
A Hierarchical Text Categorization Algorithm
Based on Feature Selection

A dissertation submitted in partial fulfilment of the requirements of
M.Tech (Computer Science)

degree of Indian Statistical Institute, Kolkata.

By

Durgesh Singh

Under the supervision of

Dr. Swapan K. Parui
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute, Kolkata
203, Barrackpore Trunk Road

Kolkata-700 108
India

July 12, 2015

To my parents and grandmother

In memory of my grandfather.

2

Ceritificate of Approval

This is to certify that this thesis titled “A Hierarchical Text Categoriza-
tion Algorithm Based on Feature Selection” submitted by Durgesh
Singh, Roll Number CS1314, Indian Statistical Institute Kolkata, in partial
fulfillment for the award of the degree of Master of Technology is a bonafide
record of work carried out by him under my supervision.

Dr. Swapan K. Parui
Comuter Vision and Pattern Recognition Unit,

Indian Statistical Institute,
Kolkata

3

Abstract

We are working extensively on the Reuters-21578 dataset which is a multi-
label dataset. It works well with the multi-label classification techniques.
When we use conventional multi-class classifier, the dataset has a few sets of
classes which are highly overlapping which causes a lot of misclassification
of documents for these overlapping classes.

We are trying to improve the results for the conventional multi-class clas-
sification techniques by understanding those features which are going to
discriminate appropriately among overlapping classes.

We have used 2 levels of features selection techniques. At the first level we
perform Okapi BM25 tf ∗ idf , mutual information and tf ∗ df normalized
(Chapter 4) based features selection methods.

At second level we have tried to further distinguish a particular set of classes
labeled corn, wheat and grain represented as class 2, 5 and 10 respectively
in our thesis. This set contains overlapping classes which accounts for a very
high misclassfication. We have studied here the ways to select viable features
which will distinguish between the overlapping classes. This section includes
bigrams and unigrams using certain criteria and the tf ∗ df normalized
approach which was mentioned for first level feature selection. We have also
discussed one more feature selection method which is described in feature
selection section in Chapter 6.

We have built a hierarchical classifier, where at first level we are using Self
Organizing Map (SOM) algorithm on the training set to get the similar
documents grouped together. Then we are using our feature selection tech-
niques to get the most viable features set and we perform Naive Bayes at
each cluster of the SOM algorithm. Here the training set is the documents
at each of the clusters.

4

Acknowledgment

At the end of this course, it is my pleasure to thank everyone who has helped
me along the way.

First of all, I would like to express my sincere gratitude to my supervisor,
Prof. Swapan K. Parui for introducing me to the area of Text Classification
and showing me the immense application oriented to this field. I have learnt
a lot from him. For his patience, for all his advice and encouragement and for
the way he helped me to think about problems with a broader perspective,
I will always be grateful.

I would like to thank all the professors at ISI Kolkata who have made my
educational life exciting and helped me to gain a better outlook on Computer
Science. I would also like to express my gratitude to Prof. Mandar Mitra,
Prof. Utpal Garain, Prof. Debapriyo Majumdar for interesting discussions.
I would like to thank Prof. Sandip Das, Prof. Arijit Bishnu, Prof. Sasthi
C. Ghosh, Prof Ansuman Banerjee and all other under whom I got the
opportunity to learn new things.

I would like to thank everybody at ISI for providing me a nice platform
for pursuing my studies. I thank all my classmates who have made the
academic and non-academic experience very delightful. Special thanks to
all of my friends Amit-da, Ayan-da, Kripa-da, Raghu-da, Tamal-da, An-
shuman, Archan, Arindam, Ashwin, Chirag, Dnyaneshwar, Kushal, Mayur,
Harmender, Ranjan, Ravinder, Rishabh, Shubhadeep and many others who
made my campus life so enjoyable. It has been great to have them around
at all times.

My most important acknowledgement goes to my family and friends who
have filled my life with happiness, most significantly, to my parents and
brother and sister who have always supported and encouraged me to pursue
my dreams. A special thanks to Ridhi who have been a very good friend
who motivated me.

Contents

1 Introduction 12

1.1 Text Categorization . 12

1.2 Dataset . 14

1.3 Related Work . 16

1.4 Organization of the Dissertation 17

2 Preliminary and Notations 20

3 Self Organizing Map 26

3.1 Introduction . 26

3.2 Feature Selection . 29

3.3 Training and Results . 29

3.3.1 Conclusion: . 36

4 Naive Bayes 38

4.1 Introduction . 38

4.1.1 Multinomial Naive Bayes 40

4.1.2 Poisson Naive Bayes 41

4.1.3 Empirical Prob. Distribution of Terms 42

4.2 Feature Selection . 43

4.2.1 First Level . 43

4.2.2 Second Level . 45

4.3 Training and Results . 48

4.3.1 First Level . 48

5

CONTENTS 6

4.3.2 Second Level . 55

5 k-Nearest Neighbour (k-NN) Rule 61

5.1 Introduction . 61

5.2 Feature Selection . 62

5.3 Training and Results . 63

5.3.1 Term Frequency . 64

5.3.2 Tf*idf . 64

5.3.3 Mutual Information 67

5.3.4 Tf*df normalized . 68

5.3.5 Bigrams . 70

5.3.6 Unigrams based on specific criteria 70

6 Hierarchical Classification Algorithm 72

6.1 Introduction . 72

6.2 Feature Selection . 74

6.3 Training and Results . 76

7 Conclusion and Future Work 85

List of Figures

6.1 Block diagram representation of the hierarchical classification
algorithm. 74

7

List of Tables

1.1 Number of Documents in each 10 classes 16

1.2 Class Names for each Class Label in top 10 category of Reuters-
21578 that we are using in thesis 16

3.1 Results on SOM . 30

3.2 Results for Correlation on class pairs for SOM output 34

3.3 Results for Association on class pairs for SOM output 35

4.1 Results on top Okapi BM25 tf ∗ idf selected features 49

4.2 Confusion Matrix for best case for Okapi BM25 tf∗idf feature
selection method, where we selected 50 features per class with
accuracy 86.47 . 50

4.3 Confusion Matrix for Okapi BM25 tf ∗ idf feature selection
for the highest accuracy 87.33 50

4.4 Results on top MI selected features 52

4.5 Confusion Matrix for best case for MI feature selection method,
where we selected 10 features per class with accuracy 82.95 . 52

4.6 Confusion Matrix for MI feature selection for the highest ac-
curacy of 86.76 . 53

4.7 Results on Tf*df normalized selected features 53

4.8 Confusion Matrix for best case for tf*df normalized feature
selection where we selected 350 features across all the classes
with accuracy 86.93 . 54

4.9 Confusion Matrix for the groups G1, G2, G3, G4 and G5
formed from the above shown confusion matrix of the 350
features across all the classes with accuracy 86.93 55

8

LIST OF TABLES 9

4.10 Confusion Matrix for tf*df normalized feature selection for
the highest accuracy 87.15 . 55

4.11 Results for 2nd level bigrams features for classes 2, 5 and 10 . 56

4.12 Confusion Matrix for bigrams feature selection for the feature
size of 100 bigrams per class for classes 2, 5 and 10 57

4.13 Confusion Matrix for bigrams feature selection for the feature
size of 200 bigrams per class for classes 2, 5 and 10 57

4.14 Confusion Matrix for bigrams feature selection for the feature
size of 1800 bigrams per class for classes 2, 5 and 10 57

4.15 Confusion Matrix for bigrams feature selection for the feature
size of 10000 bigrams per class for classes 2, 5 and 10 57

4.16 Confusion Matrix for union of unigrams and bigrams feature
selection method for the feature size of 200 bigrams per class
and 50 unigrams per class for classes 2, 5 and 10 58

4.17 Confusion Matrix for union of unigrams and bigrams feature
selection method for the feature size of 200 bigrams per class
and 600 unigrams per class for classes 2, 5 and 10 58

4.18 Confusion Matrix for union of unigrams and bigrams feature
selection method for the feature size of 100 bigrams per class
and 50 unigrams per class for classes 2, 5 and 10 58

4.19 Confusion Matrix for union of unigrams and bigrams feature
selection method for the feature size of 100 bigrams per class
and 100 unigrams per class for classes 2, 5 and 10 59

4.20 Results for 2nd level tf*df normalized features 59

4.21 Confusion Matrix for tf*df normalized feature selection method
for the feature size of 150 features across all the classes 2, 5
and 10 . 60

4.22 Confusion Matrix for tf*df normalized feature selection method
for the feature size of 1500 features across all the classes 2, 5
and 10 . 60

4.23 Confusion Matrix for tf*df normalized feature selection method
for the feature size of 3000 features across all the classes 2, 5
and 10 . 60

4.24 Confusion Matrix for tf*df normalized feature selection method
for the feature size of 13450 features across all the classes 2,
5 and 10 . 60

LIST OF TABLES 10

5.1 Results of k-NN algorithm for full features 64

5.2 Confusion Matrix for full features using cosine similarity for
k-NN where k=5 . 64

5.3 Results of k-NN algorithm for top Okapi BM25 tf ∗ idf fea-
tures selection method. 65

5.4 Confusion Matrix for top Okapi BM25 tf ∗ idf features se-
lection method using cosine similarity for k-NN where k=5 . 66

5.5 Confusion Matrix for top Okapi BM25 tf ∗ idf features se-
lection method using Euclidean distance for k-NN where k=5
. 66

5.6 Results of k-NN algorithm for MI 67

5.7 Confusion Matrix for MI feature selection method using co-
sine similarity for k-NN where k=11 67

5.8 Confusion Matrix for MI feature selection method using Eu-
clidean distance for k-NN where k=5 68

5.9 Results of k-NN algorithm for TF*df normalized 68

5.10 Confusion Matrix for Tf*df normalized feature selection method
using cosine similarity for k-NN where k=5 69

5.11 Confusion Matrix for Tf*df normalized feature selection method
using Euclidean distance for k-NN where k=5 69

5.12 Results of k-NN algorithm for Bigrams 70

5.13 Confusion Matrix for best case for Bigrams feature selection
of classes 2, 5, 10 for k=5 . 70

5.14 Results of k-NN algorithm for union of bigrams and unigrams 71

6.1 Result for Hierarchical classifier for Full features 78

6.2 Confusion Matrix for full feature 79

6.3 Result for Hierarchical classifier for our New approach 79

6.4 Confusion Matrix for the new approach for feature selection . 79

6.5 Result for Hierarchical classifier for selected features on the
basis of Okapi BM25 Tf*idf where both similarity functions
are cosine similarity. 80

6.6 Result for Hierarchical classifier for selected features on the
basis Okapi BM25 tf*idf where both similarity functions are
Euclidean distance based similarity. 80

LIST OF TABLES 11

6.7 Confusion Matrix for the Okapi BM25 tf∗idf feature selection
method. Features set size is chosen as top 50 features per class
and with Euclidean distance similarity function and accuracy
of 85.61% and run 1 of SOM program 81

6.8 Result for Hierarchical classifier for selected features on the
basis MI where both similarity functions are cosine similarity 81

6.9 Result for Hierarchical classifier for selected features on the
basis of MI where both similarity functions are Euclidean dis-
tance based similarity . 82

6.10 Confusion Matrix for the MI feature selection method. Fea-
tures set size is chosen as top 50 features per class and with
Euclidean distance similarity function and accuracy of 86.79%
and run 3 of SOM program 82

6.11 Result for Hierarchical classifier for selected features on the
basis Tf*df normalized where both similarity functions are
cosine similarity . 83

6.12 Result for Hierarchical classifier for selected features on the
basis Tf*df normalized where both similarity functions are
Euclidean distance based similarity 83

6.13 Confusion Matrix for the tf ∗ df normalized for feature se-
lection. Features size is 500 and with Euclidean distance sim-
ilarity function and accuracy of 86.32% for run 3 of SOM
program. 84

Chapter 1

Introduction

1.1 Text Categorization

The digitization of information has been increasing exponentially as the

expansion of internet has prevailed. The text in digital form is growing in

every possible domains and sectors like finance, banking, service, health,

government data and all types of statistical data in all these areas. For an

enterprise, automated text categorization is important because of the large

quantity of documents that need to be properly processed and classified. An

online newspaper/magazine might want to automatically classify incoming

articles under various topics or class labels like agriculture, economy and

sport.

Text categorization, or text classification (TC) is the task of automatically

classifying a set of documents with unknown labels into various categories

from a given set of labels by going through the contents of the text. TC

model uses the contents of given documents to learn some useful information

from them which is used in classification process for a new document.

Yet another application of text classification is text filtering. In filtering,

12

CHAPTER 1. INTRODUCTION 13

the newspaper could classify the upcoming news as relevant and irrelevant

based on their topics. For example, a news-site concerning about sports

might want to consider only the articles which are relevant to sports and

block all the other articles as irrelevant. A text filter could also categorize

incoming e-mail as normal and junk mail.

In order to deal with this huge amount of digital information the increasing

demand of automated text categorization can be best understood and it has

become one of the most popular and researched problems in information

retrieval and machine learning. The challenges which are posed to researcher

are given the vast dimensions of the text. Documents can be of type : plain

text, semi-structured text and structured text, in this thesis we are dealing

with the plain texts. Challenges basically arise due to the size of text to

be classified, the nature of text, the datastructure we are using to represent

the text, by the amount of size of training set that we have for learning the

classifier.

Text categorization/Text Classification is of two kind: unsupervised and

supervised text categorization.

• Unsupervised Text categorization: This type of TC assumes no prior

information of the labels of the documents. There is no human expert

who has assigned documents to classes. It is the distribution and

makeup of data that will define cluster membership [8].

• Supervised Text categorization: In this technique, the documents are

well labelled to classes and on the basis of this information new docu-

ments are classified to predefined classes. So here we have the supervi-

sor or human who defines the classes and labels training documents [8].

As mentioned the text is of high dimension which form the feature space,

CHAPTER 1. INTRODUCTION 14

lots of features are not of importance to the text categorization algorithms

as the contribution of such features are not large percentage and affects the

text categorization very minimal. So we can exclude such features which

do not capture more information and we can find out those features which

captures the most information. There are several known techniques for

feature selection and we have developed our own too.

We have used a dataset which is multilabel. It has a subset of classes

which are overlapping and can be classified with multilabel classification.

This gives good results. We experimented with conventional multi-class

classification on this data set. We have built a hierarchical classifier where

at first level Self Organizing Map (SOM), a clustering algorithm is applied

and then we apply Naive Bayes at each clusters of SOM. We did extensive

experiments Naive Bayes as well as k-NN rule for various feature selection

techniques. We first obtained the features from the training set and then

tested on the training set to see the performance of our algorithm and then

we experimented on the test set.

1.2 Dataset

Datasets are collections of pre-classified documents. They are essential to

develop and evaluate a text classification (TC) system. They are used to

train the system which will be used later on to classify the test documents.

For the first step of training phase we know all the labels in the training

documents. These training documents are used to learn some important

information and in turn train the TC system. We then enter in testing

phase where we input the unlabeled test documents of test dataset to the

already built and trained TC system.

