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Abstract

Extremal graphs are graphs which sit at the extremes. In simpler words for a class of
graphs which satisfy a certain property, extremal graphs are the ones which exhibit a
minimum or maximum of that property. Here, we take a look at a property which is
exhibited by any graph in general; δα ≤ ∆µ, where δ is the minimum degree of the
graph, α is the size of the maximum independent set, ∆ is the maximum degree, and
µ is the size of the maximum matching of the graph. We first look at non-regular
extremal graphs and regular extremal graphs (with degree 2 and 3) with respect to
the above property as characterized by Mohr and Rautenbach. Later we try our hand
at characterizing the regular extremal graphs using a general graph decomposition
given jointly by Edmonds and Gallai. In doing so, we obtain a new proof for Mohr
and Rautenbach’s characterization of 3-regular extremal graphs and we believe our
approach can be easily adapted to characterize k-regular extremal graphs for values
of k ≥ 3.
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Chapter 1

Definitions

• Let G(V,E) be an undirected graph where V is the set of vertices, and E is the
set of edges.

• For X ⊆ V , let G[X] be the induced subgraph formed by the vertex set X in
G.

• Let δ and ∆ be defined as the minimum and maximum degree of the graph
respectively.

• Let α be defined as the size of a maximum independent set in the graph.

• Let µ be defined as the size of a maximum matching in the graph.

• An odd component is a connected component with an odd number of vertices.

• An even component is a connected component with an even number of vertices.

• For X ⊆ V , let odd(X) be the number of odd components in the graph G[V \X].

• We call a graph G(V,E) as hypomatchable if for every vertex v ∈ V , G[V \ v]
has a perfect matching.

• For X ⊆ V , let α(X) be the size of a maximum independent set in G[X].

• For X ⊆ V , let µ(X) be the number of edges in a maximum matching of G[X].
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Chapter 2

Previous Work

2.1 Introduction

Caro, Davila and Pepper [1] showed the following theorem.

Theorem 1. δα ≤ ∆µ for any graph G, where δ is minimum degree, ∆ is maximum
degree, α is the independence number, and µ is the matching number.

They asked for which graphs the above inequality becomes an equality. Mohr and
Rautenbach [3] give a simplified proof of Theorem 1 and characterize all non-regular
graphs that achieve equality. They further characterize all regular graphs of degree
at most 3 that achieve equality.
Note that the independence number can be arbitrarily larger or smaller than the
matching number in general. For example, the complete graph has α = 1 and µ = bn

2
c,

and on the other extreme, the star graph has α = n− 1 and µ = 1.

2.2 Non-regular Extremal Graphs

For δ < ∆, where both are positive integers, a bipartite graph is (δ,∆)-regular if it
has partite sets A and B, s.t. every vertex in A has degree δ and every vertex in B
has degree ∆.

Theorem 2 (Mohr and Rautenbach). For non-regular graphs, the equality δα(G) =
∆µ(G) holds if and only if the graph is bipartite and (δ,∆)-regular.
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2.3. Regular Extremal Graphs 5

2.3 Regular Extremal Graphs

Claim 2.1. For every regular graph G, it follows from Theorem 1 that α(G) ≤ µ(G).
So every component C of a regular graph G having α(G) = µ(G) will have α(C) =
µ(C).

Proof: Let there be some component C1 such that α(C1) < µ(C1). Since α(G) =
µ(G), there needs to be another component C2 such that α(C1) > µ(C1), which is a
contradiction. �

Therefore we only need to characterize connected regular graphs G having α(G) =
µ(G).

2.3.1 2-regular extremal graphs

Since the connected 2-regular graphs are exactly the cycles, the equality α(G) = µ(G)
holds for all of them.

2.3.2 3-regular (cubic) extremal graphs

Before looking at cubic graphs which satisfy the above equality, we’ll look at a sub-
structure of these graphs, which Mohr and Rautenbach call a bubble graph.

Bubble graph

A graph G is a bubble with contact vertex z, and partition (I, R) if the vertex set of
G can be partitioned into two sets I and R such that:

• Every vertex in V (G)− z has degree 3 and z has degree 2.

• I is independent, and

• z lies in R and G[R] contains exactly one edge.

Properties of a bubble graph G with partition (I, R) and contact vertex z:

• Not bipartite.

