
Video Frame Prediction using Deep
Learning

Bala Murali Krishna Kola

Video Frame Prediction using Deep Learning

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Bala Murali Krishna Kola
[Roll No: CS-1929]

under the guidance of

Prof. Bhabatosh Chanda
Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata-700108, India

July 2021

To my parents and my guide

CERTIFICATE

This is to certify that the dissertation entitled “Video Frame Prediction using

Deep Learning” submitted by Bala Murali Krishna Kola to Indian Statistical

Institute, Kolkata, in partial fulfillment for the award of the degree of Master of

Technology in Computer Science is a bonafide record of work carried out by him

under my supervision and guidance. The dissertation has fulfilled all the requirements

as per the regulations of this institute and, in my opinion, has reached the standard

needed for submission.

Prof. Bhabatosh Chanda
Professor,

Electronics and Communication Sciences Unit,

Indian Statistical Institute,

Kolkata-700108, INDIA.

Acknowledgments

I would like to show my highest gratitude to my advisor, Prof. Bhabatosh Chanda,

Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata,

for his guidance, continuous support and encouragement.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable

discussions which added an important dimension to my work.

Finally, I am very much thankful to my parents for their everlasting support.

Last but not the least, I would like to thank all of my friends for their help and

support especially Prajyot, Deepak and Ganesh who stuck with me through thick

and thin.

Bala Murali Krishna Kola

Indian Statistical Institute

Abstract

Advances in Deep Learning helped in developing exiting applications in the past

few years like Style Transfer, Image Generation. It has helped us achieving super

human performance and state-of-the-art results in various tasks like Object Recog-

nition/Classification. It has established itself as a go-to technique for solving variety

of tasks like Machine Translation in Natural Language Processing to Image Classifi-

cation, Image Captioning in Computer Vision etc. Future Frame prediction is one of

the problems in Computer Vision that received a lot of interest in the recent past for

its use in Autonomous Driving, Weather Forecasting, Traffic Estimation etc. Next

Frame Prediction is the focus of this thesis. This work will explain the fundamentals

of future frame prediction and it will give an overview of existing approaches and

present an approach to solve the problem.

Keywords: Video prediction, Future frame prediction, Convolutional LSTMs,

Long Short Term Memory networks, Recurrent Neural Networks

1

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Applications . 4

1.3 Problem Statement . 5

1.4 Our approach and contribution . 6

1.5 Thesis Outline . 6

2 Fundamentals 7

2.1 Recurrent Neural Networks . 7

2.2 Long Short Term Memory networks 9

2.3 Sequence-to-Sequence Models . 10

2.4 Quality Evaluation Metrics . 11

2.4.1 Structual Similarity Index . 11

2.4.2 Peak Signal-to-Noise Ratio . 12

3 Literature Review 13

3.1 Fully Connected LSTM for Future Prediction 13

3.2 Convolutional LSTM Model . 14

4 Experiments 17

4.1 Model Architecture . 17

4.2 Training . 18

2

CONTENTS 3

4.2.1 Moving-MNIST Dataset . 18

4.2.2 Loss Function . 18

4.2.3 Parameter Tuning and Results 19

4.2.4 Results . 19

4.3 Software . 23

5 Conclusion 24

5.1 Summary and Future Work . 24

Chapter 1

Introduction

1.1 Motivation

Intelligent Decision Making systems require understanding of the surrounding envi-

ronment they interact with to take smart decisions. Better decision can be made

if future can be predicted reliably. Ability to infer the position and motion of ve-

hicles/pedestrians in the scene helps Self driving cars to drive effectively. Usually

such systems get input from environment through video camera. Thus next Frame

Prediction in essence tries to predict future image(s) from the previously observed

sequence of images(events). Next frame prediction has been used in various applica-

tions, thus enabling us to have a better understanding of our surroundings. In order

to achieve this, we should come up with a mechanism that can model the contents

and dynamics of the scene efficiently. We need to extract spatio-temporal correla-

tions. The use of Deep Learning over traditional Machine Learning techniques is that

former doesn’t require features to be picked manually and is capable of extracting fea-

tures/representations from high dimensional image data. Recent studies have shown

that Deep Learning has been successful in learning useful image representations[7]

