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Abstract

The concept of rainbow connection was introduced by Chartrand et al.. It has become

a new and active subject in graph theory. On this topic a book was written by Li and

Sun and there is a survey paper also by Li, Shi and Sun. From then many researches on

rainbow edge coloring is going on. Krivelevich and Yuster have defined vertex variant on

rainbow connection. On rainbow vertex connection also research has been started from

then. Rainbow vertex coloring on powers of trees have been solved in [9]. They gave a

linear time algorithm to color vertices such that the graph will be rainbow vertex connected.

In our knowledge rainbow edge coloring on powers of trees has not been solved yet. In

this work we will use similar type of idea of rainbow vertex coloring to find rainbow edge

coloring on powers of trees. We will give a linear time algorithm to color edges such that

the graph will be rainbow edge connected. Sudipta Ghosh worked on squares of trees in

his M.Tech Dissertation and in this work I will extend his work for higher power of trees.
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1 Introduction

Graph connectivity and coloring is a well researched topic. Rainbow Coloring is a combi-

nation of coloring and connectivity problem in graphs. Chartrand et al.[5] first mentioned

about rainbow edge coloring. One recent such variant rainbow vertex coloring problem

was defined by Krivelevich and Yuster and has received significant attention [7].

1.1 Motivation:

Between any two agencies, there will be some intermediate agencies in which the informa-

tion passes through one or more secure paths with large number of passwords required.

Passwords all should be distinct in the information path between any two agencies. So

we need minimum no of passwords such that on any information path between any two

agencies passwords should not be repeated. And this can be solved by graph theory and

here rainbow coloring concept comes.

1.2 Rainbow Coloring:

A edge colored graph is said to be rainbow edge connected if between every pair of ver-

tices in the graph, there exist a path connecting the pair where color of every edge in

that path is distinct. Such type of path is called rainbow path. The minimum number

of colors required to make a graph rainbow connected, is known as rainbow connection

number (rc(G)). Caro et al. [1] conjectured that computing rainbow connection number

of a graph is a NP-Hard problem. This conjecture is proved by Chakrobarty et al. [3]. A

vertex colored graph is said to be rainbow vertex-connected if between any pair of its ver-

tices, there is a path whose internal vertices are colored with distinct colors. This vertex

coloring may not be a proper graph coloring, as an example, a complete graph is rain-

bow vertex-connected under the coloring that assigns the same color to every vertex. The

Rainbow Vertex Coloring (RVC) problem takes as input a graph G and an integer k and

asks whether G has a coloring with k colors under which it is rainbow vertex-connected.

The rainbow vertex connection number of a graph G is the smallest number of colors

needed in one such coloring and is denoted rvc(G). More recently, Li et al. defined a
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stronger variant of this problem by requiring that the rainbow paths connecting the pairs

of vertices are also shortest paths between those pairs. In this case we say the graph is

strong rainbow vertex-connected. The analogous computational problem is called Strong

Rainbow Vertex Coloring (SRVC) and the corresponding parameter is denoted by srvc(G).

1.3 Previous work

In the section Literature Survey (section 4) we have mentioned the results on rainbow

vertex coloring which we have studied. Whole updated survey on rainbow coloring can be

found in [8].

Sudipta Ghosh in his M.Tech Dissertation solve the rainbow connection problem for

squares of trees. In this work we extend his work for higher powers of trees. In this work

we have proved this following theorem.

Theorem 1.1. If G be power of trees (T k where T is a tree and k � 3), then rc(G) 2
{diam(G), diam(G) + 1},and the corresponding optimal rainbow coloring can be found in

the time that is linear in the size of G.

1.4 Thesis Outline

Throughout the thesis we proceed in the following way.

In section 2 we have defined rainbow coloring for edge and vertex variant both. And

after that we have defined some basic terminology in graph theory which are needed to

understand our work. We have studied some research papers based on rainbow vertex

coloring. We have also mentioned some graph classes on which rainbow vertex coloring is

solved on those papers.

In section 3 we have mentioned a small survey on rainbow vertex coloring. First we have

mentioned hardness of rainbow vertex coloring. Also we have mentioned some graph classes

on rainbow vertex coloring is hard. And after that we have mentioned some graph classes

on rainbow vertex coloring can be solved in polynomial time. And then we have mentioned

some interesting result on rainbow edge coloring on random graphs.
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In section 4 we have discussed our work on powers of trees and proved the previously

mentioned theorem.
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2 Preliminaries and Definition

Graph connectivity and coloring is a well researched topic. Rainbow Coloring is a combi-

nation of coloring and connectivity problem in graphs. Chartrand et al. first mentioned

about rainbow edge coloring and after that rainbow vertex coloring also was defined.

Definition 2.1. A path in a vertex-colored graph G is a rainbow vertex path if all its

internal vertices have distinct colors. G is rainbow vertex-connected if there is a rainbow

vertex path between every pair of its vertices.

Definition 2.2. Rainbow Vertex Coloring (rvc) is the decision problem in which we are

given a connected (uncolored) graph G and an integer k, and the task is to decide whether

the vertices of G can be colored with at most k colors such that G is rainbow vertex-

connected. The rainbow vertex connection number of G, denoted by rvc(G), is the minimum

k such that G has a rainbow vertex coloring with k colors.

Definition 2.3. A stronger variant of rainbow vertex coloring was introduced by Li et

al. A vertex colored graph G is strongly rainbow vertex connected if between every pair

of vertices of G, there is a shortest path that is also a rainbow vertex path. The Strong

Rainbow Vertex Coloring (srvc) problem takes as input a connected (uncolored) graph G

and an integer k, and the task is to decide whether the vertices of H can be colored such

that G is strongly rainbow vertex-connected. This definition is the vertex variant of the

Strong Rainbow Coloring problem.

Definition 2.4. Let G = (V,E) be a graph and c : E ! {1, 2, 3, ..., r},r 2 N, where

adjacent edge can be colored same. For any two arbitrary vertices u and v, if 9 a path

between u and v such that every edge in that path is of di↵erent color, then that path is

called rainbow path and u and v is called rainbow connected. If for every pair of vertices

in a graph is rainbow connected, then that graph is called rainbow connected graph. The

minimum number of colors needed to make a graph rainbow connected is rainbow connection

number of that graph denoted as rc(G).

We will firstly define some basic definitions in graph theory and also some graph classes

on which rainbow vertex coloring has been studied.
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2.1 Basic definitions and notations

We will find rainbow edge coloring on powers of trees in our work later. Therefore first we

will define what is power of a graph.

Definition 2.5. The k-th Power of a graph, denoted by Gk where k � 1, is defined as

follows: V (Gk) = V (G). Two vertices u and v are adjacent in V (Gk) if and only if the

distance between vertices u and v in G, i.e., distG(u, v)  k.

Definition 2.6. The eccentricity of a vertex v is ecc(v) := max
x2V (G)

d(v, x). The radius of G

is rad(G) := min
x2V (G)

ecc(x). The diameter of G is diam(G) := max
x2V (G)

ecc(x).