• |R| = |I|+ 1; therefore, |I| = (|V (G)| − 1)/2

• α(G) = α(G − z) = µ(G) = µ(G − z) = (|V (G)| − 1)/2, i.e even if we omit z,
it does not reduce the values of α and µ.

• If G is not 2-connected, then some induced subgraph G′ of G is also a bubble
with partition (I ′, R′) such that I ′ ⊆ I and R′ ⊆ R.
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Figure 2.1: Examples of a bubble graph (picture taken from [3]). For each example,
the top-most vertex is the contact vertex z, the encircled vertices belong to the
independent set I and the remaining vertices belong to the vertex set R.

Special graph

This is the type of cubic graph which satisfies the equality. A graph is special if it is
connected, cubic and its vertex set G can be partitioned into sets V0, V1, . . . , Vl such
that:

• The graph G[V0] is a non-empty bipartite graph with partite sets I0 and R0

such that every vertex in R0 has degree 3 in G[V0], and

• For every i ∈ {1, 2, . . . , l}, the graph G[Vi] is a 2-connected bubble.

For each bubble G[Vi], the contact vertex z has degree 2 inside the bubble. Since
the graph is connected and cubic, the contact vertex z must have an edge outside
the bubble to which it belongs. If such an edge goes to the contact vertex of another
bubble, the fact G[V0] is non-empty will make these 2 bubbles disconnected from the
rest of the graph, which is contradiction. Therefore the edge from contact vertex z
must go inside G[V0] and inside I0 to be precise, since every vertex in R0 has degree
3 in G[V0].
An example of a special graph can be seen in Figure 2.2

Theorem 3 (Mohr and Rautenbach). A connected cubic graph G satisfies α(G) =
µ(G) if and only if it is special.
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Figure 2.2: Example of a special graph (picture taken from [3]).



Chapter 3

Gallai-Edmonds Decomposition

The Gallai-Edmonds decomposition [4, 2] of a graph describes the structure of maximum
matchings in the graph. In this decomposition, the vertex set of a graph G(V,E) is
partitioned or decomposed into three sets, A, B and C, where:

• A is the set of vertices such that ∀v ∈ A, there exists a maximum matching in
G that does not cover v.

• B is defined to be the set of vertices in V \ A such that for a vertex v ∈ B,
there exists an edge (u, v) ∈ E such that u ∈ A. In other words, B is the set of
neighbours of the vertices in set A that lie outside A.

• C = V \ (A ∪B), i.e the set of remaining vertices.

Observation 1. If a graph G has a perfect matching, then A is empty.

Such a decomposition exhibits the following properties:

• Each odd component in G[V \B] is hypomatchable.

• The vertices belonging to the odd components of G[V \ B] are exactly the
vertices of the set A.

• Each even component of G[V \B] has a perfect matching.

• The vertices belonging to the even components of G[V \ B] are exactly the
vertices of the set C.

• For every X ⊆ B, X has neighbours in greater than |X| odd components
of G[V \ B]. This implies that B has neighbours in greater than |B| odd
components of G[V \B].

8



3.1. Construction of a maximum matching 9

Theorem 4. There exists a matching in G which matches every vertex of the set B.

Proof:
Since for every X ⊆ B, X has vertices in greater than |X| number of odd components
of G[V \B], according to Hall’s theorem, there exists a matching covering every vertex
of B, where each vertex of B is matched to a vertex inside a unique odd component.
�

Theorem 5 (Tutte’s theorem [4]). For a graph G(V,E), a perfect matching exists if
and only if for all X ⊆ V , odd(X) ≤ |X|.

Corollary 1. For a graph G(V,E), if there exist X ⊆ V such that odd(X) > |X|, a
perfect matching for G does not exist. Moreover, for any matching M in G, at least
odd(X)− |X| vertices will remain unmatched.

Tutte set. If for some X ⊆ V , we have odd(X) > |X|, we call X a Tutte set of the
graph.

3.1 Construction of a maximum matching

Using properties of the Gallai-Edmonds decomposition, we can construct a matching
M for a graph G where:

• Each vertex in an even component of G[V \ B] is matched to another vertex
in the same component; i.e. M restricted to an even component is a perfect
matching of that even component (this is possible since every even component
has a perfect matching).