The quality of the TC system is decided by the fact that how well it classifies

CHAPTER 1. INTRODUCTION 15

the unlabeled test documents.

The Reuters-21578 Collection

All the documents contained in the Reuters-21578 collection1 appeared on

the Reuters newswire and were manually classified by personnel from Reuters

Ltd. This collection is very skewed, with documents very unevenly dis-

tributed among different classes.

We worked rigorously on the ModApte split of Reuters-21578 dataset and

noted the result under various conditions. This is a multi-label dataset

where each test document can be classified to multiple labels.

We tried to make the conventional classification for this dataset much better

using various features selection techniques which we will mention in later

chapters in detail.

Text Representation:

Each document is represented as vectors of words which is done in popular

vector representation for information retrieval Salton and McGill [12].

Reuters-21578 (ModApte Split)

We used 9980 stories which has been classified into 10 classes. The stories are

about 200 words in length. The Mod Apt train/test split is generally used

for classification tasks, in which 7193 stories are used to train the classifier

and rest 2787 stories are used as the test set. The stories are temporal in

nature, i.e. the training set occur before the test set in time. Number of

documents in test set (defined in Notations chapter) for the top 10 categories

are given below in Table 1.1.

1https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+

Categorization+Collection

https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection

CHAPTER 1. INTRODUCTION 16

Table 1.1: Number of Documents in each 10 classes
Class Label #Documents

acq 719
corn 56
crude 189
earn 1087
grain 149
interest 131
money-fx 179
ship 89
trade 118
wheat 71

We have defined the following notations for these class labels as shown in

Table 1.2. We have used these notations in rest of the thesis report.

Table 1.2: Class Names for each Class Label in top 10 category of Reuters-
21578 that we are using in thesis

Label acq corn crude earn grain interest money-fx ship trade wheat
Name class1 class2 class3 class4 class5 class6 class7 class8 class9 class10

Evaluation Metric

We evaluated our results using the Accuracy as the metric. Accuracy is

defined as the percentage of correctly classified documents. Accuracy is a

real value between 0 and 1.

Accuracy = Number of correctly classified documents
Total number of documents

We are using percentage of this accuracy by multiplying with 100.

1.3 Related Work

The area of text classification has seen a lot of research due to the increase in

demand of digitized and well-defined information. Various TC concepts, ap-

plications, dimensionality reduction, classifier types and the way to evaluate

CHAPTER 1. INTRODUCTION 17

them is very elegantly described in [14].

There has been a lot of experimental work done on the popular Reuters

collection. Here we are using Reuters-21578 top 10 classes ModApte split.

Yang [15] performed comparative evaluation of various TC methods. The

result of his evaluation were published on the Reuters corpus. The work of

Dumais et al. [2], Yang et al. [16], and Erkan et al. [3] further describes the

Reuters-21578 data set. Various TC methods were compared in Dumais et

al. [2]; they used mutual information (MI) to select most important features.

MI is described in Yang et al. [17]. They also described other feature selec-

tion methods such as document frequency thresholding, Information gain,

chi-square statistics and term strength. Dasgupta et al. [1] discusses about

various feature selection strategies and gave an unsupervised feature selec-

tion method. We get an idea to choose an important term based on the

term frequency and the document frequency from Salton et al. [13]. Salton

and Buckley [11] discuses about the tf ∗ idf term weight measure.

SOM is studied in Saarikoski et al. [10] and in books [5]. Eyheramendy et

al. [4] discusses about using various probability fuctions for Naive Bayes,

it has been studied in Lewis [7] and can be found in few books mentioned

at [8], [9]. Naive Bayes is used in many other research papers: Dumais et

al. [2], [6], Yang and Liu [16]. k-NN algorithms are studied and work has

been done in Yang and Liu [16].

1.4 Organization of the Dissertation

We would like to divide our work in two levels.

1. Clustering (unsupervised classification)

2. Supervised classification

CHAPTER 1. INTRODUCTION 18

(a) Naive Bayes

(b) k-NN rule

Chapter 2 is about the preliminaries an notations used in this thesis. It

includes all the technical little information related to TC and technical terms

that builds the basic structure of the thesis.

Chapter 3 talks about the clustering where the implementation of self orga-

nizing map algorithm is done. It describes about the feature selection that

we used, the results and observations from the result and finally conclusion

is shown which will be helpful in further 2nd level of supervised classification

in our TC model.

From these results, we can observe that these are the overlapping classes

sets: class {2, 5, 10}, class {6, 7} and class {3, 8}

We can think them as the documents belonging to these three sets of classes

are highly similar to one another. The documents of each of these sets may

get wrongly classified to one of the other classes from the same set. We

are emphasizing that the probability of misclassification is high among the

documents of these sets. This is the reason that a particular cluster might

not be pure and have documents belonging to above mentioned subsets.

This experimentation is concluded in this chapter.

Chapter 4 talks about a probabilistic classifier: Naive Bayes classifier. We

gave an introduction to the algorithm and several probabilistic distribution

functions like multinomial, Poisson and an empirical based probability dis-

tribution of terms is done. We used several feature selection methods to get

the most important features out of the whole feature set.

We did two levels of classification here to try to reduce the misclassification

rate which is caused by the classes 2, 5 and 10. At second level we choose

CHAPTER 1. INTRODUCTION 19

bigrams features that are contributing most to the documents. The process

of choosing the bigrams is explained in this section.

We sorted the bigrams features in decreasing order of the appropriate score

to experiment the variations in the result and we got notable differences

in the results at the second level of Naive Bayes classifier. We also merge

the bigrams with unigrams chosen using the same approach we applied to

choose bigrams.

Chapter 5 discusses the k-NN method, it starts with the introduction and

then describes the feature selection methods we used contrasts the results

on the basis of choosing two similarity functions : cosine similarity and

euclidean distance.

Chapter 6 introduces the main task of this thesis, the hierarchical algorithm

using feature selection, on the first level of which, run the SOM algorithm

and where we get the clusters from training set. At the second level we

perform Naive Bayes classifier. We train naive Bayes classifier at each cluster

level which we got from the SOM algorithm output.

We show the results on the basis of two possible selection of similarity mea-

sures, we are using those features selection methods which were experi-

mented in Chapter 3.

In this chapter we incorporate all the research work done in previous chapters

to get some useful result out of our classifier.

Chapter 7 shows the conclusion and future work.

Chapter 2

Preliminary and Notations

In this section we have given few definitions and notations of terms which

are involved in this thesis. These terms serves as the basis for describing

the key idea behind each concept which is building block to several other

mathematical notations and terminology used in this thesis.

We are given,

1. Training set:

(a) A training set is a set of documents which is applied in a classifier

to learn some useful information from it, which is used to classify

new documents on the basis of that learned information. A col-

lection of documents X = { ~X1, ~X2, ~X3, · · · , ~XN} is the training

set. Size of this training set is considered to be N .

(b) ~Xi ∈ X, ∀i = {1, 2, · · · , N} is a document from the training set

X which is represented in vector space: ~Xi = {wi,1, wi,2, · · · , wi,|V |}

where wi,j is the weight associated for the jth term of the docu-

ment ~Xi ∀i ∈ [1, N] and ∀j ∈ [1, |V |], weight wi,j is a positive

real number. |V | is the number of unique terms in all the docu-

20

CHAPTER 2. PRELIMINARY AND NOTATIONS 21

ments. A term is basically defined according to the application

where classifier is used, it can be a single word (unigrams), group

of two words (bigrams), group of several words (phrases). We use

〈tj〉 to denote the jth term. Corresponding to each term in each

document ~Xi ∀i ∈ [1, N] the associated weight wi,j is a positive

real number and we find out the weights using below mentioned

ways:

i. Term frequency: For each ith document, weight of the jth

term is considered as frequency of occurrence of this term in

that document, which is denoted as f(〈tj〉, ~Xi), where 〈tj〉

denotes the jth term.

ii. Tf ∗ idf : It is product of the term frequency f(〈tj〉, ~Xi), as

described above and inverse document frequency (idfj) which

is defined for a jth term:

idfj = log10
N
dfj

Hence, tf ∗ idf = f(〈tj〉, ~Xi) ∗ idfj

Where, dfj is the document frequency of the jth term of the

set X, irrespective of a particular document. It is a measure

of how much information the word provides, that is, whether

the term is common or rare across all documents. It gives

the count of number of documents in which this term occurs.

N is same as the size of training set as defined above, which

is basically total number of documents in the training set X.

iii. Okapi BM25 tf ∗ idf : We have used this as an alternative

for the weights of terms of the documents. This is calculated

for a jth term of ith document Xi as:

(BM25 tf ∗ idf)i,j = idfj ∗ f(〈tj〉, ~Xi)∗(k1+1)

f(〈tj〉, ~Xi)+k1∗(1−b+b∗
| ~Xi|
avgdl

)

idfj = log
N−dfj+0.5
dfj+0.5

CHAPTER 2. PRELIMINARY AND NOTATIONS 22

| ~Xi| is the length of the document ~Xi, k1 and b are constants,

avgdl is the average length of all the documents in the set

X, dfj is the document frequency of term 〈tj〉 which is the

number of documents in which this term is present.

(c) Vector space Model: It encodes the documents and queries into

vectors, which makes the processing of these documents easier.

The matching of documents and queries is made using distance

or similarity calculations between the documents which are rep-

resented as vectors in |V | dimensional space.

(d) The dimension of the document vector is called the Vocabulary

of the document set. It is a set of unique words in the document

set. For the training set of document we denote it by V . The

Vocabulary size for training set is denoted as |V |.

2. Test Set:

Test set T = { ~T1, ~T2, · · · , ~TM} is also a set of documents defined in

same way as training set. Where ~Ti ∀i = {1, 2, · · · ,M} is a test docu-

ment in the test set which are not known to the classifier beforehand.

It is task of the classifier to classify the test documents by using the

information learned from the training set.

Test documents are represented as vectors : ~Ti = {wi,1, wi,2, · · · , ti,|p|},

∀i ∈ [1,M] whereM is size of test set, p is the vocabulary set of test set,

and |p| is the vocabulary size. Rest notations are similar to training

set, except the term weight/metric tf ∗ idf , since test documents are

coming one by one we do not have measure to find out idf for a term

belong to test set. One alternative is to use term frequency of jth term

from the test document ~Ti and idf of that term from the training set.

CHAPTER 2. PRELIMINARY AND NOTATIONS 23

3. A set of classes C={c1, c2, · · · , c10}:

Class ci, ∀i = {1, 2, · · · , 10} of a document is basically the label or the

category in which a given documents belongs. The class for training

set documents is know beforehand, and class of the test document has

to be estimated using the text classifiers system. In our thesis we have

top 10 classes for the Reuters-21578 dataset on which we are testing

our classifier algorithm. Hence,class size is |C|= 10. We are using the

notations for each class label as shown in Table 1.2.

No of documents in each class ci from training set is assumed to be

nci . We often use TFj,i to represent collective frequency of jth term

in class ci.

4. Clusters: These are the output of a clustering/unsupervised classifi-

cation algorithm.We run the algorithm on a training set and we get

those documents in one cluster which are most similar to each other

on some similarity measure.

5. Similarity functions: To measure the closeness of one document with

another document we must have some similarity measure on the doc-

uments

(a) Cosine similarity

This concept applies to documents in their vector space model

representation. This measures the similarity between documents

vectors ~Xi and ~Tj by finding the cos theta of angle formed between

them in |V | dimensional space. If this value is near to 1 then

the two documents are similar, when this value is 0 then two

documents are orthogonal and not related to each other, similarly

when this value is negative then also, the documents are very

dissimilar to each other.

CHAPTER 2. PRELIMINARY AND NOTATIONS 24

cos-similarity(~Xi, ~Tj)=
~Xi∗ ~Tj
| ~Xi|∗| ~Tj |

Where ~Xi ∈ X and ~Tj ∈ T . | ~Xi| and | ~Tj | are the absolute value

of the vector ~Xi and ~Tj respectively.

(b) Euclidean Distance

The Euclidean distance between points p and q is the length of

the line segment connecting them. We also use (L2) norm as its

notation. In Cartesian coordinates, if p = (p1, p2, · · · , p|V |) and

q = (q1, q2, · · · , q|V |) are two points in Euclidean |V |-space, then

the distance (d) from p to q, or from q to p is given by:

d(p, q) =

√∑|V |
i=1(qi − pi)2

We also represent this distance using this notation that we are

going to use in this thesis: d(p, q) = ||p− q|| .

We choose that documents from the set of training documents

closest to the given test document, for which we have the mini-

mum distance of the test document from the training documents.

6. M-class classifier: this is a kind of classifier that assigns only one of

the possible classes to the test document, e.g. if C = {c1, c2, c3} then

a test document ~T1 can only be classified to only one of either c1, c2

or c3.

7. M-label classifier: this is a kind of classifier that assigns one or many

of the possible classes to the test document, e.g. if C = {c1, c2, c3}

then a test document ~T1 can only be classified to one or many of the

classes which are subsets of C.

8. Feature selection: TC suffers from the drawback of high dimension

of feature space. Feature space is basically the set of terms which

are represented as vectors in a document vector representation defined

CHAPTER 2. PRELIMINARY AND NOTATIONS 25

earlier. There are some terms which are not important and their in-

clusion does not give much impact to the TC systems so we want to

neglect such terms on the basis on some ranking of the terms which

gives the importance of terms. There are various measures used in our

thesis to select appropriate features that reduces the feature space to

the most important terms and improves the TC system. We discuss

this in details in upcoming chapters.

9. Probabilistic classifier: The use of probabilities to predict a class is

evident in these types of classifiers. They are based on Bayes rule:

P (A|B) = P (B|A).P (A)
P (B)

where A and B are events.

P (A) and P (B) are the probabilities of A and B without regard to

each other. P (A|B), a conditional probability, is the probability of A

given that B is true. P (B|A), is the probability of B given that A is

true.

Given an evidence in terms of training documents and prior probability

of training documents we try to figure out the probability of the test

document.One important and widely researched probabilistic classifier

is Naive-Bayes classifier.

10. k-Nearest Neighbour (k-NN) classifiers: For each test document,we

select k neighbourhood documents based on some similarity measure

to find the similar training documents in its neighbourhood which

was described above. Among the k nearest neighbours which ever

class label has got majority votes, that label is assigned to the test

document.

Chapter 3

Self Organizing Map

3.1 Introduction

Self organizing map (SOM) [5], also known as Kohonen map, or self organiz-

ing feature map, is an artificial neural network using unsupervised learning

to cluster data samples. SOM inspired from the fact that how neurons

interact with one another. SOM are used widely in data clustering and vi-

sualization tasks, as well as in classification. We are trying to take help of

this clustering algorithm: self organizing maps, to find out how effective it

is in text classification tasks? We are applying it as the first level of our

hierarchical classifier, where we get clusters of similar training documents.

This will be useful at second levels of our main hierarchical algorithm. Here

we are using this algorithm to try to distinguish between the overlapping

classes of the given dataset .

SOM algorithm

Our first algorithm is self organizing map, which is an unsupervised classi-

fication algorithm. Following are the steps to the algorithm, we have used

the notations as described in the previous chapter.

