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Abstract

Boolean functions f : {−1, 1}n → {−1, 1} arise in many areas of theoretical computer
science and mathematics, for example: complexity theory, quantum computing and graph
theory etc and Fourier analysis is a powerful technique used to analyze problems in these
areas. One of the most important and longstanding open problems in this field is the Fourier
Entropy-Influence (FEI) conjecture [EG96], first formulated by Ehud Friedgut and Gil Kalai;
The FEI conjecture connects two fundamental properties of boolean function f , i.e. influ-
ence and entropy. FEI conjecture says, for all boolean functions f : {−1, 1}n → {−1, 1},
H[f̂ 2] ≤ CI[f ] where H[f̂ 2] is the spectral entropy of f and if we fix ε = 1

3
and consider

polynomials p such that |p(x) − f(x)| ≤ 1
3
where f is boolean function then these polyno-

mials have many applications in theoretical computer science.

In particular, this work attempts to address the following problem:

Suppose, the FEI conjecture is true, what can be said about the approximating polyno-
mials. We have a flat polynomial of degree d and sparsity 2ω(d). The proposed conjecture
[SSM+20] says that No flat polynomial of degree d and sparsity 2ω(d) can 1

3
− approximate

a boolean function.[The degree of a function is the maximum d such that f̂(S) 6= 0 for
some set S of size d]. It is useful to understand better the structure of polynomials that
ε−approximate Boolean functions on the Boolean cube. Such polynomials have proved to be
powerful and found diverse applications in theoretical computer science. Here, we restrict
ourselves to a class of polynomials called flat polynomials over {−1, 1}, i.e., polynomials
whose non-zero coefficients have the same magnitude. This conjecture is true by assuming
FEI conjecture and it is also true for a class of polynomials without assuming FEI conjecture.
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Chapter 1

Introduction

1.1 Introduction

We define a Boolean function as f : {0, 1}n → {0, 1} or f : {−1, 1}n → {−1, 1} which
means f maps each length n binary vector or string into a single binary value or bit. The
domain of a Boolean function can be defined as the hamming cube. It is also known as
hypercube/n-cube/Boolean cube/discrete cube. Generally, we are interested in hamming
distance between x, y ∈ {−1, 1}n which is defined as ∆(x, y) = #{xi 6= yi}, where x denotes
a bit string and xi denotes its ith co-ordinate.

The Fourier expansion of a Boolean function f : {−1, 1}n → {−1, 1} is represented as a
real multilinear polynomial which generally means no variable xi appears squared or cubed
etc.

For example, max2(x1, x2) = 1
2
+ 1

2
x1+ 1

2
x2− 1

2
x1x2 where function max2 is defined on 2 bits

with max2(+1,+1) = +1,max2(−1,+1) = +1,max2(+1,−1) = +1,max2(−1,−1) = −1

Every Boolean function has Fourier expansion and this Fourier expansion can be written
as multilinear polynomial uniquely. It is same as for {0, 1}n → {0, 1} where 0 is encoded
as 1 and 1 is encoded as −1.

There are some definitions based on which we can get the Fourier expansion of various
Boolean functions easily.

Definition 1.1.1 (Fourier Spectrum). Every f : {−1,+1}n → R can be represented as a
multilinear polynomial uniquely as:

f(x) = ΣS⊆{1,2,...,n}f̂(S)χS(x) = ΣS⊆{1,2,...,n}f̂(S)Πi∈Sxi

where Fourier coefficient f̂(S) = 1
2n

Σx∈{−1,1}nf(x)Πi∈Sxi.

Definition 1.1.2. By using Lagrange Interpolation Here, we interpolate the 2n values
that f assigns to the strings {−1, 1}n. For each a = (a1, a2, ..., an), there is an Indicator
Polynomial:

I{a}(x) =

(
1 + a1x1

2

)(
1 + a2x2

2

)
....

(
1 + anxn

2

)
And hence,

f(x) = Σa∈{−1,1}nf(a)I{a}(x)
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This is a familiar method for finding a polynomial that interpolates the 2n values that f
assigns to the points {−1, 1}n ⊂ Rn. Here, For each point a = (a1, a2, ...., an) ∈ {−1, 1}n, the
indicator polynomial 1{a}(x) takes value 1 when x = a and value 0 when x ∈ {−1, 1}n\{a}.

For example, we can write max2 x as:
(+1)

(
1+x1

2

) (
1+x2

2

)
+ (+1)

(
1−x1

2

) (
1+x2

2

)
+ (+1)

(
1+x1

2

) (
1−x2

2

)
+ (−1)

(
1−x1

2

) (
1−x2

2

)
= 1

2
+ 1

2
x1 + 1

2
x2 − 1

2
x1x2.

This interpolation procedure works for {−1, 1}n → R also.

There are some Boolean functions which are very useful in Fourier analysis and definition
of these Boolean functions are as follows:

Definition 1.1.3. Majority Function:

Majority function ′f ′ is defined on the n Boolean variables as

f(x1, x2, ....., xn) =

{
1 Σn

i=1xi ≥ 0

−1 o/w

Definition 1.1.4. Parity Function :

For x ∈ {−1,+1}n → {−1,+1} It is defined as :

χS(x) = Πi∈Sxi

So, χS is a Boolean function and it computes the logical parity or ex-or(XOR) of bits
(xi)i∈S

Any f can be represented as a linear combination of parity function over the reals as

f = ΣS⊆{1,2,....,n}f̂(S)χS

Definition 1.1.5. Inner Product Function :

Considering the 2n dimensional functions of all functions

f : {0, 1}n → R,

and we define an inner product of 2 functions on this space as

< f, g >=
1

2n
Σx∈{0,1}nf(x)g(x) = E[f.g].

Now, for each S ⊆ [n], define a function,

χS : {0, 1}n → {1,−1}
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as
χS(x) = (−1)S.x = (−1)Σi∈Sxi

Definition 1.1.6. Maximum Function :

It takes n bit string as an input and gives maximum value on these n bits and this
Maximum function represents logical AND function on n bits i.e. ANDn.