• Each vertex in B is matched to a vertex in a unique odd component of G[V \B]
(this is possible by Theorem 4).

• For each odd component Q such that there exist v ∈ Q that is matched by M
to a vertex of B, M restricted to G[Q \ v] is a perfect matching (this is possible
since the odd components are hypomatchable).

• For each odd component Q which does not contain a vertex matched to some
vertex in set B, M restricted to G[Q] is a matching of size (|Q| − 1)/2, i.e
all but one vertex are matched (this is possible since the odd components are
hypomatchable).

In this matching, all the even components have a perfect matching, thus all the
vertices in C are matched. All vertices of B are also matched. All the vertices in |B|
odd components are matched. And all but one vertex in each of odd(B) − |B| odd
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components are matched. Thus, except odd(B) − |B| vertices, all other vertices are
matched. Thus |M | = (n− (odd(B)− |B|))/2.
Lets call a matching with this structure a “Gallai-Edmonds Matching”.
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Claim 3.1. A matching M is a maximum matching if and only if it is a Gallai-
Edmonds matching.

Proof:

1. Let M be a Gallai-Edmonds matching for a graph G. We know that |M | =
(n − (odd(B) − |B|))/2. Since odd(B) > |B|, B is a Tutte set [2]. i.e. any
matching M ′ in G will leave at least odd(B)− |B| vertices as unmatched. This
implies for any matching M ′ in G, |M ′| ≤ (n − (odd(B) − |B|))/2. Thus M is
a maximum matching.

2. Let M be a maximum matching. As explained above |M | ≤ (n − (odd(B) −
|B|))/2 for a graph G. As a Gallai-Edmonds matching has size equal to (n −
(odd(B)−|B|))/2 andM is a maximum matching, we have |M | = (n−(odd(B)−
|B|))/2. Since B is a Tutte set, odd(B) − |B| vertices in A are unmatched by
M , and these vertices belong to distinct odd components of G[V \ B]. Since
|M | = (n − (odd(B) − |B|))/2, every other vertex is matched by M . Then all
the vertices in at least |B| odd components of G[V \ B] are matched by M .
This means that a vertex in each of these components is matched to B. Thus
each vertex in B is matched by M to a vertex in a unique odd component of
G[V \ B]. Further, we can conclude that M restricted to an odd component
of G[V \ B] is a matching that matches every vertex except one. Since every
vertex in B is matched to a vertex in A, every vertex in C must be matched to
another vertex in C. This implies that M restricted to an even component of
G[V \B] is a perfect matching. Thus M is a Gallai-Edmonds matching.

�

Note that every graph has canonical sets A, B, and C, i.e. these sets are defined
according to the above rules as soon as a graph is defined. We’ll hereafter look at a
graph from the viewpoint of this decomposition.
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3.2 Our Observations

Claim 3.2. If a graph G contains a perfect matching, then α(G) ≤ µ(G).

Proof: Let M be a perfect matching of G. Then |M | = µ(G). Every vertex of G is
contained in some edge of M and any independent set of G can contain at most one
vertex from each edge of M . Thus α(G) ≤ |M | = µ(G). �

Claim 3.3. If G has a perfect matching, is k-regular and α = µ, then G is bipartite
k-regular graph.

Proof: Let M be a maximum matching in G of size n/2. Since every vertex of G is in
some edge ofM , every maximum independent set of size n/2 needs to contain exactly
one vertex from each edge of M . Let us consider one such independent set I of size
n/2. Since I is independent, all edges from the vertices of I go into the set V \ I.
Thus a total of kn/2 edges go from I to V \ I. However |V \ I| is also n/2, and thus
the total degree of the vertices in V \ I, which is kn/2, is used up for absorbing the
kn/2 edges coming from I. This implies that there does not exist an edge between
two vertices of V \ I, which means that V \ I is also an independent set. Therefore
G is a bipartite k-regular graph. �

Note: Every bipartite k-regular graph has a perfect matching. Thus by Claim 3.3,
the k-regular graphs containing a perfect matching and having α = µ are exactly the
bipartite k-regular graphs. Therefore, from this point on we’ll assume that G is a
graph without a perfect matching. Note that if G does not have a perfect matching,
then A 6= ∅, and consequently the sets B and C are well-defined.

