
Improving the efficiency of RLWE-based IPFE
and its application on privacy-preserving

biometrics

Submitted by

Supriya Adhikary

roll no. crs1903

m.tech in cryptology & security

indian statistical institute
kolkata

Primary Supervisor

Dr. Ir. Bart Preneel

electrical engineering department

katholieke universiteit leuven
belgium

Secondary Supervisor

Dr. Bimal Kumar Roy

applied statistics unit

indian statistical institute
kolkata

Mentors

Angsuman Karmakar & Jose M. Bermudo Mera

katholieke universiteit leuven
belgium

indian statistical institute
203, B.T. Road, Kolkata-700035

15’th June, 2021

Declaration

I hereby declare that the project entitled "Improving the efficiency of RLWE-
based IPFE and its application on privacy-preserving biometrics" submitted
in partial fulfillment for the award of the degree of Master of Technology in Cryptology
and Security completed under the supervision of Prof. Dr. Ir. Bart Preneel and Prof.
Dr. Bimal Kumar Roy, at ISI Kolkata is an authentic work. Further, I declare that I
have not submitted this work for the award of any other degree elsewhere.

Signature and name of the student with date

It is certified that the above statement made by the student is correct to the best of
my knowledge.

Signature and designation with date

(Primary supervisor)

(Secondary supervisor)

Abstract

Encryption is a method with which one can securely share data over an insecure channel.
The traditional public-key encryption follows an all-or-nothing approach where the receiver
is either able to get the whole message using a key or nothing. In functional encryption (FE)
it is possible to control the amount of information revealed to the receiver. The emerging
use of cloud computing and a massive amount of collected data leaves us with a question
of data privacy. For many applications, the regular notion of public-key encryption may be
insufficient. For example, a hospital may want to share patients’ private healthcare data
with researchers for analytics without disclosing patients’ private information. Functional
Encryption can be very useful in such a scenario, where the authority(hospital) can provide
a secret key skf to the researchers corresponding to a function f and the researcher can only
get the evaluation f(x), so the researchers can compute on patients’ data without violating
the privacy of the patients.

The idea functional encryption was first introduced in terms of identity-based encryp-
tion [6, 41], attribute-based encryption [38] and predicated encryption [22]. All of these
extensions and their variants can be unified under the name Functional Encryption for an
arbitrary function f . Inner Product Functional Encryption (IPFE) is one of the variants
of FE. IPFE has been instantiated based on different assumptions like decisional Diffie-
Hellman(DDH), learning with errors (LWE) assumptions [3, 4]. The first IPFE scheme based
on RLWE assumption has recently been introduced by Mera et al. [29]. RLWE schemes tend
to be efficient but the main bottlenecks in any RLWE scheme are Gaussian sampling and
large polynomial multiplication. These are the reasons concerning performance loss in these
schemes. Improvements are required to these operations for better performance.

Our primary objective in this thesis is two fold

(a) Improving the efficiency of RLWE-based IPFE [29]: One of the basic obser-
vations that we can have here is that we can run most of the sections in the scheme
parallelly without getting any changes in the result. We have used OpenMP to im-
plement a multi-threaded implementation of the scheme. This allows this code to run
parallelly on multiple cores simultaneously and improve the performance.

Another aspect of performance optimization is AVX2 implementation. Intel Advanced
Vector Extensions (AVX) is a vector processor for doing single instruction multiple
data (SIMD) operations on Intel architecture CPUs. They were first supported by

i

Intel with the Haswell processor, which shipped in 2013. We propose a fast vectorized
polynomial multiplication using intel AVX2.

(b) Privacy preserving biometric authentication : We introduce an IPFE-based
privacy-preserving biometric authentication protocol. We use the optimized IPFE
library developed in this work. We then show the difference between using this IPFE-
based protocol and a similar HE-based approach of the protocol.

ii

List of Abbreviations

AVX Advanced Vector Extensions

CRT Chinese Remainder Theorem

CVP Closest Vector Problem

DDH Decisional Diffie-Hellman

ECC Elliptic Curve Cryptography

FE Functional Encryption

HD Hamming Distance

HE Homomorphic Encryption

IPFE Inner Product Functional Encryption

LWE Learning With Errors

NHD Normalized Hamming Distance

NTT Number Theoretic Transformation

PKC Public-Key Cryptography

RLWE Ring-Learning With Errors

SEAL Simple Encrypted Arithmetic Library

SIMD Single Instruction Multiple Data

SIS Short Integer Solution

SVP Shortest Vector Problem

iii

List of symbols

Z Set of all integers.

R Set of all real numbers.

Zn Set of all integers under modulo n.

[n] Set of all natural numbers upto n.

L(B) Lattice generated by the basis B.

||v|| Euclidean norm of the vector v.

||v||∞ Infinity norm or the max norm of the vector v.

Zm×n set of all matrices of dimension m× n with elements from Z.

〈x, y〉 Inner-product of teo vectors x and y.
R← S Sampled randomly from S.

R Ring of polynomials modulo a polynomial f with coefficients in Z.

Rq Ring of polynomials modulo a polynomial f with coefficients in Zq.

σ Standard deviation of a discrete Gaussian distribution.

Dσ Discrete Gaussian distribution with standard deviation σ.

ζ primitive root of unity in a prime order field.

f̂ NTT transformation of the polynomial f .

ζrev List of all the powers of ζ in bit-reversed order.

NTT`(f) NTT transformation on a polynomial f where last ` levels are skipped.

NTT−1` (f) Inverse-NTT transformation on a polynomial f where first ` levels are skipped.

⊕ bit-wise "XOR" operation between two binary strings.

� point-wise multiplication of two vectors with elements from Z.

|A| The Hamming weight of a binary string A.

iv

Contents

Abstract i

List of Abbreviations iii

List of Symbols iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Objective . 2
1.2 Summary of the thesis . 2

2 Preliminaries 4
2.1 Lattice . 4
2.2 Computational problems . 6

2.2.1 Shortest vector problem (SVP) [34] 6
2.2.2 Closest vector problem (CVP) [34] 7

2.3 Learning with errors . 8
2.4 Functional encryption [3] . 9
2.5 RLWE-based IPFE scheme [29] . 10

2.5.1 Selectively secure IPFE based on RLWE 11
2.5.2 Adaptively secure IPFE based on RLWE 12
2.5.3 Parameters of the scheme . 15

3 Improving efficiency of RLWE based IPFE 16
3.1 Primitives used for implementation . 17

3.1.1 Chinese remainder theorem (CRT) 17
3.1.2 Number theoretic transformation (NTT) 17
3.1.3 Choice of primes . 19
3.1.4 Modular reductions . 20

3.2 OpenMP optimization . 22
3.2.1 Introduction to OpenMP [12] . 22

v

3.2.2 Parallelization with OpenMP . 26
3.2.3 Scheduling . 31
3.2.4 Scalability . 32
3.2.5 Experimental results . 33

3.3 AVX2 Optimization . 34
3.3.1 8-point NTT . 35
3.3.2 NTT with AVX2 . 36
3.3.3 Incomplete NTT . 41
3.3.4 Reducing loads and stores . 43
3.3.5 Experimental results . 43

3.4 Conclusion . 44

4 Privacy preserving biometric protocol 45
4.1 Preliminaries . 45

4.1.1 Transformation of the binary vector and some results 46
4.1.2 Calculating NHD using inner product 47

4.2 Privacy preserving biometric protocol using IPFE 48
4.2.1 Protocol . 48
4.2.2 Correctness . 50
4.2.3 Change in parameters of the RLWE based IPFE scheme [29] 50

4.3 HE based privacy preserving biometric protocol 51
4.3.1 Protocol . 51
4.3.2 Correctness . 53

4.4 Modifications . 54
4.4.1 Modifications in IPFE-based protocol 54
4.4.2 Modifications in HE-based protocol 55

4.5 Experimental results . 56
4.6 Conclusion . 58

5 Conclusion and future work 59
5.1 Conclusion . 59
5.2 Future work . 60

A Assembly code for first three levels of NTT 62

B Assembly code last two levels of incomplete-NTT 64

C Permutations π1, π2 and π4 66

D Assembly code for multiplication and Montgomery reduction 67

E Assembly code for 2 × 2 base multiplication for incomplete-NTT 68

vi

F Iris matching algorithm [13, 43] 70
F.1 Localizing and isolating iris . 70
F.2 Iris feature encoding by 2D wavelet demodulation 71
F.3 Matching . 71
F.4 Rotations . 72

Bibliography 73

vii

List of Figures

2.1 Examples of lattices with different basis . 5
2.2 This is a lattice generated by the basis {b1, b2}. The shortest vector in the

lattice is c and for the point v in the span have the point v′ as the closest
vector in the lattice. 7

2.3 Functional encryption [9] . 9

3.1 Fork-Join model in OpenMP . 22
3.2 OpenMP core elements . 23
3.3 Static scheduling of 16 iterations with chunk size=2 24
3.4 Dynamic scheduling of 16 iterations with chunk size=2 25
3.5 Guided scheduling of 16 iterations with chunk size=2 25
3.6 Visualization of the operations done in Setup operation 26
3.7 Visualization of the operations done in Encrypt operation 27
3.8 The cpucycles taken for different optimization for different security levels . . 30
3.9 The cpucycles required for different operations under different scheduling pa-

rameters . 32
3.10 Performance of different operations with increasing number of threads 33
3.11 Performance optimization for different security levels 34
3.12 8-point NTT . 35
3.13 Visualizing 8192 size array as a 8× 1024 matrix 36
3.14 The first 64 coefficients as 8× 8 matrix . 37
3.15 Permutation π4 . 38
3.16 Permutation π2 . 38
3.17 Permutation π1 . 38
3.18 First of the last three levels of NTT . 39
3.19 Second of the last three levels of NTT . 39
3.20 Third of the last three levels of NTT . 40
3.21 cpucycles taken for AVX2 implementation and normal C code 40
3.22 Result for incomplete NTT . 41
3.23 Comparision of cpucycles for C, OpenMP and AVX2 with OpenMP 43

4.1 Privacy preserving biometric protocol using IPFE when the data saved in
server’s database is encrypted . 49

4.2 Privacy preserving biometric protocol using Homomorphic Encryption 52
4.3 Protocol based on HE with 2r + 1 number of shift operations 56

viii

List of Tables

2.1 The parameters for different security levels 15

3.1 Performance increased with different layers of optimization 44

4.1 The table corresponding to two binary bits a and b 46
4.2 The parameters for different security levels 51
4.3 The cpucycles for each of the operations done by client and server for the HE

based protocol implemented in Microsoft SEAL 57
4.4 The cpucycles for each of the operations done by client and server in the IPFE

based protocol . 57
4.5 The cpucycles with the shift operations for the HE based protocol imple-

mented in Microsoft SEAL . 57

ix

Chapter 1

Introduction

With the emerging use of data and communication through the internet, one basic need
that comes along is security. The rapid advancement in the field of cryptography has made
it possible. While symmetric cryptography is widely used for encrypting a large volume of
data, public-key cryptography (PKC) takes care of decentralized key distribution, authen-
ticity, and confidentiality. The security of PKC relies on some of the computationally hard
problems such as integer factorization, discrete logarithm problems. The most popular PKC
schemes such as RSA [37], ECC [30] both rely on the hard problems of integer factorization
and discrete logarithm respectively.

The famous physicist Richard Feynman observed that it appeared to be impossible to
efficiently simulate the evolution of a quantum system on a classical computer. He pro-
posed a basic model for a quantum computer [16]. Initially, it wasn’t really a threat to the
field of cryptography until Shor [42], Proos and Zalka [32]. They proposed polynomial-time
quantum algorithms for integer factorization and discrete logarithm in the elliptic curve.
A quantum computer with a sufficiently large number of qubits can break RSA and ECC.
The requirements of such quantum computers to break the current PKC protocol are still
far fetched [18]. In spite of that, with the rapid advancement in the field of quantum com-
putation in the past few years, it is not highly unlikely to achieve "quantum supremacy" soon.

This is where post-quantum cryptography gains the spotlight. There are many different
approaches of post-quantum cryptography e.g., lattice-based cryptography, code-based cryp-
tography, hash-based cryptography and isogeny-based cryptography. All of these approaches
are based on some computationally hard problems which are still believed to be secure against
quantum computers. We solely focus on the lattice-based cryptography here. The security of
lattice-based schemes relies on some underlying hard problems like shortest vector problem
(SVP), closest vector problem (CVP) and shortest integer solution (SIS). Regev’s LWE [33]
or one of its variants RLWE [27] assumptions are the most popular choices for lattice-based
cryptography schemes.

Apart from security in the modern world, another important area that people have be-
come sensitive about is their privacy. Cryptology has taken care of protecting data from the
very beginning. The last few years have been the witness of cloud computing, where millions

1

of people store their data in public servers in order to be able to access it from anywhere in
the world. In addition, people now want to be able to compute, perform analytics or searches
in the cloud. For secure computation on encrypted data, there are three technologies we can
use : secure multiparty computation, fully homomorphic encryption and functional encryp-
tion.

Functional encryption (FE) is a public key construction, on which it is possible to produce
a functional key corresponding to a function f and evaluate the function on encrypted input
data. The decryption only gives an evaluation of a function on data, nothing else. The
lattice-based approach can be very useful to this primitive. Although the current works
and advancement in this direction are not practical due to their large key sizes and slow
speed. Therefore, we need advancement in lattice-based cryptography for efficient design
and implementation. The RLWE keys are roughly the square root of keys in LWE [28, see
page-3]. This makes RLWE schemes achieve greater security with respectively small key
sizes. Also, RLWE schemes are much faster than LWE as RLWE uses quasi-linear time
algorithms such as NTT for polynomial multiplication. The recent IPFE scheme by Mera
et al. [29] is based on the RLWE assumption.

1.1 Objective

In this thesis, our main objective is to optimize the implementation of the RLWE based IPFE
scheme [29]. We improve the current implementation of polynomial multiplication and use
OpenMP [12] to increase the performance for better performance. We also introduce a
secure privacy-preserving biometric protocol based on IPFE. In the next section, we discuss
the summary of this work.

1.2 Summary of the thesis

The work in this thesis is mainly focused on improving the performance of the RLWE based
IPFE scheme [29]. The chapters of this thesis are briefly described below.

• Chapter 2 : The second chapter starts with a short description of post-quantum
cryptography. Since this thesis is focused on a lattice-based scheme, so here we in-
troduce the concept of lattice and we discuss the problems that are at the heart of
lattice based cryptography. We also describe the functional encryption and its security
notion. Since this work focused on optimizing the implementation of the RLWE-based
IPFE scheme mentioned earlier, so we give a short description of the construction of
the scheme and the parameter set that is used in this scheme.

• Chapter 3 : In the third chapter, we describe the optimization work for the scheme.
It starts with some preliminary descriptions of primitives that are to be used in the
work. There are two parts of the work, (i) OpenMP and (ii) AVX2 optimization.
First of all, we use OpenMP to distribute the works among threads. The construction
of the scheme allows us to do that very easily. Based on some experimental results

2

we set proper scheduling method, chunk size and a number of threads for optimal
performance for the scheme. Next, we use AVX2 instructions to optimize the code.
Our main target is to optimize the polynomial multiplication. NTT has been used for
polynomial multiplication but yet it is one of the main bottleneck of the scheme. In this
chapter, we describe an AVX2 implementation of NTT which significantly improves
the performance of the scheme.

• Chapter 4 : In this chapter, we propose a privacy-preserving biometric protocol using
the mentioned IPFE scheme. We implement the protocol using our optimized IPFE
library and compared the result with a similar HE protocol which we implement using
simple encrypted arithmetic library (SEAL [39]).

• Chapter 5 : In the final chapter of this thesis, we summarize the work and the future
improvements that we can do.

3

Chapter 2

Preliminaries

The security of post-quantum cryptography depends upon the hardness of some underlying
computationally hard problems. There are several problems that are still presumed to be
difficult to solve even with the help of quantum computers. These problems are at the heart
of all the current post-quantum cryptography. Lattice-based cryptography is one such post-
quantum cryptography that is widely used today. Since this work focuses on the scheme
based on lattice problems, we discuss the lattice-based problems only.

2.1 Lattice

Definition 2.1.1. (Lattice [34]) Let, b1, b2, · · · bn ∈ Rm are n linearly independent vectors,
the lattice generated by these vectors is defined as

L(b1, b2, · · · bn) =

{ n∑
i=1

xibi | xi ∈ Z
}

The set {b1, b2, · · · bn} is the basis of the lattice. The rank of this lattice is n and the
dimension of the lattice is m. If m = n then the lattice is called a full-rank lattice. Equiva-
lently, If we define a m×n matrix B with columns as b1, b2, · · · , bn, then the lattice generated
by B is

L(B) =

{
Bx | x ∈ Zn

}
Here are some examples of lattices. The vectors (0, 1)T and (1, 0)T forms a basis of Z2

(Figure 2.1a). This is not a unique basis of Z2. In Figure 2.1b we can see that the vectors
(1, 1)T and (2, 1)T also forms a basis of Z2. On the other hand the vectors (1, 1)T and (2, 0)T

also forms a lattice (Figure 2.1c), but this is not Z2. All these lattices are full-rank lattices.
Now lattice generated by only one vector like in Figure 2.1d is not a full-rank lattice.