26

CHAPTER 3. SELF ORGANIZING MAP 27

Steps :

From the training set X, we randomly choose m << N number of docu-

ments, which we call as set of weights vectors and denote them as: W =

{ ~W1, ~W2, · · · , ~Wm}, where ~Wi ∈ X and ~Wi = {wi,1, wi,2, wi,3, · · · , wi,|V |}, ∀i ∈

[1,m]. Where wi,j , as defined in previous chapter is the metric for jth term

in the ith weight vector.

Let us denote the randomly chosen weights by ~W1(old), ~W2(old), · · · , ~Wm(old).

We have α1 and α2 which are initialized to 0.02 and 0.01 respectively. There

is a factor mf which is initialized to 1.

1. Start:

We run a for loop for 500 times and do following steps for each of the

loop: mf reduces to 0.9 of its initial value at the 200th iteration of the

loop, at each increment of loop by 100, it is reduced by further 0.9 of

its previous value then successively. We multiply the factor mf with

α1 and α2 in each loop.

(a) for each ~Xi ∀i ∈ [1, N] do following:

i. Update rule:

find ~Wj1 ∈W that is nearest to ~Xi ∈ X.

find ~Wj2 ∈W that is second nearest to ~Xi ∈ X.

~W ′j1=
~Wj1 + {mf ∗ α1}[~Xi − ~Wj1] = [1 − {mf ∗ α1}] ~Wj1 +

{mf ∗ α1} ~Xi.

~W ′j2=
~Wj2 + {mf ∗ α2}[~Xi − ~Wj2] = [1 − {mf ∗ α2}] ~Wj2 +

{mf ∗ α2} ~Xi.

After this modification step we get a new set of weights denoted

as: ~W1(new), ~W2(new), · · · , ~Wm(new).

We now proceed to below mentioned terminating case.

CHAPTER 3. SELF ORGANIZING MAP 28

(b) Terminating case:

i. If || ~Wj(old)− ~Wj(new)||< ε, ∀j ∈ [1,m] then exit out of the loop

and go to step 2. Left hand side of the inequality measures

the distance of old weight with respect to the newly modified

weight using euclidean distance. Here ε is pre-determined

constant, its value is chosen as 0.05.

ii. Otherwise, let ~Wj(old) = ~Wj(new)∀j ∈ [1,m]. Repeat step 1.

2. Forming of clusters:

Algorithm is stopped either by running all the loop iterations or by

the given terminating conditions, At the termination of above steps,

we get a set of weights, which we consider as stable weights and we

denote them as: { ~W ∗1 , ~W ∗2 , ~W ∗3 , · · · , ~W ∗m}.

Now, we will find out the most similar cluster of each of the documents.

(a) If the similarity measure is Euclidean distance then the formula

to get clusters is:

CLj = { ~Xi ∈ X : || ~Xi− ~W ∗j ||≤ || ~Xi− ~W ∗k || ∀ k ∈ [1,m]} and ∀j ∈

[1,m] and ∀i ∈ [1, N] , N is total number of training set docu-

ments. CLj are the clusters formed in the SOM algorithm.

(b) If similarity function is cosine similarity then we measure the

most similar cluster as:

CLj = { ~Xi ∈ X : cos-similarity(~Xi, ~W
∗
j) ≥ cos-similarity(~Xi, ~W

∗
k)

∀ k ∈ [1,m]} and ∀j ∈ [1,m] and ∀i ∈ [1, N] , N is total number

of training set documents. CLj are the clusters formed in the

SOM algorithm.

CHAPTER 3. SELF ORGANIZING MAP 29

We are finding the most similar stable weight for a document Xi using

the above two mentioned similarity functions measure. We get our

cluster set as:

S′ = {CL1, CL2, CL3, · · · , CLm}.

S′ is set of clusters CLj ∀j = {1, 2, · · · ,m}.

3.2 Feature Selection

In the training set applied document threshold frequency, where we deleted

all those terms that appear in more than N/2 documents, where N is the

total number of training documents.

We used Okapi BM25 tfidf and term frequency as the metric of the fea-

tures.

3.3 Training and Results

We are running the SOM algorithm on the Reuters training set of size 7193.

We trained the clustering algorithm for the four cases:

1. Measure for similarity of Nearest weight for a document in Update

step and closest cluster per document in cluster forming step is cosine

similarity

2. Measure for similarity of Nearest weight for a document in Update step

and closest cluster per document in cluster forming step is Euclidean

distance

We are showing one of the results of the SOM algorithm which was run for

500 iterations. Here we showed the output of Okapi BM25 tf ∗ idf , we have

CHAPTER 3. SELF ORGANIZING MAP 30

also performed it for the term frequencies. This output of SOM and the

stable weights that we get at the end of the SOM algorithm, will be used as

the first level of our hierarchical categorization algorithm.

Table 3.1: Results on SOM

Class labels→ 1 2 3 4 5 6 7 8 9 10

cluster1 134 0 1 12 0 1 1 0 0 0

cluster2 101 0 3 96 0 2 0 0 22 0

cluster3 4 0 95 2 0 3 0 1 0 0

cluster4 16 0 0 14 0 13 0 0 0 0

cluster5 0 6 0 0 26 0 0 2 0 18

cluster6 0 0 0 209 0 0 0 0 0 0

cluster7 0 0 0 3 0 0 0 0 0 0

cluster8 0 0 0 0 0 30 43 0 0 0

cluster9 0 0 0 132 0 0 0 0 0 0

cluster10 0 0 0 94 0 0 0 0 0 0

cluster11 75 0 0 0 0 0 0 0 0 0

cluster12 0 4 0 0 30 1 0 1 0 22

cluster13 9 0 0 39 0 0 0 0 0 0

cluster14 0 0 0 259 0 0 0 0 0 0

cluster15 9 0 0 14 0 0 0 0 0 0

cluster16 2 12 0 1 14 0 0 0 2 0

cluster17 2 3 5 0 9 6 23 4 95 3

cluster18 3 0 1 0 0 0 0 5 0 0

cluster19 0 0 0 0 0 12 37 0 0 0

cluster20 91 0 1 11 1 0 0 0 0 1

cluster21 0 9 0 0 32 0 0 1 2 20

Continued on next page

CHAPTER 3. SELF ORGANIZING MAP 31

Table3.1 – continued from previous page

Class labels→ 1 2 3 4 5 6 7 8 9 10

cluster22 90 0 0 0 0 0 0 0 0 0

cluster23 6 8 0 4 13 0 0 0 0 8

cluster24 60 0 0 6 0 0 0 0 0 0

cluster25 0 0 0 0 0 0 0 0 1 0

cluster26 56 0 0 16 0 0 1 3 1 0

cluster27 35 0 3 211 2 14 5 2 0 1

cluster28 12 0 1 9 0 0 0 2 0 0

cluster29 49 0 0 0 0 0 0 0 0 0

cluster30 0 0 0 143 0 0 0 0 0 0

cluster31 7 0 0 15 0 0 0 0 0 0

cluster32 0 0 12 0 1 0 0 24 0 1

cluster33 0 15 0 0 24 0 0 0 0 15

cluster34 0 0 0 38 0 0 0 0 0 0

cluster35 20 0 0 16 0 1 0 0 0 0

cluster36 1 0 0 85 0 0 0 0 0 0

cluster37 0 0 0 15 0 11 12 0 3 0

cluster38 11 0 0 1 0 0 0 1 0 0

cluster39 1 0 0 25 0 0 0 0 0 0

cluster40 0 0 0 0 0 7 20 0 0 0

cluster41 22 0 0 37 0 2 0 0 1 0

cluster42 0 0 0 0 0 5 7 0 0 0

cluster43 0 2 2 0 13 0 0 12 0 1

cluster44 7 0 0 22 0 0 0 0 0 0

cluster45 16 0 2 4 2 20 37 0 6 1

cluster46 9 0 0 60 0 0 0 0 0 0

Continued on next page

CHAPTER 3. SELF ORGANIZING MAP 32

Table3.1 – continued from previous page

Class labels→ 1 2 3 4 5 6 7 8 9 10

cluster47 7 0 0 19 0 0 0 4 0 0

cluster48 0 22 0 0 43 0 0 8 0 31

cluster49 2 0 1 126 0 0 0 0 0 0

cluster50 9 0 5 42 0 0 0 0 0 0

cluster51 25 0 0 41 0 0 0 0 0 0

cluster52 0 0 0 0 0 0 2 0 1 0

cluster53 137 0 0 2 0 0 1 0 0 0

cluster54 18 0 69 11 0 0 0 0 0 0

cluster55 0 0 1 0 1 42 39 1 0 1

cluster56 0 0 0 176 0 0 0 0 0 0

cluster57 22 0 0 8 0 0 0 0 0 0

cluster58 0 0 0 46 0 0 0 0 0 0

cluster59 2 0 0 4 0 0 0 0 0 0

cluster60 0 19 0 0 49 0 0 1 2 17

cluster61 6 0 0 0 1 0 0 0 89 0

cluster62 0 19 0 0 19 0 0 0 0 7

cluster63 5 0 0 9 0 0 0 0 0 0

cluster64 19 2 0 4 3 2 8 0 0 1

cluster65 0 0 0 159 0 0 0 0 0 0

cluster66 68 0 0 0 0 0 0 1 0 0

cluster67 2 0 0 1 2 0 0 11 0 0

cluster68 0 0 21 0 0 0 0 27 0 0

cluster69 1 0 0 41 0 0 0 1 0 0

cluster70 0 0 0 0 0 15 19 0 0 0

cluster71 4 0 0 4 0 0 0 0 0 0

Continued on next page

CHAPTER 3. SELF ORGANIZING MAP 33

Table3.1 – continued from previous page

Class labels→ 1 2 3 4 5 6 7 8 9 10

cluster72 11 4 0 31 4 1 0 0 0 0

cluster73 5 0 81 1 0 0 0 0 0 0

cluster74 20 5 7 0 18 14 53 8 82 5

cluster75 0 0 0 0 7 0 0 32 0 0

cluster76 4 0 3 1 0 0 0 0 0 0

cluster77 63 0 7 38 0 1 0 1 2 0

cluster78 16 0 1 51 0 0 0 0 1 0

cluster79 0 0 0 0 0 36 36 0 0 0

cluster80 3 0 0 6 0 0 0 1 2 0

cluster81 18 0 0 41 0 9 9 0 3 0

cluster82 0 0 0 169 0 0 0 0 0 0

cluster83 0 0 43 0 0 0 0 0 0 0

cluster84 146 0 0 4 0 0 0 0 0 0

cluster85 0 36 0 0 66 0 0 3 0 22

cluster86 0 0 2 0 0 12 92 0 30 0

cluster87 5 0 0 54 0 1 0 1 0 0

cluster88 18 0 1 11 0 0 1 0 4 0

cluster89 1 3 0 0 4 0 1 1 0 0

cluster90 5 0 0 1 0 0 0 0 0 0

cluster91 0 0 0 0 0 60 2 0 0 0

cluster92 6 0 1 1 0 0 0 0 0 0

cluster93 1 0 1 6 0 4 68 3 2 0

cluster94 0 12 1 0 48 0 0 2 9 36

cluster95 0 0 14 0 1 0 0 31 5 1

cluster96 0 0 2 0 0 22 21 0 4 0

Continued on next page

CHAPTER 3. SELF ORGANIZING MAP 34

Table3.1 – continued from previous page

Class labels→ 1 2 3 4 5 6 7 8 9 10

cluster97 1 0 0 102 0 0 0 0 0 0

cluster98 76 0 0 35 0 0 0 0 0 0

cluster99 9 0 2 38 0 0 0 1 0 0

cluster100 67 0 0 1 0 0 0 1 0 0

Correlation between classes

We found out from the results of the above algorithm, the correlation be-

tween various classes and tabulated the result. We can figure out that few

classes are very overlapping and take part in misclassification.

Table 3.2: Results for Correlation on class pairs for SOM output
Class 2 3 4 5 6 7 8 9 10

1 0.6628 0.8904 0.6405 0.8767 0.7599 0.7855 0.9229 0.7649 0.8737
2 0.6962 0.3773 0.9189 0.5403 0.5232 0.6620 0.6592 0.8812
3 0.4427 0.8550 0.6831 0.6979 0.9252 0.8390 0.8550
4 0.5114 0.4594 0.4887 0.4471 0.3756 0.4900
5 0.7499 0.7351 0.8264 0.8274 0.9840
6 0.7989 0.6344 0.7965 0.7344
7 0.6241 0.7840 0.7415
8 0.7262 0.8186
9 0.8430

An association between classes from another angle

After finding out the correlation between the classes we tried to found out

the association between various classes (total 45 associations for 10 classes)

from another angle to emphasize and support the results that we got from

CHAPTER 3. SELF ORGANIZING MAP 35

the covariance output as shown above. It also shows which classes are over-

lapping. For a higher value the association between classes is high, and hence

overlap is high. The method shown below to calculate the association:

assoc(ci, cj) =
2 ∗ Si,j
ni + nj

∀ci, cj ∈ C, ∀i, j ∈ [1, 10]

Si,j =

|CL|∑
k=1

(min(ni,k, nj,k)) where |CL|= 100

ni =

|CL|∑
k=1

ni,k ∀i ∈ [1, 10]

Where, assoc(ci, cj) ∈ [0, 1], ni,k and nj,k is number of documents which

belong to class ci and cj ∀ci, cj ∈ C, ∀i, j ∈ [1, 10] respectively which gets

classified to a particular cluster CLk : ∀CLk ∈ CL, ∀k ∈ [1, 100] CL is

the set of clusters which we get as output from the SOM algorithm, |CL| is

the size of total number of clusters which is 100 in our implementation and

min(ni, nj) is a function to find minimum between ni, nj and ni, nj is the

number of documents that get clustered in the class ci and cj .

Table 3.3: Results for Association on class pairs for SOM output
2 3 4 5 6 7 8 9 10

1 0.0218 0.0863 0.1965 0.0355 0.0701 0.0639 0.0389 0.0703 0.0150
2 0.0631 0.0078 0.5895 0.0568 0.0417 0.1640 0.1090 0.6819
3 0.0440 0.1313 0.1250 0.1057 0.2184 0.1715 0.0632
4 0.0169 0.03598 0.0298 0.0234 0.0301 0.0084
5 0.0871 0.0823 0.1968 0.1521 0.6573
6 0.5627 0.0772 0.2150 0.0536
7 0.0653 0.2491 0.0346
8 0.0848 0.1515
9 0.0860

CHAPTER 3. SELF ORGANIZING MAP 36

3.3.1 Conclusion:

We conclude from the result that the classes which are overlapping, are as

follows:

Observation from the covariance

Class 1, Class 3 : 0.890493

Class 1, Class 5 : 0.876720

Class 1, Class 8 : 0.922923

Class 1, Class 10 : 0.873736

Class 2, Class 5 : 0.918989

Class 2, Class 10 : 0.881240

Class 3, Class 5 : 0.855086

Class 5, Class 10 : 0.984013

Observation from the association formula

Class 2, Class 5 : 0.589577

Class 2, Class 10 : 0.681934

Class 5, Class 10 : 0.657364

Class 6, Class 7 : 0.562712

So these mentioned classes are highly going to participate in high misclassi-

fication in our classification algorithm. We would like to narrow them down

with the help of appropriate feature selection algorithm.

