
BlockV: A Blockchain Enabled Peer-Peer
Ride Sharing Service

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Panchalika Pal
[Roll No: CS1701]

under the guidance of

Dr. Sushmita Ruj
Associate Professor

Cryptology and Security Research Unit

Indian Statistical Institute
Kolkata-700108, India

July 2019

To my parents

CERTIFICATE

This is to certify that the dissertation entitled “BlockV: A Blockchain Enabled
Peer-Peer Ride Sharing Service” submitted by Panchalika Pal to Indian Statistical
Institute, Kolkata, in partial fulfillment for the award of the degree of Master of
Technology in Computer Science is a bonafide record of work carried out by her
under my supervision and guidance. The dissertation has fulfilled all the requirements
as per the regulations of this institute and, in my opinion, has reached the standard
needed for submission.

Sushmita Ruj
Associate Professor,
Cryptology and Security Research Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would first like to express my sincere gratitude to my advisor, Dr. Sushmita Ruj,
Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, for her
continuous support, advice,enthusiasm, encouragement and motivation. Her guidance
and knowledge helped me in pursuing good research and writing of this thesis. It is
a privilege to have a supervisor who has constantly supported me, both academically
and personally.

I would also like to thank Laltu Sardar, Prabal Banerjee, Subhra Mazumdar,
Nishant Nikram, Debendranath Das, Manish Kumar, Cryptology and Security Research
Unit, Indian Statistical Institute, Kolkata, who provided insight and valuable suggestions
that greatly assisted the research.

I would like to express my deepest gratitude to the Google server for assisting
me with every minute details I required for this research.

I take this opportunity to sincerely acknowledge the contributions of all the
teachers of Indian Statistical Institute, who have deeply influenced my research acumen.

I thank my parents, for being my pillar of strength and supporting me in all
my endeavours. Last but not the least, I want to thank my friends, for keeping me
motivated at times when I felt like giving up.

Abstract

Today’s ride sharing is a centralized trust based system where users trust the
service providers for the ride set up, tracking, cancellation, fare calculation etc. Any
malicious activity in the centralized server based system or a malicious driver or a
malicious rider destroys the fairness involved in the ride and causes inconvenience to
the parties. After the completion of the ride, the drivers are rated by the riders. There
are possibilities that, a malicious rider can claim the refund with a fake complain and
give the driver poor rating intentionally or a malicious driver follows a longer path
unnecessarily and charges the rider more.

Current system is not capable of deciding the correctness of the objections raised
by either parties regarding the ride and provides a biased outcome of each objections
as per the centralized company’s marketing strategies. In this context, we present
BlockV, a blockchain enabled anonymous permissionless solution to ensure end to
end fairness of the ride. The creation, completion, dissatisfaction or abortion of any
ride will be written in the blockchain ledger, hence will be available to all participants
in the peer to peer network. This simultaneously ensures the fairness in maintenance
of the inbuilt reputation system. We have implemented a prototype in Ethereum
private network and KOVAN test network and analyzed the security.

Keywords: Permissionless Blockchain, Car sharing, Car riding, Route Fare Database,
Driver, Rider, RSU, Anonymous, Elgamal, Reputation system, Fairness, Ethereum

1

Contents

1 Introduction 6
1.1 Blockchain - Decentralized trust . 7
1.2 Problem Statement & Motivation . 8
1.3 Our Contributions . 9
1.4 Organization of the thesis . 10

2 Related Works 11
2.1 Blockchains . 11
2.2 Ethereum . 12

2.2.1 Overview of Ethereum Virtual machine 13
2.2.2 Architecture of EVM . 14
2.2.3 Securing the Ethereum Blockchain with the EVM 14

2.3 Digital Signature Algorithm . 15
2.3.1 Key Generation . 15
2.3.2 Signing Algorithm . 16
2.3.3 Verification Algorithm . 16
2.3.4 Correctness of the Algorithm 16

3 Proposed BlockV Architecture 17
3.1 Preliminaries . 17
3.2 High Level View . 21
3.3 Procedures . 22

3.3.1 Initialization-Account Open 22
3.3.2 Key Generation . 24
3.3.3 Avail Driver . 24
3.3.4 Route Select . 25
3.3.5 Join . 26
3.3.6 During Ride . 26
3.3.7 Complete . 26
3.3.8 Complain . 27
3.3.9 Abort . 29

2

CONTENTS 3

3.3.10 Get New Address, Public-Private Keys 29
3.3.11 Deactivate . 30
3.3.12 En-queue and De- Queue . 31

3.4 Sub-Procedures . 31
3.4.1 LOCK . 31
3.4.2 JOINLOCK . 32
3.4.3 VALIDR . 32
3.4.4 RFQD . 33
3.4.5 CONNECTD . 33
3.4.6 VALIDROUTE . 34
3.4.7 FCHECK . 35
3.4.8 CalcFARE . 35
3.4.9 IFPENALTY . 36
3.4.10 EXISTD . 36

4 Security Model 37
4.1 Privacy involved in BlockV . 38
4.2 Linkable Reputation for Privacy Preserving

Blockchain . 40

5 Performance analysis of BlockV 43
5.1 PC Configuration . 43
5.2 Private Network . 43
5.3 Test Network . 44

6 Conclusion and Future Work 47

List of Figures

1.1 The system with decentralized trust 9

3.1 Piece-wise linear segmented continuous path 19
3.2 Flow Chart for an account holder . 22
3.3 Communication overview . 23

4.1 EVM Storage Overview . 40
4.2 Change in Reputation Score with the change in Identity 41

5.1 Time per transaction Vs. No of Miner 44
5.2 Time per transaction Vs. Path Segment 45
5.3 Path representation during complain 45

4

List of Tables

5.1 Table of gas Cost . 44

5

Chapter 1

Introduction

Today’s busy world demands ultra fast moving vehicles with the rapidly increasing
growth in the vehicular technologies. Transportation shall be hassle free and trustworthy
for every identity. The traffic system need to be highly time efficient. All these need
converges to the speed of the vehicle which directly proportional to the congestion in
the road. In studies it has been found that all over the world the number of vehicles
per person has increased rapidly in last few years leading to slow vehicle movements
due to restricted road capacity.

Thus, to avoid vehicle clogging in the roads, the primary goal is to encourage
the full capacity utilization of the vehicles. In the other ways, the vehicle owner is
encouraged to use its vehicle as the part of public transportation system and carry
other persons as per the free capacity of the vehicle. This will lead to a decreased
vehicle to person ratio and achieve a smooth traffic condition. The persons who are
using their private car will switch to the car hiring methodologies, only if they find
the procedures are simple, explainable, cost efficient and fair in all respect.

Here, we have presented BlockV, an architecture which follows these four principles
and reflects a robust end to end solution. The procedure of hiring a car involves a
negotiation for a fare against a ride chosen by the rider, a fair payment mechanism
explainable to all and a decentralized system that ensures fair, trusted, cost effective
transactions. The system which is being followed currently is the application based
car sharing, where there exist many centralized servers monitoring every aspects of
the ride mentioned above in different platforms of applications. It is hard to achieve
fairness in the currently running systems and also there exists no common platform in
this regard where the rider can go for a comparison and select the driver accordingly.
Also, the fairness in the procedure is trusted to be implemented by the underlying
service providers, which is not verifiable from the rider end. This kind of trust based
system creates a point of dissatisfaction as the inner computations strategies are not
clearly known to them. Hence, the car sharing to be widely appreciated among all the
class of people, we have appreciated the role of decentralized peer to peer network
of blockchain BlockV as the backbone of the architecture. The motivation behind

6

1.1. Blockchain - Decentralized trust 7

BlockV is firstly to ensure the paymentfairness where the breakup of the fare i,e.
the cost of the ride for a particular path is computable by any peer of the network
with the path details. Secondly, we present the ridefairness where in the case of any
dispute, addressed by the rider, the malicious driver or the malicious rider (in case
of false allegation) will be penalized. BlockV collaborates with the Road Side Units
(RSUs) to achieve fairness in this respect. We believe that our work will be useful to
ride sharing services like Uber and Lyft.

1.1 Blockchain - Decentralized trust

A blockchain is a time-stamped series of immutable record of data that is managed
by cluster of computers not owned by any single entity. Each of these blocks of data
(i.e. block) are secured and bound to each other using cryptographic principles (i.e.
chain). The blockchain network has no central authority. Since it is a shared and
immutable ledger, the information in it is open for everyone to view. Hence, anything
that is built on the blockchain is by its very nature transparent and everyone involved
is accountable for their actions.

In order for a block to be added to the blockchain, however, four things must
happen:

1. A transaction must occur.
2. That transaction must be verified.
3. That transaction must be stored in a block.
4. That block must be given a hash.

Blockchain technology accounts for the issues of security and trust in several ways.
First, new blocks are always stored linearly and chronologically. They are always
added to the “end” of the blockchain. Secondly, after that it is very difficult to go
back and alter the contents of the block because each block contains its own hash,
along with the hash of the block before it. Change in any content in any of the
previous blocks, will change the hash values of all the later blocks. Thus one can
easily detect the incident by looking at the last hash value. In order to change a
single block, then, a hacker would need to change every single block after it on the
blockchain. Recalculating all those hashes would take an enormous and improbable
amount of computing power. In other words, once a block is added to the blockchain
it becomes very difficult to edit and impossible to delete.

From the access point of view we have two kinds of blockchain- Permissioned
(private) and Permission-less. Permissioned blockchains use an access control layer
to govern who has access to the network where as in permission-less blockchain, or
public, blockchain network the advantage is that guarding against bad actors is not
required and no access control is needed. Another mix up category is also available-
Hybrid Blockchain. It is a combination between different characteristics both public

8 1. Introduction

and private blockchains have by design. It allows to determine what information stays
private and what information is made public.

The analysis of public blockchains has become increasingly important with the
popularity of bitcoin, Ethereum, litecoin and other cryptocurrencies. Blockchain-
based smart contracts are proposed contracts that could be partially or fully executed
or enforced without human interaction.

1.2 Problem Statement & Motivation

The inflation in the trend of using personal vehicles for every movement involved in
day to day life has been created an alarming condition for traffic management systems
worldwide. The increasing graph of the usage demands a high increasing graph of
infrastructure and supports which will be saturated in near future. Thus it is very
important to control and reduce the inflated trend of personal car usages. One man
one car keeps the other seats unoccupied and unused increasing the traffic volume. To
reduce the congestion, car sharing is only option. This will produce positive impact
on vehicular volume utilization. Thus the problem of traffic congestion is reduced to
the problem of car sharing.