Definition 2.1.2. (Span [34]) The span of a lattice L is the linear space generated by its
basis vectors,

span(L) =

{ n∑
i=1

yibi | yi ∈ R
}

4

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

(0, 0)

(0, 1)

(1, 0)

(a) A basis of Z2

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

(0, 0)

(1, 1)

(2, 1)

(b) Another basis of Z2

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

◦

×

(0, 0)

(1, 1)

(2, 0)

(c) Not a basis of Z2

×

◦

◦

◦

◦

◦

×

◦

◦

◦

◦

◦

×

◦

◦

◦

◦

◦

×

◦

◦

◦

◦

◦

×

(0, 0)

(1, 1)

(d) Not a full-rank lattice

Figure 2.1: Examples of lattices with different basis

Here b1, b2, · · · bn are the basis vectors of the lattice L

Definition 2.1.3. (Fundamental parallelepiped [34]) For any lattice with basis {b1, b2, · · · bn}
we define

P(b1, b2, · · · , bn) =

{ n∑
i=1

xibi | 0 ≤ xi < 1

}
In the Figure 2.1 we can see the fundamental parallelepiped, which are the filled sections

in the figures. Also it is clear that if we place one parallelepiped for each lattice point in L
then we obtain the entire span of the lattice.

Another parameter of lattice is the shortest non-zero vector in the lattice, the shortest
is considered in terms of the Euclidean norm. The length of the shortest vector is denoted
by λ1. The alternate definition of λ1 is the smallest r, such that the lattice points inside
the closed ball of radius r span a space of dimension 1. The following definition is the
generalization of λ1, known as successive minima.

Definition 2.1.4. (Successive minima [34]) Let, L be a lattice of rank n, for each i ∈
{1, 2, · · · , n} we define the i’th successive minima as

λi = inf

{
r | dim

(
span(L ∩ B̄(0, r))

)
≥ i

}

5

where, B̄(0, r) =

{
x ∈ Rm | ||x|| ≤ r

}
, a closed ball of radius r centered at origin.

2.2 Computational problems

Here we discuss the basic computational problems involving lattices.

2.2.1 Shortest vector problem (SVP) [34]

In the shortest vector problem, we are given a lattice and we are supposed to find the shortest
non-zero lattice point. There are three variants of the SVP.

1. Search SVP : Given a lattice basis B ∈ Zm×n find v ∈ L(B), such that ||v|| =
λ1(L(B)).

2. Optimization SVP : Given a lattice basis B ∈ Zm×n find λ1(L(B)).

3. Decisional SVP : Given a lattice basis B ∈ Zm×n and a rational r ∈ Q, determine if
λ1(L(B)) ≤ r or not.

The relations among the above three variants is that decisional SVP is not harder than
the optimization SVP, and optimization SVP is not harder than search SVP. In fact,
the converse is also true. To summarize, the above three varients are equivalent. So, from
no on SVP is considered as search variant of SVP.

Another variant of SVP is the approximate SVP. In this problem, we are interested in
finding an approximation of the shortest vector. The approximation factor is given by some
parameter α ≥ 1. Similar to the SVP problem this has also three variants.

1. Search α-SVP : Given a lattice basis B ∈ Zm×n find v ∈ L(B), such that v 6= 0 and
||v|| ≤ αλ1(L(B)).

2. Optimization α-SVP : Given a lattice basis B ∈ Zm×n find d such that d ≤
λ1(L(B)) ≤ αd.

3. Promise α-SVP : Given a lattice basis B ∈ Zm×n and a rational r ∈ Q, determine if
λ1(L(B)) ≤ r or λ1(L(B)) > α · r.

The promise problem is usually denoted by α-GapSVP. In this problem, there are two
disjoint sets of inputs and we have to determine from which set of inputs has the pair (B, r)
been taken. Unlike the decisional problem, the union of the set of inputs does not contain
all possible inputs.

As before, for any α ≥ 1 promise α-SVP is not harder than the optimization α-SVP,
and the optimization α-SVP is not harder than the search α-SVP. It is also known that
the optimization α-SVP is not harder than promise α-SVP, but it is still unknown if
search α-SVP is not harder than optimization α-SVP.

6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

b1 b2
c

v
× v′

Figure 2.2: This is a lattice generated by the basis {b1, b2}. The shortest vector in the lattice
is c and for the point v in the span have the point v′ as the closest vector in the lattice.

2.2.2 Closest vector problem (CVP) [34]

Another fundamental lattice problem is closest vector problem or CVP. Just like SVP here
we have three varients of CVP.

1. Search CVP : Given a lattice basis B ∈ Zm×n and a vector t ∈ Zm find v ∈ L(B),
such that ||v − t|| ≤ ||y − t|| for all y ∈ L(B).

2. Optimization CVP : Given a lattice basis B ∈ Zm×n and a point t ∈ Zm find
dist(t,L(B)).

3. Decisional CVP : Given a lattice basis B ∈ Zm×n , t ∈ Zm and a rational r ∈ Q,
determine if, dist(t,L(B)) ≤ r or not.

As before for an approximation factor α ≥ 1 there are three variants of apporximate CVP.

1. Search α-CVP : Given a lattice basis B ∈ Zm×n and a vector t ∈ Zm find v ∈ L(B),
such that ||v − t|| ≤ α · ||y − t|| for all y ∈ L(B).

2. Optimization α-CVP : Given a lattice basis B ∈ Zm×n and a point t ∈ Zm find d
such that d ≤ dist(t,L(B)) ≤ α · d.

3. Decisional α-CVP : Given a lattice basis B ∈ Zm×n , t ∈ Zm and a rational r ∈ Q,
determine if, dist(t,L(B)) ≤ r or dist(t,L(B)) > α · r.

CVP is a generalization of SVP. Goldreich et al. [19] has shown that SVP problem is not
harder than CVP problem.

7

2.3 Learning with errors

Learning with the error was first introduced by Regev [35] in 2004. The LWE problem is
one of the most popular choices for the construction of lattice-based cryptographic schemes.
The LWE problem is assumed to be hard.

The LWE problem is defined as follows. Let Zq be the set of integers modulo q. Consider
the uniform random vectors ai ∈ Znq , a small vector s ∈ Znq and the sampled error vectors
ei ∈ Zq chosen according to the distribution χ. The LWE distribution An,q,χ is defined by
(ai, bi = 〈ai, s〉+ ei ∈ Znq × Zq. There are two variants of LWE problem.

Definition 2.3.1. (Search LWE [33]) Given polynomially many samples from the LWE
distribution An,q,χ the problem is to recover the secret s with non-negligible probability.

Definition 2.3.2. (Decisional LWE [33]) Given polynomially many samples of (ai, bi)
from LWE distribution An,q,χ and equal number of samples (ai, b

′
i) sampled uniformly from

Znq × Z, the problem is to distinguish between these two distributions with non-negligible
probability.

The above two problems are equivalent. The hardness of the above problems are derived
from the computational hardness of lattice problems α-SVP and SVP [36].

Another variant of LWE problem is Ring-LWE problem introduced by Lyubashevsky
et al. [27]. Ring-LWE is the LWE problem over ring. The ring that is considered here
is R = Z[x]

/
〈f(x)〉 where f(x) is an irreducible polynomial over Z. We consider Rq =

Zq[x]
/
〈f(x)〉. The polynomials ai ∈ Rq are sampled uniformly, secret s ∈ Rq is a small

polynomial sampled uniformly or from a distribution χ and the error polynomials ei ∈ Rq

are sampled from a distribution χ. Similar to LWE we define the Ring-LWE distribution as
(ai, bi = ai · s+ ei) ∈ Rq ×Rq. Here we also have two variants of Ring-LWE problems.

Definition 2.3.3. (Search Ring-LWE [27]) Given polynomially many samples from the
Ring-LWE distribution, the problem is the find the secret s ∈ Rq with non-negligible proba-
bility.

Definition 2.3.4. (Decisional Ring-LWE [27]) Given polynomially many samples (ai, bi)
from Ring-LWE distribution and equal number of samples (ai, b

′
i) sampled uniformly from

Rq × Rq, the problem is to distinguish between these two distributions with non-negligible
probability.

The LWE-based cryptosystems are inefficient in terms of computation, as they need to
perform matrix vector multiplication in Zq to encrypt each bit. So the key size for LWE
problem is very large. One of the main advantage of RLWE-based cryptosystems is that the
key size is smaller with respect to LWE-based cryptosystem. The RLWE keys are roughly
the square root of keys in LWE [28, see page 3]. Also the matrix-vector multiplication in
LWE assumption is replaced by polynomial multiplication in RLWE assumption.

8

Setup

mskmpk

Bob

x

Encrypt

ctx

Alice

y

KeyGen

Sky

Decrypt

f(x, y)

Figure 2.3: Functional encryption [9]

2.4 Functional encryption [3]

This section contains the syntax of functional encryption scheme and one of its variant inner
product functional encryption.

Definition 2.4.1. (Functional encryption [3]) A functional encryption is parameterized
by ρ = (X, Y, Z, f) for functionality f : X × Y → Z, is defined by the following four
algorithms

- Setup(1κ) : Setup receives a security parameter κ and outputs a pair of master public
key and master secret key, which is (mpk, msk).

- Enc(mpk, x) : Enc receives a message x ∈ X and the master public key mpk and
returns a ciphertext ct.

- KeyGen(msk, y) : KeyGen receives a y ∈ Y and the master secret key msk and returns
a functional key sky.

- Dec(ct, sky) : Dec receives a ciphertext ct and a functional key sky and outputs the
value f(x, y) or ⊥ if the input is invalid.

Correctness : For a correct execution of the above encryption system, Dec(ct, sky) would
return f(x, y) where ct←Enc(mpk,x) and sky←KeyGen(msk, y).

For inner product functional encryption the functionality f is defined by f(x, y) =
〈x, y〉 =

∑`
i=1 xi · yi where x, y ∈M`

9

Security notion [3] : Following the standard security notion for FE, the game INDbA(1κ)

between the adversary A and challenger is defined as follows, where b
R← {0, 1}.

- Initialize: The challenger runs (mpk, msk)←Setup(1κ) and send mpk to A.

- Query: The adversary adaptively submits queries y and receivesthe reponse
sky←KeyGen(msk,y) from the challenger.

- Challenger: The adversary sends messages x(0), x(1) and the challenger runs
ct←Enc(mpk, x(b)) and returns it to adversary A. The challenge should satisfy
the constraint fy(x

(0)) = fy(x
(1)) for all previous queries y.

- Query: The adversary adaptively submits queries y and receivesthe reponse
sky←KeyGen(msk,y), where the queries y should satisfy the constraint
fy(x

(0)) = fy(x
(1)).

- Finalize: The adversary outputs a bit b′ as its guess for the bit b.

We say that a FE scheme is (adaptively) indistinguishable-secure (IND-secure), if for any
PPT adversary A,

AdvFE
A (INDb

A) =

∣∣∣∣Pr
[
IND1

A(1κ) = 1
]
− Pr

[
IND0

A(1κ) = 1
]∣∣∣∣ ≤ neg(κ)

neg is a negligible function. Again, a FE scheme is selectively secure if the adversary submits
its challenges (x(0), x(1)) at the very beginning of the game before seeing the public-key.

2.5 RLWE-based IPFE scheme [29]

As we have stated before in the introduction of this thesis the main objective is to develop
an IPFE library based on the scheme introduced by Mera et al. [29]. Before going into detail
about the implementation and optimization methods we first describe the scheme in this
chapter. The scheme is the first IPFE scheme based on the RLWE assumption, although it
is inspired by the LWE-based IPFE scheme from [3, 4]. We only discuss the construction of
the scheme, for more details of the scheme the reader may check the original publication [29].

As we have mentioned in Section-2.4 there are two notions of the security of functional
encryption, based on that here we have two constructions of IPFE which are selectively se-
cure and adaptively secure IPFE. We discuss both.

Before continuing to the next section here are some notations that are to be used in this
chapter. R is the ring Z[x]

/
〈xn + 1〉, also Rq is the ring Zq[x]

/
〈xn + 1〉. Dσ and DσIn are

the Gaussian distribution over Z and Zn respectively with standard deviation σ.

10

2.5.1 Selectively secure IPFE based on RLWE

The construction allows us to encrypt a vector of dimension `, where infinity norms of the
message x and the functional vector y are bounded by Bx and By respectively. Let K be
greater than the maximum value of the resulting inner product i.e., K > `BxBy. We first
describe the construction of the scheme.

Construction

Setup

- First sample a ∈ Rq uniformly at random

- Sample si, ei ∈ R for i ∈ {1, 2, · · · , `}, whose coefficients are from the distribution Dσ1

- Compute pki = a · si + ei ∈ Rq for i ∈ {1, 2, · · · , `}

- Set, msk = {si | i ∈ [`]} and mpk =
(
a, {pki | i ∈ [`]}

)
Encryption Given a vector x = (x1, x2, · · · , x`) ∈ Z` with ||x||∞ ≤ Bx, below is the
encryption algorithm.

- First sample r, f0 ∈ Rq with coefficients from the distribution Dσ2

- Sample fi ∈ Rq independently with coefficients from the distribution Dσ3 , for all i ∈
{1, 2, · · · , `}

- We fix 1R to be the polynomial with all the coefficients equal to 1 ∈ Zq

- Calculate ct0 = a · r + f0, cti = pki · r + fi + bq/Kcxi1R for all i ∈ [`]

- Output
(
ct0, {cti | i ∈ [`]}

)
as encryption of x.

KeyGen Given a vector y = (y1, y2, · · · , y`) ∈ Z` such that ||y||∞ ≤ By, We need to find
a decryption key corresponding to y.

We simply calculate

sky =
∑̀
i=1

yisi ∈ R

Decryption To decrypt the ciphertext
(
ct0, {cti | i ∈ [`]}

)
using the functional key sky

and y we calculate

d =

(∑̀
i=1

yicti

)
− ct0 · sky

This d should be close to bq/Kc 〈x, y〉 1R and we can extract 〈x, y〉 easily.

11

Correctness

We can write the decryption d as

d =

(∑̀
i=1

yicti

)
− ct0 · sky

=
∑̀
i=1

yi(pki · r + fi + bq/Kcxi1R)−
∑̀
i=1

yisi(a · r + f0)

=
∑̀
i=1

yi((a · si + ei) · r + fi + bq/Kcxi1R)−
∑̀
i=1

yisi(a · r + f0)

=
∑̀
i=1

(yieir + yifi − yisif0) + bq/Kc
∑̀
i=1

yixi1R

=
∑̀
i=1

(yieir + yifi − yisif0) + bq/Kc 〈x, y〉 1R

the term
∑`

i=1(yieir + yifi − yisif0) is the "noise". For correctness we need the condition
||noise||∞ < bq/2Kc. For the security parameter κ, with non-negligible probability we have,
||ei||∞, ||si||∞ ≤

√
κσ1, also ||r||∞, ||f0||∞ ≤

√
κσ2 and ||fi||∞ ≤

√
κσ3. Thus the noise is∣∣∣∣∣∣∣∣ ∑̀

i=1

(yieir + yifi − yisif0)
∣∣∣∣∣∣∣∣
∞
≤ `(2nκσ1σ2 +

√
κσ3)By

So for correctly extracting the result we need `(2nκσ1σ2 +
√
κσ3)By < bq/2Kc.

2.5.2 Adaptively secure IPFE based on RLWE

Here we give the description of the modified construction of the scheme which is adaptively
secure. The main difference from the selectively secure construction is that, here each se-
cret keys si and the public key parameter a are vectors of polynomials which is two single
polynomials in the selective case. Here also we have ` dimensional message x and functional
vector y in Z`, satisfying ||x||∞ ≤ Bx and ||y||∞ ≤ By. K be greater than the maximum
value that the inner-product may take i.e., K > `BxBy.

Construction

Setup

- For each i ∈ [`] sample si = (si1, si2, · · · , sim) ∈ Rm, where each sij ∈ R are sampled
from Dσ1In .

- Sample a = (a1, a2, · · · , am) ∈ Rm
q uniformly at random. make sure that at least one

ai is invertible in Rq.

12

- Compute pki = 〈a, si〉 =
∑`

j=1 ajsij.

- Set msk = {si | i ∈ [`]} and mpk =
(
a, {pki | i ∈ [`]}

)
.

Encryption Given a vector x = (x1, x2, · · · , x`) ∈ Z` with ||x||∞ ≤ Bx, below is the
encryption algorithm.

- Sample r ∈ Rq and f0 = (f01, f02, · · · , f0m) ∈ Rm
q from the distributions Dσ2In and

Dσ2Inm respectively.

- Sample fi ∈ Rq from the distribution Dσ3In , for all i ∈ {1, 2, · · · , `}.

- Compute

ct0 = ar + f0 = (a1r + f01, a2r + f02, · · · , amr + f0m)

cti = pkir + fi + bq/Kcxi1R

- Check if at least one of the components of ct0 is invertible. if not then resample r and
f0 and recompute ct0 and cti.

- The encryption of x is
(
ct0, {cti | i ∈ [`]}

)
KeyGen Given a vector y = (y1, y2, · · · , y`) ∈ Z` such that ||y||∞ ≤ By, We need to find
a decryption key corresponding to y.

We simply calculate

sky =
∑̀
i=1

yisi =

(∑̀
i=1

yisi1,
∑̀
i=1

yisi2, · · · ,
∑̀
i=1

yisim

)
∈ Rm

Decryption To decrypt the ciphertext
(
ct0, {cti | i ∈ [`]}

)
using the functional key sky

and y we calculate

d =

(∑̀
i=1

yicti

)
− 〈ct0, sky〉

This d should be close to bq/Kc 〈x, y〉 1R and we can extract 〈x, y〉 easily.

