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Abstract

Graph coloring is a well known problem with wide-ranging applications. The vertex and

edge coloring problems have been studied in various models of computation. Rainbow

coloring is a type of edge coloring that also acts as a connectivity measure for graphs. It

was first introduced by Chartrand et al. in 2008.In 2011 Chakrobarty et al. proved that, it

NP-Hard to compute rainbow connection number of a graph.

In this thesis first we have define some notation for graph and rainbow coloring. Then

we do a literature overview of the results about rainbow coloring. In the final part we

have proved that, if G is a square of tree, then rc(G) 2 {diam(G),diam(G)+1},and the

corresponding optimal rainbow coloring can be found in the time that is linear in the size

of G.
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1 Introduction

Graph coloring is an ubiquitous problem in computer science and has widespread practical

applications. The problem of graph coloring can be defined as the assignment of colors

to different elements of the graph, provided certain constraints are satisfied. The various

graph coloring problems that has been widely studied is vertex coloring, edge coloring and

rainbow coloring.

Vertex coloring is the assignment of colors to vertices of the graph with the constraint

that adjacent vertices do not get the same colors. Edge coloring is a graph coloring problem

where you assign colors to the edges of the graph such that edges incident on the same

vertex get assigned different colors.

Rainbow connectivity is a graph coloring problem that is also a connectivity measure

for graphs. It was introduced by Chartrand et al. in 2008 [7]. Rainbow coloring is a special

type of edge coloring where, for every pair of vertices in the graph, there should exist a path

connecting the pair where every edge gets assigned a distinct color. The minimum number

of colors required to make a graph rainbow connected, is known as rainbow connection

number.

In addition to being a natural combinatorial measure, rainbow connectivity can be

motivated by its interesting interpretation in the area of networking. Suppose that G rep-

resents a network (e.g., a cellular network). We wish to route messages between any two

vertices in a pipeline, and require that each link on the route between the vertices (namely,

each edge on the path) is assigned a distinct channel (e.g. a distinct frequency). Clearly,

we want to minimize the number of distinct channels that we use in our network. This

number is precisely rainbow connection number of G or rc(G).

In the first paper on rainbow coloring [7], Chartrand et al. studied rainbow connection

number of various class of graphs. In 2008, Caro et al. [3] conjectured that computing

rainbow connection number of a graph is a NP-Hard problem. This conjecture is proved

by Chakrobarty et al. in 2011 [4].
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Let T = (VT ,EG) be a tree. A square of tree is a graph G = (VG ,EG), where VG = VT

and the two vertex is connected in G if the distance between them in T is ∑ 2.

In this thesis we have proved the following theorem.

Theorem 1.1. If G is a square of tree, then rc(G) 2 {diam(G),diam(G)+ 1},and the

corresponding optimal rainbow coloring can be found in the time that is linear in the size

of G.

This work has been generalised to higher power of trees by Diptiman Ghosh in his

M.Tech. thesis.

1.1 Thesis Outline

We started with defining (various types of) rainbow coloring and graph classes in Chapter

2. In Chapter 3, we have a literature review of the work have been done on this topic.

Here we have given already proven results on bound for general graph to find rainbow

connection number. In this chapter we have also pointed out some results on rainbow

connection number of various graph classes and the time complexity to decide rainbow

connection number.

In Chapter 4, we have proved our results Theorem 1.1 on rainbow connection number

of square of trees.
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2 Preliminary and Definition

The concept of rainbow connection was introduced by Chartrand et al [7] in 2008. It is

interesting and recently quite a lot papers have been published about it.

Definition 2.1. [7] Let G = (V ,E) be a graph and c : E ! {1,2,3, ..., r},r 2 N, where

adjacent edge can be colored same.For any two arbitrary vertices u and v, if 9 a path

between u and v such that every edge in that path is of different color, then that path is

called rainbow path and u and v is called rainbow connected. If for every pair of

vertices in a graph is rainbow connected, then that graph is called rainbow connected

graph. The minimum number of colors needed to make a graph rainbow connected is

rainbow connection number of that graph denoted as rc(G).

