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Abstract

We consider the problem of clustering observations xi ∈ Rd, i = 1, ..., n into k
possible clusters. We are mainly interested in clustering in the presence of outliers,
where classical clustering algorithms face challenges.

In the framework of center-based clustering that uses seeding method to initial-
ize centroid and update the centroid in each iterations, we proposed the method
of Modified k-Means clustering. In Modified k-Means method, we introduce a new
sampling method for initialize the centroids where the Robust k-Means++ method
[1] has been tweaked in a straightforward and understandable way and a new cen-
troid update strategy for avoiding the effect of outlier during centroid update stage.
Now use this Modified k-Means algorithm as building blocks we proposed Robust
center-based clustering algorithm that provides outlier detection and data cluster-
ing simultaneously. The proposed algorithm consists of two stages. The first stage
consists of Modified k-Means process, while the second stage iteratively remove the
points which are far away from their cluster center. The experimental results suggest
that our method has out performed this Robust k-Means++ [1] and also TMK++
[2] and local search (LSO) [3] on real world and synthetic data.

Keywords : Robust center-based clustering, k-Means clustering, Outliers, Robust
k-Means++, TMK++, LSO.
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Chapter 1

Introduction

1.1 Introduction

Among the center-based clustering method, k-Means algorithm is a widely used
tool in data analysis and an important method in statistics and unsupervised learn-
ing. The objective of the k-Means clustering is to find k disjoint partitions such
that the Sum of Squared Error (SSE) is minimized. More formally, given a set
X ⊆ Rd of n points and number of cluster k, the k-Means objective is to find a set
C = {c1, ..., ck} ⊆ Rd of k centers and respective k disjoint partitions that minimizes∑n

i=1

∑k
j=1 ||xi − cj||22. The variation of the k-Means algorithm for kernel methods

and Bregman divergence are widely used methods in pattern recognition. The most
popular algorithm that try to give approximate solution for the NP-hard k-means
objective is Lloyd’s method [4] which is originally a vector quantization technique in
signal processing. Lloyd’s method [4] is a simple, fast heuristic that starts with any
random solution and iteratively converges to a local minima. Understanding the im-
portance of the k-means algorithm, Lloyd’s method as one of the top ten algorithms
used in data mining [5]. However, this method does not provide any theorytical
guarantee on the quality of the solution and sometimes it takes exponenital number
of iteration for converge to a local minima.

But the k-Means algorithm suffers from two major problems – (a) the objective
function itself is highly delicate to outliers and, (b) the k-Means method does not
have a good seeding strategy that is not picked outliers as a center of one cluster.

The mean is not a robust statistic that means even a single outlier can change
the mean arbitrarily. In that sense, the k-Means objective function is highly delicate
to outliers. Although median is robust but the compution of geometric median in
high dimension is a non-trivial computational problem [6].

To deal with these problems, several methods have been proposed. Trimmed
k-Means method [7] which optimize k-means objective but in a different way, it
minimizes the objective on a specific subset of the data points. Random sampling is
a popular seeding but sometimes it ended up non desireable clusters. To takle this
problem k-Means++ [8] is proposed. Based on this algorithm Bahman Bahmani
and Olivier Bachem proposed its faster, scalable versions [9, 10] respectively which
are provide good initialization. The k-means++ initialization which is based on
D2 sampling, has a high probability of selecting outliers as centers. A new method
to tackle this problem is the Robust k-Means++ algorithm [1], which use convex

8



1.2. OUR CONTRIBUTION

combination of D2 and uniform sampling.

Therefore with this noise sensitive objective function and noise sensitive intial-
ization, k-Means algorithm gives a poor quality clustering on noisy data. Our work
address this issue positively by improving the k-Means algorithm to make it robust to
outlier by introducing a centroid initialization where the Robust k-Means++ method
[1] has been tweaked in a straightforward and understandable way and update the
centroids in a robust manner. We also proposed Robust center-based clustering
algorithm which cluster the data using this Modified k-Means and simultaneously
removes points far from the currently estimated centroids.

1.2 Our Contribution

The following is a list of our contributions.

• We have proposed Modified k-Means algorithm which is the improved version
of the k-Means algorithm to make it robust to outlier by by introducing a
centroid initialization strategy and update the centroids in robust fashion.

• We also proposed Robust center-based clustering algorithm which cluster the
data using this Modified k-Means and simultaneously removes points far from
the currently estimated centroids.

• We have also provided the performance evaluation of our scheme. We have
compared our method with the Robust k-Means++ method [1] , TMK++ [2]
and LSO [3] on real world as well as synthetic data sets.

• We have also provide a detailed complexity analysis of our method.

1.3 Thesis Outline

The remainder of the thesis is coordinated as follows. In Chapter 2, we briefly discuss
about the preliminaries and clustering with outliers. In Chapter 3, we discuss about
the background related to our work. Chapter 4, describes the detailed construction
of our scheme. In Chapter 5, we give a detailed performance analysis of our scheme.
In Chapter 6, we summarize the work done and discuss about the future directions
related to our work.
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Chapter 2

Preliminaries

2.1 Notations

We consider X = (xij) ∈ Rn×d to be our data set in matrix format where xi
represents the ith observation (row) and Xj represents the jth feature (column).
Here n is the number of observations and d is the number of features. We consider
k clusters and the set of cluster centers {c1, ..., ck} , where ci ∈ Rd . The kth cluster
is represented by Ck and kth cluster center is represented by ck. Vk denotes variance
of the cluster k where the cluster variance is defined as the sum not the average of
the squared distances between cluster members and center. δik is a cluster indicator
variable with δik = 1 if xi belongs to Ck and 0 otherwise.