The problem of car sharing involves the transparency in payment. Rider shall
pay the requisite cost of the ride to the driver. There are certain risk involved int
his payment. First, the driver can claim more money than actual cost. Hence, there
should be an entity to monitor that. Secondly, the rider can pay less money than
actual. This should also be monitored by some entity. Thirdly, there should be some
system to decide what is the exact fare for a ride. Based on these criteria we have
some centralized server based companies who monitor all these three requirements.
But the problem of centralized servers are that they can easily be tampered. Hence,
we can not trust a malicious server to restrict malicious activities.

Apart from the payment, rider can provide rating to the drivers as a token of
satisfaction. A malicious rider can provide poor rating to a driver for not obeying
to his illegitimate demand. The rider is protected in this respect as no penalization
occurred for this mischievous activity. The driver may drop the rider at a wrong
location or somewhere along the path. This is against the mutual agreement between
the rider and the driver for the ride but if the rider is new in this route, it will create
a great inconvenience to him. Till date all the dissatisfaction are reported to the
centralized authority who can easily be manipulated. Also, for most of the cases we
can never know the actions taken against the malicious user. Thus an user, willing to
be the part of the a car sharing system, requires a decentralized trust based system
which can be completely relied upon, open to all, handles dissatisfaction transparently.
All users shall be equally treated. Any malicious activity if detected shall produce
equal penalty for all users. This demands for the fairness in the ride.

Along these ride fairness and payment fairness we need user privacy as well.
No one else other than the user shall be aware of the riding schedule, the frequency

1.3. Our Contributions 9

of the ride, usual destination and find a link them all. This will break the user
privacy. Hence, to motivate the common people for ride sharing we have to build up
a system which thoroughly ensures ride fairness, payment fairness and user privacy.
The decentralized objective motivates to search for a blockchain based solution as the
blockchain provides the facilities of transaction validation by peer to peer network.
Also the immutability of the transactions is ensured in this case. Any malicious
activity can be easily noticed and the system to be malicious at least 51% of the
peers in the network has to be malicious. This comes up with picture (Fig 1.1) of all
drivers and riders connected in a peer to peer network and the rides are enlisted in
blockchain ledger.

Figure 1.1: The system with decentralized trust

1.3 Our Contributions

In this thesis, we define and discuss in details a new blockchain based architecture for
the car sharing system, named as BlockV [33]. With the motivations of simple robust
cost effective reliable system design, we have introduced the fairness in payment
calculation as well as in the ride. Any dispute regarding the failure in following
the redefined and contracted path, if arises, will be solved by the peer to peer
network as explained in later sections. The false allegations are also checked in
the procedure to achieve the complete fairness from the users’ perspective. By
using off-chain transactions [10] and opportunistic arguments, we have substantially
improved the performance while settling disputes. The user privacy is also addressed
with this architecture. The security aspects of the architecture are also addressed

10 1. Introduction

with this. Following that, we have implemented a prototype in Ethereum Virtual
Machine private network and the results on gas costs, scalability, time effectiveness
are included. The same contract is also deployed in the KOVAN testnet.

1.4 Organization of the thesis

The rest of the thesis is organized as follows: In Chapter 2, we have discussed related
works and some prerequisites for BlockV . Chapter 3 describes the terminologies used
in the next sections and basic definitions related to the scheme are mentioned. The
high level views with the detailed procedures are also presented in this chapter. In
the Chapter 4, we have addressed our security claims with the motivation of fairness
in the system. We have presented the experimental results and analysis in Chapter 5.
Next we have put the limitations and future scope of improvisation of this architecture
with the conclusion in Chapter 6.

Chapter 2

Related Works

In this chapter we will discuss the related works and the public blockchain platform
ethereum which has been used for implementation of BlockV.

2.1 Blockchains

There are several applications of blockchain currently being focused on. The most
basic and simplest kind is the application in finance sector where decentralized crypto-
currency is the main attraction. One of the famous crypto-currency is Bitcoin which
has come up with the renaissance in the domain finance. The publication of the
Bitcoin whitepaper [29] in 2008 was the first globally appreciated step taken in
blockchain. Apart from Bitcoin we have now Litecoin [15], Namecoin [18], Peercoin
[19], Dogecoin [4], where we use electronically coded addresses to make transactions.
Traditional system requires a mediator like banker or a remittance company to ensure
the trust in a transaction. With these crypto-currencies we have another application
in finance-Asset management [3] with improved security, improved operational efficiency,
client on boarding, stream lining portfolio management, clearances and settling of
trades.

Blockchain can also be a suitable technology for Insurance companies [5]. Block-
chain technology has been rather crucial in supporting various applications like supply-
chain management [20], healthcare [27], data sharing for medical in cloud environments
[51] and personal data [52], Internet of Things (IoT) with the optimized blockchain
[7] to name just a few. It has revolutionized the sharing economy with applications
like file sharing using Filecoin [35], music [30] and other digital content [48], digital
certificates [47] etc. The basic purpose of using the blockchain is to shift the trust
from centralized service providers to peers who maintain the blockchain. As long as
majority of the peers are honest, the system is secure [23]. The fairness in the system
achieved by the blockchain is shown in [9]. The Industrial Internet of Things are
also benefited by the blockchain technology. The agricultural sector along with food
supply chain management are also using blockchain technology [45]. Blockchain is

11

12 2. Related Works

also used as a toll in Identity management [17].
There has been a tremendous amount of work in smart cities [1]. The blockchain

based sharing services [44] can be included as the elements of the smart cities. The
digital identities with blockchain [37] can also contribute to the smartness. Blockchain
based hybrid networks [41] are well appreciated in the domain of smart cities. Thus a
blockchain based distributive vehicular network is mentioned in [40]. The application
of blockchain in vehicular technology was introduced in the field on Vehicle to Vehicle
(V2V) communications [38], [42], [24]. The vehicle to grid communications through
mobile IP is also depicted in [11]. The survey on existing authentication and privacy
preserving schemes are presented in [14]. In addition to that we have cloud assisted
video reporting techniques for 5G networks as describes in [28]. The lightweight
model of trust in VANET(Vehicular Adhoc NETwork)s are well described in [25] and
all of these come under the purview of Intelligent Transport Systems [12]. Dorri et
al. [8] proposed a distributed solution to automotive security and privacy. Road
Side Units (RSU) are assumed to be present which are capable of interacting with
the vehicles and pass the messages according to the RSU communication protocols.
This kind of architecture is described in [32]. A self managed vehicular network
has been proposed in [21]. Blockchain enabled vehicular announcement has been
proposed in [22]. This incentivises users to communicate traffic information while
maintaining user privacy. An auto-insurance framework has been proposed in [31].
An anonymous authentication protocol was described [39]. The attacks in Industrial
Control system as discussed in [13] is applicable to the vehicular industries as well.
Hence a decentralized platform like the blockchain solution is considered to be one of
the best available solutions.

In this thesis, we have specifically considered the application of blockchain in
the domain of car sharing which was mentioned in [8] as one of the key blockchain
applications that will come up in future. To increase the efficiency of the architecture,
we have introduced the use of off-chain [34] as a part of the scheme. We have
considered an secured inbuilt reputation system [36] with the representation of reputation
score of each participating candidate in BlockV. Our experiments are performed in
Ethereum Virtual machine (EVM) which was introduced in [46].

2.2 Ethereum

Ethereum [50] is an open programmable blockchain platform that allows anyone to
build and use decentralized applications that run on blockchain technology. It is an
open-source project built by many people around the world. Ethereum is designed
to be adaptable and flexible. It is easy to create new applications on the Ethereum
platform.

Like any blockchain, Ethereum also includes a peer-to-peer network protocol.
The Ethereum blockchain database is maintained and updated by many nodes connected
to the network. Each and every node of the network runs the EVM and executes the

2.2. Ethereum 13

same instructions. There are two types of accounts:

1. Externally Owned Accounts (EOAs), which are controlled by private keys

2. Contract Accounts, which are controlled by their contract code and can only
be “activated” by an EOA

Users must pay a little amount transaction fees to the network. This helps the
Ethereum blockchain to be protected from malicious computational tasks, for example,
DoS attacks or infinite loops. The sender of a transaction must pay the fees in amounts
of Ethereum’s native value-token, ether.

The transaction fees are collected by the nodes or peers that receive, execute ,
verify and propagate transactions. The miners then group the transactions in blocks,
and compete with one another for their block to be the next one to be added in to
the blockchain. Miners are rewarded with ether for each successful block they mine.
This provides the economic incentive for people to dedicate hardware and electricity
to the Ethereum network.

The Ethereum Virtual Machines [16] can run smart contracts, written in solidity
[6]. A smart contract is a computer protocol intended to digitally facilitate, verify,
or enforce the negotiation or performance of a contract. Smart contracts allow the
performance of credible transactions without third parties.

Smart contracts are equivalent to the classes in object oriented programming.
When we deploy the smart contract in Ethereum, we get an address analogous to the
return value of new object() in Object Oriented Programming. We can write codes to
interact with specific instances of the smart contracts. The read methods are quick
but write methods takes sometimes because a write method requires a change in
state variables of the Ethereum virtual Machines which creates new transaction and
we need to wait for the next block to be mined.

Ethereum main network (“mainnet”) deals with real money. Hence, before
deploying a contract in main network with real assets we like to test the contract.
Hence we deploy this to an Ethereum Test Network (“testnet”), which simulates
Ethereum. Ether and tokens on a testnet are easy to obtain, and carry no real-world
value. There are three popular public testnets, namely Ropsten, Kovan and Rinkeby.
Ropsten is a proof-of-work blockchain that most closely resembles Ethereum. One
can mine Ethers in this testnet. Kovan and RInkeby are proof-of authority blockchain
started by parity team and geth team respectively. Here, Ether Can not be mined
but has to be requested. Ethereum private test network can be built using geth and
homebrew.

2.2.1 Overview of Ethereum Virtual machine

The Ethereum Virtual Machine(EVM) is a quasi-Turing complete machine which
implements the execution model of Ethereum blockchain by providing a run-time

14 2. Related Works

environment for smart contracts. The algorithm is implemented by smart contracts
and the memory is represented by a virtual byte-array ROM. Computations are
bounded by a parameter called gas. Before a smart contract is executed in ethereum,
the gas cost is computed for each operation and paid when those are being executed.
Some operations can not be executed if the program has less gas limit specified than
required. With each new transaction, executed and mined in ethereum, the blockchain
moves into a new state.