Definition 1.1.7. Linear Threshold Function(LTF)

It is a Boolean function f : {−1, 1}n → {−1, 1} which is defined as

f(x) = sgn(a0 + a1x1 + .....+ an xn)

where constants a0, a1, ...., an ∈ R and sgn(0) = 1

These LTFs play an important role in learning theory and in circuit complexity.

Influence

Influence of i ∈ [n] is defined as Px∼{−1,1}n [f(x) 6= f(x⊕i)]. Here, x is chosen uniformly at
random and f(x⊕i) means ith voter has reversed their vote(Flipping the ith bit changes the
function value).

So, we can define the Total Influence as I[f ] = Σn
i=1Infi[f ].

Flat Polynomial

The Class of polynomials over {−1, 1} whose non-zero coefficients have the same magnitude
is called the Flat polynomial.

Littlewood polynomial is a polynomial, all of whose coefficients are +1 or −1. They are
named after J. E. Littlewood who studied them in the 1950s.

A flat multilinear polynomial may or may not be Boolean function and similarly, a
Boolean function may or may not be flat. A flat polynomial which satisfies the Perseval’s
identity i.e. Sum of the square of the Fourier coefficients is 1, may or may not be Boolean
function.

Example: f(x) = 1
2

+ 1
2
x1 + 1

2
x2 + 1

2
x1x2 [ Put x1 = 1, x2 = −1]
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1.1.1 Conjectures

In 1996, Friedgut and Kalai made the Fourier Entropy–Influence Conjecture [EG96] which
says ∃C∀f,H[f̂ 2] ≤ CI[f ] i.e.

ΣS⊆[n]f̂(S)2 log2

(
1

f̂(S)2

)
≤ CΣS⊆[n]f̂(S)2|S|

Left side of the inequality represents the spectral entropy or Fourier entropy of f and
measures how "spread out" f ′s Fourier spectrum is. The right side of the inequality rep-
resents the total influence or average sensitivity of f. Both quantities have range between
0 and n. This conjecture also implies the famous KKL Theorem. The result showing that
the FEI Conjecture holds for random DNFs is the only published progress on the FEI Con-
jecture since it was posed. Since then, there have been many significant steps taken in the
direction of resolving the FEI conjecture.

The Fourier Entropy–Influence Conjecture would imply H[f̂ 2] ≤ C.O(logm) from which
one may takeK = O(C

ε
) in Mansour’s Conjecture [Man95]. In 1994, Y. Mansour conjectured

that for every DNF formula on n variables with t terms, there exists a polynomial p with
tO log(1/ε) non-zero coefficients such that Ex∈{0,1}n [(p(x)− f(x))2] ≤ ε. Mansour’s Conjecture
is important because if it is true then the query algorithm of Gopalan, Kalai, and Klivans
would agnostically DNF formulas under the uniform distribution to any constant accuracy
in polynomial time. Establishing such a result is a major open problem in computational
learning theory.

The FEI Conjecture is superficially similar to the well-known Logarithmic Sobolev In-
equality [Gro75] for the Boolean cube which says, for {−1, 1}n → R, Ent[f 2] ≤ 2I[f ] where
Ent[f ] = E[f log f ] − E[f ] log(E[f ]). Note that FEI Conjecture requires f : {−1, 1}n →
{−1, 1} to be Boolean-valued, and it definitely fails for real-valued f .

The FEI Conjecture holds for “the usual examples” that arise in analysis of Boolean func-
tions i.e. Parities (for which the conjecture is trivial), ANDs and ORs, Majority, Tribes, and
Inner-Product-mod-2 function.There have been many works on proving the FEI conjecture
for specific classes of Boolean functions. Assuming the FEI conjecture, a flat polynomial
of degree d and sparsity 2ω(d) cannot 1

3
−approximate a Boolean function. It is not clear to

us how to obtain the same conclusion unconditionally i.e. without assuming that the FEI
conjecture is true and that’s why the conjecture: No flat polynomial of degree d and sparsity
2ω(d) can 1

3
−approximate a Boolean function is posed.



1.2 Contribution of this thesis 5

1.2 Contribution of this thesis

The main contribution of this thesis is to find the Fourier Spectrum of various boolean
functions.

In Chapter 1, We have given the definitions of various boolean functions such as AND,
Majority, Parity, Inner Product, Linear Threshold Function(LTF). Also, in this chapter, we
have defined the Influence and flat polynomial and have given various conjectures.

In Chapter 2, We have represented various notations and preliminaries where we have
shown the linear algebra persepective for these boolean functions and we have also covered
the Parseval’s theorem, mean and variance of these boolean functions.

In Chapter 3,We have computed the Fourier Coefficients of various boolean functions by
using direct computation and Lagrange Interpolation method. We have represented these
boolean functions as a multilinear polynomial and verified by various examples for different
values of n. This is useful in the Fourier analysis, for example, based on the first Fourier
coefficient, we can tell whether the boolean function is balanced or not.

In Chapter 4, We have given a proof for the statement "A flat multilinear polynomial of
degree ′d′ and sparsity(number of monomials with non-zero Fourier-Coefficients) more than
2d , can’t be a boolean function." We also have written about the KKL Theorem and FEI
Conjecture and its implication on the approximating polynomials.

In Chapter 5, We have written a conclusive note about the approximating polynomials
and work along the direction of resolving FEI conjecture for some interesting classes of
boolean functions.



Chapter 2

Notations and Preliminaries

2.1 Notations

We denote the set {1, 2, ..., n} by [n] and we can write the monomial corresponding to the
subsets S ⊆ [n] as xS = Πi∈Sxi with xφ = 1 and we use the notation f̂(S) for the coefficients
on monomial xS in the multilinear representation of f . We also use the notation χS(x) for
the character function which is defined as χS(x) = Πi∈Sxi and therefore, we can also write
f as f(x) = ΣS⊆[n]f̂(S)χS(x)

We represent an inner product on the pair of functions f, g : {−1, 1}n → R as < f, g >=

2−nΣx∈{−1,1}nf(x)g(x) = Ex∼{−1,1}n [f(x)g(x)] where x ∼ {−1, 1}n denotes that x is uni-
formly chosen random string from {−1, 1}n. A boolean function f : {−1, 1}n → {−1, 1} has
< f, f >= 1 i.e. a unit vector. There is one more notation which we use,

||f ||p = E[|f(x)|p]1/p

and so, ||f ||2 =
√
< f, f >.

