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Chapter 1: Introduction

1.1 To begin with

With the advent of next-generation sequencing (NGS) technology [126], huge amount of
data are being generated regularly, using massively parallel sequencing. One of the appli-
cations of NGS technology is to profile the whole transcriptome data at single-cell level
[33], commonly known as ‘single-cell RNA sequencing’ (scRNA-seq) data. Thousands to
millions of cells can be profiled in a single experiment with the transcriptome consisting of
tens of thousands of genes. This new technology is both time and cost-efficient from the
technological point of view. However, although the data are expected to be much more
informative than bulk RNA-seq data, they come with a few challenges like sparsity, hetero-
geneity, presence of noise from different sources etc. To draw proper inference from these
data, researchers need to get equipped with proper statistical and computational tools that
everyone can use. This dissertation aims in developing new and powerful statistical meth-
ods to analyze scRNA-seq data with more precision and efficiency. We investigate four
important statistical problems in single-cell transcriptome data analysis.

Single-cell profiling can be applied to a wide range of experiments to discover biological
mechanisms underlying different phenomena ranging from development to disease progres-
sion, neurology, immunology, digestive system, reproduction, organoid development, to
name a few [114]. In a bulk RNA-seq experiment, a population of cells from a tissue is
sequenced together, and as a result, cell to cell variability is lost. Capturing tissue het-
erogeneity is important in many applications necessitating the use of single-cell profiling.
Moreover, information at the cellular level may help us in better pathogenesis of disease and
precision medicine. On the other hand, bulk sequencing averages out cellular level expres-
sion values over a population of cells. This may introduce the erroneous effect of combining
multiple subgroups known as Simpson’s paradox. It is also possible that we miss subgroup-
specific effects by combining cell subgroups, especially characteristics of rare subgroups.
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2 INTRODUCTION

Single-cell transcriptome profiling is becoming more and more popular these days because
of the high resolution of the experiment leading to more information content in the data.

We have investigated four major problems for analyzing single-cell transcriptome data.
Existing methods do not address the typical characteristics of scRNA-seq data leading to
loss of information and compromise in accuracy. We have developed statistical methods
taking into account the special features of the data and evaluate the performance of our
proposed methods both theoretically and computationally. We have done rigorous data
analysis using both simulated and real data. Our work also provides guidance to the end
users regarding the appropriate applicability of the methods with respect to the arising
situations and data characteristics.

A substantial amount of sparsity poses considerable challenges in modeling the distri-
bution of scRNA-seq data. Zero expression values present in the data are called dropouts.
Because of dropouts, the dataset becomes nonlinear in structure. The proportion of zeros
may vary from gene to gene as well as from cell to cell. These zero values can arise from
three sources: biological zeros, technical zeros, and sampling zeros. When the true under-
lying expression value is zero, and the corresponding data point shows zero value, it can be
called ‘biological zero’. Zeros may also arise from technical errors because tiny amount of
RNA is present in a single cell, and cDNA may be lost during amplification. Zeros arising
from this source can be attributed to ‘technical zeros’. Even if the cDNA is present in the
final sample, it may not be detected due to random detection leading to ‘sampling zeros’.
Differentiating these three sources of zeros is vital because biologists are interested only
in zeros arising from biological sources. This large occurrence of zero values makes this
data defiant to standard data analysis methods. For example, principal component analysis
(PCA) is not appropriate for this data due to nonlinearity. Nonlinear methods like gaussian
process latent variable modeling (GPLVM) [68] or t-stochastic neighbor embedding (tSNE)
[76] produces a more meaningful result in dimensionality reduction for single-cell RNA-seq
data. An option to tackle with these zeros is to impute the zero values based on non-zero
observations. However, existing studies show that considering the zero values instead of
imputation produces better results [48].

Another important characteristic that distinguishes single-cell expression data is the
existence of outliers. Due to the high amount of amplification from very little starting
material, some genes may be over-amplified, resulting in outliers. In addition to that, high
variability in gene expression is also a characteristic that needs to be taken care of.
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1.2 Modeling scRNA-seq data

Understanding the typical characteristics of scRNA-seq data is challenging because there
are many sources of variations affecting the expression level of a gene in a given cell. The
gene-specific effect, as well as cell-specific effect, can influence cell-specific gene expression.
Both types of effects can even be responsible for dropouts. Gene-specific effects behind
dropout can be classified as biological zeros, whereas cell-specific effects behind dropouts
can be called technical zeros. Sampling zeros can occur when a gene is not detected because
it is present at a shallow level in a sample. Another important characteristic of single-cell
gene expression is that some gene expressions show a bimodal pattern, whereas others are
unimodal. Distinguishing these two types of genes may be important to analyze the data
better. We use characterization described by Robertson and Fryer [97] to distinguish these
two types of genes. While developing our model for fitting a probability model to scRNA-
seq data, we have taken into account the presence of outliers, high variability, and also
heteroskedasticity in expression level.

We model the dropout event in single-cell gene expression data with a probit model with
additive effects from genes and cells. We assume that gene-specific effects are fixed, whereas
cell-specific effects are random. To estimate the parameters of this model, we use iteratively
re-weighted least squares (IRLS) method along with EM algorithm. To estimate the factor
behind sampling zeros, we use genes with similar zero proportions instead of single genes.
Given a gene is expressed, we assume that the log-expression value consists of additive
effects from cells and genes.

1.3 Testing for differential expression

Once the distribution of gene expression is modelled appropriately, we move on to perform
differential expression analysis between two conditions. Differential expression analysis on
single-cell data faces many unique challenges, e.g., heteroskedasticity between conditions,
zero-inflated distribution, existence of both bimodal and unimodal genes, etc. Existing
methods like DESingle [81], SC2P [131], MAST [39], etc., attempt to fit zero-inflated nega-
tive binomial, a mixture of Poisson and lognormal and zero-inflated lognormal distributions,
respectively, for differential expression analysis. A common pitfall is that they do not try
to distinguish between technical zeros and biological zeros because differences in only bio-
logical zeros should be compared in differential expression testing. Also, other methods do
not clearly illustrate how their assumed distribution compares with the observed data. We
propose two statistical tests for performing differential expression between groups, namely
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RIBBON I and RIBBON II. RIBBON I is based on the ideology of testing for equality of
both mean and variance for normal distribution based on a likelihood ratio test. RIBBON
II is based on the ideology of testing equality of mixing proportions in mixture normal
distribution between two groups. We have also derived the asymptotic distributions of our
proposed test statistics. Under some weak conditions, we have proved that RIBBON I
and RIBBON II asymptotically follow χ2

3 and χ2
2 distributions, respectively. Our proposed

methods seem to outperform other existing methods on simulated data and benchmarking
real datasets. To be honest with other methods, we compare them using simulations pro-
tocols as devised by others like MFA [20] and scDD [60] along with our own protocol. Cell
cycle data from Buettner et al. [16] were used for benchmarking.

1.4 Pseudotime reconstruction

Single cells collected at one time point contain information of cells that are at different
stages of expression with respect to time. Placing each cell on a hypothetical time tra-
jectory by deconvoluting the information collected at one time point is a challenging task.
However, uncovering such hypothetical timeline, called ‘pseudotime trajectory’ is a major
key for many downstream analyses like transcriptional bursting detection, identifying im-
portant genes at different stages of cell regulation etc. Hence, the problem is to construct
an ordering of cells to represent the underlying biological procedure properly. All single-
cell transcriptome data cannot be clearly classified into discrete subgroups. Based on cell
capture procedure, sometimes there is a continuous path of cells between two distinct cell
types. The construction of pseudotime trajectory is appropriate for this kind of single-cell
dataset. Another related problem is to construct branching based on the transcriptome
data. Existing methods like Monocle [94], Slingshot [110], DPT [45], scVelo [12], Waterfall
[103], TSCAN [55] etc. apply curve-fitting on reduced dimensional data. This includes
reducing very high-dimensional data into two or three dimensions. However, the dimen-
sionality reduction step may cause loss of information, leading to erroneous inference from
the data. Based on our simulations, we have observed that these methods may often fail
drastically to perform when the patterns of change in gene expression vary between genes.

We propose PseudoGA, a cell pseudotime reconstruction method based on genetic al-
gorithm. We view the pseudotime reconstruction problem as finding the best permutation
based on a cost function. We define the cost function as the sum of BIC values for all genes
after fitting a smooth curve on the given permutation. The smooth curve is fitted based on
the rank of genes, and hence the method is fully nonparametric. The search space being
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too large to find an exact solution, we apply a genetic algorithm to find a near-optimal
solution. We also develop an algorithm for performing branching with different clusters by
using a method similar to a minimal spanning tree. To tackle datasets with a large number
of cells, we first construct an ordering based on a subset of cells and extend the ordering to
all cells based on nearest neighbor matching. To draw a more accurate inference, we fit the
principal curve on a set of orderings obtained from different subsets sampled from the full
dataset. Our algorithm shows good accuracy and robustness on benchmarking real data as
well as simulated data. For real data comparison, we use five different datasets with known
pseudotime information. Our method is scalable with respect to time and memory as well
and amenable to parallel computing.

1.5 Batch effect correction

The next problem we consider is removing batch effects from two scRNA-seq data and iden-
tification of common cell types. This helps in integrating multiple single-cell transcriptome
data. Among existing methods, SMNN [132] uses an anchoring-based approach where mu-
tual neighbors are identified across datasets and the datasets are thereafter batch corrected
using linear models. A drawback of this approach is that the batch effect may not be linear
across datasets. Moreover, these methods inherently assume that biological variability and
variability due to batch effect are independent. However, this assumption may not always
hold in reality. Biological differences and technical effects are often interspersed. A dif-
ferent approach in Seurat [15] uses dynamic time warping following canonical correlation
analysis. When the batch effect present between datasets is comparatively larger than the
difference between clusters, this approach may not work well.

To address this problem, we identify common cell types across datasets first and then
perform batch effects correction. First, we perform clustering of individual datasets and
hence derive cell types for each of the datasets. Next, we apply an algorithm called Batch
Corrected Gaussian Process Latent Variable modeling (BC-GPLVM) to take care of non-
linear batch effects correction across datasets. We find common cell types across datasets
based on the clustering membership obtained through the reduced dimensional data. Based
on the common cell types, we perform batch effects correction across datasets. This helps
in identifying nonlinear batch effects as well as cluster-specific batch effects, i.e., the inter-
action between clusters and batches. Our proposed algorithm shows promising accuracy
on both simulated and real datasets. To compare the accuracy of batch effects correction
produced by different methods, we use transfer entropy [9] as a metric for the goodness of
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mixing. Our method is also time and memory-efficient.
We have addressed a few problems that are at the core of scRNA-seq data analysis.

Our proposed methods are novel, powerful and robust. Performances of these methods are
very promising and hence can be used for further downstream analysis. We believe that
our newly developed methods and algorithms will help statisticians as well as biologists in
drawing appropriate inferences from scRNA-seq data.

1.6 Publication from the thesis

1. From Chapter 4: Pronoy Kanti Mondal, Udit Surya Saha, Indranil Mukhopadhyay
(2021). PseudoGA: cell pseudotime reconstruction based on genetic algorithm. Nucleic
Acids Research 2021 Jul 9; gkab457. doi: 10.1093/nar/gkab457. Online ahead of print.



Chapter 2: Modeling scRNA-seq
expression data

2.1 Introduction

Rapid advances in technology have ushered a new era of getting an in-depth view of gene
expression profiles from millions of cells [113, 52, 102, 91, 88]. Proper characterization of
the distribution of gene expression at the single-cell level is necessary to address analytical
problems and other downstream analyses relevant to these data. No existing statistical
model is known to outperform others universally, across all platforms and species, bringing
up the necessity to revisit the problem and developing a concrete statistical framework
for analyzing such data. Gene expression is influenced by several biological and environ-
mental factors that account for its overall variability. It is known that transcriptional
bursts, cellular heterogeneity, stochastic variability, fluctuations due to gene co-expression
networks, etc., have a significant effect on gene regulation leading to high variance of such
data [73, 118, 128, 117, 34]. However, these variations are generally masked in bulk expres-
sion data that provides average value over a population of cells. The averaging, in effect,
possibly introduces erroneously combining subgroups and leads to loss of information, a
phenomenon known as ‘Simpson’s paradox’. While single-cell gene expression data hold
promise to decipher the regulating factors behind biological mechanisms, its variability and
dynamics of gene expression profile at the cellular level, pose considerable challenges in its
analysis [96, 64].

RNA-seq is a technology widely used over the last several years to measure the amount
of RNA present in a sample at a given time. Methods of analyzing bulk RNA-seq data are
not intended to be applied to analyze single-cell RNA-seq data [53, 108]. The limitation
is because those methods do not take care of cell-to-cell heterogeneity and other features
of gene expression distribution that are specific to single-cell transcriptome data. Profiling
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8 RIBBON

low amounts of mRNA at single-cell level requires amplification by more than a million-fold
to be detected, which leads to nonlinear distortions of transcript abundance level. Addi-
tionally, each cell may lie in different biochemical states [118], and its effect on individual
gene expression profiles need to be taken care of properly to analyze any scRNA-seq data.
Along with this inherent stochasticity at individual cells, extreme sparsity is another typical
feature usually absent in bulk RNA-seq data [11].

The most essential and typical feature of scRNA-seq is the ‘dropout’ event indicating a
situation where a gene might be expressed in one cell while it fails to be detected in another
one [95]. This behavior may occur due to two reasons. A gene may not be expressed due
to intrinsic biological factors or expressed at a level too low to be detected. We call the
‘zero’ value due to this reason as ‘biological zero’. Transcriptional bursting [40, 62] is
known to cause an on and off switch in gene expression level in individual cells, which
might be another determining factor of biological zeroes. On the other hand, there might
be several technical reasons leading to failure in the amplification of mRNA in one cell.
For example, transcripts from a particular gene may be missed or under-amplified during
reverse transcription and cDNA amplification [129, 39]. This fact also gives rise to a ‘zero’
value in the data, and we designate this as ‘technical zero’. The dropout probability in a
cell also depends on the absolute expression level and the library quality of that cell, among
many other factors.

Usually, existing approaches use hurdle model [39, 80], zero-inflated model [58, 81],
generalized linear model [127], generalized additive model [117] or mixture model [60, 36,
131]. Most of these methods assume a common cause of zero expression at individual
cells. However, only biological zeros are of interest to researchers in typical analyses as
technical zeros are usually considered as noise. So, these two well-known types of sources
of zeros need to be characterized differently to analyze the data better. We would be able to
analyze scRNA-seq data more efficiently if we can separate technical artefacts that restrain
its precision. None of the methods addresses how to differentiate between these two causes
of zero expression clearly. The literature also lacks studies that evaluate the goodness of
fit for different distribution assumptions on single-cell gene expression data.

We propose a novel statistical model for the distribution of gene expression in single-cell
RNA-seq data using a two-part model [37]: one accounting for zero expressions and the
other accounting for the positive part. The technical and biological factors behind the zero
expressions are separated using an additive model with a probit link. Log transformed
positive expression values are fitted with either a mixture of two normal distributions or
unimodal normal distribution depending on the characteristic of individual genes. We also
consider cell-specific stochasticity that may arise due to the transcription state, quality
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of library of that cell, and other biological reasons like different cell types etc. It may
affect the expression values of genes and also the dropout events. Our proposed model
takes into account several factors that control the gene expression in cells. We estimate
the parameters of the model using EM algorithm.

2.2 Characteristics of single-cell RNA-seq data

To develop an appropriate model for single-cell gene expression profiles, one should consider
few aspects that are typical for scRNA-seq data. A characteristic that distinguishes single-
cell expression data from other gene expression data is the high abundance of zeros. The
occurrence of zeros can be attributed to several factors: biological zeros, sampling zeros,
and technical zeros [105]. A gene may not be expressed in some cells due to an underlying
biological factor resulting in biological zeros. Due to the stochastic nature of count datasets,
some genes may not show positive expression because the number of transcripts present in
the cell is deficient, and RNA-seq protocol cannot detect the transcript due to sampling
inefficiency. Another type of zero can arise purely due to technical reasons. Because of
poor library preparation, capture inefficiency, or other technical reasons, some genes may
be missed in a particular cell.

Based on two datasets (GEO accession number: GSE64016, GSE75688), a study of
histograms reveals that only a tiny fraction of genes within the transcriptome is detected
in a typical cell (Figure 2.1). A large proportion of genes that are not expressed assumes
the value ‘0’ in the dataset. The proportion of genes expressed in a particular cell is
highly variable, and this can be attributed to variability due to technical reasons. A
fact that is often ignored in existing studies is the relationship between the proportion
of cells being expressed for a gene with the mean log expression level. The scatter plots
(Figure 2.2) of mean gene expression level with the proportion of cells showing expression
on the same datasets reveal that, the proportion of cells in which a gene is expressed
is an increasing but non-linear function of mean expression level. As mean expression
decreases, the proportion of cells containing expressed genes also decreases, giving rise to
too many zeros due to amplification failure. Variability explained by this relationship can
be attributed to variability due to dropouts from sampling. Our task is to discover true
biological variability after removing the effects of technical variability and variability due
to sampling.

Another essential characteristic that distinguishes scRNA-seq data from bulk RNA-seq
data is the fact that single-cell expression distribution may be both bimodal or unimodal
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Figure 2.1: Histogram of the proportion of genes expressed in a cell shows that the
proportion of expressed genes in a cell has very high variability and a cell-specific factor
for dropouts should be considered in scRNA-seq datasets with GEO acession number: (A)
GSE64016 (B) GSE75688.
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Figure 2.2: The proportion of cells where a gene is expressed is an increasing function
of mean log expression level. This relationship can be exploited to estimate the factor
behind sampling zeros in scRNA-seq datasets with GEO acession number: (A) GSE64016
(B) GSE75688.
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[60, 82]. Due to transcriptional bursting, a gene might go through on and off switching
that leads to the oscillation in transcription levels. For this reason and also due to some
other technical and biological factors, a gene may not be expressed or expressed at a very
low level. So the distribution of gene expression generally has two modes: one mode at
zero or at a point very close to zero and another mode slightly away from zero. Moreover,
the presence of large outliers makes the modeling more challenging. These features are
typical of single-cell RNA-seq data. However, there may be some genes that do not show
bimodality in the distribution of expression profile. We apply the criterion proposed by
Holzmann et al. [47] to check the presence of bimodality. We fit a two-component Gaussian
mixture model on log expression level. If F (x; θ) is the distribution function of X, the log
expression level of a gene, according to Robertson and Fryer [97],

F (x) is

{
unimodal if 0 < µ ≤ µ0

bimodal if µ > µ0, p ∈ (p1, p2)

where µ = |µ2−µ1|
σ1

and µ0 =
{2(σ4−σ2+1)

3
2−2σ6−3σ4−3σ2+2
σ2

} 1
2 . Note that here, for i = 1, 2,

p−1
i = 1 + σ3yi

µ−yi exp{−1
2
y2
i + 1

2

(
yi−µ
σ

)2}, where y1 and y2 are roots of the equation (σ2 −
1)y3 − µ(σ2 − 2)y2 − µ2y + µσ2 = 0 with 0 < y1 < y2 < µ and σ = σ2

σ1
where (µ1, µ2)

and (σ2
1, σ

2
2) are the mean and variance parameters respectively for the two component

distribution and p is the mixing proportion.
If we further assume σ1 = σ2, the condition simplifies to the fact that the distribution

is unimodal if and only if d ≤ 1 or | log(1− p)− log(p)| ≥ 2 log(d−
√
d2 − 1) + 2d

√
d2 − 1

where d = |µ1−µ2|
2
√
σ1σ2

[47]. Based on the criterion assuming equal variance, we tested for

bimodality (Figure 2.3) in two independent datasets (GSE accession numbers: GSE64016
and GSE75688). We observe that 47% and 68% genes are bimodal in GSE64016 and
GSE75688 datasets respectively. So it is necessary to consider both unimodal as well
bimodal distribution while modeling single-cell expression data.

Also, single-cell data show high variability, which should be taken care of in the model
correctly. In addition to that, the model should also absorb outlier expression levels present.
This restriction can be taken care of, to some extent, by fitting Gaussian distribution to log
expression levels because log transformation is well known to decrease the skewness of any
data. Another critical issue with single-cell data is that not all cells are of the same quality.
Even after filtering out low-quality cells, all cells may not exhibit the same characteristic.
Very often, there are rare cell types and cell subpopulations. One way to resolve this is
by considering cell-specific random effects on expression profiles for every gene. We took
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Figure 2.3: In both datasets, some genes are unimodal and others are bimodal. So,
consideration of bimodal distribution is necessary.
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all these characteristics into account while building a model named ‘RIBBON’, for gene
expression profiles.

2.3 RIBBON

Some methods, developed to analyze single-cell RNA-seq data, use read counts to fit appro-
priate distribution on the data. However, though gene-level expression data are produced in
read counts, transcript-level expressions are usually of continuous data type. In the case of
UMI data or other types of expression data, expression levels of genes might be non-integer
valued. Moreover, discrete read counts can easily be normalized into continuous data [1]
by converting into FPKM (Fragments per kilobase per million) [83] or CPM (Counts per
million) [31] level. So a model for gene expression with continuous distribution has wider
applicability than a model for read counts.

Individual cell effect influences the expression level. Dropouts in a typical cell are in
abundance. We propose a mixed model approach for overall expression levels assuming
that the effects of genes are fixed whereas the effects of cells are random. This approach
takes care of cell-specific effect on expression level due to the quality of library and effect
of subgroups. We also assume random cell effects for dropout events as different cells
might possess different rates for technical dropouts. We presume that the logarithm of
the expression level of each gene is either unimodal or bimodal with different means and
possibly unequal variances. The log transformation and random cell effect for every cell
can take care of large outlier expression values. We assume that the probability of dropout
in each cell follows a probit model with additive effects from cells and genes.

It is well-known that technical zeros and biological zeros are confounded in single-cell
transcriptome data. No existing method addresses separating these two sources of zeros
bringing about unwanted variation present in the data. In the previous section, we have
described how RIBBON takes care of three types of sources of zeros. In our model, we aim
to distinguish these three sources of zeros. Some works [39, 58, 81, 36, 131] modeled single-
cell gene expression data with a two-component model, assuming that zero expression can
only arise from dropout events.

To formalize our proposed model, first, assume that the distribution is either unimodal
or bimodal normal. Let yij be the logarithm expression level of the j-th gene in cell i
and Eij be the event that gene j is expressed in cell i. We consider another variable zij
that indicates the observed presence of gene expression value for j-th gene in i-th cell.
Using the criterion described before, we model gene-specific expressions, either unimodal
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or bimodal. Conditional on the fact that the gene expression distribution is bimodal, we
introduce another indicator variable Dij, a latent variable. Dij = 0 means expression level
of gene j in cell i comes from mode 1, otherwise from mode 2. To incorporate two different
types of zeros, we assume that the probability that j-th gene is expressed in cell i is Φ(cj)
where cj is the gene-specific fixed effect for dropout and Φ(x) is the distribution function
of a standard normal variable. cj is a gene-specific parameter accounting for zeros and
hence it can be identified as the biological factor behind zeros. Once a gene is expressed
in a cell, the probability that there is no technical error in that cell for the given gene
is Φ(c + µj + α1i). Here, α1i is the cell-specific random effect, µj is the overall mean in
case of unimodal distribution, and it is the lower mode in bimodal distribution. α1i is a
cell-specific parameter and may depend on experimental conditions and hence can be called
the technical factor behind zeros. The parameter c influences several genes equally across
all cells and so the factor behind sampling zeros can be captured through this parameter.

With all these notations defined above, we first present our model in a diagrammatic
way (Figure 2.4), followed by the mathematical presentation.

Gene

Expressed

Mode 1

Technical
Error

Zero expression

No technical
error

∼ N(µ1 + α2i, σ
2
1)

Mode 2

∼ N(µ2, σ
2
2)

Not expressed

Zero expression

Figure 2.4: RIBBON model under bimodality assumption

Pr[Eij = 1] = Φ(cj), P [Dij = 1] = πj, (zij|Eij = 0) ≡ 0,
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Pr(zij = 1|Dij, Eij = 1) = Φ(c+ α1i + µ1j)I(Dij = 0) + I(Dij = 1),

(yij|zij = 0) ≡ 0,

(yij|zij = 1, Dij = 0) ∼ N(α2i + µ1j, σ
2
1j),

(yij|zij = 1, Dij = 1) ∼ N(µ2j, σ
2
2j),

α1i ∼ N(0, τ 2
1 ), α2i ∼ N(0, τ 2

2 ) (2.1)

We assume that the true expression levels of all cells for a given gene belong to one of
the two modes. A cell belonging to any of the two modes is silenced due to underlying
biological factor with a fixed probability leading to Eij = 0. Technical zeros, however, can
occur only from the lower mode. So we assume Dij and Eij are independent. Now, we
have,

P [zij = 1|Dij = 0] =
P [zij=1,Dij=0]

P [Dij=0]
=

P [zij=1,Dij=0,Eij=1]+P [zij=1,Dij=0,Eij=0]

P [Dij=0]

=
P [zij=1,Dij=0,Eij=1]

P [Dij=0]
=

P [Eij=1]P [Dij=0|Eij=1]P [zij=1|Dij=0,Eij=1]

P [Dij=0]

=
Φ(cj)(1−πj)Φ(c+α1i+µj)

(1−πj) = Φ(cj)Φ(c+ α1i + µj)

P [zij = 1|Dij = 1] =
P [zij=1,Dij=1]

P [Dij=1]
=

P [zij=1,Dij=1,Eij=1]+P [zij=1,Dij=1,Eij=0]

P [Dij=1]

=
P [zij=1,Dij=1,Eij=1]

P [Dij=1]
=

P [Eij=1]P [Dij=1|Eij=1]P [zij=1|Dij=1,Eij=1]

P [Dij=1]

=
Φ(cj)πj .1

πj
= Φ(cj)

Under independence of Eij and Dij, note that (yij|Dij, zij, Eij) ≡ (yij|Dij, zij). So
eliminating Eij the model (2.1) can be written as:

P [Dij = 1] = πj, P [zij = 1|Dij = 1] = Φ(cj),

P [zij = 1|Dij = 0] = Φ(cj)Φ(c+ α1i + µ1j),

(yij|zij = 0) ≡ 0,

(yij|zij = 1, Dij = 0) ∼ N(α2i + µ1j, σ
2
1j),

(yij|zij = 1, Dij = 1) ∼ N(µ2j, σ
2
2j),

α1i ∼ N(0, τ 2
1 ), α2i ∼ N(0, τ 2

2 ) (2.2)

The likelihood function for gene j is:

L(θj|{Dij}ni=1, {zij}ni=1, {yij}ni=1)

=
n∏
i=1

{
π
Dij
j (1− πj)(1−Dij)[(Φ(cj))

zij(1− Φ(cj))
(1−zij)(φ(yij;µ2j, σ2j))

zij ]Dij

×
[
(Φ(cj)Φ(c+ α1i + µ1j))

zij(1− Φ(cj)Φ(c+ α1i + µ1j))
(1−zij)
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× (φ(yij, µ1j + α2i, σ1j))
zij
](1−Dij)φ(α1i; 0, τ1)φ(α2i; 0, τ2)

}
where θj = (πj, cj, µ1j, µ2j, σ

2
1j, σ

2
2j, c, τ

2
1 , τ

2
2 )′ and φ(x;µ, σ) is the p.d.f. of a N(µ, σ2), and

Φ(x) is the distribution function of a standard normal variable.
For genes showing unimodal trait, we assume (Dij ≡ 0) in this model for all observations

i.e. we drop the larger mode (red part of the diagram in Figure 2.4). A diagrammatic
presentation of our proposed model when the distribution is unimodal is given in Figure
2.5 followed by a mathematical representation.

Gene

Expressed

Mode 1

Technical
Error

Zero expression

No technical
error

∼ N(µ1 + α2i, σ
2
1)

Not expressed

Zero expression

Figure 2.5: RIBBON model under unimodality assumption

Pr[Eij = 1] = Φ(cj), (zij|Eij = 0) ≡ 0,

P r(zij = 1|Eij = 1) = Φ(c+ α1i + µj),

(yij|zij = 0) ≡ 0,

(yij|zij = 1) ∼ N(α2i + µj, σ
2
j ),

α1i ∼ N(0, τ 2
1 ), α2i ∼ N(0, τ 2

2 ) (2.3)

Taking the unique characteristics of single-cell RNA-seq data into account, we have
proposed a model to fit the distribution of gene expression. Our model can be extended
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or modified given some particular aspects that might better explain the distribution of
expression of some specific genes. Note that, the essence of the problem is the presence of
various types of genes in thousands of cells, all measured by single-cell technology. Natu-
rally, all genes cannot exhibit a similar pattern which a single model with equal efficiency
can explain. However, our proposed model is a very general one to encompass different
situations while modeling scRNA-seq data.