1.2 Applications

Some of the applications where future frame prediction proven to be useful are

• Weather Nowcasting [15]

4

1.3. Problem Statement 5

• Pedestrian Trajectories in traffic [2]

• Predicting future Object locations [11]

• Autonomous Driving [6]

• Video Interpolation [10]

• Precaution against unusual or unexpected activity detection [20]

1.3 Problem Statement

Humans find it trivial to estimate the position of objects in the scene by means of the

physical rules they learn over time, but it is non-trivial for a machine. For example,

consider the video of a ball thrown in air, we can estimate the future image sequence

at least for a frame or two based on our intuition (laws of physics) about the motion

of the ball. The task is to predict the subsequent frames, given a sequence of past

video frames.

To define the problem formally, let X t ∈ Rw×h×c be the t-th frame in the video

sequence X = (Xt−n+1, ..., Xt−1, Xt) with n frames, where w, h and c denote width,

height and number of channels respectively. The goal is to find out the subsequent

sequence of frames Ŷ = (Ŷt+1, Ŷt+2, ..., Ŷt+m) based on the given input X, where

m ≥ 1 and Y t ∈ Rw×h×c.

Note that videos are generated in various ways and purposes. Most common form

is movie: either feature film or documentary or promotional. Other two well known

forms are surveillance and navigational. In case of movies for telling the story in

an interesting way, video is captured continuously only for a short duration, called

shot, and then shots are concatenated to make the full movie. Within a shot camera

movement and also the movements of object in the scene are nil to small. As a result,

content of the frames within a shot changes very slowly. On the other hand, frame

content changes significantly from one shot to next shot in a movie. Surveillance and

navigational videos may be considered to have single shot only. The task of video

frame detection assumes that both X and Y are from the same shot.

6 1. Introduction

1.4 Our approach and contribution

We have developed a model based on ConvLSTM [15] for predicting the next frame.

Note that while the previous works used encoder-decoder type network, we stack

multiple (three, in this work) layers of ConvLSTM followed by a 3D Convolution

layer. This is clearly a major architectural modification to achieve the goal and may

be considered as our contribution.

Ability to infer the next frame from fewer number of past frames is desirable. So,

we predicted the next frame using past k frames, We have, through rigorous exper-

iments, shown that k = 5 is sufficient to achieve acceptable result. This is another

contribution that arises out of this work.

This is done as follows. Set of past k frames are used to predict the next frame and

value of k is varied from 1 to 10. We evaluated each set of these predictions against

the original frames. These predictions are evaluated using Structural Similarity Index

(SSIM) [19] and Peak signal-to-noise ratio (PSNR). We find out that the improvement

in visual quality isn’t really appealing as we keep increasing the number of past frames

beyond k = 5 for predicting the next frame.

1.5 Thesis Outline

Subsequent chapters of the thesis are organized as follows:

• Chapter 2 covers the fundamentals required for understanding various tech-

niques that are presented in the later chapters

• Chapter 3 presents the literature review of existing approaches, underlying

architecture. This gives a detailed view of each of the techniques.

• Chapter 4 discusses experimental results

• Chapter 5 summarizes overall results and prospective directions

Chapter 2

Fundamentals

To better understand the material presented in the later chapters let’s review the

basics of Recurrent Neural Networks, encoder-decoder models etc.

2.1 Recurrent Neural Networks

Recurrent Neural Networks(RNNs) [14] are suitable for processing sequential infor-

mation. They are designed to extract long term dependencies. In a typical Neural

Network, outputs are independent of each other but that’s not the case with certain

applications like sentence completion. Output at current time step relies on the com-

putation in the previous time steps. It’s useful to think of RNNs as having memory

which captures what has been processed till the current time step.

