
An approach to Multi View Deep
Continuous Clustering using

Subspace Projection

DISSERTATION SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Master of Technology
in

Computer Science

by

Agnip Mazumder

[Roll No: CS1909]

under the guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata-700108, India

July, 2021

To my friends and family

1

CERTIFICATE

This is to certify that the dissertation entitled “An approach to Multi View
Deep Continuous Clustering using Subspace Clustering” submitted by
Agnip Mazumder to Indian Statistical Institute, Kolkata, in partial fulfillment
for the award of the degree of Master of Technology in Computer Science is a
bonafide record of work carried out by him under my supervision and guidance. The
dissertation has fulfilled all the requirements as per the regulations of the institute
and, in my opinion, has reached the standard needed for submission.

Swagatam Das
Associate Professor,
Electronics and Communication Sciences Unit,
Indian Statistical Institute,
Kolkata-700108, India

2

Acknowledgements

I would like to express my highest gratitude to my advisor, Dr. Swagatam Das,
Associate Professor, Electronics and Communication Sciences Unit, Indian Statisti-
cal Institute, Kolkata, for his guidance and continuous encouragement. Without his
support this work would not have been possible.

My utmost thanks goes to all the teachers of Indian Statistical Institute for their
suggestions and discussions whenever I have needed them, which has undoubtedly
helped me to improve my research work.

I would also like to thank all of my friends for their help and support. Last but
not least, I am very much thankful to my parents and family for their everlasting
support.

Agnip Mazumder
Indian Statistical Institute

Kolkata - 700108 , India

3

Abstract

As we know Clustering is an unsupervised machine learning algorithm, where in
a collection of unlabelled data similar data items are grouped under same class
and dissimilar data goes to different class. One common algorithm for clustering
is K- Means Clustering, which initializes k initial centroids and data, centroids are
alternately updated to converge to exact k clusters.

But in real life scenario it is not possible to predetermine the number of clusters
from random data. For that we have Robust Continuous Clustering [1], which
takes representative points for each data points. Initially these representative points
are data points itself. Then representative points of data points that are likely to
be under a same cluster converge at one point. Gradually the representatives move
and collapse into easily distinguishable clusters.

There are more than one ways of looking at a data. Same data-set can be
expressed in multiple forms as different data matrices. Such data are called multi-
view data [2]. We cannot draw a conclusion about the clustering pattern just based
on a single view, considering all views is important for clustering them into groups.
Examples include a sentence can be visualised in multiple languages, a person can
be visualised by their face data, personality,etc. We need to take all these views into
consideration to get a bigger picture of the data pattern.

Using Multi-View Continuous Subspace Clustering [3], a consensus sub-
space representation is initialized. Applying the continuous clustering algorithm on
subspace of cach view data points and summing the objective function of all views,
we arive at a view consensus clustered structure.

High dimensional data poses a challenge as assumptions of many algorithms
do not work in higher dimensions. We can use techniques to project the data
in lower dimensions, then obtain the cluster structure in lower dimensions. But
this algorithm of embedding in proper lower dimension and then obtaining cluster
structure has been proven to be less effective than algorithm of dimension reduction
and clustering on the low dimension latent spaces simultaneously in each step, also
known as Deep Continuous Clustering [4]. It considers the reconstruction loss
and the clustering loss together in each iteration and reduces both simultaneously.
Thus we get a clustering of data points in lower dimensional latent space more
effectively.

Now we propose to extend the Deep Continuous Clustering in Multi-View com-
bining the idea of Deep Continuous Clustering and Multi-View Continuous Subspace
Clustering, to cluster high dimensional multi-view data without pre-specifying the
number of clusters efficiently.

4

Contents

1 Introduction 7
1.1 Clustering . 7

1.1.1 K-Means Algorithm . 7
1.2 Deep Clustering . 7
1.3 Multi-view learning . 8
1.4 Robust Continuous Clustering . 9
1.5 Multi-view subspace clustering . 9
1.6 Thesis Outline . 9

2 Robust Properties 10
2.1 Properties of Robust Functions . 10
2.2 Different Robust Functions . 10
2.3 Family of Robust Functions . 12

3 Related Works 14
3.1 Robust Continuous Clustering . 14
3.2 Deep Continuous Clustering . 16
3.3 Multi-view Subspace Clustering . 17

3.3.1 Single View Subspace Clustering 17
3.3.2 Multi View Subspace Clustering 18

3.4 Robust Multi-View Continuous Subspace Clustering 18

4 Proposed Algorithm : Multi-View Deep Subspace Continuous Clus-
tering 20
4.1 Proposal . 20
4.2 Formulation . 20
4.3 Modified Algorithm . 23

5 Results 24
5.1 Algorithms . 24
5.2 Experimental Result . 25

5.2.1 Caltech101-7 Dataset . 25
5.2.2 WebKb Dataset . 26
5.2.3 UCI Digits Dataset . 26

6 Complexity Analysis 27
6.1 Time Complexity . 27
6.2 Space Complexity . 29

5

CONTENTS

7 Conclusion and Future Works 30

6

Chapter 1

Introduction

1.1 Clustering

Clustering is an example of unsupervised machine learning algorithm where we have
no knowledge of any labels or class of any data. It categorizes data into distinct set
of groups or clusters

The clustering technique can be widely used in various tasks such as Market Seg-
mentation, Social network analysis, Statistical data analysis, Image segmentation,
Anomaly detection, etc.

Clustering can be of two types hard clustering, where data point completely
belongs to one cluster or soft clustering, where data points can partially belong to
multiple clusters.

Clustering methods can be Partitioning Clustering, Distribution-model based
clustering, Hierarchical Clustering, Density-based clustering,etc.

