the case that a C*-extreme
point of Sy (A) is a direct sum of pure UCP maps (see Example 2.1.5). Nevertheless, finding
criteria for a direct sum of pure UCP maps to be C*-extreme is interesting in its own right.
In this section, we provide a complete characterization for such maps to be C*-extreme. To
this end, we consider some general properties of C*-extremity under direct sums. Firstly, we
emphasize the following:

Remark 2.3.5. For a family of Hilbert spaces {#;};ca, an operator 1" in B(@®;cpH;) can also be
expressed in the matrix form [T};], where the entries T;; € B(H;, H;) is given by Tij = Py, T),,

J
for i, € A. Here Py, denotes the projection from @;cpH; onto the subspace H;.

We start with the following simple lemma about commutant of direct sum of disjoint repre-
sentations. We refer the readers to Section 1.2 for the notions and their properties.

Lemma 2.3.6. Let m; : A — B(K;), i € A, be a collection of mutually disjoint representations.
If m = @ienm;, then w(A) = {@ieaT; Ti € m(A)'}.

Proof. Let S € m(A) C B(®;eaK;). Then S = [S;;] for some S;; € B(K;,K;), such that for all
a € A, we have [S;;](@ieami(a)) = (Bieami(a))[Si;], that is [Si;mj(a)] = [mi(a))S;;]; hence

Sijﬂ'j(a) = m(a)SZ-j for all Z,j
For i # j, since m; is disjoint to 7}, it follows (see Proposition 1.2.15) that S;; = 0. Also for each

i, Siimi(a) = m;(a)Sy for a € A, implies that S;; € m;(A). Thus S = ;e Sii, where S;; € m;(A)'.
This shows that m(A) C {®;eaTi; T; € mi(A)'}. The other inclusion is obvious. O

Inspired from the notion of disjointness of representations (Definition 1.2.14), we define the
same for CP maps as follows:

Definition 2.3.7. For any two UCP maps ¢; : A — B(H;), i = 1,2 with respective minimal

Stinespring triple (m;, Vi, Hr, ), we say ¢1 is disjoint to ¢2 if 1 and my are disjoint representations.

The major results of this thesis deal with finding conditions under which direct sums of
mutually disjoint UCP maps (especially, pure maps) are C*-extreme. The next proposition is
the first step in this direction.

Proposition 2.3.8. Let {¢; : A — B(H;)}iea be a collection of mutually disjoint UCP maps.
Then ¢ = @icp¢; is C*-extreme (resp. extreme) in Sg,_,3,(A) if and only if each ¢; is C*-
extreme (resp. extreme) in Sy, (A).

Proof. Let (m;, Vi, KC;) be the minimal Stinespring triple for ¢;,i € A. Then as noted in Remark
2.3.3, (m, K, V) is the minimal Stinespring triple for ¢, where K = @;cAi, 7 = @;eami, and
V = ®;eaV;. Since 7; is disjoint to m; for ¢ # j, it follows from Lemma 2.3.6 that

T(A) = {@ieaTi; Ti € mi(A)'} C B(@ienks). (2.3.1)
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To prove the equivalent criteria for C*-extremity, we shall use Corollary 2.2.6. Assume first that
each ¢; is C*-extreme in Sy, (A). Let D € m(.A)’ be positive such that V*DV is invertible. Then
it follows from (2.3.1) that D = @;cp D; for some D; € m;(A)’, and hence V*DV = @;cAV;* D, V.
Clearly each Dj is positive such that V;*D;V; is invertible satisfying sup,c, [|(Vi*D:iVi) 7| =
|(V*DV)~!|. Since each ¢; is C*-extreme, there exists an operator S; € m;(A)" such that
D; = §;*S;, S;V;Vi* = V;V;*S;V;V;* and V;*S;V; is invertible. Set S = @;caS5;. It is then
immediate that S € 7(A), D = §*S and SVV* = VV*SVV*. Also from Observation 1, it
follows that

sup [|(Vi*S;Vi) 1 |* = sup [|(V;DiVi) || = [[(V*DV) | < o0,
1EA iEA

which implies that V*SV = @;cAV;*S;V; is invertible. Since D is arbitrary, it follows that
Bica®i is C*-extreme.

Conversely, let @;cp¢; be C*-extreme. Fix j € A, and let D; € m;(A)’ be a positive operator
such that V;*D;V; is invertible. For i # j, let D; = Ixc, and set

D = ®iepD;.

It is clear that D € (. A)’". Also D is positive and V*DV is invertible, as each V;* D;V; is invertible

whose inverse is uniformly bounded. Since @;cp¢; is C*-extreme, there is an operator S € w(A)’

such that D = S*S, SVV* = VV*SVV* and V*SV is invertible. Again from (2.3.1), we have
S = @®;ecpS; for some S; € m;(A). Then the expressions D = S*S and SVV* = VV*SVV*
imply respectively that

Dj = 5;57S; and S;V;Vi™ = V;V375;V;V5™.

Also invertibility of V*SV implies that V;*S;V} is invertible. Since D; is arbitrary, we conclude
that ¢; is C*-extreme in Sy, (A). The case of equivalence of extreme points can be proved in a
similar fashion using Arveson’s extreme point criterion (Theorem 1.2.22). O

We are now ready to prove the main result of this section regarding direct sums of pure UCP
maps. For doing so, we observe the following property about compression of pure UCP maps
(see Definition 1.2.9).

Remark 2.3.9. If ¢ is a pure UCP map with the minimal Stinespring triple (m, V,H,), and
1 = W*p(-)W is a compression of ¢ for some isometry W, then (w, VW, H,) is the minimal
Stinespring triple for 1, and so v is pure. This follows from the fact that m(A)" = C- I3_, so
that w(A)"” = B(Hx), which further yields

(T(A)VWH] = [r(A)'VIWH] = [B(H:)VIWH] = H.

Moreover, if (m,V;, Hr) is the minimal Stinespring triple of UCP map ¢;, i = 1,2 (i.e. both
¢1, 2 are compression of the same representation ), then one can easily show that ¢y is a
compression of ¢; if and only if VoV5" < V1V ie. R(V2) C R(V1).
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2.3. Direct sums of pure UCP maps

Note that if ¢,1 : A — B(H) are two pure UCP maps, then either ¢ and ¢ are mutually
disjoint or they are compression of the same irreducible representation. Therefore in view of
Proposition 2.3.8, in order to give criteria for C*-extremity of direct sums of pure UCP maps, it
suffices to consider direct sum of only those pure UCP maps which are compression of the same
irreducible representation (i.e. those pure maps which are not mutually disjoint), as done in the

next theorem.

In order to prove the following theorem, we invoke a deep result of Larson [47] about factor-
ization property of nest algebras associated with countable complete nests (see Theorem 1.5.13).
We refer the readers to Section 1.5 for more details on these notions. Larson’s result is one of
the most fundamental results in the theory of nest algebras and triangular forms of operators.
It has had huge impact on the later study of the subject and related fields. We have used the
countability criteria of the ‘completion of nests’ (see Definition 1.5.4) several times in this thesis
in our analysis of C*-extreme points (see Section 3.3 for some examples based on this idea).
The countability criterion plays a central role in the proof of the following theorem, mainly in
dealing with Condition (ii). This condition is inevitable in infinite-dimensional case, and reveals
a stark contrast to the finite-dimensional situation.

Theorem 2.3.10. Let 1; : A — B(H;), i € A, be a countable family of non-unitarily equivalent
pure UCP maps with respective minimal Stinespring triple (7, Vi, Hz), where 7 is a fized repre-
sentation of A, and let ¢; = 1;(-) ® I, for some Hilbert space IC;. Set H = @;cp(Hi @ K;), and
¢ = Diepnti € Sy(A). Then ¢ is C*-extreme in Sy (A) if and only if the following holds:

(i) the family {R(V;)}ica of subspaces forms a nest in Hr, which induces an order on A and
(i) if Li = ®j<ilCj fori € A, then completion of the nest {L;}icn in ®ieak; is countable.

Proof. We know that each 1); is unitarily equivalent to the UCP map a + PR(VZ.)W(CL)WV_), ae A
(see Remark 1.2.12). So the fact from the hypothesis that 1; and 1); are not unitarily equivalent
for i # j then implies that R(V;) # R(V}), that is,

ViVi* # V;V;*, for all i # j. (2.3.2)
Now set H, = ®;ep(Hr ® K;), and consider the representation p : A — B(H,) defined by
pla) = Bien(m(a) @ Ix,) forall a € A,
and the isometry V' € B(#H,H,) given by
V= @iea(Vi ® Ix,)-

It is clear that (p,V,H,) is the minimal Stinespring triple for ¢. We identify the Hilbert space
Hp = Bier(Hr ® K;) with the Hilbert space Hy ® (®;eaK;); so the representation p is given by

pla) =m(a) ® (Bicalk,) = 7(a) @ g, k;-

Since 7 is irreducible, m(A)" = C - I3_; hence if we consider the operators on the Hilbert space
K = ®;eAK; in matrix form, then p(A) is given by

p(A) = (m(A) @ Ix) = In, ® B(K) = {I, ® [Ti;]; Tij € B(K;,Ki)} € B(Hr ® (®icnKs)).
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— Assume now that @;cp¢; is a C*-extreme point in Sy (A). First we show that {R(V;)}iea
is a nest in H,. Consider the subalgebra M of B(®;cAK;) given by

M = {[Ti;] € B(®ieaKi); (I, @ [T))VV* = VV*(Iy, @ [T))VV™}

(2.3.3)
={[T3j] € B(®ieaKs); V;Vi* @ Tiy = ViVi'V;Vi* @ Ty V i, j € A}

Since @;ep @i is C*-extreme, it follows from Corollary 2.2.9 that Iy, ® M has factorization in
p(A) = I, @ B(K), which is to say that M has factorization in B(K).

Note that if there is an operator [T;;] € M such that T},,, # 0 for some m,n € A, then since
ViV @ Tonn = Vil VEVR VY @ Ty, it will follow that V, V¥ =V, V>V, V* which further implies
ViV >V, V¥, In other words, we have the following:

If Vi,V # ViV, for some m,n € A, then T, = 0 for all [T};] € M. (2.3.4)

For the remainder of this implication, we fix m,n € A with m # n. We shall prove that
ViV > Vo, Viior Vi,V > V,, Vi . Assume to the contrary that this is not the case. Then it
follow from (2.3.4) that

Ton = 0 and T}y, = 0, for all [T}5] € M. (2.3.5)

If A is a two point set, that is, A = {m,n}, then £ = K,, & K, and with respect to this
decomposition, (2.3.5) implies that each element 7" in M has the form

1 0
0 Ty

] , for T € B(K:m) and Ty € B(K:n)

1 D
But if we choose a positive and invertible operator D in B(K) of the form [g’: I 1] with
1 Kn
D, € B(K,,, K,,) non-zero, then we cannot find any operator 7" in M such that D = T*T. This

will contradict the fact that M has factorization in B(K).

Therefore we assume for the rest of the implication that A # {m,n}. Now consider the sets
A ={le A\ {m,n}; T}, =0 and T}, =0 for all [T};] € M}, (2.3.6)

and

Aoy = A\ (Al U {m,n})

Note that
ANAs=0 and AqUAU{m,n} =A.

Consider the following decomposition:
K =@ieaki = Kin © Ky & (Bien, Ki) ® (Bien,Ki) = Q1 ® Qo Q3 & Qu, (2.3.7)

where

Q1 =Kn, Q2=K,, Q3 =®Djen, Ki, and Q4 = Diep, K.
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2.3. Direct sums of pure UCP maps

We shall show that Q3 # {0} and Q4 # {0} (that is, A; and Ay are non-empty), and that with
respect to decomposition in (2.3.7), each T in M has the following form:

T, 0 A 0
0 T, Ay 0

T = > 2 , (2.3.8)
0 0 X1 Xo

By By X3 X4

for appropriate operators 11,75, .. etc. For that, we first claim the following: If for some [ # m,n,
there exists an operator [S;;] € M such that S, # 0 or Sy, # 0, then

To=0andT,;, =0, V [TZ]] e M. (239)

To prove the claim in (2.3.9), assume that S, # 0, and let [Tj;] be an arbitrary operator in
M. Then it follows from (2.3.4) that V;V,* > V,,,V,*. Since V}V}* # V,, V% from (2.3.2), it follows
that V,,,V,: % V,V*; again from (2.3.4), we get T,,; = 0. Further, we note that V,,V* % V,V/*
(otherwise we would have V,,V,* > V}V* > V,,,V* | and so V,,V,* > V,,V;; which is against our
assumption). This in turn implies by (2.3.4) that T,; = 0. Similarly or by symmetry, the
condition Sy, # 0 will imply the required claim in (2.3.9).

We now show that Aj is a non-empty set. Assume otherwise that A; = (). Then for each
l € A\ {m,n}, we have [ ¢ Ay, so there exists [S;;] € M such that either S, # 0 or Sj,, # 0. In
either case, (2.3.9) implies that for all T' = [T};] € M, we have T,,,; = 0 and T,,; = 0; hence the
(m,n) entry of the matrix T7T™ satisfies

> TouTy = Toum T + T Ty + > TouTyy =0,

leA I#£mn
as T = 0 and 7)), = 0 from (2.3.5), where the sum is in WOT. Thus for any positive and
invertible D = [D;;] € B(K) with Dy, # 0, we cannot find 7' € M such that D = TT*. We can
always get such positive and invertible operator D (see the operator in (2.3.11) below). This
violates the fact that M* and hence M has factorization in B(K). Thus our claim that A; # ()
is true.

We next show that As is non-empty. Let if possible, Ao = (). Then for each | € A with

[ # m,n, it follows that [ € Ay; hence for all T' = [T};] € M, we have T}, = 0 and T}, = 0, so
that (m,n) entry of T*T satisfies

> T Tin =0,
leA

as Tyyn = 0 and 7T, = 0. Again for a positive and invertible operator D = [D;;] in B(K)
with Dy, # 0, we can’t find any T € M such that D = T*T, violating the fact that M has
factorization in B(K). This shows our claim that Ay # 0.

Further we note that if [ € Ay, then [ ¢ Ay, so Siy, # 0 or Sp, # 0 for some [S;;] € M; hence
it follows from (2.3.9) that T,,,; = 0 and 7,,; = 0 for all [T;;] € M. Thus we have

Ay C{le A\ {m,n}; T,y =0 and T, =0 forall [T};] € M}. (2.3.10)
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Now let T' = [T};] € M, then since Tj,, = 0 and T}, = 0 for all [ € Ay, it follows that

Po,Tj,, = Z P Ty, = Z Tim =0, and Pg,Tj, = Z P Ty, = Z Tin, = 0.
leAy leA leA leAy
The sum above is in strong operator topology. Similarly from (2.3.10), since T},;; = 0 and T,,; = 0
for all [ € Ag, it follows that Po,Tj, = 0 and Pg,Tj, = 0. These observations along with
(2.3.5) prove our claim that every operator 7' € M has the form as in (2.3.8).

Now with respect to the decomposition in (2.3.7), consider the operator D in B(K) given by

Io, D1 0 0

D Ig, 0 0
0 0 Ig, O
0 0 0 Io

D= (2.3.11)

where Dy € B(Qo, Q1) satisfies 0 < ||D1|| < 1. It is then clear that D is a positive and invertible
operator in B(K). Since M has factorization in B(K), there is an invertible operator S € M
with S~ € M such that D = S*S. Then from (2.3.8), S and S~! look like

S0 A 0 T, 0 C; 0
A
g 0 Sy 2 and S_l _ 0 T Cy O
0 0 X7 X9 0 0 Y1 Y,
By By X3 X4 Ey Ey Y3 Yy
Now
S1T} 0 S1C1 + A1 Yq A1Ys
991 — 0 SoTh SoCs + AoYq AsYs
XoFq XoFEo X111+ XoY3 X1Ys + XoYy

BT\ + X4E1 BoTo + X4E2 B1Ch+ BaCa+ X3Y1 + XuYs X3Yo + XuYy

Thus we get S1T1 = Ig, and SoTy = Ig,. Similarly from the expression S™1S = Iic, we get
1151 = Ig, and T2Sy = Ig,. This shows that 77 and T, are invertible. Further, from (4,1)
entry of SS™!, we have BiT) + X4E; = 0, which yields

By = —XuE\T7 ' = X4Fy,
where Fy = —E;T;!. Also, from (4,2) entry of SS~!, we have BoTh + X4 FEo = 0, that is,
By = —Xy BTy ' = XyF,

where Fy = —EyTy '. Next we note that (1,2) entry of S*S is Bf Ba, and (1,4) entry of S*S is
B7X,. By substituting B; = X4F; and By = X4 F», and equating the corresponding entries of
D, we get

F{X;X4F, = BBy =D and F;{X;X4,= BX,=0.
This implies that D; = 0, which is a contradiction. This again violates the fact that M has
factorization in B(K). Thus we have shown our claim that V,V, > V,,V,» or V,,V* > V,V*,
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which is to say that R(V,,) 2 R(V;,) or R(Vi,) 2 R(V,,). Since m,n € A are arbitrary, we
conclude that € = {R(V;)}ien is a nest.

Now we define an order on A by assigning
i <j if and only if V;V;* <V,V;*, (2.3.12)

for any ¢,j € A. Since V;V;* # V;V;* whenever i # j, the order on A is well-defined. Also A
is a totally-ordered set, as {R(V;)};ca forms a nest of subspaces. For each i € A, consider the
subspace L; of K = @;cAK; given by

Li=EPK;. (2.3.13)

J<i
Then it is clear that the collection £ = {L£;;7 € A} forms a nest in K such that £; C £; if and
only if i < j. We have to show that the completion £ of the nest £ is countable. We claim that

M = (AlgL)*. (2.3.14)

Since M has factorization in B(K), it will then follow from the claim and Proposition 1.5.2 that
Alg £ has factorization in B(KC), which further will imply our requirement using Theorem 1.5.13
that £ is countable (as K is separable).

To show the claim in (2.3.14), we first note that if an operator S = [S;;] in B(K) leaves all
subspaces {£;} invariant, then S;; = 0 for all i > j; hence Alg £ = {[S;;] € B(K), S;; =0 for i >
j}, that is,

(Alg L))" = {[SZJ] € B(K); S;j =0 for i < J}. (2.3.15)

Now let [S;] € M. Then V;V;* ® Si; = V;Vi*V;V* @ S;; for all 4,5 € A. For ¢ < j, since
ViVi*V; Vit = ViVi* and V;Vi* # V; V5™, it forces that S;; = 0. This shows that [S;;] € (Alg £)*.
Thus M C (Alg L)*. Conversely, if [S;;] € (AlgL)*, then S;; = 0 for ¢ < j; hence V;V;* @ S;; =
0 = V;Vi"V;V;* ® S;; for i < j. On the other hand, for i > j, we have V;V;* > V;V;*, so that
ViVi*V;Vi* @ Sy = V;V;* ® Si5. This shows that V;V;i*V; V" @ S;; = V;V;* @ S5 for all 4, j € A,
which is to say that [S;;] € M. Thus we have shown our claim that M = (Alg L)*.

<= To prove the converse implication, assume that the collection {R(V;)};ca is a nest (hence
A is a totally ordered set) such that completion £ of the nest £ = {£;;i € A} as in (2.3.13) is
countable. Similar to the claim in (2.3.14), we note that M = (Alg £)*. Since L is countable, it
follows from Theorem 1.5.13 that Alg £ has factorization in B(K), which is to say that M has
factorization in B(KC).

Now to show that ®;epd; is C*-extreme, we use Corollary 2.2.6. Let D = Iy, ® [Dy;] be a
positive operator in p(A)’ such that V*DV is invertible. We claim that [D;;] is invertible. Since
V*DV is invertible, there exists 8 > 0 such that V*DV > BV*V. Then we have

0 < V*DV — BV*V = [Vi*V; @ D] — BIVi*Vi @ 8ijIx,] = [Vi*V; @ (Dyj — i 81x,)],
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where ¢;; denotes the Kronecker delta. In particular, for every finite subset Ag C A, we have

[Vi*Vj ® (Dyj — 6i581x;)] = 0. (2.3.16)

i?jEAO -
Now fix a finite subset Ag C A, and let hy, € N;epr, R(Vi) be a unit vector (which exists because

the set {R(V;)}iea, is finite and is totally ordered). Then there exist unit vectors h; € H; such
that Vih; = hy, for each i € Ag. So for any vector k; € KC;, i € Ay, it follows from (2.3.16) that

0< > ((Vi'V; @ (Dij — 6581k, ) (hj @ kj), (hi @ ki)

i,J€No

= > ((Vi*Vihy, hi) (Dig — 655 BT, Vg ki) = > (Vihy, Vibi) (D — 65581, )k ki)
i,J€ENo 1,J€ENo

= > (g hao) (D — 65 BIx, kg ki) = > ((Dij — 65 BT, kg, K -
i,JENo 1,JENg

Since k; € K; for i € Ay, is arbitrary, we conclude that [(D;; — d;;81x;)]ijer, = 0. Also since Ag
is an arbitrary finite subset of A, it follows that [(D;; — 0;;61k,)] > 0 in B(K); hence [D;;] > Bl
proving our claim that D = [D;;] is invertible.

Therefore, as M has factorization in B(K), there is an invertible operator S € B(K) such
that $,57' € M and D = §*S. Set S = Iy, ® S. Clearly S € p(A) and D = §*S. Since
S—1 e M, it follows that S™1VV* = VV*S~1VV*; hence we have

(V*SV)(V*S™WV) = V*S(VV*S WYV = V*S(STIWVVHV = VXSS H(VV*V) = V'V = I,

Likewise we get (V*S~1V)(V*SV) = V*V = I;;. This shows that V*SV is invertible. Thus
for a given D € p(A) with V*DV invertible, we have got S € p(A) such that D = S*8,
SVV* = VV*SVV* and V*SV is invertible. We now conclude from Corollary 2.2.6 that
¢ = Bicpi is a C*-extreme point in Sy (A). O

Combining Theorem 2.3.10 and Proposition 2.3.8 we have the following complete character-
ization of those C*-extreme points which are direct sums of pure UCP maps.

Theorem 2.3.11. Let ¢ be a direct sum of pure UCP maps in Sy(A), so that ¢ is unitarily
equivalent to Dyer Bicn, V4() @ Ixi , where K¢, is a Hilbert space and !, is a pure UCP map
with minimal Stinespring triple (7o, Vi, Hn,) such that 1 is non-unitarily equivalent to ¥ for
each i # j in Ao, o € T, and 7, is disjoint to wg for a # . Then ¢ is C*-extreme in Sy (A) if
and only if the following holds for each a € T':

(i) {R(VE)}ien,, is a nest in Hy,, which makes Ay a totally ordered set, and

(ii) if Ll = ®;<iKJ, for i € Ay, then the completion of the nest {L%}ien, in Bien, KL is

countable.

Remark 2.3.12. Based on their results for finite dimensions, Farenick and Zhou in their remarks
towards the end of [29] suggest that Condition (i) in Theorem 2.3.11 is perhaps sufficient, even in
infinite dimensions, for a direct sum of pure UCP maps to be C*-extreme. Here in this Theorem
we observe that Condition (i) is to be supplemented with Condition (ii), which is a somewhat
more delicate restriction and is a purely infinite dimensional phenomenon (see Example 3.3.2).
It has no role to play in finite dimensions.
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2.3. Direct sums of pure UCP maps

Some straightforward corollaries of Theorems 2.3.10 and Theorem 2.3.11 are given below.

Corollary 2.3.13. Let ¢ = B;epd; be a direct sum of pure UCP maps ¢;. If ¢ is C*-extreme,
then for each i,j € A, either ¢; and ¢; are disjoint or one of {¢s, ¢;} is a compression of the
other.

Corollary 2.3.14. Let ¢ : A — B(H) be a direct sum of pure UCP maps. Then ¢ ® ¢ is a
C*-extreme point in Sygn(A) if and only if ¢ is a C*-extreme point in Sy (A).

Remark 2.3.15. It is not known in general whether ¢ & ¢ is a C*-extreme map if ¢ is a

C*-extreme map.

Since a finite nest containing {0}, H is always complete, we recover Theorem 2.3.4 of Farenick-
Zhou using our result in Theorem 2.3.11 and the fact that all C*-extreme maps in Scn(A)
decompose as direct sums of pure UCP maps (Theorem 2.1, [28]).

If A is a subset of the set of integers Z, and if & = {E, },cp is a nest in a Hilbert space
K with the property that FE, C E,, for n < m, then the completion of £ is given by the
nest £ U {0, K, VpearEn, AneaEn}, which is already countable. Thus the following corollary is

immediate from Theorem 2.3.10.

Corollary 2.3.16. Let A=N orZ or Z_, or {1,2,...,m} for some m € N, and let ¢, : A —
B(H,) be a pure UCP map forn € A. If ¢y, is a compression of ¢pn11 for each n withn,n+1 € A,
then the direct sum ¢ = Gpepdn is a C*-extreme point in Sy (A), where H = GpepHn.-

We end this section by giving a necessary and sufficient criteria for a direct sum of pure UCP
maps to be extreme. Note that in view of Proposition 2.3.8, it is enough to consider direct sums
of only those pure UCP maps which are compression of the same irreducible representation.

Proposition 2.3.17. Let ¢; : A — B(H;), i € A, be a family of pure UCP maps with respective
minimal Stinespring triple (m,V;,Hr). Then ¢ = @ijcp¢; is extreme in Sg,_,#,(A) if and only
if VitV #0 for alli,j € A.

Proof. Set H = @;jeaMi. Note that (p,V,H,) is the minimal Stinespring triple for ¢, where
Hp = DicAHnr, p = Dieam and V = P;cV;. Since 7 is irreducible, 7(A)" = C- I, ; so it follows
that

p(A) = {[NijIn,]; Nij € C} € B(@ienHr).

First assume that ¢ is extreme in Sy (A), and fix m,n € A. Let A # 0 in C. Consider the
operator T = [A;jly,| € p(A), where A\, = X and \;; = 0 otherwise. Then T # 0. Since ¢
is extreme, it follow from Arveson’s extreme point condition (Theorem 1.2.22) that V*T'V # 0.
But V*T'V = [A\;;V;*V}], and since A\;;V;*V; = 0 for all (4, j) # (m,n), it follows that AV¥V,, # 0,
showing that V» V,, # 0.

Conversely, let V;*V; # 0 for all 4,5 € A. Let T = [A\ijIy,] € p(A), \ij € C, be such that
V*TV = 0. Then for each i,j € A, we have A\;;V;*V; = 0, which yields A;; = 0; hence T' = 0.
Again by extreme point condition of Arveson, we conclude that ¢ is extreme in Sy (A). O
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Chapter 2. C*-convexity Structure of Generalized State Spaces

The following corollary is another condition (along which Proposition 2.2.10) under which a

C*-extreme map is also extreme.

Corollary 2.3.18. Let ¢ € Sy(A) decompose as a direct sum of pure UCP maps. If ¢ is a
C*-extreme point in Sy (A), then ¢ is also an extreme point in Sy (A).

Proof. Let ¢ = ®;en¢; for some pure UCP maps ¢;,¢ € A. By separating out disjoint UCP
maps and then invoking Proposition 2.3.8 if needed, we assume without loss of generality that
each ¢; is a compression of the same irreducible representation, say 7. Let (m, V;,H;) be the
minimal Stinespring triple for ¢;. Since ¢ is C*-extreme, it follows from Theorem 2.3.10 that
either V;V;* > V;V;* or V;V;* > V;Vi* for all 4,5 € A. In either case, it is immediate that
Vi*V; # 0 for 4,5 € A. The required assertion now follows from Proposition 2.3.17. O

2.4 Krein-Milman type theorem for UCP maps on separable ("*-algebras

The Krein-Milman theorem is a very important result in classical functional analysis, which
says that in a locally convex space, a convex compact subset is closure of the convex hull of its
extreme points. So it is desired to have an analogue of this theorem for C*-convexity in the
space Sy (A) equipped with an appropriate topology. We equip the set Sy (A) with bounded
weak (BW) topology (see Definition 1.2.23). We know that Sy (.A) is compact in BW-topology
(Theorem 1.2.24).