We formed five groups from above information and named them:

G1 = {2, 5, 10},

G2 = {6, 7, 9},

CHAPTER 3. SELF ORGANIZING MAP 37

G3 = {3, 8},

G4 = {4},

G5 = {1}

The number in these sets belong to a class number, hence G1 consists of

class 2, 5 and 10. These groups are formed on the basis of results of the fore

coming supervised classification chapters, these groups are used in second

level of classification in Naive Bayes classifier which is the topic of next

chapter.

Chapter 4

Naive Bayes

4.1 Introduction

Naive Bayes [8], [9] is Bayesian or probabilistic classifiers. It uses the joint

probabilities of words and classes to estimate the probabilities of each class

given a document. Given a set of r document vectors D = { ~d1, ~d2, · · · , ~dr},

classified along a set C of s classes, C = c1, c2, · · · , cs. Bayesian classifiers

estimate the probabilities of each class ci given a document dj as:

P (ci|~dj) ∝ P (ci) ∗ P (~dj |ci)

Where,

Given the document dj , P (ci|dj) is the probability of it belongs to class ci.

P (ci) is the prior class probability of documents occurring in class ci. If a

documents terms do not provide clear evidence for one class versus another,

we choose the one that has a higher prior probability.

P (dj |ci) is the conditional probability of document dj belonging to class ci.

It is interpreted as a measure of how much evidence dj contributes that ci

38

CHAPTER 4. NAIVE BAYES 39

is the correct class.

Naive Bayes assumes that the probability of a given term is independent

of other terms that appear in the same document. Though this assump-

tions makes the classifier named Naive, but the comparable results of its

performance are surprising.

If |V | is the vocabulary size. We get,

P (~dj |ci) = P (〈t1〉|ci)∗P (〈t2〉|〈t1〉∗ci)∗, · · · , ∗P (〈t|V |〉|〈t|V |−1〉∗, · · · , ∗〈t1〉∗ci)
(4.1)

P (~dj |ci) = P (〈t1〉|ci) ∗ P (〈t2〉|ci)∗, · · · , ∗P (〈t|V |〉|ci)

P (~dj |ci) =
∏|V |
k=1 P (〈tk〉|ci)

The term independence assumption simplifies the determination of P (~dj |ci)

as the product of the probabilities of each term that appears in the doc-

ument. Here, 〈tk〉 denotes the kth term and P (〈tk〉|ci) is its conditional

probability of number of its occurrence in class ci.

We find the best class for the test document. The best class in Naive Bayes

classification is the most likely or maximum a posteriori (MAP) class

cmap = argmaxci∈CP
∗(ci|dj) (4.2)

= argmaxci∈CP
∗(ci) ∗ P ∗(dj |ci) . (4.3)

In above equation, many conditional probabilities are multiplied, one for

each position k ∈ [1, |V |] and this can cause in a floating point underflow.

Hence we perform the computation by adding logarithms of probabilities in-

stead of multiplying probabilities. The class with the highest log probability

score is still the most probable as the logarithm function is monotonic. So

CHAPTER 4. NAIVE BAYES 40

we get log of right hand side of above equation in order to get :

cmap = argmaxci∈C [logP ∗(ci) +

|V |∑
k=1

logP ∗(〈tk〉|ci) ∀i ∈ [1, 10]]. (4.4)

We are denoting P (〈tk〉|ci) as defined earlier as P ∗(〈tk〉|ci) because we are

using the training set to estimate P (〈tk〉|ci). Hence, P (ci) and P ∗(〈tk〉|ci)

as above, are estimated from the training set as explained in below sections

in details.

P (ci) =
nci
N
∀ci ∈ C, ∀i ∈ [1, 10]. (4.5)

where nci is the number of documents in class ci and N is the total number

of documents.

We estimate the conditional probability P ∗(〈tk〉|ci) as according to proba-

bility distribution functions mentioned below.

4.1.1 Multinomial Naive Bayes

For each class we sum up the term frequency for each term and calculate

the probability of occurrence of that term according to this formula:

P ∗(〈tk〉|ci) =
TFk,i∑|V |
l=0 TFl,i

∀ci ∈ C, ∀i ∈ [1, 10] and ∀k ∈ [1, |V |]

where, TFk,i is the number of occurrence of kth term 〈tk〉, ∀k ∈ [1, |V |] in

documents belonging to class ci ∈ C, ∀i ∈ [1, 10]. Denominator indicates

the sum of frequencies of all the terms in class ci.

To avoid the terms which have zero term frequency we use the Laplace

CHAPTER 4. NAIVE BAYES 41

smoothing as follows:

P ∗(〈tk〉|ci) =
TFk,i + 1∑|F |

l=0 TFl,i + |F |
∀ci ∈ C ∀i ∈ 1, 10 and ∀k ∈ [1, |F |] (4.6)

|F | is the size of the SELECTED FEATURES set F which is selected during

the feature selection step, where F ⊆ V .

4.1.2 Poisson Naive Bayes

We are using Poisson probability distribution to calculate the probability

P (dt|ci). Which is defined as :

P (~dt|ci) =

|V |∏
j=1

(exp−λi,j ∗
λ
fj
i,j

fj !
) ∀ci ∈ C and ∀i ∈ [1, 10] (4.7)

Where, ~dt is the test document, λi,j is mean of the term j in class i, fj is

the frequency count of term j and fj ! is factorial of the term frequency of

jth term. Since fj ! is common for the given test document when measured

across all the classes, we can neglect it and our new equation becomes:

P (~dt|ci) =

|V |∏
j=1

(exp−λi,j ∗λfji,j) ∀ci ∈ C and ∀i ∈ [1, 10] (4.8)

where λi,j can be calculated as :

λi,j =

∑nci
k=0 TFk,j,i
nci

∀ ci ∈ C and ∀ j ∈ [1, |V |] (4.9)

where,λi,j is mean of term tj , TFj,i is the term frequency of the term tj , ∀j ∈

[1, |V |] and nci is the no of documents in class ci. We are using Laplace

smoothing when the λi,j = 0, as shown:

λi,j =

∑nci
k=0 TFk,j,i + 1

nci + |F |
∀ ci ∈ C and ∀ j ∈ [1, |F |] (4.10)

CHAPTER 4. NAIVE BAYES 42

|F | is the size of the SELECTED FEATURES set F which is selected during

feature selection step, where F ⊆ V .

4.1.3 Empirical Prob. Distribution of Terms

Here we are defining the probability of each term using the data from the

training set as follow:

1. We are calculating the highest term frequency from the training set

documents and then we calculate table size which is an integral value

as,

= ceil(log2(1+max tf)
INTERV AL SIZE)

where, ceil(x) is the function that return an integer greater than or

equal to x, max tf is the maximum term frequency in over all training

set. INTERV AL SIZE is the size of the interval which is predeter-

mined as 0.25, table size gives the total number of intervals corre-

sponding to each term of the documents.

2. Now once we get the maximum table size we are going to create a

datastruture which has for each class and each document, table size

number of entries for these many interval for each terms.We initialize

them to be zero.

3. We get the index for the kth term with term frequency tfk as : table index =

log2(1+tfk)
INTERV AL SIZE we increment the location indexed by table index po-

sition by one.

4. We calculate the probability of the kth term using table index as fol-

lows:

P (〈tk〉|ci) =
freq(table index)tk∑table size

l=0 freq(table index)tl
∀ci ∈ C (4.11)

CHAPTER 4. NAIVE BAYES 43

where, 〈tk〉 is notation for the kth term, freq(table index)tk is the

count at index table index of the term tk in the given class ci ∈ C. |F |

is the size of the SELECTED FEATURES set F , which is selected

during feature selection step, where F ⊆ V .

5. We are using Laplace transform to avoid terms having zero occurrence

to avoid zero overall probability, ∀ci ∈ C

P (tk|ci) =
freq(table index)tk + 1∑table size

l=0 freq(table index)tl + table size
∀k ∈ [1, |F |]

(4.12)

4.2 Feature Selection

4.2.1 First Level

We are neglecting those terms which occur in more than N/2 documents,

where N is the size of training set X.

Okapi BM25 Tf*idf

From the training set, we get the Okapi BM25tf ∗ idf values and sum them

up for each terms corresponding to a particular class ci ∈ C, tf corresponds

to term frequency, which gives importance to a term in a document and

idf is inverse document frequency which takes care of the term’s relevance

across the documents. We sort them in decreasing order class wise and then

choose fi set features for each class ci ∈ C∀i ∈ [1, 10].

BM25tf ∗ idf for a term 〈tj〉, ∀j ∈ [1, |V |] is given as:

(BM25 tf ∗ idf)i,j = idfj ∗ f(〈tj〉, ~Xi)∗(k1+1)

f(〈tj〉, ~Xi)+k1∗(1−b+b∗
| ~Xi|
avgdl

)

CHAPTER 4. NAIVE BAYES 44

idfj = log
N−dfj+0.5
dfj+0.5

where, ~Xi ∈ X is the document being considered. | ~Xi| is the length of

the document ~Xi. k1 and b are constants and avgdl is the average length

of all the documents. f(〈tj〉, ~Xi) is the frequency of term 〈tj〉 in document

~Xi. N is the total number of training documents, dfj is the total number of

documents in which term 〈tj〉 is present.

Mutual Information (MI)

Mutual information, MI(xj , ci) between a feature(term), xj and a class

ci ∈ C is defined as:

MI(xj , ci) =
∑

xj∈{0,1}

∑
ci∈{0,1}

P (xj , ci) log
P (xj , ci)

P (xj)P (ci)
(4.13)

let us assume term 〈tj〉 is now represented as xj ∀j ∈ [1, |V |].

Here we are using binary features i.e. either a term occurs or does not

occurs in a document. We find out MI(xj , ci) foreach xj and ci, we sort

them in decreasing order class wise, then for each class ci ∈ C, ∀i ∈ [1, 10]

we choose a set of features fi, whose size is |f |. We get final selected features

F =
⋃10
i=1 fi. where, |F | is the size of final selected feature set. We ran the

test for various values of fi, which is tabulated in the result section.

Tf*df normalized

For each class ci where ci ⊂ C and ∀i ∈ [1, 10], we find out for each term

〈tj〉, ∀j ∈ [1, |V |]:

∆i,j = tfi,j ∗ dfi,j normalized (4.14)

CHAPTER 4. NAIVE BAYES 45

Where,

dfi,j normalized =

∑|C|
i=0 dfi,j mean

|C|
where, |C|= 10

dfi,j mean = dfi,j/nci

where dfi,j is document frequency of term 〈tj〉 belonging to class ci, tfi,j is

term frequency of term 〈tj〉 belonging to class ci, tfi,j =
∑nci

k=1(f(〈tj〉, ~Xk))

where, for each of ith class ci we have, f(〈tj〉, ~Xk) is the frequency of jth

term in kth document, k = {1, 2, · · · , nci}.

nci is number of documents contained in class ci.

Using this score we find out variance of each term with respect to each class

and we sort these variance values in decreasing order. We select top |F |

number of features based on those having top variance in the sorted list,

these features comprises the required feature set F . Using this set F , we

perform the Naive Bayes classification algorithm.

4.2.2 Second Level

Looking at the previous sections results and the high correlation between few

classes, it can be observed that the misclassification rate is higher in these

groups: G1,G2. We particularly look and try to do our experimentation for

the group G1 = {class 2, class 5, class 10}. We are performing this second

level for these 3 classes only, to try reducing the misclassification.

Bigrams

With single word features in the first level we have restricted details of the

behaviour of the features, so to identify more properties of these features we

CHAPTER 4. NAIVE BAYES 46

choose to get the position independent bigrams from the input vector space

of the documents. This approach enable us to identify few more properties

and relation among features and hence to discriminate between them.

We did following to choose the appropriate discriminating bigrams:

1. Let us get the bigrams set of each of the classes ci where i ∈ {2, 5, 10}

and name them as bij ∀i ∈ {2, 5, 10}, so we get, b2j , b
5
k, b

10
l where

j ∈ [1, |bigrams of class2|], k ∈ [1, |bigrams of class5|], and l ∈

[1, |bigrams of class10|] respectively, we take union of all of these

bigrams and call them:

bu, u ∈ {j ∪ k ∪ l}

2. Get the mean document frequency for each bigrams from classes:

2, 5, 10 from the training set. Denote them as dmi, ∀i ∈ {2, 5, 10},

so we get, {dm2, dm5, dm10}.

3. Get the absolute difference of the maximum and minimum among

dm2, dm5, and dm10 for each of the bigrams as:

bg = (max(dm2, dm5, dm10)−min(dm2, dm5, dm10)), ∀g ∈ u

4. Sort with respect to bg, ∀g ∈ u. We call it bsortedg .

5. In the sorted list bsortedg , we assign the feature bsortedg,i to class ci when

max(dm2, dm5, dm10) belongs to ith class where i ∈ {2, 5, 10}, this

feature is the discriminating feature of the class ci.

6. Now we select top f ′i ∀i ∈ {2, 5, 10} features set of size |f ′i |, which have

features from each of the class 2, 5 and 10 and we take union of them

F ′b = {f ′2 ∪ f ′5 ∪ f ′10} of size |F ′b|.

We choose |f ′i | number of bigrams from each of the class 2, 5 and 10. We

ran the test for various values of |f ′| that can be seen in the result section.

CHAPTER 4. NAIVE BAYES 47

Union of unigrams (chosen using special criteria) and bigrams

Here unigrams are selected on some criteria. We call them as unigrams

only now onwards, until unless stated specifically for some other meaning.

Selection of Bigrams is same as stated in above section.

Bigrams selected feature set: F ′b.

For unigrams we do same as above for bigrams but this time we choose only

with unigrams, which is explained below:

1. Let us get the unigrams set of each of the classes ci where i ∈ {2, 5, 10}

and name them as unij ∀i ∈ {2, 5, 10}, so we get, un2j , un
5
k, un

10
l

where j ∈ [1, |unigrams of class2|], k ∈ [1, |unigrams of class5|],

l ∈ [1, |unigrams of class10|] respectively, we take union of all of

these unigrams and call them:

unu′ , u′ ∈ {j ∪ k ∪ l}

2. Get the mean document frequency for each unigrams from classes:

2, 5, 10 from the training set. Denote them as dmi ∀i ∈ {2, 5, 10}, so

we get, {dm2, dm5, dm10}.

3. Get the absolute difference of the maximum and minimum among

dm2, dm5, and dm10 for each of the unigrams as:

ung = (max(dm2, dm5, dm10)−min(dm2, dm5, dm10))∀g ∈ u

4. Sort with respect to ung ∀g ∈ u. We call it unsortedg .

5. In the sorted list unsortedg , we assign the feature unsortedg,i to class ci

when max(dm2, dm5, dm10) belongs to ith class where i ∈ {2, 5, 10},

this feature is the discriminating feature of that class i.