2.2.2 Architecture of EVM

The EVM is a simple stack-based architecture. Computation on the EVM is done
using a stack-based bytecode language. The word size of the machine is 256-bits (32-
byte), this is also the size of a stack item. The size of every item on the EVM stack
is 256 bits. If the size of the data item is less than 256bits, it is padded with leading
zeros. The stack has a maximum size of 1024. The memory model of the EVM is a
simple word-addressed byte array. This means that the memory is an array of bytes,
each byte is assigned its own memory address. The EVM has a storage model which
is a word-addressable word array. Unlike the memory which is volatile, storage is
non-volatile and it is maintained as part of the system state. All locations in both
storage and memory are well-defined initially as zero.

2.2.3 Securing the Ethereum Blockchain with the EVM

The EVM imposes the following set of restrictions to secure the state of the system:

• Every computational step taken in process of executing a program must be paid
for upfront, thereby preventing Denial-of-Service (DoS) attacks.

• Programs may only interact with each other by transmitting a single arbitrary-
length byte array but they do not have access to each other’s state.

• An EVM program can only access and modify its own internal state and may
trigger the execution of other EVM programs, but not allowed to do anything
else.

• Program execution is completely deterministic and produces identical state
transitions for any similar type of implementation starting from an identical
state.

These restrictions have helped to figure out the design decisions of the Ethereum state
transition machine.

2.3. Digital Signature Algorithm 15

2.3 Digital Signature Algorithm

The Digital Signature Algorithm (DSA) [49] is a Federal Information Processing
Standard for digital signatures. The scheme is based on the mathematical concept of
modular exponentiation and the discrete logarithm problem. DSA is a variant of the
famous Schnorr and Elgamal signature schemes.

2.3.1 Key Generation

There are two separate phases for key generation. One is generation of shared
algorithmic parameters and the second one is typical for an user.

Shared Parameter Generation

• Choose an approved hash function H with output length |H| bits. If |H| is
greater than the modulus length N , only the leftmost N bits of the hash output
are used.

• Choose a key length L.

• Choose the modulus length N such that N < L and N ≤ |H|

• Choose an N bit prime q and L prime p such that p− 1 is a multiple of q.

• Choose an integer h randomly where 2 ≤ h ≤ p− 2.

• Compute g = h
p−1
q mod p. If g is 1 try with different h.

The algorithm parameters are (p, q, g).

User Key Generation

Given the set of shared parameters as generated using the steps described in the above
procedure, this phase computes the key pair for a single user. The same procedure
will be user by all the users to generate their respective public and private keys.

• Choose integer x randomly such that 1 ≤ x ≤ q − 1

• Compute y = gx mod p.

x is the private key and y is the public key. The user should publish only the public
key and keep the private key secret.

16 2. Related Works

2.3.2 Signing Algorithm

The user shall sign the message m as follows:

• Choose an integer k such that 1 ≤ k ≤ q − 1.

• Compute r = (gk mod p)mod q. If r is zero, start with different random k.

• Compute s = (k−1(H(m) + xr))mod q. If s equals zero, start with different
random k.

The signature is (r, s).

2.3.3 Verification Algorithm

One can verify the signature (r, s) is a valid signature for message m as follows:

• Verify that 0 < r, s < q.

• Compute w = s−1mod q.

• Compute u1 = H(m).w mod q

• Compute u2 = r.w mod q

• Compute v = (gu1gu2 mod p)mod q

The signature is valid if and only if v equals r.

2.3.4 Correctness of the Algorithm

Since, g = h
p−1
q mod p, it follows that gq ≡ hp−1 ≡ 1 mod p by Fermat’s Little

theorem. Since g > 0 and q is prime, g must have order q. The signer computes

s = k−1(H(m) + xr)mod q.
Thus,

k ≡ H(m)s−1 + xrs−1 ≡ H(m)w + xrw (mod q)

Since g has order q(mod p) we have,

gk ≡ gHw ≡ gHwyrw ≡ gu1yu2 (mod p)

Finally, the correctness of the algorithm follows from,

r = (gkmod p)mod q = (gu1yu2mod p)mod q = v

Chapter 3

Proposed BlockV Architecture

3.1 Preliminaries

Definition 1 User U is defined as the u bit address, randomly sampled without
replacement from user address space A.

The user U receives its public key pkU , secret key skU , wallet WU at the time
of opening the account. Each user can select Rider or Driver as the member class.
Selection of both at a time is prohibited in any circumstances. However, the classes are
interchangeable under certain restrictions. An user is represented by u+1 bit address
of which the first u bit is sampled from A and the last bit denotes the member class.
0 represents Rider and 1 represents Driver. The user U hence receives two addresses
addrUr, addrUd for each of the two member classes Rider and Driver respectively.
For each member class address, there exist two parameters- namely, Rating R and
Status stat. RUx denotes the last awarded reputation score obtained by the user U as
member class x. This scores are updated as per successful or unsuccessful transactions
carried out by the user after opening the account. Unsuccessful transactions are those
in which the user has been proven malicious for his mischievous activity. statUx is the
status of U as member class x at any point of time after the account opening. For
both the reputation score and status, x ∈ {r, d} where r and d symbolizes member
class Rider and Driver respectively. Default value for reputation score is zero where
as default value for status is Unavailable for member class Driver and available for
member class Rider. The user is allowed to change its address only when it is not
participating in a ride. Any assigned user address can be reused i,e. reassigned to
a new user, if the prior user closes his account. When an user transacts in BlockV
platform, its user address will be included in the blockchain ledger.

Definition 2 Blockchain platform BlockV is defined as the set of α bit addressed live
contract instances randomly sampled from the un-utilized address space AA, each of
which creates a bijective mapping with (rider, driver) pair.

17

18 3. Proposed BlockV Architecture

The contract instances are randomly sampled from the set of all α bit addresses
AA. A contract address is said to be live if the contract is currently being executed i,e
the ride mapped to that contract is not completed or objected to be unsatisfied. We
define a taken address space AT which contains only the live contract instances. An
unique contract address is always ensured for next sampling by moving the sampled
address from AA to the taken address space AT . A contract instance when destroyed,
corresponding address is returned to AA to ensure availability free address in AA for
any new contract instance.

Proposition 1 Cardinality of Contract address space AT is equal to the cardinality
of the user address space u, provided there exists no available contract instance in AA

and the user accounts are not anonymous.

There are certain restrictions imposed on the users to ensure fairness in the
communication protocols. First one is that all the users can choose only one address
from the user address space at any time instance. If we consider that every user is
indulged in some ride, each will be assigned a contract address corresponding to those
rides. This proves that α has to be greater than or equal to u. Now, all the users can
choose only one class, Rider or Driver at any time instance. The second restriction
is that switching from one class to another requires absence of open contract in the
existing class account. Hence, if the user address space is completely consumed and
every registered user opts for the Driver class, there can be at most 2u contract
address used. This concludes that α has to be equal to u.

Here we need the restriction of non-anonymous user accounts as if an user carries
multiple addresses, then the address space can not accommodate the same number of
users as previous. Suppose, the users are permitted to have at most k many addresses
at a time. Then we can accommodate only 2u−log2(k) no of users which is less than
the no of users represented using u bits.

Definition 3 A Ride is defined as an event which pairs up an user from Rider class
and an user from Driver class to execute a contract in BlockV platform.

A contract address is assigned to an user in class Driver and an user in class Rider
shares the same contract instance if they agreed upon a Ride. An user from member
class Rider is denoted as R. Similarly, an user from member class Driver is denoted
as D. A Ride is confirmed when D creates a contract by locking a security deposit
SUd and R joins the same contract with security deposit SUr and fare after the path
for the ride and fare paid is verified.

Definition 4 A Location is represented by Cartesian coordinate as detected by Global
Positioning System(GPS) for a point on the earth surface.

Definition 5 A Route is defined as the array of locations, where the consecutive two
locations are linearly connected by a path, width of which is sufficient to drive a car
as per regulatory standard.

3.1. Preliminaries 19

The first element present the Route array is called the start location LstartUr selected
from distribution Υ1 and the last element in the Route array is called the end or drop
location LendUr selected from distribution Υ2 by Rider R. Υ1 is the distribution of
the rider’s daily travel start location and Υ2 is the distributions of the rider’s daily
travel end locations.

Definition 6 Fare f is defined as the monetary value representing the cost of the ride
taken by the rider R computed from the Route based on a formula as per regulatory
standard.

Fare is proportional to the path covered by the route where path is the cumulative
distance between two consecutive linearly connected locations. The term linear
ensures a straight forward fare computation by calculating Euclidean Distances.
However, the physical path may not be truly linear but consists of several bends,
twist and turns along with the linear paths. Such a nonlinear path is approximated
by joining piece wise linear path segments as depicted in Fig. 3.1. These segments
are created with the aim of least mean square error of the reconstructed path from
the true, smooth path curvature.

Figure 3.1: Piece-wise linear segmented continuous path

Given a pair of (LstartUr, LendUr), there may exist more than one route satisfying
the start and end locations. Since the Earth surface is spherical, we can generate
infinite number of routes given two locations as stated. However, generating all
the routes with the fares is highly inefficient considering the time complexity of the
procedure and displaying all to the riders creates great inconvenience to them. These
demands selecting a few routes given the locations. The most convenient routes are
determined based on the trend of traffic conditions and updates of sudden occurrences
of accidents, agitations, vehicle breakdown etc. We already have the technology with
efficient GPS system to detect the traffic congestion.

20 3. Proposed BlockV Architecture

This requires R to select any one route from the list of selected convenient routes.
Each route in the list contains the array of locations and fare computed for that
route. Selection of one route from a list is predominantly based on direct or indirect
experience Υ3 gained by the rider R that selects a specific route from the list of
routes using feature values as weather, traffic, ongoing development works, man made
disturbances, preference for known route etc as the application of human learning from
environment. All the routes and the corresponding fares are kept in a decentralized
Route Fare database (RFD) which is equally accessible by R and D.

Once the route is chosen, R requires send a join request to D along with the
fare and a fixed amount of security deposit for Rider class. A join request received
from R may not be accepted by D even if there is no mismatch of route and fare.
The acceptance from driver D follows a distribution Υ4 based on the daily schedule
and preferred area of driving of D. The driver if rejects the join request has to prove
that at the moment of receiving the join request he was located beyond a certain
distance from the start location of the rider sending the request. This creates a
circular geographical area centering the start location of the rider R. If any driver,
after being present in this area, rejects the join request from R, he will be penalized.
All other drivers whose locations are not inside the circular region, if approached by
R with join request, may reject it without being penalized. The penalty in this case
attracts monetary as well as reputation loss of the driver.

