
Fault Analysis of the Prince Family of
Lightweight Ciphers

Final Thesis submitted to the

Indian Statistical Institute, Kolkata

For award of the degree

of

Masters of Technology in Cryptology and Security
by

Anup Kumar Kundu
[Roll No: CrS1909]

Under the guidance of

Dr. Dhiman Saha
Department of Electrical Engineering and Computer Science

Indian Institute of Technology, Bhilai

Institute Supervisor

Dr. Goutam Paul
Cryptology & Security Research Unit (CSRU)

Indian Statistical Institute, Kolkata

Cryptology and Security Research Unit

INDIAN STATISTICAL INSTITUTE, KOLKATA

JULY 2021

Certificate

This is to certify that the thesis entitled “Fault Analysis of the Prince Fam-

ily of Lightweight Ciphers" submitted by Anup Kumar Kundu (CrS1909)

to the Indian Statistical Institute, Kolkata, is a record of bonafide research work

carried under my supervision and is worthy of consideration for the degree of

Master of Cryptology and Security of the Institute.

Date: 09.07.2021

Place: ISI Kolkata, India Dr. Dhiman Saha

iii

Acknowledgements

Firstly I want to really thank from the core of my heart to my guide Dr. Dhiman
Saha, Assistant Professor, Department of EECS, IIT Bhilai, India. His guidance,
enthusiastic encouragement, tolerance of my questions about arbitrary things
from various domains and way of giving the answers about all of them patiently
really inspire and motivated me a lot. I will be really blessed if I can carry the
ways, like how he connects to all his students and other members as friends and
remains enthusiastic for all time uniformly from morning to night, through me.
I am privileged to have such a support me both academically and personally.

I would also like to thank Banashri Karmakar, Department of EECS, IIT
Bhilai, India and Aikata, The Institute of Applied Information Processing and
Communications (IAIK), Graz University of Technology, Styria, Austria to sup-
port me in my research work all the time and help me to proceed with my work
further.

My grateful thanks are also extended to all the lab members of here and
Mostafizar Rahman, CSRU, ISI, Kolkata for helping me initially to avoid the
initial obstacles and get the momentum towards research. They keep motivated
me all the time during the COVID situation also.

Finally, I thank my teachers and friends in ISI and my family members who
keep supporting me in all my endeavors and in the toughest period of COVID-19
pandemic situation.

Anup Kumar Kundu

Indian Statistical Institute
Kolkata - 700108 , India.

v

Abstract

Privacy is one of the most fundamental aspects of the digital age that
we live in. With the advent of the Internet and the advances in both nano-
scale electronics and communication technologies, data has become the new
oil. And wherever there is data there is a notion of its privacy. Whether data
is at rest or in motion, privacy and authenticity have always been the hallmark
of modern day communication. Cryptography provides us the necessary tools
and primitives that help us achieve among others, the goals of privacy, integrity
authenticity in isolation and more recently even simultaneously. While conven-
tional crypto tackles most of the problems efficiently, it has been seen to be
particularly, not suitable for resource constrained environments which are be-
ing increasingly prevalent in present-day Internet-of-Thing (IoT) environments,
RFID tags so on and so forth. This is primarily attributed to the fact that
traditional crypto is “heavy-weight” in terms of the computational resources
that it demands, be it in terms of chip-area, power-consumption, throughputs
etc and hence become unusable or overwhelming for devices that operated on
limited resources. This points us in the direction of a new typo of crypto which
is referred to as “Lightweight” crypto. Lightweight Cryptographic algorithms
are tailored for resource starved settings and hence perform better in such en-
vironments. The importance of lightweight crypto is evidence by the on-going
multi-year global competition by NIST for standardizing the next generation
lightweight authenticated ciphers and presently in the final round.

This work consists cryptanalysis of two lightweight block ciphers namely
PRINCE, and PRINCEv2 which are based on the SPN design philosophy. PRINCE
has been around for some time and is proposed keeping in mind unrolled im-
plementations. PRINCEv2 is the new version of PRINCE which was reported in
SAC 2020. In the current work, we introduce a new fault attack on PRINCE
based on the random bit-model where faults are injected in the input of 10
th round. The attack is able to uniquely recover the key using 7 faults. It
is interesting to see that the random bit-fault model which is a popular fault
model has not yet been explored independently on PRINCE. Though Song and
Fu [SH13] have explored the random-nibble fault and mentioned the bit-model
to be a special case, they actually fail to capture the full scenario. Herein lies
the motivation of the current work. We look at the bit-model in isolation and
in-depth and conclude that it is more effective both in terms of the point at
which the fault is injected as well as the complexity of the resulting DFA. In
terms of the point of fault injection it is important to emphasize that in the
attack reported in [SH13], the fault is actually injected before/during the Sub-

viii Acknowledgements

Byte-Inverse operation in the 10 th round which is the last operation of the 10
th round. Thus it will be more appropriate to state the fault injection point to
be 10.5 rounds at best instead of 10 rounds as claimed by the authors in [SH13]
(Refer Fig. 3.7). We touch upon this aspect in details in the discussion section
later in this work. On the contrary, the random bit-flip DFA proposed here
actually induces the fault at the input of 10 th round. The work further gives
a classification of fault-invariants that are generated at the end of 11 th round
due to a random bit-fault at the beginning of 10 th round. Further, PRINCEv2
was introduced with many modifications primarily in the key-schedule to thwart
many classical attacks on PRINCE. We investigated PRINCEv2 in the light of
the current work and found that PRINCEv2 is equally vulnerable to all attacks
reported here. Finally, we look at PRINCE-like ciphers in general and comment
on the impact of the α-reflection property on the amplification of the scope of
fault injection.

Contents

Certificate iii

Acknowledgements v

Abstract vii

Contents ix

1 Introduction 1

2 Literature Survey 5
2.1 PRINCE [BCG+12] . 5

2.1.1 Description of PRINCE 5
2.1.2 Summary of Some Attacks on PRINCE 8
2.1.3 Some Properties of PRINCE 11

2.2 PRINCEv2 [BEK+20] . 16
2.2.1 Description of PRINCEv2 16
2.2.2 Designers’ Perspective on PRINCEv2 18

2.3 SIMON [BSS+13] . 19
2.3.1 Description of SIMON 20
2.3.2 Differential Attack on SIMON32 [QHS16] 20

2.4 Some Other Lightweight Ciphers 25
2.4.1 SIMECK [YZS+15] 25
2.4.2 ACE [MAR] . 26

2.5 Fault Analysis . 27
2.5.1 Some Papers Related to Fault Attack 28
2.5.2 Different Fault Models 29

2.6 Conclusion . 30

3 Fault Analysis of PRINCE family 31
3.1 Related Work . 31

3.1.1 Random Nibble Based Fault Attack [SH13] 31

ix

x Contents

3.1.2 Integral Fault Attack [AKS20] 32
3.1.3 Slow Diffusion Fault Attack [AKS20] 33

3.2 Proposed Differential Fault Attack on PRINCE 34
3.2.1 The Fault Model 35
3.2.2 Fault Diffusion in Internal State of PRINCE 35
3.2.3 Classification of Fault Invariants 35
3.2.4 Description of the Attack 37

3.3 Fault Attack Vulnerability Assessment of PRINCEv2 41
3.4 Experimental Results . 43
3.5 Discussion . 44
3.6 A Note on Fault Analysis of PRINCE-like Designs 45
3.7 Conclusion . 46

Conclusion and Future Scope 49

Dissemination of The Work 51

Bibliography 53

CHAPTER1
Introduction

The word “Cryptology” comes from greek word ‘kryptós’, which means hidden
or secret and the word ‘graphein’, which means to write or to study. So, Cryp-
tology is the study of techniques secretly. Security and privacy are major issues
in the modern digital era. Nowadays almost everything is online. Therefore
secure communication is a point of concern. Otherwise, privacy will be lost.
Cryptology is such a state-of-art which deals with security and privacy of digital
data. That’s why we need cryptology so much in today.

Formally, a cryptosystem is a five-tuple (P , C,K, E ,D), where :

• P is a finite set of possible plaintexts
• C is a finite set of possible ciphertexts
• K, the key space, is a finite set of possible keys
• For each K ∈ K, there is an encryption rule eK ∈ E and a corre-

sponding decryption rule dK ∈ D. Each eK : P → C and dK : C → P are
functions such that dK(eK(x)) = x for every plaintext element x ∈ P

Lightweight cryptography is a part of cryptology, wants to secure the de-
vices with minimum resources (memory, power, size). The process of providing
privacy in the systems with low cost is the main focus of lightweight cryptog-
raphy. The word “Cryptanalysis“ comes from ‘kryptós’ which means “hidden",
and ‘analýein’ means “to analyze". So, Cryptanalysis is the analysis of hidden
things in the system. It deals with algorithms that try to know the key for a
given encrypted message. In general, it can be divided into two, symmetric key
cryptosystem, asymmetric key cryptosystem. In the symmetric key, same key is
used for encryption and decryption purpose. For asymmetric key, encryption is
done by one key, and decryption is by other. Symmetric key cryptosystem can

1

2 Chapter 1. Introduction

be divided into two kinds of ciphers, block ciphers and, stream ciphers. Block
cipher operates on blocks. It takes an input block of size n as a message, a key
of size k, and outputs a block of size n as ciphertext. Stream ciphers encrypt
the input stream as one character at a time with the corresponding keystream
and output a ciphertext stream.

There are various types of block ciphers. SPN (substitution-permutation
networks) and Feistel ciphers are two of them. SPN takes a block of plain text
and key as input. It applies substitution and permutation alternatively for a
specified number of rounds to make cipher text. In Feistel cipher, the original
block of plain text is divided into two parts. The round function is applied to
one and its output is XORed with the other part of the plaintext. Then at the
end of one round, two parts are swapped. This process is repeated for some
number of rounds to make the cipher text. In this work, we focus on PRINCE,
PRINCEv2, and SIMON.

PRINCE [BCG+12] was introduced at Asiacrypt 2012 by the Technical Uni-
versity of Denmark (DTU), NXP Semiconductors, and the Ruhr University
Bochum. It is an SPN structure. PRINCE became very popular due to its
impressive design. AES [DR02] and some other block ciphers take some time
to execute their blocks. Due to this reason, the overall computation time in-
creases. If one block executes in one clock cycle, then block ciphers need some
clock cycle to compute the ciphertext. PRINCE has unrolled design. Therefore
by slowing down the clock cycle, we can execute encryption or decryption of
PRINCE within just one clock cycle for every type of machine, whose computa-
tion power is slow with whose is fast. The cipher has an α-reflection property,
for this encryption with one key, is equivalent to decryption with a related key.
PRINCE developers made the usage of the S-Box flexible. They gave a family
of S-Boxes(8 many). One can use any of those 8 S-Boxes in PRINCE depend-
ing upon the suitability of hardware. As PRINCE has α-reflection property, so
implementation of decryption oracle takes a small area in the chip.

PRINCE follows FX construction with a 64-bits block size, which uses a
128-bit key. The key is a composition of two 64-bit keys, k0 and k1. It has
12 unrolled rounds, five forward rounds, one middle round, and five backward
rounds. Note that, the middle round is of two rounds. After that PRINCE uses
a whitening key operation. Each forward round has a S-Box layer, a M-layer,
a shift row operation and, XORing of a round constant with 64 bit key. The
Middle round has one S-Box layer, M-layer, and one S−1-layer. The Backward
round has XORing of a round constant with 64-bit key, one M-layer and one
S−1-layer.