Figure 2.1: RNN Unfolded, Source: Goodfellow-et-al

7

https://www.deeplearningbook.org/contents/rnn.html

8 2. Fundamentals

Figure 2.1 explains how an RNN looks like on unrolling and how sequential data flows

through the network. The parameters invovled are

• x(t) is the input at time t. It could be a embedding vector of a word or a frame

in an image.

• h(t) is the hidden state at time t. This state acts like memory. h(t) is calculated

on the basis of h(t−1) and x(t). This is how the long term dependencies are

propagated forward through the network.

• o(t) is the output of the network for the input x(t) at time step t

The equations governing RNNs are

a(t) = Ux(t) + Wh(t−1) + b (2.1)

h(t) = tanh (a(t)) (2.2)

o(t) = Vh(t) + c (2.3)

ŷ(t) = softmax(o(t)) (2.4)

where b, c are biases and U,W,V are parameters of the network. Here ŷ(t) is the

prediction for the time step t. We use same parameters across all time steps of an

RNN. This is how RNNs exploit weight sharing. Time invariance is also achieved

in this manner. Take text generation for example, slight difference in position of a

subject in a sentence should not alter the corresponding pronoun and we can’t have

different weights that can identify the subject at different time steps.

Theoretically, RNNs are capable of capturing long term dependencies irrespective of

the number of time steps but in practice they aren’t really promising. While training

the network, RNNs suffer from Vanishing/Exploding gradient problem during the

process of back-propagation through time, especially if the RNN is too deep. As a

work around, other variants of RNNs like LSTM, GRU are proposed.

2.2. Long Short Term Memory networks 9

2.2 Long Short Term Memory networks

Long Short Term Memory networks [5] (LSTMs) are designed to mitigate the issue of

Vanishing/Exploding gradient problems that crop up during training of vanilla RNNs.

They are proven to be better than RNNs at capturing long term dependencies and

are extensively used in variety of applications.

Figure 2.2: LSTM Architecture, Source: colah’s blog (see text)

Figure 2.2, borrowed from Colah’s blog∗, gives a clear picture of internal structure of

an LSTM cell. There are three sigmoid gates namely f, i, o respectively from left to

right in figure 2.2 above in an LSTM cell. These are the equations for LSTM Cell in

its vanilla form.

f (t) = σ(Ufx
(t) + Wfh

(t−1) + bf) (2.5)

i(t) = σ(Uix
(t) + Wih

(t−1) + bi) (2.6)

g(t) = tanh (Ugx
(t) + Wgh

(t−1) + bg) (2.7)

o(t) = σ(Uox
(t) + Woh

(t−1) + bo) (2.8)

c(t) = f (t) � c(t−1) + i(t) � g(t) (2.9)

h(t) = o(t) � tanh (c(t)) (2.10)

One thing to note is that g is exactly the hidden state h in the standard RNN. It’s

a candidate state determined purely using the input at the current time step. � is

point-wise vector product.

∗http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

10 2. Fundamentals

• c(t) is the internal memory of the unit and it’s a combination of memory from

previous units c(t−1) in the network and the current candidate state g(t). The

combination is determined from the f and i gates.

• The forget gate f determines what info from c(t−1) to be retained/forget from

the previous time steps.

• The input gate i estimates what info from the candidate state g to pass through

to the next time steps i.e to calculate the new cell state c(t)

• The output gate o measures how much of cell state to be exposed to the network

for future time steps.

It’s this gating mechanism, particularly the cell state c(t), that allows LSTM to over-

come the challenge of vanishing gradients thereby successfully propagate the error

backwards and also gives the ability to maintain dependencies that were captured

over relatively longer sequences.

2.3 Sequence-to-Sequence Models

Typically RNNs map input sequences to output sequences i.e they generate an output

ŷ(t) for input x(t). But that’s not always desirable take for example of sentence

translation. It’s not always the case that every input word has a corresponding

output word. Length of the input sequence and output sequences might not be same.

