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ABSTRACT

Graph games are played on a directed or un-directed graphs with two or more players. Each
game differs from one another in the actions available for each player and the constraints
present. The different constraints offer a wide variety of interesting situations to analyze.
They help in modelling real life interactive situations and have a wide variety of applications.
In this project we will be studying logical aspects of a graph game known as occupation
game. The occupation game is a two player, turn-based game played on a graph in which
each player starts in certain vertices of a un-directed graph and takes turns in moving to their
adjacent vertices. Each player “poisons" the vertex they are currently on, thereby restricting
their opponent’s movement to that vertex in the graph. The winner is the player who reaches
her goal state first. This game is an extension of the poison game, which was introduced by
P. Duchet and H. Meyniel in 1993. Poison game is a two player graph game where only a
single player “poisons" the vertices. This game has been well studied both graphically and
in terms of a logical language, termed as Poison Modal Logic (PML). To characterize the
occupation game, we develop a modal logic, called occupation logic that extends the PML
in two dimensions. To the best of our knowledge, such two dimensional models have not
been studied extensively before. In this project we study the model-theoretic properties and
decidability of the occupation logic and also use the logic to express the winning positions
in the game.
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Chapter 1

INTRODUCTION

Games form a pastime for people of all ages. There is a rich variety of games available around
us. Board games, math games are some of the examples. The advantage of analysing
such games is two fold, firstly we get a good strategy of how to win the game at any
point of the game, and secondly a better understanding of the tools we need to do such
an analysis. Sometimes we come up with new techniques that become necessary for the
investigations. Games such as Nim(https://en.wikipedia.org/wiki/Nim) have given rise to
mathematical theories like Sprague-Grundy theorem [Gru64] which characterize all such 2-
player games where players have the same moves in every situation. In many cases, with
some modifications, games mimic certain real life situations. One such well-known game is
the Prisoner’s Dilemma which deals with the dynamics of social interaction between non-
cooperative entities.

The field of game theory which rapidly developed in the 1950’s formalized the notions of
winning conditions, strategies for games between many players. Game theory is the study
of mathematical models of strategic interaction among rational decision-makers [Mye91]. A
strategy of a player is basically a function from the set of nodes where the player plays to the
set of actions available to the player. While playing a strategy, a player considers the moves
of her opponent as well. The notion of utility for a player sometimes replaces the binary
win/lose condition. Utility of a player at possible end-nodes of a game can be considered as
a representation of a player’s preferences over outcomes. John Nash introduced the concept
of Nash Equilibrium [Nas49] which talks about an equilibrium strategy profile (a tuple of
strategies with one strategy for each player) of the players. Nash Equilibrium is a strategy
profile with the property that no player can benefit by deviation from his corresponding
strategy. The field of game theory rapidly developed since then, and optimization tools
such as linear optimization, convex optimization and many others have played a significant
role in the development.

Looking beyond the usual mathematical analysis, one can consider the following ques-
tion: How players reason in such games? Considering any turn-based game as an example,
reasoning goes like: "If I play this move, whatever the other player does, do I end up win-
ning?". Re-framing in terms of optimization: "If I play this step, what is the minimum
utility I can surely receive no matter what the other player does?". Games are not just
about maximizing utilities. The players have some inherent style of reasoning and belief of
how the game will proceed and such concepts lead to certain intricate study about strate-
gizing in games. In some cases, a player can choose a move that may not be optimal but
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can still get a higher utility because of what he knows about the belief and reasoning of his
opponent.

Logic can be considered as the formal or mathematical study of reasoning. Traditionally,
it has been used to study mathematical proofs, theories and arguments of philosophy. The
use of formal language to describe different concepts is very useful as we can use a common
set of tools to deal with a variety of topics. Logic has its usage in computer science as well
- it is extensively used in circuit checking and formal verification. We need to introduce
or modify logical languages to deal with the intricacies of the subject we wish to study.
Examples of such languages are propositional logic, first order logic(FOL), modal logic and
others. The more complex a language is, the more expressive it is. Modal logic, a fragment
of FOL is a branch of logic that is extensively used in computer science in various ways. It
has certain finitary properties that put it to use in practical systems.

A game has several phases that involve reasoning/logic in various ways - deliberation
prior to the game, belief revision during game-play, post game analysis [vBK20] among
others. Similarly, we can also reason about structure and properties of a game. We can
also explore the following questions: Given certain properties a winning state has to satisfy,
can we obtain a game configuration where such properties hold; given two games that are
invariant in some way, do the same winning conditions hold in both of them. Formal logic
play significant role in such explorations.

This thesis concerns itself with a graph game known as Occupation Game(OG), intro-
duced in [vBL20]. This follows the famous board game "Settlers of Catan" which allows
players to occupy parts of a territory and a player cannot pass through the territory oc-
cupied by the other player. The game is played on a graph by two players A and B, say.
Each player occupies a territory (in graphs, vertices) in his move. A territory occupied by
player A cannot be reached by player B and vice versa. The goal for each player is to reach
some vertices which are marked as goal states. The game is closely related to another graph
game known as Poison Game(PG) which is well studied [DM93]. We develop a new logic,
namely, Occupation Logic(OL) that extends basic modal logic with additional operators
(poisoning symbols to be included here) that model the "occupation" constraints. The logic
OL extends the Poison Modal Logic(PML), a logic introduced in [GR19] to reason about
poison game, in terms of a two-dimensional semantics.

The thesis is structured around several chapters that introduce the context surrounding
Occupation Game and the technical details and properties of Occupation Logic.

• Chapter 1 - Introduction - The current chapter gives an overview of topics, the moti-
vation of the thesis, the use of logic and the general setting for graph games.

• Chapter 2 - Games - Introduces Occupation Game and Poison Game formally and
discusses the similarities and differences between them. The characterization of Poison
Games using graph-theoretic concept of kernels is also discussed

© 2021, Indian Statistical Institute, Kolkata



1.1 Games on Graphs, Modal Logic 3

• Chapter 3 - Modal Logic - Gives a brief and quick summary of basic modal logic,
the syntax, semantics and other logical properties like expressivity and decidability.
Poison modal logic, which has been used to characterize winning positions in poison
game is introduced. This chapter gives a skeleton of properties that we will be proving
as part of the thesis.

• Chapter 4 - Occupation Logic - Introduces Occupation Logic, its syntax, semantics,
formulation of winning condition of Occupation Game and develops the notions of
bisimulation, expressive power, translation into First Order Logic, and others.

• Chapter 5 - Occupation Logic: Further Studies - Discusses tree model property, finite
model property, decidability, and model-checking.

• Chapter 6 - Conclusion - Provides a brief summary of the topics discussed and points
out future research directions.

1.1 Games on Graphs, Modal Logic

All game states can be described as configurations of the worlds, positions of players in that
configuration. The act of winning is simply reaching a state satisfying certain properties.
We will consider the description of game state in a few games.

Consider the popular game of chess played by two players with black pieces and white
pieces. A state of the game is a tuple given as follows: (position of black pieces, position
of white players, black king present, white king present). The winning condition is when
either the black king or white king is removed and some other constraints within the state
are satisfied. Another example is the board game Hex. Hex is played on a square-shaped
hexagonal grid by two players. The players start at two adjacent sides of the square. The
players alternatively place red and blue tiles anywhere on the grid with the goal being
connecting the opposite sides with the same colour. A game state is a tuple given as follows:
(positions of red coloured grids, positions of blue coloured grids). The winning player is the
one whose coloured tiles connect the opposite sides.

Graph games are played on a directed or undirected connected graph. The general
setting is that players start on different vertices of the graph. Each valid move will be to
a neighbouring vertex. The winning condition may vary with players. Some examples of
such conditions are reaching a specific vertex, continually moving in the graph subject to
some constraints, and others. Although the above conditions look simple, what makes these
games interesting are the additional constraints on the moves that can be added. Let us
now look at few example games.

Sabotage game [AvBG18] is a two-player game played on a connected graph. Player A
is allowed to move from a vertex to a neighbouring vertex. Player B removes edges of the
graph. The goal of player A is to reach a certain vertex and the goal of player B is to stop

© 2021, Indian Statistical Institute, Kolkata
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that from happening. This game can model flows in a real world network in the presence of
adversarial conditions.

A game of cops and robbers [AF84] is played on a finite connected graph. The players
are C(cop) and R(robber). Initially they start on separate vertices. The moves constitute
moving along an edge to a neighbouring vertex. C wins if C and R reach a common vertex
(C captures R).

To reason about graph games (other games as well), it is helpful to have operators that
denote the presence of moves to a neighbouring vertex and also have functions assigning
possible observables to nodes of the game. They can allow for checking certain conditions,
for example, whether the goal is reached, what constraints are followed by making a certain
move, and others. Modal logic with its nice computational properties provides us with ways
to express such situations. The � operator present in modal logic can be interpreted as
existence of a move to a neighbouring state. The evaluation of formulas of basic modal
logic is done on Kripke models M = (W,R, V ), where W is a set of worlds, R = W ×W
a relation that denotes the edges between the worlds and V is a valuation function that
captures the truth values of propositional variables in the states. Here we have just given
a brief overview of modal logic to give an idea of how relevant it is in modelling games, a
full chapter is included in the thesis that includes and expands the above properties more
formally.

Practically, the graph that a game is played on can be seen as a Kripke model. The
nodes of the graph can be considered as worlds in W , the edges of the graph can be taken to
be the relation R and the propositional variables are included as per the need of expressing
the game observables. For example, a propositional variable called awin may be true at
nodes where player A can win.

While the basic modal logic cannot capture all the different moves and the constraints,
new operators can be introduced which model these conditions. The modelling of occupation
game, which is the objective of the thesis, uses new operators to deal with the poisoning
aspect of the game. Moving along, we will look at occupation games more carefully and
then discuss occupation logic which has been developed to reason about them.

© 2021, Indian Statistical Institute, Kolkata



Chapter 2

GAMES

The main topic of discussion for this thesis is occupation game and this chapter discusses the
game in details. The occupation game (OG) expands upon the mechanism introduced by
poison game (PG). Thus, a discussion on PG would help us in understanding and motivating
OG. PG was introduced by Duchet and Meyniel in [DM93]. The game was introduced to
illustrate the concept of kernels in graphs. We provide the details below.

