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Abstract

Quantum Key Distribution Protocol (QKD) is a type of quantum cryptog-
raphy, i.e., it uses the concepts related to quantum mechanics to establish
security in the communication channel. It is a key generation protocol and is
used for generating a shared secret key between two parties, commonly known
as Alice and Bob. Any QKD protocol uses two communication channels for
the key generation. The first one is a quantum channel for the transmission
of qubits. The other one is a classical channel for the transmission of ran-
dom classical bits. The two major processes of any QKD protocol involve
key generation algorithm and classical post processing phase. For the key
generation process, algorithms like BB84 protocol or Eckart E91 protocol is
used. These algorithms use polarisation, entanglement, and measurement
concepts of quantum mechanics for generating the key. The key generated
in the final step of the key generation algorithm of the QKD protocol is
made up of classical bits. Because of the inherent noisy nature of quantum
channels, the keys generated at both ends after classical reconciliation can
still be wrong. This defeats the purpose of key sharing. To overcome this
adversities classical post processing is used. In this phase the keys generated
at the two ends are processed via an error correcting scheme to potentially
reach a common key without any public sharing of the data. To this end
we have studied the behavior of various error correction schemes, both block
based and convolutional schemes and later used them as part of the post
processing phase of the BB84 QKD protocol. Then we studied the efficiency
of these coding schemes with and without the interruption of a malicious
third party.
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1
Introduction

Quantum cryptography is the study of creating a secure communication sys-

tem using various encoding and decoding algorithms using quantum me-

chanics. Quantum mechanics provides various concepts that help quantum

cryptography to create a cryptographic system that is impossible to make

using classical cryptography only. For example, using the concept of the

no cloning theorem[14], the detection of an unauthorized party is done in

quantum cryptography.

Quantum Key Distribution (QKD) is one of the primary examples of

quantum cryptography. QKD is a key generation algorithm, i.e., it is used to

generate secure keys, which will further be used in encryption or decryption

of some other cryptographic protocol. The basic idea behind QKD protocol

is that it uses both classical and quantum bits to generate the shared secret

key, say between Alice and Bob, such that no eavesdropper (Eve) can observe

it without disturbing the key generated. Furthermore, if Eve tries to find out

about the key, Alice and Bob will get notified of Eve’s eavesdropping.

QKD uses a quantum communication channel for the transmission of

quantum bits and a classical communication channel for the transmission of

classical bits. The QKD protocol uses the concept of entanglement and quan-

tum bits measurement (section 2.1) for the preparation of the shared secret

key. The final shared key is a string of classical bits, and can be used further
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in a different classical cryptographic algorithm. Due to the noisy nature of

quantum channels and the possibility of a third party intervention (Eve),

even after the classical reconciliation step, there can still be mismatches be-

tween the two keys generated at the two ends.

Figure 1.1: QKD Protocol

We are going to use the BB84 QKD protocol [10] in our thesis for gener-

ating secret shared keys. Due to the imperfections of hardware, or Eve, there

will always be a noise resulting in bit errors among the bits of keys between

Alice and Bob, shown in fig1.2. All QKD protocols have some noise level

estimation for estimating bit error rates. If the key generated at both ends

are same then the error rate will be 0 and if the key generated at one end is

the complement of the other then the error rate is 1.
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Figure 1.2: Key bit error

We use the classical post processing phase of the QKD protocol if the bit

error rate is not more than some threshold value. This classical post pro-

cessing phase involves the process of information reconciliation and privacy

amplification. We use some error correction mechanisms to remove the bit

error in the key in the information reconciliation process. In the privacy am-

plification process, we use some hash functions on the keys generated by the

information reconciliation phase for reducing any information gain related

to the secret key obtained by Eve during transmission. These two steps of

the classical post processing phase of QKD create a final key common to

Alice and Bob. In this proposal we only concentrate on the information

reconciliation process via error correcting schemes.

1.1 Our Contribution

As discussed above, the shared key generated in the BB84 QKD protocol

may contain bit errors because of the inherent noisy nature of current age

quantum channels. This error will affect the reliability of the key generation

protocol. These bit errors can be corrected in the classical post processing
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phase, which requires a suitable error correction mechanism. For this classical

post processing phase, we used error correcting coding schemes. We have

simulated various error correcting coding schemes upon different randomly

generated inputs on different error rates and determine the efficiency of those

error correcting coding schemes. Later, we use these coding schemes as a part

of the BB84 protocol’s classical post process phase and observe the behaviour

of the keys generated by the BB84 QKD protocol.

Xiongfeng Ma [15] summarised the important concepts involved in post

processing of QKD protocol. Brassard and Salvail [5] gave an information

reconciliation method (cascading), used in the first step of the classical post

processing phase. This method is quite simple, but the only problem is that

it requires multiple interactions between the involved parties to generate

a final shared secret key. We have conducted our experiment by practically

implementing the concept of Xiongfeng Ma and used error correcting codes as

part of information reconciliation which provide the benefit that interaction

for the key generation is done only once thus saving more time.

1.2 Organisation of Thesis

We introduced the basic concept of QKD protocols along with classical post

processing requirements. These will help us to understand the motive behind

our objective stated in the section1.1.