1.1.1 K-Means Algorithm

One of the famous clustering algorithm is K-Means algorithm, with is a Partitioning
Clustering algorithm which reduces the intracluster variances within the clusters,

Here we take K random , initial centroids , all points are clustered with cen-
troids closest to the data point.Then we do centroids reallocation, centroid of the
newly formed clusters.We alternatively continue these processes until the centroids
converge.Thus we get exact K no of clusters or partitions.

Disadvantages of the algorithm are firstly that the centroids may converge at
a local minimum giving undesirable results and secondly we need to have a prior
knowledge of the number of clusters in advance.

1.2 Deep Clustering

Clustering of data in higher dimensional spaces becomes very difficult as many as-
sumptions fail in higher dimension. In higher dimensions as the number of attributes
increases, simple distance measure like euclidean distance, makes all point appear
equidistant. This is the Curse of Dimensionality. To come up with a solution to
cluster high dimensional data, we use Deep Clustering [4] [5]. It reduces the
dimension of data points by embedding it it low dimensional space with the help
of deep autoencoders. Here the reconstruction loss from the autoencoder and the

7

1.3. MULTI-VIEW LEARNING

clustering loss are optimized together as a global objective function. These algo-
rithm outperforms many state-of-the-art deep neural network algorithms used for
clustering

Figure 1.1: Deep clustering architecture

1.3 Multi-view learning

Multi-view data is real-world datasets, where different views describe different per-
spectives of looking at a same raw data [2]. Examples include a sentence can be
visualised in multiple languages, a person can be visualised by their face data, per-
sonality,etc. We need to take all these views into consideration to get a bigger
picture of the data pattern.

We extract different data matrices from different view, where data points in
different view may lie in different feature spaces. We model the different views and
learn the consensus data pattern, taking all views into consideration.

Figure 1.2: Multi-view learning

8

1.4. ROBUST CONTINUOUS CLUSTERING

1.4 Robust Continuous Clustering

This is a clustering technique, where do not need the prior knowledge of the number
of clusters in advance [1]. Unlike K-Means algorithm, where we initialize K random
centroids and let them find their cluster points, here we assign each data points it’s
representative points as itself.

Then we let these representative points converge onto each other, whose data-
points are likely to be in the same cluster. Finally the resultant distinct non-
converged representative points are the cluster centers, and the data-points whose
representative points collapsed into a point or are very close belong to the same
cluster

1.5 Multi-view subspace clustering

Unlike Multi-view Kernel K-Means (MKKM) where we perform clustering on a
common weighted view, we perform simultaneous subspace clustering on each view
keeping the subspace representative same for all views [6], thus maintaining consis-
tency, i.e. points in different views follow the same clustering pattern.

For a data-point in a particular view we try to form a subspace or linear combi-
nation of all data points in that view to be close to that data point and keeping the
subspace representative of the same point constant in all views

Thus the resultant subspace representation points can be used to determine the
multi-view clustering pattern.

1.6 Thesis Outline

In our thesis we are trying to cluster Multi-View Data having high dimensional
points in different views without having any knowledge about the number of classes
or clusters. We project all the view data into a latent space, where we perform
a Robust multi-view subspace clustering. There we apply the Robust Continuous
Clustering on latent space points of all views, and arrive at a subspace consensus
representative of the latent space.Then all views that were embedded into latent
space are reconstructed back to their original space. We optimize the data recon-
struction loss, robust clustering loss of the subspace representative points of all views
together.

The subspace representation of the lower dimensional latent space that we get
determines the cluster assignment. By this approach we try to combine idea of Deep
Continuous Clustering and Multi-View Continuous Subspace Clustering, to cluster
high dimensional multi-view data without pre-specifying the number of clusters
efficiently.

9

Chapter 2

Robust Properties

2.1 Properties of Robust Functions

It is always preferred to have a model that is less influenced by outliers than by
inliers. The standard least square solution of minimizing

∑
iE

2
i becomes unstable if

there are outliers present in the data. Outlying data strongly affect the minimization
process. Hence M-estimators instead of reducing the square of errors it replaces it
with a function of the errors

min
∑
i

ρ(Ei)

where ρ(.) is a symmetric, positive-definite function
ρ has the following properties

• ρ(r) > 0

• ρ(0) = 0

• ρ(r) = ρ(−r)

• ρ(r1) > ρ(r2) where | r1 |>| r2 |

• The slope of ρ(r) must be less than slope of quadratic function on r.

2.2 Different Robust Functions

Different types of ρ(.) functions [7] [8] [9] used are

• L1 - Absolute value
Here absolute value of the residual error is taken.

ρ(r) =| r |

It reduces the error but as it is not strictly convex, it may lead to instability.

• L2 - Least square
This estimator is convex

ρ(r) =
| r |2

2

But this estimator is not robust

10

2.2. DIFFERENT ROBUST FUNCTIONS

• L1 − L2

This maintains a balance between L1 and L2 taking the advantages of L1 which
takes care of large residual error and of L2 helps maintaining convexity.

ρ(r) = 2(

√
1 +

r2

2
− 1)

For smaller values it is L2 and like L1 for larger values.

• Lp - Least Power

ρ(r) =
| r |v

v

Value of v has to be small enough to be a robust estimator, i.e less disturbed
by outliers.

• Huber’s Function
For normal distributions data that are affected by noise, it provides a min-max
solution to them which can be extended to general distributions.

ρ(r) =

{
r2

2
, if | r |≤ c

c(| r | − c
2
), if | r |> c

This ρ(.) function is used for multiple situation. New estimators are obtained
varying the value of c.

• Modified Huber’s Function
Although Huber’s method performs well. But as the second derivative is dis-
continuous, gradient values are not stable. So Modified Huber’s Function is
used

ρ(r) =

{
c2(1− cos(|r|

c
)), if |r|

c
≤ π

2

c | r | −c2(1− π
2
), if |r|

c
> π

2

This ρ(.) function is not suitable for complex data and residual due to the
presence of trigonometric functions.