Claim 3.4. For each even component P of G[V \B], α(P ) ≤ µ(P ).

Proof: Since we know that every even component of G[V \B] has a perfect matching,
by Claim 3.2, α(P ) ≤ µ(P ). �

Corollary 2. Since the set C of a graph is made up of the vertices of the even
components of G[V \ B], it follows from Claim 3.4 that, the size of the maximum
independent set of G[C] is less than or equal to the size of its maximum matching,
i.e. α(C) ≤ µ(C).
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Claim 3.5. For each odd component Q of G[V \B] of size > 1, α(Q) ≤ µ(Q)

Proof: Let the odd component Q have nq vertices, with independence number α(Q)
and matching number µ(Q). Since every odd component ofG[V \B] is hypomatchable,
µ(Q) = (nq − 1)/2, i.e. the maximum matching of Q consists of (nq − 1)/2 matching
edges. Suppose for the sake of contradiction that α(Q) > µ(Q) = (nq − 1)/2, i.e.
α(Q) ≥ (nq + 1)/2. Consider an independent set I of Q such that |I| = α(Q) ≥ (nq +
1)/2. Since |V (Q)| > 1, there exists a vertex u ∈ V (Q)\I. Since Q is hypomatchable,
G[V (Q) \ {u}] contains a perfect matching, say M . Since |V (Q) \ {u}| = nq − 1, we
have |M | = (nq− 1)/2. But now I is an independent set of G[V (Q) \ {u}] having size
more than |M |, which contradicts Claim 3.2. �

Claim 3.6. If G is k-regular then α(A ∪B) ≤ µ(A ∪B).

Proof: LetM be any maximum matching of G[A∪B]. Then by Claim 3.1, every vertex
of B will be matched inM to a vertex in a unique odd component of G[V \B], andM
will match every vertex except one in each odd component. LetM ′ ⊆M be the edges
that have exactly one endpoint in B. We know that |M ′| = |B|. Let M ′′ = M \M ′.
The edges of M ′′ have both endpoints inside an odd component of G[V \B]. Let I be
any maximum independent set of G[A∪B]. Let D denote the set of odd components
G[V \ B] of size more than 1. Let X ∈ D. By Claim 3.1, |M ′′ ∩ E(X)| = µ(X).
By Claim 3.5, we know that α(X) ≤ µ(X), and therefore |I ∩ X| ≤ |M ′′ ∩ E(X)|.
Let S be the set of vertices that form singleton odd components of G[V \ B]. Let
|I ∩ S| = t. Since G is k-regular, the t vertices in I ∩ S have at least t neighbours in
B. This means that |I ∩ B| ≤ |B| − t. So |I ∩ (S ∪ B)| ≤ |B| = |M ′|. Since in each
odd component X ∈ D, we have |I ∩X| ≤ |M ′′ ∩ E(X)|, we now have α(A ∪ B) =
|I| =

∑
X∈D |I ∩X|+ |I ∩ (S ∪B)| ≤

∑
X∈D |M ′′ ∩E(X)|+ |M ′| = |M | = µ(A∪B).

�

Claim 3.7. For a k-regular graph G(V,E) with α = µ, the vertices that form the
singleton odd components of G[V \B] are not part of any maximum independent set.