Chapter 2 consists of the information regarding Quantum Key Distribu-

tion and classical post processing procedures. Chapter 3 contains various

error correcting coding schemes that we will deploy as a part of classical post

processing of the QKD protocols. Using the concept used in these chapters,

we have conducted the practical implementation of post processing can be
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found in chapter 4. In Chapter 5 we have written our conclusion regarding

the experiment as well as the future work that can be done. The references

used for this thesis can be found in the reference section at the end.
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2
Quantum Key Distribution And Its Different

Steps

This chapter contains the basics of quantum computing, QKD protocol, and

its classical post processing phase. These concepts are later be used in our

experiment in the later chapter.

2.1 Preliminaries

2.1.1 Qubits

The qubit or quantum bit is the basic fundamental unit in quantum comput-

ers used for carrying the information. It is similar to the concept of bits in

classical computers. A qubit is a 2-D quantum system. A qubit’s state may

be written as follows:

|φ〉 = α |0〉+ β |1〉 (2.1)

where α and β are complex numbers and such that |α|2 + |β|2 = 1 . Here

Dirac − notation is used where |0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
represent the

basis state of 2d vector space. The measurement of the state of the qubit

in the equation 2.1 will give zero (0) with probability |α|2 or one(1) with

probability |β|2.
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2.1.2 Superposition and entanglement

Any linear combination of 2 quantum states is known as superposition. Even

if they are normalised, they will still be a valid quantum state. Using some

basis states, any quantum state can be expressed as a linear combination

of them like in equation 2.1 using the linear combination of |0〉 and |1〉, we

can express any state of the qubit. A normalised linear combination of 2n

bit string states can be used to express the state of any n qubit system.

Computational basis are those orthonormal basis obtained from the 2n bit

string states.

Generally, a system of n qubits can be expressed as the tensor product of

n different single qubit states, but sometimes it is impossible to present it in

terms of tensor products. An example of such a state is,

|ψ〉 =
1√
2

(|000〉+ |111〉) (2.2)

Such states are known as entangled states. In quantum computing and

quantum information processing, the entangled states are seen as physical

facts holding important consequences. In fact, in the absence of such states,

the power of quantum computers would be similar to their classical counter-

parts. [12] Because of Entanglement, it is possible that n physical qubits can

be used to create a complete 2n dimensional complex vector space for doing

the computations.

2.1.3 Inner and Outer Products

Let for the two qubit states, |φ〉 = α |0〉+ β |1〉 and |ψ〉 = γ |0〉+ δ |1〉 . The

inner product between these states is denoted as 〈ψ|φ〉 in the ket− notation

is given by,
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〈ψ|φ〉 = γ∗α + δ∗β (2.3)

Where ∗ denotes the complex conjugate.

The outer product of two states yields a matrix upon two states given

as input. The outer product of the two states will be denoted by |ψ〉 〈φ|.

The outer product of two states is a matrix obtained by multiplication of the

column vector of the first state with the complex conjugated row vector of

the second state, as shown in the example below.

|ψ〉 〈φ| =
(
α

β

)
(γ∗ δ∗) =

αγ∗ αδ∗

βγ∗ βδ∗

 (2.4)

2.1.4 Measurements

Measurement can be seen as the process of converting the quantum infor-

mation (present in a quantum system) into a classical one, like measuring a

qubit typically the same as checking a classical bit, i.e., whether it is 0 or 1.

The outcomes of measurements are probabilistic according to the quantum

mechanics principle.

For a qubit state in Eq. 2.1, the probability of getting |0〉 after applying

measurement is given by |〈0|φ〉|2 and the probability of getting |1〉 after

applying measurement is given by |〈1|φ〉|2. So the squared absolute values of

inner products can be used to express the probability of measurements. In

general, the probability of obtaining the bit string |x1...xn〉 after measurement

of an n qubit state, |φ〉, is |〈x1...xn|φ〉|2.

Now take another example where, for a three qubit state, |ψ〉, we want

that only the first qubit is measured and leaving the other two qubits. In
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the first qubit, the probability of observing a |0〉 will be given by,

∑
(x2x3)∈{0,1}2

|〈0x2x3|φ〉|2 (2.5)

by normalizing the state we get the state of the system,

∑
(x2x3)∈{0,1}2

〈0x2x3|φ〉2 |0x2x3〉 (2.6)

Applying this procedure to the state in Eq 2.2 we observe that the prob-

ability of obtaining |0〉 in the first qubit will be 0.5, and we would get a final

state |111〉.