To understand rainbow coloring, we first need to understand some basic definitions

about graph.

2.1 Basic definitions and notations

Definition 2.2. The eccentricity of a vertex v is ecc(v) := max
x2V (G)

d(v, x). The radius of G is

rad(G) := min
x2V (G)

ecc(x). The diameret of G is diam(G) := max
x2V (G)

ecc(x).

Definition 2.3. A center of a graph G is a vertex c for which eccentricity(c) in minimum

and equal to radius of G.

Definition 2.4. For a graph G, a set D µ V (G) is called a k-step dominating set of G, if

every u 2 D and v 2V (G), d(u,v)∑ k. Further, if D induces a connected sub-graph of G,

it is called a connected k-step dominating set of G.

Definition 2.5. A dominating set D in a graph G is called a two-way dominating set if

every pendant vertex of G is included in D. In addition, if D induces a connected sub-

graph of G, we call D a connected two-way dominating set.
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Next we will define various types of graph product for which rainbow connection num-

ber has been studied in various paper.

Definition 2.6. Given two graphs G and H, the Cartesian product of G and H, denoted by

G⇤H, is defined as follows: V (G⇤H) = V (G)£V (H). Two distinct vertices [g1,h1] and

[g2,h2] of G⇤H are adjacent if and only if either g1 = g2 and (h1,h2) 2 E(H) or h1 = h2

and (g1, g2) 2 E(G).

Definition 2.7. Given two graphs G and H, the lexicographic product of G and H, denoted

by G ±H, is defined as follows: V (G ±H) = V (G)£V (H). Two distinct vertices [g1,h1]

and [g2,h2] of G ± H are adjacent if and only if either (g1, g2) 2 E(G) or g1 = g2 and

(h1,h2) 2 E(H).

Definition 2.8. Given two graphs G and H, the strong product of G and H, denoted by

G⇥H, is defined as follows: V (G⇥H)=V (G)£V (H). Two distinct vertices [g1,h1] and

[g2,h2] of G⇥H are adjacent if and only if one of the three conditions hold:

1. g1 = g2 and (h1,h2) 2 E(H) or

2. h1 = h2 and (g1, g2) 2 E(G) or

3. (g1, g2) 2 E(G) and (h1,h2) 2 E(H).

Definition 2.9. The k-th Power of a graph, denoted by G
k where k ∏ 1, is defined as

follows: V (Gk) = V (G). Two vertices u and v are adjacent in V (Gk) if and only if the

distance between vertices u and v in G, i.e., distG(u,v)∑ k.

Definition 2.10. Given graphs G and H with vertex sets V (G) = {gi : 0 ∑ i ∑ |G|°1} and

V (H)= {hi : 0∑ i ∑ |H|°1} respectively. We define a decomposition of G⇤H as follows:

For 0∑ j ∑ |H|°1, define induced subgraphs, G j, with vertex sets, V (G j)= {[gi,h j] : 0∑
i ∑ |G|°1}. Similarly, for 0 ∑ i ∑ |G|°1, define induced subgraphs, Hi, with vertex sets,

V (Hi)= {[gi,h j] : 0∑ j ∑ |H|°1}. Then we have the following:
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1. For 0 ∑ j ∑ |H|°1, G j is isomorphic to G and for 0 ∑ i ∑ |G|°1, Hi is isomorphic

to H.

2. For 0∑ i < j ∑ |H|°1, V (Gi)\V (G j)=; and hence E(Gi)\E(G j)=;.

3. For 0∑ k < l ∑ |G|°1, V (Hk)\V (Hl)=; and hence E(Hk)\E(Hl)=;.

4. For 0∑ j ∑ |H|°1 and 0∑ i ∑ |G|°1, V (G j)\V (Hi)= [gi,h j] and E(G j)\E(Hi)=
;.

We call G1,G2, . . . ,G|H|°1,H1,H2, . . . ,H|G|°1 as the (G,H)-Decomposition of G⇤H.

