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Abstract

Query complexity, both classical and quantum, are important and well-established notions
of computation. In this thesis, we will investigate query complexity in both classical and
quantum worlds and study their relationship with other closely related models of computation.

Other than the query model, we will consider a few models of computation, namely
model of computational learning, communications model and local query model for graphs.
We will try to understand the power of these models for various classes of functions. We
will be investigating how various complexity measures (defined as per different models of
computation) relate to each other. In this endeavor we will be working both upper bound
(i.e. designing efficient algorithms in the model of interest) and lower bound (i.e. proving
hardness of computing interesting functions in the model of interest). As a part of our
investigation, we use various mathematical tools like Fourier analysis, linear algebra, and
geometry. Some questions that have motivated the work in this thesis are:

• How does structural simplicity affect its computational complexity in various models
of computation? Does Fourier analytical simplicity lead to easier computation? Does
geometric simplicity imply efficient communication?

• How does the behavior of quantum computing differ from its classical counterpart?
What is the relation between classical and quantum query complexity of learning a
function? Does the same relationship between a pair of classical complexity measures
also hold in the quantum world?

Understanding the complexity measures that we study and the relationship between these
measures has been an ongoing work for several decades. In this thesis, we push the boundary
of our knowledge a bit further.

The results in this thesis have been divided into three parts.

Part I In this part, we study quantum query complexity from the view of quantum learning
theory. First, we first study the model of exact learning using uniform quantum examples.
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Each such quantum example can be generated by making one query to the function being
learned. In this model we are interested in learning the class of Boolean functions whose
Fourier sparsity is bounded, that is, the class of Fourier-sparse Boolean functions. For this
class of functions we give a quantum learning algorithm which improves upon the tight
classical algorithm by Haviv and Regev, 2016. Then, we consider the model of exact active
learning. In this model, a learner is given access to the function via membership queries. We
study the relationship between the number of classical and quantum membership queries
needed to exactly learn a class of Boolean functions, where improve upon the previous
best known relationship by Servedio and Gortler, 2004. Finally, we study Chang’s lemma,
a fundamental result in additive combinatorics. Our main result here is a refinement of
Chang’s lemma for Fourier-sparse Boolean functions. We also investigate how this lemma is
connected to quantum learning theory.

Part II This part is dedicated to the study of the relation between quantum query and
quantum communication complexity. It is well known, in the classical world, that a query
algorithm for a function can be simulated to give a communication protocol of a closely
related communication problem with only a constant overhead. The best known such
simulation theorem in the quantum world, due to Buhrman, Cleve and Wigderson, 1998,
has an overhead that is logarithmic in input size of the function. We construct the first
total Boolean function that witnesses this logarithmic gap. This closes a long line of work.
We also give a general recipe of constructing functions that witness separation between
quantum query-to-communication simulation. Finally, we explore the role of symmetry on
this simulation problem.

Part III This part of the thesis is devoted to classical query and communication complexity.
In the first chapter of this part, we explore the role of geometric simplicity, quantified by
bounded Vapnik–Chervonenkis Dimension (VC Dimension) of set systems, in communica-
tion complexity. Our work is motivated by the work of Håstad and Wigderson, 2007, who
considered the Disjointness problem, a canonical problem in communication complexity,
when inputs to the problem are promised to be sets of bounded cardinality. Indeed, set
systems of bounded VC Dimension are a generalization of set systems with bounded cardi-
nality, with a geometric motivation. Our main result here it to show that geometric simplicity
does not imply efficient communication. In the second chapter of this part, we consider
the problem of estimating the size of the global minimum cut in the local query model, a
fundamental and well-studies model in graph property testing. We give an algorithm for this
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problem which almost matches the known lower bound by Eden and Rosenbaum, 2018. This
resolves the query complexity of estimating global minimum cut in the local query model.





Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Various models of computation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The query model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The learning model . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 The communication model . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Local query model . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Overview of Results and Organization . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Preliminaries 23
2.1 Fourier Analysis of Boolean Functions . . . . . . . . . . . . . . . . . . . . 23
2.2 Some important Boolean functions . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Composed Functions . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Classes of Boolean functions based on symmetry . . . . . . . . . . 28

2.3 VC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I Quantum Learning Theory 31

3 Exact learning of Fourier sparse functions 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



xii Table of contents

3.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Some structural results . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Exact learning of k-Fourier-sparse functions . . . . . . . . . . . . . . . . . 38

3.3.1 Upper bound on learning k-Fourier-sparse Boolean functions . . . . 38
3.3.2 Lower bound on learning k-Fourier-sparse Boolean functions . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Exact learning from membership queries 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Chang’s lemma and applications in quantum learning 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Chang’s Lemma for Fourier-sparse functions . . . . . . . . . . . . . . . . 56
5.4 Proof of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Proof of tightness of Chang’s lemma . . . . . . . . . . . . . . . . . 64
5.5 Chang’s lemma and quantum learning . . . . . . . . . . . . . . . . . . . . 68
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

II Quantum Query and Communication Complexity 71

6 Overhead in Query-to-Communication Simulation for XOR Functions 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Addressing functions . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Polynomial approximation . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Communication complexity . . . . . . . . . . . . . . . . . . . . . 80
6.2.4 Approximate spectral norm of symmetric functions . . . . . . . . . 81

6.3 Overview of our approach and techniques . . . . . . . . . . . . . . . . . . 83
6.3.1 Intuition behind the function construction . . . . . . . . . . . . . . 84



Table of contents xiii

6.4 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.1 Definition of the function . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Overhead in Query-to-Communication Simulation for general functions 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.2 Communication complexity . . . . . . . . . . . . . . . . . . . . . 97
7.2.3 Hadamard encoding . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Necessity of the log-factor overhead in the BCW simulation . . . . . . . . 99
7.3.1 Quantum query complexity upper bound . . . . . . . . . . . . . . 100
7.3.2 Quantum communication complexity lower bound . . . . . . . . . 102
7.3.3 On the tightness of the BCW simulation . . . . . . . . . . . . . . . 103

7.4 Hardness of composing the function from Section 6.4 with AND2 . . . . . . 105
7.5 A separation between log-approximate-spectral norm and approximate de-

gree for a transitive function . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Quantum communication lower bound via the generalized discrepancy method112
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Symmetry and Quantum Query-to-Communication Simulation 119
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3 Noisy amplitude amplification and a new distributed-search protocol . . . . 125

8.3.1 Amplitude amplification with perfect reflections . . . . . . . . . . 126
8.3.2 Amplitude amplification with imperfect reflections . . . . . . . . . 127
8.3.3 Distributed amplitude amplification with imperfect reflection . . . . 129

8.4 No log-factor needed for symmetric functions . . . . . . . . . . . . . . . . 132
8.5 Overhead required for transitive functions . . . . . . . . . . . . . . . . . . 135
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



xiv Table of contents

III Classical Query and Communication Complexity 139

9 Set Disjointness and VC-Dimension 141
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 144
9.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2 One way communication complexity (Theorems 9.4 and 9.6 (1)) . . . . . . 146
9.2.1 Construction of a hard instance . . . . . . . . . . . . . . . . . . . . 147
9.2.2 Reduction from AUGINDEXd logm to DISJX |R×R . . . . . . . . . . 149

9.3 Two way communication complexity (Theorems 9.3, 9.5, 9.6(2) and 9.6(3)) 150
9.3.1 The hard instance for the proofs of Theorems 9.12 and 9.13 . . . . 151
9.3.2 Proof of Theorem 9.12 . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3.3 Proof of Theorem 9.13 . . . . . . . . . . . . . . . . . . . . . . . . 156

9.4 VC dimension, and Problems 9.1 and 9.2 . . . . . . . . . . . . . . . . . . 157
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10 Query Complexity of Global Minimum Cut 159
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.1.1 Results and Organization . . . . . . . . . . . . . . . . . . . . . . . 162
10.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.2.1 Probability Results . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.3.1 Overview of our algorithm . . . . . . . . . . . . . . . . . . . . . . 164
10.3.2 Formal Algorithm (Proof of Theorem 10.1) . . . . . . . . . . . . . 166

10.4 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.4.1 Communication Complexity . . . . . . . . . . . . . . . . . . . . . 170
10.4.2 Proofs of Theorems 10.2 and 10.3 . . . . . . . . . . . . . . . . . . 171

10.5 Application of our approach to other cut problems . . . . . . . . . . . . . . 174
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11 Conclusion and Future Work 177

References 185



List of figures

1.1 A deterministic query algorithm for AND function. . . . . . . . . . . . . . 6
1.2 An illustration of a single quantum query. . . . . . . . . . . . . . . . . . . 7
1.3 A generic deterministic communication protocol. . . . . . . . . . . . . . . 10
1.4 A deterministic communication protocol for the EQUALITY function. . . . 10

2.1 The EQUALITY function expressed as composed Boolean function. . . . . 27
2.2 The DISJOINTNESS function expressed as composed Boolean function. . . 27

6.1 A function that witnesses tightness of BCW Simulation theorem when com-
posed with XOR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 A function that witnesses tightness of BCW Simulation theorem when com-
posed with either XOR2 or AND2. . . . . . . . . . . . . . . . . . . . . . . 92

7.2 A general recipe for constructing function that witnesses overhead in quan-
tum query-to-communication simulation. . . . . . . . . . . . . . . . . . . 93

8.1 A function that witnesses tightness of BCW Simulation theorem when com-
posed with XOR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.1 An illustration of a simple set system generated from intervals on a line. . . 147
9.2 An illustration of set system generated from intervals on a line. . . . . . . . 148
9.3 A simple set system generated from two dimensional grid. . . . . . . . . . 152
9.4 A set system generated from two dimensional grid. . . . . . . . . . . . . . 153





List of tables

1.1 Variants of the query model. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Various Models of Communication complexity. . . . . . . . . . . . . . . . 12

2.1 Truth table of AND function on two bits. . . . . . . . . . . . . . . . . . . . 25

9.1 Table of results for communication DISJOINTNESS and INTERSECTION

problems when inputs are promised to come from a fixed set system of
bounded VC Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146





Chapter 1

Introduction

Computational complexity theory deals with the following question: If f : Domain→ Range

is a function from Domain to Range, then

Given an x ∈ Domain, how “efficiently" can f (x) be computed?

While the description of the above question seems natural enough, there are many things
that are not defined in its statement. For example:

• How is an algorithm (that would compute f (x)) allowed to access the input x?

• What are the resources available at the disposal of such an algorithm in order to
evaluate the function?

• What does efficient mean?

• What is the correctness requirement? Do we allow our algorithm to err with a small
probability?

A model of computation answers the above questions; it defines the rules of computation
and the costs involved. But, what are some interesting and “natural” models of computation?
How are different models of computations born? Which models of computation are worth
studying?

A search for answers to these questions would possibly require one to explore the entire
history of computing (the records of which date back to 19,000 BC [148]). It is apparent
that at different points of time, different models of computation were used depending on
the required application and available technology of that time. For example, the need to
do basic arithmetic led to the development of abacus around 2500 BC ([148, 149]). While
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landmark developments happened in the centuries that followed, the seemingly simple notion
of computation was yet to be formally defined. We refer the interested readers to [148] for a
timeline of the history of computation.

The second half of the 20th century saw extraordinary leaps in the theory and application
of computer science that eventually changed the way we perceive computation today. One of
the biggest milestone that was achieved during this period was the discovery of a fundamental
model of computation: the Turing Machine, by Alan Turing in his landmark paper ([144]).
With this model at hand, the notion of computation and computability became clear and,
arguably, the field of modern theoretical computer science started. The research that followed
this discovery led researchers to believe that Turing Machines capture the most general
nature of computability. This is the Church-Turing Thesis which, at a high level, says that
if a function can be computed by any reasonable model of computation, then it can also be
computed in the Turing Machine model.

Further research led the researchers to further believe that not only Turing Machines
capture computability but they also capture efficient computation. The belief that any
function that can be efficiently computed in any reasonable model of computation can also
be computed efficiently in the Turing Machine model is called the Extended Church-Turing
Thesis. The study of “efficient" computing got a major boost in the early 1970s with the work
of Stephen Cook [46] and Leonid Levin [107]. Computational Complexity Theory was now
a major subject of research. The progress in technology was taking place hand-to-hand with
theory in this period, perhaps at an even faster rate: this was truly an age of computer science.
Large computers in labs during the mid 20th century gave way to personal computers (PCs)
and small communication networks of the same time led to the birth of the internet.

By the dawn of the 21st century, computing devices became commonplace and many
areas of computer science, like computer networking, cryptography, online algorithms,
streaming algorithms to name a few, were born. Unprecedented capability to store and
process data and interdisciplinary research between areas like computer science, optimization,
statistics, and others, led to the birth of machine learning.

In the early 20th century, while computer science was undergoing a revolution, physics
was also undergoing major breakthroughs that will later change the way we view nature. Of
particular interest to us is the theory of quantum mechanics which eventually gave us the
model of quantum computation, a model of computation that is central to this thesis. Yuri
Manin [109, 110], Richard Feynman [59, 60] and Paul Benioff [22] were instrumental in
formalizing the model of quantum computation. We refer to [85] for a history of quantum
computing. It was observed that quantum computation does not pose any challenge to the
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Church-Turing Thesis. But what was not known initially was whether quantum computation
can help us increase the efficiency of our algorithms. This all changed in the 1990s. The
foundations work of David Deutsch in 1984 was expanded in 1992 along with Richard Jozsa
to give the Deutsch-Jozsa algorithm in 1992 [51]. Another remarkable achievement of this
time was the Simon’s algorithm from 1994 [140], by Daniel R. Simon, which would greatly
influence the factoring algorithm by Peter Shor.

In 1994, Peter Shor [139] discovered a surprising algorithm for factoring integers, a
problem that is believed to be difficult for classical computers (i.e. non-quantum computers).
In fact, a large portion of cryptography is based on the assumption that factoring integers is
hard. Also, in 1996, Lov Kumar Grover [77] designed a quantum algorithm for unstructured
searching that had quadratic speed up over the classical algorithms. Both these discoveries
led to even greater interest in quantum computing and Shor’s algorithm posed a challenge to
the Extended Church-Turing Thesis - a question that is open to this day.

Both in the classical and quantum world different models of computations have been
proposed over the years. Some models were motivated by the hardware technology of the
time (like PRAM models). Some models were motivated from the need to optimize certain
resources over others (like space-bounded computation model, query model, etc.). Some
models were proposed with the aim to understand various structural properties of functions
(like Boolean circuit complexity, arithmetic circuit complexity, etc.). Some models are
defined to understand the complexity of certain kind of functions (like graph query models,
various learning models, etc.). And some models were proposed due to sheer mathematical
curiosity, some of which later turned out to be central to understanding the complexity of
functions and also deeply connected to other models (like the communication model).

Once a model of computation is defined two natural goals emerges:

• Question (1): How much cost is sufficient to compute a function?

• Question (2): What is the cost that is necessary in order to compute a function?

Question (1) is the question of proving an upper bound on the cost by designing an
algorithm in the model of interest. This usually requires designing an efficient algorithm
to compute the function. Question (2) is that of proving lower bound. This often involves
constructing special functions that are “hard” in that model of computation. To have a more
refined understanding of the power of a model of computation one often asks the above
questions with the additional guarantee that the function, to be computed, is of a special kind.
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An equally important area of research is to understand the relation between various
complexity measures. Some questions that one might ask in this line of research are: Does
quantum computing help when we want to learn a function exactly? Can quantum communi-
cation complexity be much higher than the query complexity of a related function? Does
the relationship between two complexity measures in the classical world also translate to the
quantum world?

In this thesis, we will consider a few models of computation, namely models of compu-
tational learning, query model, communications model, and local query model for graphs.
We will try to understand the power of these models for various classes of functions. We
will be investigating how various complexity measures (defined as per different models of
computation) relate to each other. In this endeavor we will be working both Question (1)
(upper bound) and Question (2) (lower bound). As a part of our investigation, we use various
mathematical tools like Fourier analysis, linear algebra, and geometry. Some questions that
have motivated the work in this thesis are:

• How does structural simplicity affect its computational complexity in various models
of computation?

– Does Fourier analytical simplicity lead to easier computation?

– Does geometric simplicity imply efficient communication?

• How does the behavior of quantum computing differs from its classical counterpart?

– What is the relationship between classical and quantum query complexity of
learning a function?

– Does the same relation between a pair of classical complexity measures also hold
in the quantum world?

On our way, we discover beautiful connections between these questions and areas like Fourier
analysis and additive combinatorics. Understanding the complexity measures that we study
and the relationship between these measures has been an ongoing work for several decades.
In this thesis, we push the boundary of our knowledge a bit further.

We now define the models of computation that are of interest to us. These are the are
models of computational learning, query model, communications model, and local query
model for graphs. We start by describing the query models and then move on to learning
models and communication models. Finally, we describe the local query model for graphs.
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1.1 Various models of computation

1.1.1 The query model

The query model is arguably the simplest yet extremely useful model for computation of
Boolean functions. The domain in this model is the domain of a fixed function and the range
is the range of that function. We start by describing the classical query models and then move
on to the quantum query model.

Classical query model

We first look at the deterministic query model. A function f : {0,1}n →{−1,1} is known to
a query algorithm and the goal is to compute f (x) on an unknown input x ∈ {0,1}n. In order
to do this, the algorithm is allowed to make queries to x: assume that there is an oracle that
knows the entire input x. By making a single query, the algorithm asks this oracle to reveal
the ith bit of x, i ∈ [n], where the algorithm chooses i. Each such call to oracle costs one unit.
If the algorithm computes f correctly on all inputs x then we say that the algorithm computes
f .

The cost of a query algorithm D that computes f on an input x is the number of queries it
makes on x in order to output f (x), denote this by cost( f ,x). The cost of D is the maximum
number of queries the algorithm makes, where the maximum is over all x ∈ {0,1}n. Formally,

cost(D) = max
x∈{0,1}n

cost(D,x).

The deterministic query complexity of a function f , denoted by D( f ), is the cost of the best
algorithm that computes f , formally:

D( f ) = min
D computes f

cost(D).

Before moving to randomized query complexity let us analyze the deterministic query
complexity of AND function on n-bits, ANDn : {0,1}n →{−1,1}. In Figure 1.1 we give a
query algorithm that computes ANDn. The cost of this algorithm is n. It is not hard to show,
by an adversarial argument, that any algorithm that computes ANDn must make n queries.
Thus the deterministic query complexity of ANDn is n.

A randomized query algorithm R, for a function f : {0,1}n →{−1,1}, is a probability
distribution over deterministic query algorithms. We say that R computes f with bounded
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x1

1 x2

1

xn

1 −1

Fig. 1.1 A deterministic query algorithm for ANDn. If at any internal node xi, the value of bit
xi is 0, the algorithm stops and outputs 1. Otherwise the algorithm outputs −1.

error if for all x ∈ {0,1}n

Pr[R(x) = f (x)]≥ 2/3. (1.1)

By R(x) in the above equation we mean the process of choosing a deterministic query
algorithm according to the probability distribution R and returning the answer of that query
algorithm on x.

The cost of R is the maximum over the cost of deterministic query algorithms in its
support. The randomized query complexity of f , denoted by R( f ), is the cost of the best
algorithm that computes f . Formally,

R( f ) = min
R computes f

cost(R).

Also note that the constant 2/3 in Equation 1.1 can be replaced by any constant greater
than 1/2 without loss of generality.

Quantum query model

Let us now define the bounded-error quantum query model. Let f : {0,1}n →{−1,1} be a
Boolean function. A quantum query algorithm with T queries is a sequence:

U0,Q0,U1,Q1, . . . ,UT−1,QT−1,UT ,

where Ui’s, i∈ {0,1 . . . , t} are unitaries that do not depend on input while Qi’s, i∈ {0,1 . . . , t},
are query transformations that depend on input. Each application of Q is counted as a single
query and costs. The action of Q is illustrated in Figure 1.2

The query algorithm starts int the state |ψ0⟩ and ends with measuring the state UT . . .Q0U0|ψ0⟩.
Similar to the classical setup, the query algorithm computes f if for all x ∈ {0,1}n the result
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|i〉

|b〉 |b⊕ xi〉

|i〉
Q

Fig. 1.2 An illustration of a single quantum query. The oracle Q has access to x ∈ {0,1}b.
On input |i⟩|b⟩, where i ∈ {0,1}logn and b ∈ {0,1}, the oracle returns |i⟩|b⊕ xi⟩.

of measurement is equal to f (x) with probability at least 2/3 and the query complexity of f ,
denoted by Q( f ), is the cost of the best protocol that computes f . In Table 1.1 we summarise
the query models that we have discussed.

Variants Queries Correctness
∀x ∈ {0,1}n

Deterministic Bits A (x) = f (x)

Randomized Bits with probability ≥ 2
3 , A (x) = f (x)

Quantum Qubits with probability ≥ 2
3 , A (x) = f (x)

Table 1.1 Variants of query model. Here A is a query algorithm computing a function
f : {0,1}n →{−1,1}.

1.1.2 The learning model

This model is defined primarily to study special classes of functions. The domain is the truth
table of a class of functions and the range is the truth table of a function. We describe two
learning models that are of interest to us.

Distribution Dependent Learning

Let us begin by explaining the setting of distribution-dependent learning from examples. Let
C be a class of functions, that is, concept class. For concreteness assume they are ±1-valued
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functions on a domain of size N. If N = 2n then the domain may be identified with {0,1}n.
Suppose c ∈ C is an unknown function (the target function or concept) that we want to learn.
A learning algorithm is given examples of the form (x,c(x)), where x is distributed according
to some probability distribution D on [N]. An (ε,δ )-learner for C w.r.t. D is an algorithm
that, for every possible target concept c ∈ C , produces a hypothesis h : [N]→{−1,1} such
that with probability at least 1−δ (over the randomness of the learner and the examples for
the target concept c), h’s generalization error is at most ε:

Pr
x∼D

[c(x) ̸= h(x)]≤ ε.

In other words, from D-distributed examples the learner has to construct a hypothesis that
mostly agrees with the target concept under the same D.

In the early days of quantum computing, Bshouty and Jackson [33] generalized this
learning setting by allowing coherent quantum examples. A quantum example for target
concept c w.r.t. distribution D, is the following (⌈logN⌉+1)-qubit state:

∑
x∈[N]

√
D(x)|x,c(x)⟩.

Clearly, such a quantum example is at least as useful as a classical example because measuring
this state yields a pair (x,c(x)) where x ∼ D. Bshouty and Jackson gave examples of concept
classes that can be learned more efficiently from quantum examples than from classical
random examples under specific D.

We focus on exactly learning the target concept from uniform examples, with high success
probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. A uniform quantum example for
a concept c ∈ C is the quantum state

1√
2n ∑

x∈{0,1}n

|x,c(x)⟩.

The goal, thus, is to exactly learn c ∈ C using the minimum number of uniform examples
(each of which costs one unit) from c of the form (x,c(x)) where x is drawn from the uniform
distribution on {0,1}n.

Exact Active Learning

Another model that we are interested in is the model of exact active learning or exact learning
from membership queries which was introduced in [9]. In this model the learner wants to
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exactly learn an unknown target concept c : [N]→{−1,1} from a known concept class C ,
but now the learner can choose which points of the truth-table of the target it sees, rather than
those points being chosen randomly. More precisely, the learner can query c(x) for any x of
its choice. This is called a membership query: think of the set {x | c(x) =−1} corresponding
to the target concept: a membership query asks whether x is a member of this set or not.

In this model the quantum algorithms have the following query operation available:

Oc : |x,b⟩ 7→ |x,b · c(x)⟩,

where b ∈ {−1,1}. The goal of a learning algorithm is to exactly learn a function using the
minimum number of membership queries (each of which costs one unit) to the truth table of
the function.

1.1.3 The communication model

Like the query model, the domain in this model is the domain of a fixed function and the
range is the range of that function. We start by describing the classical communication
models and then move on to the quantum communication model.

Classical communication model

Let f : {0,1}n ×{0,1}n → {−1,1}. In communication complexity, two players Alice and
Bob get as inputs x ∈ {0,1}n and y ∈ {0,1}n respectively, and the goal for the players is
to devise a protocol to compute f (x,y) by exchanging as few bits between themselves as
possible. In all models of communication (including quantum, which we define later in this
section) Alice and Bob are assumed to have unbounded power of computation and they are
only charged for communication. We formalize this notion next.

The deterministic communication complexity Dcc( f ) of a function f is the minimum
number of bits Alice and Bob will exchange in the worst case to deterministically compute
the function f . See Figure 1.3 for an illustration of the setup of deterministic communication
complexity and Figure 1.4 for an example of the EQUALTIY function which is defined as
follows: Alice is given x ∈ {0,1}n and Bob is given y ∈ {0,1}n. Their goal is to output −1 if
x = y and 1 otherwise. The protocol that we illustrate is simple. Alice sends x1 to Bob, if
x1 ̸= y1 Bob outputs 1 and protocol terminates. Otherwise, Bob sends y2 to Alice and the
protocol continues.
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Alice Bob
X ∈ {0,1}n Y ∈ {0,1}n

m1

m2···

mk

Π(X ,Y )

Fig. 1.3 A protocol Π computing F : {0,1}n ×{0,1}n →{−1,1}.

Alice Bob
X ∈ {0,1}n Y ∈ {0,1}n

X1

Y2···

Yn

Π(X ,Y )

Fig. 1.4 A protocol Π computing EQUALITY: EQUALITY(X ,Y ) =−1 iff X = Y .
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In the randomized setting, both Alice and Bob share an infinite random source and the
goal is to give the correct answer with probability at least 2/3. The randomized communica-
tion complexity R( f ) of f denotes the minimum number of bits exchanged by the players
in the worst case input by the best randomized protocol computing f . This is the setting
of communication complexity with shared random coins. If no random string is shared,
it is called the private random coins setting. By [118] we know that the communication
complexity in both the setting differs by at most a logarithmic additive factor.

In both deterministic and randomized settings, Alice and Bob are allowed to make
multiple rounds of interaction. Communication complexity when the number of rounds of
interaction is bounded is also often studied. An important special case is when only one round
of communication is allowed, that is, only Alice is allowed to send messages to Bob and
Bob computes the output. We will denote by D→( f ) and R→( f ) the one way deterministic
communication complexity and one way randomized communication complexity respectively,
of f .

Quantum communication model

The setup of quantum communication is similar to classical communication except for now
the messages and the channel of communication are quantum. There are several models in
quantum communication complexity (see [49]). We refer to [49] for more details.

Let f : {0,1}n × {0,1}n → {−1,1} be a communication problem and let Alice be
given x ∈ {0,1}n and Bob be given y ∈ {0,1}n. Alice and Bob have the extra resource of
unbounded ERP-pairs (i.e. maximally entangled pairs of qubits) shared between them before
communication starts (this is analogous to public randomness in classical communication
complexity). Instead of bits, Alice and Bob are allowed to communicate qubits. Alice applies
unitary to her input and the communication channel, this corresponds to Alice’s computation
and one round of communication. The cost of one round of communication is the number of
qubits of channel affected. Bob does the same and the protocol continues. Measurement is
performed at the end of the protocol.

The cost of a protocol is the maximum cost over all inputs and communication complexity
of f , denoted by Qcc( f ), is the cost of the best protocol computing f .

In Table 1.2 we summarize the communication models that we discussed in this section.
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Variants Queries Resources
Correctness
∀x,y ∈ {0,1}n

Deterministic Bits Π(x,y) = f (x,y)

Randomized Bits
Shared with probability ≥ 2

3 ,
Randomness Π(x,y) = f (x,y)

Quantum Qubits Entanglement
with probability ≥ 2

3 ,
Π(x,y) = f (x,y)

Table 1.2 Various Models of Communication complexity. Protocol Π for computing a
function f : {0,1}n ×{0,1}n →{−1,1}.

1.1.4 Local query model

This model is defined to answer questions about the properties of graphs. The domain in this
model are graphs over n vertices and the range is the set {1, . . . ,n}.

The Local Query Model is one of the most well-studied models in the area of graph
property testing. Unlike the usual setting of algorithm design, in the local query model, we
have restricted access to an unknown graph. We assume that there is an oracle that stores
a set of local properties of the unknown graph and we can ask this oracle about those local
properties: each such request to the oracle costs one unit and is called a query. We explain
this formally next.

Let G = (V,E), where |V |= n and |E|= m, be an unknown graph. There are three types
of queries, each costing one unit, that are allowed in the local query model:

• DEGREE query: given u ∈V , the oracle reports the degree of u in V ;

• NEIGHBOR query: given u ∈ V and a positive integer i, the oracle reports the i-th
neighbor of u, if it exists; otherwise, the oracle reports ⊥;

• ADJACENCY query: given u, v ∈V , the oracle reports whether {u,v} ∈ E.

Apart from the local queries mentioned, in the last few years, researchers have also used the
RANDOM EDGE query [6, 14]. Every RANDOM EDGE query returns a uniformly random
edge of G. Notice that the randomness will be over the probability space of all edges, and
hence, a random edge query is not a local query.

We now describe the results of this thesis.
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1.2 Overview of Results and Organization

This thesis is divided into three parts. The first is dedicated to quantum learning theory. In
this part, we study the sample complexity of exactly learning classes of functions. We also
explore the relation between additive combinatorics and quantum learning theory in this part.
The second part of the thesis is dedicated to quantum query and communication complexity.
In this part, we study a relationship between query and communication in the quantum
world and how this relationship differs from its classical counterpart. The third part of the
thesis studies classical query and communication complexity. We first investigate whether
geometric simplicity implies efficient communication. Then, we resolve a fundamental
problem, called the problem of approximating global minimum cut, in the local query model
for graphs.

1.2.1 Part I

Both quantum computing and machine learning are hot topics at the moment, and their
intersection has been receiving growing attention in recent years as well. On the one hand,
there are particular approaches that use quantum algorithms like Grover search [77] and
the Harrow-Hassidim-Lloyd linear-systems solver [80] to speed up learning algorithms for
specific machine learning tasks (see [150, 135, 3, 25, 53] for recent surveys of this line
of work). On the other hand there have been a number of more general results about the
sample and/or time complexity of learning various concept classes using a quantum computer
(see [11] for a survey). In the first two chapters of this part, we present two new results in the
latter line of work. In the third chapter, we give refinements of an important result in additive
combinatorics and show its connections to quantum learning theory.

Chapter 3

In order to define the concept class that we are interested in learning in this chapter, we
first need to define some basic notions of Fourier analysis of Boolean functions referring
to [121, 152] for more. The set of all functions with domain {0,1}n and range R forms a
vector space of dimension 2n. The Fourier basis for this vector space is the set of functions
{χS(X) := (−1)⟨x,S⟩xi : S ⊆ [n]}. In the last expression and the rest of this thesis, we use the
natural mapping between subsets of [n] and {0,1}n. Thus every f : {0,1}n →R has a unique
representation of the form:

f (x) = ∑
S⊆[n]

f̂ (S)χS(x) for all x ∈ {0,1}n,
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where f̂ (S) ∈ R for S ⊆ [n], are called the Fourier coefficients of f . The above expression is
defined to be the Fourier representation of f and the set { f̂ (S),S ⊆ [n]} is called the Fourier
spectrum of f .

Define the inner product between functions f ,g : {0,1}n → R as

⟨ f ,g⟩= E
x∈{0,1}n

[ f (x) ·g(x)] = 1
2n ∑

x∈{0,1}n

f (x)g(x).

Thus the expectation is uniform over all x ∈ {0,1}n. Observe that the set of character
functions, {χS}S⊆[n], forms an orthonormal basis for the space of real-valued functions over
the Boolean cube. Thus we have

f̂ (S) = ⟨ f ,χS⟩= E
x
[ f (x)χS(x)]

The Parseval’s identity states that ∑S∈{0,1}n f̂ (S)2 = Ex[ f (x)2]. If f has range {−1,1},
then Parseval gives ∑S∈{0,1}n f̂ (S)2 = 1, so { f̂ (S)2}S∈{0,1}n forms a probability distribution.

In this chapter, we study exact learning of the concept class of k-Fourier-sparse Boolean
functions, i.e. Boolean functions whose Fourier spectrum has at most k non-zero Fourier
coefficients.

Variants of this class of Boolean functions have been studied in the area of sparse
recovery ([81, 90]). Real valued Boolean functions (instead of Boolean valued) that have at
Fourier sparsity at most k are extensively studied in [45, 27, 130, 37].

Quantum Fourier transform allows us to sample vectors from the Fourier support of the
target function, with probability equal to the squared of the respective Fourier coefficients.
This sampling procedure, called Fourier sampling, is used to give exact learning algorithm
for the class of k-Fourier sparse Boolean functions. We show how to exactly learn a k-
Fourier-sparse n-bit Boolean function from O(k1.5(logk)2) uniform quantum examples for
that function. This improves over the bound of Θ̃(kn) uniformly random classical examples
by Haviv and Regev, 2015 ([84]). We state our main result formally below.

Theorem 1.1. For every n > 0 and k ≤ 2n, the number of uniform quantum examples that
suffice to learn the class of k-Fourier sparse Boolean functions with probability ≥ 2/3 is
O(k1.5(logk)2).

We also give a non-matching lower bound of Ω̃(k) for the number of uniform quantum
examples needed to learn the class of k-Fourier sparse functions in this chapter.
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Theorem 1.2. For every n, constant c ∈ (0,1) and k ≤ 2cn, the number of uniform quantum
examples necessary to learn the class of k-Fourier-sparse Boolean functions, with success
probability ≥ 2/3, is Ω(k logk).

Chapter 4

In this chapter, we consider the framework of active learning or learning through membership
queries, and, like in the previous chapter, our focus is on exact learning. In this model, using
the quantum adversary method ([7, 18, 142]) along with an entropic argument, we show that
if a concept class C can be exactly learned using Q quantum membership queries, then it
can also be learned using O

(
Q2

logQ log |C |
)

classical membership queries. This improves the
previous-best simulation result by Servedio and Gortler, 2004, by a logQ-factor. We state our
main theorem of this chapter below in the language of “spectral adversary” for the concept
class C , i.e. ADV (C ), which lower bounds Q. We refer the reader to Chapter 4 more details.

Theorem 1.3. Let C ⊆ {0,1}N be a concept class and

ADV(C ) = max
Γ≥0

∥ Γ ∥/max
i∈[N]

∥ Γ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C . Then

there exists a classical learner for C using O
(

ADV(C )2

logADV(C )
log |C |

)
membership queries

that identifies the target concept with probability ≥ 2/3.

Chapter 5

Chang’s lemma [40] is a result in additive combinatorics with several applications to mathe-
matics and computer science. This chapter is dedicated to a refinement of Chang’s lemma
and its application to quantum learning theory.

For Boolean functions, the lemma informally states that all the large Fourier coefficients
of the indicator function of a large subset reside in a low dimensional subspace. We first give
a refinement of Chang’s lemma for the case of Fourier-sparse Boolean functions.

Theorem 1.4. Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-sparse f : {0,1}n → {−1,1}
that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

r ≤ 2αk logk.
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The above theorem improves Chang’s lemma for k-Fourier sparse Boolean functions by
a factor of

√
αk.

Our results have seen a further refinement in [38]. We show that this new refinement is
tight. We conclude this chapter by showing an application of our improvement of Chang’s
lemma in quantum learning, and by giving a concrete direction to obtain a better analysis of
one of our learning algorithms from Chapter 3.

This part is based on:

• Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Manaswi Paraashar and
Ronald de Wolf. Two new results about quantum exact learning. 46th International
Colloquium on Automata, Languages, and Programming (ICALP), 132 : 16:1–16:15,
2019, DOI: https://doi.org/10.4230/LIPIcs.ICALP.2019.16. QUANTUM, 2021, Vol-
ume 5, Page 587, DOI: https://doi.org/10.22331/q-2021-11-24-587.

• Parts of the following paper: Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal,
Tulasimohan Molli, Manaswi Paraashar and Swagato Sanyal. Tight Chang’s-lemma-
type bounds for Boolean functions. Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), 2021, Volume 213, Pages 10:1–10:22, DOI:
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.10.

1.2.2 Part II

This part is dedicated to the study of the relation between quantum query and quantum
communication complexity. We first define the well-known notion of composition of two
functions which will allow us to define important communication problems.

Let f be an n-bit Boolean function and let G be a two-bit Boolean function like AND2

or XOR2. The function AND2 evaluates to True is and only if both of its input bits are True.
The function XOR2 evaluates to True is and only if both of its input bits are different (i.e.
XOR2 evaluates to True is and only if its input is either (True,False) or (True,False)). One
way to to obtain a communication problem using f and G is to consider the composition of f
and G which is defined to be the following function:

f ◦G(x1,y1, . . . ,xn,yn) = f (G(x1,y1), . . . ,G(x1,y1)).

Thus, f ◦G is a function on 2n bits. f ◦G is viewed as a two-party communication problem
where the bits x1 . . . ,xn are with Alice and the bits y1, . . . ,yn are with Bob. We call f as the
outer function and G as the inner function.

https://doi.org/10.4230/LIPIcs.ICALP.2019.16
https://doi.org/10.22331/q-2021-11-24-587
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.10
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In this part, we study the relation between the query of a Boolean function f and the
communication complexity of f ◦G.

Chapter 6

Buhrman, Cleve, and Wigderson [34] observed that for every n-bit Boolean function f
the bounded-error quantum communication complexity of ( f ◦G) is O(Q( f ) logn), where
Q( f ) is the bounded-error quantum query complexity of f . Note that the randomized
communication complexity of ( f ◦G) is bounded by O(R( f )), where R( f ) denotes the
randomized query complexity of f . Thus, BCW simulation has an extra O(logn) factor
appearing that is absent in classical simulation. A natural question is if this factor can
be avoided. Perhaps somewhat surprisingly, in this chapter, we show that for G = XOR2,
then the extra logn factor in the BCW simulation is unavoidable using techniques from
approximation theory and Fourier analysis. To the best of our knowledge, it was not even
known prior to this work whether there existed a total function F and 2-bit function G, such
that Qcc(F ◦G) = ω(Q(F)). The main theorem of this chapter is formally stated below.

Theorem 1.5. For any constant 0 < δ < 1, there exists a total function F : {−1,1}n →
{−1,1} for which Q(F) = Θ(nδ ) and

Qcc(F ◦XOR2) = Θ(Q(F) logn).

Chapter 7

In the previous chapter, we showed that BCW simulation theorem is tight when the inner
function, G, is XOR2. This leaves the case when the inner function is AND2. In this chapter,
we construct outer functions such that BCW simulation theorem is tight when the inner
function is AND2. More generally, we give a recipe to construct outer functions such that
there is a gap between query complexity of f and communication complexity of ( f ◦G),
where G ∈ {AND2,XOR2}. We also show that the function constructed in the previous
chapter witnesses tightness of BCW Simulation when composed with AND2. Our main
theorem of this chapter is the following.

Theorem 1.6. There exists total function f : {−1,1}n →{−1,1}, such that

Qcc( f ◦G) = Ω(Q( f ) logn)

for every G ∈ {AND2,XOR2}.
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Chapter 8

The role of symmetry has been extensively studied in complexity theory. A Boolean function
f is said to be symmetric if f depends only on the Hamming weight of its inputs. This is
equivalent to saying that on every input in the domain of f , the value of f remains unchanged
if the bits of that input are arbitrarily permuted. A natural generalization of symmetric
functions is the class of transitive functions.

In this chapter, we explore the role of symmetry in quantum query-to-communication
simulation. One motivation for exploring the role of symmetry comes from the following
fact. Aaronson and Ambainis, 2005, ([1]) showed that for the Disjointness function, a
central problem in communication complexity, only a constant overhead is required in BCW
Simulation Theorem. The outer function for the Disjointness function is a symmetric function.
This leads us to the following question: Does symmetry of the outer function lead to no
overhead in quantum query-to-communication simulation? We show that this is indeed the
case.

Theorem 1.7. For every symmetric Boolean function f : {−1,1}n →{−1,1} and two-party
function G ∈ {AND2,XOR2}, we have

Qcc( f ◦G) = O(Q( f )).

On the other hand, we construct a transitive function for which the logarithmic overhead
can not be avoided in BCW Simulation Theorem.

Theorem 1.8. There exists a transitive and total function f : {−1,1}n →{−1,1}, such that

Qcc( f ◦G) = Ω(Q( f ) logn)

for every G ∈ {AND2,XOR2}.

This part if based on the following papers:

• Sourav Chakraborty, Arkadev Chattopadhyay and Nikhil Mande. Quantum Query-
To-Communication Simulation Needs a Logarithmic Overhead. Computational Com-
plexity Conference (CCC), 169 : 32:1–32:15, 2020, DOI: https://doi.org/10.4230/
LIPIcs.CCC.2020.32. A preliminary version was presented in Quantum Information
Processing (QIP), 2020.

• Sourav Chakraborty, Arkadev Chattopadhyay, Peter Høyer, Nikhil S. Mande and
Ronald de Wolf. Symmetry and Quantum Query-to-Communication Simulation. To

https://doi.org/10.4230/LIPIcs.CCC.2020.32
https://doi.org/10.4230/LIPIcs.CCC.2020.32
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appear in To appear in International Symposium on Theoretical Aspects of Computer
Science (STACS), 2022. arxiv:2012.05233.

1.2.3 Part III

This part of the thesis is devoted to classical query and communication complexity. In
the first chapter of this part, we explore the role of the geometric simplicity, quantified by
bounded Vapnik–Chervonenkis Dimension of set systems, in communication complexity.
In the second chapter of this part, we give tight query complexity of approximating global
minimum cut in the local query model. We start by defining Vapnik-Chervonenkis dimension
and global minimum cut in graphs.

Vapnik and Chervonenkis [146] introduced the measure Vapnik-Chervonenkis dimension
or VC dimension for set systems in the context of statistical learning theory. This is a natural
measure of geometric simplicity of set systems. Let S be a collection of subsets of a [n].
For a subset y of [n], define

S |y := {y∩ x : x ∈ S } .

We say y is shattered by S if S |y = 2y. VC-dimension of S is the size of the largest subset
y of [n] shattered by S . VC dimension has found numerous connections and applications in
many different areas like approximation algorithms, discrete and combinatorial geometry,
computational geometry, discrepancy theory and many other areas [111, 44, 122, 112].

The global minimum cut of a connected, unweighted, undirected and simple graph
G = (V,E), |V |= n and |E|= m, is a partition of the vertex set V into two sets S and V \S
such that the number of edges between S and V \S is minimized. The problem of the global
minimum cut is so fundamental that researchers keep coming back to it again and again
across different models [96, 95, 113, 98, 117, 5, 129, 66, 64, 65, 94].

Chapter 9

The Disjointness problem is a central problem in communication complexity: Alice and Bob
are given two subsets of {1, . . . ,n} and they have to check if their sets intersect. We use
the notation DISJn for this problem. Using the standard rank argument [102, 125] one can
show that D(DISJn) = Θ(n). In a breakthrough paper, Kalyanasundaram and Schnitger [93]
proved that R(DISJn) = Ω(n). Razborov [127] and Bar-Yossef et al. [17] gave alternate
proofs for the above result.
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It is also known that if the sets are assumed to be drawn from some restricted set systems
then the communication complexity can be much lower. For example, Håstad and Wigderson,
2007, [82] considered the Disjointness problem when Alice and Bob are promised to be
given sets of size at most k, k ∈ [n] ,from a fixed set system that is known to both players.
They showed that the randomized communication complexity of this problem is Õ(k).

In this chapter, we explore how communication complexity changes with respect to
the complexity of the underlying set system. The complexity measure for the set system
that we use in this chapter is the VC dimension. More precisely, on any set system with
VC dimension bounded by d, we analyze how large can the deterministic and randomized
communication complexities be, as a function of d and n. The k-sparse set disjointness
problem which was considered by Håstad and Wigderson, 2007, is one such set system
with VC dimension k. We address the question of whether the randomized communication
complexity is always upper bounded by a function of the VC dimension of the set system,
and does there always exist a gap between the deterministic and randomized communication
complexity for set systems with small VC dimension.

We construct two natural set systems of VC dimension d, motivated from geometry.
Using these set systems we show that the deterministic and randomized communication
complexity can be Θ̃(d log(n/d)) for set systems of VC dimension d and this almost matches
the deterministic upper bound for all set systems of VC dimension d.

We also study the deterministic and randomized communication complexities of the
Set-Intersection problem, a problem related to the Disjoitnenss Problem, when sets belong to
a set system of bounded VC dimension. We denote this problem by INTn. Finally, we show
that there exists set systems of VC dimension d such that both deterministic and randomized
complexities for the set intersection problem can be as high as Θ(d log(n/d)), and this is
almost tight among all set systems of VC dimension d.

The main theorem of this chapter is stated below.

Theorem 1.9. Let 1 ≤ d ≤ n.

1. There exists S ⊆ 2[n] with VC-dim(S ) ≤ d such that randomized communication
complexity of the Disjointness problem, when the inputs are promised to come from S ,
is Ω

(
d log(n/d)

log log(n/d)

)
.