13

Correctness

In decryption we have,

d =

(∑̀
i=1

yicti

)
− 〈ct0, sky〉

=
∑̀
i=1

yi(pkir + fi + bq/Kcxi1R)−
∑̀
j=1

(
(ajr + f0j) ·

∑̀
i=1

yisij

)

=
∑̀
i=1

yi
(∑̀
j=1

ajsijr + fi + bq/Kcxi1R
)
−
∑̀
j=1

∑̀
i=1

yisijajr −
∑̀
j=1

∑̀
i=1

yisijf0j

=
∑̀
i=1

yi

(
fi − 〈f0, si〉

)
+ bq/Kc 〈x, y〉 1R

Here noise =
∑`

i=1 yi
(
fi − 〈f0, si〉

)
. So we can extract the inner product correctly if

||noise||∞ < bq/2Kc. Now again, for security parameter κ, ||y||∞ ≤ By, ||sij||∞ ≤
√
κσ1,

||f0i||∞ ≤
√
κσ2 and ||fi||∞ ≤

√
κσ3. Thus,∣∣∣∣∣∣∣∣ ∑̀

i=1

yi

(
fi − 〈f0, si〉

)∣∣∣∣∣∣∣∣
∞
≤ `By(

√
κσ3 +mnκσ1σ2)

So, for correctly extracting the result we need `By(
√
κσ3 +mnκσ1σ2) < bq/2Kc

We have so far discussed the construction of the IPFE scheme that this work is focused
on. Here in this paper, we have not discussed the security proof and parameters selection.
The readers may refer to the paper [29] for a detailed description of the security proof and
parameter selections. Although we are not discussing how the parameters are chosen, in
the next section we have discussed what are the parameters that we have to choose for the
implementation of the scheme.

14

2.5.3 Parameters of the scheme

There are three sets of parameters that are set depending on the values of `, Bx and By.
Here we consider the selectively secure scheme. In Table 2.1, the parameters for the IPFE
scheme has been deduced which offers S bits of security. As we optimize the scheme for all
different security levels, we would need this table of parameters in the later chapters.

Security Level PQ Security FE Bounds Gaussian Parameters Ring Parameters CRT moduli

SEC LEVEL 0 80
Bx 2 σ1 33 n : 2048 q1 216 − 212 + 1
By 2 σ2 64880641 q2 217 − 214 + 1
` 64 σ3 129761280 dlog qe : 64 q3 231 − 217 + 1

SEC LEVEL 1 129
Bx 4 σ1 226 n : 4096 q1 224 − 214 + 1
By 16 σ2 258376413 q2 226 − 216 + 1
` 785 σ3 516752823 dlog qe : 81 q3 231 − 224 + 1

SEC LEVEL 2 267
Bx 32 σ1 2049 n : 8192 q1 231 − 217 + 1
By 32 σ2 5371330561 q2 231 − 219 + 1
` 1024 σ3 10742661120 dlog qe : 94 q3 232 − 220 + 1

Table 2.1: The parameters for different security levels

In this chapter, we have seen how the IPFE scheme is constructed. In the next chapter
we discuss the implementation aspects and the optimization techniques we use for this work.
One thing that we can observe by now is that the Setup and Encrypt are the most expensive
operations with respect to the other operations in the scheme as it includes a large number of
polynomial multiplications and sampling, our goal here is to build an efficient implementation
of the scheme by reducing overheads in these sections.

We focus on the implementation of the selectively secure implementation of the scheme
but the techniques used in this work can be extended to the adaptively secure version of the
scheme.

15

Chapter 3

Improving efficiency of RLWE based
IPFE

The RLWE assumption lets us build lattice-based encryption schemes using the smaller key
sizes and it also lets more bits of data be encrypted, so the ciphertext length also reduces.
This is indeed an advantage of RLWE assumption over LWE assumption but now we have to
deal with rings of polynomials. In RLWE based schemes, we have to deal with costly opera-
tions such as polynomial multiplication. Although NTT and NTT−1 gives us a quasi-linear
time algorithm for polynomial multiplication with some certain parameters, it still can be
one of the bottlenecks which decreases performance.

OpenMP [12] is an API that supports multi-threading programming in C, C++ and
Fortran over many different platforms. It includes compiler directives, library routines and
environment variables that influence run-time behaviour. It uses a portable, scalable model
that gives programmers a simple interface to build parallel codes for many different platforms.
There are large sections of codes in RLWE-based IPFE scheme, where we use OpenMP to
parallelize the application.

Advanced Vector Extension also known as AVX is one of the most popular vector
processor that is used for fast constant-time programming. It supports registers of size 128
bits, AVX2 can support up to 256 bits registers. We can load eight 32 bits integers or four
64 bits integers and the instructions can be applied to all of these integers simultaneously.
There have also been AVX-512 extensions that support 512 bits registers but the instructions
are not supported by as many systems as AVX, AVX2 does. We would be using the AVX2
in this work.

All the experiments in this chapter are performed on 4 cores of Intel(R) Core(TM) i5-
8265U processor running at 1.60GHz with hyper-threading enabled, on Ubuntu 20.04.2 run-
ning on a HP 15-da1041TU laptop. All codes have been compiled using gcc-9.3.0 with
flags -O3 -fomit-frame-pointer -march=native.

16

3.1 Primitives used for implementation

In this section, we will discuss the choice of model and parameters for the implementation
of the scheme. We will later discuss the optimizations and finally, we apply this scheme for
building the privacy-preserving biometric authentication protocol.

3.1.1 Chinese remainder theorem (CRT)

Due to the correctness and security constraints of this scheme, the modulus q here has to
be large i.e., more than 64 bits. Therefore, calculations in Zq will require expensive and
in-efficient multi-precision arithmetic. Similar to the implementation of SEAL [39] here the
residual number system based polynomial arithmetic has been used. Here a chain of moduli
q0, q1, · · · , qt are chosen such that q = q0q1 · · · qt. So all the inputs, intermediate values and
outputs are stored as the elements of the ring Zqi instead of Zq. At the end of the scheme we
use Garner’s Algorithm [25] and GNU multi-precision library [20] for converting the elements
in Zqi back to Zq.

The moduli qi’s are all at most 32 bits. So the all calculations are now reduced to 32 bits
integer arithmetic which is in fact much better than multi-precision arithmetic.

Algorithm 1: Garner’s algorithm [25]

Input: A positive integer q =
∏t

i=1 qi > 1, with gcd(qi, qj) = 1 for all i 6= j and
v(x) = (v1, v2, · · · , vt) such that X ≡ vi mod qi for all i.

Output: x such that X ≡ x mod q
1 for (i = 2; i ≤ t; i+ +) do
2 Ci ← 1;
3 for (j = 1; j ≤ i− 1; j + +) do
4 u← q−1j mod qi;

5 Ci ← u · Ci mod qi;

6 u← v1;
7 x← u;
8 for (i = 2; i ≤ t; i+ +) do
9 u← (vi − x) · Ci mod qj;

10 x← x+ u ·
∏i−1

j=1 qj;

11 return x

3.1.2 Number theoretic transformation (NTT)

A very efficient way to perform multiplication in Rq = Zq[x]
/
〈xn + 1〉 is NTT, where n is a

power of 2 and q is a prime number. If q is a prime of the form q ≡ 1 mod 2n then there
exists a primitive 2n’th root of unity in Z∗q, say it is ζ. Now, x2n − 1 = (xn + 1) · (xn − 1)
and all even powers of ζ are the n’th root of unity i.e., the the roots of (xn − 1). Therefore,
we have

xn + 1 =
n−1∏
i=0

(
x− ζ2i+1

)

17

Algorithm 2: Forward NTT using Cooley-Tukey method [11]

Input: A vector a = (a0, a1, · · · , an−1) ∈ Znq in standard ordering, where q is a
prime such that q ≡ 1 mod 2n and n is a power of two. A precomputed
table ζrev ∈ Znq , storing the powers of ζ in bit-reversed order.

Output: a← NTT (a) in bit-reversed ordering
1 t← n;
2 for (m = 1;m < n;m = 2m) do
3 t← t/2;
4 for (i = 0; i < m; i+ +) do
5 j1 ← 2 · i · t;
6 j2 ← j1 + t− 1;
7 S = ζrev[m+ i];
8 for (j = j1; j ≤ j2; j + +) do
9 U ← aj;

10 V ← aj+t · S;
11 aj ← U + V mod q;
12 aj+t ← U − V mod q;

13 return a

If we recall the chinese remainder theorem for rings, we can now write

Zq[x]
/
〈xn + 1〉 ∼=

n−1∏
i=0

Zq[x]
/ 〈
x− ζ2i+1

〉
where the isomorphism is Φ(f) =

(
f(ζ), f(ζ3), · · · , f(ζ2n−1)

)
. The NTT computes this

isomorphism. Therefore, NTT is a mapping from Rq to Znq .

Let NTT(f) = (f̂0, f̂1, · · · , f̂n−1) then,

f̂i =
n−1∑
j=0

fj · ζ(2i+1)·j

where f(x) =
n∑
j=0

fj · xj is a polynomial in Rq. The inverse of NTT denoted as NTT−1 is

defined by NTT−1(f̂) = (f ′0, f
′
1, · · · , f ′n−1) where,

f ′i =
n−1∑
j=0

f̂j · ζ−(2i+1)·j

Using NTT and its inverse NTT−1 we can very efficiently multiply the product of two poly-
nomials f, g ∈ Rq as NTT−1

(
NTT(f)◦NTT(g)

)
. Here (NTT(f)◦NTT(g) = f̂ ◦ ĝ = ĥ this is

the pointwise multiplication of f̂ and ĝ. In other words ĥi = f̂i · ĝi for all i ∈ {0, 1 · · · , n−1}.

18

Therefore, NTT−1(ĥ) = f · g. So the polynomial multiplication is now pointwise multiplica-
tion of vectors in NTT domain.

We are using Cooley-Tukey [11] algorithm for NTT forward transformation and Gentleman-
Sande [17] butterfly algorithm NTT−1 transformation. We have stated the algorithms of
NTT and NTT−1 in Algorithm 2 and Algorithm 3 respectively.

Algorithm 3: NTT−1 using Gentleman-Sande butterfly method [17]

Input: A vector a = (a0, a1, · · · , an−1) ∈ Znq in bit-reversed ordering, where q is a
prime such that q ≡ 1 mod 2n and n is a power of two. A precomputed
table ζ−1rev ∈ Znq , storing the powers of ζ−1 in bit-reversed order.

Output: a← NTT (a) in standard ordering
1 t← 1;
2 for (m = n;m > 1;m = m/2) do
3 j1 ← 0;
4 h← m/2;
5 for (i = 0; i < h; i+ +) do
6 j2 ← j1 + t− 1;
7 S = ζ−1rev[h+ i];
8 for (j = j1; j ≤ j2; j + +) do
9 U ← aj;

10 V ← aj+t;
11 aj ← U + V mod q;
12 aj+t ← (U − V) · S mod q;

13 j1 ← j1 + 2t;

14 t← 2t;

15 for (j = 0; j < n; j + +) do
16 aj ← aj · n−1 mod q;

17 return a

3.1.3 Choice of primes

As we have stated in Section 3.1.1, a sequence of primes q1, q2, · · · , qt are chosen such that
q = q1q2 · · · qt. All the polynomials in Zq are now converted into polynomials in Zqi for all
i ∈ [t]. Now the polynomial arithmetic in Zqi involves NTT transformation, which requires
primes qi ≡ 1 mod 2n. Here primes have been selected in a way to accelerate NTT.

The primes chosen here for the implementation, are of the form 2i − 2j + 1. Clearly, if
i > j > log2 n where n is in powers of 2, then 2i − 2j + 1 ≡ 1 mod 2n. Therefore, we can
easily perform NTT for such primes. Also we can perform fast modular reductions for such
special primes.

19

3.1.4 Modular reductions

Modular reductions play one of the most important roles in constant time programming.
Divisions need to be avoided for fast modular reductions. We this section we will be dis-
cussing some of the most popular modular reduction techniques used. Also for vectorized
NTT implementation, we need techniques like Montgomery or Barret reductions.

Specialized reduction

As we have mentioned before, the primes chosen for the implementation are of the form
q = 2i − 2j + 1. Modular reductions for such primes are very efficient.
As we can see that,

2i ≡ 2j − 1 mod q

Therefore, for any number of the form z = z12
i + z2 we have,

z ≡ z12
i + z2 mod q

≡ z1(2
j − 1) + z2 mod q

≡ z12
j + z2 − z1 mod q

So as we can see that for fixed i, j the modular reductions under modulus q are just a series
of additions and shift operations which is much more efficient than multiplication or division.

Barret reduction [5]

The following barret reduction method is taken from [21]. The actual algorithm considers
a reduction in an arbitrary base b, here we will consider only the reduction base 2. For the
algorithm we have a moduli q , µ = b22k

q
c where k = blog2 qc+ 1 and an integer z ∈ Z such

that 0 ≤ z < 22k. Let t = b z
q
c then, the result should be r = z − t · q. Now,

z

q
=

z

2k−1
· 22k

q
· 1

2k+1

We approximate t by t̂ in the following way

t̂ =

⌊b z
2k−1 c · µ
2k+1

⌋
≤
⌊
z

q

⌋
= t

The value µ can be computed in advance, so the cost of computation of q̂ is one multiplica-
tion and some shift operations on integers.

20

Let α = z
2k−1 − b z

2k−1 c and β = 22k

q
− b22k

q
c then,

t =

⌊(b z
2k−1 c+ α

)(
b22k
q
c+ β

)
2k+1

⌋
≤
⌊b z

2k−1 c · µ+ α · µ+ β · b z
2k−1 c+ α · β

2k+1

⌋
≤
⌊b z

2k−1c · µ
2k+1

+
b22k
q
c+ b z

2k−1 c+ 1

2k+1

⌋
Since 0 ≤ z < 22k and 2k−1 ≤ q < 2k, we have⌊

22k

q

⌋
+

⌊
z

2k−1

⌋
+ 1 ≤ 2k+1 + (2k+1 − 1) + 1

= 2 · 2k+1

So we have,

t ≤
⌊b z

2k−1c · µ
2k+1

⌋
+ 2

= t̂+ 2

Therefore, t̂ ≤ t ≤ t̂ + 2. Now if we compute r̂ = z − t̂ · q then, r = r̂ − (t − t̂) · q. Since,
(t− t̂) ≤ 2 so we need at most 2 substractions to get the result r from r̂.

The Barret reduction that we have showed here contains only one multiplication, three
subtractions at most and rest are binary shift operations. One the other hand specialized
reductions has no multiplications only shifts and additions where the number of iterations
may vary. Specialized reduction is not easily vectorizable for AVX2, so we may use Barret
reduction.

Again, in Barret reduction µ is k bits, z is at most 2k bits, so
(
b z
2k−1 c · µ

)
is at most

2k + 1 bits. Now, the primes that we are using for this implementation are at most 32 bits,
so 2k + 1 ≤ 65. Therefore, it is possible that we encounter a overflow when we are working
with 32 bits prime. Since we have 32 bits prime used in the implementation of the scheme,
so it would not be a good idea to use Barret reduction too.

Therefore, we implement reductions in NTT multiplication using Mongomery’s method
as it gives us a constant time implementation and it can be easily vectorized.

Montgomery reduction [31]

The method was first introduced by Montgomery [31]. Let β be an integer such that q < β
and gcd(β, q) = 1. Let a ∈ Z be a integer such that 0 ≤ a < qβ. Then the algorithm returns
a integer r such that r ≡ aβ−1 mod q. For our work, β is taken as some powers of 2 and q

21

is some prime. The algorithm is as below.

Algorithm 4: Montgomery reduction [31]

Input: A moduli q, an integer β such that 0 < q < β and gcd(q, β) = 1, an integer
a ∈ Z such that 0 ≤ a < qβ

Output: r such that r ≡ aβ−1 mod q, 0 ≤ r < q
1 m← −aq−1 mod β;
2 t← ba+mq

β
c;

3 if t ≥ q then
4 return t− q;
5 else
6 return t;

Although Montgomery reduction outputs r ≡ aβ−1 mod q instead of the desired value
r′ ≡ a mod q this will not be a problem since the reductions in NTT algorithm are required
when the coefficients are multiplied with the powers of ζ which are precomputed. For this
reason, we can have precomputed values of powers of ζ multiplied with β mod q so that at
the end of reduction we will have the desired result.

3.2 OpenMP optimization

Before we get into details about the work we need to understand some basic operations of
OpenMP that we have used here.

3.2.1 Introduction to OpenMP [12]

OpenMP is an implementation of multi-threading. In this method, the main thread forks a
specified number of sub-threads and the system divides tasks among them. It is possible that
the sub-threads may further forks more threads recursively until a certain task granularity
is reached. The sub-threads joins into the main thread when the desired task is completed.
This model is called fork-join model and we have the depiction of the model in Figure 3.1.

Figure 3.1: Fork-Join model in OpenMP

When more than one thread is running in parallel, there is a lot of things to take into

22

account e.g., data sharing, scheduling, task distribution, race conditions etc. Now we will
discuss some core elements of OpenMP that is required for multi-threaded programming. The
core elements of OpenMP are the constructs for thread creation, workload distribution (work-
sharing), data-environment management, thread scheduling, user-level runtime routines and
environment variables. Figure 3.2 depicts these core elements.