3

The difference between PRINCEv2 [BEK+20] from PRINCE is, PRINCEv2
does not follow the FX construction. For this cipher, two 64-bit keys are used
in PRINCECORE and the middle round becomes a keyed function. Along with
these, the PRINCEv2 does not have the α-reflection property.

SIMON [BSS+13] is another lightweight cipher, based on the Feistel struc-
ture. The SIMON family is denoted by SIMON2n/mn, where 2n is the block size
andmn the master key size. It has three members: SIMON32/64, SIMON48/96
and SIMON64/128.

Suppose the plaintext at the i− 1-th round is (Li−1, Ri−1), where Li−1 ={
X i−1
n , X i−1

n+1, · · ·X i−1
2n−1

}
andRi−1 =

{
X i−1

0 , X i−1
1 , · · ·X i−1

n−1

}
and the sub-

key is K i−1 =

{
K i−1

0 , K i−1
1 , · · ·K i−1

n−1

}
. Then round function is

(Li, Ri) = (Ri−1 ⊕ F (Li−1)⊕K i−1, Li−1)

where
F (x) = ((x ≪ a) ∧ (x ≪ b))⊕ (x ≪ c)

for i = 1, · · ·nr. For SIMON, value of a = 1, b = 8, c = 2.

The Prince Challenge

To know how much the cipher PRINCE is secure against the attacks, the Tech-
nical University of Denmark (DTU), NXP Semiconductors, and the Ruhr Uni-
versity Bochum proposed PRINCE challenge [pri14]. The academic researchers
and the industrialists all were welcomed equally in this competition. They cat-
egorized the challenge depending upon the chosen plaintext attack scenario,
known-plaintext attack scenario, and how fast the cipher can be attacked in
reduced rounds. They have declared winners depending upon the attacks.

NIST LWC Competition

NIST initiated a process to evaluate, and standardize lightweight cryptographic
algorithms that are suitable for use in various kinds of aspects [nis] like cy-
bersecurity, health and bioscience etc. They considered 57 submissions and
56 submissions were selected as possible candidates for round 1 and out of
them, 32 remained for Round 2. This year, NIST finalized some ciphers.
They selected 10 ciphers as finalists of the round. They are ASCON [DEMS16],
Elephant [BCDM20], GIFT-COFB [RD19], Grain128-AEAD [HJM+19], ISAP [DEM+20],
Photon-Beetle [BCD+19], Romulus [IKMP20], Sparkle [BBdS+19], TinyJambu [WH19],

4 Chapter 1. Introduction

and Xoodyak [DHP+20]. ACE was selected in the NIST round 1 and round 2
candidate list. But could not be able to clear the next one. We discuss ACE
briefly in our literature survey.

Contribution of the Thesis

• New random bit-flip based fault attack

• The attack mounted is based on practical complexities and feasible attack
models and lead to unique key-recovery attacks.

• Identification of fault-invariants for random bit-flip model.

• The attack is implemented using C and verified using simulations.

• All attacks also verified to work on PRINCEv2 with no change in com-
plexities

• Discussion on amplification of scope of fault injection attributed to PRINCE-
like constructions

Organization of the Thesis

This thesis is organized as follows: Chapter 2 of the thesis mainly contains a
brief survey on PRINCE, SIMON, and PRINCEv2. For the ciphers PRINCE and
SIMON, descriptions of them and some attacks on them are illustrated in Section
2.1.1, 2.3.1 and 2.1.2, 2.3.2 of Chapters 2.1 and 2.3 respectively. Chapter 3
presents our fault attack on the cipher PRINCE. We found a 2 round bit-based
distinguisher and applying that, we attack the blocked cipher PRINCE. It is a
random bit fault attack. This attack is described fully in the Chapter. Then
after the discussion about future work, we conclude the thesis in Chapter 3.7.

CHAPTER2
Literature Survey

In this chapter, we study some lightweight ciphers, mainly PRINCE, PRINCEv2,
and SIMON. We give a brief description of ACE and SIMECK also. PRINCE and
PRINCEv2 are based on the SPN structure. Whereas the other ciphers are based
on Feistel structure. After the discussion, we give some attacks on PRINCE and
SIMON. As PRINCEv2 is recently introduced, so there is no attack on the new
version. But designers gave some security analysis of PRINCEv2. We illustrate
some of them also in the chapter. There is a section regarding fault analysis in
the chapter where we discuss some of the fault models.

2.1 PRINCE [BCG+12]

PRINCE [BCG+12] is a lightweight cipher, which was designed by keeping in
mind the unrolled behavior. Another most interesting part of the cipher is,
decryption of one key is equivalent to encryption of a related key. So this
decryption oracle can be implemented in hardware from the encryption oracle
with a minimum cost. The cipher is described in this section. Then we discuss
some attacks on it with a table, which tells the overview of the attacks on
PRINCE. Then discussing some interesting properties of PRINCE, we conclude
the section.

2.1.1 Description of PRINCE

PRINCE is a lightweight block cipher that follows the FX construction with a
block size of 64 bits and a key size of 128 bits. The 128-bit key (K = K0||K1)
is divided into two keys, where each is of size 64 bits.

5

6 Chapter 2. Literature Survey

Figure 2.1: FX Construction of PRINCE

The first part of the key is K0, and the second is k1. K1 is used as the
round key for the core of PRINCE, which is named as PRINCEcore andK0 is used
as a whitening key to the outside of the core structure.

If we denote the plaintext/ciphertext pair of PRINCE and PRINCEcore by
P /C and P ′/C ′ respectively then, P = P ⊕K0, C = C ′ ⊕K ′0, where K ′0
from K0 by the following linear mapping:

K ′0 = (K0 � 1)⊕ (K0 � 63)

The encryption function iterates the round function R five times, then
applies the middle layer R′, which is followed by five applications of the inverse
round function R−1.

Figure 2.2: Diagram of PRINCE

• S-Box : After the linear layer MC and shift row SR, the round function
applies an S-box layer SB. The inverse S-Box is applied to the inverse round
function. There are 8 Affine equivalent classes for the S-box of PRINCE family.
Anyone can be chosen from these classes. The S-box used in the PRINCE
proposal :

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
SB[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

• Shift Row : The ShiftRows permutation applied in SR is the following:

2.1. PRINCE [BCG+12] 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Here i-th row of the state is cyclically rotated to the left of by i positions
(similar to AES).

• Matrix Multiplication (MC) : The MC operation is built from the
following four 4 × 4 matrices:

M1 =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, M2 =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

,

M3 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

, M4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

or in other words Mi is the 4 × 4 identity matrix where the i-th row is
replaced by the zero vector. From theseMi we build the matrices M̂ (0), M̂ (1)

and M ′

M̂ (0) =

M1 M2 M3 M4

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

, M̂ (1) =

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

M1 M2 M3 M4

,

M ′ =

M̂ (0) 0 0 0

0 M̂ (1) 0 0

0 0 M̂ (1) 0

0 0 0 M̂ (0)

i.e., M ′ is the 64×64 block diagonal matrix with blocks (M̂ (0), M̂ (1),
M̂ (1), M̂ (0)). Finally, the MC-layer multiplies the state with M ′ and is an
involution.

8 Chapter 2. Literature Survey

Therefore for PRINCE we thus have the structure, where R = SR ◦ MC
◦ SB, R′PRINCE = SB−1 ◦ MC ◦ SB and R′−1PRINCE = SB−1 ◦ MC
◦ SR−1 .

• Round Constant : Round constants are RCi , where 0 ≤ i ≤ 11,
which are XORed with the states. The round constants used in the backward
rounds are related to the round constants of the forward rounds by α XOR
difference, where α = 0xc0ac29b7c97c50dd, i.e.

RCi ⊕RC11−i = α, [0 ≤ i ≤ 11]

RC0 0x0000000000000000
RC1 0x13198a2e03707344
RC2 0xa4093822299f31d0
RC3 0x082efa98ec4e6c89
RC4 0x452821e638d01377
RC5 0xbe5466cf34e90c6c
RC6 0x7ef84f78fd955cb1
RC7 0x85840851f1ac43aa
RC8 0xc882d32f25323c54
RC9 0x64a51195e0e3610d
RC10 0xd3b5a399ca0c2399
RC11 0xc0ac29b7c97c50dd

2.1.2 Summary of Some Attacks on PRINCE

After PRINCE was introduced at ASIACRYPT 2012, many attacks were per-
formed on it. Some authors exploit its keyless middle rounds, almost MDS
matrix which is used in its Matrix Multiplication (MC). As the MC is an in-
volutory matrix, some designers take an advantage of this too. Overall, the
maximum number of rounds that are attacked in PRINCE is 12, but the com-
plexities are high enough for those attacks.

Biclique Attack [ALL12]: In the paper, due to two applications of
the linear layer can active the entire state, designers build a biclique to re-
duce the data complexity over a single round. They use the matching-with-
precomputations approach in the paper. After two rounds we can get full dif-
fusion because of the key differences in the matching part. But for the partial
matching, here they consider only three rounds in full.

2.1. PRINCE [BCG+12] 9

Differential Attack [ALL12]: To do the differential attack for 2
rounds and 4 rounds authors applied Inside-Out Attack on Two Rounds of
PRINCEcore. For one forward round, the middle part, and one backward round
they proposed a differential trail for a 1-x-1 construction. They break down
the attack in some parts like preparation, oracle queries, derivation, discard
mismatching pairs, derive solutions for the S-box trails, derive key candidates
and eliminate false positives, and derive the key.

Multiple Differential Attack [CFG+14]: Here authors observe some
properties of PRINCE. From there they describe the first attack on 10- round
PRINCE, which takes 257.94 chosen plaintexts, with time complexity less than
260.61 encryptions which goes to a product Data × Time around 2118.56.

Sieve-in-the-Middle [CNV13]: This paper gives a new progression of
Meet-in-the-Middle (MITM) algorithms that allows the attacker to attack in a
higher number of rounds. Authors enumerate some input and output bits of
a particular middle sbox S without searching the collisions in the middle. If a
key does not give a valid transition through S, they discard the corresponding
value. Here the technique can be used to attack more rounds than classical
MITM as it covers the rounds corresponding to the middle sbox.

Meet-in-the-Middle [LJW13]: In this paper, the authors give a tech-
nique through which they can do a 9-round attack on AES-192 by using a
5-round distinguisher. They use this process to do an 8 round attack on
PRINCEcore with the help of a 6-round distinguisher. The data, time, and
memory complexities of the attack are about 253, 253, and 228 64-bit memo-
ries. Then they show that their attack can be extended for an 8-round PRINCE.
Along with this, in their paper, they give a bit-based distinguisher to attack 9
rounds of PRINCE.

Boomerang Attack [JNP+13]: Here authors provide the first third-
party analysis of the PRINCE cipher. They analyze for related-key attacks the
resistance of PRINCE. They show the related-key relations to do a key recovery
attack. Their attack requires (233, 264, 233) data , time and, memory complex-
ities.