2. There exists S ⊆ 2[n] with VC-dim(S ) ≤ d such that randomized communication
complexity of the Set-Intersection problem, when the inputs are promised to come from
S , is Ω

(
d log n

d

)
.
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Chapter 10

Let CUT(G) denote this edge set corresponding to a minimum cut in G, and t denote
|CUT(G)|. The algorithmic landscape for the minimum cut problem has been heavily
influenced by Karger and Stein’s work [95, 96] and algorithmic solutions for minimum
cut across different models [113, 98, 117, 5, 129, 66, 64, 65, 94] 1 have revisited their
approach [95, 96]. Fundamental graph parameter estimation problems, like estimation of the
number of edges [58, 68], triangles [56], cliques [57], stars [70], etc. have been solved in the
local and bounded query models [69, 68, 97]. Estimation of the size of MINCUT is also in
the league of such fundamental problems to be solved in the model of local queries.

In this chapter, we resolve the query complexity of the global minimum cut problem for
a graph by designing a randomized algorithm for approximating the size of minimum cut in
a graph, where the graph can be accessed through local queries like DEGREE, NEIGHBOR,
and ADJACENCY queries (see Section 1.1.4).

Given ε ∈ (0,1), the algorithm with high probability outputs an estimate t̂ satisfying
the following (1− ε)t ≤ t̂ ≤ (1+ ε)t, where t is the size of minimum cut in the graph. The
expected number of local queries used by our algorithm is min

{
m+n, m

t

}
poly

(
logn, 1

ε

)
where n and m are the number of vertices and edges in the graph, respectively. Eden and
Rosenbaum showed that Ω(m/t) local queries are required for approximating the size of
minimum cut in graphs, but no local query based algorithm was known. Our algorithmic
result coupled with the lower bound of Eden and Rosenbaum, 2018 ([54]), resolved the
query complexity of the problem of estimating the size of minimum cut in graphs using local
queries.

Building on the lower bound of Eden and Rosenbaum, we show that, for all t ∈ N, Ω(m)

local queries are required to decide if the size of the minimum cut in the graph is t or t −2.
Also, we show that, for any t ∈ N, Ω(m) local queries are required to find all the minimum
cut edges even if it is promised that the input graph has a minimum cut of size t. Both of our
lower bound results are randomized, and hold even if we can make RANDOM EDGE queries
in addition to local queries.

We state the main theorem of this chapter below.

Theorem 1.10. There exists an algorithm, with DEGREE and NEIGHBOR query access to an
unknown graph G = (V,E), that solves the minimum cut estimation problem with probability
at least 2/3. The expected number of queries used by the algorithm is min

{
m+n, m

t

}
poly

(
logn, 1

ε

)
.

1The list is to name a few and it is not exhaustive.
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Chapter 2

Preliminaries

We start by mentioning some notations that will be used throughout the text. Then we go into
an introduction to the Fourier analysis of Boolean functions, a main tool for several chapters
of this thesis.

Notation

Let [n] = {1, . . . ,n}. We use the natural correspondence between subsets of [n] and elements
of {0,1}n interchangeably.

2.1 Fourier Analysis of Boolean Functions

The general representation of an n-bit Boolean function is as a function with domain
{True,False}n to {True,False}, i.e. f : {True,False}n → {True,False}. Depending on the
context we might view the functions to have domain {0,1}n, {−1,1}n or Fn

2 and the range
as {0,1}, {−1,1} or F2. In this introduction, let f be a function from {0,1}n to {−1,1}.

One of the main advantages of the above representation is that we think of Boolean
functions as real valued functions. This allows us to use tools from Fourier analysis to study
Boolean functions. This perspective has proven to be extremely useful, see, for example, the
comprehensive book [121].

We now introduce the basics of Fourier analysis here, referring to [121, 152] for more.
The set of all functions with domain {0,1}n and range R forms a vector space of dimension 2n.
The Fourier basis for this vector space is the set of functions {χS(X) := (−1)⟨x,S⟩xi : S ⊆ [n]}.
In the previous expression, and the rest of this thesis, we use the natural mapping between
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subsets of [n] and {0,1}n. The function χS : {0,1}n →{−1,1} is called the character function
corresponding to the set S ⊆ [n]. Thus every f : {0,1}n → R has a unique representation of
the form:

f (x) = ∑
S⊆[n]

f̂ (S)χS(x) for all x ∈ {0,1}n,

where f̂ (S) ∈ R for S ⊆ [n], are called the Fourier coefficients of f . The above expression is
defined to be the Fourier representation of f and the set { f̂ (S),S ⊆ [n]} is called the Fourier
spectrum of f .

Define the inner product between functions f ,g : {0,1}n → R as

⟨ f ,g⟩= E
x∈{0,1}n

[ f (x) ·g(x)] = 1
2n ∑

x∈{0,1}n

f (x)g(x).

Thus the expectation is uniform over all x ∈ {0,1}n. Observe that the set of character
functions, {χS}S⊆[n], forms an orthonormal basis for the space of real-valued functions over
the Boolean cube. Thus we have

f̂ (S) = ⟨ f ,χS⟩= E
x
[ f (x)χS(x)]

The Parseval’s identity states that ∑S∈{0,1}n f̂ (S)2 = Ex[ f (x)2]. If f has range {−1,1},
then Parseval gives ∑S∈{0,1}n f̂ (S)2 = 1, so { f̂ (S)2}S∈{0,1}n forms a probability distribution.

As an illustration, we consider the AND function on two bits. The function AND2 :
{0,1}2 →{−1,1} is defined by AND2(x) =−1 if and only if (x1,x2) = (1,1).

The Fourier representation of AND2 is as follows:

AND2(x1,x2) =
χ /0(x1,x2)

2
+

χ{1}(x1,x2)

2
+

χ{2}(x1,x2)

2
−

χ{1,2}(x1,x2)

2
.

Thus, the Fourier coefficients of AND2 are

ÂND2( /0) =
1
2
, ÂND2({1}) = 1

2
,ÂND2({2}) = 1

2
, ÂND2({1,2}) =−1

2
.

Next, we define some important Boolean functions.
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2.2 Some important Boolean functions

We begin by recalling some common Boolean functions. As we have already seen, the AND
function on two bits (AND2) outputs true if and only if both its inputs are true. The truth
table of AND2 is given in Table 2.1. Similarly, AND function on n-bits, denoted by ANDn,

x1 x2 AND(x1,x2)

1 1 −1
1 0 1
0 1 1
0 0 1

Table 2.1 Truth table of AND function on two bits.

outputs −1 if and only if all its n inputs are 1. The OR function on n-bits, denoted by ORn,
outputs 1 if and only if all its n inputs are 0 and the NOR function, denoted by NOR2, is
the negation of ORn. When the domain size of functions are clear, we drop the subscript
indicating the domain size.

The character functions that we defined previously are also called linear functions.

Definition 2.1 (Linear Functions). A function f : {0,1}n →{−1,1} is called a linear func-
tion if there exists S ∈ {0,1}n such that for x ∈ {0,1}n, f (x) = (−1)⟨S,x⟩, where ⟨S,x⟩ =
∑

n
i=1 Sixi mod 2.

A special linear function is parity of n-bits, defined below:

PARITYn(x1, . . . ,xn) = (−1)∑i∈[n] xi mod 2. (2.1)

A function may not depend of all n-bits. We capture this by the following definition.

Definition 2.2 (ℓ-Junta). We say f : {0,1}n → {−1,1} is an ℓ-junta if there exists a set
S ⊆ [n] of size |S| ≤ ℓ such that f depends only on the variables whose indices are in S.

Now that we have studied several models of computation, we can motivate the definition
of a few more important Boolean functions.

2.2.1 Partial Functions

Till now we have been considering functions defined on the every element of {0,1}n. How-
ever it is natural to consider functions that are defined only on a subset of {0,1}n. Let us
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consider an example. In Section 1.1.3 we looked at the Disjointness problem: Alice and Bob
are given subsets of [n] and they want to decide whether their sets intersect. A variant of
this problem is when we further assume that the sets given to Alice and Bob have sparsity at
most k (where k ∈ [n] is a parameter). With this promise, we get the Sparse-Set Disjointness
problem. This function is defined only on the elements of {0,1}n who Hamming weight is at
most k.

Formally, we define partial functions as follows.

Definition 2.3 (Partial Function). A partial function is a function of the form f : {0,1}n →
{−1,1,⋆}. If f−1(⋆) = /0, then f is a total function.

2.2.2 Composed Functions

Composed Boolean functions are an extremely important class of Boolean functions, espe-
cially for this thesis. We start by defining composition of two partial functions.

Definition 2.4 (Composition with partial functions). Let f : {−1,1}n → {−1,1,⋆} and
g : {−1,1}m →{−1,1,⋆} be a partial functions. Let f ◦g : {−1,1}nm →{−1,1} denote the
composition of f and g that is defined as follows. On input (X1, . . . ,Xn) ∈ {−1,1}nm, where
Xi ∈ {−1,1}m for all i ∈ [n], f (X1, . . . ,Xn) = ⋆ if there exists i ∈ [n] such that g(Xi) = ⋆;
otherwise f ◦ g(X1, . . . ,Xn) = f (g(X1), . . . ,g(Xn)). We call f the outer function and g the
inner function of the composed function f ◦g.

The composition of total functions follows naturally from the above definition. A word
on the notation: when talking about composition of Boolean functions, say f and g it is
natural to have the range of g to be in the domain of f to make the definitions and notations
simple. To this end we think of Boolean functions having domain {−1,1}n and range {−1,1}
when talking about composition. The second part of this thesis heavily studies composition
of Boolean functions where we use this notation. At other places, we mention explicitly the
notation of choice for the domain of Boolean functions.

Obtaining communication problems using composition

A very important use of composing Boolean functions is to obtain communication problems.
Let us illustrate this by an example. Recall the Equality function from Section 1.1.3 (also see
Figure 1.4). In this communication problem, Alice is given bits X1, . . . ,Xn and Bob is given
bits Y1, . . . ,Yn. There goal is to decide whether Xi = Yi for all i ∈ [n]. The Equality function
is in fact composition of NORn and XOR2, as shown in Figure 2.1.
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EQUALITYn =

NOR

XOR2 XOR2

X1 Y1 YnXn

·········

Fig. 2.1 The EQUALITY function on n-bits. The bits X1, . . . ,Xn are with Alice and bits
Y1, . . . ,Yn are with Bob.

Another extremely important function in communication complexity is the Disjointness
function. We already discusses the importance of this function in the last chapter. In this
problem Alice and Bob view their inputs, (X1, . . . ,Xn) and (Y1, . . . ,Yn) respectively, as subsets
of [n], and they wish to output −1 if their sets are disjoint and 1 otherwise. The Disjointness
problem is also a composed Boolean function as shown in Figure 2.2.

DISJn =

NOR

AND2 AND2

X1 Y1 YnXn

·········

Fig. 2.2 The Disjointness function on n-bits. The bits X1, . . . ,Xn are with Alice and bits
Y1, . . . ,Yn are with Bob.

Observe that AND2 or XOR2 are the only non-constant functions on two bits, upto
negations. Composed Boolean functions that represent communication problems and have
their inner function as AND2 (XOR2) are are called AND functions (XOR functions).

Sometimes it becomes important to distinguish a Boolean function from a communication
problem. For instance, AND2 can be viewed both as a Boolean function and a communication
problem. In order to avoid confusion we use the terminology of “two-party functions” when it
is not clear from context whether we are thinking of a particular function as a communication
problem or not.

Definition 2.5 (Two-party function). We call a function G : {−1,1} j ×{−1,1}k →{−1,1}
a two-party function to indicate that it corresponds to a communication problem in which
Alice is given input x ∈ {−1,1} j, Bob is given input y∈ {−1,1}k, and their task is to compute
G(x,y).
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2.2.3 Classes of Boolean functions based on symmetry

We define two special classes of Boolean functions that are very well studies: Symmetric
and Transitive functions.

Definition 2.6 (Symmetric functions). A function f : {0,1}n →{−1,1} is symmetric if for
all σ ∈ Sn and for all x ∈ {0,1}n we have f (x) = f (σ(x)).

It is easy to verify that a function is Symmetric if and only if the function only depends
on the Hamming weight of its input. Important examples of Symmetric function are ANDn,
ORn, and Parity function on n-bits (see Equation 2.1).

Transitive functions can be seen as a natural generalization of Symmetric functions.

Definition 2.7 (Transitive functions). A function f : {0,1}n →{−1,1} is transitive if for all
i, j ∈ [n] there exists a permutation σ ∈ Sn such that

• σ(i) = j, and

• f (x) = f (σ(x)) for all x ∈ {0,1}n.

A prominent example of a transitive function is the Inner Product function.

Definition 2.8 (Inner Product function). For every positive integer n, define the function
IPn : {0,1}n ×{0,1}n →{−1,1} by

IPn(x,y) = ⟨x,y⟩.

In other words, IPn = PARITYn ◦AND2.

2.3 VC Dimension

Vapnik and Chervonenkis [146] introduced the measure Vapnik-Chervonenkis dimension or
VC dimension for set systems in the context of statistical learning theory. VC dimension
has been one of the fundamental measures for quantifying complexity of a collection of
subsets and has found numerous connections and applications in many different areas like
approximation algorithms, discrete and combinatorial geometry, computational geometry,
discrepancy theory and many other areas [111, 44, 122, 112].

Definition 2.9. Let S be a collection of subsets of a universe U . For a subset y of U , we
define

S |y := {y∩ x : x ∈ S } .
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We say a subset y of U is shattered by S if S |y = 2y, where 2y denotes the power set of
y. Vapnik–Chervonenkis (VC) dimension of S , denoted as VC-dim(S ), is the size of the
largest subset y of U shattered by S .
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Quantum Learning Theory





Chapter 3

Exact learning of Fourier sparse
functions

3.1 Introduction

Recall the setting of distribution dependent learning from Section 1.1.2 for learning a concept
C of {−1,1}-valued functions defined on domain size of N. Bshouty and Jackson [33]
generalized the classical setup of learning through uniform examples to quantum setting
setting by allowing coherent quantum examples. A learner is given access to quantum
example for concept c ∈ C w.r.t. distribution D. This is the following (⌈logN⌉+1)-qubit
state:

∑
x∈[N]

√
D(x)|x,c(x)⟩.

An (ε,δ )-learner for the concept class C w.r.t. D is an algorithm that, for every possible
target concept c ∈ C , produces a hypothesis h : [N]→{−1,1} such that with probability at
least 1−δ (over the randomness of the learner and the examples for the target concept c),
h’s generalization error is at most ε:

Pr
x∼D

[c(x) ̸= h(x)]≤ ε.

In particular, Bshouty and Jackson showed that the concept class of DNF-formulas
can be learned in polynomial time from quantum examples under the uniform distribution
(i.e. D(x) = 1/2n for all x ∈ [N]), something we do not know how to do classically (the
best classical upper bound is quasi-polynomial time [147]). The key to this improvement
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is the ability to obtain, from a uniform quantum example, a sample S ∼ ĉ(S)2 distributed
according to the squared Fourier coefficients of c 1. This Fourier sampling, originally
due to Bernstein and Vazirani [23], is very powerful. For example, if C is the class of
linear functions on {0,1}n (see Definition 2.1), then the unknown target concept c is a
character function χS(x) = (−1)⟨x,y⟩; its only non-zero Fourier coefficient is ĉ(S) hence
one Fourier sample gives us the unknown S with certainty. In contrast, learning linear
functions from classical uniform examples requires Θ(n) examples. Another example where
Fourier sampling is proven powerful is in learning the class of ℓ-juntas on n bits. Atıcı
and Servedio [15] showed that (logn)-juntas can be exactly learned under the uniform
distribution in time polynomial in n. Classically it is a long-standing open question if a
similar result holds when the learner is given uniform classical examples (the best known
algorithm runs in quasi-polynomial time [116]). These cases (and others surveyed in [11])
show that uniform quantum examples (and in particular Fourier sampling) can be more
useful than classical examples. However, this is not the case in Valiant’s PAC-learning
model [145] of distribution-independent learning. There we require the same learner to be
an (ε,δ )-learner for C w.r.t. every possible distribution D. One can show in this model
(and also in the broader model of agnostic learning) that the quantum and classical sample
complexities are equal up to a constant factor [12].

We now define the concept class that we want to learn. In this chapter we consider
learning the concept class C of k-Fourier-sparse Boolean functions:

C = {c : {0,1}n →{−1,1} : |supp(ĉ)| ≤ k},

where supp(ĉ) is the number of non-zero Fourier coefficients in the Fourier spectrum of c.
This is a natural generalization of the case of learning linear functions (Definition 2.1), which
corresponds to k = 1. It also generalizes the case of learning ℓ-juntas (Definition 2.2) on n
bits, which are functions of sparsity k = 2ℓ. Variants of the class of k-Fourier-sparse functions
have been well-studied in the area of sparse recovery, where the goal is to recover a k-sparse
vector x ∈RN given a low-dimensional linear sketch Ax for a so-called “measurement matrix”
matrix A ∈ Rm×N . See [81, 90] for some upper bounds on the size of the measurement
matrix that suffice for sparse recovery. Closer to what we discuss in this chapter, there
has been extensive work on learning the concept class of n-bit real-valued functions that
are k-sparse in the Fourier domain. In this direction Cheraghchi et al. [45] showed that
O(nk(logk)3) uniform examples suffice to learn this concept class, improving upon the
works of Bourgain [27], Rudelson and Vershynin [130] and Candés and Tao [37].

1See Section 2.1 for an introduction to Fourier analysis of Boolean functions



3.1 Introduction 35

Furthermore, we focus on exactly learning the target concept from uniform examples,
with high success probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. A uniform
quantum example for a concept c ∈ C is the quantum state

1√
2n ∑

x∈{0,1}n

|x,c(x)⟩.

The goal, thus, is to exactly learn c ∈ C given uniform qauntum examples from c of the form
(x,c(x)) where x is drawn from the uniform distribution on {0,1}n.

Haviv and Regev [84] considered learning this concept class and showed the following
results.

Theorem 3.1 (Corollary 3.6 of [84]). For every n > 0 and k ≤ 2n, the number of uniform
examples that suffice to learn C with probability 1−2−Ω(n logk) is O(nk logk).

Theorem 3.2 (Theorem 3.7 of [84]). For every n > 0 and k ≤ 2n, the number of uniform
examples necessary to learn C with constant success probability is Ω(k(n− logk)).

3.1.1 Results and Organization

Our main results in this section are about the number of uniform quantum examples that are
necessary and sufficient to exactly learn the class C of k-Fourier-sparse functions.

As we already saw, Haviv and Regev [84] showed that for classical learners O(nk logk)
uniform examples suffice to learn k-Fourier-sparse functions, and Ω(nk) uniform exam-
ples are necessary. In Section 3.3 we study the number of uniform quantum examples
needed to learn k-Fourier-sparse Boolean functions, and show that it is upper bounded by
O(k1.5(logk)2). For k ≪ n2 this quantum bound is much better than the number of uniform
examples used in the classical case.

Proving the upper bound is done in two phases. In the first phase we use the fact
that a uniform quantum example allows us to Fourier-sample the target concept and, with
some Fourier analysis of k-Fourier-sparse functions, we learn the Fourier span using O(rk)
examples, where r is the Fourier dimension of the target concept (see Section 3.2 for the
definition of Fourier dimension). The main upper bound theorem of this chapter is stated
below.

Theorem 3.3. For every n > 0 and k ≤ 2n, the number of uniform quantum examples that
suffice to learn C with probability ≥ 2/3 is O(k1.5(logk)2).
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In the theorem below (Section 3.3.2) we prove the following (non-matching) lower bound
on the number of uniform quantum examples necessary to learn C using techniques from
quantum information theory.

Theorem 3.4. For every n, constant c ∈ (0,1) and k ≤ 2cn, the number of uniform quantum
examples necessary to learn the class of k-Fourier-sparse Boolean functions, with success
probability ≥ 2/3, is Ω(k logk).

3.2 Preliminaries

Notation. For an n-dimensional vector space, the standard basis vectors are {ei ∈ {0,1}n |
i ∈ [n]}, where ei is the vector with a 1 in the ith coordinate and 0s elsewhere. For x ∈ {0,1}n

and i ∈ [n], let xi be the input obtained by flipping the ith bit in x.

For a Boolean function f : {0,1}n → {−1,1} and B ∈ Fn×n
2 , define f ◦B : {0,1}n →

{−1,1} as ( f ◦B)(x) := f (Bx), where the matrix-vector product Bx is over F2. Throughout
this paper, the rank of a matrix B ∈ Fn×n

2 will be taken over F2. Let B1, . . . ,Bn be the columns
of B.

Recall from Section 2.1 the basic setup of Fourier analysis of Boolean functions. Every
f : {0,1}n → R can be written uniquely as

f (x) = ∑
S∈{0,1}n

f̂ (S)χS(x) for all x ∈ {0,1}n,

where χS(x) = (−1)∑
n
i=1 Sixi mod 2 and f̂ (S) = ⟨ f ,χS⟩ = Ex[ f (x)χS(x)] is called a Fourier

coefficient of f . For i ∈ [n], we write f̂ (ei) as f̂ (i) for notational convenience. Parseval’s
identity states that ∑S∈{0,1}n f̂ (S)2 = Ex[ f (x)2]. If f has range {−1,1}, then Parseval gives

∑S∈{0,1}n f̂ (S)2 = 1, so { f̂ (S)2}S∈{0,1}n forms a probability distribution. The Fourier weight
of function f on S ⊆ {0,1}n is defined as ∑S∈S f̂ (S)2.

For f : {0,1}n → R, the Fourier support of f is supp( f̂ ) = {S : f̂ (S) ̸= 0}. The Fourier
sparsity of f is |supp( f̂ )|. The Fourier span of f , denoted Fspan( f ), is the span of supp( f̂ ).
The Fourier dimension of f , denoted Fdim( f ), is the dimension of the Fourier span. We say
f is k-Fourier-sparse if |supp( f̂ )| ≤ k.

3.2.1 Some structural results

We now state a number of known structural results about Fourier coefficients and dimension.
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Theorem 3.5 ([133]). The Fourier dimension of a k-Fourier-sparse f : {0,1}n →{−1,1} is
O(

√
k logk).

Lemma 3.6 ([71, Theorem 12]). Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse
Boolean function f : {0,1}n →{−1,1} are integer multiples of 21−⌊logk⌋.

Definition 3.7. Let f : {0,1}n →{−1,1} and suppose B ∈ Fn×n
2 is invertible. Define fB as

fB(x) = f ((B−1)Tx).

Lemma 3.8. Let f : {0,1}n → R and suppose B ∈ Fn×n
2 is invertible. Then the Fourier

coefficients of fB are f̂B(Q) = f̂ (BQ) for all Q ∈ {0,1}n.

Proof. Write out the Fourier expansion of fB:

fB(x) = f ((B−1)Tx)

= ∑
S∈{0,1}n

f̂ (S)(−1)S·((B−1)Tx)

= ∑
S∈{0,1}n

f̂ (S)(−1)(B
−1S)·x

= ∑
Q∈{0,1}n

f̂ (BQ)(−1)Q·x,

where the third equality used ⟨S,(B−1)Tx⟩ = ⟨B−1S,x⟩ and the last used the substitution
S = BQ.

An easy consequence is the next lemma:

Lemma 3.9. Let f : {0,1}n →{−1,1}, and B ∈ Fn×n
2 be an invertible matrix such that the

first r columns of B are a basis of the Fourier span of f , and f̂ (B1), . . . , f̂ (Br) are non-zero.
Then

1. The Fourier span of f̂B is spanned by {e1, . . . ,er}, i.e., fB has only r influential vari-
ables.

2. For every i ∈ [r], f̂B(i) ̸= 0.

Here is the well-known fact, already mentioned in the introduction, that one can Fourier-
sample from uniform quantum examples:
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Lemma 3.10. Let f : {0,1}n → {−1,1}. There exists a procedure that uses one uniform
quantum example and satisfies the following: with probability 1/2 it outputs an S drawn
from the distribution { f̂ (S)2}S∈{0,1}n , otherwise it rejects.

Proof. Using a uniform quantum example 1√
2n ∑x |x, f (x)⟩, one can obtain 1√

2n ∑x f (x)|x⟩
with probability 1/2: unitarily replace f (x) ∈ {−1,1} by (1− f (x))/2 ∈ {0,1}, apply the
Hadamard transform to the last qubit and measure it. With probability 1/2 we obtain
the outcome 0, in which case our procedure rejects. Otherwise the remaining state is

1√
2n ∑x f (x)|x⟩. Apply Hadamard transforms to all n qubits to obtain ∑S f̂ (S)|S⟩. Measuring

this quantum state gives an S with probability f̂ (S)2.

Information theory. We refer to [47] for a comprehensive introduction to classical in-
formation theory, and here just remind the reader of the basic definitions. A random vari-
able A with probabilities Pr[A = a] = pa has entropy H(A) :=−∑a pa log(pa). For a pair
of (possibly correlated) random variables A,B, the conditional entropy of A given B, is
H(A | B) := H(A,B)−H(B). This equals Eb∼B[H(A | B = b)]. The mutual information
between A and B is I(A : B) := H(A)+H(B)−H(A,B) = H(A)−H(A | B). The binary
entropy H(p) is the entropy of a bit with distribution (p,1− p). If ρ is a density matrix
(i.e., a trace-1 positive semi-definite matrix), then its singular values form a probability
distribution P, and the von Neumann entropy of ρ is S(ρ) := H(P). We refer to [120, Part III]
for a more extensive introduction to quantum information theory.

3.3 Exact learning of k-Fourier-sparse functions

Our first theorem of this section (Section 3.3.1) gives an upper bound on the number of
uniform quantum examples that are sufficient to learn C by giving a learning algorithm.

Theorem 3.11 (Restatement of Theorem 3.3). For every n > 0 and k ≤ 2n, the number of
uniform quantum examples that suffice to learn C with probability ≥ 2/3 is O(k1.5(logk)2).

The learning algorithm has two phases: Phase 1 is described in Section 3.3.1 and Phase 2
is discussed in Section 3.3.1.

3.3.1 Upper bound on learning k-Fourier-sparse Boolean functions

We split our quantum learning algorithm into two phases. Suppose c ∈ C is the unknown
concept, with Fourier dimension r. In the first phase the learner uses samples from the
distribution {ĉ(S)2}S∈{0,1}n to learn the Fourier span of c. In the second phase the learner
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uses uniform classical examples to learn c exactly, knowing its Fourier span. Phase 1 uses
O(k(logk)2) uniform quantum examples (for Fourier-sampling) and Phase 2 uses O(rk logk)
uniform classical examples. Note that since r ≥ logk, Phase 2 of our learner is always at
least as expensive as Phase 1.

Theorem 3.12. Let k,r > 0. There exists a quantum learner that exactly learns (with high
probability) an unknown k-Fourier-sparse c : {0,1}n → {−1,1} with Fourier dimension
upper bounded by some known r, from O(rk logk) uniform quantum examples.

The learner may not know the exact Fourier dimension r in advance, but Theorem 3.5
gives an upper bound r = O(

√
k logk), so our Theorem 3.11 follows immediately from

Theorem 3.12.

Before we prove this Theorem 3.12, we first give a “trivial” algorithm for learning the
Fourier support of Fourier-sparse functions quantumly. Gopalan et al. [71] showed that every
k-Fourier-sparse Boolean function is “2−⌈logk⌉-granular”, i.e., every Fourier coefficient of
a k-Fourier-sparse Boolean function c is either 0 or an integer multiple of 2−⌈logk⌉. Using
this observation, if one is allowed to Fourier-sample from c, then each S with non-zero
ĉ(S) will be observed with probability Ω(1/k2), and using a coupon collector argument,
we obtain the entire Fourier support using O(k2 logk) many Fourier-samples. Our main
contribution in Theorem 3.12 is to use the Fourier dimension in order to improve this trivial
quantum algorithm. In particular observe that for functions with Fourier dimension logk
(such as (logk)-juntas), the theorem above scales as O(k log2 k) which is better than the
trivial algorithm by a factor of nearly k.

Phase 1: Learning the Fourier span

In this phase of the algorithm our goal is to learn the r-dimensional Fourier span of the
k-Fourier-sparse target concept c, using O(rk) Fourier-samples. The algorithm is very
simple: Fourier-sample more and more S’s and keep track of their span; stop when we reach
dimension r. The key is the following technical lemma, which says that if our current span
V ′ does not yet equal the full Fourier span V , then there is significant Fourier weight outside
of V ′. This implies that a small expected number of additional Fourier-samples will give us
an S ∈V \V ′, which will grow our current span. After r such grow-steps we have learned the
full Fourier span.

Lemma 3.13. Let V ⊆{0,1}n be the r-dimensional Fourier span of k-Fourier-sparse function
c : {0,1}n →{−1,1}, and V ′ ⊆V be a proper subspace. Then ∑S∈V\V ′ ĉ(S)2 ≥ 1/k.
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Proof. Let us assume the worst case, which is that dim(V ′) = r − 1. Because we can
do an invertible linear transformation on c as in Lemma 3.8, we may assume without
loss of generality that the one “missing” dimension corresponds to the variable xr (i.e.,
V = span{(}V ′∪{er})). Let g be the (not necessarily Boolean-valued) part of c with Fourier
coefficients in V ′:

g(x) := ∑
S∈V ′

ĉ(S)χS(x).

Suppose, towards a contradiction, that the Fourier weight W := ∑S∈V\V ′ ĉ(S)2 is < 1/k. This
implies that c and g have the same sign on every x ∈ {0,1}n, as follows (using Cauchy-
Schwarz):

|c(x)−g(x)|=

∣∣∣∣∣ ∑
S∈V\V ′

ĉ(S)χS(x)

∣∣∣∣∣≤√
kW < 1.

Since c depends on the variable xr, there exists an x ∈ {0,1}n where xr is influential, i.e.,
c(x) ̸= c(xr). But g is independent of xr, which implies c(x) = sgn(g(x)) = sgn(g(xr)) =

c(xr), a contradiction. Hence W ≥ 1/k.

We now conclude Phase 1 by presenting a quantum learning algorithm that learns the
Fourier span of an unknown r-dimensional c ∈ C , given uniform quantum examples for c.

Theorem 3.14. Let k,r > 0. There exists a quantum learner that uses uniform quantum
examples for an unknown k-Fourier-sparse c : {0,1}n →{−1,1} with Fourier dimension r.
After processing each new quantum example it outputs a subspace of the Fourier span of c.
This sequence of subspaces is non-decreasing, and after an expected number of at most 2rk
quantum examples, the output equals the Fourier span of c.

This quantum learner can actually run forever, but if we know the Fourier dimension
r of c, or an upper bound r on the actual Fourier dimension (e.g., by Theorem 3.5), then
we can stop the learner after processing 6rk examples; now, by Markov’s inequality, with
probability ≥ 2/3 the last subspace will be the Fourier span of c.

Proof. In order to learn the Fourier span of c, the quantum learner simply takes Fourier-
samples until they span an r-dimensional space. Since we can generate a Fourier-sample
from an expected number of 2 uniform quantum examples (by Lemma 3.10), the expected
number of uniform quantum examples needed is at most twice the expected number of
Fourier-samples. If our current sequence of Fourier-samples spans an r′-dimensional space
V ′, with r′ < r, then Lemma 3.13 implies that the next Fourier-sample has probability at least
1/k of yielding an S ̸∈V ′. Hence an expected number of at most k Fourier-samples suffices
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to grow the dimension of V ′ by at least 1. Since we stop at dimension r, the overall expected
number of Fourier-samples is at most 2rk.

Phase 2: Learning the function completely

In the above Phase 1, the quantum learner obtains the Fourier span of c, which we will denote
by T . Using this, the learner can restrict to the following concept class

C ′ = {c : {0,1}n →{−1,1} | c is k-Fourier-sparse with Fourier span T }

Let dim(T ) = r. Let B ∈ Fn×n
2 be an invertible matrix whose first r columns form a basis

for T . Consider cB = c◦ (B−1)T for c ∈ C ′. By Lemma 3.9 it follows that cB depends on
only its first r bits, and we can write cB : {0,1}r →{−1,1}. Hence the learner can apply the
transformation c 7→ c◦ (B−1)T for every c ∈ C ′ and restrict to the concept class

C ′
r = {c′ : {0,1}r →{−1,1} | c′ = c◦ (B−1)T for some c ∈ C ′ and invertible B}.

We now conclude Phase 2 of the algorithm by invoking the classical upper bound of Haviv-
Regev (Theorem 3.1) which says that O(rk logk) uniform classical examples of the form
(z,c′(z)) ∈ {0,1}r+1 suffice to learn C ′

r . Although we assume our learning algorithm has
access to uniform examples of the form (x,c(x)) for x ∈ {0,1}n, the quantum learner knows
B and hence can obtain a uniform example (z,c′(z)) for c′ by letting z be the first r bits of
BTx and c′(z) = c(x).

3.3.2 Lower bound on learning k-Fourier-sparse Boolean functions

In this section we show that Ω(k logk) uniform quantum examples are necessary to learn the
concept class of k-Fourier-sparse Boolean functions.

Theorem 3.15. [Restatemet of Theorem 3.4] For every n, constant c ∈ (0,1) and k ≤ 2cn,
the number of uniform quantum examples necessary to learn the class of k-Fourier-sparse
Boolean functions, with success probability ≥ 2/3, is Ω(k logk).

Proof. Assume for simplicity that k is a power of 2, so logk is an integer. We prove the lower
bound for the following concept class, which was also used for the classical lower bound
of Haviv and Regev [84]: let V be the set of distinct subspaces in {0,1}n with dimension
n− logk and

C = {cV : {0,1}n →{−1,1} | cV (x) =−1 iff x ∈V, where V ∈ V }.
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Note that every function in C has Fourier sparsity at most k, |C | = |V |, and each cV ∈ C

evaluates to 1 on a (1−1/k)-fraction of its domain.

We prove the lower bound for C using a three-step information-theoretic technique. A
similar approach was used in proving classical and quantum PAC learning lower bounds
in [12]. Let A be a random variable that is uniformly distributed over C . Suppose A = cV ,
and let B = B1 . . .BT be T copies of the quantum example

|ψV ⟩=
1√
2n ∑

x∈{0,1}n

|x,cV (x)⟩

for cV . The random variable B is a function of the random variable A. The following upper
and lower bounds on I(A : B) are similar to [12, proof of Theorem 12] and we omit the
details of the first two steps here.

1. I(A : B)≥ Ω(log |V |) because B allows one to recover A with high probability.

2. I(A : B)≤ T · I(A : B1) using a chain rule for mutual information.

3. I(A : B1)≤ O(n/k).

Proof (of 3). Since AB is a classical-quantum state, we have

I(A : B1) = S(A)+S(B1)−S(AB1) = S(B1),

where the first equality is by definition and the second equality uses S(A) = log |V |
since A is uniformly distributed over C , and S(AB1) = log |V | since the matrix

σ =
1
|V | ∑

V∈V

|V ⟩⟨V |⊗ |ψV ⟩⟨ψV |

is block-diagonal with |V | rank-1 blocks on the diagonal. It thus suffices to bound the
entropy of the (vector of singular values of the) reduced state of B1, which is

ρ =
1
|V | ∑

V∈V

|ψV ⟩⟨ψV |.

Let σ0 ≥ σ1 ≥ ·· · ≥ σ2n+1−1 ≥ 0 be the singular values of ρ . Since ρ is a density
matrix, these form a probability distribution. Now observe that σ0 ≥ 1− 1/k since
the inner product between 1√

2n ∑x∈{0,1}n |x,1⟩ and every |ψV ⟩ is 1− 1/k. Let N ∈
{0,1, . . . ,2n+1 −1} be a random variable with probabilities σ0,σ1, . . . ,σ2n+1−1, and Z
an indicator for the event “N ̸= 0.” Note that Z = 0 with probability σ0 ≥ 1−1/k, and
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H(N | Z = 0) = 0. By a similar argument as in [12, Theorem 15], we have

S(ρ) = H(N) = H(N,Z) = H(Z)+H(N | Z)

= H(σ0)+σ0 ·H(N | Z = 0)+(1−σ0) ·H(N | Z = 1)

≤ H
(1

k

)
+

n+1
k

≤ O
(n+ logk

k

)
using H(α)≤ O(α log(1/α)).

Combining these three steps implies T = Ω(k(log |V |)/n). It remains to lower bound |V |.

Claim 3.16. The number of distinct d-dimensional subspaces of Fn
2 is at least 2Ω((n−d)d).

Proof. We can specify a d-dimensional subspace by giving d linearly independent vectors
in it. The number of distinct sequences of d linearly independent vectors is exactly (2n −
1)(2n − 2)(2n − 4) · · ·(2n − 2d−1), because once we have the first t linearly independent
vectors, with span St , then there are 2n −2t vectors that do not lie in St .

However, we are double-counting certain subspaces in the argument above, since there
will be multiple sequences of vectors yielding the same subspace. The number of sequences
yielding a fixed d-dimensional subspace can be counted in a similar manner as above and we
get (2d −1)(2d −2)(2d −4) · · ·(2d −2d−1). So the total number of subspaces is

(2n −1)(2n −2) · · ·(2n −2d−1)

(2d −1)(2d −2) · · ·(2d −2d−1)
≥ (2n −2d−1)d

(2d −1)d ≥ 2Ω((n−d)d).

Combining this claim (with d = n− logk) and T =Ω(k(log |V |)/n) gives T =Ω(k logk).

3.4 Summary

In this chapter we studied quantum exact learning of the class of Boolean functions with
Fourier sparsity at most k. Using Fourier sampling we gave a learning algorithm for this
problem that uses O(k1.5 logk) samples. This algorithm has two phases. The first phase
involved learning of Fourier span of the concept class and the second phase invoked the
classical algorithm using the result of the first phase. We also gave a non-matching lower
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bound on the number of uniform quantum examples to learn the class of k-Fourier sparse
functions.



Chapter 4

Exact learning from membership queries

4.1 Introduction

We now consider the model of active learning or learning through membership queries which
we introduced in Section 1.1.2. We start by recalling the model. Note that, similar to the
last chapter, we are interested in exact learning. In this model the learner wants to exactly
learn an unknown target concept c : [N]→{−1,1} from a known concept class C , but now
the learner can choose which points of the truth-table of the target it sees, rather than those
points being chosen randomly. More precisely, the learner can query c(x) for any x of its
choice. This is called a membership query: think of the set {x | c(x) = 1} corresponding
to the target concept: a membership query asks whether x is a member of this set or not.
Quantum algorithms have the following query operation available:

Oc : |x,b⟩ 7→ |x,b · c(x)⟩,

where b ∈ {−1,1}.

For some concept classes, quantum membership queries can be much more useful
than classical. Consider again the class linear functions on {0,1}n (see Definition 2.1).
Using one query to a uniform superposition over all x and doing a Hadamard transform, we
can Fourier-sample and hence learn the target concept exactly. In contrast, Θ(n) classical
membership queries are necessary and sufficient for classical learners. As another example,
consider the concept class C = {δi | i ∈ [N]} of the N point functions, where δi(x) =−1 iff
i = x. Elements from this class can be learned using O(

√
N) quantum membership queries
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by Grover’s algorithm, while every classical algorithm needs to make Ω(N) membership
queries.

For a given concept class C of ±1-valued function on [N], let D(C ) denote the minimal
number of classical membership queries needed for learners that can exactly identify every
c ∈ C with success probability 1 (such learners are deterministic without loss of generality).
Let R(C ) and Q(C ) denote the minimal number of classical and quantum membership
queries, respectively, needed for learners that can exactly identify every c ∈ C with error
probability ≤ 1/3.1 Servedio and Gortler [136] showed that these quantum and classical
measures cannot be too far apart. First, using an information-theoretic argument they showed

Q(C )≥ Ω

(
log |C |
logN

)
.

Intuitively, this holds because a learner recovers roughly log |C | bits of information, while
every quantum membership query can give at most O(logN) bits of information. Note that
this is tight for the class of linear functions, where the left- and right-hand sides are both
constant. Second, using the so-called hybrid method they showed

Q(C )≥ Ω(1/
√

γ(C )),

for some combinatorial parameter γ(C ) that we will not define here (but which is 1/N for
the class C of point functions, hence this inequality is tight for that C ). They also noted the
following upper bound:

D(C ) = O
(

log |C |
γ(C )

)
.

Combining these three inequalities yields the following relation between D(C ) and Q(C )

D(C )≤ O(Q(C )2 log |C |)≤ O(Q(C )3 logN). (4.1)

This shows that, up to a logN-factor, quantum and classical membership query complexities
of exact learning are polynomially close. While each of the three inequalities that together
imply (4.1) can be individually tight (for different C ), this does not imply (4.1) itself is tight.

1We can identify each concept with a string c ∈ {−1,1}N , and hence C ⊆ {−1,1}N . The goal is to learn
the unknown c ∈ C with high probability using few queries to the corresponding N-bit string. This setting is
also sometimes called “oracle identification” in the literature; see [11, Section 4.1] for more references.
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4.1.1 Results and Organization

Note that Eq. (4.1) upper bounds the membership query complexity of deterministic classical
learners. We are not aware of a stronger upper bound on bounded-error classical learners.
However, in Section 4.3 we tighten that bound further by a logQ(C )-factor:

R(C )≤ O
(

Q(C )2

logQ(C )
log |C |)

)
≤ O

(
Q(C )3

logQ(C )
logN

)
.

Note that this inequality is tight both for the class of linear functions and for the class of
point functions.

Our proof combines the quantum adversary method [7, 18, 142] with an entropic argu-
ment to show that we can always find a query whose outcome (no matter whether it’s 0 or 1)
will shrink the concept class by a factor ≤ 1− logQ(C )

Q(C )2 . While our improvement over the
earlier bounds is not very large, we feel our usage of entropy to save a log-factor is new and
may have applications elsewhere. We formally state the main theorem of this chapter below
(see Section 4.3).

Theorem 4.1. Let C ⊆ {0,1}N be a concept class and

ADV(C ) = max
Γ≥0

∥ Γ ∥/max
i∈[N]

∥ Γ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C . Then

there exists a classical learner for C using O
(

ADV(C )2

logADV(C )
log |C |

)
membership queries

that identifies the target concept with probability ≥ 2/3.

We start by describing some preliminaries needed for this chapter in the next section.

4.2 Preliminaries

We refer to the preliminaries of the last chapter for the relevant tools from information theory.
The operator norm of a matrix A is the largest singular value of A and is denoted by ∥ A ∥.
For two matrices A and B of same dimensions, A◦B denotes the matrix obtained by taking
the entry-wise product of A and B.

A key tool here will be the (“nonnegative” or “positive-weights”) adversary method.
This was introduced by Ambainis [7]; here we will use the formulation of Barnum et al. [18],
which is called the “spectral adversary” in the survey [142].
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Let C ⊆ {0,1}N be a set of strings. If N = 2n then we may view such a string c ∈ C as
(the truth-table of) an n-bit Boolean function, but in this chapter we do not need the additional
structure of functions on the Boolean cube and may consider any positive integer N. Suppose
we want to identify an unknown c ∈ C with success probability at least 2/3 (i.e., we want to
compute the identity function on C ). The required number of quantum queries to c can be
lower bounded as follows. Let Γ be a |C |× |C | matrix with real, nonnegative entries and
0s on the diagonal (called an “adversary matrix”). Let Di denote the |C |× |C | 0/1-matrix
whose (c,c′)-entry is [ci ̸= c′i].

2 Then it is known that at least (a constant factor times)
∥ Γ ∥/maxi∈[N] ∥ Γ◦Di ∥ quantum queries are needed. Let

ADV(C ) = max
Γ≥0

∥ Γ ∥
maxi∈[N] ∥ Γ◦Di ∥

denote the best-possible lower bound on Q(C ) that can be achieved this way.

4.3 Proof of Theorem 4.1

Our goal is to simulate quantum exact learners for a concept class C by classical exact
learners, without using many more membership queries. The key to our classical simulation
is the next lemma. It shows that if Q(C ) (and hence ADV(C )) is small, then there is a query
that splits the concept class in a “mildly balanced” way.

Lemma 4.2. Let C ⊆ {0,1}N be a concept class and

ADV(C ) = max
Γ≥0

∥ Γ ∥/max
i∈[N]

∥ Γ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C . Let
µ be a distribution on C such that maxc∈C µ(c)≤ 5/6. Then there exists an i ∈ [N] such that

min(µ(Ci = 0),µ(Ci = 1))≥ 1
36ADV(C )2 .

Proof. Define unit vector v ∈ R|C |
+ by vc =

√
µ(c), and adversary matrix

Γ = vv∗−diag(µ),

2The bracket-notation [P] denotes the truth-value of proposition P.
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where diag(µ) is the diagonal matrix that has the entries of µ on its diagonal. This Γ is a
nonnegative matrix with 0 diagonal (and hence a valid adversary matrix for the exact learning
problem), and ∥ Γ ∥ ≥ ∥ vv∗ ∥−∥ diag(µ) ∥ ≥ 1−5/6 = 1/6. Abbreviate A = ADV(C ). By
definition of A, we have for this particular Γ

A ≥ ∥ Γ ∥
maxi ∥ Γ◦Di ∥

≥ 1
6maxi ∥ Γ◦Di ∥

,

hence there exists an i ∈ [N] such that ∥ Γ◦Di ∥ ≥ 1
6A . We can write v =

(
v0

v1

)
where the

entries of v0 are the ones corresponding to Cs where Ci = 0, and the entries of v1 are the ones
where Ci = 1. Then

Γ =

(
v0v∗0 v0v∗1
v1v∗0 v1v∗1

)
−diag(µ) and Γ◦Di =

(
0 v0v∗1

v1v∗0 0

)
.