2.2 Preliminaries

There is a Fourier Expansion theorem which says every function f : {−1, 1}n → R can be
uniquely expressed as a multilinear polynomial as f(x) = ΣS⊆[n]f̂(S)xS and it is called the
Fourier expansion of f and the real number f̂(S) is called the Fourier coefficients(Fourier
Spectrum) of f on S. We can think of monomial xS as a function on x = (x1, x2, ..., xn) ∈ Rn.

The character function χS : {−1, 1}n → {−1, 1} is a boolean function which computes
the logical parity or exclusive-or(XOR) of bits (xi)i∈S and so, if we write f = ΣS⊆[n]f̂(S)χS

then it means f can be written as a linear combination of parity functions over the real
numbers.

The set of all functions f : {−1, 1}n → R forms a vector space V and it is 2n dimensional
space and we can think of the functions in this vector space as vectors in R2n where we are
stacking the 2n values of f(x) into a column vector in some fixed order.

Consider a boolean function Max2. So,
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x1 x2 f(x1, x2)

1 1 1

−1 1 1

1 −1 1

−1 −1 −1

f(x1, x2) =


1

1

1

−1

 ∈ R4 can be written as :


1

1

1

−1

 = 1
2


1

1

1

1

+ 1
2


1

−1

1

−1

+ 1
2


1

1

−1

−1

+ 1
2


−1

1

1

−1


Here, on RHS, first vector corresponds to χφ, second vector corresponds to χ{1}, third

vector corresponds to χ{2} and fourth vector corresponds to χ{1,2}. The parity functions
(χS)S⊆[n] spans the vector space V , it means every function in this vector space V is a linear
combination of parity functions (χS).

The above defined parity functions make the spanning set for the vector space V. Since,
the number of parity functions is 2n which is the dimension of vector space V and in fact,
they are a linearly independent basis for vector space V and it justifies the uniqueness of
the Fourier expansion.

The 2n parity functions χS form an orthonormal basis for the vector space V of functions
{−1, 1}n → R i.e. < χS, χT >= 1 if S = T and < χS, χT >= 0 if S 6= T because
< χS, χT >= E[χS(x)χT (x)]

The "coordinates of f" in the χS direction can be represented as < f, χS > and the
Fourier coefficient of f on S is given by f̂(S) =< f, χS >= Ex∼{−1,1}n [f(x)χS(x)] because
< f, χS >=< ΣT⊆[n]f̂(T )χT , χS >= ΣT⊆[n]f̂(T ) < χT , χS >= f̂(S). From this formula, we
can easily calculate the Fourier coefficients.

Parseval’s Theorem is used in Fourier analysis of Boolean function which says, For any
f : {−1, 1}n → R, < f, f >= Ex∼{−1,1}n [f(x)2] = ΣS⊆[n]f̂(S)2. So, if f : {−1, 1}n → {−1, 1}
is Boolean-valued then ΣS⊆[n]f̂(S)2 = 1.The set {f̂ 2(S)}S⊆[n] is the Fourier distribution
denoted by f̂ .

More Specifically, If we are given two functions f, g : {−1, 1}n → R, we can compute <
f, g > by taking the dot product of their co-ordinates in the orthonormal basis of the parities
and we get the Plancheral’s Theorem as a result which says, for any f, g : {−1, 1}n → R,
< f, g >= Ex∼{−1,1}n [f(x)g(x)] = ΣS⊆[n]f̂(S)ĝ(S).
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Proof is simple as we can write:

< f, g >=< ΣS⊆[n]f̂(S)χS,ΣT⊆[n]ĝ(T )χT >= ΣS,T⊆[n]f̂(S)ĝ(T ) < χS, χT >= ΣS⊆[n]f̂(S)ĝ(S)

We can also write < f, g > as Pr(f(x) = g(x)) − Pr(f(x) 6= g(x)) = 1 − 2 dist(f, g)

where dist(f, g) = Prx(f(x) 6= g(x)) is called the relative hamming distance. It is the
fraction of inputs on which they disagree.

The mean of f : {−1, 1}n → R is E[f ] and when it is zero then we say, f is balanced
or unbiased. If f is defined as f : {−1, 1}n → {−1, 1} is boolean-valued then mean E[f ] =

Pr(f = 1) − Pr(f = −1). So, we can say, f is unbiased iff it takes value 1 on exactly half
of the points of the hamming cube.

If f : {−1, 1}n → R then E[f ] = f̂(φ) because E[f ] = E[f×1] =< f, 1 > and < f, χS >=

f̂(S), If S = φ then χS = 1 and so, < f, 1 >= f̂(φ)

The variance of f : {−1, 1}n → R[real-valued boolean function] is defined as:

V ar[f ] =< f − E[f ], f − E[f ] >= E[f 2]− E[f ]2 = E[f 2]− (f̂(φ))2 =

< f, f > −(f̂(φ))2 = ΣS⊆[n]f̂(S)2 − (f̂(φ))2 = ΣS 6=φf̂(S)2.

A boolean-valued function f has variance 1 if it’s unbiased and it has variance zero when
it is constant.



Chapter 3

Fourier Analysis of Some Boolean Functions

3.1 Fourier Spectrum of ANDn Function

Theorem 3.1.1. The Fourier coefficients of the function ANDn are as follows:

• ÂNDn(∅) = 1− 1
2n−1

• ÂNDn(S) = (−1)k+1

2n−1 , for |S| = k and S 6= φ

3.1.1 Proof of Theorem 3.1.1

We will prove Theorem 3.1.1 by computing the Fourier Coefficents of the function ANDn.

Method 1: Direct computation

Here, character functions for different S are:

χ(φ) = 1

χ({1}) = x1

χ({2}) = x2

....

....

χ(n) = xn

χ(1, 2) = x1x2

....