Definition 2.7. A center of a graph G is a vertex c for which eccentricity(c) in minimum

and equal to radius of G.

Later to find rainbow edge coloring on powers of trees we will use diameter and centre

again and again in lemmas.

Definition 2.8. A dominating set of G is a set D ✓ V such that every vertex in V - D is

adjacent to at least one vertex in D. If G[D] is connected, then D is a connected dominating

set. The minimum size of a connected dominating set in G, denoted by �c(G), is known as

the connected domination number of G. [o]

This parameter provides an upper bound on the rainbow. vertex connection number

of a connected graph, since G becomes rainbow vertex-connected by simply coloring all

vertices of the connected dominating set distinctly, and the remaining vertices with any of

the already used colors.[6]

2.2 Definition of some graph classes

Some graph class definitions are mentioned here. A detailed background on these graph

classes can be found, for example, in the book by Brandstädt, Le, and Spinrad.[6]. On

these graph classes rainbow vertex coloring has been studied. We will mention the results

on these graph classes in the next section.

Definition 2.9. A graph is an apex graph if it contains a vertex (called an apex) whose

removal results in a planar graph.[6]
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Definition 2.10. A graph is chordal if all of its induced simple cycles are of length 3.

Some well-known sub classes of chordal graphs are interval graphs, split graphs, and block

graphs.[6]

Definition 2.11. A graph is an interval graph if it is chordal and it contains no triple of

non-adjacent vertices, such that there is a path between every two of them that does not

contain a neighbor of the third. Another way to interpret interval graph is an interval graph

is an undirected graph where each vertex represents an interval in real line and two vertex

is connected by an edge if the corresponding intervals has non-empty intersection.[6]

Definition 2.12. A graph is a split graph if its vertex set can be partitioned into an

independent set and a clique.

Definition 2.13. A graph is a block graph if every bi connected component (block) of G is

a complete graph.

Definition 2.14. Let � be a permutation of the integers between 1 and n. We can make a

graph G� on vertex set [n] in the following way. Vertices i and j are adjacent in G� if and

only if they appear in � in the opposite order of their natural order. A graph on n vertices

is a permutation graph if it is isomorphic to G� for some permutation � of the integers

between 1 and n. A graph is a bipartite permutation graph if it is both a bipartite graph

and a permutation graph.

Definition 2.15. An independent triple of vertices x, y, z in a graph G is an asteroidal

triple (AT), if between every pair of vertices in the triple, there is a path that does not

contain any neighbour of the third. A graph without asteroidal triples is called an AT-free

graph.

On these graph classes rainbow vertex coloring has been studied. In Sudipta Ghosh’s

M.Tech Dissertation rainbow edge coloring has been surveyed.
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3 Literature Review

First we will mention about hardness of rainbow vertex coloring. In the next subsection

we will also mention rainbow vertex coloring result on some graph classes in which classes

rainbow vertex coloring can be solved in polynomial time. Hardness of rainbow edge

coloring and some rainbow edge coloring result on some graph classes in which classes

rainbow edge coloring can be solved in polynomial time has been surveyed in Sudipta

Ghosh’s M.Tech Dissertation work. In the next subsection we will also mention work on

rainbow edge coloring on random graphs.

3.1 Hardness of Rainbow Coloring

Theorem 3.1. rvc(G) is NP-complete for every k � 2. It is also NP-hard to approximate

rvc(G) within a factor of 2� ✏ unless P 6= NP , for any ✏ > 0.[6]

Theorem 3.2. srvc(G) is NP-complete for every k � 2. It is NP-hard to approximate

srvc(G) within a factor of n
1
2�✏ unless P 6= NP , for any ✏ > 0.[6]

rvc and srvc is NP complete on the following graph classes.

Theorem 3.3. For bipartite graph of diameter 4, to decide whether rvc and srvc is  k

is NP -complete for every k � 3. Moreover,it is NP -hard to approximate both rvc(G) and

srvc(G) within a factor of n
1
3�✏, for every ✏ > 0.(Heggerness et al.)[6]

This theorem can be proved using this idea: Let H be a hypergraph on n vertices.

Then in polynomial time we can construct a bipartite graph G of diameter 4 and with

O(n3) vertices such that for any k ✏ [n], H has a proper k-coloring if and only if G has a

(k + 1)-coloring under which G is (strongly) rainbow vertex-connected. Moreover, if H is

a planar graph, then G is an apex graph.

Theorem 3.4. For bipartite apex graph of diameter 4, to decide whether rvc and srvc

is  k is NP-complete. Moreover,it is NP -hard to approximate both rvc(G) and srvc(G)

within a factor of n
5
4�✏, for every ✏ > 0.(Heggerness et al.)[6]

This result is particularly interesting since no hardness result was known on a sparse

graph class (like apex graphs) for any of the variants of rainbow coloring.
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Theorem 3.5. For split graph of diameter 3, to decide whether rvc and srvc is  k is

NP-complete for every k � 3. Moreover,it is NP -hard to approximate both rvc(G) and

srvc(G) within a factor of n
1
3�✏, for every ✏ > 0.(Heggerness et al.)

3.2 Result on some graph classes

Theorem 3.6. For a block graph, or a unit interval graph, rvc and srvc can be solved in

linear time. For interval graph, rvc can be solved in linear time (Heggerness et al.).[6]

For interval graph rvc = diam(G)� 1 and for block graph srvc = no of cut vertices.

Theorem 3.7. rvc is linear-time solvable on planar graphs for every fixed k.

Conjecture: A diametral path of a graph G is a shortest path whose length is equal

to diam(G). A graph is a diametral path if every connected induced subgraph has a

dominating diametral path. Let G be a diametral path graph. Then rvc(G) = diam(G)�
1(Heggerness et al).[6]

Theorem 3.8. If G is a permutation graph on n vertices, then rvc(G) = diam(G) � 1

and the corresponding rainbow vertex coloring can be found in O(n2) time(Heggerness et

al.).[6]

Theorem 3.9. If G is a split strongly chordal graph with l cut vertices, then rvc(G) =

srvc(G) = max(diam(G)� 1, l)(Heggerness et al.).[6]

Conjecture and Open Problem: Complexity of finding rainbow color on AT free

graphs i.e graphs do not contain asteroidal triple (ex: interval graphs, permutation graphs)

and strongly chordal graphs(ex: power of trees, split strongly chordal graphs) (Hggerness

et al.)[6]

3.3 Result of Rainbow edge coloring on Random Graphs

Let G = G(n, p) denote the binomial random graph on n vertices with edge probability p.

Some work on rainbow edge coloring has been done on random graphs and some interesting

result has been found.

8



Theorem 3.10. Caro et al. proved that p = logn
n is the sharp threshold for the property

rc(G(n, p))  2.[2]

He and Liang studied further the rainbow connectivity of random graphs. They obtain

the sharp threshold for the property rc(G)  d where d is constant.

Li and Sun worked on the rainbow connectivity of the binomial graph at the connec-

tivity threshold p = logn+!
n where ! = o(logn).

We know diam(G) is the lower bound of rainbow edge coloring. In the following theorem

a pretty interesting result has been found. For random graphs rainbow edge coloring is

asymptotically equal to the diameter with high probability.