Definition 2.4.1. The C*-convex hull of any subset S of Sy(.A) is given by

n n
{Z Ty ¢i()Ty; ¢i € S, Ty € B(H) with Y T;*T; = IH} : (2.4.1)
i=1 i=1

So a generalized Krein-Milman theorem for Sy (.A) would be to ask whether Sy (.A) is the
closure of the C*-convex hull of its C*-extreme points in BW-topology. In this section, we prove
such Krein-Milman type theorem for S3(A), whenever A is a separable C*-algebra and H a
separable Hilbert space. Also see the similar results for the case when A is of the form B(G)
for some Hilbert space G (Theorem 3.2.2) or A is a commutative C*-algebra (Theorem 5.4.10).
The proof of these three cases are different. Note that B(G) is not separable, when G is infinite
dimensional and C'(X) is non-separable when X is non metrizable compact space. We still don’t
know the result in full generality (i.e. for non-separable C*-algebras).

We mention here that such theorem can be found in [28] in the case when H is a finite-
dimensional Hilbert space and A is an arbitrary C*-algebra. Thus our result provides an im-

portant development towards this theorem in infinite dimensional Hilbert space settings.

Lemma 2.4.2. Let ¢ € Sy(A) be such that ¢(a) = 32,51 ¢n(a) in WOT, for all a € A, where
{pn : A — B(H)}n>1 is a countable family of pure CP maps. Then ¢ is in the BW-closure of
C*-convex hull of C*-extreme points of Sy (A).

Proof. We assume that the collection {¢,},>1 in the sum of ¢ is countably infinite. The finite
case follows similarly and easily. For each n > 1, let (m,, V,, ;) be the minimal Stinespring
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2.4. Krein-Milman type theorem for UCP maps on separable C*-algebras

triple for ¢,. Then each m, is irreducible, as ¢,, is pure by hypothesis. Note that

SViVu=> ¢n(l) =¢(1) = I, in WOT.
n>1 n>1
Set A, = V*V,, € B(H), and let V,, = WnA}/2 be the polar decomposition of V;,. Here W,, €
B(H,K,,) is the partial isometry with initial space R A}/ %) and final space R V). Define the
(H, P y p p
map ¢, : A — B(H) by

Cn(a) = Wyrmp(a)W,, forall a € A.

It is immediate to verify that (, is a completely positive map with the minimal Stinespring triple
(7, Wi, ). Let 0, : A — C be a pure state that is a compression of ¢, (e.g. take a unit vector
en € R(W,,) and define 0,,(a) = (e, m,(a)e,) for all a € A). Now we define &, : A — B(H) by

fn - Cn (1 - n)em

where P, = W W, is the projection from #H onto R(A}/z). Note that &, is a UCP map
from A to B(H). If we set U, = W, so that U, is an isometry from R(P,) to Kp),

then it is straightforward to verify that &, is unitarily equivalent to the UCP map En A —
B(R(P,) @ R(P;)) given by

l=(Pp) (

&n(a) = Urm,(a)U, @ 0(a)Ippry, forall a€ A

Since 6, is a compression of the map a — Ujm,(a)U, (which is pure, as m, is irreducible), it
follows from Theorem 2.3.10 that &, is C*-extreme in Sepyerpt)(A); hence &, is C*-extreme
in Sy (A).

Now set B, = Iy — > 7y Aj. Since 35,51 An = 30,51 Vi Vi = I3y in WOT; it follows that
B, >0, and B,, — 0 in WOT as n — co. Now fix a C*-extreme point & in Sy(A) and define
the map v, : A — B(H) by

Un(a) = BY2&(a)By? + 3" A;12¢5(a) A2, forall a € A
j=1

It is clear that each v, is a UCP map such that 1, is a C*-convex combination of C*-extreme
points of Sy (.A). Since B,, — 0in WOT, it follows that BTIL/2 — 0in SOT; hence B}Lm{(a)B%/Q —

0 in WOT for all a € A. This implies that

lim ¥n(a ZA 1/2¢:(a)A;Y% in WOT, for all a € A.

n—oo

Note that A;Y/2(I — P;) = 0 for all j. Hence for all a € A, we get A;'/%¢;(a)A;Y? =
Ajl/ 2Cj(a)Ajl/ 2 which further yields in WOT convergence

(e} o

1/2 1/2 _ 1/2757 1/2 _ o oY

A Un(a) ZA Gi(a)4; ZlAJ Wim;(a)W;A; ZV mj(a VJ—Z%(&)—
]: =

In other words, ¢, — ¢ in BW-topology. Thus we have approximated ¢ in BW-topology by a

sequence v, belonging to the C*convex hull of C*-extreme points of Sy (A). O
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Chapter 2. C*-convexity Structure of Generalized State Spaces

The following is a Krein-Milman type theorem for UCP maps on separable C*-algebras.

Theorem 2.4.3. Let A be a separable C*-algebra, and H a separable Hilbert space. Then Sy (A)
is BW-closure of C*-convex hull of its C*-extreme points.

Proof. Let ¢ € Sy(A), and let (7, V,H,) be its minimal Stinespring triple. Since both .4 and
H are separable, the Hilbert space H, is also separable (see Remark 1.2.7). By a corollary of
Voiculescu’s theorem (see Theorem 42.1, [16]), there exists a sequence {U,} of unitaries on H
and a representation p : A — B(H,) such that p is a direct sum of irreducible representations
and

m(a) = Jim Uyp(a)Up, in WOT,

for all a € A. Therefore if we set W,, = U,V, then each W, is an isometry, and ¢(a) =
lim, o0 Wyip(a)W,, in WOT for all a € A. In other words, ¢ is approximated in BW-topology
by UCP maps, all of which are compression of the representation p that is a direct sum of
irreducible representations. Thus without loss of generality, we assume that 7 itself is a direct
sum of a finite or countable irreducible representations, say,

T = DBp>1Tn, (2.4.2)

where 7, : A — B(K,,) is an irreducible representation on some Hilbert space K,,. Now for each
n > 1, let @, denote the projection of H, onto K, and let V,, = @,V € B(H,K,,). Consider
the completely positive map ¢, : A — B(H) defined by ¢, (a) =V, m,(a)V, for all a € A. Since
7y, is irreducible, each ¢, is a pure CP map. Also note that in WOT convergence, we have

n>1 n>1 n>1

=V (@n>1mn(a))V = Vir(a)V = ¢(a),

for all a € A. The required assertion that ¢ is in BW-closure of C*-convex hull of C*-extreme
points of Sy (.A) now follows from Lemma 2.4.2. O

2.5 Examples and applications

In the final section, we discuss a number of examples of UCP maps with their C*-extremity
properties. We shall also see an application to a well-known result from classical functional
analysis about factorization property of Hardy algebras. We believe that the connection between
C*-extreme points and factorization property of the algebra M as in Corollary 2.2.9 will produce
many more examples and applications. Also see Section 3.3 for more examples of C*-extreme
maps.

First we look into the question of when tensor products of two C*-extreme maps are C*-
extreme. This will help us in producing more C*-extreme maps out of the existing ones. The
tensor product in question is minimal tensor product. See Definition 1.1.12 for the notion of

minimal tensor products of C*-algebras and Definition 1.2.13 for tensor product of UCP maps.

The following proposition talks about C*-extremity of tensor products, where one of the
components is pure.
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2.5. Examples and applications

Proposition 2.5.1. Let ¢; : A; — B(H;), i = 1,2, be two UCP maps, and let ¢o be pure.
Then ¢1 is C*-extreme (resp. extreme) in Sy, (A1) if and only if ¢1 @ ¢o is C*-extreme (resp.
extreme) in Sy, on, (A1 @ As2).

Proof. Let (m;, Vi, K;) be the minimal Stinespring triple of ¢; for i = 1,2. Then it is immediate
that (m ® ma, V1 ® Vo, K1 ® K3) is the minimal Stinespring triple for ¢; ® ¢2. Set m = 711 ® mo.
Note that since ma(Az) = C - I, (as ¢2 is pure), it follows from Theorem 1.1.22 that

m(A) = (m1(A1) ® m2(Ag)) = 1 (A) @Ik, = m1(A) @ Ik,

Now for any operator D = D; ® Ix, € w(A), we note that D; is positive and Vi*D1V] is
invertible if and only if D ® Ik, is positive and (V; ® V2)*(D1 ® Ix,)(Vi ® V2) is invertible. Also
Dy(ViH1) € ViH, ifand only if (D1®1x, ) (Vi@ Va)(H1®@Hs2) C (Vi®Va)(H1®Hsa). The assertion
about equivalence of C*-extreme points now follows from equivalent criteria in Corollary 2.2.6.
The assertions about extreme points follow similarly using Extreme point condition (Theorem
1.2.22). O

Since the identity representation id, : M, — M, is pure, the following corollary about

ampliation of a C*-extreme map is immediate.

Corollary 2.5.2. Let ¢ be a C*-extreme point in Sy (A). Then the map ¢ @id, : A M, —
B(H ® C") is C*-extreme in Sygcn(A® M,), for each n € N.

For the next result, we set up some notations. Let X be a countable set. For any Hilbert
space H and a von Neumann algebra B C B(H), we consider the Hilbert space £3,(X) and von
Neumann algebra (% (X) given by

G(X)={f: X = H;Seex||f(@)||* < 0}, and (F(X)={F:X — B; F is bounded}.
Then ¢ (X) acts on the Hilbert space ¢3,(X) via the operator M, F € (3 (X), defined by
Mpf(z) = F(x)f(x) for fe3,(X) and z € X.

We write (A4(X) and (X (X) simply by ¢%(X) and ¢*°(X) respectively. Further we identify
the Hilbert space ¢*(X) @ H with ¢3,(X) via the map f ® h — (z — f(z)h) for f € (*(X)
and h € H. Also the algebra ¢>°(X)®B is *-isomorphic to (% (X) with isomorphism given by
fRT — (x v+ f(x)T) for f € £°(X) and T € B (here Bi®Bs denotes the von Neumann algebra
generated by the minimal tensor product By ® Bs; see Section 1.1). If there is no possibility of
confusion, we shall drop X from ¢?(X), (3,(X) etc.

Proposition 2.5.3. Let ¢ be a C*-extreme point in Sy (A), and let i : (°(X) — B(£*(X)) be

the natural inclusion map for some countable set X. Then i®¢@ is C*-extreme in Spgy ({°RA).

Proof. Let (m,V,H,) be the minimal Stinespring triple for ¢. Then (p,U,H,) is the minimal
Stinespring triple for i ® ¢, where

Hy=C@H. =03, , U=i@V:P3H - @H,, and p=i®m.
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Chapter 2. C*-convexity Structure of Generalized State Spaces

We know from Theorem 1.1.22 that
p(l* @A) = (U* @A) =°27(A) = K;’r((’A),.

Now let Mp € E;’F‘E Ay be a positive operator such that U*MpU is invertible. Then there exists
«a > 0 such that U*MpU > aU*U. Note that for any f € E%{ and x € X, we have

U*MpU f(x) = (V*D(x)V) f(x).
Therefore for any unit vectors g € 2 and h € H, we have

a < (U"MpU(g®h),g@h) = Y_((V*D(2)V)g(2)h, g(x)h) = Y_{(V*D(x)V)h, h) |g(z)]?,
zeX rzeX

and since g € £? varies over all unit vectors, it follows (by choosing ¢ to be the canonical basis
elements of £2) that ((V*D(x)V)h,h) > a for all z € X. Again since h € H is arbitrary, it follows
that V*D(z)V > « for all z € X, i.e. V*D(x)V is invertible in B(#). Since ¢ is C*-extreme in
S1(A), there exists an operator S(z) € m(A)’ for each x € X, such that

D(@) = S(2)'S(@), S@VV* =VV'S@)VV*

and V*S(z)V is invertible. Also note that ||[(V*S(z)V)~Y? = [((V*D(z)V) 7| < 1/a. If S
denotes the map z — S(x) from X to w(A)’, then it is immediate to verify that S € €3 4y such
that

Mp = MgMg and MgUU* =UU*MgUU".

Also since sup,ex [(V*S(x)V)7Y| < 1/, it follows that U*MgU is invertible. Since Mp is
arbitrary, we conclude that i ® ¢ is C*-extreme. 0

If the set X in Proposition 2.5.3 is a two point set, then we get the following (note that the
map ¢ in the following corollary is different than ¢ @ ¢):

Corollary 2.5.4. Let ¢ be a C*-extreme point in Sy(A). Then the map ¢ : A®A — B(HOH)
defined by Y(a ®b) = ¢(a) ® ¢(b), for all a,b € A, is a C*-extreme point in Syaep(A® A).

The next result provides a family of C*-extreme points, which can be thought as a general-
ization of Example 2.1.5, and whose proof follows almost the same lines. We give the proof for
the sake of completeness. For doing so, we need some facts from C*-convexity of unit ball of
B(H) which we recall below. See [41,49] for more details on these topics.

We say a contraction S € B(H) is a C*-extreme point of the closed unit ball of B(H) if,
whenever S = Y| T;*S;T; for contractions S; and invertibles 7; in B(H), 1 < i < n, with

v T;*T; = Iy, then there are unitaries U; € B(#H) such that S = U;*S;U;. The following

result is very crucial for our purpose:

Proposition 2.5.5 (Theorem 1.1, [41])). All isometries and co-isometries are C*-extreme points
of closed unit ball of B(H).
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Recall that C*(T") denotes the unital C*-algebra generated by an operator 7. The following
proposition provides a number of C*-extreme UCP maps on C*-algebras generated by unitaries.

Proposition 2.5.6. Let S be a unitary, and let ¢ : C*(S) — B(H) be a UCP map such that
#(S) is an isometry or a co-isometry. Then ¢ is C*-extreme as well as extreme in Sy (C*(S)).

Proof. We assume that ¢(5) is an isometry. The case of ¢(S) a co-isometry follows similarly.
Let (m,V,Hr) be the minimal Stinespring triple for ¢. Since ¢(S) is an isometry, we have
d(S)*p(S) = Iy = ¢(1) = ¢(S*S), so it follows from Proposition 1.2.10 that V¢(S) = w(S)V.
This in particular implies for each n € N that V¢(S)" = n(S)"V, which yields

B(S)" = V*r(S)"V = V(S = ¢(S™). (2.5.1)

Now to prove that ¢ is C*-extreme in Sy (C*(S)), let ¢ = >1*; T;*¢i(-)T; be a proper C*-convex
combination for some UCP maps ¢; and invertible operators T; € B(H) with > ;- T;*T; = Iy.
Since ¢(95) is an isometry, it is a C*-extreme point in the closed unit ball of B(H) (Proposition
2.5.5); hence for each i, there exists a unitary U; € B(H) satisfying ¢(S) = U;*¢i(S)U;. This
implies that each ¢;(S) is an isometry, and in a similar fashion as in (2.5.1), we get

$i(S)" = ¢;(S™) for all n € N. (2.5.2)
Thus for each n € N, we use (2.5.1) and (2.5.2) to get
P(S") = ¢(9)" = (Ui ¢i(S)Us)" = U™ (5)"Us = Ui i (S™)Us.

By taking adjoint both the sides, we also have ¢(S*") = U;*¢;(S*")U;. Since S is unitary, it
follows that span{S™,S*™;n,m € N} = C*(S). Thus we conclude that ¢(T) = U;*¢:(T)U;
for every T' € C*(S) i.e. ¢ is unitarily equivalent to ¢;. The case of ¢ being extreme follows

on similar lines, as isometries and co-isometries are extreme points of the closed unit ball of

B(H). O

As a special case of Proposition 2.5.6, we have the following result. Here z € C(T) is the
function on the unit circle T given by z(e?) = €% for € R.

Corollary 2.5.7. Let ¢ : C(T) — B(H) be a UCP map such that ¢(z) is an isometry or a
co-isometry. Then ¢ is C*-extreme as well as extreme in Sy (C(T)).

As an application of Proposition 2.5.7, we give a new proof of a classical result of Szeg6 and
its operator-valued analogue about factorization property of Hardy algebras. Let K be a Hilbert
space (possibly infinite dimensional), and let L% (T) denote the Hilbert space of K-valued square

integrable functions on T with respect to one-dimensional Lebesgue measure i.e.
2w .
LE(T) = {f : T — K; f is measurable and / 1£(e)]?df < oo}
0

Note that L% (T) is isomorphic to L?(T)®K. Let HZ(T) denote the vector-valued Hardy subspace
of L% (T) given by

HE(T) = {f € L¥(T); /27r f(e)e ™ dp = 0 for all n < 0}.
0
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Consider the von Neumann algebra of all essentially bounded measurable functions i.e.
Lxey(T) ={F : T — B(K); z — [|[F(2)]| is essentially bounded},

which acts on L%(T) by left multiplication i.e. for F' € L3 (T), the operator Mp : L-(T) —
L%(T) is defined by

Mpf(x) = F(z)f(z), forall f e Li(T),z€T.

Let Hpy (T) be its subalgebra defined by

2 . )
nglc) (T) ={F € L%O(;c) (T); F(eza)eﬂnedQ =0 for all n < 0}.
0

Note that C(T) C L) (T). We have the following factorization property of HE‘EK)(’IF) in
L) (T).
o0

Corollary 2.5.8. For any positive and invertible D € LB(IC)(T)’ there exists an invertible S
with S, 571 € Hg‘zlc)(T) such that D = §*S. That is, Hpj, (T) has factorization in L3 (T).

Proof. Consider the UCP map ¢ : C(T) — B(HZ(T)) defined by

¢(f) = PH}QC(T)Mf|H2 (']1‘)’ for all f S C(T) (253)
K

Clearly ¢(z) is an isometry, so it follows from Corollary 2.5.7 that ¢ is a C*-extreme point
in S H2(T) (C(T)). Note that the map ¢ is already in minimal Stinespring form, where the
representation 7 acts on the Hilbert space L (T) by w(f) = My, for all f € C(T). It is
well-known that 7(C(T))" = L3 (T) (Theorem 52.8, [16]), and it is easy to verify that

HEyo)(T) = {F € L (T); Mp(HE(T)) € HR(T)}.
The required assertion now follows from Corollary 2.2.9. O

Example 2.5.9. Let T' € B(H) be an isometry or a co-isometry. Consider the linear map
¢ : C(T) — B(H) satistying ¢(p + q) = p(T) + q(T)* for polynomials p and ¢g. Then ¢ extends
to a UCP map on C(T) (Theorem 2.6, [61]), and it follows from Proposition 2.5.7 that ¢ is a
C*-extreme point in Sy (C(T)).

Following is an example ¢ of a C*-extreme map of Sy (C(T)) which says that ¢(z) need not

be an isometry or a co-isometry.

Example 2.5.10. Let g : T — T be a homeomorphism, and let ¢ : C(T) — B(H) be a UCP
map. Set ¢ : C(T) — B(H) by ¢(f) = ¢(f og) for all f € C(T). Then it is easy to verify that
¢ is C*-extreme in Sy (C(T)) if and only if ¢ is C*-extreme in Sy (C(T)). Moreover one can
choose a homeomorphism f such that ¢(z) is an isometry but (z) is neither an isometry nor a

co-isometry.
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Chapter 3

Normal C*-extreme Maps

Our attention now shifts towards the study of structure of normal C*-extreme maps on von
Neumann algebras, specifically on type I factors (i.e. B(G) for some Hilbert space G). Normal
UCP maps play an integral part in understanding various objects in von Neumann algebra
theory. As is well-known, normal representations are nothing but multiplicities of the identity
representation, so normal UCP maps are compression of such maps. We exploit this special

form in studying their C*-extremity conditions.

In this chapter, we first see some basic properties and examples of normal C*-extreme maps.
The set of normal UCP maps itself forms a C*-convex set and hence its C*-extreme points can
similarly be defined and studied. However it is observed below that this is same as analysing
normal C*-extreme maps of the set Sy (B(G)) of all UCP maps on B(G). One useful observation
that we come across is that the conditions of C*-extremity of normal UCP maps can be translated

to certain properties of subspaces of tensor products of two Hilbert spaces.

All the examples of normal C*-extreme maps on B(G) that we know are direct sums of
pure normal UCP maps. The main result (Theorem 3.1.6) determines necessary and sufficient
criteria for normal C*-extreme maps on B(G) to be direct sum of normal pure UCP maps. This
criteria surprisingly involves the notion of reflexivity of associated algebras of type I factors and
their factorization properties. The study of algebras satisfying factorization property and their
lattices of invariant subspaces has an independent interest of its own. We undertake a detailed
investigation in Chapter 6 of such algebras through more general notion called logmodular
algebras. Further we prove a Krein-Milman type theorem for UCP maps on type I factors,
continuing our previous result for separable C*-algebras. We also provide some examples of

normal C*-extreme maps.

3.1 Normal C*-extreme maps on type [ factors

Let B C B(G) be a von Neumann algebra, and let NSy (B) denote the collection of all normal
UCP maps from B to B(H). See Section 1.2 for definitions and structure of normal UCP maps.

We note that if ¢ : B — B(H) is a normal CP map, then T*¢(-)T is also normal for any
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Chapter 3. Normal C*-extreme Maps

T € B(H). It then follows that NSy (B) itself is a C*-convex set i.e.

ST 6:()T; € NSu(B)

i=1
whenever ¢; € NSy(B) and T; € B(H), 1 < i < n, with >_1" ; T;*T; = Iy. Therefore, one can
define and study C*-extreme points of NSy (B) on the same lines of Definition 2.1.2, and look

into its structure.

Having said that, we however see below (Proposition 3.1.2) that any normal UCP map on
B is C*-extreme in NSy(B) if and only if it is C*-extreme in Sy(B). Therefore, it does not
matter whether we explore C*-extremity condition in the set NSy (B) or the set Sy (B).

Lemma 3.1.1. Let ¢,¢ : B — B(H) be two CP maps such that ¥ < ¢. If ¢ is normal, then 1
s normal.

Proof. Let {X;} be a net of decreasing positive elements in B such that X; | 0 in SOT. Then
#(X;) — 0 in SOT, as ¢ is normal. As 1 is positive, we note that {¢)(X;)} is a decreasing net
of positive elements; hence ¢(X;) — Y in SOT for some positive operator Y € B(H). But since
P(X;) < ¢(X;) for all i, it follows by taking limit in SOT that ¥ < 0; hence Y = 0. O

Proposition 3.1.2. A normal UCP map ¢ : B — B(H) is C*-extreme in NSy (B) if and only
if it is C*-extreme in Sy (B).

Proof. Since NSy (B) C Sy(B), it is immediate that every normal C*-extreme point of Sy (B)
is also a C*-extreme point of NSy (B). Conversely, let ¢ be a C*-extreme point of NSy (B). Let
¢ = > 1Ti"pi(-)T; be a proper C*-convex combination in Sy (B) for some ¢; € Sy (B). Then
for each i, we have T;*¢;(-)T; < ¢(-), so it follows from Lemma 3.1.1 that 7;*¢;(-)T; is normal;
hence ¢; is normal. Since ¢ is C*-extreme in NSy (B), there is a unitary U; € B(H) such that
¢i(+) = U;*¢(-)U;, as required to prove that ¢ is C*-extreme in Sy (B). O

For the rest of the chapter, we mainly deal with the von Neumann algebras of the form B(G)
for some separable Hilbert space G. The C*-extreme condition (Corollary 2.2.6) for normal
C*-extreme points translates as follows. See the structure of normal UCP maps in Theorem
1.2.26, and also see Remark 1.2.28.

Theorem 3.1.3. Let ¢ : B(G) — B(H) be a normal UCP map with minimal Stinespring form
O(X) =V*(X®Ix)V, for some Hilbert space K. Then ¢ is C*-extreme in Sy (B(G)) if and only
if for any positive operator D € B(K) with V*(Ig ® D)V invertible, there exists S € B(K) such
that D = S*S, (Ig @ S)VV* =VV*(Ig @ S)VV* and V*(Ig ® S)V is invertible.

Remark 3.1.4. Let ¢ : B(G) — B(#H) be a normal UCP map with minimal Stinespring form
d(X) =V*(X ® Ix)V. We identify the subspace VH with H, so that H is a subspace of G ® K.
It then follows from Theorem 3.1.3 that ¢ is a C*-extreme point in Sy (B(G)) if and only if the
subspace H of G ® K satisfies the following factorization property:
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3.1. Normal C*-extreme maps on type I factors

(f) for any positive operator D € B(K) with Py (Ig ® D)), invertible, there exists S € B(K)
satisfying D = S*S, (Ig ® S)(H) € H and (Ig ® S)),, is invertible.
Therefore, in order to understand the structure of normal C*-extreme maps, one can characterize

subspaces of G ® K with factorization property ().

We shall provide a number of examples of subspaces with factorization property () in Section
3.3.

We now state one of the major results of this thesis involving factorization property of
algebras in B(H), and whose proof is postponed until Chapter 6 (see Corollary 6.2.7 therein).
We shall rather first see its consequences in the study of normal C*-extreme maps. For the

notion of factorization property of algebras and atomic nests, we refer the readers to Section

1.5.

Theorem 3.1.5. Let M be an algebra having factorization in B(H). Then Lat M is a complete,
countable and atomic nest.

We are now ready to prove the main result of this section, which provides a necessary and
sufficient criterion for a normal C*-extreme UCP map to be direct sum of normal pure UCP

maps.

Theorem 3.1.6. Let ¢ : B(G) — B(H) be a normal C*-extreme map with minimal Stinespring
form ¢(X) =V*(X ® Ix)V, for some Hilbert space KC. Then ¢ is unitarily equivalent to a direct
sum of normal pure UCP maps if and only if the algebra

M={TeBK);IgeT)(VH) CVH}
is reflexive.
Proof. By identifying the Hilbert space H with V'H, we assume that H is a subspace of G ® I,

so that
d(X) = Py(X ®I)¢)|H for X € B(G),
and
M={T e B(K);(Ig@T)H C H}.

First we assume that the algebra M is reflexive. Since ¢ is C*-extreme in Sy (B(G)), it follows
from Corollary 2.2.9 that Ig ® M has factorization in Ig ® B(K), which is to say that M
has factorization in B(K). It then follows from Theorem 3.1.5 that Lat M is an atomic nest.
Therefore by definition of atomic nests (see Definition 1.5.14), there exists an orthonormal basis
{en}n>1 of K such that each e, is contained in one of the atoms of Lat M. Now for all n > 1,

consider the subspace G,, of G given by
Gn={9€Gg®e, € H}.
We claim that

H=EPG®en). (3.1.1)

n>1

99



Chapter 3. Normal C*-extreme Maps

Clearly, G, ® e, C H for all n > 1; hence ®,,>1(G, ® e,) C H. Conversely, let h € . Then as
{en}n>1 is an orthonormal basis of /C, there exists a sequence {gn }n>1 of vectors in G such that
h = Z gn ® enp.

n>1

Now for any unit vector e € I, we denote by |e)(e| the rank one projection on K defined by
le)(e|(k) = e(e, k) forall k € K.