Proof: Since G is k-regular and α = µ, Corollary 2 and Claim 3.6 imply that α(A ∪
B) = µ(A ∪ B) and α(C) = µ(C). Let I be a maximum independent set of G.
Clearly, |I ∩ (A ∪ B)| ≤ α(A ∪ B) = µ(A ∪ B) and |I ∩ C| ≤ α(C) = µ(C). Thus
α = |I| = |I ∩ (A∪B)|+ |I ∩C| ≤ α(A∪B) +α(C) = µ(A∪B) +µ(C) = µ (the last
equality follows from Claim 3.1). Since α = µ, we then have |I ∩ (A∪B)|+ |I ∩C| =
α(A∪B) +α(C). As |I ∩ (A∪B)| ≤ α(A∪B) and |I ∩C| ≤ α(C), this implies that
|I ∩ (A ∪B)| = α(A ∪B) and |I ∩ C| = α(C). Let us denote I ∩ (A ∪B) by I ′.
Let S be the set of vertices that form singleton odd components of G[V \B]. Let M
be a maximum matching of A∪B. Then |M | = µ(A∪B). Let M ′ ⊆M be the edges
that have exactly one endpoint in B. We know by Claim 3.1 that |M ′| = |B|. As
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α(A ∪ B) = µ(A ∪ B), we have |I ′| = |M |. Let T = I ′ ∩ S and |T | = t. Since G is
k-regular, T has at least t neighbours in B, which we denote by the set NB(T ).
Suppose that t ≥ 1. If |NB(T )| = t, then since G is k-regular, T ∪ NB(T ) forms a
connected component of G. Since G is connected, there are no other vertices in G,
which implies thatG is a k-regular bipartite graph on 2t vertices. ThenG has a perfect
matching, contradicting our assumption that G does not have a perfect matching.
Thus we can conclude that |NB(T )| > t. Since T ⊆ I ′, we have NB(T ) ∩ I ′ = ∅,
which implies that |I ′ ∩ B| < |B| − t. So |I ′ ∩ (S ∪ B)| = |I ′ ∩ S| + |I ′ ∩ B| <
t + |B| − t = |B| = |M ′|. Let M ′′ = M \M ′. Since |I ′ ∩ (S ∪ B)| < |M ′|, we have
I ′ \ (S ∪B)| > |M ′′|. This implies that there exists an odd component X of G[V \B],
that is not a singleton component, in which |I ′ ∩X| > |M ′′ ∩X|. But for each such
component X, by Claim 3.1, |M ′′∩X| = µ(X). Thus α(X) ≥ |I ′∩X| > µ(X), which
contradicts Claim 3.5. Thus we can conclude that t = 0, or in other words, T = ∅. �

Corollary 3. For a k-regular graph G(V,E) with α = µ, all the vertices in set B are
part of the maximum independent set. This also implies that set B is an independent
set.

Proof: Consider any maximum independent set I of G and maximum matching M of
G. We have |I| = |M |. Let M ′ ⊆ M be the edges of M that are incident to vertices
of B and let M ′′ = M \M ′. By Claim 3.1, |M ′| = |B|. Since |I ∩ X| ≤ |M ′′ ∩ X|
in every non-singleton odd component X of G[V \ B] (by Claim 3.5), and I ∩ S = ∅
(here, S is the set of vertices that form singleton odd components of G[V \ B]), we
have |I ∩B| ≥ |M ′| = |B|, which implies that |I ∩B| = |B|. Thus B ⊆ I. �

Claim 3.8. For a graph G(V,E) with maximum independent set I and maximum
matching M , if α = µ, then

• |M ∩ E(A ∪B)| = µ(A ∪B) = α(A ∪B) = |I ∩ (A ∪B)|

• |M ∩ E(C)| = µ(C) = α(C) = |I ∩ C|

• For each even component X of G[V \B],

|M ∩ E(X)| = µ(X) = α(X) = |I ∩ V (X)| = |V (X)|/2

• For each odd component P of G[V \B], where |V (P )| > 1,

|M ∩ E(P )| = µ(P ) = α(P ) = |I ∩ V (P )| = |(V (P )− 1)/2|

Proof: Let I be a maximum independent set in G, and M be a maximum matching
in G. Since α = µ, then |I| = |M |. Let M ′ ⊆ M be the edges in M that have both
endpoints in A∪B. Let M ′′ = M \M ′. Then by Claim 3.1, M ′′ contains the edges in
M that have both endpoints in C. Also by Claim 3.1, it follows thatM ′ is a maximum
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matching in A ∪B and M ′′ is maximum matching (in fact a perfect matching) in C.
Thus |M ′| = µ(A ∪ B) and |M ′′| = µ(C). Let I ′ = I ∩ (A ∪ B). Let I ′′ = I \ I ′, i.e.
I ′′ = I ∩ C. By Claim 3.6, it implies that |I ′| ≤ α(A ∪ B) ≤ µ(A ∪ B) = |M ′|. By
Corollary 2, it implies that |I ′′| ≤ α(C) ≤ µ(C) = |M ′′|. We know that |I| = |M |,
which can also be written as |I ′| + |I ′′| = |M ′| + |M ′′|. Therefore |I ′| = |M ′| and
|I ′′| = |M ′′|. This implies that |I ′| = α(A ∪B) = µ(A ∪B) and |I ′′| = α(C) = µ(C).
Let D be the set of even components in G[V \B]. For each even componentX ∈ D, let
MX ⊆M ′′ be the edges in M ′′ that have both endpoints in component X. Therefore
M =