Now, we describe the estimation procedure for the parameters of the model for unimodal
distribution as given by (2.3) followed by the same for bimodal distribution (2.2).

2.4 Estimation of parameters for the unimodal model

We use EM algorithm to find the MLE of the parameters in all models. For unimodal
model, using (2.3), the likelihood function for gene j based on n cells is:

L(µj, σ
2
j , cj, τ

2
1 , τ

2
2 , c|{zij}ni=1, {yij}ni=1, {α1i}ni=1, {α2i}ni=1)

=
n∏
i=1

(Φ(cj)Φ(c+ α1i + µj))
zij(1− Φ(cj)Φ(c+ α1i + µj))

(1−zij)

×
n∏
i=1

(φ(yij;µj + α2i, σj))
zijφ(α1i; 0, τ1)φ(α2i; 0, τ2)

Hence, the log-likelihood is for the j-th gene is given by

l(µj, σ
2
j , τ

2
1 , τ

2
2 , cj, c|{yij}ni=1, {zij}ni=1, {α1i}ni=1, {α2i}ni=1)

=Constant +
n∑
i=1

[
zij log(Φ(cj)Φ(c+ α1i + µj))

+ (1− zij) log(1− Φ(cj)Φ(c+ α1i + µj))

+ zij(−
1

2
log(σ2

j )−
(yij − α2i − µj)2

2σ2
j

)
]
−

n∑
i=1

[1
2

log(τ 2
1 ) +

α2
1i

2τ 2
1

+
1

2
log(τ 2

2 ) +
α2

2i

2τ 2
2

]
Consequently the joint log-likelihood for nG genes is given by:

= Constant +

nG∑
j=1

n∑
i=1

[zij log(Φ(cj)Φ(c+ α1i + µj))
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+ (1− zij) log(1− Φ(cj)Φ(c+ α1i + µj)) + zij(−
1

2
log(σ2

j )−
(yij − α2i − µj)2

2σ2
j

)]

−
n∑
i=1

[
1

2
log(τ 2

1 ) +
α2

1i

2τ 2
1

+
1

2
log(τ 2

2 ) +
α2

2i

2τ 2
2

]

2.4.1 Estimation of parameters in GLM with probit link having
random effects

First, we discuss briefly how we estimate parameters in a generalized linear model with
mixed effects using probit link. Then we prove one lemma that is used for estimating the
parameters of the unimodal model for scRNA expression data.

Consider the generalized linear model yi ∼ Ber(Φ(xtiβ + ztiu)), i = 1, 2, . . . , n where β
and u both are fixed effects. The log-likelihood is given by:

l(β, u|{yi}ni=1) =
n∑
i=1

[yi log(Φ(xtiβ + ztiu)) + (1− yi) log(1− Φ(xtiβ + ztiu))]

Now, ∂l
∂β

=
n∑
i=1

xi
(yi−Φ(xtiβ+ztiu))φ(xtiβ+ztiu)

Φ(xtiβ+ztiu)(1−Φ(xtiβ+ztiu))
and ∂l

∂u
=

n∑
i=1

zi
(yi−Φ(xtiβ+ztiu))φ(xtiβ+ztiu)

Φ(xtiβ+ztiu)(1−Φ(xtiβ+ztiu))
.

Also, E[− ∂2l
∂β2 ] =

n∑
i=1

xi
φ2(xtiβ+ztiu)

Φ(xtiβ+ztiu)(1−Φ(xtiβ+ztiu))
xti and E[− ∂2l

∂u2
] =

n∑
i=1

zi
φ2(xtiβ+ztiu)

Φ(xtiβ+ztiu)(1−Φ(xtiβ+ztiu))
zti .

We estimate the parameters using iteratively re-weighted least squares (IRLS), where the
parameters at the k-th step are estimated by the following equations:[

X tW (k−1)X X tW (k−1)Z
ZtW (k−1)X ZtW (k−1)Z

] [
β(k)

u(k)

]
=

[
X tW (k−1)y∗(k)

ZtW (k−1)y∗(k)

]
where W (k−1) is a diagonal matrix with i-th diagonal element

φ2(xtiβ
(k−1)+ztiu

(k−1))

Φ(xtiβ
(k−1)+ztiu

(k−1))(1−Φ(xtiβ
(k−1)+ztiu

(k−1)))
and y∗(k) = xβ(k−1) +Zu(k−1) +W (k−1)−1

v(k−1) where

the i-th element of the vector v(k−1) is given by

v
(k−1)
i =

(yi−Φ(xtiβ
(k−1)+ztiu

(k−1)))φ(xtiβ
(k−1)+ztiu

(k−1))

Φ(xtiβ
(k−1)+ztiu

(k−1))(1−Φ(xtiβ
(k−1)+ztiu

(k−1)))
. This equation can also be thought of com-

ing from a quasi-likelihood where y∗ ∼ N(Xβ+Zu, (W (k−1))−1) and β(k) and u(k) are MLEs
of β and u respectively. Now, if we further assume u to be a random parameter following
N(0, D), the equations for estimation are:

[
X tW (k−1)X X tW (k−1)Z
ZtW (k−1)X ZtW (k−1)Z +D−1

] [
β(k)

u(k)

]
=

[
X tW (k−1)y∗(k)

ZtW (k−1)y∗(k)

]
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This equation can be used for estimation for mixed effect parameters in generalized
linear model. When D is unknown, one way of solving this equation is through the following
steps of EM algorithm:
E-step:
E[û(k)|y] = (ZtW (k−1)Z + (D(k−1))−1)−1(ZtW (k−1)y∗(k) − ZtW (k−1)Xβk−1)
M-step:
β̂(k) = (X tW (k−1)X)−1(X tW (k−1)y∗(k) −X tW (k−1)ZE[û(k)|y])
D̂(k) = E[û(k)û(k)|y] = (E[û(k)|y])(E[û(k)|y])t + (ZtW (k−1)Z + (D(k−1))−1)−1

Lemma 1. If X ∼ N(µ, σ2), E[Φ(a+X)] = Φ( a+µ√
1+σ2 ), and E[φ(a+X)] = 1√

1+σ2φ( a+µ√
1+σ2 )

Proof. Consider a standard normal variable Y independent of X, so that
E[Φ(a+X)] = EX [EY |X [I(Y ≤ a+X)|X]] = EX,Y [I(Y ≤ a+X)] = P [Y ≤ a+X]
= P [Y −X ≤ a] = P [Z ≤ a] where Z ∼ N(−µ, (1 + σ2))
So, E[Φ(a+X)] = P [( Z+µ√

1+σ2 ) ≤ ( a+µ√
1+σ2 )] = Φ( a+µ√

1+σ2 )

Differentiating both sides of the equality w.r.t a, we have, E[φ(a+X)] = 1√
1+σ2φ( a+µ√

1+σ2 )

2.4.2 Estimation of parameters of RIBBON

The parameters to be estimated are {cj}nGj=1, {µj}
nG
j=1, {σ2

j}
nG
i=1, {α1i}ni=1, {α2i}ni=1, τ

2
1 , τ

2
2 , c,

where n is the number of cells and nG is the number of genes. From a single gene, it is
not possible to estimate c, because c and cj becomes confounded. Genes are clustered into
subsets with similar zero occurrences and gene specific parameters within each subset are
estimated simultaneously. The joint distribution of {{yij}ni=1}

nG
j=1, {{zij}ni=1}

nG
j=1, {α1i}ni=1

and {α2i}ni=1 can be represented as:

f({{yij}ni=1}
nG
j=1, {{zij}ni=1}

nG
j=1, {α1i}ni=1, {α2i}ni=1)

=f({{yij}ni=1}
nG
j=1, {α2i}ni=1|{{zij}ni=1}

nG
j=1, {α1i}ni=1)f({{zij}ni=1}

nG
j=1, {α2i}ni=1)

The parameters are estimated in two steps. In the first step {µj}nGj=1, {σ2
j}

nG
j=1, τ 2

2 and
{α2i}ni=1 are estimated by considering conditional distribution on {{zij}ni=1}

nG
j=1,{α1i}ni=1. In

the second step, the remaining parameters are estimated by considering marginal distribu-
tion of {{zij}ni=1}

nG
j=1,{α1i}ni=1.

Step I:
It can easily be seen that, conditioned on zij > 0, yij ∼ N(µj + α2i, σ

2
j ). The conditional

log-likelihood given {{zij}ni=1}
nG
j=1 and {α1i}ni=1 can be represented as:

l1({µj}nGj=1, {σ2
j}

nG
j=1|{{yij}ni=1}

nG
j=1, {α2i}ni=1)
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=Constant +

nG∑
j=1

n∑
i=1

[zij(−
1

2
log(σ2

j )−
(yij − α2i − µj)2

2σ2
j

)]−
n∑
i=1

[
1

2
log(τ 2

2 ) +
α2

2i

2τ 2
2

]

Optimization of the log-likelihood function is obtained by equating the partial derivative
of the log-likelihood function with respect to the parameters to zero.

∂l

∂µj
= 0 =⇒

n∑
i=1

(yij − α2i − µj)zij
σ2
j

= 0

∂l

∂α2i

= 0 =⇒
nG∑
j=1

(yij − α2i − µj)zij
σ2
j

− α2i

τ 2
2

= 0

∂l

∂σ2
j

= 0 =⇒
n∑
i=1

[− zij
2σ2

j

+
zij(yij − α2i − µj)2

2(σ2
j )

2
] = 0

∂l

∂τ 2
2

= 0 =⇒
n∑
i=1

[− 1

2τ 2
2

+
α2

2i

2(τ 2
2 )2

] = 0

The parameters are estimated using EM algorithm with the following steps:

E-step
We first derive the conditional distribution of α2i. The joint log-likelihood of {yij}nGj=1 and
α2i is given by

l(α2i, {yij}nGj=1|{zij}
nG
j=1, {µj}

nG
j=1, {σ2

j}
nG
j=1, τ

2
2 )

=−

nG∑
j=1

zij

2
log(2π)− 1

2

nG∑
j=1

zij log(σ2
j )−

nG∑
j=1

(yij − µj − α2i)
2zij

2σ2
j

− 1

2
log(2π)− 1

2
log(τ 2

2 )− α2
2i

2τ 2
2

Now, the conditional log-likelihood of α2i given {yij}nGj=1 can be expressed as:

l(α2i|{yij}nGj=1, {zij}
nG
j=1, {µj}

nG
j=1, {σ2

j}
nG
j=1, τ

2
2 )

=constant−
( nG∑
j=1

zij
2σ2

j

+
1

2τ 2
2

)
α2

2i +

nG∑
j=1

(yij − µj)zij
σ2
j

α2i
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=constant− 1

2

( nG∑
j=1

zij
σ2
j

+
1

τ 2
2

)(
α2i −

nG∑
j=1

(yij−µj)zij
σ2
j

(
nG∑
j=1

zij
σ2
j

+ 1
τ22

)

)2

So, the conditional distribution of α2i is normal with conditional mean
s1,α1i
s2,α2i

and con-

ditional variance 1
s2,α2i

where s1,α2i
=

nG∑
j=1

(yij−µj)zij
σ2
j

and s2,α2i
=

nG∑
j=1

zij
σ2
j

+ 1
τ22
.

At the k-th iteration, we update α
(k)
2i as:

α
(k)
2i =

s
(k−1)
1,α2i

s
(k−1)
2,α2i

with s
(k−1)
1,α2i

=
nG∑
j=1

(yij−µ
(k−1)
j )zij

σ2
j
(k−1) and s

(k−1)
2,α2i

= (
nG∑
j=1

zij

σ2
j
(k−1) + 1

τ22
(k−1) ).

M-step

µ
(k)
j =

n∑
i=1

(yij−α
(k)
2i

)zij

σ2
j
(k−1)

n∑
i=1

zij

σ2
j
(k−1)

, σ2
j

(k)
=

n∑
i=1

(yij−α
(k)
2i −µ

(k)
j )2zij+

n∑
i=1

1

s
(k−1)
2,α2i

zij

n∑
i=1

zij

,

τ 2
2

(k)
= 1

n

n∑
i=1

(α
(k)
2i

2
+ 1

s
(k−1)
2,α2i

). [since, V ar[α
(k)
2i |{zij}

nG
j=1, {yij}

nG
j=1] = 1

s
(k−1)
2,α2i

]

Step II:
Having estimated {µj}nGj=1, {α2i}ni=1, {σ2

j}
nG
j=1 and τ 2

2 , we now estimate {cj}nGj=1, c, {α1i}ni=1

and τ 2
1 using the likelihood of {{zij}ni=1}

nG
j=1 and {α1i}ni=1 only. The log-likelihood for

{{zij}ni=1}
nG
j=1 and {α1i}ni=1 is:

l2({cj}nGj=1, c, τ
2
1 |{{zij}ni=1}

nG
j=1, {α1i}ni=1, {µj}

nG
j=1)

=

nG∑
j=1

n∑
i=1

[zij log(Φ(cj)Φ(c+ α1i + µj)) + (1− zij) log(1− Φ(cj)Φ(c+ α1i + µj))]

−
n∑
i=1

[
1

2
log(τ 2

1 ) +
α2

1i

2τ 2
1

]

Optimization of the log-likelihood function is obtained by equating the partial derivative
of the log-likelihood function with respect to the parameters to zero.

∂l

∂cj
= 0 =⇒

n∑
i=1

[
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]Φ(c+ α1i + µj)φ(cj) = 0
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∂l

∂c
= 0 =⇒

nG∑
j=1

n∑
i=1

[
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]Φ(cj)φ(c+ α1i + µj) = 0

∂l

∂α1i

= 0 =⇒
nG∑
j=1

[
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]Φ(cj)φ(c+ α1i + µj)−

α1i

τ 2
1

= 0

∂l

∂τ 2
1

= 0 =⇒
n∑
i=1

[− 1

2τ 2
1

+
α2

1i

2(τ 2
1 )2

] = 0

The parameters are estimated with EM algorithm coupled with Iteratively Re-weighted
Least Squares (IRLS). {α1i}ni=1, {α2i}ni=1, and {cj}nGj=1 are assumed to be latent variables.
The expectation step and the maximization steps are described below:

E-step:

We consider finding conditional expectation of α1i. Define a vector ul = yij where
l = (i − 1)nG + j, 1 ≤ i ≤ n, 1 ≤ j ≤ nG. Define X and Z as design matrices of {µj}nGj=1

and {α1i}ni=1 respectively, so that, Xli = 1 and Zlj = 1 if l = (i − 1)nG + j, 1 ≤ i ≤ n,
1 ≤ j ≤ nG and Xli = 0, Zlj = 0 otherwise.

In section 2.4.1, for l = (i − 1)nG + j, by treating the term Φ(c
(k−1)
j ) as constant, the

diagonal matrix W (k−1) can be expressed as:

W
(k−1)
ll =

(φ(c(k−1)+µj+α
(k−1)
1i ;0,1))2Φ(c

(k−1)
j )

(Φ(c(k−1)+µj+α
(k−1)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

.

So, ZtW (k−1)Z =
nG∑
j=1

(φ(c(k−1)+µj+α
(k−1)
1i ;0,1))2Φ(c

(k−1)
j )

(Φ(c(k−1)+µj+α
(k−1)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

.

((D(k−1))−1)ii = 1

τ22
(k−1) and (ZtW (k−1)y∗(k) − ZtW (k−1)Xβk−1) = (ZtW (k−1)Z)α1 + Ztr

where rl =
(zij−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))φ(c(k−1)+µj+α

(k−1)
1i ;0,1)

Φ(c(k−1)+µj+α
(k−1)
1i )(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

, l = (i− 1)nG + j.

The update for α1 is
α

(k)
1 = (ZtW (k−1)Z + (D(k−1))−1)−1(ZtW (k−1)y∗(k) − ZtW (k−1)Xβk−1), which can also be

rewritten as:
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α
(k)
1i = α

(k−1)
1i +

s
(k−1)
1,α1i

s
(k−1)
2,α1i

where

s
(k−1)
1,α1i

=
nG∑
j=1

(zij−Φ(c
(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))φ(c(k−1)+µj+α

(k−1)
1i ;0,1)

Φ(c(k−1)+µj+α
(k−1)
1i )(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

− α
(k−1)
1i

τ21
(k−1) and

s
(k−1)
2,α1i

=
nG∑
j=1

(φ(c(k−1)+µj+α
(k−1)
1i ;0,1))2Φ(c

(k−1)
j )

(Φ(c(k−1)+µj+α
(k−1)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

+ 1

τ21
(k−1) .

M-step: c(k) is updated according to Fisher-scoring step from the above partial differ-
ential equation:

c(k) = c(k−1) +
s
(k−1)
1,c

s
(k−1)
2,c

with

s
(k−1)
1,c =

n∑
i=1

nG∑
j=1

(zij−Φ(c
(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))φ(c(k−1)+µj+α

(k−1)
1i ;0,1)

Φ(c(k−1)+µj+α
(k−1)
1i )(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

and

s
(k−1)
2,c =

n∑
i=1

nG∑
j=1

Φ(c
(k−1)
j )(φ(c(k−1)+µj+α

(k−1)
1i ;0,1))2

(Φ(c(k−1)+µj+α
(k−1)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µj+α

(k−1)
1i ))

.

Maximum likelihood estimator of binomial model can be obtained by equating estimated
frequency to observed frequency and using Lemma 1 as

Φ(c
(k)
j )E[Φ(c(k) + µj + α

(k)
1i )] = 1

n

n∑
i=1

zij, or Φ(c
(k)
j )Φ(

c+µj+
1
n

n∑
i=1

α
(k)
1i√

1+var(α1)
) = 1

n

n∑
i=1

zij

So, MLE of Φ(cj) given other parameters is :

Φ(c
(k)
j ) = min(1,

1
n

n∑
i=1

zij

Φ(
c+µj+

1
n

n∑
i=1

α
(k)
1i

√
1+var(α1)

)

) =⇒ c
(k)
j = Φ−1(min(1,

1
n

n∑
i=1

zij

Φ(
c+µj+

1
n

n∑
i=1

α
(k)
1i

)

√
1+var(α1)

)

))

and τ 2
1

(k)
= 1

n

n∑
i=1

(α
(k)
1i

2
+ 1

s
(k−1)
2,α1i

), [since V ar[α
(k)
1i |{zij}

nG
j=1, {yij}

nG
j=1] = 1

s
(k−1)
2,α1i

]

2.4.3 Asymptotic distribution of estimates

We derive the asymptotic distribution of the parameters when the number of cells becomes
large. It is a well-known fact that if θ̂n is the mle of θ based on n independent and iden-
tically distributed observations following some common distribution Fθ and θ0 is the true
value of θ,

√
n(θ̂n − θ0) asymptotically follows N(0, nI(θ0)−1), with I(θ0) = lim

n→∞
In(θ0)

where

In(θ0) = Eθ0 [− d2

dθ2
l(θ;X1, ..., Xn)]
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Now, we calculate the second derivatives with respect to parameters:

∂2l

∂µ2
j

= −

n∑
i=1

zij

σ2
j

∂2l

∂(σ2
j )

2 =
n∑
i=1

[
zij

2(σ2
j )

2
− zij(yij − α2i − µj)2

(σ2
j )

3
]

∂2l

∂(τ 2
2 )2

=
n∑
i=1

[− 1

2(τ 2
2 )2

+
α2

2i

(τ 2
2 )3

]

∂2l

∂µj∂σ2
j

= −

n∑
i=1

zij(yij − α2i − µj)

(σ2
j )

2

∂2l

∂µj∂τ 2
2

= 0,
∂2l

∂σ2
j∂τ

2
2

= 0

So that, E[− ∂2l
∂µ2j

] =

n∑
i=1

E[zij ]

σ2
j

, E[− ∂2l

∂(σ2
j )

2 ] =

n∑
i=1

E[zij ]

2(σ2
j )2

, E[− ∂2l
∂(τ22 )2

] = n
2(τ22 )2

, E[− ∂2l
∂µj∂σ2

j
] = 0,

E[− ∂2l
∂µj∂τ22

] = 0, E[− ∂2l
∂σ2
j ∂τ

2
2
] = 0.

Now, E[zij] = E[E[zij|α1i]] = E[Φ(cj)Φ(c+ α1i + µj)] = Φ(cj)Φ(
(c+µj)√

1+τ21
)

So, denoting θ1,j = (µj, σ
2
j , τ

2
2 ),
√
n(θ̂

(n)
1,j−θ1,j) asymptotically follows normal distribution

with mean 0 and variance diag(
nσ2

j
n∑
i=1

E[zij ]
,

2nσ4
j

n∑
i=1

E[zij ]
, τ 4

2 ) = diag(
σ2
j

Φ(cj)Φ(
(c+µj)√

1+τ21

)
,

2σ4
j

Φ(cj)Φ(
(c+µj)√

1+τ21

)
, 2τ 2

2 ).

Because our parameters are estimated in two separate steps, µjs are assumed to be
fixed in estimation of (cj, c, τ

2
1 ). Similarly,

∂2l

∂c2
=

nG∑
j=1

n∑
i=1

[− zijΦ(cj)φ(c+ α1i + µj)

(Φ(cj)Φ(c+ α1i + µj))2
− (1− zij)Φ(cj)φ(c+ α1i + µj)

(1− Φ(cj)Φ(c+ α1i + µj))2
]φ(c+ α1i + µj)Φ(cj)

+

nG∑
j=1

n∑
i=1

[
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]φ′(c+ α1i + µj)Φ(cj)
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∂2l

∂(τ 2
2 )2

=
n∑
i=1

[
1

2(τ 2
1 )2
− α2

1i

(τ 2
1 )3

]

∂2l

∂(cj)2
=

n∑
i=1

[− zij
(Φ(cj)Φ(c+ α1i + µj))2

− (1− zij)
(1− Φ(cj)Φ(c+ α1i + µj))2

](Φ(c+ α1i + µj))
2(φ(cj))

2

+ [
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]Φ(c+ α1i + µj)φ

′(cj)

∂2l

∂c∂cj
=

n∑
i=1

[− zij
(Φ(cj)Φ(c+ α1i + µj))2

− (1− zij)
(1− Φ(cj)Φ(c+ α1i + µj))2

]

× Φ(cj)Φ(c+ α1i + µj)φ(cj)φ(c+ α1i + µj)

+
n∑
i=1

[
zij

Φ(cj)Φ(c+ α1i + µj)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µj))
]φ(c+ α1i + µj)φ(cj)

So, 1
n
E[− ∂2l

∂c2
] = 1

n
E[E[− ∂2l

∂c2
|α1i]] =

nG∑
j=1

E[ 1
n

n∑
i=1

[
(Φ(cj)φ(c+α1i+µj))

2

Φ(cj)Φ(c+α1i+µj)(1−Φ(cj)Φ(c+α1i+µj))
]].

Denote, by ψ2(a, p, σ2) = E[ (φ(X+a))2

Φ(X+a)(1−pΦ(X+a))
] where X ∼ N(0, σ2) for −∞ < a <∞, and

0 < p < 1. Note that, ψ2(a, p, σ2) is finite for all a, p, σ2, because (φ(x+a))2

Φ(x+a)(1−pΦ(x+a))
is a

bounded function of x for a given a, p, and σ2. Taking a = (µ + cj), X = α1i, p = Φ(cj),

and σ2 = τ 2, we have, E[
(Φ(cj)φ(c+α1i+µj))

2

Φ(cj)Φ(c+α1i+µj)(1−Φ(cj)Φ(c+α1i+µj))
] = Φ(cj)ψ2((c+ µj),Φ(cj), τ

2)

So, 1
n

n∑
i=1

[
(Φ(cj)φ(c+α1i+µj))

2

Φ(cj)Φ(c+α1i+µj)(1−Φ(cj)Φ(c+α1i+µj))
]

P−→ Φ(cj)ψ2((c+ µj),Φ(cj), τ
2
1 ).

Now, 1
n

n∑
i=1

[
(Φ(cj)φ(c+α1i+µj))

2

Φ(cj)Φ(c+α1i+µj)(1−Φ(cj)Φ(c+α1i+µj))
] being a bounded quantity, by Bounded Con-

vergence Theorem, E[ 1
n

n∑
i=1

[
(Φ(cj)φ(c+α1i+µj))

2

Φ(cj)Φ(c+α1i+µj)(1−Φ(cj)Φ(c+α1i+µj))
]]→ Φ(cj)ψ2((c+µj),Φ(cj), τ

2
1 )

as well. So, the limit 1
n
E[− ∂2l

∂c2
] has the value:

nG∑
j=1

Φ(cj)ψ2((c+ µj),Φ(cj), τ
2
1 ) = ζ11 (say).

Also, 1
n
E[− ∂2l

∂(cj)2
] = 1

n
E[E[− ∂2l

∂(cj)2
|α1i]] = E[ 1

n

n∑
i=1

[
Φ(c+α1i+µj)(φ(cj))

2

(Φ(cj))2(1−Φ(cj)Φ(c+α1i+µj))
]

Now, since α1is are i.i.d.,

1

n

n∑
i=1

[
Φ(c+ α1i + µj)(φ(cj))

2

(Φ(cj))2(1− Φ(cj)Φ(c+ α1i + µj))

P−→ E[Φ(c+ α1i + µj)](φ(cj))
2

(Φ(cj))2(1− Φ(cj)E[Φ(c+ α1i + µj)])
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=
Φ(

c+µj√
1+τ21

)(φ(cj))
2

(Φ(cj))2(1− Φ(cj)Φ(
c+µj√

1+τ21
))
.

Also, note that,
Φ(c+α1i+µj)

(1−Φ(cj)Φ(c+α1i+µj))
≤ 1

(1−Φ(cj))
.

Hence, by Bounded Convergence Theorem,

E[ 1
n

n∑
i=1

[
Φ(c+α1i+µj)(φ(cj))

2

(Φ(cj))2(1−Φ(cj)Φ(c+α1i+µj))
]→

Φ(
c+µj√
1+τ21

)(φ(cj))
2

(Φ(cj))2(1−Φ(cj)Φ(
c+µj√
1+τ21

))
= ζ12 (say).

Now, 1
n
E[− ∂2l

∂c∂cj
] = E[ 1

n

n∑
i=1

φ(cj)φ(c+α1i+µj)

(1−Φ(cj)Φ(c+α1i+µj))
].

Denote by ψ1(a, p, σ2) = E[ φ(a+X)
1−pΦ(a+X)

], whereX ∼ N(0, σ2), −∞ < a <∞, and 0 < p <

1. Taking a = (c + µj), p = Φ(cj), X = α1i, and σ2 = τ 2, we have, E[
φ(cj)φ(c+α1i+µj)

(1−Φ(cj)Φ(c+α1i+µj))
] =

φ(cj)ψ1((c+ µj),Φ(cj), τ
2
1 ).

So, 1
n

n∑
i=1

φ(cj)φ(c+α1i+µj)

(1−Φ(cj)Φ(c+α1i+µj))

P−→ φ(cj)ψ1((c + µj),Φ(cj), τ
2
1 ). Since f(x) = φ(a+x)

1−pΦ(a+x)
is a

bounded function of x, taking p = Φ(cj) and by Bounded Convergence Theorem,

E[
1

n

n∑
i=1

φ(cj)φ(c+ α1i + µj)

(1− Φ(cj)Φ(c+ α1i + µj))
]→ φ(cj)ψ1((c+ µj),Φ(cj), τ

2
1 ) = ζ22 (say) as n→∞,

Moreover, 1
n
E[− ∂2l

∂c∂cj
] also has the same limit.