Sometimes we need to perform measurements on a basis entirely different

from the computational basis, which is achieved by applying a transformation

on the qubit register before measurement. [12]

2.1.5 Unitary Transformation and Gates

By using unitary transformation, we can alter the state of a qubit or a qubit

system. A complex matrix U is used to describe a unitary transformation

which satisfies the following condition :

UU † = U †U = I (2.7)

where U † is the transposed, complex conjugate of U (also known as Hermi-

tian conjugate) and I is the identity matrix. A qubit state |φ〉 = α |0〉+β |1〉

changes after applying the 2 x 2 matrix U as follow :

|φ〉 → U |φ〉 =

U00 U01

U10 U11

α
β

 =

U00α + U01β

U10α + U11β

 (2.8)
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The Kronecker product is used to combine the operators working on dif-

ferent qubits. For example, U1 ⊗ U2 will be used for a combined two qubit

system having operators U1 and U2 acting on different qubits. Like classical

logic gates, basic unitary transformations are used to create complicated n

qubit transformations known as gates. These are also unitary transforma-

tions and satisfies the equation 2.7. They are different from the classical gates

as it is required for them to be reversible means they can create the gate’s in-

put from the gate’s output. We can also say that they are the generalization

of classical reversible gates. Table 1 contains some common gates.
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One-qubit gates Multi-qubit gates

Hadamard = H = 1√
2

(
1 1
1 −1

)
CNOT = CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



I =

(
1 0
0 1

)
, S =

(
1 0
0 i

)
CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



T =

(
1 0
0 eiπ/4

)
Controlled-U=


1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11



NOT=X =

(
0 1
1 0

)
SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



R(θ) = P (θ) =

(
1 0
0 eiθ

)
Table 2.1: Common Quantum Gates
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2.1.6 Quantum Circuits

Circuits are used to represent the quantum algorithm diagrammatically. Hor-

izontal lines are used to denote qubits in circuit representation. Upon those

lines, gates acting on them are drawn sequentially from left to right. At

the starting of the line on the left side initial state is shown. One thing to

note that when writing expression mathematically, right to left convention is

followed for the gates.

In Fig 2.1 represent a circuit to create an entangled two qubit state known

as Bell state from |00〉.

|0〉 H •

|0〉

Figure 2.1: Bell State Quantum Circuit

The following equation is encoded by the circuit,

CNOT12(H ⊗ I) |00〉 =
1√
2

(|00〉+ |11〉) (2.9)

A meter symbol is used as a special gate to denote the measurement of

a qubit as shown in Fig 2.2. This symbol denotes that the measurement is

done on a computational basis.

Figure 2.2: Measurement gate

2.2 Quantum Key Distribution

Quantum key distribution (QKD) is a provably secure protocol used over

a public channel to generate private key bits between two users. Qubits
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can be used over the public channel with the sole requirement that an error

rate of the key generation algorithm is below some threshold. The quantum

information properties of quantum mechanics guarantee that the resulting

key is secure [4] unless the laws of physics are broken!

The basic concept of the QKD is based on the observation that during

the transmission of qubits from Alice to Bob, no information gain is acquired

by Eve without altering the qubit state. Along with the no cloning theorem

[14] which proves that Alices qubit cannot be copied by Eve, there is also

a proposition which states that information gain implies disturbance. [4]

These two concepts are used when the non orthogonal states of qubits are

transmitted between Alice and Bob, and also help in establishing an upper

bound on eavesdropping and noise occurred in the channel [10].

The basic steps involve in any QKD protocol are the key generation algo-

rithm and the classical post processing phase. The key generation algorithm

of the QKD protocol is done using a quantum and a classical communica-

tion channel for transmitting qubits and classical bits, respectively. A secret

shared key is obtained by both Alice and Bob at the end of the key generation

algorithm. Because of the inherent noisy nature of quantum channels, the

keys generated at both ends after classical reconciliation can still be wrong.

This defeats the purpose of key sharing. To overcome this adversities classi-

cal post processing is used. In this phase the keys generated at the two ends

are processed via an error correcting scheme to potentially reach a common

key without any public sharing of the data.
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2.3 BB84 Protocol

This section contains the description of the procedure of the BB84 QKD

protocol.[1] The circuit diagram for the simple BB84 QKD protocol can be

seen in the fig 2.3.

Figure 2.3: Circuit diagram for Simple BB84 QKD protocol

The basic steps for the BB84 QKD protocols are as follow:

1. Alice selects a random data string D of length 4n.

2. Alice selects another random sting B of length 4n.

3. Alice encoded Di bit of D at ith position in Z basis if Bi is 0 else encode

in X basis, for 1 ≤ i ≤ 4n

4. Alice sends those encoded qubits to Bob

5. Bob acknowledge publicly that he has received the qubits.

6. Bob measures the qubits randomly on Z or X basis.

7. Alice announces B, and now Bob knows the basis of Alice.

8. Both match their basis and remove the bits of mismatch basis.

9. If the length of the remaining bits is less than 2n, they abort the

protocol.
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10. Alice selects n bit position on 2n bits and tells the positions to Bob.

11. Both of them check the n bits at those selected n positions.

12. If they match less than a certain threshold, then Eve is trying to inter-

cept, and they abort the protocol else continue.

13. Now, the remaining n bits are sent to the classical post processing

phase.

14. A final bit string key of length m < n is obtained.

15. This is Alica and Bob’s shared secret key.

Figure 2.4: Key Generation by Simple BB84

Figure 2.5: Label for Basis X and Basis Z

Using fig 2.4, we will see an example of a simple BB84 QKD

protocol, which is as follow:

1. Alice chooses random data bits 0 1 1 0 1 0 1 1 0 0 1.

2. Alice’s basis are encoded as + + X + X X X + X X +.
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3. Measurement results of Alice is given.