Integral Attack [PN15]: The authors use a 4.5 round distinguisher
here. They give 3 round All property (i.e. all 212 many possible plaintexts) and
observe Balanced property (i.e. whether the XOR sum of the ciphertexts are 0

10 Chapter 2. Literature Survey

Attack # Rounds Comlplexity Reference

Time Data

Differential 2 232.44 232 [ALL12]
4 256.26 248 [ALL12]

Biclique 10 262.72 240 [ALL12]

Multiple differential 9 251.21 246.89 [CFG+14]
10 260.62 257.94 [CFG+14]

Sieve-in-the-middle 8 2123 1 [CNV13]

Meet-in-the-middle
8 266.25 216 [LJW13]
8 260 253 [LJW13]
9 264 257 [LJW13]

Boomerang 12 241 241 [JNP+13]

Integral

4 264 24 [JNP+15]
6 224.6 213 [RR16b]
6 237 6×212 [PN15]
6 264 216 [JNP+15]

Trunc. Diff. 4 218.25 8 [GR16]

Bit-pattern integral 4 228 6×28 [Mor17]

Higher-order diff. 7 257 6×257 [Mor17]
7 244.3 233 [RR16b]

Acc. Exh. Search 7 296.8 2 [RR16a]

Related-Key 12 264 233 [JNP+13]

Single-Key 12 2125.47 2 [JNP+13]

Diff. / Logic 4 5s 210 [DP20]

Table 2.1: Overview of Some Attacks on PRINCE

2.1. PRINCE [BCG+12] 11

or not) after 4.5 rounds. They mount a 6 round attack depending upon the
distinguisher with 6× 212 chosen plaintexts.

Truncated Differential Attack [GR16]: In this paper, authors show
practical key-recovery attacks which are formulated on subspace trails of PRINCE.
This is similar to truncated differentials, and they give their focus on the or-
der of ShiftRows and MixLayer operations to give the security of PRINCE-like
ciphers. They give constant dimensional subspace trails that are a coset of a
plaintext subspace which encrypts to proper subspaces of the state space for
many rounds. For setting up the competitive key recovery attacks to round-
reduced PRINCE authors start with the found subspace trails. They present two
different truncated differential key-recovery attacks on 3 rounds of PRINCE.

Bit-Pattern Integral Attack [Mor17]: The attack uses a collection
of plaintexts with some pattern. The basic idea of the attack is to analyze how
the set of plaintexts evolve through the encryption algorithm and to use the
existence of that property to verify key guesses.

Higher Order Differential Attack [Mor17] [RR16b]: Here au-
thors use the mix column property of PRINCE and check how one nibble all
property behaves. They found that the balanced property occurs after 3.5
rounds. They mount an attack depending upon that distinguisher.

2.1.3 Some Properties of PRINCE

This section elaborates on some properties of PRINCE. Section 2.1.3 is discussed
about the slow diffusion property. Section 2.1.3 contains integral property, one
nibble integral and three nibbles integral are given in two paragraphs. A five
round key recovery attack and reflection cryptanalysis is discussed in 2.1.3 and
11 respectively.

Slow Diffusion Property [AKS20]:

For the MC operation, PRINCE uses an almost MDS matrix. For this, it has
a slow diffusion property. Single bit difference in the entire state affects three
nibbles. The all possible single bit difference transitions are shown in Fig 2.3.
Here we start from one single-bit difference at nibble 0 at the beginning and
see that it takes 3 rounds for such a difference to diffuse the entire state.

12 Chapter 2. Literature Survey

Active Nibble

Inactive Nibble

Active Nibble with
difference 0001

Active Nibble with
difference 0010

Active Nibble with
difference 0100

Active Nibble with
difference 1000

Round R

Round R

Round R

Round R Round R+1

Round R+1

Round R+1

Round R+1

Round R+2

Round R+2

Round R+2

Round R+2

Figure 2.3: Slow Diffusion Property of PRINCE [AKS20]

Integral Property

We discuss two types of integral properties. The first one is about one nibble
integral property. The second one is about three nibbles integral property.

One-Nibble Integral Property [AKS20]: A set is called balanced,
if the XOR-sum of all the encrypted ciphertext of the set is zero. Here, we are
giving 1-nibble all property to a nibble and getting balanced property after 3.5
rounds. We are giving 1-nibble all property to state 1. This propagates to state
4 with probability 1. Then after MC, it becomes A8 along the column.

We can verify this from the bit equations. The bit equations for MC of
Prince are:

M̂ (0) :

y00 = x0
1⊕x0

2⊕x0
3 y01 = x0

0⊕x0
1⊕x0

2 y02 = x0
0⊕x0

1⊕x0
3 y03 = x0

0⊕x0
2⊕x0

3

2.1. PRINCE [BCG+12] 13

Figure 2.4: 1-Nibble Integral Property of PRINCE [AKS20]

y10 = x1
0⊕x1

2⊕x1
3 y11 = x1

1⊕x1
2⊕x1

3 y12 = x1
0⊕x1

1⊕x1
2 y13 = x1

0⊕x1
1⊕x1

3

y20 = x2
0⊕x2

1⊕x2
3 y21 = x2

0⊕x2
2⊕x2

3 y22 = x2
1⊕x2

2⊕x2
3 y23 = x2

0⊕x2
1⊕x2

2

y30 = x3
0⊕x3

1⊕x3
2 y31 = x3

0⊕x3
1⊕x3

3 y32 = x3
0⊕x3

2⊕x3
3 y33 = x3

1⊕x3
2⊕x3

3

In-state 4 of Fig 2.4, we have all property in nibble 0. So, only those bits
will be affected, for which at MC the bits at nibble 0 are involved (we can get
the involved bits from the above equations). From the state 6 of Figure 2.4 we
can see that at each non-zero difference nibble, there are 3-bit positions that
can take 0 and 1. So, the total distinct numbers will be, 23 = 8. So, we will
get A8 after one round.

14 Chapter 2. Literature Survey

If we look at the 0-th nibble at state 5 of Fig 2.4, then after 1st MC, it
becomes CAAA (bitwise). After SB−1, it will be either {0xb, 0x7, 0x3, 0x2,
0xf, 0xd, 0x8, 0x9} or {0xa, 0x6, 0x4, 0x0, 0x5, 0xe, 0xc, 0x1}. If we take
either side, from bit equations after MC, 0-th nibble will be affected by 1st,
2nd, 3rd bit of 0-th nibble. As there are 6 distinct values for those 3 bits, so,
there will be 6 distinct values after MC for nibble 0. The explanation will be
the same for or side and for other nibbles also. That’s why, after another MC,
we will get the pattern like state 9 of Fig 2.4. By Ai, we mean, there are i
many distinct elements in the nibble.

Three-Nibble Integral Property [PN15]: Here like the same as
previous, we are giving All property in three nibbles i.e. 212 many distinct
collections of plaintexts and getting balanced after 4.5 rounds (two forward
rounds, the middle rounds, and one incomplete backward round − without the
S-Layer).

The choice of the three nibbles is not random, it has to be from the set of
the type {4i, 4i+ 1, 4i+ 2, 4i+ 3}, where i ranging from 0 to 3. There are
4 ×

(
4

3

)
= 16 possible combinations for this. The property will not hold if an

additional S-box layer is applied. From this distinguisher, we can implement a
5-round attack on PRINCE, and then we extended this attack to 6-rounds, by
adding one final round.

Five-Round Key Recovery Attack [PN15]:

From the above distinguisher, we can mount a 5 round integral attack on
PRINCE. We will choose 212 many distinct plaintexts for those 3 nibbles and
encrypt them. Then after decrypting one SB layer we will check whether the
XOR-sum of those are ‘0’ or not. Depending upon that we will reduce the

2.1. PRINCE [BCG+12] 15

keyspace size and finally reveal the original key.

Algorithm 1: Recover_K0_xor_K1

1 Generate a collection of 212 plaintexts in which the first three nibbles
(indexes 0, 1, 2) are active

2 Encrypt each plaintext from the set using 5-round Prince cipher and
obtain the collection of 212 corresponding ciphertexts

3 foreach nibble position POS (from 0 to 15) of the key k0 ⊕ k1 do
4 foreach possible value kv (from 0 to 15) of the POS nibble

from k0 ⊕ k1 do
5 Partially decrypt each of the ciphertexts, by applying the S-layer
6 Compute the XOR-sum of the 212 obtained nibble values
7 if the XOR-sum is 0 then
8 keep kv as probable value of the nibble from position POS

of the key k0 ⊕ k1
9 end

10 end
11 end

Reflection Cryptanalysis [SBY+13]

Let f : A → A be a function on a set A. A point x ∈ A is called a fixed
point of the function f if and only if f(x) = x. The number of fixed points
of an involution f : F2

n → F2
n is on the average equal to 2n/2 . We will use the

advantage of this property as for PRINCE, the MC matrix is an involution.

Figure 2.5: Characteristics I for Reflection Property

16 Chapter 2. Literature Survey

Here as M ′ is an involution, so if we give input x, then after M ′ output
will also be x. So, the difference will be 0 for this. If we give some input x′

in place of XK
R such that S(x) = x′, then after S−1 also it will be x′. So,

the difference between XK
R and Y K

R+1 is 0, as in Fig 2.5. Then the difference
between XI

R and Y O
R+1 is α, as the difference between round constants is α.

Therefore, Characteristics I1 will hold with probability |FM′ |
2n

. So, PRINCE
has exactly 232 = 2n/2 fixed points i.e. probability of the characteristic I1 is
then 232

264
= 2−32.

Figure 2.6: Characteristics II for Reflection Property

Similarly, from Fig 2.6 for Characteristics II, we get,

PI2 = 2−n ×#

{
x ∈ Fn2 | S−1(M ′(S(x)))⊕ x = α

}
as , if S−1(M ′(S(x)))⊕x = α happens, then we will get difference between
XI
R−1 and Y R+2

O as α.

2.2 PRINCEv2 [BEK+20]

To give more security to the PRINCE cipher, PRINCE developers came up with
a new design of PRINCE. This Section describes the cipher, PRINCEv2. We
discuss some differences between PRINCE and PRINCEv2 also. The security
analysis of the new version and the discussion about which attacks on PRINCE
can be applied on PRNCEv2 is given in the next subsection.

2.2.1 Description of PRINCEv2

PRINCEv2 [BEK+20] also belongs to the same family of block ciphers as PRINCE.
In order to achieve higher security level, PRINCEv2 was proposed by making

2.2. PRINCEv2 [BEK+20] 17

some small tweaks to the PRINCE block cipher, without changing the number
of rounds or round operations. Basically, the tweaks were made on one of the
sensitive parts of block cipher design, namely the design of the key-scheduling,
as shown in Fig. 2.7. The basic structural differences between PRINCE and
PRINCEv2 are highlighted as below:

Figure 2.7: Schematic diagram of PRINCEv2

1. Unlike PRINCE, PRINCEv2 does not follow the FX-construction.

2. The 128-bit master key K is split into two parts, K = (K0‖K1) and
the ith round key is defined as:

Ki =

{
K0, if i mod 2 = 0

K1, if i mod 2 6= 0

3. The middle layer of PRINCEv2 is now a keyed operation, which is shown
as below:

R′ = SB−1 ◦ ⊕RC11
◦ ⊕K1

◦MC ◦ ⊕K0
◦ SB

4. The round constant derivation part is almost same like PRINCE, but in-
stead of XORing the same α, we alternate the constants α and β to
derive the round constants in the second half. where{

α = c0ac29b7c97c50dd

β = 3f84d5b5b5470917

The round constants are given in Table:2.2.

18 Chapter 2. Literature Survey

Table 2.2: Round Constants (RC) of PRINCEv2

RC0 0000000000000000
RC1 13198a2e03707344
RC2 a4093822299f31d0
RC3 082efa98ec4e6c89
RC4 452821e638d01377
RC5 be5466cf34e90c6c
RC6 7ef84f78fd955cb1
RC7 7aacf4538d971a60
RC8 c882d32f25323c54
RC9 9b8ded979cd838c7
RC10 d3b5a399ca0c2399
RC11 3f84d5b5b5470917

5. Here α-reflection property is slightly weakened and the decryption is not
anymore simply encryption with a modified key. Instead a Swap function
is used to utilize the same circuit for both encryption and decryption (see
Fig. 2.8).