CHAPTER 4. NAIVE BAYES 48

6. Now we select top f ′i ∀i ∈ {2, 5, 10} features set of size |f ′i |, which have

features from each of the class 2, 5 and 10. We take union of these to

get, F ′u = {f ′2 ∪ f ′5 ∪ f ′10} of size |F ′u|.

Now new feature set is Fnew = F ′b
⋃
F ′u

Our Score Variance for class 2,5,10

Here we choose unigrams based on the same approach as mentioned in the

feature selection in first level. But we did here only for classes 2, 5 and 10.

We choose top best |F | features in overall, where F is the feature set as

defined earlier, but here it consists of features belonging to class 2, 5 and 10

only.

4.3 Training and Results

4.3.1 First Level

In the first level of Naive Bayes, we are training over the 7193 ModApte

split of Reuters-21578. The vocabulary size |V | = 13455. We are finding

the features for each class from the whole training set.

F is the new features space which we got from the training set and we test

the test-documents using this new feature space. As mentioned in feature

selection section, in first level we are taking out top |fi| number of features

for each ci ∈ C features for MI and BM25 tf ∗ idf . For tf ∗ df normalized

feature selection strategy we are taking top features set F across all the

classes.

We are applying Laplace transforms to avoid zero probabilities in case a

term frequency happens to be zero.

CHAPTER 4. NAIVE BAYES 49

We are including prior probability as defined in introduction section of this

chapter.

Test set is of size 2787 docs. Test documents comes one by one and they

are tested on the new feature space of size |F | which we selected from the

training set.

Okapi BM25 TF*IDF

We are selecting features set fi per class on the basis of top most Okapi

BM25 tf ∗ idf values from each of the classes. We are performing Naive

Bayes on the selected feature.

Below is the result for this feature set run on three probability distributions:

Table 4.1: Results on top Okapi BM25 tf ∗ idf selected features
pdf → MN PO Empirical
feature size per class↓
10 83.81 81.98 66.02
15 85.36 83.17 68.03
20 85.71 83.45 69.46
25 85.79 83.56 70.14
30 85.57 84.21 71.61
35 86.25 84.67 72.44
40 86.54 84.93 72.65
50 86.47 84.93 72.65
100 86.97 85.82 75.24
150 87.01 85.46 75.67
300 86.97 85.14 76.13
1345 87.33 83.60 76.53

We have shown the two confusion matrices, one for the best separation

between the classes 2, 5 and 10 in Table 4.2. Second one in Table 4.3 is for

the best accuracy case. For the first table we can see that the accuracy for

class 2 is 53.57%, class 5 is 40.26% and class 10 is 46.47%. It reduces for class

2 and 10 when we look at the second confusion matrix which is of higher

CHAPTER 4. NAIVE BAYES 50

overall accuracy for a higher feature set. Although the overall accuracy of

second confusion matrix is not significantly greater than the accuracy of the

first confusion matrix

Table 4.2: Confusion Matrix for best case for Okapi BM25 tf ∗ idf feature
selection method, where we selected 50 features per class with accuracy
86.47

Class 1 2 3 4 5 6 7 8 9 10

1 694 0 11 7 1 0 1 2 3 0
2 0 30 0 0 20 0 0 0 2 4
3 4 0 139 0 0 0 1 43 2 0
4 22 0 7 1054 0 1 3 0 0 0
5 0 34 0 0 60 0 0 9 10 36
6 1 0 0 0 1 102 26 0 1 0
7 5 0 0 0 0 48 118 0 8 0
8 0 0 9 0 0 0 0 76 3 1
9 0 0 2 0 2 1 6 0 104 2
10 0 11 0 0 23 0 0 3 1 33

Table 4.3: Confusion Matrix for Okapi BM25 tf ∗ idf feature selection for
the highest accuracy 87.33

Class 1 2 3 4 5 6 7 8 9 10

1 698 0 7 10 0 0 1 0 3 0
2 0 4 0 0 50 0 0 0 2 0
3 3 0 163 0 1 0 0 20 2 0
4 20 0 3 1061 0 1 0 0 2 0
5 0 4 0 0 119 0 1 8 11 6
6 0 0 0 0 1 82 47 0 1 0
7 0 0 1 1 0 29 143 0 5 0
8 3 0 23 0 2 0 0 55 6 0
9 0 0 2 0 3 0 9 0 103 0
10 0 2 0 0 59 0 0 3 1 6

MI:

Here we are using binary features i.e. either a term occurs or does not occurs

in a document. From the training set, we get the term frequency values and

sum them up for each terms corresponding to a particular class ci ∈ C.

CHAPTER 4. NAIVE BAYES 51

For a given term 〈tj〉 ∀j ∈ [1, |V |], we calculate Mutual Information (MI):

MI(〈tj〉, ci) =
n11

n
∗log

n ∗ n11
n1p ∗ np1

+
n01

n
∗log

n ∗ n01
n0p ∗ np1

+
n10

n
∗log

n ∗ n10
n1p ∗ np0

+
n00

n
∗log

n ∗ n00
n0p ∗ np0

n11=no of documents in which term 〈tj〉 is present and they belong to class

ci

n01=no of documents in which term 〈tj〉 is not present and documents

belongs to class ci

n10=no of documents in which term 〈tj〉 is present and they do not belong

to class ci.

n00=no of documents in which term 〈tj〉 is not present and they do not

belong to the class ci.

n1p=n11+n10 : no. of docs which contains term 〈tj〉 irrespective of class ci.

np1=n11+n01 : no. of docs which are in class ci.

n0p=n01+n00 ; no. of docs which do not contains term 〈tj〉 irrespective of

class ci.

np0=n10+n00 : no. of docs which do not belong to class ci.

We have shown the two confusion matrices, one for the best separation

between the classes 2, 5 and 10 in Table 4.5. Second confusion matrix in

Table 4.6 is for the best accuracy case .

The overlapping of classes 2, 5 and 10 is very high for this dataset. For the

first matrix, we can analyze that the separation between the classes 2 and

10 is very good, with 92.85% and 54.92% respectively. But for class 5, the

accuracy is not that good. These features are able to distinguish between

class 2 and 10 very effectively.

For the second matrix, it can be seen that the accuracy is highest for 1345

CHAPTER 4. NAIVE BAYES 52

Table 4.4: Results on top MI selected features
pdf → MN PO Empirical
feature size per class↓
10 82.95 82.13 65.08
15 83.17 83.27 66.95
20 84.78 83.92 69.46
25 85.10 84.42 70.43
30 84.85 84.64 70.82
35 84.89 84.28 71.43
40 85.03 84.39 72.12
50 85.46 84.89 72.90
100 86.22 85.28 74.99
150 86.50 84.96 75.45
300 86.61 84.17 75.85
1345 86.76 80.94 76.31

features per class. We can conclude that as the features size increases, the

accuracy increases but the effect of features to distinguish between overlap-

ping class decreases as can be seen in the second matrix.

Table 4.5: Confusion Matrix for best case for MI feature selection method,
where we selected 10 features per class with accuracy 82.95

Class 1 2 3 4 5 6 7 8 9 10

1 598 0 19 78 2 7 6 2 7 0
2 0 52 0 0 2 0 0 0 0 2
3 1 1 154 1 1 1 1 28 1 0
4 15 0 3 1065 0 3 1 0 0 0
5 0 64 0 0 29 0 0 2 10 44
6 1 1 0 1 0 103 25 0 0 0
7 3 0 0 5 0 53 115 0 3 0
8 1 5 13 0 5 0 0 63 1 1
9 0 11 1 0 1 1 8 0 94 1
10 0 23 0 0 7 0 0 1 1 39

CHAPTER 4. NAIVE BAYES 53

Table 4.6: Confusion Matrix for MI feature selection for the highest accuracy
of 86.76

Class 1 2 3 4 5 6 7 8 9 10

1 700 0 8 8 0 0 1 0 2 0
2 0 0 0 1 53 0 0 0 2 0
3 7 0 168 2 1 0 0 8 3 0
4 19 0 2 1066 0 0 0 0 0 0
5 0 0 0 1 131 0 1 4 11 1
6 0 0 0 0 1 62 67 0 1 0
7 0 0 1 1 0 16 157 0 4 0
8 3 0 36 0 7 0 0 36 7 0
9 0 0 2 1 5 0 12 0 97 0
10 0 0 0 0 68 0 0 1 1 1

Tf*df normalized:

We selected the top F feature set across the classes and performed experi-

ments as mentioned below:

Table 4.7: Results on Tf*df normalized selected features
pdf → MN PO Empirical
feature size across all classes↓
100 84.93 83.10 66.63
150 86.47 84.64 70.07
200 86.97 85.32 71.58
250 86,58 85.36 72.51
300 86.65 85.43 73.08
350 86.93 85.50 73.62
400 86.79 85.50 74.38
500 86.76 85.50 74.59
1000 86.86 85.71 76.13
1500 86.72 85.61 76.35
3000 86.86 85.14 76.53
13450 87.15 83.60 76.31

We have shown the three confusion matrices, one for the best separation

between the classes 2, 5 and 10 in Table 4.8. Second matrix in Table 4.9

shows the confusion matrix for the groups G1, G2, G3, G4 and G5. We

CHAPTER 4. NAIVE BAYES 54

are using this matrix’s G1 for second level of the feature selection. Third

confusion matrix in Table 4.10 is for the best accuracy.

For the first matrix, we can analyze that the separation between the classes

2, 5 and 10 is average. The accuracy for class 2 is 51.78%, class 5 is 41.61%

and class 10 is 45.07%. These features are able to distinguish between

class 2,5 and 10 at an average rate, which is good in comparison to other

mentioned feature selection method’s results.

For the second matrix, it can be seen that the accuracy is highest for 13450

features across all the class. We can conclude that as the features size

increases, though the accuracy increases, but the effect of features to dis-

tinguish between overlapping class decreases. For class 2 and class 5 the

accuracy is very low, which can be seen in the second matrix.

Table 4.8: Confusion Matrix for best case for tf*df normalized feature se-
lection where we selected 350 features across all the classes with accuracy
86.93

Class 1 2 3 4 5 6 7 8 9 10

1 695 0 11 5 2 1 0 2 3 0
2 0 29 0 0 21 0 0 0 2 4
3 3 0 142 0 0 0 0 42 2 0
4 21 0 9 1054 0 1 2 0 0 0
5 0 34 0 0 62 0 0 9 8 36
6 0 0 0 0 0 102 28 0 1 0
7 1 0 1 0 0 47 124 0 6 0
8 1 0 7 0 0 0 0 80 1 0
9 0 0 2 0 1 1 7 0 103 3
10 0 10 0 0 25 0 0 3 1 32

CHAPTER 4. NAIVE BAYES 55

Table 4.9: Confusion Matrix for the groups G1, G2, G3, G4 and G5 formed
from the above shown confusion matrix of the 350 features across all the
classes with accuracy 86.93

Class G1 G2 G3 G4 G5

G1 253 11 12 0 0
G2 4 419 3 0 1
G3 0 3 271 0 4
G4 0 3 9 1054 21
G5 2 4 13 5 695

Table 4.10: Confusion Matrix for tf*df normalized feature selection for the
highest accuracy 87.15

Class 1 2 3 4 5 6 7 8 9 10

1 694 0 8 13 0 0 1 0 3 0
2 0 4 0 0 50 0 0 0 2 0
3 3 0 154 0 1 0 0 29 2 0
4 20 0 4 1061 0 1 0 0 1 0
5 0 4 0 0 117 0 1 8 10 9
6 0 0 0 0 0 88 42 0 1 0
7 0 0 1 1 0 32 140 0 5 0
8 3 0 17 0 2 0 0 61 6 0
9 0 0 2 0 4 0 9 0 102 0
10 0 2 0 0 58 0 0 3 0 8

4.3.2 Second Level

In this level of feature selection we get the input documents from the output

of the first level of Naive Bayes algorithm implementation. We did this level

specifically for classes 2, 5 and 10 to reduce the misclassification. These

classes are highly overlapping as shown in previous chapter, hence they

result in high misclassification.

In the output of first level, we have taken note of all those test documents

which get classified in either of class 2, 5 or 10. We call it group G1 as

described in previous chapters. These sets of documents are the input at

this second level. In particular, we are taking those documents which we

CHAPTER 4. NAIVE BAYES 56

got from tf ∗df normalized feature selection technique and number of such

features selected at first level was 350 and we applied multinomial probability

distribution. We have a total of 253 documents in this group, which we got

from the first level of the Naive Bayes algorithm. We performed the feature

selection at this 2nd level again on the training set. We used multinomial

distribution for each of the cases of feature selection.

Distribution of documents for each class 2, 5 and 10 is as mentioned below :

Class 2: 54 documents.

Class 5: 132 documents.

Class 10: 67 documents.

Bigrams

We selected bigrams as discussed in the feature selection section. We selected

bigrams on per class. We choose Multinomial distribution here and for all

other techniques below, for various values of bigrams feature set size we run

our test as shown:

Table 4.11: Results for 2nd level bigrams features for classes 2, 5 and 10
feature size per class → 100 150 200 1800 2000 3500 10000
distribution type↓
MN 49.40 48.61 47.82 46.24 45.05 44.26 52.17

We can see that due to overlap of classes 2, 5 and 10 the misclassification is

very high. We have shown below the confusion matrix for few cases in Table

4.12, Table 4.13, Table 4.14 and Table 4.15. We can figure it out that as the

feature size increases the documents of classes 2, 10 all go to class 5. For

lower feature size the distinguishing capability of the features set for class 2

and 10 is very good. Best accuracy for these cases as shown in Table 4.12

for class 2 is 70.37%, class 5 is 34.84% and class 10 is 61.19%. We calculated

CHAPTER 4. NAIVE BAYES 57

accuracy on the basis of the total number of documents in the group G1.

Table 4.12: Confusion Matrix for bigrams feature selection for the feature
size of 100 bigrams per class for classes 2, 5 and 10

Class 2 5 10

2 38 13 3
5 42 46 44
10 15 11 41

Table 4.13: Confusion Matrix for bigrams feature selection for the feature
size of 200 bigrams per class for classes 2, 5 and 10

Class 2 5 10

2 39 10 5
5 45 39 48
10 15 9 43

Table 4.14: Confusion Matrix for bigrams feature selection for the feature
size of 1800 bigrams per class for classes 2, 5 and 10

Class 2 5 10

2 37 12 5
5 47 40 45
10 17 10 40

Table 4.15: Confusion Matrix for bigrams feature selection for the feature
size of 10000 bigrams per class for classes 2, 5 and 10

Class 2 5 10

2 0 54 0
5 0 132 0
10 0 67 0

Union of unigrams and bigrams (chosen using special criteria)

We selected unigrams using some special criteria as discussed in the feature

selection section. We selected bigrams on per class basis. Here for various

values of unigrams and bigrams feature set size we run our test as shown:

CHAPTER 4. NAIVE BAYES 58

We can see that due to overlap of classes 2, 5 and 10 the misclassification is

very high. We have shown below the confusion matrix for few cases in Table

4.16, Table 4.17, Table 4.18 and Table 4.19. We can figure it out that as

the unigram feature set size increases the documents of classes 5 and 10 all

go to class 2. For lower feature set size the distinguishing capability of the

features set for class 2 and 10 is again very good. We can get the accuracy

from the Table 4.16, which is 83.33% for class 2, 62.68% for class 10 and

10.60% for class 5. This does not work good for class 5.