After a completed or semi-completed ride, R may not be satisfied with the service
provided by D and trigger an objection. However a completed ride is not open to
R or D for any operation. If a complain against D is lodged in BlockV platform, it
should be undoubtedly resolved. A complain accompanies a ProofofWrongRoute
that makes sure D was present at a location not listed in the route contracted during
the ride. Hence the presence or absence of D has to be easily verifiable. For the
purpose of verification, we have considered the Road Side Units(RSUs) that can
detect a car if it is nearby. A bijective mapping is assumed between a car and driver
as at a particular time instance one implies the other.

Road Side Units in the context of Vehicular Adhoc NETwork (VANET) are the
static points of V2X communications. RSUs are placed along the roads maintaining
certain distances. They are meant for assisting the vehicular communication protocols.
However, BlockV restricts itself to use the RSUs as the vehicle locating devices

Thus, if a car is detected by a RSU, from the log maintained in its database with
time stamp , the mapped driver can be identified.

There are four major class of participants of the service Ride, namely DRIV ER,
RIDER, BlockV and RSU . DRIV ERs provide services and RIDERs accept
the services by paying required amount as the cost of the service. BlockV is the
decentralized platform of blockchain which creates the fairness in the protocol running
behind, starting from the offering of the services,issuing a contract to its closing.
RSUs are the Road Side Units which acts as the validation helper. This platform
also interacts with a secured decentralized route fare database RFD to compute and

3.2. High Level View 21

display the possible route details and corresponding fare when queried.

3.2 High Level View

The process starts with the account opening. Each user(driver and rider) has to
open an account to perform any task with BlockV. If the person opens the account
as rider, he is already available or visible to the connected network. Else, he must
have chosen to be the driver while opening the account. A driver needs to deposit a
fixed security money to make himself available to the network every time from the
Unavailable status it acquires in the subsequent procedures. Only the available riders
and drivers are permitted to be involved in a new ride.

A rider if joins a driver for a ride, has to lock the fare and a fixed security deposit
with it. The security deposit amounts can be the same or different. After the ride is
confirmed, if the driver or the rider triggers the abort procedure, he needs to pay the
entire amount he has locked for the ride. Else an available driver can withdraw his
locked amount and abort which makes it Unavailable from available.

After the ride is confirmed, the driver and the rider creates a ledger of their
locations with time stamp, in offchain. These ledger entries are only used while
triggering a complain for unsatisfied ride with respect to the contracted path. We
have defined an algorithm to ensure the fairness of the objection made by the rider
if any. However,an innocent driver should not be penalized for a malicious rider and
an innocent rider should not be harassed for a malicious driver.

Lastly, we define a procedure of completion for satisfactory service of ride. A
complain triggered will conclude the ride at that position. A rider can not raise
any complain for a ride which is already completed.This process continues till the
members are having enough balance in their wallet. A member is allowed to change
the member-type or de-activate the account only when no open ride is associated with
the member’s account. The flow of activities for an account holder is depicted in Fig.
3.2.

The architecture also includes the automated decentralized reputation score
based system where, each driver or rider has to gain the score by completing the
rides successfully without being penalized. The reputation system in the context of
peer to peer network is explained in [2]. Another decentralized reputation system for
marketplace is discussed in [43]. In BlockV, a successful completion of ride increases
the reputation score where as an objection will decrease the score of the malicious
party. The Abort procedure will also decrease the reputation score if the caller is in
Busy state.

The users are allowed to change its address after it completes a ride. However,
the reputation score it has gained till that point will not be changed. The user will
only get a new address and corresponding public and secret keys for next ride keeping
the member class selection and status unchanged.

22 3. Proposed BlockV Architecture

Figure 3.2: Flow Chart for an account holder

3.3 Procedures

The driver and the rider are the two key communicating entities. From the previous
section we derive the sketch of communications as Fig. 3.3. Each of these communication
protocol is described in this section sequentially.

3.3.1 Initialization-Account Open

Each user U has to open an account in BlockV platform to proceed further. U will
be awarded with a α + 1 bit address whose first α bit is chosen randomly from A.
Include the selected address A to AU . Generate (public key, secret key) with the
chosen α bit address as seed input to KeyGen procedure.Initially users are registered

3.3. Procedures 23

Figure 3.3: Communication overview

with one public key and one secret key. The public key generated by the KeyGen
is en-queued in ArrPK array and secret key generated is en-queued in array ArrSK .
The addrU is also put in Arraddr.
Concatenate 0 and 1 with the chosen α bit address to generate α + 1 bit addresses
addrUr , addrUd for the same user U to be represented as rider and driver respectively.
Generate and initialize rating RUr, RUd for both the account types to zero. Status
statUr for rider type is initialized to ’A’ i,e. available and statUd for driver type
is initialized to ’UA’ i,e. unavailable. U can choose only one of the two account
types and the corresponding status and reputation score will be live for updating
in BlockV. An user account is associated with the wallet WU and keeps track of its
currently executing account by a contract address variable CCU . Initially CCU is
NULL i,e, no contract address is attached with this user. BlockV platform allows
each user to maintain a wallet for the transactions where money will be converted in
crypto-currencies and kept in wallet.

24 3. Proposed BlockV Architecture

Procedure 1: Account Open

Input : user U
Output: Public parameters : addrUr, addrUd, pkU , RUr, statUr, RUd, statUd

Secret parameters: skU , WU

1. addrU ← $(A−AU)
2. s= size(AU)
3. AU [s+ 1]← addrU
4. ENQUEUE(Arraddr, addrU)
5. addrcount = 1
6. (pkU , skU)← KeyGen()
7. ENQUEUE(ArrPK , pkU)
8. ENQUEUE(ArrSK , skU)
9. addrUr ← addrU ||0

10. addrUd ← addrU ||1
11. RUr ← 0
12. RUd ← 0
13. statUr ←A
14. statUd ←UA
15. WU ← 0
16. CCU ← NULL

3.3.2 Key Generation

Consider a multiplicative group G of public keys of order p and generator g. Let skU
be the n bit private key of user U . The public key pkU is expressed as gskU . The used
secret keys are moved in to the set SKused

Procedure 2: KeyGen

Input :
Output: pkU , skU

1. skU ← $({0, 1}n − SKused)
2. pkU ← gskU

3. MOVE skU in SKused

3.3.3 Avail Driver

An account with type driver has a default initialization of status as Unavailable. The
user U with status ’UA’ is publicly not visible for the account type it currently holds.
Hence, driver D should make itself available to utilize the facilities of BlockV. For

3.3. Procedures 25

that purpose, D is required to lock a fixed amount of security deposit SUd. Procedure
LOCK with the input of SUd returns a contract address to D against which the money
has been locked. If LOCK is successful, the status addrUd.startUd is made ’A’ i,e.
Available. This enables the riders to find out this driver as ready for taking a ride.

Procedure 3: Avail Driver
Input : addrUy

Output: Public parameters : statdU or ABORT
1. parse addrUd= (addrU , x)
2. if x = 1 && addrU .startUr =UA && addrU .WU >= SUd

3. addrU .CCU ← LOCK(addrUd,SUd)
4. if addrU .CCU 6= NULL
5. addrUd.startUd =A
6. else ABORT

3.3.4 Route Select

This procedure can only be called by an user of account type rider. To start a
ride, each rider requires to have a route and the corresponding fare. R has to select
start location Lstart from distribution Υ1 and end location Lend from distribution Υ2.
Significance of distribution Υ1 and Υ2 is described in Chapter 2.

Procedure 4: Route Select
Input : addrUy

Output: (r, f) or ABORT
1. if !V ALIDR(addrUy)
2. ABORT
3. Lstart ← Υ1{L}
4. Lend ← Υ2{L}
5. RF ← RFQD(Lstart, Lend, addrUy)
6. (r, f)← Υ3{(RF [i][0], RF [i][1]) : i ∈ [p]}
7. if (r, f)← NULL
8. ABORT

The procedure Route Select calls sub-procedure RFQD with these two locations
and get a list of convenient routes and their fares satisfying those locations. Rider R
has to select any one route from that list, otherwise, the procedure aborts.

26 3. Proposed BlockV Architecture

3.3.5 Join

Once R gets a route and its fare, creates a message by concatenating keyword ’CONF’,
current time stamp tnow and route r. This message along with the R’s signature
on it, fare f and security deposit SUr, the address of the driver D, are sent to
CONNECTD.

Procedure 5: Join
Input : skUr, pkUr, addrUr, addrUd, r, f,SUr

Output: x ∈ {CONFIRM,ABORT}
1. msg = CONF ||tnow||r
2. sig = SIGN(msg)
3. c← 0
4. parse addrUr = (addrU , x)
5. if addrU .WU > f + SUr &&x = 0
6. c = CONNECTD(msg, sig, pkUr, f + SUr, addrUd, addrUr)
7. if c = 1
8. addrUr.statUr =B
9. x← CONFIRM

10. else x← ABORT

If connected, the status of rider addrUr.statUr is changed to ’B’ i,e. Busy.
This procedure inherently changes the status addrUd.statUd of connected driver D
to ’B’. The security deposit involved will be based on regulatory standard subjected
to revision as per the economic condition.

3.3.6 During Ride

During the ride, starting from Lstart to Lend both driver D and rider R may construct
a ledger of locations with time stamp. The sequence of locations ideally reconstruct
the route contracted between them. However, there may exist some deviations with
in acceptance limit. Beyond that limit, if any move is complained by R, driver D is
penalized. This ledger is used as the source of ProoofOfWrongRoute.

3.3.7 Complete

After the ride is complete and rider R is satisfied with the ride, R initiates the
procedure complete. This unlocks the contract and release the money locked with it.
SUr is returned to R and the rest is returned to D. Hence, the driver D will get its
security deposit SUd back and the fare contracted as the remuneration.The successful
completion awards both the rider and driver with the an increase in reputation scores.
The status of the rider is made available and same for the driver is made unavailable

3.3. Procedures 27

Procedure 6: Complete

Input : addrUr, addrUd, Caddr

Output: c← {0, 1}
1. parse addrUd = (addrp, p)
2. parse addrUr = (addrq, q)
3. if (addrp.CCp = addrq.CCq && addrp.CCp = Caddr)
4. UNLOCK(Caddr)
5. addrq.Wq ← addrq.Wq + SUr

6. Caddr.lockedV ← Caddr.lockedV − SUr

7. addrp.Wp ← addrp.Wp + SUd

8. REMOV E addrp.CCp from AT

9. ADD addrp.CCp in AA

10. addrp.CCp ← NULL
11. addrq.CCq ← NULL
12. addrUd.statUd =UA
13. addrUr.statUr =A
14. addrUd.RUd ← addrUd.RUd + 1
15. addrUr.RUr ← addrUr.RUr + 1
16. c← 1
17. c← 0

i,e both are set back to their initial status. Complete procedure unlocks a contract
which completes the purpose of that contract instance. Hence, the instance is put to
the available contract address space AA.