In such cases, it’s better to produce/predict the output sequence once we process the

whole input sequence. Such models are called sequence-to-sequence models [17].

Figure 2.3: The sequence-to-sequence architecture, Source: [17]

A sequence-to-sequence models a re also called encoder-decoder models as they typi-

cally contains two RNN based modules an Encoder and a Decoder. Encoder distills

2.4. Quality Evaluation Metrics 11

the inputs sequence such that its output along with the internal cell states captures

the input representations concisely. The decoder unit takes the outputs of encoder

along with encoders final cell state and then starts producing the target sequence.

The difference between the vanilla RNNs and the sequence-to-sequence models is that

former models the distribution

P (Yt|X1, . . . , Xt, Y1, . . . , Yt−1)

whereas the second one models the distribution

P (Yt|X1, . . . , XT , Y1, . . . , Yt−1)

where T is the length of the input sequence i.e seq-to-seq Models takes into account

the whole input sequence for generating the output sequences.

2.4 Quality Evaluation Metrics

We need to evaluate the quality of the predicted frames against the ground truth

frames. We have used the following metrics

2.4.1 Structual Similarity Index

Structural Similarity (SSIM)[19] is used to calculate the perceptual similarity between

two images. It compares the two images based on luminance l(x,y), contrast and

structural similarity metric cs(x,y) [21]. SSIM is calculated as:

SSIM(x,y) = l(x,y) · cs(x,y) (2.11)

This value lies in range [0, 1], higher the value of SSIM indicates greater the similarity

between the two images. The metrcis l(x,y) and cs(x,y) are defined as:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(2.12)

cs(x,y) =
2σxy + C2

σ2
x + σ2

y + C2

(2.13)

12 2. Fundamentals

where µ•, σ• are the mean, standard deviation respectively and σxy is the covariance

of x and y. The constants C1 = (K1 ·L)2, C2 = (K2 ·L)2 where K1 = 0.01, K2 = 0.03

and L is the dynamic range of pixel values in the image. Typically for 8-bit gray scale

images L = 255, since we normalize our images, we set L to 1 while calculating SSIM

2.4.2 Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) is another metric used to assess two images. It is

the ratio between maximum possible pixel intensity and the noise that corrupts the

image during the reconstruction process.

PSNR(x,y) = 10 · log

(
y2
max

1
wh

∑w
i=1

∑h
j=1 (xij − yij)

2

)
(2.14)

where ymax is the maximum intensity possible for a pixel in an image with the size

w × h. It is measured in log decibel scale. Higher the PSNR means lesser the

reconstruction error. This implies the quality of the prediction is better.

Chapter 3

Literature Review

Video frame prediction has attracted attention of the researchers since last decade

associated with various applications. So quite a few methods have already been

reported [2], [6], [10], [11]. Bhattacharyya et al. tried to predict the movement of

pedestrians in next couple of frames in traffic scenario [2]. This may help autonomous

driving system in a busy area. However, the method proposed by Hu et al. [6]

proposed a frame prediction technique for explicitly autonomous driving. Liu et

al. [10] suggested a more general method for various types of appliactions. They

considered video data as a volume (3-dimensional: x, y, t) and have built voxel flow

network to synthesize the future frames. A very important application is addressed

in [11] where using RADAR cloud images from the past the precipitation and rainfall

are predicted for one hour into the future. They have used a recurrent model on

image sequences to achieve the goal. Two other neural network based systems for

video frame prediction is presented below in a more detail because of their proximity

to our work.

3.1 Fully Connected LSTM for Future Prediction

A video sequence is a time series of frame. We need to use an RNN based model to

capture temporal correlations among the video frames. Srivastava et al. [16] came

up with the idea of FC-LSTMs to solve the problem. They used a a pretrained

convolutional network to convert the video frames into some high-level representations

(vectors) or vectorized by flattening the frame. Then they feed these vectors to LSTM

13

14 3. Literature Review

based encoder-decoder model to produce the future frames. Figure 3.1 shows how

the future frames are generated.

