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Abstract

VC (Vapnik Chervonenkis) Dimension is a useful tool for measuring the power of a neural network or

some other types of classifiers. In the field of learning theory VC dimension represents the generalized power

of a neural network. From mid 20th century researchers have been interested in this work and have provided

a vast horizon of upper and lower bounds for VC dimension of a neural network. Most of the published work

assumes feed forward neural network with no skip connections to establish the upper and lower bounds of

VC dimension. In this work we establish that the upper bound of VC Dimension for neural network with

piece wise polynomial activation functions can be tighter. Along with this we proposed some other methods

for calculating VC Dimension upper bound for RVFLN (neural network with skip connections). Most of

the relevant work on VC Dimension upper bound for neural network with sigmoidal activation functions

are based on model theoretic approach or number of operations on a basic computing model. Later in this

work we give a different approach for calculation of VC Dimension upper bound for neural network with

sigmoidal activation functions. Moreover on top this we give an idea about how a theoretical test error rate

and practical test error rate depend upon on the number of layers and the number of parameters for a feed

forward neural network.

Keywords: Growth function, Shattering, VC Dimension, function approximation, bit extraction tech-

nique.
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Chapter 1

Introduction

1.1 Introduction

Neural Networks are the star performers of modern machine learning literature. So in theoretical machine

learning, researchers mainly focus on the expressive power of a neural network. The complexity of a neural

classifier depends on the number of points that can be classified correctly. VC dimension is used as a tool to

compute the sample bound for statistical PAC learning and also to measure the complexity of a classifier. VC

Dimensions where originally defined by Vladimir Vapnik and Alexey Chervonenkis in 1971. In PAC frame

model, we need to find the minimum number of samples needed during training time such that the classifier

predicts all the labels of the samples correctly. For this calculation we need VC dimension as a prerequisite

tool. For model evaluation Structural Risk Minimization (SRM) technique is important in which we use VC

dimension. Also in computational geometry VC Dimension is used to determine the critical parameters in

the size of ε−nets, which determine the complexity of approximation algorithms. Beside that, VC dimension

also predicts a probabilistic upper bound on the test error rate of a classifier model.

In general we can say VC Dimension upper bound is more than the practical test error bound. During the

inception phase of neural network, people mainly used linear or piece-wise polynomial activation function.

But recently, the data and its distribution are more complex than previous, so in a classification task based

on neural network we use sigmoid, tanh activation functions instead of just linear function. For this reason

the calculation of VC Dimension also becomes more harder than previous bounds. So instead of the usual

approach, researchers proposed some model theoretic approach for calculations. As of now, we know general

feed forward neural network (FNN) takes too much time during back propagation. To overcome this, some

scientists discovered a type of neural network which is a combination of SLFN (Single Layer Feed Forward

Neural Network) and functional link, which is famously known as RVFLN (Random Vector Functional Link

Network). In this network from input layer to hidden layer the weights are randomly assigned so that

during back propagation weights are not updated. And also from input layer to output layer there are skip

connections. For this structural advantage RVFLN takes less time in back propagation with respect to a

FNN. Researchers have proposed many bounds, among those some are tighter than others. So we did a study



which will give assurance about the trade off between these bounds. And at last we proposed a procedure

to handle VC Dimension for sigmoidal neural network using algebraic topology concepts. But nowadays we

see that deep learning has a great importance, so we can extend our learning theory concepts in this field.

Because theoretical foundations are the basis of every practical concept.

1.2 Our Contributions

Our contributions are summarized as follows.

• In the paper [2], the authors have proposed an idea about whether O(w logw) and O(w2) bound

for neural network can be made closed enough, where w is the total number of parameters of the

corresponding neural network. But in the paper [18], the author constructed a neural network which

upper bounded by w logw. The author of the paper [2] constructed a network which achieves the

bound w2, but the network takes inputs from R2 and R. Here we propose a construction of a neural

network which takes input from Rm, m ≥ 2 and shatters the same size set. This network only consists

of threshold and linear gates.

• This thesis also provides a relationship between number of parameters and VC Dimension for input

domain Rm, m ≥ 2 of a neural network. Here this trade off depends upon the input dimension m; the

constructed network contains threshold, linear, multiplication and division gates. Basically a network

with multiplication and division gate comes when we are working with network with continuous (such

as sigmoid) activation function.

• We made the VC upper bound tighter than the existing one for neural network with piece wise poly-

nomial activation functions.

• We have also proposed some techniques for calculating VC upper bound for neural network with S

type activation functions (mainly sigmoid and tanh).

• Also for RVFLN, we suggest an idea for calculating VC dimension upper bound.

• We have made a comparison among different upper bound on VC dimension for similar type of network

(having same set of activation functions), and also for neural network with different configurations of

activation functions.

• We have drawn a conclusion on the fact of relationship between theoretical test error rate and practical

test error rate for a neural network with classification task. We have reached to this conclusion by

performing experiments on some benchmark data sets.

1.3 Thesis Outline

Chapter 2 covers a brief details of growth function, shattering, VC dimension. Here we discussed about

set theoretic as well as functional way definition of the above mentioned terms. This chapter also includes

some general properties of those same. Chapter 3 contains different ideas of calculating VC upper and lower

bound for different types of feed forward neural network. This chapter also elaborates importance of VC

dimension on machine learning. Chapter 4 covers description of Random Vector Functional Link Network

10



(RVFLN). In Chapter 5, we discuss our proposed ideas and constructions. In Chapter 6 we also suggest a

scope of future work on this field.
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Chapter 2

Preliminaries and Background

2.1 Growth function and Shattering

We denote the sample space by X ⊂ Rm which is a collection of data points or samples. The sample space

also known as input space. And collection of activation functions of a particular type known as hypothesis

space which is denoted by H. The cardinality of H is finite or infinite. If it is finite we can use decision

tree as a complexity measure and for infinite case we use V C (Vapnik Chervonenkis) Dimension. The V C

dimension is geared towards binary classification.

Definition 2.1.1 (Growth Function). The growth function ΠH : N → N for a hypothesis set H is defined

by

ΠH(m) = max
(x1,x2,......,xm)⊂X

|{(h(x1), h(x2), ..., h(xm)) : h ∈ H}|,∀m ∈ N.

Basically ΠH(m) is the maximum number of ways m points can be classified using H.

Set Theoretic Definition: Let H be a set family and C be a set, then ΠH(m) := maxC:|C|=m |H ∩C|.

Definition 2.1.2 (Shattering). 2m is the maximum number of classification of m points by H. We say that

a sample space X of length m shattered by hypothesis space H if this maximum value is attained, that is H

gives all possible classifications of X.

Set Theoretic Definition: Let S be a set family (set of sets) and C a set. Then S∩C := {s∩C|s ∈ S}.
we say a set C is shattered by S if |S ∩ C| = 2|C|.

Example 2.1.1. No 4 element set S ⊂ R2 can be shattered by C = all open half spaces. But every non

collinear three element set can be shattered.



Figure 2.1: Four points can not be shattered by half spaces

2.1.1 Properties

Consider each function in function class F takes value in some finite set Y . Let F ⊂ Y X be a class of Y valued

functions. F|x1
m is the function class F restricted to x1, ..., xm, i,e F|x1

m := {(f(x1), ....., f(xm)) : f ∈ F}.
F|x1

m is finite and |F|x1
m | ≤ min{2m, |F |}. Define ΠH(m) := maxx1

m∈X |F |xm1 |. Note that ΠH(m) ≤ |Y |m.

Lemma 2.1.1 ( [36]). Let F 1 ⊂ Y X1 and F 2 ⊂ Y X2 be two function classes. Let F = F 1 × F 2 be their

Cartesian product. Then

ΠF (m) 6 ΠF
1(m).ΠF

2(m).

Proof. Fix xm. By definition of cartesian product we can write

|Fxm | = |F 1
um |.|F 2

vm |

Now taking max in both sides, which imply

ΠF (m) 6 ΠF
1(m).ΠF

2(m)

Since xm is arbitary, this completes the proof.

Lemma 2.1.2 ( [36]). Let F 1 ⊂ Y X1 and F 2 ⊂ Y Y1
2 be two function classes. Let F =

(
F 2 ◦ F 1

)
be their

composition. Then

ΠF (m) 6 ΠF
1(m).ΠF

2(m).

Proof. Fix xm ∈ Xm. By definition of F , we have

Fxm = {(f2(f1(x1)), f2(f1(x2)), ..., f2(f1(xm))) : f1 ∈ F 1, f2 ∈ F 2}

=
⋃

v∈F 1
xm

{(f2(v1), f2(v2), ......, f2(vm)) : f2 ∈ F 2}

Now we have,

|Fxm | 6
∑

v∈F 1
xm

|{(f2(v1)), f2(v2)), ........., f2(vm)) : f2 ∈ F 2}|

6
∑

v∈F 1
xm

ΠF
2(m)

= |F 1
xm |.ΠF

2(m)

ΠF (m) 6 ΠF
2(m).ΠF

1(m)

Since xm is arbitary, this completes the proof.
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2.2 VC Dimension

Cross Validation, Bayesian Information Criteria, Structural Risk Minimization are the methods for evaluating

a machine learning model. Among all these methods which model selection method is best? Understanding

which learning machines are more less power full under which circumstances. To reach a conclusion we can

focus on V C Dimension as a process.

V C Dimension for neural network increases with number of parameters and also depends upon non

linearity and depth of the network.

Definition 2.2.1 (VC Dimension). V C Dimension of H is defined by

V C(H) = max{m : ΠH(m) = 2m}.

Basically it is the size of the largest set that can be fully shattered by H.

Equivalently, S ⊂ U where U is a subset of Rm for some m belongs to natural number. And the concept

class C is collection of subsets of U :

V C(H) := sup{cardS : S shattered by C}.

Example 2.2.1. V C(convex d gons) = 2d + 1. Consider point on a circle and consider the sequence of

alternating sign, then 2d+ 2 points can not be shattered.

Example 2.2.2. V C(intervals in R) = 2. Any set of two points can be shattered by four points.

Example 2.2.3. V C(axis aligned rectangles) = 4. Consider a five points configuration like four points

are in boundary of a rectangle with same sign and other is inside the rectangle with different sign. So it can

not be shattered.

Example 2.2.4. 2d+1 points on a circle can be shattered by a d gon. If |positive points| ≤ |negative points|,
then polygon inscribed the circle and if |positive points| ≥ |negative points|, then circle is inscribed in a

polygon.

Example 2.2.5. V C(hyperplanes in Rd) = d+ 1.

Example 2.2.6. Consider the parametrized class F = {f : f(x) = sign(sin(θx)) : θ ≥ 0}. Then V C(Fsin) =

∞, where X = [0, 2π].

Proof. Consider the points {(2π10−i, yi), i = 1(1)n}. Now fix w = 1
2 (1 +

∑n
i=1( 1−yi

2 10i)). Now yj = −1 and

xj = 2π10−j , find wxj which is equal to π(1 + ε) + 2kπ. From π < π(1 + ε) < 2π implies sin(wxj) < 0. It

is true for any n ∈ N. This completes the proof.

Example 2.2.7. Now consider 3 points in 2−D euclidean plane. Hypothesis H = set of straight line. Two

classes y = {1,−1}. For every 8 labelling there exit a straight line to classify these 3 points. Therefore 3

points can be shattered. Now consider any 4 points. But this can not be shattered by this H. So V C(H) = 3.

14



Figure 2.2: Three points shattered by straight lines

2.2.1 VC Definition of Function Classes

The concept of this part has taken from the paper [26]. Let V ⊂ Rn for some n ∈ N. A is a collection of

subsets of V which is known as concept class. The concept based definition of V C Dimension is raised in

combinatorics and computer science. It is useful to provide an equivalent formulation in terms of functions,

which is the way in which the subject arises in statistical estimation.

Instead of A we may define a function class G = {g|g : V → {0, 1}}. To each g ∈ G we associate the set

Ag := {v ∈ V : g(v) = 1}.

And thus to G we might associate a concept class,

AG := {Ag : g ∈ G}.

we define

V C(G) := V C(AG).

Conversely to any concept class A we may formulate a function class G in such a way that A = AG (just

take characteristics function of subsets).

For a set of real valued function class G, we define

V C(G) := V C ({H ◦ g, g ∈ G}) , where H(x) = Heaviside function.

According to this definition, a subset W = {w1, w2, ...., wn} ⊂ V shattered means, for any combination

e = (e1, e2, ...., en) ∈ {0, 1}n, there must exists some function g = ge ∈ G which has precisely the same sign,

i.e H(g(ui)) = ei.

2.2.2 Parametric Classes of Functions

The paper [26] describes the following topic in a gentle way. Suppose we have a function

α : W × U → R

15



where W = Rρ, ρ is number of weights or parameters and consider a parameter vector w = (w1, w2, ....., wρ) ∈
W . For each choice of parameter vector we get a function:

Fα := {α(w, .) : w ∈W}.

and we also define

V C(α) := V C(Fα).

Example 2.2.8. Consider the map α : R2 ×R→ R given by

α((c, d), x) := c + dx.

which imply U = R and C = All open infinite intervals and empty set.

Example 2.2.9. Consider the function α : R3 ×R2 → R given by

α((c, d, e), (x, y)) := c + dx + ey.

which also suggests that U = R2 and C = open half spaces.

2.3 Linear Parameterizations

Linear parametrized classes account for vector spaces. And the dimension of this classes is the number of

independent parameters. F is a finite dimensional vector space of functions. Dim(F ) equal to m iff there

exists {f1, f2, ...., fm} ⊂ F such that the following matrix is non singular and any (m+ 1) by (m+ 1) matrix

of this form is singular.

M =


f1(u1) f1(u2) ...... f1(um)

f2(u1) f2(u2) ...... f2(um)

. . ........... .

. . ....... .

fm(u1) fm(u2) ...... fm(um)


A finite subset V = {u1, u2, ...., um} ⊂ U is shattered by F if there exit 2m functions f1, f2, ...f2m such that

the matrix formed accordingly to M gives all possible 2m sign patterns i,e each row vector of the matrix

gives one sign pattern.

Lemma 2.3.1 ( [26]). Suppose F is a vector subspace of RU , then dim(F ) = V C(F ).

Proof. Suppose {f1, f2, ..., fm} is a linearly independent set and there exit a set V = {v1, v2, ....., vm} such

that the matrix M has rank m. To show V is shattered it is enough to proof there exit some function f ∈ F
such that H(f(ui)) = ei where e ∈ {0, 1}m . M has rank m imply there exit v ∈ Rm such that vTA = e. So

f = vT (f1, f2, ...., fm) has given the sign pattern same as e. Therefore V C(F ) greater than equal to m. So

dim(F ) 6 V C(F ).

Conversely, assume V C(F ) is m. So there exit a set S = {s1, s2, ..., sm} ⊂ U is shattered by F . So by

definition total 2m rows of the matrix gives all possible sign pattern. And from this 2m by m matrix we will

get a m by m matrix which is non singular, so dim(F ) is at least m. We conclude that V C(F ) 6 dim(F ).
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2.3.1 Affine parameteization

According to paper [26], the concept of this topic describe as follows. Consider S = {u1, u2, ...., um} ⊂ U is

shattered by F and F is a linear space, then the following result holds:

A. For any e = {0, 1}m, δ > 0, there exists some function f ∈ F such that f(ui) > δ if ei = 1 and f(ui) < −δ
if ei = 0.

Consider F is a affine subspace, then G+ f0 = {g+ f0 : g ∈ G} where G is a vector subspace of functions

and f0 is a arbitary fixed function. Then V C(F ) = V C(G) = dim(G). Enough to show a subset is shattered

by G iff it is shattered by F .

