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Abstract

In 1976, Carsten Thomassen conjectured that no longest cycle in a 3-connected
graph can be a chordless cycle. Although this conjecture was later proved for some
special classes of graphs, the general case remains open. In this work, we study how
Thomason’s Lollipop Method was used by Thomassen to verify this conjecture for
cubic graphs.
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Chapter 1

Introduction

In 1976, Carsten Thomassen (see [7]) made the following conjecture:

Conjecture 1. Every longest cycle in any 3-connected graph has a chord.

In 1978, Andrew G. Thomason introduced “the lollipop method”. Thomassen in 1996
used this method to prove Conjecture 1 for cubic graphs. After this many people
tried their hands to prove this conjecture for different classes of graphs [3, 4, 5, 9].
Etienne Birmelé [1] in 2008 proved the conjecture for K3,3-minor free graphs.
This work is a study of how Thomassen proved Conjecture 1 for cubic graphs. We
have tried to explain the proof and the lollipop method required for it in a way we
feel is easier to follow.
First, we give some basic definitions of graph theory.

1.1 Definitions

Let G = (V,E) be an undirected simple graph with n vertices and m edges.
Two vertices u, v ∈ V (G) are said to be adjacent if (u, v) ∈ E(G).
The neighbours of a vertex v ∈ V are all the vertices u ∈ V such that (u, v) ∈ E(G).
A walk in G is a sequence vertices v1, v2, . . . , vt where vivi+1 ∈ E(G) for each i ∈
{1, 2, . . . , t − 1}. The vertices v1, v2, . . . , vt and the edges v1v2, v2v3, . . . , vt−1vt are
said to occur in that order in the walk.
A path is a walk in which no vertex repeats.
A trail is a walk in which no edge repeats but vertices may repeat.
A cycle in a graph G is the nonempty trail v1, v2, . . . , vt in which v1 = vt, but the
vertices v1, v2, . . . , vt−1 are all pairwise distinct. Length of a cycle is defined as the
number of vertices in that cycle, which is equal to the number of edges in that cycle.
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1.1. Definitions 4

A chord of a cycle in a graph is an edge between two vertices of the cycle that are
not consecutive on the cycle.

Figure 1.1: The edge (2,5) is a chord of the cycle 1, 2, 4, 5, 3, 1

A degree of a vertex v is the number of edges incident on v. It is denoted as d(v).
A component S of graph G is a maximal connected subgraph, i.e. there does not
exists any other connected subgraph T of G such that S is a subgraph of T .
Connectivity of a graph G is defined as the minimum number of vertices that need to
be removed to separate G into two or more components.
A cut vertex is a vertex whose removal will disconnect the graph G into 2 or more
components.
A graph G with more than k vertices is said to be k-connected or k-vertex-connected
if at least k vertices need to be removed to make the graph disconnected.

Theorem 1. Every vertex in a k-connected graph has degree ≥ k.

Proof:
Let G(V,E) be a k-vertex-connected graph. Let u be a vertex with degree d < k.
If d adjacent vertices of u are removed, then it will disconnect the vertex u from the
rest of the graph, which contradicts our assumption that G is k-connected. Hence,
such a vertex can not exist. �



Chapter 2

Thomason’s Lollipop Method

In the 1940s, Smith (see [8]) proved that:

Theorem 2. For any cubic graph, the number of Hamiltonian cycles containing an
edge e ∈ E(G) is even.

Kotzig (see [6]) proved a similar result.

Theorem 3. For any cubic and bipartite graph, the total number of Hamiltonian
cycles is even.

Thomason [6] generalizes these two theorems by introducing the Lollipop method.
Thomason originally used this method for multigraphs. We will see in Chapter 3 how
Carsten Thomassen proved Conjecture 1 for cubic graphs using this method. We
present the lollipop method in the way it can be applied to simple graphs.

2.1 Lollipop Method

To understand the lollipop method we first need to understand some definitions.