Swap(K0, K1, dec) =

{
K0, K1; if dec = 0

K1 ⊕ β,K0 ⊕ α; if dec = 1

Figure 2.8: PRINCEv2 structure for encryption and decryption

2.2.2 Designers’ Perspective on PRINCEv2

The new version of PRINCE, PRINCEv2 is designed to modify some security
aspects of PRINCE. PRINCE developers conducted a PRINCE challenge to en-
courage all the cryptographers so that, they come up with some distinguisher

2.3. SIMON [BSS+13] 19

on PRINCE. This helped the designers to construct a better version of the cipher
for the security aspects. In the paper of PRINCEv2 authors gave some security
analysis on PRINCE, which will not be applicable or be less effective on this new
version.

• Differential Attack: One of the most effective differential attacks on
PRINCE was introduced by Canteaut et al. in [CFG+14]. By this attack,
the authors can do a 10 round attack on PRINCE. The data, time, and
memory complexities of this attack are (257.94, 260.62, 261.52) respectively.
Here authors used a 6 round distinguisher. Then prefix 2 rounds at the
beginning and postfix 2 rounds at the end. PRINCEv2 is also equally
vulnerable to the attack as PRINCE is.

• Impossible Differential Attack: One of the impossible differential
attacks on PRINCE was proposed by Ding et al. in [DZLY17]. Here
they used a 4 round distinguisher and enhance it to 7 rounds. The
complexities of this attack are (256, 253.8, 243). In PRINCEv2, the attack
is also applicable with complexities (α.265, 2128.e−α, α.265), where α is
balancing between data or memory, and time complexity.

• Accelerated Exhaustive Search: In this attack [JNP+13], authors
used a keyless middle round to find out a distinguisher. But designers
of PRINCE made the middle round of the new version as keyed. So, the
attack will not be applicable in PRINCEv2.

• Meet-in-the-middle: The attack described in [CNV13] uses the keyless
property of the PRINCE cipher. So, in the new cipher, PRINCEv2 it will
not be that much useful.

• Biclique attack: The Biclique attack in the paper [ALL12], take an
advantage of the FX construction of PRINCE. As the new version of
PRINCE is not an FX construction, so this attack will not be applicable.

Though PRINCEv2 designers discussed the security improvement of PRINCE
in the new version, they did not claim anything regarding the fault attacks on
PRINCE. This motivated us to look into the fault model and apply that in the
PRINCE family.

2.3 SIMON [BSS+13]

This section contains the description and some attack techniques related SIMON [BSS+13]
cipher. The description of the cipher and an attack is given in the next. The
attack uses a dynamic key guessing technique to recover the key.

20 Chapter 2. Literature Survey

2.3.1 Description of SIMON

This section contains a description of the lightweight cipher SIMON 2.9. In the
first part, we give some notation related to SIMON which will be used throughout
the thesis. In the next part, we give the structure of the SIMON family.

Notations

We will use the following notations in our thesis for SIMON:
Xr−1 : input of the r-th round

Lr−1 : left half of r-th round input

Rr−1 : right half of r-th round input

Kr−1 : subkey used in r-th round
Xi : i− th bit of X from left to right

X ≪ r : left rotation of X by r bits
X ≫ r : right rotation of X by r bits

⊕ : bitwise exclusive OR (XOR)

∩ : bitwise AND
∆X : the XOR difference of X and X ′

+ : addition operation
% : modular operation

SIMON is an application of Feistel structure. The SIMON family is denoted by
SIMON2n/lk, where 2n is the block length and lk is the key length respectively.

The round function of SIMON has bitwise AND, XOR and rotation. It can be
expressed as follows:

Ri+1 = Li

Li+1 = f(Li)⊕Ri ⊕ rki
where,

f(x) = ((x ≪ a) ∧ (x ≪ b))⊕ (x ≪ c)

. For SIMON family, the values of a, b, c are 1, 8, 2 respectively.

2.3.2 Differential Attack on SIMON32 [QHS16]

In the following attack on SIMON, we use an existing 13-round differential dis-
tinguisher,

D1 : (0000, 0040)→ (4000, 0000)

2.3. SIMON [BSS+13] 21

<<<1

1<<<2

16 16

<<<8

Figure 2.9: Structure of SIMON

, which holds with probability 2−28.56. We use that distinguisher to mount a key
recovery attack on 21 round SIMON32 cipher. We use the distinguisher in the
middle of the cipher i.e. for 4 → 17 rounds, then initially prefix some rounds
at the beginning and after applying the distinguisher we postfix some rounds
at last, like in Fig. 2.10.

Finding Right Plaintext Pairs for the Trail

• Here in the plaintext differences, there are 10 conditions, and in the input
of the 2nd round, there are 8 conditions respectively. Here we have 18
fixed differences, so 218 structures are there with 214 many plaintexts.
This is shown in Fig. 2.11 Now, in each structure, we have to take those
plaintext pairs whose difference in the 3 bits (X0

19, X
0
1 , X

1
21) are 1. So we

divide a structure into pair of substructures (A1, A
′
1),(A2, A

′
2),(A3, A

′
3),(A4, A

′
4),

where for

A1 and A′1, (X
0
19, X

0
1 , X

1
21) are 000 and 111 resp.

A2 and A′2, (X
0
19, X

0
1 , X

1
21) are 001 and 110 resp.

A3 and A′3, (X
0
19, X

0
1 , X

1
21) are 010 and 101 resp.

22 Chapter 2. Literature Survey

Rounds Input Differences of Each Round

0

1

2

3

4

17

18

19

20

21

Figure 2.10: Extended Differential Path of 21-round SIMON32

0

1

10 conditions on the plaintext differences

8 conditions in the input of the 2nd round i.e. output of the 1st round

Figure 2.11: Position of 18 Conditions in the Input Difference

A4 and A′4, (X
0
19, X

0
1 , X

1
21) are 011 and 100 resp.

and all the other 15 positions can be chosen from {0, 1}15. So, for A1,
there are 215 elements, and for A′1 also. We take those two elements
from A and A′, whose other 15 positions are equal and make them pair.
So, there are 215×4 = 217 many reduced structures, shown in Fig. 2.12,

2.3. SIMON [BSS+13] 23

each contains 214 many plaintexts and satisfies the input difference of 0
and 1 round.

• We consider the structuresA andA′ with 3 different bits (X19, X10, X21)
compute the ciphertexts, and save them into a table indexed by X21

t (t =
1, 2, 3, 4, 8, 10, 16, 18) with ∆X21

t = 0. Then for each structure, there
are about 214×2−8 = 220 remaining pairs.

0

1

0

1

So, difference will be

0

1

Figure 2.12: Visualisation of How the Structures can be Made with Partic-
ularPositions 1

As there are 214 many plaintexts in A, and 214 many in A′. So, we can
make

(
214

2

)
many pairs from there, which is about 214×2 many and that

should satisfy the 8 conditions of the 21st round. So, we have about
214×2−8 = 220 remaining pairs for each structure.

• For the attack, here we take 217 structures, decrypt one round for the
ciphertexts by applying conditions like in Fig 2.10 and take only those
pairs that satisfies the conditions. Then there are 217−1+20−10 = 226

pairs are left. The reason is given in the following. Here 217 many
structures are there, and we are taking the structures A and A′ to make
the table. Now for each of these like structures, there are 220 many pairs

24 Chapter 2. Literature Survey

and for decrypting 1 round we need extra 10 conditions. Store the pairs
in table T.

Here we need about 217+14 = 231 (as 217 structures are there and for each
structure, there are 214 many plaintexts) encryptions for data collection. We
get about 217−1+28−14 = 230 pairs which satisfy the input difference of the 13-
round differential D1 for the 231 collected plaintexts. So there are on average
230−28.56 = 2.7 right pairs.

Key Recovery Technique

• Take a pair from T

• There are 7 conditions in the 2nd round of Fig. 2.10 (i.e. 7 dark bits).
We get some equations from there and solving those we can recover the
key. Like (∆X2

30 = 0,∆X2
21 = 0,∆X2

23 = 1), for these conditions we
get the corresponding equations by partially decrypting the 2nd round

∆(X1
31 ∩X1

22)⊕∆X1
16 ⊕∆X0

30 = 0 (2.1)
∆(X1

22 ∩X1
29)⊕∆X1

23 ⊕∆X0
21 = 0 (2.2)

∆(X1
31 ∩X1

24)⊕∆X1
25 ⊕∆X0

23 = 1 (2.3)

Now,

X1
31 = (X0

16 ∩X0
23)⊕X0

17 ⊕X0
15 ⊕K0

15 (2.4)
X1

22 = (X0
23 ∩X0

30)⊕X0
24 ⊕X0

6 ⊕K0
6 (2.5)

X1
29 = (X0

30 ∩X0
21)⊕X0

31 ⊕X0
13 ⊕K0

13 (2.6)
X1

24 = (X0
25 ∩X0

16)⊕X0
26 ⊕X0

8 ⊕K0
8 (2.7)

From the last 4 equations we can get the solutions about subkey (K0
15, K

0
6 , K

0
13, K

0
8)

which will depend upon values of (∆X1
22,∆X

1
31,∆X

1
16⊕∆X0

30,∆X
1
23⊕

∆X0
21,∆X

1
25 ⊕∆X0

23 ⊕ 1)

– (0, 0, 0, 0, 0): In this case, there are 16 solutions of the equations
2.1, 2.2, 2.3.

– (0, 1, ∗, 0, ∗): In this case, there are 4 solutions of the equations
2.1, 2.2, 2.3 for each of the 4 cases.

– (1, 0, ∗, ∗, 0): In this case, there are 4 solutions of the equations
2.1, 2.2, 2.3 for each of the 4 cases.

2.4. Some Other Lightweight Ciphers 25

– (1, 1, ∗, ∗, ∗): In this case, there are 2 solutions of the equations
2.1, 2.2, 2.3 for each of the 2 cases.

So here we get 64 solutions for 17 cases i.e. 64
17

values of subkeys
(K0

15, K
0
6 , K

0
13, K

0
8) on average for each pair in T .

Similarly, we solve the equations corresponding to the subkeys and obtain
the guess value. We do this until T is empty. By this procedure, we
deduce the keyspace and get the unique key.

2.4 Some Other Lightweight Ciphers

In this section, we describe two other lightweight ciphers, ACE and SIMECK.
Interestingly, ACE permutation uses SIMECK for each ACE step.

2.4.1 SIMECK [YZS+15]

The structure of SIMECK is much similar with the structure of SIMON. Like
SIMON, SIMECK [YZS+15] also applies Feistel structure. It is denoted by SIMECK2n/mn,
where the block length is 2n and master key length is mn. SIMECK family
has three members: SIMECK32/64, SIMECK48/96 and SIMECK64/128, where
number of rounds varries with nr = 32, 36 and 44 respectively.

The round function of SIMECK has bitwise AND, XOR and rotation. It can
be expressed as follows:

Ri+1 = Li

Li+1 = f(Li)⊕Ri ⊕ rki

where,
f(x) = ((x ≪ a) ∧ (x ≪ b))⊕ (x ≪ c)

. For SIMECK family, the values of a, b, c are 5, 0, 1 respectively.

The master keyK for SIMECK2n(4n) has four n-bit words (K3, K2, K1, K0).
Simeck uses a feedback shift register to generate round keys from the given
master key K.

