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Abstract

The last decade has seen an unprecedented adoption of Artificial Intelligence

and Machine Learning Algorithms in various engineering applications such as

medical imaging, autonomous vehicles, web services, etc. Probabilistic Rea-

soning lies at the heart of such algorithms. Probabilistic reasoning techniques

rely highly on sampling techniques and thus samplers that are able to gen-

erate quality samples from a discrete distribution uniformly at random, are

in heavy demand. This has created a need for efficient samplers that come

with some correctness and performance guarantees, and indeed, a number of

proposals to this effect have been developed in literature. This has also cre-

ated a need to find an efficient and scalable way for testing the reliability of

a sampler with respect to the quality of the samples it generates. Unlike in

the field of program testing, in which finding a single trace of execution is

sufficient to prove the existence of a bug, the number of samples needed for

sampler testing is not one, in fact, most of the testing mechanisms existing in

literature, use exponential or sub-exponential number of samples to test for

uniformity of a given sampler. The objective of this work is to propose tech-

niques that can cut down on this complexity for certain classes of samplers.

To overcome the high sample complexity for property testing of distributions,

a framework for conditional sampling was proposed for checking properties

of distributions, with polynomial complexity in the number of dimensions of

the sample space. A recent framework named Barbarik that works on the

guidelines of conditional sampling has suggested a way to test uniformity of

samplers sampling from Boolean domains, using a constant number of sam-

ples. Barbarik has been proposed in the context of uniformity testing of

samplers which claim to provide uniform witnesses for arbitrary Boolean for-

mulae. The objective of this thesis is to examine ways to develop similar

algorithms for testing other kind of samplers.

In the first result presented in this thesis we propose a framework to harness

Barbarik to test uniformity of state-of-art samplers which are used in the



context of Horn formulae. Horn formulae is a subclass of general Boolean for-

mulae and have been quite popular in a variety of domains, due to their simple

yet powerful expressiveness, while being able to entail polynomial procedures

for solving. In this thesis, we propose an efficient procedure to test samplers

for Horn clause, and we demonstrate the efficacy of our testing framework

with experiments on large scale benchmarks.

In the second part of this thesis, using a different form of the conditional

sampling model, we investigate the problem of testing samplers in the context

of uniform Perfect Matching in a Graph. The problem of finding uniform

perfect matching in a graph is of importance in computer science and has a

large volume of research associated with it. Modern complex networks often

need to find a uniform perfect matching. The problem of finding a uniform

perfect matching finds it’s root in physical sciences like statistical mechanics

and chemistry. This has inspired research on methods for testing whether

the algorithm in use generates a perfect matching uniformly at random. Our

contribution in this thesis is a randomized algorithm using the framework of

sub-cube conditional sampling to test samplers for uniform perfect matching.
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Chapter 1

Introduction

Sampling techniques form the core backbone of probabilistic reasoning and state of art

inferencing techniques. Sampling has widespread usage not only in computer science and

statistics, but it also has wide applications in statistical mechanics, chemistry, particle

physics, etc. A sampler is an implementation of an ensemble of algorithms that generates

samples from a sample space using some underlying distribution. Samplers with strong

theoretical guarantees often do not scale well to suit practical needs. Most of the modern

samplers in use, therefore, rely on heuristic approaches to scale to practical needs. The

main motivation of this thesis is to look for approaches for possible testing methodologies

to test whether a sampler under test generates samples close to a given distribution. In

particular, our main objective is to develop novel testing methodologies for different kinds

of samplers with particular focus on testing for uniformity of samplers.

1.1 Importance of Samplers

Sampling techniques find widespread usage in computer science, statistics, statistical me-

chanics, chemistry, etc. We outline a few of them in this section.

Sampling and AI: The last decade has seen adoption of Artificial Intelligence and

Machine Learning based algorithms in safety critical systems like aircraft controllers, etc.

and various other engineering applications such as medical imaging, autonomous vehi-

cles, web services, etc. Such unprecedented proliferation owes its credit to the ability of

such algorithms to match and at times surpass human abilities for complex tasks. At the

core of such applications lie probabilistic reasoning. Sampling forms a key component of

probabilistic reasoning, in particular, uniform sample generation has found varied usage
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in probabilistic reasoning [1] and a variety of other disciplines.

Sampling and Statistical Inference: Statistical Inference is about making proposi-

tions about population using the data drawn from the population using sampling. Given

a hypothesis about a given population, statistical inference consists of drawing data from

the population using sampling and then analyzing the samples to draw conclusions. In or-

der to prove or disprove a hypothesis made about the population, some confidence about

the quality of the samples is essential. An unbiased uniform sample from the population

is often regarded the best for drawing conclusions. This use of sampling thus requires

efficient and quality samples from a distribution over the population.

Sampling and estimation: Sampling is used for various parameter estimations in

the field of geostatistics, biostatistics, forecasting, signal processing etc. Here a small

available sample is analyzed to estimate some parameter for the entire population. If

the sample is biased or not of expected quality, the estimations become inappropriate.

In some cases poor quality of samples could distort the estimation which could in turn

affect the values significantly. Thus estimation requires very high quality of samples.

In addition to the above, sampling has also found widespread usage in network reliability[2],

constrained random verification[3], program analysis and many other engineering and

non-engineering fields.

Despite such widespread usage, it is worth noting that sampling is computationally in-

tensive problem. Probabilistic reasoning has been shown to be #P -complete for variables

with finite domains [1]. Also model counting is another problem that has been shown to

be #P -complete by Valiant in [4]. Sampling is equivalent to approximate counting, since

both the problems self reduce to each other. Most of the techniques used for sampling are

approximations over real-world instances. Most of these techniques are based on Monte

Carlo Markov Chains (MCMC) and variational approximation. But these techniques fail

to scale to large real-world instances and fail to provide rigorous approximation guar-

antees in practice. To cope with these problems, most of the deployed samplers use

heuristic based approaches. Unfortunately, heuristic based approaches do not usually

lend themselves to easy theoretical guarantees. This motivates the need to test samplers

for uniformity. Unlike in the field of property testing where finding a single bug is suffi-

cient to prove the existence of a bug in a program under test, for a sampler this is not the

case where the number of samples needed to test for uniformity is generally exponential
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in the sample space. Before putting any sampler for any class of problem to use, it is

essential to test it’s performance in order to ensure reliability. In particular, the samplers

need to be verified with respect to their ability to generate uniform samples. This is the

central motivation of this thesis, as discussed in the various chapters. We discuss more

about this below.

1.2 Verification of Samplers

Since sampling techniques are of such utmost importance, researchers have investigated

several practical and scalable approaches to design samplers. With such large volume of

research, significant effort has also been put in for the evaluation of the proposed tech-

niques. In most of the published articles, to test the quality of the distribution generated

by a sampler, various versions of the classical χ2-test are applied. The tests involve study-

ing various parameters of the frequency vector of the output of the sampler when run on

benchmark data. Some of the published work look into the number of unique samples

that are generated from various samplers to argue about the quality of the distribution

[5], [6]. They use a variation of the standard χ2-test in their approach. Unfortunately, it

has been proved in [7] that any test that uses only random samples from the distribution

and would with probability at least (1− δ) accept the distribution if it is ε-close to uni-

form and with probability at most δ reject if the distribution is η-far from uniform would

need Ω(
√
Rϕlog(δ−1)/(η − ε)2) samples, where 0 < δ < 1. Recently, a new model called

conditional sampling has been proposed in [8], [9]. The authors showed with access to

conditional sampling from a distribution, the number of samples required to check for ε-

close or η-far from uniform is O(log(δ−1)/(η− ε)2) which is independent of the dimension

or support of the distribution.

In a recent work, authors of [10] came up with an algorithmic framework named Barbarik

using the guidelines of conditional sampling to test whether the underlying distribution

of the sampler is ε-close or η-far from the uniform distribution. Barbarik requires only

Õ(1/(η − ε)4)1 samples, which is a constant with respect to the size of the sample space.

On similar grounds of conditional sampling, authors of [11] introduced a generic property

testing framework for joint distributions. They used the sub-cube conditioning model

in order to test whether a sampler on a product domain is indeed uniform or η-far

1Õ is an extension of the standard big-O notation, ignoring all poly logarithmic factors
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from uniform using Õ(n2/η2) samples, where n is the dimension of the space over which

the distribution is defined. This framework presents an useful adaptive mechanism for

testing samplers for uniformity in various contexts like perfect matching, cryptography,

data analytics, etc.

1.3 Contributions of this Thesis

The contributions of this thesis are summarized as follows.

• As our first contribution, we present a probabilistic algorithm for testing whether

a Horn clause samplers is ε-close to uniform or η-far from uniform 1. We call

our testing mechanism, Flash. The framework for Flash adapts it’s methodology

from the Barbarik framework introduced in [10]. Since Barbarik was designed for

unrestricted Conjunctive Normal Form (CNF) formulae, adapting it to suit Horn

formulae is not straight forward. Horn being a restricted sub-class of CNF doesn’t

lend itself to the general model that Barbarik deals with. Even a trivial task of

encoding in Barbarik needs to be remodeled to make it work for Horn formulae.

This is the novelty of our first contribution, as outlined in Chapter 3. The testing

methodology that we propose uses only Õ(1/(η − ε)4) samples, which is constant

with respect to the size of the sample space. In this chapter, we discuss the working

methodology of Flash, the theoretical guarantees that it presents and the run-time

efficacy of our approach on state-of-the-art samplers on standard Horn benchmarks.

• Further, we present a probabilistic algorithm for testing whether a sampler for per-

fect matching in graphs samples according to the uniform distribution or whether

the underlying distribution is η-far from uniform. We call it the Uniform Perfect

Matching Sampler Test (UPMST). It may be noted that the witness based con-

ditional sampling method suggested in Barbarik does not readily fit in the context

of graphs. We therefore design a different novel strategy for conditional sampling.

We use the model of sub-cube conditional sampling and adapt the test for identity

of joint distributions introduced in [11] to derive an algorithm that tests uniform

samplers for perfect matching. The testing methodology that we propose uses

Õ(|E|2/η2) samples, where E is the edge set of a given graph G = (V,E). We also

derive the theoretical guarantees that this methodology provides.

1where the ε-close and η-far refers to the `1 or variation distance of the underlying distribution of
the sampler from uniform
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The rest of this thesis is organized into 4 chapters. In the following chapter, we intro-

duce some necessary background concepts and discuss some relevant literature. Chapter

3 outlines our proposal on sampler verifier for Horn formulae, while the following dis-

cusses about techniques for testing uniform perfect matching. Chapter 5 concludes this

discussion.
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Chapter 2

Definitions and Preliminaries

In this chapter, we present an overview of some background concepts that are relevant

to the contributions of this thesis. We begin with a discussion on the general concept of

sampling, and move on to describe relevant work on samplers and their verifiers. Further,

we present an overview of the conditioning method that forms the backbone of Chapter

4. We also discuss briefly the concept of matching in graphs.

2.1 The problem of Sampling

In probability theory, we define a sample space as the set of values a random variable can

take. Intuitively, a sample space consists of all possible outcomes of any experiment. A

sampler is responsible for generating samples from the sample space over the distribution

the sampler follows. For us, a sampler is a generator of samples from a sample space us-

ing some underlying distribution. In this thesis, we use the terms sampler and generator

interchangeably.

In many problem domains, it may so happen that the sample space is not initially defined

to the sampler, and we need to indicate the sample space before the sampler is ready to

generate samples. For example for a SAT sampler, the sample space, denoted by Rϕ, is

different for every other Boolean formula ϕ. We first specify the formula to the sampler

before requesting for satisfying assignments to ϕ. Another example is sampling for perfect

matching of a given graph G = (V,E). A perfect matching sampler on receiving as input

a graph G, outputs a perfect matching M of G using some distribution from the set of

all perfect matchings of G, denoted by ΓG. Formally a sampler is defined as follows.

Definition 2.1.1. Given a problem instance I and an underlying distribution DΩI , where
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ΩI is the sample space associated with I, a sampler S is an algorithm that generates

elements from ΩI using the distribution DΩI , i.e.

∀x ∈ ΩI , Pr[S(I) = x] = PrD(ΩI)[x],

In general, as mentioned in the previous chapter, since sampling itself is a difficult prob-

lem, we focus mainly on uniform random sampling. To us, a sampler is like a blackbox

access, which on request generates a given number of samples from the sample space.

Since most of the times the sample space is too large for enumeration, samplers use

varied heuristics to generate samples, quality of which do not often have theoretical guar-

antees. Thus it is necessary to verify the quality of the samples generated with respect

to the underlying distribution which these samplers follow.