2.2 The k-Means Algorithm

To partition a data set X into k disjoint clusters, k-Means [11] minimizes the sum
of intra-cluster variances (2.1).

k∑
j=1

Vj =
n∑
i=1

k∑
j=1

δij||xi − cj||22 (2.1)

where

ck =

∑n
i=1 δikxi∑n
i=1 δik

(2.2)

2.3 Clustering with the presence of outliers

Even though k-means problem is very much examined, but the algorithms which
solve it approximately can perform poorly on real-world data. The reason for it
that the k-means objective expects that all of the points can be normally partitioned
into k disjoint groups, which is frequently an unreasonable presumption practically
speaking. Real-world data comes with a lot of outliers, and the k-means method is
highly delicate to it. Outliers can definately change the quality of clustering and
consider this into account when designing algorithms for the k-means objective.

To handle the data with outliers, the problem of kmeans with outliers is proposed.
In this form of the problem, the clustering objective stays same as before, however
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2.4. CLASSICAL MULTIVARIATE OUTLIER DETECTION REVIEW

the algorithm is furthermore permitted to remove a small set of points from the
input data. These discarded points are marked as noise and are overlooked in the
objective and in this way allowing the clustering algorithm to focus on correctly
clustering the data which is noise-free. Applying the k-means method and listing
the top L points that are the farthest distant from their nearest cluster centres as
outliers is a basic technique. There is, however, a minor remark to be made: the
k-means method is very delicate to anomalies, and such anomalies may affect the
final cluster design. This can lead to numerous false negatives, in which data points
that should be classified as outliers are suppressed by clustering, as well as false
positives, in which data points are mistakenly classified as outliers. As a result,
a more robust version of the k-means method is needed to handle the data with
outliers.

Figure 2.1: Clustering with outlier

Figure 2.1 shows a speculative situation where the k-Means method could pos-
sibly be seriously influenced by the presence of outliers. In the event that k = 2,
the k-Means will group the five data points directly into one group. Then again, if
the k-Means algorithm is intended to at the same time structure groups and track
outliers, a more regular result is likewise displayed in this figure, where the large
group has become more smaller (striking circle) and the two points (1) and (2) are
considered as outliers.

2.4 Classical Multivariate Outlier Detection Re-

view

Anomaly or outlier detection is a profoundly investigated issue in both statistics and
machine learning with alternate points of view. In patter recognition, Knorr and
Ng [12] proposed a meaning of distance-based anomaly, which is liberated from any
distributional suppositions and is generalizable to multidimensional datasets. In-
stinctively, anomalies are data points that are far away from their closest neighbors.

Several variants and methods for detecting distance-based outliers have been
presented in the wake of Knorr and Ng.In any case, the anomalies identified by these
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2.4. CLASSICAL MULTIVARIATE OUTLIER DETECTION REVIEW

strategies are with respect to the entire data set. Breunig et al. [13] have contended
that in certain circumstances nearby outliers are a higher priority than outliers with
respect to the entire data and can’t be effortlessly recognized by standard distance-
based strategies. They presented the idea of local outlier factor (LOF), which catches
how segregated an item is concerning its encompassing area. The notion of local
outliers has now been expanded in a number of ways.

Distance based outlier detection method is easily effected by outliers.Therefore a
robust method is necessary for detecting outliers. The most famous robust method in
statistics literature for outlier detection is Minimum Covariance Determinant (MCD)
[14]. The MCD method tries to minimize the determinant of the covariance matrix
Σ over the subset of the original data set and for optimal subset for which |Σ| is
minimized, considered as inlier points. This method depending on the Mahalanobis
distance and a famous theorem around it.

12



Chapter 3

Related Work

3.1 Past Work on center-based Robust Clustering

Different approaches have been suggested for clustering data in the presence of
outliers. Here we do a brief review of the previous proposals for center-based robust
clustering.

M. Charikar [15] and K. Chen [16] proposed constant-factor polynomial time ap-
proximation algorithm for the k-Means problem with outlier. These methods involve
highly complex mathematical optimization and never used in practical scenario.

The development of efficient, practical methods for clustering with presence of
outliers is still a hot topic in academia. For the k-center objective, few constant-
factor approximation algorithms are known [15, 17, 18] . Nonetheless, the more
generally utilized k-means objective stays unattainable. [19] extended Lloyd’s tech-
nique to the scenario when there are outliers, however there are no assurances about
the quality of the solution provided by the algorithm.

A. Deshpande, P. Kacham and R. Pratap [1] proposed Robust k-Means++
method which offer constant-factor approximation to the k-Means objective with
outlier and discarding slightly more points than optimal situation. Luis Angel
Garcia-Escudero and Alfonso Gordaliza [7] proposed Trimmed k-Means method that
also optimize k-Means objective but in slightly different way, it minimizes the ob-
jective on all possible subset of particular size of input data set and pick the best
one and rest of the points are considered as outliers. Another line of work revisits
this idea and proposed an alternate variantion [20]. Shalmoli Gupta developed a
local-search algorithm [3] that offers constant factor approximation to the trimmed
k-Means objective and simultaneously remove outliers,but the number of outlier re-
move by this method is excessive. We would broadly discuss trimmed k-Means [7]
, LSO [3] and Robust k-Means++ [1] methods in the coming sections, with which
we mainly compare our proposal.