Theorem 3.11. Let G = G(n,p), p = logn+!
n , ! ! 1, ! = o(logn), Also, let Z1 be the

number of vertices of degree 1 in G. Then, with high probability(whp) rc(G) ⇠ max (Z1,L).

It is known that whp the diameter of G(n,p) is asymptotic to L for p as in the above range.

Here L = logn
loglogn .[4]

Theorem 3.12. Let G = G(n,r) be a random r-regular graph where r � 3 is a fixed integer.

Then, whp rc(G) = O(log4n) when r = 3 and O(log2✓rn) when r � 4, where ✓r =
log(r�1)
log(r�2) .[4]

9



4 Our Work: Rainbow edge coloring for powers of

trees

In this section we will discuss on rainbow edge coloring of T k (T k is k th power of tree

T ). Sudipta Ghosh has discussed rainbow edge coloring on square of trees in his M.Tech

Dissertation. So in this section I will extend his work for k � 3. Though rainbow vertex

coloring of powers of trees is discussed in previous research, but as of our knowledge rainbow

edge coloring on powers of trees is not discussed till now.

We know diam(G) is the lower bound of the rainbow connection number of a graph G.

For power of Trees we have showed the following result.

Theorem 4.1. For powers of tree T k, rainbow connection number 2 {diam(T k),

diam(T k) + 1}

Therefore like squares of trees same type of results hold for higher powers of trees, but

here to prove the above theorem we have to consider more cases than cases in square of

trees. The diameter of T is always even if the centre of T is a single vertex. So always

diam(T) = 0 (mod 2) holds if the centre of T is a single vertex. but for higher power of

trees if centre of T is single vertex we have to consider whether diam(T ) = 0 (mod 2) or

not. We will discuss di↵erent such cases through di↵erent lemmas.

To prove the above theorem some definitions are required to be known.

Definition 4.1. Branch: If one endpoint of an edge is centre, then if the edge is removed

the tree fall apart in two parts. A branch is the part that doesn’t contain the centre. If

the centre contains single vertex, then the no of branches is nothing but equal to the degree

of the centre. A subbranch of B will be denoted by B0. Subbranch is a branch which uses

some vertices of main branch.

Definition 4.2. Layer: We define layer i as the set of all vertices with distance bdiam(T )
2 c�

i to the center of T. layer of a vertex v will be denoted by l(v).

Now we will prove the theorem through di↵erent cases and lemmas. Rainbow connection

number of a graph G will be denoted by rc(G) and shortest rainbow connection number

of a graph G will be denoted by src(G).
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Lemma 1. Suppose T is a tree and it has single vertex in centre, diam(T ) �
3k and diam(T ) = 0(mod k), and there are at least three branches from the

center with maximum length. Then src(T k) � rc(T k) � diam(T k) + 1.

Proof.

Suppose B1, B2, B3 are three branches from the centre with maximum length (as our

assumption).

Divide the layers 1, 2, . . . , diam(T )�1
2 in blocks of size k. If a block has size k then we

can say it a complete block. Then the topmost block may be or may not be a complete

block. Let n be the number of complete blocks in B1. Suppose a1 , a2 , . . . are vertices

in B1 in layer 0(mod k). That means a1 , a2 , . . . be the topmost vertices in the complete

blocks in B1. Similarly, let b1 , b2 , . . . be the topmost vertices in the complete blocks in

B2. That means b1 , b2 , . . . are all vertices in B2 in layer 0(mod k). Suppose d(x, y) is

distance between two vertices x and y.

Suppose v1, v2, v3 are layer 0 vertices in those maximum branches B1, B2, B3 respec-

tively. Then shortest distance between each pairwise vi and vj will be diam(T k) in the

graph T k(as among all pairs of vertices for these three pairs shortest path distance will be

maximum) and those shortest paths are unique. As diam(T ) = 0(mod k) so d(a1, b1) will

be either 0 or k. Now we want to find the shortest path between v1 and v2. From v1 follow

0(mod k) layers in B1 to reach a1 and from v2 follow 0(mod k) layers in B2 to reach b1. If

d(a1, b1) = 0 then a1 and b1 are nothing but centre. If d(a1, b1) = k then we have to use

an edge from a1 to b1. So this shortest path is unique. For other vi and vj pairs shortest

path can be found similarly.

Suppose on a contrary assume rc(T k) = diam(T k). So, if we use diam(T k) colors then

certainly we have to follow those shortest paths to get rainbow path between each pair vi

and vj.

Claim: It will not be possible to make rainbow colored path for all pairs vi and vj with

diam(T k) colors.
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Proof: Shortest path between v1 and v2 and shortest path between v1 and v3 will share

some edges of B1. The non shared portion in those two shortest paths should consist of

edges with same color. That means the portion of shortest path between v1 and v2 which is

in B2 and portion of shortest path between v1 and v3 which is in B3 should consist of edges

with same color if we assume the contrary assumption. But if we consider v2 to v3 shortest

path, it is nothing but combination of edges of those non shared portions in B2 and B3

and also it is unique shortest path between v2 and v3. But it will not be rainbow colored

path because those non shared portions in B2 and B3 consists of same colored edges as we

have mentioned before. So, it will not be possible to make rainbow colored path between

each pair of vertices using diam(T k) colors. ⌅
So src(T k) � rc(T k) � diam(T k) + 1.

We have shown in lemma 1 diam(T k) no of colors is not su�cient for this case, but in

lemma 2 we will show diam(T k) + 1 no of colors is su�cient.

Lemma 2. If T is a tree and it has single vertex in the centre and diam(T ) �
3k and diam(T ) = 0(mod k) and at least three branches of maximum length

from the centre, then rc(T k) = diam(T k) + 1.

Proof.

let l(vi) denotes layer of vertex vi.

c(vivj) denotes color of edge vivj. Let l(vi) < l(vj).

Coloring Procedure:

c(vivj) =

8
>>>>>>>><

>>>>>>>>:

c1 if vj is center and l(vi) 6⌘ 0 (mod k)

c2 if vj is center and l(vi) ⌘ 0 (mod k)

l(vj) if l(vj) ⌘ 0,�1 (mod k)

c1 otherwise

Claim: There exist rainbow colored path between each pair of vertices.
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Proof: Suppose u is a vertex in B1 and v is a vertex in B2. We want to find the rainbow

colored path between u and v. In B1 from u follow the path using 0(mod k) layered vertices.

So we are using 0(mod k) colored edges. And now use c2 colored edge to reach the centre

from top 0(mod k) layered vertex in B1 . From the centre use color c1 edge to reach nearest

�1(mod k) layered vertex to the centre in B2 (if v is in topmost block instead we have to

use c1 colored edge from centre to reach v). Now follow the path using �1(mod k) layered

vertices using �1(mod k) colored edges to reach v. So, it will be a rainbow colored path.