2.1.1 Uniform Sampling

Given an instance I, a probabilistic sampler G is an algorithm that outputs a random

sample from ΩI . Let DG(I) denote the underlying probability distribution induced by G

over the set ΩI , i.e. DG(I) assigns a probability to each element of ΩI , that denotes the

probability with which G(I) returns x ∈ ΩI . Let Q ⊆ ΩI , DG(I)|Q be the probability

distribution DG(I) conditioned over the set Q. When conditioned on the subset Q, G(I)

returns only samples from Q and DG(I)|Q dictates the probability with which G(I) returns

each element in Q.

Definition 2.1.2. Given an instance I, a uniform generator Gu(I) is a probabilistic

generator that guarantees

∀y ∈ ΩI , Pr[G
u(I) = y] = 1

|ΩI |

The following example explains this in greater detail.

Example 2.1.1. Uniform Sampling of witnesses for Boolean formula: Con-

sider the Boolean formula ϕ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3), in Conjunctive Normal Form

(CNF), defined over the variables x1, x2 and x3. Witnesses of ϕ are 000, 001, 010, 011,

101, where 0 refers to false and 1 refers to true, 000 assignment means x1 is assigned

false, x2 is assigned false, x3 is assigned false, similarly, 001 assignment means x1 is

assigned false, x2 is assigned false, x3 is assigned true and so on. If we call a uni-

form sampler A with the formula ϕ, it must return one of the five witnesses each with

probability 1/5. In other words, for a uniform sampler, we should have:

Pr[A(ϕ) = 000] = Pr[A(ϕ) = 001] = Pr[A(ϕ) = 010] = Pr[A(ϕ) = 011] = Pr[A(ϕ) =

101] = 1
5
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From this example, we can conclude that if we ask an uniform sampler A for 100 random

samples for ϕ, A should return 20 samples corresponding to each witness of ϕ.

Since it is almost practically impossible to generate uniform samples, some variants of

uniform sampling have been proposed. These variants relax the exact uniform sampling

guarantee by a constant factor. We now define a few more important concepts.

Definition 2.1.3. Given a problem instance I and a tolerance parameter ε, Gaau(I, ε) is

an ε-Additive Almost Uniform generator if:

∀y ∈ ΩI ,
1−ε
|ΩI |
≤ Pr[Gu(I, ε) = y] ≤ 1+ε

|ΩI |

Intuitively an additive almost-uniform generator is a relaxation on the uniform generator

by a factor of ε
|ΩI |

.

Example 2.1.2. Let ϕ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) be a CNF formula, G be an additive

almost generator and ε be 0.2. Rϕ = {000, 001, 010, 011, 101}, 1−ε
|Rϕ| = 0.16 and 1+ε

|Rϕ| = 0.24.

Then for each element in y ∈ Rϕ, the probability with which G(ϕ, ε) generates y is in the

range [0.16, 0.24]. �

From this example, we can conclude that if we request for 100 samples to G for the formula

ϕ, the expected number of times each element in Rϕ appears is within 16 to 24.

Definition 2.1.4. A generator Gmau(., .) is a Multiplicative Almost Uniform generator

(MAU) if the following holds:

∀y ∈ ΩI ,
1

(1+ε)|ΩI |
≤ Pr[Gmau(I, ε) = y] ≤ 1+ε

|ΩI |

where ε > 0 is the tolerance parameter.

Lemma 2.1.1. Every Multiplicative Almost Uniform (MAU) generator is an Additive

Almost Uniform generator (AAU).

Proof. Let M be a multiplicative almost-uniform generator. So, for any given instance

I, the following holds,

∀y ∈ ΩI ,
1

(1 + ε)|ΩI |
≤ Pr[M(I, ε) = y] ≤ 1 + ε

|ΩI |

Suppose M is not an additive almost-uniform generator. The upper bound on the

probability is same as that of any AAU. Thus M must violate the lower bound, i.e.

∃y ∈ ΩI , P r[M(I, ε) = y] < 1−ε
|ΩI |

. But ∀y ∈ ΩI , P r[M(I, ε) = y] > 1
(1+ε)|ΩI |

and
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1
(1+ε)|ΩI |

> 1−ε
|ΩI |

, which is a contradiction. Therefore our assumption that M is not an

AAU is false. This proves that every multiplicative almost-uniform generator is an addi-

tive almost-uniform generator. �

It may be noted that every AAU need not be a MAU.

Definition 2.1.5. A near-uniform generator Gnu(.) is one that further relaxes the guar-

antee of uniformity and ensures that

Pr[Gnu(I) = y] ≥ c

|ΩI |

for a constant c, where 0 ≤ c ≤ 1.

In practice, we are rarely provided with the exact probabilities with which a sampler

samples. In situations where we need to estimate the probabilities with a certain guaran-

tee, the Maximum Likelihood function is a good way. In order to determine the number

of samples needed to estimate the unknown probability with a certain probabilistic guar-

antee, we use Chernoff bounds. In the next subsection we explain the notion of Chernoff

bounds and in the following subsection we explain how parameter estimation is done using

Maximum Likelihood estimation.

2.1.2 Chernoff Bound

Throughout the years there have been different variations of the Chernoff Bound, with

slightly different assumptions. We will start with a simple case of the sum of independent

Bernoulli’s trials, i.e. where each random variable takes 0 with probability p and 1 with

probability (1 − p). For example, this corresponds to the case of tossing unfair coins

with each having it’s own probability of head and counting the total number of heads

appearing.

Theorem 2.1.2. (Chernoff Bounds) Let X =
∑n

i=1Xi, where Xi = 1 with probability pi

and Xi = 0 with probability (1−pi), and all Xis are independent. Let µ = E[X] =
∑n

i=1 pi.

Then

(i) Upper bound : P [X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ for all δ > 0

(ii) Lower bound : P [X ≤ (1 + δ)µ] ≤ e−
δµ
2 for all 0 < δ < 1

For δ ∈ (0, 1), we can combine the upper and lower bounds in the above theorem and

obtain the following simple two sided bound:
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Corollary 2.1.2.1. Given X1, X2, X3, ..., Xn, where Xi = 1 with probability pi and Xi = 0

with probability (1− pi), X =
∑n

i=1Xi and µ = E[X],

P [|X − µ| > δµ] ≤ 2e−
µδ2

3 , for all 0 < δ < 1.

2.1.3 Maximum Likelihood Estimator

A maximum likelihood estimator (MLE) is a value of a parameter a such that the likeli-

hood function for a is maximum. A likelihood function L(a) is the probability or probabil-

ity density for the occurrence of a sample configuration x1, ..., xn given that the probability

density f(x, a) with parameter a is known, L(a) = f(x1; a)...f(xn; a) [12]. It is often used

for determining the bias of a biased coin. In order to determine the bias of a biased coin

using MLE, we simply toss the coin n times and output n1/n as the bias or probability

of getting a HEAD, where n1 is the number of times HEAD appeared in the n tosses.

A simple concentration bound like Chernoff bound gives the number of tosses needed to

bound the probability of error to an additive constant, typically if the bias probability is

p, and the coin is tossed n times, then with probability eO(γ2n), the estimate n1

n
is within

an additive error of γ, i.e. P [|p− n1

n
| ≤ γ] ≥ e−γ

2n/2. Let M(γ) be the number of times

a biased coin has to be tossed to estimate the bias to upto ±γ with probability ≥ 1/2.

Note that if the number of tosses is M(γ) × m, then the probability that the additive

error is less than equal to γ is greater than equal to (1− (1/2)m).

In modern application domains, the general sample complexity for most problems is

exponential in the dimension of the sample space. To address the issue of scalability,

[8] and [9] proposed a different model called conditional sampling. We now discuss the

notion of conditional sampling.

2.1.4 Conditional Sampling

Conditional sampling model suggests that the tester be allowed to sample from a con-

ditioned set over the original domain using the same distribution. This means is that

if the distribution µ is over the domain Σ, the tester could use any subset S ⊆ Σ and

sample any i ∈ S with probability µ(i)∑
j∈S

µ(j)
, where µ(i) is the probability of i occurring

in the sample. The sample complexity depends on the nature of the conditioned set.

When there is no restriction on the conditioned set, a tester could take any conditioned

set over the domain. The sampling complexity is as low as Õ( 1
η2

) when the conditioning

is over arbitrary subsets of size 2. When the conditioned set is structured and restricted

to intervals, the lower bound for sample complexity was proved by authors of [13] to be

10



Ω( logn
log logn

)1. One interesting case and the one important to us is when the domain is a

Cartesian product of a set and we are allowed to condition on the Cartesian product of

subsets rather than arbitrary subsets of the domain. This is called sub-cube conditioning

[11], as explained in the following.

2.1.4.1 Sub-cube Conditioning

Informally, the sub-cube model can be explained in the following manner: Let the distri-

bution µ be defined over the domain Σn. A sub-cube conditioning Oracle takes as input

A1, A2, ..., An ⊆ Σ and constructs the conditioning sub-set as S = A1 × A2 × A3...× An,

where S ⊆ Σn. The Oracle returns a vector x = (x1, x2, ..., xn) where each xi ∈ Ai,

with probability µ(x)∑
w∈S

µ(w)
. These kinds of samples are referred to as sub-cube conditioned

samples and the corresponding sample complexity is referred to as the sub-cube sample

complexity. It is worth noting that there is no restriction on the way we choose the

individual Ai’s. The simplest case is when µ is a product of n independent marginal

distributions and we wish to test uniformity. Using any tester over Σ, to check if µi is far

from uniform needs only poly(n) samples. If µ is a product distribution over {0, 1}n, it

has been shown in [13] that uniformity and identity testing can be done using O(
√
n/η2)

unconditional samples, since marginals for independent sub-cube conditional sampling is

same as unconditional sampling followed by projection. Thus we do not get any added

advantage using sub-cube conditioning. But if the marginals µi are not independent, then

it may be very well be possible that despite the marginals being uniform, the product

distribution µ is still η-far. As shown in [13], any algorithm in this case requires O(en)

samples. To bypass this barrier, authors of [11] define the notion of conditional distance,

that shows that there exists at least one i ∈ [n]2 such that the conditional distance of the

ith marginal from uniform is more than η/poly(n). In the discussion below, we define the

notations and the notion of sub-cube conditioning along with the notion of conditional

distance.

Let x be a vector of length n. The ith element of the vector x can be denoted by xi.

x(i) denotes the sub-string of the first i elements of x, i.e. x(i) = (x1, x2, ..., xi). The nth

harmonic number is denoted byH(n). Consider µ as a distribution over Σn with marginals

µ1, µ2, ..., µn. In case the marginals are independent (i.e. µ is a product distribution),

then we would write µ = µ1 ⊗ µ2 ⊗ µ3 ⊗ ...⊗ µn.

1Here n is the number of dimensions over which the set Σ is defined.
2Here [n] refers to the set {1, 2, 3, ..., n}.
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Definition 2.1.6. Total Variation Distance: Let µ, µ
′

be two distributions over Ω.

The variation distance between µ and µ
′

denoted by d(µ, µ
′
) is defined as

d(µ, µ
′
) = 1

2

∑
x∈Ω

|Prµ[x]− Prµ′ [x]|

We say µ is η-far if d(µ, µ
′
) ≥ η.

If µ is a distribution over Ω and S ⊆ Ω, then µ|S denotes the distribution over S. For

any x ∈ S, the probability that x is in a random sample drawn from S according to the

distribution µ|S is given by

Prµ|S[x] = Prµ[x]∑
y∈S

Prµ[y]
.

Definition 2.1.7. Conditional Distance : Let µ, µ
′

be two distributions over Ω. Let

S ⊆ Ω. The conditional distance between µ and µ
′

conditioned on S denoted by d(µ, µ
′|S)

is defined as

d(µ, µ
′|S) = 1

2

∑
x∈Ω

|Prµ|S[x]− Prµ′ |S[x]|

We say µ is η-far from µ
′

conditioned on the set S if d(µ, µ
′|S) > η.

Sub-cube Conditional Model : Let µ be a distribution over Σn. A sub-cube condi-

tional oracle, denoted by SUBCONDµ accepts as input a collection of sets {Ai}i∈[n],∀Ai ⊆
Σ. For A = A1 × A2 × ...× An, the oracle returns x ∈ A with probability Prµ[x]∑

y∈A
Prµ[y]

inde-

pendent of all previous calls to the oracle.

An (η, δ)-SUBCOND tester for any property P with conditional sample complexity τ is

a randomized algorithm operating in the following fashion.

• It receives 0 < η, δ < 1, n ∈ N and makes an access to SUBCONDµ.

• In every iteration, it generates A = A1 × A2 × ... × An randomly and draws an x

using SUBCONDµ with conditioning on A.