3.2 Trimmed k-Means Method

The k-Means algorithm minimizes the Sum of Squares Error (SSE) which can be
written as follows :

φX(C) =
∑
x∈X

minc∈C ||x− c||22 (3.1)

13



3.3. LOCAL SEARCH METHOD FOR K-MEANS WITH OUTLIER

The trimmed k-Means clustering objective is same as k-Means objective but the
method minimize the objective on all possible subset of the data set ranther than
with respect to the entire data set. More formally, given the data set X ⊆ Rd ,the
number of cluster k, and a parameter β ∈ (0, 1) denotes the fraction of outlier, the
trimmed k-Means method is optimize the following objective function :

ρX(C) = minY⊆X,|Y |=(1−β)n

∑
x∈Y

minc∈C ||x− c||22 (3.2)

Let φQ(C) denotes the contribution of the points in k-Means objective for the subset
Q ⊆ X. For the trimmed k-Means problem, let COPT be the set of optimal k centers
and YOPT be the optimal set of inliers, then ρ(COPT ) = φYOPT

(COPT ), since the error
is only measured over inliers. Now each point of YOPT is assigned a label according to
its closest center in COPT . Therefore this gives k partitions of YOPT as A1∪A2∪...∪Ak
into disjoint subsets with means µ1, µ2, ..., µk respectively, while X \ YOPT are the
outliers. Therefore,

ρ(COPT ) = φYOPT
(COPT ) =

k∑
j=1

φAj
({µj}) (3.3)

3.3 Local search method for k-Means with outlier

For solving the NP-hard k-Means objective approximately, vanila local search algo-
rithm [21, 22] was introduced. It starts with a random k centers, lets call this set C
and swap each point c ∈ C with each point x ∈ X, if this swap decrease the cost then
keep this combination otherwise check with another point. In this way the algorithm
converges to a local minima and we get the best combination after all the swap. The
condition for the termination of the algorithm is New Cost > (1− ε

k
)Old cost.

The extended version of this local search algorithm is also proposed which par-
ticularily develop for handle outliers, named as LS-Outlier (LSO). This technique
extends the vanila local search algorithm by enabling outliers to be eliminated. It
keeps track of a set of outliers and set of centers (outliers are identified as farthest
point from these centers) and try to converge to a local minima using the below
three steps :

(1) Run the vanila local search algorithm with random set of k centers and noise
free data set F , where outliers are considered as farthest point from these k
centers.

(2) Now again remove the farthest points from these locally converges center and
check if cost is decrease or not. If decreased then stop the iteration and
report the best centers,partitions and set of outliers and do not go to step (3),
otherwise perform step (3).

(3) Swap a data point with a center, if this swap and remove farthest point from
centers decrease the cost, do this until termination condition is satisfied and
finally report the optimal centers, partitions of the data point and the set of
outliers.

14



3.4. ROBUST K-MEANS++ METHOD

3.4 Robust k-Means++ Method

The robust k-Means++ technique is a simple outlier-resistant modification of the
k-means++ method. It uses convex combination of D2 and uniform sampling for
picking initial centroids.

This method produces O(k) clusters while eliminating outliers and providing
constant-factor approximation for the trimmed k-Means method. This algorithm is
able to produce exactly k partitions if we increase the number of iterations.

Algorithm 1: Robust k-Means++

Input: X: a data set of n points, k : the number of clusters and
β ∈ [0, 1],δ ∈ (0, 1] : the parameters.

Output: a set initial centers Y ⊆ X
1 Y0 = ∅
2 for i←− 1, ..., O(k) do
3 for j ←− 1, ...., O(1/δ) do

4 Pr(picking xj) = (1− α)
φ{xj}(Si−1)

φX(Si−1)
+ α 1

n

5 end
6 Yi ←− Yi−1 ∪ {x1, ..., xO(1/δ)}
7 i←− i+ 1

8 end

At ith iteration of the outer loop of this algorithm gives an inequality,∑
j: Cj∈BAD |Cj| ≤ δn, that means the total number of points in the bad clusters

are at most δn and in this step the set of initial centers Yi−1 provides costant-
factor approximation to the trimmed k-Means method. Formally, the algorithomic
procedure of this method is follows :

• Select initial centers using algorithm 1 and remove those δn outliers given by
the algorithm.

• Calculate the weight of each cluster and find the top k cluster with respect to
the weight. Now these top k cluster are treated as the main cluster and the
points of the remaining clusters either assigned to a near by main cluster or
removed if it is far away from these cluster centers.

15



Chapter 4

The Proposed Robust
Center-based Clustering
Algorithm

4.1 Notations

The notations use to express the algorithm are given in the following Table 4.1

Notations Descriptions
n Number of observations
d Number of features

X = (xij) ∈ Rn×d Data set in matrix form
C = (ckj) ∈ Rk×d Cluster Centers

Ck and µk, k = 1, ..., K The kth cluster and kth cluster center
nk Number of observations in cluster k
[N ] {1, .., N}
||.||sp Spectral norm

Table 4.1: Notations used in our method

4.2 Building Blocks of Robust Center-based Clus-

tering

The classical center-based clustering using a very simple and elegant framework
which is as follows :

min

n∑
i=1

k∑
j=1

||xi − cj||22 (4.1)

where ||xi − cj||22 is the squared distances of the points from its cluster center.
But this framework has two main problems -

a) Noise sensitive objective function and
b) Lack of robust center initialization method.

Therfore we try to address these issue and come up with an algorithm which is
robust to outliers.

16



4.2. BUILDING BLOCKS OF ROBUST CENTER-BASED CLUSTERING

4.2.1 The Formulation

The classical center-based clustering algorithm rely on centroid initialization and this
can done by random initialization or k-Means++ method.But both these methods
of initialization are prone to outliers.

The k-Means++ method select initial center with probability proportional to
the distance from its nearest center. That means it initialize centers that are well
separated from each other, but higher the distance means higher the probabilty of
picking that point as center allowing this method delicate to outliers. On the other
hand, random sampling often times initialize centers in such a way that it ignores
the small clusters and break the big clusters, therefore very often natural partitions
are not possible.

Most of the center-based clustering algorithm updates the centroid in each iter-
ation using mean. But the mean statistic is highly delicate to outliers, that means
even a single outlier can the change the mean arbitarily. Although median is robust
measure for central tendency but its computational complexity is exponential in di-
mension, therefore we need a different approach to update the centroid in our work.