We claim that for all n > 1 that |e,)(e,| € AlgLat M. Indeed, if E & E_ is an atom of Lat M
and e € F© F_ is a unit vector, then

le)(e|(F)=0C F for FCE_, and |e)(e/(F)=C-eCF for FDE,

which shows that |e)(e| € AlgLat M. This proves our claim that |e,){(e,| € AlgLat M. Since
M is reflexive, it then follows that |ey)(e,| € M; hence (Ig ® |ey)(en|)H € H, which implies

(Ig @ |en)(en])h = gn ® en € H.

In particular, g, € G, and hence g, ® e, € G, ® e,. This shows that
h = Zgn®€n6 @gn®en
n>1 n>1

Since h € H is arbitrary, we conclude our claim that H = &,>1(G, ® e,). Now for each n > 1,
define the map ¢,, : B(G) — B(G,,) by

on(X) = Pg, X, , forall X € B(G).

If G,, is a zero subspace, then we ignore the map ¢,,. Then it is clear that ¢, is a normal pure
UCP map, and for all X € B(G) we have

P(X) = PH(X®IK ZPanlg ® |en){en| = @¢n ) ® len)(enl.
n>1 n>1
This proves the required assertion that ¢ is unitarily equivalent to a direct sum of normal pure

UCP maps ¢n,.

To prove the converse, let ¢ be a direct sum of normal pure UCP maps. Then for some
countable indexing set J, there is a collection {G;};cs of distinct subspaces of G and a collection
{Ki}ies of mutually orthogonal subspaces of K such that ¢ is unitarily equivalent to the map
®ics Pg, X g, ® Ix,. So without loss of generality we assume that

H = Dics (G ® K;).

Since ¢ is C*-extreme in Sy (B(G)), the collection {G;}ics is a nest by Theorem 2.3.10. This
nest induces an order on J making it a totally ordered set. If we set £; = @©;>;K; for i € J,
then {£;}ics is a nest, and it is easy to verify that

M=A{T € B(K);(Ig @ T)(H) € H} = Alg{Li;i € J}

(to show this, one can follow the same argument as in (2.3.14) in the proof of Theorem 2.3.10).
But then any algebra of the form Alg £ is reflexive (see Example 1.5.16). Thus we conclude that
M is reflexive. O
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It is a known fact due to Juschenko [44] that any subalgebra having factorization in the finite
dimensional matrix algebra M, is automatically reflexive and unitarily equivalent to an algebra
of block upper triangular matrices (Theorem 2.6, [11]). Also see Corollary 6.4.7 below for an
alternate proof of this fact. Thus the following corollary is immediate from Theorem 3.1.6 and
Theorem 2.3.10.

Corollary 3.1.7. Let H be a subspace of G ® IC, where K is a finite dimensional Hilbert space,
such that the normal UCP map ¢ : B(G) — B(H) given by ¢(X) = Py(X®Ix)y,,, for X € B(G),
is in minimal Stinespring form. Then ¢ is C*-extreme in Sy (B(G)) if and only if ¢ is unitarily
equivalent to a direct sum of a finite sequence of normal pure UCP maps {¢;}1'_, such that ¢;
is a compression of Piy1.

As a consequence of Corollary 3.1.7, we recover the result of Farenick-Morenz [28] on the
structure of C*-extreme points form M, to M,, which we state below. Their proof was given
through rather tedious matrix computations. Here we have provided a more conceptual approach
using nest algebra theory.

Corollary 3.1.8 (Theorem 4.1, [28]). A UCP map ¢ : M,, — M, is C*-extreme in Scr(M,,)
if and only if there exists a finite sequence {¢;}*_, of pure UCP maps on M, such that ¢; is a
compression of ¢ir1 and ¢ is unitarily equivalent to @) @;.

Corollary 3.1.7 suggests that perhaps the algebra M in Theorem 3.1.6 is always reflexive
when ¢ is C*-extreme. But we are not able to prove it. If this turns out to be true, then
Theorem 3.1.6 along with Theorem 2.3.10 would characterize all normal C*-extreme maps on
B(G). Thus we propose the following conjecture:

Conjecture 3.1.9. FEvery normal C*-extreme map on a type I factor is a direct sum of normal
pure UCP maps.

3.2 Krein-Milman type theorem for UCP maps on type [ factors

We have already seen a Krein-Milman type theorem for C*-convexity of the set Sy (.A) equipped
with BW-topology, for the case when A is a separable C*-algebra (Theorem 2.4.3). In this
section, we prove a Krein-Milman type theorem for the set Sy (B(G)). Note that B(G) is not a
separable C*-algebra when G is an infinite dimensional Hilbert space. So the proof presented in
Theorem 2.4.3 is no longer valid in the case of Sy (B(G)).

We begin with the following proposition, which seems to be a well-known result. However

we could trace the proof only when H is a finite dimensional Hilbert space. So we outline a
proof in general case for the sake of completeness.

Proposition 3.2.1. Let B be a von Neumann algebra, and let ¢ : B — B(H) be a UCP map.
Then there exists a sequence ¢, : B — B(H) of normal UCP maps such that ¢n(a) — ¢(a) in
SOT for all a € B. In particular, the set NSy (B) of normal generalized states is dense in the
set Sy (B) of all generalized states in BW-topology.
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Proof. If H is finite dimensional, then the assertion is proved in (Corollary 1.6.3, [11]). So assume
that # is infinite dimensional. Let {P,},>1 be an increasing sequence of projections on H with
finite dimensional ranges such that P, — Iy in SOT. Fix a normal UCP map ¢ : B — B(H),
and for each n > 1, consider the map ¢,, : B — B(H) given by

¢n(a) = Ppd(a)Pp+ (1 — Py)Y(a)(1 — B,), forallacB.

Since P, — I in SOT, we note that ¢, (a) — ¢(a) in SOT for all @ € B. Also the second term
in the above sum is normal, as ¢ is normal. So it suffices to approximate the map P,¢(:)P,
by normal CP maps. The problem now reduces to approximation of (unital) CP maps by
normal (unital) CP maps acting on finite dimensional Hilbert spaces, which is possible as already
noted. O

The following is Krein-Milman type theorem for C*-convexity of the set Sy (B(G)).

Theorem 3.2.2. Let G and H be separable Hilbert spaces. Then Sy (B(G)) is BW-closure of
C*-convex hull of its (normal) C*-extreme points.

Proof. In view of Proposition 3.2.1, it suffices to approximate a normal UCP map by C*-convex
combinations of C*-extreme points of Sy (B(G)). Let ¢ : B(G) — B(H) be a normal UCP map.
Then by Corollary 1.2.27, there exists a finite or countable sequence of contractions {V},},>1 in
B(H,G) such that

P(X) = Z VXV, forall X € B(G), (WOT Convergence). (3.2.1)

n>1

Note that the maps X +— V> XV, from B(G) to B(H) are pure maps. We now invoke Lemma
2.4.2 from Section 2.4 to conclude the required assertion. O

3.3 Examples of normal C*-extreme maps

In this section, we consider examples of normal UCP maps some of which are C*-extreme and
some are not. Factorization property of algebras plays very important role in determining C*-

extremity conditions.

The following proposition provides a family of examples of subspaces in G ® K satisfying
factorization property (f), which further produces examples of normal C*-extreme UCP maps
(see Remark 3.1.4).

Proposition 3.3.1. Let H = \;cp Gi ® K; be a subspace of G& K, for some family {G;}ien and
{Ki}tiea of subspaces of G and K respectively, such that G ® K = span{(X ® Ix)h;h € H,X €
B(G)}. If either of the following is true:

(1) Gi L Gj for alli# j and {K;}ien is a nest whose completion is countable,
(11) {Gi}ien ts a nest and K; L KCj for i # j such that the completion of the nest {®i<nk;}nen
is countable,

then H satisfies factorization property ().
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Proof. (1) Firstly it is easy to verify that
K=\ K
LIS

Indeed, if k € K © V;cp Ki, then for any non-zero g € G, we will have g @ k L {(X ® Ix)h; h €
H,X € B(G)}, which will yield g ® k = 0.

Let D € B(K) be a positive operator such that Py (Ig ® D), is invertible. We claim that D
is invertible. Let 8 > 0 be such that Py (Ig® D)),, > BIy. Since g;®@k; € H, for any 0 # g; € G;
and k; € IC;, we get

19il1*(Dki, ki) = ((Ig © D)(g; ® ki), gi @ ki) > B (9 @ ki, 9i @ ki) = B |gill* (i, ki),

which implies that (Dk;, ki) > [(k;, ki). Since ;cp K is dense in IC, we conclude that

(Dk, k) > B{k, k)

for all k € K; hence D is invertible. Since the nest {/C;};ca has a countable completion, by
Theorem 1.5.13 there exists an invertible operator S € B(K) satisfying D = S*S and S(K;) C K,
S=YK;) C K; for all i € A. Clearly then (Ig ® S)(H) C H. Note that

(Sfl)‘,c_ = (S|,C_)*1 € B(K;) foreach i€ A and sup H(Sbc_)*lH = HS*1|| < 00.
¢ ¢ 1EA ¢
Hence @eplg @ (5. )~! is a bounded operator on H and
(Ig © 8)},, (®ieals, @ (S),,)71) = (®iealy, ® Si ) (®Bieals, @ (S )7) = Bieals: © I, = In.

Similarly, (®iealg, ® (S| )"1)(Ig ® S)),, = Iy This proves that (Ig ® S)),, is invertible. Since
D € B(K) is arbitrary, we have shown that # satisfies factorization property (7).

(2) This assertion follows from Theorem 2.3.10, as the map
P(X) = Pu(X @ Ix)),, = Biea (P, X)g, © Ix,)

from B(G) to B(H) satisfies the equivalent criteria for it to be C*-extreme in Sy (B(G)). O

At this point, we are not sure if we can write subspaces of Part (1) in Proposition 3.3.1 in
the form of subspaces in Part (2), and vice versa. However one can easily verify that if the
concerned nests are already complete, then the two parts produce the same set of subspaces (we
leave the details to the readers as we don’t want to digress from our main theme).

The following are two examples of normal UCP maps which are not C*-extreme points. In
order to show this, we use the fact that nest algebras associated with uncountable nests do not
have factorization.

Example 3.3.2. Let K be a Hilbert space, and let {C;},cq be a nest of subspaces indexed by
rationals Q such that Ky C Ky if ¢ < ¢/, and K = V4ecy . Let G be a Hilbert space, and let
{Gq}q4eq be any collection of mutually orthogonal subspaces of G. Consider the subspace

H= @qGng ® ’Cq
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of G ® K, and the map ¢ : B(G) — B(H) defined by
(b(X) = PH(X & IK)\H’ for all X € B(g)

Note that the algebra M = {T € B(K); (Ig ® T)(H) € H} is nothing but Alg€&, where £ is
the nest £ = {K;}4cq- Even though the nest £ is countable, its completion is not a countable
nest (indeed, completion of £ is given by {0,K, Ky, Ly;q € Q,r € R} where L, = Vp<r Kp; see
Example 1.5.10). So it follows from Theorem 1.5.13 that M does not have factorization in B(K).
Consequently, Ig ® M does not have factorization in Ig ® B(K) = m(A)’, where n(X) = X ® I
is the minimal Stinespring representation for ¢. Thus we conclude from Corollary 2.2.9 that ¢
is not a C*-extreme point in Sy (B(G)).

Example 3.3.3. Let K = L?([0, 1]) with respect to Lebesgue measure, and let
H={xaf;f€L*([0,1]x[0,1])} CK®K,

where A = {(s,1);s,t €[0,1],0 <s <t <1} C0,1] x [0,1]. Here xa denotes the characteristic
function on the set A. Define ¢ : B(K) — B(H) by

¢(X) = Py (X ® Ix),, forall X € B(K).

We claim that ¢ is not a C*-extreme point in Sy (B(K)). First consider the following observa-
tions, which are straightforward to verify:

(i) H =span{xjqf @ xp9;t € [0,1], f,9 € K}.

(ii) H*+ = span{x(s1)f ® X0.99; 5 € [0,1], f,g € K}

(ili) K ® K =span{(X ® Ix)h;h € H, X € B(K)}.

(iv) ¢(X) = Pym(X)},, is the minimal Stinespring dilation for ¢ where m : B(K) — B(K ® K)

is defined by 7(X) = X ® I, X € B(K).

(v) 7(BOK) = {Ix © 55 € BK)}.
Let M = {S € B(K);(Ix ® S)(H) C H}. We claim that M C Alg€&, for the complete nest
E ={Ey;te€0,1]}, where

Ey = {xpuf; f € K}, for t €[0,1].

Since £ is uncountable, it will follow from Theorem 1.5.13 that Alg & does not have factorization
in B(K); hence M does not have factorization in B(K), that is, [x ® M does not have factorization
in Ix ® B(K) = 7n(B(K))'. This will imply from Corollary 2.2.9 that ¢ is not C*-extreme in
Sy (B(K)). Now let S € M, so that (Ix ® S)(H) C H. Fix t € (0,1], and let 0 < s < ¢. Note
that

Est = {xp.q/f: f €K}
Now for any f,g € K, we note from above observations that xjo 4 ® X¢,119 € H (so that (Ix ®
S)(X[0, © X[t,119) € H) and x[s1] @ X0,/ € H; hence

0= <(I/c ® S)(X[0,] ® X[£,119)s X[s,1] © X[o,s}f> = <X[o,t] @ S(X[t,119)s X[s,1] ® X[O,s]f>
= (X[0,> X[s,1) (S (X[£,119)> X[0,5).[) = (£ = )(S(X1,9)s X[0,5) ) -
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Since t — s # 0, it follows that
(S(X(t,119)s X[0,5).f) = 0.

This shows that S(xp119) L E,*, which is to say S(X[t,119) € Es. Since g € K is arbitrary, it
follows that S(E:) C E,. Since s < t is arbitrary, we conclude that

S(E;)C () Es=E:.
0<s<t

This shows that S € Alg &; thus we conclude our claim that M C Alg€.

Inspired from the example of C*-extreme point as in (2.1.5), we now consider its noncom-
mutative analogue. For a C*-subalgebra A of B(K) and a subspace H of K, consider the UCP
map ¢ : A — B(H) given by

¢(X) = PyX), for X €A
If A= B(K), then clearly ¢ is a pure map, so that ¢ is C*-extreme in Sy (.A). An example of
C*-extreme point of this form (when A # B(K)) is the map in (2.5.3). But for arbitrary A, we
do not know if ¢ is always C*-extreme in Sy (A).

Let B be a finite von Neumann algebra with a distinguished faithful trace 7 : B — C (see
Section 1.1 for the definition and existence of a trace). Let L?(7) denote the Hilbert space
induced by 7, which is the closure of B with respect to the inner product on B defined by

(x,y) =71(2"y) for z,y € B.

Then the left regular representation m : B — B(L?(7)) defined by w(x) = L, for all x € B, is
cyclic with cyclic vector § = 1, where L, : L?(7) — L?(7) is given by

L,(y) =xy forall yehB.

Now let M be a subalgebra of B such that M has factorization in B (as defined in 1.5.1).
Examples of such algebras are finite maximal subdiagonal algebras introduced by Arveson [4],
which also include nest subalgebras (see Example 6.1.11 and Example 6.4.10). Consider the

subspace
H? = [M] € L*(r)

(called noncommutative Hardy space), and let ¢ : B — B(H?) be the map defined by
¢(ZL‘) = PH2L$|H27
for z € B. It is clear that ¢ is a UCP map. We have the following:

Proposition 3.3.4. For B, M and ¢ as above, ¢ is a C*-extreme point in Sg2(B).

Proof. Note that (m,V, L?(7)) is the minimal Stinespring triple, where V is the inclusion map
from H? to L?(7). It is a well-known fact (see Proposition 11.16, [63]) that

m(B)' = {Ry;x € B},
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where R, € B(L*(r)) is the right multiplication operator defined by
R,(y) =yx forall yeB.

Now to show that ¢ is C*-extreme in Sg2(B), we let R, to be a positive operator in 7(B)’ for
some z € B such that Py2 R, g2 is invertible. Clearly z > 0 in B. We claim that z is invertible
in B. Since Py R$|H2 is invertible, there is an o > 0 such that P2 R$|H2 > alg2. Hence for all
z € M, we have

(zx,2) = (Rypz,2) > afz, 2)

that is,
T((z — @)2*z) = (2(z — @), 2) > 0.

Since {z*z;z € M} is dense in the set of all positive elements of B (as M has factorization in
B), it follows that 7((z — a)y) > 0, for all y > 0 in B. Hence for all a € B, we get using the
tracial property of 7 that

((x — a)a,a) =1(a"(x — @)a) = 7((x — a)aa™) > 0,

which is to say that z — a > 0 in B. This shows that z is invertible. Therefore by factorization

of M in B, there exists an invertible element z with z, 27! € M such that x = zz*; thus
R, =R, = R.+R. = R.R,.

Further, since z € M, it follows that R.(M) C M and hence R,(H?) C H?. Also since 27! €
M, we have R;1(H?) = R,-1(H?) C H?, which in particular implies that R, is invertible.
Since R, is arbitrary in 7w(A)’, we conclude that ¢ is a C*-extreme point in Sp2(B). O
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Chapter 4

C*-extreme Positive Operator Valued
Measures

We digress from our earlier discussions on C*-extreme UCP maps and instead consider C*-
extremity conditions of positive operator valued measures (POVMs). The correspondence be-
tween POV Ms on a compact Hausdorff space X and UCP maps on the commutative C*-algebra
C(X) is a folklore. Many authors while studying UCP maps on commutative C*-algebras exploit
this relationship. We follow the same approach and for the purpose study POVMs independently.
Through this correspondence, the theory developed here will then be applied in the next chapter
to the study of C"*-extreme UCP maps on commutative C*-algebras.

The notions of C*-convexity and C*-extreme points have natural extensions to POVMs (see
Definition 4.1.1 and 4.1.2). Here we study C*-convexity of POVMs on a measurable space
(X,0(X)), where O(X) is a o-algebra of subsets of a set X. The problem of identifying C*-
extreme points of POVMs has been open for several decades even for finite sets. The result from
1997 of Farenick and Morenz [28] translates to saying that C*-extreme positive matriz valued
measures on a finite set X are spectral measures. We generalize the result of [28] considerably, as
we allow general POVMs on all countable spaces and still all the C*-extreme points are spectral
(Theorem 4.3.2). This is important because it is in stark contrast with classical convexity.
Extreme points of POVMs under classical convexity are not necessarily spectral measures and
are hard to describe even for finite sets, though abstract characterizations are available. C*-
extreme POVMs being spectral measures have physical significance as they relate to classical
measurements. Our result reinforces the idea that C*-convexity is perhaps the suitable notion
of convexity in the quantum setting. One can see the study of C*-convexity structure of POV Ms
in Farenick et. al. [24] and Gregg [33].

This chapter is organized as follows. We first translate the notions of C*-convexity and C*-
extreme points in the setting of POVMs, and state the corresponding abstract characterizations
for C*-extreme POVMs. Inspired from classical case, we decompose a POVM as a sum of atomic
and non-atomic POVMs and study their C*-extremity conditions separately. In Section 4.2 and

Section 4.3, we present some of our main results on C*-extreme POVMs. The most crucial
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technical step is in the proof of Theorem 4.2.1. Heinosaari and Pellonpéé [37] have shown that
extreme points of POVMs with commutative ranges are spectral. The same conclusion holds
under C*-convexity (Theorem 4.2.2) as well. Most importantly all atomic C*-extreme POVMs
are also seen to be spectral (Theorem 4.3.2). This also helps us in proving that C*-extreme
POVMs are spectral for finite dimensional Hilbert spaces, which we prove in full generality.

Next we introduce a notion of disjoint spectral measures and compare it with the notion of
singularity. We also see behaviour of C*-extremity under the direct sum of mutually singular
POVMs. Finally basic properties like C*-convexity, atomicity etc are explored under a notion
of measure isomorphism of POVMs.

4.1 General Properties of C*-extreme POV Ms

Throughout this chapter, X is a non-empty set and O(X) denotes a o-algebra of subsets of X.
The pair (X, O(X)) is called a measurable space and the elements of O(X) are called measurable
subsets. We shall simply call X a measurable space without mentioning the underlying o-algebra
O(X). To avoid some unnecessary complications in presentation, we assume that all singleton
subsets of X are measurable. When X is a topological space, we shall assume O(X) to be the
Borel o-algebra on X. All topological spaces under consideration would be Hausdorff.

We refer the readers to Section 1.3 for the basics of positive operator valued measures

(POVMs) and their dilation theory. As mentioned there, we fix the following notation:

Notation. We denote by Py (X) the collection of all normalized POVMs from O(X) to B(H).

We now describe the notions of C*-convexity and C*-extreme points of the set Py (X).

Definition 4.1.1. For any p; € Py (X) and T; € B(H), 1 < i <n with >1" | T*T; = Iy, a sum
of the form

u(-) = Zn:Ti*ﬂi(')Ti (4.1.1)
=1

is called a C*-convex combination for p. The operators T;’s here are called C*-coefficients.
When T;’s are invertible, the sum in (4.1.1) is called a proper C*-conver combination for p.

Observe that Py (X) is a C*-convex set in the sense that it is closed under C*-convex com-
binations i.e. .
> T ()T € Pu(X),
i=1
whenever p; € Py(X) and T; € B(H) satistying > | T;*T; = Iy for 1 < i < n. The following
definition of C*-extreme points is the POVM analogue of Definition 2.1.2 for UCP maps.

Definition 4.1.2. A normalized POVM p : O(X) — B(H) is called a C*-extreme point in
Py (X) if, whenever

n

T ()T

=1
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4.1. General Properties of C*-extreme POVMs

is a proper C*-convex combination of u, then each p; is unitarily equivalent to u i.e. there are
unitary operators U; € B(#H) such that p;(-) = UFp(-)U; for 1 <i < n.

We now consider some abstract characterizations of C*-extreme POVMs parallel to those of
UCP maps. The characterization of C*-extreme UCP maps (Theorem 2.2.1) due to Farenick-
Zhou translates into the language of POVMs as follows and one obtains a characterization for
C*-extreme points of Py (X).

As we are dealing with the more general case of arbitrary measurable spaces, we are giving
an outline of the proof here for completeness.

Theorem 4.1.3. Let p : O(X) — B(H) be a normalized POVM with the minimal Naimark
dilation (m,V,Hr). Then p is a C*-extreme point in Py (X) if and only if for any positive
operator D € m(O(X))" with V*DV being invertible, there exists a co-isometry U € m(O(X))’
(i.e. UU* = Iy ) satisfying U*UDY? = D2 and an invertible operator S € B(H) such that
UDY?vV =V§.

Proof. First assume that p is C*-extreme in Py (X). Let D € n(O(X))’ be positive with V*DV
invertible. Choose @ > 0 small enough such that I3, — aD is positive and invertible. Set

Ty = (aV*DV)Y2 and Ty = (I — aV*DV)Y/2,

Then both T} and T3 are invertible and 7771 + 71575 = Iy. Now we define POVMs p; : O(X) —
B(H),i=1,2 by

p(4) = T (@V* Dr(A)V) Ty and pa(A) = Ty (V* (I, — aD)m(AV) Ty, (41.2)
for all A € O(X). It is clear that u; is a POVM and p;(X) = I. Also,
T (A)Ty 4 T5pe(A)Te = Vir(A)V = u(A) for all A € O(X).

Since p is C*-extreme, there exists a unitary W € B(H) such that p(-) = W*u(-)W. This
implies

u() = (VaWw* 'V DY) n () (VaD VI W) = Vir()WA,
where Vi = \/aDY2VT'W € B(H,H,). Now if we set K = [7 (O(X)) ViH] C Hn, then one
can easily verify that K = R(D'/2), and the triple (7 (-)),,
for . Therefore, by the uniqueness of minimal dilation (Theorem 1.3.2), there exists a unitary
U : K — H, satisfying

V1, K) is the minimal Naimark dilation

UV =V and n(A)U = Un(A)). for all A € O(X).

K

Extend U to the whole of H by assigning it to be 0 on H, & K, which we denote by U. Clearly
then U is a co-isometry satisfying U*U D2 = D'/2. Also we have 7(A)U = Un(A) for all A €
O(X), and hence U € w (O(X))'. Now if set S = \/a 'W*Ty € B(H). then S is invertible and,
since UV; =V and W is a unitary, we get

VS =UWS = Vaya 'UDV2VT'WW*Ty = UD'?V.
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For the converse, assume that the given statement in ‘only if’ part is true. Let g = >"1 ) T i (+)T;
be a proper C*-convex combination. Fix any ¢ € {1,...,n}. Since T;u;(-)T; < p, it follows
from Radon-Nikodym type Theorem (Theorem 1.3.10) that there exists a positive operator
D; € 7(O(X))' satisfying

T (AT, = V*Dyim(A)V  for all A € O(X).

Then V*D;V = T;T; and since T is invertible, it follows that V*D;V is invertible. Hence the

1/2 1/2

hypothesis ensures the existence of an operator U; € 7 (O(X))' satisfying U7U;D;’* = D;’* and

an invertible operator S; € B(H) such that UiDg/ZV =VS;. Thus,

T} 11s()T; = V*Dir(-)V = V*D*2(\D*V = v*D}*r(-)U;U; DV*V

= VDU (VUD} PV = (VS) ' 7()(VS;) = S} (V'()V) S; = S (-)Si
which implies p; = 1}*715;‘;1(-)51171 = Rfu(-)R;, where R; = S’inl. It is clear that R; is

invertible and since, R} R; = 11;(X) = I3, it follows that R; is a unitary. This shows that pu; is
unitarily equivalent to u, as required to conclude that u is a C*-extreme point in Py (X). O

The following is an immediate corollary of Theorem 4.1.3. This is an analogue of C*-
extremity of *-homomorphisms in the spaces of UCP maps.

Corollary 4.1.4. Every spectral measure is a C*-extreme point in Py (X).

Proof. If u is a spectral measure then the minimal dilation for p can be taken to be (u, I3, H).
For positive D € u(X)" with D(= I}, DIy) invertible, we can take U = Iy and S = D'/? to
satisfy the criterion. O

Another abstract characterization of C*-extreme points for UCP maps due to Zhou (Corol-
lary 2.2.4) translates to POVM case as follows. Again as we are dealing with general measurable
spaces, we provide a proof here.

Corollary 4.1.5. Let p € Py(X). Then p is C*-extreme in Py(X) if and only if for any
POVM v : O(X) — B(H) with v < p and v(X) invertible, there exists an invertible operator
S € B(H) such that v(A) = S*u(A)S for all A € O(X).

Proof. First assume that p is a C*-extreme point in Py/(X). Let v : O(X) — B(H) be a POVM
such that v < p and v(X) is invertible. Let (7w, V,H,) be the minimal Naimark dilation for p.
By Theorem 1.3.10, there exists a positive operator D € 7(O(X))’ such that

v(A) =V*Dr(A)V forall A€ O(X).