• Based on the sample received, it either ACCEPT s or REJECT s the distribution

µ.

The algorithm makes at most τ calls to SUBCONDµ where τ depends on η, δ, n and Σ.

If µ satisfies the property P , then the tester must accept with probability at least 1− δ
and similarly if µ is η-far, then the tester must reject with probability at least 1− δ.
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2.2 Samplers for Boolean Formulae

A Boolean formula is an expression that evaluates to either True or False. Every variable

in a Boolean Formula is restricted to take only two values True and False. We restrict

our focus to Boolean formulae expressed in CNF (Conjunctive Normal Form), where a

CNF formula is a conjunction of Clauses, where a clause is a disjunction of literals. By a

literal we mean either a variable or it’s negation, where the positive literal is the variable

itself and a negative literal is a negation of the variable. For the class of CNF formula it

has been proved that the decision problem of whether there exists a satisfiable assignment

to a given formula is NP -Complete[14]. In contrast to satisfiability of a CNF formula

where we output one satisfying assignment of variables, the counting problem corresponds

to counting the number of witnesses of a Boolean formula. Consider the following.

ϕ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3)

Witnesses of ϕ (minterm representation) are 000, 001, 010, 011, 101, thus the number of

witnesses is 5. An algorithm that counts the number of witnesses should output 5 when

it receives input ϕ. Counting the number of witnesses for a CNF formula is #P -complete

[4]. Informally #P is the class of problems where we compute a function f(x), where f

represents the number of accepting paths of a non-deterministic Turing machine running

in polynomial time. Counting of the number of witnesses for CNF is #P -complete.

Sampling of witnesses uniformly at random is of very high complexity due to the use of

Markov Chain Monte Carlo (MCMC) based techniques. So most of the samplers available

for CNF formulae rely on heuristics in order to sample. Throughout this thesis for a given

Boolean formula ϕ, we denote the set of all witnesses by Rϕ.

2.2.1 State of the Art CNF Samplers

We now describe some of the state-of-art CNF samplers. We also explain in brief the

methodologies adapted by them to generate samples, and the associated theoretical guar-

antees provided by them.

• Satisfying Perfectly Uniform Random Sampler (SPUR) [15] is built on top of the

SharpSAT model counter [16]. SPUR is almost hundred times faster than any other

uniform sampler and primarily uses Caching of satisfying assignments along with

reservoir sampling to generate uniform assignments to CNF formulas. SharpSAT is

an exact model counter, it uses caching of residual formulas, which is analogous to

the CDCL algorithm for SAT solving. The caching of residual formula significantly
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prunes the recursion tree searching for a satisfying assignment. Reservoir sampling

[17] is then performed on the set of leaves encountered by SharpSAT during it’s

normal course of execution. Since probability of a leaf being selected is proportional

to it’s model count, SPUR generates uniform samples.

• UniGen2 [18] is built on the guidelines of UniGen [19] but with parallel scalability in

order to adapt to industrial requirements. It has two primary phases, the first phase

is a one-time pre-processing phase, Estimate Parameter for parameter estimation,

while the second phase is the sample generation step, named Generate Samples.

Both the routines employ a family of random hash functions. UniGen2 primarily

employs the random family of hash functions to partition the solution space into

uniform equivalence classes. In order to generate samples, a sat solver is invoked

to generate samples from each equivalence class. If more samples are required,

multiple calls to the Generate Samples routine is made. UniGen2 is a probabilistic

algorithm and thus is sometimes allowed to fail with some probability as is the

case with most of the probabilistic algorithms. UniGen2 is a multiplicative almost-

uniform generator(MAU) as defined earlier, and thus provides strong theoretical

guarantees. UniGen2 was built on top of [20], because of it’s ability to handle

XOR-CNF clauses efficiently.

• QuickSampler [6] is probably the fastest SAT sampler which generates varied sam-

ples from the witness space. It is built on top of the SMT solver Z3 for solving the

MAX-SAT query strategy it employs. Not all samples generated by QuickSampler

are guaranteed to be valid although experimentally it shows almost 75% of the

samples generated are valid. In order to validate a generated sample, a Z3 interface

is provided which returns the set of valid samples. The key idea behind Quick-

Sampler is to make minimum number of solver calls to generate a large number of

potential witnesses to a given CNF formula. The core algorithm assumes access

to a random solution and computes atomic mutations on the variables in order to

generate potential solutions. It tries to generate a different solution corresponding

to each variable in the support of the formula such that it is different from the

initial random sample it was provided. Sometimes such a solution may not exist

and thus all samples generated by QuickSampler are not valid. QuickSampler is a

near uniform generator as defined earlier.

• Search Tree Sampler (STS): [21] Like all the other state-of-art samplers, STS also

uses a SAT solver at the back end but this solver is used as a blackbox sampler to

generate samples. It uses a simple recursive strategy on the recursion tree to gener-
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ate samples. The recursive method is based on a notion defined as pseudosolutions,

which is a partial assignment to the variables at the ith level of the search tree.

The idea is to divide the search tree into some L number of levels, where L is a

parameter of the sampler and recursively sample pseudosolutions using previously

generated pseudosolutions. The algorithm assumes access to generated pseudoso-

lutions at level i to generate pseudosolutions at level i + l using a blackbox SAT

solver. Generating samples from pseudosolutions of level n where the support of

the formula is n in size corresponds to the problem of sampling from all witnesses of

the formula which is intractable. STS provides an uniformity guarantee for 2-CNF

formulae, although for the general CNF setting the guarantees are weaker than a

near uniform generator.

2.2.2 Horn Samplers

A CNF clause is a Horn Clause if it contains no more than one positive literal. A CNF

formula where all clauses are Horn Clauses is referred to as a Horn Formula.

The following is an example of a Horn formula.

ϕ = (x1 ∨ ¬x2) ∧ (¬x3 ∨ ¬x4)

In the clause (x1 ∨ ¬x2), there is only one positive literal i.e. x1, while the clause

(¬x3 ∨ ¬x4) has no positive literals. Thus, both the clauses are Horn Clauses and the

corresponding formula ϕ is a Horn formula.

Horn formulae constitute a restricted class of CNF. While Boolean satisfiability is NP-

complete in general, satisfiability for Horn is in P. However, the problem of counting

the number of witnesses of a given Horn formula is still #P -complete [22], making the

problem of counting witnesses computationally intractable for Horn formulae as well.

Approximate counting techniques are thus applied for model counting for Horn formula

as well. Although there has not been much progress in Horn specific counting or sam-

pling, tools developed for CNF can be applied to Horn formulae, since these are restricted

versions of CNF. Some of the popular tools that are used to sample witnesses for CNF for-

mulae and therefore, can be used for Horn formulae as well include CryptoMiniSat5[23],

UniGen2[18], QuickSampler[6]. However, none of these tools, to the best of our knowl-

edge, use the special structure of Horn Clauses to sample witnesses. Horn clauses appear

in a lot of domains in the formal methods community such as program analysis, network

reliability analysis, business rules equivalence checking, etc. This motivates a need for
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efficient samplers for Horn Clauses.

For most known classes of Boolean formulae, counting or estimating the number of solu-

tions is difficult. Intuitively, given a general CNF formula, it is not straight forward to

count the number of witnesses, in most of the cases we need to enumerate all assignments

to find the number of witnesses. In order to overcome this issue, a special class of Boolean

formula was introduced where counting the number of witnesses is straight forward. [24]

introduced the notion of a Chain Formula for which it is easy to count the number of

witnesses, as explained in the following subsection.

2.2.3 Chain Formula

A chain formula is a special class of Boolean formula defined inductively as follows.

• A literal l itself is a chain formula.

• If l is a literal and ϕ a chain formula such that l or ¬l do not appear in ϕ, then

(l ∨ ϕ) and (l ∧ ϕ) are both chain formulae.

• Let m > 0 be a natural number and k < 2m be a positive odd number. Let c1c2...cm

be the m-bit representation of k, where cm is the LSB. For every j ∈ {1, ...,m− 1},
if cj = 1 then Cj is ” ∨ ” else if cj = 0 then Cj is ” ∧ ”. The chain formula ψk,m is

defined as follows:

ψk,m(a1, a2, ..., am) = a1C1(a2C2(...(am−1Cm−1am)...)

where a1, a2, ..., am are variables.

Example 2.2.1. Let m = 3 and k = 5, then the 3-bit binary representation of k is 101

and thus ψ5,3(a1, a2, a3) = a1 ∨ (a2 ∧ a3). �

Lemma 2.2.1. Let m > 0 be a natural number, k < 2m, and ψk,m as defined above.

|ψk,m| is linear and has exactly k satisfying assignments [24].

Lemma 2.2.2. [24] Let m > 0 be a natural number, k < 2m, and ψk,m as defined

above. Then ψk,m can be converted to an equivalent CNF formula or DNF formula with

m variables and at most m clauses.
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2.3 Sampler Verification

Definition 2.3.1. Given an instance I and an intolerance parameter η a generator G(I, .)

is η-far from the uniform generator if the distance of DG(I) from uniform is at least η.

That is, ∑
x∈ΩI

|pG(I,x) −
1

|ΩI |
| ≥ η

A sampler verifier is an algorithm which tests the quality of the underlying distribution

generated by a sampler. The notion of a sampler verifier can vary with the type of

distribution that is been tested for. The following definition formally defines the notion

of a sampler verifier for an Additive Almost Uuniform distribution[10].

Definition 2.3.2. [10] Given an instance I, a sampler G, tolerance parameter ε, in-

tolerance parameter η, guarantee parameter δ, a sampler verifier T (., ., ., .)returns

ACCEPT or REJECT (with a witness) with the following guarantees:

• If the sampler G(I, ε) is an Additive Almost Uniform generator (AAU), then T (G, I, ε, η)

returns ACCEPT with probability at least 1− δ.

• If the sampler G(I, ε) is η-far from a uniform generator, T (G, I, ε, η) returns REJECT

with probability at least 1− δ.

Barbarik as a sampler verifier [10] is a framework that can test a sampler for the AAU

property. Barbarik uses conditional sampling as the backbone of it’s working method.

2.4 Perfect Matching in Graphs

Given a graph G = (V,E), a matching M in G is a set of edges, such that no two edges

share the same vertex. In other words, matching of a graph is a subgraph where each

node of the subgraph has either zero or one edge incident to it.

Definition 2.4.1. A matching M of a graph G is called a perfect matching of G if

every vertex of G is incident on exactly one edge in M .

A perfect matching is therefore a matching with exactly n/2 edges. This means only

graphs with even number of vertices are candidates where perfect matching could exist.

Every perfect matching is also a maximum matching in a graph. Perfect matching is

also referred to as 1-factor or a complete matching. There are algorithms to find perfect

matching in graphs in polynomial time. Thus the decision problem of checking if a perfect
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matching exists in a given graph is in P .

The number of matchings in a graph is known as the Hosoya index of the graph. It is

#P-complete to compute this quantity, even for bipartite graphs. It is also #P-complete

to count perfect matchings, even in bipartite graphs, because computing the permanent

of an arbitrary 01 matrix (another #P-complete problem) is the same as computing the

number of perfect matchings in the bipartite graph having the given matrix as its biad-

jacency matrix. Evaluation of permanents has attracted researchers for long time, but

without much progress. This lack of progress was explained in [4], where the author

proved that computation of the permanent of a matrix is #P -complete and hence not

possible in polynomial time. Thus, computation of the number of perfect matchings is

also #P -complete and is intractable. The best that could be done is with a fully poly-

nomial randomized approximation scheme (FPRAS), which provides an arbitrarily close

approximation where the complexity depends polynomially on the input size and the

desired error. Out of the several approaches proposed over the years, the one proposed

in [25] stands out. This approach is based on the Markov Chain Monte Carlo (MCMC)

technique. This gives an algorithm for sampling of perfect matching from bipartite graphs

almost uniformly at random.

Perfect matchings are relevant in several areas like computer networks, job scheduling,

statistical mechanics, chemistry, etc. Since most methods are based on MCMC, heuristic

based approaches are deployed for almost all practical purposes where sampling of perfect

matching is needed.
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Chapter 3

Testing samplers for Horn Clause

3.1 Introduction

Horn clauses have played the basic role in constructive logic and computational logic.

Because of their simple yet powerful structure of Horn clause, they become a very natu-

ral choice for such widespread usage. The use of Horn clause become advantageous from

the perspective of Computational Complexity. The decision problem of HORNSAT, that

is, whether a given Horn formula is satisfiable or not is P -complete and solvable in linear

time. Horn clause is one of the Schaefer’s classes in Computational Complexity.