Figure 3.2: OpenMP core elements

Parallel region control structure [2]

In OpenMP, we use #pragma omp parallel to specify the main thread to fork into additional
threads and execute the work enclosed in a region in parallel. This enclosed region is called
the parallel region and the main thread has the thread ID as 0. After the enclosed region is
executed the threads join with the original/main thread again, as we see in Figure 3.1.

Work sharing [2]

The work-sharing constructs specify how to assign independent works to all of the threads.
The constructs are as follows

(i) omp for : This construct is used to split a for loop iterations and distribute them
into different threads.

(ii) sections : This construct assigns consecutive but independent code blocks to differ-
ent threads. The code enclosed by each section is distributed among different threads.

(iii) single : This is used to specify a code block that is to be executed by only one
thread. A barrier is implied in the end i.e., every other thread will wait at the end of
this block until the section specified by single is executed.

(iv) master : This is similar to single, the only difference is that the block of code
specified by master is to be executed by only the main thread. There is no implicit
barrier in this case.

23

Data environment [2]

Since OpenMP is a shared memory programming model, most variables are visible to all
threads by default. These are the shared memory. Sometimes private variables are also
necessary to avoid race conditions, so we need some way to specify a variable as shared or
private. We use the following to specify the data environments of the variables.

(i) shared : the data declared outside a parallel region is shared, which means visible
and accessible by all threads simultaneously. By default, all variables in the work-
sharing region are shared except the loop iteration counter.

(ii) private : the data declared within a parallel region is private to each thread, which
means each thread will have a local copy and use it as a temporary variable. A private
variable is not initialized and the value is not maintained for use outside the parallel
region. By default, the loop iteration counters in the OpenMP loop constructs are
private.

(iii) default : allows the programmer to state that the default data scoping within a
parallel region will be either shared or none. The none option forces the programmer
to declare each variable in the parallel region using the data-sharing attribute clauses.

One can specify variables to be shared or private in the following manner shared(var1,

var2, · · ·) or private(var1, var2, · · ·). These clauses are appended to the OpenMP
directives to specify the data environment.

Scheduling [2]

The scheduling clauses are used in the following manner schedule(type, chunk size). If
we are using a work-sharing construct for a for-loop then the threads are scheduled according
to the specified method by this clause. OpenMP divides the iterations into chunks of size
chunk size. The three types of scheduling are

(i) static : Here, all the threads are allocated iterations before they execute the loop
iterations. The iterations are divided among threads equally by default. OpenMP
divides the iterations into chunks of size chunk size and distributes the chunks to
threads in a circular order.

Thread 1

Thread 2

Thread 3

Thread 4

1 2 9 10

3 4 11 12

5 6 13 14

7 8 15 16

Figure 3.3: Static scheduling of 16 iterations with chunk size=2

24

(ii) dynamic : Here, some of the iterations are allocated to a smaller number of threads.
Once a particular thread finishes its allocated iteration, it returns to get another one
from the iterations that are left. The parameter chunk size defines the number of
contiguous iterations that are allocated to a thread at a time. There is no particular
order in this scheduling.

Thread 1

Thread 2

Thread 3

Thread 4 1 2

3 4

5 6

7 8 9 10

11 12

13 14

15 16

Figure 3.4: Dynamic scheduling of 16 iterations with chunk size=2

(iii) guided : A large chunk of contiguous iterations is allocated to each thread dynam-
ically. The chunk size decreases exponentially with each successive allocation to a
minimum size specified in the parameter chunk size.

Thread 1

Thread 2

Thread 3

Thread 4 1 2 3 4 5 6

7 8 9 10 11

12 13 14

15 16

Figure 3.5: Guided scheduling of 16 iterations with chunk size=2

Environment variables [1]

We can alter the execution feature of the OpenMP application using environment variables.
Here are some of the examples

(i) OMP SCHEDULE : We can use this environment variable to control the schedule kind
and chunk size of all loop directives.

(ii) OMP NUM THREADS : This environment variable sets the number of threads to use for
parallel regions.

(iii) OMP PROC BIND : if it is set to true then execution environment binds the threads to
the cores, if it is set to false then environment may move the threads among cores.

There are also other environment variables that are used for different requirements in the
application.

25

3.2.2 Parallelization with OpenMP

As we have discussed in the previous chapter, the construction of the scheme has expensive
multiplications in Setup and Encrypt operations. As depicted in Figure 3.6 the sampled
polynomial a ∈ Rq is multiplied with all the polynomials si and added with the error polyno-
mial ei for all i ∈ [`]. All these multiplications are independent of each other, by independent
we mean that the outcome of one multiplication does not directly affect the other. Therefore,
all these multiplications can be distributed among multiple cores and computed in parallel.
Since, all these operations are writing in different memory locations so we don’t have any
race conditions, even though all these operations depends on the polynomial a ∈ Rq but this
polynomial is not changed throughout the whole operation.

Figure 3.6: Visualization of the operations done in Setup operation

Just like the setup algorithm, the encryption operation also have the similar type of con-
struction where the sampled polynomial r ∈ Rq is multiplied with all the pki and added
with ei + bq/Kcxi1R for all i ∈ [`], where ei are the error polynomials and the message
x = (x1, x2, · · · , x`) ∈ Z`. The Figure 3.7 will give the idea of the Encrypt operation.

26

Figure 3.7: Visualization of the operations done in Encrypt operation

Algorithm 5: Setup algorithm in RLWE-based IPFE [29]

Data: moduli q1, q2, q3 with q = q1q2q3 and qi’s are primes.
Output: The master public-key and master secret-key pair (mpk,msk)

1 for (i = 1 ; i ≤ 3 ; i+ +) do

2 ai
R← Rqi ;

3 for (i = 1 ; i ≤ ` ; i+ +) do
4 s′ ← Dσ1 ;
5 e′ ← Dσ1 ;
6 si ← CRTconvert(s′);
7 ei ← CRTconvert(e′);

8 for (i = 1 ; i ≤ ` ; i+ +) do
9 for (j = 1 ; j ≤ 3 ; j + +) do

10 eij ← NTT(eij);
11 pkij ← NTT(aj) ◦ NTT(sij);

12 pkij ← pkij + eij;

13

14 return
(
(si | i ∈ [`]), (pki | i ∈ [`])

)
;

parallel

parallel

27

The Algorithm 5 is the Setup algorithm for the RLWE-based IPFE scheme. Each for
loops in the algorithm can be parallelized (See Algorithm 5) with OpenMP as each iteration
of the loops in Setup algorithm are independent of each other. Similarly, the Encrypt

algorithm (Algorithm 6) can also be parallelized by distributing all the iterations of the
loops among multiple threads.

Algorithm 6: Encrypt algorithm in RLWE-based IPFE [29]

Data: moduli q1, q2, q3 with q = q1q2q3 and qi’s are primes, S1, S2, S2 which are the
scaling factors under moduli q1, q2, q3 respectively

Input: a message x ∈ Z`, public-key mpk =
(
a, {pki | i ∈ [`]}

)
in NTT domain

Output: Encryption of the message x

1 m← CRTconvert(x);

2 for (j = 1 ; j ≤ 3 ; j + +) do
3 for (i = 1 ; i ≤ ` ; i+ +) do
4 mji ← mji · Sj mod qj;

5 r′ ← Dσ2 ;
6 f ′ ← Dσ2 ;
7 r ← CRTconvert(r′);
8 f ← CRTconvert(f ′);

9 for (j = 1 ; j ≤ 3 ; j + +) do
10 rj ← NTT(rj);

11 for (j = 1 ; j ≤ 3 ; j + +) do
12 ct0j ← aj · rj;
13 ct0j ← NTT−1(ct0j);
14 ct0j ← ct0j + fj

15 for (j = 1 ; j ≤ ` ; j + +) do
16 f ′ ← Dσ3 ;
17 f ′′j ← CRTconvert(f ′);

18 for (j = 1 ; j ≤ 3 ; j + +) do
19 for (i = 1 ; i ≤ ` ; i+ +) do
20 ctij ← pkij · rj;
21 ctij ← NTT−1(ctij);
22 ctij ← ctij + f ′′ij;

23 ctij ← ctij +mji1R mod qj;

The above algorithms (Algorithm 5, Algorithm 6) are discussed in Section 2.5.1. The
KeyGen and Encrypt can be similarly parallelized as these algorithms.

28

Now another approach would be parallelizing the NTT multiplication. In the NTT-
forward algorithm (Algorithm 7) we have shown the sections that we can parallelize.

Algorithm 7: Forward NTT transformation

Input: A vector a = (a0, a1, · · · , an−1) ∈ Znq in standard ordering, where q is a
prime such that q ≡ 1 mod 2n and n is a power of two. A precomputed
table ζrev ∈ Znq , storing the powers of ζ in bit-reversed order.

Output: a← NTT (a) in bit-reversed ordering
1 t← n;
2 for (m = 1;m < n;m = 2m) do
3 t← t/2;
4 for (i = 0; i < m; i+ +) do
5 j1 ← 2 · i · t;
6 j2 ← j1 + t− 1;
7 S = ζrev[m+ i];
8 for (j = j1; j ≤ j2; j + +) do
9 U ← aj;

10 V ← aj+t · S;
11 aj ← U + V mod q;
12 aj+t ← U − V mod q;

13

14 return a

parallel section (line 4-12)

The for loop in line-4 of Algorithm 7 is split among multiple threads. Now the problem
is when m is smaller than the number of threads, the number of iteration will be less than
the number of threads. Therefore, some threads will be idle which is not something that we
would want.

In OpenMP, we can collapse two nested for loops together using the collapse(n) clause
with the work-sharing construct for a for-loop. Here n is the number of nested for loops.
Now we modify the Algorithm 7 so that we can use this collapse clause. Algorithm 8 is the
modified version of NTT. In this algorithm, the for-loops in lines 4 and 5 can be collapsed
together giving us a total of m× t = n/2 many iterations. Therefore, at each level, we will
have the same number of iterations and the threads will be occupied with the same amount
of work. The NTT−1 can be similarly parallelized.

Now we have three options for OpenMP optimization

(i) Parallelize the Encrypt algorithm and Setup algorithm by splitting the for-loops as
shown in Algorithm 5.

(ii) Parallelize the NTT and NTT−1 as we showed in Algorithm 8.

(iii) We can parallelize by using nested threading approach i.e., we will parallelize using

29

method (i) with m many threads and then each thread will spawn n many threads for
NTT transformation as in (ii).

Option (iii) will decrease the performance as spawning threads have some overheads and
if each thread spawns more threads for all iterations then the overhead just for spawning
threads will be huge. Therefore, we will avoid using nested threading and spawn all the
threads at the start of parallel region and distribute work among these threads.

Now, we have to choose between (i) and (ii). The Decrypt and KeyGen algorithms do not
have polynomial multiplications (See 2.5.1), so we will stick to the option (i) for these two
algorithms.

(a) SEC LEVEL 0 (b) SEC LEVEL 1

(c) SEC LEVEL 2

Figure 3.8: The cpucycles taken for different optimization for different security levels

In the Figure 3.8, we can see that parallelizing NTT using the Algorithm 8 have a better
performance for Setup and Encrypt algorithms. After we have distributed the work among
the threads we will now see how the thread scheduling works in the next section.

30

Algorithm 8: Modified forward NTT transformation

Input: A vector a = (a0, a1, · · · , an−1) ∈ Znq in standard ordering, where q is a
prime such that q ≡ 1 mod 2n and n is a power of two. A precomputed
table ζrev ∈ Znq , storing the powers of ζ in bit-reversed order.

Output: a← NTT (a) in bit-reversed ordering
1 t← n;
2 for (m = 1;m < n;m = 2m) do
3 t← t/2;
4 for (i = 0; i < m; i+ +) do
5 for (k = 0; k < t; k + +) do
6 j ← 2 · i · t+ k;
7 S ← ζrev[m+ i];
8 U ← aj;
9 V ← aj+t · S;

10 aj ← U + V mod q;
11 aj+t ← U − V mod q;

12 return a

parallel section

3.2.3 Scheduling

In OpenMP, we can specify schedule(type, chunk size) clause with a specific type and
chunk size (See 3.2.1) for different types of scheduling, in a work-sharing construct. The
chunk size specifies the number of iterations and type is the scheduliing type. There are
mainly three types of scheduling that we can use in OpenMP which are static, dynamic
and guided, we can also specify types as runtime or auto (without any chunk size) which
let the compiler or some external variables to deal with the scheduling.

Now we have used different scheduling and different chunk-sizes to see which is the most
optimal setup for RLWE-based IPFE. As we can observe from the Figure 3.9a the setup oper-
ation works better with smaller chunk sizes, as the chunk size gets larger the operation starts
using more cpucycles. The type of scheduling doesn’t seems to make a difference in terms of
performance. So we can use scheduling with a small chunk size e.g., 8 or 16 for this operation.

Again, the Encrypt, Keygen and Decrypt operations on the other hand have optimal
performance with larger chunk sizes if we are using dynamic scheduling. The static, guided
scheduling have almost the same performance for different chunk sizes, although the static
scheduling does have slight performance increase for chunk sizes of about 128-256.

31

(a) Setup (b) Encrypt

(c) KeyGen (d) Decrypt

Figure 3.9: The cpucycles required for different operations under different scheduling pa-
rameters

3.2.4 Scalability

In any parallel application, we distribute works among multiple threads and these threads
run simultaneously on different cores. So it is expected that a parallel application should
work better with an increasing number of threads but it also increases the amount of context
switching, false sharing which in fact decreases the performance.

In the Figure 3.10 we can see how the performance of the operations increases with the
increasing number of threads. The maximum number of threads that we can use without any
conflicts depends on the system and the number of cores in the CPU that we are using. In
our case, we have 8 threads without any conflicts but using more threads seems to increase
the cpucycles for KeyGen and Decrypt.

32

(a) Setup (b) Encrypt

(c) KeyGen (d) Decrypt

Figure 3.10: Performance of different operations with increasing number of threads

3.2.5 Experimental results

After choosing proper number of threads and scheduling method we have implemented the
scheme using with and without OpenMP. We have the results after the implementation. The
result for Setup, Encrypt, KeyGen and Decrypt is in the Figure 3.11.

It is clear from the Figure 3.11, that we surely have optimized performance with OpenMP
implementation. Below we have the table containing results with and without OpenMP
optimization for different operations. We have the same result depicted in the Figure 3.11.

Operation
SEC LEVEL 0 SEC LEVEL 1 SEC LEVEL 2

no OpenMP OpenMP no OpenMP OpenMP no OpenMP OpenMP

Setup 113622133 32144297 2532139210 643970197 6199926817 1664594004

Encrypt 72165295 19432165 1729108772 453515506 5089390687 1552127926

Key pair 1315350 1024138 103941056 30565113 268592841 80375688

Decrypt 4291258 1590337 87830552 33343998 190676512 76918169

33

(a) SEC LEVEL 0 (b) SEC LEVEL 0

(c) SEC LEVEL 1 (d) SEC LEVEL 1

(e) SEC LEVEL 2 (f) SEC LEVEL 2

Figure 3.11: Performance optimization for different security levels

OpenMP optimization has surely given a significant speed-up to the implementation of
the scheme but we have parallelized NTT multiplication instead of parallelizing the for-loop
in Setup and Encrypt operations. Now we make another change in the implementation.
Instead os using OpenMP to parallelize the NTT, we use AVX2 to vertorize the implemen-
tation of NTT. After that we can easily parallelize the for-loops in Setup and Encrypt as it
is shown in Algorithm 5.

3.3 AVX2 Optimization

One of the most expensive operations in RLWE based schemes is polynomial multiplication.
As we have discussed in 3.1.3, the primes q, that are chosen for the implementation are of
the form q ≡ 1 mod 2n. So we can use NTT transformation for polynomial multiplication
which is a quasi-linear time algorithm. We will discuss the AVX2 implementation of NTT
in this section.

34

3.3.1 8-point NTT

a0 a1 a2 a3 a4 a5 a6 a7

+ + + + − − − − Level 1

a0 a1 a2 a3 a4 a5 a6 a7

+ + − − + + − − Level 2

a0 a1 a2 a3 a4 a5 a6 a7

Level 3+ − + − + − + −

a0 a1 a2 a3 a4 a5 a6 a7 Final Result

Figure 3.12: 8-point NTT

In the Figure 3.12, it is depicted how the 8-point NTT transformation works. First, in
level-1 the coefficients with blue colour are multiplied with the powers of ζ, which are called
the twiddle factors. The coefficients a0 to a7 are updated using the following update rule.

(i) At level-1 for each 0 ≤ j < 4, the coefficients are updated as

aj = aj + aj+4 · ζrev[1]

aj+4 = aj − aj+4 · ζrev[1]

(ii) At level-2 for each 0 ≤ j < 2, the coefficients are updated as

aj = aj + aj+2 · ζrev[2]

aj+4 = aj − aj+2 · ζrev[2]

And for each 4 ≤ j < 6, the coefficients are updated as

aj = aj + aj+2 · ζrev[3]

aj+4 = aj − aj+2 · ζrev[3]

35

(iii) At level-3 for each 0 ≤ i < 4, the coefficients are updated as

a2i = a2i + a2i+1 · ζrev[4 + i]

a2i+1 = a2i − a2i+1 · ζrev[4 + i]

The update method for 8-point NTT is depicted in Figure 3.12.