It is easy to see that ∥ Γ◦Di ∥= ∥ v0 ∥ · ∥ v1 ∥. Hence

1
36A2 ≤ ∥ Γ◦Di ∥2 = ∥ v0 ∥2∥ v1 ∥2 = µ(Ci = 0)µ(Ci = 1)≤ min(µ(Ci = 0),µ(Ci = 1)),

where the last inequality used max(µ(Ci = 0),µ(Ci = 1))≤ 1.

Note that if we query the index i given by this lemma and remove from C the strings
that are inconsistent with the query outcome, then we reduce the size of C by a factor
≤ 1−Ω(1/ADV(C )2). Repeating this O(ADV(C )2 log |C |) times would reduce the size of
C to 1, completing the learning task. However, we will see below that analyzing the same
approach in terms of entropy gives a somewhat better upper bound on the number of queries.

Theorem 4.3. [Restatement of Theorem 4.1] Let C ⊆ {0,1}N be a concept class and

ADV(C ) = max
Γ≥0

∥ Γ ∥/max
i∈[N]

∥ Γ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C . Then

there exists a classical learner for C using O
(

ADV(C )2

logADV(C )
log |C |

)
membership queries

that identifies the target concept with probability ≥ 2/3.

Proof. Fix an arbitrary distribution µ on C . We will construct a deterministic classical
learner for C with success probability ≥ 2/3 under µ . Since we can do this for every µ , the
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“Yao principle” [153] then implies the existence of a randomized learner that has success
probability ≥ 2/3 for every c ∈ C .

Consider the following algorithm, whose input is an N-bit random variable C ∼ µ:

1. Choose an i that maximizes H(Ci) and query that i.3

2. Update C and µ by restricting to the concepts that are consistent with the query
outcome.

3. Goto 1.

The queried indices are themselves random variables, and we denote them by I1, I2, . . .. We
can think of t steps of this algorithm as generating a binary tree of depth t, where the different
paths correspond to the different queries made and their binary outcomes.

Let Pt be the probability that, after t queries, our algorithm has reduced µ to a distribution
that has weight ≥ 5/6 on one particular c:

Pt =

∑
i1,...,it∈[N], b∈{0,1}t

Pr[I1 = i1, . . . , It = it ,Ci1 . . .Cit = b] · [∃c ∈ C s.t. µ(c |Ci1 . . .Cit = b)≥ 5/6] .

Because restricting µ to a subset C ′ ⊆ C cannot decrease probabilities of individual c ∈ C ′,
this probability Pt is non-decreasing in t. Because N queries give us the target concept
completely, we have PN = 1. Let T be the smallest integer t for which Pt ≥ 5/6. We will run
our algorithm for T queries, and then output the c with highest probability under the restricted
version of µ we now have. With µ-probability at least 5/6, that c will have probability at
least 5/6 (under µ conditioned on the query-results). The overall error probability under µ is
therefore ≤ 1/6+1/6 = 1/3.

It remains to upper bound T . To this end, define the following “energy function” in terms
of conditional entropy:

Et = H(C |CI1 , . . . ,CIt )

= ∑
i1,...,it∈[N], b∈{0,1}t

Pr[I1 = i1, . . . , It = it ,Ci1 . . .Cit = b] ·H(C |Ci1 . . .Cit = b).

3Querying this i will give a fairly “balanced” reduction of the size of C irrespective of the outcome of the
query. If there are several maximizing is, then choose the smallest i to make the algorithm deterministic.
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Because conditioning on a random variable cannot increase entropy, Et is non-increasing in t.
We will show below that as long as Pt < 5/6, the energy shrinks significantly with each new
query.

Let Ci1 . . .Cit = b be such that there is no c ∈ C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6 (note
that this event happens in our algorithm with µ-probability 1−Pt). Let µ ′ be µ restricted
to the class C ′ of concepts c where ci1 . . .cit = b. The nonnegative adversary bound for
this restricted concept class is A′ = ADV(C ′)≤ ADV(C ) = A. Applying Lemma 4.2 to µ ′,
there is an it+1 ∈ [N] with p := min(µ ′(Cit+1 = 0),µ ′(Cit+1 = 1))≥ 1

36A′2 ≥ 1
36A2 . Note that

H(p)≥ Ω(log(A)/A2). Hence

H(C |Ci1 . . .Cit = b)−H(C |Ci1 . . .Cit = b,Cit+1)=H(Cit+1 |Ci1 . . .Cit = b)≥Ω(log(A)/A2).

This implies Et −Et+1 ≥ (1−Pt) ·Ω(log(A)/A2). In particular, as long as Pt < 5/6, the
(t +1)st query shrinks Et by at least 1

6Ω(log(A)/A2) = Ω(log(A)/A2). Since E0 = H(C)≤

log |C | and Et cannot shrink below 0, there can be at most O
(

A2

logA
log |C |

)
queries before

Pt grows to ≥ 5/6.

Since ADV(C ) lower bounds Q(C ), Theorem 4.3 implies the bound on R(C ) of
O
(

Q(C )2

logQ(C ) log |C |)
)

claimed in our introduction. Note that this bound is tight up to a

constant factor for the class of N-bit point functions, where A = Θ(
√

N), |C | = N, and
R(C ) = Θ(N) classical queries are necessary and sufficient.

4.4 Summary

In this chapter we used quantum adversary method combined with entropic method to show
that the number of queries a deterministic learner needs to learn a class is at most (roughly)
quadratic of that of quantum learners for the same task. Our proofs went via adversary bound
and an entropic argument.





Chapter 5

Chang’s lemma and applications in
quantum learning

5.1 Introduction

Chang’s lemma [40] is a central result in additive combinatorics. This lemma has found
several applications in mathematics [40, 73, 132, 74, 75] and theoretical computer science
including complexity theory and algorithms [21, 39], analysis of Boolean functions [75, 143],
communication complexity [143, 86] and extremal combinatorics [63]. See [89] for a proof
of Chang’s lemma.

Chang’s lemma upper bounds the dimension of the span of the “large” Fourier coefficients.
We state the lemma below for the special case of Boolean functions.

Lemma 5.1 (Chang’s lemma). Let α ∈ (0,1) and ρ > 0. For every f : {0,1}n → {−1,1}
that satisfies f̂ (0n) = 1−2α , we have

dim(span{S : | f̂ (S)| ≥ ρα})≤ 2log(1/α)

ρ2 . (5.1)

Let us consider Chang’s lemma for a k-Fourier-sparse Boolean function f : {0,1}n →
{−1,1} of Fourier dimension r and let ρ ∈ (0,1]. In particular, consider the case ρα = 1/k.
In this case, since all elements of the Fourier support satisfy | f̂ (S)| ≥ 1/k by Lemma 3.6, the
left-hand side of Eq. (5.1) equals the Fourier dimension r of f . Thus Chang’s lemma gives

r ≤ 2α
2k2 logρk ≤ 2α

2k2 logk. (5.2)
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Our main result of this chapter gives an almost quadratic improvement of the above
upper bound on Fourier dimension, see Theorem 5.2.

Chang’s lemma is also connected to quantum learning which we now explain. Recall
Phase 1 of the learning algorithm from the Chapter 3, Section 3.3.1. Given a k-Fourier-sparse
function c, Phase 1 starts by finding an S ∈ supp(ĉ) such that S ̸= 0n. Lemma 3.13 implies
that an expected number of O(k) many Fourier-samples are sufficient to sample such an S.
Chang’s lemma gives tighter bound on the expected number of samples for this step. Observe
that Eqution 5.2 implies

∑
S ̸=0n

ĉ(S)2 = Ω

( √
r

k
√

logk

)
. (5.3)

Thus an expected number of O((k
√

logk)/
√

r) many Fourier-samples are sufficient to obtain
an S ∈ supp(ĉ) such that S ̸= 0n in Phase 1. This is already an improvement from what
Lemma 3.13 guaranteed. In Section 5.5, we improve this step of Phase 1. We also believe
that entire Phase 1 should have Õ(k) sample complexity. We give a concrete to achieve this
in the same section.

5.1.1 Results and Organization

In Section 5.3 of this chapter we give an improvement of Chang’s lemma for k-Fourier-sparse
Boolean functions:

Theorem 5.2. Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-sparse f : {0,1}n → {−1,1}
that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

r ≤ 2αk logk.

In a follow-up work [38], a further refinement of the above theorem was shown.

Theorem 5.3 ([38]). Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-sparse f : {0,1}n →
{−1,1} that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

r = O(
√

αk logk).

If α ≤ 1/k, then Theorem 5.3 gives a better bound on Fourier dimension than Theo-
rem 5.2. In Section 5.4, we show that Theorem 5.3 is essentially tight:
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Theorem 5.4. For all t ≥ 2, t ′ ≥ 4, there exists a Boolean function f of Fourier sparsity
1+ t2(t ′−1), Fourier dimension (t log t ′+ log t ′) and satisfies f̂ (0n) = 1−1/2t ′.

In Section 5.5 we describe a potential way to improve the Phase 1 of our learning
algorithm from Chapter 3

For convenience, we start by recalling some preliminaries from Chapter 3 along with
some other facts in the following section.

5.2 Preliminaries

Recall the basic notions of Fourier analysis from Section 2.1 and Section 3.2. Every f :
{0,1}n → R can be written uniquely as

f (x) = ∑
S∈{0,1}n

f̂ (S)χS(x) for all x ∈ {0,1}n,

where f̂ (S) is called a Fourier coefficient of f . If f has range {−1,1}, then Parseval identity
states that ∑S∈{0,1}n f̂ (S)2 = 1, so { f̂ (S)2}S∈{0,1}n forms a probability distribution.

For f : {0,1}n → R, the Fourier support of f is supp( f̂ ) = {S : f̂ (S) ̸= 0}. The Fourier
sparsity of f is |supp( f̂ )|. The Fourier span of f , denoted Fspan( f ), is the span of supp( f̂ ).
The Fourier dimension of f , denoted Fdim( f ), is the dimension of the Fourier span. We say
f is k-Fourier-sparse if |supp( f̂ )| ≤ k.

We need the notion of the Fourier weight of Boolean functions in this chapter. The
Fourier weight of function f on S ⊆ {0,1}n is defined as ∑S∈S f̂ (S)2. Define weight of a
function f , denoted by δ ( f ), to be the probability that the function is −1. The weight of f
has a natural connection with f̂ (φ):

Observation 5.5. Let f : {0,1}n →{−1,1} be any function. Then,

f̂ ( /0) = 1−2δ ( f ).

We require some known structural results about Fourier coefficients and dimension, for
which we refer the reader to Section 3.2.1. We reproduce some of these results here for
convenience.

Lemma 5.6 ([71, Theorem 12]). Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse
Boolean function f : {0,1}n →{−1,1} are integer multiples of 21−⌊logk⌋.
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Lemma 5.7. Let f : {0,1}n →{−1,1}, and B ∈ Fn×n
2 be an invertible matrix such that the

first r columns of B are a basis of the Fourier span of f , and f̂ (B1), . . . , f̂ (Br) are non-zero.
Then

1. The Fourier span of f̂B is spanned by {e1, . . . ,er}, i.e., fB has only r influential vari-
ables.

2. For every i ∈ [r], f̂B(i) ̸= 0.

For any function f : {0,1}n → {−1,1} and any real t > 0, define St := {S ⊆ [n] :
| f̂ (S)| ≥ 1/t}. Since Lemma 5.6 implies that Sk = supp( f̂ ), Theorem 5.2 and Theorem 5.3
can be seen as Chang’s lemma type bounds for a special choice of threshold. These theorems
give an upper bound on the dimension of Sk, where k is the Fourier sparsity of the Boolean
function under consideration. In the original spirit of Chang’s lemma, it is therefore natural
to consider thresholds other than 1/k. We define two such natural choice of thresholds next
that, to the best of our knowledge, were introduced in [38].

Definition 5.8. Let f : {0,1}n → {−1,1} be any function. Define the Fourier max-supp-
entropy of f , denoted k′( f ), by

k′( f ) := argmin
t

{St = supp( f )} .

Equivalently,

k′( f ) := max
S∈supp( f )

{
1

| f̂ (S)|

}
.

Define the Fourier max-rank-entropy of f , denoted k′′( f ), by

k′′( f ) := argmin
t

{dim(St) = r( f )} .

We do not study the above quantities in much in this thesis and refer the reader to [38] for
a detailed analysis of these quantities and relationships between them. However, for purpose
of completeness, we derive these quantities for the class of functions in Theorem 5.4.

5.3 Chang’s Lemma for Fourier-sparse functions

We start by restating Theorem 5.2 in the following convenient form.
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Theorem 5.9 (Restatement of Theorem 5.2). Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-
sparse f : {0,1}n →{−1,1} that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

f̂ (0n)≤ 1− r
k logk

.

Proof of Theorem 5.9. We first define the following notation. For U ⊆ [r], let f (U) be the
function obtained by fixing the variables {xi}i∈U in f to xi = (1+ sign( f̂ (i)))/2 for all i ∈U .
Note that fixing variables cannot increase Fourier sparsity. For i, j ∈ [r], define f (i) = f ({i})

and f (i j) = f ({i, j}). In this proof, for an invertible matrix B ∈ Fn×n
2 , we will often treat its

columns as a basis for the space Fn
2. Recall fB(x) = f ((B−1)T x) from Definition 3.7. We let

f (i)B be the function obtained by fixing xi = (1+ sign( f̂ (i)))/2 in the function fB.

The core idea in the proof of the theorem is the following structural lemma, which says
that there is a particular xi that we can fix in the function fB without decreasing the Fourier
dimension very much.

Lemma 5.10. For every k-Fourier-sparse Boolean function f : {0,1}n → {−1,1} with
Fdim( f ) = r, there exists an invertible matrix B ∈ Fn×n

2 and an index i ∈ [r] such that
Fdim( f (i)B )≥ r− logk and f̂B( j) ̸= 0 for all j ∈ [r].

We defer the proof of the lemma to later and first conclude the proof of the theorem
assuming the lemma. Consider the matrix B defined in Lemma 5.10. Using Lemma 5.7 it
follows that fB has only r influential variables, so we can write fB : {0,1}r →{−1,1}, where
f̂B( j) ̸= 0 for every j ∈ [r]. Also, f̂B(0r) = f̂ (0n) = 1− 2α . For convenience, we abuse
notation and abbreviate f = fB. It remains to show that for every f : {0,1}r →{−1,1} with
f̂ ( j) ̸= 0 for all j ∈ [r], we have 2α = 1− f̂ (0r)≥ r/(k logk). We prove this by induction
on r.

Base case. Let r = 1. Then k = 2 (since r ≥ logk and k ≥ 2 by assumption). Note that the
only Boolean functions with Fourier dimension 1 and |supp( f̂ )| ≤ 2 are {χ j,−χ j}. In both
these cases 1− f̂ (0r) = 1 and r/(k logk) = 1/2 (although the Fourier sparsity of χ j is 1, we
are implicitly working with a concept class of 2-sparse Boolean functions, hence k = 2).

Induction hypothesis. Suppose that for all p∈ {1, . . . ,r−1} and k-Fourier-sparse Boolean
function g : {0,1}p → {−1,1} with Fdim(g) = p and ĝ( j) ̸= 0 for all j ∈ [p], we have
1− ĝ(0p)≥ p/(k logk).
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Induction step. Let i ∈ [r] be the index from Lemma 5.10. Note that f (i) is still k-Fourier
sparse and f̂ (i)(0r−1) = 1−2α + | f̂ (i)|. Since | f̂ (i)| ≥ 1/k (by Lemma 5.6), we have

f̂ (i)(0r−1)≥ 1−2α +1/k.

Since r− logk ≤ Fdim( f (i))≤ r−1, we can use the induction hypothesis on the function f (i)

to conclude that

2α ≥ 1− f̂ (i)(0r−1)+
1
k
≥ r− logk

k logk
+

1
k
=

r
k logk

.

This concludes the proof of the induction step and the theorem. We now prove Lemma 5.10.

Proof of Lemma 5.10. In order to construct B as in the lemma statement, we first make the
following observation.

Observation 5.11. For every Boolean function f : Fn
2 → {−1,1} with Fdim( f ) = r, there

exists an invertible B ∈ Fn×n
2 such that:

1. The Fourier coefficient f̂B(1) is non-zero.

2. There exists a t ∈ [r] such that, for all j ∈ {2, . . . , t}, we have Fdim( f ( j)
B )≤ r− t.

3. The Fourier span of f (1)B is spanned by {et+1, . . . ,er}.

4. For ℓ ∈ {t +1, . . . ,r}, the Fourier coefficients f̂ (1)B (ℓ) are non-zero.

We defer the proof of this observation to the end. We proceed to prove the lemma
assuming the observation. Note that Property 3 gives the following simple corollary:

Corollary 5.12. f (1)B is a function of xt+1, . . . ,xr and independent of x2, . . . ,xt (and hence
f (1)B = f (i1)B = f (1i)

B for every i ∈ {2, . . . , t}).

We now show that not only f (1)B , but all the functions f (2)B , . . . , f (t)B are independent of
x2, . . . ,xt .

Claim 5.13. For all i ∈ {2, . . . , t}, f (i)B is a function of {x1,xt+1, . . . ,xr} and independent of
x2, . . . ,xt .

Proof. Without loss of generality, let i = 2. By Observation 5.11 (property 4), the character
functions χt+1, . . . ,χr are present in the Fourier expansion of f (1)B . We have f (21)

B = f (1)B

by Corollary 5.12. Hence, for every ℓ ∈ {t +1, . . . ,r}, at least one of the characters χℓ or
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χ1χℓ is present in the Fourier expansion of f (2)B . Let yℓ be χℓ or χ1χℓ (depending on which
character function is present in the Fourier expansion of f (2)B ). Note that the r− t character
functions yt+1, . . . ,yr are linearly independent. By Observation 5.11 (Property 2), we have
Fdim( f (2)B )≤ r− t, which implies Fspan( f (2)B )⊆ span{yt+1, . . . ,yr} and f (2)B is independent
of {x2, . . . ,xt}. The same argument shows that for every i,k ∈ {2, . . . , t}, f (i)B is independent
of xk.

Claim 5.14. There exists an assignment of (x1,xt+1, . . . ,xr) to (a1,at+1 . . . ,ar) in fB such
that the resulting function depends on all variables x2, . . . ,xt .1

Proof. Before proving the claim we first make the following observation. Let us consider
an assignment of (x1,xt+1, . . . ,xr) = z in fB and assume that the resulting function fB,z is
independent of xi for some i ∈ {2, . . . , t}. Let us assign xi = (1+ sign( f̂B(i)))/2 in fB,z

and call the resulting function f (i)B,z. Firstly, f (i)B,z = fB,z since fB,z was independent of xi.

Secondly, observe that fB,z = f (i)B,z could have alternatively been obtained by first fixing
xi = (1+sign( f̂ (i)))/2 in fB and then fixing (x1,xt+1 . . . ,xr) = z. In this case, by Claim 5.13,
after fixing xi in fB, f (i)B is independent of x2, . . . ,xt and after fixing (x1,xt+1, . . . ,xr) = z, fB,z

is a constant. This in particular shows that if there exists a z such that fB,z is independent
of xi for some i ∈ {2, . . . , t}, then fB,z is also independent of x2, . . . ,xt .

Towards a contradiction, suppose that for every assignment of (x1,xt+1, . . . ,xr) = z to fB,
the resulting function fB,z is independent of xi, for some i ∈ {2, . . . , t}. Then by the argument
in the previous paragraph, for every assignment z, fB,z is also independent of xk for every
k ∈ {2, . . . , t}. This, however, contradicts the fact that x2, . . . ,xt had non-zero influence on
fB (since B was chosen such that f̂B( j) ̸= 0 for every j ∈ [r] in Lemma 5.10). This implies
the existence of an assignment (x1,xt+1, . . . ,xr) = (a1,at+1 . . . ,ar), such that the resulting
function depends on all the variables x2, . . . ,xt .

We now argue that the assignment in Claim 5.14 results in a function which resembles
the AND function on x2, . . . ,xt , and hence has Fourier sparsity 2t−1.

Claim 5.15. Consider the assignment (x1,xt+1, . . . ,xr)= (a1,at+1 . . . ,ar) in fB as in Claim 5.14,
then the resulting function g equals (up to possible negations of input and output bits) the
(t −1)-bit AND function.

1Observe that in this assignment, we have x1 = (1− sign( f̂ (1)))/2. Otherwise, by assigning x1 = (1+
sign( f̂ (1)))/2 in fB, we would obtain the function f (1)B which we know is independent of {x2, . . . ,xt} by
Corollary 5.12.
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Proof. By Claim 5.14, g depends on all the variables x2, . . . ,xt . This dependence is such
that if any one of the variables {xi : i ∈ {2, . . . , t}} is set to xi = (1+ sign( f̂B(i)))/2, then
by Claim 5.13 the resulting function g(i) is independent of x2, . . . ,xt . Hence, g(i) is some
constant bi ∈ {−1,1} for every i ∈ {2, . . . , t}. Note that these bis are all the same bit b,
because first fixing xi (which collapses g to the constant bi) and then x j gives the same
function as first fixing x j (which collapses g to b j) and then xi. Additionally, by assigning
xi = (1− sign( f̂B(i)))/2 for every i ∈ {2, . . . , t} in g, the resulting function must evaluate to
1−b because g is non-constant (it depends on x2, . . . ,xt). Therefore g equals (up to possible
negations of input and output bits) the (t −1)-bit AND function.

We now conclude the proof of Lemma 5.10. Let f : {0,1}n → {−1,1} be such that
Fdim( f ) = r. Let B be as defined in Observation 5.11. Consider the assignment of
(xt+1, . . . ,xr) = (at+1, . . . ,ar) to fB as in Claim 5.15, and call the resulting function f ′B.
From Claim 5.15, observe that by setting x1 = a1 in f ′B, the resulting function is g(x2, . . . ,xt)

and by setting x1 = 1−a1 in f ′B, the resulting function is a constant. Hence f ′B can be written
as

f ′B(x1, . . . ,xt ,at+1, . . . ,ar) =
1− (−1)x1+a1

2
ba1,at+1,...,ar +

1+(−1)x1+a1

2
g(x2, . . . ,xt),

(5.4)

where ba1,at+1,...,ar ∈ {−1,1} (note that it is independent of x2, . . . ,xt by Corollary 5.12).
Since g essentially equals the (t − 1)-bit AND function (by Claim 5.15), g has Fourier
sparsity 2t−1 and ĝ(0t−1) = 1−2−t+2. Hence the Fourier sparsity of f ′B in Eq. (5.4) equals
2t . Since f ′B was a restriction of fB, the Fourier sparsity of f ′B is at most k, hence t ≤ logk.
This implies Fdim( f (1)B ) = r− t ≥ r− logk, concluding the proof.

It remains to prove Observation 5.11, which we do now.

Proof of Observation 5.11. Let D ∈ Fn×n
2 be an invertible matrix that maximizes Fdim( f (1)D )

subject to the constraint f̂D(1) ̸= 0. Suppose Fdim( f (1)D ) = r− t. Let d1, . . . ,dr−t be a basis

of Fspan( f (1)D ) such that f̂ (1)D (di) ̸= 0 for all i ∈ [r − t]. We now construct an invertible
C ∈ Fn×n

2 whose first r columns form a basis for Fspan( fD), as follows: let c1 = e1, and for
i ∈ [r− t], fix ct+i = di. Next, assign vectors c2, . . . ,ct arbitrarily from Fspan( fD), ensuring
that c2, . . . ,ct are linearly independent from {c1,ct+1, . . . ,cr}. We then extend to a basis
{c1, . . . ,cn} arbitrarily. Define C as C = [c1, . . . ,cn] (where the cis are column vectors).
Finally, define our desired matrix B as the product B = DC. We now verify the properties of
B.



5.3 Chang’s Lemma for Fourier-sparse functions 61

Property 1: Using Lemma 5.7 we have

f̂DC(1) = f̂D(Ce1) = f̂D(c1) = f̂D(1) ̸= 0,

where the third equality used c1 = e1, and f̂D(1) ̸= 0 follows from the definition of D.

We next prove the following fact, which we use to verify the remaining three properties.

Fact 5.16. Let C,D be invertible matrices as defined above. For every i ∈ [t], let ( f (i)D )C be
the function obtained after applying the invertible transformation C to f (i)D and ( fDC)

(i) be
the function obtained after fixing xi to (1+ sign( f̂DC(i)))/2 in fDC. Then ( fDC)

(i) = ( f (i)D )C.

Property 2: Fact 5.16 implies that Fdim(( fDC)
(i))= Fdim(( f (i)D )C). Since C is invertible,

Fdim(( f (i)D )C) = Fdim( f (i)D ). From the choice of D, observe that for all i ∈ {2, . . . , t},

Fdim( f (i)B ) = Fdim( f (i)DC) = Fdim(( f (i)D )C) = Fdim( f (i)D )≤ Fdim( f (1)D ) = r− t,

where the inequality follows by definition of D.

Property 3: Note that Fspan( f (1)D ) is contained in span{d1, . . . ,dr−t} by construction.
By making the invertible transformation by C, observe that Fspan(( f (1)D )C)⊆ span{et+1, . . . ,er}
(since for all i ∈ [r− t], we defined ct+i = di). Property 3 follows because ( f (1)D )C = f (1)DC =

f (1)B by Fact 5.16.

Property 4: Using Fact 5.16, for every ℓ ∈ {t +1, . . . ,r}, we have

(̂ fB)(1)(ℓ) =
̂( fDC)(1)(ℓ) = (̂ f (1)D )C(ℓ) = f̂ (1)D (cℓ).

Since cℓ = dℓ−t , we have f̂ (1)D (cℓ) = f̂ (1)D (dℓ−t) and f̂ (1)D (d1), . . . , f̂ (1)D (dr−t) ̸= 0 by definition
of di, hence the property follows.

Proof of Fact 5.16. Let fD = g. We want to show that (g(i))C = (gC)
(i). For simplicity fix

i = 1; the same proof works for every i ∈ [t]. Then,

(g(1))(x) = ∑
S∈{0}×{0,1}n−1

(ĝ(S)+ ĝ(S⊕ e1))χS(x).

On transforming g(1) using the basis C we have:
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(g(1))C(x) = ∑
S∈{0}×{0,1}n−1

(ĝ(CS)+ ĝ(C(S⊕ e1))χS(x). (5.5)

Consider the function gC. The Fourier expansion of gC is gC(y) = ∑S∈{0,1}n ĝ(CS)χS(y) and
the Fourier expansion of the (gC)

(1) can be written as

g(1)C (y) = ∑
S∈{0}×{0,1}n−1

(ĝ(CS)+ ĝ(CS⊕Ce1))χS(y). (5.6)

Using Eq. (5.5), (5.6), we conclude that (g(1))C = (gC)
(1), concluding the proof of the

fact.

This concludes the proof of the observation.

This concludes the proof of the theorem.

5.4 Proof of Theorem 5.4

Recall, from the introduction of this chapter, the refinement of Chang’s lemma due to [38].

Theorem 5.17 ([38], Restatement of Theorem 5.3). Let α ∈ (0,1) and k ≥ 2. For every k-
Fourier-sparse f : {0,1}n →{−1,1} that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

r = O(
√

αk logk).

In this section we prove the tightness of the above theorem by proving Theorem 5.4,
restated below.

Theorem 5.18 (Restatement of Theorem 5.4). For all t ≥ 2, t ′ ≥ 4, there exists a Boolean
function f of Fourier sparsity 1+ t2(t ′−1), Fourier dimension (t log t ′+ log t ′) and satisfies
f̂ (0n) = 1−1/2t ′.

Let us start with some definitions that will be useful for the rest of this section.

Recall that for any integer n > 0, the function ANDn : {0,1}n →{−1,1} is defined by
ANDn(x) =−1 if x = (1)n, and 1 otherwise. We drop the subscript n when it is clear from
the context. We state the Fourier expansion of AND below without proof.
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Fact 5.19 (Fourier expansion of AND). Let n ≥ 1 be any positive integer. Then

ÂNDn(S) =

1− 2
2n S = /0,

2·(−1)|S|+1

2n otherwise.

The following observation follows directly from the above fact.

Observation 5.20. Let n ≥ 4 be a positive integers and let ANDn : {0,1}logn → {−1,1}.
Then the Fourier dimension, Fourier sparsity, max-supp-entropy, max-rank-entropy and
weight of ANDlogn are logn, n, n/2, n/2 and 1

n , respectively.

Definition 5.21 (Indicator function). For any integer n ≥ 1 and b ∈ {0,1}n, define the
function Ib : {0,1}n →{0,1} by

Ib(x) =

1 x = b,

0 otherwise.

We require the following observation about the Fourier expansion of Indicator functions,
which we state without proof.

Observation 5.22 (Fourier expansion of Indicator functions). For any integer n ≥ 1 and
b ∈ {0,1}n, let Ib be as in Definition 5.21. Then,

Îb(S) =
∏i∈S(−1)bi

2n for all S ⊆ [n].

Definition 5.23 (Addressing function). For any integer t ≥ 2, define the Addressing function
ADDRt : {0,1}log t ×{0,1}t →{−1,1} by

ADDRt(x,y) = (−1)ybin(x),

where x ∈ {−1,1}log t and y ∈ {−1,1}t , and bin(x) denotes the integer in [t] whose binary
representation is given by x. We refer to the x-variables as addressing variables, and the
y-variables as target variables.

The following combinatorial observation is useful to us.



64 Chang’s lemma and applications in quantum learning

Observation 5.24. For any integer n ≥ 1 and non-empty subset S ⊆ [n],

∑
b∈{0,1}n

∏
i∈S

(−1)bi = 0.

We require the following representation of Addressing functions.

Observation 5.25. For any integer t ≥ 2, x ∈ {0,1}log t and y ∈ {0,1}t , we have

ADDRt(x,y) = ∑
b∈{−1,1}log t

ybIb(x).

We next define a way of modifying the Addressing function that is of use to us. In this
modification, we replace target variables by functions, each acting on disjoint variables.

Definition 5.26 (Composed addressing functions). Let t ≥ 2, ℓ1, . . . , ℓt ≥ 1 be any integers.
Let gi : {0,1}ℓi → {−1,1} be any functions for i ∈ [t]. Define the function ADDRt ◦target

(g1, . . . ,gt) : {0,1}log t ×{0,1}ℓ1+···+ℓt →{−1,1} by

ADDRt ◦target (g1, . . . ,gt)(x,y1, . . . ,yt) = ADDRt(x,(1−g1(y1))/2, . . . ,(1−gt(yt))/2)),

where x ∈ {0,1}log t and yi ∈ {0,1}ℓi for all i ∈ [t].

For any function g : {0,1}s →{−1,1}, we use the notation ADDRt ◦target g to denote the
function ADDRt ◦target (g,g, . . . ,g) : {0,1}log t ×{0,1}ts →{−1,1}.

Composed addressing functions are very well-behaved with respect to rank, sparsity,
max-supp-entropy and max-rank-entropy. This is captured in Lemma 5.28 and is the main
technical content of this section.

Definition 5.27 (AND-Target-Addressing Function). For any integers t, t ′ ≥ 2, define the
function ADDRt,t ′ : {0,1}log t ×{0,1}t log t ′ →{−1,1} by

ADDRt,t ′ = ADDRt ◦target ANDlog t ′.

5.4.1 Proof of tightness of Chang’s lemma

We now prove that ADDRt,t ′ is the desired function of this section, i.e. ADDRt,t ′ witnessed
tightness of Theorem 5.3 ([38]). We prove this in the next lemma, Lemma 5.28. The proof
Lemma 5.28 relies on Lemma 5.29, which prove after the proof of Lemma 5.28.
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Lemma 5.28 (Properties of ADDRt,t ′). Fix any integers t ≥ 2, t ′> 4 let ADDRt,t ′ : {0,1}log t ×
{0,1}t log t ′ →{−1,1} be as in Definition 5.27 and let r(ADDRt,t ′),k(ADDRt,t ′),k′(ADDRt,t ′),k′′(ADDRt,t ′)

and δ (ADDRt,t ′) denote the Fourier dimension, Fourier sparsity, max-entropy, max-rank-
entropy and wight of ADDRt,t ′ , respectively. Then,

• r(ADDRt,t ′) = t log t ′+ log t,

• k(ADDRt,t ′) = 1+ t2(t ′−1),

• k′(ADDRt,t ′) = k′′(ADDRt,t ′) =
tt ′
2 , and

• δ (ADDRt,t ′) =
1
t ′ .

Proof. Recall from Definition 5.27 that ADDRt,t ′ = ADDR ◦target AND where AND is on
log t ′ bits. Since t ′ > 4, by Observation 5.20, |ÂND( /0)| = 1− 2

t ′ >
2
t ′ = |ÂND(S)| for all

S ̸= /0. Therefore the claim follows by Lemma 5.29 and Observation 5.20.

We now state and prove Lemma 5.29.

Lemma 5.29 (Composition lemma). Let t ≥ 2,m ≥ 1 be any positive integers, and let
g : {0,1}m → {−1,1} be a non-constant function such that there exists a non-empty set
S ⊆ [m] with 0 ̸= |ĝ(S)| ≤ |ĝ( /0)|. Let f : {0,1}log t+mt →{−1,1} be defined as

f = ADDRt ◦target g.

Then

r( f ) = t · r(g)+ log t, (5.7)

k( f ) = 1+ t2(k(g)−1), (5.8)

k′( f ) = t · k′(g), (5.9)

k′′( f ) = t · k′′(g), (5.10)

δ ( f ) = δ (g). (5.11)

Proof of Composition lemma (Lemma 5.29)

Let t ≥ 2 and m ≥ 1 be any integers. For the purpose of the following proof, we introduce the
following notation. For any b ∈ {0,1}log t , T ⊆ [log t] and non-empty Sb ⊆ [m] , define char-
acters χb,Sb,T : {0,1}log t ×{0,1}tm → {−1,1} by χb,Sb,T (x,z) = ∏ j∈Sb

(−1)zb, j ∏i∈T (−1)xi .
Here z = (. . . ,zb, . . .), where b ∈ {0,1}log t and zb ∈ {0,1}m for all b ∈ {0,1}log t .
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Proof of Lemma 5.29. Let x ∈ {0,1}log t and z ∈ {0,1}tm. By Definition 5.26 and Observa-
tion 5.25,

f (x,z) = ∑
b∈{−1,1}log t

g(zb) · Ib(x)

= ∑
b

(
∑

Sb⊆[m]

ĝ(Sb)χSb(zb)

)(
∑

T⊆[log t]
Îb(T )χT (x)

)
= ∑

b
⟨ĝ( /0)̂Ib( /0)+ ĝ( /0) ∑

T ̸= /0
Îb(T )χT (x)+ ∑

Sb ̸= /0
∑
T

ĝ(Sb)̂Ib(T )χSb(zb)χT (x)|

= ∑
b

ĝ( /0)̂Ib( /0)︸ ︷︷ ︸
A1

+∑
b

ĝ( /0) ∑
T ̸= /0

Îb(T )χT (x)︸ ︷︷ ︸
A2

+ ∑
b,Sb ̸= /0,T

ĝ(Sb)̂Ib(T )χSb(zb)χT (x)︸ ︷︷ ︸
A3

.

(5.12)

By Observation 5.22,

A1 = ∑
b

ĝ( /0)
1
t
= ĝ( /0),

A2 = ĝ( /0)∑
b

∑
T ̸= /0

∏i∈T bi

t
χT (x)

= ĝ( /0) ∑
T ̸= /0

χT (x)∑
b

∏i∈T bi

t
= 0, by Observation 5.24

A3 = ∑
b

∑
Sb ̸= /0

∑
T

ĝ(Sb) ·∏i∈T bi

t
χSb(zb)χT (x)

= ∑
b,Sb ̸= /0,T

cb,Sb,T ·χb,Sb,T (x,z),

where |cb,Sb,T | =
|ĝ(Sb)|

t for all b ∈ {0,1}log t ,T ⊆ [log t] and non-empty Sb ⊆ [m]. From
Equation (5.12) and the above expressions for A1,A2 and A3, we obtain the following Fourier
expansion for f .

f = ĝ( /0)+ ∑
b, /0 ̸=Sb∈supp(g),T

cb,Sb,T ·χb,Sb,T , (5.13)

since |cb,Sb,T |=
|ĝ(Sb)|

t , cb,Sb,t is non-zero iff ĝ(Sb) is non-zero. Therefore

supp( f ) = {χ /0}∪
{

χb,Sb,T |b ∈ {−1,1}log t , /0 ̸= Sb ∈ supp(g),T ⊆ [log t]
}
. (5.14)



5.4 Proof of Theorem 5.4 67

• Rank: Fix a Fourier basis Bg of g such that Bg ⊆ supp(g) and a character χU ∈ Bg.
Consider the set of characters

B f =
{

χb,Sb, /0|b ∈ {−1,1}log t ,Sb ∈ Bg

}
∪{χ1,U,{i}|i ∈ [log t]}.

By Equation (5.14), B f ⊆ supp( f ) and supp( f )⊆ span{(}B f ). Therefore,

r( f ) = |B f |= t|Bg|+ log t = t · r(g)+ log t.

• Sparsity: By Equation (5.14),

k( f ) = |supp( f )|= 1+ t2(k(g)−1).

• Max-supp-entropy: Recall from Definition 5.8 that k′( f ) equals the smallest non-zero
Fourier coefficient of f in absolute value. From the Fourier expansion of f given in
Equation (5.13),

k′( f ) = max
{

1
|ĝ( /0)|

,max
{

t
|ĝ(S)|

: /0 ̸= S ∈ supp(g)
}}

= max
{

t
|ĝ(S)|

: /0 ̸= S ∈ supp(g)
}

since |ĝ( /0)| ≥ 1
k′(g) and t ≥ 1 by assumption

= t · k′(g).

• Max-rank-entropy: Recall from Definition 5.8 that k′′( f ) = argminθ{dim(Sθ ) =

r( f )}, where Sθ =
{

S : | f̂ (S)| ≥ 1
θ

}
.

From the Fourier expansion of f given in Equation (5.13), the following set B f is a
spanning set for the Fourier support of f . Let Bg be a Fourier basis for g such that
|ĝ(S)| ≥ 1

k′′(g) for all S ∈ Bg. Define

B f =
{

χb,Sb,T : b ∈ {−1,1}log t ,Sb ∈ Bg,T ⊆ [log t]
}

(5.15)

One may verify that B f indeed is a spanning set for supp( f ). By Equation (5.13),
|cb,Sb,T | =

|ĝ(Sb)|
t for all b ∈ {−1,1}log t ,T ⊆ [log t] and non-empty Sb ⊆ [m]. Hence

k′′( f )≤ t · k′′(g).
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It now remains to show that k′′( f ) ≥ t · k′′(g). Towards a contradiction, consider a
basis Tf ⊆

{
χb,Sb,T : b ∈ {0,1}log t ,Sb ∈ supp(g)

}
for supp( f ), with | f̂ (S)| > 1

t·k′′(g)
for all S ∈ Tf . Fix any b ∈ {0,1}log t . Observe that the set

{
χSb : χb,Sb,T ∈ Tf

}
forms a

spanning set for supp(g). Moreover, since |cb,Sb,T |=
|ĝ(Sb)|

t for all b ∈ {0,1}log t ,T ⊆
[log t] and non-empty Sb ⊆ [m] by Equation (5.13), the set

{
χSb : χb,Sb,T ∈ Tf

}
is such

that each of its Fourier coefficients (i.e. ĝ(Sb)) has absolute value strictly larger than
1

k′′(g) , which is a contradiction by the definition of k′′(g).

• Weight: By Observation 5.5,

δ ( f ) =
1− f̂ ( /0)

2
=

1− ĝ( /0)
2

= δ (g),

where the second equality follows by Equation (5.13).

5.5 Chang’s lemma and quantum learning

In this section we give a potential direction to prove that in expectation Õ(k) Fourier-samples
are sufficient for Phase 1 of our learning algorithm presented in Section 3.3.1. Recall Phase 1
of our learning algorithm. Given a k-Fourier-sparse function c, Phase 1 starts by finding an
S ∈ supp(ĉ) such that S ̸= 0n. Lemma 3.13 implies that an expected number of O(k) many
Fourier-samples are sufficient to sample such an S.

As we discussed in the introduction of this chapter, the Chang’s lemma gives an im-
provement over Lemma 3.13 for the expected number of Fourier-samples sufficient to obtain
an S ∈ supp(ĉ) such that S ̸= 0n in Phase 1. We gave the following refinement of Chang;s
lemma in this chapter:

Theorem 5.30 (Restatement of Theorem 5.2). Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-
sparse f : {0,1}n →{−1,1} that satisfies f̂ (0n) = 1−2α and Fdim( f ) = r, we have

f̂ (0n)≤ 1− r
k logk

.

We remark that in a follow-up paper [38], a subset of the authors gave a refinement of
the theorem above.

Let us discuss how the above theorem improves the analysis of Phase 1 of our learning
algorithm. Theorem 5.2 implies that for a k-Fourier-sparse Boolean function c : {0,1}n →
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{−1,1} of Fourier dimension r,

∑
S:S ̸=0n

ĉ(S)2 = Ω(r/(k logk)).

This is a better lower bound on the Fourier weight of c on the set {0,1}n \ {0n} than that
obtained from Chang’s lemma (Equation 5.3). Thus an expected number of O((k logk)/r)
many uniformly quantum samples is sufficient to obtain an S ∈ supp(ĉ) such that S ̸= 0n.

We suspect that Theorem 5.2 can in fact lead to an Õ(k) learning algorithm for Phase 1.
Towards that end we make the following conjecture which can be viewed as a generalization
of Theorem 5.2.

Conjecture 5.31. Let n> 0 and 1≤ k≤ 2n. For every k-Fourier-sparse f : {0,1}n →{−1,1}
with Fourier span V and Fourier dimension r, the following holds: for every r′ > 0 and
S ⊂ V satisfying dim(span(S )) = r′, we have

∑
S∈span(S )

f̂ (S)2 ≤ 1− r− r′

k logk
.

If the above conjecture is true then it would be imply an Õ(k) learning algorithm for
Phase 1. Let c : {0,1}n → {−1,1} be a k-Fourier-sparse function of Fourier dimension r.
Assuming Conjecture 5.31 to be true we have

∑
S ̸∈span(S )

ĉ(S)2 ≥ r− r′

k logk
.

So the expected number of samples to increase the dimension by 1 is ≤ k logk
r−r′ . Accordingly,

the expected number of Fourier-samples needed to learn the whole Fourier span of f is at
most

r

∑
i=1

k logk
i

≤ O(k logk logr),

where the final inequality used ∑
r
i=1

1
i = O(logr).

5.6 Summary

In this chapter we considered Chang’s lemma for Boolean functions and gave a refinement of
this lemma. We showed that the Fourier dimension is bounded by at most (roughly) weight
times Fourier sparsity, a quadratic improvement over the previously best known bound. For
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functions with lower weight, [38] gave a further refinement. We proved tightness of their
refinement in this chapter. Finally, we showed how Chang’s lemma is connected to quantum
learning and gave a possible direction to improve the first phase of our learning algorithm
from Chapter 3.



Part II

Quantum Query and Communication
Complexity





Chapter 6

Overhead in Query-to-Communication
Simulation for XOR Functions

6.1 Introduction

Classical communication complexity, introduced by Yao [154], is aptly called the ‘swiss-
army-knife’ for understanding, especially the limitations of, classical computing. Com-
munication complexity has important applications in several disciplines, in particular for
lower bounds on circuits, data structures, streaming algorithms, and many other complexity
measures (see, for example, [103] and the references therein). Quantum communication
complexity, also introduced by Yao [155], holds the same promise with regards to quantum
computing. Yet, there are many problems that remain open. One broad theme is to understand
the fundamental differences between classical randomized and quantum protocols, especially
for computing total functions.

Before we proceed, let us note that Boolean functions in this part of the thesis will be
denoted by:

f : {−1,1}n →{−1,1}.

We also consider Boolean functions where input can be seen to be naturally consisting of
two parts, in this case we view functions as:

f : {−1,1}n ×{−1,1}n →{−1,1}.
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The reason for such a choice of notation is that we heavily study composition of Boolean
functions. The above choice of notation makes the technical content simpler notation wise
and more intuitive.

A natural way to derive a communication problem from a Boolean function f : {−1,1}n →
{−1,1} is via composition. Let f : {−1,1}n →{−1,1} be a function and let G : {−1,1} j ×
{−1,1}k →{−1,1} be a “two-party function”. Then F = f ◦G : {−1,1}n j ×{−1,1}nk →
{−1,1} denotes the function corresponding to the communication problem in which Alice
is given input X = (X1, . . . ,Xn) ∈ {−1,1}n j, Bob is given Y = (Y1, . . . ,Yn) ∈ {−1,1}nk, and
their task is to compute F(X ,Y ) = f (G(X1,Y1), . . . ,G(Xn,Yn)). We refer to f as the outer
function and G as the inner function.

Many well-known functions in communication complexity are derived in this way, such
as Set-Disjointness (DISJn := NORn ◦AND2), Inner Product (IPn := PARITYn ◦AND2) and
Equality (EQn := NORn ◦XOR2).