....

χ({1, 2, 3, ...., n} = x1x2.....xn)

So, χ(S) = Πi∈Sxi

Now, according to the definition 1, Fourier coefficients will be,

f̂(φ) = 1
2n

((2n − 1)(+1)− 1) = 2n−2
2

= 1− 1
2n−1
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f̂({1}) = 1
2n

(
2n

2
(+1) + (2n

2
− 1)(−1) + 1

)
= 1

2n−1

f̂({2}) = 1
2n

(
2n

22
(+1) + 2n

22
(−1) + 2n

22
(+1) + (2n

22
− 1)(−1) + 1

)
= 1

2n−1

f̂({1, 2}) = 1
2n

(
2n

22
(+1) + 2n

22
(−1) + 2n

22
(−1) + (2n

22
− 1)(+1)− 1

)
= −1

2n−1

f̂({1, 3}) = 1
2n

(
2n

23
(+1) + 2n

23
(−1) + 2n

23
(+1) + 2n

23
(−1) + 2n

23
(−1) + (2n

23
− 1)(+1)− 1

)
= −1

2n−1

Now, observe the pattern and why terms are canceling out, similarly we can write,

f̂({2, 3}) = −1
2n−1

Now, For |S| = 3,

f̂({1, 2, 3}) = 1
2n

(
2n

23
(+1) + 2n

23
(−1) + 2n

23
(−1) + 2n

23
(+1) + 2n

23
(−1) + 2n

23
(+1) + 2n

23
(+1) + (2n

23
− 1)(−1)

)
= 1

2n−1

Now, here if we observe how the terms are canceling out in the expressions of Fourier
coefficients, we can write the generalized Fourier coefficient for the ANDn functions as

f̂(S) =
(−1)k+1

2n−1

For |S| = k and S 6= φ

and f̂(φ) = 1− 1
2n−1

Reason is that when |S| = even then f̂(S) = 1
2n

((−1)(+1)− 1) = −2
2n

= −1
2n−1 and in this

expression all others terms will be cancelled out and only terms will be survived when all
n boolean variables are even, so product will give "+1" and output will be ”− 1” and one
” − 1” will also be there due to 2n

2k
− 1 whose output is ” + 1”, so −1 − 1 = −2, and so,

Fourier coefficient will be −1
2n−1 .

When |S| = odd then ” − 1” odd number of times gives "-1" and output is ” − 1”, so,
product will be ” + 1 and so, Fourier coefficient for odd |S| will be 2

2n
= 1

2n−1 .

Method 2: Interpolation

(1+x1)(1+x2)...(1+xn)
2n

(+1) + (1+x1)(1+x2)...(1−xn)
2n

(+1) + (1+x1)(1+x2)...(1−xn−1)(1+xn)
2n

(+1) + ...

+ (1−x1)(1−x2)(1−x3)...(1+xn)
2n

(+1) + .....+ (1−x1)(1−x2)(1−x3)...(1−xn)
2n

(−1)
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Here, coefficient of ”x1” = 2n

2
1

2n
+ (2n

2
− 1)(−1

2n
) + 1

2n
= 1

2n−1

coefficient of ”x1x2” = 2n

4
1

2n
+ 2n

4
(−1

2n
) + 2n

4
(−1

2n
)(2n

4
− 1)( 1

2n
)− 1

2n
= −1

2n−1

Similarly, we can find the other Fourier coefficients which will be same as above.

Examples

Here, I have given 2 examples and we can verify the above formulae for Fourier coefficients
for these 2 examples means whether it is working or not.

Example 3.1.1. For n = 3,

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 −1 1

1 −1 1 1

1 −1 −1 1

−1 1 1 1

−1 1 −1 1

−1 −1 1 1

−1 −1 −1 −1

Here, Fourier coefficients (according to the above definition 1) are:

f̂(φ) = 3
4

f̂({1}) = f̂({2}) = f̂({3}) = 1
4

f̂({1, 2}) = f̂({1, 3}) = f̂({2, 3}) = −1
4

f̂({1, 2, 3}) = 1
4

Hence,

f(x) =
3

4
+

1

4
x1 +

1

4
x2 +

1

4
x3 −

1

4
x1x2 −

1

4
x1x3 −

1

4
x2x3 +

1

4
x1x2x3

Now, we can verify this multilinear polynomial by putting values of boolean variables
x1, x2, x3 from above truth table and check whether it is giving correct output value or not.

Example 3.1.2. For n = 4,
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x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 1

1 1 1 −1 1

1 1 −1 1 1

1 1 −1 −1 1

1 −1 1 1 1

1 −1 1 −1 1

1 −1 −1 1 1

1 −1 −1 −1 1

−1 1 1 1 1

−1 1 1 −1 1

−1 1 −1 1 1

−1 1 −1 −1 1

−1 −1 1 1 1

−1 −1 1 −1 1

−1 −1 −1 1 1

−1 −1 −1 −1 −1

Here, Fourier coefficients (according to the above definition 1) are:

f̂(φ) = 7
8

f̂({1}) = f̂({2}) = f̂({3}) = f̂({4}) = 1
8

f̂({1, 2}) = f̂({1, 3}) = f̂({2, 3}) = f̂({2, 4}) = f̂({1, 4}) = f̂({3, 4}) = −1
8

f̂({1, 2, 3}) = f̂({1, 2, 4}) = f̂({2, 3, 4}) = f̂({1, 3, 4}) = 1
8

f̂({1, 2, 3, 4}) = −1
8

Hence,

f(x) = 7
8

+ 1
8
x1 + 1

8
x2 + 1

8
x3 + 1

8
x4 − 1

8
x1x2 − 1

8
x1x3 − 1

8
x1x4 − 1

8
x2x3 − 1

8
x2x4 − 1

8
x3x4 +

1
8
x1x2x3 + 1

8
x1x2x4 + 1

8
x1x3x4 + 1

4
x2x3x4 − 1

8
x1x2x3x4

Now, we can verify this multilinear polynomial by putting values of boolean variables
x1, x2, x3, x4 from above truth table and check whether it is giving correct output value or
not.
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3.2 Fourier Spectrum of Majority Function MAJn

Theorem 3.2.1. The Fourier coefficients of the Majority Function MAJn are as follows:

• M̂AJn(S) =


0 if |S| = even

(−1)
k−1
2

(
n−1
2

k−1
2

)

(n−1
k−1)

2
2n

(
n−1
n−1
2

)
if |S| = odd and |S| = k

3.2.1 Proof of Theorem 3.2.1

1) MAJn is a symmetric function because order does not matters if we permute the se-
quence of n boolean variables and so, output remains the same.
Hence, Fourier Coefficients ̂MAJn(S) only depends on |S|.