• Cauchy’s function
This function is optimal for data following Cauchy’s distribution.

ρ(r) =
c2

2
log(1 + (

| r |
c

)2)

This function decreases linearly only for large residual values

• Welsch’s function
This function further reduces the effects of larger error

ρ(r) =
c2

2
(1− exp(−(

| r |
c

)2))

11

2.3. FAMILY OF ROBUST FUNCTIONS

• Geman-McClure’s function
It also reduces the effect of large errors.

ρ(r) =
r2

2

1 + r2

2.3 Family of Robust Functions

These robust functions can be derived from a family of robust function[10] [8]

ρ(x, α, c) =
| α− 2 |

α

(((x
c
)2

| α− 2 |
+ 1
)α

2 − 1

)

Here α is the shape parameter, c is the intrinsic parameter of the function.
When α = 2 the function approaches L2 loss

lim
α→2

ρ(x, α, c) =
1

2

(x
c

)2

When α = 1 the function approaches L1 loss

ρ(x, 1, c) =

√(x
c

)2
+ 1− 1

It is also referred as the Pseudo Huber’s loss or L1-L2 loss which is L2 loss for smaller
residual values to ensure convexity and L1 loss for reducing larger residual values.

When α tends to 0, we get Cauchy loss

lim
α→0

ρ(x, α, c) = log

(
1

2

(x
c

)2
+ 1

)
When α = −2 we get Geman McClure function

ρ(x, 1, c) =
2
(
x
c

)2
(
x
c

)2
+ 4

When α tends to negative infinity, it approaches Welsch loss

lim
α→−∞

ρ(x, α, c) = 1− exp
(
− 1

2

(x
c

)2)

For α = 2 and α = 1 the derivative function increases linearly and increases with
saturating to a fixed value respectively.Here a larger residual will have larger impact.

12

2.3. FAMILY OF ROBUST FUNCTIONS

Figure 2.1: This shows the loss function on the left and its derivative function on
the right for different values of α. When α = 2 it is L2 loss, when α = 1 it is
Charbonnier loss, when α = 0 it is Cauchy loss, when α = −2 it is Geman McClure
loss, and when α = −∞ it is Welsch loss

Now, for α < 1 the derivative starts decreasing after a certain value. So for a larger
residual value, impact becomes smaller and smaller as α becomes more and more
negative. So for α = −2, i.e. Geman McClure function have less impact from outliers
and for α = −∞ i.e. Welsch function have very negligible or no impact from outliers.

We can use the concept of graduated non-convexity. First we take the function
which is fully convex for the entire data. Over iteration, we introduce more non-
convexity to reduce the gradients so that it becomes more and more invariant to
outliers.

13

Chapter 3

Related Works

3.1 Robust Continuous Clustering

Robust Continuous Clustering [1] is an improvement over traditional K-Means
algorithm, eliminating the drawbacks of random initialization, pre-specifying the
number of clusters in advance. It presents an algorithm that is fast, easy to use
which optimizes a continuous objective function. Unlike K-Means algorithm where
set of random cluster centers are initialized and it iteratively converges to K clusters,
here we assign representative points to the data-points itself and let the representa-
tive move and coalesce into easily separable clusters.

Figure 3.1: Robust Continuous Clustering

Let the input be X = [x1, x2,, xn], where xi ∈ RD

We take the set of representatives U = [u1, u2,, un], where ui ∈ RD

We optimize the objective function on U, which coalesces to reveal the cluster struc-
ture.

The objective function of Robust Continuous Clustering is

n∑
i=1

‖ xi − ui ‖22 +λ
∑

(p,q)∈ε

wp,qρ(‖ up − uq ‖2)

ε is the weighted connectivity graph, for which first we construct the m-KNN graph
or the modified K- nearest neighbour graph [11] which provides an edge between ith

and jth data point if ith point is one of the K nearest neighbours of jth point and if
jth point is one of the K nearest neighbours of ith point. Then to ensure connectivity
we augment it with the Minimum Spanning Tree.

14

3.1. ROBUST CONTINUOUS CLUSTERING

We set wi,j to maintain the contribution of every data-point to the pairwise loss.

wp,q =
1
N

∑n
k=1 nk√
npnq

Here np is the degree of pth data-point in ε.
The parameter λ balances the ratio of the data loss and the pairwise loss that needs
to be optimized. We set

λ =
‖ X ‖2
‖ A ‖2

where
A =

∑
(p,q)∈ε

wp,q(ep − eq)(ep − eq)T

and ‖ . ‖2 denotes the spectral norm.

ρ() is a penalty on the regularization term which tries to coalesce the represen-
tative points of data-points with higher wp,q

So basically the first term tries to keep the representative points closer to the data-
points and the second regularization term tries to collapse closer, similar represen-
tative points into a single point. More the value of wp,q more likely is the chance
the two points will collapse. Here they take scaled Geman-McClure function as the
penalty function to ensure robustness or invariant to outliers .

ρ(y) =
µy2

µ+ y2

The objective function is re-written as

n∑
i=1

‖ xi − ui ‖22 +λ
∑

(p,q)∈ε

wp,q(lp,q ‖ up − uq ‖22 +Ψ(lp,q))

lp,q is a variable introduced which tends to 1 when connection is present and tends
to 0 when connection is absent.Ψ(lp,q) is the penalty imposed on ignoring lp,q.

Ψ(lp,q) = µ(
√
lp,q − 1)2

This is done so that we can perform alternate minimization on U and L. When U
is fixed, we compute L

lp,q = (
µ

µ+ ‖ up − uq ‖22
)2

Although L is a function of U, we assume lp,q to be fixed while updating U
U is calculated as

minU ‖ X − U ‖2F +λ
∑

(p,q)∈ε

wp,qlp,q ‖ U(ep − eq) ‖22

15

3.2. DEEP CONTINUOUS CLUSTERING

where ep is the indicator vector with only pth element set to 1.