Figure 3.1: LSTM Future Predictor Model, Source: [16]

Video frames are fed to the encoder module. Once the encoder process the input

sequence, the final state of the encoder is the representation of the input video se-

quence. It is then copied to the decoder. Decoder takes over from this point and then

start producing the future frames of the video, one frame per time step. A frame

is generated by feeding the previously predicted frame as input at the current time

step.

The reason why it is called Fully Connected LSTM is that every pixel in the input

image is connected to every pixel in the output image. Connections among uncor-

related regions are redundant. This is the issue with this approach as it requires

huge number of parameters. To overcome this caveat, ConvLSTM has come into the

picture and it is discussed next.

3.2 Convolutional LSTM Model

In order to predict the frame in future, we need to capture spatial inner structure

within the frames and how it evolves over time. It’s ideal to use convolutions in

an RNN based model to extract spatial correlations. This is the motivation for

Convolutional LSTM (ConvLSTM) unit. Shi et al.[15] introduced the idea of using

3.2. Convolutional LSTM Model 15

convolutions in LSTM. Mathematically we can write the ConvLSTM as follows:

f (t) = σ(Uf ∗X(t) + Wf ∗H(t−1) + Pf � C(t−1) + bf) (3.1)

i(t) = σ(Ui ∗X(t) + Wi ∗H(t−1) + Pi � C(t−1) + bi) (3.2)

G(t) = tanh (Ug ∗X(t) + Wg ∗H(t−1) + bg) (3.3)

o(t) = σ(Uo ∗X(t) + Wo ∗H(t−1) + Po � C(t−1) + bo) (3.4)

C(t) = f (t) � C(t−1) + i(t) �G(t) (3.5)

H(t) = o(t) � tanh (C(t)) (3.6)

where ‘*’ denotes convolution operation and � denotes Hadamard(point-wise) prod-

uct. The cell state C(t) and the hidden states H(t) are feature maps i.e tensors. The

idea of Peephole [3] for LSTM cells is also extended to ConvLSTM cells. These equa-

tions are similar to ones used in the variant of LSTM using peephole connections

except that ConvLSTM use convolutions instead of matrix vector multiplications.

The variant of LSTM we mentioned here uses peephole connections through which

direct access to cell state is given to gates f, i, o. P• corresponds to the weights

associating access to the cell state for the gates f, i, o. So the parameters that the

networks learns are kernel weights U•,W• and P•. Hence the parameters required

are substantially less compared to the technique presented above.

Figure 3.2: Encoding-forecasting Architecture, Source: [15]

Shi et al.[15] extended the idea presented in [16] with ConvLSTM layers. They de-

veloped a model for precipitation nowcasting [15]. Nowcasting means forecasting

the rainfall in the immediate future, say, in the next 1 hour. They used precipita-

tion radar echo images from the past to predict the future radar echo frames. The

model developed is an encoder-decoder model as earlier which uses ConvLSTM as

basic computational unit. The recurrent nature of the model allows it to memorize

16 3. Literature Review

the temporal information in the radar echoes. Early work on nowcasting is due to

Mukherjee et al. [12] and [13]. In these works Mukherjee et al. tried to estimate each

pixel in the predicted frame by means of fully connected neural network, where input

is candidate pixel of the previous frames as well as its neighbours.

Chapter 4

Experiments

4.1 Model Architecture

Figure 4.1: The proposed architecture for future frame prediction

Our proposed architecture for future frame prediction is shown in Figure 4.1. This

model is inspired from the architecture used in [15] where they used encoder-decoder

style, while our model is stack of three ConvLSTM layers followed by a 3D Con-

volution layer. This is a significant deviation from the earlier model and may be

considered as our contribution. To keep the resolution same as that of the input

frame, we pad the frames during every convolution operation across the entire net-

work. The three ConvLSTM layers use kernel sizes of 5× 5, 3× 3, 1× 1 and produce

tensor feature maps in the domain of Rw×h×128, Rw×h×64, Rw×h×64 respectively. Then

we use 3D convolution layer to map the output feature maps to the one time step

shifted frames. Sigmoid activation function is used in the final layer to squash the

output to 0-1 range. Our model and implementation is different from [15] in the

17

18 4. Experiments

following ways. We trained by feeding the 64× 64 grayscale image as it is, while they

transformed the image into a tensor of 16× 16× 16 by taking patches of 4× 4. We

dropped peepholes [3] in ConvLSTM cells. They concatenated hidden states from all

the decoder layers per time step and then perform convolution to predict the output

image where as we considered only the hidden states in the last ConvLSTM layer.