A well studied question is this regard is what is the relationship between the query
complexity of f and the communication problem of f ◦G, when the G is AND2 or XOR2.
This question has been studied for particular interesting functions or special classes of
functions. Classically, it is folklore that

Rcc( f ◦G
)
≤ 2R( f ),

where R( f ) denotes the bounded-error randomized query complexity of f and Rcc( f ◦G)

denotes the bounded-error randomized communication complexity for computing f ◦G. In
an influential work, Buhrman, Cleve and Wigderson [34] observed that a general and natural
recipe exists for constructing a quantum communication protocol for f ◦G, using a quantum
query algorithm for f as a black-box.

Theorem 6.1 ([34]). For any Boolean function f : {−1,1}n →{−1,1}, we have

Qcc( f ◦G
)
= O

(
Q( f ) · logn

)
,

where G is either AND2 or XOR2.

Here Q( f ) denotes the bounded-error quantum query complexity of f , and Qcc( f ◦G)

denotes the bounded-error quantum communication complexity for computing f ◦G. Thus
in the quantum world one incurs a logarithmic factor in the natural BCW simulation while
no such factor is needed in the randomized setting. The basic question that arises naturally
and which we completely answer in this work, is the following: analogous to the classical
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model, can this multiplicative logn blow-up in the communication cost be always avoided
by designing quantum communication protocols that more cleverly simulate quantum query
algorithms?

A priori, it is not clear what the answer to this question ought to be. For certain special
functions and some classes of functions, quantum protocols exist where the logn factor can
be saved. First, Høyer and de Wolf [87] designed a quantum protocol for Set-Disjointness
of cost O(

√
nclog∗ n), speeding up the BCW simulation significantly. Later, Aaronson and

Ambainis [1] gave a more clever protocol that only incurred a constant factor overhead from
Grover’s search using more involved ideas.

For partial functions, tightness of the BCW simulation is known in some settings. For
example, consider the Deutsch-Jozsa (DJ) problem, where the input is an n-bit string with the
promise that its Hamming weight is either 0 or n/2, and DJ outputs −1 if the Hamming weight
is n/2, and 1 otherwise. DJ has quantum query complexity 1 whereas the exact quantum
communication complexity of (DJ◦XOR2) is logn. Note that it is unclear whether the logn
factor loss here is additive or multiplicative.1 Montanaro, Nishimura and Raymond [115]
exhibited a partial function for which the BCW simulation is tight (up to constants) in the
exact and non-deterministic quantum settings. They also observed the existence of a total
function for which the BCW simulation is tight (up to constants) in the unbounded-error
setting.

To the best of our knowledge, there was no (partial or total) Boolean-valued function f
known prior to our work for which the bounded-error quantum communication complexity
of f ◦G (i.e. Qcc( f ◦G)) is even ω(Q( f )), where G is either AND2 or XOR2. In this chapter
construct a total function that show that logn overhead is required when the inner function
G = AND2. In next chapter we show that the this overhead is required even when G = AND2

and also give a general recipe for constructing such out functions.

6.1.1 Results and Organization

In this chapter, we exhibit the first total function witnessing the tightness of the BCW
simulation in arguably the most well-known quantum model, which is the bounded-error
model.

1Indeed, there are well-known situations where complexity of 1 vs. logn can be deceptive. The classical
private-coin randomized communication complexity of Equality is Θ(logn), whereas the public-coin cost is
well known to be O(1). Newman’s Theorem shows that this difference in costs, in general, is not multiplicative
but merely additive.
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Theorem 6.2. There exists a total function F : {−1,1}n →{−1,1} for which,

Qcc(F ◦XOR2) = Θ(Q(F) logn). (6.1)

The statement above does not necessarily guarantee that a function exists that both
satisfies Equation 6.1 and has bounded-error quantum query complexity (as a function of n)
arbitrarily close to n. We answer this question by proving a more general result, from which
Theorem 6.2 follows.

Theorem 6.3 (Main Theorem). For any constant 0 < δ < 1, there exists a total function
F : {−1,1}n →{−1,1} for which Q(F) = Θ(nδ ) and

Qcc(F ◦XOR2) = Θ(Q(F) logn).

In Section 6.3 we give overview of our approaches and techniques and intuition behind
the construction of our function. In Section 6.4 we give the proof our the main theorem.
Finally, we conclude with summary and future work.

Some other implications of our result

Zhang [156] showed that for all Boolean functions f , there must exists gadgets gi, each either
AND2 or OR2, such that Qcc( f (g1, . . . ,gn)) = Ω(poly(Q( f ))). For monotone f , they showed
that either Qcc( f ◦AND2) = Ω(poly(Q( f ))) or Qcc( f ◦OR2) = Ω(poly(Q( f ))). They also
state that it is unclear how tight the BCW simulation is. Our result implies that there exists a
function for which it is tight up to constants (on composition with XOR2).

Another implication of our result is related to the Entropy Influence Conjecture, which is
an interesting question in the field of analysis of Boolean functions, posed by Friedgut and
Kalai [62]. This conjecture is wide open for general functions. A much weaker version of this
conjecture is called the Min-Entropy Influence Conjecture. For the statement of the conjecture
we need to consider the Fourier expansion of Boolean functions f : {−1,1}n →{−1,1} as

f (x) = ∑
S⊆[n]

f̂ (S)χS(x),

where {χS : S ⊆ [n]} are the parity functions (χS(x) = Πi∈Sxi, when x = (x1, . . . ,xn) ∈
{−1,1}n) and { f̂ (S) : S ⊆ [n]} are the corresponding Fourier coefficients.
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Conjecture 6.4. (Min-Entropy Influence Conjecture) For any Boolean function f : {−1,1}n →
{−1,1} there exists a non-zero Fourier coefficient f̂ (S) such that

log
(

1/| f̂ (S)|
)
= O(I( f )),

where I( f ) denotes the influence (or average sensitivity) of f (I( f ) = ∑S⊆[n] |S| f̂ (S)2).

While this conjecture is also wide open, some attempts have been made to prove various
implications of this conjecture. One interesting implication of the Min-Entropy Influence
Conjecture that is still open is whether the min-entropy of the Fourier spectrum (that is,
log
(

1/maxS⊆[n] | f̂ (S)|
)

) is less than O(Q( f )). In [13] using a primal-dual technique it was

shown that the min-entropy of the Fourier spectrum is less than a constant times log(∥ f̂∥1,ε),
where the constant depends on ε . Thus if it were the case that log(∥ f̂∥1,ε) = O(Q( f )), we
would have upper bounded the min-entropy of Fourier spectrum by O(Q( f )). This was
stated in [13] as a possible approach and was left as an open problem. While their conjecture
holds for certain special class of functions like the symmetric functions (proof given in the
Section 6.2.4), our result in this chapter nullifies this approach for general Boolean functions.

6.2 Preliminaries

In this section we review the necessary preliminaries and prove some basic facts.

For any positive integer n, we denote the set {1, . . . ,n} by [n]. For d ≤ n we use the
notation

( n
≤d

)
:=
(n

0

)
+ · · ·+

(n
d

)
. Note that

( n
≤d

)
< (n+1)d .

We present some basic notions of Fourier analysis on the Boolean cube when the domain
of function is {−1,1}n. This only changes the characters and the Fourier spectrum remains
unchanged. Consider the vector space of functions from {−1,1}n to R, equipped with an
inner product defined by

⟨ f ,g⟩ := Ex∈{−1,1}n[ f (x)g(x)] =
1
2n ∑

x∈{−1,1}n

f (x)g(x)

for every f ,g : {−1,1}n → R. For any set S ⊆ [n], define the associated parity function χS

by χS(x) = ∏i∈S xi. The set of parity functions {χS : S ⊆ [n]}, forms an orthonormal basis for
this vector space. Thus, every function f : {−1,1}n →R has a unique multilinear expression
as f = ∑S⊆[n] f̂ (S)χS. The coefficients { f̂ (S) : S ⊆ [n]} are called the Fourier coefficients of
f .
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Fact 6.5 (Parseval’s Identity). For any function f : {−1,1}n → R, we have ∑S⊆[n] f̂ (S)2 =
∑x∈{−1,1}n f (x)2

2n . The degree of f is the degree of the unique polynomial representing f .

Definition 6.6 (Spectral Norm). For any function f : {−1,1}n → R, define its spectral norm,
which we denote ∥ f̂∥1, to be the sum of absolute values of the Fourier coefficients of f . That
is, ∥ f̂∥1 := ∑S⊆[n]

∣∣ f̂ (S)∣∣.
Definition 6.7 (Hadamard Codeword). If an ℓ-bit string (x1, . . . ,xℓ)∈ {−1,1}ℓ (alternatively,
view the indices of x as subsets of [logℓ]) is of the form xS = ∏i∈S zi for all S ⊆ [logℓ] for
some z ∈ {−1,1}logℓ, then define such an x = x1 . . .xℓ to be the ℓ-bit Hadamard codeword
h(z) of the (logℓ)-bit string z.

6.2.1 Addressing functions

Definition 6.8 ((m,k)-addressing function). We define a (partial) function f : {−1,1}m+k →
{−1,1,⋆} to be an (m,k)-addressing function if there exists g : {−1,1}m →{[k]∪⋆} such
that

• f (x1, . . . ,xm,y1, . . . ,yk)= yg(x1,...,xm) if g(x1, . . . ,xm)∈ [k], and f (x1, . . . ,xm,y1, . . . ,yk)=

⋆ otherwise.

• For all j ∈ [k], there exists (x1, . . . ,xm) ∈ {−1,1}m such that g(x1, . . . ,xm) = j.

We call the variables {x1, . . . ,xm} the address variables and the variables {y1, . . . ,yk}
the target variables. The function g is called the selector function of f .

Definition 6.9 (Indexing Function). The Indexing function, which we denote by INDk, is
a (k,2k)-addressing function defined by IND(x1, . . . ,xk,y1, . . . ,y2k) = ybin(x), where bin(x)
denotes the integer represented by the binary string x1, . . . ,xk.

Definition 6.10 (Composition with addressing functions). For any function f : {−1,1}n →
{−1,1} and an (m,k)-addressing function ADDR, define the (partial) function fADDR :
{−1,1}n(m+k) →{−1,1,⋆} by

fADDR(x1,y1, . . . ,xn,yn)=

 f (ADDR(x1,y1), . . . ,ADDR(xn,yn)) if ∀i ∈ [n],ADDR(xi,yi) ∈ {−1,1}

⋆ otherwise.

where xi ∈ {−1,1}m and yi ∈ {−1,1}k for all i ∈ [n].

Definition 6.11 (Hadamard Addressing Function). We define the Hadamard addressing
function, which we denote HADDℓ : {−1,1}2ℓ → {−1,1,⋆}, as follows. Fix an arbitrary
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order on the ℓ-many Hadamard codewords of (logℓ)-bit strings, say w1, . . . ,wℓ. Define the
selector function of HADDℓ by

g(x) =

i if x = wi for some i ∈ [ℓ]

⋆ otherwise.

Note that HADDℓ is an (ℓ,ℓ)-addressing function.

6.2.2 Polynomial approximation

Definition 6.12 (Approximate Degree). The ε-approximate degree of a function f : {−1,1}n →
{−1,1,⋆}, denoted by d̃egε( f ) is defined to be the minimum degree of a real polyno-
mial p : {−1,1}n → R that satisfies

∣∣p(x)− f (x)
∣∣ ≤ ε for all x ∈ {−1,1}n for which

f (x) ∈ {−1,1}.2 That is,

d̃egε( f ) :=min{d : deg(p)≤ d,
∣∣p(x)− f (x)

∣∣≤ ε for all x∈{−1,1}n for which f (x)∈{−1,1}}.

Henceforth, we will use the notation d̃eg( f ) to denote d̃eg1/3( f ).

Definition 6.13 (Approximate Spectral Norm). The approximate spectral norm of a function
f : {−1,1}n →{−1,1,⋆}, denoted by ∥ f̂∥1,ε is defined to be the minimum spectral norm of
a real polynomial p : {−1,1}n → R that satisfies

∣∣p(x)− f (x)
∣∣≤ ε for all x ∈ {−1,1}n for

which f (x) ∈ {−1,1}.

∥ f̂∥1,ε := min{∥ p̂∥1 :
∣∣p(x)− f (x)

∣∣≤ ε for all x ∈ {−1,1}n for which f (x) ∈ {−1,1}}.

Lemma 6.14 ([35]). Let f : {−1,1}n →{−1,1} be a total function. Then for all constants
0 < δ ,ε < 1 we have d̃egε( f ) = Θ(d̃egδ ( f )).

The following is a standard upper bound on the approximate spectral norm of a Boolean
function in terms of its approximate degree.

Claim 6.15. For all total functions f : {−1,1}n →{−1,1}, we have log∥ f̂∥1,1/3 =O(d̃eg( f ) logn).

Proof. Let d denote the approximate degree of f . Take any 1/3-approximating polynomial of
degree d, say p, to f . Then, ∑S⊆[n]

∣∣p̂(S)∣∣≤√( n
≤d

)
·
√

∑S:|S|≤d p̂(S)2 ≤ 4/3 · (n+1)d/2 =

2When dealing with partial functions, another notion of approximation is sometimes considered, where the
approximating polynomial p is required to have bounded values even on the non-promise inputs of f . For the
purpose of this paper, we do not require this constraint.
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2O(d logn), where the first inequality follows by the Cauchy-Schwarz inequality, the second
inequality follows by Parseval’s identity (Fact 6.5) and the fact that the absolute value of p is
at most 4/3 for any input x ∈ {−1,1}n.

It is easy to exhibit functions f : {−1,1}n →{−1,1} such that log∥ f̂∥1,1/3 =Ω(d̃eg( f )).
Bent functions satisfy this bound, for example.

Building upon ideas in [100], the approximate spectral norm of f ◦ IND1 was shown to
be bounded below by 2Ω(d̃eg( f )) in [42].

Theorem 6.16 ([42]). Let f : {−1,1}n →{−1,1} be any function. Then ∥ ̂f ◦ IND1∥1,1/3 ≥
2c·d̃eg2/3( f ) for any constant c < 1−3/d̃eg2/3( f ).

We now recall the model of communication complexity.

6.2.3 Communication complexity

We briefly recall the model of classical communication complexity. The classical model of
communication complexity was introduced by Yao in [154]. In this model two parties, say
Alice and Bob, wish to compute a function whose output depends on both their inputs. Alice
is given an input x ∈ X , Bob is given y ∈ Y , and they want to jointly compute the value
of a given function F(x,y) by communicating with each other. Alice and Bob individually
have unbounded computational power and the number of bits communicated is the resource
we wish to minimize. Alice and Bob communicate using a protocol that is agreed upon in
advance. In the randomized model, Alice and Bob have access to unlimited public random
bits and the goal is to compute the correct value of F(x,y) with probability at least 2/3 for
all inputs (x,y) ∈ X ×Y . The bounded-error randomized communication complexity of a
function F , denoted Rcc(F), is the number of bits that must be communicated in the worst
case by any randomized protocol to compute the correct value of the function F(x,y), with
probability at least 2/3, for every (x,y) ∈ X ×Y .

The quantum model of communication complexity was introduced by Yao in [155]. We
refer the reader to the survey [50] for details. The bounded-error quantum communication
complexity of a function F , denoted Qcc(F) is the number of bits that must be communicated
by any quantum communication protocol in the worst case to compute the correct value of
the function F(x,y), with probability at least 2/3, for every (x,y) in domain of F . Buhrman,
Cleve and Wigderson [34] observed a quantum simulation theorem, which gives an upper
bound on the bounded-error quantum communication complexity of a composed function of
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the form f ◦AND2 or f ◦XOR2 in terms of the bounded-error quantum query complexity of
f (see Theorem 6.1).

Lee and Shraibman [104] showed that the bounded-error quantum communication
complexity of f ◦XOR2 is bounded below by the logarithm of the approximate spectral norm
of f . Also see [42] for an alternate proof.

Theorem 6.17 ([104]). For any Boolean function f : {−1,1}n →{−1,1},

Qcc( f ◦XOR2) = Ω(log∥ f̂∥1,1/3).

6.2.4 Approximate spectral norm of symmetric functions

Definition 6.18 (Multilinear Polynomial). A function φ : Rn →R is a multilinear polynomial
if φ is of the form:

φ(x1, . . . ,xn) = ∑
S⊆[n]

aS ∏
i∈S

xi

where aS ∈ R.

Definition 6.19 (Spectral Norm of a Multilinear Polynomial). Let φ :Rn →R be a multilinear
polynomial of the form φ(x1, . . . ,xn) = ∑S⊆[n] aS ∏i∈S xi. The spectral norm of φ , denoted by
∥φ∥1, is defined as

∥φ∥1 = ∑
S⊆[n]

|aS|.

Fact 6.20 (Properties of Spectral Norm of Multilinear Polynomials). Let f ,g : Rn → R be
any symmetric polynomials and let α ∈ R be any real number. Then,

1. ∥α f∥1 = |α|∥ f∥1,

2. ∥ f +g∥1 ≤ ∥ f∥1 +∥g∥1,

3. ∥ f g∥1 ≤ ∥ f∥1∥g∥1.

Lemma 6.21. Let S ⊆ [n] and χS : {−1,1}n → R be the symmetric multilinear polynomial
defined as

χS(x1, . . . ,xn) = ∏
i∈S

(1− xi)

2
.

Then ∥χS∥1 = 1.
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Proof. Since for all i ∈ [n], the spectral norm of (1−xi)
2 = 1, the proof follows from 6.20

(3).

Definition 6.22 (Symmetric Multilinear Polynomial). A multilinear polynomial φ : Rn → R
is said to be symmetric if φ(x1, . . . ,xn) = φ(xσ(1), . . . ,xσ(n)) for all (x1, . . . ,xn) ∈ X and
σ ∈ Sn.

Sherstov [138] showed the following upper bound on the spectral norm of symmetric
multilinear polynomials.

Claim 6.23 ([138]). Let φ : Rn → R be a symmetric multilinear polynomial. Then

∥φ∥1 ≤ 8deg(φ) max
x∈{0,1}n

|φ(x)|.

Lemma 6.24. Let f : {−1,1}n →{−1,1} be a symmetric Boolean function. Then

log(∥ f∥1,1/3) = O(d̃eg( f )).

Proof. Let f ′ : {0,1}n → {−1,1} be defined as f ′(x1, . . . ,xn) = f
(

1−x1
2 , . . . , 1−xn

2

)
. It is

not hard to show, since we have done a linear transformation on the input domain, that
d̃eg( f ′) = d̃eg( f ). Let p′ be a polynomial that 1/3-approximates the symmetric function
f ′. By symmetrization we can assume that p′ is symmetric, and is of the form p′(x) =

∑S⊆[n] aS ∏i∈S xi.

Define the polynomial p : {−1,1}n → R as follows:

p(x1, . . . ,xn) = p′
(

1− x1

2
, . . . ,

1− xn

2

)
.

Clearly p is a 1/3-approximation to f since p′ is a 1/3-approximation to f ′ and we can write

p(x) = ∑
S⊆[n]

aS ∏
i∈S

(1− xi)

2
.
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Thus we can upper bound the ℓ1-norm of p as follows:

∥p∥1 =

∥∥∥∥∥ ∑
S⊆[n]

aS ∏
i∈S

(1− xi)

2

∥∥∥∥∥
1

≤ ∑
S⊆[n]

∥∥∥∥∥aS ∏
i∈S

(1− xi)

2

∥∥∥∥∥
1

(6.2)

≤ ∑
S⊆[n]

∣∣aS
∣∣∥∥∥∥∥∏i∈S

(1− xi)

2

∥∥∥∥∥
1

(6.3)

= ∑
S⊆[n]

∣∣aS
∣∣= ∥p′∥1, (6.4)

where Equation (6.2) follows from Fact 6.20 (2), Equation (6.3) follows from Fact 6.20 (1)
and Equation (6.4) follows from 6.21.

Hence, log(∥ f∥1,1/3)≤ log(∥p∥1)≤ log(∥p′∥1) = O(deg(p′)), where the last equality
follows by Claim 6.23 since p′ is symmetric. Since p′ was assumed to have degree deg(p′) =
d̃eg( f ), the lemma follows.

6.3 Overview of our approach and techniques

To demonstrate the tightness of the BCW simulation for a total function in the quantum
bounded-error setting we have to find a function F such that Qcc(F ◦G) = Θ(Q(F) logn) for
some choice of G (that is, either G is AND2 or XOR2). This requires us to prove an upper
bound of Q(F) and a lower bound on Qcc(F ◦G). We consider the case when G is the XOR2

function.

For the inner function the XOR2 function is preferred over the AND2 function for one
crucial reason: we have an analytical technique for proving lower bounds on Qcc(F ◦XOR2),
due to Lee and Shraibman [104]. They reduced the problem of lower bounding the bounded-
error quantum communication complexity of (F ◦XOR2) to proving lower bounds on an
analytic property of F , called its approximate spectral norm. The ε-approximate spectral
norm of F , denoted by ∥F̂∥1,ε , is defined to be the minimum ℓ1-norm of the coefficients
of a polynomial that approximates F uniformly to error ε (see Definition 7.31). Lee and
Shraibman [104] showed that Qcc(F ◦XOR2) = Ω(log∥F̂∥1,1/3). Thus, the lower bound of
Theorem 6.3 follows immediately from our result below.

Theorem 6.25. For any constant 0 < δ < 1, there exists a total function F : {−1,1}n →
{−1,1} for which Q(F) = Θ(nδ ) and

log
(
∥F̂∥1,1/3

)
= Θ(Q(F) logn).
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There are not many techniques known to bound the approximate spectral norm of a
function. This sentiment was expressed both in [104] and in the work of Ada, Fawzi and
Hatami [2]. On the other hand, classical approximation theory offers tools to prove bounds
on a simpler and better known concept called approximate degree which has been invaluable,
particularly for quantum query complexity. The ε-approximate degree of f , denoted by
d̃egε( f ), is the minimum degree required by a real polynomial to uniformly approximate f
to error ε (see Definition 6.12). Recently, two of the authors [42] devised a way of lifting
approximate degree bounds to approximate spectral norm bounds. We first show here that
technique works a bit more generally, to yield the following: let ADDRm,t : {−1,1}m → [t] be
a (possibly partial) addressing function (see Definition 6.8). For any function f : {−1,1}n →
{−1,1}, define the (partial) function fADDRm,t : {−1,1}n×t ×{−1,1}n×m → {−1,1} as
follows (formally defined in Definition 6.10):

fADDRm,t (x,y) = f
(

x1,ADDRm,t(y1),x2,ADDRm,t(y2), . . . ,xn,ADDRm,t(yn)

)
.

Our main result on lower bounding the spectral norm is stated below.

Lemma 6.26 (extending [42]). Let t > 1 be any integer, ADDRm,t be any (partial) addressing
function and f : {−1,1}n →{−1,1} be any function. Then,

log
(
∥ ̂fADDRm,t∥1,1/3

)
= Ω

(
d̃eg( f ) log t

)
.

The functions F constructed for the proof of Theorem 6.25 are completions of instances
of PARITYADDRℓ,ℓ , and hence Lemma 6.26 yields lower bounds on the approximate spectral
norm of F in terms of the approximate degree of PARITY (which is known to be maximal).

For the upper bound on Q(F) we use two famous query algorithms - Grover’s search [76]
and the Bernstein-Vazirani algorithm [24]. The use of these algorithms for upper bounding
Q(F) is in the same taste as in the work of Ambainis and de Wolf [8] although their motivation
was quite different than ours. Interestingly, Ambainis and de Wolf used their function to
pin down the minimal approximate degree of a total Boolean function, all of whose input
variables are influential.

6.3.1 Intuition behind the function construction

• From Theorem 6.1 it is known that for all Boolean functions f , Qcc( f ◦XOR2) ≤
O(Q( f ) logn).
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• In order to prove a matching lower bound, we construct a Boolean function F on n
variables such that ∥F̂∥1,1/3 = 2Ω(Q(F) logn) (Theorem 6.25). From Theorem 6.17, this
shows that Qcc(F ◦XOR2) = Ω(log∥F̂∥1,1/3) = Ω(Q(F) logn). We want to addition-
ally ensure that Q(F) = Θ(nδ ) for a given constant 0 < δ < 1. A formal definition of
F is given in Figure 6.1, we attempt to provide an overview on how we arrived at this
function below.

• Assume δ is a constant that is least 1/2, else the argument follows along similar lines
by ignoring suitably many input variables when defining the function. A natural first
attempt is to try to construct a composed function of the form F = fADDR, for some
addressing function ADDR (see Definition 6.8) with Ω(n1−δ ) many target bits, for
which Q( fADDR) = Θ(d̃eg( f )). For the lower bound we use Lemma 6.26 to show that
log∥ f̂ADDR∥1,1/3 = Ω(d̃eg( f ) log(n1−δ )) = Ω(d̃eg( f ) logn).

• Given the upper bound target, we are led to a natural choice of addressing function. Let
HADDn1−δ be the (n1−δ ,n1−δ )-addressing function defined as follows. Fix an arbitrary
order on the n1−δ -bit Hadamard codewords (see Definition 6.7) , say w1, . . . ,wn1−δ .
Define g to be the selector function of HADDn1−δ such that g(wi) = i for all i ∈ [n1−δ ],
and g(x) = ⋆ for x ̸= wi for any i ∈ [n1−δ ].

• For any function f on nδ/2 bits, the partial function fHADDn1−δ on n inputs has
quantum query complexity O(Q( f )+nδ/2), as we sketch in the next step. We select
f appropriately such that this is Θ(Q( f )). Finally, we define the total function F =

fHADDn1−δ to be the completion of fHADDn1−δ that evaluates to −1 on the non-promise
inputs of fHADDn1−δ .

• We choose the outer function to be f = PARITYnδ /2 to ensure Q(F) = Θ(nδ ). To
prove the upper bound on Q(F), we crucially use the Bernstein-Vazirani and Grover’s
search algorithms.

– Run nδ/2 instances of the Bernstein-Vazirani algorithm [24], one on each block.
This algorithm guarantees that if the address variables were all Hadamard code-
words, then we would receive the correct indices of the target variables with
probability 1, and just nδ/2 queries.

– In the next step, we run Grover’s search [76, 28] on two n/2-bit strings to test
whether the output of the first step was correct. If it was correct, we succeed with
probability 1, and proceed to query the nδ/2 selected target variables and output
the parity of them. If it was not correct, Grover’s search catches a discrepancy
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F =

PARITY

HADDℓ HADDℓ

k/2

2ℓ

······ ···

x11 · · · x1ℓ y11 · · · y1ℓ y k
2 ℓ· · ·y k

2 1x k
2 ℓ· · ·x k

2 1

Address bits Target bits

Fig. 6.1 k = nδ , ℓ = n1−δ . If the address bits of an input to the r’th HADDℓ is the j’th
Hadamard codeword, then yr j is selected. If on an input, there exists at least one HADDℓ for
which the address bits do not correspond to a Hadamard codeword, F outputs −1. Else it
outputs the parity of the k/2 selected target bits.

with probability at least 2/3 and we output −1, succeeding with probability at
least 2/3 in this case.

– The nδ/2 invocations of the Bernstein-Vazirani algorithm use a total of nδ/2
queries, Grover’s search uses another O(

√
n) queries, and the final parity (if

Grover’s search outputs that the strings are equal) uses another nδ/2 queries,
for a cumulative total of O(nδ +

√
n) = O(nδ ) queries (recall that we assume

δ ≥ 1/2).

6.4 Proof of Theorem 6.3

In this section, we prove Theorem 6.3. We first formally define the function we use.

6.4.1 Definition of the function

If δ < 1/2, then ignore the last n−2n2δ bits of the input, and define the following function
on the first 2nδ bits of the input. The same argument as in Sections 6.4.2 and 6.4.3 give the
required bounds for Theorem 6.3 and Theorem 6.25. Hence, we may assume without loss of
generality that δ ≥ 1/2.
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Define the partial function f : {−1,1}n →{−1,1,⋆} by f = PARITY
HADDn1−δ

nδ /2
. Define

F to be the completion of f that evaluates to −1 on the non-promise domain of f (see
Figure 6.1).

6.4.2 Upper bound

In this section, we prove the following.

Claim 6.27. For F : {−1,1}n →{−1,1} defined as in Section 6.4.1, we have Q(F) = Θ(nδ ).

The upper bound follows along the lines of a proof in [8], and the lower bound just uses
the fact that F is at least as hard as PARITYnδ /2.

Proof. Recall that an input to F is viewed as (x11, . . . ,x1,ℓ,y11, . . . ,y1,ℓ, . . . ,x k
2 1, . . . ,x k

2 ℓ
,y k

2 1, . . . ,y k
2 ℓ
).

The following is an O(nδ )-query quantum algorithm computing F . For convenience, set
ℓ= n1−δ and k = nδ . Note that since δ ≥ 1/2, we have k = Ω(ℓ).

1. Run k/2 instances of Bernstein-Vazirani algorithm on inputs (x11, . . . ,x1ℓ), . . . ,(x k
2 1, . . . ,x k

2 ℓ
)

to obtain k/2 strings z1, . . . ,zk/2.

2. Run Grover’s search [76, 28] to check equality of the two strings: h(z1), . . . ,h(zℓ) and
x11, . . . ,x1ℓ, . . . ,x k

2 1, . . . ,x k
2 ℓ

, i.e. to check whether the addressing bits of the input are
indeed all Hadamard codewords which are output by the first step.

3. If the step above outputs that the strings are equal, then query the k/2 selected variables
and output their parity. Else, output −1.

• If the input was indeed of the form as claimed in the first step, then Bernstein-
Vazirani outputs the correct z1, . . . ,zℓ with probability 1, and Grover’s search
verifies that the strings are equal with probability 1. Hence the algorithm is
correct with probability 1 in this case.

• If the input was not of the claimed form, then the two strings for which equality
is to be checked in the second step are not equal. Grover’s search catches a
discrepancy with probability at least 2/3. Hence, the algorithm is correct with
probability at least 2/3 in this case.

The correctness of the algorithm is argued above, and the cost is k/2 queries for the first
step, O(

√
kℓ) queries for the second step, and at most k/2 for the third step. Thus, we have

Q(F) = O(k+
√

kℓ) = O(k), since k = Ω(ℓ). The upper bound in the lemma follows.
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For the lower bound, we argue that F is at least as hard as PARITYk/2. To see this
formally, set all the address variables such that the selected target variables are the first
target variable in each block. Under this restriction, F equals PARITY(y11, . . . ,y k

2 1). Thus
any quantum query algorithm computing F must be able to compute PARITYk/2, and thus
Q(F) = Ω(k).

Remark 1. The same argument as above works when the function f is defined to be gHADDℓ

for any g : {−1,1}nδ → {−1,1} satisfying d̃eg(g) = Ω(nδ ), and F is the completion of f
that evaluates to −1 on all non-promise inputs. The same proof of Theorem 6.3 also goes
through, but we fix g = PARITYnδ /2 for convenience.

6.4.3 Lower bound

In this section, we first prove Lemma 6.26. We require the following observation.

Observation 6.28. For any S ⊆ [n] and any j ∈ S, we have Ex j∼{−1,1}[χS(x)] = 0, where x j

is distributed uniformly over {−1,1}.

Proof of Lemma 6.26. Let F = fADDRm,t . Recall that our goal is to show that log∥F̂∥1,1/3 =

Ω(d̃eg( f ) log t). We may assume d̃eg( f )≥ 1, because the lemma is trivially true otherwise.

Towards a contradiction, suppose there exists a polynomial P of spectral norm strictly
less than ( 1

10 d̃eg0.99( f ) log t) uniformly approximating F to error 1/3 on the promise inputs
(recall that from Lemma 6.14, we have d̃eg( f ) = Θ(d̃eg0.99( f ))).

Let ν be a distribution on the address bits of ADDRm,t such that ν is supported only
on assignments to the address variables that do not select ⋆, and is the uniform distribution
over these assignments. Let µ = νn be the product distribution over the address bits of the
addressing functions in F .

• For any assignment z of the address variables from the support of µ , define a relevant
(target) variable, with respect to z, to be one that is selected by z. Analogously, define
a target variable to be irrelevant if it is not selected by z. Define a monomial to be
relevant if it does not contain irrelevant variables, and irrelevant otherwise.

• Note that for any target variable, the probability with which it is selected is exactly 1/t.



6.4 Proof of Theorem 6.3 89

• Thus under any assignment z drawn from µ , for any monomial of the function P of
degree t ≥ d̃eg0.99( f ), the probability that it is relevant is at most 1/t d̃eg0.99( f ). Hence

E
z∼µ

[ℓ1-norm of relevant monomials w.r.t. z in P of degree ≥ d̃eg0.99( f )]

= ∑
|S|≥d̃eg0.99( f )

|P̂(S)| Pr
z∼µ

[χS is relevant w.r.t. z]

≤ max
|S|≥d̃eg0.99( f )

{ Pr
z∼µ

[χS is relevant w.r.t. z]} · ∥P̂∥1

<
1

t d̃eg0.99( f )
·2

1
10 d̃eg0.99( f ) log t = 2(−

9
10 )d̃eg0.99( f ) log t <

3
5
,

where the last inequality holds because t ≥ 2 and d̃eg0.99( f )≥ 1.

• Fix an assignment to the address variables from the support of µ such that under this
assignment, the ℓ1-norm of relevant monomials in P of degree ≥ d̃eg0.99( f ) is less
than 3/5.

• Note that under this assignment (in fact under any assignment in the support of µ),
the restricted F is just the function f on the n variables selected by the addressing
functions. Denote by P1 the polynomial on the target variables obtained from P by
fixing address variables as per this assignment.

• Drop the relevant monomials of degree ≥ d̃eg0.99( f ) from P1 to get a polynomial P2,
which uniformly approximates the restricted F (which is f on n variables) to error
1/3+3/5 < 0.99.

• Take expectation over irrelevant variables (from the distribution where each irrelevant
variable independently takes values uniformly from {−1,1}). Under this expectation,
the value of F does not change (since irrelevant variables do not affect F’s output by
definition), and all irrelevant monomials of P2 become 0 (using Observation 6.28 and
linearity of expectation). Hence, under this expectation we have E[P2] = P3, where
P3 is a polynomial of degree strictly less than d̃eg0.99( f ). Furthermore, P3 uniformly
approximates f to error less than 0.99 which is a contradiction.

As a corollary of Lemma 6.26, we obtain a lower bound on the approximate spectral
norm of F , where F is defined as in Section 6.4.1. This yields a proof of Theorem 6.25.

Proof of Theorem 6.25. Construct F as in Section 6.4.1. Claim 6.27 implies Q(F) = Θ(nδ ).

Let f = PARITY
HADDn1−δ

nδ /2
. Lemma 6.26 implies that ∥ f̂∥1,1/3 = Ω(nδ logn).
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Since F is a completion of f , we have ∥F̂∥1,1/3 = Ω(nδ logn), which proves the lower
bound in Theorem 6.25. The upper bound follows from Theorem 6.1.

We are now ready to prove our main theorem.

Proof of Theorem 6.3. It immediately follows from Theorem 6.25 and Theorem 6.17.

6.5 Summary

We conclude with the following points: first, we find our main result somewhat surprising
that simulating a query algorithm by a communication protocol in the quantum context has
a larger overhead than in the classical context. Second, it is remarkable that this relatively
fine overhead of logn can be detected using analytic techniques that are an adaptation of
the generalized discrepancy method. Third, the function that we used in this work is an
XOR function. Study of this class of functions is proving to be very insightful. A recent
example is the refutation of the log-approximate-rank conjecture [43] and even its quantum
version [10, 141]. Our work further advocates the study of XOR functions.

Along with the fact that d̃eg( f ) ≤ 2Q( f ) [19], Theorem 6.25 yields the following
corollary.

Corollary 6.29. For any constant 0 < δ < 1, there exists a total function F : {−1,1}n →
{−1,1} for which d̃eg(F) = O(nδ ) and

log∥F̂∥1,1/3 = Ω(d̃eg(F) logn).

It is easy to verify that the constructions of F that yield Theorem 6.25 for any fixed
constant 0 < δ < 1, also satisfy d̃eg(F) = Θ(nδ ). Thus, Corollary 6.29 also gives a negative
answer to Open Problem 2 in [13, Section 6], where it was asked if any degree-d approximat-
ing polynomial to a Boolean function of approximate degree d has spectral norm at most
2O(d). Thus to prove min-entropy of the Fourier spectrum of a Boolean function is upper
bounded by approximate degree, it cannot follow from their observation that min-entropy is
upper bounded by the logarithm of the approximate spectral norm. The following remains
an interesting and important open problem: (how) can one prove that the min-entropy of
the Fourier spectrum of a Boolean function is upper bounded by a constant multiple of its
approximate degree? Such an inequality is implied by the Fourier Entropy Influence (FEI)
Conjecture.



Chapter 7

Overhead in Query-to-Communication
Simulation for general functions

7.1 Introduction

This chapter we continues the study of outer functions for which the BCW-Simulation
Theorem is tight. See the last chapter for the setup of query-to-communication and the
BCW-Simulation Theorem. We saw in the last chapter the construction of an outer function
such that when composed with XOR2 as the inner function, the query-to-communication
simulation required logn overhead. Some natural questions that follow are:

1. Are there outer functions for which logn overhead is required in quantum query-to-
communication when the inner function is AND2?

2. Can we come up with a general recipe of constructing such functions?

3. Is there a natural class of functions for which the logn overhead is not required?

In this chapter we answer the first two questions and we address the third question in the
next chapter. In addition to constructing outer functions for which logn overhead is required
in quantum query-to-communication when the inner function is AND2, we show that the
BCW-Simulation theorem is tight in the following strong sense.

Theorem 7.1. There exists total function f : {−1,1}n →{−1,1}, such that

UPPcc( f ◦G) = Ω(Q( f ) logn)
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f =

PARITY

hIPlogn hIPlogn

n

2n

······ ···

x11 · · · x1n y11 · · · y1n ynn· · ·yn1xnn· · ·xn1

Fig. 7.1 If the inputs to the j-th hIPlogn are the Hadamard codewords H(s j) and H(t j) for all
j ∈ [n] and some s j, t j ∈ {−1,1}logn, then f = PARITY(IPlogn(s1, t1), . . . , IPlogn(sn, tn)). If
there exists at least one j ∈ [n] for which either x j1, . . . ,x jn or y j1, . . . ,y jn is not a Hadamard
codeword, then f outputs −1.

for every G ∈ {AND2,XOR2}.

Here UPPcc( f ◦G) denotes the unbounded-error quantum communication complex-
ity of f ◦G (adding “quantum” here only changes the communication complexity by a
constant factor). The unbounded-error model of communication was introduced by Paturi
and Simon [124] and is the strongest communication complexity model against which we
know how to prove explicit lower bounds. This model is known to be strictly stronger
than the bounded-error quantum model. For instance, the Set-Disjointness function on n
inputs requires Ω(n) bits or Ω(

√
n) qubits of communication in the bounded-error model,

but only requires O(logn) bits of communication in the unbounded-error model. In fact, it
follows from a recent result of Hatami, Hosseini and Lovett [83] that there exists a function
F : {−1,1}n ×{−1,1}n →{−1,1} with Qcc,∗(F) = Ω(n) while UPPcc(F) = O(1).

For proving Theorem 7.1, we exhibit a function f : {−1,1}2n2 → {−1,1} whose
bounded-error quantum query complexity is O(n) and the unbounded-error communica-
tion complexity of f ◦G is Ω(n logn) for G ∈ {AND2,XOR2}.

Function construction: For the construction of f we first require the definition of
Hadamard codewords. The Hadamard codeword of s ∈ {−1,1}logn, denoted by H(s) ∈
{−1,1}n, is a list of all parities of s. See Figure 7.1 for a graphical visualization of f .

Query upper bound: The query upper bound of O(n) follows along the lines of the last
chapter, using the Bernstein-Vazirani algorithm to decode the Hadamard codewords, and
Grover’s algorithm to check that they actually are Hadamard codewords. This is similar to
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f =

r

hG hG

n

2n

······ ···

x11 · · · x1n y11 · · · y1n ynn· · ·yn1xnn· · ·xn1

Fig. 7.2 In this figure, G : {−1,1}log×{−1,1}logn →{−1,1}. If the inputs to the j-th hG are
Hadamard codewords in ±H(s j) and ±H(t j) for all j ∈ [n] and some s j, t j ∈{−1,1}logn, then
f = r(G(s1, t1), . . . ,G(sn, tn)). If there exists at least one j ∈ [n] for which either x j1, . . . ,x jn
or y j1, . . . ,y jn is not a Hadamard codeword, then f outputs −1.

the query upper bound from the last chapter. See the proof of Theorem 7.21 for the query
algorithm and its analysis.

Communication lower bound: Towards the unbounded-error communication lower
bound, we first recall that each input block of f equals IPlogn if the inputs to each block
are promised to be Hadamard codewords. Hence f equals IPn logn under this promise, since
PARITYn ◦ IPlogn = IPn logn. Thus by setting certain inputs to Alice and Bob suitably, f ◦G
is at least as hard as IPn logn for G ∈ {AND2,XOR2} (for a formal statement, see Lemma 7.23
with r = PARITYn and g = IPlogn). It is known from a seminal result of Forster [61] that the
unbounded-error communication complexity of IPn logn equals Ω(n logn), completing the
proof of the lower bound. This proof is more general than and arguably simpler than the
proof of the lower bound for bounded-error quantum communication that we discussed in
the last chapter.

We give a general recipe for constructing a class of functions that witness tightness
of the BCW simulation where the inner gadget is either AND2 or XOR2. However, the
communication lower bound we obtain here is in the bounded-error model in contrast to
Theorem 7.1, where the communication lower bound is proven in the unbounded-error model.

The functions f constructed for this purpose are composed functions similar to the
construction in Figure 7.1, except that we are able to use a more general class of functions
in place of the outer PARITY function, and also a more general class of functions in place
of the inner IPlogn functions. See Figure 7.2 and its caption for an illustration and a more
precise definition.
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We require some additional constraints on the outer and inner functions. First, the
approximate degree of r should be Ω(n). Second, the discrepancy of G should be small with
respect to some “balanced” probability distribution (see Definition 7.15 and Definition 7.16
for formal definitions of these notions).

Theorem 7.2 (Formally stated in Theorem 7.4). Let r : {−1,1}n → {−1,1} be such that
d̃eg(r) = Ω(n) and let G : {−1,1}logn ×{−1,1}logn →{−1,1} be a total function. Define
f : {−1,1}2n2 →{−1,1} as in Figure 7.2. If there exists µ : {−1,1}logn ×{−1,1}logn → R
that is a balanced probability distribution with respect to G and discµ(G) = n−Ω(1), then

Q( f ) = O(n),

Qcc,∗( f ◦G) = Ω(n logn),

for every G ∈ {AND2,XOR2}.

The query upper bound follows along similar lines as that of Theorem 7.1. For the
lower bound, we first show via a reduction that for f as described in Figure 7.2 and
G ∈ {AND2,XOR2}, the communication problem f ◦G is at least as hard as r ◦G (see
Lemma 7.23). This part of the lower bound proof is the same as in the proof of Theorem 7.1.
For the hardness of r ◦G (which in the case of Theorem 7.1 turned out to be IPn logn, for
which Forster’s theorem yields an unbounded-error communication lower bound), we are
able to use a theorem implicit in a work of Lee and Zhang [105]. This theorem gives a lower
bound on the bounded-error communication complexity of r ◦G in terms of the approximate
degree of r and the discrepancy of G under a balanced distribution. For completeness, we
provide an explicit proof in Section 7.6.

7.1.1 Results and Organization

As already discussed in the introduction, we prove the following two theorems in this chapter

Theorem 7.3 (Restatement of Theorem 7.1). There exists total function f : {−1,1}n →
{−1,1}, such that

UPPcc( f ◦G) = Ω(Q( f ) logn)

for every G ∈ {AND2,XOR2}.

Theorem 7.4 (Restatement of Theorem 7.2). Let r : {−1,1}n →{−1,1} be a total function
with d̃eg(r) = Ω(n), G : {−1,1}logn ×{−1,1}logn → {−1,1} be a total function and G ∈
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{AND2,XOR2}. Define f = r ◦̃ hG : {−1,1}2n2 →{−1,1}. If there exists µ : {−1,1}logn ×
{−1,1}logn →R that is a balanced probability distribution with respect to G and discµ(G) =

n−Ω(1), then

Q( f ) = O(n),

Qcc,∗( f ◦G) = Ω(n logn).

We also show that the function constructed in the last chapter admits (see Section 6.4,
Definition 6.4.1 and Figure 6.1) logn overhead in query-to-communication simulation when
composed with AND2.

Organization. In Section 7.2 we give notations and preliminaries, recalling some facts
that we have previously discussed for ease of reading. In Section 7.3 we prove Theorem 7.3
and Theorem 7.4. In Section 7.4 we show that logn overhead is required in BCW Simulation
for the function from Definition 7.15 even when composed with AND2. In Section 7.5
we give a separation between log-approximate-spectral norm and approximate degree for
a transitive function. In Section 7.6 we present a lower bounds quantum communication
complexity via the generalized discrepancy method. This is implicit in [105, Theorem 7] and
we present it here for sake of completeness.