Since V*DV = v(X) and v(X) is invertible, it follows that V*DV is invertible. Therefore, by
Theorem 4.1.3 there exists a co-isometry U € w(O(X)) satisfying U*UDY? = D2 and an
invertible operator S € B(#) such that UD'/2V = V'S. So for any A € O(X), we get

v(A) = V*Dr(A)V = V*D'2x(A)D'?V = V*D'2x(A)U*UD'?V
= (UDY?V) x(A) (UD'2V) = (VS)*n(A)(VS) = S*u(A)S.
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Conversely, assume the given statement in the ‘only if’ part is true. Let p = Y7, T7 i (-)T; be
a proper C*-convex combination. Then T} u;(-)T; < p for each i. Also, since T} u;(X)T; = T;'T;
and T; is invertible, it follows that T.*u;(X)T; is invertible. Hence using hypothesis, there exists
an invertible operator S; € B(#) such that for all A € O(X), we have T} ;(A)T; = Sfu(A)S;
which when put differently yields

pi(A) = Ui p(A)U;

where U; = SiTi_l. But, since U;U; = U;u(X)U; = pi(X) = I and U; is invertible, it follows
that U; is a unitary. This shows that u; is unitarily equivalent to p, as was required. O

4.2 (C*-extreme POVMs with commutative ranges

With these two characterizations of C*-extreme POVMSs at our disposal, we are now ready to
present the main results of this chapter. Gregg [33] shows that if a POVM p is C*-extreme in
Py (X) (for a compact Hausdorff space X) then for any A in O(X), the spectrum of p(A) is either
contained in {0, 1} (so that u(A) is a projection) or it is whole of the interval [0, 1]. Our main
observation is that the second situation can be avoided in a variety of cases. The proof uses
straightforward Borel functional calculus, with a carefully chosen family of functions. These
functions are necessarily discontinuous and so C*-algebra setting and continuous functional
calculus will not suffice.

Theorem 4.2.1. Let p1 be a C*-extreme point in Py (X). If E € O(X) is such that p(A)u(E) =
w(E)u(A) for all A C E in O(X), then u(E) is a projection. In particular if p(E) commutes
with all p(B) for B € O(X), then pu(E) is a projection.

Proof. The second assertion is immediate from the first. So assume the hypothesis in the first
statement. We claim that

o(WE))N(r,s)=0 forall 0<r<s<l,

where o(u(E)) denotes the spectrum of the operator u(E). As u(E) is a positive contraction,
it will follow that

o(u(E)) € {0,1},

which in turn will imply that p(E) is a projection. So fix 0 < r < s < 1, and define the map
f = frs:[0,1] = [0,1] by

1 if t ¢ [r,s],
Jrs(t) = { = (% — 1) if t € [r, s]. (42.1)

Clearly f is continuous except at one point namely s, and hence it is a Borel measurable
function. So for any operator 0 < 7' < Iy, it follows from spectral theory that f(7") is a well
defined bounded operator (see (1.4.6)). Further we note for each ¢ € [0, 1], that

0<a:= <1ir> (1;8>§f(7f)§1
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and consequently,
aly < f(T) < Iy. (4.2.2)
Now consider the map v : O(X) — B(H) defined by
v(B) = p(B 1\ E)f(u(F)) + (B \ E) (123)
for any B € O(X). We show that v is a POVM by observing the following:

e For each B € O(X), our hypothesis says that u(B N E) and u(E) commute and it then
implies from spectral theory that u(B N E) commutes with f(u(FE)) (see Theorem 1.4.6).
Therefore, as both u(B N E) and f(u(E)) are positive operators, it follows that their
product u(E N B)f(u(E)) is a positive operator, which amounts to saying that v(B) > 0
in B(H).

e If By, Bo,... is a countable collection of mutually disjoint measurable subsets of X and
B = U, By, then since u is a POVM, we have in WOT convergence,

v(UnBn) = p

—~

F((E)) + 1((UnBn) \ E)
Un(Bn N E))f(1(E)) + 1(Un(Bn \ E))
[1(Bn N E)f(u(E))] + ) 1(Bn \ E)

[1(Bn N E) f(1(E)) + p(Bn \ E)]

v(By).

(UnBn) N E)
)

Il
M 3M 3M ;

This shows that p is countably additive, which in particular implies that the function
— (h,v(B)k) is a complex measure on X for all h, k € H.

The observations above imply that v is a POVM. Further since f(u(E)) < Iy from (4.2.2), it
follows for each B € O(X), that

v(B) = u(BN E)f(u(E)) + n(B\ E) < y(B N E) + (B \ E) = u(B)

which is to say v < p. Also since f(u(E)) > aly from (4.2.2), and u(E) < Iy, we note that

+ X\ E)
+ Iy — u(E)
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4.2. (C*-extreme POVMs with commutative ranges

which is equivalent to saying that v(X) is invertible. Therefore, as p is a C*-extreme point
in Py(X), it follows from Corollary 4.1.5 that there exists an invertible operator T' € B(H)
satisfying the condition
v(B) =T*u(B)T forall Be€ O(X). (4.2.4)
We note that v(X) = T*T = |T|? and hence,
T = v(X)'? = [u(B) f((E)) + Iy — p(E)]/? (4.2.5)

where |T'| denotes the square root of the positive operator T*T. Set S = u(E). By taking B = FE
in (4.2.4) yields
T*ST = T*u(E)T = v(E) = u(E)f(u(E)) = Sf(5).
Let T'= U|T| be the polar decomposition of T. Then U is a unitary and |T'| is invertible, as T
is invertible. Consequently,
U*SU = |T|71Sf(9)|T|~ . (4.2.6)
Now let g : [0,1] — [0, 1] be the map defined by
P (N A T
T =T 4 tf0) ~ | r iftelns).
Then g(S) is a well-defined bounded operator and we get
9(8) = Sf(S)In — S+ Sf(S)
Hence (4.2.5) and (4.2.6) yield
U*SU = g(S).
Therefore by Spectral mapping theorem (Theorem 1.4.7), spectrum of S satisfies the following:
o(S)=0c(U*SU) = o(g(S)) C essran(g),

where essran(g) is the essential range of g with respect to the spectral measure corresponding
to the operator S. But,

essran(g) C R(g) C [0,r] U [s, 1],

where R (g) denotes the range of the function g. This implies that o(S) C [0,7] U [s, 1], which is
same as saying o(S) N (r,s) = (). This is what we wanted to show. O

A direct application of Theorem 4.2.1 is possible for C*-extreme points with commutative
ranges. We say a POVM p is commutative if its range is commutative. It has been shown in
[37] that a commutative normalized POVM is an extreme point in Py (X) if and only if it is
spectral.

A similar kind of result for C*-extreme points holds true following the theorem above: if a
C*-extreme point p in Py (X) is commutative, then it follows from Theorem 4.2.1 that p(A)
is projection for all A € O(X) and hence p is spectral. Thus we have arrived at the following
theorem.

Theorem 4.2.2. Let y1 : O(X) — B(H) be a commutative normalized POVM. Then  is C*-
extreme in Py (X) if and only if it is a spectral measure.
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4.3 Atomic C*-extreme POV Ms

In this section, we examine atomic C*-extreme POVMs and see their applications to POVMs
on countable spaces and finite dimensional Hilbert spaces. See Definition 1.3.13 for relevant
notions of atoms and atomic POVMs.

Theorem 4.2.1 is quite powerful. Here we have more applications of it. First consider the
following lemma. Recall our assumption that singletons are measurable subsets.

Lemma 4.3.1. Let p be a C*-extreme point in Py(X). Then u(E) is a projection for every
atom E for p. In particular p({x}) is a projection for all x € X and consequently u(A) is a
projection for every countable subset A of X.

Proof. If E is an atom for p then for each B C E in O(X), either u(B) = 0 or u(B) = pu(E);
hence p(B) commutes with p(FE). Therefore Theorem 4.2.1 is applicable and it follows that
wu(E) is a projection. This further implies that for each x € X, since either pu({z}) = 0 or {x}
is an atom for p, pu({z}) is a projection. Now let x,y € X be two distinct points and set

P =pu({z}) and Q@ = p({y}).

Note that
P+Q=p({z}) +p({y}) = n({z,y}) < In

and hence P < Iy — ). Because P and () are projections as proved above, it follows that
P(I3 — Q) = P, which in turn yields
PQ =0.

In other words, u({z}) and u({y}) are mutually orthogonal projections for any two distinct
points x and y. Therefore, for any at most countable subset A = {x1,z9, ...} of X, the collection
{pu({zn})} consists of projections mutually orthogonal to one another and since

w(A) = u{za})  (in WOT),

n>1

we conclude that u(A) is a projection. O

The POVMs on finite sets have been natural settings for many applications in quantum
theory. Several researchers have looked into the convexity structure in this set up and the
structure of extreme points is very well studied. They are not always spectral measures. When
it comes to C*-convexity, it is shown in [24] that only spectral measures are C*-extreme when
‘H is finite dimensional. Here we show that it is true in full generality.

Following the results above, we now give a characterization of all atomic C*-extreme points
in P (X). This in particular characterizes all C*-extreme points in Py (X ) whenever X is finite.

Theorem 4.3.2. An atomic normalized POVM p : O(X) — B(H) is a C*-extreme point in
Py (X) if and only if u is spectral. In particular, if X is a countable measurable space then any
C*-extreme point of Py (X) is spectral.
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Proof. We have seen that spectral measures are always C*-extreme. Conversely, assume that
is C*-extreme in Py (X). Since p is atomic, it follows from Proposition 1.3.15 that there is a
countable family {By,},>1 of mutually disjoint atoms for u such that

u(A) = Z w(ANBy,), forall Ae O(X). (4.3.1)

n>1

Now since By, is an atom, we know that for any A € O(X), either u(AN B,) =0 or AN B,
is an atom for u. Therefore since u is C*-extreme in Py (X), it follows from Lemma 4.3.1 that
u(ANDB,) is a projection for all n > 1. Since B,,’s are mutually disjoint, Proposition 1.3.5 implies
that the collection {u(A N By,)}n>1 consists of mutually orthogonal projections. Consequently
it follows from equation (4.3.1), that u(A) is a projection. This proves that pu is spectral. Since
any POVM on a countable measurable space is atomic, the second assertion follows. O

The question of when a C*-extreme POVM is also extreme in Py (X) is very natural. When
the Hilbert space is finite dimensional, this is always true as proved by Farenick et. al which we
state below.

Lemma 4.3.3 (Proposition 2.1, [24]). If H is a finite dimensional Hilbert space, then every

C*-extreme point of Py(X) is also extreme.

However, the above result is not known in the case of infinite dimensional Hilbert spaces
setting. Below we show this in a specific case of POVMs acting on countable spaces. Since all
spectral measures are also extreme, the following corollary follows directly from Theorem 4.3.2.

Corollary 4.3.4. If X is a countable (in particular, finite) measurable space, then every C*-

extreme point in Py (X) is extreme.

The case of finite dimensional Hilbert spaces

We end this section by recording the case of finite dimensional Hilbert spaces and general
measurable spaces. This set up has been widely studied by several researchers. We recall that
it is proved in [24] for a compact Hausdorff space X and a finite dimensional H, that every
C*-extreme point in Py (X) is spectral. We extend this result to full generality using Theorem
4.3.2.

Theorem 4.3.5. Let H be a finite dimensional Hilbert space and X a measurable space. Then
any C*-extreme point in Py (X) is spectral.

Proof. Firstly, finite dimensionality of H ensures that every C*-extreme point in Py (X) is also
extreme (Lemma 4.3.3). Now we show that every extreme point in Py /(X)) is atomic (see Lemma
2, [12] for topological spaces) as follows: if p is extreme in Py (X) and (7, V, H) is the minimal
Naimark dilation for u, then the map

D — V*DV
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from 7(O(X))" to B(H) is one-to-one by Theorem 1.3.11. Since H is finite dimensional, B(H)
is a finite dimensional algebra and hence m(O(X))’ is a finite-dimensional algebra. Therefore,
since

7(O(X)) C7(O(X)) and Hp=[r(O(X))VH],

it follows that #, is also finite-dimensional. Consequently {m(A) : A € O(X)} is a commuting
family of projections on a finite dimensional Hilbert space H, and hence it is a finite set. This
implies that 7 is atomic. Then by Proposition 1.3.17, u is also atomic. Thus we have shown
that every C*-extreme point in Py (X) is atomic. The proof is complete in view of Theorem
4.3.2. O

Remark 4.3.6. In the theorem above, we noticed that any spectral measure acting on a finite
dimensional Hilbert space is atomic.

4.4 Singular POVMs and their direct sums

The notion of mutual singularity of positive measures is very familiar from classical measure
theory. We consider the similar notion of mutually singular POVMs. Our main aim here is to
discuss the behaviour of C*-extremity for direct sums of mutually singular POVMs. This helps
us in characterization of C*-extreme points, as we show that every C*-extreme POVM can be
decomposed into a direct sum of an atomic and a non-atomic normalized POVM.

Definition 4.4.1. Let #;,H2 be Hilbert spaces and (X,O(X)) a measurable space. Two
POVMs p; : O(X) — B(H;), i = 1,2, are called mutually singular, denoted p; L po, if there
exist disjoint measurable subsets X; and X3 of X such that p;(A) = pi(ANX;) forall A € O(X).

The following proposition about singularity of atomic and non-atomic POVMs is very crucial
for our subsequent results. It is a direct consequence of the classical case that an atomic finite
positive measure is always mutually singular to a non-atomic positive measure (see Johnson
[43]). We use it below.

Proposition 4.4.2. Let p; : O(X) — B(H;), i = 1,2 be two POVMs such that py is atomic

and pao is non-atomic. Then they are mutually singular.

Proof. Consider strictly positive density operators S; on ‘H; such that T'— Tr(S;T) (Tr denotes
trace) are faithful normal states on B(#H;) for i = 1,2. Then A; : O(X) — [0, 00) defined by

Ai(A) = Tr(ui(A)S;) forall A€ O(X),
are positive measures which, for any A € O(X) satisfy
wi(A) =0 if and only if A\;(A) = 0. (4.4.1)

This in particular implies that A; is atomic and Ao is non-atomic. Therefore, as noted above,
A1 is mutually singular to Ay (see Theorem 2.5, [43]). This in turn implies due to (4.4.1) that
w1 is mutually singular to ps. O
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4.4. Singular POVMs and their direct sums

Disjoint spectral measures

Inspired by the notion of disjointness for representations of C*-algebras (Definition 1.2.14), we
introduce a similar notion for spectral measures. We do not know whether this concept has
been studied before. It turns out that the concepts of singularity and disjointness of spectral
measures are in fact same.

Let m : O(X) — B(#H,) be a spectral measure and let H be a closed subspace of H, such
that H is invariant (and hence reducing) under 7(A) for all A € O(X). Then the mapping
A = w(A)),

spectral measure of .

gives rise to another spectral measure from O(X) to B(H), and is called a sub-

Definition 4.4.3. Two spectral measures m; : O(X) — B(Hr,), i = 1,2 are called disjoint if no
non-zero sub-spectral measure of 71 is unitarily equivalent to any sub-spectral measure of mo.

Let A : O(X) — [0,00] be a o-finite measure such that L?()\) is a separable Hilbert space.
Consider the map 7 : O(X) — B(L?()\)) defined by

m™(A) = M, forall A€ O(X), (4.4.2)

where M, , is the multiplication operator by the characteristic function x 4. It is straightforward
to verify that 7 is a spectral measure. Also 7*(A) = 0 if and only if A\(4) = 0 for any A € O(X).

Such spectral measures are known as canonical spectral measures.

We first prove that the notion of singularity and disjointness are same in the case of canonical
spectral measures, and then for general case. The proof here follows the same techniques which
are usually employed for representations (see Theorem 2.2.2; [2]).

Lemma 4.4.4. Let Ay and Ao be two o-finite positive measures on X. Then A\ is mutually

singular to Xy if and only if T and 72 are disjoint.

Proof. Let 7 and 72 be disjoint spectral measures. Assume to the contrary that A; and Ay are
not mutually singular. Then by Lebesgue decomposition theorem, there is a non-zero o-finite
positive measure, say A, such that A is absolutely continuous with respect to both Ay and As.
Now for i =1, 2, let
dX A 2 2
Ci={reX;or(@) >0} and K =R(x™(C)) = {xa.fs £ € L)} € L5,

where C}%(m) is the Radon-Nikodym derivative of A\ with respect to A;. Since A # 0, we note

that K; # 0. Now we define an operator U; : L?(\) — K; by
d\
A

ax =X, (f“j;\;), fGLQ()\).

It is easy to see that U; is a unitary operator such that U;m*(A) = 7 (A)U; for all A € O(X).
This shows that 7 is unitarily equivalent to 77)‘1'(-)‘ .3 hence the sub-spectral measures i (-)

Uf=Ff

lxc;
are unitarily equivalent, which is a contradiction to the mutual disjointness of 7* and 7*2. The

proof of the converse is contained in the next theorem. ]
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Chapter 4. C*-extreme Positive Operator Valued Measures

We use the familiar notion of direct sums of POVMSs in the next theorem and in subsequent
results. The direct sum of a collection {p; : O(X) — B(H;)}icp of POVMs is the map @®;u; :
O(X) — B(®iH;) defined by

(®ipi)(A) = ®iui(A) for all A e O(X). (4.4.3)

It is immediate that @®;u; is a POVM. Further it is normalized if and only if each pu; is normalized.

Also ®;u; is a spectral measure if and only if each p; is a spectral measure.

Remark 4.4.5. If {1;};cn is a collection of POVMs with minimal Naimark triples (m;, Vi, K;),
then it is immediate to verify that the minimal Naimark triple for @;u; is given by (m, V,K),
where K = &;K;, V = &;V; and 7 = @®;7;.

We now give some equivalent conditions for disjoint spectral measures similar to those for dis-
jointness of representations (Proposition 1.2.15). This also shows that the notions of singularity

and disjointness are same.

Theorem 4.4.6. Let m; : O(X) = B(Hnr,),i = 1,2 be two spectral measures, where H, are
separable Hilbert spaces. Then the following are equivalent:

(i) m and mo are mutually singular.
(ii) w1 is disjoint to ms.

(iii) If for T € B(Hr,, Hr,), T71(A) = m2(A)T for all A€ O(X), then T = 0.

Proof. (i) = (iii): Let m and w2 be mutually singular. Then there are disjoint measurable
subsets Cq and Cy such that 7;(A) = m;(ANC;) forall A € O(X)andi =1,2. UT € B(Hr,, Hn,)
satisfies T'm (A) = m2(A)T for all A € O(X), then since 71(C1) = I3, and ma(Cy) = 0, it follows
that

T =Tm(C1) =m(C)T =0.

(iii) == (ii): If m; and m are not disjoint, then there are non-zero closed subspaces K; of
Hr, invariant under 7;(A) for all A € O(X), and a unitary U : K1 — Kg such that

Uni(A)), = m2(A), U forall A€ O(X).

|K1
Extend U to Hn, by assigning 0 on H,, © K1, which we call by U. Then it is immediate that
U # 0 and Ury(A) = m(A)U for all A € O(X), violating the condition in part (3).

(ii) = (i): Let m and 72 be disjoint. We now invoke Hahn-Hellinger Theorem (see Theorem

7.6, [58]) to obtain a collection, say {X,},enufoo}s Of o-finite positive measures (possibly zero

measures) mutually singular to one another such that, upto unitary equivalence, we have

T
m = @ n -

neNU{oo}

for ¢ = 1,2. Here n - 7 denotes the direct sums of n copies of ™ (when n = oo, the direct

. s L 1 L 2
sum is countably infinite). Because 7; and my are disjoint, each 7 must be disjoint to 7*m
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4.4. Singular POVMs and their direct sums

for m,n € NU {cc}. It then follows from Lemma 4.4.4 that Al is mutually singular to A2,
as positive measures. Therefore for each n,m, there exist measurable subsets X! and X2,
satisfying X! N X2 =0 and

An(A) = A(ANXy,) and A7 (A) =A% (AN X)),

for all A € O(X). Set
X' =uU,N, X! and X? =U,, N, X2,..

Then by usual set theory rules:
Xnx? = (un Mo X,im)m(uk N ka) = UnUs [(mmX}Lm) n (lefkﬂ C UpUs (X,ik N Xﬁk) =0,

by using X}, N X2, = (). Further for any A € O(X) and fixed n, since AL (AN X} )= Al

n

(4)
for all m, we have

AL(A) = AAN XY > A (0 (AN X)) = Tim AL (1 (AN X)) = A (A4),

l—o00

where limit is taken in WOT. This implies
AAN XY =ML (A).

Similarly, we get
M (AN X?) = \2 (A) for each m.

Put differently, we obtain 7 (A N X?) = 72 (A), which further implies that

m(ANX)= @ n-ANX)= P n-m(A) =m(A),

neNU{oo} neNU{oo}

for each A € O(X) and i = 1,2. Since X! and X? are disjoint, we conclude that 71 is mutually
singular to 7s. O

Remark 4.4.7. In Theorem 4.4.6, we assumed that the spectral measures act on separable
Hilbert spaces. But the implication (1) = (3) is true even for non-separable Hilbert spaces
and the proof is similar. To see this, let m; : O(X) — B(K;), i = 1,2 be two mutually singular
spectral measures concentrated on measurable subsets X; with X1 N X5 = (). Here K; need not
be separable. Let T' € B(K1, K2) be such that T (A) = ma(A)T for all A € O(X). Then, since
m1(X1) = m(X) = Ik, and m(X1) = 0, we have T' = T (X1) = mo(X1)T = 0. We use this
fact in the next theorem.

Direct sums and C*-extreme points

We now explore the properties of being C*-extreme (or extreme) under direct sums of mutually
singular POVMSs. Generally it is enough to look at individual components to obtain the same
property for direct sums. The results and proof here are very similar to the case of direct sums
of disjoint UCP maps (Proposition 2.3.8).
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Chapter 4. C*-extreme Positive Operator Valued Measures

Theorem 4.4.8. Let {p; : O(X) — B(H;)}ica be a countable collection of normalized POV Ms
for some indexing set A such that p; and p; are mutually singular for i # j in A. Then p = ©;u;
is C*-extreme (resp. extreme) in Pa,1,(X) if and only if each p; is C*-extreme (resp. extreme)
in Py, (X).

Proof. For each i € A, let (m;, V;, Hr,) be the minimal Naimark dilation for ;. Set
H=®H;, Hp= @ﬂ‘(ﬂ-i, T=¢;m and V =@;V;.

Then (m,V,H,) is the minimal Naimark dilation for 4 (see Remark 4.4.5). Also for i # j in A,
since p; is mutually singular to p;, it follows from Proposition 1.3.7 that 7; is mutually singular
to mj. Now we claim (compare this with Lemma 2.3.6) that

W(O(X))/ = EBZ'TFZ'(O(X)), = {@iSi; S; € WZ(O(X)),} . (4.4.4)

Let S € 7(O(X))" € B(®iHxr,). Then S = [S;;] for some S;; € B(Hr;, Hr,). For any A € O(X),
]

therefore we have [S;;] (®im;(A)) = (®;m;(A)[ Sij], that is, [Si;mj(A)] = [mi(A)Si;]; hence

Sijﬂ'j(A) = WZ(A)SU for all i,j e A.

In particular, this says that S; € m;(O(X))’ for all i € A. Also since m; and 7; are mutually
singular for ¢ # j, it follows from Remark 4.4.7 that S;; =0 for i # j. Thus we get

S = [Sij] = ®iSu € ®ims(O(X))'.

This proves that 7(O(X)) C @;m(O(X))". The other inclusion of our claim is obvious.

In order to prove the equivalent assertions of C*-extremity, we use the claim above and
the necessary and sufficient criterion of Theorem 4.1.3 throughout the proof without always
mentioning them. First assume that p is C*-extreme in Py (X). Fix j € A and let D; €
7j(O(X))" be positive such that V;*D;V; is invertible. Define

D = &;D;
by assigning D; = Iy, for i # j. It is clear that D is positive and D € 7(O(X))". Since
V*DV = &;V;*D;V;, and V;*D;V; is invertible for all ¢ whose inverse is uniformly bounded,
it follows that V*DV is invertible. Therefore, as p is C*-extreme in Py (X), we get a co-
isometry U € m(O(X)) with U*UD'/? = DY/? and an invertible operator T € B(H) such that

UD'Y2V = VT. Then T = [T};] for some T;; € B(H;,H;) and U = @;U; for U; € m(O(X))'.
Since U is a co-isometry, each U; is a co-isometry. Also, since

U UD = (0:U7) (0U) (9:D;%) = U"UDY? = DV? = @D,

it follows in particular that
¥ /2 1/2
U;U;D;'" = D;'".

Further, since

@;U;D*V; = UDY?V = VT = (&,V})[Ty,] = [ViT}), (4.4.5)
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4.4. Singular POVMs and their direct sums

it follows for 7 # j that, V;T;; = 0 and hence T;; = V;*V;T;; = 0. This amounts to saying that
T = ®;T}; and its invertibility, in particular, implies that Tj; is invertible in B(#;). Also (4.4.5)
yields
1/2
U;D;""Vy = VjTj;.

As Uj is a co-isometry in 7;(O(X))" satisfying U]*Uijl-/2 = D;/2 and T}; is invertible in B(#;)
such that Uijl-/2Vj = V;Tj;, we conclude that p; is C*-extreme in Py, (X).

Conversely, assume that each pu; is C*-extreme in Py, (X). Let D € n(O(X))’ be positive
such that V*DV is invertible. Then from (4.4.4), we have D = @&;D; for some D; € m;(O(X))'.
Clearly each D; is positive. Since V*DV is invertible and V*DV = @;V;*D;V;, it follows that
V:*D;V; is invertible for all ¢ € A. Again, as p; is C*-extreme in Py, (X), we obtain a co-
isometry U; € m;(O(X))" with UZ-*UiDil/2 = Dil/2 and an invertible operator T; € B(H;) such
that U; D/?V; = ViT;. Set

U=¢;U; and T = &;T;.

Then U € 7 (O(X))" and U is a co-isometry, as each Uj is a co-isometry. Likewise T is invertible
in B(#), since each T; is invertible. Further we note that

Similarly we get
UDY?V = @,U;D}/*V; = ®,ViT; = VT.
Thus we conclude that p is C*-extreme in Py (X).
The case of equivalent assertions of extremity can be proved similarly, using (4.4.4) and
Extreme point condition (Theorem 1.3.11). O

The following corollary is just an explicit description of the theorem above.

Corollary 4.4.9. Let p € Py(X) and let {B;};cp be a collection of disjoint measurable subsets
such that X = U;epaBi and pu(B;) is a projection for each i. Let H; = R(u(B;)) and define
wi : O(X) — B(H;) by

pi(A) = p(Bi VA, forall Aec O(X).

Then w is C*-extreme (resp. extreme) in Py(X) if and only if each p; is C*-extreme (resp.
extreme) in Py, (X).

Proof. Let (mw,V,Hr) be the minimal Naimark dilation for u. Since p(B;) is a projection for
each i and B;’s are mutually disjoint, it follows from Proposition 1.3.5 that u(B;)’s are mutually
orthogonal projections. Also pu(B;) commutes with p(A) for each A € O(X) by Proposition
1.3.5, which implies that each #; is a reducing subspace for all u(A), A € O(X) by Proposition
1.3.5 and hence p; is a well-defined normalized POVM. Further, since X = U;B;, we have

H=&H, and pu= D;u;.
The assertions now are direct consequence of Theorem 4.4.8. ]
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Chapter 4. C*-extreme Positive Operator Valued Measures

As we mentioned earlier in Theorem 1.3.16, every POVM decomposes uniquely as a sum
of atomic and non-atomic POVMs. Additionally if yu is C*-extreme then we show that this
decomposition can be made into a direct sum of atomic and non-atomic POVMs such that
each of the components is C*-extreme. The following theorem effectively provides a proof of
Theorem 1.3.16 and then discusses its role in identifying C*-extreme POVMs. The proof here
follows almost the same procedure which can be found in [54], [43].

Theorem 4.4.10. Let pu be a C*-extreme point in Py (X). Then p = p1 @ pe where py is an
atomic normalized POVM and ps is a non-atomic normalized POVM and they are mutually
singular.  Such a decomposition is unique. Furthermore p1 and po are C*-extreme and in
particular py is spectral.