2.1.1 Definitions

Let G(V,E) be a simple undirected graph on n vertices.
A Hamiltonian path of G is a path in G that contains every vertex of G.
A Hamiltonian cycle of G is a cycle in G that contains all the vertices of G.
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2.1. Lollipop Method 6

We fix a path v1, v2, . . . , vm of G and call it the stick S.
We denote by d(v) the degree of any vertex v in G.
For any vertex v, let N(v) be the set of adjacent vertices of v. We denote by ε(v) the
number of edges between v and the vertices of the stick except the last vertex of the
stick, i.e. ε(v) = |N(v) ∩ {v1, v2, . . . , vm−1}|.
Then there are d(v)−ε(v) edges between v and the vertices in V (G)−{v1, v2, v3, . . . , vm−1}.
We say that a Hamiltonian path u1, u2, . . . , un starts with the stick S if for 1 ≤ i ≤ m,
ui = vi.
Let h = v1, v2, . . . , vn be a Hamiltonian path of G starting with the stick S (notice
that the first m vertices of h form the stick S). Now suppose that the last vertex
vn of h is adjacent to the vertex vk where m+ 1 ≤ k < n − 1. Notice that then
v1, v2, . . . , vk, vn, vn−1, vn−2, . . . , vk+1 is another Hamiltonian path, say h′, of G. We
then say that the Hamiltonian paths h and h′ are lollipop-related. Notice that the
relation “lollipop-related” is a symmetric relation.

Figure 2.1: Two Hamiltonian paths h = v1, v2, . . . , vn and h′ =
v1, v2, . . . , vk, vn, vn−1, . . . , vk+1 are lollipop-related.

A lollipop graph of a graph G with respect to the stick S, denoted as L(G,S), is a
graph whose vertices represent the Hamiltonian paths of the graph G starting with
the stick S. Two vertices in the lollipop graph are adjacent if the Hamiltonian paths
that are represented by those vertices are lollipop-related.
Let h = v1, v2, . . . , vn be a Hamiltonian path of G starting with the stick S. Let
F = {vnvk : m ≤ k < n − 1 and vnvk ∈ E(G)}. Notice that we can associate every
Hamiltonian path h′ = v1, v2, . . . , vk, vn, vn−1, . . . , vk+1 that is lollipop-related to h
with the edge vkvn and vice versa. Thus the number of Hamiltonian paths that are
lollipop-related to h is exactly |F | = d(v) − ε(v) − 1. This gives us the following
observation.

Observation 1. Let h be a Hamiltonian path of G starting with the stick S and
ending at a vertex w ∈ V (G). The degree of the vertex representing h in L(G,S) is
d(w)− ε(w)− 1.



2.2. Thomason’s Theorem 7

2.2 Thomason’s Theorem

Theorem 4 (Thomason 1978). The number of Hamiltonian paths of G starting with
the stick S and ending in a vertex of the set W = {w ∈ V : d(w) − ε(w) is even} is
even.

Proof:
Notice that W = {w ∈ V : d(w) − ε(w) − 1 is odd}. Let H be the collection of
Hamiltonian paths of G starting with the stick S that end at a vertex of W . By
Observation 1, h ∈ H if and only if h has odd degree in L(G,S). Since the number
of odd degree vertices in any graph is even, |H| is also even. �



Chapter 3

Thomassen’s work on Cubic Graphs

In this chapter we will see how Thomassen [7] verified conjecture 1 for cubic graphs.
But first we see a proof for the existence of a second Hamiltonian cycle C ′ given a
Hamiltonian cycle C in a graph with some special properties using the Thomason’s
Lollipop method.

Lemma 1. Let G be a simple graph and let e = xy be an edge of G. Let T denote
the vertices in V (G) \ {x, y} defined as T = {v : there is a Hamiltonian path starting
with the stick x, y and ending at v}. If every vertex in T has odd degree in G, then
the number of Hamiltonian cycles containing the edge xy is even.