26 Chapter 2. Literature Survey

<<<1

1<<<2

16 16

<<<8

Figure 2.13: Structure of SIMON

2.4.2 ACE [MAR]

ACE is a lightweight cipher which was designed to minimum the cost in hard-
ware without compromising the efficiency. It has a 320−bit lightweight per-
mutation. It divides the 320-bit permutation in five 64-bit structure, namely
A,B,C,D,E. In the middle of ACE-step, SIMECK is applied on A,C and E,
like in Fig. 2.14. For this, it is called ACE. There are 16 ACE steps in each
ACE permutation. ACE gives Authenticated Encryption with Associated Data
(AEAD) and hashing functionalities both.

SB-64 SB-64 SB-64

Figure 2.14: ACE-step

• AEAD algorithm: ACE AEAD algorithm consists of two things, an
authenticated encryption algorithm and a decryption algorithm.

2.5. Fault Analysis 27

The encryption algorithm takes a key of length k, a message number of
length n, associated data AD and a message m. It outputs a corre-
sponding ciphertext C and a tag T .

ACE-E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
ACE-E(K,N,AD,M) = (C, T)

The decryption algorithm takes the key K, message number N , asso-
ciated data AD, ciphertext C and tag T and outputs the plaintext M
only is the tag is correct else return ⊥.

ACE-D(K,N,AD,C, T) ∈ {M,⊥}

• ACE hash algorithm: This algorithm takes the messageM as input and
initial vector IV and outputs a message digest of length h.

ACE-H-h : {0, 1}∗ × {0, 1}iv → {0, 1}h

with H = ACE-H-h(M, IV).

2.5 Fault Analysis

For any Cryptosystem, to attack the whole cipher directly is a big problem.
When a cipher is introduced then it is designed by keeping its security in mind.
But there are some other ways to do so. There are some distinguishers which
are applicable for some round reduced version of a cipher. We can use those to
break the full cipher. We can do so by exploitng the hardware circuit. There
are some attack models which helps an attacker to get the information about
the cipher.

• Transient faults: Suppose a person A sends some messages continu-
ously to some other person B through public channel. Due to some hard-
ware related issues, some of the messages that B gets, become faulty.
Then by using the messages B can get some information about the cipher
that A uses.

28 Chapter 2. Literature Survey

• Induced faults: This happens when the cipher is physically presents to
the attacker. Then he can do anything with the hardware. The attacker
can change the voltage, give high energy radiation, fluctuate the tempara-
ture to induce some fault. Then by seeing the output of the ciphertext,
he can get some information about the cipher.

2.5.1 Some Papers Related to Fault Attack

In this subsection, we discuss some initial papers related to fault attacks. Boneh
et al. introduced the fault attack at first. After that Biham and Shamir in-
troduced the Differential fault Attack (DFA). These papers and some others
described briefly in the following:

• Checking Cryptographic Protocols for Faults: In this paper [BDL97],
the authors used hardware faults to break some ciphers. Their work in
this paper was based on some authentication protocols and some pub-
lic key-related ciphers. Their attack was useful against RSA schemes
and some signature schemes. Using the Chinese remainder theorem they
showed that if a faulty version of RSA signature was given then with high
probability an attacker can get the RSA modulus factor. They discuss
how some ciphers can be vulnerable using this fault technique. In the
paper, they tell the impact of faults so that security measurements can
be taken for the ciphers.

• Differential Fault Attack Technique against SPN Structures: In
this paper [BS97], authors introduce the concept of Differential Fault
Analysis (DFA), which can be applied in almost any secret key encryp-
tion scheme. In this type of attack, one has to inject a fault in some
internal state of the cipher. Suppose initially he gives a message m. The
ciphertext of the given message is c. Now, because of the fault injection,
the message modifies to m′ and the ciphertext that is generated because
of the fault is called faulty ciphertext and suppose that is denoted by
c′. Then the person observes how the ciphertext changes because of the
fault. From there he tries to recover the key. The main idea of this type
of attack is, by giving a fault, we inject a difference in the internal state.
Then we check how the difference propagates through the cipher. As we
can give fault at any intermediate round, we can observe the propagation
of difference at the output of the cipher. Along with this in the paper,
they show if a cipher has permanent hardware faults, how it can be used
to break the cipher.

2.5. Fault Analysis 29

• DFA of Secret Key Cryptosystems: Here in the paper [PQ03], the
authors illustrate a technique which can be used to break Substitution-
Permutation Networks using very less number of faults. In this paper,
they show that, they can break AES [DR98] using only 2 faults with some
assumption that, the fault will occur at some particular point. They have
used diffusion property to do their attack. Their model is realistic as they
use random byte faults.

The attacks that are stated briefly in the upper section have their historical
significance in the fault related area. There are many other attacks in this
area till now and some of them are on PRINCE also. We discuss about
those atttacks in Section 3.1 of Chapter 3.

2.5.2 Different Fault Models

The fault model consists of two things the behavior of the fault and its impact
on the system. The fault model can be characterized based on three things:
impact, distribution and, location. Fig. 2.15 shows different types of fault
models. At bit-level fault, we give a fault in a bit and check the impact of the
fault in the system. Similarly, the faults can be done at a byte level, nibble
level. The distribution of the fault depends upon whether the fault is uniform
or random and its impact can be viewed in bit level, or byte level, and so on.

Fault Model LocationDistribution

Chosen
(Bit/Byte Level)

Chosen
(Variable Level)

Chosen (In
some stage of

execution)

Uniform

Random Impact

Stuck-at Diagonal

Bit Word

Byte

Figure 2.15: Fault Model [Sah17]

30 Chapter 2. Literature Survey

• Nibble-Based Fault Model: This model is same like Differential fault
ones. But in this case we give the faults in some nibbles. That is, we
induce some difference at the nibbles. From there we check how the
difference diffuses to the entire state. Random nibble-based fault is also
one type of nibble-based fault attack. In this case, initially we do not
have to know the nibbles, where we induce the faults.

• Bit-Based Fault Model: The Bit-based fault attack is done in bit-level.
Here we flip a bit and check the diffusion. Our attack, described in the
Section 3.2.4 of Chapter 3 is based upon random bit fault attack.

• Random Fault Model: In this type of attack, one can inject the fault
with random value at a random position depending upon the structure.
This type of attack can be random bit-based, random nibble-based, ran-
dom byte-based, etc. In random bit-based, the attacker gives fault at any
bit and follows the pattern. In the case of a random nibble-based fault
model, the attacker can give fault at any nibble and so on.

2.6 Conclusion

We discuss mainly PRINCE, PRINCEv2 and SIMON in this survey. We illus-
trate the attacks regarding PRINCE and discuss briefly the security analysis of
PRINCEv2. We give fault attack models and some works related to that. Along
with these things, we describe dynamic key guessing and key recovery technique
on SIMON. Then some other lightweight ciphers SIMECK and ACE.

CHAPTER3
Fault Analysis of PRINCE family

Fault attack is a widely used technique nowadays to break a cryptosystem. We
can inject the faults at nibble or bit or byte position depending upon the model.
Our work here is based upon a random bit flip fault attack on the PRINCE family.
We can do the random bit fault at any arbitrary position in our attack. For this,
we describe some fault models, diffusion of faults, classification of faults on the
cipher PRINCE. Then we illustrate some of the attacks for which PRINCEv2 is
equally vulnerable as PRINCE. We give some points on PRINCE regarding fault
injection and reflection point

3.1 Related Work

There are two papers of fault attacks on PRINCE till the date. The first one is
by Song and Hu [SH13], and the second one is by Aikata et al. [AKS20]. In the
first one, Song and Hu proposed a random nibble-based fault attack and, then
the second paper describes integral fault attack and slow diffusion attack. We
discuss those attacks in the following section.

3.1.1 Random Nibble Based Fault Attack [SH13]

This is the first fault attack technique, that is used for PRINCE cipher by Song
and Hu [SH13]. Their attack is random nibble-based. They inject faults during
the subbyte of 10th round. Their attack model is depicted in Fig. 3.1. Then
they checked how the difference propagates through the cipher. Their attack
takes less than 7 fault injections to recover the whole key. Along with this,
they check the case for giving the fault during the subbyte of 11th round also.

31

32 Chapter 3. Fault Analysis of PRINCE family

But for the random bit fault case, i.e. for the faults with hamming weight 1,
they have stated that less information can be obtained from there. Here in our
work, we have improved their statement about random bit fault and show that
7 faults are sufficient to recover the key uniquely. In our work, we give the
fault at the beginning of the round 10, whereas they give during the subbyte
operation. This proves that our fault covers more rounds than theirs.

Figure 3.1: Attack of PRINCE at round 10 and 11 by Song and Hu [SH13]

3.1.2 Integral Fault Attack [AKS20]

This is the second fault attack on PRINCE. Their attack covers more round
than the attack proposed by Song and Hu, which is described in Section 3.1.1.
Authors use integral fault attack to recover the whole key. They give 15 faults
after the MC of 9-th round and collect all the ciphertexts. By 15 faults, they
give All property (i.e. in one nibble we give all possible 16 differences) in that
nibble. As PRINCE SB−1 is a nibble-based operation, so All property remains
after the operation also. In the next round, the All property spreads through
the column. In all columns, it becomes A8, i.e. there are 8 distinct values in
each nibble. After SB−1, the A8 property remains as it is. Then in the next
round, it spread to fixed Ai, where i is fixed for individual nibbles. After the
MC of the next round, the Balanced property remains (i.e. XOR-sum of all the

3.1. Related Work 33

ciphertexts is 0) and after the SB−1 operation, the property goes away. Here
the authors give the faults at 8.5 rounds and 9.5 rounds, i.e. after the MC
operation of 8th and 9th round. For 8.5 round, by guessing the keys, they invert
the columns and check whether the pattern like state 10 of Fig. 3.2 appears
or not. If so, they consider the guessed value of the key as a possible one,
otherwise, they reject that. They have done the same attack one round before
i.e. at 8.5 round. In this case, they choose all the possible values of K1 ⊕K ′0
for one column (see Fig. 3.2) and one diagonal for K1 and check whether the
pattern comes after SB−1 of 10th round or not. For these two attacks, their
time complexity is 220 and 236 respectively.

A8

A

SB-1

SB-1MC

Round 11

A

A A

SR-1

A8

A8

A8

A8

A8

A8

A8

A8

SR-1

A8

A8

A8

A8

A8

A8

A8

MC

A6

A6

A5

A6

A5

A6

A5

A6

A6

A5

A7

A6

A6

A6 A5 A6

SB-1

A6

A6

A5

A6

A5

A6

A5

A6

A6

A5

A7

A6

A6

A6 A5 A6

A6

A6

A5

A6

A5

A6

A5

A6

A6

A5

A7

A6

A6

A6 A5 A6

SR-1

A5

A6

A6

A6

A6

A6

A5

A7

A6

A5

A6

A6

A5

A6 A5 A6

MC

Round 10

Round 9

Round 8

state 1 state 2

state 3 state 4 state 5 state 6

state 7 state 8 state 9 state 10

state 11 state 12 state 13 state 14

SB-1

K1

SR-1 MC

state 15 state 16 state 17 state 18

SB-1
Round 12

K1 K0'

K1

Figure 3.2: Integral Fault Attack on PRINCE [AKS20]

3.1.3 Slow Diffusion Fault Attack [AKS20]

In the paper [AKS20], authors use the slow diffusion property, which is described
in the section 2.1.3 of Chapter 2. Here they give the single bit faults at a
particular nibble in the input of 10th round. Suppose the fault differences that

34 Chapter 3. Fault Analysis of PRINCE family

are given at nibble 0 are {0001, 0010, 0100, 1000}. Here we illustrate the case
when the fault is given at bit 0, as depicted in 3.3. Then from the ciphertexts
they retrieve the whole key. At first by all the possible values of keys in the
column, they decrypt one round and check whether the pattern at state 5 of
Fig. 3.3 occurs or not. Depending upon that they recover the whole key. The
(Data, Time, Memory) complexity of their attack is (22, 222, neg.) respectively.