3.3.8 Complain

The rider R may raise a complain with ProofOfWrongRoute if he is not satisfied
with the ride. However, behavioral dissatisfaction is not considered here. The rider
can only complain against the driver if during the ride the driver have taken a different
route to reach the destination or it may not have reached the destination or the driver
did not come to contracted pick up location. The proof shall include the evidence that
shows the driver D was present at a location which is not included in the contracted
path, even considering threshold distance from the nearest point in contracted route.
A threshold distance is allowed in this case to appreciate the fact that the driver
can not precisely maintain the contracted path, he has to adjust the position of the
vehicle depending on the traffic. These adjustments are minute in nature hence can
be separated from the cases where the driver has taken entirely new path to reach

28 3. Proposed BlockV Architecture

the destination.

Procedure 7: Complain

Input : powr, addrUd, addrUr, r, Caddr

Output: c← {0, 1}
1. c← 0
2. parse powr = (L, T)
3. if !EXISTD(L, T, addrUd)
4. penalty ←R
5. else
6. parse r = (l[1], l[2],, l[k])
7. for i ∈ [k]− 1
8. if Lx > min(l[i]x, l[i+ 1]x) && Lx < max(l[i]x, l[i+ 1]x) && Ly >
min(l[i]y, l[i+ 1]y) && Ly < max(l[i]y, l[i+ 1]y)

9. d← DIST (L, l[i]) +DIST (L, l[i+ 1])
10. if d ≤ DIST (l[i], l[i+ 1]) +DT 2

11. penalty ←R
12. break
13. else penalty ←D
14. UNLOCK(Caddr)
15. parse addrUd = (addrp, p)
16. parse addrUr = (addrq, q)
17. if penalty ←R
18. addrp.Wp ← addrp.Wp + Caddr.lockedV
19. addrUd.RUd ← addrUd.RUd + 1
20. addrUr.RUr ← addrUr.RUr − 1
21. if penalty ←D
22. addrq.Wq ← addrq.Wq + Caddr.lockedV
23. addrUd.RUd ← addrUd.RUd − 1
24. addrUr.RUr ← addrUr.RUr + 1
25. REMOV E addrp.CCp from AT

26. ADD addrp.CCp in AA

27. addrp.CCp ← NULL
28. addrq.CCq ← NULL
29. addrUd.statUd =UA
30. addrUr.statUr =A
31. c← 1

The rider R should initiate procedure Complain with a location L and timestamp
T . This (L, T) pair is sent to RSU checking whether D exists close to location L
around time T . If no, it can be concluded that R have raised a false objection.
Hence R is penalized. If yes, D is located at that position at that time. Hence, it
is required to ensure that the location is out of the contracted route. To do so, we

3.3. Procedures 29

need to compute the distance from L to each piece-wise linear component of the route
provided x coordinate of L is in between the two x coordinates of the end points of the
linear component. Similar condition applies for y coordinate. If the location found,
check whether the sun of the distances of L from the end points of linear segment
is less than the length of path segment plus DT 2. This if satisfies proves the driver
D is falsely objected as guilty, hence rider R will be penalized. For all other cases,
driver D will be penalized. All penalties involve both monetary and reputation loss.
Reputation score will decrease by one and the security deposit will be transferred to
the other party.

3.3.9 Abort

Procedure 8: Abort
Input : addrUx, addrUp, sig, pkUx

Output: c← {0, 1}
1. if V ER(”ABORT”, sig, pkUx)
2. if addrUp 6= NULL
3. parse addrUx = (addrx, x)
4. parse addrUp = (addrp, p)
5. if (addrx.CCx = addrp.CCp && x 6= p &&addrUx.statUx =B

&&addrUx.statUx =B)
6. UNLOCK(addrx.CCx)
7. addrp.Wp ← addrp.Wp + addrx.CCx.lockedV
8. addrUx.RUx← addrUx.RUx− 1
9. addrUp.RUp← addrUp.RUp+ 1

10. if x = 1
11. addrUx.statUx =UA
12. addrUp.statUp =A
13. else
14. addrUx.statUx =A
15. addrUp.statUp =UA

An Abort called by R or D with status ’B’ i,e. Busy attracts penalty. Penalty is
same as described in Procedure 7. Otherwise, an Abort call by an Available D will
make itself Unavailable and unlocks the security deposit to his wallet. Abort call by
an Available rider R does not require any changes.

3.3.10 Get New Address, Public-Private Keys

The user can only change its address, public key and corresponding secret key, he has
no active contract i,e. he is not engaged in a ride. Selection of The address and the

30 3. Proposed BlockV Architecture

keys are similar to the initial selection procedures. If the queues reach the maximum
memory limit B, one element is removed by procedure DEQUEUE. New selected
elements are put in those queues by procedure ENQUEUE.

Procedure 9: ChangeIdentity

Input : addrU
Output: c← {0, 1}

1. if addrU .CCU = NULL
2. addrprev = addrU
3. If addrcount = B
4. a = DEQUEUE(Arraddr)
5. REMOVE p from AU

6. p = DEQUEUE(ArrPK)
7. s = DEQUEUE(ArrSK)
8. MOVE s in SKused

9. pkU , skU = KeyGen()
10. ENQUEUE(ArrPK , pkU)
11. ENQUEUE(ArrSK , skU)
12. addrU ← $(A−AU)
13. s= size(AU)
14. AU [s+ 1]← addrU
15. addrUr ← addrU ||0
16. addrUd ← addrU ||1
17. ENQUEUE(Arraddr, addrU)
18. UPDATEREP (addrprev, addrU)
19. Select random time Trand
20. PAUSE(Trand + Thold)
21. Publish new address as identity.
22. c← 1
23. else c← 0

3.3.11 Deactivate

To deactivate one account the only requirement is absence of open contract associated
with the account. This condition will ensure that no driver can close its account in
between a ride and deny the service. An account holder when triggers this procedure,
all the address allotted to this account, will be freed to reassign again for some new
account opener. Similarly the private keys are moved back to SKused for reuse.

3.4. Sub-Procedures 31

Procedure 10: Deactivate
Input : addrUx

Output: c← {0, 1}
1. parse addrUx = (addrU , x)
2. if addrU .CCU = NULL
3. while addrcount > 0
4. p = DEQUEUE(Arraddr)
5. REMOVE p from AU

6. s = DEQUEUE(ArrSK)
7. MOVE s in SKused

8. addrcount = addrcount− 1
9. c← 1

10. else c← 0

3.3.12 En-queue and De- Queue

ENQUEUE procedure enlists the input element at the end of the input queue.
DEQUEUE procedure removes the top element of the queue. Please note that, we
have assigned the elements first and then en-queued at the end of the queue. Hence
the top most element is the oldest.

3.4 Sub-Procedures

3.4.1 LOCK

Procedure 11: LOCK
Input : addrUd, d
Output: Caddr

1. parse addrUd = (addrU , x)
2. if d = SUd && x = 1 && addrU .CCU = NULL
3. c← $(AA −AT)
4. s = size(AT)
5. AT [s+ 1]← c
6. c.lockedV ← d
7. addrU .WU ← addrU .WU − d
8. else c← NULL

This procedure takes address of D addrUd and the value to be locked as the
input and returns the contract address with which the value is locked at the end of

32 3. Proposed BlockV Architecture

the procedure. Parse addrUd and check if the last bit is 1 to ensure that the user
account type is driver. If confirmed, a contract address c is randomly sampled from
(AA − AT). c is enlisted in AT . This ensures uniqueness in selection. The value
associated with this contract c.lockedV is assigned with input d and the same is
deducted from wallet of the user, addrU .WU . For all other cases, c is assigned to
NULL.

3.4.2 JOINLOCK

Procedure 12: JOINLOCK
Input : d, Caddr, addrq
Output: c ∈ {0, 1}

1. if Caddr ∈ AT && d = SUr

2. Caddr.lockedV ← Caddr.lockedV + d
3. addrq.Wq ← addrq.Wq − d
4. c← 1
5. c← 0

This procedure takes the amount d, contract address Caddr where to lock the
amount and the user address addrq. If the Caddr is taken i,e. ∈ AT , then add d with
the previously locked amount with that contract Caddr.lockedV and deduct the same
from wallet of that user. If all the steps are executed properly, outputs 1 else 0.

3.4.3 VALIDR

Procedure 13: V ALIDR
Input : addrUx

Output: TRUE or FALSE
1. parse addrUx = (addrU , x)
2. if x = 0 && addrUx.statUx =A
3. output TRUE
4. output FALSE

Parse the address input this procedure addrUx, as (addrU , x) where addrU is α
bit sequence. The last bit x if equals to 0 and the status addrUx.statUx of the user U
is ’A’, then U is validated as rider. Note that there exist another valid status ’B’ for
rider. It is the context of the governing procedure, that requires this specific criteria.

3.4. Sub-Procedures 33

3.4.4 RFQD

Given a start location Lstart and end location Lend, this procedure returns a list of
route and fare RF satisfying the locations. The procedure selects only the routes
which starts at Lstart and ends at Lend from a route database RD where all the routes
are stored. For each entry in that set, CalcFARE returns the corresponding fare. The
route and its computed fare is kept in the 2-D storage RF .

Procedure 14: RFQD

Input : Lstart, Lend, addrUy

Output: RF
1. R = {{l}<k> : l[0] = Lstart, l[k − 1] = Lend, k ∈ N}
2. for i, r ∈ R
3. RF [i][1] = r
4. RF [i][0] = CalcFARE(r)
5. output RF

3.4.5 CONNECTD

This procedure establishes the link between rider R and driver D. The procedure
takes six inputs. First three inputs are a message msg, signature sig of rider R on
msg and public key pkUr of R. Procedure VER verifies the sig on msg using pkUr.
If verified, parse msg as word w, time stamp t, route r. If w matches with word
’CONF’ and the route is validated, extract fare f from input amount fd excluding the
security deposit for rider SUr. Parse addrUd as (addrp, p) and addrUr as (addrq, q).
If the f matches with r, driver acceptance acc is taken from distribution Υ4. If D
accepts and JOINLOCK is successful with the call of fd, contract address addrp.CCp

linked to the account with base address addrp and base address of the rider R, addrq,
contract address of D is shared and assigned to R and statuses addrUr.stat.Ur and
addrUd.stat.Ud of R and D respectively are assigned to ’B’ i,e. Busy. Completion
of these steps assigns c as 1 denoting success. For all other cases, check if D didn’t
accept and D attracts penalty as determined from procedure IFPENALTY. If so,
rating addrUd.RUd of the driver D is decremented by 1. The contract linked to D
is unlocked. The money released with this shall be exactly the security deposit SUd

of the driver D. This SUd is credited to the wallet addrq.Wq of the rider R. This
concludes the penalty involved in this procedure. Now for the case of penalty, the
contract address shall be included in the free contract address space by removing
it from taken contract address space AT . Linked contract address addrp.CCp of D
is assigned NULL. Status addrUd.statUd of D is made ’UA’ i,e. unavailable. This
second case assigns c as 0 denoting failure in establishing the link.