Proof:
We fix the stick S to be the path x, y. Then ε(v) is the number of edges between
vertex v and x. As the graph G is a simple graph, ε(v) is either 0 or 1.
Let H be the set of Hamiltonian paths starting with the stick S.
Let Hv be the set of Hamiltonian paths starting with the stick S and ending at vertex
v.
Let v ∈ V (G) \ {x, y}. Suppose that ε(v) = 1. Let h ∈ Hv. Suppose h =
x, y, v1, v2, . . . , vn−3, v (here n = |V (G)|). Then we define the path h′ := x, v, vn−3,
vn−2, . . . , v2, v1, y. Note that h′ is a Hamiltonian path starting at x and ending at y.
For a vertex v ∈ V (G) \ {x, y} such that ε(v) = 1, let Xv = {h′ : h ∈ Hv}. Thus Xv

is a set of Hamiltonian paths starting at x and ending at y. Then |Xv| = |Hv|. For
a vertex v ∈ V (G) \ {x, y} such that ε(v) = 0, we define Xv = ∅. Thus, | Xv | =
ε(v) | Hv |.
Thus, T = {v ∈ V : Hv 6= ∅}
Let T ′ = {v ∈ T : ε(v) = 1}
Let W = {v ∈ V : d(v)− ε(v) is even}
Let V ′ = V (G) \ {x, y}. Consider any Hamiltonian path h starting from x and
ending at y. Let h = x, u1, u2, . . . , un−2, y. Then since x, y, un−2, un−3, . . . , u1 is a
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Figure 3.1: This illustrates an edge xy incident on vertex x ∈ A and all the
Hamiltonian paths starting from xy and ending at a vertex v ∈ V (G) \ {x, y}.

Hamiltonian path in Hu1 , we can conclude that h ∈ Xu1 . Thus the total number of
Hamiltonian paths starting from x and ending at y
=

∑
v∈V ′ | Xv | =

∑
v∈V ′ ε(v) | Hv |

=
∑

v∈T ε(v) | Hv | +
∑

v∈(V ′\T ) | ε(v) | | Hv |
=

∑
v∈T ε(v) | Hv | ∵ ∀v ∈ (V ′ \ T ), | Hv |= 0

=
∑

v∈T ′ ε(v) | Hv | +
∑

v∈T\T ′ | ε(v) | | Hv |
=

∑
v∈T ′ ε(v) | Hv | ∵ ∀v ∈ (T \ T ′), ε(v) = 0

=
∑

v∈T ′ | Hv | ∵ ∀v ∈ T ′, ε(v) = 1

Recall that every vertex in set T has odd degree.
We can partition vertex set V of G into three sets. V = (T − T ′) ∪ (T ′) ∪ (V − T )
Notice here that T ′ ⊆ W ∵ ∀v ∈ T ′ : ε(v) = 1 and d(v) is odd.
Also notice that (T \ T ′) ∩W = ∅, since ∀v ∈ T \ T ′, we have that d(v) is odd and
ε(v) = 0.
By Theorem 4, the number of Hamiltonian paths starting with stick S (i.e. edge
xy) and ending at a vertex in W is even. Consider a Hamiltonian path h starting
with the stick S and ending at a vertex v in W . Clearly, v ∈ T (since Hamiltonian
paths starting with the stick S have to end at vertices in T , by definition of T ). Also
v /∈ T \ T ′ since (T \ T ′) ∩W = ∅. Thus v ∈ T ′. Therefore, every Hamiltonian path
starting with stick S and ending at a vertex in W must end at a vertex in T ′, which
means that W ⊆ T ′. Since T ′ ⊆ W , this implies that W = T ′.
Therefore,

∑
v∈T ′ | Hv is nothing but the number of Hamiltonian paths starting with
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the stick S and ending at vertices of W . Thus by Theorem 4, this number is even,
which implies that total number of Hamiltonian paths starting from x and ending at
y is even. Since this is same as the number of Hamiltonian cycles containing the edge
xy, we now have the lemma. �

Lemma 2 (Thomassen). Let G be a graph with a Hamiltonian cycle C. Suppose that
for some set of vertices A, the subgraph G−A has | A | components each of which is
a path whose end vertices are of odd degree in G. Then

1. For every Hamiltonian cycle C ′ of G, C ′ − A = C − A, and

2. Each edge of G incident to a vertex of A is included in an even number of
Hamiltonian cycles of G.

Proof:
Let G be a graph with a Hamiltonian cycle C and having a set A ⊆ V (G) such that
G − A has | A | components each of which is a path whose end vertices have odd
degree in G. Let a =| A | and A = {v1, v2, v3, . . . , va}. Let the paths which are the
components of G− A be P1, P2, P3, . . . , Pa.