2.2 Various Types of Rainbow Coloring

There are various types of rainbow coloring studied in various papers.

It is natural to ask whether the shortest path between every pair of vertices is rainbow

connected or not.

Definition 2.11. [7] For all u,v 2 V (G), if 9 a rainbow path between u and v of length

d(u,v), then the graph is called strongly rainbow connected. The minimum number of col-

ors required to get a strongly rainbow connected is called the strong rainbow connection

number src(G) of G .

In rainbow coloring we need to find one rainbow path between every vertices. In a

natural generalization, we can find k disjoint path between every vertices for k ∏ 1. This

is also first studied by Chartrand et al. [8] in 2009.

Definition 2.12. [8] For an l ° connected graph G and an integer k with 1 ∑ k ∑ l, the

rainbow k° connectivity rck(G) of G is the minimum integer j for which there exist a

edge-coloring of G with j colors such that every two distinct vertices of G are connected

by k internally disjoint rainbow paths.
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From definition it is clear that, rc1(G)= rc(G).

There may be many shortest path between two vertices in a graph. It is natural to ask

if all of them are rainbow path. This generalization of strong rainbow coloring was first

studied by Chandran et al. [11] in 2018.

Definition 2.13. [11] Very strong rainbow connection number vsrc(G) of a graph G,

which is the smallest number of colors for which there exists a coloring of E(G) such that,

for every pair of vertices and every shortest path P between them, all edges of P receive

different colors.

Now we will define general case of rainbow connection number, d-local rainbow con-

nection number.

Definition 2.14. A d-local rainbow coloring is an edge coloring such that any two vertices

with distance at most d can be connected by a rainbow path, and we define d-local rain-

bow connection number lrcd(G) as the smallest number of colors in such a coloring.This

generalizes rainbow connection numbers, which are the special case d = diam(G). Sim-

ilarly, we define d-local strong rainbow coloring and d-local strong rainbow connection

number lsrcd(G) by replacing the word “path” with “geodesic”.

Similar to edges, we can color the vertices to get a path by vertices of different color.

This varient of rainbow color first studied by Krivelevich and Yuster.

Definition 2.15. [10] A vertex-colored graph G is rainbow vertex-connected if any two

vertices are connected by a path whose internal vertices have distinct colors. The rainbow

vertex connection of a connected graph G, denoted by rvc(G), is the smallest number of

colors that are needed in order to make G rainbow vertex-connected.

Rainbow color have been studied also for directed graph as well. As an analogous

setting for digraphs, Dorbec et al. proposed the concept of rainbow connection for di-

graphs [9], and Alva-Samos and Montellano-Ballesteros introduced the concept of the

strong rainbow connection for digraphs in [1] . For directed graph, rainbow connection

number is denoted by °!
rc(D) and strong rainbow connection number is denoted by °°!

src(D).
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2.3 Various Graph Classes

In the first part of the thesis, we have done a literature review for the work has been done

in this area. For that we need to understand various graph classes for which the rainbow

connection number has been studied.

Definition 2.16. An independent triple of vertices x, y, z in a graph G is an asteroidal

triple (AT), if between every pair of vertices in the triple, there is a path that does not

contain any neighbour of the third. A graph without asteroidal triples is called an AT-free

graph.

Definition 2.17. A graph G is a threshold graph, if there exists a weight function w :

V (G)!R and a real constant t such that two vertices u,v 2V (G) are adjacent if and only

if w(u)+w(v)∏ t.

Definition 2.18. A bipartite graph G(A,B) is called a chain graph if the vertices of A can

be ordered as A = (a1,a2, · · · ,ak) such that N(a1)µ N(a2)µ · · ·µ N(ak).

Definition 2.19. An interval graph is an undirected graph where each vertex represents an

interval in real line and two vertex is connected by an edge if the corresponding intervals

has non-empty intersection.
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3 Literature Review

There is a obvious bound for rainbow connection number of a graph.

Theorem 3.1. For any graph G

diam(G)∑ rc(G)∑ src(G)∑ m = |E(G)|.