Table 4.16: Confusion Matrix for union of unigrams and bigrams feature se-
lection method for the feature size of 200 bigrams per class and 50 unigrams
per class for classes 2, 5 and 10

Class 2 5 10

2 45 4 5
5 69 14 49
10 18 7 42

Table 4.17: Confusion Matrix for union of unigrams and bigrams feature se-
lection method for the feature size of 200 bigrams per class and 600 unigrams
per class for classes 2, 5 and 10

Class 2 5 10

2 54 0 0
5 132 0 0
10 67 0 0

Table 4.18: Confusion Matrix for union of unigrams and bigrams feature se-
lection method for the feature size of 100 bigrams per class and 50 unigrams
per class for classes 2, 5 and 10

Class 2 5 10

2 46 3 5
5 70 14 48
10 20 5 42

CHAPTER 4. NAIVE BAYES 59

Table 4.19: Confusion Matrix for union of unigrams and bigrams feature se-
lection method for the feature size of 100 bigrams per class and 100 unigrams
per class for classes 2, 5 and 10

Class 2 5 10

2 54 0 0
5 132 0 0
10 67 0 0

Tf*df normalized features

We selected as discussed in the feature selection section. We selected these

features across all the classes on the basis of features having topmost vari-

ance. Here we choose features for only classes 2, 5 and 10. Total documents

for the group G1 is 253. These are those set of documents which are clas-

sified at the first level of the Naive Bayes classification in one of the classes

2, 5 or 10. We used multinomial distribution.

For cases with lower feature size we can see that the class 2 and class 10

documents are getting classified to correct classes upto some extent. We

have shown various confusion matrix in Table 4.21, Table 4.22, Table 4.23

and Table 4.24. We can see that as the feature size increases, the classes

2 and 10 gets nothing classified into it. For feature size of 3000 as shown

in Table 4.22, we have comparable accuracy for class 5 and 10 with values

61.36% and 55.22% respectively. From Table 4.21 we can find that the

accuracy for class 2, 5 and 10 is balanced and almost similar to each other

with the value of 64.8% for class 2, 58.20% for class 10 and 40.9% for class

5. For larger feature set and for class 5, all documents get classified to this

class.

Table 4.20: Results for 2nd level tf*df normalized features
feature size → 100 150 200 300 500 1000 1500 3000 13450
distribution type↓
MN 50.19 50.59 49.80 50.59 50.59 50.98 51.77 52.17 52.17

CHAPTER 4. NAIVE BAYES 60

Table 4.21: Confusion Matrix for tf*df normalized feature selection method
for the feature size of 150 features across all the classes 2, 5 and 10

Class 2 5 10

2 35 11 8
5 37 54 41
10 10 18 39

Table 4.22: Confusion Matrix for tf*df normalized feature selection method
for the feature size of 1500 features across all the classes 2, 5 and 10

Class 2 5 10

2 19 22 13
5 19 61 52
10 5 11 51

Table 4.23: Confusion Matrix for tf*df normalized feature selection method
for the feature size of 3000 features across all the classes 2, 5 and 10

Class 2 5 10

2 14 31 9
5 14 81 37
10 1 29 37

Table 4.24: Confusion Matrix for tf*df normalized feature selection method
for the feature size of 13450 features across all the classes 2, 5 and 10

Class 2 5 10

2 0 54 0
5 0 132 0
10 0 67 0

Chapter 5

k-Nearest Neighbour (k-NN)

Rule

5.1 Introduction

k nearest neighbor or k-NN classification determines the decision boundary

locally. k is a user-defined constant, and an unlabeled test document is

classified by assigning the class-label which is most frequent among the k

training samples nearest to that query point. For 1-NN we assign each

document to the class-label of its closest neighbor. For k-NN we assign each

document to the majority class-label of its k closest neighbors where k is a

parameter chosen by user. For k=1 the classification decision of each test

document relies just on the class-label of a single training document, which

may be incorrectly labeled.

We use several similarity measures for a test document with the training

documents set. A commonly used distance metric for continuous variables

is Euclidean distance. We are also using cosine similarity. A shortcoming of

the k-NN algorithm is that it is sensitive to the local structure of the data.

61

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 62

Algorithm:

1: For each test document Tj find out the first k nearest documents from

the training set using some similarity function.

2: Similarity function can be Euclidean distance based measure or cosine

similarity.

3: Find out the majority of labels which are in the top k nearest neighbours

from training set. Assign that label as the class of the test document.

5.2 Feature Selection

The best choice of k depends upon the data. Generally, larger values of k

reduce the effect of noise on the classification, but make boundaries between

classes less distinct. The accuracy of the k-NN algorithm can be severely

degraded by the presence of noisy or irrelevant features. We experimented

on the following feature sets:

1. Term frequency : We used the full features set and the weights for

features as term frequency.

2. Tf*idf

(a) Choosing as features: This is same as we did in feature selection

section of Chapter 4. We are dealing with Okapi BM25 tf ∗ idf ,

we chose top l features from each of the class and take union

of them and this is our new feature set. We are choosing term

frequency as feature weight.

(b) Tf ∗idf as feature weight: Here we selected the inverse-document

frequency (idf) for each term from the training set and we get

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 63

the term frequency of test documents and we multiplied them to

get a new feature: Λi = tfi ∗ idfitrain ∀i ∈ [1, |V |]

In below mentioned all of the approaches, we are using the same con-

cept as given in the Naive-Bayes section, and we are selecting top li

features from each class. We are choosing term frequency as feature

weight.

3. Mutual Information

4. Based on a new measure:

5. Bigrams

6. Unigrams based on specific criteria : Here we used only the unigrams

which we get from the classes 2, 5 and 10 as explained in previous

chapter’s feature selection section. We want to experiment these for

improving the results of misclassification among classes 2, 5 and 10.

5.3 Training and Results

The training examples are vectors in a multidimensional feature space, each

with a class label. The training phase of the algorithm consists only of

storing the feature vectors and class labels of the training samples.

Here we are using Reuters-21578 training sets which consists of 7193 training

documents and 2787 test documents as described in earlier sections.

For all these except part (b) of Tf*idf we are operating on term frequency

of each term as a measure used in similarity function. For part (b) of Tf*idf

we are using the measure as Λ(tf) as defined in previous section.

We are taking best features selected during feature selection step and we

perform the test set document classification using them. They are mentioned

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 64

in each section.

5.3.1 Term Frequency

First of all we performed for the full features set and noted the results. We

performed two measures for measuring similarity for documents: Euclidean

distance and cosine similarity.

Table 5.1: Results of k-NN algorithm for full features
(k) → 1 5 11 15 17 21 31 51
similarity fn↓
Cosine Similarity 81.41 84.03 83.74 83.38 83.10 83.06 82.41 81.73
Euclidean Distance 76.67 78.90 76.85 76.06 75.09 74.63 73.37 69.50

Table 5.2: Confusion Matrix for full features using cosine similarity for k-NN
where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 627 0 11 74 1 0 3 0 3 0
2 0 34 2 2 17 0 0 0 1 0
3 6 4 160 2 0 0 1 13 3 0
4 7 0 1 1076 0 1 0 0 2 0
5 0 45 7 2 81 0 1 4 9 0
6 2 0 0 2 0 88 37 0 2 0
7 1 1 1 1 0 30 143 0 2 0
8 3 2 34 2 7 0 0 36 5 0
9 2 4 0 3 3 1 7 0 97 0
10 0 20 3 0 45 0 0 2 1 0

5.3.2 Tf*idf

Feature weights as tf*idf

Here as described in previous section we are using the feature weights of test

set for the kth term as the product of term frequency of test document and

idf of the kth term of the training set, if it exists.

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 65

We got not so good results with this experimentation:

Results when we performed for cosine similarity:

k=5, accuracy = 73.08

k=11, accuracy = 72.87

k=21, accuracy=73.16

Also the rate of misclassification among classes 2, 5 and 10 is high. So we

discarded the further experiments.

Top Okapi BM25 tf*idf features set per class

We are choosing best 50 Okapi BM25 tf ∗ idf features per class from the

feature selection method as discussed in the previous chapter.

Table 5.3: Results of k-NN algorithm for top Okapi BM25 tf ∗ idf features
selection method.
(k) → 1 5 11 15 17 21 31 51
similarity fn↓
Cosine Similarity 83.31 85.43 85.75 86.04 86.00 85.71 85.14 84.67
Euclidean Distance 81.98 81.62 81.37 81.09 80.91 80.33 78.97 77.17

We choose one confusion matrix as shown in Table 5.4 for the best distinction

among classes 2, 5 and 10 using cosine similarity and Table 5.5 for the

best distinction among classes 2, 5 and 10 using Euclidean distance based

similarity. In Table 5.4, accuracy for class 2 documents is 69.64% and for

class 5 it is 53.69%, but for class 10 all the documents either classified to

class 2 or class 5. In Table 5.5, accuracy for class 2 documents is 55.35%

and for class 5 it is 48.99%, but for class 10 almost all the documents either

classified to class 2 or class 5. Here, we can see that it does not work well

for class 10.

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 66

Table 5.4: Confusion Matrix for top Okapi BM25 tf ∗ idf features selection
method using cosine similarity for k-NN where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 677 2 8 30 0 1 0 0 1 0
2 0 39 0 0 14 0 0 0 3 0
3 8 2 151 5 2 0 0 15 6 0
4 6 0 2 1079 0 0 0 0 0 0
5 1 47 5 1 80 0 2 4 9 0
6 5 0 1 4 0 92 28 0 1 0
7 9 0 2 9 0 34 121 1 3 0
8 2 0 31 4 7 0 0 41 4 0
9 3 1 1 1 4 3 3 0 101 0
10 1 23 2 1 41 0 0 2 1 0

Table 5.5: Confusion Matrix for top Okapi BM25 tf ∗ idf features selection
method using Euclidean distance for k-NN where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 693 0 2 22 1 0 0 0 1 0
2 5 31 0 1 14 1 0 0 3 1
3 51 0 114 7 3 0 2 8 4 0
4 13 0 1 1072 0 1 0 0 0 0
5 20 36 2 4 73 1 0 4 8 1
6 20 0 1 3 0 86 20 0 1 0
7 40 1 1 9 0 40 86 0 2 0
8 17 0 27 6 5 0 0 30 4 0
9 11 1 0 5 3 2 6 0 89 0
10 5 15 1 1 45 1 0 1 1 1

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 67

5.3.3 Mutual Information

We are choosing best 50 mutual information features per class from the

feature selection method as discussed in the previous chapter.

Table 5.6: Results of k-NN algorithm for MI
(k) → 1 5 11 15 17 21 31 51
similarity fn↓
Cosine Similarity 83.17 85.43 86.11 85.68 85.46 85.39 85.14 84.78
Euclidean Distance 82.56 83.38 82.81 82.13 81.84 81.37 80.08 78.04

We choose one confusion matrix as shown in Table 5.7 for the best distinction

among classes 2, 5 and 10 using cosine similarity and Table 5.8 for the

best distinction among classes 2, 5 and 10 using Euclidean distance based

similarity. In Table 5.7, accuracy for class 2 documents is 51.78% and for

class 5 it is 61.74%, but for class 10 all the documents either classified to

class 2 or class 5. In Table 5.8, accuracy for class 2 documents is 51.78% and

for class 5 it is 53.02%, but for class 10 all the documents either classified

to class 2 or class 5. Here, we can see that again it does not work well for

class 10.

Table 5.7: Confusion Matrix for MI feature selection method using cosine
similarity for k-NN where k=11

Class 1 2 3 4 5 6 7 8 9 10

1 668 0 7 37 2 0 2 0 3 0
2 0 29 0 1 20 1 0 0 5 0
3 8 1 147 2 1 1 1 24 4 0
4 9 0 1 1076 0 1 0 0 0 0
5 0 30 3 5 92 2 1 3 13 0
6 1 0 0 2 0 93 31 0 4 0
7 7 0 2 2 0 27 137 0 4 0
8 2 1 20 2 8 0 0 53 3 0
9 0 1 0 4 1 1 5 0 105 0
10 0 13 3 4 46 1 0 2 2 0

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 68

Table 5.8: Confusion Matrix for MI feature selection method using Euclidean
distance for k-NN where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 682 0 3 31 0 0 1 0 2 0
2 4 29 2 1 17 0 0 0 3 0
3 22 1 145 5 1 2 3 8 2 0
4 11 1 0 1073 0 1 1 0 0 0
5 7 37 3 5 79 3 2 4 9 0
6 10 0 0 2 0 94 24 0 1 0
7 20 0 1 3 0 50 102 0 3 0
8 10 1 36 4 5 1 1 28 3 0
9 3 2 0 8 2 2 8 0 92 0
10 1 17 2 3 44 1 0 1 2 0

5.3.4 Tf*df normalized

We selected top 500 features as mentioned in previous chapter and performed

k-NN algorithm on those features.

Table 5.9: Results of k-NN algorithm for TF*df normalized
(k) → 1 5 11 15 17 21 31 51
similarity fn↓
Cosine Similarity 83.60 85.25 85.14 85.03 85.07 85.28 84.39 83.67
Euclidean Distance 81.95 81.84 81.91 81.41 81.12 80.57 79.76 77.89

We choose one confusion matrix as shown in Table 5.10 for the best distinc-

tion among classes 2, 5 and 10 using cosine similarity with k=5 and Table

5.11 for the best distinction among classes 2, 5 and 10 using Euclidean dis-

tance based similarity. In Table 5.10, accuracy for class 2 documents is

58.92% and for class 5 it is 57.04%, but for class 10 all the documents either

classified to class 2 or class 5. In Table 5.11, accuracy for class 2 documents

is 51.78% and for class 5 it is 53.02%, but for class 10 all the documents

either classified to class 2 or class 5. Here, we can see that again it does not

work well for class 10.

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 69

Table 5.10: Confusion Matrix for Tf*df normalized feature selection method
using cosine similarity for k-NN where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 669 1 11 35 0 0 2 0 1 0
2 0 33 2 1 19 0 0 0 1 0
3 10 0 155 2 1 1 0 18 2 0
4 6 1 3 1077 0 0 0 0 0 0
5 0 42 8 2 85 0 1 4 7 0
6 4 0 0 2 0 85 39 0 1 0
7 9 2 1 2 0 27 134 0 4 0
8 3 1 31 3 7 0 0 41 3 0
9 4 2 1 2 2 1 8 0 97 0
10 0 19 4 1 44 0 0 2 1 0

Table 5.11: Confusion Matrix for Tf*df normalized feature selection method
using Euclidean distance for k-NN where k=5

Class 1 2 3 4 5 6 7 8 9 10

1 682 0 1 32 1 0 1 0 2 0
2 3 29 2 0 16 1 1 0 4 0
3 43 2 129 3 3 0 1 6 2 0
4 15 0 2 1069 0 1 0 0 0 0
5 13 36 2 3 79 1 1 4 10 0
6 16 0 0 0 0 88 25 0 2 0
7 34 1 1 2 0 42 97 1 1 0
8 17 2 35 3 6 1 0 25 0 0
9 11 1 0 7 7 2 5 1 83 0
10 4 16 1 2 45 1 0 1 1 0

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 70

5.3.5 Bigrams

Here we selected top 200 features from classes 2, 5 and 10 only and did

our experimentation on the whole classes to find out the overall results and

interaction between the classes 2, 5 and 10.