This 8-point NTT is going to be useful for the implementation of full-NTT for the scheme.
The number of coefficients in the polynomials that we will be dealing with are 2048, 4096 or
8192 depending on the security level.

3.3.2 NTT with AVX2

In this section, we will discuss the NTT and how to deal with the transformation with 8192
many coefficients. The cases with 4096 or 2048 many coefficients are similar. For N = 8196
there is total 13 levels in NTT transformation.

Levels 1-3 of NTT

Initially, we have an array of size N = 8192. First, we will complete the first three levels
of NTT. From the Algorithm 2, we can observe that for any coefficient aj for j < N , the
first three levels of NTT transformation of this coefficient is influenced by aj+N/2, aj+N/4 and
aj+N/8. Therefore taking the eight points Aj =

{
aj+ kN

8
| 0 ≤ k < 8

}
, we can perform the

8-point NTT transformation on it to obtain the first 3 levels of NTT transformation of Aj
for each 0 ≤ j < N/8.

a0

a1

a2

a3

a4

...

a8190

a8191

8192-point coefficient

a0

a1024

a2048

a3072

a4096

a5120

a6144

a7168

a1

a1025

a2049

a3073

a4097

a5121

a6145

a7169

a2

a1026

a2050

a3074

a4098

a5122

a6146

a7170

a3

a1027

a2051

a3075

a4099

a5123

a6147

a7171

a4

a1028

a2052

a3076

a4100

a5124

a6148

a7172

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

a1022

a2046

a3070

a4094

a5118

a6142

a7166

a8190

a1023

a2047

a3071

a4095

a5119

a6143

a7167

a8191

8× (1024-Block of coefficients)

Figure 3.13: Visualizing 8192 size array as a 8× 1024 matrix

In other words, we consider this array of size N = 8192 as an 8× 1024 matrix by putting
all the elements row-wise in the matrix. We can see the order of the elements in Figure 3.13.
Each columns of the matrix is Aj for 0 ≤ j < 1024. Therefore 8-point NTT transformation

36

on each of these columns of the matrix perform the first three levels of NTT transformation
of the whole array of size 8192.

In AVX2 we can use 256-bit registers, so in one register we can pack eight 32 bit con-
secutive integers. Now we can take eight such registers and in each of these registers, we
can pack eight consecutive elements from each row of the matrix in Figure 3.13. After the
coefficients loaded in these registers we can apply the 8-point NTT transformation. At each
level half of the registers are to be multiplied with the twiddle factors. We pack the twiddle
factors in one register and multiply it with eligible registers. The AVX2 code for the first
three levels of transformation is given in Appendix A.

Levels 4-7 of NTT

After the first three levels are done, we have to transform the polynomials with 1024 coeffi-
cients. Each of these 1024 coefficients can be considered as a matrix of size 8 × 128. Once
we transform each column of this matrix of size 8× 128, three more levels of transformation
of NTT will be done. In AVX2, these three levels of transformation are similar to the first
three levels.

Now, we conduct only one level of transformation on the polynomials of size 128. We
consider a0, a1, · · · , a127 to be the 128 many coefficients. First we load a0 to a31 into first
four registers and a64 to a95 in the rest of four registers. Now multiplying twiddle factors to
the second four registers, we update the values and store them. Next a32 to a63 is loaded into
the first four registers and a96 to a127 is loaded into the second four registers and similarly,
the values are updated and stored. Thus we complete level-7 of NTT transformation. Now
we have to transform each polynomial with 64 coefficients.

a0

a8

a16

a24

a32

a40

a48

a56

a1

a9

a17

a25

a33

a41

a49

a57

a2

a10

a18

a26

a34

a42

a50

a58

a3

a11

a19

a27

a35

a43

a51

a59

a4

a12

a20

a28

a36

a44

a52

a60

a5

a13

a21

a29

a37

a45

a53

a61

a6

a14

a22

a30

a38

a46

a54

a62

a7

a15

a23

a31

a39

a47

a55

a63

Figure 3.14: The first 64 coefficients as 8× 8 matrix

Level 8-13 of NTT

Now we describe how the polynomial with 64 many coefficients can be transformed using
NTT. The 64 many coefficients can be considered as an 8 × 8 matrix as shown in Figure
3.14. All 64 coefficients can be loaded into eight AVX2 registers. Now level-8 to level-11,
these three levels of the transformation is similar to level-1 to level-3 transformation. Now
our target is to complete the last three levels.

37

For the last three levels of transformation, we have adapted the method from [40]. They
have worked with 16-bit integers for Kyber [8],here we are dealing with 32 bits of integers.
First of all, we require some permutations on 16 points. More specifically, we require three
permutations namely π1, π2 and π4. The description of the permutations is in the figures
below. Also the AVX codes of these permutation are in Appendix C.

The permutation π4 is depicted in Figure 3.15

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a1 a2 a3 a8 a9 a10 a11 a4 a5 a6 a7 a12 a13 a14 a15

Figure 3.15: Permutation π4

The permutation π2 is depicted in Figure 3.16

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a1 a4 a5a8 a9 a12 a13 a2 a3 a6 a7a10 a11 a14 a15

Figure 3.16: Permutation π2

The permutation π1 is depicted in Figure 3.17

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a2 a4 a6a8 a10 a12 a14 a1 a3 a5 a7a9 a11 a13 a15

Figure 3.17: Permutation π1

Starting from level-11 of NTT each of the polynomials have eight coefficients which
are packed into one register. Now half of the coefficients in this one register needs to be
multiplied with the twiddle factors and updated. Thus we would apply these permutation
on two registers such it will group all the coefficients which are to be multiplied into one
register and rest are in another.

38

register 1 register 2 register 1 register 2 register 1 register 2 register 1 register 2

a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
5

a
(0)
6

a
(0)
7

a
(0)
8

a
(0)
9

a
(0)
10

a
(0)
11

a
(0)
12

a
(0)
13

a
(0)
14

a
(0)
15

permutation π4

a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
5

a
(0)
6

a
(0)
7

a
(0)
8

a
(0)
9

a
(0)
10

a
(0)
11

a
(0)
12

a
(0)
13

a
(0)
14

a
(0)
15

Multiply twiddle factor

and Update

a
(1)
0

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
6

a
(1)
7

a
(1)
8

a
(1)
9

a
(1)
10

a
(1)
11

a
(1)
12

a
(1)
13

a
(1)
14

a
(1)
15

permutation π4

a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
5

a
(0)
6

a
(0)
7

a
(0)
8

a
(0)
9

a
(0)
10

a
(0)
11

a
(0)
12

a
(0)
13

a
(0)
14

a
(0)
15

Figure 3.18: First of the last three levels of NTT

At the start of level-11 we take a pair of two registers containing polynomials with eight
coefficients as seen in Figure 3.18. The high four coefficients (coloured blue in the figure)
are to be multiplied with twiddle factors. Therefore, we first apply the permutation π4 and
take all the high coefficients of the polynomials in register-2 and rest in register-1. Now
we can multiply the twiddle factors to the register-2 and update. In the end, we apply the
permutation π4 again to put the transformed polynomials in their own place again. Doing
this for all 4 pairs of registers, perform the level-11 of the NTT.

register 1 register 2 register 1 register 2 register 1 register 2 register 1 register 2

a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
5

a
(0)
6

a
(0)
7

a
(0)
8

a
(0)
9

a
(0)
10

a
(0)
11

a
(0)
12

a
(0)
13

a
(0)
14

a
(0)
15

permutation π2

a
(0)
0

a
(0)
1

a
(0)
4

a
(0)
5

a
(0)
8

a
(0)
9

a
(0)
12

a
(0)
13

a
(0)
2

a
(0)
3

a
(0)
6

a
(0)
7

a
(0)
10

a
(0)
11

a
(0)
14

a
(0)
15

Multiply twiddle factor

and Update

a
(1)
0

a
(1)
1

a
(1)
4

a
(1)
5

a
(1)
8

a
(1)
9

a
(1)
12

a
(1)
13

a
(1)
2

a
(1)
3

a
(1)
6

a
(1)
7

a
(1)
10

a
(1)
11

a
(1)
14

a
(1)
15

permutation π2

a
(1)
0

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
6

a
(1)
7

a
(1)
8

a
(1)
9

a
(1)
10

a
(1)
11

a
(1)
12

a
(1)
13

a
(1)
14

a
(1)
15

Figure 3.19: Second of the last three levels of NTT

At the start of level-12 we take a pair of two registers, each containing two polynomials
with four coefficients as seen in Figure 3.19. The high two coefficients of each polynomial
(coloured blue in the figure) are to be multiplied with twiddle factors. Therefore, we first
apply the permutation π2 and take all the high coefficients of the polynomials in register-2
and rest in register-1. Now we can multiply the twiddle factors to the register-2 and up-
date. At the end, we apply the permutation π2 again to put the transformed polynomials in
their own place again. Doing this for all 4 pairs of registers, perform the level-12 of the NTT.

At the last level we take a pair of two registers, each containing four polynomials with four
coefficients as seen in Figure 3.20. The alternative coefficients of each register (coloured blue
in the figure) are to be multiplied with twiddle factors. Therefore, we first apply the permu-
tation π1 and take all the odd indexed coefficients of the two registers in register-2 and even
indexed coefficients in register-1. Now we can multiply the twiddle factors to the register-2

39

register 1 register 2 register 1 register 2 register 1 register 2 register 1 register 2

a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
5

a
(0)
6

a
(0)
7

a
(0)
8

a
(0)
9

a
(0)
10

a
(0)
11

a
(0)
12

a
(0)
13

a
(0)
14

a
(0)
15

permutation π1

a
(0)
0

a
(0)
2

a
(0)
4

a
(0)
6

a
(0)
8

a
(0)
10

a
(0)
12

a
(0)
14

a
(0)
1

a
(0)
3

a
(0)
5

a
(0)
7

a
(0)
9

a
(0)
11

a
(0)
13

a
(0)
15

Multiply twiddle factor

and Update

a
(1)
0

a
(1)
2

a
(1)
4

a
(1)
6

a
(1)
8

a
(1)
10

a
(1)
12

a
(1)
14

a
(1)
1

a
(1)
3

a
(1)
5

a
(1)
7

a
(1)
9

a
(1)
11

a
(1)
13

a
(1)
15

permutation π1

a
(1)
0

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
6

a
(1)
7

a
(1)
8

a
(1)
9

a
(1)
10

a
(1)
11

a
(1)
12

a
(1)
13

a
(1)
14

a
(1)
15

Figure 3.20: Third of the last three levels of NTT

and update. In the end, we apply the permutation π1 again to put the transformed polyno-
mials in their own place again. Doing this for all 4 pairs of registers, perform the level-13 or
the last level of the NTT.

Each of the ymm registers supported by AVX2 instructions has a length of 256 bits which
can load eight 32 bits integers at once. So we can load 8 many coefficients in one ymm regis-
ter and we are using a total of 8 registers to store the coefficients from the array. We have
reserved two registers to pack the constants q, q−1 mod 232. One register is used to pack
the twiddle factors. The rest of the five registers are used to store temporary results during
the computation.

Thus we have completed full-NTT of 8192 points. Similarly, for 2048 or 4096 points
NTT we can use the same method. The inverse-NTT or NTT−1 can be implemented using
same technique, just all the steps for NTT are reversed. We have implemented the Cooley-
Tukey forward NTT (Algorithm 2) and Gentleman-Sande (Algorithm 3) in C and using the
AVX2 instructions as described in the above section and there is a significant speedup we
can observe in the Figure 3.21.

Figure 3.21: cpucycles taken for AVX2 implementation and normal C code

40

3.3.3 Incomplete NTT

In this section, we describe incomplete NTT. In a recently published paper by Chung et al.
[10] and also in the paper by Lyubashevsky and Seiler [26], they have used this technique to
optimize the implementation of NTT in unfriendly rings where the full NTT is not possible.
The idea here is to skip the last few levels of NTT and apply standard polynomial multi-
plications instead of point-wise multiplication and apply inverse-NTT skipping the first few
levels. Say that we skip the last ` many levels of NTT, then at the end, we have polynomials
with 2` coefficients. These polynomial are multiplied using the schoolbook multiplication
method and the NTT−1 is applied on this resultant polynomial skipping the first ` many
levels. We denote NTT` and NTT−1` to represent incomplete NTT and NTT−1 respectively
with ` many levels skipped.

Now the big question is how many levels to skip. We can skip the last level and settle
for a 2 × 2 schoolbook multiplication or we can skip the last 2 levels and do a 4 × 4 multi-
plication. But increasing the number of levels skipped increases the size of the polynomials
to be multiplied later.

Figure 3.22: Result for incomplete NTT

As we can see in the Figure 3.22 there is indeed a slight improvement in the performance
of Setup and Encrypt algorithm when we skip the last level of NTT and opt for a 2 × 2
multiplication to complete the polynomial multiplication.

Now we have to multiply two one degree polynomials. We already know that

xn + 1 =
n−1∏
i=0

(x− ζ2i+1)

Where n is some power of 2, ζ is the 2n’th primitive root of unity in Zq. Now for any t < n

41

we have, ζt+n = −ζt. So we can write

xn + 1 =

n/2−1∏
i=0

(x− ζ2i+1)(x+ ζ2i+1)

Now observe that for any number k < n, if k is odd then brv(k) > n/2. brv maps a log2 n
bit number to its bit-reversal form. So for i < n/2, 2i+ 1 = brv(n/2 + t) for some t < n/2.
Thus we can write

xn + 1 =

n/2−1∏
i=0

(x− ζbrv(n/2+i))(x+ ζbrv(n/2+i))

=

n/2−1∏
i=0

(x2 − ζ2·brv(n/2+i))

Algorithm 9: 2× 2 base multiplication for incomplete-NTT

Input: Two arrays a and b of n many coefficients in iNTT domain, an array with
precomputed values of ζ2brv(n/2+i) for all 0 ≤ i < n/2, a prime module q

Output: An array c of size n with each components ci for 0 ≤ i < n such that
c2j + c2j+1x = (a2j + a2j+1x) · (b2j + b2j+1x) mod (x2 − ζ2brv(n/2+j)) for
0 ≤ j < n/2.

1 for (i = 0 ; i < n/2 ; i+ +) do
2 ω ← ζ2brv(n/2+i);
3 A← a2i + a2i+1 mod q;
4 B ← b2i + b2i+1 mod q;
5 C ← a2i · b2i mod q;
6 D ← a2i+1 · b2i+1 mod q;
7 A← A ·B mod q; /* A = (a2i + a2i+1) · (b2i + b2i+1) */

8 B ← C +D mod q; /* B = a2i · b2i + a2i+1 · b2i+1 */

9 D ← D · ω mod q; /* D = a2i+1 · b2i+1 · ζ2brv(n/2+i) */

10 c2i ← C +D mod q;
11 c2i+1 ← A−B mod q;

As we see in the Algorithm 2, we store the powers of ζ in the bit-reversed order. So if
we skip the last level of NTT then a polynomial f ∈ Rq will be transformed into(

f mod (x2 − ζ2·brv(n/2)), f mod (x2 − ζ2·brv(n/2+1)), · · · , f mod (x2 − ζ2·brv(n−1))
)

NTT1 and NTT−11 are the incomplete versions of NTT and NTT−1 respectively with one
skipped level. Then the multiplication of two polynomials f, g ∈ Rq is calculated as

fg = NTT−11

(
NTT1(f) ◦ NTT1(g)

)
42

If h = NTT1(f) ◦ NTT1(g), then hi = fg mod (x2 − ζ2·brv(n/2+i)) for all 0 ≤ i < n/2.
Therefore, fg =NTT−11 (h).

For the implementation purpose the list of pre-computed values of ζ2brv(n/2+i) for each
0 ≤ i < n/2, is stored in an array. The computation is done according to the Algorithm 9.

The assembly code of this multiplication in Algorithm 9 is given in Appendix E.

3.3.4 Reducing loads and stores

The ymm registers in AVX2 vector instructions have a width of 256 bits. So we can pack
eight 32 bit integers into one register. In our implementation of NTT, before the last 6
levels, we have densely packed 64 coefficients into eight registers and completed three levels
of transformation without any further load or store of the coefficients. So it takes 8 loads
and 8 stores for every 64 coefficients for 3 levels of transformation. Again, in the last six
levels of transformation, we can load an entire polynomial of degrees under 64 in these eight
registers and complete six levels of transformation without any further load or store. This
way we have reduced the total number of load and store for the AVX2 implementation of
the NTT.

3.3.5 Experimental results

(a) SEC LEVEL 0 (b) SEC LEVEL 1

(c) SEC LEVEL 2

Figure 3.23: Comparision of cpucycles for C, OpenMP and AVX2 with OpenMP

Since we have optimized the polynomial multiplication using AVX2 so we only see a
performance increase in Setup and Encrypt algorithm. As we can see the construction of

43

the selectively secure version of the IPFE scheme we are implementing here (See 2.5.1),
the KeyGen and Decrypt operations do not have many polynomial multiplications. So we
cannot expect these operations to be optimized after the AVX2 optimization. In the Fig-
ure 3.23 we have presented how cpucycles are decreased with each layers of optimization for
different security levels, Table 3.1 contains the values that has been plotted in the Figure 3.23.