We choose to take n previous hidden states from this layer to predict the next frame.

We kept this n value small in range [1, 3] as a frame could be more relevant to the

frames from recent past but not to the frames far in the past. We can choose to

convolve only one previous hidden state but having context of few previous frames

makes the prediction better is the idea. Note that using context of more previous

frames increases the computation time.

4.2 Training

4.2.1 Moving-MNIST Dataset

For evaluating the performance of our proposed network for video frame prediction,

we have applied our model on a benchmark data set, namely Moving-MNIST Dataset,

suitable for this purpose. Moving-MNIST Dataset [1] contains 10000 video samples.

Each sample video consists of 20 frames of size 64×64 having two handwritten digits

moving randomly. This dataset is synthetically generated using 500 digits in MNIST

dataset [8].

4.2.2 Loss Function

We have used binary cross-entropy loss as criterion function between ground truth

frame T and the predicted frame P. So our loss function based on binary cross-entropy

is defined as

LBCE = −
∑
i,j,k

Ti,j,k logPi,j,k + (1− Ti,j,k) log (1− Pi,j,k) (4.1)

4.2. Training 19

4.2.3 Parameter Tuning and Results

The network is trained to minimize the binary cross-entropy loss. Adam optimizer

is used with learning rate 10−3. The model is trained using 2000 samples with 1800

samples used for actual training and remaining 200 for validation. We train the model

for 25 epochs with a batch size of 5 video samples per iteration. In total the network

parameters are allowed to be updated trained for 9000 iterations.

4.2.4 Results

In this section we present the experimental results for video frame prediction on

Moving-MNIST dataset and evaluate the results both visually and also objectively.

Figure 4.2: From top to bottom: Target ground truth sequence; Next frame predic-
tions using previous 1 frame, 5 frames, 9 frames; final row are the images obtained
by applying thresholding to the frames predicted in the 3rd row.

20 4. Experiments

Figure 4.3: From top to bottom: Target ground truth sequence; Next frame predic-
tions using previous 1 frame, 5 frames, 9 frames; final row are the images obtained
by applying thresholding to the frames predicted in the 3rd row.

Figure 4.4: From top to bottom: Target ground truth sequence; Next frame predic-
tions using previous 1 frame, 5 frames, 9 frames; final row are the images obtained
by applying thresholding to the frames predicted in the 3rd row.

For the sake of evaluation, we have used 200 samples from the Moving-MNIST dataset

different from what we used for training and validation. Figures 4.2, 4.3 and 4.4 show

the output of three random samples from the dataset. The model is made to predict

4.2. Training 21

last 10 frames, i.e., frames 11-20, by taking corresponding previous k frames. We

have varied the value of k from 1-10. To make it clear, suppose we are predicting the

15th frame and the value of k is 4. We choose frames 11-14 in the input sample to

make the prediction and for predicting 16th we use frames 12-15 and so on. In this

way we predict frames 11-20 using corresponding 4 previous frames. Thus, we get 10

sets of predicted frames for each of the samples where each set corresponds to a value

of k (i.e., using k previous frames) where k lies in range 1-10. Top row of Figure 4.2

shows the groundtruth of the predicted frames (i.e., actual frames #11 to #20 of the

original video) which are the targets of predicting network to reach. 2nd, 3rd and 4th

rows from the top show the predicted frames for k = 1, k = 5 and k = 9 respectively.