Table 5.12: Results of k-NN algorithm for Bigrams
(k) → 1 5 11 15 17 21 31 51
similarity fn↓
Cosine Similarity 76.92 78.79 76.85 75.88 75.45 74.63 73.26 69.64

We find out the confusion matrix for the best result for k=5 in Table 5.13.

We try to analyze the effect of top bigrams of the classes 2, 5 and 10 in this

resultant matrix. But the accuracy of class 10 is not that good as can be

seen in the results.

Table 5.13: Confusion Matrix for best case for Bigrams feature selection of
classes 2, 5, 10 for k=5

Class 1 2 3 4 5 6 7 8 9 10

1 588 1 6 107 1 11 3 0 2 0
2 0 30 3 5 15 2 0 0 1 0
3 34 3 132 11 0 4 1 2 2 0
4 7 0 2 1076 0 1 1 0 0 0
5 6 38 6 12 69 8 1 2 7 0
6 4 0 0 0 0 101 24 0 2 0
7 16 0 1 3 0 44 112 0 3 0
8 28 2 28 9 6 2 0 11 3 0
9 12 5 0 9 4 5 5 0 77 0
10 3 16 2 5 42 2 0 0 1 0

5.3.6 Unigrams based on specific criteria

Here we selected top 600 features from classes 2, 5 and 10 only and did

our experimentation on the whole classes to find out the overall results and

interaction between the classes 2, 5 and 10.

CHAPTER 5. K-NEAREST NEIGHBOUR (K-NN) RULE 71

Table 5.14: Results of k-NN algorithm for union of bigrams and unigrams
(k) → 5 11 21
similarity fn↓
Cosine Similarity 67.16 72.94 74.20

We figured out that these results did not give good results. Classes 2, 5

and 10 missclassification rate is also high. Results shows that our feature

selection experiments do well for classes 2 and 5, but for class 10 it does not

work good.

Chapter 6

Hierarchical Classification

Algorithm

6.1 Introduction

We are making use of our unsupervised and supervised classification which

we discussed in previous chapters. At first level, we are performing the

SOM algorithm mentioned in Chapter 3. After this we get about |CL|= 100

clusters. Each of the training documents ~Xl ∈ X, ∀ l = {1, 2, · · · , N} gets

classified to one of the clusters CLi ∈ CL, ∀ i = {1, 2, · · · , |CL|}. We will

store the value of the final stable weights which we get at the end of the

SOM algorithm in a file. Now we find the test documents ~Tk ∈ T which are

closest to one of the clusters CLi ∈ CL. We use one of the two similarity

measures to get the closest cluster: cosine similarity and Euclidean distance.

We have noted down the training documents in a file which gets classified to

a cluster during the SOM algorithm step, those documents in CLi act as the

training sets for the new test document which has to be classified. We pass

these new sets of training documents to our 2nd level supervised classifier to

72

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 73

get the class of that test document. Using the appropriate feature selection

technique we get a new feature set and then we process each test document

using the new feature set in our 2nd level classifier model. We have shown

the block diagram in Fig. 6.1.

Algorithm:

X = training set

T = test set

1. First Level:

(a) Apply SOM algorithm to training set, we get output as clusters

set CL. We make a matrix of cluster number by class to see

which cluster has documents of which class. We note down the

documents belonging to each cluster and its corresponding class.

(b) We store the stable weight vectors(as described in Chapter3) in

a file, which will be used later in next level.

2. Second Level:

(a) For each test document we find the closest cluster CLj ∈ CL

using the stored stable weight vectors.

i. If the closest cluster has documents which belong to only one

class, say ci ∈ C then we classify the given test document to

that particular class ci. Otherwise, we move to next step ii.

ii. Feature selection step: In case for the nearest cluster CLj ∈

CL, we have documents which belongs to more than one

classed then we select appropriate features for further appli-

cation of our classification algorithm. This is explained in

details in feature selection section.

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 74

iii. We apply Naive Bayes classifier at each clusters CLi ∈ CL.

Training documents at this level are the documents at each

clusters CLi. We are using the newly select feature set F as

explained in feature selection section. We classify this test

document to the highest probable class.

Figure 6.1: Block diagram representation of the hierarchical classification

algorithm.

6.2 Feature Selection

Since we are training our classifiers by the documents at each level of the

clusters that we got from the output of the SOM program, and the number

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 75

of documents at a particular level might be low for training so we came up

with following features selection strategies to get the effective results :

1. Measure we defined: We look for those clusters which are having doc-

uments classified in more than one class, let us assume total of k such

clusters are present. Let us say each such cluster is contained in a

set CL′ = {CL′1, CL′2, · · · , CL′k}. For each of such clusters, we figure

out number of classes in that cluster which are having positive values

from the stored cluster list. For each such classes we take union of the

documents that are present in this class in the particular cluster, we

get these documents from the training set. When we take union of the

documents in each of the positive classes, we get a new feature vector

for each such clusters. For example, lets say p′ number of positive

classes are present in a cluster CL′f ∀f ∈ [1, k], when we take union

of the documents in each of the p′ positive classes, then we get a new

feature set for all such p′ classes in the cluster CL′f . Now to select the

appropriate features from this new feature set, we do following:

(a) If p′ = 2, lets say these two classes are ci and cj , and lets say

〈tk〉 is the kth term in the vocabulary set V . For each of such

kth term 〈tk〉 of class ci and cj , let us say the associated weight

is µi,k and µj,k respectively. Now we select only those terms in

selected feature set F which are satisfying this condition:
µi,k
µj,k

> ε

or
µj,k
µi,k

> ε, where we have taken ε = 1.5.

(b) If p′ > 2, lets say these two classes are denoted as ci ∀i =

{1, 2, · · · , p′}, and lets say 〈tk〉 is the kth term in the vocabulary

set V . For each of such kth term 〈tk〉 of class ci, let us say the asso-

ciated weight is µi,k ∀i = {1, 2, · · · , p′}. For each term 〈tk〉, we find

ak=min(µ1,k, µ2,k, · · · , µp′,k) and bk=max(µ1,k, µ2,k, · · · , µp′,k).

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 76

Now we select only those terms in selected feature set F which

are satisfying this condition: For each term 〈tk〉, akbk > ε or bk
ak
> ε,

where we have taken ε = 1.5.

Using this selected feature set F , we implement the rest part of the

algorithm.

2. Based on previous feature selection methods.

Here we used the features as described in the previous sections:

(a) Tf*idf

(b) MI score

(c) Tf*df normalized

6.3 Training and Results

At SOM level, the training examples are vectors in a multidimensional fea-

ture space, each with a class label. The training phase of the algorithm

consists only of storing the feature vectors and class labels of the train-

ing samples. Here we are using top 10 categories of Reuters-21578 training

sets which consists of 7193 training documents and 2787 test documents as

described in earlier chapters.

We are first running the SOM algorithm for the training set. We are ne-

glecting those terms which comes in more than N/2 documents where N is

the size of training set.

When we are using metric for terms as Okapi BM25 tf ∗ idf from the test

set. We got good clusters. But since test documents are coming one by one,

we do not have any way to measure idf (inverse document frequency) values

of each test term. So we took tf (term frequency) of a term belonging to

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 77

a test document and if this term occurs in the vocabulary set of training

documents set than we are taking idf of that term from the training set,

then we have are calculating the tf ∗ idf of the corresponding test term. But

we did not get comparable results using this approach, so we choose tf only

as the metric for each term.

First we ran this algorithm on the training set for the term frequency as

the features. We are measuring similarity between documents and cluster

weights at two places in SOM algorithm first during the update step and

second during cluster forming step as mentioned in Chapter 3 . We can use

two similarity measures: Cosine similarity and Euclidean distance. We are

using combination of these two.

We are running SOM algorithm in 4 possible ways:

1. Measure for similarity of Nearest weight for a document in Update

step and closest cluster per document in cluster forming step is cosine

similarity

2. Measure for similarity of Nearest weight for a document in Update step

and closest cluster per document in cluster forming step is Euclidean

distance

When we are done with the SOM algorithm, we get 100 clusters. Training

documents in each clusters act as the input to the second level classifier.

Hence, the second level of this hierarchical classifier we have 100 classifiers.

We compare a test document to the clusters weights which was stored, to get

the closest cluster for that test document. Now using the training documents

at this cluster which got stored to this cluster in first level of SOM algorithm,

we perform the further Naive Bayes classification algorithm. The number of

training documents at a cluster may be very low, so we used clever feature

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 78

selection strategy to consider only the useful features, that give us the best

performance.

We took 4 different runs of our SOM algorithm and test the test-set. We

had 2787 test documents set.

Full features

First of all we ran the Naive Bayes on the SOM output for full features and

analyzed these results. Best accuracy came for run 4 of the SOM program

and for cosine similarity as shown in Table 6.1.

Table 6.1: Result for Hierarchical classifier for Full features
similarity fn → Cosine Similarity Euclidean distance
SOM program run ↓
1 83.53 83.53
2 83.42 82.31
3 83.63 83.02
4 83.96 82.84

Table 6.2 shows the confusion matrix for full feature set. We can see that

the documents of class 2, 5 and 10 are not able to get distinguished properly

using full features. Almost all documents from class 2 and 10 gets classified

to class 5.

New approach for feature selection

We are using this new approach which is mentioned in this chapter’s feature

selection section. Best accuracy is of 83.96% for the run 1 of SOM program

and for the cosine similarity, which is shown in Table 6.3. These results are

almost similar to results of full features set of previous section. They also

did not distinguish features of class 2, 5 and 10 to that great extent.

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 79

Table 6.2: Confusion Matrix for full feature
Class 1 2 3 4 5 6 7 8 9 10

1 648 0 9 48 1 0 7 1 5 0
2 0 12 0 1 42 0 0 0 1 0
3 11 0 128 6 1 0 1 35 7 0
4 16 0 2 1065 0 0 1 0 3 0
5 0 12 1 9 111 0 3 5 7 1
6 1 0 0 6 0 84 38 0 2 0
7 8 0 1 4 0 30 131 0 5 0
8 3 0 5 2 6 0 1 68 4 0
9 2 0 0 12 5 0 6 0 92 0
10 0 3 1 2 60 0 0 2 2 1

Table 6.3: Result for Hierarchical classifier for our New approach
similarity fn → Cosine Similarity Euclidean distance
SOM program run ↓
1 83.96 79.83
2 83.45 79.83
3 83.71 80.91
4 83.92 80.33

Confusion matrix for the best case of accuracy 83.92% for both cosine sim-

ilarity case as shown in Table 6.4.

Table 6.4: Confusion Matrix for the new approach for feature selection
Class 1 2 3 4 5 6 7 8 9 10

1 646 0 9 49 1 1 7 1 5 0
2 0 12 1 1 41 0 0 0 1 0
3 10 0 141 5 1 0 2 23 7 0
4 14 0 2 1067 0 0 1 0 3 0
5 0 12 2 9 111 0 3 5 7 0
6 0 0 0 6 0 83 40 0 2 0
7 4 0 1 4 0 31 135 0 4 0
8 2 0 22 2 6 0 2 51 4 0
9 2 0 0 12 4 0 6 0 93 0
10 0 3 2 2 60 0 0 2 2 0

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 80

Okapi BM25 tf*idf

Here we have used the features having top Okapi BM25 tf ∗ idf values

per class. We tested the SOM algorithm for all the two cases of similarity

functions as mentioned in the introduction section. We varied the size of

selected features to note down the variations in the results. Table 6.5 is for

cosine similarity measure with best accuracy of 85.25% for run 3 of SOM

program and in Naive Bayes, we are using the top 50 selected features per

class. Table 6.6 is for Euclidean distance with best accuracy of 86.76% for

run 4 of SOM program and in Naive Bayes, we are using the top 50 selected

features per class.

Table 6.5: Result for Hierarchical classifier for selected features on the basis
of Okapi BM25 Tf*idf where both similarity functions are cosine similarity.

Number of features per class → 20 50 100
SOM Program Run fn ↓
run 1 84.75 84.78 84.39
run 2 84.49 84.89 84.53
run 3 85.18 85.25 84.39
run 4 85.14 85.03 85.18

Table 6.6: Result for Hierarchical classifier for selected features on the basis
Okapi BM25 tf*idf where both similarity functions are Euclidean distance
based similarity.

Number of features per class → 20 50 100
SOM Program Run fn ↓
run 1 85.18 85.61 85.93
run 2 85.54 86.61 85.46
run 3 85.32 86.65 86.00
run 4 85.64 86.76 85.57

In Table 6.7, we are showing the confusion matrix for the best case that we

thought of having good accuracy as well as which distinguishes among class

2, 5 and 10 upto some good extent. Accuracy of class 2 is 37.5% , class 5 is

55.05% and class 10 is 33.80%.

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 81

Table 6.7: Confusion Matrix for the Okapi BM25 tf ∗ idf feature selection
method. Features set size is chosen as top 50 features per class and with
Euclidean distance similarity function and accuracy of 85.61% and run 1 of
SOM program

Class 1 2 3 4 5 6 7 8 9 10

1 682 0 9 21 1 1 1 2 2 0
2 0 21 0 0 29 1 0 0 1 4
3 6 0 144 1 0 1 1 34 2 0
4 34 0 3 1046 0 2 0 2 0 0
5 1 24 0 0 82 2 1 7 5 28
6 0 0 1 0 0 85 42 0 2 0
7 4 0 0 1 0 29 137 0 8 0
8 2 0 13 0 1 0 0 66 3 4
9 1 1 1 0 6 1 5 1 99 2
10 0 7 0 0 38 0 0 2 0 24

MI

Here we used the features having top MI values per class. We tested the

SOM algorithm for all the two cases of similarity functions as mentioned in

the introduction section. We varied the size of selected features to note down

the variations in the results. Table 6.8 is for cosine similarity measure with

best accuracy of 85.49% for run 3 of SOM program and in Naive Bayes, we

are using the top 100 selected features per class. Table 6.9 is for Euclidean

distance with best accuracy of 86.79% for run 3 of SOM program and in

Naive Bayes, we are using the top 50 selected features per class.