3.1 Results on bounds for general graphs

In this part we will study some published results on bound of rainbow connection number

for any graph.

Theorem 3.2. [7] Let a and b be positive integers with a ∏ 4 and b ∏ 5a°6
3 . Then there

exists a connected graph G such that rc(G)= a and src(G)= b.

Theorem 3.3. [5] If D is a connected two-way dominating set in a graph G, then

rc(G)∑ rc(G[D])+3,

where G[D] is is induced sub-graph by D in G.

Theorem 3.4. [5] For every connected graph G of order n and minimum degree ±,

rc(G)∑ 3n

±+1
+3.

Moreover, for every ±∏ 2, there exist infinitely many graphs G such that rc(G)∏ 3(n°2)
±+1 °1.

3.2 Results for various graph classes

Chartrand et al. proved the following results about rainbow connection number and strong

rainbow connection number of bipartite and k-partite graph.
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Theorem 3.5. [7] For integers s and t with 2∑ s ∑ t,

rc(Ks,t)= min{
ß sp

t
®
,4}

Theorem 3.6. [7] Let G = Kn1,n2,...,nk
be a complete k-partite graph, wherek ∏ 3 and

n1 ∑ n2 ∑ ...∑ nk such that s =P
k°1
i=1 ni and t = nk . Then

rc(G)=

8
>>>>>><
>>>>>>:

1 if nk = 1

2 if nk ∏ 2 and s > t

min {
ß sp

t
®
,3} s ∑ t

Theorem 3.7. [7] For integers s and t with 1∑ s ∑ t,

src(Ks,t)=
ß sp

t
®

Theorem 3.8. [7] Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ∏ 3 and

n1 ∑ n2 ∑ ...∑ nk such that s =P
k°1
i=1 ni and t = nk . Then

src(G)=

8
>>>>>><
>>>>>>:

1 if nk = 1

2 if nk ∏ 2 and s > t

ß sp
t
®

s ∑ t

L. Sunil Chandran et al. proved results on bounds of various types of graph classes.

Theorem 3.9. [5] Let G be a connected graph with ±(G)∏ 2. Then,

(i) if G is an interval graph, diam(G)∑ rc(G)∑ diam(G)+1,

(ii) if G is AT-free, diam(G)∑ rc(G)∑ diam(G)+3,

(iii) if G is a threshold graph, diam(G)∑ rc(G)∑ 3,
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(iv) if G is a chain graph, diam(G)∑ rc(G)∑ 4,

(v) if G is a circular arc graph, diam(G)∑ rc(G)∑ diam(G)+4.

Moreover, there exist interval graphs, threshold graphs and chain graphs with minimum

degree at least 2 and rainbow connection number equal to the corresponding upper bound

above. There exists an AT-free graph G with minimum degree at least 2 and rc(G) =
diam(G)+2, which is 1 less than the upper bound above.

Theorem 3.10. [5] If G is a bridge-less chordal graph, then rc(G)∑ 3.rad(G). Moreover,

there exists a bridge-less chordal graph with rc(G)= 3.rad(G).

Manu Basavaraju et al. proved the following results about various types of graph

product in [2].

Theorem 3.11. [2] If G and H are two connected, non-trivial graphs then rad(G⇤H) ∑
rc(G⇤H) ∑ 2§ rad(G⇤H). The bounds are tight. Note that rad(G⇤H) = rad(G)+
rad(H).

Theorem 3.12. [2] Given two non-trivial graphs G and H such that G is connected we

have the following:

1. If rad(G±H)∏ 2 then rad(G±H)∑ rc(G±H)∑ 2§rad(G±H). This bound is tight.

2. If rad(G ±H)= 1 then 1∑ rc(G ±H)∑ 3. This bound is tight.

Theorem 3.13. [2] If G and H are two connected, non-trivial graphs then rad(G⇥H)∑
rc(G⇥H) ∑ 2§ rad(G⇥H)+2. The upper bound is tight up to an additive constant 2.