Denoting θ2,j = (c, cj, τ
2
1 ), it follows that

√
n(θ̂

(n)

2,j − θ2,j) asymptotically follows N(0,Σ)
where:

Σ =

 ζ11 ζ12 0
ζ21 ζ22 0
0 0 2τ 4

1


Putting the estimates of the parameters evaluated above, we can estimate ψ1 and ψ2 that
eventually provide the estimates of the variances of the parameters

2.5 Estimation of parameters for bimodal model

As discussed in Section 2.3, we propose two models for modeling the gene expression
data depending on the number of modes as obtained through a testing procedure (Section
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2.2). Here we describe the method of estimating the parameters for our proposed bimodal
distribution. Using the model (2.2), the likelihood function for gene j based on n cells is:

L(θj|{zij}ni=1, {yij}ni=1{α1i}ni=1, {α2i}ni=1, {Dij}ni=1)

=
n∏
i=1

{
π
Dij
j (1− πj)(1−Dij)[(Φ(cj))

zij(1− Φ(cj))
(1−zij)(φ(yij;µ2j, σ2j))

zij ]Dij

×
[
(Φ(cj)Φ(c+ α1i + µ1j))

zij(1− Φ(cj)Φ(c+ α1i + µ1j))
(1−zij)

× (φ(yij;µ1j + α2i, σ1j))
zij
](1−Dij)φ(α1i; 0, τ1)φ(α2i; 0, τ2)

}
where θj = (πj, µ1j, µ2j, σ

2
1j, σ

2
2j, cj, c, τ

2
1 , τ

2
2 )′ and φ(x;µ, σ) is the p.d.f. of a N(µ, σ2), and

Φ(x) is the distribution function of a standard normal variable.
Hence the log-likelihood is for the j-th gene is given by,

l(πj, µ1j, µ2j, σ
2
1j, σ

2
2j, τ

2
1 , τ

2
2 , cj, c|{yij}ni=1, {zij}ni=1, {Eij}ni=1, {Dij}ni=1, {α1i}ni=1, {α2i}ni=1)

= Constant +
n∑
i=1

{
Dij log(πj) + (1−Dij) log(1− πj)

+Dij

[
zij log(Φ(cj)) + (1− zij) log(1− Φ(cj)) + zij

[
− 1

2
log(2π)− 1

2
log(σ2

2j)−
(yij − µ2j)

2

2σ2
2j

]]
+ (1−Dij)

[
zij log(Φ(cj)Φ(c+ α1i + µ1j)) + (1− zij) log(1− Φ(cj)Φ(c+ α1i + µ1j))

+ zij
[
− 1

2
log(2π)− 1

2
log(σ2

1j)−
(yij − µ1j − α2i)

2

2σ2
1j

]]}
+

n∑
i=1

[
− 1

2
log(2π)− 1

2
log(τ 2

1 )− α2
1i

2τ 2
1

− 1

2
log(2π)− 1

2
log(τ 2

2 )− α2
2i

2τ 2
2

]
Consequently the log-likelihood function of nG genes is given by

l({πj}nGj=1, {µ1j}nGj=1, {µ2j}nGj=1, {σ2
1j}

nG
j=1, {σ2

2j}
nG
j=1, τ

2
1 , τ

2
2 , {cj}

nG
j=1, c|

{{yij}ni=1}
nG
j=1, {{zij}ni=1}

nG
j=1, {{Dij}ni=1}

nG
j=1, {α1i}ni=1, {α2i}ni=1)

= Constant+
n∑
i=1

nG∑
j=1

[Dij log(πj)+(1−Dij) log(1−πj)+Dij[zij log(Φ(cj))+(1−zij) log(1−

Φ(cj)) + zij[−1
2

log(2π)− 1
2

log(σ2
2j)−

(yij−µ2j)2
2σ2

2j
]] + (1−Dij)[zij log(Φ(cj)Φ(c+α1i + µ1j)) +

(1 − zij) log(1 − Φ(cj)Φ(c + α1i + µ1j)) + zij[−1
2

log(2π) − 1
2

log(σ2
1j) −

(yij−µ1j−α2i)
2

2σ2
1j

]]] +
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n∑
i=1

[−1
2

log(2π)− 1
2

log(τ 2
1 )− α2

1i

2τ21
− 1

2
log(2π)− 1

2
log(τ 2

2 )− α2
2i

2τ22
]

2.5.1 Estimation of parameters

Similar to the unimodal case, genes are clustered into subsets with similar zero occurrences
and gene specific parameters within each subset are estimated simultaneously. Similar to
the unimodal case, we first maximize the likelihood for {{yij}ni=1}

nG
j=1, {α2i}ni=1 conditioned

on {{zij}ni=1}
nG
j=1 and {α1i}ni=1 to maximize over {µ1j}nGj=1, {µ2j}nGj=1, {σ2

1j}
nG
j=1, {σ2

2j}
nG
j=1,

{α2i}ni=1 and τ 2
2 , where n is the number of cells and nG is the number of genes. After that,

we maximize the marginal likelihood for {{zij}ni=1}
nG
j=1, {α1i}ni=1 to maximize over remaining

parameters.
Note that, (yij|zij > 0) follows mixture normal with same mean vector ((µ1j +α2i), µ2j),

same variance vector (σ2
1j, σ

2
2j) but different mixture proportion π′j. First, a mixture normal

distribution is fitted on positive expression values for each gene. We also introduce the
latent variable D′ij which is the indicator variable for whether the i-th cell for j-th gene
belongs to mode 2 conditioned on the fact that zij > 0. The purpose of this is to estimate
the parameters in two steps.

Step I
In the first step, {µ1j}nGj=1, {µ2j}nGj=1, {σ2

1j}
nG
j=1.{σ2

2j}
nG
j=1, {α2i}ni=1 are estimated by condition-

ing on {{zij}ni=1}
nG
j=1. This can be done by the following procedure:

1. Start with initial values of µ
(0)
1j , µ

(0)
2j , σ

(0)
1j , σ

(0)
2j , π

′
j
(0).

2. Estimate mixing probability for each cell corresponding to every gene:

D′(n)[i, j] =
π′j

(n−1)φ(yij ;µ
(n−1)
2j ,σ

(n−1)
2j )

π′j
(n−1)φ(yij ;µ

(n−1)
2j ,σ

(n−1)
2j )+(1−π′j

(n−1))φ(yij ;µ
(n−1)
1j ,σ

(n−1)
1j )

.

3. The parameters of the each of the two component normal distributions can be esti-
mated in the following manner:

π′j
(n) =

n∑
i=1

zijD
′(n)
ij

n∑
i=1

zij

, µ
(n)
1j =

n∑
i=1

zij(1−D′
(n)
ij )yij

n∑
i=1

zij(1−D′
(n)
ij )

, µ
(n)
2j =

n∑
i=1

zij(D
′(n)
ij )yij

n∑
i=1

zij(D′
(n)
ij )

σ2
1j

(n)
=

n∑
i=1

zij(1−D′
(n)
ij )(yij−µ

(n)
1j )2

n∑
i=1

zij(1−D′
(n)
ij )

, σ2
2j

(n)
=

n∑
i=1

zij(D
′(n)
ij )(yij−µ

(n)
2j )2

n∑
i=1

zij(D′
(n)
ij )

.

4. Step 2 and 3 are repeated until the parameters converge.
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Thus µ2j, σ
2
2j get determined in this step and (µ1j, α2i, σ

2
1j, τ

2
2 , πj) are then estimated

based on the following equations:

∂l

∂µ1j

= 0 =⇒
n∑
i=1

(1−D′ij)
(yij − α2i − µ1j)zij

σ2
1j

= 0

∂l

∂α2i

= 0 =⇒
nG∑
j=1

(1−D′ij)
(yij − α2i − µ1j)zij

σ2
1j

−
nG∑
j=1

α2izij
τ 2

2

= 0

∂l

∂σ2
1j

= 0 =⇒
n∑
i=1

(1−D′ij)zij[−
1

2σ2
1j

+
(yij − α2i − µ1j)

2

2(σ2
1j)

2
] = 0

∂l

∂τ 2
2

= 0 =⇒
n∑
i=1

[− 1

2τ 2
2

+
α2

2i

2(τ 2
2 )2

] = 0

∂l

∂πj
= 0 =⇒

n∑
i=1

[
D′ij
πj
−

(1−D′ij)
(1− πj)

] = 0

Parameters are solved using EM-algorithm with the following steps:
E-step:
We first derive the conditional distribution of α2i. The joint log-likelihood of {yij}nGj=1 and
α2i is given by

l(α2i, {yij}nGj=1|{zij}
nG
j=1, {µ1j}nGj=1, {σ2

1j}
nG
j=1, τ

2
2 )

=−

nG∑
j=1

zij(1−D′ij)

2
log(2π)− 1

2

nG∑
j=1

zij(1−D′ij) log(σ2
1j)

−
nG∑
j=1

(1−D′ij)(yij − µ1j − α2i)
2zij

2σ2
1j

− 1

2
log(2π)− 1

2
log(2τ 2

2 )− α2
2i

2τ 2
2

So, the conditional log-likelihood of α2i given {yij}nGj=1 can be expressed as:

l(α2i|{yij}nGj=1, {zij}
nG
j=1, {µ1j}nGj=1, {σ2

1j}
nG
j=1, τ

2
2 )

=constant− (

nG∑
j=1

zij(1−D′ij)
2σ2

1j

+
1

2τ 2
2

)α2
2i +

nG∑
j=1

(1−D′ij)(yij − µ1j)zij

σ2
1j

α2i
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Hence, the conditional distribution of α2i is normal with conditional mean
s1,α1i
s2,α2i

and con-

ditional variance 1
s2,α2i

where

s1,α2i
=

nG∑
j=1

(1−D′ij)(yij−µ1j)zij
σ2
1j

and s2,α2i
=

nG∑
j=1

(1−D′ij)zij
σ2
1j

+ 1
τ22

.

So, at the k-th iteration, we update α
(k)
2i as α

(k)
2i =

s
(k−1)
1,α2i

s
(k−1)
2,α2i

where

s
(k−1)
1,α2i

=
nG∑
j=1

(1−D′ij)(yij−µj)zij
σ2
1j

(k−1) and s
(k−1)
2,α2i

= (
nG∑
j=1

(1−D′ij)zij
σ2
1j

(k−1) + 1

τ22
(k−1) ).

M-step:

µ1j
(k) =

n∑
i=1

(1−D′ij)(yij−α
(k)
2i )zij

n∑
i=1

zij

Since V ar[α
(k)
2i |{zij}

nG
j=1, {yij}

nG
j=1] = 1

s
(k−1)
2,α2i

, we have,

τ 2
2

(k)
= 1

n

n∑
i=1

(α
(k)
2i

2
+ 1

s
(k−1)
2,α2i

), and σ2
1j

(k)
=

n∑
i=1

(1−D′ij)(yij−α
(k)
2i −µ

(k)
1j )2zij+

n∑
i=1

(1−D′ij)

s
(k−1)
2,α2i

zij

n∑
i=1

(1−D′ij)zij
.

Step II
In this step, we estimate cj, c, α1i and τ 2

1 . Differentiating the likelihood with respect to
these parameters, the following equations are obtained.

∂l

∂cj
= 0 =⇒

n∑
i=1

(1−Dij)[
zij

Φ(cj)Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))
]Φ(c+ α1i + µ1j)φ(cj) = 0

∂l

∂c
= 0 =⇒

nG∑
j=1

n∑
i=1

(1−Dij)[
zij

Φ(cj)Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))
]Φ(cj)φ(c+ α1i + µ1j) = 0

∂l

∂α1i

= 0 =⇒
nG∑
j=1

(1−Dij)[
zij

Φ(cj)Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))
]Φ(cj)φ(c+ α1i + µ1j)
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−
nG∑
j=1

α1i

τ 2
1

= 0

∂l

∂τ 2
1

= 0 =⇒
n∑
i=1

[− 1

2τ 2
1

+
α2

1i

2(τ 2
1 )2

] = 0.

We estimate the parameters using EM algorithm coupled with IRLS. The iteration steps
are same as in unimodal case with an additional (1 − Dij) factor. D′ij values obtained in
the previous step are used as initial values of Dij. The expectation and the maximization
steps are described below:

E-step:
To update at the k-th step for α1i, all other terms remain the same as in the unimodal case
with an additional (1−Dij) factor. Hence, the update at k-th step is,

E[D
(k)
ij |zij = 0] = P (D

(k)
ij = 1|zij = 0) =

P (zij=0|D(k)
ij =1)P (D

(k)
ij =1)

P (zij=0)

=
P (zij=0|D(k)

ij =1)P (D
(k)
ij =1)

P (zij=0|D(k)
ij =1)P (D

(k)
ij =1)+P (zij=0|D(k)

ij =0)P (D
(k)
ij =0)

=
π
(k−1)
j (1−Φ(c

(k−1)
j ))

πj(1−Φ(c
(k−1)
j ))+(1−π(k−1)

j )(1−Φ(c
(k−1)
j )Φ(c(k−1)+α

(k−1)
1i +µ1j))

Similarly, E[D
(k)
ij |zij = 1] =

π
(k−1)
j Φ(c

(k−1)
j )

π
(k−1)
j Φ(c

(k−1)
j )+(1−π(k−1)

j )Φ(c
(k−1)
j )Φ(c(k−1)+α

(k−1)
1i +µ1j)

α
(k)
1i = α

(k−1)
1i +

s
(k−1)
1,α1i

s
(k−1)
2,α1i

with

s
(k−1)
1,α1i

=
nG∑
j=1

(1−E[D
(k)
ij |zij ])(zij−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k−1)
1i ))

Φ(c(k−1)+µ
(k−1)
1j +α

(k−1)
1i )(1−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k−1)
1i ))

φ(c(k−1)+µ
(k−1)
1j +α

(k−1)
1i , 0, 1)−

α
(k−1)
1i

τ21
(k−1) and

s
(k−1)
2,α1i

=
nG∑
j=1

(1−E[D
(k)
ij |zij ])Φ(c

(k−1)
j )(φ(c(k−1)+µ

(k−1)
1j +α

(k−1)
1i ,0,1))2

(Φ(c(k−1)+µ
(k−1)
1j +α

(k−1)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k−1)
1i ))

+ 1

τ21
(k−1)

2.5.2 M-step

The update for c at the k-th step should be,

c(k) = c(k−1) +
s
(k−1)
1,c

s
(k−1)
2,c

with
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s
(k−1)
1,c =

n∑
i=1

nG∑
j=1

(1−E[D
(k)
ij |zij ])(zij−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k)
1i ))

Φ(c(k−1)+µ
(k−1)
1j +α

(k)
1i )(1−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k)
1i ))

φ(c(k−1) + µ
(k−1)
1j + α

(k)
1i ) and

s
(k−1)
2,c =

n∑
i=1

nG∑
j=1

(1−E[D
(k)
ij |zij ])Φ(c

(k−1)
j )(φ(c(k−1)+µ

(k−1)
1j +α

(k)
1i ))2

(Φ(c(k−1)+µ
(k−1)
1j +α

(k)
1i ))(1−Φ(c

(k−1)
j )Φ(c(k−1)+µ

(k−1)
1j +α

(k)
1i ))

Note that, we have estimated π′j in Step I. π
(k)
j is estimated using the relationship between

π′j and other parameters.

π′j
(k) = P (D

(k)
ij = 1|zij > 0) =

P (D
(k)
ij =1,zij>0)

P (zij>0)

=
π
(k)
j Φ(c

(k−1)
j )

π
(k)
j Φ(c

(k−1)
j )+(1−π(k)

j )Φ(c
(k−1)
j )Φ(

c(k)+µ1j+
1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

)

=
π
(k)
j

π
(k)
j +(1−π(k)

j )Φ(
c(k)+µ1j+

1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

)

,

so that π
(k)
j =

π′j
(k)Φ(

c(k)+µ1j+
1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

)

(1−π′j
(k))+π′j

(k)Φ(
c(k)+µ1j+

1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

)

Maximum likelihood estimator of binomial model is obtained as,

Φ(c
(k)
j )((1− π(k)

j )E[Φ(c(k) + µ1j + α
(k)
1i )] + π

(k)
j ) =

1

n

n∑
i=1

zij

i.e.Φ(c
(k)
j )((1− π(k)

j )Φ(

c+ µ1j + 1
n

n∑
i=1

α
(k)
1i√

1 + var(α
(k)
1 )

) + π
(k)
j ) =

1

n

n∑
i=1

zij.

So, MLE of cj and τ1 are obtained as:

Φ(c
(k)
j ) = min(1,

1
n

n∑
i=1

zij

((1− π(k)
j )Φ(

c(k)+µ1j+
1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

) + π
(k)
j )

)

or, c
(k)
j = Φ−1(min(1,

1
n

n∑
i=1

zij

((1− π(k)
j )Φ(

c(k)+µ1j+
1
n

n∑
i=1

α
(k)
1i√

1+var(α
(k)
1 )

) + π
(k)
j )

))
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τ 2
1

(k)
=

1

n

n∑
i=1

(α
(k)
1i

2
+

1

s
(k−1)
2,α1i

), [V ar[α
(k)
1i |{zij}

nG
j=1, {yij}

nG
j=1] =

1

s
(k−1)
2,α1i

]

2.5.3 Asymptotic distribution of estimates

Similar to unimodal setup, the estimates here are maximum likelihood estimators and hence
asymptotically follow the normal distribution. So, we first calculate the second derivatives
with respect to the parameters:

∂2l

∂µ2
1j

=

nG∑
j=1

(1−D′ij)
zij
σ2

1j

,
∂2l

∂(σ2
1j)

2
=

n∑
i=1

(1−D′ij)zij[
1

2(σ2
1j)

2
− (yij − α2i − µ1j)

2

(σ2
1j)

3
],

∂2l

∂µ2
2j

=

nG∑
j=1

D′ij
zij
σ2

2j

,
∂2l

∂(σ2
2j)

2
=

n∑
i=1

D′ijzij[
1

2(σ2
2j)

2
− (yij − α2i − µ2j)

2

(σ2
2j)

3
],

∂2l

∂π2
j

=
n∑
i=1

[−
D′ij
π2
j

−
(1−D′ij)
(1− πj)2

],
∂2l

∂τ 2
2

=
n∑
i=1

[
1

2(τ 2
2 )2
− α2

2i

(τ 2
2 )3

],

∂2l

∂µ1j∂µ2j

=
∂2l

∂µ1j∂σ2
2j

=
∂2l

∂µ1j∂πj
=

∂2l

∂µ1j∂τ 2
2

=
∂2l

∂µ2j∂σ2
1j

=
∂2l

∂µ2j∂πj
=

∂2l

∂µ2j∂τ 2
2

=
∂2l

∂σ2
1j∂σ

2
2j

=
∂2l

∂σ2
1j∂πj

=
∂2l

∂σ2
1j∂τ

2
2

=
∂2l

∂σ2
2j∂πj

=
∂2l

∂σ2
2j∂τ

2
2

=
∂2l

∂πj∂τ 2
2

= 0,

∂2l

∂µ1j∂σ2
1j

= −
n∑
i=1

(1−D′ij)
(yij − α2i − µ1j)zij

(σ2
1j)

2
,

∂2l

∂µ2j∂σ2
2j

= −
n∑
i=1

D′ij
(yij − µ2j)zij

(σ2
2j)

2

It follows thatE[− ∂2l
∂µ1j∂µ2j

] = E[− ∂2l
∂µ1j∂σ2

2j
] = E[− ∂2l

∂µ1j∂πj
] = E[− ∂2l

∂µ1j∂τ22
] = E[− ∂2l

∂µ2j∂σ2
1j

] =

E[− ∂2l
∂µ2j∂πj

] = E[− ∂2l
∂µ2j∂τ22

] = E[− ∂2l
∂σ2

1j∂σ
2
2j

] = E[− ∂2l
∂σ2

1j∂πj
] = E[− ∂2l

∂σ2
1j∂τ

2
2
] = E[− ∂2l

∂σ2
2j∂πj

] =

E[− ∂2l
∂σ2

2j∂τ
2
2
] = E[− ∂2l

∂πj∂τ22
] = E[− ∂2l

∂µ1j∂σ2
1j

] = E[− ∂2l
∂µ2j∂σ2

2j
] = 0

Now, note that, E[(1−Dij)zij] = E[E[(1−Dij)zij|α1i]] = E[(1− πj)Φ(cj)Φ(c + α1i +
µ1j)] = (1− πj)Φ(cj)Φ(

c+µ1j√
1+τ21

), and E[(Dijzij] = E[E[Dijzij|α1i]] = πjΦ(cj).

So, denoting θ1,j = (µ1j, µ2j, σ
2
1j, σ

2
2j, πj, τ

2
2 ),
√
n(θ̂

(n)
1,j − θ1,j) asymptotically follows mul-

tivariate normal distribution with mean 0 and diagonal variance covariance matrix Σ (say).
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Hence
√
n(θ̂

(n)
1,j − θ1,j) asymptotically follows N(0,Σ) where Σ = diag(

σ2
1j

(1−πj)Φ(cj)Φ(
c+µ1j√

1+τ21

)
,

σ2
2j

πjΦ(cj)
,

2σ4
1j

(1−πj)Φ(cj)Φ(
c+µ1j√

1+τ21

)
,

2σ4
2j

πjΦ(cj)
, πj(1− πj), 2τ 4

2 )

The parameters θ2,j = (cj, c, τ
2
1 ) are estimated in the second step keeping other pa-

rameters fixed. Similar to the unimodal case, here again, we calculate the second-order
derivatives.

∂2l

∂c2
=

nG∑
j=1

n∑
i=1

(1−Dij)[−
zij

Φ(cj)(Φ(c+ α1i + µ1j))2
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))2
]

× (Φ(cj))
2(φ(c+ α1i + µ1j))

2

+

nG∑
j=1

n∑
i=1

(1−Dij)[
zij

Φ(cj)Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))
]Φ(cj)φ

′(c+ α1i + µ1j)

∂2l

∂c2
j

=
n∑
i=1

(1−Dij)[−
zij

(Φ(cj))2Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))2
]

× (Φ(c+ α1i + µ1j))
2(φ(cj))

2

+
n∑
i=1

(1−Dij)[
zij

Φ(cj)Φ(c+ α1i + µ1j)
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))
]Φ(c+ α1i + µ1j)φ

′(cj)

∂2l

∂c∂cj
=

n∑
i=1

(1−Dij)[−
zij

Φ(cj)(Φ(c+ α1i + µ1j))2
− (1− zij)

(1− Φ(cj)Φ(c+ α1i + µ1j))2
]

× Φ(cj)Φ(c+ α1i + µ1j)φ(cj)φ(c+ α1i + µ1j)

+
n∑
i=1

(1−Dij)[ zij
Φ(cj)Φ(c+ α1i + µ1j)

− (1− zij)
1− Φ(cj)Φ(c+ α1i + µ1j)

]φ(cj)φ(c+ α1i + µ1j)

Similar to the unimodal setup, we have, as n→∞,

1

n
E[−∂

2l

∂c2
] =

1

n
E[E[−∂

2l

∂c2
|α1i]]
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=

nG∑
j=1

(1− πj)E[
1

n

n∑
i=1

[
(Φ(cj)φ(c+ α1i + µ1j))

2

Φ(cj)Φ(c+ α1i + µ1j)(1− Φ(cj)Φ(c+ α1i + µ1j))
]]

→
nG∑
j=1

(1− πj)Φ(cj)ψ2((c+ µ1j),Φ(cj), τ
2
1 ) = ζ11 (ψ2 is defined earlier).

1

n
E[− ∂2l

∂c∂cj
]→ (1− πj)

Φ(
c+µ1j√

1+τ21
)(φ(cj))

2

(Φ(cj))2(1− Φ(cj)Φ(
c+µ1j√

1+τ21
))

= ζ12 (say),

1

n
E[− ∂2l

∂(cj)2
]→ (1− πj)φ(cj)ψ1((c+ µ1j),Φ(cj), τ

2
1 ) = ζ22 (ψ1 is defined earlier).

Denoting (c, cj, τ
2
2 ) by θ2,j, it follows that

√
n(θ̂

(n)
2,j −θ2,j) asymptotically follows N(0,Σ),

where

Σ =

 ζ11 ζ12 0
ζ12 ζ22 0
0 0 2τ 4

1


Putting the estimates of the parameters evaluated above, we can estimate ψ1 and ψ2

that eventually provide the estimates of the variances of the parameters.

2.6 Simulation Protocol and Goodness of fit with Real

Data

The underlying model assumption of RIBBON readily leads to a protocol for continuous
single-cell gene expression data simulation. Given any data, cell-specific and gene-specific
parameters can be estimated and subsequently used for data simulation. We study the ac-
curacy of different single-cell gene expression models based on benchmarking real datasets.
We have used six single-cell expression data (see Section 2.8) to assess the performance of
RIBBON. We fit the real datasets using existing models for single-cell RNA-seq data, and
compare their goodness of fit. DESingle, SC2P, MAST, and scDD are used as candidates
for comparison because of their applicability and availability of their codes.

First, we estimate the gene-specific and cell-specific parameters by fitting the individual
models to the data to assess the goodness of fit by different methods. Using these estimated
parameters and the assumed statistical model for each of the methods, we generate one
pseudo-dataset for each method with the same number of cells and the same number of
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genes as in the original dataset. The data generation scheme assures that the structure of
original dataset is maintained in the pseudo-data. Empirical CDFs from expression values
of every gene are estimated from the original dataset and the simulated dataset generated
by each method. The empirical CDF function for data {X1, X2, . . . , Xn} is defined as

F̂n(x) = 1
n

n∑
i=1

I{Xi ≤ x}. We calculate two-sample Kolmogorov-Smirnov (KS) statistics

for every gene with empirical CDFs from the original data and the simulated data. For
two independent datasets {X1, X2, . . . , Xn1} and {Y1, Y2, . . . , Yn2}, the KS statistic between

these two samples is defined as
√

n1n2

(n1+n2)
sup
x
|F̂1,n1(x)− F̂2,n2(x)| where F̂1,n1 and F̂2,n2 are

empirical CDFs obtained from original data and simulated data respectively. If a model
fits well to a gene expression profile, the empirical CDF F̂2,n2 is expected to be a good

approximation of the empirical CDF from the original data F̂1,n1 and hence lower value
of KS statistic is indicative of better fit. However, since the distribution of single-cell
expression is discontinuous, the distribution of KS statistic does not have a distribution-
free property. It is well known that the KS statistic for discrete distribution is stochastically
smaller than that for a continuous distribution. The exact cutoff depends on the discrete
distribution under consideration [107, 43, 79]. Instead of measuring KS statistics based on
zero-inflated continuous data, we find the goodness of fit statistic based on two parts: KS
statistic based on continuous part and absolute difference in the proportion of zeros. The
boxplots with KS statistics for individual genes from all six datasets are shown in Figure
2.6. The boxplots for absolute difference in zero proportions from original and simulated
data are shown in Figure 2.7.

In all of the datasets under consideration, RIBBON outperforms other methods in the
goodness of fit for modeling nonzero expressions. The improvement of RIBBON over MAST
can be attributed to modeling the fraction of genes as bimodal distribution. RIBBON and
MAST behave similarly in estimating zero proportions from the data.

2.7 Discussion

We propose a model to analyze single-cell RNA-seq data. One can extend the distributional
characterization to other analyses with single-cell RNA-seq data like differential expression
analysis, gene set enrichment analysis, cell clustering, lineage mapping, spatial mapping,
cell cycle modeling, etc. We distinguish technical zeros from biological zeros so that an
independent user can include that proportion of biological zeros in the analysis. Our
model is bimodal, capturing the on and off nature of single-cell gene expression levels.
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Figure 2.6: (A),(B),(C),(D),(E) and (F) represent represent boxplots of KS statistic for
nonzero expressions only from different methods for six real datasets. RIBBON outperforms
all other existing methods in accuracy. Difference between RIBBON and MAST is smallest.
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Figure 2.7: (A),(B),(C),(D),(E) and (F) represent absolute difference in proportion of
zeros between original data and simulated data for different methods for six real datasets.
RIBBON outperforms all other existing methods in accuracy. Difference between RIBBON
and MAST is smallest.
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It can capture cell subgroup effects, cell-specific effects, and gene effects since we assume
random cell-specific effects. One can estimate the parameters easily with the help of an
EM-type algorithm which can also be formulated as Iteratively Reweighted Least Squares
algorithm. Extensive simulation shows that the parameters can be estimated reliably using
this algorithm. Our estimation process is scalable for time and memory. The method offers
promising accuracy in terms of Kolmogorov-Smirnov statistic on real data. Hence it can
readily be used for all types of analysis with single-cell RNA-seq data.

2.8 Brief description of real datasets

(I) HSMM data (GEO Accession id: GSE52529): Single-cell RNA-sequencing was
performed on Human Skeletal Muscle Myoblasts [117] to exploit variation in gene expres-
sion. The study aimed to reveal regulatory circuitry governing cell differentiation and other
biological processes. Single-cell mRNA sequencing was performed on 271 cells using TruSeq
protocol.
(II) Lung data (GEO Accession id: GSE52583): Treutlein et al. [121] generated
this dataset to construct pseudotime based on mouse lung RNA-seq data. The authors
performed whole transcriptome analysis on distal mouse lung epithelial cells from various
developmental stages of mouse embryos and adult mice. We considered a subset of genes
from data used by Qiu et al. in our analysis.
(III) HSCs and CML stem cells (GEO Accession id: GSE81730): To distinguish
CML stem cell markers from hematopoietic stem cell markers, single-cell RNA-seq was
performed on these two types of cells isolated from the same patient [75]. Whole transcrip-
tome data are available on 288 CML stem cells.
(IV, V & VI) G1, S and G2M cells (ArrayExpress Accession id: E-MTAB-
2805): Buettner et al. [16] aimed to study gene expression patterns at the single-cell
level across the different cell cycle stages in mESC. A Single-cell RNA-Seq experiment was
performed on mouse mESC cells that were flow cytometry sorted into G1, S, and G2M
phases of the cell cycle. These three types of cells constituted three different datasets in
our analysis.