Edges of other branches will be colored similarly depending on the conditions of coloring

procedure. If u is in Bi and v is in B0
i (Recall the definition of subbranch), then we can

assume B0
i as some other branch Bj (may be B2), follow the path similarly as we have

reached from B1 to B2. So in this process we can find rainbow colored path between any

pair of vertices. ⌅

No of colors:

Now we will show the number of colors has been used is actually diam(T k) + 1. Suppose

l = diam(T )
2 � 1. We have divided those layers in blocks of size k. Notice that two colors

are used in every complete block. There are b l
kc complete blocks, so 2b l

kc colors for those

blocks. Recall a1 and b1 mentioned in lemma 1. d(a1,b1) is either 0 or k as per our

assumption. So, for the second case diam(T k) will be 2b l
kc + 1. And we have used two

extra colors c1 and c2 except 2b l
kc colors. So we are using diam(T k) + 1 colors. For the

first case diam(T k) will be 2b l
kc. Basically we are using then one extra color apart from

2b l
kc colors. So in this case also we are using diam(T k) + 1 colors.

Lemma 3. If T is a tree and it has single vertex in centre and diam(T ) � 2k+1

and diam(T ) 6= 0 (mod k), then rc(T k) = diam(T k).

Proof.

Suppose l(v) denotes layer of vertex v. Suppose vivj is an edge and l(vj) > l(vi) . c(vivj)

denotes color of that edge. We want to color the edges such that between each pair of

vertices there exist a rainbow path.
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Coloring Procedure:

c(vivj) =

⇢
l(vj) if l(vj) ⌘ 0,�1 (mod k)

We can have some observations seeing the conditions mentioned in lemma. Let z be

the center vertex. There will be two longest branches from z. Let B1 and B2 be two

longest branches from z. If one longest branch exists, then there will be two centre and

that is contrary to our assumption. Recall the definition of complete block in lemma 1.

The topmost block won’t be complete, if complete then diam(T ) = 0 (mod k), contrary

to our assumption.

No of colors used so far:

Suppose l = diam(T )
2 � 1. We have divided those layers in blocks of size k. Notice that two

colors are used in every complete block. There are b l
kc complete blocks, so 2b l

kc colors

have been used in those blocks.

Recall a1 and b1 mentioned in lemma 1. Now we will consider three cases and complete

the coloring to find rainbow path between each pair of vertices.

Case 1:

Suppose that d(a1, b1) > k. We know d(a1, z) < k and d(b1, z) < k. We claim that

diam(T k) = 2b l
kc + 2. Let u 2 B1, v 2 B2 be vertices in layer 0. A u, v-path contains a

vertex in every complete block in B1, a vertex in every complete block in B2 and a vertex

in a topmost incomplete block or z. All in all, these are 2b l
kc + 1 internal vertices. So

2b l
kc + 2 edges are used and it is nothing but diam(T k) length path. So we can use two

more colors in the coloring. Suppose these colors are c1 and c2. No of blocks in one branch

is n. Suppose nearest �1 (mod k) layered vertex to centre is denoted by p1

Coloring Procedure:

c(vivj) =

8
>>>>>>>><

>>>>>>>>:

c1 if l(vi) = a1

c2 if l(vi) = p1

c2 color of edge with one endpoint in B1 and other endpoint in B2

c1 color of other edges in topmost block

14



Then, for any two vertices u and v, to find the rainbow path between u and v use the

0 (mod k) layers to go from u to z and then use �1 (mod k) layers to go from z to v.

First we are using 0 (mod k) colored edges and then c1 colored edge to reach z from a1

and from z then use c2 colored edge to reach �1 (mod k) layered vertex (instead if v is

in topmost block with layer higher than layer of a1 we can reach v direct from z using c2

colored edge) and then use �1 (mod k) colored edges to reach v. So that will be rainbow

colored path. If v is in topmost 0 (mod k) layer, u to a1 path will be same and after that

from a1 use c2 colored edge to reach a vertex in B2 next to the centre and use c1 colored

edge to reach v from that vertex.

Case 2:

Now suppose that d(a1, b1) = k. It follows that k | diam(T ), a contradiction with the

assumptions of the lemma.

Case 3:

Now suppose that d(a1, b1)  k � 1. Here we can use one more color. Color all uncolored

edges with one color (say c1). Let u and v be two vertices.

Use the 0 (mod k) layers to go from u to a1 and then from a1 reach �1 (mod k) layered

vertex using c1 colored edge (from a1 we can use c1 colored edge to reach v which is in B2

or B1 whatever if v’s layer greater or equal to layer of a1 ) and then follow �1 (mod k)

vertices using �1 (mod k) colored edges to reach v.

Lemma 4. If T be a tree and it has single vertex in the centre; diam(T ) � 3k,

diam(T ) = 0 (mod k) and T has two branches of maximum length, then rc(T k) =

diam(T k)

Proof.

Let B1 and B2 be the branches of maximum length and B3 represents all other branches.

In the time of coloring we represent an edge by ab where l(a) < l(b) and in the time of

rainbow path finding we want to find rainbow path between two vertices u and v. Recall

15



block partition in lemma 1. If d(a1, b1) = 0 then diam(T k) will be even. In this case a1

and b1 both will be centre. If d(a1, b1) = k then diam(T k) will be odd.

We first consider the case when diam(T k) is odd.

Here we will mention path and with that also will mention the color of the required

edges. Other edges can be colored arbitrarily. So, we are trying to find rainbow path

between u and v.

Case 1. u is in B1 and v is in B2 :

Subcase (i): u is in any layer except �1 (mod k) and v is in any layer except �1 (mod k):

Coloring Procedure:

1. In B1 for the edge ab if l(a) is in 0 th layer or l(b) is in k th layer or l(a) is in 0 th layer

and l(b) is in k th layer both then the edge color will be c1 ( for now don’t consider edge

with one endpoint in k � 1 th layer )

2. In B1 for the edge ab if l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or

l(a) is in 0 (mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will

be l(a)� 1 ( for now don’t consider edge with one endpoint in �1 (mod k) )

3. In B2 for the edge ab If l(a) is in 0 th layer or l(b) is in k th layer or l(a) is in 0 th layer

and l(b) is in k th layer both then the edge color will be c0 ( for now don’t consider edge

with one endpoint in k � 1) )

4. In B2 for the edge ab if l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or

l(a) is in 0 (mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will

be l(a) ( for now don’t consider edge with one endpoint in �1 (mod k) )

5. Edge from 0 (mod k) layered vertex in B1 to 0 (mod k) layered vertex in B2 will be

colored c .

Path:

From u go to higher nearest 0 (mod k) layer by edge colored with �1 (mod k) or c1 (for

the case when layer of u < k) and then follow c colored edges to reach 0 (mod k) vertex in

B2 and then follow 0 (mod k) layers in B2 using 0 (mod k) colored edges to reach nearest
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0 (mod k) layer to v and then follow 0 (mod k) colored edge or c0 colored edge (for the

case when layer of v < k) to reach v .

Subcase (ii): If u is in any layer except �1 (mod k) and v is in �1 (mod k) layer:

Coloring Procedure:

1. In B2 and B1 for the edge ab If l(a) = 0 (mod k) and l(b) = �1 (mod k) then edge

color will be c.