34 3. Proposed BlockV Architecture

Procedure 15: CONNECTD
Input : msg, sig, pkUr, fd, addrUd, addrUr

Output: c ∈ {0, 1}
1. if (V ER(msg, sig, pkUr))
2. parse msg = (w, t, r)
3. if w = CONF && V ALIDROUTE(r)
4. f ← fd− SUr

5. parse addrUd = (addrp, p)
6. parse addrUr = (addrq, q)
7. if ((y ← FCHECK(r, f)) && (!q) && (p))
8. acc← Υ4{TRUE,FALSE}
9. if ((acc) && JOINLOCK(fd, addrp.CCp, addrq))

10. addrq.CCq ← addrp.CCp

11. addrUr.stat.Ur =B
12. addrUd.stat.Ud =B
13. c← 1
14. else if (!acc) && (k ← IFPENALTY (r[0], addrUd, LnowUd))
15. addrUd.RUd ← addrUd.RUd − 1
16. UNLOCK(addrp.CCp)
17. addrq.Wq ← addrq.Wq + SUd

18. REMOV E addrp.CCp from AT

19. addrp.CCp ← NULL
20. addrUd.statUd =UA
21. c← 0
22. else c← 0

3.4.6 VALIDROUTE

The rider is supposed to join the driver with a path and the corresponding fare. A
malicious rider may mutate some elements in the path and send the join request
to the driver. The driver shall verify that the route is valid and physically exists.
Hence, from the given route, parse the route as the start location Lstart, an array of
locations l′ and the end location Lend. We get the set R from Route-Fare database
filtering all the routes with Lstart and Lend. The given route r is valid if r ∈ R.

3.4. Sub-Procedures 35

Procedure 16: V ALIDROUTE
Input : r
Output: c ∈ {TRUE,FALSE}

1. parse r = Lstart, l
′, Le

2. R = {{l}<k> : l[0] = Lstart, l[k − 1] = Lend, k ∈ N}
3. if r ∈ R
4. c← TRUE
5. else c← FLASE

3.4.7 FCHECK

Procedure 17: FCHECK
Input : r, f
Output: c ∈ {TRUE,FALSE}

1. if f = CalcFARE(r)
2. c← TRUE
3. c← FALSE

This procedure takes input a route r and a fare f and returns TRUE if f matches
with r. FCHECK calls procedure CalcFARE with route r. If CalcFARE returns the
same as f , FCHECK returns TRUE else, FALSE.

3.4.8 CalcFARE

Procedure 18: CalcFARE
Input : r
Output: f

1. f ← Ffixed

2. for i, l ∈ RANGE(size(r)− 1)
3. f ← f + p1 ×DISTANCE(l[i], l[i+ 1])
4. output f

CalcFARE calculates fare f given a route r. Consider fixed fare be Ffixed. f is
initialized with Ffixed. For each consecutive location pair l[i] and l[i+1] in r compute
the DISTANCE between them and add to f cumulatively. There exist size(r) − 1
many pairs in r. Hence the for loop runs for size(r)− 1 many times.

36 3. Proposed BlockV Architecture

3.4.9 IFPENALTY

Procedure 19: IFPENALTY
Input : LstartUr, addrUd, LnowUd

Output: c← {TRUE,FLASE}
1. if DISTANCE(LstartUr, LnowUd) < DT 1

2. c← TRUE
3. c← FALSE

IFPENALTY checks if the location LnowUd of driverD currently is within distance
thresholdDT 1 away from start location of route LstartUr. If yes, the procedure outputs
TRUE else FALSE.

3.4.10 EXISTD

Procedure 20: EXISTD
Input : L, T, addrUd

Output: c← {0, 1}
1. RSUid ← 0, MinD ← UINTMAX

2. ∀RSUi ∈ RSUDB

3. d← DISTANCE(RSUi, L)
4. if (d < MinD)
5. MinD = d
6. RSUid = i
7. ∀entryi ∈ RSUid log with t 3 (T ±∆t)
8. if addrUd ∈ RSUidlog
9. c← 1

10. c← 0

Given a location L, timestamp T and address addrUd of driver D EXISTD returns
1 if D is identified to be present in location L at T . We have assumed RSUs to be
present every where forming a zone for each. Any car hence driver if steps in the
zone will be recorded in the governing RSU with the time stamp. The first step is
to find out the RSU nearest to L. For all RSUi in RSU database RSUDB check if
the distance is minimum than previously encountered distance in the for loop. If yes,
record it. At the end of the for loop, we receive the unique identification no id for
the closest RSU. We consider a time slot with mean T and variance ∆T . Address
log of RSUid is checked for all the entries with time stamp in between T + ∆T and
T −∆T . If any address found equal to addrUd, return 1. Else, return 0.

Chapter 4

Security Model

The architecture of BlockV described in Chapter 3 assumes the existence of Blockchain
as the backbone of the model. For the purpose of security analysis of this architecture,
we have assumed that blockchain is secured i,e. the consensus algorithms are working
efficiently and the immutability properties hold. Given the blockchain is secured, the
money locked in blockchain is secured hence the payment involved in the system is
secured. The definition of the reputation score as a state variable in blockchain makes
any changes in it noticeable by all the peers. Hence any unauthorized changes will
be marked. Similarly we have defined the status of Rider and Driver as the state
variable where the opposite party can check one’s present status from blockchain.
This makes the communications secured by choosing appropriate conditions for each
procedure.

Proposition 2 BlockV achieves the paymentfairness and ridefairness assuming
the blockchain, RSU and Route database RD are secure and the interaction with these
entities are secure.

Proof:
The sub-procedure CalcFARE as discussed in Procedure 18 computes the linear

path traveled and the corresponding fare by multiplying the cumulative path by a
non negative fare component. The algorithm takes the route r which is a set of
locations, forming the path the rider wants to travel. for each consecutive entries in
r, DISTANCE calculates the euclidean distance. We have added a fixed component
of fare with this to cater the expenses of cost of establishment, toll taxes, maintenance
cost etc. Given a path, computation of fare is available to all the peers in the
network. Hence, the fare can be verified by all. So there exists a linearly proportional
component as well as fixed component in the fare distribution. This ensures payment
fairness.

The scheme offers the rider to come up with an objection before triggering the
Complete procedure. We have considered both the cases where the driver is the
malicious and tries to follow a route beyond contract or a malicious rider tries to

37

38 4. Security Model

cheat the driver by accusing him with a false objection. Complain procedure as
discussed in 7 handles these situations and penalizes the malicious party. Data (L, T)
as the proof of wrong route, supplied by the rider with the objection, is considered
for the further analysis. The driver must be located at the position at the time
mentioned by the rider for any further checking. Assuming time delay associated
with each electronic devices involved in the measuring units, we allow a grace period
on the time mentioned. Hence, the driver shall be located at that position within
(T ±∆t).

The data provided by the RSUs are taken into consideration to locate the driver.
Since, we have assumed that the RSUs are secured, the data being used to locate the
driver, is not tampered in any case. If the driver can not be located there, we conclude
the rider to be malicious and end the procedure with some formalities including the
charging of penalties, modification of reputation score. But if the driver is located,
the next check shall be the correctness of the allegation.

From the practical point of view, a driver can not precisely maintain the contracted
locations, but requires to adjust the positions to avoid clashes with the other vehicles.
However, this adjustments are minute for example the database considers the bending
radius of a curved path to be 10m but actually the driver may take 10.5m or 9.5m.
Thus, mathematically if the actual locations are compared with the contracted locations,
we will find deviations. So we have included a grace in distance also. While checking
the location mentioned in the contracted path or not, we include the grace distance
as distance threshold DT 2 and check if the mentioned location lies in the range of
the locations contracted. The list of locations create a piece wise linear route and we
check This ensures the false penalizing the driver will not take place. This ensures
ridefairness. �

The key aspects of the security notions in BlockV along with the anonymous
property are described in subsequent sections.

4.1 Privacy involved in BlockV

Definition 7 Privacy in BlockV is defined as the unlinkability of the transaction
records in blockchain ledger.

The users are identified by an address. If an user transacts four times a day, the
rides can easily be linked by the user address and ride details like time, start and
drop location can be fetched from the ledger. If the user is following the almost same
riding time and the same drop locations, analyst can gain some information regarding
the user’s lifestyle. For example, if the analysis says that the drop location is “XYZ”
institute for Monday to Friday around 10 a.m. and he takes another ride from that
institute around 6 a.m.,one can assume that he is a stuff of that institute.

Hence the objective is that, looking in to the ledger, no one shall be able to
link two rides taken by an user. However, the usages of the procedures for creating

4.1. Privacy involved in BlockV 39

unlinkable transactions are optional.
The transaction information is BlockV contains the addresses of the rider and

the driver, a value and the ride details. The data in this transaction is not kept in the
blockchain directly. Only the hash of the data is kept as the route details can be very
large if the path has many bends and turns even if short distanced. The blockchain
data can be downloaded by any peer. Hence each transaction details are open to all
without any barrier. The blockchain platform proposed here shall be permissionless
as a permissioned blockchain will need the existence of a central authority for access
control. That will again raise a question on trust. Thus we cannot restrict a malicious
user from getting the blockchain data or looking into the ledger.

The address written on the ledger is the primary concern of the user as the user
can be identified uniquely by that address. Although the user details like name,
contact details is not shared over the blockchain platform, the user can easily be
personified and hence tracked. Thus we propose a solution where we can create a
number of identities for an user. We define a bound B, such that, any user can have
at most B number of identities at a time.