7.2 Notation and preliminaries

Without loss of generality, we assume n to be a power of 2 in this paper, unless explicitly
stated otherwise. All logarithms in this paper are base 2. Let Sn denote the symmetric group
over the set [n] = {1, . . . ,n}. For a string x ∈ {−1,1}n and σ ∈ Sn, let σ(x) denote the string
xσ(1), . . . ,xσ(n) ∈ {−1,1}n. Consider an arbitrary but fixed bijection between subsets of
[logn] and elements of [n]. For a string s ∈ {−1,1}logn, we abuse notation and also use s to
denote the equivalent element of [n]. The view we take will be clear from context. For a string
x ∈ {−1,1}n and set S ⊆ [n], define the string xS ∈ {−1,1}S to be the restriction of x to the
coordinates in S. Let 1n and (−1)n denote the n-bit string (1,1, . . . ,1) and (−1,−1, . . . ,−1),
respectively.



96 Overhead in Query-to-Communication Simulation for general functions

7.2.1 Boolean functions

For strings x,y ∈ {−1,1}n, let ⟨x,y⟩ denote the inner product (mod 2) of x and y. That is,

⟨x,y⟩=
n

∏
i=1

(xiAND2yi).

For every positive integer n, let PARITYn : {−1,1}n →{−1,1} be defined as:

PARITYn(x1, . . . ,xn) = ∏
i∈[n]

xi.

Definition 7.5 (Symmetric functions). A function f : {−1,1}n →{−1,1} is symmetric if for
all σ ∈ Sn and for all x ∈ {−1,1}n we have f (x) = f (σ(x)).

Definition 7.6 (Transitive functions). A function f : {−1,1}n →{−1,1} is transitive if for
all i, j ∈ [n] there exists a permutation σ ∈ Sn such that

• σ(i) = j, and

• f (x) = f (σ(x)) for all x ∈ {−1,1}n.

We next discuss function composition. For total functions f ,g, let f ◦ g denote the
standard composition of the functions f and g. We also require the following notion of
composition of a total function f with a partial function g.

Definition 7.7 (Composition with partial functions). Let f : {−1,1}n →{−1,1} be a total
function and let g : {−1,1}m → {−1,1,⋆} be a partial function. Let f ◦̃ g : {−1,1}nm →
{−1,1} denote the total function that is defined as follows on input (X1, . . . ,Xn) ∈ {−1,1}nm,
where Xi ∈ {−1,1}m for all i ∈ [n].

f ◦̃ g(X1, . . . ,Xn) =

 f (g(X1), . . . ,g(Xn)) if g(Xi) ∈ {−1,1} for all i ∈ [n],

−1 otherwise.

That is, we use f ◦̃ g to denote the total function that equals f ◦g on inputs when each
copy of g outputs a value in {−1,1}, and equals −1 otherwise.

Definition 7.8 (Approximate degree). For every ε ≥ 0, the ε-approximate degree of a
function f : {−1,1}n →{−1,1} is defined to be the minimum degree of a real polynomial
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p : {−1,1}n → R that uniformly approximates f to error ε . That is,

d̃egε( f ) = min{deg(p) : |p(x)− f (x)| ≤ ε for all x ∈ {−1,1}n} .

Unless specified otherwise, we drop ε from the subscript and assume ε = 1/3.

We assume familiarity with quantum computing [120], and use Qε( f ) to denote the
ε-error query complexity of f . Unless specified otherwise, we drop ε from the subscript and
assume ε = 1/3.

Theorem 7.9 ([20]). Let f : {−1,1}n →{−1,1} be a function. Then Q( f )≥ d̃eg( f )/2.

7.2.2 Communication complexity

The following terminology of two party functions will be helpful to distinguish between
functions with domain {−1,1}n ×{−1,1}n and communications problems with the same
domain.

Definition 7.10 (Two-party function). We call a function G : {−1,1} j×{−1,1}k →{−1,1}
a two-party function to indicate that it corresponds to a communication problem in which
Alice is given input x ∈ {−1,1} j, Bob is given input y∈ {−1,1}k, and their task is to compute
G(x,y).

Remark 2. Throughout this paper, we use uppercase letters to denote two-party functions,
and lowercase letters to denote functions which are not two-party functions.

Definition 7.11 (Composition with two-party functions). Let f : {−1,1}n →{−1,1} be a
function and let G : {−1,1} j×{−1,1}k →{−1,1} be a two-party function. Then F = f ◦G :
{−1,1}n j ×{−1,1}nk →{−1,1} denotes the two-party function corresponding to the com-
munication problem in which Alice is given input X = (X1, . . . ,Xn) ∈ {−1,1}n j, Bob is given
Y =(Y1, . . . ,Yn)∈{−1,1}nk, and their task is compute F(X ,Y )= f (G(X1,Y1), . . . ,G(Xn,Yn)).

Definition 7.12 (Inner Product function). For every positive integer n, define the function
IPn : {−1,1}n ×{−1,1}n →{−1,1} by

IPn(x,y) = ⟨x,y⟩.

In other words, IPn = PARITYn ◦AND2.

Observation 7.13. For all positive integers k, t, PARITYk ◦ IPt = IPkt .
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We also assume familiarity with quantum communication complexity [151]. We use
Qcc

ε (G) and Qcc,∗
ε (G) to represent the ε-error quantum communication complexity of a two-

party function G in the models without and with unlimited shared entanglement, respectively.
Unless specified otherwise, we drop ε from the subscript and assume ε = 1/3.

Definition 7.14 (Balanced probability distribution). We call a probability distribution µ :
{−1,1}n →R balanced with respect to a function f : {−1,1}n →{−1,1} if ∑x∈{−1,1}n f (x)µ(x)=
0.

Definition 7.15 (Discrepancy). Let G : {−1,1} j ×{−1,1}k →{−1,1} be a function and λ

be a distribution on {−1,1} j ×{−1,1}k. For every S ⊆ {−1,1} j and T ⊆ {−1,1}k, define

discλ (S×T,G) =
∣∣ ∑

x,y∈S×T
G(x,y)λ (x,y)

∣∣.
The discrepancy of G under the distribution λ is defined to be

discλ (G) = max
S⊆{−1,1} j,T⊆{−1,1}k

discλ (S×T,G),

and the discrepancy of f is defined to be

disc(G) = min
λ

discλ (G).

Definition 7.16 (Balanced-discrepancy). Let G : {−1,1} j ×{−1,1}k →{−1,1} be a func-
tion and Λ be the set of all balanced distributions on {−1,1} j ×{−1,1}k with respect to G.
The balanced-discrepancy of G is defined to be

bdisc(G) = min
λ∈Λ

discλ (G).

The following theorem is implicit in [105, Theorem 7]. However, we prove it in Sec-
tion 7.44 for completeness.

Theorem 7.17. Let r : {−1,1}n →{−1,1} and G : {−1,1} j ×{−1,1}k →{−1,1} be func-
tions. Let µ : {−1,1} j ×{−1,1}k → R be a balanced distribution with respect to G and

discµ(G) = o(1). If 8en
d̃eg(r)

≤
(

1
discµ (G)

)1−β

for some constant β ∈ (0,1), then

Qcc,∗(r ◦G) = Ω

(
d̃eg(r) log

(
1

discµ(G)

))
.
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In particular,

Qcc,∗(r ◦G) = Ω

(
d̃eg(r) log

(
1

bdisc(G)

))
.

7.2.3 Hadamard encoding

Recall that we index coordinates of n-bit strings by integers in [n], and also interchangeably
by strings in {−1,1}logn via the natural correspondence. For x ∈ {−1,1}n, let −x ∈ {−1,1}n

be defined as (−x)i =−xi for all i ∈ [n]. We use the notation ±x to denote the set {x,−x}.

Definition 7.18 (Hadamard Codewords). For every positive integer n and s ∈ {−1,1}logn,
let H(s) ∈ {−1,1}n be defined as

(H(s))t = ∏
i:si=−1

ti for all t ∈ {−1,1}logn.

If x ∈ {−1,1}n is such that x = H(s) for some s ∈ {−1,1}logn, we say x is a Hadamard
codeword corresponding to s.

That is, for every s ∈ {−1,1}logn, there is an n-bit Hadamard codeword corresponding
to s. This represents the enumeration of all parities of s.

We now define how to encode a two-party total function G on (log j+ logk) input bits to
a partial function hG on ( j+ k) input bits, using Hadamard encoding.

Definition 7.19 (Hadamardization of functions). Let j,k ≥ 1 be powers of 2, and let
G : {−1,1}log j × {−1,1}logk → {−1,1} be a function. Define a partial function hG :
{−1,1} j+k →{−1,1,⋆} by

hG(x,y) =

G(s, t) if x ∈ ±H(s),y ∈ ±H(t) for some s ∈ {−1,1}log j, t ∈ {−1,1}logk

⋆ otherwise.

7.3 Necessity of the log-factor overhead in the BCW simu-
lation

In this section we prove Theorem 7.3 and Theorem 7.4. For Theorem 7.3 we exhibit a
function f : {−1,1}2n2 → {−1,1} for which Q( f ) = O(n) and UPP( f ◦G) = Ω(n logn)
for G ∈ {AND2,XOR2}. In Theorem 7.4 we show a general recipe for constructing total
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functions f : {−1,1}2n2 →{−1,1} such that Q( f ) = O(n) and Qcc,∗( f ◦G) = Ω(n logn) for
G ∈ {AND2,XOR2}. We first give a formal statement of Theorem 7.4.

Theorem 7.20 (Restatement of Theorem 7.4). Let r : {−1,1}n →{−1,1} be a total function
with d̃eg(r) = Ω(n), G : {−1,1}logn ×{−1,1}logn → {−1,1} be a total function and G ∈
{AND2,XOR2}. Define f = r ◦̃ hG : {−1,1}2n2 →{−1,1}. If there exists µ : {−1,1}logn ×
{−1,1}logn →R that is a balanced probability distribution with respect to G and discµ(G) =

n−Ω(1), then

Q( f ) = O(n),

Qcc,∗( f ◦G) = Ω(n logn).

The proofs of Theorem 7.3 and Theorem 7.4 each involve proving a query complex-
ity upper bound and a communication complexity lower bound. The proofs of the query
complexity upper bounds are along similar lines and follow from Theorem 7.21 and Corol-
lary 7.22 (see Section 7.3.1). The proofs of the communication complexity lower bounds
each involve a reduction from a problem whose communication complexity is easier to
analyze (see Lemma 7.23 in Section 7.3.2). Finally, we complete the proofs of Theorem 7.3
and Theorem 7.4 in Section 7.3.3.

7.3.1 Quantum query complexity upper bound

We start by stating the main theorem in this section.

Theorem 7.21. Let G : {−1,1}log j ×{−1,1}logk → {−1,1} and r : {−1,1}n → {−1,1}.
Then the quantum query complexity of the function r ◦̃ hG : {−1,1}n( j+k) →{−1,1} is given
by

Q(r ◦̃ hG) = O(n+
√

n( j+ k)).

As a corollary we obtain the following on instantiating j = k = n and r as a Boolean
function with quantum query complexity Θ(n) in Theorem 7.21.

Corollary 7.22. Let G : {−1,1}logn ×{−1,1}logn → {−1,1} be a non-constant function
and let r : {−1,1}n → {−1,1} be a total function with Q(r) = Θ(n). Then the quantum
query complexity of the total function r ◦̃ hG : {−1,1}2n2 →{−1,1} is

Q(r ◦̃ hG) = Θ(n).
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Proof. The upper bound Q(r ◦̃ hG) = O(n) follows by plugging in parameters in Theo-
rem 7.21.

For the lower bound, we show that Q(r ◦̃ hG)≥Q(r). Since G is non-constant, there exist
x1,y1,x2,y2 ∈ {−1,1}logn such that G(x1,y1) =−1 and G(x2,y2) = 1. Let X1 = H(x1),Y1 =

H(y1), X2 =H(x2) and X2 =H(y2). Consider r ◦̃ hG only restricted to inputs where the inputs
to each copy of hG are either (X1,Y1) or (X2,Y2). Under this restriction, r ◦̃ hG : {−1,1}2n2 →
{−1,1} is the same as r : {−1,1}n →{−1,1}. Thus Q(r ◦̃ hG)≥ Q(r) = Ω(n).

We now prove Theorem 7.21.

Proof of Theorem 7.21. Recall from Definition 7.19 that the function hG : {−1,1} j+k →
{−1,1} is defined as hG(x,y) = G(s, t) if x ∈±H(s) and y ∈±H(t) for some s ∈ {−1,1}log j

and t ∈ {−1,1}logk, and hG(x,y) = ⋆ otherwise.

Also recall from Definition 7.7 that the function r ◦̃ hG : {−1,1}n( j+k) → {−1,1}
is defined as r ◦̃ hG((X1,Y1), . . . ,(Xn,Yn)) = r ◦ hG((X1,Y1), . . . ,(Xn,Yn)) if hG((Xi,Yi)) ∈
{−1,1} for all i ∈ [n], and −1 otherwise.

Quantum query algorithm: View inputs to r ◦̃ hG as (X1,Y1, . . . ,Xn,Yn), where Xi ∈
{−1,1} j for all i ∈ [n] and Yi ∈ {−1,1}k for all i ∈ [n]. We give a quantum algorithm and its
analysis below.

1. Run 2n instances of the Bernstein-Vazirani algorithm: 1 instance on each Xi and
1 instance on each Yi, to obtain 2n strings x1, . . . ,xn,y1, . . . ,yn, where each xi is a
(log j)-bit string and each yi is a (logk)-bit string.

2. For each Xi and Yi, query (Xi)1log j and (Yi)1logk to obtain bits bi,ci ∈ {−1,1} for all
i ∈ [n].

3. Run Grover’s search [76, 28] to check equality of the following two (n j + nk)-bit
strings: (b1H(x1), . . . ,bnH(xn),c1H(y1), . . . ,cnH(yn)) and (X1, . . . ,Xn,Y1, . . . ,Yn).

4. If the step above outputs that the strings are equal, then output r(G(x1,y1), . . . ,G(xn,yn)).
Else, output −1.

Analysis of the algorithm:

• If the input is indeed of the form (X1,Y1), . . . ,(Xn,Yn) where each Xi ∈ ±H(xi) and
Yi ∈ ±H(yi) for some xi ∈ {−1,1}log j and yi ∈ {−1,1}logk, then Step 1 outputs the
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correct strings x1, . . . ,xn,y1, . . . ,yn with probability 1 by the properties of the Bernstein-
Vazirani algorithm. Step 2 then implies that Xi = biH(xi) and Yi = ciH(yi) for all i ∈ [n].
Next, Step 3 outputs that the strings are equal with probability 1 (since the strings whose
equality are to be checked are equal). Hence the algorithm is correct with probability 1
in this case, since (r ◦̃ hG)(X1,Y1, . . . ,Xn,Yn) = r(G(x1,y1), . . . ,G(xn,yn)).

• If the input is such that there exists an index i ∈ [n] for which Xi /∈ ±H(xi) for every
xi ∈ {−1,1}log j or Yi /∈ ±H(yi) for every yi ∈ {−1,1}logk, then the two strings for
which equality is to be checked in the Step 3 are not equal. Grover’s search catches a
discrepancy with probability at least 2/3. Hence, the algorithm outputs −1 (as does
r ◦̃ hG), and is correct with probability at least 2/3 in this case.

Cost of the algorithm: Step 1 accounts for 2n quantum queries. Step 2 accounts for 2n
quantum queries. Step 3 accounts for O(

√
n( j+ k)) quantum queries.

Thus,
Q(r ◦̃ hG) = O(n+

√
n( j+ k)).

7.3.2 Quantum communication complexity lower bound

In this section we first show a communication lower bound (under some model) on (r ◦̃ hG)◦
G in terms of the communication complexity of r ◦G (in the same model of communication)
using a simple reduction. We state the lemma below (Lemma 7.23) for the case where the
models under consideration are the bounded-error and unbounded-error quantum models,
since these are the models of interest to us.

Lemma 7.23. Let r : {−1,1}n → {−1,1}, G : {−1,1}log j ×{−1,1}logk → {−1,1}, G ∈
{AND2,XOR2} and CC ∈ {Qcc,∗,UPPcc}. Then,

CC((r ◦̃ hG)◦G)≥CC(r ◦G).

Proof. We first consider the case G = AND2. Consider a protocol Π of cost ℓ that solves
(r ◦̃ hG)◦G in the CC-model. We exhibit below a protocol of cost ℓ that solves r ◦G in the
same model.

Suppose Alice is given input x = (x1, . . . ,xn) ∈ {−1,1}n log j and Bob is given input
y = (y1, . . . ,yn) ∈ {−1,1}n logk, where xi ∈ {−1,1}log j,yi ∈ {−1,1}logk for each i ∈ [n].
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Preprocessing step: Alice constructs the (n( j+ k))-bit string

X = ((H(x1),(−1)k), . . . ,(H(xn),(−1)k)) ∈ {−1,1}n( j+k), (7.1)

and Bob constructs the (n( j+ k))-bit string

Y = (((−1) j,H(y1)), . . . ,((−1) j,H(yn))) ∈ {−1,1}n( j+k). (7.2)

Protocol: Alice and Bob run the protocol Π with input (X ,Y ) and output Π(X ,Y ).

Cost: The preprocessing of the inputs to obtain X from x and Y from y takes no communi-
cation. Hence the total amount of communication is at most the cost of Π.

Correctness: For X and Y constructed in Equation (7.1) and Equation (7.2), respectively,
we now argue that (r ◦G)(x,y) = ((r ◦̃ hG)◦AND2)(X ,Y ), which would conclude the proof
for G = AND2.

((r ◦̃ hG)◦AND2)(X ,Y ) = (r ◦̃ hG)((H(x1),H(y1)), . . . ,(H(xn),H(yn)))

= r(G(x1,y1), . . . ,G(xn,yn))

by Definition 7.19 and Definition 7.7

= (r ◦G)(x,y).

Thus,

CC((r ◦̃ hG)◦AND2)≥CC(r ◦G).

The argument for G = XOR2 follows along the same lines, with the strings (−1) j and (−1)k

replaced by 1 j and 1k, respectively, in the preprocessing step.

7.3.3 On the tightness of the BCW simulation

We prove Theorem 7.4 in Section 7.3.3 and Theorem 8.2 in Section 7.3.3.

Proof of Theorem 7.4

Towards proving Theorem 7.4, we first observe how to obtain bounded-error quantum
communication complexity lower bounds using Theorem 7.17 and Lemma 7.23.
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Lemma 7.24. Let r : {−1,1}n → {−1,1} and G : {−1,1}log j ×{−1,1}logk → {−1,1} be

functions such that bdisc(G) = o(1) and 8en
d̃eg(r)

≤
(

1
bdisc(G)

)1−β

for some constant β ∈ (0,1).

Let G ∈ {AND2,XOR2}. Then,

Qcc,∗((r ◦̃ hG)◦G) = Ω

(
d̃eg(r) log

(
1

bdisc(G)

))
.

Proof. By Lemma 7.23 we have Qcc,∗((r ◦̃ hG) ◦G) ≥ Qcc,∗(r ◦G). By Theorem 7.17,
Qcc,∗(r ◦G) = Ω

(
d̃eg(r) log

(
1

bdisc(G)

))
.

We now prove Theorem 7.4.

Proof of Theorem 7.4. Let r : {−1,1}n →{−1,1}, G : {−1,1}logn×{−1,1}logn →{−1,1}
and f = r ◦̃ hG : {−1,1}2n2 → {−1,1} be as in the statement of the theorem. We have
Q(r)≥ d̃eg(r)/2 = Ω(n), where the first inequality follows by Theorem 7.9 and the second
equality follows from the assumption that d̃eg(r) = Ω(n). Moreover, Q(r)≤ n since r is a
function on n input variables. Hence Q(r) = Θ(n). Thus, Corollary 7.22 is applicable, and
we have

Q( f ) = Θ(n).

For the lower bound, d̃eg(r) = Ω(n) by assumption. Thus

2en

d̃eg(r)
= O(1).

Also, since by assumption 1
bdisc(G) = nΩ(1) = ω(1), we have

2en

d̃eg(r)
≤
(

1
bdisc(G)

)1−β

for every constant β ∈ (0,1). Lemma 7.24 implies

Qcc,∗( f ◦G) = Ω

(
d̃eg(r) log

(
1

bdisc(G)

))
= Ω(n logn).
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Proof of Theorem 7.3

The total function f : {−1,1}2n2 →{−1,1} that we use to prove Theorem 7.3 is f = r ◦̃ hG,
where r = PARITYn and G = IPlogn. Note that Theorem 7.4 implies Q( f ) = O(n). For the
quantum communication complexity lower bound in Theorem 7.3, we are able to show not
only Qcc,∗( f ◦G) = Ω(n logn), but UPPcc( f ◦G) = Ω(n logn) for G ∈ {AND2,XOR2}.

We now prove Theorem 7.3.

Proof of Theorem 7.3. Let n > 0 be a power of 2. Let r = PARITYn : {−1,1}n → {−1,1}
and G = IPlogn : {−1,1}logn × {−1,1}logn → {−1,1}. Let f = r ◦̃ hG : {−1,1}2n2 →
{−1,1}. By Claim 8.13, f is transitive. By Corollary 7.22 we have

Q( f ) = Θ(n).

For the communication lower bound we have

UPPcc( f ◦G) = UPPcc((r ◦̃ hG)◦G)

≥ UPPcc(PARITYn ◦ IPlogn) by Lemma 7.23

= UPPcc(IPn logn) Observation 7.13

= Ω(n logn). by Theorem 8.7

7.4 Hardness of composing the function from Section 6.4
with AND2

In Section 6.4, we exhibited a total function f : {−1,1}n → {−1,1} for which Qcc,∗( f ◦
XOR2) = Ω(Q( f ) logn), that is, the log-factor overhead in the BCW simulation is necessary
for f when the inner function is XOR2. In this section we show that the log-factor overhead
is necessary for f even when the inner function is AND2. We redefine that function here and
recall some facts about that function for convenience. First, we view addressing function as a
two-party function in the following definition.

Definition 7.25 (Addressing function). For an integer n > 0 that is a power of 2, let the
Addressing function, denoted ADDRn : {−1,1}logn ×{−1,1}n → {−1,1}, be a two-party
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function defined as follows.

ADDRn(x1, . . . ,xlogn,y1, . . . ,yn) = ybin(i),

where bin(i) represents the integer in [n] whose binary representation is i.

In the corresponding communication problem, Alice holds the inputs x1, . . . ,xlogn, and
Bob holds the inputs y1, . . . ,yn.

In the last chapter, we defined the following function f : {−1,1}2n2 → {−1,1}. Let
Xi,Yi ∈ {−1,1}n for all i ∈ [n].

f (X1,Y1, . . . ,Xn,Yn) =

PARITY(ADDRn(x1,Y1), . . . ,ADDRn(xn,Yn)) if ∀i ∈ [n],Xi ∈ ±H(xi)

−1 otherwise,

(7.3)

That is, if there exist xi ∈{−1,1}logn for all i∈ [n] such that Xi ∈±H(xi), then f (X1,Y1, . . . ,Xn,Yn)

equals the parity of ADDRn(x1,Y1), . . . ,ADDRn(xn,Yn), and f equals −1 otherwise.

We proved the following quantum query upper bound on f in the last chapter.

Theorem 7.26. For f : {−1,1}2n2 →{−1,1} as defined in Equation (7.3), Q( f ) = O(n).

Remark 3. The function considered in Section 6.4 is not exactly as in Equation (7.3) because
the former one did not consider negations of Hadamard codewords as done in Equation (7.3).
However, Theorem 7.26 can still be seen to hold by techniques identical to the last chapter.

In the last chapter, we showed the BCW simulation theorem is tight for f when the
inner function is XOR2, that is Qcc,∗( f ◦XOR2) = Ω(n logn). However, we left open the
question whether the BCW simulation theorem is tight for f even when the inner function is
AND2. We now show that this is indeed the case. The quantum query upper bound holds by
Theorem 7.26. For the communication complexity lower bound we use techniques similar to
those in the proof of Lemma 7.23.

Lemma 7.27. Let f : {−1,1}2n2 →{−1,1} be as in Equation (7.3), and CC ∈{Qcc,∗,UPPcc}.
Then,

CC(r ◦AND2)≥CC(PARITYn ◦ADDRn).

We require the following lemma.
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Lemma 7.28. Let n> 0 be a power of 2, and let U be the uniform distribution on {−1,1}logn×
{−1,1}n. Then,

discU(ADDRn)≤
1√
n
.

We provide a proof for completeness.

Proof. Consider the uniform distribution U : {−1,1}logn×{−1,1}n →R defined as U(x,y)=
1

n2n for all x ∈ {−1,1}logn and y ∈ {−1,1}n. Let An×2n be the communication matrix of
ADDRn : {−1,1}logn ×{−1,1}n →{−1,1}. Observe that for every i, j ∈ [n],

(AAT )i j = ∑
x∈{−1,1}n

xix j =

2n if i = j

0 otherwise.

Hence AAT = 2nIn, where In denotes the n× n identity matrix. Thus, ∥A∥ =
√

2n. For
S ⊆ [n] and T ⊆ [2n], let 1S : [n]→{0,1} and 1T : [2n]→{0,1} be the indicator function of
corresponding rows and columns of A, respectively. We now upper bound the discrepancy
with respect to the uniform distribution:

discU(ADDRn) = max
S⊆[n],T⊆[2n]

∣∣(1S)
T · (U ◦A) ·1T

∣∣
where (U ◦A) denotes the entry-wise product matrix of U and A

≤
√

n · ∥U ◦A∥ ·
√

2n

=
1√
n2n

∥A∥

=
1√
n
.

We now prove Lemma 7.27 using Lemma 7.28.

Proof of Lemma 7.27. Consider a protocol Π of cost ℓ that solves f ◦AND2 in the CC-model.
We exhibit below a protocol of cost ℓ that solves PARITYn ◦ADDRn in the same model.
Recall from Definitions 7.11 and 7.25 that in the communication problem PARITYn◦ADDRn,
Alice is given the address bits and Bob is given the target bits for each copy of the inner gadget
ADDRn. Suppose Alice is given input x = (x1, . . . ,xn) ∈ {−1,1}n logn and Bob is given input
y = (y1, . . . ,yn) ∈ {−1,1}n2

, where xi ∈ {−1,1}logn,yi ∈ {−1,1}n for each i ∈ [n].
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Preprocessing step: Alice constructs the following (2n2)-bit string

X = (H(x1),(−1)n), . . . ,(H(xn),(−1)n)) ∈ {−1,1}2n2
, (7.4)

and Bob constructs the (2n2)-bit string

Y = (((−1)n,y1), . . . ,((−1)n,yn)) ∈ {−1,1}2n2
. (7.5)

Protocol: Alice and Bob run the protocol Π with input (X ,Y ), and output Π(X ,Y ).

Cost: The preprocessing of the inputs to obtain X from x and Y from y takes no communi-
cation. Hence the total amount of communication is at most the cost of Π.

Correctness: We now argue that PARITYn ◦ADDRn(x,y) = ( f ◦AND2)(X ,Y ), which
would conclude the proof. We have from Equation (7.4) and Equation (7.5) that

( f ◦AND2)(X ,Y ) = f ((H(x1),y1), . . . ,(H(xn),yn))

= PARITYn(ADDRn(x1,y1), . . . ,ADDRn(xn,yn)) by Equation (7.3)

= PARITYn ◦ADDRn(x,y).

Thus,

CC( f ◦AND2)≥CC(PARITYn ◦ADDRn),

which proves the lemma.

Theorem 7.29. Let n > 0 be a sufficiently large power of 2. Let f : {−1,1}2n2 → {−1,1}
be as in Equation (7.3). Then,

Q( f ) = O(n),

Qcc,∗( f ◦AND2) = Ω(n logn).

Proof. The upper bound follows from Theorem 7.26. For the lower bound, we first note that
for sufficiently large n and every constant β ∈ (0,1), we have

2en

d̃eg(PARITYn)
= 2e < (

√
n)1−β =

(
1

discU(ADDRn)

)1−β

, (7.6)
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where U denotes the uniform distribution over {−1,1}logn ×{−1,1}n. The first equality
above holds since d̃eg(PARITYn) = n, and the last equality holds by Lemma 7.28. It is easy
to verify that U is a balanced distribution w.r.t. ADDRn. Hence,

Qcc,∗( f ◦AND2)≥ Qcc,∗(PARITYn ◦ADDRn) by Lemma 7.27

= Ω

(
d̃eg(PARITYn) log

(
1

discU(ADDRn)

))
by Theorem 7.17 (which is applicable by Equation (7.6) and since U is balanced w.r.t. ADDRn)

= Ω

(
n log

(
1

discU(ADDRn)

))
since d̃eg(PARITYn) = n

= Ω(n logn). by Lemma 7.28

7.5 A separation between log-approximate-spectral norm
and approximate degree for a transitive function

In this section, we exhibit a transitive function f : {−1,1}n →{−1,1} for which the loga-
rithm of its approximate spectral norm (log(∥ f̂∥1,1/3)) is at least Ω(d̃eg( f ) logn).

Definition 7.30 (Spectral norm). Let p : {−1,1}n →R be a function, and let p=∑S⊆[n] p̂(S)χS

denote its Fourier expansion. The spectral norm of p is define by

∥p̂∥1 := ∑
S⊆[n]

∣∣p̂(S)∣∣.
Definition 7.31 (Approximate Spectral Norm). The approximate spectral norm of a function
f : {−1,1}n →{−1,1}, denoted by ∥ f̂∥1,ε is defined to be the minimum spectral norm of a
real polynomial p : {−1,1}n → R that satisfies

∣∣p(x)− f (x)
∣∣≤ ε for all x ∈ {−1,1}n. That

is,
∥ f̂∥1,ε := min

{
∥p̂∥1 :

∣∣p(x)− f (x)
∣∣≤ ε for all x ∈ {−1,1}n} .

As we discussed in the last chapter’s summary, the following question raised in [13] was
shown to have a negative answer, using the function f of Equation (7.3) to witness this.
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Question 7.32 ([13, Section 4]). Is it true that for all Boolean functions f : {−1,1}n →
{−1,1},

log(∥ f̂∥1,ε) = O(d̃eg( f ))?

In this section we show that Question 7.32 is false even for the special class of transitive
Boolean functions. This is in stark contrast with the class of symmetric functions, for which
Question 7.32 is true.

Claim 7.33. There exists a transitive function f : {−1,1}2n2 →{−1,1} such that log
(
∥ f̂∥1,1/3

)
=

Ω(d̃eg( f ) logn).

We first state some required preliminaries.

Definition 7.34 (Monomial projection). We call a function g : {−1,1}m →{−1,1} a mono-
mial projection of a function f : {−1,1}n →{−1,1} if g can be expressed as g(x1, . . . ,xm) =

f (M1, . . . ,Mn), where each Mi is a monomial in the variables x1, . . . ,xm.

It is known that the approximate spectral norm of a function can only decrease upon
monomial projections (see, for example, [42, Observation 25]).

Observation 7.35 ([42, Observation 25]). For f : {−1,1}n →{−1,1} and g : {−1,1}m →
{−1,1} such that g is a monomial projection of f ,

∥ĝ∥1,1/3 ≤ ∥ f̂∥1,1/3.

Fact 7.36 (Fourier coefficients of IPn). Let IPn : {−1,1}2n →{−1,1} be as in Definition 7.12.
Then for all S ⊆ [2n] we have,

∣∣ÎPn(S)
∣∣= 1

2n .

Fact 7.37 (Plancherel’s Theorem). Let f ,g : {−1,1}n → R be functions. Then,

∑
x∈{−1,1}n

f (x)g(x) = ∑
S⊆[n]

f̂ (S)ĝ(S).

Proof of Claim 7.33. Let n > 0 be a power of 2. Let r = PARITYn : {−1,1}n → {−1,1}
and G = IPlogn : {−1,1}logn × {−1,1}logn → {−1,1}. From Claim 8.13, the function
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f = r ◦̃ hG : {−1,1}2n2 →{−1,1} is transitive. By Corollary 7.22 we have

Q( f ) = Θ(n). (7.7)

By Theorem 7.9 we have Q( f )≥ d̃eg( f )/2 and together with Equation (7.7), this implies
d̃eg( f ) = O(n). Thus to complete the proof of the claim, it suffices to show log

(
∥ f̂∥1,1/3

)
=

Ω(n logn).

We first note that IPn logn is a monomial projection of f . Consider the function f acting
on the input variables x(1), . . . ,x(n),y(1), . . . ,y(n), where x(i),y(i) ∈ {−1,1}n for all i ∈ [n].

For i ∈ [n], set x(i)1logn = y(i)1logn = 1. For i ∈ [n] and string s ∈ {−1,1}logn \
{

1logn}, set

x(i)s = ∏ j:s j=−1 x(i)j and y(i)s = ∏ j:s j=−1 y(i)j . That is, in each block of inputs x(i) and y(i), the
coordinate corresponding to 1logn equals 1, the coordinates corresponding to j ∈ {−1,1}logn

with | j|= 1 are free variables, and all other variables are replaced by monomials in these
variables. Under the above monomial projection there are 2n logn free variables, namely{

x(i)s ,y(i)s : i ∈ [n],s ∈ {−1,1}logn, |s|= 1
}

. Also note that under this projection and every

setting of the free variables, the blocks x(i) and y(i), for i ∈ [n], are always Hadamard
codewords. Let f ′ be the monomial projection (see Definition 7.34) of f under the projection
defined in this paragraph. For the purpose of the next equality we abbreviate strings s ∈
{−1,1}logn of Hamming weight 1 by the set {i}, where i ∈ [logn] is such that si =−1. On
the free variables, the projected function f ′ equals

PARITYn

(
⟨(x(1){1}, . . . ,x

(1)
{logn}),(y

(1)
{1}, . . . ,y

(1)
{logn})⟩, . . . ,⟨(x

(n)
{1}, . . . ,x

(n)
{logn}),(y

(n)
{1}, . . . ,y

(n)
{logn})⟩

)
.

Thus,
f ′ = IPn logn.

It follows from earlier works [31, 32] that every polynomial that approximates IPn logn to
error 1/3 must have spectral norm 2Ω(n logn). We include a short proof below for complete-
ness.
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Let P be a polynomial that approximates IPn logn to error 1/3. Since we have P(x,y)IPn logn(x,y)≥
2/3 for all (x,y) ∈ {−1,1}2n logn,

2/3 ≤ Ex,y∈{−1,1}2n logn [P(x,y)IPn logn(x,y)]

= ∑
S⊆[2n logn]

P̂(S)̂IPn logn(S) by Plancherel’s theorem

≤ ∑
S⊆[2n logn]

|P̂(S)|
2n logn by Fact 7.36

=
∥P̂∥1

2n logn

=⇒ log(∥P̂∥1) = Ω(n logn)

=⇒ log(∥̂IPn logn∥1,1/3) = Ω(n logn).

This yields the desired contradiction by Observation 7.35.

7.6 Quantum communication lower bound via the general-
ized discrepancy method

In this section we prove Theorem 7.17, which gives a lower bound on the quantum com-
munication complexity of a composed function in terms of the approximate degree of the
outer function and the discrepancy of the inner function. This result is implicit in [105,
Theorem 7]. Their result is stated in the more general setting of matrix norms, and the log
factor we require on the right-hand side of Theorem 7.17 is not included in their statement.
Theorem 7.17 follows implicitly from the proof of [105, Theorem 7] along with the fact that
γ∗2 -norm characterizes discrepancy [108].

For completeness and clarity, we prove Theorem 7.17 below from first principles.

Definition 7.38. For functions f ,g : {−1,1}n →R and a probability distribution µ : {−1,1}n →
R the correlation between f and g with respect to µ is defined to be

corrµ( f ,g) = ∑
x∈{−1,1}n

f (x)g(x)µ(x).
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For a Boolean function f : {−1,1}n →{−1,1}, its approximate degree can be captured
by a certain linear program. Writing out the dual of this program and analyzing its optimum
yields the following theorem (see, for example, [36, Theorem 1]).

Theorem 7.39 (Dual witness for ε-approximate degree). For every ε ≥ 0 and f : {−1,1}n →
{−1,1}, d̃egε( f )≥ d if and only if there exists a polynomial ψ : {−1,1}n → R such that

1. ∑x∈{−1,1}n f (x)ψ(x)> ε ,

2. ∑x∈{−1,1}n |ψ(x)|= 1 and

3. ψ̂(S) = 0 for all |S|< d.

We require the following fact, which follows immediately from the fact that f̂ (S) is a
uniform average of different signed values of f (x).

Fact 7.40 (Folklore). For every function f : {−1,1}n → R,

2n max
S⊆[n]

∣∣ f̂ (S)∣∣≤ ∑
x∈{−1,1}n

∣∣ f (x)∣∣.
The following theorem shows that if a two-party function F correlates well with a two-

party function G under some distribution λ , and the discrepancy of G under λ is small, then
the bounded-error quantum communication complexity of F must be large. This is referred to
as the generalized discrepancy method, and was first proposed by Klauck [99]. The following
version can be found in [41, page 173], for example, stated as a lower bound on randomized
communication complexity. However, the generalized discrepancy method is also known to
give lower bounds on bounded-error quantum communication complexity, even in the model
where the parties can share an arbitrary prior entangled state for free.

Theorem 7.41 (Generalized Discrepancy Bound). Consider functions E,F : {−1,1}m ×
{−1,1}n → {−1,1}. If there exists a distribution λ : {−1,1}m ×{−1,1}n → R such that
corrλ (E,F)≥ δ , then

Qcc,∗
1
2−ε

(E) = Ω

(
log
(

δ +2ε −1
discλ (F)

))
.

Definition 7.42. For a distribution µ : {−1,1}m ×{−1,1}n → R and integer k > 0, define
the distribution µ⊗k : {−1,1}mk ×{−1,1}nk → R by

µ
⊗k((X1,Y1) . . . ,(Xk,Yk)) = ∏

i∈[k]
µ(Xi,Yi),
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where Xi ∈ {−1,1}m and Yi ∈ {−1,1}n for all i ∈ [k].

We require the following XOR lemma for discrepancy due to Lee, Shraibman and
Špalek [106].

Theorem 7.43 ([106, Theorem 19]). Let P : {−1,1}m×{−1,1}n →{−1,1} be a two-party
function and µ : {−1,1}m ×{−1,1}n → R be a distribution. For every integer k > 0,

discµ⊗k(PARITYk ◦P)≤ (8discµ(P))k.

We recall Theorem 7.17 below.

Theorem 7.44 (Restatement of Theorem 7.17). Let r : {−1,1}n →{−1,1} and G : {−1,1} j×
{−1,1}k → {−1,1} be functions. Let µ : {−1,1} j ×{−1,1}k → R be a balanced distri-

bution with respect to G and discµ(G) = o(1). If 8en
d̃eg(r)

≤
(

1
discµ (G)

)1−β

for some constant

β ∈ (0,1), then

Qcc,∗(r ◦G) = Ω

(
d̃eg(r) log

(
1

discµ(G)

))
.

In particular,

Qcc,∗(r ◦G) = Ω

(
d̃eg(r) log

(
1

bdisc(G)

))
.

Proof. For simplicity we assume j = k = m. The general proof follows along similar
lines. Let d̃eg(r) = d, and let ψ : {−1,1}n → R be a dual witness for this as given by
Theorem 7.39. Let ν : {−1,1}n → R be defined as ν(x) = |ψ(x)| for all x ∈ {−1,1}n and
also define h : {−1,1}n →{−1,1} as h(x) = sign(ψ(x)) for all x ∈ {−1,1}n. First note that
ν is a distribution since ∑x∈{−1,1}n ν(x) = ∑x∈{−1,1}n |ψ(x)| = 1 by Theorem 7.39. From
Theorem 7.39 we also have

corrν(r,h)> 1/3 (7.8)

ĥν(S) = 0 for all |S|< d, (7.9)

where hν(x) := h(x)ν(x) = ψ(x) for all x ∈ {−1,1}n. We will construct a probability
distribution λ : {−1,1}mn ×{−1,1}mn → R using ν : {−1,1}n → R and µ : {−1,1}m ×
{−1,1}m → R such that r ◦G and h◦G have large correlation under λ . We will also show
that discλ (h◦G) is small. The proof of the theorem would then follow from Theorem 7.41.
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Let X ,Y ∈{−1,1}mn be such that X =(X1, . . . ,Xn), Y =(Y1, . . . ,Yn) and Xi,Yi ∈{−1,1}m

for all i ∈ [n]. Also, let G(X ,Y ) = (G(X1,Y1), . . . ,G(Xn,Yn)) ∈ {−1,1}n.

Define λ : {−1,1}mn ×{−1,1}mn → R as follows.

λ (X ,Y ) = 2n ·ν(G(X ,Y )) · ∏
i∈[n]

µ(Xi,Yi). (7.10)

Observe that for any z ∈ {−1,1}n,

∑
X ,Y :G(X ,Y )=z

λ (X ,Y ) = ∑
X ,Y :G(X ,Y )=z

2n ·ν(G(X ,Y )) · ∏
i∈[n]

µ(Xi,Yi) by Equation (7.10)

= 2n
ν(z) ∏

i∈[n]

(
∑

Xi,Yi:G(Xi,Yi)=zi

µ(Xi,Yi)

)
= ν(z), (7.11)

where the last equality follows since µ is balanced w.r.t. G by assumption. Thus

∑
X ,Y

λ (X ,Y ) = ∑
z∈{−1,1}n

ν(z) = 1.

We next observe that corrλ (r ◦G,h◦G) is large.

corrλ (r ◦G,h◦G) = ∑
X ,Y

r ◦G(X ,Y ) ·h◦G(X ,Y ) ·λ (X ,Y )

= ∑
z∈{−1,1}n

∑
X ,Y :G(X ,Y )=z

r(z)h(z) ·λ (X ,Y )

= ∑
z∈{−1,1}n

r(z)h(z)ν(z) by Equation (7.11)

= corrν(r,h)> 1/3. (7.12)

where the last equality follows from Equation (7.8).

We now upper bound the discrepancy of h◦G with respect to a rectangle R, under the
distribution λ . Let R ⊆ {−1,1}mn ×{−1,1}mn be any rectangle of the form R(X ,Y ) =
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A(X)B(Y ) for A : {−1,1}mn →{0,1} and B : {−1,1}mn →{0,1}.

discλ (h◦G,R) =
∣∣∑

X ,Y
h◦G(X ,Y ) ·R(X ,Y ) ·λ (X ,Y )

∣∣
=
∣∣ ∑

z∈{−1,1}n
∑

X ,Y :G(X ,Y )=z
h◦G(X ,Y ) ·R(X ,Y ) ·λ (X ,Y )

∣∣
= 2n∣∣ ∑

z∈{−1,1}n

h(z)ν(z) ∑
X ,Y :G(X ,Y )=z

R(X ,Y ) ∏
i∈[n]

µ(Xi,Yi)
∣∣
by Equation (7.10)

= 2n∣∣ ∑
z∈{−1,1}n

(
∑

S⊆[n]
ĥν(S)χS(z)

)
∑

X ,Y :G(X ,Y )=z
R(X ,Y ) ∏

i∈[n]
µ(Xi,Yi)

∣∣
= 2n∣∣ ∑

z∈{−1,1}n
∑

S⊆[n]
ĥν(S) ∑

X ,Y :G(X ,Y )=z
R(X ,Y ) ·χS(z) · ∏

i∈[n]
µ(Xi,Yi)

∣∣
= 2n∣∣ ∑

z∈{−1,1}n
∑

S⊆[n]
ĥν(S) ∑

X ,Y :G(X ,Y )=z
R(X ,Y ) ·∏

i∈S
G(Xi,Yi) · ∏

i∈[n]
µ(Xi,Yi)

∣∣
≤ 2n

∑
S⊆[n],|S|≥d

∣∣ĥν(S)
∣∣ · ∣∣∑

X ,Y
R(X ,Y ) ·∏

i∈S
G(Xi,Yi)µ(Xi,Yi) ·∏

j/∈S
µ(X j,Yj)

∣∣
since ĥν(S) = 0 for all |S|< d by Equation (7.9)

≤ 2n
∑

S⊆[n],|S|≥d

∣∣ĥν(S)
∣∣ · ∣∣ ∑

X j,Y j: j/∈S
∏
j/∈S

µ(X j,Yj)

(
∑

Xi,Yi:i∈S
A(X)B(Y ) ·∏

i∈S
Gµ(Xi,Yi)

)∣∣.
For any X = (X1, . . . ,Xn) ∈ {−1,1}mn (respectively, Y = (Y1, . . . ,Yn) ∈ {−1,1}mn) and

set S ⊆ [n] define the string XS ∈ {−1,1}m|S| (respectively, YS ∈ {−1,1}m|S|) by XS =

(. . . ,Xi, . . .) (respectively, YS = (. . . ,Yi, . . .)), where i ranges over all elements of S. For
any S and fixed {X j : j /∈ S} (respectively, {Yj : j /∈ S}) note that A(X) = A′(XS) (respectively,
B(X) = B′(XS)) for some A′ : {−1,1}m|S| →{0,1} (respectively, B′ : {−1,1}m|S| →{0,1})
which is a function of the fixed values {X j : j /∈ S} (respectively, {Yj : j /∈ S}). Let
R′(XS,YS) = A′(XS)B′(YS).
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Continuing from the above we obtain,

discλ (h◦G,R)≤ 2n
∑

S⊆[n],|S|≥d

∣∣ĥν(S)
∣∣∣∣ ∑

X j,Y j: j/∈S
∏
j/∈S

µ(X j,Yj)

(
∑

Xi,Yi:i∈S
R′(XS,YS)∏

i∈S
Gµ(Xi,Yi)

)∣∣
≤ 2n

∑
S⊆[n],|S|≥d

∣∣ĥν(S)
∣∣∣∣ ∑

X j,Y j: j/∈S
∏
j/∈S

µ j(X j,Yj)
(

disc
µ⊗|S|(XOR|S| ◦G)

)∣∣
= 2n

∑
S⊆[n],|S|≥d

∣∣ĥν(S)
∣∣ ·disc

µ⊗|S|(XOR|S| ◦G)

≤ ∑
S⊆[n],|S|≥d

(
8discµ(G)

)|S| from Fact 7.40 and Theorem 7.43

=
n

∑
k=d

(
n
k

)(
8discµ(G)

)k ≤
n

∑
k=d

(
8en
k

discµ(G)

)k

≤
n

∑
k=d

(
discµ(G)β

)k
since 8en

d discµ(G)≤
(
discµ(G)

)β by assumption

≤
discµ(G)d·β

1−discµ(G)β

Since discµ(G) = o(1) by assumption (discµ(G) = 1−Ω(1) suffices, but we assume
discµ(G) = o(1) in the statement for readability) and β ∈ (0,1) is a constant, we have
1−discµ(G)β = Ω(1), and hence

discλ (h◦G) = O(discµ(G)dβ ). (7.13)

Hence,

Qcc
1/2−2/5(r ◦G)≥ log

(
1/3+4/5−1
discλ (h◦G)

)
by Theorem 7.41

= Ω

(
log
(

1
discµ(G)dβ

))
by Equation (7.13)

= Ω

(
d̃eg(r) log

(
1

discµ(g)

))
.

since β = Ω(1) by assumption, and d = d̃eg(r)

The theorem follows since Qcc(F) = Θ(Qcc
ε (F)) for all constants ε ∈ (0,1/2).
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7.7 Summary

In this chapter we built upon the last chapter to construct functions for which logarithmic
overhead is needed in query to communication simulation. We constructed functions for
which for which BCW query-to-communication simulation is tight when composed with
AND2. Along with the result in the last chapter, this shows functions for which BCW query-
to-communication simulation is tight for all non-constant two-bit inner functions. We then
gave a general recipe to construct such functions which gives a wide range of functions for
which an overhead is required in query-to-communication simulation.