Centroid Initialization : Our work addresses the above issue about centroid
initialization by proposing a initialization strategy where Robust k-Means++ [1]
method has been tweaked in a straightforward and understandable way. We use
convex combination of D2 and uniform sampling to initialize k centers,which is as
follows :

Pr(x ∈ C) = (1− α)D2 + αU (4.2)

Where α ∈ [0, 1] and the D2 sampling and uniform sampling is respectively as follows
:

Pr(x ∈ C) =
φx(C)

φ(C)
(4.3)

Pr(x ∈ C) =
1

n
(4.4)

where

φ(C) =
n∑
i=1

min{
k∑
j=1

||xi − cj||22} (4.5)

φx(C) = min

k∑
j=1

||x− cj||22 (4.6)

Centroid Update : Mean statistics is used for centroid update in classical
center-based clustering framework despite its non-robustness. Although median is
robust statistic, but computing it in high dimension is way more expensive. There-
fore, to address this issue we come up with an very simple approach which enables
the stability of the centroid even in the presence of outliers.

Before going to forward, we make an assumption about the distribution of the
input data, that our data is normaly distributed. Now from the property 68-95-99.7
of normal distribution , we can say that in the range of µ − σ to µ + σ there are
68% data,µ− 2σ to µ+ 2σ there are 95% data and µ− 3σ to µ+ 3σ there are 99.7%
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4.2. BUILDING BLOCKS OF ROBUST CENTER-BASED CLUSTERING

data situated. Therefore,we can say that if a point x such that ||x − µ||2 > 3σ,we
consider it as an outlier,where µ is the mean of the distribution. But the threshold
3σ can be misleading when the data contains outlier as σ is not a robust measure
of variability.Therefore,instead of σ we can use Median Absolute Deviation(MAD)
as a measure of variability which is also robust to outliers.

Lemma : For normal distribution σ̂ = 1.4826MAD is an unbiased estimator of σ

Proof : Let X = {x1, ..., xn} be a set of n points.Then Meadian Absolute Devi-
ation(MAD) of X is

MAD(X) = median{|x1 − X̃|, ..., |xn − X̃|} (4.7)

where X̃ = median of X.
To estimate σ using MAD one must takes σ̂ = k.MAD , where k is determined by
the data distribution.
For normal distribution, the range µ −MAD to µ + MAD covers 50% of the tha
data,where µ is the mean of the distribution. Therefore,

Pr(|X − µ| < MAD) =
1

2

=⇒ Pr(|X − µ
σ
| < MAD

σ
) =

1

2

=⇒ Pr(|Z| < MAD

σ
) =

1

2

where Z ∼ N (0, 1).
Now from the above equation we get,

φ(
MAD

σ
)− φ(−MAD

σ
) =

1

2
(4.8)

Also

φ(−MAD

σ
) = 1− φ(

MAD

σ
) (4.9)

where φ is a cumulative distribution function of N (0, 1).
From equation 4.8 & 4.9 we get,

φ(
MAD

σ
) =

3

4

=⇒ MAD

σ
= φ−1(

3

4
)

From this we obtain, k = 1
φ−1( 3

4
)

= 1.4826

Therefore

σ̂ = 1.4826MAD
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4.2. BUILDING BLOCKS OF ROBUST CENTER-BASED CLUSTERING

From the above lemma we can set the threshold for detecting outlier as follows :

T = 3σ = 4.4478MAD

Now we make sure that the centroid of the clusters are stable,that means they are
not arbitarily far away after update in the presence of otlier. For that we calculate
the Median Absolute Deviation(MAD) of each cluster and then obtain the threshold
of the respective cluster.Now for each cluster, calculate ||x − c||2 for each point x
where c is the centroid of the respective cluster. If ||x − c||2 > T then this point x
detected as an outlier and cannot be used for centroid update for that cluster. More
formally,

Let Ct
in and Ct

out be the set of inlier and outlier of a cluster respectively in tth
iteration.
Therefore, the centroid update for that cluster takes place as follows :

µt+1 =
1

|Ct
in|
∑
x∈Ct

in

x

In that way we can avoid the influence of outlier for centroid update which takes
place using mean statistics.

4.2.2 The Proposed Modified k-Means Algorithm

We’d like to keep the naturally pleasant characteristics of the classical center-based
clustering objective, even though it is prone to noise, for the clustering in the pres-
ence of outliers as we succesfully tackle the influence of outlier.Therefore with this
new centroid initialization and centroid update strategy,our modified version of the
classical k-Means algorithm as follows:

Algorithm 2: Modiffied k-Means

Input: The number of cluster k and α .
Output: The partitions C1, C2, ...., Ck.

1 t = 0
2 while ||µt+1

i − µti||2 > ε ∀i do
3 Initialize k centroid using mixture sampling, i.e,

Pr(x ∈ C) = (1− α)D2 + αU
4 Each point assigned to a cluster using k-Means objective.
5 Calculate the threshold for each cluster T1, T2, ..., Tk respectively,where

Ti = 4.4478MADi

6 Update the cluster centroid as µt+1
i = 1

|Ct
in|
∑

x∈Ct
in
x

7 t = t+ 1

8 end
9

Note: For t = 0,the condition ||µt+1
i − µti||2 > ε ∀i is always true.
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4.2. BUILDING BLOCKS OF ROBUST CENTER-BASED CLUSTERING

4.2.3 The Alternate Proposal of Modified k-Means Algo-
rithm

Algorithm 1 depicts the Modified k-Means algorithm for clustering which is heavily
dependent on the assumption that our data is normaly distributed.But in real life
that is always not the case,the data came from any distribution.Therefore to avoid
this assumption about the distribution of the data,we come up with an alternate
proposal of Modified k-Means algorithm where we update the centroid by robust
mean estimation.