Security Levels operations
Optimizations

C-code OpenMP Optimization AVX+OpenMP Optimization

SEC LEVEL 0

Setup 113622133 32144297 71.71 10886303 94.42

Encrypt 72165295 19432165 73.07 7594374 89.48

KeyGen 1315350 1024138 22.14 1076530 18.17

Decrypt 4291258 1590337 62.94 1104984 74.25

SEC LEVEL 1

Setup 2532139210 643970197 74.57 214679687 91.52

Encrypt 1729108772 453515506 73.77 192252489 88.88

KeyGen 103941056 30565113 70.59 31185826 70.00

Decrypt 87830552 33343998 62.04 27810494 68.34

SEC LEVEL 2

Setup 6199926817 1664594004 73.15 590560069 90.47

Encrypt 5089390687 1552127926 69.50 1060621261 79.16

KeyGen 268592841 80375688 70.08 84117554 68.68

Decrypt 190676512 76918169 59.66 60222755 68.42

Table 3.1: Performance increased with different layers of optimization

Table 3.1 shows how the performance is increased (in %) with OpenMP and AVX2
optimizations. As we can see that after AVX2 optimization only the Setup and Encrypt
operations have shown significant speed-up as they are heavily equipped with polynomial
multiplication.

3.4 Conclusion

In this chapter, we have shown how we have optimized the implementation of the RLWE-
based IPFE. We have shown results that how the optimization has increased the performance
of the scheme for different security levels. In the next chapter, we introduce a privacy-
preserving biometric protocol based on this IPFE scheme.

44

Chapter 4

Privacy preserving biometric protocol

Here we discuss one application of IPFE. We propose a secure privacy-preserving biometric
authentication protocol. There are mainly two types of biometric (i) fingerprint, (ii) iris
image. Here we are using iris as our biometric data. We use the iris matching algorithm by
Daugman [13], Wildes [43] have also mentioned similar matching algorithm. We have briefly
discussed about this iris matching algorithm from [13] in Appendix F. In this algorithm an
iris image is transformed into a 2048 bit binary string, this is called the feature vector. A
mask of same length is also generated which has "0" in all the places having invalid bit.
Before getting into the privacy preserving biometric protocol, we discuss some preliminaries
first.

4.1 Preliminaries

Let X be our iris feature vector, a k-bit binary array. The feature extraction algorithm
also outputs a binary mask vector with "1" at the positions with valid bits and "0" at the
positions with invalid bits. To match two different sets of biometric data we use Normalized
Hamming Distance.

Definition 4.1.1 (Normalized Hamming distance/fractional Hamming distance [13]). Let
X,M and X ′,M ′ be pairs of feature vector and mask of two biometric data then the normal-
ized Hamming distance between the two biometric data is defined by

NHD =
|(X ⊕X ′) ·M ·M ′|

|M ·M ′|

Since we are trying to implement the protocol using Inner Product Functional Encryption,
so first we need to find a method of computingNHD which is suitable with the IPFE protocol
i.e., which can be easily implemented using the IPFE protocol. We have discussed a method
in the next section.

45

4.1.1 Transformation of the binary vector and some results

In the paper by Kim et al. [23], They have given a method to calculate Hamming distance
of two binary vectors using inner product. We use this method and extend it to calculate
the normalized Hamming distance. First of all, we consider the vector X̃, which is some
transformation of the binary vector X defined as below :

X̃i =

{
1 if Xi = 0

−1 if Xi = 1

Let us consider the operation "�" be the pointwise multiplication operation between two
vectors of same size. Therefore for any two vectors A and B, if C = A�B then

〈A,B〉 =
n∑
i=1

Ci

Before calculating the Normalized Hamming Distance using the inner product, we derive the
following results involving the transformation to extend the calculation of Hamming distance
to normalized Hamming distance.

Results

Let us consider two binary vectors A and B of length n then,

• Result 1. We claim that for A and B, we can write

Ã� B̃ = ˜(A⊕B) (4.1)

Consider the following table for two binary bits a, b

a b ã b̃ ã� b̃ a⊕ b (̃a⊕ b)
0 0 1 1 1 0 1
0 1 1 -1 -1 1 -1
1 0 -1 1 -1 1 -1
1 1 -1 -1 1 0 1

Table 4.1: The table corresponding to two binary bits a and b

From the table it is clear that Ãi � B̃i = ˜(Ai ⊕Bi) for all i ∈ {0, 1, · · · , n}
Therefore, Ã� B̃ = ˜(A⊕B)

46

• Result 2. Now we claim for A and B, we can write

|A ·B| =
|B| −

〈
Ã, B

〉
2

(4.2)

Now if we take C = Ã�B then,

n∑
i=1

Ci = #{1’s in Ã�B} −#{-1’s in Ã�B}

Again we have,
|B| = #{1’s in Ã�B}+ #{-1’s in Ã�B}

So we have

|B| −
n∑
i=1

Ci = 2×#{-1’s in Ã�B}

= 2×
∣∣∣∣{i ∈ {1, 2, · · · , n}|Bi = 1, Ai = 1

}∣∣∣∣
= 2× |A ·B|

Therefore, |A ·B| = |B|−〈Ã,B〉
2

4.1.2 Calculating NHD using inner product

Here in this section we describe the method to find NHD, using the results in Section-4.1.1,
we are now going to calculate normalized Hamming distance using the inner product. Let
X,X ′ are the binary feature vectors and M,M ′ be the binary masks of the biometric data.
We know the Normalized Hamming Dastance is defined as

NHD =
|(X ⊕X ′) ·M ·M ′|

|M ·M ′|

Now, from (4.2) we can write

|(X ⊕X ′) ·M ·M ′| =
|M ·M ′| −

〈
X̃ ⊕X ′,M ·M ′

〉
2

47

We know that, for any pair of binary vectors A and B, A · B = A � B. Now, we consider
the vector

T = ˜(X ⊕X ′)� (M ·M ′)

= X̃ � X̃ ′ �M �M ′ [
from (4.1)

]
= (X̃ �M)� (X̃ ′ �M ′)

Since,
n∑
i=0

Ti =
〈
X̃ ⊕X ′,M ·M ′

〉
, from the above representation of T we can write that

〈
X̃ ⊕X ′,M ·M ′

〉
=
〈
X̃ �M, X̃ ′ �M ′

〉
So, we have

|(X ⊕X ′) ·M ·M ′| =
|M ·M ′| −

〈
X̃ �M, X̃ ′ �M ′

〉
2

Again the value |M ·M ′| = 〈M,M ′〉. This gives us the value of the normalized Hamming
distance as below

NHD =
〈M,M ′〉 −

〈
X̃ ′ �M ′, X̃ �M

〉
2 〈M,M ′〉

(4.3)

clearly, we are only using inner products to calculate this Normalized Hamming Distance, so
we can use our IPFE scheme here to implement the privacy-preserving biometric authenti-
cation protocol.

4.2 Privacy preserving biometric protocol using IPFE

Here we propose a privacy-preserving biometric authentication protocol based on IPFE. Here
we consider that the client has created two keys Kx, Km for the feature vector X and mask
M respectively and saves the pair (X ⊕Kx,M ⊕Km) in the server’s database at the time
of enrollment. At the time of verification the client has to come up with the keys Kx, Km

along with the feature vector X ′ and mask M ′.

4.2.1 Protocol

• First client creates two pairs of master public key and master secret key namely,
(msk1,mpk1) and (msk2,mpk2).

• Server sends the encrypted mask T = M ′ ⊕Km to the client.

• If the client has correct Km used at the time of enrollment, then he finds M = T ⊕Km

and proceeds.

48

• Client computes ct1 ← Enc(X̃ ′ ⊕Kx� (M ·M ′),mpk1) and ct2 ← Enc(M ·M ′,mpk2)
and sends these to the server.

• Server takes y1 ← X̃ ⊕Kx and y2 ← 1n and sends to the client to get the functional
keys.

• Client generates functional keys sky1 and sky2 using KeyGen algorithm and msk1, msk2
respectively.

• Server computes d1 ← Dec(ct1, sky1) and d2 ← Dec(ct2, sky2).

• Compute NHD = d2−d1
2d2

• Let τ be the threshold to decide. then if NHD < τ then we say that the biometrics
matched else they do not match.

Figure 4.1: Privacy preserving biometric protocol using IPFE when the data saved in server’s
database is encrypted

49

4.2.2 Correctness

Here we have to verify whether the server has correctly calculated the NHD or not. In the
protocol showed in Figure 4.1 we have ciphertexts

ct1 = Enc(˜(X ′ ⊕Kx)� (M ·M ′),mpk), ct2 = Enc(M ·M ′,mpk)

Given y1 = X̃ ⊕Kx and y2 = 1n we have the functional keys sky1 and sky2 using KeyGen

algorithm. After decryption we have two Inner-Products

d1 =
〈

˜(X ′ ⊕Kx)� (M ·M ′), ˜(X ⊕Kx)
〉
, d2 = 〈M ·M ′, 1n〉

Clearly, d2 = |M ·M ′|. We consider, d1 =
n∑
i=1

Ti where

T = ˜(X ′ ⊕Kx)� (M ·M ′)� ˜(X ⊕Kx)

= ˜(X ⊕X ′)� (M ·M ′)
[

from (4.1)
]

So, we have d1 =
〈
X̃ ⊕X ′,M ·M ′

〉
.

Again from (4.2) we have |(X ⊕X ′) ·M ·M ′| = d2−d1
2

.

Therefore,

NHD =
|(X ⊕X ′) ·M ·M ′|

|M ·M ′|

=
(d2 − d1)

2 d2

Therefore at the end the server can correctly calculate NHD between the biometric saved in
the database and the biometric provided by the client at the time of verification.

In the above section, we have seen how we can use IPFE to create a privacy-preserving
biometric protocol. In the next section, we create a similar protocol using Homomorphic
Encryption

4.2.3 Change in parameters of the RLWE based IPFE scheme [29]

As the size of the biometric information is of size 2048, so the parameters of the scheme
are changed to support the protocol. As the vectors, x and y both can have negative
components so the value of the inner product may range between −`BxBy and `BXBy. So
we take K > 2`BxBy and the scaling parameter is b q

K
c. There are three sets of parameters

that are set depending on the values of `, Bx and By. Here we have considered the selectively
secure scheme.

As we have seen in Section-2.5.1 for correctness we need `(2nκσ1σ2+
√
κσ3)By < bq/2Kc.

50

Security Level FE Bounds Gaussian Parameters Ring Parameters CRT moduli

SEC LEVEL 0

Bx 1 σ1 33 n : 2048 q1 220 − 214 + 1
By 1 σ2 64880641 q2 223 − 213 + 1
` 2048 σ3 129761280 dlog qe : 74 q3 231 − 217 + 1

SEC LEVEL 1

Bx 1 σ1 226 n : 4096 q1 224 − 214 + 1
By 1 σ2 258376413 q2 226 − 216 + 1
` 2048 σ3 516752823 dlog qe : 81 q3 231 − 224 + 1

SEC LEVEL 2

Bx 1 σ1 2049 n : 8192 q1 231 − 217 + 1
By 1 σ2 5371330561 q2 231 − 219 + 1
` 2048 σ3 10742661120 dlog qe : 94 q3 232 − 220 + 1

Table 4.2: The parameters for different security levels

We can check that for this set of parameters this inequality holds.

4.3 HE based privacy preserving biometric protocol

We have used a modified version of HE-based biometric protocol proposed by Kulkarni and
Namboodiri [24]. They use somewhat homomorphic encryption (SHE) encryption scheme
by Boneh et al. [7], whereas we use The fully homomorphic encryption scheme by Fan and
Vercauteren [15] which is known as Brakerski-Fan-Vercauteren (BFV) scheme. To implement
the biometric protocol using HE, we use MS Seal library [39]. In this BFV scheme we can
use the following evaluation functions to compute on encrypted data.

1. Addition: we can perform addition on two encrypted data or perform addition on a
plaintext and a ciphertext.

2. Multiplication: we can perform multiplication on two encrypted data or perform
multiplication on a plaintext and a ciphertext.

3. Rotation: Another operation that we can do here is rotation. We can rotate the
columns or we can rotate rows.

Using these operations we are implementing a protocol using HE. One more operation that
we need to construct is to add all the components of the vector by computing the encrypted
data. We would define add components function which operates on ciphertext and works as
follows.

We consider the notation d̂ to denote the vector with all components equal to d. If
C = Encpk(D) and C ′ =add components(C), then C ′ = Encpk(D

′) where D′ = d̂ is the
plaintext with all the components equal to d, the sum of the components of the plaintext D.

We consider the operations +h,−h,×h to be the operations addition, substraction and
multiplication respectively on (ciphertext, ciphertext) pair or (ciphertext, plaintext) pair.

4.3.1 Protocol

As we can see in Figure 4.2 the biometric information saved in the server’s database is
encrypted by the client at the time of enrollment. The feature vector and the mask are

51

Figure 4.2: Privacy preserving biometric protocol using Homomorphic Encryption

encrypted using the keys Kx, Km respectively. At the time of verification, the client has to
hold the keys Kx, Km to proceed with this protocol.

• First the client generates the public key, secret key pair (pk, sk).

• Server sends the encrypted mask M ⊕Km to the client. If the client has the valid key
Km then only the client can decrypt and proceed with the rest of the protocol.

• Now client sends the encryptions C1 = Encpk
(˜(X ′ ⊕Kx)� (M ·M ′)

)
and

C2 = Encpk(M ·M ′) to the server.

• After receiving the ciphertexts server computes
(
C1 ×h ˜(X ⊕Kx)

)
and obtains the

encryption C3 = Encpk(˜(X ′ ⊕X)� (M ·M ′))

• Now server performs add components operation on the resulted ciphertexts C3, C2

which gives server the encryptions C = Encpk(d̂1) and C ′ = Encpk(d̂2) where d1 =

52

〈
X̃ ⊕X ′,M ·M ′

〉
and d2 = 〈M,M ′〉

• Now the server calculates C ← (C ′ −h C)×h (înv2). So, C = Encpk(d
′
1) where

d′1 = d2−d1
2

.

• Let the threshold be td
tn

then the server computes C ′′ = 2̂048 +h (C ×h t̂n)−h (C ′×h t̂d)
which is Encpk(Ŝ) where, S = 2048 + (d′1 × tn)− (d2 × td).

• Server selects random values p, r and computes
(
(C” ×h p̂) +h r̂

)
, which is Encpk(β̂)

where β = (p× S) + r and sends it to client.

• The client decrypts the message and sends the value β to server.

• The server computes S = β−r
p

. If S < 2048 then the biometrics matchs otherwise it
does not match.

4.3.2 Correctness

The server computes Encpk(d̂1) and Encpk(d̂2) where, d1 =
〈
X̃ ⊕X ′,M ·M ′

〉
and

d2 = 〈M,M ′〉. As we have seen before

NHD =
d2 − d1

2d2

The server now computes d′1 = d2−d1
2

and d′2 = d2. So, NHD =
d′1
d′2

. Now If τ = td
tn

is the

threshold then we consider the biometrics are matched if

NHD < τ

i.e.,
d′1
d′2

<
td
tn

i.e., d′1 × tn < d′2 × td
i.e, , (d′1 × tn)− d′2 × td) < 0

i.e, , 2048− (d′1 × tn)− (d′2 × td) < 2048

This is why the server computes Encpk(Ŝ) where S = 2048 − (d′1 × tn) − (d′2 × td). At the
end of the protocol server obtains the value S and clearly if S < 2048 then the biometrics
are considered matched.

Both the protocols using IPFE and HE gives us a privacy-preserving client-server archi-
tecture for biometric authentication without any accuracy loss of the matching algorithm.
In the next section, we discuss the performance of these protocols.

53

4.4 Modifications

In both of the above protocols, the client and server try to find the Normalized Hamming
Distance of the pairs (X,M) and (X ′,M ′). As we have discussed in Section-F.4, the matching
algorithm first takes N many cyclic rotations of X ′ and M ′, which are the orientations of
the biometric data. This involves r many right rotations, N − r− 1 many left rotations and
one with no rotation. Then the minimum of all the Normalized Hamming Distance is taken
into consideration to check the two iris data. If we ignore these cyclic rotations then the
matching rate decreases [13], which is not desirable.

We make some modifications to both IPFE-based protocol and HE-based protocol that
we have proposed here. The modifications are discussed in the following section.

4.4.1 Modifications in IPFE-based protocol

We have an advantage with the protocol based on IPFE. In the IPFE scheme by Mera et al.
[29] the message (x1, x2, · · ·x`) of size ` is encrypted as

ct0 = ar + f0

cti = pkir + fi + bq/Kcxi1R
After decryption we have a message close to bq/Kc 〈x, y〉 1R and we can extract 〈x, y〉.

Now consider n many messages m(0),m(1), · · · ,m(n−1) ∈ Z`. We encrypt these messages
using the IPFE scheme in a different way. Let’s consider the polynomials

mi(x) =
n∑
k=0

m
(k)
i xk for all i ∈ {0, 1, · · · , `}

Now we modify the encryption in the following way

ct0 = ar + f0

cti = pkir + fi + bq/Kcmi(x)

The decryption algorithm remains same and after decryption with functional key sky we

54

obtain the polynomial

d =
∑̀
i=0

yi ·mi(x) + noise

=
∑̀
i=0

yi

(n∑
j=0

m
(j)
i xj

)
+ noise

=
n∑
j=0

(∑̀
i=0

yi ·m(j)
i

)
xj + noise

=
n∑
j=0

〈
y,m(j)

〉
xj + noise

Therefore, the coefficient of xj in the polynomial d is the inner product of y and the j’th
message m(j).