Note that rad(G⇥H)= max{rad(G), rad(H)}.

Theorem 3.14. [2] If G is a connected graph then rad(Gk)∑ rc(Gk)∑ 2§rad(Gk)+1 for

all k ∏ 2. The upper bound is tight up to an additive constant of 1. Note that rad(Gk) =l
rad(G)

k

m
.
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3.3 Results on Hardness and Complexity

It is natural to ask the time complexity to computing rainbow connection number of any

general graph. Chakraborty et al. solved the conjectures posed by Caro et al. in [3] and

proved the following complexity results:

Theorem 3.15. [4] Given a graph G, deciding if rc(G)= 2 is NP-Complete. In particular,

computing rc(G) is NP-Hard.

In the same paper Chakraborty et al. also proved the following about the checking if a

given coloring is rainbow coloring or not.

Theorem 3.16. [4] The following problem is NP-Complete: Given an edge-colored graph

G, check whether the given coloring makes G rainbow connected.

Theorem 3.17. [4] Given an edge-colored graph G and a pair of vertices s and t, deciding

if s and t are connected by a rainbow path is NP-Complete.

3.4 Rainbow coloring for power of trees

In the paper "Algorithms for the rainbow vertex coloring problem on graph classes" [12]

Lima et al. proved the following results about rainbow vertex connection number of power

of trees.

Theorem 3.18. [12] If G is a power of a tree, then rvc(G) 2 {diam(G)°1,diam(G)},

and the corresponding optimal rainbow vertex coloring can be found in time that is linear

in the size of G.

But we have not found any results on the rainbow connection number of power of trees.

So we try to find the answer of the following question.

Question: What is the rainbow connection number for power of trees, i.e., if G is a power

of tree, then rc(G)=?
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4 Edge Rainbow Coloring for Squares of Trees (Our main

contribution)

In this section we present the proof of Theorem 1.1. But let us first recall the definition of

power of a graph.

Definition 4.1. The k-th Power of a graph, denoted by G
k where k ∏ 1, is defined as

follows: V (Gk) = V (G). Two vertices u and v are adjacent in V (Gk) if and only if the

distance between vertices u and v in G, i.e., distG(u,v)∑ k.

So, the two vertices in a tree T is connected by a path of length ∑ k, then they are

connected by an edge in T
k.

Also, recall the definition of center of a graph.

Definition 4.2. The eccentricity of a vertex v is ecc(v) := max
x2V (G)

d(v, x).

A center of a graph G is a vertex c for which eccentricity (ecc(c)) in minimum and

equal to radius of G.

We can define branches of a tree as follows:

Definition 4.3. Let T be a tree, and z is the center of T. Let e = zv be an edge that is

incident to z, with v not in the center. When e is removed from the tree, the tree will fall

apart in two parts, a branch is the part that does not contain z. If the center of T contains

only one vertex, the number of branches equals the degree of z.

Now we will define Layer of each vertices and Subbranch of a branch in a tree.

Definition 4.4 (Layer `(v)). We define layer i as the set of all vertices with distance

bdiam(T)
2 c ° i to the center of T. For a vertex v, we write `(v) for the layer that it is

contained in, so `(v)= bdiam(T)
2 c°d, where d is the distance of v to the center of T.

Also, we use the term single edge for an edge {u,v} if `(u)= `(v)+1 and double egde

if `(u)= `(v)+2, assuming `(u)∏ `(v).

12



Definition 4.5 (Subbranch). Let v be a vertex in a branch B and v has degree more than

two. Suppose the edge between B and the center has removed. Let e = uv be an edge,

where `(v) < `(u). If we remove the edge e, the branch will fall apart in two parts. The

part which does not contain a vertex of minimum layer is called subbranch. If both of them

contain vertex of minimum layer, then one of them is subbranch.

We start the proof of Theorem 1.1 by proof a bunch of lemmas. First we will prove

that, for tree with single vertex as center and number of branches of maximum length ∏ 3.