Horn clauses have been used to model various problems. For example, Horn clauses have

been used for automated theorem proving by first order resolution [26]. Horn clause forms

the basis of logic programming and thus forms the root of almost all inference engines for

logic programming languages like Prolog. Horn formulae have been used in the field of

program analysis for intermediate representation and transformations [27], for program

verification [28] and various other domains of formal methods.

For most of the topological networks that exist in real-life, like power transmission lines,

telecommunications, water and gas supply lines, the structure of the network can be mod-

elled using Horn clause. This modelling is often used to solve various real life problems.

For example, for checking network reliability of power transmission lines one needs to

compute the probability of two points being reachable under conditions of natural disas-

ter. This is done using weighted model counting for the Horn formulas representing the

network graph.

Since weighted model counting is similar to sampling, there is a strong demand for de-
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signing efficient samplers for Horn clauses. Sampling of Horn clause may also find usage

in probabilistic reasoning. Also, in program analysis when representation is done using

Horn clause, sampling helps in producing test cases for such programs.

Despite HORNSAT being polynomial time solvable, the problem of counting the number

of witnesses is #P -complete [22]. While sampling can be done using various techniques

like MCMC methods, the runtime efficiency of these techniques makes them impracti-

cal. Thus the samplers would, naturally, rely on heuristic based techniques for sampling.

Although there has not been much progress in designing samplers that use the special

structure of Horn formulas, samplers developed for CNF apply to Horn formulae as well,

since these are restricted versions of CNF. Some of the popular tools that are used to

sample witnesses for CNF formulae and therefore, can be used for Horn formulae as well

include CryptoMiniSat5[23], UniGen2[18], QuickSampler[6].

Most of these CNF-samplers are based on heuristic techniques and hence either provide

very weak or no guarantees at all. Even when the input is restricted to Horn formulas,

in most of the cases we don’t have any guarantee of the correctness of the samplers. This

suggests the need for testing uniformity of samplers, when the input is restricted to a

Horn clause. Also, it is just a matter of time before one develops a sampler specific for

Horn formulas. In such a case one need to design a testing framework for such samplers.

As discussed earlier, Barbarik, introduced in [10], is a framework that could be used to test

for uniformity of CNF samplers. Most of the previous distribution testing mechanisms

required exponential or sub-exponential samples1. Barbarik overcomes this shortcoming

using techniques from conditional sampling, introduce in [9],[13] and uses only constant

number of samples. But since Barbarik has been designed to test samplers for CNF

formulae, it is not straightforward retrofit to work for a restricted class like Horn. So in

order to test for samplers that could sample for Horn formula we need to redesign the

framework in order to suit our needs.

3.1.1 Horn Sampler Verifier

Most of the provable techniques for generating uniform witnesses for Horn clauses do not

scale to real world instances. In remedy to this, samplers rely on heuristics to generate

samples for Horn clause. We are not aware of any samplers which specifically work for

1exponential with respect to the number of dimensions of the sample space
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Horn clause but since it is a sub-class of CNF, available CNF-samplers are often used

to generate samples for Horn formulae. As a result none of the known samplers actually

consider the special structure of Horn clause in order to generate samples. Almost none of

the samplers guarantee uniformity of samples that are generated. So designing a verifier

for sampler for Horn clauses is the need of the hour.

Let us start by formally defining the notion of a verifier for samplers[10] of Horn clause.

If G is a probabilistic generator/sampler then AG(., ., .) is a subroutine that takes input

a Horn formula ϕ, a set S ⊂ Supp(ϕ)1 and t. AG returns t many satisfying assignments

of ϕ using the sampler G. Since the underlying generator G is obvious, for the rest of

the chapter we would use A(., ., , ) instead of AG(., ., .). If G is a uniform generator then

we use U(., ., .) as alias to AU(., ., .).

Definition 3.1.1. A Horn Sampler Verifier takes as input a sampler G, a uniform gen-

erator U , a tolerance parameter ε > 0, an intolerance parameter η > ε, a guarantee

parameter δ, and a Horn formula ϕ. The Horn Sampler Verifier returns ACCEPT or

REJECT with the following guarantees:

• if the generator is an ε-additive almost-uniform generator over the sample space of

valid witnesses to ϕ then we ACCEPT with probability at least 1− δ.

• if G(ϕ, .) is η-far from a uniform generator over the sample space of valid witnesses

to ϕ then we REJECT with probability at least 1− δ.

Naturally the goal is to design a Horn Sampler verifier that is efficient in terms of scalabil-

ity. Just like in the case of CNF-samplers the standard verifiers that use only black-box

access requires exponential number of samples and hence cannot be scaled up.

3.1.2 Contributions of this work

In this chapter we design a fast testing framework for uniformity testing of Horn clause

samplers. We develop our algorithm on similar guidelines as that of Barbarik [10] which

uses techniques from conditional sampling.

We call our Horn Sample Verifier, Flash. In order to test uniformity of a sampler,

Flash uses only Õ(1/(η − ε)4) samples, where ε is the tolerance parameter and η is the

intolerance parameter as discussed in the previous section. We also prove the following

theoretical guarantees about Flash:

1for a given Boolean formula ϕ, Supp(ϕ) denotes the set of independent variables in ϕ
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1. Completeness of Flash states that if a sampler is an ε-additive almost uniform

generator and approximates any Horn formula ϕ, then Flash ACCEPTs with prob-

ability at least 1− δ.

2. Soundness of Flash states that if the underlying distribution of the sampler

that approximates any Horn formula ϕ is η-far from the uniform distribution, then

Flash REJECTs with probability at least 1− δ.

Just like in the case of Barbarik, we need to design a subroutine that blows-up the

conditioned witness space. In Barbarik, the blow-up is achieved by using the chain

formula design in [24], discussed in Section 2.2.3. Conversion of Chain Formula to CNF

and DNF have been shown in [24]. But for our case of Horn Formula we need to convert

the Chain Formula to an equivalent Horn formula while preserving all other properties

of Chain Formula. In quest of this we propose a variant called Pure Horn Chain

Formula and prove the following lemma in Section 3.1.

Theorem. Given a natural number m > 0 and k < 2m, any constructed chain for-

mula ψk,m can be transformed into a pure Horn chain formula ψ
′

k,m, where the following

properties hold :

1. support and structure of ψk,m is preserved in ψ
′

k,m

2. |ψk,m| is linear in m and ψ
′

k,m has exactly k satisfying assignments

3. ψ‘
k,m can be converted to an equivalent Horn formula with m variables and at most

m clauses

3.1.3 Organisation of the Chapter

The organisation of the chapter is as follows. In Section 3.2 we discuss a variation of

Chain formula discussed in Section 2.2.3. Section 3.3 describes the working methodology

of our Horn Sampler Verifier Flash. In Section 3.4 we provide the theoretical analysis

for Flash where we comment on the correctness of our algorithm proving completeness,

soundness and sample complexity for our algorithm. In Section 3.5 we show the run-time

efficacy of Flash on testing uniformity of some of the state-of-art samplers when run on

some real life data.
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3.2 Pure Horn Chain Formula

We define a variation of the chain formula designed in [24], we call it pure Horn chain

formula. Given the chain formula ψk,m we transform it to obtain our pure Horn chain

formula ψ
′

k,m. We replace every ai in ψk,m by ãi in ψ
′

k,m, where ãi represent the comple-

ment of ai. Intuitively a pure Horn chain formula is a chain formula where every literal

is a negative literal.

The following lemma proves that the pure Horn chain formula preserves the structure,

and other properties of the corresponding chain formula. We also prove that a pure Horn

chain formula could be converted to an equivalent Horn formula.

Lemma 3.2.1. Given a natural number m > 0 and k < 2m, any chain formula ψk,m can

be transformed into a pure Horn chain formula ψ
′

k,m, where the following properties hold

:

1. support and structure of ψk,m is preserved in ψ
′

k,m

2. |ψk,m| is linear on m and ψ
′

k,m has exactly k satisfying assignments

3. ψ‘
k,m can be converted to an equivalent Horn formula with m variables and at most

m clauses

Proof. Let m > 0 be a natural number and k < 2m and ψk,m be the corresponding chain

formula.

Proof of part 1 of the lemma : Let ψ
′

k,m = ψk,m, i.e. ψ
′

k,m is assigned ψk,m. Now,

∀j ∈ {1, ...,m} we replace aj by ãj in ψ
′

k,m. Since none of the variables have changed,

Supp(ψ) = Supp(ψ
′
). Also we do not change any of the connectors, i.e. ∀j, Cj is un-

changed. Thus, the structure of ψk,m is preserved in ψ
′

k,m. This proves the first part of

the lemma.

Proof of part 2 of the lemma : We use induction over m. Let the statement in part

2 of the theorem be true for all pure Horn chain formula upto a length of m− bits length.

Now we consider the following two cases.

• Case 1: Let m
′

= m+ 1. we consider a m
′
-bit positive odd integer, if the MSB is

0 then we could write the above formula as ã1 ∧ ψ‘
k1,m−1. The only way to satisfy

this is by satisfying both ã1 and ψ‘
k1,m−1. Thus the number of solutions is k1. Since

k = k1 because the MSB is 0, the statement holds true for this case.

23



• Case 2: Let us suppose that the MSB is 1 then we could write the above formula as

ã1 ∨ ψ‘
k1,m−1. To satisfy this, we could either satisfy ã1, which can be done in 2m−1

ways by setting a1 as false and rest of the variables can be assigned any value, or

by setting a1 as true and satisfying ψ‘
k1,m−1 which has k1 solutions. Thus the total

number of solutions for this case is 2m−1 + k1, also k = 2m−1 + k1. The statement

holds true for this case.

Since the statement holds for both cases our inductive hypothesis is true.

A similar inductive argument on m proves the linearity of space for pure Horn chain for-

mula, where two lists are sufficient to store the pure Horn chain formulae, one list stores

the m-bit binary representation of k and another list stores the m literals of ψk,m. This

proves the second part of the lemma.

Proof of part 3 of the lemma : We use induction over the number of variables n to

prove the statement. Let the statement in part 3 of the theorem be true for all pure Horn

chain formula upto m− 1 many variables. So, keeping aside the variable associated with

the MSB, we can write the formula as ψ‘
k,m = ã1C1(ψ‘

k1,m−1). So ψ‘
k1,m−1 = ψ‘

1∧ψ‘
2...∧ψ‘

j,

where ψ‘
i,∀i ∈ {1, ..., j} is a Horn clause with at most m− 1 variables and j ≤ m− 1.

If C1 is ∧ then ã1 becomes a unit negative clause which is Horn, and ψ‘
k,m is a Horn formula

with m variables and at most m clauses. If C1 is ∨ then ψ‘
k,m = ã1 ∨ (ψ‘

1 ∧ ... ∧ ψ‘
j), by

the distributive property we can expand it into ψ‘
k,m = (ã1 ∨ψ‘

1)∧ (ã1 ∨ψ‘
2)...∧ (ã1 ∨ψ‘

j),

since addition of a negative literal does not affect the nature of the Horn formula ψ‘
k,m

now has m−1 clauses each with at most m variables, so our hypothesis is correct for this

case too. Therefore, ψ
′

k,m can be converted to an equivalent Horn formula. This proves

the third part of the lemma. �

The above lemma shows that with pure Horn chain formula we still preserve all properties

of chain formula. The following example runs through all properties of a pure Horn chain

formula proved in the above lemma.

Example 3.2.1. Let k = 5 and m = 4, the binary representation of 5 in 4-bits is 0101.

The original chain formula would then be ψ5,4(a1, a2, a3, a4) = a1 ∧ (a2 ∨ (a3 ∧ a4)). We

can then point to the following via Lemma 3.2.1 :

1. The transformed pure Horn chain formula ψ
′
5,4 would be ψ

′
5,4 = ã1∧ (ã2∨ (ã3∧ ã4)),

where ãi represents ¬ai i.e. the negative literal corresponding to variable ai.
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2. ψ
′
5,4 = ã1 ∧ (ã2 ∨ (ã3 ∧ ã4)) has exactly 5 satisfying solutions, we have to set a1 as

false, then (ã2 ∨ (ã3 ∧ ã4)) can be satisfied in exactly 5 ways. The solutions to ψ
′
5,4

are 0000, 0001, 0010, 0011 and 0100.

3. We can expand ψ
′
5,4 as ã1 ∧ (ã2 ∨ ã3) ∧ (ã2 ∨ ã4). It is easy to see that ψ

′
5,4 =

ã1 ∧ (ã2 ∨ ã3) ∧ (ã2 ∨ ã4), where each clause is a Horn clause. Each clause in the

expanded ψ
′
5,4 is of length less than or equal to 4 and the number of clauses is 3 i.e.

both are bounded by the number of variables in ψ
′
5,4.