We can consider all the messages m(i) for i ∈ [n] as a matrix of size ` × n, the columns
of the matrix are the messages. This matrix is encrypted using the modified encryption
method for RLWE-based IPFE. After decryption, we the inner products

〈
y,m(i)

〉
for all

i ∈ [n]. Thus we can encrypt at most n messages at a time.

The client in the protocol first generates all N many cyclic rotations of X ′ and M ′ and
for each of these rotations client creates corresponding messages m(i),M (i) for all i ∈ [N],
if N < n then all other messages can be taken as all 1’s. This messages are encrypted to
generate two ciphertexts ct1 and ct2.

At the server’s side, server selects y1 = X̃ ⊕Kx and y2 = 1n and generates the corre-
sponding functional keys sky1 , sky2 and after decryption the server obtains d

(i)
1 =

〈
y1,m

(i)
〉

and d
(i)
2 =

〈
y2,M

(i)
〉

for all i ∈ [N]. Now the value min
i

{
d
(i)
2 − d

(i)
1

2d
(i)
2

}
, minimum of all Nor-

malized Hamming Distances is used to compare with the threshold.

4.4.2 Modifications in HE-based protocol

The modification in the homomorphic encryption-based protocol the change is straightfor-
ward. The Figure 4.3 depicts the protocol.

The client send four encryptions C1 = Encpk(X̃ ′ �M ′), C2 = Enc(M ′), C3 = Encpk(M)

and C4 = Encpk(K̃x) to the server.

Server computes C = C4 ×h (X̃ ⊕Kx) which is C = Enc(X̃). Now with the help of
C,C1, C2 and C3 the server can now compute all the encryptions of score values S for each
cyclic rotations of X ′, M ′.

All these scores are sent to the client after blinding each with randomly chosen integers
pi and ri. The decryption of all these blinded scores are sent back to the server (as shown in

55

Figure 4.3: Protocol based on HE with 2r + 1 number of shift operations

Figure 4.3), where the server takes the smallest score to decide if the biometrics are matched
or not.

4.5 Experimental results

We use SEAL [39] to implement the protocol using Homomorphic Encryption. The protocol
using IPFE is implemented using the optimized implementation of the scheme in [29]. As
we have seen in the protocol description, in the IPFE based protocol the client needs to
send the ciphertexts to the server, then server queries for functional keys corresponding to
the vectors y1 and y2 and makes a decision without any further interaction with the client
but in HE based protocol server have to send a ciphertext back to the client that has to be
decrypted, so even after computation by the server we still have to consider the decryption
cost by the client for this HE based protocol.

We have used the CASIA Iris database for the biometric data. The algorithm in [13] extracts
a feature vector and a mask of 2048 bits.

All the experiments in this section are performed on 4 cores of Intel(R) Core(TM) i5-
8265U processor running at 1.60GHz with hyper-threading enabled, on Ubuntu 20.04.2 run-
ning on a HP 15-da1041TU laptop. All codes have been compiled using gcc-9.3.0 with

56

flags -O3 -fomit-frame-pointer -march=native.

In Table 4.3 we have the list of computations that client and server has to do for each of
the operations in HE-based protocol (without cyclic rotations).

Operations
Client

Client’s Total
Server

Server’s Total
Key Setup Encryption Decryption Computation

cpucycles 603045572 14540189 2663617 620249378 321598281 321598281

Table 4.3: The cpucycles for each of the operations done by client and server for the HE
based protocol implemented in Microsoft SEAL

In Table 4.4 we have the cpucycles required for the protocol implemented based on IPFE.
In this case the client has to setup keys, make encryption and generate functional keys but
the server on the other hand only has to decrypt and making a decision. Hence we have the
following table for three different levels of security.

cpucycles
Client

Client’s Total
Server

Server’s Total
Key Setup Encryption KeyGen Decryption

SEC LEVEL 0 625095993 477788560 72779686 1175664239 88219395 88219395

SEC LEVEL 1 1157076708 1345270046 192166297 2694513051 174886546 174886546

SEC LEVEL 2 2808825638 3428221626 307432325 6544479589 360046944 360046944

Table 4.4: The cpucycles for each of the operations done by client and server in the IPFE
based protocol

Clearly, we can see that the performance of Homomorphic Encryption for the protocol is
much more reasonable. But in reality, the matching algorithm involves a number of cyclic
rotations of the feature vector and the mask. Now we see what happens when we use the
modified version of the protocol.

Now, in the modified protocol based on HE, the server has to perform rotation on the
ciphertext sent by the client and computes on the ciphertexts to obtain a number of computed
ciphertexts. These must be sent to the client and all the decryptions must be sent back to the
server. So both server and client have to perform extra computation and the communication
cost also increases.

The Table 4.5 shows client and the server’s cost for different number of cyclic rotations
applied.

No. of shifts
Client

Client’s Total
Server

Server’s Total
Key Setup Encryption Decryption Computation

1 591241330 14428934 2668379 608338643 331915119 331915119

3 597766631 14467737 7649680 619884048 870367289 870367289

5 586208777 14459451 12380866 613049094 1390614963 1390614963

9 596517308 14341751 24802356 635661415 2478505242 2478505242

17 630778312 18632230 41762560 691173102 4626583024 4626583024

Table 4.5: The cpucycles with the shift operations for the HE based protocol implemented
in Microsoft SEAL

57

Clearly the computation in the server’s end increases and also the server and client have to
send a number of ciphertexts and plaintexts to each other, which also increases the commu-
nication cost. As we discussed in (4.4.1) for the modified protocol based on IPFE, the client
only sends two ciphertexts and follows the same protocol as before. So the computation cost
for the server and the client is the same as Table 4.4.

The tables that we have in this section only reflect how many cpucycles does the oper-
ations consume but on the other hand, if we include communication cost then we can see
that IPFE-based protocol has less communication cost than the HE-based protocol.

4.6 Conclusion

In this chapter, we have presented a secure privacy-preserving biometric authentication pro-
tocol based on IPFE. In the protocol, the client never reveals its biometric information to
the server. Even at the time of enrollment the server only gets some encrypted information
from the client. And at the time of verification client has to present the decryption keys.
Again, the accuracy of the matching algorithm by Daugman [13] depends upon the calcu-
lated NHD and here in our privacy-preserving protocol the NHD is correctly calculated.
Therefore, the prtocol does not lose any accuracy of the underlying matching algorithm.

Though we have used the RLWE-based IPFE, yet we can use any IPFE scheme for this
protocol. We have seen that, in our experimental results initially the HE-based protocol has
better performance in terms of computation. But when we modify the protocol to increase
the matching rate according to the Section 4.4, the construction of RLWE-based protocol
gives us an advantage over the communication cost.

58

Chapter 5

Conclusion and future work

Here in this chapter we have concluded the work and also summarized the possible direction
for future work.

5.1 Conclusion

OpenMP : Due to a large number of polynomials and coefficients in the polynomial op-
erations in the RLWE based schemes, performances are affected. These operations are not
complex in terms of computation and also these operations are quite similar to each other
only con is that it comes on a large scale. We have used OpenMP to distribute these works
among different threads giving us a scalable, fast implementation of the scheme [29] that
was our primary target in this thesis. In this work, we have used the Intel Core i5-8265U
processor to do all the experiments. The processor only has 4 cores that bound us to 8
threads (2 threads per core) which limits the performance of the implementation. Nowadays
processors with more cores are available in the market which can potentially increase the
performance of this implementation.

AVX2 optimization : Alongside OpenMP, we have also used AVX2 instructions to opti-
mize the implementation. Polynomial multiplication is one of the most intensive parts of any
RLWE-based scheme. The polynomial multiplication method used here is NTT which is the
default choice for most of the design choices for RLWE-based schemes. The reason for such a
popularity of NTT is that it runs in a quasi-linear time. In spite of being a quasi-linear time
algorithm, the large number of polynomial multiplication creates a bottleneck and naturally
it affects the performance, with or without NTT. Here we have presented an AVX2 imple-
mentation of the NTT multiplication which has indeed increased the performance of the
implementation. Since NTT is used widely in different schemes for polynomial multiplica-
tion, this work can be extended to any scheme that uses NTT for polynomial multiplication.
We have also used incomplete NTT which have shown a slight speed-up for this scheme than
the usual full NTT.

Application : In this work, we have also presented a secure privacy-preserving biometric
protocol where the client can securely authenticate to the server without revealing their own

59

biometric information to the server. Even at the time of enrollment the server only stores
data that has been encrypted by the client with some symmetric-key cryptosystem. We have
also shown how a similar HE-based protocol outperforms the IPFE based protocol at first but
IPEE-based protocol does have some advantages in terms of communication overhead when
we try to implement the modified protocol to increase the matching rate for the biometric
matching algorithm.

5.2 Future work

Large discrete Gaussian sampling Apart from the polynomial multiplication another
big challenge for RLWE-based schemes are discrete Gaussian sampling. The errors and
secrets are sampled using discrete Gaussian sampling. Just like polynomial multiplication,
the large scale of this operation creates a bottleneck degrading the performance. So efficient
implementation of this sampler can optimize the performance. We have optimized the NTT
multiplication but we have not explored the Gaussian sampler in this work. An efficient
implementation of the Gaussian sampler is not only useful for this scheme but also can be
useful for most of the RLWE-based schemes.

AVX-512 optimization Our current implementation is optimized with AVX2 instruc-
tions. The AVX-512 instructions support more instructions and the width of the registers
are double the size of AVX2. So we can pack more coefficients. Also, we can get 32 regis-
ters instead of 16 in AVX2. So optimizing with AVX-512 can have a huge impact on the
performance. Although it is not as widely available as AVX2 or AVX it’s only a matter of
time.

60

Appendix A

Assembly code for first three levels of
NTT

Here is the macro defined for the first three levels of NTT transformation with off as the
offset. q , q−1 mod 232 are already packed in ymm0 and ymm1 respectively. ymm15 is used to
load the twiddle factors.

The way these first three levels are done the same is applied to all consecutive three levels
except the final three levels.

1 .macro level0_2 off

2

3 #level 0

4 vmovdqa (8*\ off +1024)*4(% rdi),%ymm7

5 vmovdqa (8*\ off +1280)*4(% rdi),%ymm8

6 vmovdqa (8*\ off +1536)*4(% rdi),%ymm9

7 vmovdqa (8*\ off +1792)*4(% rdi),%ymm10

8

9 vpbroadcastd (%rdx),%ymm15

10

11 mul 15, 7

12 mont 7

13 mul 15, 8

14 mont 8

15 mul 15, 9

16 mont 9

17 mul 15, 10

18 mont 10

19

20 vmovdqa (8*\ off +0)*4(% rdi),%ymm3

21 vmovdqa (8*\ off +256)*4(% rdi),%ymm4

22 vmovdqa (8*\ off +512)*4(% rdi),%ymm5

23 vmovdqa (8*\ off +768)*4(% rdi),%ymm6

24

25 update 2, 3, 4, 5, 6, 7, 8, 9, 10

26

27 #level 1

28 vpbroadcastd 4(% rdx),%ymm15

29

62

30 mul 15, 4

31 mont 4

32 mul 15, 5

33 mont 5

34

35 vpbroadcastd 8(% rdx),%ymm15

36

37 mul 15, 9

38 mont 9

39 mul 15, 10

40 mont 10

41

42 update 6, 2, 3, 7, 8, 4, 5, 9, 10

43

44 #level 2

45 vpbroadcastd 12(% rdx),%ymm15

46 mul 15, 2

47 mont 2

48

49 vpbroadcastd 16(% rdx),%ymm15

50 mul 15, 5

51 mont 5

52

53 vpbroadcastd 20(% rdx),%ymm15

54 mul 15, 7

55 mont 7

56

57 vpbroadcastd 24(% rdx),%ymm15

58 mul 15, 10

59 mont 10

60

61 update 8, 6, 4, 3, 9, 2, 5, 7, 10

62

63 vmovdqa %ymm8 , (8*\ off +0)*4(% rdi)

64 vmovdqa %ymm2 , (8*\ off +256)*4(% rdi)

65 vmovdqa %ymm6 , (8*\ off +512)*4(% rdi)

66 vmovdqa %ymm5 , (8*\ off +768)*4(% rdi)

67 vmovdqa %ymm4 , (8*\ off +1024+0)*4(% rdi)

68 vmovdqa %ymm7 , (8*\ off +1024+256)*4(% rdi)

69 vmovdqa %ymm3 , (8*\ off +1024+512)*4(% rdi)

70 vmovdqa %ymm10 ,(8*\ off +1024+768)*4(% rdi)

71

72 .endm

63

Appendix B

Assembly code last two levels of
incomplete-NTT

Although the actual implementation performs the last 5 levels for incomplete-NTT (6 levels
for full-NTT) in one go but for the simplicity we have only presented the code for last 2
levels previous 3 levels are done exactly similar as level0 2 in Appendix A.

1 .macro final2_level

2

3 vmovdqa (%rdi),%ymm8

4 vmovdqa 32(% rdi),%ymm2

5 vmovdqa 64(% rdi),%ymm6

6 vmovdqa 96(% rdi),%ymm5

7 vmovdqa 128(% rdi),%ymm4

8 vmovdqa 160(% rdi),%ymm7

9 vmovdqa 192(% rdi),%ymm3

10 vmovdqa 224(% rdi),%ymm10

11

12 shuffle4 8, 2, 9, 2

13 shuffle4 6, 5, 8, 5

14 shuffle4 4, 7, 6, 7

15 shuffle4 3,10, 4,10

16

17 vmovdqa (%rdx), %ymm15

18 mul 15, 2

19 mont 2

20

21 vmovdqa 32(% rdx), %ymm15

22 mul 15, 5

23 mont 5

24

25 vmovdqa 64(% rdx), %ymm15

26 mul 15, 7

27 mont 7

28

29 vmovdqa 96(% rdx), %ymm15

30 mul 15, 10

31 mont 10

32

64

33 update 3, 9, 8, 6, 4, 2, 5, 7, 10

34

35 shuffle4 3, 2, 4, 2

36 shuffle4 9, 5, 3, 5

37 shuffle4 8, 7, 9, 7

38 shuffle4 6,10, 8,10

39

40 add $128 , %rdx

41

42 shuffle2 4, 2, 6, 2

43 shuffle2 3, 5, 4, 5

44 shuffle2 9, 7, 3, 7

45 shuffle2 8,10, 9,10

46

47 vmovdqa (%rdx), %ymm15

48 mul 15, 2

49 mont 2

50

51 vmovdqa 32(% rdx), %ymm15

52 mul 15, 5

53 mont 5

54

55 vmovdqa 64(% rdx), %ymm15

56 mul 15, 7

57 mont 7

58

59 vmovdqa 96(% rdx), %ymm15

60 mul 15, 10

61 mont 10

62

63 update 8, 6, 4, 3, 9, 2, 5, 7, 10

64

65 shuffle2 8, 2, 9, 2

66 shuffle2 6, 5, 8, 5

67 shuffle2 4, 7, 6, 7

68 shuffle2 3,10, 4,10

69

70 add $128 , %rdx

71

72 vmovdqa %ymm9 , (%rdi)

73 vmovdqa %ymm2 , 32(% rdi)

74 vmovdqa %ymm8 , 64(% rdi)

75 vmovdqa %ymm5 , 96(% rdi)

76 vmovdqa %ymm6 , 128(% rdi)

77 vmovdqa %ymm7 , 160(% rdi)

78 vmovdqa %ymm4 , 192(% rdi)

79 vmovdqa %ymm10 ,224(% rdi)

80

81 add $256 , %rdi

82 .endm

65

Appendix C

Permutations π1, π2 and π4

The permutaions π1, π2 and π4 are implemented as shuffle1, shuffle2 and shuffle4. The
codes are taken from the implementation of Kyber 1.

1 .macro shuffle1 r0,r1,r2,r3

2

3 vmovsldup %ymm\r1 ,%ymm\r2

4 vpblendd $0xAA ,%ymm\r2 ,%ymm\r0 ,%ymm\r2
5 vpsrlq $32 ,%ymm\r0 ,%ymm\r0
6 vpblendd $0xAA ,%ymm\r1 ,%ymm\r0 ,%ymm\r3
7

8 .endm

1 .macro shuffle2 r0,r1,r2,r3

2

3 vpunpcklqdq %ymm\r1 ,%ymm\r0 ,%ymm\r2

4 vpunpckhqdq %ymm\r1 ,%ymm\r0 ,%ymm\r3

5

6 .endm

1 .macro shuffle4 r0,r1,r2,r3

2

3 vperm2i128 $0x20 ,%ymm\r1 ,%ymm\r0 ,%ymm\r2
4 vperm2i128 $0x31 ,%ymm\r1 ,%ymm\r0 ,%ymm\r3
5

6 .endm

1https://github.com/pq-crystals/kyber

66

https://github.com/pq-crystals/kyber

Appendix D

Assembly code for multiplication and
Montgomery reduction

For multiplication in AVX2, we use the following code. Here two packed 32-bit coefficients
in registers indexed by r0, r1 are multiplied together and the low 32-bits of multiplication
are stored in register indexed by rl and high 32 bits of multiplication are stored in register
indexed by rh. By default these rh and rl are set to 13 and 12 respectively.