Then we will prove for tree with single vertex as center and exactly two branches. In the

last lemma, we will prove for tree with double vertex as center.

Lemma 1. Suppose T is a tree with single vertex as center and diam(T)∏ 6 and exactly

three branches from center with maximum length. Then src(T2)∏ rc(T2)∏ diam(T2)+1.

Proof. Suppose B1, B2, B3 are three branches with maximum length from center. Suppose

v1, v2, v3 are three farthest leaves from center in B1, B2, B3. There exists a unique shortest

path P from v1 to v2 that will use diam(T2) edges . Let the edges are e1, e2, ..., ek.

Similarly,there exists a unique shortest path Q from v1 to v3 that will use diam(T2) edges.

Let the edges are f1, f2, ..., fk. Note that, e1 = f1, e2 = f2, ...e j = f j where j = bdiam(T2)
2 c.

That is, both path will use same edges in B1. The unique shortest path R in T
2 from v2 to

v3 will use the path en, e(k°1), ..., e( j+1), f( j+1), ..., fk.

We give a proof by contradiction. Let c be a rainbow vertex coloring that uses at most

diam(T2) colors. Notice that the paths P, Q, and R have length diam(T2). Therefore,

for each of these paths, all edges are assigned different colors and all colors appear in the

path.

Since the first j edges of the paths P and Q are equal, we see that the colors used

for e j+1, . . . , ek are the same as the colors used for f j+1, . . . , fk. Since diam(T) ∏ 6,

{e j+1, . . . , ek} and { f j+1, . . . , fk} are non-empty. Hence, there is a color that appears more

than once in R, which yields a contradiction.

We conclude that rc(T2)∏ diam(T2)+1.
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Also, since we have src(T2)∏ rc(T2), we have src(T2)∏ rc(T2)∏ diam(T2)+1 .

Lemma 2. If T is a tree with single center and diam(T) ∏ 6 and at least three branches

from center with maximum length. Then rc(T2)= diam(T2)+1.

Proof. Suppose D = b diam(T)/2 c
Consider the coloring:

c(viv j)=

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

c if `(vi) = D and `(v j) = D - 1

c if `(vi)=`(v j)

`(v j) if `(vi) 6= D and `(vi) = 1 + `(v j)

`(v j) + 1 if `(vi) = 2 + `(v j)

c otherwise

where c is a unique color different from all the color.

Couple of things to notice in the coloring procedure are

• if a vertex is in odd layer, then the double edges connected to it is of even color. And

if a vertex is in even layer, then the double edges connected to it is of odd color.

• if a vertex is in odd layer, then the single edge towards center is of odd color. And if

a vertex is in even layer, then the single edge towards center is of even color.

Note that, total layers are diam(T)
2 + 1 = diam(T2)+ 1 (since diam(T)

2 = diam(T2),

namely 0,1, ...,diam(T2). But we didn’t use diam(T2) as a color and use c as a unique

color. We total number of used color is diam(T2)+1.

Claim: This is a rainbow coloring i.e. 9 rainbow path between every pair of vertices.

Proof: Suppose z is the center and u,v be any two vertices such that one of them in in odd

layer and other one is in even layer ,say, `(u) is even and `(v) is odd. Also suppose if

14



path1 is the path from u to z using vertices in even layers and path2 is the path from v

to z using vertices odd layers. From the coloring, it is clear that we will use odd colored

edges in path1 and even colored edges in path2. Then union of path1 and reversed of

path2 is the rainbow path between u and v.

If both of u and v is in odd layer, then in path1 first use a single edge towards center

then use double edges to follow even layer vertices.

If both of u and v is in even layer, then in path2 first use a single edge towards center

then use double edges to follow odd layer vertices.

⌅
Combining this with Lemma 5.1, we conclude that rc(T2)= diam(T2)+1.

Figure 1: Square of tree with three branches of maximum length
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Lemma 3. If T is a tree with one centers and diam(T) ∏ 6 and there are exactly two

branches from center with maximum length. Then rc(T2)= diam(T2).