Figure 3.2: A = {v1, v2, . . . , va} and P1, P2, . . . , Pa are the components in G−A. The
dotted line representS a Hamiltonian cycle in G.

1. To prove this, we only need to prove that for each i ∈ {1, 2, . . . , a}, the
vertices of Pi occur consecutively in the order in which they appear in Pi in
any Hamiltonian cycle of G. Then it will follow that for any Hamiltonian cycle
C ′ of G, the components of C ′ − A will also be P1, P2, . . . , Pa. We shall prove
this as follows. Consider any Hamiltonian cycle C ′ of G. For any vertex x in
C ′, we denote by x′ the vertex that occurs next in C ′ after x (when traversing
the Hamiltonian cycle C ′ in a fixed direction). For each i ∈ {1, 2, . . . , a}, we
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define a set Xi ⊆ A as follows: Xi = {x : x ∈ A and x′ ∈ V (Pi)}. Clearly,
the sets X1, X2, . . . , Xa are all pairwise disjoint. For any i ∈ {1, 2, . . . , a}, the
vertex in C ′ that occurs just before the first vertex in V (Pi) while traversing the
Hamiltonian cycle in the fixed direction starting from a vertex outside V (Pi)
belongs to A. Thus for each i ∈ {1, 2, . . . , a}, Xi 6= ∅. Then since |A| = a, it
then follows that |X1| = |X2| = · · · = |Xa| = 1. Now if the vertices of some path
Pi did not occur consecutively in C ′, then |Xi| ≥ 2, which is a contradiction to
the previous observation. Thus we can conclude that for each i ∈ {1, 2, . . . , a},
the vertices of Pi occur consecutively in C ′. Now since the subgraph of C ′
induced by V (Pi) is a path, that subgraph must be isomorphic to the path Pi

(since there are no edges in G between two non-consecutive vertices on Pi),
which implies that the vertices of Pi occur in the same order in C ′ as they occur
in C ′.

A possible illustration of a Hamiltonian cycle C can be seen in the figure 3.2.

2. Let edge e = xy where x ∈ A and vertex v be any vertex of the graph G
other than x, y as seen in figure 3.1. As before, it can be argued that every
Hamiltonian path starting with a vertex in A will end at a vertex that is an
endvertex of one of the paths in G−A. By our assumption, such vertices have
odd degree in G. Thus we can now apply Lemma 1 to conclude that the number
of Hamiltonian cycles containing the edge xy is even.

�

Let G be any graph. For any vertex u ∈ V (G) and any subgraph F of G, define
Eu(F ) = {uv ∈ E(F ) : v ∈ V (G)}.

Theorem 5 (Thomassen). Let G be a graph with a Hamiltonian cycle C. Let A be a
vertex set in G such that

(i) A is independent in C (i.e. A contains no two consecutive vertices of C), and

(ii) A is dominating in G − E(C)(i.e., every vertex of G − A is joined to a vertex
in A by some chord of C).

Then G has a Hamiltonian cycle C ′ distinct from C. Moreover, C ′ can be chosen
such that

(iii) C ′ − A = C − A, and

(iv) there is a vertex v in A such that one of the edges of C ′ incident with v is in C
and other is not in C.

Proof:
Let X = {x ∈ V (G) : x is a neighbour of a vertex in A in C}. For every vertex
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x ∈ X, there exist at least one vertex in A that is connected to x through a chord
of C (since A is a dominating set in G − E(C)). For each x ∈ X, choose one such
chord ex that connects it to a vertex of A. Define G′ as the graph with vertex set
V (G′) = V (G) and E(G′) = E(C) ∪ {ex : x ∈ X}. Note that in G′, every chord of
C that is incident to a vertex in V (G′) \ A is also incident to a vertex in A. Thus
G′ −A has exactly |A| components, each of which is a path. Moreover, each of these
paths have vertices from X as their endpoints. From the definition of G′, it is clear
that every vertex in X has degree 3 in G′. Thus G′ and A′ satisfy the conditions
required to apply Lemma 2. Let e be any edge of C that is incident to a vertex of A.
By Lemma 2, we know that the number of Hamiltonian cycles containing e is even,
which implies that there is at least one Hamiltonian cycle C ′ of G′ that is different
from C. Moreover, we have C − A = C ′ − A. This proves (iii).
Let C ′ be a Hamiltonian cycle of G′ that is different from C such that it contains
the largest possible number of edges in C. We claim that C ′ satisfies (iv). Suppose
not. Then for every vertex v ∈ A, |Ev(C) ∩ Ev(C