2. In B2 and B1 for the edge ab If l(b) = k � 1 color will be c.

3. In B2 If l(a) is in �1 (mod k) th layer or l(b) is in �1 (mod k) th layer or l(a) is in �1

(mod k) th layer and l(b) is in �1 (mod k) th layer both then the edge color will be l(a)

( for now don’t consider edge with one endpoint in �1 (mod k) )

4. In B2 From topmost �1 (mod k) layer to centre edge color will be c1.

5. In B1 If l(a) is in �1 (mod k) th layer or l(b) is in �1 (mod k) th layer or l(a) is in

�1 (mod k) th layer and l(b) is in �1 (mod k) th layer both then the edge color will be

l(a) + 1 (for now don’t consider edge with one endpoint in �1 (mod k)))

6. In B1 From topmost �1 (mod k) layer to centre edge color will be c0.

Path:

From u go to higher nearest �1 (mod k) layer by edge with color 0 (mod k) or c and then

follow �1 (mod k) layers using 0 (mod k) colored edges to reach top �1 (mod k) layered

vertex in B1 and then use c0 colored edge to reach centre and then use c1 colored edge to

reach top �1 (mod k) layered vertex in B2 and then follow �1 (mod k)layer in B2 using

�1 (mod k) colored edges to reach v .

Subcase (iii): If u is in �1 (mod k) layer and v is in any layer except 0 (mod k):

Coloring Procedure:

1. Edge between �1 (mod k) layered vertex next to centre in B1 and �1 (mod k) layered

vertex next to centre in B2 will be colored c0.

Path:

From u follow �1 (mod k) layers using 0 (mod k) colored edges to reach top �1 (mod k)

layered vertex in B1 and then use c0 colored edge to reach centre and then use c1 colored

edge to reach top �1 (mod k) layered vertex in B2 and then follow �1 (mod k) layer in
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B2 using �1 (mod k) colored edges to reach nearest �1 (mod k) layered vertex to v and

then use �1 (mod k) or c colored edge to reach v .

Subcase (iv): If u is in �1 (mod k) layer and If v is in 0 (mod k) layer.

Coloring Procedure:

1. In B1 and B2 from topmost 0 (mod k) layer to centre edge color will be c.

Path:

From u follow �1 (mod k) layers using 0 (mod k) colored edges to reach top �1 (mod k)

layered vertex in B1 and then use c0 colored edge to reach centre (then we have to use c

colored edge to reach v if necessary and stop) and then use c1 colored edge to reach top

�1 (mod k) layered vertex in B2 (then we have to use c colored edge to reach v if neces-

sary and stop) and then follow �1 (mod k) layer in B2 using �1 (mod k) colored edges to

reach higher nearest �1 (mod k) layered vertex to v and then use c colored edge to reach v .

Case 2. u is in B1 and v is in B0
1 :

Subcase (i): If u is in any layer and v is in any layer except �1(mod k):

Coloring Procedure:

1. If l(b) = top �1 (mod k) layered vertex and l(a) = top �1 (mod k) layered vertex,

then edge color will be l(a)� 1 in B1 and in B2 this edge color will be l(a) .

Path:

From u go to higher nearest �1 (mod k) layer by edge with color 0 (mod k) or c and then

follow �1 (mod k) layers using 0 (mod k) colored edges to reach top �1 (mod k) layered

vertex in B1 and then use c0 colored edge to reach 0 (mod k) layered vertex in B0
1 and

then follow 0 (mod k) layer in B0
1 using �1 (mod k) colored edges to reach v .

Subcase (ii): If u is in any layer and v is in �1 (mod k) layer:

Coloring Procedure:

In B1 if the two endpoints of edge are �1 (mod k) layered vertex and � 0 (mod k) lay-

ered vertex, color will be c0 (if one endpoint in B1 and another endpoint in B0
1 with this
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condition then it is also true).

Path:

Use c colored edge (to reach lower 0 (mod k) layered vertex from �1 (mod k) layered

vertex) or �1 (mod k) colored edge (to reach higher 0 (mod k) layered vertex from other

u) and follow 0 (mod k) layer vertices using �1 (mod k) colored edges and use c0 colored

edge to reach �1 (mod k) layered vertex in B0
1 and then use �1 (mod k) colored edges to

reach v.

Using the same path we can consider the case B2 � B0
2.

Case 3. u is in B1 and v is in B3:

Subcase (i): If u is in any layer except �1 (mod k) and v is in layer 0 (mod k):

Coloring Procedure:

1. In B3 If l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or l(a) is in 0

(mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will be l(a) (for

now don’t consider edge with one endpoint in 1 (mod k) and don’t consider l(b) = k).

2. In B3 edge between centre and top 0 (mod k) vertex will be c0.

3. If l(a) is in 1 (mod k) th layer or l(b) is in 1 (mod k) th layer or l(a) is in 1 (mod k)

th layer and l(b) is in 1 (mod k) th layer both then the edge color will be l(b)� 2 (for now

don’t consider edge with one endpoint in 0 (mod k) and don’t consider l(b) = centre).

Path:

From u use c1 colored edge or �1 (mod k) colored edge to reach higher nearest 0 (mod k)

layered vertex and then use c colored edge to reach centre and then follow 0 (mod k) lay-

ered vertices using 0 (mod k) colored edges to reach v.

Subcase (ii): If u is layer �1 (mod k) and v is layer 0 (mod k):

Coloring Procedure:

1. In B3 If l(a) = 1 (mod k) and l(b) = 0 (mod k) then edge color will be c.

2. Edge between B1 and B3 will be c0.
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Path:

From u follow �1 (mod k) layered vertices using 0 (mod k) colored edges and then use c0

colored edge to reach 1 (mod k) layered vertex in B3 and then follow 1 (mod k) layered

vertices using �1 (mod k) colored edges and then use c colored edge to reach v.

Subcase (iii): If u is in any layer and v is in any layer except 0 (mod k)):

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u go to �1 (mod k) layered vertex using 0 (mod k) colored edge or c colored edge

and then follow �1 (mod k) layered vertices using 0 (mod k) colored edges and then use

c0 colored edge to reach 1 (mod k) layered vertex in B3 and then follow 1 (mod k) layered

vertices using �1 (mod k) colored edges to reach v.

Case 4. u is in B2 and v is in B3:

Subcase (i): If u is in any layer and v is in layer 0 (mod k):

Coloring Procedure: No new coloring will be required for this case.

Path:

From u use c colored edge or �1 (mod k) colored edge to reach nearest �1 (mod k) lay-

ered vertex and then follow �1 (mod k) layered vertices using �1 (mod k) colored edges

and then use c1 colored edge to reach centre and then follow 0 (mod k) layered vertices

using 0 (mod k) colored edges or c0 colored edge(to reach top 0 (mod k) vertex) to reach v.

Subcase (ii): If u is in �1 (mod k) and v is in layer except 0 (mod k):

Coloring Procedure:

No new coloring is required for this case.