If there exists g, h in F such that H(g(ui) + f0(ui)) = ei,∀i and H(h(ui) + f0(ui)) = 1 − ei,∀i. Then

(g − h)(ui) > 0 when ei = 1 otherwise (g − h)(ui) < 0. Suppose S is shattered by F then make a function

f = g− h where g, h ∈ G which has the property H(f(ui)) = ei. For other direction we consider g ∈ G such

that g(ui) > δ if ei = 1 and g(ui) < −δ if ei = 0, then the result follows.

2.3.2 Perceptron

Here F = all affine function from Rn to R. So f(u) = f(u1, u2, ...., un) = a0 + a1u1 + ...+ anun.

These functions are linearly parametrized by (a0, a1, ...an) ∈ Rn+1. So according to Lemma 2.3.1 V C(F )

is n+ 1.

Another approach: Consider {u1, u2, .., un} are inputs and {y1, y2, ..., yn} are the corresponding labels.

We can define w1, w2, .., wn and bias unit b to ensue sign(wuk + b) = yk for all k. Which means

sign(wuk + b) = sign(b+

n∑
j=1

uk[j])

So we choose b = 0 and wk = uk for all k, k = 1(1)n.

2.4 VC Dimension Related Results

2.4.1 Single Hidden Layer with Fixed Input Weights:

...
...

u1

un

b1

bm

y

d0

a1,1

a1,m

an,1

an,m

d1

dm

Input

layer

Hidden

layer

Output

layer

Figure 2.3: Neural net with activation function σ.
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The proof of this part has mentioned in [26]. Here M is the m by n input to hidden layer matrix. Assume

d′is are the hidden to output layer weights and a′i,js for i = 1(1)m and j = 1(1)n are the input to hidden

layer weights, b1, ...., bm are the hidden layer bias and d0 is the output layer bias.

y = f(u) = d0 +

m∑
k=1

dk.σ(Mk.u+ bk)

Now weight matrix is MT = [a(i, j)](n×m) and input vector is u = (u1, u2, ..., un). And also σ is a arbitary

activation function. Consider M1, ....Mm are the row vectors of M which is fixed and also biases are fixed.

Therefore the network is span of 1 and σ(Mi.u + bi) where i = 1(1)m. Now by Lemma 2.3.1, we conclude

that dim(F ) 6 m+ 1.

We can say the bound is tight when σ is ”tanh” which follows from the following remark.

Remark 2.4.1. Assume that (Mi, bi) 6= (Mj , bj) for all i 6= j and that Mi 6= 0 for all i. σ = tanh and

consider the remaining as above network. Then V C(F ) = m+ 1.

If a network have no biases. For an analytic function σ, and for such a net VC dim is n iff σ is not a

polynomial.

Lemma 2.4.1 (Sauer). H be a hypothesis space with V C(H) = d, then for all m ∈ N , ΠH(m) 6
∑d
i=0

(
m
i

)
.

Proposition 2.4.1 ( [37]). Let H be hypothesis space with V C(H) = d, then ∀d 6 m,

ΠH(m) 6 (em/d)d 6 O(md).

Proof.

d∑
i=0

(
m

i

)
6

d∑
i=0

(
m

i

)
(m/d)d−i

6
m∑
i=0

(
m

i

)
(m/d)d−i

= (m/d)d
m∑
i=0

(
m

i

)
(d/m)i

= (m/d)d(1 + (d/m))m

6 (m/d)ded.

So either V C(H) = d < +∞ and ΠH(m) = O(md) or V C(H) = +∞ and ΠH(m) = 2m.

VC of Piece-wise polynomial function: Consider each polynomial is a fixed polynomial. Then the

network computes a parametrized polynomial in the input variables, which is a linearly parametrized class

(i,e a vector space), follows that the V C is bounded.
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2.5 Basic Properties of VC Dimension

Assume F is a set of functions from U to {0, 1}. Then for each n and for all sequence {u1, u2, ...., un}, the

number of total classification possible for this sequence as a input sequence is:

γ(u1, u2, ......, un) := card{(f(u1), f(u2), ..., f(un))|f ∈ F}

So the n element set is shattered iff γ attains its maximum value 2n. If VC dimension if finite then γ grows

polynomially.

For each two non-negative integers d 6 n, we define Φ(n, d) is the total number of subsets of a subset

has cardinality at most d of a n element set.

Φ(n, d) :=

d∑
k=0

(
n

k

)
6 2.

nd

d!
6 (en/d)d

Lemma 2.5.1 ( [26]). Let 1 6 n and 0 6 d 6 n, and suppose that the matrix C ∈ {0, 1}n×r is so that all

its columns are distinct, where r is an integer satisfying Φ(n, d) < r. Then there is some d+ 1 by 2d+1 sub

matrix of C whose columns are distinct.

Theorem 2.5.1 (Vapnik-Chervonenkis-Sauer-Shelah). Suppose V C(F ) = d <∞. Then for each d 6 n and

all sequences {u1, u2, ...., un}
γ(u1, u2, .., un) 6 Φ(n, d).

[26]. We directly derive from the Lemma 2.5.1. Suppose V C(F ) = d, then consider any sequence {u1, u2, ...., un},
with d 6 n and define k = γ(u1, u2, .., un). Now we rearrange all the possible classification as rows in below:

M =


f1(u1) f1(u2) ...... f1(un)

f2(u1) f2(u2) ...... f2(un)

. . ........... .

. . ....... .

fk(u1) fk(u2) ...... fk(un)


If the result does not follows means Φ(n, d) < k. Then from Lemma 2.5.1 there is a sub matrix of order 2d+1

by d + 1. And as each row are distinct so we get a subset of size d + 1 which is shattered, contradicts our

hypothesis. So the result follows.

Theorem 2.5.2 ( [7]). A. Consider a parametrized class of binary valued function,

Ff = {x→ f(x, θ) : θ ∈ R}, where f : Rm × Rp → {+1,−1}.

Suppose for each x, f(x, .) can be computed using no more than t operations of the following kinds:

• +,−,∗,/

• =,<,>

• output +1 or −1.

Then V C(Ff ) 6 4p(t+ 2).

B.Consider all the above operations with one more operation x→ exp(x). Then V C(Ff ) = O(p2t2).

19



2.5.1 Boolean Closure

One technique to evaluate upper bound on the VC Dimension. Here concept class arises as unions, intersec-

tions and other Boolean operations. We have found F1, F2, ......, Fm are m classes of functions U → {0, 1}.
And t : {0, 1}m → {0, 1} is a fixed boolean function. We define:

t(F1, F2, ....., Fm) := {t(f1(.), f2(.), ....., fm(.))|fi ∈ Fi, i = 1, 2, ....,m}.

Lemma 2.5.2 ( [26]). With cm = 2m log(em), a constant which does not depend on the classes Fi nor on

the Boolean function t,

V C(t(F1, F2, ...., Fm)) 6 cm max
i=1,2,...,m

{V C(Fi)}.

Proof. Suppose S ⊂ U is shattered and |S| = n. Each Fi is a set of functions from S to {0, 1}. Define

F := F1 × F2 × ....... × Fm. So F is a function from S to {0, 1}m. Since F → t(F1, ..., Fm) : f1, .., fm 7→
t ◦ (f1, .., fm) is onto,

card t(F1, ..., Fm) 6 card(F ) = Πi card(Fi).

Also di = V C(Fi) is finite for all i. Now by Theorem 2.5.1

card(Fi) 6 (
en

di
)di ,∀i

Let d = max
i=1,2,...,m

di, which gives

card t(F1, ..., Fm) 6 (
en

d
)dm

As S is shattered by F , 2n 6 ( end )dm.

Composition Suppose we have F = {f |f : U → V } and G = {g|g : V →W} and we define

G ◦ F := {g ◦ f |g ∈ G, f ∈ F}

a set of function from U to W . We assume given ”growth functions” for each class, which bound the number

γ of possible classifications, that is, two functions p and q so that

∀S ⊂ Uwith card S 6 n, card F |S 6 p(n).And ∀R ⊂ V with card R 6 n, card G|R 6 q(n).

where p and q are two growth functions.

Lemma 2.5.3 ( [26]). For each S ⊂ U with card S 6 n, card(G ◦ F )|S 6 p(n)q(n).

Proof. We already proved it before. Now we will give a new idea to proof it. Let S = {u1, ..., un}. Choose

a subclass F0 = {f1, ..., fp(n)} of F such that F0|S = F |S . We consider the following subset of V

Ri := {fi(u1), ...., fi(un)}

for each i = 1(1)p(n). For each Ri there is Gi = {gi1, ..., giq(n)} of G so that Gi|Ri = G|Ri . Now take

g ◦ f ∈ G ◦ F . Consider i and j such that f |S = fi|S and g|Ri = gij |Ri. Thus (g ◦ f)|S = (gij ◦ fi)|S . So we

get

(G ◦ F )|S = {gij ◦ fi|i = 1(1)p(n), j = 1(1)q(n)}.
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This completes the proof.

2.6 VC Related Results for Multilayer Neural Net

As an application of Lemma 2.5.3, the following result holds for neural network with binary activation

functions. This bound is formulated by Cover (1968) and also obtained in Baum and Haussler (1989).

Maass (1994) and Sakurai (1993) showed that this bound is tight. Maass’s construction follows a network

with three layers and binary inputs. Sakurai used two layers and arbitary real numbers as input.

Theorem 2.6.1 ( [26]). The class of functions computed by multilayer neural networks with binary activa-

tions and ρ weights has VC dimension O(ρ log(ρ)).

To finding VC lower bound of two layered neural network with tanh activation functions we use the below

theorem. But here all the parameters (weights, bias) and input is restricted to a open subset in real number

containing origin.

Theorem 2.6.2 ( [22]). Let F be a class of two layer feedforward neural networks with k hidden units with

tanh activation function, input space X := {(x1, ..., xn) ∈ Rn : |xi| < C}, C > 0 and k(n + 2) + 1 weights

restricted to an open set which include the origin. Then V C(Fθ) ≥ µ where µ = (k − 1)(n + 1) + 1 is the

number of weights of a network with n− 1 inputs and k − 1 hidden units.

Since the network with sigmoid activation function is proportional to a network with tanh activation

function as it is a translation of weights, so this result holds for sigmoidal network also. The VC dimension

of k-term radial basis function has been shown at least k by Anthony and Holden (1993). When centers

are not adjustable, this bound is tight but when the centers are adjustable the below theorem gives a lower

bound of VC dimension.

Theorem 2.6.3 ( [22]). Let F be a k− term radial basis function with gaussian basis functions. If the input

space is Rn, then V C(Fθ) ≥ µ where µ = kn − n is the number of parameters in a k − 1 term radial basis

function with n− 1 inputs.

The below theorem for VC upper bound of neural network with linear threshold functions does not

depends upon depth of the neural network. So according to this theorem the power of a classifier does not

depends upon the depth of this classifier (mainly neural network).

Theorem 2.6.4 ( [35]). Fp,k be the class of functions computed by a feed forward network of linear threshold

functions, with k computation units and p parameters. Then for p 6 n,

ΠFp,k(n) 6 (enk/p)p

and hence V C(Fp,k) < 2p log2(2k/ ln 2).

Proof. Fix a set of n input vectors x1, x2, ..., xn. Consider topological ordering of the computation units. For

computation unit l, let pl be no of parameters and let Dl(S) be the no of distinct states (i,e parameter settings

that compute distinct mappings {x1, x2, ..., xn} → {+1,−1}l from input vector to outputs of computation

units up to the l′th).

• D1(S) 6 (en/p1)p1 .

21



• Dl(S) 6 Dl−1(S)(en/pl)
pl .

• Hence Dk(S) 6 Πk
l=1(en/pl)

pl and log(ΠFp,k(n)) 6
∑k
l=1 pl log(en/pl).

• bound maximized, log(ΠFp,k(n)) 6 p log(enk/p).

This completes the proof.

VC lower bound for two layered neural network with linear threshold functions follows from the below

mention theorem. This bound only depends upon number of computation units and number of weights.

Theorem 2.6.5 ( [35]). Fd,k be the class of functions f : Rd → {+1,−1} computed by a two layer feed

forward network of linear threshold functions, with k computation units(p = (d+2)k+1). Then V C(Fd,k) =

Ω(p). A more involved argument shows that V C(Fd,k) = Ω(p log(k)).

Proof. The idea of proof is given below:

• Arrange kd points in k well separated clusters on the surface of a sphere in Rd.

• Ensure d points in each cluster are in general position.

• For each cluster, fit the decision boundary (hyperplane) of a hidden unit to intersect all d points.

Oriented so that the unit has output 1 at the centre of the sphere.

• Choose the parameters of the output unit so that it computes the conjunction of its k inputs.

• By perturbing the hidden unit parameters, it is clear that 2kd classification can be computed.

This completes the proof.

Remark 2.6.1. Consider the class F of {−1, 1} valued functions computed by a network with L layers, p

parameters, k computation units with the following non linearities:

• Piece-wise constant(linear threshold) = O(p).(Baum,Haussler- 1989)

• Piece-wise linear = O(p2).(Harvey,Liaw,-,-2017)

• Piece-wise polynomial = O(pL2).(Maiorov,Meir - 1998)

• Sigmoid = O(p2k2).(Karpinsky,Macintyre - 1994)

2.7 Counting Weights

2.7.1 Multilayer Nets with both H and Linear activation

The number of regions grown by n hyperplanes is a polynomial of nd, d is the dimension of the space. Let

Ψ(n, d) be the largest no of regions into which n hyperplanes can partition Rd. In other words Ψ(n, d) is

the best bound for number of connected components created by H1, H2, ...,Hn in Rn of Rn − (
⋃n
i=1Hi).

The argument has given for neural network with binary activation functions can not be apply to real

valued activation functions. Because here the total number of functions on a set of size is n is no more than

finite. To overcome these difficulties we follow the below mentioned theorem.
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Lemma 2.7.1 ( [26]). For n ≥ d, Ψ(n, d) 6 Φ(n, d).

The below Lemma is a construction of a special type of neural network which is used for the proof of

Theorem 2.7.4. This result also holds for neural network with skip connections and without skip connections.

Lemma 2.7.2 ( [26]). The network has two H activations and one linear function at a first level, and a

linear function at the top level. Suppose that there are a total of g heaviside gates (including one at the top

level). Then there exist r 6 g2g−1 Boolean functions of the form

Qi(w, u) = H(Li(w, u)),

where each Li is an affine function of u with parameters w and a boolean function b of r arguments, such

that

H(β(w, u)) = b(Q1(w, u), Q2(w, u), ...., Qr(w, u)), for all (w, u).

The below theorem gives a direct calculation of growth function bound instead of using the concept of

vector space dimension for parameters. But this bound only holds for neural network with linear threshold

functions.

Theorem 2.7.1 ( [35]). For the class of linear threshold function,

ΠFd(n) = 2

d∑
i=0

(
(n− 1)

i

)

Proof. Fix n points {x1, x2, ..., xn} ∈ Rd. Divide the parameters space of {(θ, θ0)} = Rd+1 into cells that

give the same classification of the points, and count the no of these equivalence classes using a geometric

argument.

• Assume the points in S are in general position, i,e all subsets of {
(
x1

1

)
,
(
x2

1

)
, ....,

(
xn
1

)
} of size up to d+1

are linearly independent. No three in a line, no four are in a plane.

• For each xi, define the hyperplane Pi = {(θ, θ0) ∈ Rd+1 : θTxi + θ0 = 0}.

• In order for (θ, θ0) and (θ1, θ0
1) to label xi differently, they must lie on opposite sides of Pi(neither on

Pi). Thus |F (xi
n)| = CC(Rd+1 −

∑n
i=1 Pi), where CC means connected components.

• We define C(n, d+ 1) := CC(Rd+1 −
∑n
i=1 Pi).

• First C(1, d) = 2.

• Next C(n+ 1, d) = C(n, d) +C(n, d− 1). We have n planes in Rd and add (n+ 1)’th. It splits some of

the C(n, d) cells into two, and leaves some of them intact. The number that are split by Pn+1 is equal

to the no of connected components of Pn+1 −
∑n
i=1 Pi which is C(n, d− 1).