Proof. Suppose two maximum branches are B1 and B2. One of other branches is B3. All

Other branches will be colored as B3. B
0
i

is subbranch in Bi.

Let `(vi)∑ `(vj). First let diam(T2) is even.

Figure 2: Square of tree with two branches of maximum length and even diameter
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c(viv j)=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

diam(T2)°2 vi,vj 2 B1, `(vi)= diam(T2)°2 and `(vj)= 1+`(vi)

diam(T2)°2 vi 2 B1,vj 2 B
0
1, `(vi)= diam(T2)°2 and `(vj)= `(vi)

diam(T2)°2 vi 2 B1,vj is center, and `(vj)= 1+`(vi)

`(vi) vi,vj 2 B1, `(vi) is even and `(vj)= 2+`(vi)

`(vj) vi,vj 2 B1, `(vi) is odd and `(vj)= 2+`(vi)

`(vi)°1 vi,vj 2 B1, `(vi) is odd and `(vj)= 1+`(vi)

`(vj) vi,vj 2 B1, `(vi) is even and `(vj)= 1+`(vi)

diam(T2)°1 vi,vj 2 B2, `(vi)= diam(T2)°2 and `(vj)= 1+`(vi)

diam(T2)°1 vi 2 B2,vj 2 B
0
2, `(vi)= diam(T2)°2 and `(vj)= `(vi)

diam(T2)°1 vi 2 B2,vj is center, and `(vj)= 1+`(vi)

`(vi)+1 vi,vj 2 B2 and `(vj)= 2+`(vi)

`(vi) vi,vj 2 B2 and `(vj)= 1+`(vi)

`(vi)+1 vi,vj 2 B3, `(vi) is even and `(vj)= 2+`(vi)

`(vi)°1 vi,vj 2 B3, `(vi) is odd and `(vj)= 2+`(vi)

`(vi) vi,vj 2 B3, `(vi) is odd and `(vj)= 1+`(vi)

`(vi)°2 vi,vj 2 B3, `(vi) is even and `(vj)= 1+`(vi)

diam(T2)°2 vi 2 B3, vj is center, and `(vj)= 1+`(vi)

diam(T2)°1 vi 2 Bi, vj 2 B j,i < j, i < 3 and `(vj)= `(vi)

diam(T2)°2 vi 2 Bi, vj 2 B j,i < j, i ∏ 3 and `(vj)= `(vi)

diam(T2)°1 otherwise

Also color of edges in B
0
i

will be same as Bi.
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For B1, we have use one color to go one level to alother level. So, total color used in

B1 is diam(T)
2 = diam(T2). Same set of colors have been used in B2 and B3. So, total

number of colors remain same i.e. diam(T2).

Couple of things to notice in the coloring procedure of B1 are

• if a vertex is in odd layer, then the double edges connected to it is of odd color. And

if a vertex is in even layer, then the double edges connected to it is of even color.

• if a vertex is in odd layer, then the single edge towards center is of even color. And

if a vertex is in even layer, then the single edge towards center is of odd color.

Same thing we can point out for B3 and opposite thing can be pointed out for B2.

Now we show that there is a rainbow path between every pair of vertices. Let u and v

be any two vertices.

Case 1. u 2 B1 and v 2 B
0
1.

Let B
0
1 is started from (diam(T2)°1) layer.

Subcase (i): `(u) is even, `(v) is odd.

Use vertices in even layers in B1 by taking edges of even colors and use vertices in odd

layers in B
0
1 by taking edges of odd colors. Use the edge of color diam(T2)°2 in B1 to

reach the common ancestor.

Subcase (ii): `(u) is odd, `(v) is odd.

First take a single edge of even color in B1, then follow the path as `(u) is even, `(v)

is odd.

Subcase (iii): `(u) is odd, `(v) is even.

Use vertices in odd layers in B1 by taking edges of odd colors and use vertices in even

layers in B
0
1 by taking edges of even colors. Use the edge of color (diam(T2)°2) in B

0
1

to reach the common ancestor.