⋃
X∈DMX . i.e M ′′ is partitioned into sets MX of all even components. Since

|M ′′| is a perfect matching in C, this implies that for each X ∈ D, MX is a perfect
matching in X, and |MX | = µ(X). For each even component X ∈ D, let IX =
I ′′ ∩ V (X). i.e. I ′′ is partitioned into sets IX of all even components. Since for
each X ∈ D, X is an even component and MX is a perfect matching in it, we have
|MX | = |V (X)|/2. Claim 3.2 implies that for each X ∈ D, |IX | ≤ |MX |. We know
that |I ′′| = |M ′′|, which can also be written as

∑
X∈D |IX | =

∑
X∈D |MX |. Therefore,

for each X ∈ D, |IX | = |MX | = |V (X)|/2, which implies that |IX | = α(X) and
α(X) = µ(X).
Let MA ⊆ M ′ be the edges in M ′ that have both endpoints in A. Thus MA =
M ′∩E(A). By Claim 3.1, MA is a maximum matching in A. Thus |MA| = µ(A). Let
IA = I ′ ∩ A. Since |I ′| = |M ′|, and all vertices of B are included in I ′ (Corollary 3)
and are matched by M ′ (Claim 3.1), we have that |IA| = |MA|. Let T be the set
of odd components in G[V B] of size > 1. For each odd component P ∈ T , let
MP ⊆MA be the edges in MA that have both endpoints in component P . Therefore
MA =

⋃
P∈T MP . i.e. MA is partitioned into sets MP of all components in T . Since

MA is a maximum matching in A, this implies that for each P ∈ T ,MP is a maximum
matching in P , and |MP | = µ(P ). For each component P ∈ T , let IP = IA ∩ V (P ),
i.e. IA is partitioned into sets IP of all components in T . Since for each P ∈ T ,
P is an odd component of size > 1 and MP is a maximum matching in it, we have
|MP | = |(V (P )−1)/2|. Claim 3.5 implies that for each P ∈ T , |IP | ≤ |MP |. We know
that |IA| = |MA|, which can also be written as

∑
P∈T |IP | =

∑
P∈T |MP |. Therefore

for each P ∈ T , |IP | = |MP | = |(V (P ) − 1)/2|, which implies that |IP | = α(P ) and
α(P ) = µ(P ). �

Claim 3.9. For a k-regular graph G(V,E) with α = µ, there does not exist any even
component in G[V \B].

Proof: Let I be a maximum independent set in G, and M be a maximum matching
in G. Let D be the set of even components of G[V \ B]. Let M ′ = M ∩ E(A ∪ B),
I ′ = I ∩ (A ∪ B), M ′′ = M \M ′, I ′′ = I \ I ′, and for each even component X of
G[V \B], let MX = M ′′ ∩ E(X) and IX = I ′′ ∩ V (X). Then by Claim 3.8:

• |M ′| = |M ∩ E(A ∪B)| = µ(A ∪B) = α(A ∪B) = |I ∩ (A ∪B)| = |I ′|
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• |M ′′| = |M ∩ E(C)| = µ(C) = α(C) = |I ∩ C| = |I ′′|

• For each even component X of G[V \B],

|MX | = |M ′′ ∩ E(X)| = µ(X) = α(X) = |I ′′ ∩ V (X)| = |IX | = |V (X)|/2

Since G is k-regular, with α = µ, by corollary 3, all the vertices in set B are part of
the maximum independent set I. Thus for all X ∈ D, there does not exist an edge
between IX and B. Since G is k-regular and |IX | = |V (X)|/2, IX has k|V (X)|/2
edges into V (X) \ IX . Then the degrees of all the vertices in V (X) \ IX are used up
to capture these edges, which implies that V (X) \ IX cannot have any edges into B.
ThusX is a connected component in G, disconnected from B, which is a contradiction
to our assumption that G is connected.
Therefore there does not exist any even component in G[V \B]. �

Claim 3.10. For a 3-regular graph G(V,E) with α = µ, each odd component Q of
G[V \ B] of size > 1 is either a bipartite graph with 3 neighbours in B, or a bubble
graph with 1 neighbour in B. Moreover, in the former case all the neighbours of B
lie in one partite set of Q, and in the latter case, the contact vertex of the bubble is
the only neighbour of B in Q.