• C(n, d) = 2
∑d−1
k=0

(
(n−1)
k

)
.

This completes the proof.

The definition of VC dimension for function class F implies that V C(F ) 6 log2 |F |, when |F | is finite.

But for some infinite function classes the bound is finite. To reach this argument we follows the below

mention two theorems.
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Theorem 2.7.2 (Wenocur and Dudley( [27])). V C(N) = n + 1 if N consists of a single linear threshold

gate with n inputs.

Corollary 2.7.1. A linear threshold gate with n inputs can compute at most |X|n+1 + 1 different functions

from any set X ⊂ Rn into {0, 1}.

As a conjecture we know that the VC dimension can not be greater than the number of parameters. So

the below bound can be improved to O(w). Hence with regard to the VC-dimension it is fair to say that a

neural net can be ”more than the sum of its parts.”

Theorem 2.7.3 ( [27]). Let N be an arbitrary feedforward neural net with w weights that consists of linear

threshold gates. Then V C(N) = O(w. log(w)).

Proof. Consider S be the input vector of dimension m of N . By the corollary 2.7.5 a gate g in N can

compute at most |X|fan−in(g)+1 + 1 different functions from any finite set X ⊂ Rfan−in(g) into {0, 1}. Hence

N can compute at most Πg gate in N (mfan−in(g)+1 + 1) ≤ m2w different functions from S into {0, 1}. If

S is shattered by N then N can compute all 2m functions from S into {0, 1}. Then 2m ≤ m2w implies

m ≤ 2w log(m). From log(m) = O(log(w)), we get m = O(w log(w)).

The below theorem is a counterpart of the theorem 2.6.1. This upper bound only depends upon number

of weights. This network contains binary as well as linear functions as its activation function.

Theorem 2.7.4 ( [26]). The class of functions computed by multilayer neural networks with binary as well

as linear activaton and ρ weights has V C dimension O(ρ2).

The below Lemma shows that the upper bound for Theorem 2.7.4 can be attained. This Lemma gives

an particular type of architecture to proof the above mentioned claim.

Remark 2.7.1. The above bound is tight for the given network. Find a family of maps βρ where each has

cρ linear and threshold units and each constitute a network architecture. So V C(βρ) = ρ2 for each ρ. Define

βρ = {w ∈ R|w =

ρ∑
i=1

bi/2
i, b1, b2, ...., bρ ∈ {0, 1}}.

And

Sρ := {1, 2, ....., ρ}2.

And also define βρ : Rρ ×R2 → R,so that for each w ∈ Λρ and for each (i, j) ∈ Sρ

βρ((w1, w2, ...., wρ), (i, j)) = i′th bit of wj .
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Chapter 3

VC Dimension of Neural Networks

We will formalize our discussion in somewhat more abstract terms. This chapter will give us different

ideas of calculating VC upper bound for different type of neural networks.

3.1 VC Dimension of Piece wise Polynomial Networks

Here the units of neural network contains piece wise polynomial activation functions, specially we will discuss

about piece wise linear like ReLU function. First part will give a idea of proof of VC upper and lower bound.

The second part of this section will give more tighter bound of the first part of this section.

3.1.1 Linear VC Dimension Bounds for Piece wise Polynomial Network

Goldberg and Jerrum (1995) have shown that the VC upper bound for neural network with piecewise

polynomial activation functions is O(W 2). Koiran and Sontag (1997) have demonstrated a network with

piecewise polynomial activation functions has VC lower bound Ω(W 2). But this proof assume a fact that

the number of layers can grow with W . But in pratical situation, this number is a small constant. Now the

question is whether this bound can be improve?

Theorem 3.1.1 (Upper Bound [1]). Consider a network of real inputs, upto W parameters, upto k com-

putational units arranged in L layers, a single output unit with identity activation function, and all other

computation units with piece wise polynomial activation functions of degree l and with p break points, for

any positive integer W , k 6 W , L 6 W , l and p. F be the class of real valued functions computed by this

network. Then

V C(sgn(F )) 6 2WL log(2eWLpk) + 2WL2 log(l + 1) + 2L

and also if p, l are fixed and since L,k are O(W ), implies that

V C(sgn(F )) = O(WL logL+WL2)

Proof. The below part will give us a idea of the whole proof which has discussed in the main paper. Basically,



this bound holds for piece wise polynomial neural network.

• Fixed x as an input, output of the network is f(x, a) corresponds to a piece wise polynomial of

parameter a and degree of this polynomial no more than (l + 1)L−1.

• Parameter domain A = RW can be split into regions, in each of which the function f(x, .) is a polyno-

mial.

• To obtain an upper bound of the number of sign assignments, that can be attained by varying the

parameters of a set of polynomials.

• x1, x2, ..., xm are m arbitary points.

• Target is bound K = |{(sgn(f(x1, a)), ...., sgn(f(xm, a))) : a ∈ A}|.

• If we consider a partition S1, S2, ..., SN of parameter domain A.

• Then K 6
∑N
i=1 |{(sgn(f(x1, a))..., sgn(f(xm, a))) : a ∈ Si}|.

• Choose partition such that within each region f(x1, .), ..., f(xm, .) are all fixed polynomials of degree

no more than (l + 1)L−1.

• Then each term of the summation less than equal to 2((2em(l + 1)L−1)/W )W .

• Construct the partition and determine an upper bound of its size.

• Let S1 be a partition of A such that, for all S ∈ S1, there exists constants bh,i,j ∈ {0, 1} for which

sgn(ph,xj (a)− ti) = bh,i,j ,∀a ∈ S, where j ∈ [m], h ∈ [k1], i ∈ [p].

• ti are the break points of the piece wise polynomial functions and ph,xj = ah.xj + ah,0 where ah ∈
Rd, ah,0 ∈ R are the weights of the h′th unit in the first layer.

• S1 is determined by only parameters of the first hidden layer.

• Clearly, for a ∈ S, the output of any first layer unit in response to an xj is a fixed polynomial in a.

• Let W1, ....,WL = W be the number of variables used in computing the unit outputs up to layer

1, 2, ..., L respectively, and k1, .., kL = 1 be the number of computation units in layer 1, 2, ..., L respec-

tively.

• Choose S1 so that |S1| is no more than the number of sign assignments possible with mk1.p affine

functions in W1 variables.

• Then |S1| 6 2((2empk1)/W1)W1 .

• Assume for all S ∈ Sn−1 and all xj , the net input of every unit in layer n in response to xj is a fixed

polynomial of a ∈ S, of degree no more than (l + 1)n−1.

• Let Sn be a partition of A that is refinement of Sn−1, such that for all S ∈ Sn there exists constants

bh,i,j ∈ {0, 1} such that sgn(ph,xj (a)− ti) = bh,i,j for all a ∈ S. ph,xj is describing the net input of the

h′th unit in the n′th layer, in response to xj .

• Refinement: For all S ∈ Sn, there exist an S′ ∈ Sn−1 such that S ⊂ S′.
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• Output of each n′th layer unit is a fixed polynomial in a of degree no more than l(l + 1)n−1 for all

a ∈ S.

• Choose Sn such that for all S′ ∈ Sn−1 we have |{S ∈ Sn : S ⊂ S′}| is no more than the number of sign

assignments of mpkn polynomials in Wn variables of degree no more than (l + 1)n−1.

• So this is no more than 2((2empkn(l + 1)n−1)/Wn)Wn .

• Net input of every unit in layer n + 1 is a fixed polynomial of a ∈ S ∈ Sn of degree no more than

(l + 1)n.

• Finally SL−1 of A such that for all S ∈ Sn−1, the network output is a fixed polynomial of a ∈ S of

degree no more than l(l + 1)L−2 in response to xj .

• |SL−1| 6 2((2empk1)/W1)W1 .ΠL−1
i=2 2((2empki(l + 1)i−1)/Wi)

Wi .

• K 6 ΠL
i=12((2empkip(l + 1)i−1)/Wi)

Wi .

• m < L+
∑L
i=1Wi log((2empki(l + 1)i−1)/Wi), log is base 2.

This completes the proof.

Theorem 3.1.1 gives an upper bound O(WL2 + WL log(WL). If L os fixed this is W log(W ) which is

better than O(W 2). The below theorem gives a lower bound Ω(WL), L = O(W ). This generalize the result

of Koiran and Sontag as it holds for any number of layers. But this lower bound holds for neural network

with continuous activation functions.

Theorem 3.1.2 (Lower Bound [1]). f : R→ R is a function with following properties:

A. limα→∞f(α) = 1 and limα→−∞f(α) = 0.

B. f differentiable in some point x0 with f ′(x0) not equal to zero.

Now for any L ≥ 1 and W ≥ 10L−14, there exists a feed forward neural network with following properties:

The network has L layers, W parameters, output unit has a linear function and all other units have f as a

activation functions. Then the set sgn(F ) of functions computed by the network has

V C(sgn(F )) ≥ (L/2)(W/2).

W = number of parameters or edges. L = number of layers.

Remark 3.1.1 (Upper Bound). Here we organized some VC upper bounds.

• O(WL logW +WL2)[ [1]].

• O(W 2)[ [7]].

• O(W logW )[ [34]], NN with linear threshold function.

Remark 3.1.2 (Lower Bound). This remark contains some VC lower bounds.

• Ω(WL)[ [1]]

• Ω(W logW )[M’98].

• Ω(W logW )[ [18]], NN with linear threshold.
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• Ω(WL)[Bartlett’98], NN with linear threshold and identity function.

The below theorem gives a upper bound on VC dimension for neural network with ReLU activation

functions. This bound tight for any parameter range. All of these bound generalize for arbitary piecewise

linear class of activation functions. Theorem 3.1.4 gives a proof idea for lower bound and Theorem 3.3.5

gives a proof idea for upper bound.

3.1.2 Refinement of [1]

Theorem 3.1.3 ( [17]). For a ReLU neural network W params, L layers Ω(WL log(W/L)) 6 V CDim 6

O(WL logW ).

Theorem 3.1.4 ( [16]). Lower Bound(Refinement of [1])

Proof. Here instead of one bit per layer, we are taken multiple bits.

• Shattered set S = {ei}i∈[n] × {ej}j∈[m].

• Encode f with weights ai = 0.ai,1, ai,2, ..., ai,m where ai,j = f(ei, ej).

• Given ei, easy to extract ai.

• Design bit extractor to extract ai,j . One bit per layer imply Ω(WL) and log(W/L) bits per layer imply

Ω(WL log(W/L).

This completes the proof

Theorem 3.1.5 ( [16]). Upper bound(Refinement of [1])

Proof. Here concept of depth upto layer i′th is added, which is a function of weights of the predefined neural

network.

• Fix a shattered set X = {x1, x2, ..., xm}.

• Partition parameter space such that input to 1’st hidden layer has constant sign. Can replace σ with

0 (if < 0) or identity (if > 0)!

• Size of partition is small, i,e 6 (cm)W by Warren’68.

• Repeat procedure for each layer to get partition of size 6 (cLm)O(WL).

• In each piece, output is polynomial of deg L. So total no of signing 6 (cLm)O(WL).

• Since X is shattered, 2m 6 (cLm)O(WL) which imply m = O(WL logW ).

This completes the proof.

The below theorem follows bit extraction technique. Here instead of one bit extraction they extract many

bits per iteration time. As a result the new obtained bound is tighter than the previous calculated bound.

Lemma 3.1.1 ( [16]). Suppose a ReLU neural network of W params, L layers extract m′th bit of input.

Then m 6 O(L log(W/L)).
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The below theorem gives a lower bound on VC dimension for neural network with ReLU activation

functions. Goldberg and Jerrum (1995) has been given a lower bound on VC dimension for neural network

with piecewise polynomial activation functions. Here the authors used the fact that a function that can be

expressed as a Boolean formula containing s distinct atomic predicates.

Lemma 3.1.2 ( [16]). There exit constant c such that the following holds. Given any W,L with C2 <

CL < W , there exists a ReLU network with 6 L layers and 6 W parameters with VC Dimension ≥
WL log2(W/L)/c.

The below theorem imply that the bit extraction approach cannot give a lower bound better than the

calculated bound.

Lemma 3.1.3 ( [16]). Assume there exists a neural network with W parameters, L layers that computes

a function f : R → R, with the property that |f(x) − (x mod 2)| < 1/2 for all x ∈ {0, 1, ...., 2m − 1}.
Also suppose the activation functions are piece wise polynomial of degree at most d ≥ 1 in each piece, and

have at most p ≥ 1 pieces. Then we have m ≤ L log2(13pd(L+1)/2W/L). For Piece wise linear this gives

m = O(L log(W/L)).

The below theorem applicable for neural network with piecewise linear activation functions. And the

input of this neural network is arbitary real domain.

Lemma 3.1.4 ( [16]). Consider piece-wise linear neural network with W parameters arranged in L layers.

Let F be the set of real valued function computed by this network. Then if m = V C(sgn(F )) and p is

no of pieces of the activation function, it holds that m 6 4W (L + 1) log2(2eWmp). So V C(sgn(F )) =

O(WL logW ).

Proof. For piece-wise polynomial we know O(W 2) by ( [13]) and O(WL2 +WL logW ) by (Bartlett’98). This

proof is similar to (Bartlett’98). Here use a result [warren(1968)].

The below theorem gives upper bound on VC dimension for neural network with piecewise polynomial

activation functions. Also this network supports both with skip connections and without skip connections.

Here the authors imposed a new term L1. The new modified bound depends upon this term.

Theorem 3.1.6 ( [16]). Consider a neural network with W parameters, U computational units arranged in

L layers, so that each unit has connection only from units in earlier layers.Let ki denote the number of units

at the i′th layer.Suppose that all non output units have piece wise polynomial activation functions with p+ 1

pieces and degree no more than d, and the output unit has identity function as its activation function.

If d = 0, let Wi denote the number of parameters(weights and biases) at the inputs to units in layer i;

if di > 0,let Wi denote the total number of parameters(weights and biases) at the inputs to units in all the

layers up to layer i(1, 2, ...i).Define the effective depth as

L1 := 1/W

L∑
i=1

Wi,

and let

R :=

L∑
i=1

ki(1 + (i− 1)di−1) 6 U + U(L− 1)dL−1.
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Case I For the class F of all(real valued) functions computed by this network and L1W 6 m,we have

Πsgn(F )(m) 6 ΠL
i=12((2empki(1 + (i− 1)di−1))/Wi)

Wi

Case II If U > 2,then

V C(F ) 6 L+ L1W log(4epR log(2epR)) = O(L1W log(pU) + LL1W log d).

Case III If d = 0, then

V C(F ) 6 L+W log(4epU log(2epU)) = O(W log(pU)).

Case IV If d = 1,then

V C(F ) 6 L+ L1W log(4ep
∑

(iki log(
∑

(2epiki)))) = O(L1W log(pU)).

3.2 VC Dimension of Sigmoidal Neural Networks

In this section we discussed about neural network with sigmoid and radial basis functions. We focused on

VC finiteness of the network and also give an idea of VC for definable sets.

3.2.1 Lower Bound of Sigmoidal Network which Approximate Continuous Func-

tions

Definition 3.2.1. A dichotomy of a set S ⊂ Rn is a partition of S into 2 disjoint subsets S0, S1 such that

S0 ∪ S1 = S.

According to functions: For a set of functions F mapping from Rn to {0, 1} and a dichotomy S0, S1 of

S, we say F induced the dichotomy if there is a f ∈ F such that f(S0) ⊂ {0}, f(S1) ⊂ {1}.

Definition 3.2.2. F shatters S if F induced all dichotomies on S.

Basics

We show how to construct a neural network Nn that computes some of the polynomials. This architecture has

only one programmable parameter. Let the sequence of polynomials over R is defined by pn(x) = 4x(1− x)

when n = 1 and pn(x) = p(pn−1(x)) when n ≥ 2. So pn has degree 2n.