It is visually seen that there is almost no difference the corresponding frames in 3rd

and 4th row. In other words, there is no qualitative difference in results for k = 5

and k = 9, We will justify this also in terms of objective image quality measures.

Figures 4.3 and 4.4 can also be described in a similar way.

We have quantitatively evaluated the predicted frames using structural similarity

index (SSIM) [19] and peak signal-to-noise ratio (PSNR). The results are summarized

in Table 4.1 for k = 1 to 10.

Table 4.1: Evaluation results of predicted frames for different number of previous
frames

of Past Frames Mean SSIM Mean PSNR

1 0.6800 16.0881
2 0.7819 18.2370
3 0.8027 18.7172
4 0.8133 18.9025
5 0.8163 18.9492
6 0.8183 18.9656
7 0.8205 18.9734
8 0.8221 18.9703
9 0.8234 18.9643
10 0.8246 18.9598

In Table 4.1 mean values of PSNR and SSIM computed over 200 samples are presented

and we see that for k > 5 values of PSNR and SSIM do not change much. Like visual

analysis, these objective criteria also suggest that previous 5 frames are sufficient to

predict the future frame. Data of Table 4.1 is presented graphically in Figure 4.5 and

22 4. Experiments

Figure 4.6.

Figure 4.5: Mean SSIM values versus number of previous frames used for prediction

Figure 4.6: Mean PSNR values versus number of previous frames used for prediction

We observed that next frame predictions using fewer (1-2) past frames are blurry. But

as we increase the number of previous frames, frames were getting better. Figures 4.2,

4.3 and 4.4 indicate that from rows 3 and 4, there isn’t much visual difference from

the frames obtained by predicting using past 5 frames and 9 frames. It’s also evident

from the plots 4.5 and 4.6 that improvement starts to cease around 4-5 previous

frames which is an interesting finding.

4.3. Software 23

4.3 Software

We have used some standard software for implementing our proposed method and to

obtain experimental results. Important ones are listed below.

• Python 3.7.10

• Tensorflow 2.5.0 and Keras 2.4.3

• OpenCV-Python 4.1.2.30

Chapter 5

Conclusion

5.1 Summary and Future Work

In this thesis, we have presented the details of our model which generates one frame

into future. We can tweak our models to generate a sequence of frames by feeding in

the frames that were predicted in the previous time steps. However, the quality of the

future frames has worsened rapidly. Frames predicted beyond 3-4 time steps started

to show up blobs and are blurry. This model might not be sufficient to give future

frames with a decent accuracy. Choice of the loss function is critical in producing

frames of satisfying quality. The loss function that we used is pixel-based function.

This is the reason for the blur in the predictions as it tends to minimise the error by

averaging out the possible future frames. It’s appropriate to use feature-based loss

functions by capturing and estimating the motion of the objects in the scene and

then use this information to predict the next frame. Such a loss function is helpful

in applications needing to forecast the frames far into the future(10 timesteps and

beyond). Also the frames predicted weren’t sharp. GANs [4] are proven effective in

producing clear images[9]. Villegas et al [18] used movement information of skeletal

structure of objects in the frames and GAN based model to generate quality next

frames. It has shown good results in long-term prediction(128 future frames) and is

one of the possible future directions to pursue. A thorough framework to evaluate the

similarity/cost of the predicted frames based on high level visual similarity is essential

and it is an active area of research.

24

Bibliography

[1] Moving-mnist dataset http://www.cs.toronto.edu/~nitish/unsupervised_

video/

[2] Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of peo-

ple in traffic scenes under uncertainty. In: CVPR. pp. 4194–4202. IEEE Com-

puter Society (2018)

[3] Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with

lstm recurrent networks. J. Mach. Learn. Res. 3(null), 115–143 (Mar 2003),

https://doi.org/10.1162/153244303768966139

[4] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., Bengio, Y.: Generative adversarial networks (2014)

[5] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (Nov 1997), https://doi.org/10.1162/neco.1997.9.8.1735

[6] Hu, A., Cotter, F., Mohan, N., Gurau, C., Kendall, A.: Probabilistic future

prediction for video scene understanding. CoRR abs/2003.06409 (2020), https:

//arxiv.org/abs/2003.06409

[7] Jiang, Y., Dong, H., El-Saddik, A.: Baidu meizu deep learning competition:

Arithmetic operation recognition using end-to-end learning OCR technologies.