2.9 Code and software availability

Reproducible codes for all figures, data, and software for RIBBON are available at:
http://github.com/indranillab/ribbon .



Chapter 3: Testing differential
scRNA-seq expression data

3.1 Introduction

Once we fit a distribution to scRNA data, we can test for differential expression that
identifies the difference in cell-specific effects in two different populations. It is clear that
the appropriate testing for differential expression requires new development that is beyond
the realm of bulk RNA data analysis. Our model RIBBON already captures the different
typical characteristics of scRNA-seq data. Now we proceed to develop a statistical method
to test whether the differential expressions are same in two different groups. These two
groups may be normal and tumor cells [28], cells belonging to two different stages of a
disease [100], etc. Existing approaches [39, 131, 81] do not differentiate technical zeros
from biological zeros. The literature is not rich with tests to perform testing based on
mixing proportion under bimodality assumption.

However, we observe that it is difficult to apply RIBBON directly for this testing pur-
pose. To capture differences in subgroup-specific cell effects, we marginalise the cell-specific
effect on the overall expression level. Since the differential expression is performed on a
gene-by-gene basis, it is really impossible to distinguish sampling zeros from biological
zeros. At the same time, it is important to separate technical zeros from overall zero
occurrences. So we modify our original model a little for differential expression testing.

3.2 Developing testing procedure

Let yij be the logarithm expression level of the j-th gene in cell i and zij be an indicator
variable denoting the event that gene j is detected in cell i. To incorporate two different
types of zeros, we assume that the probability that j-th gene is detected in cell i is given

41
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Gene
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Bimodal

y ∼ (1− π)N(µ1 + α2i, σ
2
1) + πN(µ2, σ

2
2)

Unimodal

y ∼ N(µ+ α2i, σ
2)

Not expressed

Cell Effect Gene Effect

Figure 3.1: Model used for testing differential expression

by Φ(cj + αi). cj is the gene-specific fixed effect for dropout, and αi is the cell-specific
fixed effect. Note that cj takes care of both biological zero and sampling zero we described
earlier and αi is the factor behind technical zero. We assume that the distribution is either
unimodal or bimodal normal. Using the criterion described before, we model gene-specific
expressions, either unimodal or bimodal. Conditional on the fact that the gene expression
distribution is bimodal, we introduce another indicator variable Dij, a latent variable.
Dij = 0 means expression level of gene j in cell i comes from mode 1, otherwise from mode
2.

With all these notations define above, we first present our model for testing differential
expression in a diagrammatic way (Figure 3.1), followed by the mathematical presentation.

When the distribution of gene expression is bimodal, the data generation model for
gene j can be mathematically described as:

Pr[zij = 1] = Φ(cj + αi),

P [Dij = 1] = πj,

(yij|zij = 0) ≡ 0,

(yij|zij = 1, Dij = 0) ∼ N(α2i + µ1j, σ
2
1j)

(yij|zij = 1, Dij = 1) ∼ N(µ2j, σ
2
2j)

α2i ∼ N(0, τ 2
2 ) (3.1)

For a gene showing bimodal characteristic, the likelihood function is given by:
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L(θj|{Dij}ni=1, {zij}ni=1, {yij}ni=1) =
n∏
i=1

{
π
Dij
j (1− πj)(1−Dij)φ(α2i; 0, τ2)

× (Φ(cj + αi))
zij(1− Φ(cj + αi))

(1−zij)
(
(φ(yij;α2i + µ1j, σ1j))

(1−Dij)(φ(yij;µ2j, σ2j))
Dij
)zij}

= Lπ × L0 × L2 (3.2)

where Lπ =
n∏
i=1

π
Dij
j (1− πj)(1−Dij), L0 =

n∏
i=1

(Φ(cj + αi))
zij(1− Φ(cj + αi))

(1−zij) and

L2 =
n∏
i=1

(
(φ(yij;α2i + µ1j, σ1j))

(1−Dij)(φ(yij;µ2j, σ2j))
Dij
)zij

φ(α2i; 0, τ2) where the set of pa-

rameters is denoted by θj = (πj, cj, µ1j, µ2j, σ
2
1j, σ

2
2j, τ

2
2 )′.

When the distribution of a gene expression is unimodal, the generation model can be
mathematically represented as:

Pr[zij = 1] = Φ(cj + αi),

(yij|zij = 0) ≡ 0,

(yij|zij = 1) ∼ N(α2i + µj, σ
2
j )

α2i ∼ N(0, τ 2
2 ),

(3.3)

Using the notation θj = (cj, µj, σ
2
j , τ

2
2 ), the likelihood function for gene j is:

L(θj|{zij}ni=1, {yij}ni=1)

=
n∏
i=1

(Φ(cj + αi))
zij(1− Φ(cj + αi))

(1−zij)(φ(yij;α2i + µj, σj))
zij

= L0 × L1 (3.4)

where L0 =
n∏
i=1

(Φ(cj + αi))
zij(1− Φ(cj + αi))

(1−zij) and L1 =
n∏
i=1

(φ(yij;α2i + µj, σj))
zij .

We have stated that the probability of a dropout corresponding to cell i and gene j is
Φ(αi + cj) where αi is the cell specific effect and cj is the gene specific effect. For a given

gene j, let c
(1)
j and c

(2)
j be the gene specific parameters for two groups. Similarly, denote

by z
(k)
ij , the zij values belonging to k-th group; k = 1, 2.
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The models proposed by (3.1) and (3.3) taking into account the possible bimodal and
unimodal nature of expression values can be used for testing differential gene expression
profiles between two groups. It has the flexibility to test different hypotheses depending on
the problem and the interest of the researcher. Here we describe two tests, one for unimodal
and another for bimodal expression distribution. It is clear that to see any gene-specific
effect in two groups is of utmost interest. This test should depend on cjs. Note that L0

in the log-likelihoods of both unimodal and bimodal models, contains the same expression
relating to cj whereas L1 and L2 do not depend on cj for any group. So this test needs
to be done for both types of distributions. Moreover, for unimodal distribution, we are
mainly interested to see any shift in mean and variance among the two groups. But in
a bimodal distribution, it is very important to see whether the proportions coming from
different modes are same in two groups.

To test whether the gene expression profiles are same in two groups when the distribu-
tions are unimodal, our hypotheses of interest would be:

H0 : (c
(1)
j , µ

(1)
j , σ

(1)
j ) = (c

(2)
j , µ

(2)
j , σ

(2)
j ) against H1 : (c

(1)
j , µ

(1)
j , σ

(1)
j ) 6= (c

(2)
j , µ

(2)
j , σ

(2)
j )

Now from (3.4), it is clear that information of cj comes from only L0 whereas L1

provides information for other parameters of the hypotheses. So we construct the test for
H0 : c

(1)
j = c

(2)
j using L0 only and that for H0 : (µ

(1)
j , σ

(1)
j ) = (µ

(2)
j , σ

(2)
j ) using L1 only.

First we describe the test for H0 : c
(1)
j = c

(2)
j , vs H1 : c

(1)
j 6= c

(2)
j . Let n1 and n2 be the

number of observations for Group 1 and Group 2 respectively for gene j, j = 1, . . . , N . Use
the notation, z

(k)
j = (z

(k)
1j , . . . , z

(k)
nkj

) for k = 1, 2. Now define lk(c
(k)
j |z

(k)
j ) for k = 1, 2, as the

marginal log-likelihood of z
(k)
ij ’s conditioned on estimated values of αi’s, i.e.,

lk(c
(k)
j |zj) =

nk∑
i=1

[zij(log(Φ(c
(k)
j + α̂

(k)
i ))) + (1− zij)(log(1− Φ(c

(k)
j + α̂

(k)
i )))]

Similarly, define by l0(), the likelihood of the j-th gene for the combined data. The −2 log
of likelihood ratio test statistic based on the Bernoulli model is given by

T0 = 2
(
l1(ĉ

(1)
j |z

(1)
j ) + l2(ĉ

(2)
j |z

(2)
j )− l0(ĉj|z(1)

j , z
(2)
j )
)

(3.5)

The first test RIBBON I is based on unimodality assumption. In differential expression
analysis, it is important to capture difference in cell specific effects across groups. So we use
distribution of yij’s after marginalizing over α2i’s. We denote by y

(k)
ij , the log expression

value in cell i for the j-th gene belonging to group k. Note that y
(1)
1j , y

(1)
2j ,. . . , y

(1)
n1j

are
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i.i.d. observations from N(µ
(1)
j , σ2

j
(1)

) and y
(2)
1j , y

(2)
2j ,. . . , y

(2)
n2j

are i.i.d. observations from

N(µ
(2)
j , σ2

j
(2)

). Denoting y
(k)
j = (y

(k)
1j , . . . , y

(k)
n1j

) for k = 1, 2, the log-likelihood function for
gene j from group k is:

lk(µ
(k)
j , σ2

j
(k)|y(k)

j , z
(k)
1j ) =

nk∑
i=1

z
(k)
ij log(φ(y

(k)
ij ;µ

(k)
j , σ2

j
(k)

)); k = 1, 2 (3.6)

Under H0, when µ
(1)
j = µ

(2)
j = µj, σ

(1)
j = σ

(2)
j = σ2

j , the log-likelihood function for gene
j is,

l0(µj, σ
2
j |y

(1)
j , z

(1)
1j ,y

(2)
j , z

(2)
1j ) =

2∑
k=1

nk∑
i=1

z
(k)
ij log(φ(y

(k)
ij ;µj, σ

2
j )) (3.7)

Similarly defining l0 as the log-likelihood of combined data under H0, we have the

−2 log-likelihood ratio test statistic for testing H0 : (µ
(1)
j , σ2

j
(1)

) = (µ
(2)
j , σ2

j
(2)

) vs H1 :

(µ
(1)
j , σ2

j
(1)

) 6= (µ
(2)
j , σ2

j
(2)

) as

T1 = 2
(
l1(µ̂

(1)
j , σ̂2

j
(1)|y(1)

j , z
(1)
j ) + l2(µ̂

(2)
j , σ̂2

j
(2)|y(2)

j , z
(2)
j )− l0(µ̂j, σ̂

2
j |y

(1)
j , z

(1)
j ,y

(2)
j , z

(2)
j )
)

(3.8)

To test we need to find the asymptotic distribution of RIBBON I which is given by the
test statistic T0 + T1. Since the MLEs of different parameters on both T0 and T1 cannot
be obtained in a compact form, we use EM algorithm to estimate them and consequently
develop an asymptotic test procedure based on the statistic T0 + T1 for testing in case of
unimodal distribution.

Theorem 1. Under H0 : c
(1)
j = c

(2)
j , (µ

(1)
j , σ2

j
(1)

) = (µ
(2)
j , σ2

j
(2)

) we have,

T0 + T1
d−→ χ2

3 as n1, n2 →∞

Note that the statistic in the theorem is the sum of two statistics T0 and T1. We first
study the asymptotic distributions of these two statistics in the next two lemmas and merge
them to prove Theorem 1.

Lemma 1.
T0

d−→ χ2
1 as n1, n2 →∞ under H0
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To prove Lemma 1, we need to make the following assumption:

Assumption 1. 1
n

n∑
i=1

φ2(cj+αi)

Φ(cj+αi)(1−Φ(αi+cj))
converges to a constant, say κ, as n→∞

Note that f(x) = φ2(x)
Φ(x)(1−Φ(x))

is a bounded function with |f(x)| ≤ f(0). If the sequence
does not converge, it will oscillate. So, this is a very general assumption, that holds in any
single-cell RNA-seq data. For a given cell type probability of zero expression remains same
across cells and hence this assumption is unlikely to fail to hold. Note that the points at
which the sequence oscillates are very close to each other, all lying in (0, 1) interval. So,
even if this assumption fails, we can either take Cesàro mean or the mean of oscillatory
points if the number of such points is finite, as an approximate value of κ.

Proof. To prove Lemma 1, first we have to estimate the parameters {αi}ni=1, {cj}Nj=1 where
n = n1 + n2. Based on n cells and N genes and using L0 function in (3.4), we have the
likelihood function involving zij as,

L({cj}Nj=1, {αi}ni=1|{{zij}ni=1}Nj=1) =
N∏
j=1

n∏
i=1

(Φ(cj + αi))
zij(1− Φ(cj + αi))

(1−zij)

Hence, the log likelihood is given by,

l({cj}Nj=1, {αi}ni=1|{{zij}ni=1}Nj=1)

=
N∑
j=1

n∑
i=1

[zij log(Φ(cj + αi)) + (1− zij) log(1− Φ(cj + αi))]

We maximize the likelihood with respect to {αi}ni=1 and {cj}Nj=1 using fisher scoring method.
The partial derivatives are,

∂l

∂cj
=

n∑
i=1

(zij − Φ(cj + αi))φ(cj + αi)

Φ(cj + αi)(1− Φ(αi + cj))
,
∂l

∂αi
=

N∑
j=1

(zij − Φ(cj + αi))φ(cj + αi)

Φ(cj + αi)(1− Φ(αi + cj))

and the expected second derivatives are,

E
[
− ∂2l

∂c2
j

]
=

n∑
i=1

φ2(cj + αi)

Φ(cj + αi)(1− Φ(αi + cj))
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E
[
− ∂2l

∂α2
i

]
=

N∑
j=1

φ2(cj + αi)

Φ(cj + αi)(1− Φ(αi + cj))

E
[
− ∂2l

∂αi∂cj

]
=

φ2(cj + αi)

Φ(cj + αi)(1− Φ(αi + cj))

Now, the parameter of our interest is cj because the test of hypothesis is based on

testing c
(1)
j = c

(2)
j . So, keeping αis fixed, we maximize the likelihood function to estimate

cj, c
(1)
j and c

(2)
j .

To estimate initial αis we ignore the non-diagonal terms in information matrix in the
Fisher-Scoring method, and estimate the parameters using iteration with estimates at the
k-th step as:

c
(k)
j = c

(k−1)
j +

s
(k−1)
1,cj

s
(k−1)
2,cj

where

s
(k−1)
1,cj

=
n∑
i=1

(zij−Φ(c
(k−1)
j +α

(k−1)
i ))φ(c

(k−1)
j +α

(k−1)
i )

Φ(c
(k−1)
j +α

(k−1)
i )(1−Φ(α

(k−1)
i +c

(k−1)
j ))

and s
(k−1)
2,cj

=
n∑
i=1

φ2(c
(k−1)
j +α

(k−1)
i )

Φ(c
(k−1)
j +α

(k−1)
i )(1−Φ(α

(k−1)
i +c

(k−1)
j ))

,

α
(k)
i = α

(k−1)
i +

s
(k−1)
1,αi

s
(k−1)
2,αi

where

s
(k−1)
1,αi

=
N∑
j=1

(zij−Φ(c
(k−1)
j +α

(k−1)
i ))φ(c

(k−1)
j +α

(k−1)
i )

Φ(c
(k−1)
j +α

(k−1)
i )(1−Φ(α

(k−1)
i +c

(k−1)
j ))

and s
(k−1)
2,αi

=
N∑
j=1

φ2(c
(k−1)
j +α

(k−1)
i )

Φ(c
(k−1)
j +α

(k−1)
i )(1−Φ(α

(k−1)
i +c

(k−1)
j ))

.

Please note that the parameters would converge to the actual MLE, because the log-
likelihood function is a strictly concave function of the parameters and, as a result, MLE
is unique.

Also, to make the model identifiable and to capture the gene-specific effects on groups,
we set,

∑
i α

(1)
i =

∑
i α

(2)
i = 0 where α

(k)
i are the values of αis restricted to k-th group. So,

after each iteration, we set α
(1)
i = α

(1)
i − ᾱ(1) and α

(2)
i = α

(2)
i − ᾱ(2) where ᾱ(k) = 1

nk

nk∑
i=1

α
(k)
i

cj’s estimated in this step are taken to be estimated cj’s under null distribution. To

estimate {c(1)
j }Nj=1 and {c(2)

j }Nj=1, we keep the αi’s same and estimate the parameters under
alternative distribution from the two groups separately following the same method.

Let n be the number of cells and N be the number of genes and cj and αi are actual
parameter values, i = 1, . . . , n; j = 1, . . . , N . Then by Section 2.2 of [38], α̂is and ĉjs
estimated in the initial step asymptotically follow normal distribution with

√
n(ĉj − cj) =

O(1) for each j = 1, . . . , N and (α̂i − αi) = O(1) for each i = 1, . . . , n as n→∞.

Let n1 and n2 be the number of cells for j-th gene in two groups respectively. Then
using Section 2.2 of [38], as nk →∞,

√
nk(ĉ

(k)
j − cj) = O(1) for k = 1, 2. Now we will find
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the asymptotic distribution of ĉ
(1)
j and ĉ

(2)
j . Denote the joint log-likelihood function for all

observations from group 1 by l1 and note that l′1(ĉ
(1)
j ) = 0 since ĉ

(1)
j is the MLE of c

(1)
j .

Thus we have,
l′1(ĉ

(1)
j ) = l′1(cj) + (ĉ

(1)
j − cj)l′′1(cj) + · · ·

So,

√
n1(ĉ

(1)
j − cj) ≈ −

√
n1
l′(cj)

l′′(cj)
=

l′1(cj)√
n1

− l′′1 (cj)

n1

(3.9)

Note that, the denominator in (3.9) is − l′′1 (cj)

n1
= 1

n1

n1∑
i=1

φ2(cj+α̂
(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

. As, n → ∞,

(α̂
(1)
i − α

(1)
i ) = Op(1). Using Assumption 1, 1

n1

n1∑
i=1

φ2(cj+α̂
(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

P−→ κ. Similarly,

1
n2

n2∑
i=1

φ2(cj+α̂
(2)
i )

Φ(cj+α̂
(2)
i )(1−Φ(α̂

(2)
i +cj))

P−→ κ and 1
n

n∑
i=1

φ2(cj+α̂i)

Φ(cj+α̂i)(1−Φ(α̂i+cj))

P−→ κ

Now, the numerator is
l′1(cj)√
n1

= 1√
n1

n1∑
i=1

(zij−Φ(cj+α̂
(1)
i ))φ(cj+α̂

(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

.

Take, Xi =
(zij−Φ(cj+α̂

(1)
i ))φ(cj+α̂

(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

, Then E[Xi] =
(Φ(cj+α

(1)
i )−Φ(cj+α̂

(1)
i ))φ(cj+α̂

(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

, and

E[X2
i ] =

φ2(cj+α̂
(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

.

Now,
l′1(cj)√
n1

= 1√
n1

n1∑
i=1

Xi, so that V ar[
l′1(cj)√
n1

]
P−→ 1

n1

n1∑
i=1

φ2(cj+α̂
(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

.

Now, from equation (3.9) , it follows that,
√
n1(ĉ

(1)
j −cj) asymptotically followsN(0, n1

s12,cj
)

where s1
2,cj

=
n1∑
i=1

φ2(cj+α̂
(1)
i )

Φ(cj+α̂
(1)
i )(1−Φ(α̂

(1)
i +cj))

[We have shown that
√
n1(ĉ

(1)
j − cj) asymptotically

follows normal distribution before.]

Similarly,
√
n2(ĉ

(2)
j −cj) asymptotically followsN(0, n2

s2
2,c

(2)
j

) where s2

2,c
(2)
j

=
n2∑
i=1

φ2(c
(2)
j +α̂

(2)
i )

Φ(c
(2)
j +α̂

(2)
i )(1−Φ(α̂

(2)
i +c

(2)
j ))

Let us denote by l0, the joint log-likelihood of the combined data, l1 denote the log-likelihood
from group 1 and let l2 denote the log-likelihood from group 2. Note that, l0 = l1 + l2. Now
we derive the distribution of T0. First note that,

T0 = 2[l1(ĉ
(1)
j ) + l2(ĉ

(2)
j )− l0(ĉj)] = 2[l1(ĉ

(1)
j ) + l2(ĉ

(2)
j )− l1(ĉj)− l2(ĉj)]

Now,

l1(ĉj) = l1(ĉ
(1)
j ) + (ĉj − ĉ(1)

j )l′1(ĉ
(1)
j ) +

1

2
(ĉj − ĉ(1)

j )2l′′1(ĉ
(1)
j ) + op(1) (3.10)
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Similarly,

l2(ĉj) = l2(ĉ
(2)
j ) + (ĉj − ĉ(2)

j )l′2(ĉ
(2)
j ) +

1

2
(ĉj − ĉ(2)

j )2l′′2(ĉ
(2)
j ) + op(1) (3.11)

Note that, under null hypothesis, − l′′1 (ĉ
(1)
j )

n1
→ κ and − l′′2 (ĉ

(2)
j )

n2
→ κ for some κ > 0. [This

happens due to the fact that, αi’s are asymptotically normal.]
So, from equation (3.10) and (3.11),

T0
d−→ 2[−1

2
(ĉj − ĉ(1)

j )2l′′1(ĉ
(1)
j )− 1

2
(ĉj − ĉ(2)

j )2l′′2(ĉ
(2)
j )]

d−→ κ[n1(ĉ
(1)
j − ĉj)2 + n2(ĉ

(2)
j − ĉj)2]

From equation (3.9), we have (ĉj − cj) = − l′(cj)
l′′(cj)

and similarly (ĉ
(1)
j − cj) = − l′1(cj)

l′′1 (cj)
and

(ĉ
(2)
j − cj) = − l′2(cj)

l′′2 (cj)
.

In addition to this, the fact that limn1→∞−
l′′1 (cj)

n1
= limn2→∞−

l′′2 (cj)

n2
= limn→∞− l0

′′(cj)
n

= κ

together imply that n1(ĉ
(1)
j − cj) + n2(ĉ

(2)
j − cj) ≈ n(ĉj − cj) or ĉj ≈

n1ĉ
(1)
j +n1ĉ

(1)
j

n1+n2

So, T0
d−→ κ n1n2

n1+n2
(ĉ

(1)
j − ĉ

(2)
j )2 or, T0

d−→ χ2
1 under null hypothesis.

Now we need to find the asymptotic distribution of T1. For notational simplicity, we
drop the zij term, i.e., we assume that zij’s are all 1. If some zijs take the value 0, we
consider the terms with zij equal to 1 only and apply the asymptotics. Now the effective
sample size becomes the total number of observations with zij equal to 1. We fix a gene

j and denote the expression value corresponding to i-th cell in the k-th group to be Y
(k)
i

which is same as the y
(k)
ij according to our original notation. Similarly, we drop the subscript

j from all the parameters. We shall show that the likelihood ratio test statistic for testing
equality of means and variances based on normal likelihood follows χ2

2 distribution as given
in the following Lemma.

Lemma 2. Under H0 : (µ1, σ
2
1) = (µ2, σ

2
2),

T1
d−→ χ2

2 as n1, n2 →∞.

Proof. Let l denote the log likelihood function of normal distribution for a single observa-
tion. Let µ̂ and σ̂2 be the MLEs of µ and σ2 respectively, under null distribution. Similarly,
let (µ̂1, σ̂

2
1) and (µ̂2, σ̂

2
2) be the MLEs of (µ, σ2) for the two groups under alternative distri-

bution. The −2 log-likelihood ratio statistic can be written as:

T1 = 2

[ n1∑
i=1

l(µ̂1, σ̂
2
1|Y

(1)
i ) +

n2∑
i=1

l(µ̂2, σ̂
2
2|Y

(2)
i )−

n1∑
i=1

l(µ̂, σ̂2|Y (1)
i )−

n2∑
i=1

l(µ̂, σ̂2|Y (2)
i )

]
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Now, by Taylor’s series expansion,

l(µ̂1, σ̂
2
1|Y

(1)
i ) = l(µ̂, σ̂2|Y (1)

i ) + (µ̂1 − µ̂)l̇µ(µ̂, σ̂2|Y (1)
i )

+ (σ̂2
1 − σ̂2)l̇σ2(µ̂, σ̂2|Y (1)

i ) +
1

2
(µ̂1 − µ̂)2l̈µ,µ(µ̂, σ̂2|Y (1)

i )

+
1

2
(σ̂2

1 − σ̂2)2l̈σ2,σ2(µ̂, σ̂2|Y (1)
i ) + (µ̂1 − µ̂)(σ̂2

1 − σ̂2)l̈µ,σ2(µ̂, σ̂2|Y (1)
i ) + · · ·

where l̇µ =
∂l

∂µ
, l̈µ =

∂2l

∂µ2
, l̇σ2 =

∂l

∂σ2
, l̈σ2,σ2 =

∂2l

∂(σ2)2 , l̈µ,σ2 =
∂2l

∂µ∂σ2
=

∂2l

∂σ2∂µ
.

Now, because µ̂ and σ̂2 are MLEs under the null distribution,

n1∑
i=1

l̇µ(µ̂, σ̂2|Y (1)
i ) +

n2∑
i=1

l̇µ(µ̂, σ̂2|Y (2)
i ) =

n1∑
i=1

l̇σ2(µ̂, σ̂2|Y (1)
i ) +

n2∑
i=1

l̇σ2(µ̂, σ̂2|Y (2)
i ) = 0.

It can be easily shown that

n1∑
i=1

(µ̂1 − µ̂)(σ̂2
1 − σ̂2)l̈µ,σ2(µ̂, σ̂2|Y (1)

i ) +

n2∑
i=1

(µ̂1 − µ̂)(σ̂2
1 − σ̂2)l̈µ,σ2(µ̂, σ̂2|Y (2)

i ) ≈ 0

(because (n1+n2)(µ̂1−µ̂)(σ̂2
1−σ̂2) = (

√
(n1 + n2)(µ̂1−µ̂))(

√
(n1 + n2)(σ̂2

1−σ̂2)) asymptot-
ically follow W1W2 where W1 and W2 are two independent mean 0 normal variables. Also,

1
(n1+n2)

[
n1∑
i=1

l̈µ,σ2(µ̂, σ̂2|Y (1)
i )+

n2∑
i=1

l̈µ,σ2(µ̂, σ̂2|Y (2)
i )]

P−→ 0 in probability because E[l̈µ,σ2(µ̂, σ̂2|Y )] =

0 for Y ∼ N(µ, σ2).)

Hence, we have,

T1 ≈ 2

n1∑
i=1

[
1

2
(µ̂1 − µ̂)2l̈µ,µ(µ̂, σ̂2|Y (1)

i ) +
1

2
(σ̂2

1 − σ̂2)2l̈σ2,σ2(µ̂, σ̂2|Y (1)
i )]

+

n2∑
i=1

[
1

2
(µ̂2 − µ̂)2l̈µ,µ(µ̂, σ̂2|Y (2)

i ) +
1

2
(σ̂2

2 − σ̂2)2l̈σ2,σ2(µ̂, σ̂2|Y (2)
i )]

Under null distribution, let us assume Y
(k)
i ∼ N(µ, σ2). So,

T1 ≈
n1(µ̂1 − µ̂)2

σ̂2
+
n2(µ̂2 − µ̂)2

σ̂2
+
n1(σ̂2

1 − σ̂2)2

2σ̂4
+
n2(σ̂2

2 − σ̂2)2

2σ̂4
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=
n1n2

(n1 + n2)

(µ̂1 − µ̂2)2

σ̂2
+

n1n2

(n1 + n2)

(σ̂2
1 − σ̂2

2)2

2σ̂4

Now,
√

n1n2

(n1+n2)

(
µ̂1 − µ̂2

σ̂2
1 − σ̂2

2

)
asymptotically follows N(

(
0
0

)
,

(
µ2 0
0 µ4 − µ2

2

)
), under H0. So,

T1 asymptotically follows sum of two weighted χ2
1 variable where the weights are eigenvalues

of Σ
1
2AΣ

1
2 where Σ =

(
µ̂2 0
0 µ̂4 − µ̂2

2

)
and A =

(
1
µ̂2

0

0 1
2µ̂22

)
.

If we further assume that µ4 = 3µ2
2, which holds under normality assumption on Y

(k)
i , T1

asymptotically follows χ2
2 distribution.

Remark 1. If we drop the assumption of normality and we only assume that Y
(k)
i s have

finite fourth moment, T1 asymptotically follows weighted sum of two χ2
1 variables.

Now we are in a position to prove Theorem 2.
Proof of Theorem 1.