3.3 Methodology of FLASH

Flash starts with drawing one sample σ1 according to the distribution DG(ϕ) and an-

other sample σ2 from the uniform distribution over Rϕ. Using σ1 and σ2 the subroutine

Encode produces a Horn formula T that has exactly three witnesses. The subroutine

kernel then conjuncts ϕ and T to generate the a Horn formula ϕ̃, which has either two

or three witnesses1. Flash then uses the pure Horn chain formula (via the subroutine

kernel) to produce a new Horn formula ϕ
′
, which blows up the witness space of the Horn

formula ϕ̃. Flash achieves this such that the set of all witnesses of ϕ
′
, i.e. Rϕ′ can be

partitioned into two (or three) equal sized sets, where each partition corresponds to some

witness of ϕ̃. Finally Flash concludes on uniformity based on the number of times the

witnesses corresponding to σ1 occurs when Nj number of samples are drawn from the

sampler with input ϕ
′
.

Flash assumes access to procedures Bias and Kernel. Bias takes an assignment σ, a

list L of assignments and a Sampling set S as input to compute the ratio of the number

of times σ occurs in the list L to the total number of witnesses in the list L. Let σ
′

↓S be

an assignment belonging to L projected on the set S of variables.

The subroutine kernel help us to obtain the conditional samples. The subroutine kernel

takes as input a Horn formula, two assignments σ1 and σ2 and the desired number of so-

lutions τ , it returns another Horn formula ϕ
′
. The Horn formula ϕ

′
is of similar structure

as that of ϕ. kernel assumes access to subroutine Encode which takes input σ1 and σ2

to generate a Horn formula T which has exactly three witnesses.

1Witnesses of T are σ1, σ2 and 0̃, where 0̃ is the assignment where all common positive literals of
σ1 and σ2 are assigned True and all other variables are set to False. If 0̃ is a witness of ϕ, then ϕ̃ has
exactly three witnesses, else ϕ̃ has two witnesses
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Algorithm 1: Flash(A,U ,ε,η,δ,ϕ)

1 S ← Supp(ϕ) ;
2 for j ← 1 to dlog ( 2

ε+η
)e do

3 tj ← d2j η+ε
(η+ε)2

log (2(η + ε)−1)( 4e
e−1

) ln(δ−1)e ;

4 βj ← (2j−1+1)(η+ε)
4+(2j−1−1)(η+ε)

;

5 for i← 1 to tj do
6 while L1 == L2 do
7 L1 ← A(ϕ, S, 1);
8 σ1 ← L1[0];
9 L2 ← U(ϕ, S, 1);

10 σ2 ← L2[0];

11 modT ← 2 ;

12 if (ϕ ∧ 0̃) 6=UNSAT then
13 modT ← 3 ;

14 Nj ← dM(
βj−ε

2∗modT ) log ( 24e
e−1

δ−1

(η−ε)2 log ( 2
η+ε

) ln(δ−1))e ;

15 cj ← (βj + ε)/2 ;
16 ϕ̃← kernel(ϕ, σ1, σ2, Nj) ;
17 L3 ← A(ϕ̃, S,Nj) ;
18 b← Bias(σ1, L3, S) ;
19 if b < 1

modT
(1− cj) or b > 1

modT
(1 + cj) then

20 return REJECT

21 return ACCEPT
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Algorithm 1 represents the working of Flash. In line 1, the variable S keeps track of

the Supp(ϕ). The outer loop (lines 2-20) runs for log d 2
ε+η
e rounds, in each round we

determine the bias we allow in the probability estimate computed by the routine Bias.

Since any estimate is not absolutely exact we need to allow some bias and denote by the

variable βj. The variable Nj in line 14, denotes the minimum number of samples we need

to draw to estimate the probability with which the sampler under test generates samples

upto a certain guarantee with βj as the allowed bias in the estimate.

Variable tj denotes the number of times we need to run the inner loop (lines 5-20) in or-

der to maximize the probability with which we ACCEPT any sampler under test. With

each round we reduce that probability of wrongly accepting the sampler under test A.

This simple argument suffices to show that with each round we maximize the probabil-

ity. Suppose that the probability with which we wrongly accept is x, then probability of

correctly accepting is 1 − x. Now the probability of wrongly accepting for continuous n

rounds would be xn, thus the probability of correctly accepting at the end of n rounds

would be 1− xn, which greater than 1− x. Thus the inner loop is run tj times in order

to maximize the probability of correctly accepting the sampler.

Variable cj denotes the feasible distance we need to allow from the uniform distribution

in order to test for additive almost uniformity with ε-closeness. In every round in the

inner loop we sample two different witnesses, σ2 from the known uniform Sampler U and

σ1 from the sampler under test A.

From lines(11-13) we deal with whether 0̃, which denotes the assignment of variables

where all common positive literals in σ1 and σ2 are assigned 1 and rest all variables in

Supp(ϕ) are assigned 0. If 0̃ is a witness we assign the variable modT with value 3. The

variable modT denotes the size of the conditioning set C we generate. If 0̃ is a witness

the conditioning set C is of size 3, otherwise the size of the set is C is 2.

Using σ1 and σ2, the kernel creates another Horn formula ϕ
′
. It is essential since the

witness space of ϕ
′

is known and we can easily estimate the probabilities with which the

sampler A generates witnesses.

On receiving ϕ
′
, A generates Nj samples and returns them in a list L3 (line 17). In line 18,

Bias routine computes the ratio of number of times σ1 occurs in L3 when projected on the

Supp(ϕ) to the total number of witnesses in the list L3. If A is an additive almost uniform
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sampler with ε-closeness then the estimate will be within [ 1
modT

(1− cj), 1
modT

(1 + cj)].

Algorithm 2: Bias(σ, L, S)

1 count← 0 ;

2 for σ
′ ∈ L do

3 if σ
′

↓S == σ then
4 count← count+ 1

5 return count
|L|

Algorithm 2 presents the routine Bias which is responsible for estimating the probabilities

by which the sampler under test A samples. Bias uses Maximum Likelihood estimating

technique to estimate the probability with which σ is sampled. In order to compute the

estimate, Bias computes the ratio of the number of times σ projected on S occurs in the

list of samples L. Here samples refer to witnesses or solutions to ϕ.

3.3.1 Kernel Routine

Algorithm 3 presents the subroutine kernel. As stated before it takes a Horn formula ϕ,

assignments σ1 and σ2 and τ as input and outputs another Horn Formula ϕ
′
.

In line 1 we extract the set of all common literals to the two assignments σ1 and σ2. In

line 2 we compute |Lits| number of factors such that their product is greater than equal

to τ . In Lines (3-4) we compute the number of extra variables needed M and generate

M extra variables.

In line 6, the routine Encode returns a Horn formula assigned to T . Encode does this

using the assignments σ1 and σ2. The routine Encode enforces that T has only 3 sat-

isfying assignments σ1, σ2 and 0̃. We explain the exact working of Encode in the next

subsection, for now we assume that the set of satisfying witnesses of T is {σ1, σ2, 0̃}.

In line 7, we conjunct ϕ and T . This step enforces the conditioning on Rϕ. Since, Rϕ

contains σ1 and σ2, we just need to check if 0̃ is in Rϕ. Line 12 in Algorithm 1 does

this checking, where a UNSAT means 0̃ /∈ Rϕ. In that case the formula ϕ
′

has only two

solutions σ1 and σ2, since Rϕ′ ∩RT = {σ1, σ2}.

Let us denote the conditioning set by C. The size of the conditioning set C is 2 if 0̃ /∈ Rϕ,

i.e. C = {σ1, σ2}. If 0̃ ∈ Rϕ then the formula ϕ
′

in line 6, has 3 witnesses σ1, σ2, 0̃. In
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this case the conditioning set C = {σ1, σ2, 0̃} and it is of size 3.

Thereafter we need to project the conditioning set C into a larger witness space. Here

project means that we blowup the witnesses space of ϕ
′
, such that the each solution

can be tracked back to the conditioning set C. From lines 8-11 we perform this blow

up such that the number of solutions that can be tracked back for each witness in the

conditioning set is same. This ensures that we do not make the witness space biased

towards any witness in the conditioning set.

Algorithm 3: Kernel(ϕ, σ1, σ2, τ)

1 Lits← (σ1 ∩ σ2) ;
2 K ← ComputeFactors(Lits, τ) ;

3 M ←
∑|Lits1|

i=1 dlogK[i]e ;
4 a← NewV ars(ϕ,M) ;
5 index← 0 ;
6 T ← Encode(σ1, σ2) ;
7 ϕ̃← ϕ ∧ T ;

8 ϕ
′ ← ϕ̃ ;

9 for (l, k) in (Lits,K) do
10 m← dlog ke ;

11 ϕ′ ← ϕ′ ∧ (l⇒ ψ
′

k,m(a[index : index+m])) ;

12 index← index+m ;

13 return ϕ′ ;

In the figure below we abstract out the working of the kernel in a diagrammatic fashion.

Figure 3.1: kernel takes two witnesses from Rϕ then creates formula ϕ
′
, such that each

witness in Rϕ′ can be mapped to some element in C, this mapping partitions Rϕ′ into
|C| parts of equal size
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We present a working example of the kernel routine at the end of this section. The

underlying lemma proves our claim of generating an unbiased witness space.

Lemma 3.3.1. Given the conditioning set C, the number of solutions to ϕ
′

returned by

kernel is |C| ×
∏|K|

i=1K[i], such that for each element σ ∈ C, σ is projected to
∏|K|

i=1K[i]

solutions.

Proof. To prove this lemma we assume that ϕ ∧ T has exactly |C| solutions1. In each

iteration, we add a clause of the form (l⇒ ψ
′

k,m). Since the literal l is common to both σ1

and σ2, l evaluates to true in each solution of ϕ
′
. Since l is true, ψk,m has to be satisfied

and the number of ways to satisfy ψk,m is exactly k, thus for each clause (l ⇒ ψ
′

k,m) we

increase the number of solutions k times. Since at the end of line 6, ϕ̃ has |C| solutions,

after all iterations are over the number of clauses added is |K|, the number of solutions

at the end is |C| ×
∏|K|

i=1 K[i].

For the next part of the Lemma, we can write ϕ
′

as follows : ϕ
′
= ϕ ∧ T ∧ ψ, where ψ is

the conjunction of clauses added in lines 8-11. ψ has
∏|K|

i=1 K[i] solutions and ϕ ∧ T has

|C| solutions. Irrespective of any solution in C, ψ would have
∏|K|

i=1K[i] solutions. Thus,

we can say for each element σ ∈ C, σ can be projected to
∏|K|

i=1K[i] solutions. �

If the size of the conditioning set C is 2, then for the uniform distribution probability of

sampling any element in C would be 1/2. Otherwise if the size of C is 3, then for the

uniform distribution probability of sampling any element from C would be 1/3. Since we

are testing for additive almost uniformity with ε-closeness, the probability of sampling

would be within the range of [1−ε
|C| ,

1+ε
|C| ]. The variable modT in Algorithm 1 keeps track

of the size of the conditioning set C.

3.3.2 Encode Routine

In this subsection we describe the working of Algorithm 4 that represents the Encode

subroutine. As suggested before, Encode takes as input two assignments σ1 and σ2 and

generates a Horn formula Γ that has exactly three solutions σ1, σ2 and 0̃, i.e. RΓ =

{σ1, σ2, 0̃}. It is essential to do this since this routine helps create the conditioning set C,

which is a subset of RΓ generated by Encode. We now describe how Encode does this.

In line 1, findDifferV ar routine returns a tuple where diffV ar is the index of the

first variable where σ1 and σ2 differ, the second entry in the tuple σ is the assignment

corresponding to which diffV ar has been assigned 1.

1The proof of this comes in the next subsection
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Algorithm 4: Encode(σ1, σ2)

1 (diffV ar, σ)← findDifferV ar(σ1, σ2) ;
2 cmmTrueLits← findCommonTrueLiterals(σ1, σ2) ;
3 Σ← [σ1, σ2] ;
4 Γ← True ;

5 for each σ
′

in Σ do
6 if σ

′
== σ then

7 for each xi in σ
′

and xi 6= xdiffV ar do
8 Γ← Γ ∧ (xdiffV ar ⇒ val(xi)) ;

9 else
10 uncmmTrueLits← differentTrueLiterals(σ

′
, σ) ;

11 for each xi in σ
′

and val(xi) 6= xi and xi 6= xdiffV ar do
12 Γ← (¬xdiffV ar ⇒ val(xi)) ;

13 fLit← uncmmTrueLits[0] ;
14 for each l in uncmmTrueLits and l 6= fLit do
15 Γ← Γ ∧ (fLit⇔ l) ;

16 cmmFLit← cmmTrueLits[0] ;
17 for each l in cmmTrueLits and l 6= cmmFLit do
18 Γ← Γ ∧ (cmmFLit⇔ l) ;

19 Γ← Γ ∧ cmmFLit;

20 return Γ ;
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Example 3.3.1. Suppose σ1 is 110011 and σ2 is 111100, then the first differing variable

is x3 and x3 is assigned 1 in σ2. In this case findDifferVar would return (3, σ2).