′)| ∈ {0, 2}. Let A′ = {v ∈
A : |Ev(C) ∩ Ev(C

′)| = 0}. Let H be the graph with vertex set V (H) = V (G′) and
E(H) = E(C) ∪ E(C ′). Let X ′ = {x ∈ V (G′) : x is adjacent to a vertex of A′ in C}.
Clearly, X ′ ⊆ X. Consider a vertex x ∈ X ′ that is a neighbour of a vertex in a ∈ A′
in C. If |Ex(C

′) ∩ Ex(C)| = 0, then x will have degree 4 in G′, which contradicts
the fact that x has degree 3 in G′. If |Ex(C

′) ∩ Ex(C)| = 2, then xa ∈ E(C ′), which
contradicts the fact that a ∈ A′. Thus we can conclude that |Ex(C

′) ∩ Ex(C)| = 1.
This implies that in H, the vertex x has degree 3. Any chord e of C in H is an
edge of C ′. Clearly, one endpoint v of e is a vertex in A since every chord of C
in G′ had this property. Then |Ev(C) ∩ Ev(C

′)| = 0, which implies that v ∈ A′.
Thus any chord of C in H has a vertex from A′ as one of its endpoints. Therefore
H −A′ has |A′| components, each of which is a path whose both endpoints are in X ′.
Since every vertex in X ′ has degree 3 in H, we can now apply Lemma 2 to H and
A′. Now consider any edge e of C ′ that is incident to a vertex of A′. By Lemma 2,
the number of Hamiltonian cycles of H that contain e is even, which implies that
there is a Hamiltonian cycle C ′′ different from C ′ that contains e. Note that C ′′
is also different from C since e /∈ E(C). Since by Lemma 2, we also have that
C ′ −A′ = C ′′ −A′, if at every vertex a ∈ A′, we have Ea(C

′) = Ea(C
′′), then C ′ and

C ′′ cannot be distinct. Thus there exists a vertex z ∈ A′ such that Ez(C
′) 6= Ez(C

′′).
Since the set of edges incident to z in H is exactly Ez(C) ∪ Ez(C

′), this means that
Ez(C

′′) ∩ Ez(C) 6= ∅. Let f ∈ Ez(C
′′) ∩ Ez(C). Clearly, f /∈ E(C ′). Now consider

any edge e ∈ E(C ′) ∩ E(C). Clearly, e is not incident to a vertex of A′, since for
every vertex v ∈ A′, we have |Ev(C) ∩ Ev(C

′)| = 0. Thus e is an edge of one of the
connected components (which are paths) of C ′−A′. Since C ′′−A = C ′−A, we have
that e ∈ C ′′. Thus E(C ′) ∩ E(C) ⊆ E(C ′′) ∩ E(C). Since f ∈ E(C ′′) ∩ E(C) and
f /∈ E(C ′) ∩ E(C), we now have a contradiction to the choice of C ′.

�
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We give below a theorem of Fleischner and Steibitz [2] that will be useful for proving
the next result.

Theorem 6 (Fleischner and Steibitz). Let G be a graph whose edge set is the disjoint
union of a Hamiltonian cycle and a collection of pairwise vertex-disjoint triangles.
Then G is 3-colourable.

Theorem 7 (Thomassen). Any longest cycle in a 3-connected cubic graph has a
chord.