We utilize the structure for the mean estimation in a robust manner, acquainted
in [23]. The goal is to give each data point a non-negative weight (inlier data points
gets more weight than outliers) such that the weighted mean is near to the real
mean. More formally,given data points x1, ..., xn ∈ Rd with corresponding data
matrix X ∈ Rd×n ,the goal is to find a weight vector w ∈ Rn such that the weighted
mean µw is as close as possible to the real mean µ∗. The only constraint on w is
that it belongs to the set

Ψn,ε = {w ∈ Rn :
∑
|wj| = 1 and 0 ≤ wj ≤

1

(1− ε)n
∀j}

where Ψn,ε is a convex hull.
The lemma proved by Diankonikolas in [24] says if a weight vector w minimizes

the spectral norm of the weighted covariance matrix, Σw =
∑n

i=1(xi−µw)(xi−µw)T

then the weighted mean provided by this w is close to the real mean. Therefore the
optimization problem that gives us best w looks like :

min ||Σw||sp such that w ∈ Ψn,2ε (4.10)

Now the problem is that the spectrul norm is non-convex and therefore the avobe
optimization problem is difficult to solve. But using the subgradient of the spectrul
norm, the projected sub-gradient descent algorithm on (4.10) outputs a approximate
stationary point w after O(n2d4) iterations which serves our purpose .

Algorithm 3: Mean estimation in a robust manner

Input: a set of n samples {xi}ni=1 on Rd which contains outliers
Output: w ∈ Rn and optimal weighted mean

1 Let F (w, u) = uTΣwu , so ||Σw||sp = Max||u||2=1 F (w, u)
2 Let T = O(n2d4)
3 Start with any w0 ∈ K = ∆n,2ε

4 for t = 0 to T − 1 do
5 Let v ∈ argmax||v||2=1 v

TΣwv

6 wt+1 ←− PK(wt − η ∂(vtΣwv)
∂w

)

7 end

Using the above robust mean estimation method, the new version of the Modified
k-Means algorithm is as follows :

20



4.2. BUILDING BLOCKS OF ROBUST CENTER-BASED CLUSTERING

Algorithm 4: New Version of Modified k-Means

Input: The number of cluster k and parameter α
Output: The partitions C1, ..., Ck

1 t = 0
2 while ||µt+1

i − µti||2 > ε∀i do
3 Initialize k centroid using mixture sampling , i.e,

Pr(x ∈ C) = (1− α)D2 + αU
4 Each point assigned to a cluster using k-Means objective.
5 For each cluster update the centroid as µt+1

i ←− RobustMean(Ct
i )

6 t = t+ 1

7 end

Note: For t = 0,the condition ||µt+1
i − µti||2 > ε ∀i is always true.

4.2.4 Performance Analysis of Modified k-Means

The Modified k-Means algorithm now applies to synthetic as well as real world
data set and compare the results with k-Means[11],k-Means++[8], k-Median algo-
rithm.The data set descriptions are given bellow :

Dataset Name n K Outlier
Synthetic 1100 20 100
Shuttle 43500 3 180

Table 4.2: Dataset used for Modified k-Means

The below Table 4.3 , 4.4 shows the result of the Modified k-Means algorithm
on synthetic as well as real world data set and comparison with other algorithms
based on Sum of Squared Error(SSE) , Silhouette Score(SC).

Algorithm α SSE SC
Modified k-Means 0.1 17843.4 0.77

k-Means++ 23971.6 0.73
k-Means 36868.9 0.63
k-Median 23842.5 0.72

Table 4.3: Modified k-Means on Synthetic Data set

Algorithm α SSE SC
Modified k-Means 0.1 1066348689 0.91

k-Means++ 1142392287.74 0.83
k-Means 1544776568.87 0.52
k-Median 1771149274 0.29

Table 4.4: Modified k-Means on Shuttle data set
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4.3. ROBUST CENTER-BASED CLUSTERING ALGORITHM

4.2.5 Selection of α in Modified k-Means

The α used in mixture sampling for Modified k-Means is lies in the range of
0 ≤ α ≤ 1.Therefore we search the value of α in this range and pick the value for
which Modified k-Means converges with lowest cost.

Figure 4.1: Changing of cost with respect to α

From the above Figure 4.1 we clearly see that for α = 0.1 Modified k-Means
converges with lowest cost than the other values of α. Therefore in this scenario, we
pick α = 0.1 for our Modified k-Means algorithm.

4.3 Robust Center-based Clustering Algorithm

Robust k-Means algorithm doing clustering while also removing possible outliers si-
multaneously. It uses Modified k-Means clustering algorithm as a back bone. Since
Modified k-Means algorithm able to do good quality clustering even in the presence
of outlier, we use this algorithm to do the clustering part and simultaneously we
remove the outlier by means of normalized threshold.
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4.3. ROBUST CENTER-BASED CLUSTERING ALGORITHM

Algorithm 5: Robust center-based clustering

Input: The data matrix X and parameters α , I , T
Output: The partitions C1, ..., Ck without outliers

1 C ←− Modified k-Means(X,α)
2 for j ←− 1, ..., I do
3 dmax = maxi{||xi − cik||2} , cik : Cluster center of xi
4 for i←− 1, ..., n do
5 Ui = ||xi − cik||2/dmax
6 if Ui > T then
7 X ←− X \ {xi}
8 else
9 X ←− X

10 end

11 end
12 (C,P )←− Modified k-Means (X,α,C)

13 end

Note : P −→ Set of partitions.

4.3.1 Selection of tuning parameters

The parameters used in Robust center-based clustering algorithm are α, I, T . The
selection of α is same as described in Section 4.2.5, that is apply the Modified k-
Means algorithm on the data and select the α with lowest cost. The value of I is
taken as vk, where v is the number of outliers and k is the number of cluster.It is
a completely heuristic method of seleting I,there is no systemic procedure for that.
By setting the threshold to T < 1, atleast one point removed as an outlier because
we used normalized distance for detection of outlier. Thus, increasing the number of
iterations and decreasing the threshold will in effect remove more number of points,
possibly more than the number of outlier. Therefore, there is a tradeoff between the
parameters I and T .