Proof. Let {Bj}jca be a maximal collection of mutually disjoint atoms for p, which exists due
to Zorn’s lemma. As in the proof of Theorem 4.3.2, since u is C*-extreme, we note using
Lemma 4.3.1 that u(Bj) is a projection for each j. Also {4(Bj)};ea are mutually orthogonal by
Proposition 1.3.5. Since H is separable, it follows from Proposition 1.3.19 that A is countable.
This further implies that if we set

X1 = Ujea By,

then we have,

p(X1) = pu(Bj), (4.4.6)

JEA
and hence p(X1) is a projection. Now set
Xo= X\ X;.
Fori=1,2, let
Hi = R(pu(Xi)),

and define the operator valued measures p; : O(X) — B(H;) by
pi(A) = p(AN Xi),, = p(A), forall A€ O(X).
It is clear that each u; is a normalized POVM. Also H = H1 ® Hs and

po= 1 D po.

Now we show that p; is atomic. Assume that p;(A) # 0 for some A € O(X). Then p(ANX;) # 0
and, since

HANX) = Y p(AN B,
JEA
it follows that (AN Bj) # 0 for some j and hence p1 (AN Bj) # 0. Therefore, as B; is an atom
for pn, AN Bj is an atom for p. Consequently, as p1(A N Bj) # 0, it follows that A N B; is an
atom for p;. Thus we have got an atom contained in the subset A with p(A) # 0, which shows
that pp is atomic.
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4.4. Singular POVMs and their direct sums

To prove that s is non-atomic, let if possible, A be an atom for us. Since us is concentrated
on X, ANXj is an atom for pp and hence AN X5 is an atom for p. But then {B;};cpa U{ANX>} is
a collection of mutually disjoint atoms for p, violating the maximality of the collection {B;} cx.
Thus we conclude that po is non-atomic. It is clear that p; and po are mutually singular.

To show the uniqueness, let 14y © vo be another such decomposition into a direct sum of
atomic 11 € Px, (X) and non-atomic vp € Px,(X) where H = K; & K. We shall show that
K;=H; and v; = u; for i = 1,2. Let Y7 and Y5 be disjoint measurable subsets such that

vi(A) = (ANY;) forall Ae O(X).

We know from Proposition 4.4.2 that u; L vo and ps L v1; hence Y7 and Ys can be chosen so
that Y7 N Xy = Yo N Xy = (). Therefore for each i = 1,2, since both u; and v; are concentrated
on X; UY;, and since (X1 UY7) N (X2 UY32) =0, we can assume without loss of generality, that
X; =Y, (just replace X;,Y; by X; UY;). Further note that

I, = vi(Yi) = n(Yi) e, = 1(Xo) i, = Praye»

where Py, denotes the projection of H onto H;. This implies K; C H;. By symmetry, we have
H; C K;. Hence K; = H,;. Similarly for all A € O(X), we get

vi(A) =vi(ANY;) = p(ANYy). = p(ANXy)), = (AN X;) = pi(A)
showing that v; = ;. The last statement follows from Theorem 4.4.8 and Theorem 4.3.2. O

Remark 4.4.11. In the theorem above, we cannot expect a similar kind of direct sum decom-
position for a normalized POVM which is not C*-extreme. To see an example, let A1 and Ay
be two probability measures on some measurable space X such that \; is atomic while Ay is
non-atomic. Let T' € B(H) be a positive contraction which is not a projection. Consider the
POVM p € Py(X) defined by pu(-) = A(-)T + X2(-) ({5 — T). One can easily verify that no
decomposition of p into a direct sum of atomic and non-atomic normalized POVMs exists.

One reason for us to study the notion of mutually singular POVMs is the following result.
Its proof follows from Theorem 4.4.10 and Theorem 4.4.8. Since we have already characterized
all atomic C*-extreme points (Theorem 4.3.2), it says in particular that it is sufficient to look

for the characterization of non-atomic C*-extreme points to understand the general situation.

Corollary 4.4.12. Let p: O(X) — B(H) be a normalized POVM and let X1 = U;epB; be the
union of a mazimal collection {B;};en of mutually disjoint atoms for u. Let Xo = X\ X1. Then
w is C*-extreme in Py (X) if and only if
(i) the operators p(X1) and uw(Xs) are projections and,
(i) = p1 @ po such that p; is C*-extreme in Py, (X), where H; = R(pu(X;)) and p; = /,L(-)|Hi
fori=1,2.
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4.5 Measure Isomorphic POVMs

We digress a bit from the earlier discussions and explore C*-extreme properties from the per-
spective of measure isomorphism. In classical measure theory, this notion has been studied
extensively. The idea is to neglect measure zero subsets in considering isomorphisms. One con-
sequence is that most questions about abstract measure spaces get reduced to questions about

sub o-algebras of the Borel o-algebra of the unit interval [0, 1]. In a sense this space is universal.

Measure isomorphism for POVMs seems to have been first studied in [21]. Our aim here
is quite limited to investigate preservation of some natural properties of POVMs, especially
C*-extremity, under this isomorphism. Here too we see the role of the unit interval.

Let X be a measurable space and H a Hilbert space. Let u: O(X) — B(H) be a POVM.
For each A € O(X), let [A],, denote the set

[l i= {B € O(X); i(A\ B) = 0 = u(B\ A)} = {B € O(X); u(B) = () = u(B 1 A)}.
Consider

S(1) = {[A]i A € O(X)}.
Then X(u) is a Boolean o-algebra under the following operations:

[A]u \ [B]u =[A\ B]u

(4.5.1)
[A]# N [B]# = [A N B]u

for any A, B € O(X). Define i : ¥(u) — B(H) by
A(AL) = j(A) for all A € O(X),

which is well defined by virtue of the very definition of [A],. If there is no possibility of confusion,
we shall still denote fi by p only.

Definition 4.5.1. ([21]) For i = 1,2, let X; be two measurable spaces and let H be a Hilbert
space. Two POVMs p; : O(X;) — B(H) are called measure isomorphic, and denoted p; = po, if
there exists a Boolean isomorphism ® : ¥ (1) — X (u2) i.e. ® is bijective and both ® and ®~!
preserve the operations in (4.5.1):

¢ ([Al]#l \ [Bl]ul) = (I)([Al]#l) \ q)([Bl]ul)a

(4.5.2)
¢ ([Al]m N [Bl]ul) =0 ([Al]m) noe ([Bl}m) etc.

such that p1 (A1) = po (P([A1]y,)) for all Ay, By € O(X;).

The following theorem compares some natural properties of POVMs under measure isomor-
phism.

Theorem 4.5.2. Let p; : O(X;) — B(H), ¢ = 1,2 be two normalized POVMs such that they
are measure isomorphic. Then we have the following:

(i) 1 is a spectral measure if and only if pa is a spectral measure.
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4.5. Measure Isomorphic POVMs

(ii) w1 is atomic (resp. mnon-atomic) if and only if ps is atomic (resp. non-atomic).
(iii) p1 is C*-extreme (resp. extreme) in Py (X1) if and only if po is C*-extreme (resp. extreme)

Proof. Let ® : ¥(p1) — X(u2) be a Boolean isomorphism satisfying (A1) = po(®([A]L,)) for
all A} € O(X;). By symmetry, it is enough to prove the statements in just one direction.

(i) This is straightforward by isomorphism: If ue is a spectral measure then for any A; €
O(X1), p2(®([A1]y,)) is a projection. Since p11(A1) = po (P([A1]y,)), it follows that (A1) is a
projection and hence p; is a spectral measure.

(ii) Firstly we claim that if A; is an atom for p;, then Ag is an atom for uy for any Ay €
®([A1],, ). To see this, first note that ps(Az) = pi(A1) # 0. Let A5 C Ay be a measurable
subset. Then for any A} € ®~1([4}],,), we have

® ([All N Al]ul) = ([All]m) N ([Ar]y,) = [AIQ]MQ N [Ag]y, = [A5 N Aoy, = [A/2]u2 = (I)([All]m)
and hence [A] N A;],, = [A]],,, which in turn implies
(A N A = pa (AY). (4.5.3)
But since A; is atomic for pp, we have
either (A} N A1) =0 or (A} N Ar) = i (Ar)

and therefore from (4.5.3),

either f1(A}) =0 or pi(A}) = pun (A1)
Since A1 € ®71([A2],,,) and A} € ®71([AL],,), it follows that

either y2(A3) =0 or p2(Aj) = pa(As).

This shows our claim that As is an atom for ps. Now assume that pg is atomic. To show that
po is atomic, let Ay € O(X3) be such that ug(Az) # 0. If A; € ®71([As],,), then

p1(Ar) = pa(Az) # 0.

Since 1 is atomic, A; contains an atom for p, say A}. Fix A5 € ®([A}],,). Then A} is an
atom for uo by the claim above. As above we show that

p2(Ay N Ag) = pa(Aj),

which implies that A} N Ag is an atom for us contained in As. This proves that ug is atomic.
Similarly if g is non-atomic, then there is no atom for p1, and again it follows from the claim

above that there is no atom for ps, which is equivalent to saying that po is non-atomic.
(iii) Assume that pg is C*-extreme in Py (X2). To show that uy is C*-extreme in Py (X1),

let pa(s) =220 Tj*u{(-)ﬂ’j be a proper C*-convex combination in Py (X7). For each j, define

1) - O(Xa) — B(H) by

ph(A9) = ] (@7 ([As],,)) for all Ay € O(Xa).
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For ug to be well defined, we need to show that
1 (Ay) = ] (Ay) for all Ay, A} € @7 1([Ag],,).

So fix Ay, A} € ®7([As],,). Then [A1],, = [4]],, and hence, we get

pn(Ar\ Ap) = 0= pi (A7 \ Ay).
Therefore, since Tj*;ﬂl()Tj < u1(+), it follows that

T*,Ul(Al \ANT; =0= T*Ml(A/ \ A1)T;

which, as T} is invertible, yields

WAL AY) = 0 = ] (4] \ Ay).
This implies the requirement for well-definedness of p%. Also note that

(A1) = ] (871 (@([A) ) = #3(@([ A1), (4.5.4)

for all A} € O(X1). Further for any Az € O(X3), we have

n

ST (A Ty = 3 T (97 ([A))) T = (27" ([Aeli)) = iz Aa),

J=1 J=1

Subsequently, since pg is C*-extreme in Py (X2), there exists an unitary operator U; € B(H)
such that pa(-) = Ujpj(-)U; for each j. It then follows for all A; € O(X1), that

(A1) = pa(@([A]n)) = US iy (@([A1)))Uj = Uj i (A1) U4

where the last equality is due to (4.5.4). This proves that p; is unitarily equivalent to each u{
which consequently implies that p; is C*-extreme in Py (X;). That u is extreme if and only if
1o is extreme follows similarly. O

In the proof of part (ii) of the theorem above, we observed the following;:

Proposition 4.5.3. Let p; : O(X;) — B(H), i = 1,2 be two measure isomorphic POVMs
with Boolean isomorphism ® : X(p1) — 3(u2). Then Ay is an atom for uy if and only if any
representative of ®([A1],,) is an atom for ps.

Let u: O(X) — B(H) be a POVM. We say p is countably generated if there exists a countable
collection of subsets F C O(X) such that for any A € O(X), there exists B € o(F) satisfying
[A],, = [B],. Here o(F) denotes the o-algebra generated by F. The following result has been
borrowed from [6].

Theorem 4.5.4 (Proposition 59, [06])). If u: O(X) — B(H) is a countably generated POVM,
then 1 is measure isomorphic to a POVM v : O([0,1]) — B(H).

86



4.5. Measure Isomorphic POVMs

Recall that when X is a separable metric space, then O(X) is its Borel o-algebra and in this
case, any POVM on X is countably generated (in fact, the countable collection of open balls
centered at elements of a countable dense set with radius of length rationals generates the Borel
o-algebra of X). What the theorem above basically says is that, to study C*-extreme points
in Py (X) for a separable metric space X, it is sufficient to just characterize the C*-extreme
points in Py ([0,1]) in view of Theorem 4.5.2. This result will also help us find an example
(see Example 5.4.5) of a C*-extreme point in Py (X) which is not spectral, when # is infinite

dimensional.

Now we consider measure isomorphism of POVMs induced from a bimeasurable map. Recall
that for measurable spaces X1 and Xo, a function f : X7 — X5 is called measurable if f *1(142) S
O(X1) whenever Ay € O(X2). Note that for any measurable space X and a measurable subset
Y C X, Y itself inherits the natural measurable space structure from X with the o algebra
{ANY; A€ O(X)}.

Theorem 4.5.5. Fori = 1,2, let X; be two measurable spaces and let Y; C X; be measurable
subsets. Let f : Y, — Y be a bijective map such that both f and f~' are measurable. Given a
normalized POVM py : O(X1) — B(H) satisfying pu1(A1) = p1 (A1 NY1) for all Ay € O(X1),
define po : O(X2) — B(H) by

po(A2) = p (f71 (42N V2))
for all Ag € O(X2). Then puy and po are measure isomorphic.
Proof. We claim that the map ® : ¥(u1) — X(p2) defined by
P([A1]y) = [f(A1NY1)], forall Ay € O(Xy), (4.5.5)
is a Boolean isomorphism. First note that
p(Ar) = (410 ¥2) = g (7 (F(A DY) = i (F(A1 V) (4.5.6)

for all Ay € O(X1). This implies that p;(A;) = 0 if and only if ua(f(A1 NY1)) = 0 for any
A; € O(Xy). Therefore if [A1],, = [A}],, for some A, A} € O(X}), then

[f(Al N Yl)]uz = [f(A,l N Yl)]uz'

This proves the well-definedness of ®. Similarly by symmetry, we prove that @ is injective. That
® is onto is straightforward by noting that

@ (/7 (A2 N Y2)l,, ) = [A2 N Yoy = Aol

for any Ay € O(X3). This shows that ® is a Boolean isomorphism as claimed. Further from
(4.5.5) and (4.5.6), we have

p2(®([Arl)) = p2(f (A1 N Y1) = pa (A1)

for any A; € O(X7). Thus we conclude that p; and pg are measure isomorphic. O
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Chapter 4. C*-extreme Positive Operator Valued Measures

Now we apply these results to the study of C*-extreme POVMs. Consider the map g :
[0,1) — T given by
g(t) =€e*™ for te(0,1),

where T is the unit circle. It is clear that g is a bijective map such that both g and ¢! are

Borel measurable. Therefore for any Hilbert space #H, normalized POVMs p € Py([0,1]) with
u({1}) = 0, are in one-to-one correspondence with Py(T) through measure isomorphism, by
Theorem 4.5.5. In particular, since singletons under non-atomic POVMs have zero measure, it
follows that non-atomic POVMs in Py([0, 1]) are measure isomorphic to non-atomic POVMs in
P (T).

Next if X is a separable metric space, then non-atomic POVMs in Py (X) are measure
isomorphic to non-atomic POVMs in Py ([0, 1]) from Theorem 4.5.4 and Theorem 4.5.2, which
in turn are measure isomorphic to non-atomic POVMs in Py (T) as seen above. Thus we conclude
in view of Theorem 4.5.2 that, characterizing the non-atomic C*-extreme points in Py (X) is
equivalent to characterizing non-atomic C*-extreme points in Py([0,1]) or Py(T). Also we
already know the structure of atomic C*-extreme points from Theorem 4.3.2. Therefore what
we observed from the discussion above and Corollary 4.4.12 is that, to characterize C*-extreme
points of Py (X), it is enough to understand the behaviour of C*-extreme points of Py ([0, 1])
or P'H (T)

Remark 4.5.6. We still do not know a proper concrete structure of non-atomic C*-extreme
points of Py(T), and hence a complete characterization of C*-extreme points of Py (T) is wide

open.
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Chapter 5]

C*-extreme Maps on Commutative
('*-algebras

We continue the investigation of structure of C*-extreme points of POVMs here in this chapter,
albeit we restrict ourselves to the special case of regular POVMs on topological Hausdorff spaces.
Regular POVMs on compact Hausdorff spaces are the most natural frameworks for quantum
information theorists and operator algebraists. As already mentioned, the correspondence be-
tween regular POVMs on a compact space X and UCP maps on the continuous function space
C(X) is essential in providing a bridge between the two theories. This relationship which quan-
tizes the classical Riesz-Markov representation theorem also plays integral role in the study of
several objects like positive definite functions and kernels. Our purpose here is to exploit this
interplay in the study of behaviour of C*-extremity in the two situations. The results developed
in the previous chapter on POVMs will be crucial as well.

We begin with some general properties of regular POVMs on topological Hausdorff spaces.
Similar to the classical case, a description of regular atomic and non-atomic POVMs are pre-
sented. We then discuss regular C*-extreme POVMs, and in particular see their behaviour on
discrete spaces. Taking cue from bounded-weak topology on UCP maps, a similar kind of topol-
ogy is defined on the spaces of POVMs with respect to which a Krein-Milman type theorem
is proved for C*-convexity of the spaces of normalized POVMs. Finally, we bring back all the
results from the case of regular POVMs on compact spaces as an application in the language of
UCP maps on commutative C*-algebras.

5.1 Regular atomic and non-atomic POV Ms

Let X be a Hausdorff topological space. In this case, O(X) will always denote the Borel o-
algebra generated by open subsets of X. We begin by looking at the structure of atomic and
non-atomic regular POVMs on X (see Section 1.3 and Definition 1.3.20 therein for the notion
of regularity).

Similar to the case in classical measure theory, we show that every atom for a regular POVM
is concentrated on a singleton up to a set of measure 0 and that every atomic regular POVM is
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concentrated on a countable subset. First step in that direction is the following lemma.

Lemma 5.1.1. Let 7 : O(X) — B(Hx) be a reqular spectral measure satisfying w(A) = I, or
0 for each A € O(X) (here Hr could be non-separable). Then there exists a unique x € X such

that m = 6,(-) Iy, , where 6, denotes the Dirac measure concentrated at x.

Proof. For each A € O(X), let A(A) = 0 or 1 accordingly so that w(A) = A(A)Iy,. Clearly A
is a regular probability measure, as 7 is regular (e.g. A = 7, for any unit vector h € Hy).
Whence by inner regularity, there is a compact subset C' C X such that A(C') > 0 and thus,
A(C) = 1. We claim to find an element = € C such that

A= 0y.

Suppose this is not the case, then A({z}) = 0 for each =z € C (otherwise, A({z}) = 1 = A(C)
for some x). Therefore it follows from outer regularity of A, that there is an open subset E,
containing x such that A\(E;) < 1/2 and thus,

A(E,) =0.

Since {E;}zec is an open cover for the compact subset C, there exist finitely many points
Z1,...,%n € C such that C C U} | E,,. But then we have

AC) < i ME,,) = 0,
=1

leading us to a contradiction. Thus A = ¢, for some x € X and hence m = 0,(-)I,. The
uniqueness is obvious as A(X) = A\({z}) = 1. O

Remark 5.1.2. It is well-known that the lemma above fails to be true (even on compact
Hausdorff spaces) for finite positive measures, if we drop the regularity assumption (see Example
7.1.3, [10]).

The following theorem and the subsequent corollary give characterization of all atomic and
non-atomic regular POVMs.

Theorem 5.1.3. Let p : O(X) — B(H) be an atomic regular POVM. Then there exists a
countable subset {x}n>1 of X and positive operators {1}, }n>1 in B(H) such that

i(A) =" 6z, (AT, (5.1.1)

n>1

for each A € O(X).

Proof. Let (7, V,H,) be the minimal Naimark triple for u. Since u is regular, 7 is regular by
Proposition 1.3.22. Since p is atomic, we know from Proposition 1.3.15 that there is a countable
collection {By,}p>1 of mutually orthogonal atoms for p such that

w(A) = Z (AN By,), forall Ae O(X).

n>1
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Now if we show that for any atom B for u, there exists a unique element x € B such that

w(B) = p({z}),

then we are done (because for each n > 1, there would exist z,, € B,, such that u(By,) = u({z,}),
and hence u(ANBy,) = 6., (A)T), for all A € O(X), where T,, = u({x,})). So fix an atom B for

. Then B is an atom for the spectral measure 7 as well by Proposition 1.3.17. Now set
K = R(x(B)),

which is an invariant subspace for w(A) for all A € O(X). Consider the spectral measure
p:O(X) — B(K) defined by

p(A) =m(ANB) for all A € O(X).

Iic>

It is clear that p is a regular spectral measure. Since B is an atom for 7, it follows that either
p(A) =0 or Ii, for all A € O(X). Hence Lemma 5.1.1 implies that there is an element x € X
such that

p(X) = p({z}) = Ik.

Note that z € B, and we have 7(B) = w({z}); hence u(B) = u({z}). This completes the
proof. O

Remark 5.1.4. The proof of Theorem 5.1.3 could have been given in a shorter way as follows:
one can consider the measure pg for any strictly positive density operator S as in (1.3.3). Then
Ws is atomic and we can invoke the classical result which says that atomic positive measures are
concentrated on countable sets. We avoided this approach to have a self contained proof of the
result using Naimark dilation theorem.

Corollary 5.1.5. Let u: O(X) — B(H) be a regular POVM. Then

(i) for any atom B for u, there exists a (unique) x € B such that p(B) = p({z}).
(ii) w is atomic if and only if there exists a countable subset Y C X such that p(Y) = pu(X).
(iii) w is non-atomic if and only if p({z}) =0 for all x € X.

Proof. (i) The proof of this is actually ingrained in the proof of Theorem 5.1.3.

(ii) First note that any POVM concentrated on a countable subset is atomic and hence the
‘if” part follows. The converse follows from Theorem 5.1.3, by taking Y = {x, }.

(iii) The ‘only if’ is trivial. To prove the ‘if’ part, since every atom is concentrated on a
singleton by Part (i), the hypothesis implies that p has no atom, which is equivalent to saying
that p is non-atomic. O

Corollary 5.1.6. Let {u,} be a countable collection of reqgular POVMs and let p = @y piy,. Then

W is atomic (resp. non-atomic) if and only if each u, is atomic (resp. non-atomic).

Proof. We use Corollary 5.1.5 to prove the assertions. If u is atomic, then there is a countable
subset Y such that p(Y) = u(X). In particular u,(Y) = un(X) for each n, which implies that
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tn is atomic. Conversely if each p, is atomic, then g, (Y;) = p,(X) for some countable subset
Y,. Y =U,Y,, then Y is countable and u(Y) = u(X), concluding that p is atomic. The
equivalence of non-atomicity follows similarly. O

5.2 Regular C*-extreme POVMs

In this section, we come back to our original theme of C*-convexity of POVMs. Let X be a
Hausdorff topological space and H a separable Hilbert space. Again O(X) denotes the Borel
o-algebra on X.

Notation. We denote by RPy/(X) the collection of all regular normalized POVMs from O(X)
to B(H).

Note that RPy(X) C Py (X) and RPy(X) is itself a C*-convex set in the sense that

> T pi()T; € RPu(X),
=1

whenever p; € RPy(X) and T;’s are C*-coefficients for 1 <4 < n. In a fashion similar to Defi-
nition 4.1.2; one can define C*-extreme points of RPy(X). However the following proposition
says that, for a regular normalized POVM p, it does not matter whether we are considering
C*-extremity of 1 in RPy(X) or in Py (X).

Proposition 5.2.1. Let p : O(X) — B(H) be a normalized reqular POVM. Then p is C*-
extreme (resp. extreme) in Py (X) if and only if p is C*-extreme (resp. extreme) in RPy(X).

Proof. If we show that every proper C*-convex combination of x in Py /(X)) is also a proper C*-
convex combination in RPy(X) and vice versa, then we are done. So let p(-) = > "1 Ti* i ()15
be a proper C*-convex combination in Py (X) for u; € Py (X). Note that, since T3 p; (1)1 < p(+)
for each i, it follows from Proposition 1.3.23 that T;*u;(-)7; is regular. Again by the same
Proposition, since

i) =T (T (V) T

it follows that p; is regular. Thus p; € RPy(X), which shows that 7 7;%u;(-)71; is also a
proper C*-convex combination of p in RPy(X). Since RPy(X) C Py (X), the converse of the
claim is immediate. The assertions about extreme points follow similarly. O

Remark 5.2.2. The purpose of writing Proposition 5.2.1 is that when we shall translate our
results from regular POVMs on compact spaces to UCP maps on C'(X), we won’t have to worry
about the concerned C*-convex sets RPy(X) or Py(X).

We now consider regular C*-extreme POVMs on discrete spaces. We have already seen the
following result for countable measurable spaces in Theorem 4.3.2 without the assumption of
regularity. The extension to uncountable discrete spaces requires regularity in a crucial way.
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Proposition 5.2.3. Let X be a discrete (possibly uncountable) space. Then every reqular POVM
on X is atomic. Moreover, a normalized POVM in RPy(X) is C*-extreme if and only if it is

spectral.

Proof. Firstly let A be a regular Borel positive measure on X. By regularity of A, for each n € N
there is a compact subset C,, such that A(X \ C},) < 1/n. Set C' = U,,C,,. Since X is discrete,
each of C,, is a finite subset and hence C' is countable. Note that

AXNC) S AMXN\Cp) < 1/m,

for each n and hence, \(X \ C') = 0. This says that every regular Borel positive measure on X

is concentrated on a countable subset and so it is atomic.

Now let 1 : O(X) — B(H) be a regular POVM. Let S be a strictly positive density operator
in B(H), and let ug : O(X) — [0,00) be the positive measure (as in (1.3.3)) defined by

ns(4) = Tr(u(4)S), A€ O(X).

See Section 1.3 for more details on this measure. Since p is regular, it is easy to verify that
s is regular; hence pg is concentrated on a countable set as observed above. It then follows
from Part (i) in Proposition 1.3.18 that p is concentrated on a countable set. This shows our
requirement that p is atomic. Thus if p is a C*-extreme point in RPx(X), then it is spectral
by Theorem 4.3.2. 0

The following corollary provides a family of examples of uncountable compact Hausdorff
spaces where every regular C*-extreme POVM is spectral.

Corollary 5.2.4. Let X=XU {oc} be the one-point compactification of a discrete space X
and let p: O(X) — B(H) be a reqular C*-extreme POVM. Then p is spectral.

Proof. Note that the restriction pj, ) of pu to O(X) is also regular and hence concentrated on
a countable subset, as seen in Proposition 5.2.3. In particular, p itself is concentrated on a
countable subset and hence is atomic. Therefore, we conclude from Theorem 4.3.2 that u is

spectral. ]

5.3 Krein-Milman type theorem for Py (X)

As earlier let X be a topological space and H a Hilbert space. Now we define a topology on the
set Py (X) of all normalized POVMs.. We shall call this topology as ‘bounded-weak’ inspired
from the topology defined on the collection of all UCP maps on a C'*-algebra with the same name
(see Definition 1.2.23). The reason for this nomenclature will be apparent in the next section.
Our aim here is to show a Krein-Milman type theorem for C*-convexity in this topology on
Py (X). This result continues our search for Krein-Milman type theorem for various C*-convex

sets.

Let Cy,(X) denote the space of all bounded continuous functions on X. Recall that pp, j is the
complex measure as in (1.3.1) for any POVM p. We define the topology by defining convergence
of nets.
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Definition 5.3.1. Given a net p’ and p in Py(X), we say u* — p in Py (X) in bounded weak
(BW) topology if
[ fduis > [ rdun
X X
for all f € Cy(X) and h,k € H.
Notice that the topology on Py (X) is the smallest topology which makes the maps:
o= / fdpn i
X

from Py(X) to C, continuous for all f € Cy(X) and h,k € H. It is then immediate to verify
that, for a given u € Py (X), sets of the form

/fidl/hi,ki_/ fidpin, k;
X X

where f; € Cy(X), hi, ki € H for 1 <i <mn, € > 0, form a basis around p in Py (X).