In line 2, findCommonTrueLiterals returns a list of the positive literals common in

both σ1 and σ2.

Example 3.3.2. We continue with example 3.3.1, here x1 and x2 are both positive literals

in σ1 and σ2. Thus cmmTrueLits = [x1, x2].

In line 3, we make a list Σ where the first element is σ1 and second element is σ2. In lines 5-

19, we construct the formula Γ iterating over Σ. In lines 6-8, if the assignment corresponds

to σ returned by FindDifferV ar, then we add clauses of the type (xdiffV ar ⇒ val((xi)),

where val(xi) returns a positive literal xi if it is assigned 1 in σ, else it returns a negative

literal ¬xi if it is assigned 0 in σ.

Example 3.3.3. Using the example 3.3.1, σ2 is 111100, σ = σ2 and diffVar = 3. In

lines 6-8, we add the following clauses:

(x3 ⇒ x1) ∧ (x3 ⇒ x2) ∧ (x3 ⇒ x4) ∧ (x3 ⇒ ¬x5) ∧ (x3 ⇒ ¬x6)

By adding these clauses we ensure that if xdiffV ar is assigned 1, then the only possible

witness to Γ is necessarily σ.

In lines 9-19, if σ
′ 6= σ then we add a different set of clause, such that if xdiffV ar is

assigned 0, then the only possible witnesses are σ
′

and 0̃.

Firstly in line 10 we compute the set of literals assigned 1 in σ
′

and 0 in σ. Then in lines

11-12, for all variables assigned 0 in σ
′
, we add the clause of type (¬xdiffV ar ⇒ val(xi)).

This enforces that if xdiffV ar is assigned 0 then xi would necessarily be assigned 0.

Example 3.3.4. Considering the assignments in example 3.3.1, σ
′

= σ1. We add the

clause (¬x3 ⇒ ¬x4) which ensures that if x3 is assigned 0 variable x4 is also assigned 0.

fLit is assigned the first literal in the list uncmmTrueLits. In line 14-15, we add a

clause of type (fLit ⇔ l), for all l in uncmmTrueLits. This ensures that these literals

are either all assigned 0 or all assigned 1.

Example 3.3.5. As in example 3.3.1, we add the clause (¬x5 ⇔ ¬x6). If x3 is assigned

1, then we already have added the clauses (x3 ⇒ ¬x5) ∧ (x3 ⇒ ¬x6), thus enforcing x5

and x6 to take 00 as the only possible assignment needed for getting to assignment σ2.

If x3 is assigned 0, then x5 and x6 could take values 00 or 11, where 00 assigned would

correspond to 0̃ and 11 assignment would correspond to σ1.
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Now in lines 16-19, we add clauses to ensure that the common positive literals in σ1 and σ2

remain positive literals for any satisfying assignment of Γ. cmmFLit is assigned the first

literal in the list cmmTrueLits that contains the set of common positive literals. There

after in lines 17-18 we add clauses of the form (cmmLit⇔ l), where l is in cmmTrueLits.

In line 19, we add the unit positive clause cmmFLit that contains only one literal. Since,

cmmFLit has to be satisfied to satisfy Γ, all literals in cmmTrueLits also have to be

assigned 1 to satisfy Γ, so that clauses added by lines 17-18 are all satisfied.

Example 3.3.6. Again we use the example 3.3.1, cmmTrueLits = [x1, x2]. cmmFLit =

x1, the following clauses are added to Γ in lines 16-19 : (x1 ⇔ x2) ∧ x1. The only satis-

fying assignment of x3 and x4 is 11. Thus, for any satisfying assignment of Γ, x3 and x4

are always assigned 11.

Example 3.3.7. Examining at all the examples in this subsection, for σ1 = 110011 and

σ2 = 111100, we form the following Γ.

Γ = (x3 ⇒ x1)∧(x3 ⇒ x2)∧(x3 ⇒ x4)∧(x3 ⇒ ¬x5)∧(x3 ⇒ ¬x6)∧(¬x3 ⇒ ¬x4∧(¬x5 ⇔
¬x6) ∧ (x1 ⇔ x2) ∧ x1.

Now if we compute the satisfying assignments of Γ, they would be σ1, σ2 and 0̃, where

σ1 = 110011, σ2 = 111100 and 0̃ = 110000.

The following lemma formalizes the claim that Encode routine generates a Horn formula

Γ, such that the only witnesses of Γ are σ1, σ2 and 0̃.

Lemma 3.3.2. Γ generated by Encode is a Horn formula and RΓ = {σ1, σ2, 0̃}, where

RΓ is the witness set of Γ.

Proof. It is self evident that every clause we add is of length less than equal to 2. All

clauses of length two have at least one negative literal. Therefore they are all Horn clauses

by nature. We add only one clause of length 1, which trivially satisfies the property for

Horn clause. Therefore Γ is a Horn formula.

For the other part of the lemma we will use induction on the number of variables n in

Γ. Let us suppose that RΓ = σ1, σ2, 0̃ for m variables. Suppose σ1 and σ2, use m + 1

variables. Let xm+1 represent the m+ 1th variable.

• Let xm+1 be assigned 0 in σ1 and 0 in σ2. There would we two clauses of the form

(xi ⇒ ¬xm+1) and (¬xi ⇒ ¬xm+1), so for any value of xi, xm+1 has to be assigned

0. So, RΓ = σ1, σ2, 0̃.
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• Let xm+1 be assigned 1 in both σ1 and σ2. Then xm+1 is included in two clauses

(xi ⇒), (xj ⇔ xm+1) ∧ xj. To satisfy them xm+1 has to be assigned 1 again. So,

RΓ = σ1, σ2, 0̃.

• Let xm+1 be assigned 1 in σ1, 0 in σ2 and σ be σ1. Then xm+1, is associated with

clauses (xi ⇒ xm+1), (¬xi ⇒ ¬xm+1). If xi is 1 then xm+1 as 1 corresponds to σ1.

If xi is 0 then xm+1 is 0 which corresponds to σ2 or 0̃. So, still RΓ remains the same.

• Let xm+1 be assigned 0 in σ1, 1 in σ2 and σ be σ1. Then xm+1 is associated with

clauses (xi ⇒ xm+1) and (xj ⇔ ¬xm+1). If xi is 1, xm+1 as 0 corresponds to σ1.

If xi is 0, then xm+1 if assigned 1 corresponds to σ2, else if assigned 0 it would

correspond to 0̃. Therefore RΓ is still unchanged.

Therefore, our hypothesis is still valid for m+ 1 variables. So, RΓ is {σ1, σ2, 0̃}. �

The following example demonstrates a single run of the subroutine kernel.

Example 3.3.8. Let the kernel routine be called with the following arguments ϕ =

(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5), σ1 = 10011, σ2 = 11001 and τ = 10.

In line 1 we compute Lits = [x1, x5]. In line 2, suppose ComputeFactors returns [7, 7]

such that
∏|K|

i=1K[i] ≥ τ . In line 3, M is assigned dlogK[0]e + dlogK[1]e = dlog 7e +

dlog 7e = 3+3 = 6. In line 4, NewV ars returns [x6, x7, ..., x11] and is assigned to variable

a.

Encode routine is called with arguments σ1 and σ2. As described earlier it would return

the following formula:

T = (x2 ⇒ x1)∧ (x2 ⇒ ¬x3)∧ (x2 ⇒ ¬x4)∧ (x2 ⇒ ¬x5)∧ (¬x2 ⇒ ¬x3)∧ (x1 ⇔ x5)∧ x1

In line 8, we have ϕ
′

= ϕ ∧ T . The loop in line 9 runs for 2 iterations, adding the

following clauses:

(x1 ⇒ (¬x6 ∨ ¬x7 ∨ ¬x8)) and (x5 ⇒ (¬x9 ∨ ¬x10 ∨ ¬x11)).

So at the end of the loop, ϕ
′

is as follows :

ϕ
′
= (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5)∧

(x2 ⇒ x1) ∧ (x2 ⇒ ¬x3)∧
(x2 ⇒ ¬x4) ∧ (x2 ⇒ ¬x5)∧
(¬x2 ⇒ ¬x3) ∧ (x1 ⇔ x5)∧

x1 ∧ (x1 ⇒ (¬x6 ∨ ¬x7 ∨ ¬x8))∧
(x5 ⇒ (¬x9 ∨ ¬x10 ∨ ¬x11))

The witness space of ϕ
′
, Rϕ

′ = (Rϕ ∩RT )× (Rψ7,3)× (Rψ7,3). So each witness in Rϕ
′ can

be tracked back to the conditioning set formed by Rϕ ∩RT .

In the next section we would look into the theoretical analysis of Flash.
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3.4 Analysis of FLASH

In this section we present the theoretical analysis for Flash. We first discuss the com-

pleteness of our framework. We further discuss about the soundness of our approach

under certain assumptions. Lastly we discuss the sampling complexity for our frame-

work.

Theorem 3.4.1. Completeness : If a generator(sampler) G is an ε-additive almost-

uniform generator and approximates any Horn Formula ϕ, then Flash ACCEPTS with

probability at least (1− δ).

Proof. If the generator(sampler) G is an ε-additive almost-uniform generator then for any

Horn formula ϕ, S and Nj, the sampler outputs L3 which is a collection of Nj samples

drawn independently according to the ε-additive almost-uniform distribution. And the

bias we allow is in the range of 1/modT (1− ε) to 1/modT (1 + ε), where modT is the size

of the conditioning set and can have values 2 or 3.

Flash REJECTS in the (i, j)th loop , where i is the inner loop and j is the outer loop, if

the probability estimate of the bias b is not in the range ( 1
modT

(1− βj+ε

2
), 1
modT

(1 +
βj+ε

2
)),

that is the estimate is off by more than (
βj−ε

2modT
). By definition of M(γ), the probability

that this happens is at most (1/2)Nj/M(βj−ε/2modT ). i.e. at most ( 24e
e−1

δ−1

(η−ε)2 log ( 2
η+ε

) ln(δ−1))−1.

Since, the number of calls to the Bias routine is at most Σ
dlog 2/(ε+η)e
j=1 tj, which is at most

( 24e
e−1

1
(η−ε)2 log ( 2

η+ε
) ln(δ−1)), the probability that we REJECT is (using union bound)

≤ (Σ
dlog 2/(ε+η)e
j=1 tj)× ((1/2)Nj/M(βj−ε/2modT )) = δ. Thus, the probability that we accept the

sampler if it is an ε-additive almost uniform generator is at least (1− δ). �

For Soundness we need to define the concept of a non-adversarial sampler[10].

Definition 3.4.1. [10] Non-adversarial sampler assumption states that if A(ϕ, S, 1)

outputs a sample by drawing according to a distribution D then the (ϕ
′
, S
′
) output by the

Kernel routine has the property that:

• S ⊂ S
′
.

• there are only three sets of assignments to variables in S that could be extended to

satisfying assignments for ϕ
′

• The restriction of the set L3 to the variable set S is obtained by drawing N samples

from the distribution D|R, where R = L1 ∪ L2 ∪ {0̃}.
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Since the assumptions to the original algorithm are preserved, we adapt the same proof

for Soundness for Flash using the soundness proof for the Barbarik framework [10].

Theorem 3.4.2. [10] Soundness : If the non-adversarial assumption holds and if the

distribution DG(ϕ) is η-far from uniform on the sampling set S, then Flash REJECTS

with probability at least (1− δ).

Theorem 3.4.3. Sample Complexity : Given a tolerance parameter ε, an intolerance

parameter η and probability bound δ, Flash needs at most Õ( 1
(η−ε)4 ) samples for any input

Horn formula ϕ, where Õ hides poly logarithmic factor of 1/δ and 1/(η − ε).

Proof. for any j, tj = d2j η+ε
(η+ε)2

log (2(η + ε)−1)( 4e
e−1

) ln(δ−1)e and in every i in the inner

loop we sample 2 + Nj samples, where

Nj is at most dM(
βj−ε

6
) log ( 24e

e−1
δ−1

(η−ε)2 log ( 2
η+ε

) ln(δ−1))e.

For every j, we sample a total of 2tj + tjNj samples.