Figure 4.2: Number of detected outlier changes w.r.t threshold T
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4.3. ROBUST CENTER-BASED CLUSTERING ALGORITHM

To resolve the tradeoff between I and T , fix the value of I as described avove
and vary the threshold to choose optimal value of T for which optimal number of
outlier is detected if the number of outlier present in the data we know beforehand.
Figure 4.2 shows a similar illustration in a dataset with 100 outlier, therefore from
the figure we clearly see that 0.9 is the optimal value of T . But if the number of
outlier is not known beforehand then we set a tight threshold T and T = 0.95 is the
rule of thumb.

4.3.2 Convergence analysis of the algorithm

Robust center-based clustering algorithm use Modified k-Means algorithm in its
backbone and Modified k-Means algorithm inherently use k-Means framework. There-
fore, Robust center-based clustering algorithm optimize the same old k-Means ob-
jective. Hence, the convergence of Robust center-based clustering algorithm follows
directly from convergence of k-Means [11] algorithm. But the Robust center-based
clustering algorithm converges with much lower cost than the k-Means algorithm as
the algorithm constantly detect and remove outlier in each iteration.

Figure 4.3: Left : cost changes with iterations in Robust center-based clustering
algorithm, right : cost changes with iterations in k-Means algorithm

From the Figure 4.3 we can see that Robust center-based clustering algorithm
converges with cost 2000, where k-Means[11] algorithm converges with cost nearly
7000 when applying both the algorithm on same dataset.
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Chapter 5

Performance Analysis of Robust
Center-based Clustering

5.1 Complexity Analysis

The time complexity of the classical k-Means is O(nkdi), where i is the number
of iterations,n is the number of samples and d is the dimensionality of the data.
The Modified k-Means algorithm’s centroid update step takes O(k

⌊
n
k

⌋
log
⌊
n
k

⌋
) time

for each iteration, hence the Modified k-Means algorithm has a time complexity of
O((nkd+ k

⌊
n
k

⌋
log
⌊
n
k

⌋
)i). Now in each iteration of the Robust center-based cluster-

ing, we have to find the distance of the farthest point from its center and it takes
O(nd+ n log n) time,aso we detect outlier based on the normalized distance of each
point and compare it with the threshold and finally among inlier apply Modified
k-Means. Hence, the time complexity for each iteration of the proposed Robust
center-based clustering algorithm is O(n(d+ log n) + (nkd+ k

⌊
n
k

⌋
log
⌊
n
k

⌋
)i) and we

iterate untill convergence.

5.2 Experimental Study

We analyse and compare the performance of our Robust center-based clustering
algorithm primarily with Robust k-Means++, LSO, TKM++ etc in this section
mainly based on Precision and Recall measure, which is defined as

Precision =
U ∩ U∗

U
,Recall =

U ∩ U∗

U∗
(5.1)

Where U∗ is the optimal number of outlier and U is the number of outlier de-
tected by the algorithm.

We first evaluate the performance of our scheme on synthetic 2-D shape data
sets, so that the results can be visualized. We then compare the performance of our
scheme on UCI real world data sets. Each of the simulation is repeated 10 times.
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5.2. EXPERIMENTAL STUDY

5.2.1 Description of data sets used in our study

Dataset Name K n Outlier
Synthetic-1 20 1025 25
Synthetic-2 20 1050 50
Synthetic-3 20 1100 100
Synthetic-4 7 804 20
Synthetic-5 5 1040 40

Table 5.1: Synthetic 2D shape data sets

Dataset Name K n Outlier
Shuttle-1 5 43500 21
Shuttle-2 10 43500 34
Shuttle-3 15 43500 51

Table 5.2: UCI real world data sets

5.2.2 Evaluation on Synthetic 2-D shape data sets

We use 5 synthetic 2-D shape data sets, the details of which are given in Table
5.1. We apply the proposed Robust center-based clustering algorithm to these data
sets and plot the results. The results obtain on two of the data sets synthetic-4
and synthetic-5 is shown in the Figure 5.1. 1(a) and 2(a) show the original clus-
ter distributions, and 1(b) and 2(b) show the respective results obtained by Robust
center-based clustering algorithm.

(a) 1(a) (b) 1(b)

(c) 2(a) (d) 2(b)

Figure 5.1: Robust center-based clustering results on synthetic 2-D shape data sets
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5.2. EXPERIMENTAL STUDY

We apply Robust center-based clustering algorithm with parameter α , T and
number of iteration I . The value of these tuning parameter is obtained by the
method discussed in Section. The detailed results obtained on these data sets is
shown in the Table 5.3.

Dataset Name α T I SSE SC Precision Recall
Synthetic-1 0.1 0.9 16 2705.7 0.85 0.97 0.78
Synthetic-2 0.1 0.9 20 3652.5 0.8 1 0.69
Synthetic-3 0.1 0.9 25 3369.4 0.84 0.99 0.7
Synthetic-4 0.1 0.9 15 1599.5 0.86 1 1
Synthetic-5 0.1 0.9 19 1942.3 0.9 1 1

Table 5.3: Results of Robust center-based clustering on synthetic 2-D data sets

We also apply Robust k-Means++,TKM++[2] etc on the synthetic data set 1,2
and 3. We compare the results and summarize it in the below Tables 5.4, 5.5, 5.6 .

