PROJECT REPORT

on

RAINBOW VERTEX COLORING

A Thesis to be Submitted
in Partial Fulfilment of the Requirements
for the Degree of
Master of Technology
by
DIPTIMAN GHOSH
Roll No: CS1924
under the supervision of

Dr. Sourav Chakraborty

Advanced Computing and Microelectronics Unit

Indian Statistical Institute
Kolkata-700108, India

Certificate

This is to certify that the dissertation entitled 'Rainbow Vertex Coloring' submitted by Diptiman Ghosh to Indian Statistical Institute, Kolkata, in partial fulfillment for the award of the degree of Master of Technology in Computer Science is a bonafied record of work carried out by him under my supervision and guidance. The dissertation has fulfilled all the requirements as per the regulations of this institute and in my opinion, has recorded the standard needed for submission.

Date
Sourav Chakraborty

Acknowledgement

I would like to acknowledge my advisor, Dr. Sourav Chakraborty, Associate Professor, Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, for his guidance and support. I am highly obliged to him for giving me opportunity to complete my M.Tech Dissertation under his supervision. I would like to acknowledge Sudipta Ghosh (M.Tech CS, ISIK) for his effort in solving this problem. And I am very much thankful to my family for their constant support.
09.07.21

Date
$\xrightarrow[\substack{\text { Diptiman Ghosh } \\ \text { M.Tech in Computer Science } \\ \text { ISI Kolkata }}]{\substack{\text { Diph }}}$

Abstract

The concept of rainbow connection was introduced by Chartrand et al.. It has become a new and active subject in graph theory. On this topic a book was written by Li and Sun and there is a survey paper also by Li, Shi and Sun. From then many researches on rainbow edge coloring is going on. Krivelevich and Yuster have defined vertex variant on rainbow connection. On rainbow vertex connection also research has been started from then. Rainbow vertex coloring on powers of trees have been solved in [9]. They gave a linear time algorithm to color vertices such that the graph will be rainbow vertex connected. In our knowledge rainbow edge coloring on powers of trees has not been solved yet. In this work we will use similar type of idea of rainbow vertex coloring to find rainbow edge coloring on powers of trees. We will give a linear time algorithm to color edges such that the graph will be rainbow edge connected. Sudipta Ghosh worked on squares of trees in his M.Tech Dissertation and in this work I will extend his work for higher power of trees.

Contents

1 Introduction 1
1.1 Motivation: 1
1.2 Rainbow Coloring: 1
1.3 Previous work 2
1.4 Thesis Outline 2
2 Preliminaries and Definition 4
2.1 Basic definitions and notations 5
2.2 Definition of some graph classes 5
3 Literature Review 7
3.1 Hardness of Rainbow Coloring 7
3.2 Result on some graph classes 8
3.3 Result of Rainbow edge coloring on Random Graphs 8
4 Our Work: Rainbow edge coloring for powers of trees 10
5 References 34

1 Introduction

Graph connectivity and coloring is a well researched topic. Rainbow Coloring is a combination of coloring and connectivity problem in graphs. Chartrand et al.[5] first mentioned about rainbow edge coloring. One recent such variant rainbow vertex coloring problem was defined by Krivelevich and Yuster and has received significant attention [7].

1.1 Motivation:

Between any two agencies, there will be some intermediate agencies in which the information passes through one or more secure paths with large number of passwords required. Passwords all should be distinct in the information path between any two agencies. So we need minimum no of passwords such that on any information path between any two agencies passwords should not be repeated. And this can be solved by graph theory and here rainbow coloring concept comes.

1.2 Rainbow Coloring:

A edge colored graph is said to be rainbow edge connected if between every pair of vertices in the graph, there exist a path connecting the pair where color of every edge in that path is distinct. Such type of path is called rainbow path. The minimum number of colors required to make a graph rainbow connected, is known as rainbow connection number $(\operatorname{rc}(G))$. Caro et al. [1] conjectured that computing rainbow connection number of a graph is a NP-Hard problem. This conjecture is proved by Chakrobarty et al. [3]. A vertex colored graph is said to be rainbow vertex-connected if between any pair of its vertices, there is a path whose internal vertices are colored with distinct colors. This vertex coloring may not be a proper graph coloring, as an example, a complete graph is rainbow vertex-connected under the coloring that assigns the same color to every vertex. The Rainbow Vertex Coloring (RVC) problem takes as input a graph G and an integer k and asks whether G has a coloring with k colors under which it is rainbow vertex-connected. The rainbow vertex connection number of a graph G is the smallest number of colors needed in one such coloring and is denoted $\operatorname{rvc}(G)$. More recently, Li et al. defined a
stronger variant of this problem by requiring that the rainbow paths connecting the pairs of vertices are also shortest paths between those pairs. In this case we say the graph is strong rainbow vertex-connected. The analogous computational problem is called Strong Rainbow Vertex Coloring (SRVC) and the corresponding parameter is denoted by $\operatorname{srvc}(G)$.

1.3 Previous work

In the section Literature Survey (section 4) we have mentioned the results on rainbow vertex coloring which we have studied. Whole updated survey on rainbow coloring can be found in [8].

Sudipta Ghosh in his M.Tech Dissertation solve the rainbow connection problem for squares of trees. In this work we extend his work for higher powers of trees. In this work we have proved this following theorem.

Theorem 1.1. If G be power of trees (T^{k} where T is a tree and $k \geq 3$), then $r c(G) \in$ $\{\operatorname{diam}(G), \operatorname{diam}(G)+1\}$, and the corresponding optimal rainbow coloring can be found in the time that is linear in the size of G.

1.4 Thesis Outline

Throughout the thesis we proceed in the following way.
In section 2 we have defined rainbow coloring for edge and vertex variant both. And after that we have defined some basic terminology in graph theory which are needed to understand our work. We have studied some research papers based on rainbow vertex coloring. We have also mentioned some graph classes on which rainbow vertex coloring is solved on those papers.
In section 3 we have mentioned a small survey on rainbow vertex coloring. First we have mentioned hardness of rainbow vertex coloring. Also we have mentioned some graph classes on rainbow vertex coloring is hard. And after that we have mentioned some graph classes on rainbow vertex coloring can be solved in polynomial time. And then we have mentioned some interesting result on rainbow edge coloring on random graphs.

In section 4 we have discussed our work on powers of trees and proved the previously mentioned theorem.

2 Preliminaries and Definition

Graph connectivity and coloring is a well researched topic. Rainbow Coloring is a combination of coloring and connectivity problem in graphs. Chartrand et al. first mentioned about rainbow edge coloring and after that rainbow vertex coloring also was defined.

Definition 2.1. A path in a vertex-colored graph G is a rainbow vertex path if all its internal vertices have distinct colors. G is rainbow vertex-connected if there is a rainbow vertex path between every pair of its vertices.

Definition 2.2. Rainbow Vertex Coloring (rvc) is the decision problem in which we are given a connected (uncolored) graph G and an integer k, and the task is to decide whether the vertices of G can be colored with at most k colors such that G is rainbow vertexconnected. The rainbow vertex connection number of G, denoted by $\operatorname{rvc}(G)$, is the minimum k such that G has a rainbow vertex coloring with k colors.

Definition 2.3. A stronger variant of rainbow vertex coloring was introduced by Li et al. A vertex colored graph G is strongly rainbow vertex connected if between every pair of vertices of G, there is a shortest path that is also a rainbow vertex path. The Strong Rainbow Vertex Coloring (srvc) problem takes as input a connected (uncolored) graph G and an integer k, and the task is to decide whether the vertices of H can be colored such that G is strongly rainbow vertex-connected. This definition is the vertex variant of the Strong Rainbow Coloring problem.

Definition 2.4. Let $G=(V, E)$ be a graph and $c: E \rightarrow\{1,2,3, \ldots, r\}, r \in \mathbb{N}$, where adjacent edge can be colored same. For any two arbitrary vertices u and v, if \exists a path between u and v such that every edge in that path is of different color, then that path is called rainbow path and u and v is called rainbow connected. If for every pair of vertices in a graph is rainbow connected, then that graph is called rainbow connected graph. The minimum number of colors needed to make a graph rainbow connected is rainbow connection number of that graph denoted as rc (G).

We will firstly define some basic definitions in graph theory and also some graph classes on which rainbow vertex coloring has been studied.

2.1 Basic definitions and notations

We will find rainbow edge coloring on powers of trees in our work later. Therefore first we will define what is power of a graph.

Definition 2.5. The k-th Power of a graph, denoted by G^{k} where $k \geq 1$, is defined as follows: $V\left(G^{k}\right)=V(G)$. Two vertices u and v are adjacent in $V\left(G^{k}\right)$ if and only if the distance between vertices u and v in G, i.e., $\operatorname{dist}_{G}(u, v) \leq k$.