Thus the total number of samples we need to draw is at most Σ
dlog ( 2

ε+η
)e

j=1 (2 +Nj)tj.

Note that , Σ
dlog ( 2

ε+η
)e

j=1 2tj = ( 25e
e−1

1
(η−ε)2 log ( 2

η+ε
) ln(δ−1)).

Now taking M(γ) as 1/6γ2, we have Σ
dlog ( 2

ε+η
)e

j=1 tjNj as Õ( 1
(η−ε)4 ), where 0̃ hides poly

logarithmic factors of 1/δ and 1/(η − ε). �

3.5 Evaluation and Results

3.5.1 Evaluation

In order to evaluate the run-time performance of Flash and test uniformity of some of

the state-of-art samplers for Horn clauses, we implement a prototype of Flash using

Python 2.7 as the language of choice. The prototype implementation of Flash is built

on top of the prototype implementation of Barbarik [10]. We employ SPUR [15] as the

known uniform sampler, i.e. U in Algorithm 1. We use Cryptominisat5 [23] as the sat

solver used to determine if 0̃ is a solution of ϕ in line 12 of Algorithm 1. The experiments

are conducted partially on a high-performance computer cluster1, where each node con-

sists of E5-2690 v3 CPU with 24 cores and 96GB of RAM.

We use the tolerance parameter ε as 0.6, the intolerance parameter η as 0.9 and the

1The computational work for this article was partially performed on resources of the National Super-
computing Centre, Singapore (https://www.nscc.sg)
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guarantee parameter δ as 0.1. The chosen set of parameter implies that given a Boolean

formula ϕ and an additive almost-uniform generator G, for G(ϕ, ε), Flash returns AC-

CEPT with at least 0.9 probability (under the non-adversarial sampler assumption) and

REJECT with at least 0.9 probability.

UniGen2 is a multiplicative almost-uniform sampler. As discussed previously this implies

that it is also an additive almost-uniform sampler, Whereas, Quicksampler and STS do

not provide such strong guarantees. We apriori expect Flash to ACCEPT UniGen2

and REJECT Quicksampler and STS for most of the instances of the Horn clause using

reasonable number of samples1.

3.5.2 Analysis of Horn formula Instances

Instances #Variables #Clauses
Net6 count 91 153 184
Net8 count 96 162 194
Net12 count 106 191 214
Net22 count 116 219 234
Net27 count 118 230 238
Net29 count 164 280 330
Net39 count 240 403 482
Net43 count 243 437 488
Net46 count 322 564 646
Net53 count 362 640 726
Net53 count 339 619 680
Net54 count 706 1224 1414

Table 3.1: Analysis of Benchmarks used for Flash

All instances used in the evaluation are Horn Formulae which have been used to model

power transmission lines. We use the data listed in Table 3.1 for the run-time evaluation

of Flash. The columns represent the instances, number of variables and number of

clauses respectively.

The witness space for the listed instances of Horn formula vary from a size of order of 1030

to order of 10144 making it infeasible for standard statistical techniques to test uniformity

of any sampler.

1We use the default parameters for Quicksampler, STS and UniGen2, which where employed in the
previous studies for uniformity in [6].
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3.5.3 Results

UniGen2 Quicksampler STS
Instances #samples Output #samples Output #samples Output
Net6 count 91 2296910 A 771 R 771 R
Net8 count 96 2296910 A 771 R 771 R
Net12 count 106 2296910 A 771 R 771 R
Net22 count 116 2296910 A 771 R 771 R
Net27 count 118 2296910 A 771 R 771 R
Net29 count 164 2296910 A 771 R 771 R
Net39 count 240 2296910 A 771 R 771 R
Net43 count 243 2296910 A 771 R 771 R
Net46 count 322 2296910 A 771 R 771 R
Net53 count 362 2296910 A 771 R 771 R
Net53 count 339 2296910 A 771 R 771 R
Net54 count 706 2296910 A 771 R 771 R

Table 3.2: The output and analysis of the number of samples consumed by Flash

Table 3.2 represents the number of samples sampled by Flash in order to ACCEPT1 or

REJECT2 for the samplers under test. Column 1 represents instances of Horn formula

listed in Table 3.1 supplied as input to Flash. Columns 2 and 3 represent the statistics

for UniGen2. Columns 4 and 5 represent the statistics for Quicksampler and columns 6

and 7 represent statistics for STS.

We observe that Flash returns REJECT for Quicksampler and STS for 771 samples

for all 12 instances, whereas, it returns ACCEPT for UniGen2 for all 12 instances. Our

algorithm is probabilistic in nature and it could very well be the case that for some other

run or instance of Horn formula we fail to generate the expected result. Flash uses

significantly less number of samples to REJECT Quicksampler and STS.

3.6 Conclusion

The results demonstrate the support for the non-adversarial sampler assumption. As

expected, samplers with weak guarantees fail to pass the test while samplers with stronger

theoretical guarantees pass our test. Overall, Flash could be used as an inexpensive

tool to test uniformity, especially when the distribution followed by the sampler is far

1ACCEPT in Table 3.2 is represented by A
2REJECT in Table 3.2 is represented by R
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from uniform. To the best of our knowledge, Flash is the first algorithmic test to test

uniformity of a Horn sampler. Our results demonstrate that our test rejects samplers

with weak guarantees and accepts samplers with strong guarantees.
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Chapter 4

Testing Samplers for Perfect

Matching

4.1 Introduction

The problem of finding perfect matching in graphs is of significant importance in computer

science and various other fields like statistical mechanics, chemistry, etc. For example,

perfect information games are often modelled using perfect matching in graphs. Such

a model helps in the analysis of the games. Also perfect matching is used in combina-

torial optimization to model the problem of alldifferent constraints [29]. Another field

where perfect matching finds usage is quantum computing, where topological codes are

decoded using minimum-weighted perfect matching [30]. Experiments are often designed

by modelling of the system as a graph and finding a perfect matching in such a graph.

For example, job scheduling algorithms often view the system and constrains as an im-

plication graph, where a perfect matching corresponds to a schedule for jobs.

Perfect matching finds it’s roots in physical sciences as well. For example, in the field

of chemistry, perfect matching is used for storing information, finding bond length, esti-

mating resonance energy, etc. [31]. Such widespread usage acts as strong evidence about

the importance of perfect matchings.

The problem of uniform perfect matching has widespread usage in computer science,

statistical mechanics, chemistry, particle physics, etc. The problem has been studied for

the last few decades and some standard algorithms have been proposed. The problem

of counting perfect matching closely relates to that of finding the 0-1 permanent of an
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matrix. Valiant in [4] showed that exact computation of permanent is #P -complete. The

problem of finding the 0-1 permanent of a matrix can be reduced to counting the number

of perfect matchings in a bipartite graph. This shows that counting of total number

of perfect matchings is #P -complete even for bipartite graphs. Algorithms that have

been proposed for uniform random sampling of perfect matching of graphs are mostly

fully polynomial randomized approximation schemes (FPRAS). Few of the most promis-

ing have been based on Markov Chain Monte Carlo (MCMC) based approaches [[25],

[32]]. These algorithms are polynomial time algorithms and sample perfect matchings

from a bipartite graph uniformly at random. This widespread usage of perfect match-

ings suggests a demand for perfect matching samplers. It is probably not very far that

researchers would develop samplers for perfect matchings.

Since most of the promising approaches are based on MCMC methods which have very

high complexity making them an infeasible choice for practical purposes, we expect sam-

plers for perfect matchings to rely on heuristics for scalable generation of samples. This

motivates a need for testing mechanisms for uniformity of perfect matching samplers. In

this work we present an algorithmic framework that could be used to test uniformity of

samplers for perfect matchings.

4.1.1 Our Contributions

In this work we present an algorithm for testing if a perfect matching sampler on a given

graph outputs according to the uniform distribution over all perfect matchings in the

graph or whether the underlying distribution is η-far from uniform. We refer to our pro-

posed testing algorithm as Uniform Perfect Matching Sampler Test (UPMST).

UPMST works on the guidelines of conditional sampling but unlike Flash, it adopts to

the sub-cube conditioning model of conditional sampling. This is because the methodol-

ogy of witness based conditioning is not appropriate in the case of perfect matching. So,

in order to use conditional sampling we resort to the sub-cube conditional model shown in

[11]. Sub-cube model of conditional sampling becomes a natural choice for perfect match-

ing since, every perfect matching can be viewed an element in Σ|E|, where Σ = {0, 1}
and E represents the number of edges in a graph. We discuss a routine Restrict which

dictates the sub-cube conditioning strategy for our framework. We adapt our framework

from the testing algorithm for identity testing of joint distributions using conditional sam-

pling presented in [11]. The algorithm in [11] assumes access to BasicIDTester pointed

in [33]. We also adapt this algorithm to work for our framework.
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Our approach uses only Õ(|E|2/η2) samples where, E is the edge set of a given graph

and η is the target distance from uniform distribution. We show the correctness of our

algorithm in terms of completeness and soundness along with the sample complexity.

4.2 Preliminaries

4.2.1 A Uniform Perfect Matching Sampler

Given a graph G = (V,E), where V is the set of vertices and E is the set of edges. Any

subgraph H = (V
′
, E
′
) can be represented as a 0-1 vector mH of dimension |E| × 1, such

that if the ith entry of mH is 0 then the ith edge of G is not in E
′

and if the ith entry is

1 then the ith edge of G is in E
′
.

Every perfect matching M can be viewed as a sub-graph of G, such that M = (V,E
′′
).

So, a given perfect matching can be viewed as a 0-1 vector such that M ∈ Σ|E|, where

Σ = {0, 1}.

Let the set of all perfect matchings of a given graph be denoted by PG, such that PG ⊂
Σ|E|. A Uniform perfect matching sampler on receiving a graph G as input outputs a

perfect matching M ∈ PG uniformly at random. Formally we can define it as follows :

Definition 4.2.1. Given a graph G, a Uniform Perfect Matching Sampler U(.) returns

any element M in PG with probability 1/|PG|, i.e.

∀M ∈ PG, P r[U(G) = M ] = 1
|PG|

4.2.2 Sub-cube conditioning in Graphs

Intuitively, the sub-cube model of conditional sampling suggests the following. That

given a distribution µ defined over Σn, fix a set A = A1 × A2 × ... × An, where Ai ⊆ Σ

for all i and then sample from the set A which is a subset of Σn.

In a different form of this model, we randomly select a number j < n and fix a subset

A(j) = A1 × A2 × ...× Aj, where A(j) ⊆ Σj. In this case we sample from Σn conditioned

on the set A(j).

Now coming to the context of graphs, we present a way of using sub-cube conditioning

for a given graph instance. Given a graph G = (V,E) and any sampler A(.) for perfect
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matching, A generates a perfect matching M from the set of all perfect matchings PG.

PG ⊂ Σ|E|, where Σ = {0, 1}. Since every perfect matching can be seen as a 0-1 vector

with dimension |E| × 1, where a 0-entry would mean the corresponding edge is not in

the matching and a 1-entry would mean the corresponding edge belongs to the perfect

matching. Formally, for a perfect matching M of a graph G, the 0-1 vector representation

of M can be written as mM = (m1,m2, ...,m|E|), where if mi is 0 then edge ei /∈ M , else

if mi is 1 then edge ei ∈M .

We define the notion of partial assignment for perfect matching as follows :

Definition 4.2.2. Consider a graph G = (V,E), an integer j < |E| and 0-1 vector m =

(m1,m2, ...,mj). The vector m is called a partial assignment for perfect matching

M , if the first j entries of mM are equal to m.

Intuitively, we decide for the first j edges of G and then form a perfect matching

M . This strategy can be used to apply sub-cube conditioning on graphs in the following

manner.

1. Generate a valid partial assignment m = (m1,m2, ...,mj) of length j < |E|

2. Then we transform the graph G in the following manner:

(a) If the ith entry in m and mi is 0, we remove the edge ei from G.

(b) Else if the ith entry in m and mi is 1, we remove both incident vertices of ei

from G.

Let us call the transformed graph as G
′
. Now every perfect matching in G

′
has the partial

assignment m. This strategy gives us a way of conditioning using partial assignments for

perfect matching. We adhere to this strategy in order to perform sub-cube conditional

sampling in our proposed framework UPMST.

4.3 Methodology of UPMST

UPMST is an adaptation of the algorithm to test identity of joint distributions to some

known distribution presented in [11]. UPMST uses techniques from conditional sam-

pling where it adheres to the sub-cube conditional model. The idea behind UPMST is

of viewing any perfect matching M as an element in Σ|E|, where Σ = {0, 1} and E is the

set of edges in a graph G = (V,E). UPMST assumes access to two subroutines Restrict
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and BasicIDTester.