We continue this alternate minimization and reduce µ every fourth iteration till
a threshold. After maximum number of iteration or convergence of objective func-
tion we draw an edge between i and j if ‖ ui − uj ‖2 is less than a threshold. The
connected components gives the clustering result.

This follows graduated non-convexity, where the value of µ is initially set very high
to ensure local convexity. After a period of certain interval we reduce the µ value
to introduce some non-convexity to the objective function. It helps to attain value
closer to global minimum.

3.2 Deep Continuous Clustering

Clustering high dimensional data poses certain problems as assumptions used in
certain algorithm break in higher dimensions. It tries to reduce the dimension of
the data by embedding it in lower dimensional space. We can first reduce the di-
mension of data embed into lower dimension first then perform clustering on the
lower dimension space.

This method is less effective than performing dimensionality reduction and clus-
tering in lower dimension to be performed together by optimizing a single objective
function. Deep Continuous Clustering [4] [12] is an improvement over Robust Con-
tinuous Clustering where high dimension data is projected into a lower dimension la-
tent space and Robust Continuous Clustering objective function is applied on latent
space data and data is reconstructed back to original data space. Both clustering
loss and reconstruction loss are optimized under a single objective function.

‖ X −Gω(Y) ‖2F +
∑
i

ρ1(‖ zi − yi ‖2;µ1) + λ
∑
(i,j)∈ε

wi,jρ2(‖ zi − z2 ‖2;µ2)

where Y = Fθ(X)
First part is the reconstruction loss, where F is the encoding the data into lower
dimension Y with the help of parameter θ and Y is reconstructed back to original
dimension with decoding function G with parameter ω
zi is the RCC representative point of yi data in latent space, so second part is the
data loss which ensures yi to be close to zi
And third part is the pairwise loss that ensures that zi i.e. representative point of
yi tends to collapse into a single point if their yi are similar.

Fθ and Gω mappings are performed by an autoencoder with fully connected layers
performing ReLu or Rectified Linear Unit operation after each layer as activation
function.
Weights in epsilon measure the connectivity of data points.ρ1 and ρ2 are the M-
estimators which keep the representative points close to the data and bring similar
data-points representatives to collapse respectively.Here we use Geman-McClure as

16

3.3. MULTI-VIEW SUBSPACE CLUSTERING

the M-estimator to reduce the impact of outlier points on the objective function.

ρ1(x;µ1) =
µ1x

2

µ1 + x2

ρ2(x;µ2) =
µ2x

2

µ2 + x2

First keeping Z constant we update the autoencoder parameters {θ, ω} which gen-
erates an autoencoder latent vector Y and reduces the autoencoder reconstruction
loss along with the data loss of the latent vectors with the representative points.

‖ X −Gω(Y) ‖2F +
∑
i

ρ1(‖ zi − yi ‖2;µ1)

Now fixing the parameters hence fixing Y we update Z the representative points

‖ X −Gω(Y) ‖2F +
∑
i

ρ1(‖ zi − yi ‖2;µ1) + λ
∑
(i,j)∈ε

wi,jρ2(‖ zi − z2 ‖2;µ2)

We continue this alternate minimization and reduce µ1 and µ2 every fourth iteration
till a threshold. After maximum number of iteration or convergence of objective
function we draw an edge between i and j if ‖ zi − zj ‖2 is less than a threshold.
The connected components gives the clustering result.

3.3 Multi-view Subspace Clustering

Usually Subspace clustering clusters data assuming data-points are drawn from lower
dimensional subspaces. Many subspace clustering algorithm are used which takes
the subspaces representation of the data-points such that data-points of same cluster
lie on the same lower dimensional subspace [6]. Usually these methods uses features
from single view data.

They applied subspace clustering on multi-view data feature to uncover subspace
structure and perform clustering on multi-view data. Clustering on multiple views
are combined to form a consensus clustering on multiple views. MKKM or Multi-
view K Kernel Means perform clustering on a weighted common view, whereas here
Subspace Clustering is performed on each view, maintaining the subspace consis-
tency among different views [6].This ensures data-points in different views end up
in the same cluster.

3.3.1 Single View Subspace Clustering

Let the data-points be X = [x1, x2,, xn] where xi ∈ Rd and the subspaces are
Z = [z1, z2,, zn] where zi ∈ Rn where zi is the subspace representation of xi.
X.zi is the subspace data obtained by computing the ith subspace representation on
original dataset and we tend to reduce it from the actual data point.

17

3.4. ROBUST MULTI-VIEW CONTINUOUS SUBSPACE CLUSTERING

We need to reduce ‖ xi −X.zi ‖22 for all data points. It boils down to

minZ ‖ X −X.Z ‖2F

s.t
Z(i, i) = 0, ZT .1 = 1

Solving the optimization problem we get Z, the subspace structure, we get affinity
matrix

W =
Z + ZT

2

minFTr(F
T .L.F)

L = D −W and di,i =
∑

j wi,j, F gives the cluster index

3.3.2 Multi View Subspace Clustering

Here Xv ∈ RdvXn denotes the data in the vth view. We perform subspace learning
algorithm on each individual view.

We can assume Z ∈ RnXn as the consensus subspace on all view. Then the
objective function becomes

minZ
∑
v

‖ Xv −Xv.Z ‖2F

s.t
ZT .1 = 1, Z(i, i) = 0

To provide more flexibility to the subspaces in different views we assume different
subspace representation Zv for different views and we try to have all the Zv close to
a consensus subspace Z.Hence objective is

minZ,Zv
∑
v

‖ Xv −Xv.Zv ‖2F +λ
∑
v

‖ Z − Zv ‖2

s.t
ZT
v .1 = 1, Zv(i, i) = 0

Its a relaxed form where we still get the data points in different views closer to
the same cluster.