2.1 Poison Game

PG is a two-player game, played on a directed graph, G say. Let the players be A and B.
Let V and E be the vertex set and edge set of G, respectively. The players make their move
alternatively. In his move, the current player chooses a vertex v ∈ V such that uv ∈ E and
u was chosen by their opponent in the previous move. Initially, A starts playing by selecting
a vertex s. An additional condition or constraint is that after B chooses any vertex v and
moves there, the vertex v is poisoned by B for A and A cannot move to v later in the game.
The poisoning works only against A but not against B. B is free to move to any vertex v
at any point of the game. This crucial concept of poisoning will be used in the discussion
of OG. The goal of player A is to move indefinitely by avoiding the vertices poisoned by B.
The goal of player B is to force A to stop A′s movement, i.e., A should be forced to reach a
vertex such that all its adjacent vertices are poisoned. The position of both the players at
each stage of the game is common knowledge. Both players know which vertices are getting
poisoned as the game progresses.

It is possible to give a graph theoretic characterization of a winning strategy for player
A in PG. The characterization involves the presence of kernels in a graph. A kernel is a
subset of vertices in the graph that obey a set of constraints, the details of which are given
below.

Definition 2.1.1 Consider a directed graph G. Consider a set S ⊂ V (G), where V (G) is
the vertex set of graph G.

Γ+
G(S) = {v ∈ V (G) : sv is an edge from some s ∈ S}

Γ−G(S) = {v ∈ V (G) : vs is an edge from some s ∈ S}
Local Kernel: A graph G contains a local kernel if there exists a set S ⊂ V (G) such that S
is independent (no two vertices are adjacent) and every element of Γ+

G(S) has a successor
in S.
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A local kernel is basically an independent set S of vertices of a graph such that every
successor of elements in S has a successor in S itself. This means that whenever a player
starts in a vertex in S, in at most two moves he can come back to an element of S. The
winning condition for player A necessitates the use of a local kernel. For details, see [DM93].

To avoid dealing with certain trivial cases, the theorem stated below holds only for
outwardly finite (having finite number of adjacent vertices) and progressively finite (there
is no path that is infinitely long) graphs.

Theorem 2.1.2 In a poison game played on graph G, player A has a winning strategy iff
the graph G has a local-kernel and G is outwardly and progressively finite.

Proof. The ’if’ part is easier to prove. Say A starts in a vertex in local-kernel L. Then B
can only poison vertices outside the local kernel. This holds because the local kernel is an
independent set. So every move from local-kernel leads to a vertex outside it. Since every
element of Γ+

G(S) has a successor in S, A can get back into local kernel and so on.
For the complete and expanded proof please check [DM93]. 2

2.2 Occupation Game

Occupation game (OG) is also a two-player turn-based game played on a connected graph
G. Let V ,E be the vertex set and edge set of G respectively. Initially, two players, A and
B, say, start at two different vertices s, t, respectively. A is now said to occupy s and B is
said to occupy t. Player A starts the game. In his move, A chooses a vertex v such that
uv ∈ E and u is the current state for player A. The moves for B follow similarly. This is
a crucial difference from the poison game (PG), where the moves allowed were only to the
neighbouring vertices of the opponent. Additional constraint in OG is that after every move
by A, the vertex he is moving to is occupied by A and similarly, after every move by B,
the vertex it is moving to is occupied by B. A vertex that is once occupied by A cannot
be reached by B and vice versa. At any step A can move to any adjacent vertex that is
unoccupied or previously occupied by A. Similar condition holds for player B as well. Both
A and B will have a separate set of vertices marked as goal states. The winner of the game
is the player who is able to reach his goal state before his opponent. There might be one or
more goal vertices for either player.

In this game, the current position of the players, all the goal states, vertices that are
poisoned along the game-play are common knowledge. There is no hidden information
between the players. The "occupation" of vertices is exactly the same as the "poisoning"
of vertices in PG. It is an extended version of PG where "poisoning" can be done by both
players instead of a single player. The term "poisoning" will be used henceforth to denote
"occupation" of vertices.

© 2021, Indian Statistical Institute, Kolkata



2.2 Occupation Game 7

Consider an instances of OG that happens in the graph shown in 2.1. Let the two players
be A and B. A and B start at SA and SB, respectively and their goal states are GA and
GB, respectively. The figure shows the effects of a series of moves in the game. The vertices
shown in red are those where player A has moved to in his turns and those shown in blue
are where player B has moved. The red vertices are thus poisoned by player A and cannot
be reached by player B and vice versa for the blue vertices. In this instance, player B has
won the game, he has reached his goal state GB before A can reach GA.

Figure 2.1: Example of an instance where player B wins

Figure 2.2: Example of instance where player A wins by obstruction

Consider another instance of the game played on the same graph shown in Fig 2.2. This
time player A wins the game.

© 2021, Indian Statistical Institute, Kolkata



2.2 Occupation Game 8

These two instances of the game highlight two different ways of winning the game. In
both cases, the person who reached his goal state first wins but as the examples show,
the winning strategy is not intuitive. In the game in 2.1, B wins by reaching goal state
by following the shortest path from the SB to GB which is shorter than SA to GA. This
illustrates a simple way of winning, the ability to poison a vertex is not made use of by
either player. But the second game(2.2) highlights the important use of the ability to poison
vertices. Player A’s moves block all the paths for B from SB to GB which means B can
never win the game. Now, A can easily win because none of his paths to GA is obstructed.

Although these are simple examples, they illustrate the complex interactions brought
out by the "poisoning" constraint. Given that OG is an extension of PG, there are some
important differences between the two.

• Both players A and B can poison vertices in OG compared to only player B in PG.

• In PG, A starts from any vertex and B has to choose an adjacent vertex of player A
and so on. This constraint is removed in OG. In OG, the starting positions of A and
B are different vertices. Both A and B choose vertices adjacent to their own positions
in their turn.

• The winning conditions differ as well. In PG, the winning condition for player A is to
keep on moving indefinitely and that for player B is to stop that. In OG, the winning
condition for each player is reaching the goal state before the other.

For PG, the existence of kernel is both necessary and sufficient condition for player A
to win. In OG, with the independence of players’ movements, the use of a kernel may not
be that useful. In every move, the player moves to an adjacent vertex, so the movement
is not restricted to an independent set. The game can sometimes end in a draw as well,
where “poisoning” of vertices leads to the following situation - neither A has a path to his
goal vertices nor B has a path to his. We note that the analysis of the game is done using a
third-person perspective, i.e., from the viewpoint of an observer who is watching the game
being played between the two players. Considering the game from the players’ perspectives
is another work altogether, which can be tackled in future.

© 2021, Indian Statistical Institute, Kolkata



Chapter 3

MODAL LOGICS

This chapter will give a brief overview of basic modal logic [BdRV10] and poison modal logic
[GR19]. Some logical properties will be introduced here in the context of occupation logic
(OL) which will be discussed in details in the next chapter.

3.1 Modal Logic

Modal logic historically has its origins in certain philosophical queries regarding material
implication. The need to talk about more precise notions of implication such as "necessarily
implies" and "possibly implies" gave rise to this logical language. The term modal comes
from the phrase ‘modes of truth’. Modal logic can describe different modes of truth such
as alethic, epistemic, deontic, temporal and others [Gar20]. The operators � and � are
introduced and used in this regard. The operators can be interpreted in many different
ways based on the mode of truth we use. The symbols � and � are duals of each other
in a certain sense. Modal Logic is also a computationally well-behaved fragment of first
order logic. The properties of this logic make it suitable for practical use in hardware and
software systems which can be expressed as a labelled transition system (LTS). The graph
where occupation game is being played on can also be seen as an LTS.

Definition 3.1.1 (Labelled Transition System) A labelled transition is a tuple (S, P,R, q0),
where S is a set of states, and P is a set of labels. For each label p ∈ P , there exists a binary
relation on S denoted by Rp, and R is the collection of all those relations. The initial state
of the system is given by q0.

3.2 Syntax and Semantics

The language of Modal logic uses propositional variables, boolean connectives along with
the modal operators � and �. The syntax of the language LM is defined recursively as:

LM := p|¬ϕ|ϕ ∧ ψ| � ϕ
where p ∈ P , P being a set of propositional variables.

The formulas ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ are defined in the usual way, and �ϕ denotes the
formula ¬ � ¬ϕ. Now, given a formula in the language how do we ascertain the truth of it.
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This notion is determined with respect to models of the logic which the formulas talk about.
We define when a formula is "satisfied" in a model. In propositional logic, the models are
given by the valuation functions which determine whether a propositional variable is true or
false. In modal logic, Kripke models are used to evaluate whether a formula is true or not.

Definition 3.2.1 (Kripke Models). A Kripke model is a tuple M = (W,R, V ), where W is
a set of states, R ⊂ W ×W , is a binary relation on W , V is a valuation function that maps
any propositional variable to a set of states (those states are said to satisfy the variable).

Kripke models are LTS with a single label. The satisfaction of any formula is checked in a
state s of a model M . The satisfaction relation of modal logic is defined recursively as

• M, s |= p iff s ∈ V (p), ∀p ∈ P

• M, s |= ¬ϕ iff M, s 2 ϕ

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

• M, s |= �ϕ iff there exists t s.t Rst, and M, t |= ϕ

One can check that the truth of �ϕ is given by: M, s |= �ϕ iff for all t s.t Rst, M, t � ϕ.

3.3 Expressivity

We will now show that modal logic is a fragment of first order logic. To this end, modal logic
formulas are translated to FOL formulas. The translation is defined recursively as follows

Definition 3.3.1 (FOL Translation). Let p1, p2, .. ∈ P be propositional atoms, we consider
P1, P2, ... the corresponding first order predicate symbols. We also consider a binary predicate
symbol R. Let x be a free variable. STx : LM → L is defined recursively as follows.