We define the queues in Procedure 1 for each of the user address, public key
and secret key. In this procedure, the account is registered with the inital keys and
address. hence the addrcount is set to 1. If any user wants to change its identity
he can use the Procedure 9 and generate new public key, secret key and address. If
the current address count is more than the bound, then one element in queue has to
be removed to accommodate the new one. We use the Least Recent Used method of
elimination to remove the top most elements from each queue. The current address
addrU , public key pkU and the secret key skU are always set to the newly selected
values. Hence we can generate and change the user identity.

The bound B is applied to the queue only to hold the address or keys against
the user account. BlockV platform does not allow an user to set back to his earlier
address or keys, still keeps the previous B − 1 many data attached. The reason is, if
the previous address or keys are immediately rejected by this user, the elements will
go back to their own allotment sets namely address will be removed from the used set
AU and the secret key will be removed from SKused. This makes them immediately
alive for new allotments. For a network with maximum allowed user address Nu, the
probability of selecting one address be 1

Nu
. An user can keep up to B many addresses.

Hence the probability that the same address is being selected is 1
NBu

.
For a small network this value may not be negligible hence we need to increase

the value B. Hence this is one kind trade-off where either the network has to be large
enough to have all the equal valued selected addresses with negligible probability, or
increase the bound B i,e. the holding capacity of the users. This ensures uniqueness
is all subsequent address or keys selection for a single user. These indirectly creates
a time gap of rejection of one address and next use of that.

This scheme ensures a new address or new keys every time when the user triggers
the Procedure 9. This procedure is absolutely optional for the users to use as the

40 4. Security Model

address and keys will always be linked to values obtained during registration phase.
Hence the procedures can be freely accessed without using the procedure 9.

4.2 Linkable Reputation for Privacy Preserving

Blockchain

Before discussing the linkable reputation scores, we need to first drive into the Ethereum
Virtual Machine storage architecture[26]. Refer to Fig 4.1

Figure 4.1: EVM Storage Overview

In the EVM we have three locations to store data - stack, memory, storage. Each
of these storage locations plays important role in execution model of EVM. Stacks are
used for computations where the operands for instructions are taken from stack and
the result is also stored in stack. The Memory is the storage area which is created
during function calls in smart contract. It stores temporary data such as function
arguments local variables and return values. The memory is volatile. The next is
Storage which is a persistent key-value store that maps keys to values.

In solidity, we define mappings from user address to reputation score. For the
time being, we are assuming that the users can not change their identities. Thus,
Key-value storage will be created in the Storage location of EVM corresponding to

4.2. Linkable Reputation for Privacy Preserving
Blockchain 41

this mapping. Thus, for all available keys space for respective values will be assigned.
Now, when we introduce the anonymity in users’ identification, we require to

change the user address but we need to keep the mapping fixed i,e. we need to map
the new address to the old reputation score. Once a mapping is defined, the map
computes the maximum required space for its execution and initializes all the values
to zero and keys are arranged in order. In our Procedure 9 we maintain a queue of
last recent B no of addresses. Hence, we never delete the immediate previous address
of an user when he changes its identity.

(a) Storage of Reputation Score before
Identity Change

(b) Storage of Reputation Score after
Identity Change

Figure 4.2: Change in Reputation Score with the change in Identity

Refer, Fig 4.2a where, user U was using address A and has gained reputation
score RA. Now the user has changed its address to address B. If B was not initialized
before to any user, it will contain zero value as reputation score, otherwise it may
contain any positive value, say x. From the address queue maintained in the user
account, the user U can get the address A even if it has changed to address B. The
address B is not published yet. At this step, the user can put the old reputation RA

corresponding to the value of address B as in Fig 4.2b.
The reputation score for the old address shall not be updated to zero for any

unforeseen attack on EVM data storage as any new update may be monitored by
other users but if the previous storage of reputation is made zero, the changes can be
linked easily.

Once the procedure is completed the the user is ready to publish its new address
B. The whole process is secured as the changing identity is an account level operation
and not included in ledger. Until the new address B is published it is not possible

42 4. Security Model

for other accounts to trace the change in address. Since we have also changed the
reputation score from x to RA, which can be monitored by malicious user, we have
put the procedure in hold for time Thold + Trand.

We define Thold = 1
FIC

where FIC is the number of identity change per unit time.
Trand is a random time decided by the user for that operation. So, the procedure
holds for time Thold + Trand, malicious user will not be able to link the update in
reputation with address change as, by that time on an expectation half of the actual
identity change will take place to hide the new address B. Hence the malicious user
will not be able to detect the link between the two changes.

Chapter 5

Performance analysis of BlockV

We have implemented BlockV on Ethereum private and test networks(testnet). The
contract address for KOVAN testnet is mentioned below for live interaction.

5.1 PC Configuration

We have used the PC with-

• Ubuntu 18.04 LTS, 64-bit operating system

• x64-based processor Intel(R) Core(TM) i5-8300H CPU @2.30GHz

• RAM - 8.00GB(7.85 GB usable)

5.2 Private Network

Gas Cost

Table 5.1 shows the gas required for each key procedures and the corresponding values
in USD.We can see that the initial contract deployment attracts around 45 US cents.
This is the highest value among all. For all other cases cost per transactions are
within 2 US cents. All the USD values are based on the fact 1 ether= 141.7 USD as
on 1st April, 2019.

Fig. 5.1 shows the Time/Transaction Vs. Number of Miner. The time per
transaction decreases if the number of miners is increased. This is because of the fact
that all the miners are sharing one physical machine where the experiment is set up
and with the increase in the number of miners the probability that the transaction is
successfully executed, increases. This describes the trend.

Fig. 5.2 shows the transaction time Vs. number of path segments. The time per
transaction where computation over the path segments is involved, monotonically

43

44 5. Performance analysis of BlockV

Table 5.1: Table of gas Cost

Description Gas/Transaction USD/Transaction

Contract Deploy 1561271 0.44246
Account Open 57429 0.01854
Load Wallet 21808 0.00618
Abort when not busy 8045 0.00228
Abort when busy 14421 0.00409
Join 25065 0.0071
Complain 22460 0.00637
Complete 21894 0.0062

Figure 5.1: Time per transaction Vs. No of Miner

increases with the increase in number of path segments as the time involved in
computation is directly proportional to the path.

5.3 Test Network

We have deployed the prototype in KOVAN testnet of Ethereum. The code is available
at the contract address 0x78FCc0357745704c01FEC006039CF6E3b78b3678 in the
KOVAN testnet of Ethereum.

It has to be noted that the data of the ride has to be kept in decentralized
database and the digest will be kept in the BlockV. However, in the experiments, we
have ignored the time taken for fetching data from the database. We have also made
further simplification for the ease of implementation the distance check in Complain

5.3. Test Network 45

Figure 5.2: Time per transaction Vs. Path Segment

procedure. The Procedure 7 has been updated as per the simplification as the solidity
language does not provide any support for complex mathematics and float values.

Figure 5.3: Path representation during complain

In the last stage of complain procedure it is required to detect whether the
location provided with the objections is in the neighborhood of the path contracted.
Let any two consecutive locations in the contracted path be p1 and p2 and the
location mentioned with the complain procedure is p3. Let a = DIST (p1, p3),
b = DIST (p2, p3) and c = DIST (p1, p2) as in Fig 5.3.

We define the driver to be in the neighborhood of the path is equivalent to be in

46 5. Performance analysis of BlockV

the neighborhood of any path segments. Let the deviations allowed to the driver from
the contracted path be p. Hence, a driver to be detected as present in the neighbour
hood of the contracted path, a+ b ≤ c+ p =⇒ a2 + b2 + 2ab ≤ c2 + p2 + 2cp.

Consider the product of two numbers a and b, ab ≤ max(a2, b2) and min(a2, b2) ≤
ab. Also, for all practical purposes, the deviation p allowed will be less than the value
c. Hence the above inequality reduces to a2 + b2 + 2 × min(a2, b2) ≤ 3 × c2 + p2.
This approximation has been used while implementing the smart contract in solidity
language.

Chapter 6

Conclusion and Future Work

The BlockV architecture described in this thesis meets the two fairness goals along
with the privacy goal. The reputation score associated with every user makes the
scheme more user oriented where the reputation score represents the overall successful
ride the user has performed. The scheme also supports the anonymous behavior of
the users where an user can transact with multiple addresses and still maintains the
reputation score associated with it.

With out the anonymity, the user accounts are uniquely mapped to the reputation
system. The mapping is strict to the address representing the account. This restricts
the users from being anonymous.

An anonymous user shall be allowed to change its identity before the connected
network without changing or resetting its gained reputation score and wallet values.
The requirement is fulfilled with this architecture.

A heavy system with a large number of peers will be prone to reach consensus
slower than the required pace. In that case, that validator set can be selected as a
subset of all the peers within a fixed region based on the contracted path. This will
make the process faster as in this case we will be considering only a small subset of
the peers.

Similarly, when the rider wishes to join a ride, he may get to see available only
those drivers who are within a fixed radius of the rider’s start location. The rider
may be offered several fares for his opted path by the drivers and the rider may select
any one of them based on the fare offered and the reputation score gained by the
driver. Hence, the views of the riders can be restricted to only nearest drivers with
good rating based on the rider’s own rating.

The problem of dispute resolution is hard in all practical cases as the fixing a
route is only a coarse adjustment of a path. The fine tuning has to be done during the
driving. So, mathematically it is hard to define the difference between the fine tuning
and detouring. Hence it is convenient to define a neighborhood of the contracted
path and allow this fine tuning. The locus of neighborhood as described in this paper
forms an ellipse contracted or chopped from both side along the path segment end

47

48 6. Conclusion and Future Work

points. We, can also consider a flat neighborhood around the contracted path such
that membership values of all locations in the selected range are higher for contracted
path than the detoured path.

The security deposit amounts shall be dynamically adjustable as per the money
values which requires the deposit amount to be a function of the relevant dependencies.
The fare shall include the route the driver has to travel to reach the rider’s start
location.

In this thesis we have shown that BlockV platform maintains the transparency
in the ride and the overall system is stable with respect to the increasing number of
participants and their frequency of rides. This is also profitable as the transaction
costs are few cents. Also, the in-build reputation system is secured in blockchain.
The platform allows the user U to behave as a rider as well as driver based on his
personal requirements without any switch in account. This makes the system user
friendly. In future we would like to make the system anonymous where the user may
change its appearance but still mapped to its old reputation. We have showed that
this scheme in ethereum platform is highly scalable and the cost of each transaction
is very less.