1

SR-1 MC SB-1 MC SB-1 SR-1 MC SB-1

2

SR-1 MC SB-1 MC SB-1 SR-1 MC SB-1

4

SR-1 MC SB-1 MC SB-1 SR-1 MC SB-1

8

SR-1 MC SB-1 MC SB-1 SR-1 MC SB-1

Round 10 Round 12

state 1 state 2 state 4 state 5 state 6

Active nibble Inactive nibble

2 Active nibble with difference 0010
1 Active nibble with difference 0001

4 Active nibble with difference 0100 8 Active nibble with difference 1000

SR-1

SR-1

SR-1

SR-1

state 3

Round 11

Figure 3.3: Slow Diffusion Property of PRINCE [AKS20]

3.2 Proposed Differential Fault Attack on
PRINCE

This is the main contributory section of our current work. Our work is based
on a random bit-flip attack. We check our attack for both of the versions of
PRINCE. Starting with the bit-based fault attack, we show how a given fault
is diffused. Depending upon how fault is propagated, we classify the affected
bits.

3.2. Proposed Differential Fault Attack on PRINCE 35

3.2.1 The Fault Model

A Bit-based fault attack can be viewed as a special case of a nibble-based
fault attack. Giving some difference at a bit is the same as giving a particular
difference at a particular nibble. There are some differences as giving fault at
bit level is a bit easier than giving the fault in a nibble. Here our attack is on a
random bit fault model. In this case, we can give the fault in a bit and check
the propagation of the difference. The fault can be at any random bit position.
From there also we are able to recover the whole key. The attack is described
in the following section.

3.2.2 Fault Diffusion in Internal State of PRINCE

As PRINCE uses almost Maximum Distance Separable matrix For MC, it has
slow diffusion property. The difference at any state can take at most three
rounds to spread all the states. Here we use this property of MC to find a
distinguisher of PRINCE. We inject a bit of fault at the input of 10th round and
observe the propagation of the difference. Depending upon this, we recover
the whole key uniquely by giving some faults. The most interesting part of this
attack is that we can give the fault at any single bit position and we don’t have
to know the position beforehand. In the previous works in this area, Song and
Hu [SH13] give the faults during the subbyte operation and they did nibble-
based fault in their research. In our work, our fault injection point is before
their ones and they discussed random nibble fault and told the bit fault is a
special case. But in our work, we discuss bit fault explicitly. In Fig. 3.4, every
bit difference from the left shaded region goes to the bit difference in the right
side, by 2 forward rounds. Depending upon the structure of each round, PRINCE
can be broken into three parts, forward rounds, middle rounds, and backward
rounds. In Fig. 3.4, we show how for each part the difference will propagate.

3.2.3 Classification of Fault Invariants

As PRINCE has slow diffusion property, the bit difference takes 3 rounds to
spread in the whole state. Depending upon the similarity, the rounds of PRINCE
can be classified into 3 classes, forward, middle and backward. Forward rounds
contain subbyte, MC and shiftrow. Middle round contains Subbyte, MC and
inverse subbyte. The backward round contains inverse subbyte, MC, inverse
shiftrow. Because of these three classes if we give fault at some position, then
it will affect the bits depending upon in which class it belongs. If we inject the
fault at 0-th position in forward round, then it will not effect {0, 5, 9, 12, 16,
20, 27, 31, 35, 38, 42, 47, 49, 53, 58, 62} bits by 2 rounds. The same bits will

36 Chapter 3. Fault Analysis of PRINCE family

Figure 3.4: Bit Difference Propagation in PRINCE. Any bit belonging to the
red region would leads to the same output difference as shown in the image

not be affected if we give the fault at 1-th bit in the forward round. In the same
way, we can make a collection of bits, which is 0 − 15 bit position, for which
the bit differences of ciphertext and faulty ciphertext at those places will be 0.

3.2. Proposed Differential Fault Attack on PRINCE 37

Similarly, we can get a collection of bits, for which if we give the fault at those
positions then the same bit position will be constant. The full classification is
shown in the table 3.1.

3.2.4 Description of the Attack

For this attack, we inject the fault at the input of 10th round. As it is a bit
fault so after 2 rounds also there will remain some bits whose difference will
be 0. That difference occurs at the output of 11th round. If a bit is flipped at
any position, then after two rounds difference of individual four nibbles will be
zero. Depending upon the position of the flipped bit, we will get four classes.
This is depicted in Fig. 3.5. Then we decrypt one round after guessing the
keys and check whether the pattern appears or not. Depending upon that we
reduce the keyspace. We give 7 faults at random bits in the whole state and
save the ciphertext and faulty ciphertext pair. As we consider random bit flip
i.e. the bit can be flipped at any position from these four classes, so we take
the union of the patterns from these classes. If for a chosen value of the key,
any of those patterns comes, we keep the value. Else reject.

Algorithm 2: Random_Bit_Fault_Attack_3
(C1, · · · , C7, C

′
1, · · · , C ′7)

1 K ′0_xor_K1 ← Recover_K ′0_xor_K1_RBFA
(C1, · · · , C7, C

′
1, · · · , C ′7)

2 K1 ←
Recover_K1_RBFA(C1, · · · , C7, C

′
1, · · · , C ′7, K ′0_xor_K1)

3 K ′0 ← Recover_K ′0_RBFA(K ′0_xor_K1, K1)
4 return K ′0 and K1

The attack is described as follow:

• Initially we guess all the possible values of each column of K ′0 ⊕ K1,
then go back to state 8 of Fig. 3.6 for each pair of original and faulty
ciphertexts.

• We check the inactive nibble position to reduce the keyspace forK ′0⊕K1.
We accept the guessed value if any single nibble in that column is inactive
at state 8. If we take the intersection of all 7 reduced key-spaces for each
pair of original and faulty ciphertexts, we observe that the key-space gets
reduced to 22 only (refer to Alg. 3).

38 Chapter 3. Fault Analysis of PRINCE family

Fault Bit Positions Constant Bit Positions for each
Bit Difference

Forward Rounds

0 - 15 0, 5, 9, 12, 16, 20, 27, 31, 35, 38,
42, 47, 49, 53, 58, 62

16 - 31 1, 6, 10, 13, 17, 21, 24, 28, 32,
39, 43, 44, 50, 54, 59, 63

32 - 47 2, 7, 11, 14, 18, 22, 25, 29, 33,
36, 40, 45, 51, 55, 56, 60

48 - 63 3, 4, 8, 15, 19, 23, 26, 30, 34, 37,
41, 46, 48, 52, 57, 61

Middle Rounds

0 - 15 0, 5, 10, 15, 18, 23, 24, 29, 35,
36, 41, 46, 51, 52, 57, 62

16 - 31 3, 4, 9, 14, 17, 22, 27, 28, 34, 39,
40, 45, 50, 55, 56, 61

32 - 47 2, 7, 8, 13, 16, 21, 26, 31, 33, 38,
43, 44, 49, 54, 59, 60

48 - 63 1, 6, 11, 12, 19, 20, 25, 30, 32,
37, 42, 47, 48, 53, 58, 63

Backward Rounds

0, 5, 9, 12, 16, 20, 27, 31, 35, 38,
42, 47, 49, 53, 58, 62

0 - 15

1, 6, 10, 13, 17, 21, 24, 28, 32,
39, 43, 44, 50, 54, 59, 63

16 - 31

2, 7, 11, 14, 18, 22, 25, 29, 33,
36, 40, 45, 51, 55, 56, 60

32 - 47

3, 4, 8, 15, 19, 23, 26, 30, 34, 37,
41, 46, 48, 52, 57, 61

48 - 63

Table 3.1: Bit Difference Propagation for 2 Rounds of PRINCE

3.2. Proposed Differential Fault Attack on PRINCE 39

`

Figure 3.5: Four classes of fault-invariants at the output of Round-11 due
to a random bit-fault induced at the beginning of Round-10. Each class
contains 16 bit-positions (Refer Table 3.1) that all lead the same invariant
at the shown in the state in the right.

40 Chapter 3. Fault Analysis of PRINCE family

K1

K1

K0'

Figure 3.6: 3 round random-bit fault attack on PRINCE

• We use this reduced key-space of K ′0 ⊕K1 to go back one more round
by guessing the possible values of each column of K1 and see if those
satisfy the pattern of state 5 of Fig. 3.6.

• We accept the guessed value if at least 3 nibbles of that column are
inactive at state 5. We again take the intersection of differentK1 guesses
for all 7 pairs of original and faulty ciphertexts (refer to Alg. 4). In this
step, we get the unique value of K1 and K ′0 ⊕K1.

• We compute the unique value of K ′0 from the values of K1 and K ′0⊕K1

(refer to Alg. 5).

• We can check whether our retrieved key value is right by going back one
more round (till state 2 of Fig. 3.6) easily. As only one bit is flipped, we
can find out the right value from there.

Here the data complexity is 23 as initially we give 7 random bit faults and
store the plaintext ciphertext pairs. We use these only to recover the whole key.
The time complexity is 221. After 7 faults the size of the keyspace of K ′0⊕K1

is reduced to around 22. Then for each value of K ′0 ⊕ K1, we use the same
procedure to reduce the keyspace of K1 (refer to line 8 of Alg. 4). This takes

3.3. Fault Attack Vulnerability Assessment of PRINCEv2 41

Algorithm 3: Recover_K ′0_xor_K1_RBFA
(C1, · · · , C7, C

′
1, · · · , C ′7)

1 K ′0_xor_K1 ← {{}, {}, {}, {}}
2 Keyi,j ← {} ∀ i ∈ {1, · · · , 7}, j ∈ {1, 2, 3, 4}
3 for each column j do
4 for k in range {0 - (216 − 1)} do
5 for each Ci-C ′i pair do
6 col ← MC(SB(C[j]⊕ k ⊕RC11[j])) ⊕

MC(SB(C ′i[j]⊕ k ⊕RC11[j]))
7 if If any of the 4 nibbles of col is 0 (inactive) (state 8 of

Fig. 3.6) then
8 append k to Keyi,j
9 end

10 endfor
11 endfor
12 K ′0_xor_K1[j] ←

⋂
i∈(1,··· ,7) Keyi,j

13 endfor
14 return K ′0_xor_K1

an effective time complexity of 218. As we have 7 original and faulty ciphertext
pairs, we continue this process until no pairs are left (refer to line 4 of Alg. 4).
So, the time complexity becomes approximately 221.

As the size of the reduced key-space for K ′0 ⊕K1 is around 22. For each
of the keys in this reduced key-space, we invert the ciphertext up to the output
of Round 11. Next, for each of 216 possible values (refer to line 8 of Alg. 4)
of each column of K1, we go back one more round to verify the pattern of
state 5 of Fig. 3.6. This translates to effective time complexity of 218. As we
have to repeat this process for the 7 original and faulty ciphertext pairs (refer
to line 4 of Alg. 4), the time complexity stands at approximately 221. The
memory complexity is almost negligible since most of the operations can be
done on-the-fly.