• STx(pi) = Pi(x)

• STx(¬ϕ) = ¬STx(ϕ)

• STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

• STx(�ϕ) = ∃y(R(x, y) ∧ STy(ϕ))

Given a model M = (W,R, V ) satisfying ϕ at w, say, we can obtain a L-structure (M itself
is considered as the corresponding L-structure) that satisfies STx(ϕ). As mentioned above,
the language L consists of unary predicate symbols Pi and a binary predicate symbol R.
We construct the corresponding L-structure ML as follows: The domain of the L-structure
is W , the valuation of each unary predicate symbol Pi is V (pi) and the binary predicate
symbol R is same as the relation R ∈ M . The following theorem shows the correctness of
the translation.
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Result 1 For all Kriple models M and world w,
M,w |= ϕ ⇐⇒ M[x→w] |= STx(ϕ)

The proofs of these results are available in [BdRV10]. We will be proving these results in
the context of Occupation Logic (OL).

3.4 Bisimulation

Suppose we need to establish a notion of invariance between two states a, b in models M
and N respectively, which corresponds to satisfying same modal formulas - what criteria can
be used to compare a and b? We may need that a and b to satisfy the same propositional
variables. Also, if there is a transition from a in M , there must exist a corresponding
transition from b in N.

Consider two models M,N . Bisimulation is a non-empty binary relation Z ⊂ M × N ,
such that we have (a, b) ∈ Z, and for all s ∈ WM , t ∈ WN , if (s, t) ∈ Z, then they satisfy
the following conditions.

• Atom: For any p ∈ P,M, s |= p iff N, t |= p

• Zig: If there exists u ∈ WM such that RMsu, then there exists v ∈ WN such that
RN tv and (u, v) ∈ Z

• Zag: If there exists v ∈ WN such that RN tv, then there exists u ∈ WM such that
RMsu and (u, v) ∈ Z

Now one of the most important results related to bisimulation that has applications in
variety of scenarios is the following.

Result 2 Two bisimilar states satisfy the same modal formulas.
Proof. The proof is by induction on the length of formula [BdRV10]. 2

Bisimulation has an important application in determining which formulas are expressible in
modal logic. We had seen translations from modal logic formulas to FOL formulas. The
following theorem uses the concept of bisimulation to show which formulas in FOL can be
obtained as translations from modal logic formulas.

Theorem 3.4.1 (Van Benthem Characterization Theorem). Let ϕ(x) be a first order for-
mula. Then, ϕ(x) is invariant under bisimulation iff ϕ(x) is logically equivalent to a standard
translation of a modal formula.
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3.5 Some properties

In the following we describe various logical properties related to decidability of modal logic.

3.5.1 Tree Model Property

Definition 3.5.1 (Tree Model Property). Given any model M = (W,R, V ) and a world w
in W , it is possible to construct a model M ′ = (W ′, R′, V ′) such that (W ′, R′) together form
a graph where a unique path exists between any two vertices(i.e., a tree) with the world w at
the root of the tree, and M,w and M ′, w satisfy the same modal formulas.

Modal logic has tree model property. The proof involves unravelling the all the paths from
the state which we want to consider as root [BdRV10]. This property of the logic suggests
that certain type of properties cannot be expressed as formulas in modal logic. For example,
the presence of a cycle in a graph cannot be expressed since otherwise, a cycle has to be
detected in a tree, and we arrive at a contradiction.

3.5.2 Decidability

Given any formula ϕ in the language, is there any modelM and a world w inM that satisfy
the formula? This is known as the satisfaction problem of modal logic. Decidability of a
logic addresses the issue of whether the satisfaction problem of a logic is decidable, i.e., is
solvable in finite time. Modal logic is decidable. This allows the use of such logic in practical
systems. The proof proceeds through the use of finite model property.

Definition 3.5.2 (Finite Model Property) Let ϕ be a formula. If ϕ is satisfiable then ϕ is
finitely satisfiable.

A formula is finitely satisfiable if there exist a finite model and a world in that model
that satisfy it.

But a stronger bound is needed on the size of the model that satisfies the formula. If such
a bound is found then a crude approach towards showing satisfiability would be to generate
all models of size leading up to that upper bound and checking whether they satisfy the
formula or not. This can be done in finite time.

Definition 3.5.3 (Strong Finite Model Property) Let ϕ be a formula. If ϕ is satisfiable
then ϕ is satisfiable in a model of size atmost f(| ϕ |), where f is a computable function and
| ϕ | denote the number of subformulas of ϕ.
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Undecidability - Although modal logic is decidable, when extended with additional
modal operators, as is the case with occupation logic, the decidability property is lost.
Given a satisfaction problem S, to prove that S is undecidable, there should be a reduction
from an undecidable problem to S. A problem that is used for these purposes is the N×N
tiling problem.

Definition 3.5.4 (N × N Tiling Problem). A tile is a 1 × 1 square with each of its side
having a colour. The N×N tiling problem is: Given a finite set of tile types T , is it possible
to tile a N×N grid with tiles from T such that adjacent edges of any two tiles have the same
colour.

This tiling problem is proven to be undecidable in [Rob71]. To show undecidability, the
N × N tiling problem is reduced to the satisfiability problem as follows. We construct a
formula ϕT such that,

T tiles N× N iff ϕT is satisfiable.

3.5.3 Model Checking

In logic, model checking problem asks the following question: Given any formula ϕ and a
model M does M |= ϕ hold. It can be shown that model checking problem for modal logic
is in the class P and is also P − Hard [Sch02]. The latter proof involves reduction from
a circuit value problem where Boolean circuits are monotone, synchronized, and properly
alternating which is a P −Complete problem. Monotone circuits do not use negation gates,
synchronized circuits have gates organized in layers and the connections are between the
layers, properly alternating means layers alternate between a layer with ∨ gates and a layer
with ∧ gates and so on.

Figure 3.1: A monotone boolean circuit
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Theorem 3.5.5 The model checking problem for modal logic is P −Hard

Proof. The proof involves reduction from Boolean Circuit Value problem. [Sch02]. 2

3.6 Poison Modal Logic

The basic modal logic language does not have any way to express the poisoning of vertices.
Since both Poison game and Occupation game make use of this constraint, a logic that
extends the basic modal logic is needed. To model poison games, the language must express
poisoning of a vertex and indicate that a previously non-poisoned vertex is now poisoned.
Thus, certain dynamicity is involved which needs to be modelled in logic.

Poison Modal Logic or PML was introduced in [GR19] to describe reasoning in the poison
game. The logic extends the basic modal logic with a poison operator < poison >. The
syntax of the formulas in the language is defined recursively as follows:

L : p|¬ϕ|ϕ ∨ ψ| � ϕ| < poison > ϕ,
where, p ∈ P ∪ {pa}, with P being a set of propositional variables and pa is a propositional
variable that becomes true in states which get poisoned. The � operator is the dual of �
operator.

As a reminder of the constraints present, every move of B poisons a vertex for A. The
standard modal operator � talks about A’s moves while the operator < poison > talks about
poisoning that occurs along with B’s moves. The functioning of < poison > operator will
be clear when we look at the semantics.

The formulas are interpreted in a Kripke Model M = (W,R, V ), where W is same as
V (G), the vertex set of the graph G where the game is being played. The relation R is same
as the edge set E(G) of the graph G. V is a valuation function that maps a propositional
variable p to a set of states S where it is true i.e. V (p) = S, where S ⊂ V is the set of states
where p is considered to be true. The function of the < poison > operator is in adding a
new state to the valuation of pa, V (pa). The formulas are interpreted in a state w of the
model M :

• M,w |= p if w ∈ V (p)

• M,w |= ¬ϕ if M,w 2 ϕ

• M,w |= ϕ ∧ ψ if M,w |= ϕ ∧M,w |= ψ

• M,w |= �ϕ if there exists v ∈ W such that (w, v) ∈ R and M, v |= ϕ

• M,w |=< poison > ϕ if there exists v ∈ W such that (w, v) ∈ R and M ′, v |= ϕ,
where M ′ = (W ′, R′, V ′), with W ′ = W,R′ = R, V ′(p) = V (p) for all p ∈ P , and
V ′(pa) = V (pa) ∪ {v}.
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PML can express winning positions in the game (i.e., states in the graph where players
can win). For example, the winning positions of B are given as follows: Given any modelM ,
these are states s which satisfy the formula < poison > �pa, that is, the states where B can
win in one move. The interpretation of the given formula is that there exists a "poisoning"
move for B from a state s to a state t, say, from where all possible A-moves would lead to a
poisoned vertex and thus A loses. This argument can be extended to winning in two moves,
three moves and so on. The winning positions for player B are the states which satisfy the
following infinitary formula.

< poison > �pa∨ < poison > � < poison > �pa ∨ ...

The Occupation Logic (OL) introduced in the next chapter expands upon PML to meet
the additional constraints of poisoning by both the players and reaching goal conditions.
We now have a more symmetrical situation, so, instead of a single < poison > operator we
introduce two new operators < A >, < B > (symbols will be replaced) to refer to poisoning.
In PML, the evaluation was done in a single state. This was possible because the state of
the game involved only the current vertex of the player but in case of OL, the game starts
with players at different vertices and each move made by a player is independent of the
position of his opponent. This means that a formula has to be evaluated at two states, since
the current state of player A is independent of that of B. Thus we introduce the semantics
of evaluating formula in a paired pointed model M, s, t. The analysis of logical properties
of such two-dimensional models will be the core of Chapter 4 and Chapter 5 of this work.

This chapter has given a overview of preliminary results and properties that need to be
studied for any such logic. In the subsequent chapters, we will introduce Occupation Logic
and study these properties.
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Chapter 4

OCCUPATION LOGIC

This chapter introduces the syntax and semantics of Occupation Logic (OL), and discusses
its logical properties. The language extends the Poison Modal Logic (PML) introduced in
the context of poison game (PG). Since this logic is introduced in the context of occupation
game (OG), we use some terminology from the game to explain the working of the logical
operators. Many proofs presented in the following chapters take ideas from [GR19].

4.1 Syntax

Two countable sets of proposition letters PA, PB are considered. The formulas in the lan-
guage are defined recursively as

LO := pA|pB|¬ϕ|ϕ ∧ ψ| A ϕ| B ϕ| B ϕ| A ϕ,
where pA ∈ PA, pB ∈ PB.