Table 6.8: Result for Hierarchical classifier for selected features on the basis
MI where both similarity functions are cosine similarity

Number of features → 20 50 100
SOM Program Run fn ↓
run 1 85.03 84.60 84.42
run 2 84.96 84.85 84.35
run 3 85.46 85.28 85.49
run 4 85.21 85.14 85.00

In Table 6.10, we are showing the confusion matrix for the best case that we

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 82

Table 6.9: Result for Hierarchical classifier for selected features on the basis
of MI where both similarity functions are Euclidean distance based similarity

Number of features → 20 50 100
SOM Program Run fn ↓
run 1 85.64 85.46 86.18
run 2 86.58 86.79 85.61
run 3 86.43 86.79 86.25
run 4 86.11 86.47 85.75

thought of having good accuracy as well as which distinguishes among class

2, 5 and 10 upto some good extent. Accuracy of class 2 is 35.71% , class 5

is 60.40% and class 10 is 23.94%.

Table 6.10: Confusion Matrix for the MI feature selection method. Features
set size is chosen as top 50 features per class and with Euclidean distance
similarity function and accuracy of 86.79% and run 3 of SOM program

Class 1 2 3 4 5 6 7 8 9 10

1 686 0 9 18 0 1 2 1 2 0
2 0 20 0 0 33 1 0 0 1 1
3 3 1 158 0 0 0 1 25 1 0
4 20 0 2 1063 0 1 1 0 0 0
5 0 25 0 0 90 1 1 9 4 19
6 1 0 0 0 0 82 46 0 2 0
7 1 0 0 0 0 26 151 0 1 0
8 1 2 22 1 1 0 1 59 2 0
9 0 0 2 2 13 1 6 0 93 0
10 0 12 0 0 40 0 0 2 0 17

Tf*df normalized

Here we used the features having top Tf ∗ df normalized values across the

classes. We tested the SOM algorithm for all the two cases of similarity

functions as mentioned in the introduction section. We varied the size of

selected features to note down the variations in the results. Table 6.11 is for

cosine similarity measure with best accuracy of 85.18% for run 4 of SOM

program and in Naive Bayes, we are using the top 500 selected features.

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 83

Table 6.12 is for Euclidean distance with best accuracy of 86.47% for run

2 of SOM program and in Naive Bayes, we are using the top 500 selected

features.

Table 6.11: Result for Hierarchical classifier for selected features on the basis
Tf*df normalized where both similarity functions are cosine similarity

Number of features → 200 500 1000
SOM Program Run fn ↓
run 1 84.32 84.35 84.39
run 2 84.28 84.75 84.67
run 3 84.96 84.53 84.39
run 4 85.10 85.18 85.14

Table 6.12: Result for Hierarchical classifier for selected features on the basis
Tf*df normalized where both similarity functions are Euclidean distance
based similarity

Number of features → 200 500 1000
SOM Program Run fn ↓
run 1 84.82 85.57 86.22
run 2 85.28 86.47 85.46
run 3 85.50 86.32 85.93
run 4 84.67 86.25 86.11

In Table 6.13, we are showing the confusion matrix for the best case that we

thought of having good accuracy as well as which distinguishes among class

2, 5 and 10 upto some good extent. Accuracy of class 2 is 33.92% , class 5

is 53.69% and class 10 is 32.39%.

We can see that this result is very low as compared to other class accuracy,

because this above mentioned accuracy is for overlapping classes 2, 5 and

10. In this section we can see that tf ∗ df normalized method gives an

average and balanced performance for the the overlapping classes 2, 5 and

10 as compared to other feature selection techniques.

After getting these results, we can input them to the second level of Naive

Bayes classifier which is mentioned in Chapter 4 where we selected features

CHAPTER 6. HIERARCHICAL CLASSIFICATION ALGORITHM 84

Table 6.13: Confusion Matrix for the tf∗df normalized for feature selection.
Features size is 500 and with Euclidean distance similarity function and
accuracy of 86.32% for run 3 of SOM program.

Class 1 2 3 4 5 6 7 8 9 10

1 686 0 5 21 0 3 1 1 2 0
2 0 19 0 1 34 0 0 0 1 1
3 9 1 149 1 1 0 1 25 1 1
4 17 0 2 1067 0 1 0 0 0 0
5 0 25 0 1 80 0 1 9 4 29
6 1 0 0 0 0 80 46 1 3 0
7 1 0 0 0 0 27 150 0 1 0
8 1 4 20 1 2 0 0 59 2 0
9 0 0 2 0 12 1 7 0 93 2
10 0 13 0 0 33 0 0 2 0 23

at second level which shows considerable improvement to the accuracy for

class 2, 5 and 10. Hence the total accuracy of the combined system should

increase proportional to the results mentioned in section of second level

feature selection for Chapter 4.

Chapter 7

Conclusion and Future Work

We have used Reuters-21578 ModApte split top 10 class. This is a dataset

which has a lot of overlapping classes. We discussed and extensively ex-

perimented for one of such overlapping class 2, 5 and 10 which have corn,

grain and wheat label respectively, as termed in the Introduction Chapter

in Table 1.2.

We tried to get the best results using the conventional multi-class classifi-

cation using SOM algorithm and Naive Bayes algorithm. Through several

experiments for this data set which dealt with various types of feature se-

lection techniques we tried to distinguish between overlapping classes. We

achieved a little success.

We first used SOM algorithm on the training set to get an idea about the

possible related documents which gets classified to a particular cluster, this

helps in deciding the closest and most similar cluster for a test document

and helps to reduce the possibility of test document getting misclassified.

After we got the nearest cluster for test document, Naive Bayes at second

level of the hierarchical classifier helps to decide the correct class of the

85

CHAPTER 7. CONCLUSION AND FUTURE WORK 86

test document. The cluster from which test document is closest to might

have overlapping classes, since documents of these classes are similar to

each other. Hence we get the need to search only those important features

which gives the valuable information which will help to discriminate between

documents belonging to overlapping classes. We gave two level approach for

selecting features.

From the results we concluded that class 5 is super-set of class 2 and class

10. Using all the features, the documents of class 2 and 10 gets classified to

class 5.

At the first level, all of the feature selection methods as described below

performed very good in terms of accuracy, for multinomial probability dis-

tribution. A result may have very high accuracy but the inter-class sepa-

ration between the overlapping documents may be very high. They varied

how they classify documents belonging to class 2, 5 and 10. We performed

all the results first on the training set than experimented on the test set.

First Level:

1. Feature selection using features having top Okapi BM25 tf ∗ idf values

per class.

For lower feature set size of 50 features per classes, this approach gave

accuracy of 53.57% for class 2, 41.77% for class 10 and 40.2% for class

5, which is an average distinction between overlapping classes. For

higher features this accuracy dropped to negligible value for class 2

and 10 respectively, and for class 5 it was 79.86%.

2. Feature selection using features having top Mutual Information values

per class.

For lower feature set size of 10 features per class, MI approach gave

CHAPTER 7. CONCLUSION AND FUTURE WORK 87

accuracy of 92.8% for class 2, 54.9% for class 10 and 19.46% for class

5. For higher features this accuracy dropped very low for class 2 and

10 respectively, and for class 5 it was 87.91%.

3. Feature selection using features having top tf ∗ df normalized values

across all the classes.

For lower feature set size of 350 features across all the classes, this

approach gave accuracy of 51.78% for class 2, 40.50% for class 10 and

41.61% for class 5. For higher features this accuracy dropped very low

for class 2 and 10 respectively, and for class 5 it was 78.52%.

At second level of Naive Bayes classification we take the input as the doc-

uments of class 2, 5 and 10, which get classified to among themselves and

we further run new feature selection algorithms to distinguish between these

overlapping classes. This set of documents lie in group G1 as mentioned in

Chapter 4. G1 contains 253 documents. The accuracy is measured with

respect to the documents of this group only.

1. Feature selection using bigrams selected using specific criteria per class

for classes 2, 5 and 10.

For lower feature set size of 100 features per class, this approach gave

accuracy of 70.3% for class 2, 61.19% for class 10 and 34.8% for class

5, which is a quite good distinction between overlapping classes as

compared to above first level results. For larger feature set and for

class 5, all documents get classified to this class.

2. Feature selection using union of unigrams and bigrams selected using

specific criteria per class for classes 2, 5 and 10.

For lower feature set size, this approach gave accuracy of 83.33% for

class 2, 62.68% for class 10 and 10.60% for class 5. This result shows

CHAPTER 7. CONCLUSION AND FUTURE WORK 88

that it considerably helped to distinguish the class 2 and class 10

documents from class 5 documents. For larger feature set and for

class 5, all documents get classified to this class.

3. Feature selection using features having top tf ∗ df normalized values

across all the classes 2, 5 and 10.

For lower feature set size of 150 features across classes 2, 5 and 10,

this approach gave accuracy of 64.8% for class 2, 58.20% for class

10 and 40.9% for class 5. For larger feature set and for class 5, all

documents get classified to this class.

Next we tried to see the relationship between these overlapping classes using

the k-NN algorithm. We used all the above feature selection methods and

figured out that it was able to distinguish between class 2 and 5 at an average

rate but could not distinguish class 10 documents. Best results are for k=5

and tf ∗ df normalized feature selection strategy with 58.92% for class 2

and 57.04% for class 5.

We got some good results in our main algorithm for these classes 2, 5 and 10

along with overall accuracy. We saw that, given less number of training set

documents at a particular cluster, this algorithm performs very well with

the highest accuracy of 86.79% using MI feature selection method for size

of feature set equal to top 50 features per class with Euclidean distance

similarity measure. Accuracy of class 2 is 35.71% , class 5 is 60.40% and

class 10 is 23.94%.

Although we could clearly see that the balance in the accuracy among classes

2, 5 and 10 is not that good. But for the tf ∗df normalized feature selection

strategy with overall accuracy of 86.32% for run 3 of SOM program as shown

in table 6.13, we have a comparably good balance among the accuracy for

classes 2, 5 and 10 with the values of class 2 is 33.92% , class 5 is 53.69%

CHAPTER 7. CONCLUSION AND FUTURE WORK 89

and class 10 is 32.39%. Though the accuracy is less per class for these

classes specifically, but the selected feature set for this technique is able to

evenly distribute test documents of these classes to their correct individual

class. We can summarize from the results of the second level of the feature

selection as mentioned in Chapter 4 and also above, that we can enhance

the performance of the hierarchical classifier which we saw in Chapter 6

by applying the features of second level to the output of the hierarchical

classifier. We will get a proportionate improvement as shown in second level

feature selection of Chapter 4.

As a future task we can think of making use of bigrams in the first level

of feature selection technique because they gave very good results in second

level of feature selection strategy for classes 2 and 10 in Chapter 4. The rea-

son is because they capture more information as compared to single words as

features. Also, we can think of taking union of feature sets from MI selection

algorithm of first level with any other feature selection technique’s feature

set. MI gives best performance for class 2 and class 5, tf ∗ df normalized

at second level gives in one of the case best for class 5 and class 10 only.

Similarly union of unigrams and bigrams gives good results for class 2 and

10. So we can do an exhaustive search to find that best set which gives best

performance to distinguish the documents of classes 2, 5 and 10.

Bibliography

[1] Anirban Dasgupta, Petros Drineas, Boulos Harb, Vanja Josifovski, and

Michael W. Mahoney. Feature selection methods for text classification.

In Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Jose, California, USA,

August 12-15, 2007, pages 230–239, 2007.

[2] Susan T. Dumais, John C. Platt, David Hecherman, and Mehran Sa-

hami. Inductive learning algorithms and representations for text cate-

gorization. In Proceedings of the 1998 ACM CIKM International Con-

ference on Information and Knowledge Management, Bethesda, Mary-

land, USA, November 3-7, 1998, pages 148–155, 1998.

[3] Gnes Erkan, Ahmed Hassan, Qian Diao, and Dragomir R. Radev. Im-

proved nearest neighbor methods for text classification with language

modeling and harmonic functions.

[4] Susana Eyheramendy, David D. Lewis, and David Madigan. On the

naive bayes model for text categorization. In Proceedings of the Ninth

International Workshop on Artificial Intelligence and Statistics, AIS-

TATS 2003, Key West, Florida, USA, January 3-6, 2003, 2003.

[5] Simon Haykin. Neural Networks: A Comprehensive Foundation. Pren-

tice Hall, 1999.

90

BIBLIOGRAPHY 91

[6] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating

feature weights in naive bayes with kullback-leibler measure. In 11th

IEEE International Conference on Data Mining, ICDM 2011, Vancou-

ver, BC, Canada, December 11-14, 2011, pages 1146–1151, 2011.

[7] David D. Lewis. Naive (bayes) at forty: The independence assumption

in information retrieval. In Machine Learning: ECML-98, 10th Eu-

ropean Conference on Machine Learning, Chemnitz, Germany, April

21-23, 1998, Proceedings, pages 4–15, 1998.

[8] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.

Introduction to information retrieval. Cambridge University Press,

2008.

[9] Tom M. Mitchell. Machine learning. McGraw Hill series in computer

science. McGraw-Hill, 1997.

[10] Jyri Saarikoski, Kalervo Järvelin, Jorma Laurikkala, and Martti Juhola.

On document classification with self-organising maps. In Adaptive and

Natural Computing Algorithms, 9th International Conference, ICAN-

NGA 2009, Kuopio, Finland, April 23-25, 2009, Revised Selected Pa-

pers, pages 140–149, 2009.

[11] Gerard Salton and Chris Buckley. Term-weighting approaches in auto-

matic text retrieval. Inf. Process. Manage., 24(5):513–523, 1988.

[12] Gerard Salton and Michael McGill. Introduction to Modern Information

Retrieval. McGraw-Hill Book Company, 1984.

[13] Gerard Salton, C. S. Yang, and Clement T. Yu. A theory of term

importance in automatic text analysis. JASIS, 26(1):33–44, 1975.

[14] Fabrizio Sebastiani. Machine learning in automated text categorization.

ACM Comput. Surv., 34(1):1–47, 2002.

BIBLIOGRAPHY 92

[15] Yiming Yang. An evaluation of statistical approaches to text catego-

rization. Inf. Retr., 1(1-2):69–90, 1999.

[16] Yiming Yang and Xin Liu. A re-examination of text categorization

methods. In SIGIR ’99: Proceedings of the 22nd Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages 42–49, 1999.

[17] Yiming Yang and Jan O. Pedersen. A comparative study on feature

selection in text categorization. In Proceedings of the Fourteenth In-

ternational Conference on Machine Learning (ICML 1997), Nashville,

Tennessee, USA, July 8-12, 1997, pages 412–420, 1997.

	Introduction
	Text Categorization
	Dataset
	Related Work
	Organization of the Dissertation

	Preliminary and Notations
	Self Organizing Map
	Introduction
	Feature Selection
	Training and Results
	Conclusion:

	Naive Bayes
	Introduction
	Multinomial Naive Bayes
	Poisson Naive Bayes
	Empirical Prob. Distribution of Terms

	Feature Selection
	First Level
	Second Level

	Training and Results
	First Level
	Second Level

	k-Nearest Neighbour (k-NN) Rule
	Introduction
	Feature Selection
	Training and Results
	Term Frequency
	Tf*idf
	Mutual Information
	Tf*df_normalized
	Bigrams
	Unigrams based on specific criteria

	Hierarchical Classification Algorithm
	Introduction
	Feature Selection
	Training and Results

	Conclusion and Future Work