Definition 2.6. The eccentricity of a vertex v is ecc $(v):=\max _{x \in V(G)} d(v, x)$. The radius of G is $\operatorname{rad}(G):=\min _{x \in V(G)} \operatorname{ecc}(x)$. The diameter of G is $\operatorname{diam}(G):=\max _{x \in V(G)} \operatorname{ecc}(x)$.

Definition 2.7. A center of a graph G is a vertex c for which eccentricity (c) in minimum and equal to radius of G.

Later to find rainbow edge coloring on powers of trees we will use diameter and centre again and again in lemmas.

Definition 2.8. A dominating set of G is a set $D \subseteq V$ such that every vertex in $V-D$ is adjacent to at least one vertex in D. If $G[D]$ is connected, then D is a connected dominating set. The minimum size of a connected dominating set in G, denoted by $\gamma_{c}(G)$, is known as the connected domination number of G. [o]

This parameter provides an upper bound on the rainbow. vertex connection number of a connected graph, since G becomes rainbow vertex-connected by simply coloring all vertices of the connected dominating set distinctly, and the remaining vertices with any of the already used colors.[6]

2.2 Definition of some graph classes

Some graph class definitions are mentioned here. A detailed background on these graph classes can be found, for example, in the book by Brandstädt, Le, and Spinrad.[6]. On these graph classes rainbow vertex coloring has been studied. We will mention the results on these graph classes in the next section.

Definition 2.9. A graph is an apex graph if it contains a vertex (called an apex) whose removal results in a planar graph.[6]

Definition 2.10. A graph is chordal if all of its induced simple cycles are of length 3. Some well-known sub classes of chordal graphs are interval graphs, split graphs, and block graphs.[6]

Definition 2.11. A graph is an interval graph if it is chordal and it contains no triple of non-adjacent vertices, such that there is a path between every two of them that does not contain a neighbor of the third. Another way to interpret interval graph is an interval graph is an undirected graph where each vertex represents an interval in real line and two vertex is connected by an edge if the corresponding intervals has non-empty intersection.[6]

Definition 2.12. A graph is a split graph if its vertex set can be partitioned into an independent set and a clique.

Definition 2.13. A graph is a block graph if every bi connected component (block) of G is a complete graph.

Definition 2.14. Let σ be a permutation of the integers between 1 and n. We can make a graph G_{σ} on vertex set [n] in the following way. Vertices i and j are adjacent in G_{σ} if and only if they appear in σ in the opposite order of their natural order. A graph on n vertices is a permutation graph if it is isomorphic to G_{σ} for some permutation σ of the integers between 1 and n. A graph is a bipartite permutation graph if it is both a bipartite graph and a permutation graph.

Definition 2.15. An independent triple of vertices x, y, z in a graph G is an asteroidal triple (AT), if between every pair of vertices in the triple, there is a path that does not contain any neighbour of the third. A graph without asteroidal triples is called an AT-free graph.

On these graph classes rainbow vertex coloring has been studied. In Sudipta Ghosh's M.Tech Dissertation rainbow edge coloring has been surveyed.

3 Literature Review

First we will mention about hardness of rainbow vertex coloring. In the next subsection we will also mention rainbow vertex coloring result on some graph classes in which classes rainbow vertex coloring can be solved in polynomial time. Hardness of rainbow edge coloring and some rainbow edge coloring result on some graph classes in which classes rainbow edge coloring can be solved in polynomial time has been surveyed in Sudipta Ghosh's M.Tech Dissertation work. In the next subsection we will also mention work on rainbow edge coloring on random graphs.

3.1 Hardness of Rainbow Coloring

Theorem 3.1. $\operatorname{rvc}(G)$ is $N P$-complete for every $k \geq 2$. It is also $N P$-hard to approximate $\operatorname{rvc}(G)$ within a factor of $2-\epsilon$ unless $P \neq N P$, for any $\epsilon>0$.[6]

Theorem 3.2. $\operatorname{srvc}(G)$ is $N P$-complete for every $k \geq 2$. It is $N P$-hard to approximate $\operatorname{srvc}(G)$ within a factor of $n^{\frac{1}{2}-\epsilon}$ unless $P \neq N P$, for any $\epsilon>0$.[6]
$r v c$ and $s r v c$ is $N P$ complete on the following graph classes.
Theorem 3.3. For bipartite graph of diameter 4, to decide whether rvc and srvc is $\leq k$ is $N P$-complete for every $k \geq 3$. Moreover, it is $N P$-hard to approximate both $\operatorname{rvc}(G)$ and $\operatorname{srvc}(G)$ within a factor of $n^{\frac{1}{3}-\epsilon}$, for every $\epsilon>0$.(Heggerness et al.) $[6]$

This theorem can be proved using this idea: Let H be a hypergraph on n vertices. Then in polynomial time we can construct a bipartite graph G of diameter 4 and with $O\left(n^{3}\right)$ vertices such that for any $k \in[n], H$ has a proper k-coloring if and only if G has a $(k+1)$-coloring under which G is (strongly) rainbow vertex-connected. Moreover, if H is a planar graph, then G is an apex graph.

Theorem 3.4. For bipartite apex graph of diameter 4, to decide whether rvc and srvc is $\leq k$ is NP-complete. Moreover, it is NP-hard to approximate both $\operatorname{rvc}(G)$ and $\operatorname{srvc}(G)$ within a factor of $n^{\frac{5}{4}-\epsilon}$, for every $\epsilon>0$.(Heggerness et al.) $[6]$

This result is particularly interesting since no hardness result was known on a sparse graph class (like apex graphs) for any of the variants of rainbow coloring.

Theorem 3.5. For split graph of diameter 3, to decide whether rvc and srvc is $\leq k$ is NP-complete for every $k \geq 3$. Moreover, it is NP-hard to approximate both rvc (G) and $\operatorname{srvc}(G)$ within a factor of $n^{\frac{1}{3}-\epsilon}$, for every $\epsilon>0$.(Heggerness et al.)

3.2 Result on some graph classes

Theorem 3.6. For a block graph, or a unit interval graph, rvc and srvc can be solved in linear time. For interval graph, rvc can be solved in linear time (Heggerness et al.).[6]

For interval graph $\operatorname{rvc}=\operatorname{diam}(G)-1$ and for block graph $s r v c=$ no of cut vertices.
Theorem 3.7. rvc is linear-time solvable on planar graphs for every fixed k.
Conjecture: A diametral path of a graph G is a shortest path whose length is equal to $\operatorname{diam}(G)$. A graph is a diametral path if every connected induced subgraph has a dominating diametral path. Let G be a diametral path graph. Then $\operatorname{rvc}(G)=\operatorname{diam}(G)-$ 1(Heggerness et al).[6]

Theorem 3.8. If G is a permutation graph on n vertices, then $\operatorname{rvc}(G)=\operatorname{diam}(G)-1$ and the corresponding rainbow vertex coloring can be found in $O\left(n^{2}\right)$ time(Heggerness et al.). [6]

Theorem 3.9. If G is a split strongly chordal graph with l cut vertices, then $\operatorname{rvc}(G)=$ $\operatorname{srvc}(G)=\max (\operatorname{diam}(G)-1, l)($ Heggerness et al. $) \cdot[6]$

Conjecture and Open Problem: Complexity of finding rainbow color on $A T$ free graphs i.e graphs do not contain asteroidal triple (ex: interval graphs, permutation graphs) and strongly chordal graphs(ex: power of trees, split strongly chordal graphs) (Hggerness et al.) [6]

3.3 Result of Rainbow edge coloring on Random Graphs

Let $G=G(n, p)$ denote the binomial random graph on n vertices with edge probability p. Some work on rainbow edge coloring has been done on random graphs and some interesting result has been found.

Theorem 3.10. Caro et al. proved that $p=\frac{\operatorname{logn}}{n}$ is the sharp threshold for the property $r c(G(n, p)) \leq 2$.[2]

He and Liang studied further the rainbow connectivity of random graphs. They obtain the sharp threshold for the property $r c(G) \leq d$ where d is constant.

Li and Sun worked on the rainbow connectivity of the binomial graph at the connectivity threshold $\mathrm{p}=\frac{\log n+\omega}{n}$ where $\omega=o(\log n)$.

We know $\operatorname{diam}(G)$ is the lower bound of rainbow edge coloring. In the following theorem a pretty interesting result has been found. For random graphs rainbow edge coloring is asymptotically equal to the diameter with high probability.