We specify the poisoning of vertices by using two kinds of proposition variables, one
for player A and the other for player B. The special propositional variables are pa, ga ∈
PA, pb, gb ∈ PB, where pa is true in the states which are poisoned for A and ga is true in
states which are the goal states of player A and similarly, the other variables denote the
poisoned and goal states of player B, respectively. In a game, both players can have finitely
many goal states.

The A modality talks about the adjacent states of A’s current state, similarly, the B

modality talks about player B’s adjacent vertices. The operator B is used to refer to moving
to adjacent vertex and subsequent poisoning by player A (i.e., poison for player B) and the
operator A refers to the moving and poisoning by player B.

4.2 Semantics

Given the formulas of the language, the truth of the formulas is ascertained by their inter-
pretation on Kripke Models M = (W,R, V ). We use the notation, WM , RM , V M to denote
the (W,R, V ) of a particular model M . Unlike basic modal logic and PML, where the eval-
uation was done at a single state of the model M , here the evaluation of a formula occurs
simultaneously at two states of the model. In this case, a pointed model is a triplet (M, s, t),
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where s, t ∈ W . The states s, t are the current positions of player A and B, respectively.
The main motivation for considering two states for evaluation is basically the independence
of the positions of A and B. Let (M, s, t) be a pointed model, then

• (M, s, t) |= pA ⇐⇒ s ∈ V (pA)

• (M, s, t) |= pB ⇐⇒ t ∈ V (pB)

• (M, s, t) |= ¬ϕ ⇐⇒ (M, s, t) 2 ϕ

• (M, s, t) |= ϕ ∧ ψ ⇐⇒ (M, s, t) |= ϕ and (M, s, t) |= ψ

• (M, s, t) |= A ϕ ⇐⇒ ∃s′ ∈ W,Rss′, and (M, s′, t) |= ϕ

• (M, s, t) |= B ϕ ⇐⇒ ∃t′ ∈ W,Rtt′, and (M, s, t′) |= ϕ

• (M, s, t) |= A ϕ ⇐⇒ ∃t′ ∈ W,Rtt′, and (M ′, s, t′) |= ϕ, whereM ′ = (W,R, V ′), V ′(p) =
V (p)∀p ∈ P, V ′(pa) = V (pa) ∪ {t′}

• (M, s, t) |= B ϕ ⇐⇒ ∃s′ ∈ W,Rss′, and (M ′, s′, t) |= ϕ, whereM ′ = (W,R, V ′), V ′(p) =
V (p)∀p ∈ P, V ′(pb) = V (pb) ∪ {s′}

While the other satisfaction relations work in the same way as in basic modal logic, the
working of A , B requires some observation. The poison formula A ϕ is true at (s, t) if and
only if ϕ is true at a successor of t, t′, say, with state s being the same. The pair (s, t′)

is considered in a model obtained from M by adding t′ to the valuation of pa. In other
words, the evaluation function V changes in the sense that V (pa) changes. The notations
introduced in 4.3 will help in describing such notions in a more convenient way.

With the satisfaction relation thus defined, the notion for modal equivalence in Occupa-
tion Logic is defined as follows:

Definition 4.2.1 (Occupation Modal Equivalence). Two pointed models (M, s, t) and (N, u, v)

are modally equivalent for OL if and only if for all ϕ ∈ LO:
M, s, t |= ϕ ⇐⇒ N, u, v |= ϕ .

4.3 Introducing new notation

The evaluation of the propositional variables pa and pb will change as new vertices get
poisoned as the game progresses. Since the valuation function is a component of model M ,
the model itself changes every time a new vertex gets poisoned. The following notation is
used to denote the new model obtained.

Consider a pointed model M = (W,R, V ). Whenever player B moves to a vertex w and
poisons it, we denote the newly obtained model as Mpa

w , which is defined by,

© 2021, Indian Statistical Institute, Kolkata



4.4 Validity 18

Mpa
w = (W,R, V ′),∀p ∈ P, V ′(p) = V (p), V ′(pa) = V (pa) ∪ {w}

Consider a pointed model M = (W,R, V ). Whenever player A moves to a vertex w and
poisons it, we denote the newly obtained model as Mpb

w , which is defined by

Mpb
w = (W,R, V ′), ∀p ∈ P, V ′(p) = V (p), V ′(pb) = V (pb) ∪ {w}

With this new notation, the satisfaction relation for A is written as
(M, s, t) |= A ϕ ⇐⇒ ∃t′ ∈ WM , RM tt′, and (Mpa

t′ ), s, t′ |= ϕ

Similarly, the satisfaction relation for B is written as
(M, s, t) |= B ϕ ⇐⇒ ∃s′ ∈ WM , RMss′, and (Mpb

s′ ), s′, t |= ϕ

4.4 Validity

The following formulas are examples of validities in the logic. Given any model M and
evaluation states s, t, the following formulas are satisfied by the triple M, s, t.

• All propositional tautologies

• A (ϕ→ ψ)→ ( A ϕ→ A ψ)

• A⊥ → B ϕ - Since pb is not evaluated at s.

• A pA → pA,∀pA ∈ PA

• A p→ B p,∀p ∈ PB

• A (ϕ ∧ ψ) ⇐⇒ ( A ϕ ∧ A ψ)

4.5 Winning Strategy of Occupation Game

Considering player A moving first, the winning conditions for player A in a graph is obtained
by the following idea: Player A wins if he is able to reach a goal state in the first move of
the game and that state is not poisoned or if he is able to reach a non-poisoned goal state in
the third move of the game and B fails to reach her goal state in second move of the game
and so on. The pointed models (M, s, t) which satisfy the formula below given the starting
positions (s, t) for the two players will allow the first player, player A to win.
Let ρ1 = B (¬pa ∧ ga) - Winning in first move,
ρ2 = B (¬pa ∧ ¬ B (¬pb ∧ gb) ∧ ( B ((⊥ ∨ pb)→ ρ1) ∧ ¬ A (¬pb ∧ ¬ρ1)) - Winning in the third
move of the game.
ρ3 = B (¬pa ∧ ¬ B (¬pb ∧ gb) ∧ ( B ((⊥ ∨ pb) → ρ2) ∧ ¬ A (¬pb ∧ ¬ρ2)) - Winning in the fifth
move of the game. And so on
The winning positions (s, t) for player A are defined by the following formula

ρ1 ∨ ρ2 ∨ ...
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4.6 Translation into First-Order Logic

Let LO denote the occupation logic language and L be the first order logic language we
are translating to. Let p, q ∈ P be propositional atoms, we call P,Q their corresponding
first-order predicate. The first-order predicate for the propositions used to denote poisoning
pa, pb are PForA, PForB respectively. N , M are two finite set of variables that keep track
of poisoned states for A, and poisoned states for B respectively and x, y are two designated
variables. The translation STN,M

x,y : LO → L is defined as follows.

• STN,M
x,y (pA) = pA(x),∀pA ∈ PA

• STN,M
x,y (pB) = pB(y),∀pB ∈ PB

• STN,M
x,y (¬ϕ) = ¬STN,M

x,y (ϕ)

• STN,M
x,y (ϕ ∧ ψ) = STN,M

x,y (ϕ) ∧ STN,M
x,y (ψ)

• STN,M
x,y ( A ϕ) = ∃u(xRu ∧ STN,M

u,y (ϕ))

• STN,M
x,y ( B ϕ) = ∃v(yRv ∧ STN,M

x,v (ϕ))

• STN,M
x,y ( A ϕ) = ∃v(yRv ∧ STN∪{v},M

x,v (ϕ))

• STN,M
x,y ( B ϕ) = ∃u(xRu ∧ STN,M∪{u}

x,v (ϕ))

• STN,M
x,y (pa) = PForA(x) ∨ ∨u∈N(x = u)

• STN,M
x,y (pb) = PForB(y) ∨ ∨v∈M(y = v)

Similar to the case in 3.3, given a model M = (W,R, V ) satisfying ϕ at s, t, say, we can
obtain a L-structure (M itself is considered as the corresponding L-structure) that satisfies
STN,M

x,y (ϕ). The FOL L consists of unary predicate symbols Pi and a binary predicate
symbol R. We construct the corresponding L-structure ML as follows: The domain of the
L-structure is W , the valuation of each unary predicate symbol Pi is V (pi) and the binary
predicate symbol R is same as the relation R ∈ M . The importance of the interpretation
of a model M as L-structure occurs when we prove a theorem equivalent to Van Benthem
Characterization theorem in modal logic 3.4.1.
The following lemmas will help with the proof of correctness of the translation.

Lemma 4.6.1 For a model M , and an assignment g,
Mpa

w |= STN,M
x,y (ϕ)[g] ⇐⇒ M |= ST

N∪{z},M
x,y (ϕ)[gz:=w]

Proof. We prove by applying induction on the size of the formula ϕ.
Base case: ϕ = pA,∀pA ∈ PA,
Mpa

w |= STN,M
x,y (pA)[g] ⇐⇒ Mpa

w |= pA(x)[g] ⇐⇒ M |= pA(x) ⇐⇒ M |= ST
N∪{z},M
x,y pA[gz:=w]

(By the definition of poisoning and standard translation)
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Base case: ϕ = pB,∀pB ∈ PB ∪ {pb}, Similar to pA case
Mpb

w |= STN,M
x,y (pB)[g] ⇐⇒ M |= ST

N∪{z},M
x,y pB[gz:=w]

Base case: ϕ = pa - The poison proposition
Mpa

w |= STN,M
x,y (pa)[g] ⇐⇒ Mpa

w |= PForA(x) ∨ ∨u∈N(x = u)[g]

⇐⇒ M |= PForA(x) ∨ ∨u∈N∪{w}(x = u)[g]

⇐⇒ M |= ST
N∪{z},M
x,y (pa)[gz:=w]

Induction Hypothesis: The proposition is true for all formulas ϕ of length less than
n.
To show: The proposition is true for all formulas of length n

Induction step: ϕ = ¬ψ
Mpa

w |= STN,M
x,y (¬ψ)[g] ⇐⇒ Mpa

w |= ¬STN,M
x,y (ψ)[g]

⇐⇒ M |= ¬STN∪{z},M
x,y (ψ)[gz:=w]