Algorithm α T I Precision Recall
Our Work 0.1 0.9 16 0.97 0.78

Robust k-Means++ 1 0.9 0.9
TMK++ 0.65 0.65

k-Means++ 0.51 0.51
RAND 0.07 0.07
LSO 0.94 0.94

Table 5.4: Robust center-based clustering on synthetic-1 dataset

Algorithm α T I Precision Recall
Our Work 0.1 0.9 20 1 0.69

Robust k-Means++ 1 0.9 0.9
TMK++ 0.86 0.86

k-Means++ 0.5 0.5
RAND 0.07 0.07
LSO 0.91 0.91

Table 5.5: Robust center-based clustering on synthetic-2 dataset

Algorithm α T I Precision Recall
Our Work 0.1 0.9 25 0.99 0.7

Robust k-Means++ 1 0.79 0.95
TMK++ 0.49 0.59

k-Means++ 0.37 0.44
RAND 0.21 0.26
LSO 0.72 0.91

Table 5.6: Robust center-based clustering on synthetic-3 dataset
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5.2. EXPERIMENTAL STUDY

From the table we can see that Robust center-based clustering achieve higher
Precision than the other methods for all the 3 data sets.

5.2.3 Evaluation on UCI real world data sets

We use the real world data sets mentioned in Table 5.2 , which are obtained from
UCI machine learning repository.

Here we apply our Robust center-based clustering algorithm with α = 0.1 and
T = 0.9 and we use I values 10,13,15. We tuned these parameter as discussed in
section. The comparison of our algorithm with Robust k-Means++, TMK++ etc
algorithm for these data sets are given in Table 5.7 ,5.8, 5.9. In all of the cases our
scheme out performs the other methods.

Algorithm α T I Precision Recall
Our Work 0.1 0.9 10 0.35 0.35

Robust k-Means++ 1 0.19 0.23
TMK++ 0.17 0.21

k-Means++ 0.16 0.20
RAND 0.19 0.23
LSO 0.17 0.21

Table 5.7: Robust center-based clustering on shuttle-1 dataset

Algorithm α T I Precision Recall
Our Work 0.1 0.9 13 0.4 0.35

Robust k-Means++ 0.25 0.17 0.35
TMK++ 0.14 0.29

k-Means++ 0.15 0.31
RAND 0.14 0.29
LSO 0.17 0.35

Table 5.8: Robust center-based clustering on shuttle-2 dataset

Algorithm α T I Precision Recall
Our Work 0.1 0.9 15 0.35 0.7

Robust k-Means++ 0.75 0.22 0.67
TMK++ 0.17 0.52

k-Means++ 0.17 0.52
RAND 0.13 0.41
LSO 0.18 0.55

Table 5.9: Robust center-based clustering on shuttle-3 dataset
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5.3. STATISTICAL TEST FOR SIGNIFICANCE

5.3 Statistical test for significance

We mainly compare our results with other algorithm by taking the average measure
of the repeated simulation. But in this way we are not always confidently say that
our algorithm is better than the others. For that we need to perform a statistical
test namely Wilcoxon signed-rank test [25], which is a non-parametric hypothesis
test. This test takes repeated outcomes of our algorithm and other algorithm and tell
that the population mean of repeated outcomes of the two algorithm are different
or not. The null hypothesis represents population mean are same and alternate
hypothesis reoresents population mean are different.

We apply Wilcoxon signed-rank test [25] on our algorithm repeated outcomes
against other algorithms and obtain the p-values for the test. The p-values are
given in the Table 5.10 .

Data set Robust k-Means++ TMK++ k-Means++ RAND LSO
Synthetic-1 0.02 0.01 0.01 0.01 0.01
Synthetic-2 0.02 0.01 0.01 0.01 0.01
Synthetic-3 0.01 0.01 0.01 0.01 0.01
Synthetic-4 0.02 0.01 0.01 0.01 0.01
Synthetic-5 0.03 0.02 0.01 0.01 0.01
Shuttle-1 0.01 0.01 0.01 0.01 0.01
Shuttle-2 0.01 0.01 0.01 0.01 0.01
Shuttle-3 0.02 0.01 0.01 0.01 0.01

Table 5.10: p-values for the hypothesis test

From the above table we can see that all the p values < 0.05, that means
we can say that our results are significantly better than other algorithm with 95%
confidence.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Clustering data in the presence of outliers is challenging. In our study , which is
inspired by the literature of Center-based clustering, we proposed a novel Modified
k-Means algorithm with new centroid initialization method and modified centroid
update strategy. Based on this Modified k-Means algorithm, we proposed a cluster-
ing algorithm which is removeing outliers by means of normalized threshold while
doing clustering and we named it as the Robust center-based clustering algorithm.

The experimental results obtain in Section 4.2.4 confirmed outperformance of our
approach Modified k-Means over other approaches like k-Means [11], k-Means++
[8], k-Median etc in all the cases when evaluated on synthetic 2D shape as well as real
world data sets. The experimental results obtained in Section 5.2 confirmed outper-
formance of our approach Robust center-based clustering over other approaches like
Robust k-Means++ [1], LSO [3], TMK++ [2] etc in all the cases. For the UCI and
the sythetic 2D shape data sets, our scheme has performed better or equal in most of
the cases.In the cases where other algorithm have produced better recall,our scheme
is only marginally behind. But in the metrics like precision, SSE and Silhouette
Score, our scheme consistantly better than all the other methods.

For our comparisons, we have used original codes by Amit Deshpande and
Rameshwar Pratap [1] for Robust k-Means++ and quote the results for TMK++
[2] and LSO [3] from Robust k-Means++ paper. The code for our implementation
of the Robust center-based clustering algorithm is available at this repository
https://github.com/pranta123456/Center-based-Robust-Clustering .