3.3 Fault Attack Vulnerability Assessment of
PRINCEv2

The cipher PRINCEv2 was introduced to overcome some of the drawbacks that
PRINCE has. But some attacks are still applicable for PRINCEv2. Our attack is

42 Chapter 3. Fault Analysis of PRINCE family

Algorithm 4: Recover_K1_RBFA
(C1, · · · , C7, C

′
1, · · · , C ′7, K ′0_xor_K1)

1 K1 ← {{}, {}, {}, {}}
2 Keyi,j ← {} ∀ i ∈ {1, · · · , 7}, j ∈ {1, 2, 3, 4}
3 for p in K ′0_xor_K1 do
4 for each Ci-C ′i pair do
5 S ← SR(MC(SB(Ci ⊕ p⊕RC11)))
6 S ′ ← SR(MC(SB(C ′i ⊕ p⊕RC11)))
7 for each column j do
8 for k in range {0 - (216 − 1)} do
9 col ← MC(SB(S[j]⊕ k ⊕RC10[j])) ⊕

MC(SB(S ′[j]⊕ k ⊕RC10[j]))
10 if all 4 nibbles of col are 0 (inactive) or any 3

nibbles of col are 0 (state 5 of Fig. 3.6) then
11 append k to Keyi,j
12 end
13 endfor
14 endfor
15 if ∃j such that Keyi,j is empty then
16 remove p from K ′0_xor_K1 and remove all the Keyi,j

we got for this p
17 end
18 endfor
19 endfor
20 for each column j do
21 K1[j] ←

⋂
i∈(1,··· ,7) Keyi,j

22 endfor
23 return K1

applicable for the new version of PRINCE. For the updated version of PRINCE,
the authors originally changed the position of XOR-ing of the keys. PRINCEv2
is equally vulnerable for integral attacks and differential attacks like PRINCE.
We give some attacks for which the second version of PRINCE is also equally
vulnerable in table 3.2. We verify all the attacks for PRINCEv2 by C language.

• Random Bit fault Attack: The random bit fault attack described in
Section 3.2.4 is also applicable for PRINCEv2. In the attack, as we induce
a single bit difference and the difference spreads through the cipher in the
whole state after some rounds and there is no involvement of keys in the

3.4. Experimental Results 43

Algorithm 5: Recover_K ′0_RBFA(K ′0_xor_K1, K1)
1 K ′0 ← {{}, {}, {}, {}}
2 for each column j do
3 K ′0[j]← K ′0_xor_K1[j] ⊕ K1[j]
4 endfor
5 return K ′0

distinguisher, so, the attack works for the new version of PRINCE also.

• Random Nibble Fault Attack: This attack is also a differential fault
attack. So, the distinguisher does not depend upon the key. As in
PRINCEv2, only XOR-ed position of keys is changed, so it works for
PRINCEv2 also.

• Integral Fault Attack: Due to the same reason as the previous ones,
the integral fault attack also works for PRINCEv2.

• Slow Diffusion Fault Attack: This attack also works for the new
version of PRINCE and the reason is the same as the previous ones.

Attack type version 1 version 2
Random Bit Fault yes yes
Random Nibble Fault yes yes
Integral Fault yes yes
Slow Diffusion Fault Attack yes yes

Table 3.2: Fault Attacks on PRINCE family

3.4 Experimental Results

We have implemented our work on the random bit fault attack using C but
for the outer structure, Python has been used. We ran our implementa-
tions on Intel(R) Xeon(R) CPU - E5-2623 v3 @3.00GHz, with 32 GB RAM
and it was able to complete within practical time (1 hour). We repeated
the experiment over 100 times with random keys and plaintexts and were
able to uniquely recover the key every time. We also tried for different fault
positions and we were able to recover the key uniquely in those cases as
well. Our code is available at https://github.com/de-ci-phe-red-LABS/

https://github.com/de-ci-phe-red-LABS/PRINCE-under-Differential-Fault-Attack-Now-in-3D
https://github.com/de-ci-phe-red-LABS/PRINCE-under-Differential-Fault-Attack-Now-in-3D

44 Chapter 3. Fault Analysis of PRINCE family

PRINCE-under-Differential-Fault-Attack-Now-in-3D. The code works
for the new version of PRINCE also.

3.5 Discussion

In some of the fault attacks, a question may arise as that how one can inject
a fault at a specific position. But here as we have random bit fault, so in
this case, we don’t have to worry much about that. We can inject the fault
at any position at the unrolled version of PRINCE and PRINCEv2 also.

Figure 3.7: Fault-injection (FI) point as given in [SH13] where authors claim
that fault is injected in Round-11 (left) and Round-10 (right). It can easily
seen that actual FI point is Round-11.5 (left) and Round-10.5 (right).

In the paper [SH13], Song and Hu proposed a fault attack on PRINCE.
This was the first attack on this lightweight cipher. Their attack was nibble-
based. There they showed, they can get the whole key uniquely by giving
6.61 fault injections. Together with this, using only 4 faulty ciphertexts,
they reduced the keyspace to 217.18. They stated in their paper that they
were able to do fault attacks for 2 and 3 rounds. So, they claimed, if we can

https://github.com/de-ci-phe-red-LABS/PRINCE-under-Differential-Fault-Attack-Now-in-3D
https://github.com/de-ci-phe-red-LABS/PRINCE-under-Differential-Fault-Attack-Now-in-3D

A Note on Fault Analysis of PRINCE-like Designs 45

secure the last 2 and 3 rounds from faults, then the cipher will be secured
from fault attacks. This seems to be untrue as is evident from Fig. 3.7.
It can be easily appreciated from the figure taken from [SH13], faults are
injected at the last operation of 10th and 11th round namely, the SB−1

operation. Thus the fault-injection point can at best be attributed to 10.5
and 11.5 rounds respectively. Till now, the attack proposed by Aikata et
al. is the fault attack for the highest number of rounds. Their attack can
be done from the last 3.5 rounds and 4.5 rounds also. So, to secure the
PRINCE family against fault attacks first and last 4.5 needed to be secured.
The reason for the security of the first rounds is also required, as given
in Section 3.6. Finally, a point worth noting is that PRINCEv2 offers no
additional protection against fault attack which seems to be also stated by
the authors. This is apparent from the fact that the changes made are
primarily to the key-schedule and round constants which do not meddle
with attacks philosophy devised here.

3.6 A Note on Fault Analysis of
PRINCE-like Designs

It is worth noting that PRINCE offers an interesting opportunity in terms
of DFA which is otherwise not possible for conventional block ciphers like
AES [DR02], PRESENT [BKL+07]. The opportunity comes from one of
the most advertised features of PRINCE the α−reflection property which
ensures that: “Decryption is equivalent to encryption with a related key”.
This formed one of the major aspects of PRINCE design rationale since
decryption had to be achievable with minimal overhead over encryption.
This seemingly useful property actually opens us new avenues in terms of
fault injection and leads to what we like to refer to as fault-reflection. The
idea stems from the fact that for every fault injection point in any of the
attacks reported on PRINCE till date (including the current work), there
is an equivalent point which too will lead to the the same fault attack
preserving the complexities. For instance, in this work we have the slow
diffusion attack that works for a fault injected in the input of 10th round.
The claim is that the same attack would work even if the fault is injected
at 3rd round, as shown in Fig. 3.8.

The only difference is that we inject the fault during decryption. This
is also true of other ciphers, however, the difference is that to inject a fault
in decryption we need access to the decryption module which may not be
available in the real-world scenario. This is where PRINCE-like designs make

46 Chapter 3. Fault Analysis of PRINCE family

S
w
ap

Figure 3.8: fault injection reflection point

an exception as they allow us to have access to the decryption oracle on the
encryption module itself thereby amplifying the scope of fault injection. The
second implication comes in the form of fault-counter measures. The general
approach in deploying counter-measures is to protect the lower rounds in the
cipher implementation up till the point where a fault-injection can lead to
an attack. This actually saves costly hardware real-estate which in general
is on the higher side specially when we have an unrolled design like PRINCE.
However, for PRINCE-like constructions, this overhead seems to double-up
due to the fault-reflection as now one has also protect the upper rounds
corresponding to lower rounds as well. In Table 3.3, we showcase the fault-
injection matrix taking into account the fault-reflection for all fault attacks
reported on PRINCE. Another important aspect that needs to be discussed is
that the new version of PRINCE i.e., PRINCEv2 also fits the above definition
and hence is come under the purview of the fault-reflection.

3.7 Conclusion

We discussed the related work of Song and Hu on the random nibble-based
fault attack and how our attack is different from that. We argue their claim
about the fault injection point in the cipher. It is worth mentioning that our
attack is based on the random-bit fault model and we can uniquely recover
the whole key by injecting only 7 faults at the input of the 10-th round,
which makes our attack as one of the best fault attacks on PRINCE and
PRINCEv2, known so far, considering both number of faults and the fault
injection point together. We also gave an interesting discussion about fault

Conclusion 47

Attack type FI point FR point Reference
DFA (random nibble) 10.5a 2.5a [SH13]
DFA (random nibble) 11.5a 1.5a [SH13]
IFA 8.5 4.5 Sec. 3.1.2
IFA 9.5 3.5 Sec. 3.1.2
Slow Diffusion FA 10 3 Sec. 3.1.3
DFA (random bit-flip) 10 3 Sec. 3.2.4

Table 3.3: Capturing the idea of fault-reflection (FR). Here FI represents
the fault-injection point. Any attack using an FI point during encryption
will still work with the fault injected at the FR point during the decryption
(which by the α−reflection property can be mounted using the encryption
circuit itself).

Here a is because the fault is induced at the SB opertion of 10th round

injection and relection point and how PRINCE-like designs can be vulnerable
using this.

Conclusion and
Future Works

Conclusion

This work provides a comprehensive account of fault attacks on PRINCE and
PRINCEv2. We did random bit fault in both of the versions of PRINCE. The
work started with the literature survey on some lightweight ciphers. This
work proposes a random bit-flip fault attack where using only 7 faults we
can recover the key uniquely with a practical time complexity of 221. All at-
tacks reported on PRINCE and PRINCEv2 were verified using simulations. It
is worth noting that PRINCEv2 is equally vulnerable to all attacks reported
on initial version highlighting the fact that that design changes made do
not interfere with the attack methodologies. Finally, we discuss the in-
teresting notion of fault-reflection which sheds lights on the fault-injection
vulnerability of PRINCE-like constructions.

Future Works

• We will try to use the random bit fault technique for SIMON and find
a better distinguisher than the existing ones.

• The discussion on fault injection-reflection point is an important part
of our work, which was not considered previously. We will check,
whether it can be exploited to mount a different type of attack in this
kind of ciphers.

• We will try to use the bit propagation and classification technique in
some other ciphers and then try to build some distinguisher depending
upon that.