Chapter 8

Symmetry and Quantum
Query-to-Communication Simulation

8.1 Introduction

In the last two chapters we have constructed functions, that when composed with two-
party functions AND2 or XOR2 witness a logarithmic overhead in query-to-communication
simulation. It is natural to ask, like we did in the last chapter, whether there is an interesting
class of functions for which there is no gap between query complexity and communication
complexity when composed with AND2 and XOR2.

This gives rise to the following basic question: is there a natural class of functions for
which the logn overhead in the BCW simulation is not required? Improving upon Høyer
and de Wolf [87], Aaronson and Ambainis [1] showed that for the canonical problem of
Set-Disjointness, the logn overhead in the BCW simulation can be avoided. Since the outer
function NORn is symmetric (i.e., it only depends on the Hamming weight of its input, its
number of −1s), a natural question is whether the logn overhead can be avoided whenever
the outer function is symmetric. In this chapter we give a positive answer to this question.

Theorem 8.1. For every symmetric Boolean function f : {−1,1}n →{−1,1} and two-party
function G : {−1,1} j ×{−1,1}k →{0,1}, we have

Qcc,∗( f ◦G) = O(Q( f )Qcc
E (G)).
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Here Qcc
E (G) denotes the exact quantum communication complexity of G, where the

error probability is 0. In particular, if G ∈ {AND2,XOR2} then Qcc
E (G) = 1 and hence

Qcc,∗( f ◦G) = O(Q( f )).

Remark 4. If Q( f ) = Θ(
√

tn), then our protocol in the proof of Theorem 8.1 starts from
a shared entangled state of O(t logn) EPR-pairs. Note that if t ≤ nQcc

E (G)2/(logn)2 (this
condition holds for instance if Qcc

E (G)≥ logn) then this number of EPR-pairs is no more than
the amount of communication and hence might as well be established in the first message,
giving asymptotically the same upper bound Qcc( f ◦G) = O(Q( f )Qcc

E (G)) for the model
without prior entanglement.

The next question one might ask is whether one can weaken the notion of symmetry
required in Theorem 8.1. A natural generalization of the class of symmetric functions
is the class of transitive-symmetric functions. A function f : {−1,1}n → {−1,1} is said
to be transitive-symmetric if for all i, j ∈ [n], there exists σ ∈ Sn such that σ(i) = j, and
f (x) = f (σ(x)) for all x ∈ {−1,1}n. Henceforth we refer to transitive-symmetric functions
as simply transitive functions. Can the logn overhead in the BCW simulation be avoided
whenever the outer function is transitive? We give a negative answer to this question in
a strong sense: the logn overhead is still necessary even when we allow the quantum
communication protocol an error probability that can be arbitrarily close to 1/2. In fact, we
have already constructed such a transitive function in the last chapter.

Theorem 8.2. There exists a transitive and total function f : {−1,1}n →{−1,1}, such that

UPPcc( f ◦G) = Ω(Q( f ) logn)

for every G ∈ {AND2,XOR2}.

Here UPPcc( f ◦G) denotes the unbounded-error quantum communication complexity of
f ◦G (adding “quantum” here only changes the communication complexity by a constant
factor). We note here that we have already seen the function of interest in the last theorem (see
Figure 7.1 and Section 7.3.3). In this chapter we prve that this function is in fact transitive.

Theorem 8.1 and Theorem 8.2 clearly demonstrate the role of symmetry in determining
the presence of the logn overhead in the BCW query-to-communication simulation: this
overhead is absent for symmetric functions (Theorem 8.1), but present for a transitive
function even when the model of communication under consideration is as strong as the
unbounded-error model (Theorem 8.2).
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Overview of our approach and techniques

In this section we discuss the ideas that go into the proofs of Theorem 8.1 and Theorem 8.2.

Communication complexity upper bound for symmetric functions

To prove Theorem 8.1 we use the well-known fact that every symmetric function f has an
interval around Hamming weight n/2 where the function is constant; for NORn the length
of this interval would be essentially n, while for PARITYn it would be 1. To compute f , it
suffices to either determine that the Hamming weight of the input lies in that interval (because
the function value is the same throughout that interval) or to count the Hamming weight
exactly.

For two-party functions of the form f ◦G, we want to do this type of counting on the
n-bit string z = (G(X1,Y1), . . . ,G(Xn,Yn)) ∈ {−1,1}n. We show how this can be done with
O(Q( f )Qcc

E (G)) qubits of communication if we had a quantum protocol that can find −1s
in the string z at a cost of O(

√
nQcc

E (G)) qubits. Such a protocol was already given by
Aaronson and Ambainis for the special case where G = AND2 for their optimal quantum
protocol for Set-Disjointness, as a corollary of their quantum walk algorithm for search on a
grid [1]. In this paper we give an alternative O(

√
nQcc

E (G))-qubit protocol. This implies the
result of Aaronson and Ambainis as a special case, but it is arguably simpler and may be of
independent interest.

Our protocol can be viewed as an efficient distributed implementation of amplitude
amplification with faulty components. In particular, we replace the usual reflection about
the uniform superposition by an imperfect reflection about the n-dimensional maximally
entangled state (= logn EPR-pairs if n is a power of 2). Such a reflection would require
O(logn) qubits of communication to implement perfectly, but can be implemented with
small error using only O(1) qubits of communication, by invoking the efficient protocol
of Aharonov et al. [4, Theorem 1] that tests whether a given bipartite state equals the n-
dimensional maximally entangled state. Still, at the start of this protocol we need to assume
(or establish by means of quantum communication) a shared state of logn EPR-pairs. If
Q( f ) = Θ(

√
tn) then our protocol for f ◦G will run the −1-finding protocol O(t) times,

which accounts for our assumption that we share O(t logn) EPR-pairs at the start of the
protocol.
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f =

PARITY

hIPlogn hIPlogn

n

2n

······ ···

x11 · · · x1n y11 · · · y1n ynn· · ·yn1xnn· · ·xn1

Fig. 8.1 If the inputs to the j-th hIPlogn are the Hadamard codewords H(s j) and H(t j) for all
j ∈ [n] and some s j, t j ∈ {−1,1}logn, then f = PARITY(IPlogn(s1, t1), . . . , IPlogn(sn, tn)). If
there exists at least one j ∈ [n] for which either x j1, . . . ,x jn or y j1, . . . ,y jn is not a Hadamard
codeword, then f outputs −1.

Communication complexity lower bound for transitive functions

For proving Theorem 8.2, use the function f : {−1,1}2n2 →{−1,1} that we constructed in
Section 7.3. We reproduce the function in Figure 8.1 for convenience. The bounded-error
quantum query complexity of this function is O(n) and the unbounded-error communication
complexity of f ◦G is Ω(n logn) for G ∈ {AND2,XOR2}. We reproduce the figure of this
function for ease of reading, see Figure 8.1. Using properties of IP and Hadamard codewords,
and the symmetry of PARITYn, we are able to show that f is transitive (see Claim 8.13).

8.1.1 Results and Organization

Section 8.2 introduces some notation and preliminaries. In Section 8.3 we construct our new
one-sided error protocol for finding solutions in the string z = (G(X1,Y1), . . . ,G(Xn,Yn)) ∈
{−1,1}n, as a corollary of our distributed version of amplitude amplification. In Section 8.4
we prove Theorem 8.1, which shows that the logn overhead in the BCW simulation can be
avoided when the outer function is symmetric.

Theorem 8.3 (Restatement of Theorem 8.1). For every symmetric Boolean function f :
{−1,1}n →{−1,1} and two-party function G : {−1,1} j ×{−1,1}k →{0,1}, we have

Qcc,∗( f ◦G) = O(Q( f )Qcc
E (G)).
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The above theorem relies on the protocol from Section 8.3. In Section 8.5 we prove that
logn overhead in required in query-to-communication simulation for a transitive function in
a string sense.

Theorem 8.4 (Restatement of Theorem 8.2). There exists a transitive and total function
f : {−1,1}n →{−1,1}, such that

UPPcc( f ◦G) = Ω(Q( f ) logn)

for every G ∈ {AND2,XOR2}.

Recall that UPPcc( f ◦G) denotes the unbounded-error quantum communication com-
plexity of f ◦G. The fact the logn overhead ia required is already proven in Section 7.3,
Theorem 7.2. In Section 8.5 we prove that the function from Theorem 7.2 (Figure 8.1) is
transitive.

8.2 Preliminaries

In this section we recall some concepts from quantum computing. We also use several facts
from the preliminaries of the previous chapter (see Section 7.2) but we do not state them
again here.

The Bernstein-Vazirani algorithm [24] is a quantum query algorithm that takes an n-bit
string as input and outputs a (logn)-bit string. The algorithm has the following properties:

• the algorithm makes one quantum query to the input and

• if the input x ∈ {−1,1}n satisfies x ∈ ±H(s) for some s ∈ {−1,1}logn, then the algo-
rithm returns s with probability 1.

Consider a symmetric Boolean function f : {−1,1}n →{−1,1}. Define the quantity

Γ( f ) = min{|2k−n+1| : f (x) ̸= f (y) if |x|= k and |y|= k+1}

from [123]. One can think of Γ( f ) as essentially the length of the interval of Hamming
weights around n/2 where f is constant (for example, for the majority and parity functions
this would be 1, and for ORn this would be n−1).

Theorem 8.5 ([20, Theorem 4.10]). For every symmetric function f : {−1,1}n →{−1,1},
we have

Q( f ) = Θ(
√
(n−Γ( f ))n).
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The upper bound follows from a quantum algorithm that exactly counts the Hamming
weight |x| of the input if |x| ≤ t or |x| ≥ n− t for t = ⌈(n−Γ( f ))/2⌉, and that otherwise
learns |x| is in the interval [t +1,n− t −1] (which is an interval around n/2 where f (x) is
constant). By the definition of Γ( f ), this information about |x| suffices to compute f (x). In
Section 8.4 we use this observation to give an efficient quantum communication protocol for
a two-party function f ◦G.

We will need a unitary protocol that allows Alice and Bob to implement an approximate
reflection about the n-dimensional maximally entangled state

|ψ⟩= 1√
n ∑

i∈{0,1}logn

|i⟩|i⟩.

Ideally, such a reflection would map |ψ⟩ to itself, and put a minus sign in front of all states
orthogonal to |ψ⟩. Doing this perfectly would requires O(logn) qubits of communication.
Fortunately we can derive a cheaper protocol from a test that Aharonov et al. [4, Theorem 1]
designed, which uses O(log(1/ε)) qubits of communication and checks whether a given
bipartite state equals |ψ⟩, with one-sided error probability ε . By the usual trick of running
this protocol, applying a Z-gate to the answer qubit, and then reversing the protocol, we can
implement the desired reflection approximately. This requires possibly some auxiliary qubits
on Alice and Bob’s side which start in |0⟩ and end in |0⟩, except in a part of the final state
that has norm at most ε . A bit more precisely:

Theorem 8.6. Let Rψ = 2|ψ⟩⟨ψ|− I be the reflection about the maximally entangled state
shared between Alice and Bob. There exists a protocol that uses O(log(1/ε)) qubits of
communication and that implements a unitary Rε

ψ such that ∥ Rε
ψ −Rψ ∥ ≤ ε and Rε

ψ |ψ⟩=
|ψ⟩.

We use UPPcc(F) to denote unbounded-error quantum communication complexity
of two-party function F . It is folklore (see for example [91]) that the unbounded-error
quantum communication complexity of F equals its classical counterpart up to a factor of
at most 2 so it does not really matter much whether we use UPPcc for classical unbounded-
error communication complexity (as it is commonly used) or for quantum unbounded-error
complexity. The unbounded-error model does not allow shared randomness or prior shared
entanglement (which yields shared randomness by measuring) between Alice and Bob, since
any two-party function F would have constant communication complexity in that setting.
Crucially, for both the complexity of IPn is linear in n:
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Theorem 8.7 ([61]). Let n be a positive integer. Then,

UPPcc(IPn) = Ω(n).

8.3 Noisy amplitude amplification and a new distributed-
search protocol

In this section we present a version of quantum amplitude amplification that still works if the
reflections involved are not perfectly implemented. In particular, the usual reflection about
the uniform superposition will be replaced in the communication setting by an imperfect
reflection about the n-dimensional maximally entangled state, based on the communication-
efficient protocol of Aharonov et al. [4, Theorem 1] for testing whether Alice and Bob share
that state. This allows us to avoid the logn factor that would be incurred if we instead
used a BCW-style distributed implementation of standard amplitude amplification, with
O(logn) qubits of communication to implement each query. Our main result in this section
is the following general theorem, which allows us to search among a sequence of two-party
instances (X1,Y1), . . . ,(Xn,Yn) for an index i ∈ [n] where G(Xi,Yi) =−1, for any two-party
function G.

Theorem 8.8. Let G : {−1,1} j×{−1,1}k →{−1,1} be a two-party function, X =(X1, . . . ,Xn)∈
{−1,1}n j and Y =(Y1, . . . ,Yn)∈{−1,1}nk. Define z=(G(X1,Y1), . . . ,G(Xn,Yn))∈{−1,1}n.
Assume Alice and Bob start with ⌈logn⌉ shared EPR-pairs.

• There exists a quantum protocol using O(
√

nQcc
E (G)) qubits of communication that

finds (with success probability ≥ 0.99) an i ∈ [n] such that zi =−1 if such an i exists,
and says “no” with probability 1 if no such i exists.

• If the number of −1s in z is within a factor of 2 from a known integer t, then the
communication can be reduced to O(

√
n/tQcc

E (G)) qubits.

Remark 5. The logn shared EPR-pairs that we assume Alice and Bob share at the start
could also be established by means of logn qubits of communication at the start of the
protocol. For the result in the first bullet, this additional communication does not change
the asymptotic bound. For the result of the second bullet, if t ≤ nQcc

E (G)2/(logn)2, then
this additional communication does not change the asymptotic bound either. However, if
t = ω(n/(logn)2) and Qcc

E (G) = O(1) then the quantum communication O(
√

n/tQcc
E (G)) is

o(logn) and establishing the logn EPR-pairs by means of a first message makes a difference.
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As a corollary, we obtain a new O(
√

n)-qubit protocol for the distributed search problem
composed with G = AND2 (whose decision version is the Set-Disjointness problem).

8.3.1 Amplitude amplification with perfect reflections

We first describe basic amplitude amplification in a slightly unusual recursive manner, similar
to [88]. We are dealing with a search problem where some set G of basis states are deemed
“good” and the other basis states are deemed “bad.” Let PG = ∑g∈G |g⟩⟨g| be the projector
onto the span of the good basis states, and OG = I −2PG be the reflection that puts a ‘−’ in
front of the good basis states: OG |g⟩=−|g⟩ for all basis states g ∈ G , and OG |b⟩= |b⟩ for
all basis states b ̸∈ G .

Suppose we have an initial state |ψ⟩ which is a superposition of a good state and a bad
state:

|ψ⟩= sin(θ)|G⟩+ cos(θ)|B⟩,

where |G⟩ = PG |ψ⟩/∥ PG |ψ⟩ ∥ and |B⟩ = (I − PG )|ψ⟩/∥ (I −PG )|ψ⟩ ∥. For example in
Grover’s algorithm, with a search space of size n containing t solutions, the initial state |ψ⟩
would be the uniform superposition, and its overlap (inner product) with the good subspace
spanned by the t “good” (sometimes called “marked”) basis states would be sin(θ) =

√
t/n.

We’d like to increase the weight of the good state, i.e., move the angle θ closer to π/2.
Let Rψ denote the reflection about the state |ψ⟩, i.e., Rψ |ψ⟩ = |ψ⟩ and Rψ |φ⟩ = −|φ⟩ for
every |φ⟩ that is orthogonal to |ψ⟩. Then the algorithm A1 = Rψ ·OG is the product of two
reflections, which (in the 2-dimensional space spanned by |G⟩ and |B⟩) corresponds to a
rotation by an angle 2θ , thus increasing our angle from θ to 3θ . This is the basic amplitude
amplification step. It maps

|ψ⟩ 7→ A1|ψ⟩= sin(3θ)|G⟩+ cos(3θ)|B⟩.

We can now repeat this step recursively, defining

A2 = A1RψA∗
1 ·OG ·A1.

Note that A1RψA∗
1 is a reflection about the state A1|ψ⟩. Thus A2 triples the angle between

A1|ψ⟩ and |B⟩, mapping

|ψ⟩ 7→ A2|ψ⟩= sin(9θ)|G⟩+ cos(9θ)|B⟩.
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Continuing recursively in this fashion, define the algorithm

A j+1 = A jRψA∗
j ·OG ·A j. (8.1)

The last algorithm Ak will map

|ψ⟩ 7→ Ak|ψ⟩= sin(3k
θ)|G⟩+ cos(3k

θ)|B⟩.

Hence after k recursive amplitude amplification steps, we have angle 3kθ . Since we want to
end up with angle ≈ π/2, if we know θ then we can choose

k = ⌊log3(π/(2θ))⌋. (8.2)

This gives us an angle 3kθ ∈ (π/6,π/2], so the final state Ak|ψ⟩ has overlap sin(θk)> 1/2
with the good state |G⟩.

Let Ck denote the “cost” (in whatever measure, for example query complexity, or com-
munication complexity, or circuit size) of algorithm Ak. Looking at its recursive definition
(Equation (8.1)), Ck is 3 times Ck−1, plus the cost of Rψ plus the cost of OG . If we just
count applications of OG (“queries”), considering Rψ to be free, then Ck+1 = 3Ck + 1.
This recursion has the closed form Ck = ∑

k−1
i=0 3i < 3k. With the above choice of k we get

Ck = O(1/θ). In the case of Grover’s algorithm, where θ = arcsin(
√

t/n)≈
√

t/n, the cost
is Ck = O(

√
n/t).

8.3.2 Amplitude amplification with imperfect reflections

Now we consider the situation where we do not implement the reflections Rψ perfectly,
but instead implement another unitary Rε

ψ at operator-norm distance ∥ Rε
ψ −Rψ ∥ ≤ ε from

Rψ , with the additional property that Rε
ψ |ψ⟩ = |ψ⟩ (this one-sided error property will be

important for the proof). We can control this error ε , but smaller ε will typically correspond
to higher cost of Rε

ψ . The reflection OG will still be implemented perfectly below.

We again start with the initial state

|ψ⟩= sin(θ)|G⟩+ cos(θ)|B⟩.

For errors ε1, . . . ,εk that we will specify later, recursively define the following algorithms.

A1 = Rε1
ψ ·OG and A j+1 = A jR

ε j+1
ψ A∗

j ·OG ·A j.
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These algorithms will map the initial state as follows:

|ψ⟩ 7→ |ψ j⟩= A j|ψ⟩= sin(3 j
θ)|G⟩+ cos(3 j

θ)|B⟩+ |E j⟩, (8.3)

where |E j⟩ is some unnormalized error state defined by the above equation; its norm η j

quantifies the extent to which we deviate from perfect amplitude amplification. Our goal here
is to upper bound this η j. In order to see how η j can grow, let us see how A jR

ε j+1
ψ A∗

j ·OG

acts on sin(3 jθ)|G⟩+ cos(3 jθ)|B⟩ (we’ll take into account the effects of the error term
|E j⟩ later). If R

ε j+1
ψ were equal to Rψ , then we would have one perfect round of amplitude

amplification and obtain sin(3 j+1θ)|G⟩+ cos(3 j+1θ)|B⟩; but since R
ε j+1
ψ is only ε j+1-close

to Rψ , additional errors can appear. First we apply OG , which negates |G⟩ and hence changes
the state to

−sin(3 j
θ)|G⟩+ cos(3 j

θ)|B⟩= |ψ j⟩− |E j⟩−2sin(3 j
θ)|G⟩.

Second we apply V = A jR
ε j+1
ψ A∗

j . Let V ′ = A jRψA∗
j , and note that V |ψ j⟩ = V ′|ψ j⟩ = |ψ j⟩

and ∥V ′−V ∥= ∥ Rψ −R
ε j+1
ψ ∥ ≤ ε j+1. The new state is

V (|ψ j⟩− |E j⟩−2sin(3 j
θ)|G⟩) =V ′(|ψ j⟩− |E j⟩−2sin(3 j

θ)|G⟩)+(V ′−V )(|E j⟩+2sin(3 j
θ)|G⟩)

=V ′(−sin(3 j
θ)|G⟩+ cos(3 j

θ)|B⟩)+(V ′−V )(|E j⟩+2sin(3 j
θ)|G⟩)

= sin(3 j+1
θ)|G⟩+ cos(3 j+1

θ)|B⟩+(V ′−V )(|E j⟩+2sin(3 j
θ)|G⟩).

Putting back also the earlier error term |E j⟩ from Equation (8.3) (to which the unitary VOG

is applied as well), it follows that the new error state is

|E j+1⟩= |ψ j+1⟩−(sin(3 j+1
θ)|G⟩+cos(3 j+1

θ)|B⟩)=VOG |E j⟩+(V ′−V )(|E j⟩+2sin(3 j
θ)|G⟩).

Its norm is

η j+1 ≤ ∥VOG |E j⟩ ∥+∥ (V ′−V )(|E j⟩+2sin(3 jθ)|G⟩) ∥
≤ η j + ε j+1(η j +2sin(3 j

θ)) = (1+ ε j+1)η j +2ε j+1 sin(3 j
θ).

Since η0 = 0, we can “unfold” the above recursive upper bound to the following, which is
easy to verify by induction on k:

ηk ≤
k

∑
j=1

k

∏
ℓ= j+1

(1+ εℓ)2ε j sin(3 j−1
θ).
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For each 1 ≤ j ≤ k, choose

ε j =
1

100 ·4 j . (8.4)

Note that σ = ∑
k
j=1 εk ≤ 1/300. With this choice of ε j’s, and the inequalities 1+ x ≤ ex,

eσ ≤ 1.5 and sin(x)≤ x for x ≤ π/2 (which is the case here), we can upper bound the norm
of the error term |Ek⟩ after k iterations (see Equation (8.3)) as

ηk ≤
k

∑
j=1

eσ 2ε j3 j−1
θ ≤ 3θ

400

k

∑
j=1

(3/4) j−1 ≤ 3θ

100
. (8.5)

Accordingly, up to very small error we have done perfect amplitude amplification.

8.3.3 Distributed amplitude amplification with imperfect reflection

We will now instantiate the above scheme to the case of distributed search, where our
measure of cost is communication, that is, the number of qubits sent between Alice and Bob.
Specifically, consider the intersection problem where Alice and Bob have inputs x ∈ {−1,1}n

and y ∈ {−1,1}n, respectively. Assume for simplicity that n is a power of 2, so logn is an
integer. Alice and Bob want to find an i ∈ {0, . . . ,n−1}= {0,1}logn such that xi = yi =−1,
if such an i exists.

The basis states in this distributed problem are |i⟩| j⟩, and we define the set of “good”
basis states as

G = {|i⟩| j⟩ | xi = y j =−1},

even though we are only looking for i, j where i = j (it’s easier to implement OG with this
more liberal definition of G ). Our protocol will start with the maximally entangled initial
state |ψ⟩ in n dimensions, which corresponds to logn EPR-pairs:

|ψ⟩= 1√
n ∑

i∈{0,1}logn

|i⟩|i⟩= sin(θ)|G⟩+ cos(θ)|B⟩,

where we assume there are t i’s where xi = yi = −1, i.e., t solutions to the intersection
problem, so

θ = arcsin(
√

t/n). (8.6)

and
|G⟩= 1√

t ∑
(i,i)∈G

|i⟩|i⟩.
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It costs ⌈logn⌉ qubits of communication between Alice and Bob to establish this initial
shared state, or it costs nothing if we assume pre-shared entanglement. Our goal is to end up
with a state that has large inner product with |G⟩.

In order to be able to use amplitude amplification, we would like to be able to reflect
about the above state |ψ⟩. However, in general this perfect reflection Rψ costs a lot of
communication: Alice would send her logn qubits to Bob, who would unitarily put a −1
in front of all states orthogonal to |ψ⟩, and then sends back Alice’s qubits. This has a
communication cost of O(logn) qubits, which is too much for our purposes. Fortunately,
Theorem 8.6 gives us a way to implement a one-sided ε-error reflection protocol Rε

ψ that
only costs O(log(1/ε)) qubits of communication.

The reflection OG puts a ‘−’ in front of the basis states |i⟩| j⟩ in G . This can be
implemented perfectly using only 2 qubits of communication, as follows. To implement this
reflection on her basis state |i⟩, Alice XORs |xi⟩ into a fresh auxiliary |0⟩-qubit and sends
this qubit to Bob. Bob receives this qubit and applies the following unitary map:

|b⟩| j⟩ 7→ yb
j |b⟩| j⟩, b ∈ {0,1}, j ∈ [n].

He sends back the auxiliary qubit. Alice sets the auxiliary qubit back to |0⟩ by XOR-
ing xi into it. Ignoring the auxiliary qubit (which starts and ends in state |0⟩), this maps
|i⟩| j⟩ 7→ (−1)[xi=y j=−1]|i⟩| j⟩. Hence we have implemented OG correctly: a minus sign is
applied exactly for the good basis states, the ones where xi = y j =−1.

Now consider the algorithms (more precisely, communication protocols):

A1 = Rε1
ψ ·OG and A j+1 = A jR

ε j+1
ψ A∗

j ·OG ·A j

with the choice of ε j’s from Equation (8.4). If we pick k = ⌊log3(π/(2θ))⌋, like in Equa-
tion (8.2), then 3kθ ∈ (π/6,π/2]. Hence by Equation (8.3) and Equation (8.5), the inner
product of our final state with |G⟩ will be between sin(3kθ)−3θ/100 ≥ 0.4 and 1.

At this point Alice and Bob can measure, and with probability ≥ 0.42 they will each see
the same i, with the property that xi = yi =−1.

From Equation (8.1) and Theorem 8.6, the recursion for the communication costs of
these algorithms is

C j+1 = 3C j +O(log(1/ε j+1))+2.
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Solving this recurrence with our ε j’s from Equation (8.4) and the value of θ from Equa-
tion (8.6) we obtain

Ck =
k

∑
j=1

3k− j(O(log(1/ε j))+2) =
k

∑
j=1

3k− jO( j) = O(3k) = O(
√

n/t).

Thus, using O(
√

n/t) qubits of communication we can find (with constant success probabil-
ity) an intersection point i. This also allows us to solve the Set-Disjointness problem (the
decision problem whose output is 1 if there is no intersection between x and y). Note that
if the t we used equals the actual number of solutions only up to a factor of 2, the above
protocol still has Ω(1) probability to find a solution, and O(1) repetitions will boost this
success probability to 0.99. In case we do not even know t approximately, we can use the
standard technique of trying exponentially decreasing guesses for t to find an intersection
point with communication O(

√
n).

Note that there is no log-factor in the communication complexity, in contrast to the
original O(

√
n logn)-qubit Grover-based quantum protocol for the intersection problem of

Buhrman et al. [34]. Aaronson and Ambainis [1] earlier already managed to remove the
log-factor, giving an O(

√
n)-qubit protocol for Set-Disjointness as a consequence of their

local version of quantum search on a grid graph (which is optimal [126]). We have just
reproved this result of [1] in a different and arguably simpler way.

The above description is geared towards the intersection problem, where the “inner”
function is G = AND2: we called a basis state |i⟩| j⟩ “good” if xi = y j = −1. However,
this can easily be generalized to the situation where Alice and Bob’s respective inputs are
X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) and we want to find an i ∈ [n] where G(Xi,Yi) = −1
for some two-party function G, and define the set of “good” basis states as G = {|i⟩| j⟩ |
G(Xi,Y j) = −1}.1 The only thing that changes in the above is the implementation of the
reflection OG , which would now be computed by means of an exact quantum communication
protocol for G(Xi,Y j), at a cost of 2Qcc

E (G) qubits of communication.2 Note that because we
can check (at the expense of another Qcc

E (G) qubits of communication) whether the output
index i actually satisfies G(Xi,Yi) =−1, we may assume the protocol has one-sided error: it
always outputs “no” if there is no such i. This concludes the proof of Theorem 8.8.

1We intentionally use the letter ‘G’ to mean “good” in G and and to refer to the two-party function G, since
G determines which basis states |i⟩| j⟩ are “good.”

2The factor of 2 is to reverse the protocol after the phase G(Xi,Yj) has been added to basis state |i⟩| j⟩, in
order to set any workspace qubits back to |0⟩.
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8.4 No log-factor needed for symmetric functions

In this section we prove Theorem 8.1 from the introduction. Consider a symmetric Boolean
function f : {−1,1}n → {−1,1}. As explained in Section 8.2, there is an integer t =
⌈(n−Γ( f ))/2⌉ such that we can compute f if we learn the Hamming weight |z| of the
input z ∈ {−1,1}n or learn that |z| ∈ [t + 1,n− t − 1]. The bounded-error quantum query
complexity is Q( f ) = Θ(

√
tn) (Theorem 8.5).

For a given two-party function G : {−1,1} j ×{−1,1}k →{−1,1}, we have an induced
two-party function F : {−1,1}n j×{−1,1}nk →{−1,1} defined as F(X1, . . . ,Xn,Y1, . . . ,Yn)=

f (G(X1,Y1), . . . ,G(Xn,Yn)). Define

z = (G(X1,Y1), . . . ,G(Xn,Yn)) ∈ {−1,1}n.

Then F(X ,Y ) = f (z) only depends on the number of −1s in z. The following theorem allows
us to count this number using O(Q( f )Qcc

E (G)) qubits of communication.

Theorem 8.9. For every t between 1 and n/2, there exists a quantum protocol that starts
from O(t logn) EPR-pairs, communicates O(

√
tnQcc

E (G)) qubits, and tells us |z| or tells us
that |z|> t, with error probability ≤ 1/8.

Proof. Abbreviate q = Qcc
E (G). Our protocol has two parts: the first filters out the case

|z| ≥ 2t, while the second finds all solutions if |z|< 2t.

Part 1. First Alice and Bob decide between the case (1) |z| ≥ 2t and (2) |z| ≤ t (even
though |z| might also lie in {t + 1, . . . ,2t − 1}) using O(

√
nq) qubits of communication,

as follows. They use shared randomness to choose a uniformly random subset S ⊆ [n] of
⌈n/(2t)⌉ elements. Let E be the event that zi = −1 for at least one i ∈ S. By standard
calculations there exist p1, p2 ∈ [0,1] with p1 = p2 +Ω(1) such that Pr[E]≥ p1 in case (1)
and Pr[E]≤ p2 in case (2). Alice and Bob use the distributed-search protocol from the first
bullet of Theorem 8.8 to decide E, with O(

√
|S|q) = O(

√
nq) qubits of communication

(plus a negligible O(logn) EPR-pairs) and error probability much smaller than p1 − p2. By
repeating this a sufficiently large constant number of times and seeing whether the fraction of
successes was larger or smaller than (p1 + p2)/2, they can distinguish between cases (1) and
(2) with success probability ≥ 15/16. If they conclude they’re in case (1) then they output
“|z|> t” and otherwise they proceed to the second part of the protocol.

Note that if |z| ∈ {t +1, . . . ,2t −1} (the “grey zone” in between cases (1) and (2)), then
we can’t give high-probability guarantees for one output or the other, but concluding (1)
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leads to the correct output “|z| > t” in this case, while concluding (2) means the protocol
proceeds to Part 2. So either course of action is fine if |z| ∈ {t +1, . . . ,2t −1}.

By Newman’s theorem [119] the shared randomness used for choosing S can be replaced
by O(logn) bits of private randomness on Alice’s part, which she can send to Bob in her first
message, so Part 1 communicates O(

√
nq) qubits in total.

Part 2. We condition on Part 1 successfully filtering out case (1), so from now on assume
|z| < 2t. Our goal in this second part of the protocol is to find all indices i such that
zi = −1 (we call such i “solutions”), with probability ≥ 15/16, using O(

√
tnq) qubits

of communication. This will imply that the overall protocol is correct with probability
1−1/16−1/16 = 7/8, and uses O(

√
tnq) qubits of communication in total. For an integer

k ≥ 1, consider the following protocol Pk.

Algorithm 1: Protocol Pk

Input: An integer k ≥ 1
repeat

1. Run the protocol from the last bullet of Theorem 8.8 with t = 2k−1.
(suppressing some constant factors, assume for simplicity that this uses

√
n/2k q

qubits of communication, logn shared EPR-pairs at the start, and has
probability ≥ 1/100 to find a solution if the actual number of solutions is in [t/2,2t]).

2. Alice measures and gets outcome i ∈ [n] and Bob measures and gets outcome j ∈ [n],
respectively.

3. Alice sends i to Bob, Bob sends j to Alice.
4. If i = j then they verify that G(Xi,Yi) =−1 by one run of the protocol for G,

and if so then they replace Xi,Yi by some pre-agreed inputs X ′
i ,Y

′
i , respectively, such

that G(X ′
i ,Y

′
i ) = 1 (this reduces the number of −1s in z by 1)

until 200
√

2knq qubits have been sent;

Claim 8.10. Suppose |z| ∈ [2k−1,2k). Then protocol Pk uses O(
√

2knq) qubits of commu-
nication, assumes O(2k logn) EPR-pairs at the start of the protocol, and finds at least
|z|−2k−1 +1 solutions, except with probability ≤ 1/2.

Proof. The upper bound on the communication is obvious from the stopping criterion of Pk.

As long as the remaining number of solutions is ≥ 2k−1, each run of the protocol has
probability ≥ 1/100 to find another solution. Hence the expected number of runs of the
protocol of Theorem 8.8 to find at least |z|−2k−1 +1 solutions, is ≤ 100(|z|−2k−1 +1). By
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Markov’s inequality, the probability that we haven’t yet found |z|−2k−1 +1 solutions after
≤ 200(|z|−2k−1 +1)≤ 100 ·2k runs, is ≤ 1/2. The communication cost of so many runs is
100 ·2k(

√
n/2k q+ logn)≤ 200

√
2knq qubits. Hence by the time that the number of qubits

of the stopping criterion have been communicated, we have probability ≥ 1/2 of having
found at least |z|−2k−1 +1 solutions. The assumed number of EPR-pairs at the start is logn
per run, so O(2k logn) in total.

Note that if we start with a number of solutions |z| ∈ [2k−1,2k), and Pk succeeds in
finding at least |z|−2k−1 +1 new solutions, then afterwards we have < 2k−1 solutions left.
The following protocol runs these Pk in sequence, pushing down the remaining number of
solutions to 0.

Algorithm 2: Protocol P

for k = ⌈log2(2t)⌉ downto 1 do
1. Run Pk a total of rk = ⌈log2(2t)⌉− k+5 times (replacing all −1s found by +1s in z).
2. Output the total number of solutions found.

end

Claim 8.11. If |z|< 2t then protocol P uses O(
√

tnq) qubits of communication, assumes
O(t logn) EPR-pairs at the start of the protocol, and outputs |z|, except with probability
≤ 1/16.

Proof. First, by Claim 8.10, the total number of qubits communicated is

⌈log2(2t)⌉

∑
k=1

rk ·O(
√

2knq) = O(
√

tnq) ·
⌈log2(2t)⌉−1

∑
ℓ=0

(ℓ+5)/
√

2ℓ = O(
√

tnq),

where we used a variable substitution k = ⌈log2(2t)⌉− ℓ. Second, the number of EPR-pairs
we’re starting from is

⌈log2(2t)⌉

∑
k=1

rk ·O(2k logn) = O(t logn) ·
⌈log2(2t)⌉−1

∑
ℓ=0

(ℓ+5)/2ℓ = O(t logn).

Third, by Claim 8.10 and the fact that we are performing rk repetitions of Pk, if the kth round
of P starts with a remaining number of solutions that is in the interval [2k−1,2k) then that
round ends with < 2k−1 remaining solutions, except with probability at most 1/2rk . By the
union bound, the probability that any one of the ⌈log2(2t)⌉ rounds does not succeed at this,
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is at most
⌈log2(2t)⌉

∑
k=1

1
2rk

=
⌈log2(2t)⌉−1

∑
ℓ=0

1
2ℓ+5 ≤ 1

16
.

Since 2⌈log2(2t)⌉ ≥ 2t and we start with |z|< 2t, if each round succeeds, then by the end of
P there are no remaining solutions left. Thus, the protocol P finds all solutions and learns
|z| with probability at least 15/16.

Part 1 and Part 2 each have error probability ≤ 1/16, so by the union bound the protocol
succeeds except with probability 1/8. If |z| ≥ 2t then Part 1 outputs the correct answer “|z|>
t”; if |z| ≤ t then all solutions (and hence |z|) are found by Part 2; and if |z| ∈ {t+1, . . . ,2t−1}
then either Part 1 already outputs the correct answer “|z| > t” or the protocol proceeds to
Part 2 which then finds all solutions.

We can use the above theorem twice: once to count the number of −1s in z (up to t) and
once to count the number of 1s in z (up to t). This uses O(

√
tnQcc

E (G)) = O(Q( f )Qcc
E (G))

qubits of communication, assumes O(t logn) shared EPR-pairs at the start of the protocol,
and gives us enough information about |z| to compute f (z) = F(X ,Y ). This concludes the
proof of Theorem 8.1 from the introduction, restated below.

Theorem 8.12 (Restatement of Theorem 8.1). For every symmetric Boolean function f :
{−1,1}n →{−1,1} and two-party function G : {−1,1} j ×{−1,1}k →{0,1}, we have

Qcc,∗( f ◦G) = O(Q( f )Qcc
E (G)).

If Q( f ) = Θ(
√

tn), then our protocol assumes a shared state of O(t logn) EPR-pairs at the
start.

We remark that for the special case where G = AND2, our upper bound matches the
lower bound proved by Razborov [126], except for symmetric functions f where the first
switch of function value happens at Hamming weights very close to n. In particular, if
f = ANDn and G = AND2, then Qcc( f ◦G) = 1 but Q( f ) = Θ(

√
n).

8.5 Overhead required for transitive functions

The following claim shows that the function in Section 7.3, Theorem 7.2 is in fact transitive.
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Claim 8.13. Let n > 0 be a power of 2. Let r = PARITYn : {−1,1}n → {−1,1} and
G = IPlogn : {−1,1}logn ×{−1,1}logn →{−1,1}. The function f = r ◦̃ hG : {−1,1}2n2 →
{−1,1} is transitive.

Proof. We first show that hG : {−1,1}2n →{−1,1} is transitive. We next observe that s ◦̃ t
is transitive whenever s is symmetric and t is transitive (s can be assumed to just be transitive
rather than symmetric, as noted in Remark 6). The theorem then follows since PARITYn is
symmetric.

Towards showing transitivity of hG, let π ∈ S2n, and (σℓ,σℓ) ∈ S2n for ℓ ∈ {−1,1}logn

be defined as follows. (Here σℓ ∈ Sn; the first copy acts on the first n coordinates, and the
second copy acts on the next n coordinates.)

•

π(k) =

k+n k ≤ n

k−n k > n.

That is, on every string (x,y) ∈ {−1,1}2n, the permutation π maps (x,y) to (y,x).

• For every ℓ ∈ {−1,1}logn, the permutation σℓ ∈ Sn is defined as

σℓ(i) = i⊕ ℓ, (8.7)

where i⊕ ℓ denotes the bitwise XOR of the strings i and ℓ. That is, for every input
(x,y) ∈ {−1,1}2n and every k ∈ {−1,1}logn, the input bit xk is mapped to xk⊕ℓ and yk

is mapped to yk⊕ℓ.

For every (x,y) ∈ {−1,1}2n and i, j ∈ {−1,1}logn, the permutation σi⊕ j(x,y) swaps xi and
x j, and also swaps yi and y j. If for i, j ∈ {−1,1}logn, our task was to swap the i’th index
of the first n variables with the j’th index of the second n variables, then the permutation
σi⊕ j ◦π does the job. That is, for every (x,y) ∈ {−1,1}2n and i, j ∈ {−1,1}logn, the permu-
tation σi⊕ j ◦π maps xi to y j. Thus the set of permutations {π,{σℓ : ℓ ∈ {−1,1}logn}} acts
transitively on S2n.

Now we show that for all x,y∈{−1,1}2n and all ℓ∈{−1,1}logn, we have hG(σℓ(x),σℓ(y))=
hG(x,y). Fix ℓ ∈ {−1,1}logn.

• If x ∈ ±H(s) and y ∈ ±H(t) are Hadamard codewords, then xk = ⟨k,s⟩ and yk = ⟨k, t⟩
for all k ∈ {−1,1}logn, and G(x,y) = ⟨s, t⟩. Thus, for every k ∈ {−1,1}logn we have
σℓ(xk) = xk⊕ℓ = ⟨k ⊕ ℓ,s⟩ = ⟨ℓ,s⟩ · ⟨k,s⟩. Hence σℓ(x) ∈ ±H(s) (since ⟨ℓ,s⟩ does
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not depend on k, and takes value either 1 or −1). Similarly, σℓ(y) ∈ ±H(t). Thus
hG(σℓ(x,y)) = hG(x,y).

• If x (y, respectively) is not a Hadamard codeword, then a similar argument shows that
for all ℓ ∈ [n], σℓ(x) (σℓ(y), respectively) is also not a Hadamard codeword.

Using the fact that ⟨s, t⟩= ⟨t,s⟩ for every s, t ∈ {−1,1}logn, one may verify that hG(π(x,y)) =
hG(x,y) for all x,y ∈ {−1,1}2n.

Along with the observation that PARITYn is a symmetric function, we have that f =
r ◦̃ hG : {−1,1}2n2 →{−1,1} is transitive under the following permutations:

• Sn acting on the inputs of PARITYn, and

• The group generated by {π}∪{(σℓ,σℓ) : ℓ ∈ [n]} acting independently on the inputs
of each copy of hG, where σℓ is as in Equation (8.7).

Remark 6. The proof of transitivity of f in Theorem 8.2 can also be used to prove that if
r : {−1,1}n is transitive and G = IPlogn : {−1,1}logn ×{−1,1}logn →{−1,1}, then r ◦̃ hG

is transitive as well. By instantiating r to a transitive function with approximate degree
Ω(n) (e.g. Majority), Theorem 7.20 implies that the BCW simulation is tight w.r.t. the
bounded-error communication model for a wide class of transitive functions.

8.6 Summary

This chapter explored the role of symmetry in query-to-communication problem in the setting
of quantum communication. We showed that when the outer function is symmetric, no
overhead is required to simulate query algorithms to get a communication cost of almost
same cost. On the other hand, such a claim does not hold true when we relax the notion of
symmetry and talk about transitive outer functions.
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Chapter 9

Set Disjointness and VC-Dimension

9.1 Introduction

A striking feature of communication complexity is its interplay with other diverse areas
like analysis, combinatorics, and geometry [102, 128]. Vapnik and Chervonenkis [146]
introduced the measure Vapnik-Chervonenkis dimension or VC dimension for set systems in
the context of statistical learning theory. As was the case with communication complexity,
VC dimension has found numerous connections and applications in many different areas like
approximation algorithms, discrete and combinatorial geometry, computational geometry,
discrepancy theory and many other areas [111, 44, 122, 112]. In this chapter we study both
of them under the same lens: of restricted systems and, for the first time, prove that geometric
simplicity does not necessarily imply efficient communication complexity.