Theorem 3.2.1 ( [3]). The polynomial (pn) approximated in [0, 1] by a sigmoidal neural network with error

rate O(2−n) in the l∞ norm must have at least Ω(n1/4) computation nodes.

Proof. Here we will give a basic idea about how the original proof is going.
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Figure 3.1: The Network Nn

• Input values of input nodes are x4 = 1, x3 = i, x2 = j, x1 = k.

• Only programmable weight w is associated with outgoing edge from node x4.

• Computation nodes are divides into six labels, each label is a network.

• Three labels, denoted by Π having n+ 1 input nodes and 1 output node.

• Each calculate projections π : Rn+1 → R where π(y1, ..., yn, a) = ya for a ∈ [n].

• The levels P1, P2, P3 have n output nodes and one input node each. P3 receives 1 as a input.

• Define output of Pλ for λ ∈ [3] by wb
λ = pb.nλ−1(v), b ∈ [n] where v denotes input value of level Pλ.

• This value equal to w for λ = 3 and π(w1
λ+1, ...., wn

λ+1, xλ+1) otherwise.

• Also wλb+1 can be calculated from wb
λ as pnλ−1(wb

λ).

• Therefore computation of level Pλ contains n gates, each of them computing the function pnλ−1 .

• To show Nn can shatter a set of cardinality n3.

Rest of the proof and details of the proof is in [3].

3.2.2 Polynomial Bound for VC Dimension of Sigmoidal Networks

In this section the VC upper bound of sigmoidal neural network is calculated using model theory approach.

Basically they first tried to compute VC upper bound of definable sets and then tried to establish a repre-

sentation of this neural network using terms, o-minimal set.

Definition 3.2.3 (Term). A term defined as follows

• A variable is a term.

• A constant symbol is a term.

31



• If F is a m-placed function symbol and t1, .., tm are terms, then F (t1, .., tm) is a term.

• A string of symbols is a term iff it can be shown to be a term by finite number of application of above

three steps.

Definition 3.2.4 (Formula). A formula defined as follows

• If t1, t2 are terms, then (t1 = t2) is a formula.

• If R is a n-placed relation symbol and t1, .., tm are terms then R(t1, ..., tm) is a formula.

• If φ is formula, then ¬φ is a formula.

• If φ, χ are formulas, then φ ∨ χ, φ ∧ χ, φ→ χ, φ ⇐⇒ χ are also formulas.

Definition 3.2.5 (Language). A Language L is

• A set F of function symbols and a positive integer nf for each f ∈ F .

• A set R of relation symbols and a positive integer nR for each r ∈ R.

• A set C of constant symbols.

Example 3.2.1. Language of Rings: F = {+,−, .}, n+ = n. = n− = 2,R = φ,C = {0, 1}.
Language of group: F = {.},n. = 2,C = {1},R = φ.

Definition 3.2.6. An L structure M is

• A non empty set M , underlying set of the structure.

• A function fM : Mnf →M for each f ∈ F .

• A relation RM ⊂MnR for each R ∈ R.

• An element CM ∈M for each constant c.

Each first order structure M has a satisfaction relation M |= φ defined for all formulas φ in the language

consisting of the language of M together with a constant symbol for each element of M .

A structure M is said to be a model of a theory T if the language of M is the same as the language of T

and every sentence in T is satisfied by M.

Definition 3.2.7 (Definable Relation). An n-ary relation R on the universe M of a structure M is said to

be definable if there exists a formula φ(x1, x2, ..., xn) such that R = {(a1, ..., an) ∈Mn : M |= φ(a1, ..., an)}.
There exists a φ such that (a1, ..., an) ∈ R iff M |= φ(a1, .., an) is correct.

Definition 3.2.8. M is o−minimal if for every formula Φ(v1, .., vl) and every β ∈ Ml, Φβ is a finite union

of intervals with endpoints in M ∪ {∞,−∞}.
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Model Theoretic Preliminaries

The concept of this part has taken from [9]. We consider a Network A with activation function σ and also

have k inputs, m computation units, l weights. It has output in {0, 1} set. By model theory we can express A

by a exponential formula Φ(v, y), where v ∈ Rk and y ∈ Rl, which is a combination of polynomials, activation

functions over the computation nodes of A. The functions computed by A represent by Φ(v, y) > 0.

In other way we can say A could be express a Boolean combination of atomic formulas of two forms

τ(v, y) = 0 or τ(v, y) > 0, describing local computations of A at its computation nodes. Now VC of A is the

VC of the class CΦ = {Φβ : β ∈ Rl} for Φβ = {x ∈ Rk : Φ(x, β) > 0}, the partition of Rk by A according to

the weight assignment β.

We turn our attention to the analysis of general formula resulting from the local computations. We

consider structure M on real field consists of C∞ functions. L is a first order language consists primitives

<, 0, 1,−, .,+, together with n ary function symbols f . Each f has a fixed interpretation by a C∞ function

f ′ : Rn → R, thereby determining an L structure M .

If τ(v1, V2, .., VM ) is an L term with free variables v1, v2, ..., vm, τ defines a m ary C∞ function from Rm

to R. L formulas Φ(v1, v2, ..., vk) defines subset of Rk, and L formulas Φ(v1, v2, .., vk, y1, .., yl) together with

β = (β1, ...., βl) ∈ Rl defines subset of Rk, namely Φβ = {x ∈ Rk : M |= Φ(x, β)}. For Φ(v, y) as above, let

{Φβ : β ∈ Rl} = CΦ. Also CΦ is a definable family of definable sets.We calculate VC dimension of CΦ.

Theorem 3.2.2 ( [9]). VC dim of Φ 6 2 logB + (17 log s)l.

Application to Sigmoidal Networks

The fundamental idea behind this proof has taken from [9]. Consider a sigmoidal network A with l weights

y1, ..., yl or programmable parameters, k input nodes v1, ..., vk and one output node. The m′th computation

node known as Nm is labelled by a variable zm, and a polynomial Pm(vt1 , ...., vtρ , zu1
, ..., zuγ , yλ1

, ...., yλδ),

where y′s are subset of the weight variables and v′s correspond to the input nodes immediately below m

(i,e. connected to m) and z′s correspond to the computation nodes immediately below m.

Then A computes a function βA : Rk+l → R. If N is a computation node as above labelled by zm, then

fN (v, y) = Pm(vt1 , ...vtρ , σ(fN1
(v, y)), ...., σ(fNγ (v, y)), yλ1

, ..., yλδ), where Ni corresponds to ui for 1 6 i 6 γ.

Also βA is fNw where Nw is the output node.

For the case of a language with +,−, ., 0, 1 and a symbol σ for a activation function, the fA(v, y) is given

by the term τ(v, y), by transcribing naively the above recursion. Assume Φ(v, y) be τ(v, y) > 0. The VC

dimension if finite since σ is definable in +,−, ., 1, 0, expx.

We have simply to bound Γ′(τ, j), j 6 l in order to get B. For this we should calculate number of

connected components of an intersection of no more than j sets of the form {y : τ(αi, y) = εi}, 1 6 i 6 j.

This estimate will get from Khovanski estimate.

Zm is use as a computation variable and Z ′m is those correspondence with this. Zw consider as a output

variable. Now consider
∑
m[(Zm − Pm(vt1 , ..., vtρ , Z

′
N1
, ..., Z ′Nγ , yλ1 , ..., yλγ ))2 + (1 − Z‘m(1 + exp−Zm))2] =

µ(v, z, y). Notice that µ(v, z, y) = 0 → Zw = τ(v, y) and Zw = τ(v, y) ⇐⇒ (∃z)µ(v, z, y) = 0. By [8] for

fixed α the number of connected components in Rl+2m of µ(α, z, y) = 0 is 6 2m(m−1)/2(2d)l+2m[(l + 2m +

1)(2d+ 1)]l+3m, where m is the number of computation units.

From here we will get a bound for τ(α, y) = ε. But we need to handle 6 j, τ(αi, y) = εi together.

Now we need vr,i, ZN,i, Z
′
N,i, i 6 j as variables. We obtain an estimate 2mj(mj−1)/2(2d)l+2mj [(l + 2mj +

1)(2d+ 1)]l+3mj in Rl+2mj space. Since B can be chosen no larger than the supremum of these j 6 l, we get
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log(B) 6 (ml)(ml− 1)/2 + (l+ 2mj)(log(2d)) + (l+ 3ml) log(l+ 2ml+ 1) + (l+ 3ml) log(2d+ 1). So VC(A)

6 (ml)(ml − 1)/2 + l(1 + 2m)(log(2d)) + l(1 + 3m) log(l(2m+ 1) + 1) + l(1 + 3m) log(2d+ 1).

3.2.3 Additional Activation Functions

Definition 3.2.9. A two layer sigmoid network with n inputs, W weights, and a single real valued output

is described by the function fS : RW × X → R, where X ⊂ Rn, fS(θ, x) = a0 +
∑k
i=1

ai
1+e−(bi.x+bi0) , with

ai ∈ R, bi = (bi1, ..., bin) ∈ Rn and θ = (a0, ..., ak, b10, ..., bkn) ∈ RW. In this case W = kn+ 2k + 1. A RBF

network is described by the function fRBF (θ, x) = a0 +
∑k
i=1 ai.e

−||x−ci||2 , where ci = (ci1, ..., cin) ∈ Rn and

θ = (a0, .., ak, c11, ..., ckn) ∈ RW. Here W = kn+ k + 1.

Theorem 3.2.3 ( [22]). Let X = {−D, ...,D}n for some positive integer D. For the sigmoid and RBF

networks, fS , fRBF : RW ×X → R, we have

V C(fS) 6 2W log2(24eWD)

V C(fRBF ) 6 4W log2(24eWD)

Proof. For any θ ∈ Θ, x ∈ X, r ∈ R, let

fS′(θ, (x, r)) = (fS(θ, x)− r)(Πk
i=1Πn

j=1e
−bijD)(Πk

i=1(1 + e−(bi.x−bi0)))

Clearly, fS′(θ, (x, r)) always has the same sign as fS(θ, x) − r, since the denominators in fS(θ, x) is always

positive. So dim(fS) 6 V C(fS′). But fS′(θ, (x, r)) is polynomial in θ′ = (a0, .., ak, e
−b10 , ..., e−bkn), with

degree no more than 2Dnk + k +Dn+ 1 < 3WD. From [7] we get V C(fS′) < 2W log2(24eWD).

3.3 Bounding The VC Dimension of Concept Class Parametrized

by Real Numbers

Here we establish bound on the VC dimension of non discrete concept classes. Assume X is an instance

space.

Definition 3.3.1. The membership test of a concept class C over domain X takes as input a concept C ∈ C

and instances a ∈ X, and returns the boolean value a ∈ C.

The membership test for Ck,n as defined above, is assumed to be expressed as a formula Φk,n (in the

first order theory of the reals) with k + n free variables representing a concept C and instance a. Or as an

algorithm Ak,n, similarly taking k + n real inputs, which uses exact real arithmetic and returns the truth

value a ∈ C. We say Ck,n is defined by Φk,n or Ak,n.

Example 3.3.1. k = m(n+ 1) where m is a positive integer. Define Φk,n =
⋃m
i=1[

∑n
j=1(xj − aij)2 6 ri

2].

It defines the concept class whose elements are unions of m balls in n dimensional Euclidean space. aij

parameterize the centers of the m balls, ri be their radii, xj is cartesian co ordinates of the instance.

We focus on the result of [10] which exhibits a NASC on a first order formula over some structure to

define a class of finite VC dimension.
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3.3.1 Upper Bounds

A concept C and instance a will be represented by the sequence of reals (y1, .., yk) and (x1, .., xn) respectively.

A sign assignment to polynomial p is one of the (in)equalities p > 0, p = 0, p < 0, a sign assignment to a set

of m polynomials is consistent if all m equalities can be satisfied by some assignment of real numbers to the

variables. A non zero sign assignment is one which has no equalities.

Theorem 3.3.1. Warren Result given in [11].

Corollary 3.3.1 ( [13]). If p1, ..., pm is a set of polynomials of degree at most d ≥ 1 in n real variables with

m ≥ n, then the number of consistent non zero sign assignments to the pi is at most (8edm/n)n.

Proof. Let P = {p1.., pm}. Consider the set of polynomials P1 = {p1 + ε, p1 − ε, ....., pm + ε, pm − ε}. To

proof for ε > 0, every sign assignments to P corresponds to a unique non zero sign assignment to P1.

Milnor theorem gives an upper bound on the number of connected components of the subset of Rn

corresponding to any sign assignment. The size of a formula refers to the number of distinct atomic predicates

that it contains.

For polynomial learn ability we need upper bound on VC dimension that is polynomial in synthetic

complexity of concepts. This result trivial for discrete input cases but non trivial for generalized case of

examples and concepts. The author has been showed that this result true for two generalized classes. One is

classes where the criterion for membership of an instance in a concept can be expressed as a formula (in the

first order theory of reals) with fixed quantification depth and exponentially bounded length, whose atomic

predicates are polynomial inequalities of exponentially bounded degree.

Theorem 3.3.2 ( [13]). Let {Ck,n : k, n ∈ N} be a family of concept classes where concepts in Ck,n and

instances are represented by k and n real numbers, respectively. Suppose that the membership test for any

instances a in any concept C of Ck,n can be expressed as a boolean formula Φk,n containing s = s(k, n) distinct

atomic predicates, each predicate being a polynomial inequality or equality over k+n variables (representing

C and a) of degree at most d = d(k, n). Then V C(Ck,n) 6 2k log(8eds).

Corollary 3.3.2. If the size s and degree d are both at most exponential in k and n, then the VC dimension

of Ck,n is polynomially bounded in k, n.

The other is classes where containment of an in a concept is testable in polynomial time, assuming we

may compute standard arithmetic operations on reals exactly in constant time.

Theorem 3.3.3 ( [7]). Let {Ck,n : k, n ∈ N be a set of concept classes as before, for which the test for

membership of an instance a in a concept C consists of an algorithm Ak,n taking k+n real inputs representing

C and a, whose run time is t = t(k, n), and which returns the truth value a ∈ C. The algorithm Ak,n is

allowed to perform conditional jumps and execute the standard arithmetic operations on real numbers +,−, ., /
in constant time. Then V C(Ck,n) = O(kt).

Corollary 3.3.3. Let Ck,n be as in the above theorem. If the run time of algorithm Ak,n is polynomially

bounded in k and n, then so is the VC dimension of the concept class Ck,n.

There exists an algorithm with runtime t, defines a concept class of VC dimension Ω(kt).

Theorem 3.3.4. See [12]. It is a quantifier elimination procedure to give us a quantifier free formula of the

original form.
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Corollary 3.3.4 ( [13]). Let {Ck,n : k, n ∈ N} be a set of concept classes as before. Suppose that the

membership test of a given instance a in a given concept C can be expressed as a formula χk,n in the first

order theory of the real numbers with k+ n free variables representing C, a; suppose further that the number

of bound variables in polynomial in k, n, that the depth of alteration of quantifiers is uniformly bounded, and

that the atomic predicates are bounded in number and degree by an exponential function of k, n. Then the

VC dimension of Ck,n is polynomial in k, n.

3.4 VC Dimension from Geometric Approach

For calculating VC dimension of linear threshold gates, the proof involve the number of distinct output of all

linear units along with input varies on m patterns. But the sigmoidal network have infinitely many output,

so this technique does not work. To overcome this issues, this section has come in computational learning

theory field.

3.4.1 Some Notions of Geometric Approach

Definition 3.4.1. Let H be a class of {0, 1} valued functions defined on X, and F be a real valued function

defined on Rd×X. We say H is a k−combination of sgn(F ) if there is a Boolean function g : {0, 1}k → {0, 1}
and functions f1, f2, ..., fk in F so that for all h ∈ H there is a parameter a ∈ Rd such that h(x) =

g(sgn(f1(a, x)), ...., sgn(fk(a, x))) for all x ∈ X.