3.4 Robust Multi-View Continuous Subspace Clus-

tering

It is a method to extend the previously shown RCC algorithm to multi-view data
[3]. It tries to learn common representative subspace across multiple views [13],
alternatively minimizing the clustering loss and common representation subspace
pairwise loss. Over the iteration subspace representative points of multi-view data
move and collapse into well-defined clusters.

18

3.4. ROBUST MULTI-VIEW CONTINUOUS SUBSPACE CLUSTERING

The clustering result from multiple views should be consistent. We take
Z = [z1, z2,, zn] as the common representative subspace points where zi ∈ Rn.
Xv ∈ RdvXn is the vth view data matrix. xvi is the ith data from vth view and data
in vth view is of dimension dv. The idea is to form a continuous objective function,
which is to be optimized w.r.t the subspace representative Z.∑

v

{
∑
i

‖ xvi −Xv.zi ‖22 +λ
∑

(p,q)∈ε

wvp,qρ(‖ zp − zq ‖2)}

The first part helps to keep the subspace of the data close to the actual data
and the second part tries to collapse the subspace representative points of similar
data-points.We use Geman-McClure loss function to reduce the impact of outlier
points on the objective function.This is summed over all views to form a complete
objective function with variable Z.

The objective function is re-written as∑
v

{
∑
i

‖ xvi −Xv.zi ‖22 +λ
∑

(p,q)∈ε

wvp,q(l
v
p,q ‖ zp − zq ‖22 +Ψ(lvp,q)}

lp,q is the connectivity between two subspace representation points which tends to 1
when it is active and tends to 0 when connection is absent.And Ψ(lp,q) is the penalty
on ignoring a connection.

Ψ(lp,q) = µ(
√
lp,q − 1)2

Now it becomes a two step minimization problem minimizing lp,q and Z. First of all
assuming Z to be constant

lp,q = (
µ

µ+ ‖ zp − zq ‖22
)2

Although lp,q is a function of Z, we assume it to be constant and optimize the
function w.r.t Z. We optimize the function∑

v

(
‖ Xv −Xv.Z ‖2F +λ

∑
(p,q)∈ε

wvp,ql
v
p,q ‖ zp − zq ‖22

)

We continue this alternate minimization and reduce µ every fourth iteration till a
threshold. After maximum number of iteration or convergence of objective function
we draw an edge between i and j if ‖ zi − zj ‖2 is less than a threshold. The
connected components gives the clustering result.

19

Chapter 4

Proposed Algorithm : Multi-View
Deep Subspace Continuous
Clustering

4.1 Proposal

We have seen earlier different algorithms, Robust Continuous Clustering which elim-
inates the need to declare the number of clusters in advance, Deep Continuous Clus-
tering which does RCC in latent space as sometimes clustering on higher dimensions
can be difficult, Multi-view Subspace Clustering taking consensus subspace of data-
points in all views and Robust Multi-View Continuous Subspace Clustering Which
is extending RCC to multi-view taking subspace of data as representative points
and taking the multi-view subspace points to decide the consensus clustering.

Now we propose Multi-View Deep Subspace Continuous Clustering to extend Deep
Continuous Clustering to multi-view using the concept of multi-view subspace clus-
tering

4.2 Formulation

Let data be Xv ∈ RdvXn be the data in vth view
Y v = Fθv(X

v) is the lower dimensional embedding of data in vth view, and Gωv(Y
v)

is the reconstructed data of the vth view.
Reconstruction loss is ‖ Xv −Gωv(Y

v) ‖2F in vth view, where Y v = Fθv(X
v) .

Performing Robust Multi-View Continuous Subspace Clustering on all yvi , we
assume zi to be consensus subspace representation of yi in all views.

We construct the connectivity graph ε for all views. We implement m-KNN, which
is an improvement over KNN graph where instead of drawing an edge between i
and K-nearest neighbour of i, we draw a edge between i and j if they are K-nearest
neighbour of each other. This graph will possibly be disconnected. To ensure con-
nectivity we augment it with the Minimum Spanning Tree of the KNN graph. We

20

4.2. FORMULATION

calculate the weight of the edges as

wp,q =
1
N

∑n
k=1 nk√
npnq

where ni is the number of edges incident on ith point.

We optimize the objective function∑
v

{‖ Xv −Gωv(Y
v) ‖2F +

∑
i

ρ1(‖ yvi − Y v.zi ‖2;µ1) +
∑

(p,q)∈ε

ρ2(‖ zp − zq ‖2;µ2)}

where the first part is the reconstruction loss when Xv ∈ Rdv×N is encoded into
Y v ∈ Re×N and decoded back to the original dimension Rdv×N . Second part is the
data loss. We get the encoded lower dimensional data points in all views and we
assume zi to be the subspace representation of yvi for all v ∈ {1, 2......, V }. We put
the subspace data loss in a M-estimator like Geman-McClure [14] and add them
for all data in all views. Third part is the pairwise loss, which tries to bring the
representative of possibly closer data-points or higher wp,q value in all views nearer
and possibly collapse into each other.

ρ1(x;µ1) =
µ1x

2

µ1 + x2

ρ2(x;µ2) =
µ2x

2

µ2 + x2

Keeping Z constant, we can update the auto-encoder parameters {θv, ωv} for all
views. We usually update the auto-encoder parameters to reduce only the recon-
struction loss. But here, as changing the auto-encoder parameters changes the latent
space vector Yv the second part or the data loss part also changes with the param-
eters. Here the first loss we need to optimize is more than just the reconstruction
loss of the autoencoder. It’s the reconstruction loss added with the data loss of the
encoded data that we optimize with the autoencoder parameters.