⇐⇒ M |= ST
N∪{z},M
x,y (¬ψ)[gz:=w]

Induction step: ϕ = ψ ∧ χ
Mpa

w |= STN,M
x,y (ψ ∧ χ)[g] ⇐⇒ Mpa

w |= STN,M
x,y (ψ)[g] ∧ STN,M

x,y (χ)[g]

⇐⇒ M |= ST
N∪{z},M
x,y (ψ)[gz:=w] ∧ STN∪{z},M

x,y (χ)[gz:=w]

⇐⇒ M |= ST
N∪{z},M
x,y (ψ ∧ χ)[gz:=w]

Induction step: ϕ = A ψ

Mpa
w |= STN,M

x,y ( A ψ)[g] ⇐⇒ Mpa
w |= ∃z(Rxz ∧ STN,M

z,y ψ)[g]

⇐⇒ ∃v,Rg(x)v,Mpa
w |= STN,M

z,y (ψ)[gz:=v]

⇐⇒ ∃v,Rg(x)v,M |= ST
N∪{t},M
z,y (ψ)[gz:=v,t:=w]

⇐⇒ M |= ∃z(Rxz ∧ STN∪{t},M
z,y (ψ))[gt:=w]

⇐⇒ M |= ST
N∪{t},M
x,y ψ[gt:=w]

Induction step: ϕ = B ψ

Mpa
w |= STN,M

x,y ( B ψ)[g] ⇐⇒ Mpa
w |= ∃z(Ryz ∧ STN,M

x,z ψ)[g]

⇐⇒ ∃v,Rg(y)v,Mpa
w |= STN,M

x,z (ψ)[gz:=v]

⇐⇒ ∃v,Rg(y)v,M |= ST
N∪{t},M
x,z (ψ)[gz:=v,t:=w]

⇐⇒ M |= ∃z(Ryz ∧ STN∪{t},M
x,z (ψ))[gt:=w]

⇐⇒ M |= ST
N∪{t},M
x,y ψ[gt:=w]

Induction step: ϕ = A ψ

Mpa
w |= STN,M

x,y ( A ψ)[g] ⇐⇒ Mpa
w |= ∃z(Ryz ∧ STN∪{z},M

x,z ψ)[g]

⇐⇒ ∃v,Rg(y)v,Mpa
w |= ST

N∪{z},M
x,z (ψ)[gz:=v]

⇐⇒ ∃v,Rg(y)v,M |= ST
N∪{z,t},M
x,z (ψ)[gz:=v,t:=w]

⇐⇒ M |= ∃z(Ryz ∧ STN∪{z,t},M
x,z (ψ))[gt:=w]

⇐⇒ M |= ST
N∪{t},M
x,y A ψ[gt:=w]
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Induction step: ϕ = B ψ

Mpa
w |= STN,M

x,y ( B ψ)[g] ⇐⇒ Mpa
w |= ∃z(Rxz ∧ STN,M∪{z}

z,y ψ)[g]

⇐⇒ ∃v,Rg(x)v,Mpa
w |= ST

N,M∪{z}
z,y (ψ)[gz:=v]

⇐⇒ ∃v,Rg(x)v,M |= ST
N∪{t},M∪{z}
z,y (ψ)[gz:=v,t:=w]

⇐⇒ M |= ∃z(Rxz ∧ STN∪{t},M∪{z}
z,y (ψ))[gt:=w]

⇐⇒ M |= ST
N∪{t},M
x,y B ψ[gt:=w]

This completes the proof. 2

Lemma 4.6.2 For a model M , and an assignment g,
Mpb

w |= STN,M
x,y (ϕ)[g] ⇐⇒ M |= ST

N,M∪{z}
x,y (ϕ)[gz:=w]

Proof. The proof proceeds similar to lemma 4.6.1 2

So far, we have introduced the standard translation. As a reminder, the standard translation
STN,M

x,y is a function from Lo to L. N,M are sets that include the states that are poisoned
during the evaluation of the formula, so initially, both N = M = ∅. We have to prove that
the standard translation is correct. For that we need to prove the theorem below.

Theorem 4.6.3 Let (M, s, t) be a pointed model and ϕ belonging to Lo be a formula in
occupation logic, then:

(M, s, t) |= ϕ ⇐⇒ M |= ST ∅,∅x,yϕ[x := s, y := t]

Proof. We prove by applying induction on the size of the formula ϕ.
Base case: ϕ = pA

(M, s, t) |= pA ⇐⇒ s ∈ V (pA) ⇐⇒ M |= pA(s) ⇐⇒ M |= ST ∅,∅x,ypA(x)[x := s]

⇐⇒ M |= ST ∅,∅x,ypA(x)[x := s, y := t](Since p(x) does not contain variable y)

Base case: ϕ = pB

(M, s, t) |= pB ⇐⇒ t ∈ V (pB) ⇐⇒ M |= pB(t) ⇐⇒ M |= ST ∅,∅x,ypB(y)[y := t]

⇐⇒ M |= ST ∅,∅x,ypB[x := s, y := t] (Since pB(y) does not contain variable x)

Now for the poison propositions
Base case: ϕ = pa

(M, s, t) |= pa ⇐⇒ M |= PForA(x)[x := s]

⇐⇒ M |= PForA(x)[x := s] ∨ ∨z∈∅ z = x[x := s]

⇐⇒ M |= ST ∅,∅x,ypa[x := s, y := t]

Base case: ϕ = pb

(M, s, t) |= pb ⇐⇒ M |= PForB(y)[y := t]

⇐⇒ M |= PForB(y)[y := t] ∨ ∨z∈∅ z = y[y := t]
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⇐⇒ M |= ST ∅,∅x,ypb[x := s, y := t]

Induction Hypothesis: The above proposition we are trying to prove is true for all
formulas ϕ of length < n.
To prove: The above proposition is true for formula ϕ of size n.
Case 1: ϕ = ¬ψ
(M, s, t) |= ¬ψ ⇐⇒ not (M, s, t) |= ψ

⇐⇒ not M |= ST ∅,∅x,yψ[x := s, y := t] (using Induction Hypothesis)
⇐⇒ M |= ¬ST ∅,∅x,yψ[x := s, y := t]

⇐⇒ M |= ST ∅,∅x,y (¬ψ)[x := s, y := t]

Case 2: ϕ = ψ ∧ χ
(M, s, t) |= ψ ∧ χ ⇐⇒ (M, s, t) |= ψ ∧ (M, s, t) |= χ

⇐⇒ M |= ST ∅,∅x,yψ[x := s, y := t]∧M |= ST ∅,∅x,yχ[x := s, y := t] (Using Induction Hypothesis)
⇐⇒ M |= ST ∅,∅x,y (ψ ∧ χ)[x := s, y := t]

Case 3: ϕ = A ψ

If (M, s, t) |= A ψ, then there exists s′ such that Rss′ and (M, s′, t) |= ψ, then we have that
M |= Rxu[s, s′] and M |= ST ∅,∅u,yψ[u := s′, y := t].(Using Induction Hypothesis).
So M |= Rxu[s, s′, y := t] and M |= ST ∅,∅u,yψ[x := s, u := s′, y := t]

This implies that M |= (Rxu ∧ ST ∅,∅u,yψ)[x := s, u := s′, y := t]. Therefore M |= ∃u(Rxu ∧
ST ∅,∅u,yψ)[x := s, y := t].
Therefore, M |= ST ∅,∅x,y

A ψ[x := s, y := t]

Now the other direction,
Suppose M |= ST ∅,∅x,y

A ψ[x := s, y := t], then M |= ∃u(Rxu ∧ ST ∅,∅u,yψ)[x := s, y := t], then
M |= (Rxu ∧ ST ∅,∅u,yψ)[x := s, y := t, u := s′] for some s′. So we have that M |= Rxu[x :=

s, u := s′, y := t] and (M, s′, t) |= ψ(Using Induction Hypothesis).
So there exists an s′ such that Rss′ and (M, s′, t) |= ψ, therefore (M, s, t) |= A ψ.

Case 4: ϕ = B ψ. Can be proved similar to the case A ψ.

Case 5: ϕ = B ψ

(M, s, t) |= B ψ ⇐⇒ ∃s′, Rss′, (Mpb
s
′, s′, t) |= ψ

⇐⇒ ∃s′, Rss′,Mpb
s
′ |= ST ∅,∅z,yψ[z := s′, y := t] (Using Induction Hypothesis)

⇐⇒ ∃s′, Rss′,M |= ST
{z},∅
z,y ψ[z := s′, y := t, x := s]

⇐⇒ M |= ∃z(Rxz ∧ ST {z},∅z,y ψ)[x := s, y := t]

⇐⇒ M |= ST ∅,∅x,y
B ψ[x := s, y := t]

Case 6: ϕ = A ψ. Can be proved similar to Case 5
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This completes the proof. 2

4.7 Occupation Bisimulation

Occupation bisimulation is the notion of invariance of pointed models with respect to occu-
pation logic equivalence. The model/game state involves a pair of positions, a tuple (s, t),
and the bisimulation relation is defined for a pair of tuples.

Definition 4.7.1 (Occupation-bisimulation). Two pointed models (M, s, t) and (N, a, b) are
said to be occupation-bisimilar, written as (M, s, t) ⇔B (N, a, b), if there exists a relation
Z such that (s, t)Z(a, b) for any states (s, t) ∈ WM ×WM , (a, b) ∈ WN ×WN , whenever
(s, t)Z(a, b) the following conditions are satisfied.

• Atom 1: For any atom p ∈ PA, s ∈ V M(p) iff a ∈ V N(p)

• Atom 2: For any atom p ∈ PB, t ∈ V M(p) iff b ∈ V N(p)

• Zig A - If there exists u ∈ WM such that RMsu, then there exists c ∈ WN such that
RNac and (M,u, t)Z(N, c, b)

• Zag A - If there exists c ∈ WN such that RNac, then there exists u ∈ WM such that
RMsu and (M,u, t)Z(N, c, b)

• Zig B - If there exists v ∈ WM such that RM tv, then there exists d ∈ WN such that
RNbd and (M, s, v)Z(N, a, d)

• Zag B - If there exists d ∈ WN such that RNbd, then there exists v ∈ WM such that
RM tv and (M, s, v)Z(N, a, d)

• Zig A - If ∃vM , RM tv,Mpa
v , then ∃d ∈ WN , RNbd,Npa

d and (Mpa
v , s, v)Z(Npa

d , a, d).