Definition 3.4.2. A set {f1, f2, ..., fk} of differential functions mapping from Rd to R is said to have regular

zero set intersection if for all non empty subset {i1, i2, ...il} ⊂ {1, 2, ....., k}, the Jacobean of {fi1 , fi2 , ..., fil} :

Rd → Rl has rank l at every point a of the solution set {a ∈ Rd : fi1(a) = fi2(a) = ... = fil(a) = 0}.

For instance, if two zero-sets ’touch’ at a point, so that the hyperplanes tangential to them at that point

coincide, the functions do not have regular zero-set intersections.

Definition 3.4.3. A set G of real valued functions defined on Rd. We say that G has solution set components

bound B if for any 1 ≤ k ≤ d and any {f1, ..., fk} ⊂ G that has regular zero set intersection, we have

CC(∩ki=1{a ∈ Rd : fi(a) = 0}) ≤ B.

The intersection of any k > d zero-sets of functions with regular zero-set intersections must be empty. We

shall always be concerned with classes F of real-valued functions defined on Rd ×X, and with the solution

set components bound for the class G = {a→ f(a, x) : f ∈ F, x ∈ X}. Furthermore, we say that F is closed

under addition of constants if, for any c ∈ R, whenever f ∈ F , the function (a, x)→ f(a, x) + c is also in F .

Theorem 3.4.1 ( [14]). Suppose that F is a class of real-valued functions defined on Rd×X, and that H is

a k-combination of sgn(F ). If F is closed under addition of constants, has solution set components bound B,

and functions in F are Cd in their parameters, then ΠH(m) ≤ B
∑d
i=0

(
mk
i

)
≤ B(emk/d)d, for all m ≥ d/k.

Proof. Taking zero sets Zi in Lemma 7.9 in [14] to be those of the mk functions a → fi(a, xj) defined as

parameter space Rd, i = 1(1)k, j = 1(1)m. Then ΠH(m) ≤ maxZi
∑
S⊂{1,2,...,mk} CC(∩i∈SZi). This is less

then equal to B
∑d
j=0

(
mk
j

)
. Which follows from the fact that the intersection of more than d such zero sets

is always empty.
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Example 3.4.1. Suppose H is a class of functions computed by perceptron on Rd. Then the parameter

space is Rd+1 and we can define F as the class of functions satisfying f(a, x) =
∑d
i=1 xiai + a0 + c for some

c ∈ R, where a = (a0, a1, ..., ad). In this case, F has solution set components bound B = 1.

In the proof of the growth function bound for the perceptron, we first related the number of dichotomies of

a set of input points xi to the number of cells in the partition of the parameter space defined by the equations

wTxi − θ = 0.

For the proof of growth function bound for perceptron the author related the number of dichotomies

of a set of input points xi to the number of cells in the partition of the parameter domain defined by the

equations wTxi − θ = 0. The following lemma shows that we can do this more generally, for any class

that is a k-combination of thresholded real-valued functions. In this case, we relate the growth function to

the number of connected components of the complement of certain zero-sets of functions that have regular

zero-set intersections.

Lemma 3.4.1 ( [14]). Given a set {f1, f2, .., fk} of Cd functions mapping from Rd to R, the set S = {λ ∈
Rk : {f1 − λ1, .., fk − λk}does not have regular zero intersection} has measure 0.

Let F = {f(., a) : a ∈ A}, A is a open subset of Rm, f is continuously differentiable. Let g : A×Xm → Rm

be defined by g(a, x1, ..., xm) = (f(a, x1), ..., f(a, xm))T . For a fixed x, define gx(a) = g(a, x).

Theorem 3.4.2 ( [22]). Let A be an open subset of Rm and X be an open subset of Rn and f : A×X → R

be a continuously differentiable function. Let F := {f(a, .) : a ∈ A}. If there exists a k dimensional manifold

M ⊂ A, which has unique decision boundaries, then V C(Fθ) ≥ k.

Lemma 3.4.2 ( [14]). Let F be a class of real-valued functions defined on Rd × X that is closed under

addition of constants. Suppose that the functions in F are continuous in their parameters and let H be a

k-combination of sgn(F ). Then for some functions {f1, f2, ..., fk} in F and some examples x1, .., xm in X,

the set {a→ fj(a, xi) : i = 1(1)m, j = 1(1)k} has regular zero set intersections and the number of connected

components of the set Rd − ∪ki=1 ∪mj=1 {a ∈ Rd : fi(a, xj) = 0} is at least ΠH(m).

3.4.2 VC Bounds for Neural Networks

Here we discussed VC dimension of some deep neural networks using the above approach, we just have

discussed. We first consider the classes of functions which can be expressed as a Boolean combination of

thresholded real valued functions, each of which is polynomial in its parameters. We need a solution set

component bound to apply Theorem 3.4.1. For this purpose we need the following theorem.

Theorem 3.4.3 ( [14]). Let F be a class of functions mapping from Rd × X to R so that, for all x ∈ X
and f ∈ F , the function a → f(a, x) is a polynomial on Rd of degree no more than l. Suppose that H is a

k−combination of sgn(F ). Then if m ≥ d/k, ΠH(m) 6 2( 2emlk
d )d and hence V C(H) 6 2d log2(12kl).

The above mentioned theorem can be used to give bounds on the VC dimension of a function class in

terms of the number of arithmetic operations required to compute the functions, as the following theorem

demonstrates.

Theorem 3.4.4 ( [14]). Suppose h is a function from Rd×Rm to {0, 1} and let H = {x→ h(a, x) : a ∈ Rd}
be the class determined by h. Suppose that h can be computed by an algorithm that takes as input the pairs

(a, x) ∈ Rd × Rn and returns h(a, x) after no more than t operations of the following types:
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• The arithmetic operation +,−, ∗, / on real numbers.

• Jumps condition on >,≥, <,≤,=, 6= comparison of real nos.

• output 0 or 1.

Then V C(H) 6 4d(t+ 2).

The following theorem shown that the bound of Theorem 3.4.4 can not be improved more than a constant

factor.

Theorem 3.4.5 ( [14]). For all d ≥ 1, there is a class H of functions, parametrized by d real numbers, that

can be computed in time O(t), and that has V C(H) ≥ dt.

As an application of Theorem 3.4.4 we may consider a class of feed forward linear threshold networks.

Since the computing a output of linear threshold network takes time O(w), so the following bound is worse

than the bound O(w log(w)). The theorem can be generalized a network with piecewise polynomial functions.

Theorem 3.4.6 ( [14]). Suppose N is a feed forward linear threshold network with a total of w weights, and

let H be the class of functions computed by this network. Then V C(H) = O(w2).

Theorem 3.4.7 ( [14]). Suppose N is a feed forward network with a total of w weights and k computation

units, in which the output is a linear threshold unit and every other computation unit has a piece wise

polynomial activation functions with p pieces and degree no more than l. Then if H is the class of functions

computed by N , V C(H) = O(w(w + kl log2 p)).

Proof. To compute an activation functions, we can determine the appropriate piece with log2 p comparisons.

Computing the value of the function takes an additional O(l) steps. Hence total computation time is

O(w + kl log2 p).

The author construct a network of linear threshold units and linear units. This construction is help full

for the below theorem. The theorem shows that the bound O(w2) can not be improved more than by a

constant factor if we allow a arbitary number of layers.

Theorem 3.4.8 ( [14]). Suppose s : R→ R has the following properties:

• limα→∞s(α) = 1 and limα→−∞s(α) = 0

• s is differentiable at some point αo ∈ R with s′(αo) 6= 0.

For any L ≥ 1 and w ≥ 10L− 14, there exists a feed forward network with L layers and total w parameters,

where every computation unit but the output unit has activation functions s, the output unit being a linear

threshold unit, and for which the set H of functions computed by the network has V C(H) ≥ (L/2)(w/2).

The below theorem holds for two layered neural network with sigmoid activation functions. But input

of this network is discrete. The author defined the fan-in of a computation unit to be the number of input

units or computation units that feed into it.

Theorem 3.4.9 ( [14]). Consider a two layer feed forward network with input domain X = {−D,−D +

1, ....., D}n for D ∈ N and k first layer computation units, each with the standard sigmoid activation function

(output L.T.). Let w be the total no of parameters in the network, and suppose that the far-in of each first

layer unit is no more than N . Then the class H of functions computed by this network has V C(H) 6

2w log2(60ND).
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Proof. For a first layer unit, x1, ..., xN be the input and w1, .., wN are the corresponding weights and θ be

the threshold. So the unit computes f(x) = 1/(1 + exp(−
∑N
j=1 wjxj + θ)). It computes the sgn function of

an affine combination of k of these rational functions or of inputs.

Theorem 3.4.10 ( [37]). Consider a two layer feed forward linear threshold network that has w parameters

and whose first layer units have far-in no more than N . If H is the set of functions computed by this network

on binary inputs, then V C(H) 6 2w log2(60N).

The following theorem provides a general VC dimension bound for standard sigmoid network. There is

a considerable gap between this bound O(kw2) and the lower bound Ω(w2), which is exhibited by a neural

network with k = Θ(w) computation units.

Theorem 3.4.11 ( [14]). Let H be the set of functions computed by a feed forward network with w parameters

and k computation units, in which each computation unit other than the output unit has the standard sigmoid

activation function. Then V C(H) 6 (wk)2 + 11wk log2(18wk2).

The below theorem is a counter part of the Theorem 3.4.4. In this case, the author also allow the

computation of the exponential function to be one of the basic operations.

Theorem 3.4.12 ( [14]). All the conditions same as Theorem 3.4.4 and to addition α → exp(α) on real

numbers. Then V C(H) 6 t2d(d+ 19 log2(9d)).

This result immediately implies a bound on the VC dimension for feed forward standard sigmoid networks

that is only a constant factor worse than the bound of Theorem 3.4.11. To proof Theorem 3.4.12 we need

the solution set component bound for polynomial of certain exponential function. For this purpose we need

the following theorem.

Theorem 3.4.13 ( [14]). Let f1, ..., fq be fixed affine functions of a1, ...., ad and let h be the class of polyno-

mials in a1, ..., ad, exp(f1(a)), ..., exp(fq(a)) of degree no more than l. Then h has solution set components

bound B = 2q(q−1)/2(l + 1)2d+q(d+ 1)d+2q.

Lemma 3.4.3 ( [14]). Suppose G is the class of functions defined on Rd computed by a circuit satisfying

the following conditions: the circuit contains q gates, the output gate computes a rational function of degree

no more than l ≥ 1, each non output gate computes the exponential function of a rational function of degree

no more than l, and the denominator of each rational function is never zero. Then G has solution set

components bound 2(qd)2/2(9qdl)5qd.

3.5 Application of VC Dimension on Machine Learning

The performance of learning machine on test data is called generalization performance of a machine. For

a given learning task, with finite set of training examples the best generalization will be achieved if the

right balance will be stucked between the accuracy attained on that particular training set and the capacity

(expressiveness) of the machine. VC Dimension comes from a similar concept in the information theory. The

observation is if you have N objects and among those N objects you are looking for a specific one. How

many bits of information do you need to find this object. Suppose you have N functions such that given

input x, you have to find how many functions give you yes and how many give you no. How many training

examples do you need to remove all those wrong functions. A machine with more capacity could give low
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training error, but might over fit the data as a result of gives low performance on test data. A machine

with less capacity not going to over-fit, but restricted in what it can model. How can we characteristics

the capacity of learning machines? VC Dimension provides a quantitative way to measure the capacity of a

learning machine.

3.5.1 PAC Model

Generate instances from unknown distribution p, xi ∼ p(x),∀i. Oracle labels each instance with unknown

function c, yi = c(xi),∀i. Learning algorithm chooses hypothesis h ∈ H with low training error ˆR(h),

ĥ = argminh ˆR(h). Our goal is to choose an h with low generalization error R(h). Define True Error

(Expected Risk) is R(h) = px∼p(x)(c(x) 6= h(x)), Train Error (Empirical Risk) is ˆR(h) = px∼S(c(x) 6= h(x)),

where S is a training set. And also Expected Risk Minimization (Lower True Error) is h′ = argminh∈HR(h)

and Empirical Risk Minimization (Lower Training Error) is ĥ = argminh∈H ˆR(h). The goal of the model is

to learn a concept so that with a high degree of confidence the prediction error will be small. A learning

machine or concept classes defined as a set of possible mapping x 7→ f(y, (x, a)) where x is in input domain,

y is the labels and a is the parameter. A particular choice of a gives a trained machine. PAC approach is

that the error should not depends on the data distribution. The bound is the distribution free. The concept

of VC Dimension is distribution free.

VC Dimension and Number of Parameters

The VC Dimension give the concreteness of the notion of the capacity of a given concept class.Intuitively one

might expect that learning machines with more parameters would give high VC Dimension, while learning

machines with less parameters would has low VC Dimension. Although this is true for most cases, some

counter examples exists. VC Dimension is responsible for how many example need to learn and PAC learning

responsible for how many mistakes before you converges.

3.5.2 VC Dimension and Learnability

It helps to answer some questions on learning theory like (a) Is a concept class learnable (b) Can a concept

class learned efficiently (c) How many training samples do we need. The PAC criteria is that the learner

produces a high accuracy learner with high probability. Algorithm consistent if for all ε, δ > 0, there exists

N training examples such that for any distribution p, we have p(|R(h) − ˆR(h)| ≤ ε) ≥ 1 − δ. The sample

Complexity is the minimum value of N for which this statement holds.

Definition 3.5.1. The Static learning algorithm has the following properties: the number of samples it ask

for is PAC Bound and It chooses its hypothesis based on the sample it gets.

But Static learning algorithm is not adaptive. The below two Theorem related to Static learning algo-

rithm.

Theorem 3.5.1 ( [19]). If a concept class C has ∞ VC Dimension, then C is not learnable by any Static

learning algorithm.

Theorem 3.5.2 ( [19]). The concept class C(n) is not polynomially learnable, if the VC Dimension of C(n)

grows more than polynomial in n, where n is the dimension of domain space.
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Theorem 3.5.3 (Upper Bound on Sample Complexity (Blumer 1989)). Let H and F be two function

classes such that F ⊂ H and let A an algorithm that derives a function h ∈ H consistent with m training

examples. Then there exists c0 such that for all f ∈ F , for all D distribution, for all ε > 0 and δ < 1 if

m > c0
ε (V C(H). ln 1

ε .
1
δ ), then with a probability 1 − δ, errorD(h) ≤ ε, where errorD(h) is the error of h

according to the data distribution D.

Theorem 3.5.4 (Lower Bound On Sample Complexity (Blumer 1989)). To learn a concept class F whose

VC Dimension is d, any PAC algorithm requires m = O( 1
ε .(d+ 1

δ )) examples.

Theorem 3.5.5 (Bound on Classification Error (Vapnik 1995)). Let H be a hypothesis space having VC

Dimension d. For any probability distribution D on X × {0, 1}, with probability 1 − δ over m random

examples S, any hypothesis h ∈ H that is consistent with S has error no more than error(h) ≤ ε(m,H, δ) =
2
m (d+ ln 2

δ . ln
2em
d ), provided that d ≤ m and m ≥ 2/ε.

3.5.3 VC Dimension and Generalization Performance

[19] A low complexity model will have a high bias and a low variance, while it has low expressive power

leading to high bias, it is also very simple, so it has very predictable performance. Model with higher VC

Dimension will require more train data to properly train. The Generalization performance concerns the error

rate of a learning machine on test data.