Proof. Let Zi denote the indicator that a given gene is detected in cell i. let Yi denote the
actual expression value of that gene in cell i. Note that T0 is a function of the r.v. Zi’s
only. On the other hand, T1 is a function of Yi’s conditioned on Zi = 1. Since, asymptotic
distribution of T1 is independent of Zi’s, T0 and T1 are independent.

Hence, by Lemma 1 and Lemma 2, under H0 : c
(1)
j = c

(2)
j , (µ

(1)
j , σ

(1)
j ) = (µ

(2)
j , σ

(2)
j ),

T0 + T1
d−→ χ2

3 as n1, n2 →∞.

Remark 2. If we drop the assumption of normality and only assume that, Y
(k)
i s have finite

fourth moments, by Remark of Lemma 2, RIBBON I asymptotically follows weighted sum
of three χ2

1 variables.

The second test RIBBON II tests for equality of mixing proportions in bimodality set
up along with equality of gene specific effects in two groups. So our hypotheses of interest
in this case would be:

H0 : c
(1)
j = c

(2)
j , π

(1)
j = π

(2)
j against H1 : c

(1)
j 6= c

(2)
j , π

(1)
j 6= π

(2)
j
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Similar to RIBBON I, we use the distribution of yij’s after marginalizing over α2i’s.
Note that under H0, for both groups, gene expression follow the same bimodal distribution
and hence the mixing proportions would be approximately same. On the other hand, if
H0 is not true, means and variances may not change much but the mixing proportions in
two groups could be substantially different giving two different distributions. Moreover,
change in mean and expression is expected to be captured by RIBBON I. it is clear that
all observations come from the family of distributions: πjN(µ1j, σ

2
1j) + (1− πj)N(µ2j, σ

2
2j).

So,

y
(1)
1j , y

(1)
2j , . . . , y

(1)
n1j

i.i.d.∼ π
(1)
j N(µ1j, σ

2
1j) + (1− π(1)

j )N(µ2j, σ
2
2j)

and y
(2)
1j , y

(2)
2j , . . . , y

(2)
n2j

i.i.d.∼ π
(2)
j N(µ1j, σ

2
1j) + (1− π(2)

j )N(µ2j, σ
2
2j)

Since L0 and L2 do not involve common parameters and we have already developed a
testing procedure for testing gene specific effect, now it remains to test H0 : π

(1)
j = π

(2)
j vs

H1 : π
(1)
j 6= π

(2)
j . This testing can be rephrased as testing for equality of mixing proportions

between two normal components. Define the conditional log-likelihood for k-th group as,

lk(π
(k)
j |y

(k)
j , z

(k)
j ) =

nk∑
i=1

z
(k)
ij [log(π

(k)
j )E[Dij|yij, π̂j, µ̂1, µ̂2, σ̂

2
1, σ̂

2
2]

+

nk∑
i=1

log(1− π(k)
j )(1− E[Dij|yij, π̂j, µ̂1, µ̂2, σ̂

2
1, σ̂

2
2])]

Similarly denoting the joint log-likelihood for the combined data under H0 by l0, we
have −2 log of likelihood ratio statistic as,

T2 = 2
(
l1(π̂

(1)
j |y

(1)
j , z

(1)
j ) + l2(π̂

(2)
j |y

(2)
j , z

(2)
j )− l0(π̂j|y(1)

j , z
(1)
j ,y

(2)
j , z

(2)
j )
)

(3.12)

Theorem 2. Under H0 : c
(1)
j = c

(2)
j , π

(1)
j = π

(2)
j we have,

T0 +
T2

β

d−→ χ2
2 as n1, n2 →∞ for some constant β(0 < β < 1)

Remark: The asymptotic distribution remains the same even if µ1 = µ2 and σ2
1 = σ2

2,
i.e. two components are identical. So, the cutoff from the same distribution can be applied
for testing differential expression on all genes.
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Here again, for notational simplicity, we ignore the zij term, i.e., we assume that zij’s
are all 1. If some zijs are 0, we collect the terms with zij equal to 1 only and apply the
same asymptotics. Now the effective sample size becomes total number of observations
with zij equal to 1. We fix a gene j and denote the expression value corresponding to i-th

cell in the k-th group to be Y
(k)
i which is same as y

(k)
ij according to our original notation.

Similarly, we drop the subscript j from all the parameters. Consider a set of observations
from two groups: Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
n1 from group 1 and Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
n2 from group 2.

Let the −2 log-likelihood ratio test statistic be T2 for testing H0 : π1 = π2 vs H1 : π1 6= π2

under the assumption that, Y
(k)
i ∼ πkN(µ1, σ

2
1) + (1 − πk)N(µ2, σ

2
2), k = 1, 2. In Lemma

4, we shall derive the asymptotic distribution of T2 under H0.

Lemma 3. Define U
(k)
i,n =

π̂nφ(Y
(k)
i ;µ̂1,n,σ̂1,n)

π̂nφ(Y
(k)
i ;µ̂1,n,σ̂1,n)+(1−π̂n)φ(Y

(k)
i ;µ̂2,n,σ̂2,n)

, k = 1, 2, based on n obser-

vations. Under null hypothesis, if π1 = π2 = π, E[U
(k)
i,n ]→ π as n→∞.

Proof. If (µ̂1,n, µ̂2,n, σ̂1,n, σ̂2,n, π̂n) are MLEs of (µ1, µ2, σ1, σ2, π), by asymptotic properties

of MLEs, (µ̂1,n, µ̂2,n, σ̂1,n, σ̂2,n, π̂n)
P−→ (µ1, µ2, σ1, σ2, π).

So, U
(k)
i,n

P−→ W
(k)
i where W

(k)
i =

πφ(Y
(k)
i ;µ1,σ1)

πφ(Y
(k)
i ;µ1,σ1)+(1−π)φ(Y

(k)
i ;µ2,σ2)

.

If Di is the indicator denoting that the i-th observation comes from mode 1,

E[Di|Yi] =
πφ(Y

(k)
i ;µ1, σ1)

πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i ;µ2, σ2)

= W
(k)
i .

So, E[W
(k)
i ] = E[Di] = π. Now, |U (k)

i,n | ≤ 1 a.s. and hence {U (k)
i,n }∞n=1 are uniformly inte-

grable because E[|U (k)
i,n |I(|U (k)

i,n | > 2)] = 0 for all n. By Dominated Convergence Theorem

(DCT), E[|U (k)
i,n −W

(k)
i |]→ 0 and hence E[U

(k)
i,n ]→ E[W

(k)
i ] = π as n→∞.

This indicates that the unconditional mean of U
(k)
i,n is π asymptotically under the null

hypothesis. Hence, a test for equality of proportions based on U
(k)
i,n is meaningful.
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Lemma 4. T2 asymptotically follows a constant multiple of χ2
1 distribution under H0 :

π
(1)
j = π

(2)
j .

Proof. Note that, π̂1,n =

n1∑
i=1

U
(1)
i,n

n1
, π̂2,n =

n2∑
i=1

U
(2)
i,n

n2
and π̂n =

n1∑
i=1

U
(1)
i,n+

n1∑
i=1

U
(2)
i,n

(n1+n2)
.

T2 = 2[

n1∑
i=1

[U
(1)
i,n log(π̂1,n) + (1− U (1)

i,n ) log(1− π̂1,n)]

+

n2∑
i=1

[U
(2)
i,n log(π̂2,n) + (1− U (2)

i,n ) log(1− π̂2,n)]−
n1∑
i=1

[U
(1)
i,n log(π̂n) + (1− U (1)

i,n ) log(1− π̂n)]

−
n2∑
i=1

[U
(2)
i,n log(π̂n) + (1− U (2)

i,n ) log(1− π̂n)]]

= −2

n1∑
i=1

[U
(1)
i,n log(

π̂

π̂1,n

) + (1− U (1)
i,n ) log(

1− π̂n
1− π̂1,n

)]− 2

n2∑
i=1

[U
(2)
i,n log(

π̂n
π̂2,n

)

+ (1− U (2)
i,n ) log(

1− π̂n
1− π̂2,n

)]

= −2

n1∑
i=1

[U
(1)
i,n log(1 +

π̂n − π̂1,n

π̂1,n

) + (1− U (1)
i,n ) log(1 +

π̂1,n − π̂n
1− π̂1,n

)]

− 2

n2∑
i=1

[U
(2)
i,n log(1 +

π̂n − π̂2,n

π̂2,n

) + (1− U (2)
i,n ) log(1 +

π̂2,n − π̂n
1− π̂2,n

)]

= −2

n1∑
i=1

[U
(1)
i,n (

π̂n − π̂1,n

π̂1,n

− (π̂n − π̂1,n)2

2π̂2
1,n

) + (1− U (1)
i,n )(

π̂1,n − π̂n
1− π̂1,n

− (π̂1,n − π̂n)2

2(1− π̂1,n)2
)]

− 2

n2∑
i=1

[U
(2)
i,n (

π̂n − π̂2,n

π̂2,n

− (π̂n − π̂2,n)2

2π̂2
2,n

) + (1− U (2)
i,n )(

π̂2,n − π̂n
1− π̂2,n

− (π̂2,n − π̂n)2

2(1− π̂2,n)2
)] + op(1)

=
n1(π̂n − π̂1,n)2

π̂1,n(1− π̂1,n)
+
n2(π̂n − π̂2,n)2

π̂2,n(1− π̂2,n)
+ op(1)

Now, U
(k)
i,n = W

(k)
i + (

∂W
(k)
i

∂π
)(π̂n − π) + (

∂W
(k)
i

∂µ1

)(µ̂1,n − µ1)

+ (
∂W

(k)
i

∂µ2

)(µ̂2,n − µ2) + (
∂W

(k)
i

∂σ2
1

)(σ̂2
1,n − σ2

1) + (
∂W

(k)
i

∂σ2
2

)(σ̂2
2,n − σ2

2) +Op(
1

n
)
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Here,
∂W

(k)
i

∂π
=

φ(Y
(k)
i ;µ1, σ1)φ(Y

(k)
i , µ2, σ2)

(πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i , µ2, σ2))2

∂W
(k)
i

∂µ1

=
π(1− π)φ(Y

(k)
i ;µ2, σ2)φ(Y

(k)
i , µ1, σ1)

(πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i );µ2, σ2)2

(µ1 − Y (k)
i )

σ2
1

∂W
(k)
i

∂µ2

=
π(1− π)φ(Y

(k)
i ;µ2, σ2)φ(Y

(k)
i , µ1, σ1)

(πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i );µ2, σ2)2

(µ2 − Y (k)
i )

σ2
2

∂W
(k)
i

∂σ2
1

=
π(1− π)φ(Y

(k)
i ;µ2, σ2)φ(Y

(k)
i , µ1, σ1)

(πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i );µ2, σ2)2

(µ1 − Y (k)
i )2

2(σ2
1)2

∂W
(k)
i

∂σ2
2

=
π(1− π)φ(Y

(k)
i ;µ2, σ2)φ(Y

(k)
i , µ1, σ1)

(πφ(Y
(k)
i ;µ1, σ1) + (1− π)φ(Y

(k)
i );µ2, σ2)2

(µ2 − Y (k)
i )2

2(σ2
2)2

We also have,

π̂1 =

n1∑
i=1

U
(1)
i,n

n1

=

n1∑
i=1

W
(1)
i

n1

+
( 1

n1

n1∑
i=1

∂W
(1)
i

∂π

)
(π̂n − π)

+
( 1

n1

n1∑
i=1

∂W
(1)
i

∂µ1

)
(µ̂1,n − µ1) +

( 1

n1

n1∑
i=1

∂W
(1)
i

∂µ2

)
(µ̂2,n − µ2)

+ +
( 1

n1

n1∑
i=1

∂W
(1)
i

∂σ2
1

)
(σ̂2

1,n − σ2
1) +

( 1

n1

n1∑
i=1

∂W
(1)
i

∂σ2
2

)
(σ̂2

2,n − σ2
2) +Op(

1

n
)

Since, X
(k)
i s are i.i.d., by WLLN, we have, 1

n1

n1∑
i=1

∂W
(1)
i

∂π

P−→ cπ,

1
n1

n1∑
i=1

∂W
(1)
i

∂µ1

P−→ cµ1 ,
1
n1

n1∑
i=1

∂W
(1)
i

∂µ2

P−→ cµ2 ,
1
n1

n1∑
i=1

∂W
(1)
i

∂σ2
1

P−→ cσ2
1
, 1
n1

n1∑
i=1

∂W
(1)
i

∂σ2
2

P−→ cσ2
2
.

Therefore,

√
n1(π̂1,n − π1) =

√
n1(

1

n1

n1∑
i=1

W
(1)
i − π) + cπ

√
n1(π̂n − π) + cµ1

√
n1(µ̂1,n − µ1)

+ cµ2
√
n1(µ̂2,n − µ2) + cσ2

1

√
n1(σ̂2

1,n − σ2
1) + cσ2

2

√
n1(σ̂2

2,n − σ2
2) + op(1)

Similarly,

√
n2(π̂2,n − π2) =

√
n2(

1

n2

n2∑
i=1

W
(2)
i − π) + cπ

√
n2(π̂n − π) + cµ1

√
n2(µ̂1,n − µ1)
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+ cµ2
√
n2(µ̂2,n − µ2) + cσ2

1

√
n2(σ̂2

1,n − σ2
1) + cσ2

2

√
n2(σ̂2

2,n − σ2
2) + op(1).

Also,
√

n1n2

n1+n2
(π̂1,n − π̂2,n) =

√
n1n2

n1+n2
( 1
n1

n1∑
i=1

W
(1)
i − 1

n2

n2∑
i=1

W
(2)
i ) + op(1)

Hence, we have, π̂1,n
P−→ π, π̂2,n

P−→ π and so
√

n1n2

n1+n2
(π̂1,n − π̂2,n) = N(0, σ2

W ) under

H0, where σ2
W = V ar[W

(k)
1 ]

Therefore, T2 = n1(π̂−π̂1)2

π(1−π)
+ n2(π̂−π̂2)2

π(1−π)
+ op(1) = n1n2

(n1+n2)
(π̂1−π̂2)2

π(1−π)
+ op(1) and hence T2

asymptotically follows
σ2
W

π(1−π)
χ2

1.

Now, if σ̂2
W is a consistent estimator of σ2

W and π̂
P−→ π we have by Slutsky’s theorem,

T2

β̂

d−→ χ2
1 as n1, n2 →∞ where β̂ =

σ̂2
W

π̂(1− π̂)
.

Remark 3. Note that σ2
W < π(1− π). To prove this consider a random variable V

(k)
i such

that V
(k)
i |W

(k)
i ∼ Ber(W

(k)
i ).

Now V ar[V
(k)
i ] > V ar[E[V

(k)
i |W

(k)
i ]] = V ar[W

(k)
i ] and so V ar[W

(k)
i ] < π(1− π).

Remark 4. We estimate π by π̂n and σ2
W by 1

n1+n2−1

2∑
k=1

nk∑
i=1

(U
(k)
i,n − π̂n)2.

Now we can prove Theorem 2 using Lemma 2 and Lemma 4 as follows.
Proof of Theorem 2.

Proof. Similar to Theorem 1, T0 is a function of the random variable Zi’s only and T2 is a
function of Yi’s conditioned on Zi = 1, i = 1, . . . , n. Since, asymptotic distribution of T2 is
independent of Zi’s, T0 and T2 are independent.

Now using Lemma 2 and Lemma 4, the proof of Theorem 2 follows immediately.

3.3 Simulation study for testing differential expres-

sion

To compare the performance of different methods, we investigate the power and ROC curve
using simulated data. We perform the simulations with three different model assumptions.
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One type of simulation is performed using the underlying model used by RIBBON, and
benchmarking is also conducted based on data generated using MFA and scDD simulation
protocol. SC2P [131], DESingle [81], and MAST [39] are taken as candidate tools for
comparison for their better accuracy over other methods and availability of their software.
Since SC2P provides two different p-values: one for the differential proportion of zeros and
the other for differential mean expression level; we have included both in the comparison.
Similarly, we have considered two types of p-values for MAST: p-value for log fold change
and p-value based on chi-square statistic. In all the scenarios under consideration, RIBBON
shows more consistency and robust accuracy than other methods.

3.3.1 Simulation using model of RIBBON

We perform simulations with RIBBON for two scenarios: one with 100 cells in each group
and the other with 1000 cells in each group, for 5000 genes for a single individual. We
generate expression values for half of the genes from bimodal distribution whereas for the
remaining half, we use unimodal distribution. For bimodal distribution, we generate the
parameters as given below:

µ1j = min(Y1j, Y2j), µ2j = max(Y1j, Y2j) where Y1j, Y2j
i.i.d.∼ N(0, 0.3),

σ2
1j = min(Z1j, Z2j), σ

2
2j = max(Z1j, Z2j) where Z1j, Z2j

i.i.d.∼ Gamma(1,
1

3
),

cj ∼ N(0, 1), πj ∼ Beta(0.5, 0.5).

For unimodal distribution, we use the following scheme:

µj ∼ N(0, 0.3), σ2
j ∼ Gamma(1,

1

3
), cj ∼ N(0, 1).

Under alternative hypothesis, we generate two sets of parameters independently. Keep-
ing the false positive rate (FPR) fixed at 1% level, we compare the performance of the
methods based on the true positive rate (TPR). These along with ROC curves for two
types of simulations are shown in Figures 3.2 and 3.3. RIBBON I and RIBBON II show
the highest power at 1% FPR in bimodal simulations and outperform other methods in
terms of ROC curves, when the distribution of gene expression is bimodal.
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Figure 3.2: (A): Power at 1% FPR, (B) ROC curve with data simulated from RIBBON
when the simulated gene expressions are unimodal, (C) Power at 1% FPR, (D) ROC curve
with data simulated from RIBBON when the gene expressions are bimodal. The number of
cells in each simulation is 100. RIBBON I and RIBBON II outperform all other methods
when the distribution is bimodal.
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Figure 3.3: (A): Power at 1% FPR, (B) ROC curve with data simulated from RIBBON
when the simulated gene expressions are unimodal, (C) Power at 1% FPR, (D) ROC curve
with data simulated from RIBBON when the gene expressions are bimodal. The number of
cells in each simulation is 1000. Because of the large number of observations, ROC curves
of many tests are close to 1, though for bimodal simulation, RIBBON I and RIBBON II
are slightly better than other methods.
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3.3.2 Simulation using Splatter

We also follow simulation methods other than that of our own. Using Bioconductor package
Splatter [133], we simulate data with two different simulation models: scDD and MFA.
In scDD simulation [60], we have considered both EE and EP models to generate data
from the null distribution. Under the EE model, expression values are generated from a
single-mode with identical distribution for each gene under two conditions. We generate
expression values for each gene from a bimodal distribution with similar distribution from
both conditions under the EP model. We consider DE and DP models to generate data
from the alternative distribution. Under DE model, all genes are unimodal with possibly
different means and variances across two conditions. Under the DP model, there are two
modes in each condition with equal component means; however, the mixture from the two
modes varies. We perform these two types of simulations with 100 cells in each group, and
simulate 1000 genes under each of the three models. In the simulation with the MFA model,
cells from different branches are assumed to belong to two groups. Five thousand genes
with differential expression in two branches and the same number of genes with identical
distribution in two branches, are selected for comparison. Barplots of powers in these two
types of simulations and ROC curves are shown in Figure 3.4. RIBBON I and RIBBON II
seem to outperform all other methods in these three types of scenarios. RIBBON I exceeds
RIBBON II in performance in DE simulation, whereas RIBBON II seems to have an edge
over RIBBON I at 1% FPR in DP simulation.

3.4 Real Data Analysis

We have used single-cell data from Buettner et al. [16] to validate the performance of
our method on real data. The study was aimed to observe the effect of cell cycle on gene
expression levels. Single-cell RNA-seq was performed on cells with G1, G2M, and S stages
of mouse cells. A single-cell experiment was performed on mouse mESC cells that were
flow cytometry sorted into G1, S, and G2M phases of the cell cycle. These three types of
cells constituted three different datasets in our analysis. Three pairwise comparisons for
differential expression are performed using this dataset. Names of genes that are responsible
for the cell cycle are downloaded from the NCBI database. We calculate the false discovery
rate and true positive rate based on top differentiated genes found by these seven methods
and the list of genes responsible for cell cycle obtained from the database. The ROC curves
for the top FDR level up to 0.1 are shown in Figure 3.5. Figure 3.6 shows complete ROC
curves for these three comparisons.
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Figure 3.4: (A) Power at 1% FPR with data simulated from sCDD model EE, (B)
ROC curve with data simulated from scDD model DE, (C) Power at 1% FPR with data
simulated from scDD model DP, (D) ROC curve with data simulated from scDD model DP,
(E) Power at 1% FPR with data simulated from MFA, (F) ROC curve with data simulated
from MFA. In DE simulation, RIBBON I is the best; in DP simulation, RIBBON II is the
best, whereas in MFA simulation, both RIBBON I and RIBBON II perform best.
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Figure 3.5

RIBBON II outperforms other methods in comparison I and III whereas RIBBON I
outperforms others in comparison III.
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3.5 Multiple testing problem

Under our model’s assumption genes are correlated and hence there is a dependency
structure among p-values obtained from different genes. Since no specific dependency
structure between genes is known, we recommend using Benjamini-Yekutielli procedure
[10]. Let P(1) < P(2) < P(3) < · · · < PN be the ordered p-values for N genes and let
H(1), H(2), . . . , H(N) be corresponding null hypotheses respectively. Then FDR control at
level α works as follows:

• For a given α, find the largest k such that P(k) <
k

N.c(N)
α (i.e. k = argmax

j∈{1,2,..,N}
(j.IP(j)≤ j

m
α) )

where c(N) is the harmonic number i.e c(N) =
N∑
j=1

1
j
. Note that, c(N) can be ap-

proximated by:

c(N) =
N∑
j=1

1
j
≈ ln(N) + γ + 1

2N
where γ is the Euler-Mascheroni constant (γ =

0.57721).

• Reject the null hypotheses for all H(i) for i = 1, 2, ..., k.

So, the adjusted p-value is given by N.c(N)
k

P(k), for k = 1, 2, . . . , N .

3.6 Discussion

We extend our model RIBBON to find two tests for differential expression, RIBBON I and
RIBBON II. RIBBON I is aimed in detecting the change in overall mean and variance,
whereas RIBBON II can detect the change in mixing proportion for mixture normal distri-
bution. Both of these tests separate the biological factor behind zeros from the technical
factor behind zeros. We have found the asymptotic distributions of these two statistics
under weaker assumption. It is ideal to apply RIBBON I to unimodal genes and RIBBON
II to bimodal genes. Both RIBBON I and RIBBON II show promising accuracy in simu-
lated data as well as in benchmarking real data. This also ensures the robustness of these
two tests for testing differential expression in general. Our tests are based on comparison
of likelihood ratio statistic between two hypotheses. As a result, though all results in this
work are based on differential expression between two groups, they can easily be extended
to perform differential expression among more than two groups.
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3.7 Code and software availability

Reproducible codes for all figures, data, and software for RIBBON are available at:
http://github.com/indranillab/ribbon .
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Chapter 4: PseudoGA: Cell
pseudotime reconstruction based on
genetic algorithm

4.1 Introduction

Cellular level gene expression profile can reveal the heterogeneity within a tissue and pro-
vides valuable information about ongoing biological processes inside a cell [32, 84, 50]. In
bulk RNA-seq data, averaging over large number of cells may hide the true biological sig-
nal coming from a heterogeneous mixture of cells. This phenomenon, commonly known
as Simpson’s paradox, may give misleading conclusions. Biological processes like tissue
development, cellular differentiation, tumor development, cell cycle etc. go through tran-
scriptomic stages in cell specific manner. To understand the mechanism of the ongoing
process it is essential to study the transcriptomic signature that triggers and controls these
programmed changes [35]. There is an underlying order [74, 18, 13] behind these transcrip-
tomic stages that remains unexplored mainly due to the collection of cells at a single time
point and inability to track the function over time. Clearly, not all cells are at the same
stage during a biological process leading to cell to cell variability in gene expression profile.
So capturing cells at a particular time would display different stages of cells that should be
ordered according to a time scale, known as ‘pseudotime’.

Genes responsible for circadian rhythm, metabolism, cell death process etc. are regu-
lated in a synchronized manner in different cells. Function of a cell may be affected by stages
in development process, cell state transition, spatial effect, interaction with environment,
cell-cell interaction and other internal ongoing processes. Effects of these simultaneous
processes add to the heterogeneity in expression levels of thousands of genes at cellular
level [67, 51]. Thus arranging cells according to a pseudotime trajectory with respect to its

67
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transcriptional stages may provide more insight into the mechanism of how transcriptomic
changes govern biological procedures at molecular level [50, 22, 6]. This information might
have important applications in therapeutics and system biology [74, 112, 103]. The pseudo-
time need not be the physical time in a biological process; it could be a hypothetical time
scale or pseudotime, depending on the developmental stage, position in cellular hierarchy,
cell cycle stage and other biological processes.

Available methods in the literature mainly focus on dimensionality reduction followed
by mapping of cells to a trajectory. The dimensionality reduction is performed by principal
component analysis (PCA) [122], independent component analysis (ICA) [109], t-stochastic
neighbor embedding (t-SNE) [76], diffusion map (DM) [26] or DDRTree [94]. Pseudotime
inference is based on reduced dimensional data instead of full data. After dimensionality
reduction, few methods build minimal spanning tree [117, 55], principal curve [110] or re-
verse graph embedding [94] to learn a principal tree from the data and creates a pseudotime
path. Instead of following tree construction approach, diffusion pseudotime [45] ranks cells
based on eigenvectors of the matrix whose elements follow Gaussian distributions with re-
spect to euclidean distance between two cells and kNN graph is created using the diffusion
map. scVelo [12] follows a different approach by inferring pseudotime based on the amount
of pre-mRNAs and mature mRNAs present in a cell.

Existing pseudotime construction algorithms are mainly based on construction of min-
imal spanning tree, kNN graph or principal curve fitted on first two reduced dimensions.
The accuracy of a method depends on the dimensionality reduction method being used in
the first step and the amount of information that is lost during converting original data to
lower dimensions. To check whether different types of dimensionality reduction algorithm
can indeed construct the true pseudotime properly and retain most of the information that
is in the original data, we simulate three dimensional data, under three scenarios (Figure
4.1). In each case, first two components are time dependent variables and all variables are
scaled by standard deviation.

We apply different algorithms for each scenario (Figure 4.2). In scenario 1, the first two
variables are perfectly linear with pseudotime and the third variable is noise. First PCA
and ICA components show linear trend with pseudotime. However, high variance for the
second component adds more noise in its estimation while other dimensionality reduction
methods do not show a clear picture of the pseudotime variable. In scenario 2, when there
is a cascade like change in expression level of one variable, the pseudotime structure gets
disrupted, though all methods show good characteristic of clustering. In scenario 3, both
the variables are sinusoidal with phase difference. All dimensionality reduction methods
fail to provide a clear picture of the temporal structure of the data. In all these three



4.1. INTRODUCTION 69

0 50 100 200 300

0
.0

1
.0

2
.0

3
.0

X1

S
c
e
n
a
ri

o
 1

0 50 100 200 300

0
.0

1
.0

2
.0

3
.0

X2

0 50 100 200 300

−
3

−
2

−
1

0
1

2

X3

0 50 100 200 300

0
.0

1
.0

2
.0

3
.0

S
c
e
n
a
ri

o
 2

0 50 100 200 300

1
.0

1
.5

2
.0

2
.5

3
.0

0 50 100 200 300

−
3

−
2

−
1

0
1

2

0 50 100 200 300

−
1

.5
−

0
.5

0
.5

1
.0

1
.5

Pseudotime

S
c
e
n
a
ri

o
 3

0 50 100 200 300

−
1

.5
−

0
.5

0
.5

1
.0

1
.5

Pseudotime

0 50 100 200 300

−
2

−
1

0
1

2

Pseudotime

Figure 4.1: Three simulated scenarios each containing three variables (X1, X2, X3) having
same variance with different types of trends. Scenario 1: X1 increasing, X2 decreasing and
X3 random noise; Scenario 2: X1 increasing, X2 piecewise constant and X3 random noise;
Scenario 3: X1 and X2 sinusoidal with phase difference, X3 random noise.
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Figure 4.2: First two dimensions of outputs produced by PCA, ICA, diffusion map ,
DDRTree and t-SNE when applied to three scenarios as in Figure 4.1. Trajectory building
algorithms based on minimal spanning tree, kNN graph or principal curve based on reduced
dimensional data may not always retrieve the accurate behavior of actual pseudotime as
the geometric patterns of the low dimensional space often do not truly reflect change in
pseudotime.
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simulations, scatter plots of first two dimensions after applying dimensionality reduction
techniques do not necessarily show visibly clear pattern of change in cell states along
pseudotime. Certain trajectory reconstruction methods may fail to estimate approximate
pseudotime values from some of these low-dimensional representations.