Proof: Since α = µ, then Corollary 2 and Claim 3.6 imply that α(A∪B) = µ(A∪B)
and α(C) = µ(C).
Since α(A∪B) = µ(A∪B), every maximum independent set contains B (Corollary 3)
and every vertex in B is matched by any maximum matching (Claim 3.1), we have
that α(A) = µ(A). By Claim 3.5, this implies that for each odd component Q,
α(Q) = µ(Q). Let Q be an odd component with nq vertices. Let I be a maximum
independent set in G and let IQ = I∩V (Q) By Claim 3.8, |IQ| = (nq−1)/2. Corollary
3 implies that there does not exist an edge between the sets IQ and B. Since G is
3-regular, there are exactly 3(nq − 1)/2 edges going from IQ into V (Q) \ IQ. Since
|V (Q) \ IQ| = (nq + 1)/2, the total degree of vertices in V (Q) \ IQ is 3(nq + 1)/2 and
3(nq − 1)/2 edges from IQ need to be absorbed by V (Q) \ IQ, the set V (Q) \ IQ has
a “free” degree of only 3. Since there is at least one edge from Q to B, and there are
no edges from IQ to B, there can only be two cases:

• Either V (Q) \ IQ has exactly 3 neighbours in B, and hence V (Q) \ IQ is an
independent set, making Q a bipartite graph such that all neighbours of B in
Q lie in one of the partite sets,

• or V (Q) \ IQ has exactly 1 neighbour in B, and there is one edge between two
vertices of V (Q) \ IQ. Hence Q is a bubble graph. The vertex of V (Q) \ IQ that
has an edge to B is the contact vertex of the bubble and that vertex is the only
neighbour of B in Q.
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�

We are now ready to give our new proof for the theorem of Mohr and Rautenbach.

Theorem 6 (Mohr-Rautenbach). For a graph G(V,E), if G is 3-regular with α = µ,
then G is a special graph.

Proof:
We only give a proof for the forward direction, since the proof for the backward
direction is rather straightforward. If G has a perfect matching, then by Claim 3.3, G
is a bipartite k-regular graph. Then we can set V0 = V (G) and there are no bubbles.
Thus G is a special graph. So let us assume that G has no perfect matching. Then
G has a Gallai-Edmonds decomposition in to the sets A,B,C as defined before. By
Claim 3.9, we know that C = ∅. By Corollary 3, B is an independent set. By
Claim 3.10, each odd component of G[V \ B] that has size > 1 is either a bipartite
graph such that all neighbours of B lie in one partite set or a bubble such that the
only neighbour of B in it is its contact vertex. Let P denote the odd components in
G[V \B] that are bipartite graphs and let Q denote the remaining odd components.
Clearly, the singleton odd components of G[V \ B] belong to P . Define V0 = B ∪⋃

P∈P V (P ). Now it can be easily seen that G[V0] is a bipartite graph. Suppose
Q = {Q1, Q2, . . . , Ql}. We set V1 = V (Q1), V2 = V (Q2), . . . , Vl = V (Ql). Then by
Claim 3.10, for each i ∈ {1, 2, . . . , l}, G[Vi] is a bubble and the contact vertices of
these bubbles are adjacent to vertices in one partite set of G[V0] (since the set B is
contained in one partite set of G[V0]). Note that it is possible that G[Vi] for some
i ∈ {1, 2, . . . , l} is a bubble, but is not a 2-connected bubble. Mohr and Rautenbach
observe that if a bubble with partition (I, R) (where I is the independent set) is not
2-connected, then there exists I ′ ⊆ I and R′ ⊆ R such that (I ′, R′) is also a bubble.
Then the subgraph of the bubble induced by the vertices in (I \ I ′) ∪ (R \ R′) form
a bipartite graph, and these vertices can be added into V0 without affecting the fact
that G[V0] is a bipartite graph (since I \ I ′ will go into the same partite set as B
in G[V0], the contact vertex of the bubble (I ′, R′) will again have an edge into the
partite set of G[V0] that contains B). Thus G is a special graph. �
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