6.2 Scope for Future Work

Despite its good performance, this method has a few limitations and there is scope of
improvement. Firstly, the parameters α, I and T included in the Robust center-based
clustering algorithm, are to be entered by the user and not completely auto tuned.
We select the parameter I as heuristic and based on that we select T for which
optimal number of outlier detected if we know the number of outlier in advance,
otherwise we set T = 0.95 as a rule of thumb. We can address this issue in future by
tuned these parameter in data driven approach. Secondly, we can also explore and
extend our algorithm to overlapping clustering for more meaningfull cluster by using
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6.2. SCOPE FOR FUTURE WORK

an approach similar to the one suggested in [26], where rather than optimizing a
non-constrained objective we optimize constrained objective, where the constrained
on the total sum of the number of points in each cluster and this total sum should
be > n .Also we can explore how this algorithm works when impose divengence
measure by using an approach similar to the one suggested in [27]. Finally, we can
look to improve the time complexity of our algorithm.

31



Bibliography

[1] A. Deshpande, P. Kacham, and R. Pratap, “Robust k-means++,” in Pro-
ceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)
(J. Peters and D. Sontag, eds.), vol. 124 of Proceedings of Machine Learning
Research, pp. 799–808, PMLR, 03–06 Aug 2020.

[2] A. Bhaskara, S. Vadgama, and H. Xu, “Greedy sampling for approximate clus-
tering in the presence of outliers,” in NeurIPS, 2019.

[3] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, “Local search
methods for k-means with outliers,” Proc. VLDB Endow., vol. 10, no. 7,
pp. 757–768, 2017.

[4] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf. Theor., vol. 28,
p. 129–137, Sept. 2006.

[5] X. Wu, V. Kumar, Q. Ross, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan,
A. Ng, B. Liu, P. Yu, Z. Zhou, M. Steinbach, D. Hand, and D. Steinberg, “Top
10 algorithms in data mining,” Knowledge and Information Systems, vol. 14,
pp. 1–37, Jan. 2008.

[6] M. B. Cohen, Y. T. Lee, G. L. Miller, J. W. Pachocki, and A. Sidford, “Geo-
metric median in nearly linear time,” CoRR, vol. abs/1606.05225, 2016.

[7] J. Cuesta-Albertos, A. Gordaliza, and C. Matrán, “Trimmed k-means: An
attempt to robustify quantizers,” The Annals of Statistics, vol. 25, pp. 553–
576, 04 1997.

[8] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful seeding,”
in SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, (Philadelphia, PA, USA), pp. 1027–1035, Society for
Industrial and Applied Mathematics, 2007.

[9] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Fast and provably good
seedings for k-means,” in Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain (D. D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon, and R. Garnett, eds.), pp. 55–63, 2016.

[10] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable
k-means++,” CoRR, vol. abs/1203.6402, 2012.

[11] J. Hartigan and M. Wong, “A k-means clustering algorithm,” vol. 28, pp. 100–
108, 1979.

32



BIBLIOGRAPHY

[12] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers: Algorithms
and applications,” The VLDB Journal, vol. 8, p. 237–253, Feb. 2000.

[13] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, p. 93–104, May 2000.

[14] P. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum covariance
determinant estimator,” Technometrics, vol. 41, pp. 212–223, 1999.

[15] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, “Algorithms for facility
location problems with outliers,” in Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 642–651, Dec. 2001. 2001 Operating
Section Proceedings, American Gas Association ; Conference date: 30-04-2001
Through 01-05-2001.

[16] K. Chen, “A constant factor approximation algorithm for ¡i¿k¡/i¿-median clus-
tering with outliers,” in Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’08, (USA), p. 826–835, Society
for Industrial and Applied Mathematics, 2008.

[17] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Moseley,
“Fast distributed ¡i¿k¡/i¿-center clustering with outliers on massive data,” in
Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 1, NIPS’15, (Cambridge, MA, USA), p. 1063–1071,
MIT Press, 2015.

[18] R. McCutchen and S. Khuller, “Streaming algorithms for k-center clustering
with outliers and with anonymity,” in Approximation, Randomization and
Combinatorial Optimization, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), pp. 165–178, Sept. 2008. 11th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems, APPROX 2008 and
12th International Workshop on Randomization and Computation, RANDOM
2008 ; Conference date: 25-08-2008 Through 27-08-2008.

[19] S. Chawla and A. Gionis, “k-means–: A unified approach to clustering and
outlier detection,” in 13th SIAM International Conference on Data Mining,
Austin, Texas, 2013, pp. 189–197, 2013. VK: hiit.

[20] A. Georgogiannis, “Robust k-means: a theoretical revisit,” in Advances in Neu-
ral Information Processing Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016, Barcelona, Spain (D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 2883–
2891, 2016.

[21] A. Gupta and K. Tangwongsan, “Simpler analyses of local search algorithms
for facility location,” CoRR, vol. abs/0809.2554, 2008.

[22] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu, “A local search approximation algorithm for k-means clustering,”

33



BIBLIOGRAPHY

in Proceedings of the Eighteenth Annual Symposium on Computational Geom-
etry, SCG ’02, (New York, NY, USA), p. 10–18, Association for Computing
Machinery, 2002.

[23] Y. Cheng, I. Diakonikolas, R. Ge, and M. Soltanolkotabi, “High-dimensional ro-
bust mean estimation via gradient descent,” CoRR, vol. abs/2005.01378, 2020.

[24] I. Diakonikolas, G. Kamath, D. M. Kane, J. Z. Li, A. Moitra, and A. Stewart,
“Robust estimators in high dimensions without the computational intractabil-
ity,” CoRR, vol. abs/1604.06443, 2016.

[25] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bul-
letin, vol. 1, no. 6, pp. 80–83, 1945.

[26] J. J. Whang, Y. Hou, D. F. Gleich, and I. S. Dhillon, “Non-exhaustive, over-
lapping clustering,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 41, no. 11, pp. 2644–2659, 2019.

[27] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with bregman
divergences,” Journal of Machine Learning Research, vol. 6, no. 58, pp. 1705–
1749, 2005.

34