Theorem 3.11. Let $G=G(n, p), p=\frac{\operatorname{logn} n+\omega}{n}, \omega \rightarrow \infty, \omega=o(\operatorname{logn})$, Also, let Z_{1} be the number of vertices of degree 1 in G. Then, with high probability $(w h p) r c(G) \sim \max \left(Z_{1}, L\right)$. It is known that whp the diameter of $G(n, p)$ is asymptotic to L for p as in the above range. Here $L=\frac{\operatorname{logn}}{\operatorname{loglog} n} \cdot[4]$

Theorem 3.12. Let $G=G(n, r)$ be a random r-regular graph where $r \geq 3$ is a fixed integer. Then, whp $r c(G)=O\left(\log ^{4} n\right)$ when $r=3$ and $O\left(\log ^{2 \theta_{r}} n\right)$ when $r \geq 4$, where $\theta_{r}=\frac{\log (r-1)}{\log (r-2)} \cdot$ [4]

4 Our Work: Rainbow edge coloring for powers of trees

In this section we will discuss on rainbow edge coloring of T^{k} (T^{k} is k th power of tree T). Sudipta Ghosh has discussed rainbow edge coloring on square of trees in his M.Tech Dissertation. So in this section I will extend his work for $k \geq 3$. Though rainbow vertex coloring of powers of trees is discussed in previous research, but as of our knowledge rainbow edge coloring on powers of trees is not discussed till now.

We know $\operatorname{diam}(G)$ is the lower bound of the rainbow connection number of a graph G. For power of Trees we have showed the following result.

Theorem 4.1. For powers of tree T^{k}, rainbow connection number $\in\left\{\operatorname{diam}\left(T^{k}\right)\right.$, $\left.\operatorname{diam}\left(T^{k}\right)+1\right\}$

Therefore like squares of trees same type of results hold for higher powers of trees, but here to prove the above theorem we have to consider more cases than cases in square of trees. The diameter of T is always even if the centre of T is a single vertex. So always $\operatorname{diam}(\mathrm{T})=0(\bmod 2)$ holds if the centre of T is a single vertex. but for higher power of trees if centre of T is single vertex we have to consider whether $\operatorname{diam}(T)=0(\bmod 2)$ or not. We will discuss different such cases through different lemmas.

To prove the above theorem some definitions are required to be known.
Definition 4.1. Branch: If one endpoint of an edge is centre, then if the edge is removed the tree fall apart in two parts. A branch is the part that doesn't contain the centre. If the centre contains single vertex, then the no of branches is nothing but equal to the degree of the centre. A subbranch of B will be denoted by B^{\prime}. Subbranch is a branch which uses some vertices of main branch.

Definition 4.2. Layer: We define layer i as the set of all vertices with distance $\left\lfloor\frac{\operatorname{diam}(T)}{2}\right\rfloor-$ i to the center of T. layer of a vertex v will be denoted by $l(v)$.

Now we will prove the theorem through different cases and lemmas. Rainbow connection number of a graph G will be denoted by $\operatorname{rc}(G)$ and shortest rainbow connection number of a graph G will be denoted by $\operatorname{src}(G)$.

Lemma 1. Suppose T is a tree and it has single vertex in centre, $\operatorname{diam}(T) \geq$ $3 k$ and $\operatorname{diam}(T)=0(\bmod k)$, and there are at least three branches from the center with maximum length. Then $\operatorname{src}\left(T^{k}\right) \geq \operatorname{rc}\left(T^{k}\right) \geq \operatorname{diam}\left(T^{k}\right)+1$. Proof.

Suppose B_{1}, B_{2}, B_{3} are three branches from the centre with maximum length (as our assumption).

Divide the layers $1,2, \ldots, \frac{\operatorname{diam}(T)-1}{2}$ in blocks of size k. If a block has size k then we can say it a complete block. Then the topmost block may be or may not be a complete block. Let n be the number of complete blocks in B_{1}. Suppose a_{1}, a_{2}, \ldots are vertices in B_{1} in layer $0(\bmod k)$. That means a_{1}, a_{2}, \ldots be the topmost vertices in the complete blocks in B_{1}. Similarly, let b_{1}, b_{2}, \ldots be the topmost vertices in the complete blocks in B_{2}. That means b_{1}, b_{2}, \ldots are all vertices in B_{2} in layer $0(\bmod k)$. Suppose $d(x, y)$ is distance between two vertices x and y.

Suppose v_{1}, v_{2}, v_{3} are layer 0 vertices in those maximum branches B_{1}, B_{2}, B_{3} respectively. Then shortest distance between each pairwise v_{i} and v_{j} will be $\operatorname{diam}\left(T^{k}\right)$ in the graph T^{k} (as among all pairs of vertices for these three pairs shortest path distance will be maximum) and those shortest paths are unique. As $\operatorname{diam}(T)=0(\bmod k)$ so $d\left(a_{1}, b_{1}\right)$ will be either 0 or k. Now we want to find the shortest path between v_{1} and v_{2}. From v_{1} follow $0(\bmod k)$ layers in B_{1} to reach a_{1} and from v_{2} follow $0(\bmod k)$ layers in B_{2} to reach b_{1}. If $d\left(a_{1}, b_{1}\right)=0$ then a_{1} and b_{1} are nothing but centre. If $d\left(a_{1}, b_{1}\right)=k$ then we have to use an edge from a_{1} to b_{1}. So this shortest path is unique. For other v_{i} and v_{j} pairs shortest path can be found similarly.

Suppose on a contrary assume $r c\left(T^{k}\right)=\operatorname{diam}\left(T^{k}\right)$. So, if we use $\operatorname{diam}\left(T^{k}\right)$ colors then certainly we have to follow those shortest paths to get rainbow path between each pair v_{i} and v_{j}.

Claim: It will not be possible to make rainbow colored path for all pairs v_{i} and v_{j} with $\operatorname{diam}\left(T^{k}\right)$ colors.

Proof: Shortest path between v_{1} and v_{2} and shortest path between v_{1} and v_{3} will share some edges of B_{1}. The non shared portion in those two shortest paths should consist of edges with same color. That means the portion of shortest path between v_{1} and v_{2} which is in B_{2} and portion of shortest path between v_{1} and v_{3} which is in B_{3} should consist of edges with same color if we assume the contrary assumption. But if we consider v_{2} to v_{3} shortest path, it is nothing but combination of edges of those non shared portions in B_{2} and B_{3} and also it is unique shortest path between v_{2} and v_{3}. But it will not be rainbow colored path because those non shared portions in B_{2} and B_{3} consists of same colored edges as we have mentioned before. So, it will not be possible to make rainbow colored path between each pair of vertices using $\operatorname{diam}\left(T^{k}\right)$ colors.

So $\operatorname{src}\left(T^{k}\right) \geq r c\left(T^{k}\right) \geq \operatorname{diam}\left(T^{k}\right)+1$.

We have shown in lemma $1 \operatorname{diam}\left(T^{k}\right)$ no of colors is not sufficient for this case, but in lemma 2 we will show $\operatorname{diam}\left(T^{k}\right)+1$ no of colors is sufficient.

Lemma 2. If T is a tree and it has single vertex in the centre and diam $(T) \geq$ $3 k$ and $\operatorname{diam}(T)=0(\bmod k)$ and at least three branches of maximum length from the centre, then $r c\left(T^{k}\right)=\operatorname{diam}\left(T^{k}\right)+1$.

Proof.
let $l\left(v_{i}\right)$ denotes layer of vertex v_{i}. $c\left(v_{i} v_{j}\right)$ denotes color of edge $v_{i} v_{j}$. Let $l\left(v_{i}\right)<l\left(v_{j}\right)$.

Coloring Procedure:

$$
c\left(v_{i} v_{j}\right)= \begin{cases}c_{1} & \text { if } v_{j} \text { is center and } l\left(v_{i}\right) \not \equiv 0(\bmod k) \\ c_{2} & \text { if } v_{j} \text { is center and } l\left(v_{i}\right) \equiv 0(\bmod k) \\ l\left(v_{j}\right) & \text { if } l\left(v_{j}\right) \equiv 0,-1(\bmod k) \\ c_{1} & \text { otherwise }\end{cases}
$$

Claim: There exist rainbow colored path between each pair of vertices.