2) MAJn is also an odd function because if we change the values of each boolean vari-
able from −1 to 1 or from 1 to −1 then outcome gets flipped.
Hence, ̂MAJn(S) = 0 when |S| is even because x1x2...xn(even number of times)⇒ ±1 and
flipping(negating) each boolean variable, we get the same outcome because after negation,
product of "-ve" even number of times make "+ve".

So, we only need to determine ̂MAJn(S) when |S| = odd.

Claim 3.2.1. For |S| = k(odd)

̂MAJn(S) = (−1)
k−1
2

(n−1
2

k−1
2

)
(
n−1
k−1

) 2

2n

(
n− 1
n−1

2

)

Proof. When n = odd then Majority function MAJn has value ”− 1” when +1 and −1 are
equally divided from length (n−1) by the definition of majority function. That’s why we are
choosing n−1

2
boolean variables out of n−1 boolean variables. So, we have included the term(

n−1
n−1
2

)
in the above formula and we do the same for output value ” + 1” because according

to the definition we have to consider all input data points for each Fourier coefficients and
according to the definition 1, we also have to divide whole thing by 2n, so, we have included
the term 2

2n
.

Now, for |S| = k we have to consider only ”k − 1” number of boolean variables out of
n − 1 boolean variables for majority (same logic as choosing n − 1 from n), So, number
of ways will be

(
n−1
k−1

)
. Now, we equally divide +1 and −1 of n−1

2
length sub-sequence of

boolean variable and so, we included the term
(
n−1
2

k−1
2

)

(n−1
k−1)

and at the end, for sign, we included

the term (−1)
k−1
2 . �
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Examples

Example 3.2.1. For n = 3,

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1

−1 1 1 1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 −1

Method 1 (By Direct Computation) : Here, Fourier coefficients (according to the
above formula) are:

f̂(φ) = 0

f̂({1}) = f̂({2}) = f̂({3}) = (−1)0 (1
0)

(2
0)

2
23

(
2
1

)
= 1

2

f̂({1, 2}) = f̂({1, 3}) = f̂({2, 3}) = 0

f̂({1, 2, 3}) = (−1)1 (1
1)

(2
2)

2
23

(
2
1

)
= −1

2

Hence,

f(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3

which is same as above.

Method 2 (By Interpolation)

f(x) = (1+x1
2

)(1+x2
2

)(1+x3
2

)(+1) + (1+x1
2

)(1+x2
2

)(1−x3
2

)(+1) +

(1+x1
2

)(1−x2
2

)(1+x3
2

)(+1) + (1+x1
2

)(1−x2
2

)(1−x3
2

)(−1) + (1−x1
2

)(1+x2
2

)(1+x3
2

)(+1) +

(1−x1
2

)(1+x2
2

)(1−x3
2

)(−1) + (1−x1
2

)(1−x2
2

)(1+x3
2

)(−1) + (1−x1
2

)(1−x2
2

)(1−x3
2

)(−1)

f(x) = 1
2
x1 + 1

2
x2 + 1

2
x3 − 1

2
x1x2x3
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3.3 Fourier Spectrum of Parity Function

Theorem 3.3.1. The Fourier coefficients of the Parity Function are as follows:

• f̂(S) =

{
1, if S = {1, 2, ......, n} = [n]

0, o/w

3.3.1 Proof of Theorem 3.3.1

χS(x) is the parity function which is −1 iff an odd number of the input bits are −1.

Here, if S = {1, 2, ...., n} = [n] then

f̂(S) = 1

Because according to the definition , odd number of ”−1” gives output as ”−1”. So, product
= (−1×−1× .....×−1︸ ︷︷ ︸

odd number of times

)× (−1) = 1

So, f̂(S) = 1
2n

ΣS=[n]f(x)χS(x) = 1
2n

[1 + 1 + 1 + ....+ 1︸ ︷︷ ︸
2n number of times

] = 1

Since, Σ(f̂(S))2 = 1 and for S = [n], (f̂(S))2 = 1, so, other Fourier coefficients will be
zero (or) we can say, ∀ T 6= S, and so, f̂(T ) =< χS, χT >= 0(By using orthogonality).

Hence,

f(x) = Πn
i=1xi

Now, if parity function is defined as :

χ[n] : Fn2 → F2

where, False = 0 and True = 1

Then,
χ[n](x) = x1 + x2 + ....+ xn

which is 1 if odd number of 1s and 0 otherwise.

Here, for a ∈ Fn2 , Indicator function will be :
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I{a}(x) = Πi:ai=1xiΠi:ai=0(1− xi)

So, Fourier expansion of f(x) in this case will be :

f(x) = Σa∈Fn
2
f(a)I{a}(x)

f(x) = Σa∈Fn
2
f(a)Πi:ai=1xiΠi:ai=0(1− xi)