Choose 0 ≤ η ≤ 1. With probability 1−η the bound holds R(α) 6 Remp(α)+
√

h(log(2l/h)+1)−log(η/4)
l . l is

the number of training samples and h is the VC Dimension of the learning machine. R(α) is the expectation

of test error. The quality of R(α) is called actual risk. The empirical risk Remp(α) is the measure of mean

error rate on training samples. Remp(α) = 1
2l

∑l
i=1 |yi − f(xi, α)| and R(α) =

∫
( 1

2 |y − f(x, α)|)dD(x, y),

where D(x, y) is the cumulative distribution that generates training and test set samples. The upper bound

of actual risk known as VC Bound and second term of this bound known as VC confidence. This bound

gives a principal method for choosing a learning machine for a given task and is the essential idea of the

Structural Risk Minimization. Given a fixed family of learning machine, to choose from, to the extent that

the bound is tight for at least one of the machines, one will not be able to do better than this.
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3.5.4 Structural Risk Minimization

Figure 3.2: Comparison of Empirical Risk and True Risk

Each Si have similar VC Dimension. VC Dimension is measured on the X axis as h. As complexity increase

your transition from under fitting to over fitting, adding complexity is good up until a certain point. This

approach suggest when we do choose a model. Only empirical error is not sufficient as for some machine

may overfit training data. So consider VC Bound. VC Confidence depends on the chosen class of functions

but actual risk and empirical risk only depends on the particular chosen function during training procedure.

We would like to find the set of functions such that the risk bound for this set is minimized. To do that we

divide the functions as some subset of functions such that functions for each class have same VC Dimension.

Since all the functions within a subset have same VC Confidence, it is enough to compute only Empirical

Risk of each machine. From each subset we choose the one which has minimum empirical risk. One then

takes that trained machine in the series whose sum of empirical risk and VC Confidence is minimal.

3.5.5 Decision Tree

Decision tree are enough to express any Boolean valued function. We try to find a Decision tree which

has smaller length and consistent on training samples. Finding the smallest Decision tree is a intractable

problem. Decision tree pruning consists of methods Structural Risk Minimization, cross validation, C4.5.

We need to compute VC Dimension h for a given tree. Roughly h is the number of internal nodes of a

tree. The main problem is finding the best (Minimum Empirical Risk) decision tree for a given h. In a

rigorous way we can do from all permutations of trees, but it is exponential time consuming procedure. So

for overcome this difficulty we use a algorithm given in [19] using idea of dynamic programming.
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Chapter 4

Random Vector Functional Link

Network

This chapter gives an informal introduction to RVFLN and the class of problems we focus on in this

dissertation.

4.1 Feedforward Neural Network (FNN)

The neurons in the adjacent layers are connected. But there is no interconnection of neurons within the

same layer or across non-adjacent layers. In the input layer, each neuron im, m ∈ {1, 2, ....,M} takes a

feature of input vector and passes to the several hidden layers. Each neuron in n′th hidden layer hn,kn ,kn ∈
{1, 2, ...,KN}, n ∈ {1, 2, .., N} is formed by a nonlinear weighted sum of the outputs of the input layer or

preceding hidden layer (except the last hidden layer).

h1,k1 = f(

M∑
m=0

wm,k1im),∀k1 ∈ {1, 2, ....,K1}.

hn,kn = f(

Kn−1∑
kn−1=0

wkn−1,knhn−1,kn−1
),∀kn ∈ {2, 3, ....,Kn}.

f(.) is a non linear activation function. w0,kn = 1, kn ∈ {1, 2, ...,Kn} denotes the input layer and hidden

layer biases. M is number of input layer neurons, N is number of hidden layers, Kn is number of n′th hidden

layer neurons. wm,k1 are weights between input and hidden layer neurons, wkn−1,kn are weights between the

hidden layer neurons.

logsig(x) = 1/(1 + e−x)

tanh(x) = (ex − e−x)/(ex + e−x)



ol =

KN∑
kN=0

wkN ,lhN,kN ,∀l ∈ {1, 2, ..., L}.

L is number of output neurons, wkN ,l are weights between hidden and output layer neurons. To get optimal

output value, the weights are determined by the BP learning. BP has a tendency to trapped in local

minimum.

4.2 Single Hidden Layer Neural Network (SLFN)

SLFN has single hidden layer, adjacent layers connection, no interconnection of neurons with same layer or

across non adjacent layers.

Method ILB HLB in-out connection

M 1 p p p

M 2 p a p

M 3 a p p

M 4 a a p

Table 4.1: RVFL Network with Different Configurations

This table has taken from [33]. ILB: Input Layer Bias, HLB: Hidden Layer Bias, p: Present, a: Absent.

4.3 Random Weight SLFN (RWSLFN)

Schmidt reported SLFN with fixed random weights assigned to input to hidden layer. Hidden layer activation

function is logsig. Training a SLFN is to minimize the squared output error by finding the optimal hidden

layer weights Wh = {wm,k, bi,k} and output layer weights W0 = {wk,l, bh,l}.

min ε2 =

N∑
i=1

(yi −
K∑
k=1

wk,lf(

M∑
m=1

wm,kim + bi,k) + bh,l)
2.

For SLFN, the optimal hidden layer and output layer weights determined by BP. For RWSLFN, Wh are

randomly sampled from a uniform distribution in [−1, 1] and W0 are optimized by a least square method.

4.4 Random Vector Functional Link Network (RVFLN)

The idea of this type of network has taken from [33]. It combines the advantage of random weights and

functional link. It is an SLFN with direct connection from input layer to output layer. Enhancement

nodes equivalent to hidden layer nodes. Use conjugate BP to tune the weights from input to output and

enhancement to output layer. Apply least square method if matrix inversion is possible. Pao’s - activation

function in enhancement nodes is logsig, Chen’s - hidden nodes use tanh, an additional activation function to

output layer. Does not require iteratively updating the input to hidden layer weights, speed up the training

process.
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4.5 Equations

Equations are gien in the paper [33]. Related weight updating equations of RVFLN are..

E 1:

hk = f(

M∑
m=1

wm,kim + bi,k)

ol =

K∑
k=1

wk,lhk + bh,l +

M∑
m=1

wm,lim + bi,l

E 2:

hk = f(

M∑
m=1

wm,kim + bi,k)

ol =

K∑
k=1

wk,lhk +

M∑
m=1

wm,lim + bi,l

E 3:

hk = f(

M∑
m=1

wm,kim)

ol =

K∑
k=1

wk,lhk + bh,l +

M∑
m=1

wm,lim

E 4:

hk = f(

M∑
m=1

wm,kim)

ol =

K∑
k=1

wk,lhk +

M∑
m=1

wm,lim

The below figure describes the structure of a RVFLN with one hidden layer. The figure has taken

from [33].
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Figure 4.1: Random Vector Functional Link Network
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Chapter 5

Related Work and Our Contribution

5.1 VC Dimension for Neural Network with Continuous Activa-

tion Functions

This section shows that neural network with continuous activation functions have VC dimension at least

O(wm), where O(wm−1) is the total parameters (weights and biases) of the network and also input domain

is Rm for m ≥ 2. For a satisfactory result on test data of a classifier we need to learn the classifier properly and

accurately. For this purpose we need sufficient training samples. In computation Learning Theory branch,

PAC formulation is a concept where we can determine number of examples needed to learn a classifier such

that it will predict all future data correctly. If F is a hypothesis space or collection of binary valued functions,

then we fit the training examples to each f ∈ F . We will consider the training data and test data from same

domain X and follow same probability distribution. After the Vapnik’s contribution in statistics, people

know that a certain quantity known as VC Dimension, which is related to sample size. And also it is needed

for learnability in the PAC sense. Roughly speaking, generally VC is proportional to the sample size needed

for learn the machine reliably. Basically we focus on calculating VC of F . For the pure hard threshold class

V C(F ) = O(w log(w)) by Cover, by Baum and Hausseler. For sigmoidal class the VC dimension is O(w4)

by Karpinski and Macintyre and also for piece wise polynomial feedforward neural network VC dimension

is O(w2). Also Mass showed that in [18] that there is also a lower bound of the form Ω(w logw). Basically

now days back propagation method rely upon continuous activation function, that is neuron with graded

responses. Basically use analog activation give advantage of passing the rich information among layers. It

needs higher memory capacity means to learn f we need more train data. This section showed that there

are conceivable neural network architecture with exactly high VC Dimensions. Thus the study of V C(F ) of

analog neural network is an interesting and relevant issues.

Jerrum and Goldberg showed that upper bound of VC is O(w2) for piece wise polynomial activation

function. Now the question is Is there any neural network architecture which can achieve lower bound

w2 for such networks and more generally for arbitary continuous activation nets. For pure threshold nets

VC proportional to w logw and pure linear nets VC proportional to w. Then there are architecture with



arbitary large number of weights w and VC proportional to w2. First we are showing that the network

with linear and Heaviside activation functions have this power. The continuous activation functions σ have

the property in +∞,−∞ attain two different values and for at least one point it has derivative non zero.

Now we obtained our expected results on continuous activation function, approximating Heaviside gates by

σ nets with large weights and approximating linear gates by σ nets with small weights. However there is

still a gap between Ω(w2) lower bound and the O(w4) upper bound in [2]. The original paper [18] showed

that real number program with running time T have VC Dimension Ω(T 2) for input space R2. We mainly

consider the case which generalize the input domain from R2 to Rm, m ≥ 2. And also accordingly our results

will changed. When the input domain dimension is increased the VC dimension increased accordingly total

number of weight increase. But out target will be for any dimensional input domain there exists a neural

net architecture which has VC at least square of total number of weights of the network.

5.1.1 For Linear and Threshold Gates

All the notations has taken from [2]. We define an architecture or network A is a connected directed acyclic

graph. In the network, a subset of nodes has a activation function or functions. One is identity or linear

gate id(x) = x, and another one is threshold or Heaviside gate H(x) = 1, x ≥ 0 and H(x) = 0, x < 0. F

is collection of functions computed by the network A. For a given weight w ∈ Rn, there exists a function

Fw : Rm → Rp defined by Fw(x) = F (x,w), sometimes we say that this function obtained from A’s

calculation. We say a subset S ⊂ Rm is shattered by A if for any arbitary Boolean function β : S → {0, 1}
there exists some weight w ∈ Rn so that Fw(x) = β(x) for all x ∈ S. If the output is real number then we

use a thresholding in output node with respect to some real number, which gives us a Boolean output. If A

is the net w0 + w1H(2x − 1), it has one linear gate and one Heaviside gate, input is x, number of weights

if 4, which are 2,−1, w0, w1. The phrase ”for each n ≥ 1 there is an architecture A with O(nm−1) weights

and gates in S = {id,Heaviside}” to assert the existence of a sequence of architectures An so that S is a

set of gates for each An and so that the number of weights of An is O(nm−1). A shatters a set of size θ(n)

we really mean that there is a sequence of sets An so that An shatters An and the cardinality of each An is

θ(n).

Theorem 5.1.1. For every n ≥ 1, there is a network architecture A with inputs in Rm(m ≥ 2) and O(n)

weights that can shatters a set of size n2. This architecture is made of linear and threshold gates.

Proof. The shattered set S constructed in a sequential manner, described below and the construction fol-

lows the idea of [2]. If input in Rm and the network has n weights W1, ...,Wn where each Wi belongs to

T = {0.w1w2...wn : wi ∈ {0, 1}}, then the cardinality of the shattered set S will be n2. And the ele-

ments are {(x1, ..., xm) : 1 ≤ x1 ≤ n and for each x1 1 ≤ xm ≤ n, ∀i 6= 1,m xi = xm}. Consider the

example for m = 4, n = 4. Then the shattered set will have n2 = 16 elements and the elements are

{{1111, 1222, 1333, 1444}, {2111, 2222, 2333, 2444}, {3111, 3222, 3333, 3444}, {4111, 4222, 4333, 4444}}. Now

for a given choice of W = (W1, ...,Wn), A will compute the Boolean function gW : S → {0, 1} defined

as gW (x1, ..xm) = x′mth bit of Wx1
. We have to show for any Boolean function g on S, there exists a unique

W such that g = gW .

A consists of three sub networks g1, g2, g3. Now by our definition each of these three hold O(n) weights.

g1
W (i) will give output Wi, for all 1 ≤ i ≤ n and W = (W1, ....,Wn). g2(Wj) will give output (w1, w2, ..., wn),

where Wj = w1w2..., wn be a binary representation and wi ∈ {0, 1}, 1 ≤ j ≤ n. Output of g3(k,Wj) will be

wk, where Wj = w1.....wn and k ∈ [n], j ∈ [n].
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The obvious one architecture which computes the function:

g1
W (i) = W1 +

n∑
u=2

(Wu −Wu−1)H(i− u+ 0.5)

sending each i ∈ [n] to Wi. It has one linear gate, n− 1 threshold gates, 3(n− 1) + 1 weights.

g2 is a multi output net. Basically g2 constructed using a sequence of N2
i nets, 1 ≤ i ≤ n. N2

i takes as

input Wj and produce output (w1, ..., wi, 0.wi+1....wn) for 1 ≤ j ≤ n. Since 0.wi+2....wn = 10.0.wi+1....wn−
wi+1 and wi+1 = H(0.wi+1....wn − 0.5) holds, from N2

i to N2
i+1 we need extra one threshold gate, one

linear gate, four weights. As of our knowledge, we can say Nn = g2, and to compute g2 total n linear gates,

4n weights, n threshold gates required.

And the last one is:

g3(k,Wj) = w1 +

n∑
u=2

wuH(k − u+ 0.5)−
n∑
u=2

wu−1H(k − u+ 0.5), 1 ≤ j ≤ n, k ∈ [n]

As multiplication of inputs are not allowed, so uv can be replaced by H(u+ v − 1.5). Then in our network

ew can replace wuH(k − u + 0.5) by H(wu + H(k − u + 0.5) − 1.5). Thus g3 has total 4(n − 1) threshold

gates, one linear gate, 12(n− 1) + n weights.

Finally our original network is gW (x1, ..., xm) = g3(xm, g
2(g1

W (x1))). It can be constructed using n+ 2

linear gates, (n − 1) + 4(n − 1) + n = 6n − 5 threshold gates and (3n − 2) + 4n + (12n − 11) = 19n − 13

weights.

Theorem 5.1.2. For every n ≥ 1, there is a network architecture A with inputs in Rm(m ≥ 2) and O(nm−1)

weights that can shatter a set of size nm. This architecture is made only of linear and threshold gates.

Proof. W1, ..,Wn are n parameters of our architecture where each Wi’s is a element of T =

{0.w1w2......wnm−1 : wi ∈ {0, 1}}. We have to show that S = [n]m = {1, 2, ..., n}m will be the shattered set.

Suppose we have a predefined weight vector W = (W1, ...,Wn). Now for this vector the network A will

compute the Boolean function fW : S → {0, 1} and defined as follows: fW (x1, x2, ..., xm) is equal to the qth

bit of Wx1
. Our target is for any Boolean functionf on S, there must exists a unique W such that f = fW .

Now we take q = [
∑m−2
i=0 ni(n− xm−i)] + 1.

We consider a architecture which computes the function fW
1(x2, x3, ..., xm), which gives the output

[
∑m−2
i=0 ni(n− xm−i)] + 1. The inputs are x2, ..., xm, nodes in hidden layer are u1, ..., um, and single output

node. So net input of the node uj is netj =
∑m
i=2 wijxi, 2 ≤ j ≤ m. The output of the node uj is

outj = id(netj + n). wij implies edge from xi to uj . And also wij = −1 if i = j, otherwise 0. Bias of

hidden layer is n. So net input of the output node is netoutput =
∑m
k=2 n

m−kuk and output of output node

is id(netoutput+1), bias in output layer is +1 and weights are nm−2, ..., n0 from hidden layer to output layer.

So the network is

f1
W = id(

m∑
j=2

id(

m∑
i=2

xiwij + n)nj + 1)

where wij = −1 if i = j for i, j ∈ {2, ..,m}. So total linear gates is m, Heaviside gate is 0, total weights are

m2 −m+ 2.

According to our condition m2−m+2 ≤ k.nm−1, where k < n is a positive constant. But this inequality

always holds, because only possible case for contradiction is n <<< m. But also in this case nm−1 increases
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exponentially with respect to m2 −m+ 2, which is basically a polynomial of m. So we conclude from here

that f1
W has weights O(nm−1).