• Zag A - If ∃d ∈ WN , RNbd,Npa
d , then ∃v ∈ WM , RM tv,Mpa

v and (Mpa
v , s, v)Z(Npa

d , a, d).

• The corresponding cases for Zig B , Zag B can be defined analogously.

These clauses define the bisimulation relation. Next we will prove the important result
that pointed models which are occupation-bisimilar will satisfy the same occupation logic
formulas.

Theorem 4.7.2 For two pointed models (M, s, t) and (N, a, b), if (M, s, t) ⇔B (N, a, b),
then (M, s, t) and (N, a, b) are occupation modal equivalent. For occupation modal equiva-
lence refer to 4.2.1.
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Proof. The proof is by induction on the size of formula ϕ.
Base case 1: ϕ = pA, pA ∈ PA

(M, s, t) |= pA ⇐⇒ s ∈ V M(pA) ⇐⇒ a ∈ V N(pA) (Using Atom 1 clause of bisimulation)
a ∈ V N(pA) ⇐⇒ (N, a, b) |= (Using semantics of the logic)
Base case 2: ϕ = pB, pB ∈ PB

(M, s, t) |=B iff t ∈ V M(pB) iff b ∈ V N(pB) (Using Atom 2 clause of bisimulation)
b ∈ V N(pB) ⇐⇒ (N, a, b) |= pB (Using semantics of the logic)
Induction Hypothesis: The proposition holds for formulas of length L.
Induction Step: To prove that the proposition holds for formulas of length L+ 1.

Case- neg: ϕ = ¬ψ
(M, s, t) |= ϕ ⇐⇒ (M, s, t) |= ¬ψ ⇐⇒ (M, s, t) 2 ψ
(M, s, t) 2 ψ ⇐⇒ (N, a, b) 2 ψ (Using Induction Hypothesis)
⇐⇒ (N, a, b) |= ¬ψ

Case ∧: ϕ = ψ ∧ χ
(M, s, t) |= ψ ∧ χ ⇐⇒ (M, s, t) |= ψ ∧ (M, s, t) |= χ ⇐⇒ (N, a, b) |= ψ ∧ (N, a, b) |=
χ ⇐⇒ (N, a, b) |= ψ ∧ χ ⇐⇒ (N, a, b) |= ϕ.

Case- A :ϕ = A ψ

Let (M, s, t) |=< left > ψ, then there exists u, such that RMsu, and (M,u, t) |= ψ.
Since (M, s, t), (N, a, b) are bisimilar, there exists c, such that RNac, and (u, t)Z(c, b). Then
(N, c, b) |= ψ(Using Induction hypothesis). Then (N, a, b) |= A ψ.
Similarly let (N, a, b) |= A ψ, then there exists c such that RNac and (N, c, b) |= ψ. Since
(M, s, t), (N, a, b) are bisimilar, there exists u, such that RMsu , such that (u, t)Z(c, b). Then
(M,u, t) |= ψ (Using Induction Hypothesis). Then (M, s, t) |= A ψ.

Case- B : ϕ = B ψ - Proof continues similar to A

Case- A : ϕ = A ψ

Let (M, s, t) |= A ψ, then there exists v such that RM tv and (M ′, s, v) |= ψ, where M ′ =

(WM , RM , v′), V ′(p) = V M(p), V ′(pa) = V M(pa) ∪ {v}. Now by using Zig - A and since
(M, s, t) and (N, a, b) are bisimilar, there exists d such that RNbd and N ′, a, d) |= ψ, where
N ′ = (WN , RN , V ′), V ′(p) = V N(p), V ′(pa) = V N(pa) ∪ {d}. Therefore, (N, a, b) |= A ψ.
The other direction can be proven similarly.

Case- B : ϕ = B ψ

Let (M, s, t) |= B ψ, then there exists u such that RMsu and (Mpb
u , u, t) |= ψ. Now by using

Zig - B and since (M, s, t) and (N, a, b) are bisimilar, there exists c such that RNac and
(Npb

c , c, b) |= ψ. Therefore, (N, a, b) |= B ψ.
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The other direction can be proven similarly. This completes the proof. 2

Now we are interested in the other direction, given that two models are occupation modally
equivalent, are they bisimilar. We know from basic modal logic that this result does not
always hold, but holds for image-finite models. We prove a similar result here.

Theorem 4.7.3 Let M and N be two image finite models, the for every (s, t) ∈ W ×W
and (a, b) ∈ N ×N , if (s, t) and (a, b) are occupation modally equivalent, then (M, s, t)⇔B

(N, a, b).

Proof. Consider the binary relation E between M ×M and N ×N such that (s, t)E(a, b) if
(M, s, t) and (N, a, b) satisfy the same occupation logic formulas. We need to prove that E
is the o-bisimulation relation between the two models.
Consider (s, t) ∈ M ×M and (a, b) ∈ N × N such that (s, t)E(a, b). The relation has to
satisfy the clauses in o-bisimulation.

Clause : Atom p ∈ PA: (M, s, t) and (N, a, b) satisfy the same proposition letters p ∈ PA.
This is true because (M, s, t) and (N, a, b) satisfy the same proposition letters by definition
of E.

Clause Atom p ∈ PB: (M, s, t) and (N, a, b) satisfy the same proposition letters p ∈
PB.This is true because (M, s, t) and (N, a, b) satisfy the same proposition letters by defini-
tion of E.
Clause : zig A : If there exists s′ ∈ WM such that sRMs′, then there exists a′ ∈ WN

such that aRNa′ and (s′, t)E(a′, b).

Assume that there exists no a′ such that the above condition is satisfied. Consider the
set T = {c : aRNc}. T is non-empty otherwise (N, a, b) |= A⊥ while (M, s, t) 2 A⊥ which
is a contradiction. Since we are dealing with image-finite models, T is a finite set such
that T = {c1, c2, ..., cn}. Since no c ∈ T is such that (s′, t)E(c, b), there exists a modal
formula φi, for all i ∈ {1, 2, .., n} such that (M, s′, t) |= φi but (N, ci, b) 2 φi. Therefore,
(M, s, t) |= �(φ1 ∧ φ2... ∧ φn) but (N, a, b) |= ¬(�(φ1 ∧ φ2... ∧ φn)) which is a contradiction
since (s, t)E(a, b). Therefore our assumption is wrong and there exists a a′ such that aRNa′

and (s′, t)E(a′, b). 2

Clauses- zag A , zig B , zag B Can be proven similar to zig A

Clause : zig B If there exists s′ such that sRMs′, Mpb
s′ , then there exists a′ such that

aRNa′, Npb
a′ and (Mpb

s′ , s
′, t)E(Npb

a′ , a
′, b)

Consider a s′ such that sRMs′, M ′ = (WM , RM , V
′
M), V ′M = VM(p)∀p ∈ P, V ′M(pb) =

VM(pb) ∪ {s′}. Assume that there is no a′ such that the above condition is satisfied. Let
T = {c : aRNc}. T has to be non empty. Since if T is empty, then (N, a, b) |= B⊥ but
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(M, s, t) 2 B⊥. We arrive at a contradiction since they both have to satisfy the same
modal formulas. Since we are dealing with image finite models T has to be finite. So,
let T = {c1, c2, .., cn}. Since there is no c ∈ T such that (M ′, s′, t)E(N ′, c, b), there exists
modal formula φi∀i ∈ [1..n] such that (M ′, s′, t) |= φi and (N ′, c, t) 2 φi, where M ′ =

(WM , RM , V
′
M), V ′M = VM , V

′
M(pb) = VM(pb) ∪ {s′}, N ′ = (WN , RN , V

′
N), V ′N = VN , V

′
N(pb) =

VN(pb) ∪ {c}.
Therefore, (M, s, t) |= B (φ1 ∧ φ2... ∧ φn) but (N, a, b) |= ¬ B (φ1 ∧ φ2... ∧ φn), which is a
contradiction. There exists an a′ such that zig B condition is satisfied. 2.
The proofs for the other clauses follows similarly. 2

Occupation modal equivalence does not not always give rise to occupation bisimilarity. The
above theorem shows that this is the case for image finite models. Image finite models
are special cases of countably saturated models. We will go on to prove that if any two
countably saturated models are occupation-equivalent, then they are occupation-bisimilar.

Definition 4.7.4 (Countably Saturated Models) Let M = (W,R, V ) be a model of the basic
modal logic, X be a subset of W and Σ a set of modal formulas. Σ is satisfiable in the set
X if there is a state x ∈ X such that M,x |= ϕ for all ϕ ∈ Σ. Σ is finitely satisfiable in X
if every finite subset of Σ is satisfiable in X.
The model M is called countably saturated if it satisfied the following conditions for every
state w ∈ W and every set Σ of modal formulas.

If Σ is finitely satisfiable in the set of successors of w,
then Σ is satisfiable in the set of successors of w

Looking at it from a first order perspective, considering the model M = (W,R, V )(viewing
as a FOL structure). A set of FOL formulas Γ(x) from L with one free variable x is realized
by M if there exists w ∈ W such that M |= τ(x)[x := w] for all τ(x) ∈ Γ(x). We say that
M is countably saturated if for every finite set X ⊂ W , the expansion MX realizes every set
Γ(x) in LX(the expansion of L with constants for the elements in X) whenever every finite
subset Γ′(x) ⊂ Γ(x) is satisfied in MX .

Theorem 4.7.5 Let M and N be two countably saturated models. If (M, s, t) and (N, u, v)

satisfy the same occupation logic formulas they are occupation-bisimilar and the bisimilarity
relation is given by modal equivalence.

Proof. Consider the two countably saturated models (M, s, t) and (N, u, v) that satisfy
the same occupation logic formulas. We define a relation E = {((s, t), (u, v))|(s, t) ∈
Mw×Mw, (u, v) ∈ Nw×Nw, (M, s, t) and (N, u, v) satisfy the same occupation logic formulas
}.
Now we move on to prove that the relation E defined above satisfy the clauses of occupation
bisimulation.