Path:

From u follow �1 (mod k) layered vertices using �1 (mod k) colored edges and then use

c1 colored edge to reach centre and then follow 0 (mod k) layered vertices using 0 (mod k)

colored edges and then use c colored edge to reach v.
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Subcase (iii): If u is in any layer except �1 (mod k) and v is in any layer except 0 (mod k):

Coloring Procedure:

Edge between top 1 (mod k) layer vertex in B2 and top 1 (mod k) layer vertex in B3 will

be colored c.

Path:

From u go to 0 (mod k) layered vertex using 0 (mod k) colored edge or c0 colored edge

and then follow 0 (mod k) layered vertices using 0 (mod k) colored edges and then use c

colored edge to reach 1 (mod k) layered vertex in B3 and then follow 1 (mod k) layered

vertices using �1 (mod k) colored edges to reach v.

Case 5. u is in B3 and v is in B0
3

Subcase (i): If u is in any layer and v is in layer except 0 (mod k)):

Coloring Procedure:

0 (mod k) layered vertex in B3 to B0
3 color will be c0.

Path:

From u use c or 0 (mod k) colored edge to reach 0 (mod k) layered vertex and then follow

0 (mod k) layered vertices using 0 (mod k) colored edges and then use c0 edge to reach

top 1(mod k) vertex in B0
3 and then follow 1 (mod k) layered vertices using �1 (mod k)

colored edges to reach v.

Subcase (ii): If u is in 0 (mod k) layer and v is in layer 0 (mod k):

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow 0 (mod k) layered vertices using 0 (mod k) colored edges and then use c0

edge to reach top 1 (mod k) vertex in B0
3 and then follow 1 (mod k) layered vertices using

�1 (mod k) colored edges to reach lower nearest 1 (mod k) vertex and then use c colored

edge to reach v .
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Subcase (iii): If u is in layer except 0 (mod k) layer and v is in layer 0 (mod k):

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow 1 (mod k) layered vertices using �1 (mod k) colored edges and then use c0

edge to reach in B0
3 top 0 (mod k) vertex and then follow 0 (mod k) layered vertices using

0 (mod k) colored edges to reach v .

Now suppose diam(T k) is even.

Case 1. u is in B1 and v is in B2 :

Subcase (i): u is in any layer except �1 (mod k) and v is in any layer except �1 (mod k):

Coloring Procedure:

1. In B1 if l(a) is in 0 th layer or l(b) is in k th layer or l(a) is in 0 th layer and l(b) is in k

th layer both then the edge color will be c1 (for now don’t consider edge with one endpoint

in k � 1 ).

2. In B1 if l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or l(a) is in 0

(mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will be l(a)� 1

(for now don’t consider edge with one endpoint in �1 (mod k))).

3. In B2 if l(a) is in 0 th layer or l(b) is in k th layer or l(a) is in 0 th layer and l(b) is in k

th layer both then the edge color will be c0 (for now don’t consider edge with one endpoint

in k � 1).

4. In B2 if l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or l(a) is in 0

(mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will be l(a)

(for now don’t consider edge with one endpoint in �1 (mod k)).

Path:

From u go to nearest 0 (mod k) layer by edge with color �1 (mod k) or c1(for the case

when layer of u < k) and then follow 0 (mod k) layers using �1 (mod k) colored edges
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to reach centre and then follow 0 (mod k) layers in B2 using 0 (mod k) colored edges to

reach nearest 0 (mod k) layer to v and then follow 0 (mod k) colored edge or c0 colored

edge(for the case when layer of v < k) to reach v .

Subcase (ii): If u is in any layer except �1 (mod k) and v is in �1 (mod k) layer:

Coloring Procedure:

1. In B2 if l(b) = 0 (mod k) and l(a) = �1 (mod k) then edge color will be c0.

2. In B1 if l(b) = 0 (mod k) and l(a) = �1 (mod k) then edge color will be c1.

Path:

From u go to nearest 0 (mod k) layer by edge with color 0 (mod k) or c1(for the case when

layer of u < k) and then follow 0 (mod k) layers using �1 (mod k) colored edges to reach

centre and then go to nearest 0 (mod k) layer in B2 using 0 (mod k) colored edges and

then use c0 colored edge to reach v .

Subcase (iii): If u is in �1 (mod k) layer and v is in any layer except 0 (mod k):

Coloring Procedure:

1. Edge between �1 (mod k) layered vertex next to centre in B1 and �1 (mod k) layered

vertex next to centre in B2 will be colored c0.

Path:

From u use �1 (mod k) layered vertices using 0 (mod k) colored edges and then use c0

colored edge to reach �1 (mod k) layered vertex in B2 and then use �1 (mod k) layered

vertices using �1 (mod k) colored edges to reach nearest �1 (mod k) layered vertex to v

with high level and then use �1 (mod k) layered edge to reach v. From u to reach centre

use color c1 edge instead of edge between B1 and B2.

Subcase (iv): If u is in �1 (mod k) layer and v is in layer 0 (mod k):

Coloring Procedure:

No new coloring is required for this case.

Path:

From u use c1 colored edge to reach 0 (mod k) layered vertex and then start using 0
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(mod k) layered vertices using �1 (mod k) colored edges to reach centre and then use 0

(mod k) layered vertices to reach v using 0 (mod k) colored edges.

Case 2. u is in B1 and v is in B0
1 :

Subcase (i): If u is in any layer and v is in any layer except �1(mod k):

Coloring Procedure:

In B1 if l(b) = top �1 (mod k) layered vertex layer and l(a) = top 0 (mod k) layered

vertex layer, then edge color will be l(a)� 1 and in B2 this edge color will be l(a).

Path:

From u use c0 colored edge or 0 (mod k) colored edge to reach nearest �1 (mod k) lay-

ered vertex and then follow �1 (mod k) layered vertices using 0 (mod k) colored edges to

reach the vertex next to the centre and then start using 0 (mod k) layered vertices using

�1 (mod k) colored edges to reach nearest 0 (mod k) layered vertex to v with high level

and then use �1 (mod k) or c1 colored edge to reach v .

Subcase (ii): If u is in any layer and v is in �1 (mod k) layer:

Coloring Procedure:

No new coloring is required for this case.

Path:

Use c1 colored edge or �1 (mod k) colored edge to reach nearest 0 (mod k) layered vertex

and then follow 0 (mod k) layered vertices using �1 (mod k) colored edges to reach top

�1 (mod k) layered vertex and then use 0 (mod k) colored edges to reach v.

Using the same path we can consider the case B2 � B0
2.

Case 3. u is in B1 and v is in B3:

Subcase (i): If u is in any layer and v is in layer 0 (mod k):

Coloring Procedure:

1. In B3 if l(a) is in 0 (mod k) th layer or l(b) is in 0 (mod k) th layer or l(a) is in 0
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(mod k) th layer and l(b) is in 0 (mod k) th layer both then the edge color will be l(a) (

for now don’t consider edge with one endpoint in 1 (mod k) and don’t consider l(b) = k).

Path:

From u use c1 colored edge or �1 (mod k) colored edge to reach nearest 0 (mod k) lay-

ered vertex and then follow 0 (mod k) layered vertices using �1 (mod k) colored edges

and after reaching centre follow 0 (mod k) vertices using 0 (mod k) colored edges in B3

to reach v .