Now we define second architecture

fW
2(x1) = W1 +

n∑
z=2

(Wz −Wz−1)H(x1 − z + 1/2)

which computes for each point x1 ∈ [n] to Wx1
. This network has n − 1 threshold gate, 1 linear gate,

3(n− 1) + 1 weights.

We define a architecture which maps Wi, 1 ≤ i ≤ n to w1, w2, ..., wnm−1 . So basically it is a multi output

net. Then the network would be f3(w) = (w1, w2, ..., wnm−1).

Assume by induction that we have a net N3
i that maps w to (w1, .., wi, 0.wi+1...wnm−1). Since wi+1 =

H(10.(0.wi+1...wnm−1) − 1/2) and 0.wi+2...wnm−1 = 10.0.wi+1...wnm−1 − wi+1, N3
i+1 can be obtained by

adding one threshold gate and one linear gate to N3
i, as well as 4 weights. It follows that f3 = N3

nm−1 has

nm−1 threshold gates, nm−1 linear gates, and 4nm−1 weights.

Finally we define a net N4 which takes as input q ∈ [nm−1] and w = (w1, w2, ..., wnm−1) ∈ {0, 1}nm−1

,

and outputs wq. The network is as follow

f4(q, w) = w1 +

nm−1∑
z=2

wzH(q − z + 1/2)−
nm−1∑
z=2

wz−1H(q − z + 1/2).

As multiplication between wi and Heaviside function are not allowed, so instead of uv we write H(u+v−1.5),

as v, u are binary valued. Therefore N4 has 1 linear gate, 4(nm−1 − 1) threshold gate, 12(nm−1 − 1) + n

weights.

So

fW (x1, .., xm) = f4(f1(x2, .., xm), f3(f2
W (x1))).

This implies that the net has total m+1+nm−1 +1 linear gates, (0+n−1+nm−1 +4(nm−1−1)) threshold

gates, ((m2 −m+ 2) + 3(n− 1) + 1 + 4nm−1 + 12(nm−1 − 1) + n) weights.

...
...

x2

xm

u2

um

y

d0

w2,2

w2,m

wm,2

wm,m

d2(nm−2)

dm(nm−m)

Input

layer

Hidden

layer

Output

layer

Figure 5.1: The network f1, where input in Rm and shattered set is [n]m.

This completes the proof.
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5.1.2 For Linear, Threshold, Multiplication, Division Gates

Lemma 5.1.1 ( [2]). For all n ≥ 1, there exists an architecture A1 with inputs (x,W1,W2, .....,Wnm−1) in

Rnm−1+1 and O(nm−1) weights such that the following property holds: for every ε > 0, there exists a choice of

the weights of A1 such that the function f1
ε implemented by the network satisfies limε→0 f

1
ε(i,W1, ...,Wnm−1) =

Wi for all i = 1(1)nm−1.

Proof. Let us consider the map f1
ε(x,W1,W2, ...,Wnm−1) = Πnm−1

i=1 (x − ε − i)
∑nm−1

i=1
ai∗Wi

x−ε−i , where ai =
1

Πj 6=j(i−j) and ε 6= 0. For this implementation we have used one multiplication gate with nm−1 + 1 inputs,

one linear gate with nm−1 inputs, nm−1 division gates, nm−1 linear gate with one input each (compute the

value of x − ε − i). Total number of weights used here nm−1 + 1 + nm−1 + 2nm−1 + 2nm−1 = 6nm−1 + 1.

Now f1
ε(x,W1, ...,Wnm−1) =

∑nm−1

i=1 Wi.
Πj 6=i(x−ε−j)

Πj 6=i(i−j) . Hence limε→0 f
1
ε(x,W1, ...,Wnm−1) = Wx.

Lemma 5.1.2 ( [2]). There exists an architecture of linear and multiplication gates with inputs in R, n

output units and O(n) weights such that the following property holds for every ε ∈ {0, 1}n, there exists an

input w ∈ [0, 1] such that the output of the network f2(w) = (f2(w)1, ...., f
2(w)n) of the network satisfies

f2(w)i ∈ [0, 1/2[, if εi = 0 and f2(w)i ∈]1/2, 1], if εi = 1.

Proof. Consider the function φ : [0, 1]→ [0, 1] such that φ(x) = 4x(1− x). We claim that for all ε ∈ {0, 1}n,

there exists w ∈ [0, 1] such that φi−1(w) ∈ [0, 1/2[, εi = 0 and φi−1(w) ∈]1/2, 1], εi = 1. This result follows

from the claim, using the iterates φi−1, i = 1(1)n as the co ordinates of f2, since the logistic map can be

implemented by a sub-network of linear and multiplication gates.

Note that each element of [0, 1] has two distinct preimages by φ, except 1, and that φ(1/2) = 1, φ(1) =

0, φ(0) = 0. If εn = 0, choose an element wn ∈]0, 1/2[ otherwise choose wn ∈]1/2, 1[. We construct a sequence

w1, w2, ....,Wn by ”going backward in time” as follows, wi is defined to be the preimage of wi+1 which is in

]0, 1/2[ if εi = 0 and the preimage which is in [1/2, 1[ otherwise. By construction one can take w = w1.

Theorem 5.1.3. For every n ≥ 1, there is a network architecture with inputs in Rm,m ≥ 2 and O(nm−1)

weights that can shatter a set of size nm. This architecture is made only of linear, multiplication and division

gates.

Proof. First consider [n]m be our shattered set. And also assume f be an arbitary Boolean function on this

shattered set. Let the input sequence of the net f2 of Lemma 5.1.2 be W = (W1, ....,WNm−1) and it satisfies

H(f2(Wk)x1
− 1

2 ) = f(x1, x2, ..., xm) = f1(x1, k) for xi ∈ [n], i = 1(1)m and k = [
∑m
i=2 n

m−i(xi − 1)] + 1.

Now consider the map Nε : (x1, ..., xm) → f1
ε(x1, f

2(f1
ε(k,W ))1, ...., f

2(f1
ε(k,W ))n). By Lemma 5.1.1

limε→0 f
1
ε(j,W ) = Wj . By continuity of f2, when ε is small enough f2(f1

ε(k,W ))i < 1/2 if f1(x1, k) = 0

and f2(f1
ε(k,W ))i > 1/2 if f1(x1, k) = 1, for all i = 1(1)n. Hence it follows from Lemma 5.1.1 that when

ε is small enough, Nε(x1, ..., xm) < 1/2 if f1(x1, k) = 0 and Nε(x1, ..., xm) > 1/2 if f1(x1, k) = 1. In a

conclusion the Boolean function f thus be computed by comparing the output of Nε to 1/2.

5.1.3 Conclusion

VC dimension for feed forward neural network with linear and threshold gates is square of total number of

parameters. Thus we can not say that VC dimension upper bound of this network is w logw. As already

we have proved that there exists a network which has VC upper bound O(w2). Next we have showed that

the VC dimension also depends upon the input dimension of the net. If input dimension increases, then

size of shatter set will be increase along with total number of parameters increases. The size of shatter
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set changes proportionally with number of parameters. As a part of the conclusion we can say that if we

wants to increase the shattered set size for a neural network, then we have to increase also total number of

programmable parameters.

5.2 VC Dimension for Piece wise Polynomial Network

Theorem 5.2.1. If 2m ≤ 2t(mr/w)w where r ≥ 16 and m ≥ w ≥ t ≥ 0. Then m ≤ t+w log2(log2 r. log2(log2 r)).

Proof. We would like to show that 2x > 2t(xr/w)w for all x > t + w log2(log2 r. log2(log2 r)). Let f(x) =

x− t− w log2(xr/w). To show that f(x) > 0 for all x > m := t+ w log2(log2 r. log2(log2 r)). We need only

to show that f(m) ≥ 0 and f ′(x) > 0 for all x > m. First f(m) ≥ 0 iff

w log2(log2 r. log2(log2 r))− w log2(mr/w) ≥ 0

iff log2(r). log2(log2 r)−mr/w ≥ 0

iff log2(r). log2(log2 r)−
t+ w log2(log2 r. log2(log2 r))

w
≥ 0

iff log2(r). log2(log2 r)−
t

w
− log2(log2 r. log2(log2 r)) ≥ 0

iff log2(r + log2 r)−
t

w
− log2(log2(r + log2 r)) ≥ 0

iff log2(
r + log2 r

log2(r + log2 r)
)− t

w
≥ 0

iff
r + log2 r

log2(r + log2 r)
≥ 2

t
w

Now to show g(x) = x
log2 x

≥ 2 for x ≥ 20. It is enough to show g′(x) ≥ 0 for all x ≥ 20.

Only remaining part is f ′(x) > 0 for all x > m.

f(x) = x− t− w log2(xr/w)

f(x) = x− t− w log2(xr)− w log2 w

f ′(x) = 1− 1

x loge 2

f ′(x) = 1− 10

x.6.93

f ′(x) > 0 =⇒ x > 1.44

So in addition an extra condition is t+ 3w > 1.44. This completes the proof.

Now we apply this result to our VC upper bound theorem in [16]. The proof of the rest part given in
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this paper, so we only focus on a part where we can apply our result.

Πsgn(F )(m) ≤ ΠL
i=12(

2empki(1 + (i− 1)di−1)

Wi
)Wi

≤ 2L(
2emp

∑
ki((i− 1)di−1 + 1)∑

Wi
)
∑
Wi

= 2L(
2empR∑

Wi
)
∑
Wi

≤ (
4emp(1 + (L− 1)dL−1)

∑
ki∑

Wi
)
∑
Wi

≤ (4emp(1 + (L− 1)dL−1))
∑
Wi

From the third line of this proof and definition of VC dimension, 2V C(F ) =

Πsgn(F )(V Cdim(F )) ≤ 2t( 2epRV Cdim(F )∑
Wi

)
∑
Wi . Then the above theorem gives V Cdim(F ) ≤

L+ (
∑
Wi) log2(log2(2epR). log2(log2(2epR))), where 2epR = r, V Cdim(F ) = m,L = t,

∑
Wi = w.

5.3 VC Dimension of S shape functions

5.3.1 Neural Network with Sigmoid Activation Functions

Theorem 5.3.1. Consider a neural network of W parameters, L layers and K computation units, except

output unit all the units contain sigmoid activation function. The input of the network is real numbers and

output is one unit with binary output. So for L ≤ W and k ≤ W , the class of functions computed by this

network is F . Then V C(sgn(F )) ≤ 2WL log(2eWLpK)+2WL2 log(l+1)+2L, where l is max degree of the

polynomial functions and p is the total breakpoints of that function. Also if l, p is fixed and L,K = O(W ),

then V C(sgn(F )) = O(WL logW +WL2).

Chebyshev Approximation

Let f(x) be a real valued function, we want to approximate to it such that f(x) ≈
∑∞
i=0 ciTi(x), where ci’s

are the coefficients and Ti’s are the normalized Bernstein basis functions. We will get the basis functions from

the recursion Tn+1(x) = 2xTn(x)− Tn−1(x) where base case is T0 = 1, T1 = x, n ≥ 1. First few polynomials

are T2(x) = 2x2−1, T3(x) = 4x3−3x, T4(x) = 8x4−8x2+1. Basically the Bernstein basis functions of degree

n defined on (0, 1) is bk,n(t) =
(
n
k

)
tk(1 − t)n−k. But we need on interval (−1, 1), we give a transformation

s = 2t−1 and the changed functions are bk,n(s) =
(
n
k

)
(1+s)k(1−s)n−k ∗2n. Now the integral of normalized

basis function becomes Cp,q(s) = 1+s
2

q+1∑p
i=0

(
i+q
i

)
1−s

2

i
. The expansion of Chebyshev polynomials follows

Cp,q(s) =
∑N
i=0 a(i)Ti(s), where N = p+ q + 1. The below figure gives a idea between original sigmoid and

scaled sigmoid curve. The equation of sigmoid funtion is f(x) = 1
1+e−x and equation of scaled sigmoid is

σ(x) = 1
1+e−8x .
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Figure 5.2: Comparison of sigmoid and scaled sigmoid functions

For scaled sigmoid function σ(s) ≈ Cp,q(s) = 1+s
2

q+1∑p
i=0

(
i+q
i

)
1−s

2

i
=
∑N
i=0 a(i)Ti(s) on interval (−1, 1)

and also choose p = 11, q = 11. So our approximation become σ(x) = 0, x < −1 and Cp,q(x),−1 ≤ x ≤ 1

and 1, x > 1. The following figure shows a comparison between approximation polynomial and our original

function.

Figure 5.3: Sigmoidal Approximating Curve

VC Dimension Calculation of This Network

This activation function has maximum degree l = 23 and number of break points is p = 3. Choose m

arbitary data points x1, x2, ..., xm from input domain and the parameter space is S = RW. We have to

bound K := |{(sgn(f(x1, s)), ....., sgn(f(xm, s))) : s ∈ S}|. Divide the parameter space such a way that in

each part every polynomials have a fixed degree and no more than (d + 1)L−1. Partition S into S1, ..., St

such that within each region f(x1, .), ..., f(xm, .) are all polynomials of degree no more than (d + 1)L−1.

Then K ≤
∑t
i=1 |{(sgn(f(x1, s)), ....., sgn(f(xm, s))) : s ∈ S}|. Then each term of the summation less than

equal to 2(2em(d+ 1)L−1/W )
W

. S1 is determined by only parameters of first hidden layer. W1, ...,WL be

the parameters used in computing the unit outputs upto the layer 1, 2, ..., L respectively, and also k1, ..., kL

are the number of units upto the layer 1, 2, ..., L respectively. Choose S1 such that |S1| is no more than the

number of sign assignments possible with mk1p affine functions with W1 variables. Rest of the construction

technique follows proof of [1]. Now applying our constraints p = 3, l = 23, which gives V C(sgn(F )) ≤
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2W log(6eWLK) + 10WL2 + 2L.

Lagrange Approximation

Let (x1, f1), (x2, f2), ...., (xn, fn) are the n choosen points and its corresponding functional values. Find

polynomial p(x) such that p(x1) = f1, p(x2) = f2, .... Lagrange polynomials L1, L2, ... have the following

property:

L1(x) = 1 at x = x1 and L1(x) = 0 for x = x2, x3, ..., xn.

L2(x) = 1 at x = x2 and L2(x) = 0 for x = x1, x3, ..., xn and so on.

So our polynomial becomes f(x) ≈ p(x) = f1L1(x) + f2L2(x) + ...... Where

L1(x) =
(x− x2)(x− x3)(x− x4)...

(x1 − x2)(x1 − x3)(x1 − x4)...

L2(x) =
(x− x1)(x− x3)(x− x4)...

(x2 − x1)(x2 − x3)(x2 − x4)...

Now Apply For Sigmoidal Network

For sigmoid f(x) our approximate function will be

f(x) ≈ p(x) = f1L1(x) + ...f6L6(x), where

L1(x) =
(x− x2)(x− x3)...(x− x6)

(x1 − x2)(x1 − x3)....(x1 − x6)

and so on. So we basically approximate it by a 5 degree polynomial on [−4, 4], and for less than −4 it

will be 0 and for greater than 4 it will be 1. Our pre assumed 6 points are x1 = 1.050909826341572, x2 =

−3.2748296386052527, x3 = 2.623648850589679, x4 = −3.2990950890760633, x5 = 3.522774111950934, x6 =

−2.1661034488309143. And our comparison function picture will be

Figure 5.4: Lagrange Approximating Curve

Now apply Theorem 5.3.1 where our constraints would be l = 5, p = 3.
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One More Approximation

Let f(x) be our sigmoid function and we approximated it by σ(x) where

σ(x) = 1− 1

2x+ 2
, x ≥ 0

=
1

2− 2x
, x < 0

Figure 5.5: Another Approximation of Sigmoid

First check if Warren result for sign assignment of a polynomial valid for rational function, we will apply

Theorem 5.3.1. Or our target is we approximate it by some polynomial approximation Theorem, next to

apply Theorem 5.3.1.