Our simulation shows that dimensionality reduction techniques may not always capture
the full information about the pseudotime trajectory especially when few genes behave
typically, like piece-wise linear etc. This simulation makes it clear that any method that
is directly based on the actual gene expression values would have a higher chance to use
more information and might provide more efficient and robust pseudotime ordering. We
propose a novel method for pseudotime ordering of cells that is directly based on actual
gene expression levels. Our method ‘PseudoGA’ uses genetic algorithm to come up with
a best possible trajectory of cells that explains expression patterns for individual genes.
Another advantage of this method is that it can identify any lineage structure or branching
while constructing pseudotime trajectory.

4.2 Material and Methods

For pseudotime estimation we apply genetic algorithm, which is appropriate for the current
problem, to develop ordering of cells in the entire cell population. If the lineage structure
or the branching between cell populations is of interest in addition to pseudotemporal or-
dering, cells are clustered into homogeneous subpopulations before applying the algorithm.
The subpopulation structure can also be provided as input. Next, we apply the same al-
gorithm to construct ordering of cells within same cell types. Finally, another subroutine
concatenates the ordered paths from different clusters to form a tree like structure. An-
other highlight of our method is that our pipeline produces an undirected tree, connecting
the paths from each cluster when no information on root cell is available. However, if the
root cell or the cluster is identified or specified, our algorithm would provide an ordered
tree. No transformation or dimensionality reduction is used in the pseudotime estimation
step. We utilize full information from gene expression values within cells. However, if the
lineage or branching structure is not of interest, the entire cell population is considered as
one single subpopulation.

4.2.1 Pseudotime ordering of cells

Data generated from a single-cell whole transcriptome sequencing can be represented in
a matrix S =

((
sij
))

where sij is the gene expression corresponding to i-th cell and j-
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th gene (Figure 4.3A). Since expressions of all genes do not depend on pseudotime, a
preliminary gene filtering is recommended to improve the accuracy of estimation. Cells are
clustered optimally in at least two clusters. For pseudotime estimation, we select the top
genes, that are differentially expressed between clusters. We can perform this step without
clustering cells using variety of approaches like selection of highly variable genes [124,
16], exploring relation between coefficient of variation and mean expression level [14, 24],
dropout-based feature selection [5] etc. However, application of our method to the entire
dataset also produces similar results. Based on the expression levels of many genes together
in a collection of cells, our objective is to place each cell on a certain time point to create a
pesudotime trajectory. Most often, the use of trajectory inference in the analysis of single-
cell transcriptome data is reliant only on the ordering of cells and not on absolute values of
the positions of cells on the trajectory. Quantitative positions on pseudotime trajectory may
have no physical interpretation at all e.g. in cellular hierarchy data. Moreover, in reality,
even if physical interpretation of values on pseudotime trajectory exists, a distance metric
on cellular expression profile may not directly scale with the stretch between those two cells
in the process under consideration. So, in this work, we consider discrete trajectories by
finding the best permutation of cells such that the permutation explains gene expression
level changes across transcriptome along the corresponding trajectory. The extent to which
a pseudotime trajectory interprets specific changes in gene expression level can also be
described in terms of a cost function. This cost or penalty is obtained by fitting a smooth
curve with the expression values as a dependent variable and the pseudotime values as
the explanatory variable. It may be noted that the problem of finding the best fitted
pseudotime is similar to traveling salesman problem (TSP) [7]. Here also given a complete
undirected graph with certain edge weights, the problem is to find the Hamiltonian path
with the shortest weight. The pseudotime problem we are dealing with is slightly different
because the cost associated with a pseudotime path need not be the sum of costs between
two consecutive cells. However, like TSP, the search space of our problem is the set of
all permutations and we apply genetic algorithm to find a near optimal solution for any
function defined on this space. Given the fact that the search space is discrete and grows
exponentially with the number of cells, some heuristics is inevitable to find a near optimal
solution. Genetic algorithm is known to perform reasonably well in a wide spectrum of
problems [54, 115] including the ones where the search space is the set of all permutations
[3, 2, 87, 49, 27, 65, 93].
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Figure 4.3: Outline of PseudoGA algorithm. (A) Single-cell transcription profiles are used
as input data. (B) Expression matrix is transformed into ranks of individual genes across
cells. To check branching, cells are clustered based on expression profiles into homogeneous
groups of cells; otherwise keep the entire dataset. (C) PseudoGA algorithm is applied
to each cluster or full dataset. The solution space is the set of all possible ordering of
cells. A group of candidate solutions is considered as a population. Starting with an initial
population, the population is made to go through recombination, mutation and selection
to arrive at improved solutions. (D) Based on pseudotime of individual clusters, behaviors
of gene expression profiles are examined. Paths from different clusters are combined to
make joint inference for the entire data. (E) Creates one pseudotime trajectory based on
full data.
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Chromosome A 7 6 5 1 2 3 4 8

Chromosome B 6 1 4 2 5 7 3 8

Figure 4.4: Two different chromosomal representations of permutations.

4.2.2 Representation of ordering

Ordering of n objects can easily be represented by a permutation of natural numbers
1, 2, 3, . . . , n. Genetic algorithm [42] is a computational procedure that mimics biologically
inspired operators such as mutation, crossover and selection to tackle the optimization
problems (Figure 4.3C). It uses the idea of these biological phenomena in a computational
or algorithmic paradigm and not in the actual biological sense. For example, a crossover in
genetic algorithm generates a new list of permutations for evaluation in the next iteration,
similar to a genomic crossover that generates a new set of markers on the chromosome.
So, to apply genetic algorithm in an optimization problem, one first needs to find a suit-
able chromosomal representation (Figure 4.4) of a candidate solution, using which genetic
operators like mutation, recombination, and selection can run on the space of all possible
solutions.

In our work, we have used the permutation representation of ordering. We index the
cells by 1, 2, . . . , n where 1st, 2nd,. . ., n-th cells are chosen randomly. We represent a
pseudotime ordering of cells indexed with i1, i2, . . . , in by the vector (i1, i2, . . . , in) which
is indeed a permutation of 1, 2, . . . , n. Since the chromosomal representation is only for
computational purpose and has no biological significance, recombination, mutation and
selection operators when applied on a permutation give birth to a new one that needs to
be checked for a better solution.

4.2.3 Cost function

Expression values of a gene over the pseudotime path may be a linear or nonlinear function
of pseudotime. To make our proposed algorithm more general, we assume that the rank of
the expression values over cells is a polynomial of pseudotime of degree at most 3 (Figure
4.3D, 4.3E). By using ranks instead of actual expression values (Figure 4.3B), we avoid
the particular effect of any specific functional form of the gene expression, while retaining
the general pattern. This non-parametric approach allows us to include a wide range of
functional forms for gene regulation and also the outliers. There must be a tradeoff between
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number of parameters and degree of the polynomial that is used to fit the model. Since
it is well established that some genes may behave in a cyclic manner with pseudotime, we
allow the polynomial degree up to 3 for fitting the data. Our careful extensive inspection
and other studies [117, 55, 102, 121, 21, 85, 77] observe that gene expression regulation
along pseudotime usually reveals expression patterns mainly of three types: (1) expression
that increases or decreases with time, (2) expression that first increases and then decreases
or vice versa, and (3) expression that first increases, then decreases, and then increases
again with pseudotime, or vice versa. Our model can capture these three types of genes,
assuming that ranks of gene expression values along pseudotime trajectory, can be either
linear, quadratic or cubic function of the pseudotime. Mathematically, this model is:

Rij = fj(ti) + εij

where Rij is the rank of cell i in the expression levels of gene j, ti is the pseudotime for
cell i and εij is the random error term. fj is an unknown function according to which
gene expression changes over pseudotime. In our set up, ti ∈ {1, 2, . . . , n}, for all i and
{t1, t2, . . . , tn} is a permutation of {1, 2, . . . , n}. If we approximate fj by a cubic polynomial,
the regression equation becomes:

Rij = βj0 + βj1ti + βj2t
2
i + βj3t

3
i + εij

Let β̂jk be the least square estimate of βjk, k = 0, 1, 2, 3, for a pseudotime ordering
(t1, t2, t3, . . . , tn). Then, the cost associated with the ordering of j-th gene by cubic poly-
nomial is given by Bayes Information Criterion: BIC3j = nln(σ2

jε) + 3ln(n) with

σ2
jε = 1

n

n∑
i=1

(Rij − β̂j0 − β̂j1ti − β̂j2t2i − β̂j3t3i )2

Similarly, we define BIC1j and BIC2j as BIC values associated respectively with fitting
linear and quadratic polynomial on the rank of expression values with pseudotime as ex-
planatory variable. Now the cost associated with j-th gene for the given pseudotime is
Cj = min(BIC1j,BIC2j,BIC3j). Overall cost associated with the pseudotime {t1, t2, . . . , tn}

for the whole transcriptome expression profile is C =
nG∑
j=1

Cj where nG is the total number

of genes. It is important to note that we treat the zero expressions in the data as numeric
zeros and use them in ranking. If there are ties in expression values, we assign average
rank to all observations with ties. The introduction of the cost function fj adds more
flexibility to our model. Any prior knowledge leading to more specific form of fj can easily
be incorporated in the model and the entire downstream protocol will follow accordingly.
Naturally, this would result in more efficient estimation of pseudotime.
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7 6 5 1 2 3 4 8
↑ ↑

i=4 j=6yMutation

7 6 5 3 2 1 4 8

Figure 4.5: Mutation with the segment between position 4 to 6 being reversed.

4.2.4 Genetic algorithm for pseudotime construction

Let X be the space of all permutations of the set {1, 2, . . . , n}. The cost function C is
a function C : X → R, where R denotes the real line. C contains penalty incurred due
to non-optimality of an ordering. Hence, the optimal pseudotime ordering is obtained by
minimising C(x) with respect to x that moves in the space of all possible permutations
i.e. X. If xopt is the optimal ordering, we have xopt = arg min

x∈X
C(x). Since the solution

space is discrete, standard useful analytical tools like continuity or differentiability cannot
be applied to find an optimal solution. Hence, we apply genetic algorithm to find xopt.
The algorithm uses the entire information from the dataset without any dimensionality
reduction. Although it may not always find global optimality, it provides a reasonably good
solution, at least, because no information is lost due to dimensionality reduction. Note that
some other discrete optimisation algorithms may be used to address this problem. But we
restrict to genetic algorithm and its modification tuned to this problem, mainly due to its
wide applicability and better performance.

We consider three operators, mutation, recombination and selection in one single itera-
tion. Mutation (Figure 4.5) creates a new vector y from a given permutation x by randomly
choosing two positions i and j with i ≤ j such that yk = xk(1− I{i≤k≤j}) + xi+j−kI{i≤k≤j}
where I{.} denotes the indicator function. If xi and xj are the values of x at positions i and
j respectively, after mutation the new values would be yi = xj and yj = xi. This mutation
operator is essentially an inversion [106] applied on a portion of the chromosome with two
randomly chosen endpoints. Mutation adds N extra mutated individuals to an existing
population of size N .



4.2. MATERIAL AND METHODS 77

Several recombination or crossover operators on permutations have been suggested e.g.
partially mapped crossover [41], order crossover [29], cycle crossover [87] etc. We propose a
recombination operator (Figure 4.6) for this context that is similar to a partially mapped
operator [41]. First, the set of individuals is divided into two subpopulations of equal size.
Crossing over occurs between pairs with one from each group. Instead of taking only two
cut points as in partially mapped crossover, we consider the number of cut points to be
a Poisson random variable. If the random number generated is N , (N + 1) fragments
of equal length are formed from the parent string. Alternate fragments from one of the
parents, say string I, are retained in one of the two newly formed offspring strings. To fill
up the missing positions, the entries not retained in the newly formed string are recorded.
A bipartite graph is constructed with the positional indices of those left behind entries of
the two parent strings as vertices on two sides. All possible edges between vertices on the
two sides are considered and the absolute differences between the ordinal position values
are taken as edge weights. Based on the bipartite graph thus created, minimal bipartite
matching is constructed. Entries in the positions considered in the other string, say string
II, are put into the corresponding positions in string I based on the minimal bipartite
matching graph. Using the same approach, another child is created by interchanging the
role of string I and string II. Thus for an existing parent population of size N , same number
of offsprings are added to it. It can be easily pointed out that the offsprings generated from
this operation are not unique because the solution of minimal bipartite matching is not
unique.

Mutation and recombination make a pool of 4N individuals from a pool of N . In the
selection step (Figure 4.7), only the top one quarter i.e. top N

4
individuals with minimum

cost, calculated on the basis of estimated cost function, are passed on to the next generation.
This would keep the size of candidate solutions for x vector same in each iteration.

4.2.5 Construction of branching and lineage by joining different
clusters

Till now we consider applying our method to the entire dataset. However, if we want to
see any existence of branching, first we have to cluster the data. PseudoGA will be applied
on each cluster considering it as the full data. Once the pseudotime orderings within
the clusters are formed, we can construct lineages assuming a continuum between clusters
(Figure 4.3D). This is important in many applications like construction of developmental
trajectory, detection of bifurcation, building cellular lineage etc. Note that, the ordering
within each cluster has two termination points. The distances between termination points
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Parent 1 Parent 2
7 6 5 1 | 2 3 4 8 + 6 1 4 2 | 5 7 3 8
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Offspring 2

Missing entries in string 2
Missing entries from string 2 in

string 1
6 1 4 2 O O O O + X 6 X 1 2 X 4 X

Position of missing entries in
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1
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Result of recombinationy
Offspring 1 Offspring 2

7 6 5 1 2 4 3 8 + 4 6 2 1 5 7 3 8

Figure 4.6: Recombination with breakpoint between position 4 and 5
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Permutation Cost
7 6 5 1 2 3 4 8 100

6 1 4 2 5 7 3 8 200

1 2 4 7 6 8 5 3 150

6 5 7 1 4 2 8 3 130

8 1 5 3 4 2 7 6 250

5 1 2 3 8 7 6 4 300

3 8 1 6 2 4 7 5 275

5 8 3 7 4 6 1 2 225ySelection

7 6 5 1 2 3 4 8

6 5 7 1 4 2 8 3

Figure 4.7: Selection with 8 permutations
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across clusters are computed using extreme cells at either side of the path. The distance
between two paths

˜
x = (i1, i2, . . . , im) and

˜
y = (j1, j2, . . . , jn) is defined as d(

˜
x,

˜
y) =

min(C(x1), C(x2), C(x3), C(x4)) where
x1 = (j(bn

4
c), . . . , j2, j1, i1, i2, . . . , i(bm

4
c)),

x2 = (j(b 3n
4
c+1), . . . , j(n−1), jn, i1, i2, . . . , i(bm

4
c)),

x3 = (i(bm
4
c), . . . , i2, i1, j1, j2, . . . , j(bn

4
c)), and

x4 = (i(b 3m
4
c+1), . . . , i(m−1), im, j1, j2, . . . , j(bn

4
c)), where C(x) is the cost function as defined

before and the ‘floor’ function bxc denotes the greatest integer less than or equal to x.
A common approach to construct lineage from disjoint clusters of homogeneous pop-

ulations of cells is by constructing minimal spanning tree (MST) on cluster centres [103,
55, 110]. Here we adopt a similar approach. Following Kruskal’s algorithm for minimal
spanning tree, the termination points with minimum distances are joined until a tree struc-
ture is constructed, taking into consideration that no cycle is formed. If multiple clusters
join with a single termination point in a path, a new branching point is added near that
termination point. In this way, we construct an undirected graph with tree like structure
with branching points. If the purpose is to find a directed graph of clusters, the user would
provide either a root cell or a root cluster. Now, a directed network is constructed using
the root cluster and the undirected graph. In the HSMM dataset [94, 119], three clusters
have been observed while performing cluster-wise pseudotime estimation. The t-SNE plot
applied on this data clearly shows a lineage structure (Figure 4.8). The network between
clusters by assuming cluster 2 as the root cluster is shown in Figure 4.9. The network can
be visualized with any low dimensional representation of the data. It is consistent with
the overall structure of reduced dimensional representations produced by PCA, diffusion
map and t-SNE (Figure 4.10). In all these three embeddings, there is a transition from
cluster 2 to a bifurcation into cluster 1 and cluster 3. Our pseudotime ordering agrees to
the ordering with all three low dimensional embeddings. PseudoGA branching trajectory
is very similar to the lineage produced by Monocle 2 [94] on the same dataset.

4.2.6 Pseudotime estimation with large number of cells

Genetic Algorithm for finding optimal permutation scales poorly with number of cells.
Some modification of our algorithm is required to construct pseudotime with large number
of cells. First, we subsample a smaller number of cells and apply our proposed method.
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Figure 4.8: t-SNE plot of the HSMM data with memberships obtained from k-means
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Figure 4.10: Visualization of PseudoGA ordering with (A) PCA, (B) t-SNE, and (C)
Diffusion Map, using HSMM dataset. Clustering was performed using k-means clustering
on reduced dimensional data obtained using t-SNE. We calculate 23 different indices and
choose the optimum number of clusters by majority voting. This can be done using R
package “NbClust” [23].
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Algorithm 1: Algorithm for pseudotime ordering of cells and lineage
construction

Input: Cell by gene matrix obtained from single-cell RNA-seq data. Choose an ε,
a small preassigned positive quantity.

Output: Near optimum pseudotime ordering of cells.
Clustering: Perform clustering on cells to partition the cell population into
homogeneous subpopulations. On each of the subpopulations, perform the next
step. If we are not interested in branching, go directly to Pseudotime estimation
with full dataset without any clustering.

Pseudotime estimation: Construct Y0 = {Y1, . . . , Yn}: initial set of random
permutations of cells.

while Minimum cost function over the population converges do
Step 1: Perform Recombination on Y0 to generate offsprings. Set of
permutations becomes Y1 = {Y1, . . . , Yn, Y1(o), . . . , Yn(o)}, where
{Y1(o), . . . , Yn(o)} are the offspring from {Y1, . . . , Yn} due to recombination. Here
C(Y1) = 2n, where C(A) is the cardinality (number of elements) of a set A.
Step 2: Perform Mutation on each element of Y1 to find a new augmented set
of permutations Y2 = {Y1,Y(m)

1 } with Y(m)
1 = {Y (m)

1 , . . . , Y
(m)
n , Y

(m)
1(o) , . . . , Y

(m)
n(o)},

where Y
(m)
i and Y

(m)
i(o) are new permutations due to mutation from Yi and Yi(o)

respectively for each i = 1, . . . , n. Clearly C(Y2) = 4n.
Step 3: Calculate cost for each permutation in Y2 and order them as
C(1), . . . , C(4n), where C(r) is r-th ordered value of {C(1), . . . , C(4n)}. Selection is
based on choosing minimum 25% i.e. n permutations corresponding to
{C(1), . . . , C(n)}. Denote this new set of permutations as Y(1)

0 obtained after first
iteration.
Step 4: Go back to Step 1 - 3 until |Cnew

(1) − Cold
(1) | < ε

end
Tree construction: Construct the branching or lineage by joining pseudotime
orderings from different clusters using our proposed method.
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Out of N total cells, pseudotime is estimated based on a subset of n (n < N) cells.
Suppose (t1, t2, . . . , tn) is the vector of estimated pseudotime for n cells. We define a score
for every cell j, Sj = 1

r

∑
k∈Nr(j)

tk where Nr(j) is the set of r nearest neighbors of cell j. The

vector S = (S1, S2, . . . , SN) or the ordering of S can be considered as the pseudotime for
the original set of N cells.

To increase the efficiency, instead of inferring trajectory based on one subset, one can
consider pooled inference from multiple subsamples as well. Based on B (say 30) subsam-
ples each of size M (say 100) from the same dataset, we construct pesudotime trajectories
separately. We find score (Sjb, b = 1, . . . , B) of the j-th cell corresponding to each b-th
trajectory and construct a principal curve based on B dimensional scores of individual
cells. The principal curve has been used for pseudotime reconstruction in different man-
ners [110, 78, 19]. In our algorithm, ordering of cells on the principal curve is the final
pseudotime trajectory for the entire dataset. Naturally, larger the number of subsamples,
more will be the accuracy. However, we observe that 30 subsamples would show a signif-
icant improvement in correlation (0.99) with actual pseudotime (Figure 4.11). Inferring
the final trajectory based on multiple estimates makes this approach robust to unwanted
variation present in the data.

4.3 Results

We evaluate our method ‘PseudoGA’ and compare it to other methods using extensive sim-
ulations and five different real datasets including one that contains a large number of cells.
In all datasets under consideration, we measure the accuracy using appropriate measures.
Monocle [117], TSCAN [55], Slingshot [110], DPT [45], Waterfall [103] and scVelo [12] are
used for comparison since they are all de novo pseudotime reconstruction techniques based
on unique approaches and their open source codes are available. The benchmarking also
indicates how different dimensionality reduction methods perform in constructing pseudo-
time trajectory. scVelo has been used for comparison on real data only because in synthetic
gene expression datasets, expression values are directly simulated without mimicking exact
RNA-seq experiment whereas scVelo requires raw reads for estimation.

4.3.1 Pseudotime determination using real data

We consider five real datasets for benchmarking. We evaluate reference trajectories for
all these datasets based on the given information like time of collection, stage etc. To
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data.
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compare precisions of different estimates, we use absolute Spearman’s rank correlation.
Moreover, PseudoGA estimates can be visualized in low dimensional embeddings using any
dimensionality reduction method including PCA. We also attempt to explore genes that
are highly correlated with estimated pseudotime and whether they have any significance
in the context of known actual pseudotime. We now briefly describe the real datasets and
the interpretations of pseudotime for the concerned experiments.

Skeletal myoblasts are set to undergo a well-characterized sequence of morphological and
transcriptional changes during differentiation. Primary human skeletal muscle myoblasts
(HSMM) were expanded under high mitogen conditions and then differentiated by switching
to low mitogen media (GSE52529) [117, 119]. RNA-seq libraries were sequenced from
each of several hundred cells taken over a time-course of serum-induced differentiation.
Around 49 to 77 cells were captured at each of the four time points (0, 24, 48 and 72
hours). The capture time here can be assumed to be the underlying pseudotime. First, we
perform pseudotime analysis on the entire dataset. First principal component (PC) shows
an increasing pattern with pseudotime estimated by PseudoGA (Figure 4.12B). Plot of PC
II exhibits a parabolic pattern with respect to pseudotime (Figure 4.13).

If we are interested to see any lineage or branch structure with respect to pseudotime,
we have to cluster the original data and apply our algorithm on each cluster. Clustering
with t-SNE creates three clusters with one cluster consisting of observations from 0 hours
only (Cluster II), two other clusters (Cluster I and III) with mixture of observations from
24 hours, 48 hours and 72 hours (Figure 4.15A). Cells from three different time points in
cluster I are well separated whereas the cells from three populations in cluster III are mixed
up. For visualisation, we plot PC I and PC II with respect to pseudotime as estimated by
PseudoGA that show overall linear or quadratic trend in all these clusters (Figure 4.15B).

PseudoGA has the highest correlation among all methods under consideration when ap-
plied on the entire dataset (Figure 4.12A) although Slingshot performs slightly better when
clusters are considered separately (Figure 4.14). However, PseudoGA seems more robust
because its performance is consistently good in all scenarios. We find top 6 genes having
highest correlation with pseudotime for the whole HSMM dataset as well as for three clus-
ters separately (Tables 4.1, 4.2) and observe the change of expression along pseudotemporal
path (Figures 4.16 and 4.17).
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and pseudotime produced by different methods for the entire dataset. PseudoGA shows
the highest correlation among all methods. (B) Plot of PC I with pseudotime estimated
by PseudoGA shows monotonically increasing pattern.

Cluster id Genes with highest correlation
Common
function

Entire dataset
TNNT2, MT2A, TXN,

ACTC1, NCAM1, MACF1
Muscle

functioning

Table 4.1: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA ignoring clusters and their common function in the HSMM dataset.
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Cluster id Genes with highest correlation
Common
function

Cluster I
TXN, LTBP1, HMGA1,

EEF1A1, H19, FN1
Oxidative stress

Cluster II
MT2A, CD59, MT1E,
MT1L, TAGLN2, TXN

Oxidative stress

Cluster III
HMGA1, COX6A2, MT1G,

MT2A, TAGLN2, AC112721.2
Heme binding

Table 4.2: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA in each cluster and their common functions in HSMM dataset.

Our next dataset contains single-cell RNA-seq data from 1861 mouse dendritic cells
stimulated with three pathogenic components. This dataset is used to examine the variation
between individual cells exposed to the same stimulus and study the complex dynamic
responses to the stimulus exhibited by multicellular populations (GSE48968) [102]. Cells
were captured initially without any stimulus, and at one, two, four and six hours after
applying the stimulus. Cell capture time in this case can be considered as the pseudotime.
To compare accuracy of different methods, cells that were applied different types of stimuli,
were sorted out. Three different types of stimuli, namely LPS, PAM and PIC were applied.

We apply pseudotime estimation algorithms on all these three types of data with dif-
ferent stimuli. Application of PseudoGA on the entire data for each stimulus shows that
estimated pseudotimes are in overall congruence with the actual pseudotime (Figure 4.18A).
First two principal components show strong functional relationship with pseudotime esti-
mated by PseudoGA (Figure 4.18B, 4.19). Under all these three types of stimuli, PseudoGA
shows the best performance among these seven methods (Figure 4.18A). Only in the data
for mice treated with LPS, Monocle performs better than PseudoGA although for other
two datasets its performance is not really good. On the other hand, PseudoGA consis-
tently shows high correlation and clear pattern with pseudotime for all stimuli. Top 6
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Figure 4.15: (A) Pseudotime ordering by PseudoGA on HSMM dataset on three different
clusters (B) Functional relationship between first two principal components and pseudotime
estimated by PseudoGA on three different clusters. In all cases, the relationship is either
linear or quadratic.
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Figure 4.16: Change of expression pattern with pseudotime in HSMM dataset showing
top 6 genes with highest correlation on the entire dataset.
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Figure 4.17: Change of expression pattern with pseudotime in HSMM dataset showing
top 6 genes with highest correlation in each of the three clusters.
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genes having highest correlation with pseudotime in different clusters and their common
functions are shown in Tables 4.3-4.5. The change of expressions with pseudotime along
pseudotemporal path produced by PseudoGA in these three scenarios are shown in Figures
4.20, 4.21, 4.22.
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Figure 4.18: (A) Absolute Spearman’s rank correlation between capture time of dendritic
cells and pseudotime produced by different methods for the entire dataset under stimulation
by LPS, PAM and PIC. PseudoGA shows overall best performance. (B) Plot of PC I
with pseudotime estimated by PseudoGA for three different types of simulation. In the
stimulation by LPS, PC I shows linear pattern whereas in the other two datasets, PC I
shows bursting type pattern with pseudotime.
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Figure 4.19: (A) Pseudotime estimated by PseudoGA on the dataset where mouse den-
dritic cells are treated with LPS, PAM and PIC respectively. (B) Functional relationship
between PC II and the pseudotime estimated by PseudoGA on the same datasets.
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Figure 4.20: Change of expression pattern with pseudotime when dendritic cells are
treated with LPS stimulus showing top 6 genes with highest correlation.
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Figure 4.21: Change of expression pattern with pseudotime when dendritic cells are
treated with PAM stimulus showing top 6 genes with highest correlation.
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Figure 4.22: Change of expression pattern with pseudotime when dendritic cells are
treated with PIC stimulus showing top 6 genes with highest correlation.

The third dataset consists of microfluidic single-cell RNA-seq on 185 individual mouse
lung epithelial cells at four different stages (E14.5, E16.5, E18.5, adult) of development
(GSE52583) [121]. The transcriptome data present transcriptional states that define the
developmental and cellular hierarchy of distal mouse lung epithelium. Cells were assigned to
two groups, prenatal and postnatal cells. Here the developmental stage can be considered
as the underlying pseudotime. The plot of PC I shows transcriptional bursting pattern
whereas the plot of second principal component shows monotonic pattern (Figure 4.23A,
4.24).

Monocle shows the highest correlation with actual pseudotime whereas PseudoGA turns
out to be second best (Figure 4.23A). Top 6 genes having highest correlation with pseudo-
time and their common functions are shown in Table 4.6. The change of expressions with
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Cells treated with LPS

Cluster id Genes with highest correlation
Common
function

Entire dataset
LYZ1, LYZ2, CCL6,

H2-AA, CD74, CTSD
Immune response

Table 4.3: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in dendritic cells dataset with LPS stimulus.