IEEE Access 6, 60128–60136 (2018), https://doi.org/10.1109/ACCESS.2018.

2876035

[8] LeCun, Y., Cortes, C., Burges, C.J.: The mnist database of handwritten digits

http://yann.lecun.com/exdb/mnist/

25

http://www.cs.toronto.edu/~nitish/unsupervised_video/
http://www.cs.toronto.edu/~nitish/unsupervised_video/
https://doi.org/10.1162/153244303768966139
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2003.06409
https://arxiv.org/abs/2003.06409
https://doi.org/10.1109/ACCESS.2018.2876035
https://doi.org/10.1109/ACCESS.2018.2876035
http://yann.lecun.com/exdb/mnist/

26 BIBLIOGRAPHY

[9] Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A.P., Tejani, A., Totz,

J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a gen-

erative adversarial network. CoRR abs/1609.04802 (2016), http://arxiv.org/

abs/1609.04802

[10] Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using

deep voxel flow. In: ICCV. pp. 4473–4481. IEEE Computer Society (2017)

[11] Makansi, O., Ilg, E., Çiçek, Ö., Brox, T.: Overcoming limitations of mixture

density networks: A sampling and fitting framework for multimodal future pre-

diction. CoRR abs/1906.03631 (2019)

[12] Mukherjee, A., Shukla, B.P., Chanda, B., Mukherjee, D.P.: A novel neural net-

work based meteorological image prediction from a given sequence of images. In:

2nd International Conference on Emerging Applications of Information Technol-

ogy (EAIT) (2011)

[13] Mukherjee, A., Shukla, B.P., Chanda, B., Pal, N.R., Mukherjee, D.P.: Prediction

of meteorological images based on relaxation labeling and artificial neural net-

work from a given sequence of images. In: International Conference on Computer

Communication and Informatics (ICCCI) (2012)

[14] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by

back-propagating errors. Nature 323(6088), 533–536 (Oct 1986), https://doi.

org/10.1038/323533a0

[15] Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional

LSTM network: A machine learning approach for precipitation nowcasting. In:

NIPS. pp. 802–810 (2015)

[16] Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video

representations using LSTMs. In: ICML (2015)

[17] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural

networks. CoRR abs/1409.3215 (2014), http://arxiv.org/abs/1409.3215

[18] Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate

long-term future via hierarchical prediction. CoRR abs/1704.05831 (2017), http:

//arxiv.org/abs/1704.05831

http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1704.05831
http://arxiv.org/abs/1704.05831

BIBLIOGRAPHY 27

[19] Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from

error visibility to structural similarity. IEEE Transactions on Image Processing

13(4), 600–612 (2004)

[20] Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos

via dynamic sparse coding. In: IEEE Computer Vision and Pattern Recognition

(CVPR) (2011)

[21] Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for

image processing. CoRR abs/1511.08861 (2015), http://arxiv.org/abs/1511.

08861

http://arxiv.org/abs/1511.08861
http://arxiv.org/abs/1511.08861

	Introduction
	Motivation
	Applications
	Problem Statement
	Our approach and contribution
	Thesis Outline

	Fundamentals
	Recurrent Neural Networks
	Long Short Term Memory networks
	Sequence-to-Sequence Models
	Quality Evaluation Metrics
	Structual Similarity Index
	Peak Signal-to-Noise Ratio

	Literature Review
	Fully Connected LSTM for Future Prediction
	Convolutional LSTM Model

	Experiments
	Model Architecture
	Training
	Moving-MNIST Dataset
	Loss Function
	Parameter Tuning and Results
	Results

	Software

	Conclusion
	Summary and Future Work