Proof: Suppose u is a vertex in B_{1} and v is a vertex in B_{2}. We want to find the rainbow colored path between u and v. In B_{1} from u follow the path using $0(\bmod k)$ layered vertices. So we are using $0(\bmod k)$ colored edges. And now use c_{2} colored edge to reach the centre from top $0(\bmod k)$ layered vertex in B_{1}. From the centre use color c_{1} edge to reach nearest $-1(\bmod k)$ layered vertex to the centre in B_{2} (if v is in topmost block instead we have to use c_{1} colored edge from centre to reach $\left.v\right)$. Now follow the path using $-1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach v. So, it will be a rainbow colored path. Edges of other branches will be colored similarly depending on the conditions of coloring procedure. If u is in B_{i} and v is in B_{i}^{\prime} (Recall the definition of subbranch), then we can assume B_{i}^{\prime} as some other branch B_{j} (may be B_{2}), follow the path similarly as we have reached from B_{1} to B_{2}. So in this process we can find rainbow colored path between any pair of vertices.

No of colors:

Now we will show the number of colors has been used is actually $\operatorname{diam}\left(T^{k}\right)+1$. Suppose $l=\frac{\operatorname{diam}(T)}{2}-1$. We have divided those layers in blocks of size k. Notice that two colors are used in every complete block. There are $\left\lfloor\frac{l}{k}\right\rfloor$ complete blocks, so $2\left\lfloor\frac{l}{k}\right\rfloor$ colors for those blocks. Recall a_{1} and b_{1} mentioned in lemma 1. $\mathrm{d}\left(a_{1}, b_{1}\right)$ is either 0 or k as per our assumption. So, for the second case $\operatorname{diam}\left(T^{k}\right)$ will be $2\left\lfloor\frac{l}{k}\right\rfloor+1$. And we have used two extra colors c_{1} and c_{2} except $2\left\lfloor\frac{l}{k}\right\rfloor$ colors. So we are using $\operatorname{diam}\left(T^{k}\right)+1$ colors. For the first case $\operatorname{diam}\left(T^{k}\right)$ will be $2\left\lfloor\frac{l}{k}\right\rfloor$. Basically we are using then one extra color apart from $2\left\lfloor\frac{l}{k}\right\rfloor$ colors. So in this case also we are using $\operatorname{diam}\left(T^{k}\right)+1$ colors.

Lemma 3. If T is a tree and it has single vertex in centre and $\operatorname{diam}(T) \geq 2 k+1$ and $\operatorname{diam}(T) \neq 0(\bmod k)$, then $r c\left(T^{k}\right)=\operatorname{diam}\left(T^{k}\right)$.

Proof.
Suppose $l(v)$ denotes layer of vertex v. Suppose $v_{i} v_{j}$ is an edge and $l\left(v_{j}\right)>l\left(v_{i}\right) . \mathrm{c}\left(v_{i} v_{j}\right)$ denotes color of that edge. We want to color the edges such that between each pair of vertices there exist a rainbow path.

Coloring Procedure:

$$
c\left(v_{i} v_{j}\right)=\left\{l\left(v_{j}\right) \quad \text { if } l\left(v_{j}\right) \equiv 0,-1(\bmod k)\right.
$$

We can have some observations seeing the conditions mentioned in lemma. Let z be the center vertex. There will be two longest branches from z. Let B_{1} and B_{2} be two longest branches from z. If one longest branch exists, then there will be two centre and that is contrary to our assumption. Recall the definition of complete block in lemma 1. The topmost block won't be complete, if complete then $\operatorname{diam}(T)=0(\bmod k)$, contrary to our assumption.

No of colors used so far:

Suppose $l=\frac{\operatorname{diam}(T)}{2}-1$. We have divided those layers in blocks of size k. Notice that two colors are used in every complete block. There are $\left\lfloor\frac{l}{k}\right\rfloor$ complete blocks, so $2\left\lfloor\frac{l}{k}\right\rfloor$ colors have been used in those blocks.

Recall a_{1} and b_{1} mentioned in lemma 1. Now we will consider three cases and complete the coloring to find rainbow path between each pair of vertices.

Case 1:

Suppose that $d\left(a_{1}, b_{1}\right)>k$. We know $d\left(a_{1}, z\right)<k$ and $d\left(b_{1}, z\right)<k$. We claim that $\operatorname{diam}\left(T^{k}\right)=2\left\lfloor\frac{l}{k}\right\rfloor+2$. Let $u \in B_{1}, v \in B_{2}$ be vertices in layer 0 . A u, v-path contains a vertex in every complete block in B_{1}, a vertex in every complete block in B_{2} and a vertex in a topmost incomplete block or z. All in all, these are $2\left\lfloor\frac{l}{k}\right\rfloor+1$ internal vertices. So $2\left\lfloor\frac{l}{k}\right\rfloor+2$ edges are used and it is nothing but $\operatorname{diam}\left(T^{k}\right)$ length path. So we can use two more colors in the coloring. Suppose these colors are c_{1} and c_{2}. No of blocks in one branch is n. Suppose nearest $-1(\bmod k)$ layered vertex to centre is denoted by p_{1}

Coloring Procedure:

$$
c\left(v_{i} v_{j}\right)= \begin{cases}c_{1} & \text { if } l\left(v_{i}\right)=a_{1} \\ c_{2} & \text { if } l\left(v_{i}\right)=p_{1} \\ c_{2} & \text { color of edge with one endpoint in } B_{1} \text { and other endpoint in } B_{2} \\ c_{1} & \text { color of other edges in topmost block }\end{cases}
$$

Then, for any two vertices u and v, to find the rainbow path between u and v use the $0(\bmod k)$ layers to go from u to z and then use $-1(\bmod k)$ layers to go from z to v. First we are using $0(\bmod k)$ colored edges and then c_{1} colored edge to reach z from a_{1} and from z then use c_{2} colored edge to reach $-1(\bmod k)$ layered vertex (instead if v is in topmost block with layer higher than layer of a_{1} we can reach v direct from z using c_{2} colored edge) and then use $-1(\bmod k)$ colored edges to reach v. So that will be rainbow colored path. If v is in topmost $0(\bmod k)$ layer, u to a_{1} path will be same and after that from a_{1} use c_{2} colored edge to reach a vertex in B_{2} next to the centre and use c_{1} colored edge to reach v from that vertex.

Case 2:

Now suppose that $d\left(a_{1}, b_{1}\right)=k$. It follows that $k \mid \operatorname{diam}(T)$, a contradiction with the assumptions of the lemma.

Case 3:

Now suppose that $d\left(a_{1}, b_{1}\right) \leq k-1$. Here we can use one more color. Color all uncolored edges with one color (say c_{1}). Let u and v be two vertices.

Use the $0(\bmod k)$ layers to go from u to a_{1} and then from a_{1} reach $-1(\bmod k)$ layered vertex using c_{1} colored edge (from a_{1} we can use c_{1} colored edge to reach v which is in B_{2} or B_{1} whatever if v 's layer greater or equal to layer of $\left.a_{1}\right)$ and then follow $-1(\bmod k)$ vertices using $-1(\bmod k)$ colored edges to reach v.

Lemma 4. If T be a tree and it has single vertex in the centre; $\operatorname{diam}(T) \geq 3 k$, $\operatorname{diam}(T)=0(\bmod k)$ and T has two branches of maximum length, then $r c\left(T^{k}\right)=$ $\operatorname{diam}\left(T^{k}\right)$

Proof.
Let B_{1} and B_{2} be the branches of maximum length and B_{3} represents all other branches. In the time of coloring we represent an edge by $a b$ where $l(a)<l(b)$ and in the time of rainbow path finding we want to find rainbow path between two vertices u and v. Recall
block partition in lemma 1. If $d\left(a_{1}, b_{1}\right)=0$ then $\operatorname{diam}\left(T^{k}\right)$ will be even. In this case a_{1} and b_{1} both will be centre. If $d\left(a_{1}, b_{1}\right)=k$ then $\operatorname{diam}\left(T^{k}\right)$ will be odd.

We first consider the case when $\operatorname{diam}\left(T^{k}\right)$ is odd.

Here we will mention path and with that also will mention the color of the required edges. Other edges can be colored arbitrarily. So, we are trying to find rainbow path between u and v.

Case 1. u is in B_{1} and v is in B_{2} :

Subcase $(i): u$ is in any layer except $-1(\bmod k)$ and v is in any layer except $-1(\bmod k)$: Coloring Procedure:

1. In B_{1} for the edge $a b$ if $l(a)$ is in 0 th layer or $l(b)$ is in k th layer or $l(a)$ is in 0 th layer and $l(b)$ is in k th layer both then the edge color will be c_{1} (for now don't consider edge with one endpoint in $k-1$ th layer)
2. In B_{1} for the edge $a b$ if $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in $0(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)-1$ (for now don't consider edge with one endpoint in $-1(\bmod k))$
3. In B_{2} for the edge $a b$ If $l(a)$ is in 0 th layer or $l(b)$ is in k th layer or $l(a)$ is in 0 th layer and $l(b)$ is in k th layer both then the edge color will be c_{0} (for now don't consider edge with one endpoint in $k-1$))
4. In B_{2} for the edge $a b$ if $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in $0(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)$ (for now don't consider edge with one endpoint in $-1(\bmod k))$
5. Edge from $0(\bmod k)$ layered vertex in B_{1} to $0(\bmod k)$ layered vertex in B_{2} will be colored c.