We update the term ‖ Xv − Gωv(Y
v) ‖2F +

∑
i ρ1(‖ yvi − Y v.zi ‖2;µ1) in each view

individually as they are view independent, using Adam Optimizer.

min
{θv ,ωv}

‖ Xv −Gωv(Y
v) ‖2F +

∑
i

ρ1(‖ yvi − Y v.zi ‖2;µ1)

Now we fix the parameters {θv, ωv} and Y v for all views and update Z by up-
dating the objective

min
Z

∑
v

{
∑
i

ρ1(‖ yvi − Y v.zi ‖2;µ1) +
∑

(p,q)∈ε

ρ2(‖ zp − zq ‖2;µ2)}

We initially take µ1 and µ2 to be very high to assume convexity on the entire data.
After a certain number of iterations we periodically introduce certain non-convexity
in the data. After a large number of iterations, we don’t let larger residual value

21

4.2. FORMULATION

affect the objective function more. So we reduce the µ1 and µ2 to it’s half every
M th iteration till it reaches a threshold. This helps in reaching the global minimum
faster.

Figure 4.1: Influence of Hyperparameter on Geman-McClure function

We keep iterating till convergence or till max iteration number of epochs. We
obtain Z where zi is the representation point of the ith point. After a certain epoch
representative points of the same clusters must have collapsed or be nearer to each
other than representative points of other clusters.So we form a graph G = (V, F)
where representative points having distance lesser than threshold, i.e. ‖ zi−zj ‖2< δ2
are given an edge ,fi,j = 1. The connected components of the graph reveal the clus-
ter results.

Algorithm 1: MVDSCC Algorithm

Data: {Xv}Vv=1 where Xv ∈ Rdv×N : the data matrix in all views
Result: Consensus Clustering results of multiple views

1 Construct connectivity structure ε;
2 Initialize {θ,ω} and Z;
3 Precompute {λv}Vv=1, µ1, µ2, δ1, δ2;
4 while Objective converges or iteration < max iteration do
5 Update the autoencoder parameters {θ,ω} to get the suitable Y and

reduce the sum of reconstruction and data loss summed over all views ;
6 Update Z, the subspace representation to reduce the data loss and

pairwise subspace loss summed over all views;

7 For every M epoch set µ1 = max(µ1
2
, δ1

2
) and µ2 = max(µ2

2
, δ2

2
);

8 end
9 Construct graph G = (V, F) with fi,j = 1 if ‖ zi − zj ‖2< δ2;

10 Connected components of G give the clustering result

22

4.3. MODIFIED ALGORITHM

4.3 Modified Algorithm

Here we may try a more relaxed form of optimization where we don’t assume a
common subspace representative point for a data-point in all views and optimize
w.r.t the common Z. Instead we take Zv, individual subspace representatives for
data-points in each view and then we optimize a consensus subspace representation
Z, being close to all the individual subspace representation Zv. In this way we
can optimize the different view subspaces individually and yet maintain a consensus
representation.

∑
v

(
‖ Xv−Gωv(Y

v) ‖2F +
∑
i

ρ1(‖ yvi−Y v.zvi ‖2;µ1)+λ1
∑

(p,q)∈ε

ρ2(‖ zvp−zvq ‖2;µ2)+λ2 ‖ Z−Zv ‖2F
)

This becomes a three step optimization instead of a two step optimization. First
we update the autoencoder parameters to update Y , second we update all Zv in
all views and third we update Z, the consensus subspace representation of lower
dimensional embeddings in all views.

Here we do not have to find a strict equality between the subspace representa-
tion in all views. We allow the representative points in all views to relax and form
it’s representation in it’s own view, also maintaining closeness with a common rep-
resentation. Representation points are not same across views, but share closeness
with each other. This is much more flexible algorithm and may yield better result.

Algorithm 2: Relaxed MVDSCC Algorithm

Data: {Xv}Vv=1 where Xv ∈ Rdv×N : the data matrix in all views
Result: Consensus Clustering results of multiple views

1 Construct connectivity structure ε;
2 Initialize {θ,ω} , {Zv}Vv=1 and Z;
3 Precompute {λv1}Vv=1, λ2, µ1, µ2, δ1, δ2;
4 while Objective converges or iteration < max iteration do
5 Update the autoencoder parameters {θ,ω} to get the suitable Y and

reduce the sum of reconstruction and data loss summed over all views ;
6 Update Zv in all views like a single view ,i.e to reduce data loss and

pairwise loss in each view individually but maintaining a closeness with
Z the consensus representation;

7 Update Z, the consensus subspace representation to have least sum of
distance from all Zv, the view specific representation ;

8 For every M epoch set µ1 = max(µ1
2
, δ1

2
) and µ2 = max(µ2

2
, δ2

2
);

9 end
10 Construct graph G = (V, F) with fi,j = 1 if ‖ zi − zj ‖2< δ2;
11 Connected components of G give the clustering result

23

Chapter 5

Results

5.1 Algorithms

• RMKMC: RMKMC (Robust Multi View K-Means Clustering) [15] [3] [16]
[17] tries to obtain consensus clustering matrix across different views by op-
timizing a weighted sum of the relaxed K-means objective on each individual
view .

• PC-SPC: PC-SPC (Pair-wised Co-regularised Multi-modal Spectral Cluster-
ing) [3] [18] [19] uses a pair-wised co-regularization term, to form a consensus
representation matrix considering data in all views.

• CC-SPC: CC-SPC (Centroid Co-regularised Multi-modal Spectral Cluster-
ing) [20] [3] uses a centroid-based co-regularization term to form a consensus
representation matrix considering data in all views.

• MVSC: MVSC (Multi-View Subspace Clustering)[3] [6] performs subspace
clustering on each views individually and try to reach a consensus subspace
representation.