Examples

Example 3.3.1. Suppose, f : {−1, 1}n → {−1, 1}

Then, For n = 3,

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

−1 1 1 −1

−1 1 −1 1

−1 −1 1 1

−1 −1 −1 −1

Now, By Interpolation, we get,

(1+x1
2

)(1+x2
2

)(1+x3
2

)(+1)+(1+x1
2

)(1+x2
2

)(1−x3
2

)(−1)+(1+x1
2

)(1−x2
2

)(1+x3
2

)(−1)+(1+x1
2

)(1−x2
2

)(1−x3
2

)(1)+

(1−x1
2

)(1+x2
2

)(1+x3
2

)(−1)+(1−x1
2

)(1+x2
2

)(1−x3
2

)(+1)+(1−x1
2

)(1−x2
2

)(1+x3
2

)(1)+(1−x1
2

)(1−x2
2

)(1−x3
2

)(−1)

f(x) = x1x2x3

and Fourier coefficients will be :

f̂(φ) = 1
23

[0] = 0

f̂({1}) = f̂({2}) = f̂({3}) = 0

f̂({1, 2}) = f̂({2, 3}) = f̂({1, 3}) = 0

f̂({1, 2, 3}) = 1

Hence,
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f(x) = x1x2x3

Now, if

χ[3] : F3
2 → F2

Then

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Here, By Interpolation, we get,

f(x) = (1− x1)(1− x2)x3 + (1− x1)x2(1− x3) + x1(1− x2)(−x3) + x1x2x3

f(x) = x1 + x2 + x3

3.4 Fourier Spectrum of Inner Product Function

Theorem 3.4.1. The Fourier coefficients of the function Inner Product are as follows:

• f̂(φ) = 1
22n

(
22n−2n

2

)
for f : F2n

2 → F2

3.4.1 Proof of Theorem 3.4.1

Here, for any f : {0, 1}n → R,

Fourier coefficients are defined as:

f̂(S) =< f, χS >
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f̂(S) =
1

2n
Σx∈{0,1}nf(x)χS(x)

f̂(S) =
1

2n
Σx∈{0,1}nf(x)(−1)Σi∈Sxi

Hence, Fourier expansion will be :

f(x) = ΣS f̂(S)χS(x)

f(x) = ΣS f̂(S)(−1)Σi∈Sxi

Now, here, For f : F2n
2 → F2, we define the inner product mod-2 boolean function as :

f(x1, x2, ...., xn, xn+1, xn+2, ...., x2n) = x1xn+1 + x2xn+2 + .....+ xnx2n

So, for this function Fourier coefficients will be :

f̂(φ) =
1

22n

(
22n−2n

2

)
To get this formula, we have to count number of 1′s and if there is 0 then there will 3

ways to get it for xixj.

So, if n = 1, we can get it in only one way i.e. x1 = x2 to get 1. If n = 2, then number
of ways to get 1s in f for x1x3 + x2x4 is 6 because 0 + 1 = 1 will give 3 ways and 1 + 0 will
give 3 ways, so total 6 ways. If n = 3 then for x1x4 + x2x5 + x3x6, we get 1 if we can have
2 0s and 1 1s or 3 1s. So, total ways = 3× 3× 3 = 27 + 1 = 28.

So, observe the pattern of 1, 6, 28, ..., we get the formula or we can also solve the
(
n
1

)
3n−1+(

n
3

)
3n−3 + ....+

(
n
n

)
3n−n, we get the formula.

Now, to get the other Fourier coefficients, we have to use f̂(S) = 1
2n

Σx∈{0,1}nf(x)(−1)Σi∈Sxi .

and then compute the Fourier expansion as :

f(x) = ΣS f̂(S)(−1)Σi∈Sxi .

Here, if we consider f : {−1, 1}2n → {−1, 1} and if we take the above definition of in-
ner product then there are 2 possibilities :

1. f(x1, x2, y1, y2) = f(x2, x1, y2, y1)

2. f(x1, x2,−y1,−y2) = −f(x1, x2, y1, y2)
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Both are correct But

- By 1, f(1, 1, 1,−1) = f(1, 1,−1, 1)

- By 2, f(1, 1, 1,−1) = −f(1, 1,−1, 1)

So f(1, 1, 1,−1) = −f(1, 1, 1,−1) ⇒ f(1, 1, 1,−1) = 0. But the only values allowed are
1 and −1.

Hence, we can’t do this without either giving up one possibility out of two.

Examples

Example 3.4.1. For n = 1,

For F2n
2 → F2,

x1 x2 f(x1, x2)

0 0 0

0 1 0

1 0 0

1 1 1

Here, By Interpolation,

f(x) = x1x2.

Now, computing the Fourier coefficients :

f̂(φ) = 1
22

(0 + 0 + 0 + 1) = 1
4

f̂({1}) = f̂({2}) = 1
4
(1× (−1)1) = −1

4

f̂({1, 2}) = 1
4
(1× (−1)1+1) = 1

4
.

Hence,

f(x) =
1

4
− 1

4
(−1)x1 − 1

4
(−1)x2 +

1

4
(−1)x1+x2

Example 3.4.2. For n = 3,

For F2n
2 → F2,
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x1 x2 x3 x4 f(x1, x2, x3, x4)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Here, Fourier coefficients are :

f̂(φ) = 1
16

(sum of values of f) = 6
16

= 3
8

f̂({1}) = f̂({2}) = f̂({3}) = f̂({4}) = −2
16

= −1
8

f̂({1, 2}) = −2
16

= −1
8

f̂({1, 3}) = 2
16

= 1
8

f̂({1, 4}) = −2
16

= −1
8

f̂({2, 3}) = −2
16

= −1
8

f̂({2, 4}) = 2
16

= 1
8

f̂({3, 4}) = −2
16

= −1
8

f̂({1, 2, 3}) = 2
16

= 1
8

f̂({1, 2, 4}) = 2
16

= 1
8

f̂({1, 3, 4}) = 2
16

= 1
8

f̂({2, 3, 4}) = 2
16

= 1
8

f̂({1, 2, 3, 4}) = −2
16

= −1
8

Hence, Fourier expansion will be :

f(x) = 3
8
− 1

8
(−1)x1− 1

8
(−1)x2− 1

8
(−1)x3− 1

8
(−1)x4− 1

8
(−1)x1+x2 + 1

8
(−1)x1+x3− 1

8
(−1)x1+x4−

1
8
(−1)x2+x3 + 1

8
(−1)x2+x4 − 1

8
(−1)x3+x4 + 1

8
(−1)x1+x2+x3 + 1

8
(−1)x1+x2+x4 + 1

8
(−1)x1+x3+x4 +
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1
8
(−1)x2+x3+x4 − 1

8
(−1)x1+x2+x3+x4 .