5.3.2 Neural Network with tanh Function

The equation of tanh function is f(x) = e2x−1
e2x+1 . If we compare tanh with sigmoid, this is a scaled version of

one another. The below figure gives a idea of these two functions:

Figure 5.6: Comparison of sigmoid and tanh functions
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Using Continued Fraction

The rational function that comes from truncation of the continued fraction for the hyperbolic tangent:

tanh(x) =
x

1 + x2

3+ x2

5+..

.

Here for instance are plots comparing tanh and the convergent.

R(x) =
x

1 + x2

3+ x2

5+ x2

7+ x2

9+ x
2

11

.

Figure 5.7: Continued Approximation of tanh

We approximate the function on [−4, 4], and the rest part of this function is asymptotic type. Now if

Warren result applicable, we use it and Theorem 5.3.1 or we approximate it by polynomial and then use

Theorem 5.3.1.

Using Pade Approximation

This idea based on the Pade approximants of exp(x). More precisely, let the (n, n) approximant of exp(x)

be represented by exp(x) ≈ pn(x)
pn(−x) , where pn(x) =

∑n
j=0

(nj)
j!(2n

j )
xj .

From this, we find that we can approximate tanh(x) with a rational function like so:

tanh(x) ≈ τn(x) =
pn(x)2 − pn(−x)2

pn(x)2 + pn(−x)2
.

Consider

τ3(x) =
x(10 + x2)(60 + x2)

600 + 270x2 + 11x4 + x6

24

.

Here are comparison plots for tanh(x) and τ3(x):
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Figure 5.8: Comparison of tanh(x) and τ3(x)

We approximate the function on [−4, 4], and the rest part of this function is asymptotic type. Now if

Warren result applicable, we use it and Theorem 5.3.1 or we approximate it by polynomial and then use

Theorem 5.3.1.

5.4 VC Dimension Calculation For RVFLN

5.4.1 First Approach

We consider the network has u1, u2, ..., um as input nodes value and ai,j , i ≤ m, j ≤ n are input to hidden

layer weights, b1, ...., bn are the hidden layer bias, c1, ..., cn are hidden to output layer weights, c0 is output

layer bias and output layer has one unit as consider as binary classification problem. Also input to hidden

output layer weights are d1, ..., dm. Then output of the network is

y = c0 +

m∑
i=1

uidi +

n∑
j=1

cjσ(Aju+ bj)

By our definition, all a′i,js are fixed and assigned from a probability distribution. Now the obtained class of

functions are span of 1, d1, ...., dm, σ(A1u+ b1), ..., σ(Anu+ bn).

So the vector space span by these elements has dimension at most n+m+ 1. From Lemma 2.3.1, we get

V C(F ) ≤ n+m+ 1.

5.4.2 Second Approach

From input to hidden unit weights are assigned randomly, no need to tuning these weights during training

the network. So, these weights are fix during calculation of VC dimension. RVFLN has one hidden unit and

assume binary output. Consider the network has m input units, k hidden units. For a general case class of

functions associated with layer i,

F i = F (i,1) × ....× F (i,di)

where di is total unit nodes at layer i. Class of function associated with whole network is

F = F l ◦ ... ◦ F 1
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where l is total number of layers except input layer. Use this concept on RVFLN, for hidden layer, F 1 =

F (1,1) × ....× F (1,k), for output layer F 2 = F (2,1) × .....× F (2,L). Now for whole network,

F = F 2 ◦ F 1 = (F (2,1) × .....× F (2,L)) ◦ (F (1,1) × ....× F (1,k))

Assume first part of the equation is A and second part is B. Then ΠF (m) ≤ ΠA(m) × ΠB(m). From here

we get

ΠF (m) ≤ ΠF 2,1(m)× .....×ΠF 2,L(m)×ΠF 1,1(m)× .....×ΠF 1,k(m)

5.5 Comparison of Different VC Dimension Bounds

Already so many VC upper bound have been calculated using different techniques of different type of neural

networks. But we can make a study for comparison of the bound for same type activation function classes.

This study will give us a concept of bound for different number of parameters and also different input

dimension. We hae seen that when input dimension increases, one bound dominant other bound after a

certain number of parameters. Here we consider only weights as a parameter not the bias term. Here Layers

means all layers except input and output layer. Also each layer has same number of computational units. So

total number of computational units is |Layers| × |per layer computatinal unit|. And also total number of

parameters is |computationalunits| × |number of incoming edge to each unit|. Total number of operations

is O(|parameters|+ |nodes|).
The below table for input dimension 10. Assume each hidden layer has same number of unit 10.

Layers Units Parameters

2 20 200

5 50 500

10 100 1000

20 200 20000

Table 5.1: For input dimension 10

The following figure give us a idea of different VC upper bound for sigmoidal type networks, piece wise

polynomial type networks, piece wise linear type networks.

59



Figure 5.9: For input dimension 10

For sigmoidal neural network all these three bounds are almost same according to our plot. For piece wise

linear neural network after a certain number of parameters types bound behaves oppositely with respect to

its first part. And for the other types all are almost same. From the figure we have drawn that for piece wise

polynomial network type-1 changes its bound value, comparing to the other bounds value after a certain

number of parameters. But all the bounds are monotonically increasing. Some of them also are strictly

monotonically increasing.

The below table for input dimension is 50. Here each hidden layer has same number of units 30. We

assume p = 1 and l = 2, 5, 10, 20 for layers = 2, 5, 10, 20 respectively. If we increase p then bound also

change proportionally.

Layers Units Parameters

2 60 2400

5 150 5100

10 300 9600

20 600 18600

Table 5.2: For input dimension 50

The following figure give us a idea of different VC upper bound for sigmoidal type networks, piece wise

polynomial type networks, piece wise linear type networks.
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Figure 5.10: For input dimension 50

Here type-i means the function of type i’th row of the main table described later. And also row number

starts from 1. Here row 3, 6, 7 belong so sigmoidal case, row 9, 10, 12, 13, 14 belong to piece wise polynomial

case, row 1, 2, 4, 8, 11, 15 belong to piece wise polynomial type network.

For sigmoidal neural network all the bounds are basically same but these bounds behaves like strictly

monotone increasing function after a certain number of parameters. We can say that for piece wise polynomial

neural network, the VC upper bounds behaves differently, means two bounds are strictly monotone increasing

function and others are showing this property after a certain number of parameters. Also for piece wise

polynomial network, the VC upper bounds crosses one another after a certain number of parameters.
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Constraints Activation function Bound Additional Conditions

Theorem 8.3 of [14]

F = {f : Rd ×X →
R}, a ∈ Rd,X = input

Domain

H - k−combination of

sgn(F)

V C(H) ≤
2d log2(12kl)

m ≥ d/k, a 7→ f(a, x)

is a polynomial of

degree no more than l

Theorem 8.4 of [14]

h(a, x) has no more

than t operations,Rn

= input Domain

h : Rd × Rn →
{0, 1},H = {x 7→
h(a, x) : a ∈ Rd}

V C(H) ≤ 4d(t+ 2)

operations of types:

output 0, 1;+,−, ∗, /;<

,>,=,≤,≥, 6=

Theorem 8.14 of [14]

h(a, x) has no more

than t operations, Rn

= input Domain

h : Rd × Rn →
{0, 1},H = {x 7→
h(a, x) : a ∈ Rd}

V C(H) ≤
t2d(d+ 19 log2(9d))

operations of types:

output

0, 1;+,−, ∗, /;<,>,=

,≤,≥, 6=;x 7→ exp(x)

Theorem 8.7 of [14]
w weights,k

computational units

linear threshold,Piece

wise polynomial of p

pieces and degree no

more than l

V C(H) =

O(w(w + kl log2(p)))

feed forward

network,output unit

linear threshold

Theorem 8.11 of [14]

w parameters,first layer

computation units = k,

fan in of first layer unit

no more than N

first layer with sigmoid

activation

V C(H) ≤
2w log2(60ND)

input domain

X = {D, ....,−D}n,

D ∈ N,two layer feed

forward

Theorem 8.13 of [14]
w parameters, k

computation units

linear

threshold,sigmoidal

function

V C(H) ≤ (wk)2 +

11wk log2(s),s =

18wk2

feed forward network,

m ≥ w

[9]

l programmable

parameters,k input

nodes,m computation

nodes

sigmoid function

V C(A) ≤ (ml)(ml −
1)/2 + l(2m+

1)log(2d) + l(3m+

1)log((2m+ 1)l+ 1) +

l(3m+ 1)log(2d+ 1)

d =maximum degree of

polynomial µ,

constructing from

terms and

V C(A) = O((ml)2)

[1]

w parameters,k

computation units, L

layers

Identity function,Piece

wise polynomial of

degree at most l and p

break points

V C(sgn(F )) ≤
2wL log(2ewLpk) +

2wL2 log(l + 1) + 2L

k ≤ w,L ≤ w and if

L,k = O(w),then

V C(sgn(F )) =

O(wL2 + wL log2 L)

[34]
L layers, p parameters,

k computation units
Piece wise constant V C(sgn(F )) = O(p)

Example: Linear

Threshold

[16]
L layers, p parameters,

k computation units
Piece wise linear V C(sgn(F )) = O(p2)

Example: ReLu

Network

[17]
L layers, p parameters,

k computation units
Piece wise polynomial

V C(sgn(F )) =

O(pL2)
More Generalized

[27] w parameters,L layers piece wise linear
V C(F ) =

O(wL log(w) + wL2)

(Bartlett, Maiorov,

Meir, 1998)

[27] w parameters,L layers piece wise linear
V C(F ) =

O(w log2(w))

Cover, 1968; Baum

and Haussler, 1989

[17] W parameters,L layers ReLu function
V C(F ) =

O(WL log(W ))

Special case of Piece

wise Polynomial

[17] W parameters,U units
piecewise polynomial

of degree at most d

V C(sgn(F )) =

O(WU log(d+ 1))
Generalized Case

Table 5.3: Different VC Upper Bounds62



5.6 Experiments and Results

Here we will compare test error bound from VC upper bound and practical test error bound. And the

experiment has done on the following bench mark datasets 1) D1 (Shuttle Data) 2) D2 (Skin Segmentation

data) 3) D3 (Avila Data) 4) D4 (HTRU2 Data) 5) D5 (Default of credit card clients Data ) 6) D6 (Online

Shoppers Purchasing Intention Data). All data collected from UCI Machine Learning Repository site. E1:

Each hidden layers contain 2 nodes, E2: Each hidden layer contains 3 nodes, E3: Each hidden layers contains

4 nodes.

Dataset
E1 E2 E3

L1 L2 L3 L1 L2 L3 L1 L2 L3

D1 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001

D2 0.003 0.021 0.019 0.002 0.007 0.007 0.001 0.002 0.001

D3 0.316 0.316 0.316 0.316 0.288 0.328 0.296 0.264 0.278

D4 0.025 0.024 0.025 0.025 0.024 0.022 0.025 0.026 0.025

D5 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271

D6 0.017 0.064 0.151 0.109 0.098 0.112 0.105 0.133 0.108

Table 5.4: Test Error for Neural Network with ReLU Activation

L1: Contains 3 hidden layers. L2: Contains 4 hidden layers. L3: Contains 5 hidden layers. Here train

test split is 0.10. Number of epochs used here is 80, batch size is 20. Also as a optimizer we used Adam

optimizer. And also as a important point we tried all these experiments in same setup.

Dataset
E1 E2 E3

L1 L2 L3 L1 L2 L3 L1 L2 L3

D1 29 35 41 46 58 70 65 85 105

D2 17 23 29 28 40 52 41 61 81

D3 31 37 43 49 61 73 69 89 109

D4 27 33 39 43 55 67 61 81 101

D5 57 63 69 88 100 112 121 141 161

D6 33 39 45 52 64 76 73 93 113

Table 5.5: Total parameters for Neural Network with ReLU Activation

Now we will give a overview of these data sets. Class ratio consider for total (including training and test

part) sample and Total sample consider for samples used for training.

• D1: Total sample: 32909, Total features: 9, No categorical features, Class ratio: 34108 : 2458.

• D2: Total sample: 220551, Total features: 3, No categorical features, Class ratio: 194198 : 50859.

• D3: Total sample: 5622, Total features: 10, No categorical features, Class ratio: 4286 : 1961.

• D4: Total sample: 16108, Total features: 8, No categorical features, Class ratio: 16259 : 1639.

• D5: Total sample: 27000, Total features: 23, No categorical features, Class ratio: 23364 : 6636.
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• D6: Total sample: 11097, Total features: 11, No categorical features, Class ratio: 10422 : 1908.

The test error rate is

R(α) ≤ Remp(α) +

√
h

l
log(

l

h
)− 1

l
log(δ)

Now Remp(α) = 1
2l

∑l
i=1 |yi − f(xi, α)|. h is the VC dimension of the machine and 0 ≤ η ≤ 1, l is the total

number of training examples. The following figure gives a details comparison between real test error and

practical test error.

For ReLU neural network V C(F ) = O(L1W log2(pU) + L1L log2(d)). Here d = 1, p = 1 and L1 ≈ L. So

modified bound is V C(F ) = O(LW log2(pU)). Here every symbol has similar meaning as symbols in [16].

But the bound which we have used here is V C(F ) ≤ L+ (
∑
iWi). log2(log2(2epR). log2(log2(2epR)))

The following figures give us a idea about theoretical test error bound and practical test error bound.

We always say that the theoretical bound is more than the practical bound. As the experiment has done in

a general setting, so we can conclude that almost all the time this tradeoff happens. Here all used activation

functions are ReLU function.

Figure 5.11: For ReLU Neural Network

5.6.1 Conclusion

We know that the Bayesian classifier is the best classifier among all the classifiers. As a conclusion from this

statement, we can say that this classifier has the lowest misclassification error. Similarly, We can make a

conclusion that the test error bound derived from VC dimension always more than the practical test error

bound. From this atleast we get a idea about upper bound of test error rate.
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Chapter 6

Future Works

In this chapter we will pose some problems which arises from our proposed methods or solutions. Also

we will propose a few things that might have greater importance in statistical learning field.

6.1 Scope of Future Work

Our proposed problems are:

• We have showed that there is a neural network with linear and threshold gates and inputs in Rm which

has VC dimension O(nm) with weights O(nm−1) for n ≥ 1. Is there some architecture which has same

VC dimension bound but has less number of weights?

• Same question as above will arise for neural network with linear, threshold, multiplication, division

gates.

• Is there any sufficient method for calculating VC dimension of neural network with skip connections

(example RVFLN, ResNet)? Also the upper bound on VC dimension should be tighter than a upper

bound of feed forward neural network with out skip connections. We have made this claim because

skip connection network gives better performance than without skip connection network in-general.

• Also, there is a result in topology about how many convex regions created by intersecting some number

of hyperplanes. Is there similar result for S shape curve? If yes, then we can use that result to calculate

VC upper bound for feed forward neural network with S shape functions.

• Besides model theoretic, time taking for each operations, approximation of curves approaches, is there

any other way to handle the calculation of VC upper bound for feed forward neural network with

sigmoidal activation function with or without skip connections?

• How much the gap between theoretical test error and practical test error depends upon the number of

layers, nodes per layers, activation functions in hidden layers?



• Already some researchers have proposed the concept for calculating number of nodes for each hidden

layer of a feed forward neural network which depends upon the shape of the data set. For this concept

they correlated betti number (number of holes) of this datasets with number of computational nodes.

Basically it does not depends upon the activation functions. If we can correlate the VC dimension

which depends upon activation function with betti number which correlates with shape of datasets,

then we might get more tighter and significant VC bound for each different type of neural networks.

And if VC bound depends upon both data sets shape, dimension and activation functions, the bound

will be more specific.
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