• RMVCSC: RMVCSC (Robust Multi-View Continuous Subspace Clustering)
[3] is an extension of RCC into multi-view which performs multi-view cluster-
ing without any previous information about the number of clusters. It takes
consensus subspace of data in all views.

24

5.2. EXPERIMENTAL RESULT

5.2 Experimental Result

5.2.1 Caltech101-7 Dataset

Caltech101-7

No of data points 1474
No of views 6
No of classes 7

Type of View No of Features
View 1 Gabor 48
View 2 Wavelet Moments 40
View 3 Cenhist 254
View 4 HOG 1984
View 5 GIST 512
View 6 LBP 928

Approach AMI NMI

RMKMC 0.6034 0.5488
PC-SPC 0.6975 0.6547
CC-SPC 0.7047 0.6879
MVSC 0.6034 0.4766

RMVCSC 0.7360 0.7276
MVDSCC 0.4960 0.3188

25

5.2. EXPERIMENTAL RESULT

5.2.2 WebKb Dataset

WebKb

No of data points 1051
No of views 2
No of classes 2

Type of View No of Features
View 1 FullText 2949
View 2 Inlinks 334

Approach AMI NMI

RMKMC 0.8049 0.1592
PC-SPC 0.7659 0.0091
CC-SPC 0.5785 0.0019
MVSC 0.7802 0.0041

RMVCSC 0.9402 0.5694
MVDSCC 0.5258 0.0967

5.2.3 UCI Digits Dataset

UCI-Digits

No of data points 2000
No of views 6
No of classes 10

Type of View No of Features
View 1 Fourier coefficients(FOU) 76
View 2 profile correlations(FAC) 216
View 3 Karhunen-Love coefficients(KAR) 64
View 4 pixel averages(PIX) 240
View 5 Zernike moments(ZER) 47
View 6 morphological features(MOR) 6

Approach AMI NMI

RMKMC 0.7853 0.8125
PC-SPC 0.8682 0.8267
CC-SPC 0.8768 0.8234
MVSC 0.8242 0.8399

RMVCSC 0.9312 0.8867
MVDSCC 0.4678

26

Chapter 6

Complexity Analysis

6.1 Time Complexity

The first part of the objective function is the reconstruction loss of the autoencoder.
For vth view data Xv ∈ Rdv×N contains N data each of dimension dv. x

v
i is a data

in Xv of dimension dv. Dimension dv is encoded to dimension e and then decoded
to dimension dv.

Let us take a neural network , we have ni nodes in ith layer and ni+1 nodes in
(i+ 1)th layer. Wi,i+1 ∈ Rni+1×ni is the weight matrix for forward propagation from
ith layer to (i + 1)th layer. And Zi ∈ Rni×N is the feedforward data after ith layer
and Si ∈ Rni×N is the ith layer activation function output.

Zi+1 = Wi,i+1.Si

This takes time complexity of O(ni+1 × ni ×N)

Si+1 = f(Zi+1)

This takes complexity of O(ni+1 ×N)
Total complexity at ith layer is O((ni+1 × ni ×N) + (ni+1 ×N))
= O(ni+1 × (ni + 1)×N)
= O(ni+1 × ni ×N)

Similarly for back propagation we back-propagate the Weight matrix elements
for N data . It also takes O(ni+1 × ni ×N) in ith layer.
Total time complexity of Multi-Layer Perceptron is O(N ×

∑
i(ni+1 × ni))

If we take the autoencoder to have no other hidden layers, dv to e and back to
dv to optimize

min
{θv ,ωv}

‖ Xv −Gωv(Y
v) ‖2F +

∑
i

ρ1(‖ yvi − Y v.zi ‖2;µ1)

Calculating ρ1(‖ yvi − Y v.zi ‖2;µ1) takes O(e×N2) for multiplication, O(e×N) for
subtraction and O(e×N) for ρ() operation. Net complexity is O(e×N2)

27

6.1. TIME COMPLEXITY

Forward propagation takes O((e× dv ×N) + (dv × e×N) + (e×N2))
= O(e×N × (dv +N))

Backward propagation of all autoencoder parameters to optimize the loss takes
O((e× dv ×N)
Total time complexity of the first minimization is O(e × N × (2.dv + N)) for each
view.
= O(e×N × (dv +N))
For all view it is

O

(V∑
v=1

(
e×N × (dv +N)

))
Now for the second optimization

min
Z

∑
v

(∑
i

ρ1(‖ yvi − Y v.zi ‖2;µ1) +
∑

(p,q)∈ε

ρ2(‖ zp − zq ‖2;µ2)
)

Computing the first part i.e. data loss takes O(e × N2). ε is the pairwise data
weights upper limited by N2. zi is N dimensional vector, subtraction takes O(N),
norm calculation with ρ() takes O(N) and for all pair of values upper bounded by
N2, time complexity is O(N3).

Forward calculation of the second minimization takes

O

((
(e×N2) + (N3)

)
× V

)
For backpropagating Z ∈ RN×N , we have N2 values used in N data subspace for
V views, time complexity is O(N3 × V)

Total time complexity of the second minimization is

O

((
(e×N2) + (N3)

)
× V

)
Total time complexity is

O

((
(e×N2) + (N3)

)
× V

)
+O

(V∑
v=1

(
e×N × (dv +N)

))

= O

(
(e×N2 × V) + (N3 × V)

)
+O

(
(e×N2 × V) + (e×N ×

V∑
v=1

dv)
))

= O

(
(e×N2 × V) + (N3 × V) + (e×N ×

V∑
v=1

dv)
))

where e is the dimension of the encoded vector, dv is the dimension of the vth view
data, N is the number of data-points and V is the number of views.