49

Dissemination of
The Work

Under Review

• Anup Kumar Kundu, Aikata, Banashri Karmakar, Dhiman Saha:
Fault Analysis of the PRINCE Family of Lightweight Ciphers, Journal
of Cryptographic Engineering (JCEN)

51

Bibliography

[AKS20] Aikata, Banashri Karmakar, and Dhiman Saha. PRINCE under
differential fault attack: Now in 3d. In Chip-Hong Chang, Ul-
rich Rührmair, Stefan Katzenbeisser, and Patrick Schaumont,
editors, Proceedings of the 4th ACM Workshop on Attacks and
Solutions in Hardware Security Workshop, ASHES@CCS 2020,
Virtual Event, USA, November 13, 2020, pages 81–91. ACM,
2020. x, 11, 12, 13, 31, 32, 33, 34

[ALL12] Farzaneh Abed, Eik List, and Stefan Lucks. On the security
of the core of PRINCE against biclique and differential crypt-
analysis. IACR Cryptol. ePrint Arch., 2012:712, 2012. 8, 9, 10,
19

[BBdS+19] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos,
Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin
Velichkov, Qingju Wang, and Alex Biryukov. Schwaemm and
esch: lightweight authenticated encryption and hashing using
the sparkle permutation family. NIST round, 2, 2019. 3

[BCD+19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo,
Mridul Nandi, Thomas Peyrin, and Kan Yasuda. Photon-beetle
authenticated encryption and hash family. NIST lightweight
competition round, 1:115, 2019. 3

[BCDM20] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart
Mennink. Status update on elephant. NIST lightweight compe-
tition (Sep 2020), 2020. 3

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
low-latency block cipher for pervasive computing applications -

53

54 Bibliography

extended abstract. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th Interna-
tional Conference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6, 2012.
Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 208–225. Springer, 2012. ix, 2, 5, 7, 9, 11, 13, 15

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
importance of checking cryptographic protocols for faults (ex-
tended abstract). In Walter Fumy, editor, Advances in Cryptol-
ogy - EUROCRYPT ’97, International Conference on the The-
ory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lec-
ture Notes in Computer Science, pages 37–51. Springer, 1997.
28

[BEK+20] Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste
Lambin, Gregor Leander, Thorben Moos, Ventzislav Nikov,
Shahram Rasoolzadeh, Yosuke Todo, and Friedrich Wiemer.
Princev2 - more security for (almost) no overhead. IACR Cryp-
tol. ePrint Arch., 2020:1269, 2020. ix, 3, 16, 17

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick
Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block
cipher. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 450–466. Springer, 2007. 45

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret
key cryptosystems. In Burton S. Kaliski Jr., editor, Advances in
Cryptology - CRYPTO ’97, 17th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21,
1997, Proceedings, volume 1294 of Lecture Notes in Computer
Science, pages 513–525. Springer, 1997. 28

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-
Clark, Bryan Weeks, and Louis Wingers. The SIMON and
SPECK families of lightweight block ciphers. IACR Cryptol.
ePrint Arch., 2013:404, 2013. ix, 3, 19, 21, 23

Bibliography 55

[CFG+14] Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-
Plasencia, and Jean-René Reinhard. Multiple differential crypt-
analysis of round-reduced PRINCE. In Carlos Cid and Chris-
tian Rechberger, editors, Fast Software Encryption - 21st Inter-
national Workshop, FSE 2014, London, UK, March 3-5, 2014.
Revised Selected Papers, volume 8540 of Lecture Notes in Com-
puter Science, pages 591–610. Springer, 2014. 9, 10, 19

[CNV13] Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière.
Sieve-in-the-middle: Improved MITM attacks. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of
Lecture Notes in Computer Science, pages 222–240. Springer,
2013. 9, 10, 19

[DEM+20] CE Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unter-
luggauer. Isap v2. 0. 2020. 3

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Ascon v1. 2. Submission to the CAESAR
Competition, 2016. 3

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, G Van Assche,
and R Van Keer. Xoodyak, a lightweight cryptographic scheme.
2020. 4

[DP20] Patrick Derbez and Léo Perrin. Meet-in-the-middle attacks
and structural analysis of round-reduced PRINCE. J. Cryp-
tol., 33(3):1184–1215, 2020. 10

[DR98] Joan Daemen and Vincent Rijmen. The block cipher rijndael.
In Jean-Jacques Quisquater and Bruce Schneier, editors, Smart
Card Research and Applications, This International Confer-
ence, CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-
16, 1998, Proceedings, volume 1820 of Lecture Notes in Com-
puter Science, pages 277–284. Springer, 1998. 29

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael:
AES - The Advanced Encryption Standard. Information Secu-
rity and Cryptography. Springer, 2002. 2, 45

56 Bibliography

[DZLY17] Yao-Ling Ding, Jing-Yuan Zhao, Lei-Bo Li, and Hong-Bo Yu.
Impossible differential analysis on round-reduced PRINCE. J.
Inf. Sci. Eng., 33(4):1041–1053, 2017. 19

[GR16] Lorenzo Grassi and Christian Rechberger. Practical low
data-complexity subspace-trail cryptanalysis of round-reduced
PRINCE. In Orr Dunkelman and Somitra Kumar Sanadhya,
editors, Progress in Cryptology - INDOCRYPT 2016 - 17th In-
ternational Conference on Cryptology in India, Kolkata, India,
December 11-14, 2016, Proceedings, volume 10095 of Lecture
Notes in Computer Science, pages 322–342, 2016. 10, 11

[HJM+19] Martin Hell, Thomas Johansson, Alexander Maximov, FHNW
Willi Meier, Switzerland Jonathan Sönnerup, and Hirotaka
Yoshida. Grain-128aeadv2-a lightweight aead stream cipher.
2019. 3

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and
Thomas Peyrin. New results on romulus. In NIST Lightweight
Cryptography Workshop, 2020. 3

[JNP+13] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and
Shuang Wu. Security analysis of PRINCE. In Shiho Moriai, ed-
itor, Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Pa-
pers, volume 8424 of Lecture Notes in Computer Science, pages
92–111. Springer, 2013. 9, 10, 19

[JNP+15] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and
Shuang Wu. Security analysis of PRINCE. IACR Cryptol.
ePrint Arch., 2015:372, 2015. 10

[LJW13] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved meet-in-
the-middle attacks on AES-192 and PRINCE. IACR Cryptol.
ePrint Arch., 2013:573, 2013. 9, 10

[MAR] Guang Gong Kalikinkar Mandal Mark Aagaard, Riham AlTawy
and Raghvendra Rohit. Ace: An authenticated encryption and
hash algorithm. ix, 26

[Mor17] Pawel Morawiecki. Practical attacks on the round-reduced
PRINCE. IET Inf. Secur., 11(3):146–151, 2017. 10, 11

Bibliography 57

[nis] NIST Lightweight Competition. https://csrc.nist.gov/
projects/lightweight-cryptography. 3

[PN15] Raluca Posteuca and Gabriel Negara. Integral cryptanalysis
of round-reduced prince cipher. Proceedings of the Romanian
Academy - Series A: Mathematics, Physics, Technical Sciences,
Information Science, 16:265–269, 01 2015. 9, 10, 14

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault
attack technique against SPN structures, with application to
the AES and KHAZAD. In Colin D. Walter, Çetin Kaya
Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, vol-
ume 2779 of Lecture Notes in Computer Science, pages 77–88.
Springer, 2003. 29

[pri14] THE PRINCE CHALLENGE. https://www.emsec.
ruhr-uni-bochum.de/research/research_startseite/
prince-challenge/, 2014. 3

[QHS16] Kexin Qiao, Lei Hu, and Siwei Sun. Differential analysis
on simeck and SIMON with dynamic key-guessing techniques.
In Olivier Camp, Steven Furnell, and Paolo Mori, editors,
Information Systems Security and Privacy - Second Interna-
tional Conference, ICISSP 2016, Rome, Italy, February 19-21,
2016, Revised Selected Papers, volume 691 of Communications
in Computer and Information Science, pages 64–85. Springer,
2016. ix, 20

[RD19] Behnaz Rezvani and William Diehl. Hardware implementations
of nist lightweight cryptographic candidates: A first look. IACR
Cryptol. ePrint Arch., 2019:824, 2019. 3

[RR16a] Shahram Rasoolzadeh and Håvard Raddum. Cryptanalysis of
6-round PRINCE using 2 known plaintexts. IACR Cryptol.
ePrint Arch., 2016:132, 2016. 10

[RR16b] Shahram Rasoolzadeh and Håvard Raddum. Faster key recov-
ery attack on round-reduced PRINCE. In Andrey Bogdanov,
editor, Lightweight Cryptography for Security and Privacy -
5th International Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers, volume 10098

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://www.emsec.ruhr-uni-bochum.de/research/research_startseite/prince-challenge/
https://www.emsec.ruhr-uni-bochum.de/research/research_startseite/prince-challenge/
https://www.emsec.ruhr-uni-bochum.de/research/research_startseite/prince-challenge/

58 Bibliography

of Lecture Notes in Computer Science, pages 3–17. Springer,
2016. 10, 11

[Sah17] Dhiman Saha. CRYPTANALYSIS OF HASH FUNCTIONS
AND AUTHENTICATED ENCRYPTION SCHEMES. PhD
thesis, INDIAN INSTITUTE OF TECHNOLOGY KHARAG-
PUR, 2017. 29

[SBY+13] Hadi Soleimany, Céline Blondeau, Xiaoli Yu, Wenling Wu,
Kaisa Nyberg, Huiling Zhang, Lei Zhang, and Yanfeng Wang.
Reflection cryptanalysis of prince-like ciphers. In Shiho Moriai,
editor, Fast Software Encryption - 20th International Work-
shop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers, volume 8424 of Lecture Notes in Computer Sci-
ence, pages 71–91. Springer, 2013. 15

[SH13] Ling Song and Lei Hu. Differential fault attack on the PRINCE
block cipher. In Lightweight Cryptography for Security and Pri-
vacy - Second International Workshop, LightSec 2013, Gebze,
Turkey, May 6-7, 2013, Revised Selected Papers, pages 43–54,
2013. vii, viii, ix, 31, 32, 35, 44, 45, 47

[WH19] Hongjun Wu and Tao Huang. Tinyjambu: A
family of lightweight authenticated encryption al-
gorithms. Submission to the NIST Lightweight
Cryptography Competition, available online at
https://csrc. nist. gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.
pdf, 2019. 3

[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard,
and Guang Gong. The simeck family of lightweight block ci-
phers. In Tim Güneysu and Helena Handschuh, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2015 - 17th
International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, volume 9293 of Lecture Notes in Computer
Science, pages 307–329. Springer, 2015. ix, 25

	Certificate
	Acknowledgements
	Abstract
	Contents
	Introduction
	Literature Survey
	PRINCE DBLP:conf/asiacrypt/BorghoffCGKKKLNPRRTY12
	Description of PRINCE
	Summary of Some Attacks on PRINCE
	Some Properties of PRINCE

	PRINCEv2 DBLP:journals/iacr/BozilovEKLLMNRT20
	Description of PRINCEv2
	Designers' Perspective on PRINCEv2

	SIMON DBLP:journals/iacr/BeaulieuSSTWW13
	Description of SIMON
	Differential Attack on SIMON32 DBLP:conf/icissp/QiaoHS16a

	Some Other Lightweight Ciphers
	SIMECK DBLP:conf/ches/YangZSAG15
	ACE nistsubmission

	Fault Analysis
	Some Papers Related to Fault Attack
	Different Fault Models

	Conclusion

	Fault Analysis of PRINCE family
	Related Work
	Random Nibble Based Fault Attack DBLP:conf/lightsec/SongH13
	Integral Fault Attack DBLP:conf/ccs/AikataKS20
	Slow Diffusion Fault Attack DBLP:conf/ccs/AikataKS20

	Proposed Differential Fault Attack on PRINCE
	The Fault Model
	Fault Diffusion in Internal State of PRINCE
	Classification of Fault Invariants
	Description of the Attack

	Fault Attack Vulnerability Assessment of PRINCEv2
	Experimental Results
	Discussion
	A Note on Fault Analysis of PRINCE-like Designs
	Conclusion

	Conclusion and Future Scope
	Dissemination of The Work
	Bibliography