Cells treated with PAM

Cluster id Genes with highest correlation
Common
function

Entire dataset
SOCS2, IRF8, RPS19,

BASP1, AK041746, ROGDI
Apoptosis(except

AK041746)

Table 4.4: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in dendritic cells dataset with PAM stimulus.

Cells treated with PIC

Cluster id Genes with highest correlation
Common
function

Entire dataset
AK141672, COX2, ATPASE6,
MT-ND4, CYTB, AK140265

Mitochondrial
functions

Table 4.5: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in dendritic cells dataset with PIC stimulus.
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Figure 4.23: (A) Absolute Spearman’s rank correlation between developmental stage and
pseudotime assigned by different methods on lung data. Monocle shows the highest corre-
lation followed by PseudoGA. (B) Plot of PC I with pseudotime estimated by PseudoGA.
PC I shows decreasing pattern with pseudotime though it can also be viewed as bursting.

Cluster id Genes with highest correlation
Common
function

Entire dataset
AGER, THEM123, EMP2,
AKAP5, HOPX, TIMP3

Lung functioning

Table 4.6: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in mouse lung dataset.

pseudotime along pseudotemporal path is shown in Figure 4.25.

In the fourth dataset, we study the gene expression patterns at single cell level across
three different cell cycle stages each containing 96 mouse embryonic stem cells (E-MTAB-
2805) [16]. Single-cell RNA-seq was performed on mouse embryonic stem cells (mESC) that
were stained with Hoechst 33342 Flow cytometry and sorted for G1, S and G2M stages of
cell cycle. PseudoGA is able to separate cells with respect to G1, G2M and S stages from
a mixture of cells. Thus it provides a potential ordering of cells across cell cycle. Only for
visualization purpose, when we plot the first two PCs, it seems that PC I across pseudotime
shows an increasing pattern whereas PC II indicates linear pattern (Figure 4.26B, 4.27).
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Figure 4.24: Pseudotime ordering by PseudoGA on mouse lung dataset and the functional
relationship between PC II and the pseudotime estimated. The plot shows monotonic
pattern of PC II with pseudotime.

We consider maximum correlation among all possible permutations of G1, S and G2M
stages as the order of cell cycle can be rearranged. PseudoGA shows the highest correlation
among all methods (Figure 4.26A). Top 6 genes having highest correlation with pseudotime
and their common functions are shown in Table 4.7. The change of expressions with
pseudotime along pseudotemporal path in these three scenarios are shown in Figure 4.28.

We consider another dataset where gene expression profiles of human ventral midbrain
cells were studied at different developmental stages after gestation ranging between 0 to 11
weeks (GSE76381) [63]. This dataset is much larger than the four other datasets discussed
earlier. Single-cell RNA sequencing was performed on 4029 cells from different stages. So,
the developmental stage of a cell can be considered as the inherent pseudotime in this case.
We performed the pseudotime analysis on the entire dataset. PseudoGA estimate shows
the highest correlation with the actual pseudotime (Figure 4.29A). The first two principal
components show quadratic or cubic functional relationship with the pseudotime estimated
by PseudoGA (Figure 4.29B, 4.30). Top 6 genes with highest correlation with the estimated
pseudotime have either cubic or bursting type pattern (Figure 4.31, Table 4.8). This result
establishes the consistency of performance as well as robustness of PseudoGA when applied
to a large number of cells. However, it is to be noted that if we want to see any possible
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Figure 4.25: Change of expression pattern with pseudotime in mouse lung dataset showing
top 6 genes with highest correlation.

Cluster id Genes with highest correlation
Common
function

Entire dataset

Gm13341(Pseudogene),
mt-Co1(mtRNA),

Gm14303(Pseudogene),
mt-Rnr2(mtRNA),

RetrogenDB(Pseudogene),
mt-Cytb (mtRNA)

Unknown

Table 4.7: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in mouse cell cycle dataset.
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Figure 4.26: (A) Absolute Spearman’s rank correlation between developmental stage and
pseudotime assigned by different methods on cell cycle data. Maximum correlation among
all possible permutations of G1, S and G2M stages has been shown. PseudoGA again shows
the highest correlation followed by Monocle. (B) Plot of PC I with pseudotime estimated
by PseudoGA. The plot shows increasing pattern of PC I.
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Figure 4.27: Pseudotime ordering by PseudoGA on mouse cell cycle dataset and the
functional relationship between PC II and the pseudotime estimated. PC II shows linear
pattern with the pseudotime estimated.
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Figure 4.28: Change of expression pattern with pseudotime in mouse cell cycle dataset
showing top 6 genes with highest correlation.
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Figure 4.29: (A) Absolute Spearman’s rank correlation between developmental stage and
pseudotime assigned by different methods on human brain development data. PseudoGA
shows the highest correlation followed by Waterfall. (B) Plot of PC I with pseudotime
estimated by PseudoGA. PC I changes as quadratic polynomial with respect to PseudoGA
estimate.

Cluster id Genes with highest correlation
Common
function

Enntire dataset
LIN28A, RPL23A, RPS19,

NPM1, SEPT7, SEPT2
Development

Table 4.8: Top 6 genes having highest correlation with pseudotime estimated by Pseu-
doGA and their common function in human brain development dataset.

branching in pseudotime, we have to cluster the data and apply our algorithm on each
cluster which afterwards would be merged to give a consolidated structure.

4.3.2 Pseudotime using simulated data

We simulate datasets to evaluate different methods and compare their performance to
PseudoGA. Simulations were performed with two different frameworks: simulation with
our own simulation model and three other simulation schemes available in Bioconductor
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Figure 4.30: Pseudotime ordering by PseudoGA on human brain development dataset
and the functional relationship between PC II and the pseudotime estimated. PC II shows
cubic relationship with the estimated pseudotime.

package ‘Splatter’ [133]. Our simulation model can generate single-cell level expression
profiles with known inherent pseudotime within a homogeneous population.

Note that all genes are not expressed in all cells. So conditional on the fact that a
gene is expressed in a cell, the read count corresponding to this gene is generated from a
Poisson distribution whose mean follows a Gamma distribution. The shape parameter of
the Gamma distribution for each expressed gene lies on a pseudotime curve. If a gene is not
expressed in a cell, we consider its read count to be identically equal to zero. We consider
different gene sets where a particular trend is being followed for a set. Thus expression
values within a given set may follow increasing or decreasing linear trend, quadratic or
sinusoidal trend. To add more generality, we also consider few genes whose expressions are
independent of pseudotime.

We know that the abundance of technical zeros or dropouts [39, 81] is a common feature
in single-cell RNA-seq data. So we also add zero values for gene expressions that would
naturally inflate the left tail of the Gamma-Poisson distribution. Regarding generation of
dropouts, we consider three different scenarios. In the first case, we introduce lower rate
of dropouts that are mainly due to smaller mean gene expression levels whereas in the
second scenario, it is independent of mean expression values. In the third case, we assume
relatively higher amount of dropouts that occur independently of pseudotime.
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Figure 4.31: Change of expression pattern with pseudotime in human brain development
dataset showing top 6 genes with highest correlation. These genes show either cubic or
bursting type patterns with the estimated pseudotime.
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4.3.3 Simulation model

We assume that read counts follow Gamma-Poisson distribution and we allow the param-
eters of the Gamma distribution to change with pseudotime. Let us assume that there are
n cells with ordering i1, i2, . . . , in where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). The
following data generation model has been used for simulating read counts from a set of
genes:
Step 1: We construct λkj = αj + βjk which is the shape parameter of the Gamma dis-
tribution in the k-th cell for j-th gene, αj and βj are gene specific parameters. For any
given gene with index j, λkj changes with the position of cells on the pseudotime trajec-
tory and exhibits linear trend along pseudotime ordering. Next, we simulate Xkj where
Xkj ∼ Gamma(λkj, rj), and λkj is the shape parameter and rj is a gene specific scale pa-
rameter. Then, we generate Zkj that indicates whether j-th gene is expressed in k-th cell
or not. We assume Zkj ∼ Bernoulli(Φ(cj + αXkj)), cj is a gene specific constant, α ≥ 0.
Note that, in scenario I, the probability that a gene is expressed is an increasing function
of the Gamma variable Xkj (α > 0) whereas in scenarios II and III, they are independent
(α = 0). Finally, we generate (Ykj|Zkj = 0) = 0 and (Ykj|Zkj = 1) ∼ Poisson(Xkj) where
Ykj denotes the read count of j-th gene in k-th cell. Let Y.j = (Y1j, . . . , Ynj).
Step 2: After Step 1, the set of expression values for any particular gene has increasing
linear trend along pseduotime trajectory if βj is taken positive. If we want j-th gene to
have decreasing mean expression level with pseudotime, we modify the set of expression
values for j-th gene as Y ′.j = reverse(Y.j) where reverse(x1, x2, . . . , xn) = (xn, x(n−1), . . . , x1).
To include genes with both increasing and decreasing trend, we apply Y ′.j = reverse(Y.j) for
some genes and keep Y ′.j = Y.j for the rest.
Step 3: To construct a gene with approximate quadratic trend with respect to pseudotime,
we modify Y ′.j from Step 2 in the following manner:

Y ′′.j = Y ′.j[1, 3, 5, . . . , (2n− 1), (2n), (2n− 2), . . . , 2]

To construct a gene with approximate cubic trend or sinusoidal trend with respect to
pseudotime, we modify Y ′.j in the following manner:

u = (1, 3, 5, . . . , (2n− 1))
v = (2n, (2n− 2), (2n− 4), . . . , 2)
Y ′′.j = Y ′.j[u[(n

2
+ 1) : n], v, u[1 : (n

2
)]]

To generate genes that are not associated with pseudotime, we take Y ′′.j as a random
permutation of Y ′.j.
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To include variety of trends in our final gene expression matrix, we consider four types
of genes: genes with quadratic trend, genes with cubic trend, genes with linear trend from
Step 2 that we keep unchanged in Step 3 and genes with no association with pseudotime.
In scenarios I and II, we assume relatively high values of cj(cj ∼ N(1, 1

4
)) implying lower

occurrence of zeros. In scenario III, relatively lower values of cj(cj ∼ N(0, 1
4
)) are considered

to incorporate higher incidence of dropouts.
The expression values for the j-th gene corresponding to the ordering (i1, i2, ..., in), s.j

is obtained by equating (si1j, si2j, . . . , sinj) = Y ′′.j
Note that if a gene regulation has a prominent relation with pseudotime, it would show

a trend, at least approximately. In order to capture this trend, it is expected that enough
information should be available for that gene. Hence it is natural to believe that the amount
of technical zeros, which is a common characteristic of single-cell data, should be relatively
small.

First two scenarios are more rational when the dataset is of good quality or genes with
lower dropout rates are filtered successfully before pseudotime estimation. Scenario III is
relevant when the data contain too many technical zeros and in addition to that, either
gene filtering cannot separate out genes with lower dropout rates or no filtering is applied.

We apply PseudoGA and other commonly available methods to these simulated datasets.
Entire study is based on 100 replicates under each simulation scheme. We assess the ac-
curacy of each method using two criteria, (1) absolute rank correlation coefficient between
estimated pseudotime with the actual one, and (2) number of genes that show functional
relationship with the estimated pseudotime.

We present boxplots of the two criteria for all methods under consideration. Results of
our simulation study indicate that our PseudoGA shows superior performance compared
to other methods for the first two scenarios while for the third its accuracy is at least as
good as other methods (Figure 4.32, 4.33). Thus PseudoGA looks promising in identifying
pseudotime trajectory in a variety of situations for single-cell data.

4.3.4 Simulation with Splatter

Our simulation method is very general and has very little (or no) bearing with PseudoGA.
However, to see its performance in wider scenarios, we also simulate expression data using
Bioconductor package ‘splatter’ under three different methods: PROSSTT [89], Splat [133]
and PhenoPath [21].
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Figure 4.32: Absolute correlation coefficient with the actual pseudotime in (A) Scenario
1: lower dropout rate and dropout probability depends on mean expression level, (B)
Scenario 2: lower dropout rate and dropout probability is independent of mean expression
level, and (C) Scenario 3: higher dropout rate and dropout probability is independent of
mean expression level. PseudoGA shows overall consistent performance across all three
scenarios.
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Figure 4.33: Number of genes that have functional relationship with the pseudotime
estimated in (A) Scenario 1: lower dropout rate and dropout probability depends on mean
expression level, (B) Scenario 2: lower dropout rate and dropout probability is independent
of mean expression level, and (C) Scenario 3: higher dropout rate and dropout probability
is independent of mean expression level. PseudoGA shows consistent behavior across all
three scenarios.
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In each dataset generated by Splat, the expression values of the gene with the highest
variance were permuted randomly among the corresponding cells. This helps in assess-
ing the performances of different methods on datasets with selected genes containing few
misspecified genes or few genes that behave like outliers from the rest. Since PhenoPath
simulates log-normalized expressions, anti-log transformation was applied on the data be-
fore benchmarking with different methods. Lognormal assumption generates genes with
very high variance in expression values. Simulations with Splat and PROSSTT were per-
formed with 300 cells and 100 genes.

Using the Bioconductor package Splatter [133], single-cell RNA-seq data were generated
using three different methods: PROSSTT [89], Splat [133] and PhenoPath [21]. Under
PROSSTT simulation method, the datasets of the specified size were generated with 100
steps keeping all other parameters as default.

Similarly, datasets with the specified number of features and cells were generated by
Splat simulation method with 100 steps keeping all other parameters as default. Let i-th
gene has the highest variance of expression values. The expression values of the i-th gene
Xi is changed into σ(Xi) where σ(.) represents a random permutation of (1, 2, . . . , n), n
being the number of cells.

Similarly, simulations using PhenoPath with the specified size were performed with all
default parameters. PhenoPath generates expression values comparable to log normalized
expressions. To convert them into actual expression values, the following transformation is
applied on expression vectors Xi for the i-th gene: Yi = 10Xi−min(Xi)−3. Yi values for all 100
genes are used for estimation by different methods. The distribution of Yi can be thought
of as left truncated unimodal log-normal, which is known to be a good approximation of
normalized single-cell expression data (4).

To verify whether our subsampling based approach performs comparably with other
methods, we simulate 3000 cells and100 genes using PhenoPath under the third scenario.

We compare the accuracies of different methods using the same two criteria as be-
fore. Absolute rank correlation coefficient is a measure of concordance between estimated
pseudotime and the actual pseudotime, whereas number of functionally related genes is an
evidence based measure of concordance. The performance of PseudoGA is consistent across
all three situations (Figure 4.34, 4.35). Monocle marginally outperformed PseudoGA in
PROSSTT simulation. In Splat simulation, even with only one perturbed gene, accuracy
of all methods except PseudoGA is downgraded due to the presence of uncorrelated genes
with high variance. In PhenoPath simulation, where the distribution of gene expression
differs from usual negative binomial assumption, PseudoGA turns out to be more robust
than other methods. Thus, performance of PseudoGA under PhenoPath and Splat simu-
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lation indicates that it maintains its accuracy and robustness in presence of outliers and
highly variable genes.

We also check the performance of PseudoGA in case of a large dataset and effective-
ness of the subsampling based approach. We simulate a trajectory with 10, 000 cells with
expression values following Gamma-Poisson distribution and construct trajectory using
PseudoGA with only 1% of the data. The remaining cells are added afterwards using
nearest neighbour approach as proposed in Material and Methods Section. Based on 30
replications, the median absolute correlation between the actual pseudotime and the pseu-
dotime generated by 100 cells was found to be 0.85 whereas the median absolute correlation
with all 10, 000 cells was found to be 0.98. The comparison between the actual pseudotime
and the estimated pseudotime based on one subsample is shown in Figure 4.36.

4.3.5 Scalability

Runtime of any genetic algorithm depends on population size in each generation and the
number of generations. In general, increasing the values of these parameters will improve
the accuracy of an algorithm and at the same time will increase the runtime. In this article,
the cost function has been evaluated on 400 permutations in each generation and a minimum
of 30 generations have been considered in all simulation and real data analyses. The value
of ε was taken to be a pre-assigned small positive number. Different algorithms scale
differently with number of cells and number of features [133]. PseudoGA approximately
scales the same linearly. Using subsampling based approach, we have proposed a method,
to tackle the increasing volume of single-cell data with large number of cells.

To assess scalability of PseudoGA, we benchmark PseudoGA runtime against runtime
of other methods. We consider two types of count data generated by Splatter: one with
300 cells and 10000 features and the other with 3000 cells and 1000 features. In the
second scenario, we run PsedoGA with three subsamples each of size 100 coupled with
nearest neighbor matching and principal curve fitting. The boxplots of the runtimes based
on 100 replicates are shown in Figure 4.37. For large number of cells, PseudoGA gains
time efficiency by using subsampling approach (Figure 4.37B). Since pseudotime estimation
on subsamples can be performed independently, parallelization with respect to different
subsamples leads to further time efficiency of this approach. Figure 4.37 indicates that
PseudoGA is time efficient both with respect to a large number of genes as well as a large
number of cells.
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Figure 4.34: Absolute correlation coefficient with the actual pseudotime in simulations
with (A) PROSSTT, (B) Splat, and (C) PhenoPath. PseudoGA performs best in (B) and
(C).
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Figure 4.35: Number of genes having functional relationship with pseudotime estimated
in simulations with (A) PROSSTT, (B) Splat, and (C) PhenoPath. PseudoGA performance
is consistent across all three simulations.
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Figure 4.36: (A) An instance of pseudotime ordering by PseudoGA with a subset of cells
and (B) Pseudotime ordering of all cells with our suggested algorithm for large data based
on the same subset.
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Figure 4.37: Runtime for different algorithms with (A) 300 cells and 10000 features
(B) 3000 cells and 1000 features. PseudoGA runtime is comparable with other methods.
Because of subsampling approach PseudoGA gains in runtime efficiency in (B).
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4.4 Discussion

Several algorithms have been designed to order cells along pseudotime trajectory based
on single-cell RNA-seq data. These are mainly based on the philosophy of constructing
trajectory on reduced dimensional data. Some genes might show distinct types of func-
tional pattern of expression levels along different transcriptomic stages. Hence, it may be
possible that information on gene expression level might be lost to some extent, some-
times substantially, during the dimensionality reduction step. This loss of information may
lead to erroneous outcome at the next step while inferring the ordering of cells. Entire
pseudotime construction depends on the amount of information captured in reduced di-
mensionality of data. Moreover, few genes may remain approximately constant over the
entire time trajectory, whereas few may be outliers. Presence of such genes might influence
the pseudotime construction. We devise an algorithm ‘PseudoGA’ that searches for the
best possible ordering of cells in the set of all permutations and infers the ordering based
on actual gene expression levels.

Our proposed method PseudoGA assumes that the dependency structure of gene expres-
sion on pseudotime is based on ranks of its values. This allows our method to encompass
a large class of functions that gene expression values can assume along a trajectory. To
tackle with zeros, we accommodate average ranking to all cells with zero expressions for a
given gene. This nonparametric assumption makes our method robust in different types of
single-cell expression datasets.

We first cluster the cells in homogeneous subgroups and apply genetic algorithm on
each of these homogeneous groups to increase the efficiency, followed by a novel method to
concatenate paths from different clusters. This will help us in identifying any lineage or
branching structure that may exist in the data with respect to pseudotime. Otherwise, we
can always apply our algorithm directly to the entire dataset.

Compared to other existing methods, PseudoGA seems more robust when applied on
various real datasets as well as on simulated datasets. PseudoGA has been shown to be
consistent in various simulation schemes. In presence of outliers or highly variable genes,
methods based on dimensionality reduction could fail but PseudoGA maintains its accuracy
and robustness.

Our proposed method can be applied to a variety of datasets with even large number
of cells. Our study reveals that even in such a situation, the performance of PseudoGA is
extremely well both in terms of accuracy and time. We speculate that further improvements
on scalability of the method are possible by implementing a more efficient genetic algorithm
and parallelization of the code in case of large datasets. One can use more operators in
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addition to the three operators used in PseudoGA and apply them in different manners.
Improvement in the genetic algorithm would certainly improve the efficiency of PseudoGA.
To the best of our knowledge, this is probably the first application of genetic algorithm in
pseudotime estimation with some novel ideas and methods inbuilt in the main algorithm.
PseudoGA is a freely available software implemented in R and can conveniently be applied
on any single-cell expression data.

4.5 Software availability

Software for PseudoGA is freely available at http://github.com/indranillab/pseudoga .



Chapter 5: SCDI: A fast
clustering-based method for
Single-cell Data Integration

5.1 Introduction

Single-cell RNA-seq technology has revolutionized our knowledge on different aspects of
functional genomics in areas of immune system, cancer, developmental cells etc. [32, 99,
104]. It is often necessary to integrate data from multiple sources, possibly across differ-
ent studies to make combined inferences [123, 125]. Combining similar types of single-cell
datasets across different sources can increase effective sample size and can lay the foun-
dation of meta-analysis. scRNA-seq data usually contain a combination of two types of
variability: technical and biological [25, 44]. Data integration might help in removing
technical variability from the data to some extent. It may involve integrating data from
different batches of same experiment or from different individuals. Many computational
tools have been developed to analyze individual single-cell RNA-seq data but compara-
tively fewer methods exist to address this important issue of data integration. Integrating
expression data from different sources may involve confronting with batch effects arising
from different sources like choice of platform, laboratory, protocol used, quality of sam-
ple, RNA isolation procedure etc. These sources of systematic batch effects need to be
adjusted appropriately before performing any analysis with sc-RNA-seq data since batch
effect can be confounded with biological variation and may lead to spurious conclusion [17].
Single-cell data integration can be broadly divided into two types: integration with a single
modality and integration across multiple modalities. We focus on the data integration of
the former type which can also be termed as batch effect correction.

Single-cell RNA-seq data integration is challenging due to several factors. Integrating
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two different datasets can also be viewed as removing confounding effects arising due to
the assembling of datasets from different sources. The batch effect on individual cells for
a particular experiment could be linear as well as nonlinear [120, 30]. Also, cell composi-
tion in two different datasets may vary adding complexity to integrate data from multiple
sources. Some cell populations may be novel to a particular dataset and also some other
cell populations may remain absent in the dataset. In any single-cell transcriptome data,
cell types are usually unknown and sometimes there are rare cell types [56]. Matching cell
types with data from different sources is a problem that needs to be addressed. High noise
level in single-cell data and technical noise from different platforms add complexities to
perform any analysis with these data.

Few approaches are available to integrate sc-RNA-seq data that can be classified into
three broad types. Butler et al. [15] use canonical correlation analysis to find linear com-
binations of expression values across datasets that are maximally correlated. It then uses
dynamic time warping to align the expressions with the help of projection vectors obtained
from the canonical correlation analysis. The data are then projected into low dimensional
space for visualization. However, if there are non-overlapping populations in two different
studies, this approach could face difficulties in alignment. A similar approach was used in
Rohart et al. [98] where data from different sources were projected on common subspace
so that the variation across independent studies is minimized. In Stuart et al. [111], inte-
gration from multiple modalities was considered using a similar approach. Haghverdi et al.
[46] use a completely different approach by finding mutually nearest neighbors between two
studies and correcting for batch effects for individual genes using batch correction vector
based on mutual nearest neighbors. The batch corrected data are projected in low dimen-
sional space for visualization. This approach assumes that batch effects are orthogonal to
biological signals and the variation due to batch effects is small compared to true biological
variability. Since single-cell expression data are noisy, variation due to batch effects could
be significant compared to biological variation making this approach fail. This approach
also assumes that batch effects are in the same direction across all mutual nearest neighbor
pairs for all cell types while applying the batch correction. That could be an unrealistic
assumption as well. Polański et al. [92] adopts a similar approach by constructing the
network in such a way that cells of the same type are connected across batches. Johansen
et al. [57] use an encoder-based neural network to map two different datasets on a common
low dimensional space. Lin et al. [70] and Korsunsky et al. [61] take an alike approach
by anchoring mutual nearest clusters instead of mutual nearest cells. However, prior to
finding mutual nearest clusters, these methods do not attempt to remove batch effects and
there might be unwanted variability present in the data while performing common cluster
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membership allocation.

We propose a method to align single-cell RNA-seq data from multiple sources. This
projects high throughput data in a low dimensional subspace of given dimension and also
identifies common clusters across datasets. This low dimensional embedding can be used
to perform downstream analyses like finding batch-specific clusters, pseudotime estima-
tion, spatial mapping, etc. Also the common cluster id can be used to perform differential
expression analysis. Our approach is similar to Korsunsky et al. [61] but instead of us-
ing soft clusters, our method performs hard clustering based on reduced dimensional data
adjusted for batch effects. Compared to finding mutual nearest neighbor cells, this ap-
proach helps in removing memory usage and time complexity considerably. We propose a
modification of Gaussian Process Latent Variable Modeling (GPLVM) [66] that takes care
of batch effects arising from two different datasets. This modification takes care of both
linear as well as nonlinear batch effects that can act on datasets from different sources.
To tackle with large number of cells, where GPLVM can run slow, we propose to apply
GPLVM on a subsample of the original data and mapping the rest of the data to a lower-
dimensional subspace based on nearest neighbor regression. We advocate the idea that
data integration procedure should depend on the purpose of integration. Hence, once we
get two batch-corrected datasets, we propose three distinct algorithms for data integration
for the purpose of three different downstream analyses. Each algorithm is tailored to the
specific objective of downstream analysis.

5.2 Single Cell Data Integration (SCDI) Method

Single-cell expression datasets can be broadly divided into three categories (Figure 5.1). In
some data, cells can be classified into distinct clusters. In the second kind of data, cells
do not appear in clusters but in a continuum with a single cluster. This type of dataset
can also be viewed to possess a single cluster with a continuum. Some datasets could
be intermediate between these two with both clusters and continuum of cells. There can
be different perspectives behind the integration of two datasets. Sometimes the purpose
is to identify common cell types across clusters but the ordering of cells is not of primal
importance. In some other datasets, identifying the joint continuum is the main focus.
Based on the objective of the integration and the data type, a customized approach for
integration might turn out to be more accurate and precise. We propose a novel Single
Cell Data Integration (SCDI) method that integrates two datasets after correcting for
batch effects. The workflow of SCDI, when the purpose is to find joint clustering or the
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Figure 5.1: Different types of single-cell transcriptome data: (A) Data with clusters, (B)
Data with continuum, (C) Data with a mixture of both continuum and cluster (Source:
EMBL-EBI Single Cell Expression Atlas)

data are of clustered type, is based on two steps. First, given individual clustering of two
independent single-cell transcriptome data, it constructs a joint clustering of these two data
and assigns common membership across datasets. Next, it performs dimension reduction of
the combined data considering the joint clustering in the first step. In the first step, SCDI
takes individual cluster membership as input. Though there are many standard methods
available to perform clustering on a single scRNA-seq data, a user verified clustering is
highly recommended to ensure the desired accuracy of SCDI.

After the cluster ids and the raw data are given as input, SCDI applies Batch Corrected
GPLVM (BC-GPLVM) on the combined data. Our proposal of BC-GPLVM, which is a
modification of usual GPLVM, considers batch-effect correction factor while performing
dimensionality reduction. SCDI calculates between cluster distances on reduced dimen-
sions obtained from BC-GPLVM across datasets. If the distance between two clusters is
significantly lower than other inter-cluster distances, those two clusters are assumed to be
identical. In this step, some clusters in individual datasets may remain unmatched with
any other cluster.
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After assigning common cluster id across datasets, the next step is to project the data
into lower dimensional embedding of any given dimension that can be used for downstream
analyses based on combined data. We apply another modification of GPLVM called Clus-
tered GPLVM on all datasets to come up with projection on a lower-dimensional space of a
given dimension. To make the approach scalable for large datasets, a random subset of the
original data is chosen and the dimension reduction is applied on the subset instead of the
whole data. The remaining data outside the subset are projected on the lower dimensional
space, based on the projection of the subset and nearest neighbor regression.

When the integration is required for the purpose of pseudotime ordering or the data
consist of a single cluster, all cells are assumed to belong to a single population instead of
multiple groups. When the data are of mixed type or the purpose of the data integration
is not specified, any of these two approaches can be adopted. In the case of differential
expression, the data need not be projected into lower dimensional space and the whole
data need to be adjusted for batch effects. However, we recommend tackling the problem
of batch correction and hence data integration, keeping in mind the next downstream
analysis.