Path:

From u go to higher nearest $0(\bmod k)$ layer by edge colored with $-1(\bmod k)$ or c_{1} (for the case when layer of $u<k)$ and then follow c colored edges to reach $0(\bmod k)$ vertex in B_{2} and then follow $0(\bmod k)$ layers in B_{2} using $0(\bmod k)$ colored edges to reach nearest
$0(\bmod k)$ layer to v and then follow $0(\bmod k)$ colored edge or c_{0} colored edge (for the case when layer of $v<k$) to reach v.

Subcase (ii): If u is in any layer except $-1(\bmod k)$ and v is in $-1(\bmod k)$ layer:
Coloring Procedure:

1. In B_{2} and B_{1} for the edge $a b$ If $l(a)=0(\bmod k)$ and $l(b)=-1(\bmod k)$ then edge color will be c.
2. In B_{2} and B_{1} for the edge $a b$ If $l(b)=k-1$ color will be c.
3. In B_{2} If $l(a)$ is in $-1(\bmod k)$ th layer or $l(b)$ is in $-1(\bmod k)$ th layer or $l(a)$ is in -1 $(\bmod k)$ th layer and $l(b)$ is in $-1(\bmod k)$ th layer both then the edge color will be $l(a)$ (for now don't consider edge with one endpoint in $-1(\bmod k))$
4. In B_{2} From topmost $-1(\bmod k)$ layer to centre edge color will be c_{1}.
5. In B_{1} If $l(a)$ is in $-1(\bmod k)$ th layer or $l(b)$ is in $-1(\bmod k)$ th layer or $l(a)$ is in $-1(\bmod k)$ th layer and $l(b)$ is in $-1(\bmod k)$ th layer both then the edge color will be $l(a)+1($ for now don't consider edge with one endpoint in $-1(\bmod k)))$
6. In B_{1} From topmost $-1(\bmod k)$ layer to centre edge color will be c_{0}.

Path:

From u go to higher nearest $-1(\bmod k)$ layer by edge with color $0(\bmod k)$ or c and then follow $-1(\bmod k)$ layers using $0(\bmod k)$ colored edges to reach top $-1(\bmod k)$ layered vertex in B_{1} and then use c_{0} colored edge to reach centre and then use c_{1} colored edge to reach top $-1(\bmod k)$ layered vertex in B_{2} and then follow $-1(\bmod k)$ layer in B_{2} using $-1(\bmod k)$ colored edges to reach v.

Subcase (iii): If u is in $-1(\bmod k)$ layer and v is in any layer except $0(\bmod k)$:

Coloring Procedure:

1. Edge between $-1(\bmod k)$ layered vertex next to centre in B_{1} and $-1(\bmod k)$ layered vertex next to centre in B_{2} will be colored c_{0}.

Path:

From u follow $-1(\bmod k)$ layers using $0(\bmod k)$ colored edges to reach top $-1(\bmod k)$ layered vertex in B_{1} and then use c_{0} colored edge to reach centre and then use c_{1} colored edge to reach top $-1(\bmod k)$ layered vertex in B_{2} and then follow $-1(\bmod k)$ layer in
B_{2} using $-1(\bmod k)$ colored edges to reach nearest $-1(\bmod k)$ layered vertex to v and then use $-1(\bmod k)$ or c colored edge to reach v.

Subcase (iv): If u is in $-1(\bmod k)$ layer and If v is in $0(\bmod k)$ layer.

Coloring Procedure:

1. In B_{1} and B_{2} from topmost $0(\bmod k)$ layer to centre edge color will be c.

Path:
From u follow $-1(\bmod k)$ layers using $0(\bmod k)$ colored edges to reach top $-1(\bmod k)$ layered vertex in B_{1} and then use c_{0} colored edge to reach centre (then we have to use c colored edge to reach v if necessary and stop) and then use c_{1} colored edge to reach top $-1(\bmod k)$ layered vertex in B_{2} (then we have to use c colored edge to reach v if necessary and stop) and then follow $-1(\bmod k)$ layer in $B_{2} \operatorname{using}-1(\bmod k)$ colored edges to reach higher nearest $-1(\bmod k)$ layered vertex to v and then use c colored edge to reach v.

Case 2. u is in B_{1} and v is in B_{1}^{\prime} :

Subcase (i): If u is in any layer and v is in any layer except $-1(\bmod k)$:

Coloring Procedure:

1. If $l(b)=$ top $-1(\bmod k)$ layered vertex and $l(a)=$ top $-1(\bmod k)$ layered vertex, then edge color will be $l(a)-1$ in B_{1} and in B_{2} this edge color will be $l(a)$.
Path:
From u go to higher nearest $-1(\bmod k)$ layer by edge with color $0(\bmod k)$ or c and then follow $-1(\bmod k)$ layers using $0(\bmod k)$ colored edges to reach top $-1(\bmod k)$ layered vertex in B_{1} and then use c_{0} colored edge to reach $0(\bmod k)$ layered vertex in B_{1}^{\prime} and then follow $0(\bmod k)$ layer in B_{1}^{\prime} using $-1(\bmod k)$ colored edges to reach v.

Subcase (ii): If u is in any layer and v is in $-1(\bmod k)$ layer:

Coloring Procedure:

In B_{1} if the two endpoints of edge are $-1(\bmod k)$ layered vertex and $\geq 0(\bmod k)$ layered vertex, color will be c_{0} (if one endpoint in B_{1} and another endpoint in B_{1}^{\prime} with this
condition then it is also true).

Path:

Use c colored edge (to reach lower $0(\bmod k)$ layered vertex from $-1(\bmod k)$ layered vertex) or $-1(\bmod k)$ colored edge $($ to reach higher $0(\bmod k)$ layered vertex from other $u)$ and follow $0(\bmod k)$ layer vertices using $-1(\bmod k)$ colored edges and use c_{0} colored edge to reach $-1(\bmod k)$ layered vertex in B_{1}^{\prime} and then use $-1(\bmod k)$ colored edges to reach v.

Using the same path we can consider the case $B_{2}-B_{2}^{\prime}$.

Case 3. u is in B_{1} and v is in B_{3} :

Subcase (i): If u is in any layer except $-1(\bmod k)$ and v is in layer $0(\bmod k)$:

Coloring Procedure:

1. In B_{3} If $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in 0 $(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)$ (for now don't consider edge with one endpoint in $1(\bmod k)$ and don't consider $l(b)=k)$.
2. In B_{3} edge between centre and top $0(\bmod k)$ vertex will be c_{0}.
3. If $l(a)$ is in $1(\bmod k)$ th layer or $l(b)$ is in $1(\bmod k)$ th layer or $l(a)$ is in $1(\bmod k)$ th layer and $l(b)$ is in $1(\bmod k)$ th layer both then the edge color will be $l(b)-2$ (for now don't consider edge with one endpoint in $0(\bmod k)$ and don't consider $l(b)=$ centre $)$. Path:

From u use c_{1} colored edge or $-1(\bmod k)$ colored edge to reach higher nearest $0(\bmod k)$ layered vertex and then use c colored edge to reach centre and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges to reach v.

Subcase (ii): If u is layer $-1(\bmod k)$ and v is layer $0(\bmod k)$:

Coloring Procedure:

1. In B_{3} If $l(a)=1(\bmod k)$ and $l(b)=0(\bmod k)$ then edge color will be c.
2. Edge between B_{1} and B_{3} will be c_{0}.

Path:

From u follow $-1(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{0} colored edge to reach $1(\bmod k)$ layered vertex in B_{3} and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and then use c colored edge to reach v.

Subcase (iii): If u is in any layer and v is in any layer except $0(\bmod k))$:

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u go to $-1(\bmod k)$ layered vertex using $0(\bmod k)$ colored edge or c colored edge and then follow $-1(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{0} colored edge to reach $1(\bmod k)$ layered vertex in B_{3} and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach v.

Case 4. u is in B_{2} and v is in B_{3} :

Subcase (i): If u is in any layer and v is in layer $0(\bmod k)$:
Coloring Procedure: No new coloring will be required for this case.

Path:

From u use c colored edge or $-1(\bmod k)$ colored edge to reach nearest $-1(\bmod k)$ layered vertex and then follow $-1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and then use c_{1} colored edge to reach centre and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges or c_{0} colored edge (to reach top $0(\bmod k)$ vertex) to reach v.