1 .macro mul r0, r1, rl=13, rh=12 , e1=11

2

3 vpmuludq %ymm\r0, %ymm\r1, %ymm\rh

4 vmovshdup %ymm\rh, %ymm\rh

5 vmovshdup %ymm\r1, %ymm\e1

6 vmovshdup %ymm\r0, %ymm\rl

7 vpmuludq %ymm\rl, %ymm\e1, %ymm\e1

8 vmovshdup %ymm\e1, %ymm\e1

9 vpblendd $0xAA , %ymm\e1 , %ymm\rh , %ymm\rh

10 vpmulld %ymm\r0 , %ymm\r1 , %ymm\rl

11

12 .endm

Below is the code for Montgomery reduction in AVX2. After multiplication the result
must be reduced. We use the packed high and low 32-bit of the multiplication in ymm12
and ymm13 respectively. Also the constants q and q−1 mod 232 are packed in ymm0 and ymm1
respectively.

1 .macro mont r, q=0, qi=1

2

3 vpmulld %ymm13 , %ymm\qi , %ymm13

4 vpmuludq %ymm13 , %ymm\q, %ymm\r

5 vmovshdup %ymm\r, %ymm\r

6 vmovshdup %ymm13 , %ymm13

7 vpmuludq %ymm13 , %ymm\q, %ymm13

8 vpblendd $0xAA , %ymm13 , %ymm\r, %ymm\r

9 vpsubq %ymm\r, %ymm12 , %ymm\r

10 vpsrad $31 , %ymm\r, %ymm13

11 vpand %ymm13 , %ymm\q, %ymm13

12 vpaddq %ymm\r, %ymm13 , %ymm\r

13

14 .endm

67

Appendix E

Assembly code for 2 × 2 base
multiplication for incomplete-NTT

The following is the AVX2 code for 2× 2 base multiplication of two degree one polynomials
of the form f(x) = a0 + a1x and g(x) = b0 + b1x. Here we are packing eight pairs such
polynomial in four registers indexed by l0, l1, r0, r1.

If the eight polynomials are of the form f (i)(x) = a
(i)
0 + a

(i)
1 x and g(i)(x) = b

(i)
0 + b

(i)
1 x for

0 ≤ i < 8, then the coefficients a
(i)
0 , a

(i)
1 , b

(i)
0 and b

(i)
1 for 0 ≤ i < 8 are packed in registers

indexed by l0, l1, r0 and r1 respectively.

The final resultant polynomials are packed in two registers. The low coefficients and the
high coefficients of the resultant polynomials and packed in registers indexed by l0 and f
respectively.

1 .macro multupdate l0, l1, r0, r1, f

2

3 vpaddq %ymm\l0, %ymm\l1 , %ymm\f

4 vpsubq %ymm0 , %ymm\f, %ymm\f

5 vpsrad $31 , %ymm\f, %ymm11

6 vpand %ymm11 , %ymm0 , %ymm11

7 vpaddq %ymm11 , %ymm\f, %ymm\f

8

9 mul 15, \l0

10 mont \l0

11 mul 15, \l1

12 mont \l1

13 mul 15, \f

14 mont \f

15

16 mul \l0 , \r0

17 mont \l0

18 mul \l1 , \r1

19 mont \l1

20

21 vpaddq %ymm\r0, %ymm\r1 , %ymm\r0

22 vpsubq %ymm0 , %ymm\r0 , %ymm\r0

23 vpsrad $31 , %ymm\r0 , %ymm11

68

24 vpand %ymm11 , %ymm0 , %ymm11

25 vpaddq %ymm11 , %ymm\r0 , %ymm\r0

26

27 mul \f, \r0

28 mont \f

29

30 vpaddq %ymm\l0, %ymm\l1 , %ymm\r0

31 vpsubq %ymm0 , %ymm\r0 , %ymm\r0

32 vpsrad $31 , %ymm\r0 , %ymm11

33 vpand %ymm11 , %ymm0 , %ymm11

34 vpaddq %ymm11 , %ymm\r0 , %ymm\r0

35

36

37 vpsubq %ymm\r0, %ymm\f, %ymm\f

38 vpsrad $31 , %ymm\f, %ymm11

39 vpand %ymm11 , %ymm0 , %ymm11

40 vpaddq %ymm11 , %ymm\f, %ymm\f

41

42 vmovdqa (%rcx), %ymm\r1

43 add $32 , %rcx

44

45 mul \r1 , \l1

46 mont \l1

47

48 vpaddq %ymm\l0, %ymm\l1 , %ymm\l0

49 vpsubq %ymm0 , %ymm\l0 , %ymm\l0

50 vpsrad $31 , %ymm\l0 , %ymm11

51 vpand %ymm11 , %ymm0 , %ymm11

52 vpaddq %ymm11 , %ymm\l0 , %ymm\l0

53

54 .endm

69

Appendix F

Iris matching algorithm [13, 43]

The iris matching algorithm involves an image of the eye and then extracting iris data from
the image to use that data for matching the biometric data. Therefore, first, we need to find
the iris in a given image.

F.1 Localizing and isolating iris

First, the target is to find the iris boundaries both outer and inner boundary, also we have
to find the centre of the pupil, The algorithm by [13] make use of the first derivatives of
image intensity to signal the location of edges that correspond to the borders of the iris.
Here, the notion is that the magnitude of the derivative across an imaged border will show
a local maximum due to the local change of image intensity.

Let I represent the iris image and I(x, y) be the intensity of the image at the location
(x, y). Let the circular boundaries be parameterized by center location (xc, yc) and radius r.
The algorithm fits the circular contours via gradient ascent on the parameters (xc, yc, r) so
as to maximize ∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r,xc,yc

I(x, y)

2πr
ds

∣∣∣∣ (F.1)

Here G(r) = 1√
2πr
e−

(r−r0)
2

2σ2 is a radial Gaussian with center r0 and standard deviation σ that
smooths the image to select the spatial scale of edges under consideration, ∗ symbolizes con-
volution, ds is an element of circular arc, and division by 2πr serves to normalize the integral.

The Equation F.1 serves to find both the pupillary boundary and the outer (limbus)
boundary of the iris. After this step, the centre along with radius (xc, yc, r0), the outer and
inner boundaries of the iris are found. In the next step, this iris data are to be transformed
into binary data.

70

F.2 Iris feature encoding by 2D wavelet demodulation

Each isolated iris pattern is then demodulated to extract its phase information using quadra-
ture 2D Gabor wavelets (See [14]). First of all, the coordinates (x, y) are transformed into
polar coordinates (ρ, φ) with respect to the parameters (xc, yc, r0). Now we can denote the
intensities of the image as I(ρ, φ) at (ρ, φ) polar coordinate. Now, this data is projected
onto a complex plane with the complex-valued Gabor wavelets and the bits are extracted
according to which quadrant it belongs to.

h{Re,Im} = sgn{Re,Im}

(∫
ρ

∫
φ

I(ρ, φ)e−iω(θ−φ)e−(r−ρ)
2/α2

e−(θ−φ)
2/β2

ρ dρ dφ

)
(F.2)

Here the sgn{Re,Im} function works as follows for any complex value z

sgn{Re,Im}(z) =

(0, 0) , if z is in first quadrant

(0, 1) , if z is in second quadrant

(1, 0) , if z is in third quadrant

(1, 1) , if z is in fourth quadrant

α and β are the multi-scale 2D wavelet size parameters, spanning an 8-fold range from 0.15
to 1.2 mm on the iris. ω is wavelet frequency, spanning three octaves in inverse proportion
to β and (r, θ) represents the polar coordinates of each region of iris for which h{Re,Im} is
computed. The value h{Re,Im} is two bis of data, this are called phase bits. Altogether 2048
such phase bits (256 bytes) are computed for each iris and an equal number of masking bits
are also computed to signify whether any iris region is obscured by eyelids, contains any
eyelash occlusions, specular reflections, boundary artifacts of hard contact lenses, or poor
signal-to-noise ratio and thus should be ignored in the demodulation code as artifact.

F.3 Matching

The key to iris recognition is the failure of a test of statistical independence, This test of
independence is determined by a computation of normalized Hamming distance or fractional
Hamming distance, for two irises whose two-phase code bit vectors are denoted {CA, CB}
and whose mask bit vectors are denoted {MA,MB} the normalized Hamming distance is
defined by :

NHD =

∣∣(CA ⊕ CB) ·MA ·MB

∣∣∣∣MA ·MB

∣∣
The threshold τ thas to be selected that will decide whether the two iris data are statistically
independent or not. The method to select τ has been discussed in detail in [13].

71

F.4 Rotations

Robust representations for pattern recognition must be invariant under transformations in
the size, position, and orientation of the patterns. Now one naive way for orientation is to
rotate the iris image and compute as we discussed in previous sections. But it is better that
we first transform the iris data to polar coordinate like we did in Section F.2, and now orien-
tation is easy by making changes in the angle of the polar coordinate. Now when calculating
h{Re,Im} in Section F.2, one thing that we can observe is that if the whole image was rotated
with respect to the centre (xc, yc) then the values of the phase bits will same as before with
some cyclic scrolling of its angular variable. Therefore, instead of rotating the image now,
we can make a cyclic rotation on the 2048 phase bits.

Since now can calculate different orientations of iris data, now we will calculate all NHD
with n orientations in one iris and the "best of n" is taken as the relative Hamming distance
between the two iris data.

72

Bibliography

[1] Openmp api specification: Version 5.1. URL https://www.openmp.org/spec-html/

5.1/openmp.html.

[2] Openmp, Jun 2021. URL https://en.wikipedia.org/wiki/OpenMP.

[3] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple func-
tional encryption schemes for inner products. In Jonathan Katz, editor, Public-Key
Cryptography – PKC 2015, pages 733–751, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg. ISBN 978-3-662-46447-2.

[4] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 333–362, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53015-3.

[5] Paul Barrett. Implementing the rivest shamir and adleman public key encryption algo-
rithm on a standard digital signal processor. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 311–323, Berlin, Heidelberg, 1987. Springer Berlin
Heidelberg. ISBN 978-3-540-47721-1.

[6] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 213–229, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-44647-7.

[7] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Joe Kilian, editor, Theory of Cryptography, pages 325–341, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-30576-7.

[8] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals – kyber: a cca-
secure module-lattice-based kem. Cryptology ePrint Archive, Report 2017/634, 2017.
https://eprint.iacr.org/2017/634.

[9] Florian Bourse. Functional Encryption for Inner-Product Evaluations. PhD thesis, 12
2017.

[10] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-unfriendly rings. Cryp-
tology ePrint Archive, Report 2020/1397.

73

https://www.openmp.org/spec-html/5.1/openmp.html
https://www.openmp.org/spec-html/5.1/openmp.html
https://en.wikipedia.org/wiki/OpenMP
https://eprint.iacr.org/2017/634

[11] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of com-
plex fourier series. Mathematics of Computation, 19(90):297–301, 1965. ISSN 00255718,
10886842. URL http://www.jstor.org/stable/2003354.

[12] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998. doi:
10.1109/99.660313.

[13] J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems
for Video Technology, 14(1):21–30, 2004. doi: 10.1109/TCSVT.2003.818350.

[14] J.G. Daugman. Complete discrete 2-d gabor transforms by neural networks for im-
age analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 36(7):1169–1179, 1988. doi: 10.1109/29.1644.

[15] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/
2012/144.

[16] Richard P Feynman. Simulating physics with computers. International journal of
theoretical physics, 21(6/7):467–488, 1982.

[17] W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and profit. In
Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, AFIPS ’66
(Fall), page 563–578, New York, NY, USA, 1966. Association for Computing Machin-
ery. ISBN 9781450378932. doi: 10.1145/1464291.1464352. URL https://doi.org/10.

1145/1464291.1464352.

[18] Craig Gidney and Martin Ekeraa. How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits. Quantum, 5:433, April 2021. ISSN 2521-327X. doi:
10.22331/q-2021-04-15-433. URL https://doi.org/10.22331/q-2021-04-15-433.

[19] Oded Goldreich, Daniele Micciancio, S. Safra, and J. Seifert. Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors.

[20] Torbjrn Granlund and Gmp Development Team. GNU MP 6.0 Multiple Precision
Arithmetic Library. Samurai Media Limited, London, GBR, 2015. ISBN 9789888381968.

[21] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography.

[22] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In Nigel Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, pages 146–162, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. ISBN 978-3-540-78967-3.

[23] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J.
Wu. Function-hiding inner product encryption is practical. Cryptology ePrint Archive,
Report 2016/440, 2016. https://eprint.iacr.org/2016/440.

74

http://www.jstor.org/stable/2003354
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.22331/q-2021-04-15-433
https://eprint.iacr.org/2016/440

[24] Rohan Kulkarni and Anoop Namboodiri. Secure hamming distance based biometric
authentication. In 2013 International Conference on Biometrics (ICB), pages 1–6, 2013.
doi: 10.1109/ICB.2013.6613008.

[25] Yongnan Li, Limin Xiao, Aihua Liang, Yao Zheng, and Li Ruan. Fast parallel garner
algorithm for chinese remainder theorem. In James J. Park, Albert Zomaya, Sang-Soo
Yeo, and Sartaj Sahni, editors, Network and Parallel Computing, pages 164–171, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-35606-3.

[26] Vadim Lyubashevsky and Gregor Seiler. Nttru: Truly fast ntru using ntt. Cryptology
ePrint Archive, Report 2019/040.

[27] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, pages 1–23, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-
642-13190-5.

[28] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Cryptology ePrint Archive, Report 2012/230, 2012. https:

//eprint.iacr.org/2012/230.

[29] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian.
Efficient lattice-based inner-product functional encryption. Cryptology ePrint Archive,
Report 2021/046.

[30] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor,
Advances in Cryptology — CRYPTO ’85 Proceedings, pages 417–426, Berlin, Heidelberg,
1986. Springer Berlin Heidelberg. ISBN 978-3-540-39799-1.

[31] P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44:519–521, 1985.

[32] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. Quantum Info. Comput., 3(4):317–344, July 2003. ISSN 1533-7146.

[33] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56:34:1–34:40, 2009.

[34] Oded Regev. Lecture notes: Lattices in computer science. URL https://cims.nyu.

edu/~regev/teaching/lattices_fall_2009/.

[35] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
November 2004. ISSN 0004-5411. doi: 10.1145/1039488.1039490. URL https://doi.

org/10.1145/1039488.1039490.

[36] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, page 84–93, New York, NY, USA, 2005. Association for
Computing Machinery. ISBN 1581139608. doi: 10.1145/1060590.1060603. URL
https://doi.org/10.1145/1060590.1060603.

75

https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/
https://doi.org/10.1145/1039488.1039490
https://doi.org/10.1145/1039488.1039490
https://doi.org/10.1145/1060590.1060603

[37] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978. ISSN 0001-
0782. doi: 10.1145/359340.359342. URL https://doi.org/10.1145/359340.359342.

[38] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, ed-
itor, Advances in Cryptology – EUROCRYPT 2005, pages 457–473, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-32055-5.

[39] SEAL. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, Novem-
ber 2020. Microsoft Research, Redmond, WA.

[40] Gregor Seiler. Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptography.
Cryptology ePrint Archive, Report 2018/039, 2018. https://eprint.iacr.org/2018/
039.

[41] Adi Shamir. Identity-based cryptosystems and signature schemes. In George Robert
Blakley and David Chaum, editors, Advances in Cryptology, pages 47–53, Berlin, Hei-
delberg, 1985. Springer Berlin Heidelberg. ISBN 978-3-540-39568-3.

[42] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994. doi: 10.1109/SFCS.1994.365700.

[43] R.P. Wildes. Iris recognition: an emerging biometric technology. Proceedings of the
IEEE, 85(9):1348–1363, 1997. doi: 10.1109/5.628669.

76

https://doi.org/10.1145/359340.359342
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039

	Abstract
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Objective
	Summary of the thesis

	Preliminaries
	Lattice
	Computational problems
	Shortest vector problem (SVP) regevlec
	Closest vector problem (CVP) regevlec

	Learning with errors
	Functional encryption ipfe1
	RLWE-based IPFE scheme eprint21-046
	Selectively secure IPFE based on RLWE
	Adaptively secure IPFE based on RLWE
	Parameters of the scheme

	Improving efficiency of RLWE based IPFE
	Primitives used for implementation
	Chinese remainder theorem (CRT)
	Number theoretic transformation (NTT)
	Choice of primes
	Modular reductions

	OpenMP optimization
	Introduction to OpenMP omp
	Parallelization with OpenMP
	Scheduling
	Scalability
	Experimental results

	AVX2 Optimization
	8-point NTT
	NTT with AVX2
	Incomplete NTT
	Reducing loads and stores
	Experimental results

	Conclusion

	Privacy preserving biometric protocol
	Preliminaries
	Transformation of the binary vector and some results
	Calculating NHD using inner product

	Privacy preserving biometric protocol using IPFE
	Protocol
	Correctness
	Change in parameters of the RLWE based IPFE scheme eprint21-046

	HE based privacy preserving biometric protocol
	Protocol
	Correctness

	Modifications
	Modifications in IPFE-based protocol
	Modifications in HE-based protocol

	Experimental results
	Conclusion

	Conclusion and future work
	Conclusion
	Future work

	Assembly code for first three levels of NTT
	Assembly code last two levels of incomplete-NTT
	Permutations 1, 2 and 4
	Assembly code for multiplication and Montgomery reduction
	Assembly code for 22 base multiplication for incomplete-NTT
	Iris matching algorithm iris, iris2
	Localizing and isolating iris
	Iris feature encoding by 2D wavelet demodulation
	Matching
	Rotations

	Bibliography