Subcase (ii): If u is in any layer and v is in layer except 0 (mod k):

Coloring Procedure:

1. In B3 if l(a) is in 1 (mod k) th layer or l(b) is in 1 (mod k) th layer or l(a) is in 1

(mod k) th layer and l(b) is in 1 (mod k) th layer both then the edge color will be l(b)� 2

( for now don’t consider edge with one endpoint in 0 (mod k) and don’t consider l(b) =

centre).

2. Edges between B1 and B3 will be c1.

Path:

From u use c0 colored edge or 0 (mod k) colored edge to reach nearest �1 (mod k) lay-

ered vertex and then follow �1 (mod k) layered vertices using 0 (mod k) colored edges

and then use c1 colored edge to reach 1 (mod k) layered vertex in B3 and then follow 1

(mod k) vertices using �1 (mod k) colored edges in B3 to reach v .

Case 4. u is in B2 and v is in B3:

Subcase (i): If u is in any layer and v is in layer 0 (mod k):

Coloring Procedure:

No new coloring is required for this case:

Path:

From u use c1 colored edge or �1 (mod k) colored edge to reach nearest �1 (mod k)

layered vertex and then follow �1 (mod k) layered vertices using �1 (mod k) colored

edges and by using c0 colored edge after reaching centre follow 0 (mod k) vertices using 0

(mod k) colored edges in B3 to reach v .
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Subcase (ii): If u is in any layer and v is in layer except 0 (mod k):

Coloring Procedure:

1. In B3 if l(b) = centre layer and l(a) � (layer of centre - k + 1) then the color of the

edge will be c1.

Path:

From u use c0 colored edge or 0 (mod k) colored edge to reach nearest 0 (mod k) layered

vertex and then follow 0 (mod k) layered vertices using 0 (mod k) colored edges and after

reaching centre then use c1 colored edge to reach 1 (mod k) layered vertex in B3 and then

follow 1 (mod k) vertices using �1 (mod k) colored edges in B3 to reach v .

Case 5. u is in B3 and v is in B0
3

Subcase (i): If u is in any layer and v is in layer except 0 (mod k)):

Coloring Procedure:

1. In B3 if l(a) < k and l(b) = 0 then the edge color will be c0.

Path:

From u use c0 or 0 (mod k) colored edge to reach 0 (mod k) layered vertex and then follow

0 (mod k) layered vertices using 0 (mod k) colored edges and after reaching centre use c1

colored edge to reach first 1 (mod k) vertex and then follow 1 (mod k) layered vertices

using �1 (mod k) colored edges to reach v .

Subcase (ii): If u is in layer 0 (mod k) layer and v is in layer 0 (mod k):

Coloring Procedure:

1. In B3 if l(a) = 0 (mod k) and l(b) = 1 (mod k) then the edge color will be c0.

Path:

From u follow 0 (mod k) layered vertices using 0 (mod k) colored edges and after reach-

ing centre use c1 colored edge to reach top 1 (mod k) vertex and follow 1 (mod k) layered

vertices using �1 (mod k) colored edges and use c0 edge to reach v .
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Subcase (iii): If u is in layer except 0 (mod k) layer and v is in layer 0 (mod k):

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow 1 (mod k) layered vertices using �1 (mod k) colored edges and by using

c1 colored edge after reaching centre follow 0 (mod k) layered vertices using 0 (mod k)

colored edges to reach v.

Now we want to find the no of colors in both cases. In first case when diam(T k) is odd

then the topmost block in B1 or B2 will be incomplete. Length of shortest path between

two layer 0 vertices of B1 and B2 will be diam(T k). As d(a!, b1) = k, so we have to use

an edge from B1 to B2. If l =
diam(T )

2 � 1, then there will be b l
kc complete blocks in each

branch and each block we are using two colors. And also we are using extra color c, so

basically we are using diam(T k) colors.

For the second case d(a!, b1) = 0, so we have to cover each complete blocks (all blocks are

complete) to go through shortest path between two layer 0 vertices of B1 and B2 and in

each block we are using two colors. So, in this case also we are using diam(T k) colors.

Lemma 5. If T be a tree and it has single vertex in the centre and diam(T ) < 2k,

then rc(T k) = diam(T k) and if diam(T ) = 2k then rc(T k) = diam(T k) + 1

Proof.

We want to find rainbow color path between two vertices u and v. First consider the case

when diam(T ) = 2k:

Coloring Procedure:

Edge whose one endpoint is centre and other endpoint is next vertex to centre will be

colored 2. Color of edges with two endpoints in di↵erent branches or subbranches will be

2. Other edges whose one endpoint centre will be colored 1. Other edges will be colored 3.
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Claim: Each pair of vertices has a rainbow path.

Proof: If u and v in di↵erent branch, then from u reach centre by color 1 edge, then use

color 2 edge to reach vertex next to the centre on the branch in which v is and then from

there use color 3 edge to reach v. If u is next to the centre, instead of reaching the centre

by color 2 edge we can directly go to next vertex to centre on the branch in which v is.

If v is on subbranch of branch in which u is, in that case from v use color 2 edge to reach

a vertex on branch in which u is. Then use color 3 edge to reach u from that vertex. This

path is from v to u.

⌅

Now consider the case when diam(T ) < 2k:

Coloring Procedure:

Edges with two endpoints in di↵erent branches or subbranches will be colored 2. Other

edges will be colored 1.

Claim: Each pair of vertices has a rainbow path.

Proof: Suppose length of branch in which v is is less than length of branch in which u is

(one branch is shorter as diam(T ) < 2k). From v use color 2 edge to reach a vertex on

branch in which u is. This edge exists as diam(T ) < 2k. Then use color 1 edge to reach u

from that vertex.

⌅
In both cases diam(T k) is 2. For the first case we are using 3 colors (i.e diam(T k)+ 1).

For the second case we are using 2 colors (i.e diam(T k)).

Lemma 6. If T be a tree and it has two vertices in centre, then rc(T k) =

diam(T k)

Proof.

We want coloring of edges such that for any pair of two vertices there exists a rainbow
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colored path between them. We will proceed through two cases.

Case 1. First consider the case when diam(T ) � 2k + 1 .

Let z1 and z2 be two centre vertices in T and let Bi be the branches of zi including zi.

They are the maximum length branches, if one is shorter then there will be a single centre

and that will be a contradiction to our assumption. Again we will proceed through two

cases. Recall a1 and b1 mentioned in lemma 1.

First consider the case when d(a1, b1)  k. The other case will be discussed later.

Suppose B0
i is a subbranch of Bi. Bi is a branch including zi. we may assume Bi’s are the

maximal branches. Bi is the representative of all branches from zi. Color of particular edges

which are required to get rainbow colored path between any two vertices are mentioned

here. Other edges can be colored arbitrarily.

Coloring Procedure:

1. Color of edges in B0
i will be similar to same type edges in Bi (same type edge means

layer of two endpoints of edge are same).

2. Color the edges with one endpoint in B1 and another endpoint in B2 with a new color

suppose c1.