Subcase (ii): If u is in $-1(\bmod k)$ and v is in layer except $0(\bmod k)$:

Coloring Procedure:

No new coloring is required for this case.

Path:

From u follow $-1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and then use c_{1} colored edge to reach centre and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c colored edge to reach v.

Subcase (iii): If u is in any layer except $-1(\bmod k)$ and v is in any layer except $0(\bmod k)$: Coloring Procedure:

Edge between top $1(\bmod k)$ layer vertex in B_{2} and top $1(\bmod k)$ layer vertex in B_{3} will be colored c.

Path:
From u go to $0(\bmod k)$ layered vertex using $0(\bmod k)$ colored edge or c_{0} colored edge and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c colored edge to reach $1(\bmod k)$ layered vertex in B_{3} and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach v.

Case 5. u is in B_{3} and v is in B_{3}^{\prime}

Subcase (i): If u is in any layer and v is in layer except $0(\bmod k))$:

Coloring Procedure:

$0(\bmod k)$ layered vertex in B_{3} to B_{3}^{\prime} color will be c_{0}.

Path:

From u use c or $0(\bmod k)$ colored edge to reach $0(\bmod k)$ layered vertex and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{0} edge to reach top $1(\bmod k)$ vertex in B_{3}^{\prime} and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach v.

Subcase (ii): If u is in $0(\bmod k)$ layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{0} edge to reach top $1(\bmod k)$ vertex in B_{3}^{\prime} and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach lower nearest $1(\bmod k)$ vertex and then use c colored edge to reach v.

Subcase (iii): If u is in layer except $0(\bmod k)$ layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and then use c_{0} edge to reach in B_{3}^{\prime} top $0(\bmod k)$ vertex and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges to reach v.

Now suppose $\operatorname{diam}\left(T^{k}\right)$ is even.

Case 1. u is in B_{1} and v is in B_{2} :

Subcase $(i): u$ is in any layer except $-1(\bmod k)$ and v is in any layer except $-1(\bmod k)$: Coloring Procedure:

1. In B_{1} if $l(a)$ is in 0 th layer or $l(b)$ is in k th layer or $l(a)$ is in 0 th layer and $l(b)$ is in k th layer both then the edge color will be c_{1} (for now don't consider edge with one endpoint in $k-1$).
2. In B_{1} if $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in 0 $(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)-1$ (for now don't consider edge with one endpoint in $-1(\bmod k))$).
3. In B_{2} if $l(a)$ is in 0 th layer or $l(b)$ is in k th layer or $l(a)$ is in 0 th layer and $l(b)$ is in k th layer both then the edge color will be c_{0} (for now don't consider edge with one endpoint in $k-1$).
4. In B_{2} if $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in 0 $(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)$ (for now don't consider edge with one endpoint in $-1(\bmod k)$).

Path:

From u go to nearest $0(\bmod k)$ layer by edge with color $-1(\bmod k)$ or $c_{1}($ for the case when layer of $u<k)$ and then follow $0(\bmod k)$ layers using $-1(\bmod k)$ colored edges
to reach centre and then follow $0(\bmod k)$ layers in B_{2} using $0(\bmod k)$ colored edges to reach nearest $0(\bmod k)$ layer to v and then follow $0(\bmod k)$ colored edge or c_{0} colored edge(for the case when layer of $v<k$) to reach v.

Subcase (ii): If u is in any layer except $-1(\bmod k)$ and v is in $-1(\bmod k)$ layer:

Coloring Procedure:

1. In B_{2} if $l(b)=0(\bmod k)$ and $l(a)=-1(\bmod k)$ then edge color will be c_{0}.
2. In B_{1} if $l(b)=0(\bmod k)$ and $l(a)=-1(\bmod k)$ then edge color will be c_{1}. Path:

From u go to nearest $0(\bmod k)$ layer by edge with color $0(\bmod k)$ or $c_{1}($ for the case when layer of $u<k)$ and then follow $0(\bmod k)$ layers using $-1(\bmod k)$ colored edges to reach centre and then go to nearest $0(\bmod k)$ layer in B_{2} using $0(\bmod k)$ colored edges and then use c_{0} colored edge to reach v.

Subcase (iii): If u is in $-1(\bmod k)$ layer and v is in any layer except $0(\bmod k)$:

Coloring Procedure:

1. Edge between $-1(\bmod k)$ layered vertex next to centre in B_{1} and $-1(\bmod k)$ layered vertex next to centre in B_{2} will be colored c_{0}.

Path:

From u use $-1(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{0} colored edge to reach $-1(\bmod k)$ layered vertex in B_{2} and then use $-1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach nearest $-1(\bmod k)$ layered vertex to v with high level and then use $-1(\bmod k)$ layered edge to reach v. From u to reach centre use color c_{1} edge instead of edge between B_{1} and B_{2}.

Subcase (iv): If u is in $-1(\bmod k)$ layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

No new coloring is required for this case.

Path:

From u use c_{1} colored edge to reach $0(\bmod k)$ layered vertex and then start using 0
$(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach centre and then use 0 $(\bmod k)$ layered vertices to reach v using $0(\bmod k)$ colored edges.

Case 2. u is in B_{1} and v is in B_{1}^{\prime} :

Subcase (i): If u is in any layer and v is in any layer except $-1(\bmod k)$:

Coloring Procedure:

In B_{1} if $l(b)=$ top $-1(\bmod k)$ layered vertex layer and $l(a)=$ top $0(\bmod k)$ layered vertex layer, then edge color will be $l(a)-1$ and in B_{2} this edge color will be $l(a)$. Path:

From u use c_{0} colored edge or $0(\bmod k)$ colored edge to reach nearest $-1(\bmod k)$ layered vertex and then follow $-1(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges to reach the vertex next to the centre and then start using $0(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach nearest $0(\bmod k)$ layered vertex to v with high level and then use $-1(\bmod k)$ or c_{1} colored edge to reach v.

Subcase (ii): If u is in any layer and v is in $-1(\bmod k)$ layer:

Coloring Procedure:

No new coloring is required for this case.

Path:

Use c_{1} colored edge or $-1(\bmod k)$ colored edge to reach nearest $0(\bmod k)$ layered vertex and then follow $0(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach top $-1(\bmod k)$ layered vertex and then use $0(\bmod k)$ colored edges to reach v.

Using the same path we can consider the case $B_{2}-B_{2}^{\prime}$.

Case 3. u is in B_{1} and v is in B_{3} :

Subcase (i): If u is in any layer and v is in layer $0(\bmod k)$:
Coloring Procedure:

1. In B_{3} if $l(a)$ is in $0(\bmod k)$ th layer or $l(b)$ is in $0(\bmod k)$ th layer or $l(a)$ is in 0
$(\bmod k)$ th layer and $l(b)$ is in $0(\bmod k)$ th layer both then the edge color will be $l(a)($ for now don't consider edge with one endpoint in $1(\bmod k)$ and don't consider $l(b)=k)$. Path:

From u use c_{1} colored edge or $-1(\bmod k)$ colored edge to reach nearest $0(\bmod k)$ layered vertex and then follow $0(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and after reaching centre follow $0(\bmod k)$ vertices using $0(\bmod k)$ colored edges in B_{3} to reach v.

Subcase (ii): If u is in any layer and v is in layer except $0(\bmod k)$:

Coloring Procedure:

1. In B_{3} if $l(a)$ is in $1(\bmod k)$ th layer or $l(b)$ is in $1(\bmod k)$ th layer or $l(a)$ is in 1 $(\bmod k)$ th layer and $l(b)$ is in $1(\bmod k)$ th layer both then the edge color will be $l(b)-2$ (for now don't consider edge with one endpoint in $0(\bmod k)$ and don't consider $l(b)=$ centre).
2. Edges between B_{1} and B_{3} will be c_{1}.

Path:

From u use c_{0} colored edge or $0(\bmod k)$ colored edge to reach nearest $-1(\bmod k)$ layered vertex and then follow $-1(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and then use c_{1} colored edge to reach $1(\bmod k)$ layered vertex in B_{3} and then follow 1 $(\bmod k)$ vertices using $-1(\bmod k)$ colored edges in B_{3} to reach v.

Case 4. u is in B_{2} and v is in B_{3} :

Subcase (i): If u is in any layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

No new coloring is required for this case:

Path:

From u use c_{1} colored edge or $-1(\bmod k)$ colored edge to reach nearest $-1(\bmod k)$ layered vertex and then follow $-1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and by using c_{0} colored edge after reaching centre follow $0(\bmod k)$ vertices using 0 $(\bmod k)$ colored edges in B_{3} to reach v.