4. Bob randomly chooses basis as + X X X + X + + X + +.

5. Measurement results of Bob is given.

6. Resultant key is 0 1 0 1 0 1

2.4 QKD Classical Post Processing

This section discusses the classical post-processing done after the QKD verify

that there is no interaction with Eve during transmission, i.e., the check bits

do not mismatch up to some error threshold value.

Figure 2.6: Classical Post Processing Phase

Information reconciliation and privacy amplification are the two steps

used in the classical post processing phase of QKD protocol, as shown in fig-
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ure 2.6. These steps will increase the correlation between Alice and Bob keys

and reduce the mutual information possessed by Eve during transmission.

Let Alice and Bob have shared random key strings X and Y and the upper

bound on mutual information related to X and Y possessed by Eve, then :

Information reconciliation is the process of error correction done to miti-

gate errors between X and Y on a public communication channel. This step

will yield a shared key string W. At the end of this step, suppose Eve got a

random variable Z having a partial correlation with W. Privacy amplification

will then help Alice and Bob for the distillation from W to get a smaller bits

set S whose correlation with Z will be less than the desired threshold. [10]

To accomplish privacy amplification one can use the class of universal

hash functions G that maps the set of n bit strings A to the set of m bit

strings B, such that when g is chosen uniformly at random from G and for

any distinct a1 and a2 ∈ A then the probability g(a1) = g(a2) is the most

1/|B|. [2]

We can perform both information reconciliation using classical codes to

correct up to t errors. Consider an example where A random string X of

length n is chosen by Alice and send to Bob. Bob gets Y such that Y =

X + e, where e is some bit error. Let us assume that we know the error

rate of a communication channel below some value t. Then we can employ

the decoding mechanism of that classical code on X and Y, which will yield

another string W and V respectively, such that W = V. The same procedure

is used in information reconciliation for error correction.
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Error Correcting Code

An error correcting code or ECC is widely used in the field of computer

science, coding theory, telecommunication, and information theory to detect

or correct errors in the data sent over noisy communication channels.[7] The

basic concept is that the message being sent is encoded along with some

redundant data specified by the ECC. Using the redundant data, up to a

certain amount of errors can be detected and corrected by the receiver in the

message during transmission.

This will provide the advantage of saving time for retransmission of the

message. It provides benefits in the situation where retransmission is not only

expensive but also sometimes impossible, such as multicasting among large

users. It differs from error detection in that it can also correct errors along

with detection. There is a disadvantage of adding extra information to the

message, which is an overhead and requires higher bandwidth for forwarding

the message. Error correcting code is widely used in satellite communication,

storage devices, and primary memory.

The number of errors detected or corrected in a message depends upon

the ECC code’s design. Thus the effectiveness of various ECC codes varies

upon different conditions. If we add more redundant information to the

message, it can correct more errors but will require more bandwidth. Claude

Shannon’s coding theorem [11] over a noisy channel is used to determine
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the maximum bandwidth that can be achieved for a given error probability,

which also provides a theoretical bound for maximum transfer rate over a

channel for some given noise level.

The procedure of adding redundancy to a message is dependent upon the

ECC algorithm. The message’s bits may also be used to design a function to

produce redundant bits. The encoded information may contain the message

bit without any changes or in some form of hidden message.

The ECC codes the mainly divided into the block and convolutional codes.

Block Codes are of fixed size, also called packets which are predetermined

by the ECC algorithm. Some of its examples include RS codes widely used in

CDs, DVDs, and HDDs. There are also BCH, Golay, and Hamming Codes.

Convolutional codes can be seen as bitstream of arbitrary length, but

they can also be used as block codes. Some examples include Viterbi, BCJR,

or MAP, which are used in analog signal processing.

Code rate can be defined as the ratio of the number of message bits to the

number of encoded bits, i.e., message and redundant bits. Strong codes have

a low code rate, i.e., approximate to zero, due to large redundancy and better

efficiency, while weak codes have high code rates approximate to 1. One must

compromise between data rate [3] and reliability during transmission due to

the fact that redundant bits and message bits use the same resources over

the communication channel. Strong codes have better reliability but at the

cost of fewer data rates while opposite for weak codes.

3.1 (3,1) Repetition Code

It is an Error Correcting Code in which each message bit is transmitted three

times. On receiver side we get an encoded message of 8 possible combinations
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of 3 bits, as shown in the table below :

Codeword Message
000 0
001 0
010 0
100 0
110 1
101 1
011 1
111 1

Table 3.1: (3,1) Repetition Code

For decoding, majority voting is used, i.e., if the majority is of 1’s, it will

be encoded as one; otherwise, it will be encoded as zero. Even though it is

simple and can be implemented easily, it is relatively considered an inefficient

error correcting code.

3.2 Binary BCH

BCH codes are those cyclic codes that are constructed by selecting the roots

of their generator polynomials:

A BCH code of dmin ≤ 2td + 1 is a cyclic code with generator polynomial

ḡ(x) having 2td consecutive roots αb, αb+1, .., αb+2td−1 [9]

Therefore, a binary BCH (n, k, dmin) code has a generator polynomial

ḡ(x) = LCM [φb(x), φb+1(x), ..., φb+2td−1(x)],

where φi is a minimal polynomial, length n = LCM [nb, nb+1, ..., nb+2td1],

and dimension k = n− deg[ḡ(x)]. A binary BCH code has a predetermined

minimum distance of 2td + 1.
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Example 3.2.1 With GF (23), p(x) = x3 + x + 1, td = 1 and b = 1, the

polynomial

ḡ(x) = LCM [φ1(x), φ2(x)] = x3 + x+ 1,

generates a binary BCH (7,4,3) code whereGF (23) is aGolay F ield Function.