3. Color the edges with one endpoint in Bi and another endpoint in B0
i with c1.

4. Color of edges with anyone endpoint in incomplete blocks of B1 or B2 are c1.

5. Color the edges between 0 (mod k) th layer vertex and �1 (mod k) th layered vertex

with c1.

6. Edges with upper end (upper end means which endpoint of edge is in higher layer)

kl and kl � 1 th layer vertex should be colored kl and kl � 1 respectively in B1. Edges

with lower end kl and kl � 1 th layer vertex should be colored k(l + 1) and k(l + 1) � 1

respectively in B1.

7. In B2 the coloring will be reversed just. That means edges with upper end kl and kl�1

th layer vertex should be colored kl � 1 and kl respectively in B2. Edges with lower end

kl and kl� 1 th layer vertex should be colored k(l+1)� 1 and k(l+1) respectively in B2.
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8. Other edges can be colored arbitrarily.

Claim: There exist rainbow colored path between each pair of vertices.

Proof:

Choose two vertices u and v. We want to find rainbow colored path between them. We

will proceed through several cases.

Subcase (i): u is in B1 and v is in B2

Use layers 0 (mod k) to reach a1 from u. So all edges which are used till now are col-

ored with 0 (mod k). From a1 then use the edge to reach b1 in B2. This edge exists as

d(a1, b1)  k as we have supposed. The color of this edge is c1 as this edge has one endpoint

in B1 and another endpoint in B2. Then take layers 0 (mod k) to reach v. So in that case

we are using edges with color �1 (mod k). If we assume u is the layer 0 vertex in B1 and

v is the layer 0 vertex in B2, then this is the shortest path and it is the diam(T k) length

path. So we are using diam(T k) no of colors.

Subcase (ii): u is in B1 and v is in B0
1

Suppose the common ancestor of u and v is in layer i. Suppose i is in complete block.

Now assume k(p � 1)  i  kp. From u use layers 0 (mod k) to reach vertex which is in

layer kp. So we are using edges colored with 0 (mod k). If i = kp� 1 or kp then take the

edge to reach the vertex which is in kp� 1 th layer in B0
i. If i is except kp� 1 or kp then

take the edge to reach the vertex which is in kp � 1 th layer in Bi . Color of this edge is

c1. Then use layers �1 (mod k) to reach the vertex v. Now we are using edges with color

�1 (mod k). And if i is in incomplete block then after reaching kp th vertex similarly we

have to go kp� 1 th vertex in the other branch using c1 colored edge. This edge exists as

d(a1, z1) < k � 1.

Subcase (iii): u is in incomplete block of B1 and v is in complete block of B1.

Take c1 colored edge to reach a1 from u. Suppose v is in layer i. Now assume k(p� 1) 
i  kp and i 6= �1 (mod k). Now go to vertex in layer kp using layers 0 (mod k) (So we
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are using edges with color 0 (mod k)) and then take edge with color kp to go v. But if v

is in layer �1 (mod k), then after using c1 colored edge to reach �1 (mod k), follow the

layers �1 (mod k) instead of using layers 0 (mod k)(So we are using edges colored with

�1 (mod k)).

Subcase (iv): u is in complete block of B1 and v is in complete block of B1

From u use layers 0 (mod k) to reach v. So we are using edges colored with 0 (mod k). If

u and v are in incomplete block then they will have an edge.

Subcase (v): u is in B1 and v is in some other branch from z1

Use 0 (mod k) layers in B1 and after that use c1 colored edge to reach �1 (mod k) layered

vertex in other branch and then use �1 (mod k) layered vertices to reach v.

Subcase (vi): case 2, case 3, case 4, case 5 can be solved similarly for the branch B2.

Now we will proceed through second case when d(a1, b1) > k.

Coloring Procedure:

Now if d(a1, b1) > k then there is a minor change of coloring procedure. Edges from vertices

of B1 to z2 will be colored c1. Edges from vertices of B2 to z1 will be colored c2. Color

of the edge with one endpoint in incomplete block of B1 and other endpoint in layer 0

(mod k) of B1 will be c1. Color of the edge with one endpoint in incomplete block of B1

and other endpoint in layer �1 (mod k) of B2 will be c2. In B2 color change will be done

reversely (c2 in place of c1 and c1 in place of c2). Other edges can be colored similarly as

we have mentioned before.

Rainbow Path:

To find the rainbow path there will be a minor di↵erence. To find rainbow path between a

vertex in B1 and a vertex in B2 we have used a edge from B1 to B2 with color c1 (in case

1). But in this case we won’t find that certain edge. So we have to follow color c1 edge

from that certain vertex in B1 to reach z2 and then we have to use c2 colored edge to reach

31



that certain vertex in B2 from z2. And for case 2 if the common ancestor is in incomplete

block then first follow 0 (mod k) layers with 0 (mod k) colored edges and c1 colored edge

from u to reach the common ancestor and after that follow c2 colored edge and then �1

(mod k) colored edges to reach v using �1 (mod k) layers.

No of colors:

Now we will show the number of colors has been used is actually diam(T k). Suppose

l = diam(T )
2 � 1. We have divided those layers in blocks of size k. Notice that two colors

are used in every complete block. There are b l
kc complete blocks, so 2b l

kc colors for those

blocks. If d(a1, b1) < k then diam(T k) will be 2b l
kc+1. And we have used one extra colors

c1 except 2b l
kc colors. If d(a1, b1) > k diam(T k) will be 2b l

kc + 2. Basically we are using

then two extra colors c1 and c2 apart from 2b l
kc colors. So in both cases we are using

diam(T k) colors.

⌅
Case 2. Now we consider the case when diam(T )  2k.

Coloring Procedure:

There is an edge between z1 and z2. So suppose u is in branch of z1. Each edge with

one endpoint zi and other endpoint in branch of zi will be colored 1. Each edge with one

endpoint zi and other endpoint in branch of zj where i 6= j will be colored 2. Edges with

two endpoint in di↵erent branches and subbranches will be colored 2. Other edges will be

colored 1.

Claim: Each pair of vertices has rainbow color path.

Proof:

Subcase (i): If u and v are in branch of di↵erent zi:

Suppose length of branch of u is greater than length of branch of v and if u is in z1 branch

and v is in z2 branch, use color 1 edge to reach z1 from u and then use color 2 edge to

reach v from z1. This edge exists as diam(T )  2k.
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Subcase (ii): If u and v are in branch of same zi:

If common ancestor of u and v is centre, from v use color 2 edge to reach lower next vertex

to zi on the branch of u and then use color 1 edge to reach u from that vertex. First edge

exists as diam(T )  2k. And if common ancestor is not centre then from u use color 2

edge to reach lower next vertex to common ancestor on branch of v and from there use

color 1 edge to reach v. First edge exists as diam(T )  2k.

So only 2 colors are needed and also diam(T k) = 2. So in this case also we are using

diam(T k) colors. ⌅

Lemma 7. For powers of tree T k, rainbow connection number 2 {diam(T k),

diam(T k) + 1}

Proof. It can be proved using previous mentioned lemmas.
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