Subcase (iv): `(u) is even, `(v) is even.
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First take a single edge of odd color in B1, then follow the path as `(u) is odd, `(v) is

even. Use the equal layer edge if v is next to common ancestor.

Case 2. u 2 B2 and v 2 B
0
2.

Similar to case 1.

Case 3. u 2 B1 and v 2 B2.

Use vertices in even layers in B1 by taking even colored edges to reach the center, then

use vertices in even layers in B2 by taking odd colored edges.

Case 4. u 2 B1 and v 2 B3.

Use vertices in even layers in B1 by taking even colored edges to reach the center, then

use vertices in even layers in B3 by taking odd colored edges.

If the vertex in B3 is next to center, then in B1 first go to the vertex at layer (diam(T2)°
1) by taking single edge of color (diam(T2)°2), then use the same layer edge to reach

the destination.

Case 5. u 2 B2 and v 2 B3.

Use vertices in even layers in B2 by taking odd colored edges to reach the center, then

use vertices in odd layers in B3 by taking even colored edges.

Case 6. u 2 B3 and v 2 B4.

Use odd color edges in B3 and even color edges in B4.

Use vertices in even layers in B3 by taking odd colored edges to reach the center, then

use vertices in odd layers in B4 by taking even colored edges.

Case 7. u 2 B3 and v 2 B
0
3.

Use path same as if u 2 B3 and v 2 B4 by first go to center. Then travel along B3 until

B
0
3 started. Then travel along B

0
3 to reach destination.

Similarly, when diam(T2) is odd, we can color the tree. In that case, we will replace

the color (diam(T2)°2) by (diam(T2)°1).

Lemma 4. If T is a tree with two centers and diam(T)∏ 5. Then rc(T2)= diam(T2).
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Figure 3: Square of tree with two branches of maximum length and odd diameter

Proof. Consider the following coloring c:

c(viv j)=

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

diam(T2) - 1 if one endpoint is a center and `(vi) = 1 + `(v j)

diam(T2) - 1 if vi and vj are centers

`(v j) if no endpoint is center and `(vi) = 1 + `(v j)

`(v j) + 1 if `(vi) = 2 + `(v j)

diam(T2) - 1 else
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Here we have use diam(T2) colors namely 0,1, ...,diam(T2)°1.

Couple of things to notice in the coloring procedure are

• if a vertex is in odd layer, then the double edges connected to it is of even color. And

if a vertex is in even layer, then the double edges connected to it is of odd color.

• if a vertex is in odd layer, then the single edge towards center is of odd color. And if

a vertex is in even layer, then the single edge towards center is of even color.

Suppose z1 and z2 are centers. If two vertices are in two different branches, then in

one branch travel via even layered vertices using odd colored edges and in other branch

travel via odd layered vertices using even colored edges. And use a diam(T2)°1 colored

edge to connect them. Since centers will be either in even layer or in odd layer, this double

edge must be connected with a center. So its color will be different from all other edges of

the path. If two vertices are in two different subbranch of in same branch, consider as two

different branch.

Now suppose two vertices are next to two centers. Suppose u is in branch of z1 and

v is in branch of z2. Then the rainbow path between u and v will be : Use diam(T2)°1

colored edge to go z2 from u and then use next double edge to go a vertex in the branch

from z2 and then use single edge to reach v.

Note that, in one branch we will use even colored edges and in one branch we will use

odd colored edges. So the path will be rainbow path.

Proof of 1.1. Suppose G = T
2. If T is unknown, it can be computed in linear time [6] .

First, we compute the center of T, and then we distinguish cases as in Lemmas 2, 3, 4.

This costs linear time. In each of those lemmas, an optimal coloring is given that can be

computed in linear time.
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Figure 4: Square of tree with two center

.
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5 Conclusion and Future Work

In this work we have found rainbow connection number of power of tree. It will be in-

teresting to find rainbow connection number and rainbow vertex connection number of

power of various other classes. Also some researchers are working on rainbow coloring in

random graph and online streaming graph.
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