Bibliography

[1] Biswas, K., Muthukkumarasamy, V.: Securing smart cities using blockchain
technology. In: 2016 IEEE 18th international conference on high performance
computing and communications; IEEE 14th international conference on
smart city; IEEE 2nd international conference on data science and systems
(HPCC/SmartCity/DSS). pp. 1392–1393. IEEE (2016)

[2] Buchegger, S., Le Boudec, J.Y.: A robust reputation system for mobile ad-hoc
networks. Tech. rep. (2003)

[3] Chiu, J., Koeppl, T.V.: Blockchain-based settlement for asset trading. The
Review of Financial Studies 32(5), 1716–1753 (2019)

[4] Chohan, U.W.: A history of dogecoin. Discussion Series: Notes on the 21st
Century (2017)

[5] Crawford, M.: The insurance implications of blockchain. Risk Management
64(2), 24 (2017)

[6] Dannen, C.: Introducing Ethereum and Solidity. Springer (2017)

[7] Dorri, A., Kanhere, S.S., Jurdak, R.: Towards an optimized blockchain for iot. In:
Proceedings of the second international conference on Internet-of-Things design
and implementation. pp. 173–178. ACM (2017)

[8] Dorri, A., Steger, M., Kanhere, S.S., Jurdak, R.: Blockchain: A distributed
solution to automotive security and privacy. IEEE Communications Magazine
55(12), 119–125 (2017)

[9] Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital
goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 967–984. ACM (2018)

[10] Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain
computations. In: Proceedings of the 2nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers. pp. 7–12. ACM (2018)

49

50 BIBLIOGRAPHY

[11] Eiza, M.H., Shi, Q., Marnerides, A.K., Owens, T., Ni, Q.: Efficient, secure,
and privacy-preserving pmipv6 protocol for v2g networks. IEEE Transactions on
Vehicular Technology 68(1), 19–33 (2019)

[12] ETSI, T.: 102 637-2, intelligent transport systems (its); vehicular
communications; basic set of applications; part 2: Specification of co-operative
awareness basic service. ETSI, Sophia Antipolis Cedex, France (2010)

[13] Fauri, D., de Wijs, B., den Hartog, J., Costante, E., Zambon, E., Etalle, S.:
Encryption in ics networks: A blessing or a curse? In: 2017 IEEE International
Conference on Smart Grid Communications (SmartGridComm). pp. 289–294.
IEEE (2017)

[14] Ferrag, M.A., Maglaras, L., Argyriou, A., Kosmanos, D., Janicke, H.: Security
for 4g and 5g cellular networks: A survey of existing authentication and privacy-
preserving schemes. Journal of Network and Computer Applications 101, 55–82
(2018)

[15] Haferkorn, M., Diaz, J.M.Q.: Seasonality and interconnectivity within
cryptocurrencies-an analysis on the basis of bitcoin, litecoin and namecoin. In:
International Workshop on Enterprise Applications and Services in the Finance
Industry. pp. 106–120. Springer (2014)

[16] Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: International Conference on Financial Cryptography and Data Security. pp.
520–535. Springer (2017)

[17] Jacobovitz, O.: Blockchain for identity management. The Lynne and William
Frankel Center for Computer Science Department of Computer Science. Ben-
Gurion University, Beer Sheva (2016)

[18] Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An
empirical study of namecoin and lessons for decentralized namespace design. In:
WEIS. Citeseer (2015)

[19] King, S., Nadal, S.: Peercoin–secure & sustainable cryptocoin. Aug-2012
[Online]. Available: https://peercoin. net/whitepaper () (2018)

[20] Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation
toward blockchain integration. In: proceedings of the 50th Hawaii international
conference on system sciences (2017)

[21] Leiding, B., Vorobev, W.V.: Enabling the vehicle economy
using a blockchain-based value transaction layer protocol for
vehicular ad-hoc networks. URL: https://uploads-ssl. webflow.

BIBLIOGRAPHY 51

com/5a4ea18a81f55a00010bdf45/5b69e53263e2a6076124ecbe Chorus-Mobility-
WP–v1. 0.1. pdf (2018)

[22] Li, L., Liu, J., Cheng, L., Qiu, S., Wang, W., Zhang, X., Zhang, Z.:
Creditcoin: A privacy-preserving blockchain-based incentive announcement
network for communications of smart vehicles. IEEE Transactions on Intelligent
Transportation Systems 19(7), 2204–2220 (2018)

[23] Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. IJ
Network Security 19(5), 653–659 (2017)

[24] Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles
cloud and edge computing. IEEE Network 32(3), 78–83 (2018)

[25] Liu, Z., Ma, J., Jiang, Z., Zhu, H., Miao, Y.: Lsot: a lightweight self-organized
trust model in vanets. Mobile Information Systems 2016 (2016)

[26] Mayoya Tudonu: A deep dive into the ethereum virtual machine
(evm) (2019), https://www.mayowatudonu.com/blockchain/

deep-dive-into-evm-memory-and-storage, [Online; accessed 27-June-2019]

[27] Mettler, M.: Blockchain technology in healthcare: The revolution starts here. In:
2016 IEEE 18th International Conference on e-Health Networking, Applications
and Services (Healthcom). pp. 1–3. IEEE (2016)

[28] Mohseni-Ejiyeh, A., Ashouri-Talouki, M.: Sevr+: Secure and privacy-aware
cloud-assisted video reporting service for 5g vehicular networks. In: 2017 Iranian
Conference on Electrical Engineering (ICEE). pp. 2159–2164. IEEE (2017)

[29] Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system (2008)

[30] O’Dair, M., Beaven, Z., Neilson, D., Osborne, R., Pacifico, P.: Music on the
blockchain (2016)

[31] Oham, C., Jurdak, R., Kanhere, S.S., Dorri, A., Jha, S.: B-fica: Blockchain
based framework for auto-insurance claim and adjudication. In: Proceedings of
the IEEE 2018 International Conference on BlockChain

[32] Ortega, V., Bouchmal, F., Monserrat, J.F.: Trusted 5g vehicular networks:
Blockchains and content-centric networking. IEEE Vehicular Technology
Magazine 13(2), 121–127 (2018)

[33] Panchalika Pal, S.R.: Blockv: A blockchain enabled peer-peerride sharing
service. In: The 2nd IEEE International Conference on Blockchain. IEEE (2019)

[34] Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant
payments (2016)

https://www.mayowatudonu.com/blockchain/deep-dive-into-evm-memory-and-storage
https://www.mayowatudonu.com/blockchain/deep-dive-into-evm-memory-and-storage

52 BIBLIOGRAPHY

[35] Report, T.: Filecoin: A cryptocurrency operated file storage network

[36] Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
Communications of the ACM 43(12), 45–48 (2000)

[37] Rivera, R., Robledo, J.G., Larios, V.M., Avalos, J.M.: How digital identity on
blockchain can contribute in a smart city environment. In: 2017 International
Smart Cities Conference (ISC2). pp. 1–4. IEEE (2017)

[38] Rowan, S., Clear, M., Gerla, M., Huggard, M., Goldrick, C.M.: Securing vehicle
to vehicle communications using blockchain through visible light and acoustic
side-channels. arXiv preprint arXiv:1704.02553 (2017)

[39] Shao, J., Lin, X., Lu, R., Zuo, C.: A threshold anonymous authentication
protocol for vanets. IEEE Transactions on vehicular technology 65(3), 1711–1720
(2016)

[40] Sharma, P.K., Moon, S.Y., Park, J.H.: Block-vn: A distributed blockchain based
vehicular network architecture in smart city. JIPS 13(1), 184–195 (2017)

[41] Sharma, P.K., Park, J.H.: Blockchain based hybrid network architecture for the
smart city. Future Generation Computer Systems 86, 650–655 (2018)

[42] Singh, M., Kim, S.: Intelligent vehicle-trust point: Reward based intelligent
vehicle communication using blockchain. arXiv preprint arXiv:1707.07442 (2017)

[43] Soska, K., Kwon, A., Christin, N., Devadas, S.: Beaver: A decentralized
anonymous marketplace with secure reputation. IACR Cryptology ePrint
Archive 2016, 464 (2016)

[44] Sun, J., Yan, J., Zhang, K.Z.: Blockchain-based sharing services: What
blockchain technology can contribute to smart cities. Financial Innovation 2(1),
26 (2016)

[45] Tian, F.: An agri-food supply chain traceability system for china based on rfid &
blockchain technology. In: 2016 13th international conference on service systems
and service management (ICSSSM). pp. 1–6. IEEE (2016)

[46] Vogelsteller, F., Buterin, V., et al.: Ethereum whitepaper. Ethereum Foundation
(2014)

[47] Whitepaper: The future of human capital management - how individuals benefit
from earning digital credentials

[48] Whitepaper: Media chaina de-centralised blockchain focused on the film industry

BIBLIOGRAPHY 53

[49] Wikipedia contributors: Digital signature algorithm — Wikipedia, the
free encyclopedia (2019), https://en.wikipedia.org/w/index.php?title=

Digital_Signature_Algorithm&oldid=901940368, [Online; accessed 27-June-
2019]

[50] Wood, G., et al.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 1–32 (2014)

[51] Xia, Q., Sifah, E., Smahi, A., Amofa, S., Zhang, X.: Bbds: Blockchain-based
data sharing for electronic medical records in cloud environments. Information
8(2), 44 (2017)

[52] Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to
protect personal data. In: 2015 IEEE Security and Privacy Workshops. pp. 180–
184. IEEE (2015)

https://en.wikipedia.org/w/index.php?title=Digital_Signature_Algorithm&oldid=901940368
https://en.wikipedia.org/w/index.php?title=Digital_Signature_Algorithm&oldid=901940368

	Introduction
	Blockchain - Decentralized trust
	Problem Statement & Motivation
	Our Contributions
	Organization of the thesis

	Related Works
	Blockchains
	Ethereum
	Overview of Ethereum Virtual machine
	Architecture of EVM
	Securing the Ethereum Blockchain with the EVM

	Digital Signature Algorithm
	Key Generation
	Signing Algorithm
	Verification Algorithm
	Correctness of the Algorithm

	Proposed BlockV Architecture
	Preliminaries
	High Level View
	Procedures
	Initialization-Account Open
	Key Generation
	Avail Driver
	Route Select
	Join
	During Ride
	Complete
	Complain
	Abort
	Get New Address, Public-Private Keys
	Deactivate
	En-queue and De- Queue

	Sub-Procedures
	LOCK
	JOINLOCK
	VALIDR
	RFQD
	CONNECTD
	VALIDROUTE
	FCHECK
	CalcFARE
	IFPENALTY
	EXISTD

	 Security Model
	Privacy involved in BlockV
	Linkable Reputation for Privacy Preserving Blockchain

	Performance analysis of BlockV
	PC Configuration
	Private Network
	Test Network

	Conclusion and Future Work