0= {V € Pu(X);

<el<i< n} , (5.3.1)

The definition here reminds us the weak topology considered in classical probability theory.
Moreover, we shall see in Section 5.4 that this definition is directly connected to the bounded
weak topology on the collection of UCP maps on a commutative C*-algebra.

Remark 5.3.2. It should be added here that one can define a topology on Py (X ) in several other
ways. For example, for p and a net p; of normalized POVMSs, we could define the convergence

Wi — 1 by saying that
pi(A) — u(A) in WOT (or o-weak topology) for all A € O(X).

This topology is certainly stronger than the bounded weak topology defined above. This topology
has been considered in [40]. We could have also defined a topology just by considering C.(X),
the space of all compactly supported continuous functions, instead of Cy(X) in the definition.
In this case, we would get a weaker topology than we originally defined. Nevertheless in this
case, one can show along the lines of classical probability theory that this topology agrees with
bounded weak topology on Py (X) whenever X is a locally compact Hausdorff space.

We now return to our original topology on Py (X) as defined in 5.3.1. In general, the set
Py (X) is not Hausdorff; for an example, one can consider the classically famous Dieudonné
measure A (which is not regular) on the compact Hausdorff space X = [0,w;] equipped with
order topology, where wy is the first uncountable ordinal (see Example 7.1.3, [10]). One can
show that

/ FdA = f(wr) = / fdb,, forall f e Cy(X),
X X

and hence the distinct elements A(-) Iy and 0y, (-) I3 in Py (X) are not separated by open subsets.
However the topology restricted to RPx(X) is Hausdorff whenever X is a locally compact
Hausdorff space, which is a consequence of uniqueness of regular Borel measures in Riesz-Markov
theorem.
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Remark 5.3.3. As in classical probability theory, for a locally compact Hausdorff space (more
generally for completely regular space, see Lemma 8.9.2, [10]), the set {0, (-)I;z € X} is closed
in RPx(X) and it is homeomorphic to X. Using this or otherwise, one can show that RPy (X)
is compact if and only if X is compact.

Now we move on to prove the main result of this section. We establish a Krein-Milman
type theorem for C*-convexity in the sense that Py (X) is the closure of C*-convex hull of its
C*-extreme points. We mention here that a Krein-Milman type theorem for the set Py (X) was
proved in [24] when X is a compact Hausdorff space and # is a finite dimensional Hilbert space.
We generalize it to arbitrary topological spaces and arbitrary Hilbert spaces. Moreover, in our
case the compactness of Py (X) in BW topology is not required. We first consider the following
proposition, whose proof follows the same argument as normally used in classical measure theory.

Proposition 5.3.4. Let X be a topological space and H a Hilbert space. Then the collection of
all normalized POVMs concentrated on finite subsets is dense in Py (X) in BW topology.

Proof. Let € Py(X), and E be a typical open set in Py (X) containing u of the form

/fdehi,ki_/ fidpin, k;
X

for some fixed f; € Cp(X), hi ki € H,i=1,...,n and € > 0. We shall obtain an element in F
concentrated on a finite subset, which will imply the required result. Now for each i € {1,...,n},

E:{I/GPH

<e,1§i§n},

get simple functions g; on X satisfying
sup | fi(x) — gi(x)| < €¢/2M,
zeX

where M is a positive constant with M > sup; ||h;||||k:||. Since g;’s are simple functions, there
is a finite partition {A;;} of X and scalars {¢;;} C C (where j varies over some finite indexing
set, say A; for each 1 < i < n) such that

gi = Z Cij X Aij

JEA;

for each i. Pick z;; € A;; and set
n
=2 2 Ol
=1jeA;
It is clear that v is a POVM concentrated on the finite subset {x;;}. Also we have

n
=3 u(Ayy) = w(X) = I,
i=1jEA;
and hence v is normalized. We claim that v € E. Firstly note that

/de—ZZM z]/f(sx” Zfow

i=1jeA; i=1jEA;
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for any bounded Borel measurable function f on X (here [y fdv € B(H) denotes the operator
as defined in (1.4.6), which satisfies (h, ([y fdv)k) = [y fvn for all h,k € H). Therefore for
each m € {1,...,n}, we have

/Xgmdl/= zn: Y gml@i)u(Ai) = Y emji(Amg) = /Xgmdu-

i=1 jEA; JEAm

If we denote the total variation of a complex measure A by |\|, then we get the following:

X X X X X X

+ ’/ glduhz,k‘Z _/ fzduhl7kl
X X
< [ U= gl dloniel + [ lgs = £l dlin,
X X

< <ig§ | fi(x) — Qi(l‘)|> (Vs k(X)) + | s [ (X))

< (¢/2M) (2 hallllkil])

< €

fori =1,...,n. Here we have used the fact that |up, &, |(X) < [|hs|||| k:]|, which is straightforward
to verify. It then follows that v € E, completing the proof. O

Definition 5.3.5. For a given subset S of Py /(X), the C*-convex hull of S is the set defined by

n n
{Z T ()T - i €8S, T; € B(H) for 1 <i < n such that X:TZ*Tz = IH} . (5.3.2)
i=1 i=1
Below is a Krein-Milman type theorem for the spaces of normalized POVMs equipped with
BW topology.

Theorem 5.3.6. Let X be a Hausdorff topological space and H a Hilbert space. Then the
C*-convex hull of Dirac spectral measures (i.e. 6,(-)Iy for x € X) is dense in Py(X) in BW
topology. In particular, the C*-convex hull of all C*-extreme points is dense in Py(X) in BW

topology.

Proof. Fix p € Py(X). By Proposition 5.3.4, there is a net p; € Py(X) such that u; — p in
Py (X) and each p; is concentrated on a finite subset. Therefore if we show that each p; is in
the C*-convex hull of Dirac spectral measures, then we are done. So assume without loss of
generality, that u € Py (X) is concentrated on a finite subset, say {z1,...,zn}. I T; = p({z;}),
then it is immediate that

=1
Set S; = T;/? € B(H) for each i. Then
Si*Si=> T =puX)=1Iy
i=1 i=1
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and
n
p() = 5" 8.,(-)Si,
i=1
which confirms that p is a C*-convex combination of Dirac spectral measures. O

It is obvious that Dirac spectral measures are regular. Hence Theorem 5.3.6 along with
Proposition 5.2.1 give us the following version of Krein-Milman theorem for regular POV Ms.

Its usefulness shall be apparent when we discuss UCP maps in the next section.

Corollary 5.3.7. Let X be a Hausdorff topological space and H a Hilbert space. Then the C*-
convex hull of all reqular spectral measures (in particular, reqular C*-extreme points) is dense
in RPy(X) in subspace topology of BW topology.

5.4 Applications to UCP Maps on C(X)

Finally, we return to our investigation of the structure of C*-extreme points of generalized state
spaces on commutative C*-algebras. Here we apply the tools that we have developed for POV Ms
on compact Hausdorff spaces X, via their correspondence to UCP map on C(X). See Section
1.4 for a detailed exposition of this correspondence.

Let X be a compact Hausdorff space, and H a separable Hilbert space. As mentioned in
Section 1.4, given any regular (normalized) POVM p : O(X) — B(H), there is a unique (unital)
CP map ¢, : C(X) — B(H) such that

(b, 0u(1)) = [ fduns forall f e C(X),

where p, 1, is the complex measure as in (1.3.1), and vice versa.

The correspondence p +— ¢, of the set RPy(X) of normalized regular POVMs on X and the
set Sy (C(X)) of UCP maps on C(X) described clearly preserves C*-convexity and C*-extreme
points structures.

Theorem 5.4.1. A normalized regular POVM p is C*-extreme in RPy(X) (or in Py(X)) if
and only if ¢, is C*-extreme in Sy (C(X)).

Proof. The proof follows from Part (iv) and Part (v) in Theorem 1.4.2, because C*-convex
combinations and unitary equivalences are preserved under the correspondence. ]

Following the discussions above, we are now ready to deduce some results for Sy (C(X)). As
noticed in Proposition 5.2.1, a regular normalized POVM p is a C*-extreme point in Py (X) if
and only if u is a C*-extreme point in RPy (X ). Therefore, it follows from Theorem 5.4.1 that
p is C*-extreme in Py (X) if and only if ¢, is C*-extreme in Sy (C(X)). Thus, whenever X is
a compact Hausdorff space, we have got freedom to bring back all the results on C*-extreme
points in Py (X) into the language of C*-extreme points of Sy (C'(X)). We frequently make use
of Theorem 1.4.2 and Theorem 5.4.1.
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Firstly let X be a countable compact Hausdorff space. Then we saw in Theorem 4.3.2 that
every C*-extreme point in Py(X) is spectral. Since spectral measures correspond to unital

x-homomorphisms, here is the corresponding result.

Theorem 5.4.2. Let A be a commutative unital C*-algebra with countable spectrum and let
¢ € Sp(A). Then ¢ is C*-extreme in Sy (A) if and only if ¢ is a x-homomorphism.

In particular, when A is a finite dimensional commutative C*-algebra i.e. A = C™, we get the
following corollary. This simple looking result had remained open for more than two decades,
and we have settled it here.

Corollary 5.4.3. Let ¢ : C" — B(H) be a UCP map. Then ¢ is C*-extreme in Sy (C") if and
only if ¢ is a *-homomorphism.

We apply Theorem 5.4.2 to certain UCP maps on C*-algebra generated by a single normal
operator with countable spectrum.

Example 5.4.4. Let N € B(K) be a normal operator on a Hilbert space K with countable
spectrum o (V) (in particular, when N is compact). It is known that for such a normal operator,
a subspace H C K is invariant for N if and only if it is reducing for N (Theorem 1.23, [68]). Let
C*(N) be the unital C*-algebra generated by N, and consider the UCP map ¢ : C*(N) — B(H)
defined by

¢N(T) = PHT|H forall T € C*(N)

It is easy to verify that ¢y is a *-homomorphism if and only if H is a reducing subspace for N.
Thus since C*(N) is isomorphic to C'(o(N)) as C*-algebra and o(N) is countable, the argument
above along with Theorem 5.4.2 show that the following conditions are equivalent:

(i) ¢n is a C*-extreme point in Sy (C*(N)).

(ii) ¢n is a *-homomorphism.

(iii) # is an invariant subspace of N.

(iv) H is a co-invariant subspace of N.

(v) H is a reducing subspace of N.

We momentarily go back to regular POVMs in order to produce a number of examples of
C*-extreme POVMs and hence C*-extreme UCP maps. Using the results in Section 4.5, we
provide here an example of a C*-extreme point in Py (X) which is not spectral, whenever X is
an uncountable compact metric space and H an infinite dimensional Hilbert space.

Example 5.4.5. Consider the normalized POVM v : O(T) — B(H?) defined by
v(A) = PHQMXA‘H2 for all A € O(T),

where H? denotes the Hardy space on the unit circle T. Here M ¢ denotes the multiplication
operator on L?(T) for any f € L°°(T). Then the corresponding UCP map ¢, : C(T) — B(H?)
is given by

ou(f) = PHsz|H2 for all f € C(T).
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We know from Example 2.1.5 that ¢, is a C*-extreme point in Sy (C(T)) and therefore, v is
C*-extreme in Pp2(T) by Theorem 5.4.1. Also note that v is not spectral, since ¢, is not a

*x-homomorphism.

Now let X be an uncountable compact metric space. Then by well-known theorems of Borel
isomorphism (Theorem 2.12, [57]), there exists a Borel isomorphism f : T — X (i.e. f is bijective
such that f, f~1 are Borel measurable). Define the normalized POVM p : O(X) — B(H?) by

w(A) = v(f~H(A)) forall A€ O(X). (5.4.1)

It is clear that p is a regular normalized POVM. Then Theorem 4.5.5 along with Theorem 4.5.2
imply that p is a C*-extreme point in Pg2(X) and is not spectral. Thus, since any infinite
dimensional separable Hilbert space is isomorphic to H?, what we have shown is that whenever
X is an uncountable compact metric space and H an infinite dimensional Hilbert space, then
Py (X) contains a C*-extreme point which is not spectral. The assertion above can be applied
to Polish spaces as well.

Let F be an uncountable compact subset of C. Then E is a compact metric space. We
consider the normalized POVM pu : O(E) — B(H?) constructed in Example 5.4.5, which is
already in the minimal Naimark dilation form p(-) = V*x(-)V. If

N :/ zdm € B(Hx),
E

then NNV is a normal operator with spectrum E (see (1.4.6) for notation). Also the corresponding
UCP map ¢, : C*(N) — B(H?) is of the form

6u(T) = Py} ,, T € C*(N).

Thus we have got an example of a UCP map of the form ¢y as discussed in Example 5.4.4,
which is C*-extreme but not a *-homomorphism.

Now let A be a separable commutative unital C*-algebra. Then its spectrum is a separable
compact Hausdorff space (Theorem V.6.6, [15]) and hence metrizable, which is to say A = C(X)
for a compact metric space X. Therefore, Example 5.4.5 and Theorem 5.4.1 give us the following

result for a separable commutative unital C*-algebra with uncountable spectrum.

Theorem 5.4.6. Let A be a separable commutative unital C*-algebra with uncountable spectrum
and let H be an infinite dimensional separable Hilbert space. Then Sy (A) contains a C*-extreme
point which is not a *-homomorphism.

The theorem above fails to be true if the separability assumption is removed, as we see below.
If X is a discrete space and X denotes its one-point compactification, then we saw in Corol-
lary 5.2.4 that every regular POVM in 737.[(5( ) is atomic, and hence every C*-extreme point in
RPxu ()N( ) is spectral. Equivalently, every C*-extreme point in Sy (C ()~( )) is a *-homomorphism
by Theorem 5.4.1. Note that, whenever X is an uncountable discrete space, then X is a non-
separable compact Hausdorff space and in particular, C ()Z ) is a non separable C*-algebra (The-
orem V.6.6, [15]). Thus the assumption of separability of the C*-algebra A in Theorem 5.4.6 is
crucial. We have obtained the following;:
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Theorem 5.4.7. Let A be a commutative unital C*-algebra whose spectrum is a one-point com-
pactification of a discrete space. Then every C*-extreme point in Sy (A) is a x-homomorphism.

For the next application, let ¢ : C'(X) — B(#) be a UCP map such that ¢(C(X)) is commu-
tative. Then WOT-¢(C(X)) is commutative. Since WOT-¢(C(X)) = WOT-spanpu,(O(X)) by
Proposition 1.4.4, it follows that WOT-spanj,(O(X)) is commutative. In particular, ps(O(X))
is commutative. Therefore if ¢ is a C*-extreme point in Sy (C(X)) with commutative range,
then pg4 is a C*-extreme point in Py (X) with commutative range. Then it follows from Theorem
4.2.2 that pg is spectral, and hence ¢ is a *-homomorphism. Thus we have got the following
result. A similar result for extreme points with commutative range in Sy (C(X)) holds true (see

Corollary 3.6, [70]).

Theorem 5.4.8. Let A be a commutative unital C*-algebra and ¢ : A — B(H) a UCP map
with commutative range. Then ¢ is C*-extreme in Sy (A) if and only if ¢ is a x-homomorphism.

We now compare the topology on the spaces of normalized POVMs with BW-topology on
UCP maps.

For a net p' and u € RPy(X), since ¢, (f) = [y fdu for all f € C(X), it follows that u® — p
in RPx(X) if and only if ¢, (f) = ¢.(f) in WOT for all f € C(X). The following proposition
is just a rephrasing of the definition of the topology on regular POVMs, which effectively says
that RPy(X) and Sy (C (X)) are topologically homeomorphic. Recall that by Riesz-Markov
representation theorem, the space of all regular Borel complex measures M (X) on X is Banach
space dual of C'(X).

Proposition 5.4.9. Let j' be a net in RPy(X) and p € RPy(X). Then the following are
equivalent:

(i) u* — p in RPy(X) (and, in Py (X)) in BW topology.

(ii) ¢,i — ¢u in BW topology in Sy (C(X)).
(i) /ﬂ};z,k — lp g in weak™-topology on M (X) for all h,k € H.

As a final application, we discuss the generalized Krein-Milman theorem for the space
Sy (C(X)) equipped with BW-topology. This follows from the corresponding result on regu-
lar POV Ms in Corollary 5.3.7 and its homeomorphism with UCP maps via Proposition 5.4.9.

Note that when X is a non-metrizable compact Hausdorff space, then C(X) is a non separable
space (Theorem V.6.6, [15]). Therefore, proof of Theorem 2.4.3 for UCP maps on separable C*-
algebras is no longer valid in this setting. The following theorem completes a total of three
different scenarios where Krein-Milman type theorem for the spaces of UCP maps have been

proved.

Theorem 5.4.10. Let A be a commutative unital C*-algebra and H a Hilbert space. Then
the C*-convex hull of the collection of all unital *x-homomorphisms (in particular, C*-extreme
points) is dense in Sy (A) with respect to bounded-weak topology.
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Chapter )

Logmodular Algebras

The primary theme of this chapter revolves around algebras having factorization and logmodu-
larity properties. The purpose here is to ultimately give the proof of the aforementioned result
in Theorem 3.1.5 regarding lattices of invariant subspaces of algebras having factorization. The
study of the factorization property of subalgebras of C*-algebras is very classical. The well-
known Cholesky theorem talks about the factorization property of upper-triangular matrices
in M,, the algebra of n x n complex matrices. More generally any algebra of block upper-
triangular matrices has factorization in M,,. Conversely, Juschenko [14] shows that they are the
only algebras in M,, which have factorization.

A classical result of Szegd says that the Hardy algebra H°°(T) on the unit circle has fac-
torization in L°°(T). Some other function algebras like weak*-Dirichlet algebras introduced by
Srinivasan and Wang [74] have factorization. Taking cue from analytic function algebras, Arve-
son [4] introduced the theory of finite maximal subdiagonal algebras as noncommutative variant
and considered many results analogous to the classical Hardy space theory, showing in particu-
lar that they have factorization property. Later several authors have examined such algebras in
different settings. For more about algebras with factorization see [2,4,17,32,47,48,64,72], and
for some closely related properties see [1,42,53,65,66,73] to name a few.

Among other algebras, factorization property of nest algebras has attracted considerable
amount of interest in recent decades, particularly through the works of Gohberg-Krein [32],
Arveson [2] and Larson [17]. A deep result of [47] in particular says that all nest algebras
associated with countable complete nests have factorization in B(#H).

On the other hand, the converse question of what other algebras have factorization in B(H)
is very natural. Here we answer this question with an additional assumption of reflexivity, where
we show that all reflexive algebras with factorization must be nest algebras. The assumption of
reflexivity is not far away from answering the raised question, considering the fact that all nest
algebras are reflexive. Whether the assumption of reflexivity can be dropped remains open.

An algebra with factorization property is a particular case of logmodular algebras, and we ex-
plore such algebras more in depth. The notion of logmodularity was first introduced by Hoffman
[38] for subalgebras of commutative C*-algebras, whose main idea was to generalize some clas-
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sical results of analytic function theory in the unit disc. Blecher and Labuschagne [3] extended
this notion to subalgebras of non-commutative C'*-algebras. They studied completely contrac-
tive representations on such algebras and their extension properties. Paulsen and Raghupathi
[62] also studied representations of logmodular algebras and explored conditions under which
contractive representations are automatically completely contractive. In [44], Juschenko gave a
complete characterization of all logmodular subalgebras of M,,. See [9] for a beautiful survey on
logmodular algebras arising out of tracial subalgebras and their relation to finite subdiagonal
algebras among others. They show how most results generalized in 1960’s from the Hardy space
on the unit disc to more general function algebras generalize further to the non-commutative
situation, though more sophisticated proof techniques had to be developed for the purpose. We
list some additional references on logmodular algebras in [8,9,30, 38,39, 44,62].

In this chapter, our aim is to understand the behaviour of lattices of subspaces (or pro-
jections) invariant under logmodular algebras, and use it to characterize reflexive logmodular
algebras. The main result of this chapter answers a conjecture by Paulsen-Raghupathi [62] in
the affirmative, which asks whether every completely distributive CSL logmodular algebra of
B(H) is a nest algebra. In fact, we show more generally that the lattice of projections whose
ranges are invariant under a logmodular algebra in a factor B, is a nest, and hence any such
B-reflexive algebra is a nest subalgebra. As a special case, our promised result in Theorem 3.1.5
will follow (Corollary 6.2.7).

Moreover we explore some sufficient criteria under which an algebra with factorization is
automatically reflexive and is a nest algebra. In particular it is proved that a subalgebra with
factorization in B(#H), whose lattice consists of finite dimensional atoms, is reflexive and so it
is a nest algebra. Also we show that any subalgebra with factorization in a finite dimensional
von Neumann algebra must be a nest subalgebra. Finally we give an example of a subalgebra
in a von Neumann algebra (certainly infinite dimensional), which has factorization but it is not
a nest subalgebra.

6.1 Definitions and examples

We caution the readers here that throughout this chapter we adopt a different convention than
earlier for lattices of an algebra. Here it is defined in terms of projections rather than subspaces.
Hence the notion of nests will also be considered in terms of projections. This is deliberately
being done because here the projection on invariant subspaces of algebras belong to certain
von Neumann algebras. To avoid confusion, we freshly define all the notions here which should
strictly be followed only in this chapter. Nevertheless the readers can understand all the termi-
nologies as defined in Section 1.5 in terms of projections just by replacing them over subspaces.

To define the notion of logmodular algebras, we recall some notations. Let B be a C*-algebra,
and let M be a subalgebra (not necessarily self-adjoint) of B. Recall that we denote by M~}
the set

M = {z € M;x is invertible with 2~ € M}. (6.1.1)
Let B;l denote the set of all positive and invertible elements of B. Following [8, 38], we now
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consider the following definitions. We also restate the previously defined notion of algebras
having factorization in order to compare the two.

Definition 6.1.1. Let M be a subalgebra of a C*-algebra 5. Then
(i) M is called logmodular or has logmodularity in B if the set {a*a;a € M~} is norm dense
in B_T_l.

(ii) M is said to have factorization or strong logmodularity in B if {a*a;a € M~1} = B;l.

It is clear that any algebra having factorization is logmodular. Below we collect some known
and straightforward results about logmodular algebras whose proof is simple (see Proposition
4.6, [8]).

Proposition 6.1.2. Let ¢ : B — A be a x-isomorphism between two C*-algebras, and let M be
a subalgebra of B. Then M has logmodularity (resp. factorization) in B if and only if ¢(M)
has logmodularity (resp. factorization) in A. In particular if U is an appropriate unitary, then
U*MU has logmodularity (resp. factorization) in U*BU if and only if M has logmodularity
(resp. factorization) in B.

Proof. This is straightforward, as the map ¢ preserves positivity, invertibility, unitary etc. [
Recall that for any subset M of a C*-algebra B, we denote by M* the set
M* ={x € B;z* € M}.

The following results provide some equivalent criteria for logmodular algebras (compare this
with Proposition 1.5.2 for algebras having factorization).

Proposition 6.1.3 (Proposition 4.1, [8]). Let M be a closed subalgebra of a C*-algebra B. Then
the following are equivalent:
(i) M is logmodular in B,
(i) M* is logmodular in B,
(iii) for each invertible element x € B, there exist sequences {un},{vn} of unitaries in B and
invertible elements {a,}, {b,} in M=t such that x = lim, uya, = lim, b,v,.

There are plenty of such algebras known in literature. The following are examples of log-
modular algebras in commutative C*-algebras.

Example 6.1.4. (Function algebras) A classical result of Szego (see Corollary 25.12, [16]) says
that the Hardy algebra H°°(T) has factorization in L°°(T, ). Here T is the unit circle, u is the
one-dimensional Lebesgue measure on T and H*°(T) is the algebra of all essentially bounded
functions on T whose negative Fourier coefficients are zero.

More generally, let m be a probability measure, and let M be a unital subalgebra of L (m)

satisfying the following:
(i) [ fgdm = [ fdm [ gdm for all f,g € M, and
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(i) if h € LY(m) with b > 0 a.e. and [ fhdm = [ fdm for all f € M, then h =1 a.e..
Let H%(m) be the closure of M in the Hilbert space L?(m), and let

H>®(m) = H*(m) N L>®(m).

Then the proof of Theorem 4 in [39] says that H>(m) has factorization in L>°(m). The algebra
H®°(m) satisfies many other equivalent conditions analogues to the classical Hardy algebra (see
Theorem 3.1, [74] for details). Also see [38,39,74] for more concrete examples of such measures
and algebras.

Example 6.1.5. (Dirichlet algebras) A closed unital subalgebra M of a commutative C*-algebra
C(X) is called Dirichlet algebra if M + M is uniformly dense in C(X) (equivalently, Re M is
uniformly dense in Re C'(X)), where Re M (resp. Re C(X)) denotes the set of real parts of the
functions in M (resp. C(X)). If M is a Dirichlet algebra, then since log| M~ C Re M, it is
immediate that log |[M ™| is dense in Re C'(X); hence M is a logmodular algebra in C(X).

But some Dirichlet algebras may not have factorization. For example, consider the algebra
A(D) of all continuous functions on the closed unit disc D which is holomorphic on the open
unit disc D. Then A(D) is a Dirichlet algebra when considered as the subalgebra of C(T), which
is a consequence of Fejér-Riesz Theorem on factorization of positive trigonometric polynomials,
but A(D) does not have factorization in C(T). On the other hand, H*°(T) is an example of
an algebra which has factorization in L°°(T), but which is not a Dirichlet algebra. See [38] for
details of these facts and more concrete examples of Dirichlet algebras.

To see some examples and other properties of noncommutative algebras having factorization,
we recall some notions to this end. We emphasize the following convention to be followed for
the rest of the chapter.

Convention. All von Neumann algebras are assumed to be faithfully acting on separable Hilbert
spaces (which is equivalent to saying that the von Neumann algebras have separable predual).

Notation. For any collection {p;};cp of projections, V;cpp; denotes the projection onto the
smallest subspace containing ranges of all pls, and A;cpp; denotes the projection onto the inter-
section of ranges of all p}s.

We recall that a collection £ of projections in a von Neumann algebra B is called lattice if

pAqand pVq € E whenever p,q € €.
Let M be a subalgebra of a von Neumann algebra B. Let Latg M denote the lattice of all

projections in B whose ranges are invariant under every element of M i.e.
Latg M = {p € B;p = p* = p* and ap = pap Va € M}.

If B = B(H), we denote Latg M simply by Lat M. Note that if M is also considered as a
subalgebra of B(H) (where B C B(H)), then we have

Laty M = BN Lat M.
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Also note that 0,1 € Latg M and Latz M is closed under the operations V and A of arbitrary
sub-collection, as well as closed under weak operator topology (WOT).

Dually, let £ be a collection of projections in B (which may not be a lattice), and let Algg €
(or Alg& when B = B(H)) denote the algebra of all operators in B which leave range of every
projection of £ invariant i.e.

Algg& ={x € B;xzp =pxp Vp € E}.

Again we note that
Algg M =BNAIg€.

Also it is clear that Algz &€ is a unital subalgebra of B, which is closed in WOT.

Definition 6.1.6. Let £ be a lattice of projections in a von Neumann algebra B. Then the
lattice & is called

(i) a nestif € is totally ordered by usual operator ordering i.e. for any p,q € &, either p < ¢
or ¢ < p holds true.
(ii) a commutative subspace lattice (CSL) if the projections of & commute with one another.
(iii) complete if 0,1 € &, and V;eap; and Ajepap; € € for any arbitrary family {p;};cp in €.

Remark 6.1.7. Some authors assume a nest or a CSL to be always complete. This is not the
case here.