Case : Atom 1: p ∈ PA
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Since (M, s, t) and (N, u, v) satisfy the same occupation logic formulas, this case holds triv-
ially.

Case : Atom 2: p ∈ PB

Since (M, s, t) and (N, u, v) satisfy the same occupation logic formulas, this case holds triv-
ially.

Case : zig A

Suppose there exists s′ ∈ Mw such that RMss′, we need to show that there exists u′ ∈ Nw

such that RNuu′ and (M, s′, t)E(N, u′, v).
Let Σ be the set of formulas true at (s′, t). For every finite subset ∆ of Σ, (M, s′, t) |= (∧∆),
hence (M, s, t) |= A ∧∆. As (s, t) is logically equivalent to (u, v), (N, u, v) |= ∧∆. So there
exists a successor u∆ to u such that (N, u∆, v) |= (∧∆). Σ is finitely satisfiable in the set of
successors of u.
Therefore, by countably saturation Σ itself is satisfiable is (u′, v).So (s′, t)E(u′, v)

Proof for Cases: zag A , zig B , zag B proceed similar to zig A

Case : zig B

There existsRMss′ andMpb
s′ . We need to show that there existsRNuu′ and (Mpb

s′ , s
′, t)E(Npb

u′ , u′, v).
Let Γ be the set of formulas true at (Mpb

s′ , s
′, t). Let ∆ be a finite subset of Γ. The following

inferences hold. By theorem 4.6.3
(M, s, t) |= B ∧∆ ⇐⇒ (N, u, v) |= B ∧∆

⇐⇒ N |= ST ∅,∅x,y ( B ∧∆)[s, t]

⇐⇒ N |= z(xRz ∧ ST {z},∅z,y (∧∆))[s, t]

Since N is countably saturated,
∃z ∈ Nw, N |= ST

{z},∅
z,y (Γ).

Therefore, there exists a pointed model Npb
u′ such that RNuu′ and N |= ST ∅,∅x,y (Γ)[u′, v].

Therefore using Theorem 4.6.3 (s′, t), (u′, v) are occupation modally equivalent and hence
bisimilar by our definition of the bisimulation relation.
Proof for Cases: zag B , zig A , zag A proceed similar to zig B .
This completes the proof. 2

4.8 Characterization of FO Formulas

In this section we characterize the first order logic (FOL) formulas which are equivalent to
translations of occupation logic formulas. The van Benthem Characterisation theorem states
that for basic modal logic, only those FOL formulas which are invariant under bisimulation
are logically equivalent to translations of basic modal logic formulas. Similarly, we will prove
that FOL formulas that are invariant under the occupation bisimulation are exactly those
formulas that are logically equivalent to standard translation of occupation logic formula.

A first order formula ϕ(x, y) is invariant under occupation bisimulation if for all models
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M and N and all pairs of states (s, t) inM and (u, v) in N , and all bisimulations E between
M and N such that (s, t)E(u, v), M |= ϕ(x, y)[s, t] iff N |= ϕ(x, y)[u, v].

Theorem 4.8.1 Let ϕ(x, y) be a first order formula. Then ϕ(x, y) is invariant under occu-
pation bisimulation iff ϕ(x, y) is logically equivalent to standard translation of an occupation
logic formula.

Proof. If-part:Let ϕ(x, y) be a first order formula and ϕ(x, y) is logically equivalent to
a standard translation of an occupation logic formula. To show that it is invariant under
occupation bisimulation.
Let ϕ(x, y) be equivalent to standard translation ST ∅,∅x,y (α) of a basic occupation logic formula
α,say.
Take two modelsM ,N and states (s, t) inM and (u, v) in N such that (M, s, t) is occupation
bissimilar to (N, u, v).Then (M, s, t) |= α iff (N, u, v) |= α.
Thus M |= ϕ(x, y)[s, t] ⇐⇒ M |= ST ∅,∅x,y (α)[s, t] ⇐⇒ (M, s, t) |= α ⇐⇒ (N, u, v) |=
α ⇐⇒ N |= ST ∅,∅x,y (α)[u, v] ⇐⇒ N |= ϕ(x, y)[u, v].
The proof is completed.
Only-If Part Let ϕ(x, y) be a first order formula which is invariant under occupation
bisimulations. It is to be shown that ϕ(x, y) is logically equivalent to standard translation
of a basic occupation logic formula.
ModCon(ϕ) = {ST ∅,∅x,y (α)| α is a occupation formula and ϕ(x, y) |= ST ∅,∅x,y (α)}
Claim: If ModCon(ϕ) |= ϕ(x, y), then varphi(x, y) is logically equivalent to standard
translation of a basic occupation formula.

Proof of Claim : Suppose ModCon(ϕ) |= ϕ(x, y), then by compactness of FOL, there
is a finite subset χ of ModCon(ϕ) such that χ |= ϕ(x, y). So ∧χ |= ϕ(x, y) which implies
|= ∧χ → ϕ(x, y). And we also have |= ϕ(x, y) → ∧χ.So |= ϕ(x, y) ⇐⇒ ∧χ. Now every β
in χ is a occupation logic formula and so is ∧χ. Therefore ϕ(x, y) is logically equivalent to
standard translation of a occupation formula. 2

To show ModCon(ϕ) |= ϕ(x, y) we need to show that for all models M and for all pairs of
states (s, t), if M |= ModCon(ϕ)[s, t], then M |= ϕ(x, y)[s, t].

Proof Let G(x, y) = {ST ∅,∅x,y (α)| α is an occupation formula and M |= ST ∅,∅x,y (α)[s, t].
We need to show that G(x, y) ∪ ϕ(x, y) is consistent. Suppose not, then by compactness of
FOL, there is a finite subset H(x, y) of G(x, y) such that |= ∧H(x, y) → ¬ϕ(x, y) that is
|= ϕ(x, y) → ∧H(x, y). So ¬ ∧ H(x, y) ∈ ModCon(ϕ). But then M |= ¬H(x, y)[s, t]. We
arrive at a contradiction. Therefore G(x, y) ∪ ϕ(x, y) is satisfiable.
Consider a pointed model (N, u, v) such that N |= G(x, y) ∪ ϕ(x, y)[u, v]. It can now also
be said that (M, s, t) and (N, u, v) are occupational modal equivalent.
Consider two countably saturated elementary extensions (Mω, s, t) and (Nω, u, v) of (M, s, t)

and (N, u, v) respectively. As FOL is invariant under elementary extensions, from N |=
ϕ(x, y)[u, v] we can conclude that Nω |= ϕ(x, y)[u, v]. As we have assumed that ϕ is invariant

© 2021, Indian Statistical Institute, Kolkata



4.8 Characterization of FO Formulas 29

to occupation bisimulation and using Theorem 4.8 we can say that Mω |= ϕ(x, y)[s, t] which
gives us M |= ϕ(x, y)[u, v]. 2

The proof concludes here. 2
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Chapter 5

Occupation Logic: More Properties

5.1 Tree Model Property

Basic modal logic has the tree model property. For any model M , we can construct a
bisimilar model M ′ which has a tree-like structure. Evidently, if any logic has ability to
show the existence of cycle in the frame (W,R) then the logic does not enjoy the tree-model
property. Consider the following fact for occupation logic,

Fact 5.1.1 Consider the class of formulas δn with n ∈ N>0 defined inductively as follows:
δ1 = A pa; δi+1 = A (¬pa ∧ δi).
Let M = (W,R, V ) be a model such that V (pa) = V (pb) = ∅. Then, there exists w ∈ W

such that (M,w,w) |= A A δn if and only if there exists a circuit of length n in the frame
(W,R).

Proof. The formula A A δn has only one occurrence of A modality. As we have V (pa) = ∅
initially, the only poisoned state when we go through the formula is the one poisoned by A .
The formula says that it is possible to go through n non-poisoned states before reaching the
poisoned state. So we can say there exists a cycle of length ≤ n. 2

As a consequence of the above fact, Occupation Logic does not have the tree model
property.

5.2 Finite Model Property

A logic has finite model property if given any formula ϕ, there exists a finite model (a
model with finite number of states) which satisfies the formula. To show the absence of
finite model property, it is enough to come up with a formula which can only be satisfied
by infinite models(models having infinite number of states). Here we show that occupation
logic lacks the finite model property.

Proposition 5.2.1 Occupation Logic does not have the finite model property.

Proof. We provide a formula that can only be satisfied in an infinite model. Let us consider
ϕ = α∧ β ∧ γ ∧ δ ∧ η with the formulas defined below. The idea of using these formulas will
be explained later.
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• α = ¬q ∧ A ∧ A q ∧ A ( A ∧ A ¬q) : The current state falsifies q and all its successors (�
ensures there is atleast one) satisfy q and have in turn successors (at least one) which
all falsify q.

• β = A A A pa: after poisoning a state is reached whose successors can reach the poisoned
state in one step, i.e., all successors of the current state have successors linked via
symmetric edges.

• γ = A A A A (¬q ∧ A pa) ∧ A A ¬ A A pa: after any poisoning a state is reached whose
successors are not reflexive, the right conjunct ensures that, and can reach a ¬q state
which can in turn reach the poisoned state. In simpler terms, all successors of the
current state lay on cycles of length 3.

• δ = A A A A A (q → A pa) all successors of the current state’s successors are such that
after any poisoning, further q-successors can reach back to the poisoned state.

• η = A A A ¬ A (q∧ A (¬q∧ A pa)): all successors of the current state are such that there
is one successor that can be poisoned and such that none of its successors satisfies q
and can reach the poisoned state in two steps via a ¬q state.

Now, let (M,w,w) |= ϕ. Then w is followed by distinct successors w′(α) that have
successors w′′ which are linked back to their predecessors w′ by symmetric edges (implied by
β). These w′′ states also have successors, different from w′ which also have w′ as successor(γ)
and which are also successors of w′(δ). Hence w′′ is followed by an infinite path of distinct
states. Finally there exists one such w′′ which has no other predecessor than w′(η), that is
w′′ is the root of an infinite sequence of distinct states which are all successors of w′. 2

Figure 5.1: A model that satisfies ϕ
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5.3 Decidability

In this section we establish the undecidability of Occupation Logic by reduction from Tiling
problem 3.5.4.
Given: An OL formula ϕ
Problem: Is there a pointed model (M, s, t) with V (pa) = V (pb) = ∅ such that (M, s, t) |=
ϕ.