28

6.2. SPACE COMPLEXITY

6.2 Space Complexity

Xv ∈ Rdv×N takes space of O(dv ×N).For all view it is O(N ×
∑V

v=1 dv).
Yv ∈ Re×N takes space of O(e×N).For all view it is O(N × e× V).
Z ∈ RN×N takes space of O(N2).
In each view autoencoder has (dv × e) + (e× dv) i.e. space complexity of O(dv × e)
in each view and O(e×

∑V
v=1 dv) in all views.

Total Space Complexity is

O(N ×
V∑
v=1

dv) +O(N × e× V) +O(N2) +O(e×
V∑
v=1

dv)

= O

((
(N + e)×

V∑
v=1

dv

)
+
(
N × e× V

)
+
(
N2
))

where e is the dimension of the encoded vector, dv is the dimension of the vth view
data, N is the number of data-points and V is the number of views.

29

Chapter 7

Conclusion and Future Works

This algorithm of Multi-View Deep Subspace Continuous Clustering (MVD-
SCC) is an approach to cluster Multi-view Data and arrive at a consensus cluster
result after embedding it into a lower dimensional space. It tries to find the suitable
subpace of the lower dimensional data of multiple views. As in multi-view data
different view data has varying number of features. The number of features differ
between multiple view in high magnitude. For eg view 1 is of dimension 1474× 512
and view 2 is of dimension 1474 × 48. Applying same architecture of autoencoder
to encode the two views into same encoded vectors can be counterproductive. En-
coding both high feature data and low feature data in the same way may not lead
to similar data preservation as high feature data requires a deeper network.
We may need a more flexible architecture for autoencoder i.e. different layers and
different encoded vectors for different view encoding. This may improve the result.

Hyper-parameters play a major role in the convergence of the algorithm. Initial-
isation of hyper-parameter can be improved as different view data needs different
attention on the ratio of optimization of data representation loss and pairwise rep-
resentation loss.

Here one of the disadvantage is as the subspace representative of the lower dimen-
sional vector come closer to each other, sometimes presence of few points between
the clusters causes large problem. As the cluster results are computed by connected
components of the graph, sometimes one edge mistakenly placed between two clus-
ters results in entirely merging the two clusters together. This is how sometimes
many clusters gets merged resulting in error. Proper threshold for construction of
the graph is difficult as data in different view act differently. It is difficult to find
the right threshold for the subspace of lower dimension encoding of varying data
matrices.

30

Bibliography

[1] S. A. Shah and V. Koltun, “Robust continuous clustering,” Proceedings of the
National Academy of Sciences, vol. 114, no. 37, pp. 9814–9819, 2017.

[2] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv preprint
arXiv:1304.5634, 2013.

[3] J. Ma, R. Wang, W. Ji, J. Zhao, M. Zong, and A. Gilman, “Robust multi-view
continuous subspace clustering,” Pattern Recognition Letters, 2018.

[4] S. A. Shah and V. Koltun, “Deep continuous clustering,” arXiv preprint
arXiv:1803.01449, 2018.

[5] G. C. Nutakki, B. Abdollahi, W. Sun, and O. Nasraoui, “An introduction
to deep clustering,” in Clustering Methods for Big Data Analytics, pp. 73–89,
Springer, 2019.

[6] H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,” in
Proceedings of the IEEE international conference on computer vision, pp. 4238–
4246, 2015.

[7] P. Pennacchi, “Robust estimate of excitations in mechanical systems using
m-estimators—theoretical background and numerical applications,” Journal of
Sound and Vibration, vol. 310, no. 4-5, pp. 923–946, 2008.

[8] J. T. Barron, “A more general robust loss function,” CoRR,
vol. abs/1701.03077, 2017.

[9] M. J. Black and A. Rangarajan, “On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision,” International
journal of computer vision, vol. 19, no. 1, pp. 57–91, 1996.

[10] J. T. Barron, “A general and adaptive robust loss function,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4331–4339, 2019.

[11] H. Parvin, H. Alizadeh, and B. Minaei-Bidgoli, “Mknn: Modified k-nearest
neighbor,” in Proceedings of the world congress on engineering and computer
science, vol. 1, Citeseer, 2008.

[12] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsu-
pervised learning of visual features,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 132–149, 2018.

31

BIBLIOGRAPHY

[13] Y. Li, M. Yang, and Z. Zhang, “A survey of multi-view representation learning,”
IEEE transactions on knowledge and data engineering, vol. 31, no. 10, pp. 1863–
1883, 2018.

[14] P. Harjulehto, P. Hästö, and J. Tiirola, “Point-wise behavior of the geman–
mcclure and the hebert–leahy image restoration models,” Inverse Problems &
Imaging, vol. 9, no. 3, p. 835, 2015.

[15] C. Chen, Y. Wang, W. Hu, and Z. Zheng, “Robust multi-view k-means clus-
tering with outlier removal,” Knowledge-Based Systems, vol. 210, p. 106518,
2020.

[16] R. Zhang, F. Nie, and X. Li, “Embedded clustering via robust orthogonal
least square discriminant analysis,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2332–2336, IEEE,
2017.

[17] X. Cai, F. Nie, and H. Huang, “Multi-view k-means clustering on big data,” in
Twenty-Third International Joint conference on artificial intelligence, 2013.

[18] W. Zhuge, C. Hou, Y. Jiao, J. Yue, H. Tao, and D. Yi, “Robust auto-weighted
multi-view subspace clustering with common subspace representation matrix,”
PloS one, vol. 12, no. 5, p. e0176769, 2017.

[19] M.-S. Chen, L. Huang, C.-D. Wang, and D. Huang, “Multi-view clustering in
latent embedding space,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, pp. 3513–3520, 2020.

[20] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral cluster-
ing,” Advances in neural information processing systems, vol. 24, pp. 1413–1421,
2011.

32