SCDI takes two single-cell transcriptomic datasets along with clustering of each of them
as input and produces a joint clustering and a reduced dimensional representation of the
combined data based on GPLVM. As an optional output, SCDI produces batch corrected
data corresponding to all genes based on the cluster-specific linear batch correction. Alter-
natively, it takes the number of clusters from two datasets as input and produces clustering
for individual datasets before applying SCDI. However, it is recommended that individual
clustering for each of the datasets is provided as inputs for better accuracy of SCDI. The
reduced dimensional representation may be used for data visualization, clustering, pseu-
dotemporal ordering, spatial mapping, etc and the dimension of the output is to be defined
by the user. The batch corrected complete dataset can be used for differential expression
analysis, marker gene identification, and for many other downstream analyses. SCDI can
be easily applied on multiple datasets but for simplicity, we describe it for two datasets
only. The generalization of the algorithm to multiple datasets is straightforward. We first
perform data integration based on two datasets and then keep on adding the remaining
datasets sequentially. This approach has the drawback that the final output depends on
the ordering in which the datasets are added. Another approach is to find joint cluster
membership based on all datasets with GPLVM applied to the combined data. In that
case, a separate batch effect correction factor for all pairs of batches must be used.
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5.2.1 Dimensionality reduction

We use two variations of GPLVM together to visualize the combined data in a common
frame. First, we propose Batch Corrected GPLVM (BC-GPLVM) that performs GPLVM
with a batch correction factor given through the kernel function. Next, we propose another
variation called Clustered GPLVM that performs GPLVM with a batch correction factor as
well wise cluster-specific correction factor for each cluster. Let us assume that a scRNA-seq
dataset contains N cells and D genes. We describe these algorithms along with standard
GPLVM below.

Usual GPLVM

In probabilistic principal component analysis (PPCA)[116] setup, given a set of D di-
mensional variables {yi}Ni=1 and a K dimensional latent variable xi associated with each
observation {yi}, the model assumption is yi = Wxi+εi where W is a matrix of coefficients
of order D ×K. The likelihood of an individual observation can be written as:

p(yi|W,β) =
∫
p(yi|xi,W, β)p(xi)dxi

where p(xi) = NK(xi|0, I), and p(yi|W,xi, β) = ND(yi|Wxi, β
−2I).

Unlike the usual principal component analysis (PCA), the latent variable xis here are
assumed to be random. If we further assume that xis are independent, the marginal
distribution of yis are: yi ∼ ND(0,WW t +β−2I). This can also be viewed as a special case
of factor analysis with isotropic variance covariance matrix for εi.

In Gaussian Process Latent Variable Modeling (GPLVM), we take the reverse approach
by assuming xi’s fixed and wi’s random. So here we have,

p(yi|xi, β) =
∫
p(yi|xi,W, β)p(W )dW

By specifying a prior distribution, p(wi) = NK(wi|0, αI), we obtain a marginalized like-
lihood for yi as,

p(yi|xi, α, β) = ND(0, αxtixi + β−2I)

Now, define X =


xt1
xt2
...
xtN

 , and Y =


yt1
yt2
...
ytN

 .
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So we have,

p(Y |X,α, β) =

∫
(
N∏
i=1

p(yi|xi,W, β))p(W )dW =
1

(2π)
DN
2

exp(−1

2
tr(K−1Y Y t))

where K = αXX t+β−2I. For each of the coordinates of Y , the variance-covariance matrix
for the joint distribution of all observations Y is a constant multiple of inner product of the
matrix X with some diagonal elements added. It is customary to assume prior on xn and
usually xn’s are assumed to follow N(0, I) distribution though it can be ignored as well. If
N(0, I) prior is assumed for all xi,js, the combined log-likelihood becomes,

L = −DN
2

log(2π)− D

2
log(|K|)− 1

2
tr(K−1Y Y t)− Nq

2
log(2π)− 1

2

∑
i

∑
j

x2
i,j

This is the simplest form of GPLVM where the kernel matrix K is of the αXX t +β−2I,
i.e. the covariance matrix is induced by a linear kernel kern,m = αxtnxm. A natural
extension to this simplest form can be obtained by introducing a nonlinear kernel kern,m =
α(xn − xm)t(xn − xm).

In usual GPLVM, we consider a kernel of the form:

kn,m = α exp(−γ
2
(xn − xm)t(xn − xm)) + δnmβ

−2

where kn,m is the (n,m)-th element of K.
To optimize with respect to X, we use gradient descent algorithm as follows.

∂L

∂xij
=
∑
m

∑
n

∂L

∂kn,m

∂kn,m
∂xij

with
∂L

∂K
= K−1Y Y tK−1 −DK−1.

and

∂kn,m
∂xi,j

= 0 if m = n

= kn,m(−γ(xi,j − xm,j)) if n = i, n 6= m

= kn,m(−γ(xi,j − xn,j)) if m = i,m 6= n

= 0 otherwise
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Similarly, ∂L
∂α

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂α

, ∂L
∂β

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂β

and ∂L
∂γ

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂γ

where,
∂kn,m
∂α

= exp(−γ
2
(xn − xm)t(xn − xm)), ∂kn,m

∂β
= −2δnmβ

−3

∂kn,m
∂γ

= α exp(−γ
2
(xn − xm)t(xn − xm))(−1

2
(xn − xm)t(xn − xm))

∂L
∂xij

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂xij
− xi,j

The parameters can be estimated using gradient descent algorithm with the partial
derivatives described above. The initial values of xijs are taken as the first q principal
components of Y , if the desired dimension of the latent space is q.

Batch Corrected GPLVM

Let us assume that the data are collected in two different batches, with the observations de-
noted by Y1 and Y2 respectively and the latent variables denoted by X1 and X2 respectively.
The original observations are D dimensional whereas the latent space is q dimensional with
D >> q. If the batch effect acting in these two groups is completely linear, it can easily
be removed by adjusting the mean in Y1 and Y2. For high dimensional variables, batch
effect need not be linear for all coordinates, so it is reasonable to assume that batch effect
is nonlinear and hence mean adjustment may not work.

To reduce distance between latent variables from these two groups, we consider the
following kernel:

kn,m = α exp(−γ
2

(xn − xm)t(xn − xm)) + δnmβ
−2 − σ2

1(1− δg(m)g(n))

where g(k) is the group the k-th observation belong to and σ2
1 is the parameter taking care

of batch effects.
Here also, we estimate the parameters using gradient descent algorithm exactly like

usual GPLVM except for the fact that there is an extra parameter σ2
1 here to optimize for.

Here, ∂L
∂σ1

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂σ1

with ∂kn,m
∂σ1

= −2σ1(1− δg(m)g(n)).

Clustered GPLVM

Once the common cluster membership across datasets has been found, we can use it to
remove cluster-wise batch effects which can be possibly nonlinear. We include a cluster-
specific factor for batch effect correction in the usual GPLVM algorithm. To do this, we
assume different priors for observations coming from different clusters. Observations coming
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from different batches but belonging to the same cluster are assumed to have identical prior
distribution. Since the prior distribution assumed is normal, it is enough to assume that
the parameters µ and Σ are same for all observations within clusters across batches but
different for observations from different clusters.

Let c(i) denote the cluster id for observation i and g(i) denote the group the observa-
tion i belongs to. Define µk = Mean(x{i:c(i)=k}) and Σk = V ar(x{i:c(i)=k}) which can be
described as mean and variance of the latent variables for observations belonging to cluster
k. Also, define µk,l = Mean(x{i:c(i)=k,g(i)=l}) and Σk,l = V ar(x{i:c(i)=k,g(i)=l}).
First, we make mean and variance adjustment on latent variables for each of the observa-
tions to take care of linear batch effect across batches:

x′i = Σ
1
2
kΣ
− 1

2
k,l (xi − µk,l) + µk

We apply GPLVM with X ′ as the initial value of the latent variable and take µk and Σk as
mean and variance for the prior normal distribution for k-th cluster. Here, the log-likelihood
function is,

L =− DN

2
log(2π)− N

2
log(|K|)− 1

2
tr(K−1Y Y t)

−
∑
k

∑
i:c(i)=k

[−q
2

log(2π)− 1

2
log(|Σk|)−

1

2
(xi − µk)tΣ

− 1
2

k (xi − µk)].

In addition to the parameters in batch corrected GPLVM we have additional parameters:
µk and Σk for k = 1, 2, . . . , K with K as the total number of clusters. Here also, we use
gradient descent algorithm to estimate the parameters.

Here, ∂L
∂xij

=
∑
m

∑
n

∂L
∂kn,m

∂kn,m
∂xij
− Σ−1

k (xi,j − µjk)

where µjk is the j-th coordinate of µk and c(i) = k. At the n-th iteration,

µ̂
(n)
k = Mean(x

(n)
i:c(i)=n) and Σ̂

(n)
k = V ar(x

(n)
i:c(i)=n).

5.2.2 Joint clustering

If cluster ids for individual datasets are not provided, the algorithm first constructs two
separate clusterings for the two datasets. There are many standard algorithms available
in the literature that can perform clustering on single-cell RNA-seq data. SC3 [59], CIDR
[71], TSCAN [55] are some of the methods available. However, we have observed that
K-means clustering or graph clustering applied on reduced dimensions obtained from tSNE
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works reasonably well to cluster single-cell transcriptome data. The user can experiment
with different methods to arrive at the best possible clustering, based on human judgment
with tSNE plot.

Joining cluster centers across data

Once clustering is performed in each of the datasets, similar clusters across datasets are
anchored based on inter-cluster distances from the reduced dimensional data obtained from
BC-GPLVM. There are many ways to define distance measure between two clusters, though
all results in this work are based on average distance between all pairs of points considered
from the two clusters. However, one can consider other distance measures as well like
distance between cluster centers. Assume for simplicity that there are K1 clusters in dataset
1 and K2 clusters in dataset 2 with K1 ≥ K2. Let D = {dij : 1 ≤ i ≤ K1, 1 ≤ j ≤ K2} be
the set of all pairwise distance between clusters for these two datasets. Let di• be the vector
(dij)1≤j≤K2 and similarly d•j = (dij)1≤i≤K1 . Also define di(−j) = {dik : 1 ≤ k ≤ K2, k 6= j}.
Then cluster x from dataset 1 and cluster y from dataset 2 are joined if either of these two
conditions holds:
(1): dxy = min(dx•) and dxy = min(d•y).

(2): dxy = min(dx•) and
(dxy−mean(dx(−y)))

sd(dx(−y))
≥ λ

where λ is a tuning parameter. The parameter λ determines the flexibility with which
two clusters from different datasets can be joined. Low value of λ implies more number
of matching as well as higher probability of mismatch whereas higher values of λ implies
more strictness in joining clusters across datasets but lower chance of mismatch. If cluster
j from dataset 2 aligns with two different clusters in dataset 1, namely i1 and i2, the final
alignment of j is i1 if di1j < di2j and the alignment is i2 otherwise. It is possible that some
cluster in one dataset does not correspond to any cluster in the other dataset indicating
that the cluster is unique to that dataset.

The joining of clusters across two conditions is similar to cell type projection to a
reference transcriptome. Similar approach was used to address different problems [101, 69,
130, 4]

Assigning cluster ids to individual cells

After anchoring similar clusters across datasets, SCDI assigns identical cluster id to cells
appearing in matched clusters across datasets. All cells appearing in unmatched clusters
across datasets are provided unique cluster id specific to the cluster as well as that dataset.
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After the assignment of cells to individual clusters, the joint cluster ids are used in the
subsequent steps of dimension reduction.

5.2.3 SCDI workflow for common cell type identification

1. Start with D dimensional data from two different sources or batches: call them
X1 and X2;

2. Apply Batch Corrected GPLVM on the combined data X = (X1, X2) and call
the q dimensional output as Z = (Z1, Z2);

3. Perform joint clustering on Z1 and Z2;
4. Perform cluster-specific batch effect correction on Z by adjusting for mean and
variance on each of the individual clusters. Call the new q dimensional output Z ′;

5. Apply Clustered GPLVM on X with Z ′ as the initial value for the latent
variable and the cluster information obtained from step 2. The q dimensional
output Z ′′ in this step can be considered as the batch effect corrected output
projected in a lower dimension. tSNE can further be applied on Z ′′ for better
visualization of the data.

5.2.4 SCDI workflow for combined differential expression

1. Start with D dimensional data from two different sources or batches: call them
X1 and X2;

2. Apply Batch Corrected GPLVM on the combined data X = (X1, X2) and call
the q dimensional output as Z = (Z1, Z2);

3. Perform joint clustering on Z1 and Z2;
4. Perform cluster-specific batch effect correction on X by adjusting for gene-wise
mean and variance on each of the individual clusters;

5. Perform differential expression analysis based on X.
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5.2.5 SCDI workflow for combined pseudotime analysis

1. Start with D dimensional data from two different sources or batches: call them
X1 and X2;

2. Apply Batch Corrected GPLVM on the combined data X = (X1, X2) and call
the q dimensional output as Z = (Z1, Z2);

3. Apply Clustered GPLVM on X with Z as the initial value for the latent variable
and assuming all observations belong to a single cluster. The q dimensional
output Z ′ in this step can be considered as the batch effect corrected output
projected in lower dimension;

4. Apply pseudotime estimation algorithm on Z ′.

5.2.6 Batch correction with large number of cells

Since GPLVM involves optimization with respect to a large number of parameters, it be-
comes computationally costly as the number of cells grows. So we choose random sub-
samples XS

1 and XS
2 from X1 and X2 respectively and apply SCDI on XS = (XS

1 , X
S
2 ).

Let XC
1 and XC

2 denote the part of the dataset that are not included in XS and denote
XC = (XC

1 , X
C
2 ). Clustering is performed on the undivided data X1 and X2 separately.

The cluster ids from the original data are used as inputs implying if y1 and y2 are cluster
ids of the two original datasets, yS1 and yS2 are cluster ids of the two subsets. After applying
SCDI, let ZS = (ZS

1 , Z
S
2 ) be the output with reduced dimension after the integration.

For observations belonging to the set C, the reduced dimensions are estimated by the
randomized nearest neighbor estimator ẑi = f̂(xi) + ε̂i where f is the unknown function
mapping the original data X to the reduced dimension Z.

f(xi) is estimated by f̂(xi) = 1
K

∑
j∈NK(xi)

zj where NK(x) is the set of observations in S

belonging to the K nearest neighborhood of xi within the same cluster of xi. ε̂i is generated
randomly from N(0,Σ) distribution where Σ̂ = 1

(K−1)

∑
j∈NK(x)

(zj − z̄)(zj − z̄)t

5.3 Performance on simulated datasets

We generate single-cell RNA-seq data using Bioconductor package splatter [133]. Simu-
lations are performed under two different broadly classified categories. In the first type
of simulation, batch effects are kept uniform across clusters. In each of the four different
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scenarios, two datasets are generated containing 2, 3, 4 and 5 clusters with uniform batch
effect across clusters. Cells from the same population falling in different datasets always
belong to separate clusters in tSNE plot [76, 72] with the combined data, when tSNE is
applied on uncorrected data. Subsequently, SCDI, SMNN and Seurat are applied on these
two datasets for batch correction (Figure 5.2). In the second setup, batch effects are varied
across clusters indicating interaction between batch effect and clusters (Figure 5.3). We
use tSNE to visualize the batch corrected outputs from different methods and measure the
mixing accuracy by transfer entropy between two datasets. Barnett and Bossomaier [9]
described that log likelihood ratio statistic can be used as transfer entropy for joint dis-
tribution of two variables. We compared this statistic for goodness in mixing for different
methods.

In both setups, SCDI outperforms the other two methods. SMNN fails to identify cells
from the same cluster across datasets in both scenarios. Seurat, though correctly classifies
cells in the first type of simulation, fails to do so in the second simulation. SCDI has lowest
entropy among all methods under consideration suggesting better performance than others.

5.4 Performance on real datasets

5.4.1 Integration of pancreatic cells datasets across individuals

Single-cell RNA-seq data were collected from several human donors to create a comprehen-
sive atlas of human pancreatic cells [8]. There are many studies for bulk level expression
analysis for pancreatic cells but cellular level expression profile may help in better under-
standing of the mechanisms behind functions of pancreas and pancreas related diseases.
Integrating data from multiple individuals is necessary for increasing the effective sample
size of cells and the creation of exclusive atlas for all cell types. tSNE plot of the combined
data assigns cells into wrong clusters if the batch effect is not corrected. We apply all three
methods under consideration on these two datasets for the purpose of benchmarking. For
visualization purposes, we apply tSNE on the outputs obtained from different methods.
Cell types were identified based on other markers. To see the true performance of different
methods including ours, we calculate Rand Index between the output cluster id and the
cell types. SCDI seems to outperform the other two as revealed from the visualization in
lower dimension as well as in terms of Rand index value (Figure 5.4).
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Figure 5.2: Visualization of data integration from different methods when batch effects
is uniform: (A) Uncorrected data, (B) SCDI, (C) SMNN, (D) Seurat. Dimensionality
reduction was performed using tSNE. (E) Comparison of transfer entropy in four different
scenarios.
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Figure 5.3: Visualization of data integration from different methods when batch effects is
non-uniform: (A) Uncorrected data, (B) SCDI, (C) SMNN, (D) Seurat. (E) Comparison
of transfer entropy in four different scenarios.
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Figure 5.4: (A) tSNE plot of uncorrected data. Integration pancreatic cells by (B) SCDI,
(C) Seurat, and (D) SMNN. (E) is the comparison of Adjusted Rand Index (ARI) by
different methods. SCDI has the highest ARI among all methods.
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5.4.2 Integration of hematopoietic stem cells with datasets from
multiple labs using different technologies

Paul et al. [90] studied transcriptomic signature present in different types of hematopoi-
etic progenitor cells and how gene regulatory mechanisms influence the cellular fate of
hematopoietic stem cells that give rise to progenitors. Using multicolored FACS, they
identified Common Myeloid Progenitors (CMP), Megakaryocite-erithrocyte Progenitors
(MEP), and Granulocyte-erithrocyte Progenitors (GMP) using surface markers and pro-
filed transcriptome of 2730 cells using MARS-seq. Early-stage Myeloid progenitor cells
were sorted out based on CD41, FIt3+Csf1r+, and CMP Irf8-GFP+MHCII+ markers. A
conditional Cebpa knockout model along with a matching control was used to study the
structure of Cebpa gene in determining the fate of progenitor cells with the help of Mx1-Cre
activation. Similarly, Cebpe knockout model and matching control were used to study the
influence of Cebpe gene in cell fate determination.

Nestorowa et al. [86] profiled 1656 transcriptomes encompassing hematopoietic stem
cells(HSC) and Myeloid progenitor(MP) cells to study gene regulatory mechanism that
drives stem cells into progenitors. Some cells were also found to be of the intermediate
stage to form a continuum between HSCs and MPs. Cells were sorted with gates based on
c-Kit and Sca1 protein expression. Based on this classification there are three major cell
types: HPSC, LT-HSC, and Progenitors. Cells were collected from 10 female 12-week-old
mice and were sequenced with SMART-seq2 protocol.

After, performing quality checking and removing cells with low quality scores, tSNE plot
of the uncorrected data completely separates the two datasets. Two branches of progenitor
cells are created from Hematopoietic Stem Cells (HSC) in SMART-seq2 dataset whereas,
in the MARS-seq dataset, there are two clusters one of which can be characterized by the
abundance of Cepba knockout cells and the other can be characterized by the abundance
of CMP Flt3+ Csf1r+ and CMP Irf8-GFP+MHCII+ cells. Cepba control, Cepbe control,
Cepbe knockout, and unsorted myeloid cells are common to both clusters. We apply SCDI
with no clustering information i.e. all cells are assumed to belong to a single cluster
for both datasets. All three methods identified HSC cells from SMART-seq2 dataset as
a separate population (Figure 5.5). However, only SCDI mixed up the progenitor cells
from two populations properly. All three algorithms predict the lineage accurately in
a qualitative manner but only SCDI successfully removes the batch effect completely to
map the progenitor cells from two populations together. Both Seurat and SMNN have a
bias towards creating lumps of cells from the same dataset. tSNE plot preserves clustering
information but it does not preserve the shape of the data. The relative ordering of different
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Figure 5.5: (A) tSNE plot of uncorrected data. Integration pancreatic cells by (B) SCDI,
(C) Seurat, and (D) SMNN. Only SCDI mixes up progenitor cells from the two populations
properly.
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progenitor cells can be visualized from PCA plot (Figure 5.6) where early-stage progenitors
(CD41, FIt3+Csf1r+ and CMP Irf8-GFP+MHCII+ markers) appear at the initiation of
branches.

5.5 Discussion

As large amount of single-cell transcriptom data continue to get generated, a suitable
tool is necessary to integrate data from different sources across platforms and species.
Many challenges are involved including identification of shared as well as isolated cell
subpopulations across datasets, working with data of large sample size, integration from a
large number of sources, etc. This will serve the ultimate goal of creating a comprehensive
reference atlas of all human cells and will help the projects like Human Cell Atlas to build
up and grow. That in turn will help in understanding the tissue heterogeneity for complex
diseases like cancer, boost our knowledge on the immune response to infectious diseases
and revolutionize the field of developmental biology.

We proposed SCDI, a semi-supervised algorithm to integrate single-cell transcriptome
data from multiple sources. For datasets with subpopulations, it provides improved accu-
racy when cluster ids for individual datasets are provided as input. SCDI identifies common
subpopulations across clusters and creates a joint clustering of all the datasets combined.
We also provide the notion of batch corrected GPLVM that takes care of batch effect when
two datasets are projected in lower-dimensional space simultaneously. The joint clustering
also helps in more accurate mixing of cells from different datasets. The algorithm also takes
care of large datasets efficiently with the help of subsampling and mapping cells to most
similar clusters with the help of nearest neighbor regression.

We exhibit, with the help of splatter simulation, that SCDI can take care of batch effects
dependent on cell subpopulations while the other algorithms are not properly designed to
do so. Comparison on pancreas data shows that SCDI provides better mixing in terms of
Rand index compared to other methods. This is probably a consequence of applying batch
corrected GPLVM in an intermediate step and batch effect correction at subpopulation
level that is not manifested in principles of other algorithms. Analysis of hematopoietic
stem cells transcriptome data shows that SCDI mixes similar cells from different population
better than other methods when multiple experimental platforms are concerned.

We speculate that the method of data integration should depend on the final objective
of the integration. Hence, we propose three different ways of integration based on three
different purposes, namely: common cell type identification, pseudotime estimation, and
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differential expression analysis. Verification of the two algorithms for purposes other than
common cell type identification remains a scope for future work.

Lastly, as technology evolves with time, the scope and scale of single-cell transcriptome
data will also continue to grow. Efficient methods might be required to cope up with a
large number of datasets. Towards the goal of constructing a comprehensive atlas of all
cells, while dealing with a huge volume of data and considerable diversity of data types,
the proficient user interface is to visualize and analyze single-cell data is an element future
researchers can consider improving upon.

5.6 Code and software availability

Reproducible codes for all figures, data, and software for SCDI are available at:
http://github.com/indranillab/scdi .
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[17] Büttner,M., Miao,Z., Wolf,A., Teichmann,S.A. and Theis,F.J. (2019) A test metric for
assessing single-cell RNA-seq batch correction. Nat Methods, 16, 43-49.

[18] Cacchiarelli,D., Qiu,X., Srivatsan,S., Manfredi,A., Ziller,M., Overbey,E., Grimaldi,A.,
Grimsby,J., Pokharel,P. and Livak,K.J. et al. (2018) Aligning single-cell developmental
and reprogramming trajectories identifies molecular determinants of myogenic repro-
gramming outcome. Cell Systems, 7(3), 258–268.e3.



BIBLIOGRAPHY 145

[19] Campbell,K., Ponting,C.P. and Webber,C. (2015) Laplacian eigenmaps and princi-
pal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles.
bioRxiv, 18 Sep 2015, DOI: 10.1101/027219.

[20] Campbell,K.R. and Yau,C. (2017) Probabilistic modeling of bifurcations in single-cell
gene expression data using a Bayesian mixture of factor analyzers. Wellcome Open Res,
2: 19.

[21] Campbell,K.R. and Yau,C. (2018) Uncovering pseudotemporal trajectories with co-
variates from single cell and bulk expression data. Nat. Communications, 9(1), 2442.

[22] Cannoodt,R., Saelens,W. and Saeys,Y. (2016) Computational Methods for trajectory
inference from single-cell transcriptomics. Eur. J. Immunol., 46(11), 2496–2506.

[23] Charrad, M., Ghazzali, N., Boiteau, V. and Niknafs, A. (2014) NbClust: An R Package
for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical
Software, 61(6).

[24] Chen,H.H., Jin,Y., Huang,Y. and Chen,Y. (2016) Detection of high variability in gene
expression from single-cell RNA-seq profiling. BMC Genomics. 17(Suppl 7), 508.

[25] Chen,G., Ning,B. and Shi,T. (2019) Single-Cell RNA-Seq Technologies and Related
Computational Data Analysis. Frontiers in Genetics, 10, 317.

[26] Coifman,R.R. and Lafon,S. (2006) Diffusion maps. Applied and Computational Har-
monic Analysis, 21(1), 5–30.

[27] Contreras-Bolton,C. and Parada,V. (2015) Automatic combination of operators in a
genetic algorithm to solve the traveling salesman problem. PLoS ONE, 10(9), e0137724.

[28] Couturier,C.P., Ayyadhury,S., Le,P.U., Nadaf,J., Monlong,J., Riva,G., Allache,R,
Baig,S., Yan,X., Bourgey,M. et al. (2020) Single-cell RNA-seq reveals that glioblastoma
recapitulates a normal neurodevelopmental hierarchy. Nat Commun, 11, 3406.

[29] Davis,L. (1985) Applying adaptive algorithms to epistatic domains. IJCAI’85: Pro-
ceedings of the 9th international joint conference on Artificial intelligence, 1, 162–164.

[30] Dayton,J,B. (2019) Adversarial Deep Neural Networks Effectively Remove Nonlinear
Batch Effects from Gene- Expression Data. Brigham Young university Scholars Archive,
Thesis and Dissertations, 7521.



146 BIBLIOGRAPHY

[31] Dillies,M.-A., Rau,A., Aubert,J., Hennequet-Antier,C., Jeanmougin,M., Servant,N.,
Keime,C., Marot,G., Castel,D., Estelle,J. et al. (2013) A comprehensive evaluation of
normalization methods for Illumina high-throughput RNA sequencing data analysis.
Briefings in Bioinformatics, 14(6), 671-683.

[32] Eberwine,J., Sul,J-Y., Bartfai,T. and Kim,J. (2014) The promise of single-cell sequenc-
ing. Nature Methods, 11(1), 25–27.

[33] Editorial (2014) Method of the Year 2013. Nat Methods, 11(1).

[34] Elowitz,M.B., Levine,A.J., Siggia,E.D. and Swain,P.S. (2002) Stochastic Gene Expres-
sion in a Single Cell. Science, 297(5584), 1183-1186.

[35] Eungdamrong,N.J. and Iyengar,R. (2004) Modeling cell signaling networks. Biol. Cell,
96(5), 355–362.

[36] Fan,J., Salathia,N., Liu,R., Kaeser,G.E., Yung,Y.C., Herman,J.L., Kaper,F., Fan,J-
B, Zhang,K. and Chun,J. (2016) Characterizing transcriptional heterogeneity through
pathway and gene set overdispersion analysis. Nat Methods, 13, 241-244.

[37] Farewell,V.T., Long,D.L., Tom,B.D.M., Yiu,S. and Su,L. (2017) Two-Part and Re-
lated Regression Models for Longitudinal Data. Annual Review of Statistics and Its
Application, 4, 283-315.

[38] Fernández-Val,I. and Weidner,M. (2018) Fixed Effects Estimation of Large-TPanel
Data Models. Annual Review of Economics, 10, 109-138.

[39] Finak,G., McDavid,A., Yajima,M., Deng,J., Gersuk,V., Shalek,A.K., Slichter,C.K.,
Miller,H.W., McElrath,M.J. and Prlic,M. et al. (2015) MAST: a flexible statistical
framework for assessing transcriptional changes and characterizing heterogeneity in
single-cell RNA sequencing data. Genome Biol., 16:278.

[40] Fujita,K., Iwaki,M. and Yanagida,T. (2016) Transcriptional bursting is intrinsically
caused by interplay between RNA polymerases on DNA. Nat Commun, 7, 13788.

[41] Goldberg,D.E. and Lingle, R. Jr. (1985) Alleles, loci and the travelling salesman prob-
lem. Proceedings of the first international conference on genetic algorithms and their
applications, 154–159.



BIBLIOGRAPHY 147

[42] Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization & Machine Learn-
ing. Addison-Wesley Publishing Company.

[43] Goodman,L.A. (1954) Kolmogorov-Smirnov tests for psychological research. Psychol
Bull, 51(2:1), 160-168.

[44] Hafemeister,C. and satija,R. (2019) Normalization and variance stabilization of single-
cell RNA-seq data using regularized negative binomial regression. Genome Biol, 20,
296.
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