UPMST starts by drawing a perfect matching mG for a given graph G = (V,E) from

the known uniform sampler. It then randomly selects a set of edges denoted by Sj.

Then UPMST uses the subroutine Restrict to facilitate sub-cube conditional sampling.

The subroutine Restrict using the set of edges Sj and the matching mG uses the concept

of partial assignment defined in the Section 4.2.2 to generate a new graph G
′
. The sub-

routine Restrict uses the transformation mentioned in Section 4.2.2 to construct a new

graph G
′
. So the subroutine Restrict helps us obtain conditional samples.

After this transformation, UPMST calls the subroutine BasicIDTester to determine

whether sampler is to be rejected or not using sub-cube conditioned samples. BasicIDTester

has been adapted from [33].

Intuition behind UPMST

UPMST is similar to a sampler verifier discussed in section 2.3. UPMST takes as input

the sampler to be tested A, a known uniform sampler for perfect matching U , an instance

of a graph G, a target distance 0 < η < 1, a guarantee parameter 0 < δ < 1. We assume

that the graph G has a set of valid perfect matchings. UPMST returns ACCEPT or

REJECT with the following guarantees:

• for any 0 < η < 1, if d(DA, DU) = 0 we accept with probability at least (1− δ).

• for any 0 < η < 1, if d(DA, DU) > η we reject with probability at least δ.

Here DA denotes the distribution generated by the perfect matching sampler A, DU

(uniform distribution) is the distribution generated by the known uniform sampler U and

d(DA, DB) denotes the total variance distance. The algorithm was initially developed to

test distributions. For our case we are provided with the samplers which still suffices to

perform the test in a different manner.

Algorithm 5 represents UPMST, the main idea is to generate the sub-cube conditioning

set C in every iteration, then restrict out the sampling set to a projection of C and use

the sampler to sample from the conditioned set C. Then based on the samples we decide

whether to accept or reject the sampler A.

Since algorithm 5 has been adapted from [11], the fundamental step is the sub-cube con-

ditioning while using a blackbox sampler. It is essential to do this, since Bhattacharyya
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Algorithm 5: UPMST (A, U , G, η, δ)

1 n← numEdges(G) ;

2 δ
′ ← δη/64n(log(n)2) ;

3 for j ← 1 to log n+ 1 do
4 ηj = η/2jH(n) ;

5 lj ← log 2j+1H(n)
η

;

6 Sj ← random([n],min(n, 4n/2j)) ;
7 for all i ∈ Sj do
8 for k ← 0 to lj do
9 ηj,k ← 2k−1ηj ;

10 δk ← δ
′
/(k + 3)2 ;

11 for t← 1 to 2k+2(k + 3)2 do
12 mG ← U(G, 1) ;

13 G
′ ← Restrict(G,mG, i, Sj) ;

14 if BasicIDTester(A,U,G
′
, i, E, ηj,k, δk) == REJECT then

15 return REJECT ;

16 return ACCEPT ;

et. al in [11] showed that there must exist at least one sub-cube conditioned marginal

distribution for which the conditional distance from uniform is more than η/poly(n).

In line 1, we assign variable n with the number of edges in G. The outer loop from

lines 3-15 runs for log n + 1 times. In each iteration of the outer loop we determine the

variables ηj, lj and determine the set Sj which contains the edges we later condition on.

We iterate over every element in Sj and in each iteration determine the allowed target

conditional distance ηj,k and the guarantee parameter δk.

In each iteration we run another loop (lines 11-15) for 2k+2(k + 3)3 times which ampli-

fies the probability with which we output ACCEPT or REJECT correctly. In this loop

(lines 11-15) we do the sub-cube conditioning. Firstly, we draw a perfect matching mG

from the known uniform sampler U using the graph G. Then we construct a sub-cubed

conditioned graph G
′

which dictates the sub-cube conditioning in the algorithm. The

Restrict routine takes as input the original graph G, the sample mG, the current edge

to be tested i and the set of edges for conditioning Sj. Now Restrict routine returns a

graph G
′
, where G

′
is the sub-cube conditioned graph on the the set Sj and matching

mG. In line 14, we call the routine BasicIDTester represented by Algorithm 6.
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If the BasicIDTester routine returns REJECT it indicates we have arrived at the con-

ditional marginal distribution or the adversarial edge for which sampler A cannot sample

close to uniformly. If the BasicIDTester routine returns ACCEPT we keep on iterat-

ing further. The test guarantees that if any sampler samples far off from the uniform

distribution it cannot pass the test. All uniform samplers should be able to pass the test.

4.3.1 Restrict Routine

Algorithm 6: Restrict(G,m,i,S)

1 n← numV ertices(G) ;

2 G
′ ← G ;

3 for each e ∈ S and e < i do
4 if m[i] == 1 then
5 v ← vertices(e) ;

6 G
′ ← G

′ \ v ;

7 else
8 G

′ ← G
′ \ e ;

9 if numV ertices(G
′
) < n/2 then

10 G̃← constructClique(n) ;

11 G
′ ← append(G

′
, G̃) ;

12 return G
′

;

The restrict routine dictates the sub-conditioning in our framework. As explained in

section 4.2.2, we use the restrict routine to transform a given graph using a form of par-

tial assignment. Also if at the end of this transformation the size of the graph reduces

significantly then we generate a blown-up graph such that the matchings in the reduced

graph are still preserved. Such a blow-up can be done simply by attaching a large clique

to the reduced graph by a single edge.

Algorithm 6 represents the Restrict routine. It takes as input a graph G, a 0-1 vector

representation of a matching m in G, an edge i of G and the set of edges S on which the

conditioning is to be done. It returns another graph G
′

which is sub-cube conditioned on

a form of partial assignment.

In line 1 we assign variable n with the number of vertices in the original graph G. From

lines 2-8 we do the sub-cube conditioning on the graph G to form a graph G
′
. In the loop
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(lines 3-8) for each edge e in S and if e is numbered less than i, we check if e is in the

matching m or not. If e is in the matching m we remove both vertices from the graph

G
′
, else if e is not in the matching m we remove the edge e from the graph G

′
.

At the end of this transformation, G
′

is the sub-cube conditioned graph we want but it

may so happen that it is reduced to very small sized graph. In that case we construct a

complete graph G̃ with n vertices in line 10. In line 11, we attach the graphs G
′

and G̃

with an edge. This blow-up mechanism still preserves the sub-cube conditioning. In line

12, we return the sub-cube conditioned graph G
′
.

4.3.2 BasicIDTester Routine

Algorithm 7: BasicIDTester(A,U ,G,e,η,δ)

1 n← d3/η2e ;
2 count← 0 ;
3 for i = 1 to d18 log 1

δ
e do

4 n1 ← pois(n) ;
5 n2 ← pois(n) ;
6 σ1 ← A(G, n1) ;
7 σ2 ← U(G, n2) ;
8 rn1 ← 0 ;
9 for all m ∈ σ1 do

10 if e ∈ m then
11 rn1 ← rn1 + 1

n1

12 rn2 ← 0 ;
13 for all m ∈ σ2 do
14 if e ∈ m then
15 rn2 ← rn2 + 1

n2

16 if |rn1 − rn2| ≤ η then
17 count← count+ 1 ;

18 if count < d9 log 1
δ
e then

19 return REJECT ;

20 return ACCEPT ;

Algorithm 6 represents an adaptation of the BasicIDTester. It takes as input the sam-

pler under test A, the known uniform sampler U , an instance of a sub-cube conditioned

graph G, the edge or the marginal currently under consideration e, the allowed target
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distance η and the guarantee parameter δ.

In line 1, the variable n denotes the order of number of samples we need to draw in each

round of the algorithm. Variable count in line 2 is assigned 0 and keeps track of the

number of times the estimate we compute is far from η.

In lines 3-17 we run a loop for d18 log 1/δe times. In each round we take two random

values n1 and n2 using the Poisson distribution with parameter n. Then in line 6 we

sample n1 perfect matchings from the sampler A. Similarly in line 7 we sample n2 perfect

matchings from the known uniform sampler U . In lines 8-11, we compute the number of

times the edge e appears in the list of perfect matching σ1, and denote it by rn1 . Again

in lines 12-15, we compute the number of times the edge e appears in the list of perfect

matching σ2, and denote it by rn2 . Then in lines 16-17, we check the difference of the two

estimates. If the difference is ≤ η we then increment count by one. In line 18-19, count

indicates the majority vote of whether the distributions are equal or not. Algorithm 6

outputs the majority of the outcomes arrived in all rounds. So, if count is less than

d9 log 1/δe, Algorithm 6 returns REJECT, otherwise it returns ACCEPT.

4.4 Theoretical Analysis of UPMST

In this section we present the theoretical guarantees that our proposed method provides.

Firstly we provide the guarantees and sampling complexity of Algorithm 6.

Algorithm 6 is an adaptation of the BasicIDTester algorithm in [33]. Since the as-

sumptions to the algorithm remain unchanged we state and adopt the same proof as in

[33].

Theorem 4.4.1. [33] Let µ be a known distribution over Σ. Given 0 < η < 1 and

0 < δ < 1 and a distribution µ
′

over Σ then the (η, δ)-SUBCOND Identity tester has a

conditional sampling complexity Õ( 1
η2

log 1
δ
). In other words, the tester draws Õ( 1

η2
log 1

δ
)

samples and

• if µ = µ
′
, then the tester accepts with probability (1− δ) and

• if d(µ, µ
′
) > η then the tester rejects with probability (1− δ).

Algorithm 5 is an adoption of the algorithm for identity testing with known distributions

presented in [11]. The assumptions and constants remain the same and so we adhere to
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the same proof for the sampling complexity and correctness of the algorithm presented

in [11].

Theorem 4.4.2. [11] (Sample complexity) Given any 0 < η < 1, any 0 < δ < 1 and

a graph G = (V,E), UPMST is an (η, δ)-SUBCOND Identity tester for uniformity with

conditional sampling complexity of Õ(|E|2/η2), where Õ hides polynomial log factors of

n, 1/η and 1/δ.

Theorem 4.4.3. [11] (Completeness) Consider any 0 < η < 1, any 0 < δ < 1 and

a graph G = (V,E), µ,µ
′

are distributions over Σ|E|, where Σ = {0, 1}. If d(µ, µ
′
) = 0,

UPMST rejects with probability at most δ.

Theorem 4.4.4. [11] (Soundness) Consider any 0 < η < 1, any 0 < δ < 1 and a

graph G = (V,E), µ,µ
′

are distributions over Σ|E|, where Σ = {0, 1}. If d(µ, µ
′
) > η,

UPMST rejects with probability at least δ.

4.5 Conclusion

The theoretical guarantees showcase strong evidence that UPMST would be able to

REJECT perfect matching samplers that generate samples far off from the uniform dis-

tribution with low number of samples. Also the sub-cube conditioning model is generic to

fit to our needs. We believe that the same approach can be adapted to be used for various

other problems like equivalence checking of neural networks over finite input spaces. Since

neural networks are by default not generators, they need to be converted to a generative

model using the test dataset available before actually applying the test for identity of

joint distributions. We leave this as future work.
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Chapter 5

Conclusion

In this thesis we have proposed two frameworks for testing uniformity of samplers. Firstly,

we presented a uniformity testing framework Flash which can be used to test unifor-

mity of samplers for Horn formulae. Secondly, we proposed an algorithmic framework

Uniform Perfect Matching Sampler Test (UPMST) to test uniformity of samplers for

perfect matchings in graphs.

Experimental results for Flash show that it can be used as an inexpensive tool for testing

uniformity. Also we were able to REJECT non-uniform samplers when run on standard

benchmarks. Overall, the results suggest strong evidence on the theoretical guarantees

that we provide for Flash and showcases that it can capture samplers generating sam-

ples far from uniform distribution with very few number of samples. To the best of our

knowledge, Flash is the first testing framework proposed to check uniformity of Horn

Clause specific samplers. It would be of tremendous interest to design uniformity testing

frameworks for other classes of CNF like 2-SAT, Dual-Horn and some non-CNF classes

like XOR-CNF. These classes are of keen interest in various fields and are used in context

of sampling. Thus coming up with testing frameworks exclusively for such classes could

give a new direction to this research.

The theoretical guarantees provided for UPMST suggest that it can be used inexpen-

sively for testing uniformity of perfect matching samplers. To the best of our knowledge

UPMST is the first testing framework proposed targeted towards samplers for perfect

matching. The sub-cube conditioning model is very dynamic and opens up another di-

rection of research where this setting can be adapted to solve problems like equivalence

checking of neural networks used in hybrid systems, side channel cryptanalysis and many

other problems where the sample space is a product set.
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