Definition 6.1.8. Let M be a subalgebra of a von Neumann algebra B. Then M is called

(i) a nest subalgebra of B (or nest algebra when B = B(H)) if M = Algg & for a nest € in B.
(ii) a CSL subalgebra (or CSL algebra when B = B(H)) if M = Algg € for a CSL € in B.
(iii) B-reflexive (or reflexive when B = B(H)) if M = Algg Latp M.

It is clear that any nest is a CSL and hence all nest subalgebras are CSL subalgebras. Also
one can easily verify that any subalgebra in B of the form Algz & for some collection &£ of
projections in B, is always B-reflexive. In particular, a nest subalgebra or a CSL subalgebra of B
is B-reflexive. It should be noted here that if B C B(#), then a subalgebra of B can be reflexive
in B(#), but it need not be B-reflexive.

The following are some examples of algebras having factorization in noncommutative von
Neumann algebras. We restate the well-known Larson’s result about the factorization property
of nest algebras associated with countable complete nests.

Theorem 6.1.9 (Theorem 4.6, [47]). Let £ be a complete nest of projection on a separable
Hilbert space H. Then AlgE has factorization in B(H) if and only if £ is countable.

Example 6.1.10. (Nest subalgebras) As already mentioned in Theorem 6.1.9, Alg & has fac-
torization in B(H) for any countable complete nest £ in B(#H). More generally, Pitts proves that
if £ is a complete nest in a factor B, then Algz £ has factorization in B if and only if “certain”
subnest &, of £ is countable (Theorem 6.4, [64]).

Moreover, if £ is a nest (not necessarily countable) in a finite von Neumann algebra B (not
necessarily a factor), then Algg € has factorization in B (Corollary 5.11, [64]).
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Example 6.1.11. (Subdiagonal algebras) Let M be a unital subalgebra of a von Neumann
algebra B, and let ¢ : B — B be a faithful unital positive linear map, which is an idempotent
(i.e. po¢p = ¢). Then M is called a subdiagonal algebra with respect to ¢ if it satisfies the
following:

(i) M+ M* is o-weakly dense in B,

(ii) ¢(ab) = ¢(a)o(b) for all a,b € M, and

(iii) p(M) S M NM*.
If there is no larger subdiagonal algebra containing M, then M is maximal with respect to
¢. Moreover, if the von Neumann algebra B is finite with a distinguished trace 7, then the
subdiagonal algebra M is called finite if 7o ¢ = 7.

Arveson proves that if M is a maximal (with respect to ¢) finite subdiagonal algebra of B,
then M has factorization in B (Theorem 4.2.1, [1]). A nest subalgebra of a finite von Neumann
algebra is an example of maximal finite subdiagonal algebras (Corollary 3.1.2, [4]). See 6.4.10
for another concrete example of a finite subdiagonal algebra. There are other subdiagonal
algebras (not necessarily finite) as well, which are known to have factorization. For example, all
subdiagonal algebras arising out of periodic flow have factorization. See [72] for more details of
these notions and Corollary 3.11 therein.

Remark 6.1.12. We believe that some known facts about subdiagonal algebras can also be
deduced from our result. One such is Theorem 5.1 in [53], which follows directly from Corollary

6.2.2. However, we have not explored other possible consequences in depth.

Below we have some concrete examples of nest algebras which do not have factorization. We
do not know at this point whether they are logmodular.

Example 6.1.13. Let & be the nest {p;t € [0,1]} of projections on L?(]0,1]), where p; denotes
the projection onto L?([0,t]), considered as subspace of L%([0,1]). Then & is complete and
uncountable; hence Alg £ does not have factorization in B(L?([0,1])) by Theorem 6.1.9.

Additionally let F = {p;;i € Q} be the nest of projections on £2(Q), where p; denotes
the projection onto the subspace span{e;;j < i}, for the canonical basis {e;;i € Q} of £2(Q).
Although F is a countable nest, it is easy to verify that its completion is not countable (actually
indexed by RUQ; see Example 1.5.10) and hence Alg F does not have factorization in B(¢2(Q)).

At this point, we do not know whether these algebras are logmodular.

6.2 Lattices of logmodular algebras

We are now ready to state the main result on logmodular algebras. This tells us the behaviour
of lattices of projections whose ranges are invariant under them.

Theorem 6.2.1. Let M be a logmodular algebra in a von Neumann algebra B. Then Latg M
is a commutative subspace lattice. Moreover if B is a factor, then Latg M is a nest.
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We postpone the proof of Theorem 6.2.1 to the next section, and instead look at some of
its consequences first. Note that since any algebra having factorization is also logmodular, the
following corollary is immediate.

Corollary 6.2.2. Let M be an algebra having factorization in a von Neumann algebra B. Then
Latp M is a commutative subspace lattice. Moreover if B is a factor, then Latg M is a nest.

Remark 6.2.3. If B is an arbitrary von Neumann algebra which is not a factor, and M is a
subalgebra of B, then we can never expect Latg M to be a nest irrespective of whether M is
logmodular or has factorization. In fact if Pz denotes the lattice of all projections in the center
Z of B, then it is always true that Pz C Latg M. So Latg M can never be a nest if the center
Z is non-trivial.

Now let B be a factor, and let M be a B-reflexive subalgebra of B. If M is logmodular in
B, then Latp M is a nest by Theorem 6.2.1. But since M = Algg Latg M, it follows that M is
a nest subalgebra of B.

We now answer an open question posed by Paulsen and Raghupathi (see pg. 2630, [62])
using above observations. They conjectured that every completely distributive CSL logmodular
algebra in B(H) is a nest algebra. See [17] for more details on completely distributive CSL
algebras. More importantly, any completely distributive CSL algebra is of the form Algé&,
where £ is a completely distributive CSL, and hence it is a special case of reflexive algebras. We
have thus answered their question in affirmative, which we record below.

Corollary 6.2.4. Any B-reflexive logmodular algebra in a factor B is a nest subalgebra of B.
In particular, all reflexive (hence completely distributive CSL) logmodular algebras in B(H) are
nest algebras.

If an algebra M has factorization in B(#), then AlgLat M also has factorization in B(H)
as M is contained in Alg Lat M. Since Lat M is a complete nest, it then follows from Theorem
6.1.9 that Lat M is a countable nest. In particular, if M = Alg& for a lattice £ of projections
in H, then &£ is a countable nest because £ C Lat M. Thus we get the following corollary, which
is a strengthening of Theorem 6.1.9 of Larson.

Corollary 6.2.5. Let £ be a complete lattice of projections on a separable Hilbert space H. Then
Alg € has factorization in B(H) if and only if £ is a countable nest.

To understand the nest result, we recall some terminologies to this end. Let B be a von
Neumann algebra, and let £ be a complete nest in B. For any projection p € &, let

p-=V{q€ & q<p}and py = N{q€&q>p}

Definition 6.2.6. An atom of a complete nest £ is a nonzero projection of the form p — p_ for
some p € £ with p # p_. The nest £ is called atomic if there is a countable sequence {7, }n>1 of
atoms of &€ such that }°, -, 7, = 1, where the sum converges in WOT.
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Clearly two distinct atoms are always mutually orthogonal. Let £ be a complete nest in B(H ).
Let {rn}n>1 be the collection of all atoms of £, and let 7 = >~ r, in WOT convergence. If
r # 1, then it is straightforward to check that the nest {p Art; p € £} in B(R(r')) is complete
and has no atom (such nests without any atom are called continuous). Here r- =1 —r. But
then any continuous complete nest has to be uncountable (in fact indexed by [0, 1]; see Lemma
13.3 in [17]). In particular, if the nest £ is countable, then » = 1 and hence € is atomic.

We thus get the following corollary, which is nothing but the aforementioned result as in
Theorem 3.1.5.

Corollary 6.2.7. Let an algebra A have factorization in B(H). Then Lat A is an atomic and
countable nest.

Proof. Since A has factorization in B(#), Alg Lat A also has factorization in B(#) as it contains
A. Consequently Lat A is a countable nest by Corollary 6.2.5, so it is atomic. O

6.3 Proof of the main result

This section is devoted to the proof of our main result (Theorem 6.2.1) on logmodular algebras.
We first discuss some general ingredients required for this. A simple observation that we shall
be using throughout the chapter is the following remark. Recall that p denotes the projection
1 — p for any projection p.

Remark 6.3.1. For any subalgebra M of a von Neumann algebra B, p € Latg M < ap =
pap Ya € M <= pa* =pa*pVa € M < a*p" =pra*p- Ya e M < p' € Latg M*.

The first step towards the proof is the following proposition which says that logmodularity
and factorization are preserved under compression of algebras by appropriate projections. Here
pMp denotes the subspace

pMp = {pap;a € M}

for any projection p and an algebra M. Note that pMp need not always be an algebra.

Proposition 6.3.2. Let M be an algebra having logmodularity (resp. factorization) in a von
Neumann algebra B, and let p,q € Latg M be such that p > q. Then the following statements
are true:

(i) pMp(= Mp) has logmodularity (resp. factorization) in pBp.

(ii) p*Mp* has logmodularity (resp. factorization) in p~Bp*.

(iii) (p — q)M(p — q) has logmodularity (resp. factorization) in (p — q)B(p — q).

Proof. We shall prove only part (iii). Part (i) follows from (iii) by taking ¢ = 0, and (ii) follows
from (iii) by taking p = 1 and ¢ = p. Also we shall prove only the case of logmodularity. That
of factorization follows similarly. So assume that M is logmodular in B.
First we show that (p — ¢)M(p — ¢q) is an algebra. For all a € M, since ap = pap and
aq = qaq, we note that
(p — q)aq = (p — q)qaq = 0,
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and
pa(p — q) = pap — paq = ap — pgaq = ap — qaq = ap — aq = a(p — q). (6.3.1)
Combining the two expressions above, it follows for all a,b € M that
(p —q)alp — q)b(p — q) = (p — q)apb(p — q) — (p — @)agb(p — q) = (p — @)ab(p — q),  (6.3.2)

which shows that (p—q) M (p—q) is an algebra. Next to show that (p—q)M(p—q) is logmodular
in (p — q)B(p — q), fix a positive and invertible element x in (p — ¢)B(p — ¢) and set

f=xz+q+pt.

Note that x = (p—q)Z(p—q). It is clear that Z is positive in B. Since z is positive and invertible
in (p—q)B(p — q), there is some a € (0,1) such that z > a(p — ¢); from which we get

F=xz+q+p->alp—q)+ag+apt =

This shows that # is invertible in B. We then use logmodularity of M in B to get a sequence
{@,} in M1 such that

T =Ilima
So for each n, we have a,q = qé,q and @, 'q = qa, 'q. It then follows that
(9@ng) (9@, q) = qand, ' =g and (¢d, 'q)(4dnq) = qi, Gng =,

which is to say that ga,q is invertible in ¢Bq with (¢a,q)~' = qa;'q € ¢Mgq. In particular,
since the sequence {a, '} is bounded (as {(@%a,) '} is a convergent sequence), it follows that
the sequence {(qé,q)~'} is bounded. Note that ¢Z(p — ¢) = 0, and since qa} = qa’q for all n,

we have
0 = gZ(p — q) = lim g, an(p — ¢) = lim(qa;q) (qan(p — q))-
Multiplying to the left of the sequence by (ga’q)~' (which is bounded) yields
lim gan(p — ¢) =0,
using which and the expression a,(p — ¢) = pan(p — ¢q) from (6.3.1), we get the following:
z=(p—q)%(p—q) =lm(p - ¢)anan(p — q) = lim(p — g)a, [pan(p - ¢)]

= lim(p — q)a,[qan(p — ¢)] + lim(p — ¢)a, [(p — g)an(p — q)]

= lim(p — ¢)a, (p = @)an(p — ¢) = limayan,
where a, = (p — q)an(p —q) € (p — @) M(p — q). Also for each n, we have from (6.3.2) that

pP—a= -, (0~ an(p—9) = (p — Danlp — ), ' (p — ),

which shows that a,, = (p—q)a,(p—q) is invertible with inverse (p—q)a, ' (p—q) in (p—q) M (p—q).
Thus we get a sequence {ay,,} of invertible elements with a,,a,! € (p—q)M(p—q) for all n such

that « = lim, a),a,. Since x is an arbitrary positive and invertible element, we conclude that

(p— q)M(p — q) is logmodular in (p — ¢)B(p — q). 0
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At this point, we need to recall some basic facts about subspaces in a separable Hilbert
space. Following Halmos [35], consider the following:

Definition 6.3.3. Two non-zero subspaces F and F of a Hilbert space are said to be in generic
position if all the following subspaces

ENF, ENFt, EXNnF, E*nFt
are zero.

We are going to use the following characterization of subspaces in generic position. Recall
that Pgr denotes the projection onto a subspace E. Also recall that ker x denotes the kernel of
any operator x.

Lemma 6.3.4 (Theorem 2, [35]). Let E and F be two subspaces in generic position in a separable
Hilbert space H. Then there exist a Hilbert space IC, a unitary U : H — K & K, and commuting
positive contractions x,y € B(K) such that x*> +y* =1, kerz = kery = 0 and

2
vt = |1 O and vper = |7 MY
00 Ty oy

Lemma 6.3.5. Let E and F be two subspaces in a Hilbert space H, and let Hi denote the
subspace of H given by

7-{1:7-[@(EﬂFJrEﬂFlJrELﬂFJrELﬂFL).

If By = ENHy and F1 = FNHy, then exactly one of the following holds true:
(i) Ey, F1 = {0}, and H1 = {0}.
(ii) Ev and Fy are non-zero, and they are in generic position as subspaces of Hi.

Moreover, the projections Pg and Pr commute if and only if the first condition is satisfied (i.e.

Hi = {0})

Proof. Firstly note that if E; is non-zero, then the map PF‘E1 : B4 — F' is one-one with range
contained in F; and hence F} # 0. Similarly by symmetry, F; # 0 implies £; # 0. Therefore,
either both Ey, F| are zero or both are non-zero.

First assume that E; and F; are zero. Then we have ENH; = {0} = FNH; ie. (EU
F)NH; = {0}. By taking orthogonal complement both the sides, and using the facts that
(MNN)t =MtV Ntand (MUN)L = Mt N Nt for any subspaces M, N of H, we get

H=(EUF)*VH{ =(E*nFYVH =H,

which implies that H; = 0. This proves the first assertion. Now let F; and F} are non-zero.
Then we have the following:

ElﬂFlz(EﬂF)m,Hl:O,
EiN(Hi6F)=E.NnHINFf=EnH N(F*VH) =EnNF*NnH, =0.
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Similarly we have
(HioE)NF,=(EtNF)NH =0,
(HieEDNHi6F)=HiNEfNFf=(ETnFHNH =0.
This proves the second assertion that Fy and F} are in generic position as subspaces of Hi. [
The subspaces F71 and F} as in Lemma 3.4 are called generic part of the subspaces F and

F'. The structure of two general subspaces can now be described in the following proposition.
The proof directly follows from the two lemmas above, so it is left to the readers.

Proposition 6.3.6. Let E and F be two subspaces in a separable Hilbert space H. Then there
is a Hilbert space K (could be zero), and commuting positive contractions x,y € B(K) with

2?2 +1y?> =1 and kerx = kery = 0 such that, upto unitary equivalence
H=ENFaENFraoE'NnFeE'NnFreKak,

and

Pr=101000001®0 and Pr=1000100&

z? :cy}
5| -
Ty Yy

Here any of the components in the decomposition could be 0. Moreover, PgPr = PrPg = Prpnrp
if and only if K = {0}.

We are now ready to give proof of our main result through a series of lemmas. The next
two lemmas deal with factor von Neumann algebras only. We reiterate here that throughout,
convergence of any sequence of operators is taken in norm topology unless stated otherwise.

Lemma 6.3.7. Let B be a factor, and let p,q be mutually orthogonal projections in B. Then
Algp{p,q} is not logmodular in B.

Proof. Since B is a factor and p, q € B are non-zero, it follows from Theorem 1.1.19 that there

is a non-zero partial isometry v € B such that v*v < p and vv* < q. In particular, we have
v = qu =vp. (6.3.3)

Assume to the contrary that Algg{p,q} is logmodular in B. Let x = 1 + ¢(v + v*) for some
€ > 0, where ¢ is chosen small enough so that z is positive and invertible in B. Then there exists
a sequence {ay} of invertible elements in Algz{p, ¢} such that

. *
T = hgn Ay, (-

Now since pg = 0, we note from (6.3.3) that v*p = (v*q)p = 0; hence we get qrp = equp = ev.
We also have a,p = pa,p and qa;, = qa} q for all n; thus it follows that

€V = qTp = li7ILn qa, anp = ligbn qa, qpanp = 0,
which is a contradiction, as v # 0. O
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We recall here a simple fact that if p and ¢ are commuting projections, then pq is a projection
such that p Aq = pq and pV ¢ = p+ q— pq. The following lemma provides a proof of the second
assertion of Theorem 6.2.1, once we assume the first.

Lemma 6.3.8. Let B be a factor, and let p,q € B be two commuting projections. If Algg{p.q}
is logmodular in B, then either p < q or ¢ < p holds true.

Proof. Since p and ¢ commuting projections, the operators pq, pg and pq are projections. We
know from the given hypothesis and Lemma 6.3.7 that pg # 0. Note that the required assertion
will follow by the following argument, once we show that either pg = 0 or pt¢ = 0: say pg™ = 0,
then p = p(q + ¢) = pq which implies that p < ¢. Similarly, p*q = 0 will imply ¢ < p.

Assume opposite to our requirement that both the projections pg- and ptg are non-zero.
Since B is a factor, it follows from Theorem 1.1.19 that there is a non-zero partial isometry

v € B such that v*v < pgt and vv* < plg; in particular we have,
v =vpgt = prqu. (6.3.4)

Now let x = 1 + (v + v*) for € > 0, where we choose ¢ small enough so that x is positive and
invertible in B. Since Algg{p, ¢} is logmodular in B, there exists a sequence {a,} of invertible
elements in B such that a,,a,* € Algg{p,q} for all n, and

. *
x = 1171111 G Q-

Note that pga,pq = a,pq and pga;'pq = a;'pg; hence each pga,pq is invertible in pgBpq
with respective inverse pga; 'pg. Consequently, the sequence {(pga,pq)~'} is bounded, as the
sequence {a; '} is bounded. Also note from (6.3.4) that vpg = 0 and ptqv* = 0; hence we get

pqzpg = prqpq + eptq(vpq) + e(pqv*)pg = 0.

Thus we have

0 = prqapg = lim p*qasa,pq = lim(p*qaypq) (pganpq),

where we multiply by {(pganpq)™'} to right side of sequence to get lim,, ptqa’pg = 0; using
which and the expressions ga), = qa)q and a,p = pa,p for all n, it follows that

praepgt = limpgayanpg = lim(pqasgp)anpgt = 0.
On the other hand, we again use (6.3.4) and the condition pquv* = 0 to get
praxpgt = prapgt + epqupg + e(ptqut)pg = epqupg = ev # 0.

So we get a contradiction, which arose because we assumed that both pg and ptq are non-zero.
Thus one of them is zero and we have the required result. ]

We are going to use the following simple lemma very frequently.
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Lemma 6.3.9. Let {a,} be a sequence of invertible elements in a C*-algebra such thatlim, a’a,, =
1. Then {a,'} is bounded and lim,, a,a} = 1.

Proof. Since lim,, a’a, = 1, it follows that lim,(a%a,)™! = 1 and so {(a’a,)~'} is bounded.
This implies the first assertion that {a; '} is bounded. Further we have lim, aa,a’a, = 1, and
hence

0 = lim(a,anayan — aya,) = lima; (apa,, — 1)ay,.
n n

Since the sequence {a, 1} is bounded, it follows by multiplying afl_l to the left and a;! to the
right of the sequence that lim,(a,a), — 1) = 0, as to be proved. O

Next we consider lattices of logmodular algebras in arbitrary von Neumann algebras, where
our aim is to prove that the generic part of any two invariant subspaces is zero. Recall that
R(x) denotes the range of an operator x.

Lemma 6.3.10. Let B be a von Neumann subalgebra of B(H) for some separable Hilbert H,
and let p,q be two non-zero projections in B such that R(p) and R(q) are in generic position in
H. Then Algg{p, q} is not logmodular in B.

Proof. Assume contrary to the assertion that the algebra Algg{p, ¢} is logmodular in B. Since
R(p) and R(q) are in generic position in H, it follows from Lemma 6.3.4 that there exist a Hilbert
space K and commuting positive contractions z,y € B(K) satisfying

kerz =0, kery =0 and 22 +¢4> =1

such that upto unitary equivalence, we have H = K & K and

1 2
p= 0 and ¢ = v xg . (6.3.5)
0 0 xy

Since logmodularity is preserved under unitary equivalence by Proposition 6.1.2, we can assume
without loss of generality that B is a von Neumann subalgebra of B( @ K), and p, g are of the
form as in (6.3.5).

Now let S be an invertible operator such that S,S~! € Algz{p,q}. Then Sp = pSp and
S~'p = pS~'p, which imply that S and S~! have the following form:

/ /
S = a b and S7! = @ b ,
0 ¢ 0 ¢

for some operators a,b, c,a’,t’, ¢ € B(K). It is then clear from the expression SS~! =1 = 5719
that a and c are invertible in B(K) with respective inverses a’ and ¢/. Now we have

ax® + bxy axy + by?

cxy cy?

Sq =

and
22ax? 4 22bxy 4+ zycry  xlaxy + x2by® + zycy?

q5q = :
LyaxQ + zybry + yicry  xyaxy + xyby?® + yzcyQ]
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Since Sq = qSq, we equate (2,1) entries of the two matrices, and use the condition 1 — 3? = 22

to get the expression z%cry = xyaz? + zybry; but z is injective (and hence x has dense range,
as z is positive) and zy = yz, so x can be cancelled from both the sides to get the following:

xey = yax + yby. (6.3.6)

Now fix a > 1, and let

1 o
7 = BKoK).
[a 0424-1]6 (KeK)

It is clear that Z is a positive and invertible operator. We claim that Z € B. Since p and ¢ are
in B, it follows that

2.0
lx 1:pqpel3.

0 0
Similarly
[8 ;2] =prqp* € B.
Thus
l:%? ;2] € B and hence Lfy xOy] € B.
Set

0
T = Y
zy 0
and let T' = U|T| be its polar decomposition, where |T’| denotes the square root of the operator

T*T. It is clear that T is one-one (as zy is one-one), so U is unitary. It is straightforward to

check (using uniqueness of polar decomposition) that

0 0 1
|T| = oY and U = .
0 =zy 1 0

Since B is a von Neumann algebra and T € B, it follows that U € B and so

[0 a]:aUEB.
0

(0}

Also since

=p+(®+1)p" €B,

1 0
0 a?2+1
we conclude that Z € B, as claimed. Thus by logmodularity of Algg{p, ¢} in B, we get a sequence

{S,} of invertible operators with S, S, ! € Algz{p, ¢} for all n such that Z = lim, S:S,. It
then follows from above discussion that each S, is of the form:
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for some ay, by, ¢, € B(K) such that a,, and ¢, are invertible operators, and from (6.3.6) we have

Ty = Yanx + ybny. (6.3.7)
Now we have
1 : *b
Y | =2 =1im 858, = lim |00 (6.3.8)
a a“+1 n no|byap byby, +crcn

So we get lim,, aya, = 1, and since each a,, is invertible, it follows from Lemma 6.3.9 that
li%n apa, = 1. (6.3.9)

We also get from (6.3.8) that lim,, a}b, = «, which further yields by multiplying a,, to the left
side of the sequence and using (6.3.9) that
lién(bn —aa,) =0. (6.3.10)
Set d,, = b, — aay, for all n. Then lim, d, = 0, and since lim,, a}a, = 1 we have
2 %

li}Ln by by, = lirrln(dn + aap)*(d, + aay) = hflna ata, = o2,

using which and the equation o? + 1 = lim,, (b%b, + c}c,) from (6.3.8), we get lim, c’c, = 1.
Again as each ¢, is invertible, it follows from Lemma 6.3.9 that

lim¢,c), = 1. (6.3.11)
n
Next we substitute b,, = aa, + d,, in equation (6.3.7) to get
zeny = yan® + y(aan + dn)y = yan (v + ay) + ydny = yanz + ydny,

where z = x + ay. Since a > 1, we note that z is positive and invertible (in fact 22 =
1+ (a? — 1)y + 2axy > 1), and thus we get

yan = xepyz t — ydyyz L. (6.3.12)

Note that
2

22 = (x4 ay)? = 2% + o*y* + 2axy > oy,
and since y and z commutes, it follows that
Y22 <1/’ (6.3.13)

Finally we combine the expression lim,, d,, = 0 from (6.3.10), and equations in (6.3.9), (6.3.11),
(6.3.12) and (6.3.13) to get the following:

y? = limyayayy = lim(yan)(yan)*

= ligbn(a:cnyz_l — ydnyz_l)(xcnyz_l — ydnyz_l)*

= lim(zc,yz ) (zepyz™H)* = limze,y?2 2
n n
. 1

<lim —xcucz = —2332.
noa a

Since o > 1 is arbitrary, it follows by letting « tend to co that y = 0, which is clearly not true.
Thus our assumption that Algg{p, ¢} is logmodular is false, completing the proof. ]
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Finally we prove our main theorem in full generality, for which we need the following lemma.

Lemma 6.3.11. Let an algebra M have logmodularity (resp. factorization) in a von Neumann
algebra B, and let p,q € Latg M. Ifr = (p Aq) V (p™ A qt), then r-MrL has logmodularity
(resp. factorization) in r+Brt.

Proof. Set 1 = p A q and oy = p- A ¢-. It is clear that 79 = 0 and © = 71 + ro. Since
p,q € Latg M, it follows that r; € Latg M. Also we note that p*, ¢+ € Latg M* and hence
ro € Latg M™, which is to say that rzl € Latg M. Note that r- =1—1ry —r] = Tzl —r1, and so
r1 < ry. Both the assertions about logmodularity and factorization now follow from part (3) of
Proposition 6.3.2. O

Proof of Theorem 6.2.1. Let M be a logmodular subalgebra of a von Neumann algebra B, and
let p,q € Latg M. We have to show that pg = gp. The second assertion that p < qor ¢ < p
whenever B is a factor, will then follow from Lemma 6.3.8. Set

r=p@AqV(p-Agh).

Then - Mrt is a logmodular algebra in r+Br* by Lemma 6.3.11. Note that the projections p
and ¢ commute with r, and hence with 7. So if we set

p = errJ‘ and ¢ = rlqu,
then it is immediate that p’, ¢’ are projections in 7 Br+, and we have p’ = pAr+ and ¢’ = gAr+.
Note that pg(p A q) = p A q = qp(p A q) and pg(p™ A q-) = 0 = gp(p™ A ¢*); hence
pgr =p /A gq = qpr,
which further yields
pq = pq(r+r+) = pgr +pgr-=pAq+ (rpro)(rigrt) = pAq+p'd,
gp=qpr+qpr-=pAq+ (rrgr)(riprt) =pAg+dp.

Therefore, in order to show the required assertion it is enough to prove that p'q’ = ¢'p’. Also
we note that
PAG =pAgATt <rAart=0,

and
(=)A= )=t —prt) A —grt) = ptrt Agtet
=(ptAgHArt<rart=o0.
Here 7+ — p/ and 1+ — ¢/ are the orthogonal complement of the projections p’ and ¢’ in r+Br+
respectively. Thus if necessary, by replacing the algebras B and M by r+Brt and rt Mrt

respectively, and the projections p, g by p’, ¢ respectively, we assume without loss of generality
that

pAg=0=ptAqgt, (6.3.14)
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so that r = 0 and B = r+Brt. The purpose of reducing B to rBr’ is just to avoid multiple
cases, and work with 4 x 4 matrices rather than 6 x 6 matrices, as we shall see.