Let us start with recollecting some definitions from Vapnik–Chervonenkis theory. Let S

be a collection of subsets of a universe U . For a subset y of U , we define

S |y := {y∩ x : x ∈ S } .

We say a subset y of U is shattered by S if S |y = 2y, where 2y denotes the power set
of y. Vapnik–Chervonenkis (VC) dimension of S , denoted as VC-dim(S ), is the size of
the largest subset y of U shattered by S . VC dimension has been one of the fundamental
measures for quantifying complexity of a collection of subsets.

Now let us revisit the world of communication complexity. Let f : Ω1 ×Ω2 → Ω. In
communication complexity, two players Alice and Bob get as inputs x ∈ Ω1 and y ∈ Ω2
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respectively, and the goal for the players is to devise a protocol to compute f (x,y) by
exchanging as few bits of information between themselves as possible.

The deterministic communication complexity D( f ) of a function f is the minimum
number of bits Alice and Bob will exchange in the worst case to deterministically compute
the function f . In the randomized setting, both Alice and Bob share an infinite random source1

and the goal is to give the correct answer with probability at least 2/3. The randomized
communication complexity R( f ) of f denotes the minimum number of bits exchanged by
the players in the worst case input by the best randomized protocol computing f . In both
deterministic and randomized settings, Alice and Bob are allowed to make multiple rounds of
interaction. Communication complexity when the number of rounds of interaction is bounded
is also often studied. An important special case is when only one round of communication is
allowed, that is, only Alice is allowed to send messages to Bob and Bob computes the output.
We will denote by D→( f ) and R→( f ) the one way deterministic communication complexity
and one way randomized communication complexity respectively, of f .

One of the most well studied functions in communication complexity is the disjointness
function. Given a universe U known to both Alice and Bob, the disjointness function,
DISJU : 2U ×2U →{0, 1}, where 2U denotes the power set of U , is defined as follows:

DISJU (x,y) =

1, if x∩ y = /0

0, otherwise.
(9.1)

We also define the intersection function. Given a universe U known to both Alice and Bob,
the intersection function, INTU : 2U × 2U → 2U is defined as INTU (x,y) = x∩ y. It is
easy to see that INTU is harder function to compute than DISJU . The DISJU function
and its different variants, like INTU , have been one of the most important problems in
communication complexity and have found numerous applications in areas like streaming
algorithms for proving lower bounds [128, 125]. By abuse of the notation, when U = [n],
where [n] denotes the set {1, . . . , n}, we will denote the functions DISJ[n] and INT[n] by
DISJn and INTn respectively.

Using the standard rank argument [102, 125] one can show that D(DISJn) = Θ(n). In
a breakthrough paper, Kalyanasundaram and Schnitger [93] proved that R(DISJn) = Ω(n).
Razborov [127] and Bar-Yossef et al. [17] gave alternate proofs for the above result. From the

1This is the communication complexity setting with shared random coins. If no random string is shared, it
is called the private random coins setting. By [118] we know that the communication complexity in both the
setting differs by at most a logarithmic additive factor.
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above cited results we can also see the D(INTn) = R(INTn) = Θ(n). R(DISJn) = R(INTn) =

Θ(n) also follow from a recent result by Braverman et al. [29].

Naturally, one would also like to ask what happens to the deterministic and randomized
communication complexity (one way or multiple round) of DISJn, when both Alice and Bob
know that their inputs have more structure. In particular what can we say if the inputs are
guaranteed to be from a subset of S ⊆ 2U , where S is known to both players. Let DISJU

functions restricted to S ×S be denoted by DISJU |S×S . This problem has also been
studied extensively, mostly for certain special classes of subsets S ⊆ 2U . For example, the
sparse set disjointness function, where the set S contains all the subsets of U of size at
most d, is an important special case of these works.

We will denote by d-SPARSEDISJn and d-SPARSEINTn, the functions DISJn |S×S and
INTn |S×S respectively, where S is the collections of all subsets of [n] of size at most d. Using
the rank argument [102, 125], one can again show that, for all d ≤ n, the deterministic
communication complexity of d-SPARSEDISJn is Ω

(
d log n

d

)
. Håstad and Wigderson [82],

and Dasgupta et al. [48] showed that the randomized communication complexity and one way
randomized communication complexity of d-SPARSEDISJn is R(d-SPARSEDISJn) = Θ(d)
and R→(d-SPARSEDISJn) = Θ(d logd) respectively. In a follow up work, Saglam and
Tardos [131] proved that with O(log∗ d) rounds of communication and O(d) bits of commu-
nication it is possible to compute d-SPARSEDISJn. More recently, Brody et al. [30] proved
that R→ (d-SPARSEINTn) = Θ(d logd) and R(d-SPARSEINTn) = Θ(d). These results show
that in the d-sparse setting, there is a separation between randomized and deterministic
communication complexity of DISJn and INTn functions.

One would like to ask what happens to the communication complexity for other restric-
tions to the disjointness (and intersection) problem. The following are two natural problems,
with a geometric flavor, for which one would like to study the communication complexity.

Problem 9.1 (DISCRETE LINE DISJ). Let G ⊂ Z2 be a set of n points in Z2 and L be the
set of all lines in R2. Also, let L = Ld denote the collection of all d-size subsets of L. The
DISCRETE LINE DISJ on G and L is a function, DISJG |L×L : L ×L →{0,1} defined as
DISJG |L×L

(
{ℓ1, . . . , ℓd},{ℓ′1, . . . , ℓ′d}

)
is 1 if and only if there exists a line in Alice’s set2

that intersects some line in Bob’s set at some point in G. Formally,

DISJG |L×L

(
{ℓ1, . . . , ℓd},{ℓ′1, . . . , ℓ′d}

)
=

1, if ∃i, j ∈ [d] s.t. ℓi ∩ ℓ′j ∩G ̸= /0

0, otherwise
(9.2)

2We assume that Alice has the set {ℓ1, . . . , ℓd} and Bob has the set {ℓ′1, . . . , ℓ′d}.
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Problem 9.2 (DISCRETE INTERVAL DISJ). Let X ⊂ Z be a set of n points in Z and Int be
the set of all possible intervals. Also, let I = Intd denote the collection of all d-size subsets
of Int. The DISCRETE INTERVAL DISJ on X and I is a function, DISJX |I×I : I ×I →
{0,1} defined as DISJX |I×I

(
{I1, . . . , Id},{I′1, . . . , I′d}

)
is 1 if and only if there exists an

interval in Alice’s set3 that intersects some interval in Bob’s set at some point in X .

DISJX |I×I

(
{I1, . . . , Id},{I′1, . . . , I′d}

)
=

1, if ∃i, j ∈ [d] s.t. Ii ∩ I′j ∩X ̸= /0

0, otherwise
(9.3)

Note that both the DISCRETE LINE DISJ and DISCRETE INTERVAL DISJ functions
are generalizations of sparse set disjointness function.4 Although it may not be obvious at
first look, but both the DISCRETE LINE DISJ function and the DISCRETE INTERVAL DISJ

functions are disjointness functions restricted to a suitable subset. In fact, the connection
between the Sparse set disjointness function (d-SPARSEDISJn), the DISCRETE LINE DISJ

function and the DISCRETE INTERVAL DISJ function run deep - all the three subsets of the
domain which help to define the functions as restriction of the disjointness function have
VC dimension Θ(d), see Section 9.4. Naturally one would like to know, if the fact that the
collection of subsets S has VC dimension d has any implication on the communication
complexity of DISJU |S×S . For example, is the randomized communication complexity of
DISCRETE LINE DISJ function and the DISCRETE INTERVAL DISJ function upper bounded
by a function of d (independent of n)? And, do the DISCRETE LINE DISJ function and
the DISCRETE INTERVAL DISJ function also have a separation between their randomized
and deterministic communication complexities similar to that of the Sparse set disjointness
function (d-SPARSEDISJn)? We show that these are not necessarily the cases.

9.1.1 Results and Organization

We now state two the main theorems of this chapter.

Theorem 9.3. For DISCRETE LINE DISJ: there exists a G ⊂ Z2 with n points such that
D(DISJG |L×L ) = D→(DISJG |L×L ) = Θ

(
d log n

d

)
and, for the randomized setting,

R(DISJG |L×L ) = Ω

(
d

log(n/d)
log log(n/d)

)
3We assume that Alice has the set {I1, . . . , Id} and Bob has the set {I′1, . . . , I

′
d}.

4Take n integer points on the x-axis. For DISCRETE LINE DISJ setting, restrict only to lines orthogonal
to x-axis. For DISCRETE INTERVAL DISJ setting, take n integer points on Z and only restrict to intervals
containing one integer point. Both of these restriction will give the disjointness problem in the d-sparse setting.
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Theorem 9.4. For DISCRETE INTERVAL DISJ: there exists a X ⊂ Z with n points such that

D(DISJX |I×I ) = D→(DISJX |I×I ) = R→(DISJX |I×I ) = Θ

(
d log

n
d

)
.

DISCRETE LINE INT, that is, the intersection finding version of DISCRETE LINE DISJ is
defined as follows : the objective is to compute a function INTG |L×L : L ×L → G that is
defined as

INTG |L×L ({ℓ1, . . . , ℓd},{ℓ′1, . . . , ℓ′d}) =
⋃

i, j∈[d]

(
ℓi ∩ ℓ′j ∩G

)
.

As we have already mentioned, Brody et al. [30] proved that R(d-SPARSEINTn) = Θ(d),
whereas D(d-SPARSEINTn) = Θ

(
d log n

d

)
. We show that DISCRETE LINE INT does not

demonstrate such a separation between the deterministic and randomized communication
complexity.

Theorem 9.5. For DISCRETE LINE INT: there exists a G ⊂ Z2 with n points such that

D(INTG |L×L )=D→(INTG |L×L )=R→(INTG |L×L )=R(INTG |L×L )=Θ

(
d log

n
d

)
.

The upper bound for all the above three theorems can be obtained from the fact that the
corresponding sets have VC dimension Θ(d), see Section 9.4. Sauer-Shelah Lemma [134,
137, 146] states that if S ⊆ 2[n] and VC-dim(S )≤ d then

|S | ≤
d

∑
i=0

(
n
i

)
≤
(en

d

)d
.

Thus if VC-dim(S )≤ d, then the Sauer-Shelah Lemma implies that

D→(INTn |S×S ) = O
(

d log
n
d

)
.

So, O
(
d log n

d

)
is a upper bound to the above questions, both for randomized and deterministic

and also for the one-way communication. But can the randomized communication complexity
of DISJU |S×S and INTU |S×S be even lower when S has VC dimension d? The following
result, which is a direct consequence of Theorems 9.4, 9.3 and 9.5, enables us to we answer
the question in the negative:

Theorem 9.6. Let 1 ≤ d ≤ n.

1. There exists S ⊆ 2[n] with VC-dim(S )≤ d and R→(DISJn |S×S ) = Ω
(
d log n

d

)
.
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2. There exists S ⊆ 2[n] with VC-dim(S )≤ d and R(DISJn |S×S ) = Ω

(
d log(n/d)

log log(n/d)

)
.

3. There exists S ⊆ 2[n] with VC-dim(S )≤ d and R(INTn |S×S ) = Ω
(
d log n

d

)
.

The following table compares our result with the previous best known lower bound for
DISJU |S×S and INTU |S×S among all sets S ⊂ 2U of VC dimension d.

Problems R(DISJn |S×S ) R→(DISJn |S×S ) R(INTn |S×S ) R→(INTn |S×S )

Known Ω(d) Ω(d logd) Ω(d) Ω(d logd)

[82] [48] [30] [30]

Our Work Ω

(
d log(n/d)

log log(n/d)

)
Ω
(
d log n

d

)
Ω
(
d log n

d

)
Ω
(
d log n

d

)
Table 9.1 The largest communication complexity, for the functions DISJn |S×S and
INTn |S×S , among all S ⊆ 2[n] of VC dimension d, that was previously known and what
we prove in this chapter. Tight bounds of Ω

(
d log n

d

)
for the largest D(DISJn |S×S ),

D→(DISJn |S×S ), D(INTn |S×S ) and D→(INTn |S×S ), among all S ⊂ 2[n] of VC di-
mension d, follows directly from the fact that if S is a collection of all subsets of [n] of size
at most d then D(DISJn |S×S ) = D(INTn |S×S ) = Ω

(
d log

( n
d

))
, see [102, 125].

9.1.2 Preliminaries

We denote the set {1, . . . ,n} by [n]. For a binary number x, decimal(x) denotes the decimal
value of x. For two vectors x and y in {0,1}n, x∩y = {i ∈ [n] : xi = yi = 1}, and x ⊆ y when
xi ≤ yi for each i ∈ [n]. For a finite set X , 2X denotes the power set of X . For x,y ∈ R with
x < y, [x,y] denotes the closed interval is the set of all real numbers that lie between x and y.

9.2 One way communication complexity (Theorems 9.4 and
9.6 (1))

In this section we will prove the following result.

Theorem 9.7. For all n ≥ d, there exists X ⊂Z with |X |= n and R ⊆ 2X with VC-dim(R) =

2d, such that

R ⊆

{
X ∩

( ⋃
1≤ j≤d

I j

)
| {I1, . . . , Id} ∈ I

}
and R→(DISJX |R×R) = Ω

(
d log

n
d

)
.

Note that the set I is defined in Problem 9.2.
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p1 p2 p3

Fig. 9.1 Let us consider d = 3,n = 18 and m = 4. J1,J2 and J3 are the intervals of length 4
starting from p1, p2 and p3, respectively. The ground set X is the set of all 18 points present
in three intervals.

Remark 7. The above result takes care of the proofs of Theorem 9.4 and Theorem 9.6 (1).

The hard instance, for the proof of the above theorem, is inspired by the interval set
systems in combinatorial geometry and is constructed in Section 9.2.1. In Section 9.2.2, we
prove Theorem 9.7 by using a reduction from AUGMENTED INDEXING, which we denote by
AUGINDEXℓ. Formally the problem AUGINDEXℓ is defined as follows: Alice gets a string
x ∈ {0,1}ℓ and Bob gets an index j ∈ [ℓ] and x j′ for all j′ < j. Bob wants to report x j as the
output.

Proposition 9.8. (Miltersen et al. [114]) R→(AUGINDEXℓ) = Ω(ℓ).

9.2.1 Construction of a hard instance

We construct a set X ⊂ Z with |X |= n and R ⊆ 2X with VC-dim(R) = 2d. Informally, X
is the union of the set of points present in the union of d pairwise disjoint intervals, in Z,
each containing n

d points. Each set in R is the union of the set of points in the subintervals
anchored either at the left or the right end point of each of the above d intervals. Formally,
the description of X and R are given below along with some of its properties that are desired
to show Theorem 9.7.

The ground set X: Let m = n
d −2. Without loss of generality we can assume that m = 2k,

where k ∈ N. Let J0 = {0, . . . ,m+ 1} be the set of m+ 2 consecutive integers that starts
from the origin and ends at m+1. Similarly, let Jp be the set of m+2 consecutive integers
that starts at p ∈ Z and ends at p+m+1. Let p1, . . . , pd be d points in Z such that the sets
Jp1, . . . , Jpd are pairwise disjoint. Let the ground set X be

X =
d⋃

i=1

Jpi.

Note that X ⊂ Z and |X |= (m+2)d = n. See Figure 9.1 for an illustration.

The subsets of X in R: R ⊆ 2X contains two types of sets R0 and Rm+1, where
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• Take any d intervals R1, . . . ,Rd of integer lengths such that, for all i ∈ [d], length of
Ri is at most m+ 1, Ri ⊆ [pi, pi +m+ 1], and Ri starts at pi. Note that Ri does not

intersect with any X \ Jpi . The set A =
d⋃

i=1
(Ri ∩X) is an element in R0. We say that A

is generated by R1, . . . ,Rd .

• Take any d intervals R′
1, . . . ,R

′
d of integer lengths such that, for all i ∈ [d], length of R′

i

is at most m+1, R′
i ⊆ [pi, pi +m+1] and R′

i ends at pi +m+1. Note that R′
i does not

intersect with any X \ Jpi . The set B =
d⋃

i=1
(R′

i ∩X) is an element in Rm+1. We say that

B is generated by R′
1, . . . ,R

′
d .

See Figure 9.2 for an illustration.

p1 p2 p3

(a) A and B intersect.

p1 p2 p3

(b) A and B does not intersect.

Fig. 9.2 Consider n,d,m and X as in Figure 9.3. A is the set of points in X that are present in
the three blue intervals. Similarly, B is the set of points in X that are present in the three red
intervals.

The following claim bounds the VC dimension of R, constructed as above.

Claim 9.9. For X ⊂ Z with |X |= n and R ⊂ 2X as described above, VC-dim(R) = 2d,

Proof. The proof follows from the fact that any subset of of X containing 2d +1 points will
contain at least three points from some Jpi , where i ∈ [d]. These points in Jpi can not be
shattered by the sets in R. Also, observe that there exists 2d points, with two from each Jp j ,
that can be shattered by the sets in R.

Now, we give a claim about X and R constructed above that will be required for our
proof of Theorem 9.7.

Claim 9.10. Let A ∈ R0 and B ∈ Rm+1 be such that A is generated by R1, . . . ,Rd and B is
generated by R′

1, . . . ,R
′
d . Then A and B intersects if and only if there exists an i ∈ [d] such

that Ri intersects R′
i at a point in Jpi .

The proof of Claim 9.10 follows directly from our construction of X ⊂ Z and R ⊆ 2X ,
as Jp1, . . . , Jpd are pairwise disjoint.
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9.2.2 Reduction from AUGINDEXd logm to DISJX |R×R

Before presenting the reduction we recall the definitions of AUGINDEXd logm and DISJX |R×R .
In AUGINDEXd logm, Alice gets x ∈ {0,1}d logm and Bob gets an index j and x j′ for each
j′ < j. The objective of Bob is to report x j as the output. In DISJX |R×R , Alice gets A ∈ R0

and Bob gets B ∈ Rm+1. The objective of Bob is to determine whether A∩B = /0. Note that
X ,R,R0 and Rm+1 are as discussed in the Section 9.2.1.

Let P be a one-way protocol that solves DISJX |R×R with o
(
d log n

d

)
= o(d logm) bits

of communication. Now, we consider the following protocol P ′ for AUGINDEXd logm that
has the same one way communication cost as that of DISJX |R×R . Then we will be done with
the proof of Theorem 9.7.

Protocol P ′ for AUGINDEXd logm problem

Step-1 Let x ∈ {0,1}d logm be the input of Alice. Bob gets an index j ∈ [d logm] and bits x j′

for each j′ < j.

Step-2 Alice will form d strings a1, . . . ,ad ∈ {0,1}logm by partitioning the string x into d
parts such that, ∀i ∈ [d], we have

ai = x(i−1) logm+1 . . .xi logm.

Bob first forms a string y ∈ {0,1}d logm, where y j′ = x j′ for each j′ < j, y j = 1, and
y j′ = 0 for each j′ > j. Then Bob finds b1, . . . ,bd ∈ {0,1}logm by partitioning the
string y into d parts such that, ∀i ∈ [d], we have

bi = y(i−1) logm+1 . . .yi logm.

Step-3 For each i ∈ [d], let Ri and R′
i be the intervals that starts at pi and ends at pi +m+1,

respectively, where
Ri = [pi,m+ pi −decimal(ai)]

and
R′

i = [pi +m+1−decimal(bi), pi +m+1].
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Alice finds the set A ∈ R0 generated by R1, . . . ,Rd and Bob finds the set B ∈ Rm+1

generated by R′
1, . . . ,R

′
d , i.e.,

A =
⋃

i∈[d]
(Ri ∩X) and B =

⋃
i∈[d]

(R′
i ∩X).

Step-4 Alice and Bob solves DISJX |R×R on inputs A and B, and report x j = 0 if and only
if DISJX |R×R (A,B) = 0. Note that x j is the output of AUGINDEXd logm problem.

The following observation follows from the description of the protocol P ′ and from the
construction of X ⊂ Z and R ⊆ 2X .

Observation 9.11. Let i∗ ∈ [d] such that j ∈ {(i∗−1) logm+1, i∗ logm}. Then

(i) Ri ∩R′
i = /0 for all i ̸= i∗.

(ii) Ri∗ ∩R′
i∗ = /0 if and only if decimal(bi∗)≤ decimal(ai∗).

(iii) decimal(bi∗)> decimal(ai∗) if and only if x j = 0.

We will use the above observation to show the correctness of the protocol P ′.

First consider the case DISJX |R×R (A,B) = 0. Then, by Claim 9.10, there exists an
i ∈ [d] such that Ri and R′

i intersects at a point in Jpi . From Observation 9.11 (i), we can
say Ri∗∩R′

i∗ ̸= /0. Combining Ri∗∩R′
i∗ ̸= /0 with Observations 9.11 (ii) and (iii), we have

x j = 0. Hence, DISJX |R×R (A,B) = 0 implies x j = 0. The converse part, i.e., x j = 0 implies
DISJX |R×R (A,B) = 0, can be shown in the similar fashion.

The one-way communication complexity of protocol P ′ for AUGINDEXd logm is the
same as that of P for DISJX |R×R , that is, o(d logm). However, this is impossible as
the one-way communication complexity of AUGMENTED INDEXING, over d logm bits, is
Ω(d logm) = Ω

(
d log n

d

)
bits. This completes the proof of Theorem 9.7.

9.3 Two way communication complexity (Theorems 9.3, 9.5,
9.6(2) and 9.6(3))

In this section, we prove the following theorems.
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Theorem 9.12. For all n ≥ d, there exists a G ⊂ Z2 with |G| = n and T ⊆ 2G with
VC-dim(T ) = 2d, such that

T ⊆

{
G∩

( ⋃
1≤ j≤d

ℓ j

)
| {ℓ1, . . . , ℓd} ∈ L

}
and R(DISJG |T ×T )=Ω

(
d

log(n/d)
log log(n/d)

)
.

The set L is as defined in Problem 1.

Theorem 9.13. For all n ≥ d, there exists a G ⊂ Z2 with |G| = n and T ⊆ 2G with
VC-dim(T ) = 2d, such that

T ⊆

{
G∩

( ⋃
1≤ j≤d

ℓ j

)
| {ℓ1, . . . , ℓd} ∈ L

}
and R(INTG |T ×T ) = Ω

(
d log

n
d

)
.

The set L is as defined in problem 1.

Remark 8. Theorem 9.12 takes care of Theorem 9.3 and 9.6(2). Theorem 9.13 takes care of
Theorem 9.5 and 9.6(3).

Note that the same set system will be used for the proofs of the above theorems. The hard
instance, for the proof of the above theorems, is inspired by point line incidence set systems
in computational geometry and is constructed in Section 9.3.1. We prove Theorems 9.12
and 9.13 in Sections 9.3.2 and 9.3.3, respectively, using reductions.

9.3.1 The hard instance for the proofs of Theorems 9.12 and 9.13

In this subsection, we give the description of G ⊂ Z2 with |G| = n and T ⊆ 2G, with
VC-Dim(T ) = 2d. The same G and T will be our hard instance for the proofs of Theo-
rems 9.12 and 9.13. In this subsection, without loss of generality, we can assume that d
divides n and n/d is a perfect square.

Informally, G is the set of points present in the union of d many pairwise disjoint square
grids each containing n

d points and the grids are taken in such a way that any straight line of
non-negative slope can intersects with at most one grid. Also, each set in T is the union of the
set of points present in d many lines of non-negative slope such that one line intersects with
exactly one grid. Moreover, all of the d lines have slopes either zero or positive. Formally,
the description of G and T are given below along with some of its properties that are desired
to show Theorems 9.12 and 9.13.
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(p1, q1)

(p2, q2)

(p3, q3)

Fig. 9.3 Let us take n = 75,d = 3 and m = 5. The 5×5 grids centered at (p1,q1),(p2,q2)
and (p3,q3) are G(p1,q1), G(p2,q2) and G(p3,q3); respectively. The ground set G is the set of all
75 points present in three grids.

The ground set G: Let m =
√ n

d , and

G(0,0) =
{
(x,y) ∈ Z2 : 0 ≤ x,y ≤ m−1

}
be the grid of size m×m anchored at the origin (0,0). For any p,q ∈ Z, the m×m grid
anchored at (p,q) will be denoted by G(p,q), i.e.,

G(p,q) =
{
(i+ p, j+q) : (i, j) ∈ G(0,0)

}
.

For d ∈ N, consider G(p1,q1), . . . ,G(pd ,qd) satisfying the following property:

PROPERTY For any i, j ∈ [d], with i ̸= j, let L1 and L2 be lines of non-negative slopes that
pass through at least two points of G(pi,qi) and G(p j,q j), respectively. Then L1 and L2 does

not intersect at any point inside
⋃d
ℓ=1 G(pℓ,qℓ).

Observe that there exists G(p1,q1), . . . ,G(pd ,qd) satisfying PROPERTY. See Figure 9.3 for an
illustration. We will take the ground set G as

G =
d⋃

ℓ=1

G(pℓ,qℓ).
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(p1, q1)

(p2, q2)

(p3, q3)

L′
1

L′
2

L′
3

L1

L2

L3

L1

L2
L3

L′
1

L′
2

(p1, q1)

(p2, q2)

(p3, q3)

L′
3

Fig. 9.4 Consider n,d,m and G as in Figure 9.3. A is the set of points in G that are present in
three blue lines, that is, L1 ∪L2 ∪L3. Similarly, B is the set of points in G that are present in
three red line L′

1 ∪L′
2 ∪L′

3. First figure shows the instance where A and B intersect at a grid
point, and the second figure shows an instance where A and B does not intersect at a grid
point.

Without loss of generality, we can assume that (p1,q1) = (0,0). Note that G ⊂ Z2 and
|G|= dm2 = n.

The subsets of G in T : T contains two types of subsets T1 and T2 of G, and they are
generated by the following ways:

• Take any d lines L1, . . . ,Ld of non negative slope such that, ∀i ∈ [d], Li passes through
(pi,qi) ∈ G(pi,qi) and (at least) another point in G(pi,qi). Note that Li does not contain
any point from G\G(pi,qi). The set A =

⋃d
i=1
(
Li ∩G(pi,qi)

)
is in T1, and we say A is

generated by the lines L1, . . . ,Ld .

• Take any d vertical lines L′
1, . . . ,L

′
d such that, ∀i ∈ [d], L′

i contains at least one point
from G(pi,qi). Note that L′

i does not contain any point from G \ G(pi,qi). The set
B =

⋃d
i=1(L

′
i ∩G(pi,qi)) is in T2, and we say B is generated by the lines L′

1, . . . ,L
′
d .

See Figure 9.4 for an illustration.
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The following claim bounds the VC dimension of T , which as described above.

Claim 9.14. For G ⊂ Z2 and T ⊆ 2G as described above, VC-dim(T ) = 2d.

Proof. The proof follows from the fact that any subset of X containing 2d +1 points will
contain at least three points from some G(p j,q j), j ∈ [d]. These points in G(p j,q j) can not be
shattered by the sets in T . Also, observe that there exists 2d points two from each G(p j,q j)

that can be shattered by the sets in T .

Now, we give two claims about G and T , constructed above, that follow directly from
our construction of G ⊂ Z2 and T ⊆ 2G.

Claim 9.15. Let A ∈ T1 and B ∈ T2 such that A is generated by lines L1, . . . ,Ld and A is
generated by lines L′

1, . . . ,L
′
d . Then A and B intersect if and only if there exists i ∈ [d] such

that Li and L′
i intersect at a point in G(pi,qi).

Claim 9.16. Let A ∈ T1 and B ∈ T2 such that A is generated by lines L1, . . . ,Ld and B is
generated by lines L′

1, . . . ,L
′
d . Also let |A∩B|= d. Then for each i ∈ [d], Li and L′

i intersect
at a point in G(pi,qi). Moreover, A (B) can be determined if we know B (A) and A∩B.

The above claims will be used in the proofs of Theorems 9.12 and 9.13.

9.3.2 Proof of Theorem 9.12

Let us consider a problem in communication complexity denoted by OR-DISJt
{0,1}ℓ that will

be used in our proof. In OR-DISJt
{0,1}ℓ , Alice gets t strings x1, . . . ,xt ∈ {0,1}ℓ and Bob also

gets t strings y1, . . . ,yt ∈ {0,1}ℓ. The objective is to compute

OR-DISJt
{0,1}ℓ ((x1, . . . ,xt) ,(y1, . . . ,yt)) =

t∨
i=1

DISJ{0,1}ℓ (xi,yi) .

Note that DISJ{0,1}ℓ(xi,yi) is a binary variable that takes value 1 if and only if xi ∩yi = /0.

Proposition 9.17 (Jayram et al. [92]). R
(

OR-DISJt
{0,1}ℓ

)
= Ω(ℓt).

Note that Proposition 9.17 directly implies the following result.

Proposition 9.18. R
(

OR-DISJt
{0,1}ℓ |Sℓ×Sℓ

)
= Ω(ℓt), where Sℓ = {0,1}ℓ \{0ℓ}.
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Let k ∈ N be the largest integer such that first k consecutive primes π1, . . . , πk satisfy the
following inequalty:

Π
k
i=1πi ≤

√
n
d
. (9.4)

Using the fact that Πk
i=1πi = e(1+o(1))k logk, we get k = Θ

(
log(n/d)

log log(n/d)

)
.

We prove the theorem by a reduction from OR-DISJd
{0,1}k |Sk×Sk to DISJG |T ×T , where

Sk := {0,1}k \{0k}.

Note that G ⊂ Z2 with |G|= n, and T ⊆ 2G, with VC-dim(T ) = 2d, are the same as that
we constructed in Section 9.3.1. To reach a contradiction, assume that there exists a two way
protocol P that solves DISJG |T ×T with communication cost of

o
(

d
logm

log logm

)
= o

(
d

log(n/d)
log log(n/d)

)
.

Now, we give protocol P ′ that solves OR-DISJd
{0,1}k |Sk×Sk , as described below.

Protocol P ′ for OR-DISJd
{0,1}k |Sk×Sk

Step-1 Let A = (x1, . . . ,xd) ∈ [Sk]
d 5 and B = (y1, . . . ,yd) ∈ [Sk]

d be the inputs of Alice
and Bob for OR-DISJd

{0,1}k |Sk×Sk . Recall that Sk = {0,1}k \ {0k}. Bob finds B̄ =

(ȳ1, . . . , ȳd) ∈
[
{0,1}k]d , where ȳi is obtained by complementing each bit of yi.

Step-2 Both Alice and Bob privately determine the first k prime numbers π1, . . . ,πk without
any communication.

Step-3 Let Φ : {0,1}k → {0,1}⌈log(
√ n

d )⌉ be the function such that φ(x) is the bit repre-
sentation of the number ∏

k
i=1 π

xi
i , where x = (x1, . . . ,xk) ∈ {0,1}k. Alice finds A′ =

(a1, . . . ,ad)∈
[
{0,1}⌈log(

√ n
d )⌉
]d

and Bob finds B′=(b1, . . . ,b1 ∈
[
{0,1}⌈log(

√ n
d )⌉
]d

privately without any communication, where ai = φ(xi) and bi = φ(ȳi) for each i ∈ [d].

Step-4 For each i ∈ [d], let Li and L′
i be the lines having equation

Li : y−qi =
decimal(ai)−1

decimal(ai)
(x− pi)

5For a set W , [W ]d =W × . . .×W (d times).
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and
L′

i : x− pi = decimal(bi).

Here pi’s and qi’s are selected to satisfy PROPERTY. Alice finds A′′ ∈ T that is
generated by the lines L1, . . . ,Ld , and Bob finds B′′ ∈ T which is generated by the
lines L′

1, . . . ,L
′
d , i.e.,

A′′ =
⋃

i∈[d]
(Li ∩G(pi,qi)) and B′′ =

⋃
i∈[d]

(L′
i ∩G(pi,qi)).

Step-5 Then Alice and Bob solve DISJG |T ×T (A′′,B′′), and report
d∨

i=1
DISJ{0,1}k(xi,yi) = 1

if and only if DISJG |T ×T (A′′,B′′) = 0.

Now we argue for the correctness of the protocol P ′. Let DISJG |T ×T (A′′,B′′) = 0,
that is, A′′∩B′′ ̸= /0. By Claim 9.15 and from the description of P ′, there exists i ∈ [d] such
that the lines Li : y− qi =

decimal(ai)−1
decimal(ai)

(x− pi) and L′
i : x− pi = decimal(bi) intersect at a

point in G(pi,qi), that is, the lines y = decimal(ai)−1
decimal(ai)

x and x = decimal(bi) intersect at a point in
G(0,0). Now, we can say that, there exists i ∈ [d] such that decimal(ai) divides decimal(bi),
equivalently, φ(xi) divides φ(ȳi). This implies xi is a subset of ȳi ( or xi ∩yi = /0) for some

i ∈ [d]. Hence,
d∨

i=1
DISJ{0,1}k(xi,yi) = 1. The converse part, that is,

d∨
i=1

DISJ{0,1}k(xi,yi) = 1

implies DISJG |T ×T (A′′,B′′) = 0 can be shown in the similar fashion.

Observe that the communication cost of protocol P ′ for OR-DISJd
{0,1}k |Sk×Sk is same as

that of protocol P for DISJG |T ×T , is

o
(

d
logm

log logm

)
= o

(
d

log(n/d)
log log(n/d)

)
= o(dk).

The above two equalities follows from the facts that m =
√ n

d and k = Θ

(
log(n/d)

log log(n/d)

)
. This

contradicts Proposition 9.18 which says that

R
(

OR-DISJd
{0,1}k |Sk×Sk

)
= Ω(dk).

9.3.3 Proof of Theorem 9.13

With out loss of generality, we also assume that d divides n and, more over, n/d is a perfect
square.



9.4 VC dimension, and Problems 9.1 and 9.2 157

First, consider the problem LEARNG |T ×T , where the objective of Alice and Bob is to
learn each other’s set. Note that G ⊂ Z2 with |G|= n and T ⊆ 2G with VC-Dim(T ) = 2d
are same as that constructed in Section 9.3.1. In LEARNG |T ×T , Alice and Bob get two sets
A and B, respectively, from T with a promise |A∩B|= d. The objective of Alice (Bob) is to
learn B (A). Observe that R(LEARNG |T ×T ) =Ω(d logn) as there are Ω(md) =Ω

((√ n
d

)d
)

many candidate sets for the inputs of Alice and Bob. We prove the theorem by a reduction
from LEARNG |T ×T to INTG |T ×T .

Let by contradiction consider a protocol P that solves INTG |T ×T by using o(d logn)
bits of communication. To solve LEARNG |T ×T , Alice and Bob first run a protocol P

and finds A∩B. Now by Claim 9.15, it is possible for Alice (Bob) to determine B (A) by
combining A (B) along with A∩B, with out any communication with Bob (Alice). Now,
we have a protocol P ′ that solves LEARNG |T ×T with o(d logn) bits of communication.
However, this is impossible as R(LEARNG |T ×T ) = Ω(d logn). Hence, we are done with
the proof of Theorem 9.13.

9.4 VC dimension, and Problems 9.1 and 9.2

VC dimension, and collection of d lines. Let G ⊂ Z2 be a set of n points in Z2. Observe,
that the communication functions DISJG |L×L (defined in Problem 9.1) and DISJG |G×G ,
where

G =

{
G∩

( ⋃
1≤ j≤d

ℓ j

)
| {ℓ1, . . . , ℓd} ∈ L

}
,

are equivalent problems. Note that the set L is defined in Problem 9.1. Using standard
geometric arguments, see [112, Chap. 10] and [79, Chap. 5], we can show that VC-dim(G ) =

2d.

VC dimension, and collection of d intervals. Let X ⊂Z be a set of n points in Z. Observe,
that the communication functions DISJX |I×I (defined in Problem 9.2) and DISJX |F×F ,
where

F =

{
X ∩

( ⋃
1≤ j≤d

I j

)
| {I1, . . . , Id} ∈ I

}
,

are equivalent problems. Note that the set I is defined in Problem 9.2. Using standard
geometric arguments, as in the above case, we can show that VC-dim(F ) = 2d.
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9.5 Summary

In this chapter, we studied DISJn |S×S and INTn |S×S when S is a subset of 2[n] and
VC-dim(S ) ≤ d. One of the main contributions of our work is the result (Theorem 9.6)
showing that unlike in the case of d-SPARSEDISJn and d-SPARSEINTn functions, there is no
separation between randomized and deterministic communication complexity of DISJn |S×S

and INTn |S×S functions when VC-dim(S)≤ d. Note that we have settled both the one-way
and two-way (randomized) communication complexities of INTn |S×S when VC-dim(S )≤
d (Theorem 9.6 (1) and (3)). In the context of DISJn |S×S , we have settled the one-way
(randomized) communication complexity. The two-way communication complexity for
DISJn |S×S is tight up to factor log log n

d (See Theorem 9.6 (2)).



Chapter 10

Query Complexity of Global Minimum
Cut

10.1 Introduction

The global minimum cut (denoted MINCUT) of a connected, unweighted, undirected and
simple graph G = (V,E), |V | = n and |E| = m, is a partition of the vertex set V into two
sets S and V \ S such that the number of edges between S and V \ S is minimized. Let
CUT(G) denote this edge set corresponding to a minimum cut in G, and t denote |CUT(G)|.
The problem is so fundamental that researchers keep coming back to it again and again
across different models [96, 95, 113, 98, 117, 5, 129, 66, 64, 65, 94]. The algorithmic
landscape for the minimum cut problem has been heavily influenced by Karger and Stein’s
work [95, 96] and algorithmic solutions for minimum cut across different models [113,
98, 117, 5, 129, 66, 64, 65, 94] 1 have revisited their approach [95, 96]. Fundamental
graph parameter estimation problems, like estimation of the number of edges [58, 68],
triangles [56], cliques [57], stars [70], etc. have been solved in the local and bounded
query models [69, 68, 97]. Estimation of the size of MINCUT is also in the league of such
fundamental problems to be solved in the model of local queries.

In property testing [67], a graph can be accessed at different granularities — the query
oracle can answer properties about graph that are local or global in nature. Local queries
involve the relation of a vertex with its immediate neighborhood, whereas, global queries
involve the relation between sets of vertices. Recently using a global query, named CUT

QUERY [129], the problem of estimating and finding MINCUT was solved, but the problem

1The list is to name a few and it is not exhaustive.
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of estimating or finding MINCUT using local queries has not been solved. The fundamental
contribution of our work is to resolve the query complexity of MINCUT using local queries.
We resolve both the estimation and finding variants of the problem. To start with, we formally
define the query oracle models we would be needing for discussions that follow.

The query oracle models. We start with the most studied local queries and the random edge
query for a graph G = (V,E) where the vertex set V is known but the edge set E is unknown.

• Local Query

– DEGREE query: given u ∈V , the oracle reports the degree of u in V ;

– NEIGHBOR query: given u ∈V and a positive integer i, the oracle reports the i-th
neighbor of u, if it exists; otherwise, the oracle reports ⊥;

– ADJACENCY query: given u, v ∈V , the oracle reports whether {u,v} ∈ E.

• RANDOM EDGE query: The query outputs an uniformly random edge of G.

Apart from the local queries mentioned, in the last few years, researchers have also used the
RANDOM EDGE query [6, 14]. Notice that the randomness will be over the probability space
of all edges, and hence, a random edge query is not a local query. This fact is also evident
from the work of Eden and Rosenbaum [55]. We use RANDOM EDGE query in conjunction
with local queries only for lower bound purposes. The other query oracle relevant for our
discussion will be a global query called the CUT QUERY proposed by Rubinstein et al. [129]
that was motivated by submodular function minimization. The query takes as input a subset
S of the vertex set V and returns the size of the cut between S and V \S in the graph G.

Prologue. Our motivation for this work is twofold — MINCUT is a fundamental graph
estimation problem that needs to be solved in the local query oracle model and the lower
bound of Eden and Rosenbaum [54] who extended the seminal work of Blais et al. [26] to
develop a technique for proving query complexity lower bounds for graph properties via
reductions from communication complexity. Using those techniques, for graphs that can
be accessed by only local queries like DEGREE, NEIGHBOR, ADJACENCY and RANDOM

EDGE, Eden and Rosenbaum [54] showed that MINCUT admits a lower bound of Ω(m/t)
in general graphs, where m and t are the number of edges and the size of the minimum cut,
respectively, in the graph. However, the query complexity of estimating MINCUT (in general
graphs) has remained elusive as there is no matching upper bound. It is surprising that the
query complexity of a fundamental graph problem like MINCUT has not been addressed
before Eden and Rosenbaum [54].
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In this work, we prove an upper bound of min{m+n, m
t }poly

(
logn, 1

ε

)
for estimating

MINCUT using local queries only (and not RANDOM EDGE query). Observe that for t ≥ 1,
our upper bound almost matches with the lower bound given by Eden and Rosenbaum [54] if
we ignore poly

(
logn, 1

ε

)
term. Note that the case of t = 0 is the CONNECTIVITY problem,

where the objective is to decide whether the graph is connected. We build on the lower
bound result for estimating MINCUT by Eden et al. [54] to show that Ω(m) local queries are
required if we want to determine the exact size of a MINCUT or find a MINCUT. This result
implies that there is a separation between the problem of estimating the size of MINCUT

and the problem of finding a MINCUT using local queries. On the other hand, Babai et
al. [16] showed that CONNECTIVITY testing has a randomized communication complexity
of Ω(n) 2. This implies that any algorithm that solves CONNECTIVITY requires Ω(n/ logn)
local queries. This is because Alice and Bob can deterministically simulate each local query
by communicating at most logn bits. We have already discussed that Ω(m) local queries
are needed to solve CONNECTIVITY. From the lower bounds of Ω(m) and Ω(n/ logn)
for CONNECTIVITY along with the lower bound result of Eden and Rosenbaum [54] for
estimating MINCUT, our upper bound result on estimating MINCUT (ignoring poly

(
logn, 1

ε

)
term) is tight - this settles the query complexity of MINCUT using local queries.

Prior to our work, no local query based algorithm existed for MINCUT. But it was
Rubinstein et al. [129] who studied MINCUT for the first time using CUT QUERY, a global
query. They showed that there exists a randomized algorithm for finding a MINCUT in
G using Õ(n)3 CUT QUERY. The deterministic lower bound of Ω(n logn) by Hajnal et
al. [78], for CONNECTIVITY in communication complexity, implies that Ω(n) CUT QUERY

are required by any deterministic algorithm to estimate MINCUT. The randomized lower
bound of Ω(n) by Babai et al. [16], for CONNECTIVITY in communication complexity,
says that Ω(n/ logn) CUT QUERY are necessary for any randomized algorithm to estimate
MINCUT 4. So, if we ignore polylogarithmic factors, the upper bound result by Rubinstein
et al. for finding a MINCUT along with the above discussed lower bound result for finding
a MINCUT, imply that there is no separation between the problem of estimating size of
MINCUT and the problem of finding a MINCUT using CUT QUERY. On a different note,
Graur et al. [72] showed a deterministic lower bound of 3n/2 on the number of CUT QUERY

for estimating MINCUT.

2Here the edge set of the graph is partitioned among Alice and Bob. The objective of Alice and Bob is to
determine whether the graph is connected by communicating.

3Õ(n) hides polylogarithmic terms in n.
4We would like to thank Troy Lee for pointing us to the papers of Hajnal et al. [78] and Babai et al. [16]
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Problem statements and results. We focus on two problems in this work.

Minimum Cut Estimation
Input: A parameter ε ∈ (0,1), and access to an unknown graph G via local queries
Output: A (1± ε)-approximation to |CUT(G)|.

Minimum Cut Finding
Input: Access to an unknown graph G via local queries
Output: Find a set CUT(G) .

10.1.1 Results and Organization

Our results are the following.

Theorem 10.1. (Minimum cut estimation using local queries) There exists an algorithm,
with DEGREE and NEIGHBOR query access to an unknown graph G = (V,E), that solves
the minimum cut estimation problem with high probability. The expected number of queries
used by the algorithm is min

{
m+n, m

t

}
poly

(
logn, 1

ε

)
.

Building on the lower bound construction of Eden and Rosenbaum [54], we show that
no nontrivial query algorithm exists for finding a minimum cut or even estimating the exact
size of a minimum cut in graphs.

Theorem 10.2. (Lower bound for minimum cut finding, i.e., CUT(G) ) Let m,n, t ∈ N
with t ≤ n−1 and 2nt ≤ m ≤

(n
2

) 5. Any algorithm that has access to DEGREE, NEIGHBOR,
ADJACENCY and RANDOM EDGE queries to an unknown graph G = (V,E) must make at
least Ω(m) queries in order to find all the edges in a minimum cut of G with probability 2/3.