Observe that the hamming weight of ḡ(x) is equal to 3.

3.2.1 General Decoding of BCH codes [9]

Figure 3.1: Binary BCH Decoder

Fig 3.1 is the block diagram of a decoder for BCH codes. The decoder follows

the following tasks:

• Compute the syndromes, by evaluating the received polynomial at the

zeros of the code

Si =, r̄(αi), i = b, b+ 1, ..., b+ 2td − 1 (3.1)

• Find the coefficients of the error-locator polynomial σ(x).

• Find the coefficients of the error-locator polynomial σ(x).

• Find the values of the errors ej1 , ..., ejv .

• Correct the received word with the error locations, and values found.
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One of the advantages of introducing GF (2m) arithmetic is that the de-

coding operations can be implemented with relatively simple circuit elements.

Fig 3.2 shows the hardware implementation of how the syndrome Sj can be

computed. The multiplier is over GF (2m), and by using simple combinatorial

logic, we can construct it.

Figure 3.2: Circuit for computing Syndrome

3.3 Golay(23,12,7) code

Golay used

3∑
i=0

(
23
i

)
= 211

(3.2)

This equation 3.2 shows a binary code (23,12,7) can exist with t=3, i.e.,

it can correct at most all three errors that occurred in any 23 bit positions.

He also gave a generator matrix for this code. Due to relatively small in size

can use look-up tables (LUTs) for encoding and decoding purpose.

3.3.1 Encoding

Golay code uses LUT based encoding, which contains a list of all the 212 =

4096 code words, which are indexed using the data. Let ū denote a 12-bit

binary data that need to be encoded, and let v̄ denote the corresponding
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23-bit code word. The construction of encoder LUT involves the generation

of all the 4096 12-bit binary data and computation of the syndrome of a

pattern for which the 12 MSB equal to the data bits and the 11 LSB equal

to zero. The 11-bit syndrome is then taken as LSB of the code word. The

LUT follows one-to-one mapping from ū onto v̄, that can be written as

v̄ = LUT (ū) = (ū, get syndrome(ū, 0̄)). (3.3)

By taking the advantage of the cyclic nature of the Golay code for the con-

structing encoder LUT . Its generator polynomial1 is

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

This polynomial generates the syndrome in the procedure get syndrome in

equation 3.3 above.

3.3.2 Decoding

The decoders task is to estimate the most likely error vector ē from the

received vector r̄. The decoder for the Golay code is based on an LUT that

accepts as input the syndrome s̄ of the received vector r̄, and outputs the

error vector ē.

The procedure to construct the decoder LUT is as follows:

1. Generate all possible error patterns ē of Hamming weight less than or

equal to three

2. For each error pattern, compute the corresponding syndrome s̄ = get

syndrome(ē)



3.4 Viterbi Code 25

3. Store at location s̄ of the LUT, the error vector ē,

LUT (s̄) = ē

With the decoder LUT, upon reception of a corrupted received word r, the

correction of up to three bit errors is accomplished by the following:

v̂ = r̄ ⊕ LUT (get syndrome(r̄))

where v̂ denotes the corrected word.

3.4 Viterbi Code

As a dynamic programming algorithm, the Viterbi algorithm [13] is used to

get the maximum posterior probability estimate of the Viterbi path, giving

the sequence of observed events by utilising Hidden Markov models (HMM).

This algorithm is widely used in decoding convolutional codes used in

various technology related to cellular communication, modems, satellite com-

munication, Wi-fi, speech recognition and synthesis, bioinformatics, and lin-

guistics.

It generalises an algorithm known as max-sum is used to search a sub-

set of most likely hidden variables in various models like Markov random

fields and Bayesian network. These hidden variables are connected in the

same way to an HMM but with less connection among variables with some

linear structure. It generalises algorithm is similar to the forward-backward

algorithm.

There also exists the Lazy Viterbi algorithm [8] which much faster than

the original decoder. It maintained a priority list of nodes for evaluation.



26 Error Correcting Code

Compared to check every node in the original algorithm, this requires fewer

checks. However, it isn’t easy to implement in hardware to support paral-

lelism.

3.4.1 Decoding

Let S
(k)
i denotes a state at stage i with each stage having a metric, M(S

(k)
i )

and a path ȳ(k), where k is total possible combination of memory m.

Let the coded bits be denoted by

v̄[i] = (v0[i]v1[i]...vn−1[i])

and let denote the output by

r̄[i] = (r0[i]r1[i]...rn−1[i])

Figure 3.3: Viterbi Decoder Block Diagram

The figure 3.3 is a simple block diagram for a viterbi decoder. Basic

decoding steps are as follows :

Initialisation : Set stage i metric state of stage i to zero and its path

empty.