Theorem 5.3.1 The satisfaction problem for OL is undecidable.

Proof. We reduce the problem of N × N tiling problem to the satisfaction problem. The
tiling problem is described in 3.5.4.

Let T be a finite set of tiles. For a tile t ∈ T , the predicate pt models the fact that t is
placed on the point and the four predicates top(t), right(t), left(t), bottom(t) represent the
four colour of t.
We claim that,

ϕ is satisfiable if and only if T tiles the grid N× N.

To do the proof we will use three relations in the model M = (W,R,R1, R2, V ). Now
we have three modalities for A’s moves A , A

1, A
2 and three poison modalities B , B 1, B 2.

Similarly for B’s moves we extend with B , B 1, B 2 and three poison modalities A , A 1, A 2.
These relations can be reduced to one relation as in our standard model by making use of
arguments in [KW99].

In these formulas, the modality A
1, B 1 represent vertical moves on the grid, the modal-

ities A
2, B 2 represent horizontal moves and the modality A , B moves from any point to

any point on the grid.
Let ϕT = α ∧ β ∧ γ ∧ A (δ1

T ∧ δ2
T ∧ δ3

T ) with α, β, γ, δ1
T , δ

2
t , δ

3
T defined below. For the purpose

of the proof we consider pt ∈ PA∀t ∈ T and qinPA. The formulas are interpreted in the
pointed model (M,w,w).

• α = q ∧ A (¬q ∧ A q) ∧ A B 1 A 1
A (q ∧ A pa) ∧ A B 2 A 2

A (q ∧ A pa)
w satisfies q and its R-successors do not satisfy q and have an edge back to w and the
set of its R-successors is closed under R1 and R2. This formula establishes w as a spy
point which links to all the points on the N × N grid which also link back to the spy
point. It also adds that the set of successors of any grid point reached using the R1

and R2 is always reachable from w using the R relation.

• β =
∧

i=1,2( A A
i ∧ B A A (q → A ( A

ipa → A ipa)))
For all successors of w using the R-relation, the relations R1 and R2 are total functions.
All the points in the grid have one successor to the right and one successor above.

• γ = A A A (q → A ( A 1 A 2¬pa ∨ A 2 A 1pa))
The relations R1 and R2 commute. This formula establishes the grid like structure.
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In a grid the sequence of steps moving to the right and moving above can be done in
any order and we will reach the same grid point.

• δ1
T =

∨
t∈T (pt ∧

∧
t′∈T,t′ 6=t ¬pt′))

At each grid point, we place only one tile t from the finite set of tiles T .

• δ2
T =

∧
t∈T (pt → A 2

∨
t′∈T,left(t′)=right(t) pt)

This formula establishes that any two tiles present vertically, have the same colour on
the common edge.

• δ3
T =

∧
t∈T (pt → A 1

∨
t′∈T,bottom(t′)=top(t) pt)

This formula establishes that any two tiles present horizontally, have the same colour
on the common edge.

• A (δ1
T ∧ δ2

T ∧ δ3
T )

Only one tile is present at each node and horizontal and vertical tiling are correct

Based on the analysis of the formulas which comprise ϕT , all models that satisfy ϕT is
a tiling of N× N
We need to show the other direction of the equivalence. Suppose there is a function f :

N × N → T is a tiling of N × N. Define a model MT = (W,R,R1, R2, V ) in the following
way.

• W := {w} ∪ N× N

• R = For all x ∈ N× N, (w, x), (x,w) ∈ R

• R1 = {((n,m), (n+ 1,m))|n,m ∈ N}

• R2 = {((n,m), (n,m+ 1))|n,m ∈ N}

• V (pt) = {(n,m) ∈ N× N|f(n,m) = t} for all t ∈ T

• V (q) = {w}.

By construction of the model MT , we can check that MT |= ϕT . 2
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Figure 5.2: A model of formula ϕT , R is represented by dotted links, R1 by dashed links
and R2 by plain links. The shadowed state is the spy point w

5.4 Model Checking

Model Checking refers to the problem of given a formula ϕ and a modelM whetherM |= ϕ.
Let ϕ be an occupation logic formula. Consider the model M = (W,R, V ). Let s, t ∈
W . Any model checking algorithm attempts to answer whether (M, s, t) |= ϕ. We give a
recursive algorithm for model checking, prove its correctness. We also give a upper bound
on the time complexity of model checking.

5.4.1 Algorithm for Model Checking

The algorithm 1 is a recursive algorithm that takes as input, the Model M , the states s, t
where the evaluation has to be performed and the formula ϕ. Along with this, since poisoning
of states occur during the evaluation of the formula, we keep track of set of states poisoned
for A and B using the sets poisonA, poisonB, respectively. Initially poisonA = poisonB = ∅.
The algorithm solves the original problem by recursively considering the subformulas. The
proof of correctness of algorithm follows from the algorithm itself since it is a recursive
algorithm.

5.4.2 Upper Bound of Model Checking

Theorem 5.4.1 The upper bound for model checking in Occupation Logic is given by O(|ϕ|.|M |3.2|M |)

Proof. Given a pointed model M, s, t and a formula ϕ the upper bound for model checking
can be established using algorithm1. The recursive algorithm proceeds by finding the answer
of whether M,u, v |= ψ for every sub-formula ψ of ϕ , for all states u, v ∈ W and every
possible subset of poisoned states poisonA, poisonB.

The answers for such sub-problems are stored (memorized). The algorithm 1 does not

© 2021, Indian Statistical Institute, Kolkata



5.4 Model Checking 35

memorize the answers but it can be modified to store the answers by following same tech-
niques used for recursive algorithms as mentioned in [CLRS03]. The time complexity is
contributed by the number of sub-problems involved and the time taken to solve each sub-
problem.
Any sub-problem involves (u, v, ψ, poisonA, poisonB). We calculate the number of sub-
problems by looking at each contributing factor individually.

• The factor of O(|M |2) occurs because, we need to consider pair of states u, v for
evaluating any subformula.

• The factor of O(2|M |) occurs because, whenever we consider any sub-problemM,u, v |=
ψ, we also need to know the set of states poisoned till this step in the algorithm for
subsequent evaluation. The number of possible subsets of M is 2|M | which contributes
to the complexity.

• the factor O(|ϕ|) occurs since we are considering every sub-problem.

Now solving for time complexity of each sub-problem.

• For formulas of the form < A > ψ, where < A >= A , B , A , B , A , B , A , B , we need to
visit the neighbours of the current state which take linear time, O(M) if we use any
standard graph traversal algorithm.

• For formulas of the form ψ ∧ χ, ψ ∨ χ,¬ψ, it takes constant time.

• The propositional variables form the base cases and solving them involves testing for
set membership which can be performed in constant time.

Therefore, the upper bound on time complexity is given by O(|ϕ|.|M |3.2|M |). 2
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Input: Pointed Model M, s, t, formula ϕ, Sets poisonA = ∅, poisonB = ∅
Output: True if formula is satisfiable, otherwise False
Function Check(ϕ,M , s, t,poisonA,poisonB):

if ϕ = pa then
return s ∈ V (pa) ∨ s ∈ poisonA

if ϕ = pb such that p ∈ PA then
return t ∈ V (pb) ∨ t ∈ poisonB

if ϕ = p such that p ∈ PA then
return s ∈ V (p)

if ϕ = p such that p ∈ PB then
return t ∈ V (p)

if ϕ = (ψ ∧ χ) then
return
(Check(ψ,M, s, t, poisonA, poisonB) ∧ Check(χ,M, s, t, poisonA, poisonB))

if ϕ = (ψ ∨ χ) then
return
(Check(ψ,M, s, t, poisonA, poisonB) ∨ Check(χ,M, s, t, poisonA, poisonB))

if ϕ = ¬ψ then
return ¬Check(ψ,M, s, t, poisonA, poisonB)

if ϕ = A ψ then
for each successor r of s do

if Check(ψ,M, r, t, poisonA, poisonB) == False then
return false

return True

if ϕ = A ψ then
for each successor r of s do

if Check(ψ,M, r, t, poisonA, poisonB) == True then
return True

return False

if ϕ = B ψ then
for each successor r of s do

if Check(ψ,M, r, t, poisonA ∪ {r}, poisonB) == False then
return False

return True

if ϕ = B ψ then
for each successor r of s do

if Check(ψ,M, r, t, poisonA ∪ {r}, poisonB) == True then
return True

return False

/* The logic for B ϕ, B ϕ, A ϕ, A ϕ follow similarly */
return

Algorithm 1: Model Checking Problem
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Chapter 6

CONCLUSION

In this work, the initial goal was to develop a logic, for discussing about the Occupation
Game. Towards the goal, we have developed occupation logic and study its logical properties
in depth. We give a brief summary of the topics discussed and give scope and directions for
future work.

6.1 Summary

Chapter 1 gives a introductory view of games in general, how their mathematical analysis is
beneficial and introduces the topic of study of the thesis, the occupation game. This work is
expanded upon in Chapter 2 which discusses poison game, a simplified version of occupation
game and compares the similarities and differences between the two. The terminology that
will be used for further discussion is also introduced.

A brief discussion of modal logic follows in Chapter 3. Since occupation logic is an
extension of modal logic, the chapter serves as an overview of the properties of modal logic
that will be investigated for the new logic introduced. Chapter 4 and Chapter 5 studies
Occupation Logic in depth. The following topics are discussed, among others.

• Occupation Bisimulation

• Finite Model Property(FMP)

• Decidability

• Model Checking

6.2 Future Work

The logic introduced is very expressive and is undecidable. An advantage of reducing the
expressivity of the logic is that we might obtain a logic that is decidable, and thus may be
of practical use. Such a logic can also allow us to find certain decidable fragments of FOL.
Another direction of study can be in establishing tighter lower bounds for model checking.
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