Chapter 4

Boolean Function Approximation

4.1 Implication of FEI conjecture on approximating poly-
nomials

KKL Theorem [JGN88] : Infi(f) ≥ Ω( lnn
n

)V ar(f)[Special case: When f is balanced
i.e. f̂(φ) = 0 and so, V ar(f) = 1 because V ar(f) = 1− f̂(φ)2]

Fourier-Entropy-Influence Conjecture [’96]:

∀f : {−1, 1}n → {−1, 1}, H[f̂ 2] ≤ CI[f ], Where, H[f̂ 2] is spectral(Shannon) entropy of
f which is equal to f̂(S)2 log( 1

f̂(S)2
) and C is a universal constant.

Informally, the FEI conjecture states that Boolean function whose Fourier distribution is
well "spread out"(i.e. functions with larger Fourier entropy) must have significant Fourier
weights on the high-degree monomials(i.e their total influence is large)

Conjecture: No flat polynomial of degree d and sparsity 2ω(d) can 1
3
− approximate a

boolean function[The degree of a function is the maximum d such that f̂(S) 6= 0 for some
set S of size d].

If f, g are boolean-valued functions then we say, functions f, g are ε− close if dist(f, g) ≤ ε

otherwise they are ε− far where dist(f, g) = Prx(f(x) 6= g(x)).

This conjecture is true by assuming FEI conjecture and it is also true for a class of polyno-
mials without assuming FEI conjecture.

ε− approximation polynomial means, Say, we have a family of functions Fn = {f : {−1, 1}n →
{−1, 1}} and consider subset of it as Bn ⊆ Fn and we are interested in approximating f ∈ Bn
by a f̂ ∈ Fn with smallest possible degree.
Let, ε ∈ (0, 1

2
). The ε− approximate polynomial degree of f ∈ Bn, denoted by ˆdegε(f), is

the smallest integer k such that there exists f̂ ∈ Fn with deg(f̂) = k and |f̂(x)− f(x)| ≤ ε,

∀x ∈ {−1, 1}n

If we restrict ourselves to the class of block-multilinear polynomial [An n-variate poly-
nomial is said to be block-multilinear if the input variables can be partitioned into disjoint
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blocks such that every monomial in the polynomial has atleast one variable from each block]

Bohnenblust & Hille showed [SSM+20] that for every degree−d block-multilinear p : (Rn)d →
R,

(
Σn
i1,i2,...,id=1|p̂i1,i2,...id|

2d
d+1

) d+1
d ≤ Cd max

x1,...xd∈[−1,1]n
|p(x1, ..., xd)|

where Cd is constant and it depends on d.

The best upper bound on Cd is polynomial in d. Using the best upper bound on Cd in
BH-inequality implies that a flat multilinear polynomial of degree-d and sparsity 2ω(d log d)

can’t 1
3
− approximate a boolean function.

FEI conjecture implies the following theorem :
If p is a flat block-multilinear polynomial of degree d and sparsity 2ω(d) then p can’t approx-
imate a boolean function. This theorem is also implied when Cd is assumed to be universal
constant.

Proposition 4.1.1. A flat multilinear polynomial of degree ′d′ and sparsity(number of mono-
mials with non-zero Fourier-Coefficients) more than 2d , can’t be a boolean function.

Proof. To prove it by contradiction, try and assume that the statement is false, proceed
from there and at some point you will arrive to a contradiction.

We have a multilinear polynomial f(x) and since, it is a flat polynomial means all non-
zero Fourier coefficients have same magnitude, say ′p′. Now,
Suppose, f(x) is a boolean function.

We can write f(x) as f(x) = p(sum of monomials). Now, Since, f(x) is {−1, 1}n →
{−1, 1}, so, sum of monomials must be an integer. It might be positive, negative or zero
but it can’t be in fraction because putting values of −1 and +1 in monomials will generate
an integer because multiplication of integers is integer and when we sum of all monomials
then again, we get an integer. Now, since, f is a boolean function, it means f(x) = p(sum
of monomials) must be either +1 or −1 and say, sum of monomials is ±s then p = 1

s
where

s is an integer.
So, p can be 1, 1

2
, 1

3
, ... but it can’t be like 2, 3, ... (Taking absolute value only).

Now, since, f is a degree d multilinear polynomial, it means with d boolean variables,
maximum number of possible monomials are 2d+1 − 1 because if we add 1 more monomial
then number of boolean variables will be more than d.
Degree d polynomial must have at least one monomial with d boolean variables. With d

boolean variables, maximum number of monomials, we can make as 2d i.e.
(
d
0

)
+
(
d
1

)
+...+

(
d
d

)
,

where each term shows: total number of zero degree monomial, total number of one degree
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monomials,..etc. A flat polynomial with degree d and sparsity ≤ 2d may or may not be a
boolean function but here our assumption was f(x) is a degree d flat multilinear polynomial
with values −1 and +1 with more than 2d number of monomials and we have to contradict
it to prove the statement.

With degree d and 2d number of monomials, minimum number of variables are d and
maximum number of variables are d2d. For Sparsity more than 2d, Then, Either 2d number
of monomials have more than d variables or when 2d number of monomials have maximum
d boolean variables and say, sum = s then adding one or more monomial with new variable
will give sum as s+ t and s− t with t > 0, s 6= 0 for at least 2 instances out of 2>d instances
because if we include new variables then with the positive sign of new variables, it will give
new value and with the negative sign of new variables, it will give another new value in
magnitude but our assumption was that f is boolean and for that each value of f must have
same magnitude, say s and so, p = 1

s
to get value as +1 or −1 for all values of f but here, we

are getting 2 different magnitude values for at least 2 instances of f. So, Contradiction. �

Let’s understand it with some examples:

Example 4.1.1. Suppose, degree−2 flat multilinear polynomial f(x) = 1
3
(1+x1+x2−x1x2+

x3). Now, if we take 2d = 4 monomials as 1, x1, x2, x1x2 and if we assign x1 = −1, x2 = −1

then 1+x1+x2−x1x2 = −2 and so, for sparsity more than 2d = 4 i.e considering monomials
1, x1, x2, x1x2, x3 , and for input variables {x1, x2, x3}, out of 23 = 8 instances, there must
be 2 possible values of newly introduced variable x3 i.e. −1 and +1 and so, we get the value
of f(x) = −2 + 1 = −1 when x3 = 1 and f(x) = −2 − 1 = −3 when x3 = −1 and these
2 instances must be there but for f(x) to be a boolean function, sum of monomials must be
same which is not the case here and hence, it can’t be an boolean function.