Proof:
Let G be a 3-connected cubic graph and let C be a longest cycle in it. Suppose
for the sake of contradiction that C has no chord. Then let H1, H2, . . . , Hk be the
connected components of G − V (C). For each i ∈ {1, 2, . . . , k}, let NC(Hi) denote
the set of vertices in C that have neighbour in Hi. Since G is 3-connected, we have
that |NC(Hi)| ≥ 3. Since G is cubic, each vertex of C belongs to NC(Hi) for at most
one i ∈ {1, 2, . . . , k}. Moreover, for each i, if two consecutive vertices of C belong to
NC(Hi), then there is a cycle longer than C in G, which is a contradiction. For each
i, choose distinct vertices xi, yi, zi ∈ NC(Hi). Consider the graph F with vertex set
V (F ) = V (C) and E(F ) = E(C) ∪

⋃
i∈{1,2,...,k}{xiyi, yizi, xizi}. Clearly, F satisfies

the requirements of Theorem 6, and therefore, F is 3-colourable. Let X denote one of
the three colour classes of F . Clearly, for each i ∈ {1, 2, . . . , k}, |X ∩ {xi, yi, zi}| = 1.
Moreover, no two vertices in X are consecutive on C. We assume without loss of
generality that X = {xi : i ∈ {1, 2, . . . , k}}. We now construct the graph G′ from G
by contracting the component Hi of G−V (C) into xi, for each i ∈ {1, 2, . . . , k}. Then
V (G′) = V (C) and for each i ∈ {1, 2, . . . , k}, the vertex xi has degree |NC(Hi)| − 1
in G′, the vertices yi and zi have degree 3 in G′ and every other vertex has degree
2 in G′. Further, notice that every vertex in V (G′) \X belongs to NC(Hi) for some
i ∈ {1, 2, . . . , k}, and hence is connected to xi ∈ X by a chord. Thus G′, C, and X
satisfy the requirements of Theorem 5. Thus there is a Hamiltonian cycle C ′ different
from C in G′ such that there exists a vertex v ∈ X for which |Ev(C) ∩ Ev(C

′)| =
1. It can be seen that C ′ can be extended into a cycle C ′′ of G as follows. Let
C ′ = v1, v2, . . . , vn, v1 where V (G′) = {v1, v2, . . . , vn}. Let us assume without loss of
generality that x1, x2, . . . , xk appear in this order in C ′. Let Pi denote the subpath of
C ′ between the vertex after xi and the vertex before xi+1 that does not contain any
vertex of X (subscripts modulo k). Let pi, qi be the first and last vertices of the path
Pi. Then C ′ is the cycle x1, p1P1q1, x2, p2P2q2, x3, . . . , pk−1Pk−1qk−1, xk, pkPkqk, x1. If
|Exi

(C)∩Exi
(C ′)| = 0, then {qi−1, pi} = {yi, zi}, and we define Qi to be the path in G

between qi−1 and pi whose internal vertices all lie in the componentHi ofG−V (C). On
the other hand if |Exi

(C)∩Exi
(C ′)| = 2, then qi−1, pi are the neighbours of xi on C and

we define Qi to be simply the path qi−1, xi, pi in G. Finally, if |Exi
(C)∩Exi

(C ′)| = 1,
then one of qi−1, pi belongs to {yi, zi} and the other is a neighbour of xi on C. If qi−1
is the neighbour of xi on C, then we define Qi to be the path qi−1, xiRpi, where R is
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the path in G between xi and pi whose internal vertices all lie in Hi. Otherwise, if pi
is the neighbour of xi on C, then we define Qi to be the path qi−1Rxi, pi, where R is
the path in G between qi−1 and xi whose internal vertices all lie in Hi. Now consider
the cycle C ′′ in G that is obtained from C ′ by replacing each subpath qi−1, xi, pi with
the path qi−1Qipi. Notice that if in G′, there exist at least one i ∈ {1, 2, . . . , k}, such
that |Exi

(C) ∩ Exi
(C ′)| = 1, then C ′′ is a longer cycle than C ′. As observed earlier,

the vertex v ∈ X has the property that |Ev(C) ∩ Ev(C
′)| = 1, and therefore C ′′ is a

cycle in G that is longer than C ′ and hence also longer than C. This contradicts the
fact that C is a cycle of maximum possible length in G. �
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