Subcase (ii): If u is in any layer and v is in layer except $0(\bmod k)$:

Coloring Procedure:

1. In B_{3} if $l(b)=$ centre layer and $l(a) \geq$ (layer of centre $-k+1$) then the color of the edge will be c_{1}.

Path:

From u use c_{0} colored edge or $0(\bmod k)$ colored edge to reach nearest $0(\bmod k)$ layered vertex and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and after reaching centre then use c_{1} colored edge to reach $1(\bmod k)$ layered vertex in B_{3} and then follow $1(\bmod k)$ vertices using $-1(\bmod k)$ colored edges in B_{3} to reach v.

Case 5. u is in B_{3} and v is in B_{3}^{\prime}

Subcase (i): If u is in any layer and v is in layer except $0(\bmod k))$:

Coloring Procedure:

1. In B_{3} if $l(a)<k$ and $l(b)=0$ then the edge color will be c_{0}.

Path:

From u use c_{0} or $0(\bmod k)$ colored edge to reach $0(\bmod k)$ layered vertex and then follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and after reaching centre use c_{1} colored edge to reach first $1(\bmod k)$ vertex and then follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges to reach v.

Subcase (ii): If u is in layer $0(\bmod k)$ layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

1. In B_{3} if $l(a)=0(\bmod k)$ and $l(b)=1(\bmod k)$ then the edge color will be c_{0}.

Path:

From u follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges and after reaching centre use c_{1} colored edge to reach top $1(\bmod k)$ vertex and follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and use c_{0} edge to reach v.

Subcase (iii): If u is in layer except $0(\bmod k)$ layer and v is in layer $0(\bmod k)$:

Coloring Procedure:

No new coloring will be required for this case.

Path:

From u follow $1(\bmod k)$ layered vertices using $-1(\bmod k)$ colored edges and by using c_{1} colored edge after reaching centre follow $0(\bmod k)$ layered vertices using $0(\bmod k)$ colored edges to reach v.

Now we want to find the no of colors in both cases. In first case when $\operatorname{diam}\left(T^{k}\right)$ is odd then the topmost block in B_{1} or B_{2} will be incomplete. Length of shortest path between two layer 0 vertices of B_{1} and B_{2} will be $\operatorname{diam}\left(T^{k}\right)$. As $d\left(a_{!}, b_{1}\right)=k$, so we have to use an edge from B_{1} to B_{2}. If $l=\frac{\operatorname{diam}(T)}{2}-1$, then there will be $\left\lfloor\frac{l}{k}\right\rfloor$ complete blocks in each branch and each block we are using two colors. And also we are using extra color c, so basically we are using $\operatorname{diam}\left(T^{k}\right)$ colors.

For the second case $d\left(a_{!}, b_{1}\right)=0$, so we have to cover each complete blocks (all blocks are complete) to go through shortest path between two layer 0 vertices of B_{1} and B_{2} and in each block we are using two colors. So, in this case also we are using $\operatorname{diam}\left(T^{k}\right)$ colors.

Lemma 5. If T be a tree and it has single vertex in the centre and $\operatorname{diam}(T)<2 k$, then $r c\left(T^{k}\right)=\operatorname{diam}\left(T^{k}\right)$ and if $\operatorname{diam}(T)=2 k$ then $r c\left(T^{k}\right)=\operatorname{diam}\left(T^{k}\right)+1$ Proof.

We want to find rainbow color path between two vertices u and v. First consider the case when $\operatorname{diam}(T)=2 k$:

Coloring Procedure:

Edge whose one endpoint is centre and other endpoint is next vertex to centre will be colored 2. Color of edges with two endpoints in different branches or subbranches will be 2. Other edges whose one endpoint centre will be colored 1 . Other edges will be colored 3.

Claim: Each pair of vertices has a rainbow path.

Proof: If u and v in different branch, then from u reach centre by color 1 edge, then use color 2 edge to reach vertex next to the centre on the branch in which v is and then from there use color 3 edge to reach v. If u is next to the centre, instead of reaching the centre by color 2 edge we can directly go to next vertex to centre on the branch in which v is.

If v is on subbranch of branch in which u is, in that case from v use color 2 edge to reach a vertex on branch in which u is. Then use color 3 edge to reach u from that vertex. This path is from v to u.

Now consider the case when $\operatorname{diam}(T)<2 k$:

Coloring Procedure:

Edges with two endpoints in different branches or subbranches will be colored 2. Other edges will be colored 1 .

Claim: Each pair of vertices has a rainbow path.

Proof: Suppose length of branch in which v is is less than length of branch in which u is (one branch is shorter as $\operatorname{diam}(T)<2 k$). From v use color 2 edge to reach a vertex on branch in which u is. This edge exists as $\operatorname{diam}(T)<2 k$. Then use color 1 edge to reach u from that vertex.

In both cases $\operatorname{diam}\left(T^{k}\right)$ is 2 . For the first case we are using 3 colors (i.e $\left.\operatorname{diam}\left(T^{k}\right)+1\right)$. For the second case we are using 2 colors (i.e $\operatorname{diam}\left(T^{k}\right)$).

Lemma 6. If T be a tree and it has two vertices in centre, then $r c\left(T^{k}\right)=$ $\operatorname{diam}\left(T^{k}\right)$

Proof.
We want coloring of edges such that for any pair of two vertices there exists a rainbow
colored path between them. We will proceed through two cases.

Case 1. First consider the case when $\operatorname{diam}(T) \geq 2 k+1$.

Let z_{1} and z_{2} be two centre vertices in T and let B_{i} be the branches of z_{i} including z_{i}. They are the maximum length branches, if one is shorter then there will be a single centre and that will be a contradiction to our assumption. Again we will proceed through two cases. Recall a_{1} and b_{1} mentioned in lemma 1.

First consider the case when $d\left(a_{1}, b_{1}\right) \leq k$. The other case will be discussed later.
Suppose B_{i}^{\prime} is a subbranch of B_{i}. B_{i} is a branch including z_{i}. we may assume B_{i} 's are the maximal branches. B_{i} is the representative of all branches from z_{i}. Color of particular edges which are required to get rainbow colored path between any two vertices are mentioned here. Other edges can be colored arbitrarily.

Coloring Procedure:

1. Color of edges in B_{i}^{\prime} will be similar to same type edges in B_{i} (same type edge means layer of two endpoints of edge are same).
2. Color the edges with one endpoint in B_{1} and another endpoint in B_{2} with a new color suppose c_{1}.
3. Color the edges with one endpoint in B_{i} and another endpoint in B_{i}^{\prime} with c_{1}.
4. Color of edges with anyone endpoint in incomplete blocks of B_{1} or B_{2} are c_{1}.
5. Color the edges between $0(\bmod k)$ th layer vertex and $-1(\bmod k)$ th layered vertex with c_{1}.
6. Edges with upper end (upper end means which endpoint of edge is in higher layer) $k l$ and $k l-1$ th layer vertex should be colored $k l$ and $k l-1$ respectively in B_{1}. Edges with lower end $k l$ and $k l-1$ th layer vertex should be colored $k(l+1)$ and $k(l+1)-1$ respectively in B_{1}.
7. In B_{2} the coloring will be reversed just. That means edges with upper end $k l$ and $k l-1$ th layer vertex should be colored $k l-1$ and $k l$ respectively in B_{2}. Edges with lower end $k l$ and $k l-1$ th layer vertex should be colored $k(l+1)-1$ and $k(l+1)$ respectively in B_{2}.
8. Other edges can be colored arbitrarily.

Claim: There exist rainbow colored path between each pair of vertices.

Proof:

Choose two vertices u and v. We want to find rainbow colored path between them. We will proceed through several cases.

Subcase (i): u is in B_{1} and v is in B_{2}

Use layers $0(\bmod k)$ to reach a_{1} from u. So all edges which are used till now are colored with $0(\bmod k)$. From a_{1} then use the edge to reach b_{1} in B_{2}. This edge exists as $d\left(a_{1}, b_{1}\right) \leq k$ as we have supposed. The color of this edge is c_{1} as this edge has one endpoint in B_{1} and another endpoint in B_{2}. Then take layers $0(\bmod k)$ to reach v. So in that case we are using edges with color $-1(\bmod k)$. If we assume u is the layer 0 vertex in B_{1} and v is the layer 0 vertex in B_{2}, then this is the shortest path and it is the $\operatorname{diam}\left(T^{k}\right)$ length path. So we are using $\operatorname{diam}\left(T^{k}\right)$ no of colors.