If we consider 2d = 4 monomials as x1, x2,−x1x2, x3, Now, for more than 2d = 4 mono-
mials i.e. 1, x1, x2, x1x2, x3, same logic as above applies. Think it as we initially have
1, x1, x2, x1x2 monomials and introdued a new variables which gives 2 different magnitude
values of f.

Example 4.1.2. Consider a degree− 2 flat multilinear polynomial as:
f(x) = 1

3
x1 + 1

3
x2 + 1

3
x3 + 1

3
x1x2 + 1

3
x2x3 = 1

3
(x1 + x2 + x3 + x1x2 + x2x3)

Now, again take the monomials which includes 2 boolean variables i.e. x1, x2, x1x2 . It has
maximum sum = 3 when x1 = 1, x2 = 1 and minimum sum = −1. Now, For sparsity more
than 2d = 4, if we take x1 = 1, x2 = 1 then with newly introduced variable x3, f(x) = 3+2 = 5

when x3 = 1 and f(x) = 3 − 2 = 1 when x3 = −1. And also, for x1 = −1 and x2 = 1 and
with x3 = ±1, f(x) = −1 + 2 = 1 and f(x) = −1− 2 = −3.

Since, f(x) is having 2 different magnitude values due to s+ t and s− t for t > 0, s 6= 0

as we have discussed above and so, f(x) can’t be a boolean function.
Note: With 5 monomials and possible summation values are ±1,±3,±5 because we have
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5 places which we have to fill with +1 or −1.

Example 4.1.3. Consider, a degree− 2 flat monomial as:
f(x) = x1x2 + x2x3 + x2x4 + x3x4 + x3x5 + x4x5

Now, take the 2d = 4 monomials as: x1x2, x2x3, x2x4, x3x4 and if we introduce a new
variable x5 then considering the sparsity more than 2d = 4 which has 6 monomials i.e.
x1x2, x2x3, x2x4, x3x4, x3x5, x4x5. Now, for x1 = x2 = x3 = x4 = −1, f(x) = 4 + 2 = 6 when
x5 = −1 and f(x) = 4 − 2 = 2 when x5 = 1. Also, instead of 6 monomials if there were 5

monomials then also f has valuese 4 + 1 = 5 and 4− 1 = 3.

So, based on the pattern, for more than 2d monomials, f has 2 different magnitude values
in the form of s+ t and s− t where t > 0, s 6= 0 for at least 2 different instances of f.

Some More Analysis:

(1) Consider one more degree− 2 multilinear flat polynomial with degree d as :
f(x) = 1

2
+ 1

2
x1 + 1

2
x2 + 1

2
x1x2 + 1

2
x3 − 1

2
x1x3 = 1

2
(1 + x1 + x2 + x1x2 + x3 − x1x3)

Now, as above, if we consider 2d = 4 monomials with 2 distinct variables x1, x2 as 1 =

x0
1, x

0
2, x1, x2, x1x2 and by introducing one new variable x3 and taking more than 2d = 4

monomials as 1, x1, x2, x1x2, x3, x1x3.

Observe that s = 0 or s = 4. s = 4 is possible when x1 = 1, x2 = 1 and then with
x3 = ±1, f(x) = 4 + 0 and f(x) = 4 − 0, so here t = 0 and since, s = 0 and t = 0 are
possible we are unable to detect whether it is a boolean function or not. But if we assume,
a degree− d multilinear flat(all Fourier coefficients are same and say, p) polynomial f(x) is
a boolean function then According to Parseval’s identity for sparsity = 2d,

2dp2 = 1⇒ p = ± 1
2d/2

Hence, if magnitude of the Fourier coefficients are 1
2d/2

then degree − d flat multilinear
polynomial with sparsity more than 2d , can’t be a boolean function.
Therefore, for the above example, p = 1

2
= 1

22/2
so, it can’t be a boolean function.

(2) Ignoring p and analyzing the value of sum of monomials, ′s′.
With d boolean variables, sparsity more than 2d means number of monomials in f(x) is from
1 to 2d+1− 1 because for sparsity 2d+1, a monomial of degree− d+ 1 must be there and so,
we can add monomial terms from 2d + 1 to 2d+1 − 1 in the previous f to get f of degree d.
So, for d boolean variables, f(x) contains number of monomials from 2d + 1 to 2d+1 − 1 for
sparsity > 2d with degree− d. With ≤ 2d number of monomials, f(x) has minimum vallue
as 1− 2d and max value as 2d.

Now, number of terms between 2d + 1 to 2d+1 − 1 are 2d+1 − 1− 2d − 1 + 1 = 2d − 1

Hence, With d boolean variables, for degree−d flat multilinear polynomial: Maximum value
= 2d + 2d − 1 = 2d+1 − 1 and Minimum value = −2d + 1− (2d − 1) = −2d+1 + 2



Chapter 5

Discussion and Conclusion

We have shown the Fourier analysis of various Boolean functions and proved that a flat
multilinear polynomial of degree d and sparsity (number of monomials with non-zero Fourier-
Coefficients) more than 2d, can’t be a Boolean function. Along the same direction, one
may try to resolve the conjecture “a flat polynomial of degree d and sparsity 2ω(d) cannot
1
3
−approximate a Boolean function."

Since the general Fourier Entropy–Influence Conjecture seems difficult to resolve, so, it
might be possible that one may try to prove it for additional interesting classes of Boolean
functions for example linear threshold functions for a possibly tractable case as Andrew Wan
suggested in his paper "Talk at the Center for Computational Intractability[2010]".
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