1. Branch Metric Computation : Calculate the partial branch met-

rics at stage i
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2. Add, Compare and Select : For each S
(k)
i , k = 0,1,...,2m − 1 and

its incoming branch states, compare the branch metrics and winning branch

have smallest path metric, then update the metric.

3. Update path memory: For each S
(k)
i , k = 0,1,...,2m − 1, update

paths with previous state path and winning branch.

4. Decode: If i is less than decoding depth, then output the path

sequence of State S
(k)
i having smallest metric. Increment i by 1 and repeat

from step 1.
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4
Our Experiments On The Classical Post

Processing Phase

This chapter contains the experiment done for the proposed problem defini-

tion in the section 1.1.

As we discussed in the earlier chapter that the QKD classical post process-

ing phase involves information reconciliation and privacy amplification. In

simple terms, information reconciliation involves an error correction mecha-

nism and privacy amplification involves hash functions to mitigate bit errors.

We will consider information reconciliation part in our experiment and use

error correcting coding schemes to implement it.

We have performed the following two experiments :

• Determining the efficiency of various error correcting coding schemes

on different given error rates.

• Observing the behaviour of coding schemes when used as a part of

classical post processing of QKD protocol.

For the first part, we have used four block code error correcting coding

schemes and one convolutional error correcting scheme which are as follow :

• (3,1) Repetition Coding Scheme

• (31,28,5) Binary BCH Coding Scheme
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• (48,36,5) Binary BCH Coding Scheme

• (23,12,7) Golay Coding Scheme

• (3,7,5) Viterbi Codin Scheme

Figure 4.1: Block Diagram for a Single Step Process

The fig 4.1 represents the basic block diagram for a single step done

in experiment 1. We introduce some error bits for a randomly generated

codeword C1 according to the given error rate getting codeword C2. Both

of them are passed as an input to the decoder to get messages D1 and D2,

respectively. If both messages are the same, then we count it as success or

else failure.

In our experiment, we use hundred (100) codewords and flip some bits

among them according to predefined error rates to mimic the bit error in-

troduced during transmission. Then we check all codewords’ messages with

new codewords’ messages after decoding (using a particular error correcting

code decoding scheme) and count the number of matches. This process is

repeated over one thousand times(1000). Finally, we get the efficiency of

that error correcting code decoding scheme for a given error rate by taking

the average number of matches.
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Let’s take an example that we take Golay Coding Scheme. Its codeword

length is 23 bits. For 100 codewords, it requires 2300 bits. Suppose for an

error rate of 0.05, we flip 115 bits among those codewords and get 100 new

codewords. Then we decode both old and new codewords and finally get the

count of how many messages match. This process is repeated 1000 times,

and the average matching rate is given, which is 45.887% in our example.

In our experiment, we have worked on the error rate of [0.05 , 0.08, 0.1,

0.15, 0.20]. This experiment is done on the c++ programming language.

The codes for random generation of codewords and introducing some errors

according to the given above error rate can be found in the appendix section.

0.05 0.08 0.1 0.15 0.2

(3,1) Repetition 93.19 92.45 86.70 82.64 74.558

(31,28,5) Binary BCH 27.915 13.571 8.405 2.54 0.945

(48,36,5) Binary BCH 11.012 3.296 1.471 0.175 0.017

(23,12,7) Golay 45.887 30.383 23.43 12.345 6.383

(3,7,5) Viterbi 85.163 77.462 73.31 63.138 55.439

Table 4.1: Efficiency of different coding schemes on different error rate

Table 4.1 shows efficiency of error correcting coding schemes metioned

above, after performing the experiment. The graph below will help us to

understand it even better.
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Figure 4.2: Error Coding Scheme Efficiency

For the second experiment, we have used the quantum qiskit library to

implement the BB84 protocol. This experiment used the keys generated in

the BB84 protocol as codeword C1 for Alice key and codeword C2 for Bob

key. These codewords are then given as input to the experiment conducted

above. This second experiment is different from the above experiment as

here codewords are generated from the output of BB84 protocol, whereas

they were random the earlier. The error rate is fixed and specified in the

earlier experiment, but it is entirely random here.

To implement this experiment, we have followed the following

procedure :

1. Implement the BB84 using the qiskit library in the python program-

ming language ( available in the Program section of the appendix ).

2. Run the algorithm up to a certain number of times, say 10000 and

save the keys generated by Alice and Bob.

3. Calculate the Quantum Bit Error Rate (QBER).

4. Use the saved keys as input to error correcting coding schemes and get
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the final keys.

This experiment is done on a local machine and yet to be done on an

IBMQ machine. But what we found that there is an average of 0.47 to 0.53

QBER when Eve is acting in between protocol, no QBER in the absence of

Eve when no noise model is employed, and less than 0.30 or sometimes 0.50

QBER when a noise model is employed in the protocol.
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5
Conclusions and future work

In this thesis, we have performed two experiments. The first one is related to

the error correcting codes, and the second is related to BB84 classical post

processing.