Now assume that pg # gp, contrary to what we need to show. Then the generic part of R(p)
and R(q) in H are non-zero by Proposition 6.3.6, where H is the separable Hilbert space on
which the von Neumann algebra B acts. Further if both p A ¢ and p* A ¢ are zero, then (as
pAq=0=p-Aqgt) R(p) and R(q) would be in generic position in #, which is not possible by
Lemma 6.3.10, since Algg{p, ¢} (which contains M) is logmodular in B. Therefore at least one
of the projections p A ¢ and p A ¢ is non-zero.

For the remainder of the proof, we assume that both the projections p A ¢ and pt A ¢
are non-zero (the proof for the case of exactly one of them being non-zero goes on the similar
lines). It then follows from Proposition 6.3.6 that there exist a non-zero Hilbert space K and
commuting positive contractions z,y € B(K) satisfying

22 +y?=1 and kerz =0=kery

such that upto unitary unitary equivalence,

H=RpAg)OKSKDRpPAq) (6.3.15)
and
1 000 0 0 0 O
0100 0 a2 0
D= and ¢ = . :1032/ (6.3.16)
0 0 0O 0 zy y* O
0 000 0 0 0 1

Since logmodularity is preserved under unitary equivalence by Proposition 6.1.2, we assume
without loss of generality that B is a von Neumann subalgebra of B(R(pAqH) SKDSKDR(pTAq)),
and p, ¢ have the form as in (6.3.16). Now set

]61 :ﬁR(p/\qL)@IC and ]62 :K@fR(pL/\Q)
so that
H =K, & Ko. (6.3.17)

Throughout the proof, we make use of both the decomposition of H in (6.3.15) and (6.3.17),
which should be understood according to the context. Now fix @ > 1 and define the operator
Z € B(H) by

10 0 0
01 0 1 Z

7 = - = 20, (6.3.18)
0 aa a*+1 0 VARV
00 0 1

where

241
Zgzlo 0‘| and Zgzla+ 0]
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It is clear that Z is a positive and invertible operator in B(#). In the similar fashion as in
Lemma 6.3.10, it is easy to show, by using p,q € B, that Z € B. Since M is logmodular in B,
we then get a sequence {S,} of invertible operators in M~! such that Z = lim,, S} S,,. Then for
each n, we have S,p = pS,p and S;, p = pS,, 1p; hence the operators S, and S, ! have the form

an b, Th o Sn
S, — cn dp th Up _ lAn Bn]
0 0 e, fn 0 Oy
L0 0 gn
and ) )
a, b, vl sl
P A A A lA; B,z]
" 0 0 e, f 0o c|’
0 0 g, h]

for appropriate operators ay, by, ., al,,bl,, .. etc. In particular, we have A, Al =1 = Al A, ie.

A, is invertible in B(K;). Similarly C, is invertible in B(Ks). Now

[ 1 ZQ] = Z =1lim S8, = lim l (6.3.19)

A A, A* B,
75 7y

B:A, B:B,+C:C,|’
Then we have lim,, A} A,, = 1 and since A,, is invertible, it follows from Lemma 6.3.9 that
lim A, A = 1. (6.3.20)
n

We also have lim,, A} B,, = Z, which after multiplied by A, to left side of the sequence and
using (6.3.20) yields lim,, (B, — A, Z3) = 0; but

e A | g
and thus we get the following equations:
hﬁn(rn —aby,) =0, (6.3.21)
liﬁn(tn —ady,) =0. (6.3.22)
Also if D,, = B, — A, Z5 for all n, then lim,, D,, = 0 and since lim,, A} A,, = 1, we have
li7rln BB, = liTan(Dn + AnZ2)*(Dy, + AnZs) = liqgn Z5 Ay AnZo = Zs Zs.

This along with the expression lim, (B} B,, + C;:C,) = Z3 from (6.3.19), further yield

a? +1 0] B lcﬂ 0] _ [1 0] ‘ (6.3.23)

B C*C, = Za — 7372y —
i ntn = 43 T £292 0o 1 0o ol lo 1

Consequently, by computing entries of the matrices C}C,,, we get lim, (e} e, + g gn) = 1; hence
there exists m € N such that ||e}e,|| < 2, which in turn yields

eney, <2, foralln>m. (6.3.24)
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6.3. Proof of the main result

Now

0 bpx®+rpzy byzy +ray® s,

0 dpz?®+thzy dpzy+thy? up

an = 2

0 enTy eny fn

0 gnTY gny2 hn
and

0 0 0
0Sug — 22 dpa? + 2 tyzy + zyenzy 2 dpry + 20y + zyeny®  Pun + ayf
g =

rydnz? + zytnzy + ylenzy  zydnzy + xytay® + yieny®  zyun + y:fy
any gny2 hn

o O O O

Since S,q = ¢Snq for each n, by equating (3, 2) entries of the respective matrices and then using

2 2

1 —y? = 22, we get the expression z?e,zy = ryd,2z? + zyt,xy; but x is one-one and hence z has

dense range, so x cancels from both sides of the equation to yield
reny = ydox + ytpy.
If we set v, = t, — ad, for all n, then above equation further implies
zepy = ydpx + ylad, + v,y = ydn(z 4+ ay) + yo,y,
which in other words says that
ydn = zepyz ' — yuayz Tt (6.3.25)

where z = z + ay, which is clearly positive and invertible as 22> > 1. In a similar vein as in

6.3.13) in Lemma 6.3.10, z and y commute and we get
( ) g
Y2272 < 1/a2. (6.3.26)

Also by equating (1,2) entries of S,q and ¢S,q, we get b,z? +r,xry = 0; again since = has dense
range, it follows that b,x + r,y = 0 for all n, so by using (6.3.21) we have

0= liT{n(bna: + 1Y) = li}ln bn(z + ay) + 1i7rln(rn —aby)y = h7Izn bp(z + ay).
But « + ay is invertible as seen before, so the above equation yields
liyrln b, = 0. (6.3.27)
Similarly since each S, ! also has all these properties, we have
lign b, = 0. (6.3.28)

Note that the (2,2) entry of the matrix S,,S, ! (with respect to the decomposition R(p A ¢*) @
Ko KoR(ptAq)) is cpbl, + dnd,; hence we have ¢, b, + d,d!, = 1 for all n. Since lim,, b/, = 0
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Chapter 6. Logmodular Algebras

from (6.3.28), it follows that lim,, d,d,, = 1. Hence there exists ng € N such that ||d,d}, —1|| < 1
for all n > ng, which in particular says that d,d,, is invertible for all n > ng; thus

dnd, (dnd)) ™" =1,

which implies that d,, is right invertible for all n > ng. Likewise, from (2, 2) entry of S, 1S,, and
using lim,, b, = 0 from (6.3.27), we get lim,, d,,d,, = 1. Again this implies that d},d,, is invertible,
and hence d,, is left invertible for large n. Thus we have shown that d,, is both left and right
invertible, which is to say that d, is invertible, for large n.

Now for each n, note that the (2,2) entry of the matrix S;.S,, (with respect to the decom-
position R(p A ¢H) @ K & K @ R(pt A q)) is bib, + did,. Since lim, SiS, = Z, it then follows
that lim, (b} b, + d}d,) = 1, and since lim,, b, = 0 from (6.3.27), we get lim,, d}d,, = 1. But d,
is invertible for large n, so it follows from Lemma 6.3.9 that

lim d,,d;, = 1. (6.3.29)

Now using lim, v, = 0 from (6.3.22), and equations (6.3.24), (6.3.25), (6.3.26) and (6.3.29), we
get the following:

y? = liTan ydndyy = liy(ydn)(ydn)*

= liTIln(xenyz_l — yopyz ) (zepyz Tt — yopyzTH)*
= lim(ze,yz ) (zenyz™1)* = limze,y?2 2elx
n n
<Ly o< 22
< glimzenenr < —5a”.

Since o > 1 is arbitrary, it follows by taking a — oo that y = 0, which is a contradiction. Thus
our assumption that pq # ¢p is false. The proof is now complete. O

6.4 Reflexivity of algebras with factorization

One of the main results of this chapter says that the lattice of any algebra with factorization
property in a factor is a nest. A natural question that arises is whether algebras having fac-
torization are also nest subalgebras i.e. are they reflexive? Certainly, we cannot always expect
automatic reflexivity of such algebras (see Example 6.4.10). But then what extra condition can
be imposed in order to show that they are reflexive?

A result due to Radjavi and Rosenthal [67] says that a WOT closed algebra in B(H) whose
lattice is a nest, is a nest algebra if and only if it contains a maximal abelian self-adjoint algebra
(masa). See Kadison-Ringrose [45] or Takesaki [77] for more details on masa. In this section, we
show that if the lattice of an algebra with factorization in B(H) has finite dimensional atoms,
then it contains a masa and hence it is reflexive. This fact further helps us in characterizing all
logmodular algebras in finite dimensional von Neumann algebras. We recall some terminologies
to this end.

Definition 6.4.1. An algebra M in a von Neumann algebra B is called B-transitive (simply
transitive when B = B(H)) if Latg M = {0, 1}.
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6.4. Reflexivity of algebras with factorization

Transitive algebras are very well studied objects and have attracted deep investigations
over the decades. Our purpose here is limited upto an application of Burnside’s theorem about
transitive algebras in M,,. Interested readers can see Radjavi-Rosenthal [68] for history and some
major unsolved open problems on this topic. We now consider the following simple lemma.

Lemma 6.4.2. Let M be an algebra in a von Neumann algebra B such that Latg M is a nest,
and let p,q € Latg M with p < q. If r = q—p, then Lat,g,(rMr) = {s € rBr;p+s € Latg M}.
In particular, if p = q— then rMr is rBr-transitive.

Proof. As seen in Proposition 6.3.2, »Mr is a subalgebra of rBr. Now let s € Lat,p,(rMr),
and let @ € M. Note that (rar)s = s(rar)s, and since rs = s, it follows that ras = sas, using
which and the conditions aq = gaq and gs = s, we have

as = aqs = qaqs = qas = pas + ras = pas + sas = (p + s)as. (6.4.1)
Also since sp = 0 and ap = pap, we have sap = spap = 0, which along with (6.4.1) yield
(p+s)a(p+s) =pap+ sap+ (p+ s)as = ap+as = a(p+ s).

Since a is arbitrary in M, it follows that p+s € Latg M. Conversely let s € rBr be a projection
such that p+s € Latg M, and fix a € M. Then a(p+s) = (p+s)a(p+s), and since ps = 0 = pr
and rs = s, we have

(rar)s =ras =ra(p+ s)s =r(p+ s)a(p+ s)s = s(rar)s.

Again as a € M is arbitrary, we conclude that s € Lat, s, (rMr). Thus we have proved the first
assertion. Note that if p = ¢_ then for any s € rBr, p+ s € Latg M if and only if s = 0 or
s = r. The second assertion then follows from the first. O

The following proposition is the crux of this section.

Proposition 6.4.3. Let M be a closed algebra having factorization in a von Neumann algebra
B, and let p,q € Latg M such that p < q. If ¢ —p has finite dimensional range, then ¢q—p € M.
In particular, if either p or p~ has finite dimensional range, then p € M.

Proof. The second assertion clearly follows from the first. To prove the first assertion, set
r = q — p. Let B be a von Neumann subalgebra of B(H) for some Hilbert space H. Note that

H =R(p) ®R(r) ®R(q™),

and we consider operators of B(#) with respect to this decomposition. For each n € N, consider
the operator

1 1/n 0 O
Xn:r+£7“L: 0 1 0
0 0 1/n
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Chapter 6. Logmodular Algebras

It is clear that each X,, is a positive and invertible operator, and since r € B it follows that
X,, € B. So by factorization property of M in B, there exists an invertible operator S, € M~}
such that X,, = S}S,,. Then each S, leaves R(p) and R(q) invariant, which equivalently says
that \S,, has the form

an bn cpn
Sn=10 d, en|, (6.4.2)
0 0 fn
for appropriate operators a,, b,.. etc. We claim that the off-diagonal entries b,, ¢,, e, are 0 for

all n. Since each S;; 1 € M, S ! leaves R(p) and R(q) invariant, meaning that S, ! is also upper
triangular. Consequently, the diagonal entries ay,d,, f, of S, are invertible. Now for all n, we

have
I/n 0 O anan ay by, aycp
0 1 0 |=Xn=55,=|ban bibn+didy  bicn+dien
0 0 1/n Cpan  Cpbn +endn  chon t+enen + [ fn

We now equate entries of the matrices above to get the expressions a;,b, = 0 and ac, = 0.

Since a,, is invertible, it follows that
b,=0 and ¢, =0.
We also have b} c, + d) e, = 0, and since b, = 0 and d,, is invertible, it follows that
en, = 0.

This proves the claim that for all n, the operators b, ¢, and e,, are 0. We further get a}a, = 1/n
and cic, + elen, + frfn, = 1/n for all n, which imply that lim, a, = 0 and lim,, f, = 0. Also
b}b, + did, = 1; but b, =0, so we have

did, = 1.

Since R(r) is finite dimensional by hypothesis, it follows that d,, is a unitary for every n. By
compactness of the unitary group in finite dimensions, we get a subsequence {d,, } converging
to a unitary d in B(R(r)). Thus we have limy S,, = S, where

S =

o O O
S o
o O O

Since each S, € M and M is norm closed, it follows that S € M. Note that lim; d;kl =
limg d, =d* = d~!, using which we have

a,b 0 0000 0 0 0 00 0
lim S, S =1lim | 0 d,t 0 |0 d 0 =lm|0 did 0] =01 0f,
0 0 f,']]0 00 0 0 0 000

that is, lim S, 1S = r. Since 5,19 € M (as S, and S € M) for all k, we conclude that
r € M, as required to prove. ]
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6.4. Reflexivity of algebras with factorization

We now discuss a sufficient criterion imposed on dimension of atoms of the lattice to prove
the reflexivity of an algebra having factorization in B(#). It is clearly not necessary as any nest
algebra arising out of a countable nest has factorization and is reflexive.

Theorem 6.4.4. Let M be a WOT closed algebra having factorization in B(H). If all the
atoms of lattice Lat M have finite dimensional range, then M 1is reflexive and hence M is a

nest algebra.

Proof. We shall show that M contains a masa. As noted above, this claim along with the fact
that Lat M is a nest (from Corollary 6.2.2) will imply the required assertion that M is reflexive
and a nest algebra (see Theorem 9.24, [68]).

Let {ri}iea be the collection of all the atoms of Lat M for some finite or countable index-
ing set A. Since Lat M is atomic from Corollary 6.2.7, it follows that > ;. = 1 in WOT
convergence; hence

H = DicaHMi,

where H; = R(r;) which satisfies H; L H; for all i # j. For each ¢ € A since 7; is an atom,
we note that r; = p; — ¢; for some p;,q; € Lat M (where ¢; = p;_), and since r; has finite
dimensional range by hypothesis, it follows from Proposition 6.4.3 that r; € M.

Now recognize the von Neumann algebra r;B(H)r; with B(H;), for each i € A. Since r; is an
atom, we know from Lemma 6.4.2 that r; Mr; is a transitive subalgebra of B(H;). Therefore, as
H; is finite-dimensional, it follows from Burnside’s Theorem (Corollary 8.6, [68]) that r;Mr; =
B(H;). In other words, this says that r;B(H)r; = r;Mr;, and since r; € M, it follows that

riB(H)r; € M. (6.4.3)

Now for each i, let £; be a masa in B(H;) (for example, £; can be chosen to be the algebra of
diagonal matrices in the finite dimensional algebra B(H;)). Set

L=,
1€EA
which is considered a subalgebra of B(H). It is clear that £ is a masa in B(H). Note that
Lr; =rL for all i € A. Also it follows from (6.4.3) that r;Lr; C r;B(H)r; € M, and since M
is WOT closed we have

L= EZri - Zﬁn‘ = ZTZ'ETZ' Cc M,
1EA 1EA 1EA

where the sum above is in WOT. Thus we have shown our requirement that M contains a masa,
completing the proof. O

A nest of projections on a Hilbert space is called maximal or simple if it is not contained in
any larger nest. It is easy to verify that a nest £ is maximal if and only if all atoms in £ are
one-dimensional (Lemma 2.1, [69]). Thus the following corollary is immediate from Theorem
6.4.4.
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Chapter 6. Logmodular Algebras

Corollary 6.4.5. Let M be a WOT closed algebra have factorization in B(H), and let Lat M
be a maximal nest. Then M is reflexive, and so M is a nest algebra.

We emphasize the importance of the above corollary in the following example.

Example 6.4.6. Consider the Hilbert space H = ¢2(T'), for I' = N or Z, and let M be the re-
flexive algebra of upper triangular matrices in B(H) with respect to the canonical basis {ey, }ner.
Note that Lat M = {p,;n € T'}, where p, is the projection onto the subspace span{e,,; m < n}.
Clearly Lat M is a maximal nest. So if A/ is any subalgebra of M with Lat N a nest, then
Lat M C Lat N, which implies by maximality that Lat M = LatN. Thus it follows from
Corollary 6.4.5 that the only subalgebra of M that has factorization in B(H) is M.

Next we consider some consequences of the above results for subalgebras of finite dimensional

von Neumann algebras.

Let M be a logmodular algebra in the algebra M, of all n xn complex matrices. It can easily
be verified using compactness of the closed unit ball of M,, that the algebra M has factorization
in M, as well. Since all atoms of Lat M are clearly finite dimensional, it follows from Theorem
6.4.4 that M is a nest algebra in M,,. Thus we have shown that upto unitary equivalence, M
is an algebra of block upper triangular matrices in M,,. This assertion was put as a conjecture
in [62], and an affirmative answer was given in [44]. We have provided a different solution, and

we state it below.

Corollary 6.4.7. Let M be a logmodular algebra in M,,. Then M is an algebra of block upper
triangular matrices upto unitary equivalence.

Moreover, we have the following generalization of the corollary above:

Corollary 6.4.8. Let B be a (possibly countably infinite) direct sum of finite dimensional von
Neumann algebras, and let M be a WOT closed logmodular algebra in B. Then M is a nest
subalgebra of B and M is B-reflezive.

Proof. We know that every finite dimensional von Neumann algebra is *-isomorphic to a direct
sum of matrix algebras of the form M,, (see Theorem 1.11.2, [77]). In particular, B is *-isomorphic
to a countable direct sum of matrix algebras. Therefore in view of Proposition 6.1.2, we assume
without loss of generality that

B = @kZIMnkv

which faithfully acts on the Hilbert space H = ®;>1C™. Now for £k > 1, let p, denote the
orthogonal projection of H onto the subspace C™ (considered as a subspace of H), and let

My, = ppMpy..

We claim that
M = B> 1 M.
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6.4. Reflexivity of algebras with factorization

Firstly note that p, € B N B’; hence p, € Latg M. This in particular says that My is an
algebra. Since p; has finite dimensional range, it follows from Proposition 6.4.3 that pp € M.
This implies that Mj C M for each k; hence @©>1Mj € M. On the other hand, note that
> k>1 Pk = 1 in WOT, and since M is WOT closed, we get

M=M pC> Mpp =Y ppMpr = Bez1 My,
E>1 E>1 k>1
proving our claim that M = ®y>1M}. Note that M,,, = ppBpy, for each k. So the algebra M
is logmodular in M,,, by Proposition 6.3.2. Then it follows from Corollary 6.4.7 that

for the nest &, = LatMnk M, in M, . Now consider the lattice

E =P & ={Brz1ar; @ € &}
E>1
in B. Since &, = LatMnk My, it is immediate that £ = Latg M which implies M C Algg €.
Note that £ is not a nest if £ > 2. Now choose a sublattice, namely F, of £ such that F is a
nest and each element g in &, appears at least once as the kth coordinate of an element of F.
Such F can always be chosen: for example consider the nest Fy, for each k, given by

fk:{61@...@(%,1@(%@0@0@...; qk€5k}g5,

where ej, denotes the identity of M, , and let 7 = Uy>1F}. Since each & is a nest and Fj, C Fj41q
for all £ > 1, it follows that the sublattice F is a nest in B, and F fulfils the requirement. We
now claim that

M = Algy F,

which will prove that M is a nest subalgebra of B. Clearly as F C £, we have M C Algg& C
Algg F. Conversely let x € Algg F, and let x = ®p>12 for some z € M,,. The way F has
been chosen, each element of £, appears as the kth coordinate of some element of F, so it follows
that zpq = qxpq for all ¢ € &, and k > 1. This shows that

xy, € Algy, & = My,

hence z € M. Thus we conclude that Algg F C M proving the claim that M = Algg F. Finally
since F C £ = Latg M, it follows that Algg Latg M C Algg F = M. Since the other inclusion
is obvious, we have M = Algyg Laty M which is to say that M is B-reflexive. O

As a consequence of Corollary 6.4.8 and the fact that all nest subalgebras in a finite von
Neumann algebra are logmodular (see Example 6.1.10), we have thus characterized all logmod-
ular algebras in finite dimensional von Neumann algebras extending the result of Juschenko [44]

from matrix algebras.

Corollary 6.4.9. Let M be a subalgebra in a finite dimensional von Neumann algebra B. Then
M is logmodular in B if and only if M is a nest subalgebra of B.
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Chapter 6. Logmodular Algebras

In general, Corollary 6.4.9 fails to be true for algebras having factorization (or logmodularity)
in infinite dimensional von Neumann algebras, as the following example suggests.

Example 6.4.10. Let A be an algebra having factorization in a von Neumann algebra M such
that A # M, and D = AN A* is a factor. We claim that A is not M-reflexive. Assume
otherwise that A = Alg,, Lata(.A. Then note that since Latq A is commutative (by Corollary
6.2.2), we have Latyg.A C D. Also it is easy to verify that Laty(.A C D’ and thus we have
Latpq A C DND' =C. It then follows that Latys A = {0,1}, so A = Alg,4{0,1} = M which
is not true.

There are plenty of such algebras. To see one, let G be a countable discrete ordered group
(i.e. there is a linear order < on G such that g; < g9 implies hg; < hgs for all h, g1, g2 € G).
Let

B ={f 6= T X (o) < oo,
geG
and for each g € G, let U, : £2(G) — ¢%(G) be the unitary operator defined by U, f(¢') = f(g7¢")
for f € (2(G) and ¢’ € G. Let B be the finite von Neumann algebra in B(¢%(G)) generated by
the family {U,}4cq, called the group von Neumann algebra of G. Note that each element X of
B(¢*(G)) has a matrix representation () with respect to the canonical basis of £*(G). Let

M ={X = (x4,) € B;xg, =0 for g > h}.

Then M is an example of a finite maximal subdiagonal algebra in B with respect to the expec-
tation ¢ : B — B given by
O((wgn)) = xeel for (zgn) € B,

where e denotes the identity of G (see Example 3, [4]). In particular, M has factorization in B
(Theorem 4.2.1, [4]). But note that
MaM*=C.

Indeed if (z4,) € M N M*, then x4, = 0 for all g # h and 249 = x4 4 for all g,¢' € G. So M
cannot be B-reflexive as discussed above. Moreover, we can choose the ordered group G to be
countable with infinite conjugacy class property (e.g. G =, the free group on two generators),
so that B is a factor. In this case although Latg M is a nest (Corollary 6.2.2), M cannot be a
nest subalgebra of B (otherwise M N M* will contain the nest and so cannot be equal to C).
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To summarize our work, we have mainly undertaken the study of structure of C*-extreme points
of the spaces of UCP maps on C*-algebras. The theory for UCP maps taking values in matrices
(i.e. B(H) for finite dimensional Hilbert spaces) already had rich literature through the works
of Farenick et al [24,28,29,80]. We have carried forward the investigation in infinite dimensional
Hilbert space settings, where we have managed to prove some open problems in the process of
generalizing a number of results to infinite dimensions for specific type of UCP maps via different
methods. In the meantime, we came across a number of questions relevant to our studies which
we were not able to answer. Some of them which we mention below, deserve more attention and

whose solution may further give us more insight in development of the theory.

Firstly, we rewrite below the aforementioned conjecture about normal C*-extreme maps on
type I factors (See Conjecture 3.1.9).

Question 1. Is every normal C*-extreme map on a type I factor a direct sum of normal pure
UCP maps?

We know that any C*-extreme point in the space Px(N) of normalized POVMs on the
natural numbers N is spectral (Theorem 4.3.2). It is also known that any completely positive
map on {*°(= (*°(N)) corresponds to finitely additive positive operator valued measure on N,
whereas (countably additive) POVMs correspond to the normal completely positive maps on
£°° and hence all normal C*-extreme points are *-homomorphic. It is not clear as of now how
C*-extreme points in the collection of all finitely additive POVMs behave (which can be defined
and studied in a similar fashion). Approaching another way, the spectrum of £ is of course the
Stone-Cech compactification of N. Unfortunately this space is not metrizable and our result on
existence of a non-homomorphic C*-extreme point (Theorem 5.4.6) is not applicable and so we
are left with the following question:

Question 2. Are C*-extreme UCP maps on the C*-algebra £>° always x-homomorphisms?

We have seen characterization of all atomic C*-extreme points in Py /(X) (Theorem 4.3.2).
Also any C*-extreme point in Py (X) decomposes as a direct sum of atomic and non-atomic
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C*-extreme points. Therefore, it suffices to understand the structure of non-atomic C*-extreme
points in Py (X). In particular, we raise the following question which could be tractable.

Question 3. Describe the structure of non-atomic C*-extreme POVMs on the unit circle T.

In Chapter 6, we have discussed ‘universal’ or ‘strong’ factorization property for subalgebras
of von Neumann algebras. But there are weaker notions of factorization which can also be
explored. Say a subalgebra A has weak factorization property (WFP) in a von Neumann algebra
M if for any positive element x € M, there is an element a € A such that x = a*a. Here the
invertibility requirement on the elements is dropped.

Power [66] has studied WFP of nest algebras where he proved that if a nest £ of projections
on a Hilbert space H is well-ordered (i.e. p # py = Ng>pq for all p € € with p # 1), then
Alg € has WFP in B(H). Inspired from our result on lattices of algebras with factorization, we
may surmise that lattices of algebras with WFP in a factor should also be a nest. But it is not
clear to us at this point. However, for a subalgebra in a finite von Neumann algebra we can
certainly say so. We can follow the similar lines of proof along with the fact that any left (or
right) invertible element in a finite von Neumann algebra is invertible. We record it here.

Theorem. Let A be a subalgebra of a finite von Neumann algebra (resp. factor) M having
WFP. Then Latap A is a commutative subspace lattice (resp. nest).

So a natural question is the following:

Question 4. Is the lattice of a subalgebra having WFP in a von Neumann algebra (resp. factor)
is a commutative subspace lattice (resp. nest)?

We conclude with a question of reflexivity of algebras with factorization. It was shown in
Chapter 6 that a weakly closed algebra with factorization in B(#) has a masa and hence is
reflexive, if we impose some dimensionality condition on the atoms of its lattice. But we still
do not know whether every algebra with factorization in B(#) has a masa. Thus the following
question related to the famous transitive algebra problem of Kadison remains open.

Question 5. Is a weakly closed algebra having factorization in B(H) automatically reflexive?

In particular, is a weakly closed transitive algebra with factorization equal to B(H)?
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The material of this thesis is primarily based on the following three research articles:
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The contents of Chapter 2 and Chapter 3 follow Paper (iii). The contents of Chapter 4 and
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