Theorem 10.3. (Lower bound for finding the exact size of the minimum cut, i.e., |CUT(G)|)
Let m,n, t ∈ N with 2 ≤ t ≤ n− 2 and 2nt ≤ m ≤

(n
2

)
. Any algorithm that has access to

DEGREE, NEIGHBOR, ADJACENCY and RANDOM EDGE queries to an unknown graph
G = (V,E) must make at least Ω(m) queries in order to decide whether |CUT(G)| = t or
|CUT(G)|= t −2 with probability 2/3.

Remark 9. Local queries show a clear separation in its power in finding MINCUT as opposed
to the estimation problem. This is established by using the tight lower bound of minimum
cut estimation (viz. Ω(m/t) lower bound of Eden and Rosenbaum and our Theorem 10.1)
vis-a-vis minimum cut finding as mentioned in our Theorems 10.2 and 10.3 on lower bound

5As mentioned at the beginning of the introduction, n.m and t denote the number of vertices, number of
edges and the size of MINCUT in G, respectively.
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for finding CUT(G) . As noted earlier, there is no such separation between estimating and
finding MINCUT when CUT QUERY is used.

Organization. Section 10.3 discusses the query algorithm for estimating the MINCUT while
Section 10.4 proves lower bounds on finding the MINCUT. Section 10.5 concludes with a
few observations.

10.2 Preliminaries

Notations. In this chapter, we denote the set {1, . . . ,n} by [n]. For ease of notation, we
sometimes use [n] to denote the set of vertices of a graph. We say x ≥ 0 is an (1± ε)-
approximation to y ≥ 0 if |x− y| ≤ εy. V (G) and E(G) would denote the vertex and edge
sets when we want to make the graph G explicit, else we use V and E. For a graph G,
CUT(G) denotes the set of edges in a minimum cut of G. Let A1, A2 be a partition of V , i.e.,
V = A1 ∪A2 with A1 ∩A2 = /0. Then, CG(A1,A2) = {{u,v} ∈ E : u ∈ A1 and v ∈ A2}. The
statement with high probability means that the probability of success is at least 1− 1

nc , where
c is a positive constant. Θ̃(·) and Õ(·) hides a poly

(
logn, 1

ε

)
term in the upper bound.

10.2.1 Probability Results

Lemma 10.4 (See [52]). Let X = ∑i∈[n]Xi where Xi, i ∈ [n], are independent random vari-
ables, Xi ∈ [0,1] and E[X ] is the expected value of X. Then

(i) For ε > 0

Pr[|X −E[X ]|> εE[X ]]≤ exp
(
− ε2

3 E[X ]
)
.

(ii) Suppose µL ≤ E[X ]≤ µH , then for 0 < ε < 1

(a) Pr[X > (1+ ε)µH ]≤ exp
(
− ε2

3 µH

)
.

(b) Pr[X < (1− ε)µL]≤ exp
(
− ε2

2 µL

)
.

10.3 Estimation algorithm

In this Section, we will prove Theorem 10.1. In Section 10.3.1, we discuss about the intuitions
and give the overview of our algorithm. We formalize the intuitions in Section 10.3.2.
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10.3.1 Overview of our algorithm

We start by assuming that a lower bound t̂ on t = |CUT(G)| is known. Later, we discuss how
to remove this assumption.

We generate a random subgraph H of G by sampling each edge of the graph G inde-
pendently with probability p = Θ

(
logn/ε2t̂

) 6. Using Chernoff bound, we can show that
any particular cut of size k, k ≥ t, in G is well approximated in H with probability at least
n−Ω(k/t̂). With this idea, consider the following Algorithm, stated informally, for minimum
cut estimation.

Algorithm-Sketch (works with t̂ ≤ t)

Step-1: Generate a random subgraph H of G by sampling each edge in G independently
with probability p = Θ

(
logn/ε2t̂

)
. Note that H can be generated by using Õ(m/t̂)

DEGREE and NEIGHBOR queries in expectation. We will discuss it in Algorithm 3 in
Section 10.3.2.

Step-2 Determine |CUT(H)| and report t̃ = |CUT(H)|
p as a (1±ε)-approximation of |CUT(G)|.

The number of queries made by the above algorithm is Õ(m/t̂) in expectation. But it produces
correct output only when the vertex partition corresponding to CUT(G) and CUT(H) are
the same. This is not the case always. If we can show that all cuts in G are approximately
preserved in H, then Algorithm-Sketch produces correct output with high probability. The
main bottleneck to prove it is that the total number of cuts in G can be exponential. A result
of Karger (stated in the following lemma) will help us to make Algorithm-Sketch work.

Lemma 10.5 (Karger [95]). For a given graph G the number of cuts in G of size at most
j · |CUT(G)| is at most n2 j.

Using the above lemma along with Chernoff bound, we can show the following.

Lemma 10.6. Let G be a graph, t̂ ≤ t = |CUT(G)| and ε ∈ (0,1). If H(V (G),Ep) is a sub-

graph of G where each edge in E(G) is included in Ep with probability p = min
{

200logn
ε2t̂ ,1

}
independently, then every cut of size k in G has size pk(1± ε) in H with probability at least
1− 1

n10 .

The above lemma implies the correctness of Algorithm-Sketch, which is for minimum
cut estimation when we know a lower bound t̂ of |CUT(G)|. But in general we do not know
any such t̂. To get around the problem, we start guessing t̂ starting from n

2 each time reducing

6Though p can be more than 1 here, we will make it explicit in the formal description



10.3 Estimation algorithm 165

t̂ by a factor of 2. The guessing scheme gives the desired solution due to Lemma 10.6 coupled
with the following intuition when t̂ = Ω(t logn/ε2) — if we generate a random subgraph H
of G by sampling each edge with probability p = Θ

(
logn/ε2t̂

)
, then H is disconnected with

at least a constant probability. So, it boils down to a connectivity check in H. The intuition is
formalized in the following lemma that can be proved using Markov’s inequality.

Lemma 10.7. Let G be a graph with |V (G)| = n, t̂ ≥ 2000logn
ε2 |CUT(G)| and ε ∈ (0,1). If

H(V (G),Ep) be a subgraph of G where each edge in E(G) is included in Ep independently

with probability p = min
{

200logn
ε2t̂ ,1

}
, then H is connected with probability at most 1

10 .

Before moving to the next section, we prove Lemmas 10.6 and 10.7 here.

Proof of Lemma 10.6. If p = 1, we are done as the graph H is exactly the same as that of G.
So, without loss of generality assume that the graph G is connected. Otherwise, the lemma
holds trivially as |CUT(G)|= 0, i.e., t̂ = 0 and p = 1. Hence, for the rest of the proof we will
assume that p = 200logn

ε2t̂ .

Consider a cut CG(A1,A2) of size k in G. As we are sampling each edge with probability
p, the expected size of the cut CH(A1,A2) is pk. Using Chernoff bound (see Lemma 10.4 in
Section 10.2.1), we get

Pr(|CH(A1,A2)− pk| ≥ ε pk)≤ e−ε2 pk/3t̂ = n−
100k

3t̂ (10.1)

Note that here we want to show that every cut in G is approximately preserved in H. To do
so, we will use Lemma 10.5 along with Equation (10.1) as follows. Let Z1,Z2, . . . ,Zℓ be the
partition of the set of all cuts in G such that each cut in Z j has the number of edges between
[ j · |CUT(G)| ,( j+1) |CUT(G)|], where ℓ ≤ n

|CUT(G)| and j ≤ ℓ− 1. From Lemma 10.5,∣∣Z j
∣∣≤ n2 j. Consider a particular Z j, j ∈ [ℓ]. Using the union bound along with Equation 10.1,

the probability that there exists a cut in Z j that is not approximately preserved in H is at most
1

n11 . Taking union bound over all Z j’s, the probability that there exists a cut in G that is not
approximately preserved is at most 1

n10 .

Proof of Lemma 10.7. Let CG(A1,A2) be a minimum cut in G. Observe, E [|CH(A1,A2)|] =
p |CG(A1,A2)| = p |CUT(G)|. From Markov’s inequality, we get Pr(G is connected) ≤
Pr(|CG(A1,A2)| ≥ 1)≤ E[|CG(A1,A2)|]≤ 1

10 .
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10.3.2 Formal Algorithm (Proof of Theorem 10.1)

In this Section, the main algorithm for minimum cut estimation is described in Algorithm 5
(ESTIMATOR) that makes multiple calls to Algorithm 4 (VERIFY-GUESS). The VERIFY-
GUESS subroutine in turn calls Algorithm 3 (SAMPLE) multiple times.

Given degree sequence of the graph G, that can be obtained using degree queries, we
will first show how to independently sample each edge of G with probability p using only
NEIGHBOR queries.

Algorithm 3: SAMPLE(D, p)
Input: D = {d(i) : i ∈ [n]}, where d(i) denotes the degree of the i-th vertex in the

graph G, and p ∈ (0,1].
Output: Return a subgraph H(V,Ep) of G(V,E) where each edge in E(G) is

included in Ep with probability p.
Set q = 1−

√
1− p and m = ∑

n
i=1 di
2 ;

for (each i ∈ [n]) do
for (each j ∈ [d(i)] with d(i)> 0) do

// Let r j be the j-th neighbor of the i-th vertex;
Add the edge (i,r j) to the set Ep with probability q;

end
end
Return the graph H(V,Ep).

The following lemma proves the correctness of the above algorithm SAMPLE(D, p).

Lemma 10.8. SAMPLE(D, p) returns a random subgraph H(V (G),Ep) of G such that each
edge e ∈ E is included in Ep independently with probability p. Moreover, in expectation, the
number of NEIGHBOR queries made by SAMPLE(D, p) is at most 2pm.

Proof. From the description of SAMPLE(D, p), it is clear that the probability that a particular
edge e ∈ E(G) is added to Ep with probability 1− (1−q)2 = p.

Observe, E
[∣∣Ep

∣∣]= pm. The bound on the number of NEIGHBOR queries now follows
from the fact that SAMPLE(D, p) makes at most 2

∣∣Ep
∣∣ many NEIGHBOR queries.

One of the core ideas behind the proof of Theorem 10.1 is that, given an estimate t̂ of t,
we want to efficiently (in terms of number of local queries used by the algorithm) decide if
t̂ ≤ t or if t̂ ≳ logn

ε2 × t. Using Algorithm 4, we will show that this can be done using Õ(m/t̂)
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many NEIGHBOR queries in expectation. Another interesting feature of Algorithm 4 is that,
if estimate t̂ ≤ t, then Algorithm 4 outputs an estimate which is a (1± ε)-approximation of t.

Algorithm 4: VERIFY-GUESS(D, t̂,ε)
Input: D = {d(i) : i ∈ [n]}, where d(i) denotes the degree of the i-th vertex in the

graph G and m = 1
2

n
∑

i=1
d(i)≥ n−1. Also, a guess t̂, with 1 ≤ t̂ ≤ n

2 , for the

size of the global minimum cut in G, and ε ∈ (0,1).
Output: The algorithm should “ACCEPT” or “REJECT” t̂, with high probability,

depending on the following
• If t̂ ≤ |CUT(G)|, then ACCEPT t̂ and also output a (1±ε)-approximation of |CUT(G)|
• If t̂ ≥ 200logn

ε2 |CUT(G)|, then REJECT t̂

Set p = min
{

200log2 n
ε2t̂ ,1

}
;

Set Γ = 100logn and Call SAMPLE(D, p) Γ times;
// Let Hi(V,E i

p) be the output of i-th call to SAMPLE(D, p), where i ∈ [Γ]

if (at least Γ/2 many H ′
i s are disconnected) then

REJECT t̂
end
else if (all Hi’s are connected) then

ACCEPT t̂, find CUT(Hi) for any i ∈ [Γ], and return t̃ = |CUT(Hi)|
p .

end
else

Return FAIL.
// When we cannot decide between “REJECT” or “ACCEPT” it will return FAIL

end

The following lemma proves the correctness of Algorithm 4. The lemmas used in proof
are Lemmas 10.6, 10.7 and 10.8.

Lemma 10.9. VERIFY-GUESS(D, t̂,ε) in expectation makes Õ
(m

t̂

)
many NEIGHBOR queries

to the graph G and behaves as follows:

(i) If t̂ ≥ 2000logn
ε2 |CUT(G)|, then VERIFY-GUESS(D, t̂,ε) rejects t̂ with probability at

least 1− 1
n9 .

(ii) If t̂ ≤ |CUT(G)|, then VERIFY-GUESS(D, t̂,ε) accepts t̂ with probability at least 1− 1
n9 .

Moreover, in this case, VERIFY-GUESS(D, t̂,ε) reports an (1± ε)-approximation to
CUT(G).

Proof. VERIFY-GUESS(D, t̂,ε) calls SAMPLE(D,ε) for Γ = 100logn times with p being
set to min

{
200logn

ε2t̂ ,1
}

. Recall from Lemma 10.8 that each call to SAMPLE(D, p) makes in
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expectation at most 2pm many NEIGHBOR queries, and returns a random subgraph H(V,Ep),
where each edge in E(G) is included in Ep with probability p. So, VERIFY-GUESS(D, t̂,ε)
makes in expectation O(pm logn) = Õ(m/t̂) many NEIGHBOR queries and generates Γ many
random subgraphs of G. The subgraphs are denoted by H1(V,E1

p), . . . ,HΓ(V,EΓ
p ).

(i) Let t̂ ≥ 2000logn
ε2 |CUT(G)|. From Lemma 10.7, we have that Hi will be connected with

probability at most 1
10 . Observe that in expectation, we get that at least 9Γ

10 many
Hi’s will be disconnected. By Chernoff bound (see Lemma 10.4 in Section 10.2.1),
the probability that at most Γ

2 many Hi’s are disconnected is at most 1
n10 . Therefore,

VERIFY-GUESS(D, t̂,ε) rejects any t̂ satisfying t̂ ≥ 2000logn
ε2 |CUT(G)| with probability

at least 1− 1
n9 .

(ii) Let t̂ ≤ |CUT(G)|. Using Lemma 10.6, we have that every cut of size k in G has size
pk(1± ε) in Hi with probability at least 1− 1

n10 . Therefore, with probability at least
1− Γ

n10 , for all i ∈ [Γ], every cut of size k in G has size pk(1± ε) in Hi. This implies
that if t̂ ≤ |CUT(G)| then VERIFY-GUESS(D, t̂,ε) accepts any t̂ with probability at

least 1− 1
n9 . Moreover, for any Hi, observe that |CUT(Hi)|

p is a (1±ε)-approximation to
|CUT(G)|. Hence, when t̂ ≤ |CUT(G)|, VERIFY-GUESS(D, t̂,ε) also returns a (1± ε)

approximation to |CUT(G)| with probability 1− 1
n9 .

ESTIMATOR(ε) (Algorithm 5) will estimate the size of the minimum cut in G using
DEGREE and NEIGHBOR queries. The main subroutine used by the algorithm will be
VERIFY-GUESS(D, t̂,ε).

The following lemma shows that with high probability ESTIMATOR(ε) correctly esti-
mates the size of the minimum cut in the graph G, and it also bounds the expected number of
queries used by the algorithm.

Lemma 10.10. ESTIMATOR(ε) returns a (1±ε) approximation to |CUT(G)| with probability
at least 1− 1

n8 by making in expectation min
{

m+n, m
t

}
poly

(
logn, 1

ε

)
queries and each

query is either a DEGREE or a NEIGHBOR query to the unknown graph G.

Proof. Without loss of generality, assume that n is a power of 2. If m < n− 1 or if there
exists a i ∈ [n] such that di = 0 then the graph G is disconnected. In this case the algorithm
ESTIMATOR(ε) makes n DEGREE queries and returns the correct answer. Thus we assume
that m ≥ n−1.
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First, we prove the correctness and query complexity when the graph is connected, that is,
t ≥ 1. Note that ESTIMATOR(ε) calls VERIFY-GUESS(D, t̂,ε) for different values of t̂ starting
from n

2 . Recall that κ = 2000logn
ε2 . For a particular t̂ with t̂ ≥ κt, VERIFY-GUESS(D, t̂,ε) does

not REJECT t̂ with probability at most 1
n9 by Lemma 10.9 (i). So, by the union bound, the

probability that VERIFY-GUESS(D, t̂,ε) will either ACCEPT or FAIL for some t̂ with t̂ ≥ κt, is
at most logn

n9 . Hence, with probability at least 1− logn
n9 , we can say that VERIFY-GUESS(D, t̂,ε)

rejects all t̂ with t̂ ≥ κt.

Observe that, from Lemma 10.9 (ii), the first time t̂ satisfies the following inequality
t
2 < t̂ ≤ t, VERIFY-GUESS(D, t̂,ε) will accept t̂ with probability at least 1− 1

n9 . Therefore,
for the first time VERIFY-GUESS(D, t̂,ε) will either ACCEPT or FAIL, then t̂ satisfies the
following inequality t

2 < t̂ < κt with probability at least 1− logn+1
n9 . Let t̂0 denote the first time

VERIFY-GUESS returns ACCEPT or FAIL. From the description of ESTIMATOR(ε), note that,
we get t̂u by dividing t̂0 by κ . Note that, with probability at least 1− 1+logn

n9 , we have t̂u < t.
We then call the procedure VERIFY-GUESS(D, t̂,ε) with t̂ = t̂u. By Lemma 10.9 (ii), VERIFY-
GUESS(D, t̂u,ε) will ACCEPT and report a (1± ε) approximation to t with probability at
least 1− 1

n9 .

We will now analyze the number of DEGREE and NEIGHBOR queries made by the
algorithm. We make an initial n many queries to construct the set D. Then at the worst
case, we call VERIFY-GUESS(D, t̂,ε) for t̂ = n

2 , . . . , t
′ and t̂ = t ′

κ
≥ t

2κ
, where t

2 < t ′ < κt.
It is because VERIFY-GUESS(D, t̂,ε) accepts t̂ with probability 1− 1

n9 when the first time
t̂ satisfy the inequality t̂ ≤ t. Hence, by Lemma 10.9 and the facts that n ≤ m

t and t̂u ≥ t
2κ

with probability at least 1− logn+1
n9 , in expectation the total number of queries made by the

algorithm is at most n+ logn ·
(

1− logn+1
n9

)
· Õ
(2κm

t

)
+ logn ·

(
logn+1

n9

)
· Õ(m) = Õ

(m
t

)
.

Note that each query made by ESTIMATOR(ε) is either a DEGREE or a NEIGHBOR query.

Now we analyze the case when t = 0. Observe that VERIFY-GUESS(D, t̂,ε) rejects
all t̂ ≥ 1 with probability 1− logn

n9 , and therefore, ESTIMATOR(ε) will report t = 0. As
we have called VERIFY-GUESS(D, t̂,ε) for all t̂ = n

2 , . . . ,1, the number of queries made by
ESTIMATOR(ε), in the case when t = 0, is Õ(m)+n. Note that the additional term of n in the
bound comes from the fact that to compute D, the algorithm needs to make n many DEGREE

queries.
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10.4 Lower bounds

In this Section, we prove Theorems 10.2 and 10.3 using reductions from suitable problems in
communication complexity. In Section 10.4.1, we discuss about two party communication
complexity along with the problems that will be used in our reductions. We will discuss the
proofs of Theorems 10.2 and 10.3 in Section 10.4.2.

10.4.1 Communication Complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish to
compute a function Π : {0,1}N ×{0,1}N → {0,1}∪{0,1}n 7. Alice is given x ∈ {0,1}N

and Bob is given y ∈ {0,1}N . Let xi (yi) denotes the i-th bit of x (y). While the parties
know the function Π, Alice does not know y, and similarly Bob does not know x. Thus
they communicate bits following a pre-decided protocol P in order to compute Π(x,y).
We say a randomized protocol P computes Π if for all (x,y) ∈ {0,1}N × {0,1}N we
have Pr[P(x,y) = Π(x,y)] ≥ 2/3. The model provides the parties access to common
random string of arbitrary length. The cost of the protocol P is the maximum number
of bits communicated, where maximum is over all inputs (x,y) ∈ {0,1}N ×{0,1}N . The
communication complexity of the function is the cost of the most efficient protocol computing
Π. For more details on communication complexity see [101]. We now define two functions
k-INTERSECTION and FIND-k-INTERSECTION and discuss their communication complexity.
Both these functions will be used in our reductions.

Definition 10.11 (FIND-k-INTERSECTION). Let k,N ∈N such that k ≤ N. Let S = {(x,y) ∈
{0,1}N ×{0,1}N : ∑

N
i=1 xiyi = k}. The FIND-k-INTERSECTION function on N bits is a partial

function and is defined as FIND-INTN
k : S →{0,1}N , and is defined as FIND-INTN

k (x,y) =
z,where zi = xiyi for each i ∈ [N].

Note that the objective is that at the end of the protocol Alice and Bob know z.

Definition 10.12 (k-INTERSECTION). Let k,N ∈ N such that k ≤ N. Let S = {(x,y) :
N
∑

i=1
xiyi = k or k−1}. The k-INTERSECTION function on N bits is a partial function denoted

by INTN
k : S → {0,1}, and is defined as follows: INTN

k (x,y) = 1 if ∑
N
i=1 xiyi = k and 0,

otherwise.
7The co-domain of Π looks odd, as the the co-domain is {0,1} usually. However, we need {0,1}∪{0,1}n

to take care of all the problems in communication complexity we discuss in this chapter.
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In communication complexity, the k-INTERSECTION function on N bits when k = 1
is known as DISJOINTNESS function on N. The following lemmas follow easily from the
communication complexity of DISJOINTNESS (see [101]).

Lemma 10.13. Let k,N ∈ N such that k ≤ cN for some constant c < 1. The randomized
communication complexity of FIND-k-INTERSECTION function on N bits is Ω(N).

Lemma 10.14. Let k,N ∈ N such that k ≤ cN for some constant c < 1. The randomized
communication complexity of k-INTERSECTION function on N bits (INTN

k ) is Ω(N).

10.4.2 Proofs of Theorems 10.2 and 10.3

The proofs of Theorems 10.2 and 10.3 are inspired from the lower bound proof of Eden and
Rosenbaum [54] for estimating MINCUT 8.

Proof of Theorem 10.2. We prove by giving a reduction from FIND-t/2-INTERSECTION on
N bits. Without loss of generality assume that t is even. Let x and y be the inputs of Alice

and Bob. Note that
N
∑

i=1
xiyi = t/2.

We first discuss a graph G(xy)(V,E) that can be generated from (x,y), such that |V |= n
and |E|= m ≥ 2nt, and works as the ‘hard’ instance for our proof. Note that G(x,y) should be
such that no useful information about the MINCUT can be derived by knowing only one of
x and y. Let s = t +

√
t2 +(m−nt)/2 and N = s2. In particular, 2t ≤ s ≤ 2t +3

√
m. Also,

s ≥
√

m/2 and therefore s = Θ(
√

m).

The graph G(x,y) and its properties:

G(x,y) has the following structure.

• V = SA∪TA∪SB∪TB∪C such that |SA|= |TA|= |SB|= |TB|= s and |C|= n−4s. Let
SA = {sA

i : i ∈ [s]} and similarly TA = {tA
i : i ∈ [s]}, SB = {sB

i : i ∈ [s]} and TB = {tB
i :

i ∈ [s]}.

• Each vertex in C is connected to 2t different vertices in SA.

• For i, j ∈ [s]: if xi j = yi j = 1, then (sA
i , t

B
j ) ∈ E and (sB

i , t
A
j ) ∈ E; otherwise, (sA

i , t
A
j ) ∈ E

and (sB
i , t

B
j ) ∈ E.

Observation 10.15. G(x,y) satisfies the following properties.

8Note that Eden and Rosenbaum [54] stated the result in terms k-Edge Connectivity.
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Property-1: The degree of every vertex in C is 2t. For any v /∈C, the neighbors of v inside
C are fixed irrespective of x and y; and the number of neighbors outside C is s ≥ 2t.

Property-2: There are t edges between the vertex sets (C ∪ SA ∪ TA) and (SB ∪ TB), and
removing them G(x,y) becomes disconnected.

Property-3: Every pair of vertices (SA ∪TA ∪C) is connected by at least 3t/2 edge disjoint
paths. Also, every pair of vertices in (SB ∪ TB) is connected by at least 3t/2 edge
disjoint paths.

Property-4: The set of t edges between the vertex sets (C∪SA∪TA) and (SB∪TB) forms the
unique global minimum cut of G(x,y),

Property-5: xi j = yi j = 1 if and only if (sA
i , t

B
j ) and (sB

i , t
A
j ) are the edges in the unique

global minimum cut of G(x,y).

Proof. Property-1 and Property-2 directly follow from the construction. Now, we will prove
Property-3. We first show that every pair of vertices (SA ∪TA ∪C) is connected by at least
3t/2 edge disjoint paths by breaking the analysis into the following cases.

(i) Consider sA
i ,s

A
j ∈ SA, for i, j ∈ [s]. Under the promise that ∑

N
i=1 xiyi = t/2, sA

i ,s
A
j have

at least s− t ≥ 3t/2 common neighbors in TA and thus there are at least 3t/2 edge
disjoint paths connecting them.

(ii) Consider sA
i ∈ SA and tA

j ∈ TA, for i, j ∈ [s]. Let sA
j1, . . . ,s

A
j3t/2

be 3t/2 distinct neigh-

bors of tA
j in SA. Since, sA

i has 3t/2 common neighbors with each sA
jr , r ∈ [3t/2],

there is a matching of size 3t/2. Denote this matching by (tA
jr ,s

A
jr), r ∈ [3t/2]. Thus

(sA
i , t

A
jr),(t

A
jr ,s

A
jr),(s

A
jr , t

A
j ), for r ∈ [3t/2], forms a set of edge disjoint paths of size 3t/2

from sA
i to tA

j , each of length 3. In case sA
i is one of the neighbors of tA

j , then one of
the 3t/2 paths gets reduced to (sA

i , t
A
j ), a length 1 path that is edge disjoint from the

remaining paths.

(iii) Consider u,v ∈C. Let u1, . . . ,u2t ∈ SA and v1, . . . ,v2t ∈ SA be the neighbors of u and v
respectively in SA. If for some i, j ∈ [2t], ui = v j then (u,ui),(ui,v j),(v j,v) is a desired
path. Thus, assume ui ̸= v j for all i, j ∈ [2t]. For all i ∈ [2t], since ui and vi have at least
3t/2 common neighbors in TA we can find 3t/2 edge disjoint paths (ui, tA

i ),(t
A
i ,vi),

where tA
i ∈ T A. Existence of 3t/2 edge disjoint paths from u ∈ C to v ∈ SA can be

proved as in (i). and from u ∈C to v ∈ TA can be proved as in (ii).

Similarly, we can show that every pair of vertices in (SB ∪TB) is connected by 3t/2 many
edge disjoint paths.
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Observe that Property-4 follows from Property-3, and Property-5 follows from the
construction of G(x,y) and Property-4.

Now, by contradiction assume that there exists an algorithm A that makes o(m) queries
to G(x,y) and finds all the edges of a global minimum cut with probability 2/3. Now, we give
a protocol P for FIND-t/2-INTERSECTION on N bits when the x and y are the inputs of
Alice and Bob, respectively. Note that x,y ∈ {0,1}N such that ∑

N
i=1 xiyi = t/2.

Protocol P for FIND-t/2-INTERSECTION:

Alice and Bob run the query algorithm A when the unknown graph is G(x,y). Now we explain
how they simulate the local queries and random edge query on G(x,y) by communication. We
would like to note that each query can be answered deterministically.

DEGREE query: By Property-1, the degree of every vertex does not depend on the inputs
of Alice and Bob, and therefore any degree query can be simulated without any
communication.

NEIGHBOR query: For v ∈C, the set of 2t neighbors are fixed by the construction. So, any
neighbor query involving any v ∈C can be answered without any communication. For
i ∈ [s] and sA

i ∈ SA, let NC(sA
i ) be the set of fixed neighbors of sA

i inside C. So, by
Property-1, d(sA

i ) =
∣∣NC(sA

i )
∣∣+ s 9. The labels of the neighbors of sA

i are such that the
first

∣∣NC(sA
i )
∣∣many neighbors are inside C, and they are arranged in a fixed but arbitrary

order. For j ∈ [s], the (|NC(v)|+ j)-th neighbor of sA
i is either tB

j or sA
j depending on

whether xi j = yi j = 1 or not, respectively. So, any neighbor query involving vertex in
SA can be answered by 2 bits of communication. Similar arguments also hold for the
vertices in SB ∪TA ∪TB.

ADJACENCY query: Observe that each adjacency query can be answered by at most 2 bits
of communication, and it can be argued like the NEIGHBOR query.

RANDOM EDGE query: By Property-1, the degree of any vertex v ∈ V is independent of
the inputs of Alice and Bob. Alice and Bob use shared randomness to sample a vertex
in V proportional to its degree. Let r ∈V be the sampled vertex. They again use shared
randomness to sample an integer j in [d(v)] uniformly at random. Then they determine
the j-th neighbor of r using NEIGHBOR query. Observe that this procedure simulates a
RANDOM EDGE query by using at most 2 bits of communication.

9d(u) denotes the degree of the vertex u in G(x,y)
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Using the fact that G(x,y) satisfies Property-4 and 5, the output of algorithm A determines the
output of protocol P for FIND-t/2-INTERSECTION. As each query of A can be simulated
by at most two bits of communication by the protocol P , the number of bits communicated
is o(m). Recall that N = s2 and s = Θ(

√
m). So, the number of bits communicated by Alice

and Bob in P is o(N). This contradicts Theorem 10.13.

Proof of Theorem 10.3. The proof of this theorem uses the same construction as the one
used in the proof of Theorem 10.2. The ‘hard’ communication problem to reduce from is
t/2-INTERSECTION (see Definition 10.12) on N bits, where N = s2 and s = Θ(

√
m).

10.5 Application of our approach to other cut problems

We discuss the application of our approach to other cut problems next.

Application of our approach to other cut problems

Sublinear time algorithm for Global minimum cut. For simplicity, the algorithm (Algo-
rithm 5) presented for estimating global minimum cut is Õ(m). But, our algorithm can be
adapted to get a sublinear time algorithm (with time complexity Õ

(m
t

)
) for estimating the

size of the global minimum cut in the graph. We will sample Õ
(

m
t̂

)
random edges with

replacement from the graph G using Õ
(

m
t̂

)
using local queries, where t̂ is the guess for the

size of the global minimum, rather than sampling each edge with probability p = Õ
(

1
t̂

)
as

we have done in the Algorithm 4. Observe that, after finding the degrees of all the vertices, a
random edge can be generated using O(1) local queries. The rest of the algorithm and its
analysis can be adapted directly. Therefore, we have the following result.

Theorem 10.16. (Estimating Global minimum cut in sublinear time.) There exists an
algorithm, with DEGREE and NEIGHBOR query access to an unknown graph G = (V,E), that
solves the minimum cut estimation problem with high probability. With high probability, the
time complexity and the query complexity of the algorithm is min

{
m+n, m

t

}
poly

(
logn, 1

ε

)
.

Global minimum r-way cut. Global minimum r-cut, for a graph G = ([n],E), |V |= n and
|E| = m, is a partition of the vertex set [n] into r-sets S1, . . . , Sr such that the following is
minimized: |{{i, j} ∈ E : ∃k, ℓ(k ̸= ℓ) ∈ [r], with i ∈ Sk and j ∈ Sℓ}|.

Let CUTr(G) denote the set of edges corresponding to a minimum r-cut, i.e., the edges
that goes across different partitions, and by the size of minimum r-cut, we mean |CUTr(G)|.
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The sampling and verification idea used in the proof of Theorem 10.1 can be extended
directly, together with [95, Corollary 8.2], to get the following result.

Theorem 10.17. There exists an algorithm, with DEGREE and NEIGHBOR query access to
an unknown graph G = ([n],E), that with high probability outputs a (1± ε)-approximation
of the size of the minimum r-cut of G. The expected number of queries used by the algorithm
is min

{
m+n, m

tr

}
poly

(
r, logn, 1

ε

)
, where tr = |CUTr(G)|.

Minimum cuts in simple multigraphs. A graph with multiple edges between a pair of
vertices in the graph but without any self loops are called simple multigraphs. If we have
DEGREE and NEIGHBOR query access 1 to simple multigraphs then we can directly get the
following generalization of Theorem 10.1.

Theorem 10.18. (Minimum cut estimation in simple multigraphs using local queries)
There exists an algorithm, with DEGREE and NEIGHBOR query access to an unknown simple
multigraph G = (V,E), that solves the minimum cut estimation problem with high probability.
The expected number of queries used by the algorithm is min

{
m+n, m

t

}
poly

(
logn, 1

ε

)
,

where n is the number of vertices in the multigraph, m is the number of edges in the
multigraph and t is the number of edges in a minimum cut.

10.6 Summary

Our work first and foremost closes a gap in the query complexity of a fundamental problem of
finding a minimum cut using local queries. The strength of our algorithm lies in its simplicity
– it uses existing ingredients in a fashion suitable for the query framework. The crucial idea
was to ensure that cuts are preserved in a sparsified graph in a query framework.

1For simple multigraphs, we will assume that the neighbors of a vertex are stored with multiplicities.
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Algorithm 5: ESTIMATOR(ε)
Input: DEGREE and NEIGHBOR query access to an unknown graph G, and a

parameter ε ∈ (0,1).
Output: Either returns a (1± ε)-approximation to t = |CUT(G)| or FAIL

Find the degrees of all the vertices in G by making n many DEGREE queries;
// Let D = {d(1), . . . ,d(n)}, where d(i) denotes the degree of the i-th vertex in G;
If ∃i ∈ [n] such that d(i) = 0, then return t = 0 and QUIT. Otherwise, proceed as
follows.

Find m = 1
2

n
∑

i=1
d(i). If m < n−1, return t = 0 and QUIT. Otherwise, proceed as

follows.
Set κ = 2000logn

ε2

Initialize t̂ = n
2 .

while (t̂ ≥ 1) do
Call VERIFY-GUESS(D, t̂,ε).
if (VERIFY-GUESS(D, t̂,ε) returns REJECT) then

set t̂ = t̂
2 and continue.

end
else

// Note that in this case VERIFY-GUESS(D, t̂,ε) either returns FAIL or
ACCEPT.

Set t̂u = max
{

t̂
κ
,1
}

.
Call VERIFY-GUESS(D, t̂u,ε).
if (VERIFY-GUESS(D, t̂u,ε) returns FAIL or REJECT) then

return FAIL as the output of ESTIMATOR(ε)
end
else

Let t̃ be the output of VERIFY-GUESS(D, t̂u,ε).
Return t̃ as the output of ESTIMATOR(ε).

end
end

end
Output: Return that the graph G is disconnected.



Chapter 11

Conclusion and Future Work

In this thesis we studied query complexity from various perspectives. There are many new
open problems that have come out of this thesis. We discuss them next.

In Chapter 3, we studied quantum learning of n-bit functions of bounded Fourier sparsity,
functions whose Fourier spectrum has at most k, k ∈ [2n], non-zero Fourier coefficients. We
consider exact learning of this class Boolean functions using uniform quantum examples
which is a generalization of the well studied uniform examples in the classical world. Each
such uniform example can be generated by making a single query to the function. We gave
an improvement over the best known classical algorithm, whose complexity is Θ̃(nk), by
giving an Õ(k1.5) learning algorithm. We also prove a quantum learning lower bound for
this task. There are several questions for future investigation from this chapter. We look at
some of then at a high level. Recall that the learning algorithm given in this chapter was in
two phases. First, we would like to improve Phase 1 of our learning algorithm to Õ(k) many
samples, in a later chapter (Chapter 5) we gave a concrete direction towards this end. Phase 2
our learning algorithm is completely classical. It is natural to think of quantum algorithms for
this phase. Indeed, the above questions are motivated by a lack of strong lower bound. Can
we get a better lower bound than Ω(k logk) for exactly learning k-Fourier sparse Boolean
functions using uniform quantum examples?

In Chapter 4 we consider the relationship between quantum and classical sample com-
plexities of exact active learning. In the model of active learning, a learner can query the
truth table of the function it wants to learn instead of being restricted to examples drawn
from the truth table according to some distribution. We showed that if a concept class C can
be exactly learned using Q quantum membership queries, then it can also be learned using
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O
(

Q2

logQ log |C |
)

classical membership queries, improving upon the previously best known
result by a logQ factor. We believe that the following conjecture should be true.

Conjecture 11.1. For all concept classes C of Boolean-valued functions on a domain of
size N we have:

R(C ) = O(Q(C )2 +Q(C ) logN).

In Chapter 5, we studied Chang’s lemma and its relation to quantum learning theory.
We gave a refinement of Chang’s lemma for k-Fourier sparse Boolean functions. We also
show how Chang’s lemma is connected to quantum learning theory. There are several open
problems left open by this chapter. Let us mention a few questions at high level. First, we
have not found applications of our improvement of Chang’s lemma in additive combinatorics
and it is interesting to find such applications. The question of choice of threshold is very
important in Chang’s lemma type bounds (see [38]). It is also natural to look for tight bounds
of the flavour of Chang’s lemma when the threshold is smaller than max-rank entropy.

In Part II, (Chapter 6, Chapter 7 and Chapter 8), we studied the relation between quantum
query and communication complexity. It is well known, in the classical world, that the query
algorithm of a function f : {−1,1}n →{−1,1} can be simulated to give a communication
protocol of a related communication problem (obtained by composing f , the outer function,
with inner function G : {−1,1}2 →{−1,1}) with only a constant overhead. The best known
such simulation theorem in the quantum world, due to Buhrman, Cleve and Wigderson, 1998,
has an overhead that is logarithmic in input size of the function. We constructed the first
function F that witness this logarithmic gap i.e.

Qcc(F) = Ω(Q(F) logn).

We also gave a general recipe of constructing functions that witness separation between
quantum query-to-communication simulation. Finally, we explore the role of symmetry
on this simulation problem. We showed that if the outer function f is symmetric then no
overhead required in quantum query-to-communication simulation. On the other hand, we
constructed a transitive function for which the logarithmic overhead was necessary. While
our works resolve many problems in this line of research, it will be interesting to see whether
our communication protocol can be improved in the following sense: We gave an efficient
communication protocol for f ◦G where f is a symmetric function and G ∈ {AND2,XOR2}.
However our communication protocol assumes a large amount of shared entanglement, can
we reduce this?
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In Chapter 9 we considered the communication complexity of the Disjointness problem
when the promised set systems has a bounded VC dimension. The setting of the problems
was as follows: there is a collection of sets of [n] of VC Dimension at most d which is known
to both Alice and Bob, and their inputs for solving the Disjointness problem are promised
to come from this set system. We showed that there exists such a set system such that the
lower bound on communication complexity of the Disjointness problem on this promised set
system is

Ω

(
d

log(n/d)
log log(n/d)

)
,

almost matched the trivial deterministic upper bound of ((d logn). However, we believe that
the loglog(n/d) factor is the above expression can be removed. Recalling the notation from
this chapter (Chapter 9), we make the following conjecture.

Conjecture 11.2. There exists S ⊆ 2[n] with VC-dim(S ) ≤ d and R(DISJn |S×S ) =

Ω
(
d log n

d

)
.

Recall G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-Dim(T ) = 2d construction from
Section 9.3.1, that served as the hard instance for the proof of Theorem 9.12 and Theorem 9.13.
The same G and T cannot be the hard instance for the proof of Conjecture 11.2 because of
the following result.

Theorem 11.3. Let us consider G ⊂Z2 with |G|= n and T ⊆ 2G with VC-Dim(T ) = 2d as
defined in Section 9.3.1. Also, recall the definition of T1 and T2. There exists a randomized
communication protocol that can, ∀A ∈ T1 and ∀B ∈ T2, can compute DISJG |T ×T (A,B),
with probability at least 2/3, and uses O

(
d logd log n

d
log log n

d
· log loglog n

d

)
bits of communication.

We use the following observation to prove the above theorem.

Observation 11.4. Let us consider the communication problem GCDk(a,b), where Alice
and Bob get a and b respectively from {1, . . . ,k}, and the objective is for both the players to
compute gcd(a,d). Then there exists a randomized protocol, with success probability at least
1−δ , for GCDk that uses O

(
logk

log logk · log loglogk · log 1
δ

)
bits of communication.

Proof. We will give a protocol P for the case when δ = 1/3 that uses O
(

logk
log logk · log loglogk

)
bits of communication. By repeating O

(
log 1

δ

)
times protocol P and reporting the majority

of the outcomes as the output, we will get the correct answer with probability at least 1−δ .
Both Alice and Bob generate all the prime numbers π1, . . . , πt between 1 and k. From the
Prime Number Theorem, we known that t = Θ

(
k

logk

)
. Alice and Bob separately, construct

the sets Sa and Sb that contain the prime numbers that divides a and b respectively. Note that
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|Sa| and |Sb| is bounded by O
(

logk
log logk

)
.1 Alice and Bob compute Sa ∩Sb by solving Sparse

Set Intersection problem on input Sa and Sb using O
(

logk
log logk

)
bits of communication [30].

For p ∈ Sa ∩Sb, let αp,a and αp,b denote the exponent of p in a and b, respectively. Observe
that

gcd(a,b) = ∏
p∈Sa∩Sb

pmin{αp,a,αp,b}.

For each p ∈ Sa, Alice sends αp,a to Bob. Number of bits of communication required to send
the exponents of all the primes in Sa ∩Sb, is

|Sa ∩Sb|+ ∑
p∈Sa∩Sb

log(αp,a)≤ O
(

logk
log logk

)
+ |Sa ∩Sb| log

 ∑
p∈Sa∩Sb

αp,a

|Sa ∩Sb|


≤ O

(
logk

log logk

)
+ |Sa ∩Sb| log

(
logk

|Sa ∩Sb|

)
≤ O

(
logk

log logk
· log loglogk

)

In the above inequalities, we used the facts that |Sa ∩Sb|= O
(

logk
log logk

)
, ∑

p∈Sa∩Sb

αp,a ≤ logk

and logx is a concave function. After getting the exponents αp,a of the primes p ∈ Sa ∩Sb

from Alice, Bob also sends the exponents αp,b of the primes p ∈ Sa ∩ Sb to Alice using

O
(

logk
log logk log loglogk

)
bits of communication to Alice. Since both Alice and Bob now know

the set Sa∩Sb, and the exponents αp,a and αp,b for all p ∈ Sa∩Sb, both of them can compute

gcd(a,b). Total number of bits communicated in this protocol is O
(

logk
log logk log loglogk

)
.

We will now give the proof of Theorem 11.3.

Proof of the Theorem 11.3. Consider the case when d = 1. From the description of G and T

in Section 9.3.1, we can say that G = G(0,0), where G(0,0) = {(x,y) ∈ Z2 : 0 ≤ x,y ≤
√

n} 2.
Moreover, each set in T1 is a set of points present in a straight line of non-negative slope
that passes through two points of G(0,0) with one point being (0,0) and each set in T2 is
a set of points present in a vertical straight line that passes through exactly

√
n many grid

points. Keeping Claims 9.15 and 9.16 in mind, we will be done if we can show the existence
of a randomized communication protocol for computing the function DISJG |T ×T , with
probability of success at least 1−δ and number of bits communicated by the protocol being
bounded by O

(
logn

log logn · log loglogn · log 1
δ

)
, for the special case when d = 1. This is because

1The product of first t prime numbers is e(1+o(1))t log t .
2With out loss of generality assume that

√
n is an integer



181

for general d, we will be solving d instances of the above problem, with the number of points
in each grid being n

d
3 and setting δ = 1

3d for each of the d instances.

Protocol for d = 1. Alice and Bob get A and B from T1 and T2, respectively. Let A is
generated by the straight line LA and B is generated by LB, where LA is a straight line with
non-negative slope and LB is a vertical line. If LA is a horizontal one : Alice just sends
this information to Bob and then both report that A∩B ̸= /0. If LA is a vertical line : Alice
sends this information to Bob and he reports A∩B ̸= /0 if and only if LB passes through
origin. Now assume that LA is neither a horizontal nor a vertical line. Let the equation of
LA be y = p

q x, where 1 ≤ p,q ≤
√

n, and p and q are relatively prime to each other. Also, let
equation of Bob’s line LB be x = r, where 0 ≤ r ≤

√
n. Observe that A∩B ̸= /0 if and only

if LA and LB intersects at a point of G(0,0). Moreover, LA and LB intersects at a grid point if
and only if q divides r and 1 ≤ pr

q ≤
√

n. So, Alice and Bob run the communication protocol
for GCD√

n(q,r) to decide whether q = gcd(q,r). If q = gcd(q,r) and 1 ≤ pr
q ≤

√
n (again

Alice and Bob can decide this using O(1) bits of communications) then A∩B ̸= /0, otherwise
A∩B = /0. Alice and Bob can decide if q = gcd(q,r) and 1 ≤ pr

q ≤
√

n using O(1) bits of
communication.

The communication cost of our protocol is dominated by the communication complexity
of GCD√

n(q,r), which is equal to O
(

logn
log logn log loglogn log 1

δ

)
by Observation 11.4.

In Chapter 10 we studied the problem of approximating the size of global minimum cut
in the local query model. Our algorithm, along with a result of Eden and Rosenbaum, 2018,
gave an almost tight algorithm for the problem of estimating global minimum cut, resolving
this problem in the local query model. Our algorithms also extent to r-way cuts as discussed
in Section 10.5. It will be interesting to see if we can prove matching lower bound for the
problem to approximating r-way cuts in local query model.

3Recall that we have assumed, without loss of generality, that d divides n.
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