From the table 4.1, we can see that even though (3,1) repetition error

correcting code is showing the best result. The resultant message bit of (3,1)

repetition error correcting code depends upon 1 out of 8 codewords of (3,1)

repetition error correcting code and the error rate in (3,1) repetition error

correcting code. The low efficiency in the Binary BCH codes is because the

parity bit in the BCH codes is non zero, since we are considering the codeword

to be random, so any slight change in parity bit due to noise will decrease the

chances of codewords referring to the same message after correction. Golay

has performed better than BCH as it can correct up to 3 bits compared to 2

bits in BCH. Viterbi being a convolutional code has performed better than

most of code block error correcting code.

We can also see that those codes having smaller message bits size perform

better than those with larger message bit lengths. Further study of more

complex error correcting codes like CSS, Turbo code, and LDPC codes can

be done. They are said to better in terms of accuracy. [16][6]

In the second experiment, further study needs to be done upon the ran-

dom behavior of Quantum Bit Error.
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Appendix





Programs

Listing 1: BB84 protocol (Uncomment Eve interception to include Eve)

#Note: Uncomment print function to see the keys in the process
#importing the required libraries

from qiskit import QuantumCircuit, execute, Aer
from numpy.random import randint
import time
import numpy as np

#intiliasing the seed for randomisation process
np.random.seed((int)(time.time()))
#setting length of qubits
n = 100

#function to encode data bits according to bases
def encode(bits, bases):

msg = []
for i in range(n):

Quan_Cir = QuantumCircuit(1,1)
#Define Qiskit Circuit input line
if bases[i] == 0: # Z-basis is used

if bits[i] == 0:
pass

else:
Quan_Cir.x(0) # Applying X gate

else: # X-basis
if bits[i] == 0:

Quan_Cir.h(0)
# Applying Hadamard gate

else:
Quan_Cir.x(0)
Quan_Cir.h(0)

Quan_Cir.barrier()
msg.append(Quan_Cir)
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return msg #returning the codeword or encoded message

#Function for measurment given message bits and bases
def measure_msg(msg, bases):

backend = Aer.get_backend(’qasm_simulator’)
#selecting which simulator to use
meter = []
for i in range(n):

if bases[i] == 0: # Z-basis measurement
msg[i].measure(0,0)

if bases[i] == 1: # X-basis measurement
msg[i].h(0)
msg[i].measure(0,0)

result = execute(msg[i], backend, shots=1, memory=True)
.result()

measured_bit = int(result.get_memory()[0])
meter.append(measured_bit)

return meter #return measurement results

#function to remove mismatch bits
def rem_extra(a_b, b_b, bits):

g_b = []
for q in range(n):

if a_b[q] == b_b[q]:
g_b.append(bits[q])

return g_b

#function to compare check bits
def bit_sample(bits, select):

smp = []
for j in select:

j = np.mod(j, len(bits))
smp.append(bits.pop(j))

return smp

#The files will store Alice and Bob keys along with their
length

f1 = open("Alice.txt", "w")
f2 = open("Bob.txt", "w")

#Loop for getting Ten thousand keys
for loop in range(10000):

# Alice bits selected randomly
Ali_B = randint(2, size=n)
#print(Ali_B)

#Alice Base slected randomly
A_base = randint(2, size=n)
#print(A_base)
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msg = encode(Ali_B, A_base)

##uncomment for eve interception
#eve_bases = randint(2, size=n)
#eve_msg = measure_msg(msg, eve_bases)
#print(eve_msg)

#Bob bases selected randomly
B_base = randint(2, size=n)
#print(B_base)

#Measurement is done by Bob
bob_res = measure_msg(msg, B_base)
#print(bob_res)

# Process of removing mismatch bit is done here
a_key = rem_extra(A_base, B_base, Ali_B)
#print(a_key)

b_key = rem_extra(A_base, B_base, bob_res)
#print(b_key)

f1.write(str(len(a_key))+ " ")
#storing the keys in file for further process
for i in a_key:

#print(i,end ="")
f1.write(str(i))

f1.write("\n")

f2.write(str(len(b_key))+ " ")

for i in b_key:
# print(i,end ="")
f2.write(str(i))

f2.write("\n")

#process of comparing check bits is done here
smp_sz = 15
select_bit = randint(n, size=smp_sz)
B_sample = bit_sample(b_key, select_bit)
A_sample = bit_sample(a_key, select_bit)

f1.close()
f2.close()
# priting whether eve is present or not.
if B_sample != A_sample:

print("Eve is detected ")
else:
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print("No Eve is present")

Listing 2: Program to Calculate QBER from BB84 keys

//Header files
#include<bits/stdc++.h>

using namespace std;

int main()
{
//opening files containg keys generated by QKD Functions
ifstream f1,f2;

f1.open("Alice.txt");
f2.open("Bob.txt");

//For storing the length of keys
int l1=0,l2=0;
char a,b;

//counter
unsigned long counter = 0;
//For error rate
float rate=0;
while(f1 || f2)
{
counter =0;
f1>> l1;
f2>> l2;
for(int i=0;i<l1;i++)
{
f1>>a;
f2>>b;
if(a!=b)
counter++;
//cout<<a<<" ";
}
rate = (float)counter/l1;
cout<<counter<<" : "<<rate<<endl;
}
f1.close();
f2.close();
return 0;
}
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Listing 3: 3 bit Repetition Code

//Heder files
#include<bits/stdc++.h>

using namespace std;