Subcase (ii): u is in B_{1} and v is in B_{1}^{\prime}
Suppose the common ancestor of u and v is in layer i. Suppose i is in complete block. Now assume $k(p-1) \leq i \leq k p$. From u use layers $0(\bmod k)$ to reach vertex which is in layer $k p$. So we are using edges colored with $0(\bmod k)$. If $i=k p-1$ or $k p$ then take the edge to reach the vertex which is in $k p-1$ th layer in B_{i}^{\prime}. If i is except $k p-1$ or $k p$ then take the edge to reach the vertex which is in $k p-1$ th layer in B_{i}. Color of this edge is c_{1}. Then use layers $-1(\bmod k)$ to reach the vertex v. Now we are using edges with color $-1(\bmod k)$. And if i is in incomplete block then after reaching $k p$ th vertex similarly we have to go $k p-1$ th vertex in the other branch using c_{1} colored edge. This edge exists as $d\left(a_{1}, z_{1}\right)<k-1$.

Subcase (iii): u is in incomplete block of B_{1} and v is in complete block of B_{1}.
Take c_{1} colored edge to reach a_{1} from u. Suppose v is in layer i. Now assume $k(p-1) \leq$ $i \leq k p$ and $i \neq-1(\bmod k)$. Now go to vertex in layer $k p$ using layers $0(\bmod k)$ (So we
are using edges with color $0(\bmod k))$ and then take edge with color $k p$ to go v. But if v is in layer $-1(\bmod k)$, then after using c_{1} colored edge to reach $-1(\bmod k)$, follow the layers $-1(\bmod k)$ instead of using layers $0(\bmod k)$ (So we are using edges colored with $-1(\bmod k))$.

Subcase (iv): u is in complete block of B_{1} and v is in complete block of B_{1}
From u use layers $0(\bmod k)$ to reach v. So we are using edges colored with $0(\bmod k)$. If u and v are in incomplete block then they will have an edge.

Subcase $(v): u$ is in B_{1} and v is in some other branch from z_{1}

Use $0(\bmod k)$ layers in B_{1} and after that use c_{1} colored edge to reach $-1(\bmod k)$ layered vertex in other branch and then use $-1(\bmod k)$ layered vertices to reach v.

Subcase (vi): case 2, case 3 , case 4 , case 5 can be solved similarly for the branch B_{2}.

Now we will proceed through second case when $d\left(a_{1}, b_{1}\right)>k$.

Coloring Procedure:

Now if $d\left(a_{1}, b_{1}\right)>k$ then there is a minor change of coloring procedure. Edges from vertices of B_{1} to z_{2} will be colored c_{1}. Edges from vertices of B_{2} to z_{1} will be colored c_{2}. Color of the edge with one endpoint in incomplete block of B_{1} and other endpoint in layer 0 $(\bmod k)$ of B_{1} will be c_{1}. Color of the edge with one endpoint in incomplete block of B_{1} and other endpoint in layer $-1(\bmod k)$ of B_{2} will be c_{2}. In B_{2} color change will be done reversely (c_{2} in place of c_{1} and c_{1} in place of c_{2}). Other edges can be colored similarly as we have mentioned before.

Rainbow Path:

To find the rainbow path there will be a minor difference. To find rainbow path between a vertex in B_{1} and a vertex in B_{2} we have used a edge from B_{1} to B_{2} with color c_{1} (in case 1). But in this case we won't find that certain edge. So we have to follow color c_{1} edge from that certain vertex in B_{1} to reach z_{2} and then we have to use c_{2} colored edge to reach
that certain vertex in B_{2} from z_{2}. And for case 2 if the common ancestor is in incomplete block then first follow $0(\bmod k)$ layers with $0(\bmod k)$ colored edges and c_{1} colored edge from u to reach the common ancestor and after that follow c_{2} colored edge and then -1 $(\bmod k)$ colored edges to reach v using $-1(\bmod k)$ layers.

No of colors:

Now we will show the number of colors has been used is actually $\operatorname{diam}\left(T^{k}\right)$. Suppose $l=\frac{\operatorname{diam}(T)}{2}-1$. We have divided those layers in blocks of size k. Notice that two colors are used in every complete block. There are $\left\lfloor\frac{l}{k}\right\rfloor$ complete blocks, so $2\left\lfloor\frac{l}{k}\right\rfloor$ colors for those blocks. If $d\left(a_{1}, b_{1}\right)<k$ then $\operatorname{diam}\left(T^{k}\right)$ will be $2\left\lfloor\frac{l}{k}\right\rfloor+1$. And we have used one extra colors c_{1} except $2\left\lfloor\frac{l}{k}\right\rfloor$ colors. If $d\left(a_{1}, b_{1}\right)>k \operatorname{diam}\left(T^{k}\right)$ will be $2\left\lfloor\frac{l}{k}\right\rfloor+2$. Basically we are using then two extra colors c_{1} and c_{2} apart from $2\left\lfloor\frac{l}{k}\right\rfloor$ colors. So in both cases we are using $\operatorname{diam}\left(T^{k}\right)$ colors.

Case 2. Now we consider the case when $\operatorname{diam}(T) \leq 2 k$.

Coloring Procedure:

There is an edge between z_{1} and z_{2}. So suppose u is in branch of z_{1}. Each edge with one endpoint z_{i} and other endpoint in branch of z_{i} will be colored 1 . Each edge with one endpoint z_{i} and other endpoint in branch of z_{j} where $i \neq j$ will be colored 2. Edges with two endpoint in different branches and subbranches will be colored 2. Other edges will be colored 1.

Claim: Each pair of vertices has rainbow color path.

Proof:
Subcase (i): If u and v are in branch of different z_{i} :
Suppose length of branch of u is greater than length of branch of v and if u is in z_{1} branch and v is in z_{2} branch, use color 1 edge to reach z_{1} from u and then use color 2 edge to reach v from z_{1}. This edge exists as $\operatorname{diam}(T) \leq 2 k$.

Subcase (ii): If u and v are in branch of same z_{i} :
If common ancestor of u and v is centre, from v use color 2 edge to reach lower next vertex to z_{i} on the branch of u and then use color 1 edge to reach u from that vertex. First edge exists as $\operatorname{diam}(T) \leq 2 k$. And if common ancestor is not centre then from u use color 2 edge to reach lower next vertex to common ancestor on branch of v and from there use color 1 edge to reach v. First edge exists as $\operatorname{diam}(T) \leq 2 k$.

So only 2 colors are needed and also $\operatorname{diam}\left(T^{k}\right)=2$. So in this case also we are using $\operatorname{diam}\left(T^{k}\right)$ colors.

Lemma 7. For powers of tree T^{k}, rainbow connection number $\in\left\{\operatorname{diam}\left(T^{k}\right)\right.$, $\left.\operatorname{diam}\left(T^{k}\right)+1\right\}$

Proof. It can be proved using previous mentioned lemmas.

5 References

References

[1] Yair Caro et al. "On Rainbow Connection". In: The Electronic Journal of Combinatorics 15.R57 (2008). URL: https://doi.org/10.37236/781.
[2] Yair Caro et al. "On rainbow connection". In: The Electronic Journal of Combinatorics 15.R57 (2008).
[3] Sourav Chakraborty et al. "HARDNESS AND ALGORITHMS FOR RAINBOW CONNECTIVITY". In: COMBIN. OPTIM 21 (2009), pp. 243-254.
[4] Charalampos and E.Tsourakakis. "Mathematical and Algorithmic Analysis of Network and Biological Data". PhD thesis. Carnegie Mellon University, 2013.
[5] Gary Chartrand, G.L. Johns, and Kathleen A. McKeon. "RAINBOW CONNECTION IN GRAPHS." In: MATHEMATICA BOHEMICA 133 (2008), pp. 85-98.
[6] Pinar Heggernes et al. "Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs". In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018) 83 (2018), . 83:1-83:13.
[7] Michael Krivelevich and Raphael Yuster. "The Rainbow Connection of a Graph Is (at Most) Reciprocal to Its Minimum Degree". In: Journal of Graph Theory 63 (Jan. 2009), pp. 185-191. DOI: 10.1002/jgt. 20418.
[8] Xueliang Li and Yuefang Sun. "An Updated Survey on Rainbow Connections of Graphs- A Dynamic Survey". In: Theory and Applications of Graphs 00 (Jan. 2017), pp. 1-65. DOI: 10.20429/tag. 2017.000103.
[9] Paloma T. Lima, Erik Jan van Leeuwen, and Marieke van der Wegen. "Algorithms for the Rainbow Vertex Coloring Problem on Graph Classes". In: 45 th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Vol. 170.

Leibniz International Proceedings in Informatics (LIPIcs). 2020, 63:1-63:13. ISBN: 978-3-95977-159-7.