//encoding
vector<int> encode(int A)
{
A = A%2;
vector<int> B={A,A,A};
return B;

}

//decoding
int decode(vector<int> A)
{

if(A[0]+A[1]+A[2]>1)
return 0;

else
return 1;

}

int main(){

int m_l = 100;
int c_l = 300;

//error rates
vector<float> err = {0.05,0.08,0.1,0.15,0.2};

//message bits
std::vector<int> m(100);
std::vector<int> m_d(100);

//codeword bits
std::vector<int> c(300);
std::vector<int> c_d(300);

std::vector<int> v;
for(int i=0;i<c_l;i++)
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v.push_back(i);
std::mt19937 g(std::time(nullptr));

//Runiing for different error rate
for(int k=0;k<err.size();k++)
{
unsigned long long count =0,frame=0;
int err_len = ceil(c_l*err[k]);

for(unsigned long long loop=0;loop<1000;loop++)
{

//genrating random codewords
for(int i=0;i<c_l;i++)
{
c[i]= (rand()%2);
}

c_d = c;

std::shuffle(v.begin(), v.end(), g);

//introducing error
for(int i=0;i<err_len;i++)
{
c_d[v[i]] = c_d[v[i]] ^ 1;
}

//decoding both the codeword
for(int i=0;i<m_l;i++)
{
vector<int> ans1(3),ans(3);
ans[0]=c[i*3];
ans[1]=c[(i*3)+1];
ans[2]=c[(i*3)+2];
ans1[0]=c_d[i*3];
ans1[1]=c_d[(i*3)+1];
ans1[2]=c_d[(i*3)+2];
m[i]=decode(ans);
m_d[i]=decode(ans1);
if(m[i]==m_d[i])
frame++;

}
//uncomment to see the messages
/*cout<<"loop "<<loop<<"\n";
for(int i=0;i<m_l;i++)
cout<<m[i];
cout<<endl;
for(int i=0;i<m_l;i++)
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cout<<m_d[i];
cout<<endl;*/
if(m==m_d)
count++;

}
cout<<err[k]*100<<" : count = "<<count<<" , frame = "<<(float

)frame/1000<<endl;
}
return 0;
}

Listing 4: Generate Codewords having different error rate of length 7

//file used to genreate randomy codewords along with error
induced codewords as per given error rate and length

//header files
#include <math.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <random>
#include <ctime>

using namespace std;

int length = 7; //<<--- change it for different length

int main()
{
int i;

srandom(std::time(nullptr));

//files to save Codewords
ofstream f1,f2;
f1.open("0.2A.txt"); //<<-- for original codeword
f2.open("0.2B.txt");//<<-- for error induced codewords

vector<int> ecn(100); //error code no
vector <vector<int>> epos(100);
//error rates
vector<float> per_error = {0.05,0.08,0.1,0.15,0.2};
int el =4;// <-- which error rate to use

long long frame =0;
long long avg_frame =0;
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std::vector<int> v;
for(int i=0;i<700;i++) // length of codewords * number of

codewords
v.push_back(i);
std::mt19937 g(std::time(nullptr));

unsigned long long count =0;

// for repeating the process 1000 times
for(long long lp =0;lp<1000;lp++)

{

std::shuffle(v.begin(), v.end(), g);

for(int i=0;i<100;i++)
epos[i] = vector<int>(0);

for(int e_pos=0;e_pos<100;e_pos++)
ecn[e_pos]=0;

unsigned long err_len = ceil(700*per_error[el]);

//Choosing the position to introduce the error among 100
codewords

for(unsigned long lim=0;lim<err_len;lim++)
{

int tn = (v[lim])/7;
int rloc = (v[lim])%7;
// cout<<rloc<<" ";
ecn[tn]++;
epos[tn].push_back(rloc);

}

for(int loop=0;loop<100;loop++){

int cd[7];//vector<int> cd(48);
int cd2[7];//vector<int> cd2(48);

/* Randomly generate DATA */
for (i = 0; i < length; i++)
{
cd[i] = (random()%2);
cd2[i] = cd[i];
}

//introducing the error
numerr=ecn[loop];
//cout<<loop<<" : "<<numerr<<" ";
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for (i = 0; i < numerr; i++)
{
errpos[i] = epos[loop][i];
// cout<<errpos[i]<<" ";
cd2[errpos[i]] ^= 1;
}
//cout<<endl;

for (i = 0; i < length; i++)
{
f1<<cd[i];
f2<<cd2[i];
}

f1<<endl;
f2<<endl;
}
}
f1.close();
f2.close();

return 0;
}

Listing 5: Compare decoded message given by Viterbi

//header files
#include <math.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <random>
#include <ctime>

using namespace std;

//command line argument to read file names for comparing keys
int main(int argc, char** argv)
{
int i;

srandom(std::time(nullptr));

ifstream f1,f2;
f1.open(argv[1]);
f2.open(argv[2]);
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int n1 ,n2;
unsigned long count=0;
while(f1)
{
f1>>n1;
f2>>n2;
if(n1 == n2) //<<--comparing the keys
count++;

}
cout<< ((float)(count-1)/1000); //<<-- change accoring to

number of times experiment is done
f1.close();
f2.close();

return 0;
}
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