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Abstract: 

 
This work’s aim is to find an efficient method to measure the Optical Character 

Recognition (OCR) accuracy in the absence of the ground truth text. To successfully 

obtain the desired result, initially we have tried some efficient supervised (in the 

presence of the ground truth text) accuracy measuring techniques. Then we tried 

some unsupervised (in the absence of the ground truth text) techniques, which is the 

final goal of our project, and compare their performance with respect to the 

previously obtained supervised techniques. Our final project goal is to provide an 

efficient unsupervised accuracy measuring technique which can help us to automate 

the document analysis process.  
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1. Introduction: 
OCR is the process of converting non editable texts (i.e., pdf, images) into editable 

ones (text format). This a technology which is being used broadly in current days. The 

biggest companies in the world (Google, Amazon) are not only using this tool, but also 

developing their own model for better result. Here we are not going to discuss about 

how OCR is done (that is done using deep learning tools like CNN, NLP), but focus 

will be on the comparison between several OCR accuracy measuring indices. This step 

is crucial to make an informed decision on the best OCR accuracy measure to use when 

ground truth (i.e., the source text file) of a document is not available. 

In the organization iManage, text obtained from an OCR engine is fundamental for 

their applications. Document classification, information retrieval or Named Entity 

Recognition are examples of processes that rely on text. For that purpose, several non-

editable documents need to be converted into the editable form to make the searching 

process through characters easy. It should be noted that in any OCR process several 

wrong character conversions will occur and OCR engine we are using is not an 

exception on that. The performance of the applications will inevitably be influenced by 

the accuracy of the OCR process. So, before considering improvements to the OCR 

process it is essential to assess the OCR quality. 

OCR’s accuracy depends upon several constraints. One major observation was that 

the font style affects the OCR quality badly. Also handwritten digits, historical fonts 

affect the OCR quality. So, in this project mostly our focus will be finding an ‘efficient’ 

accuracy measure, with less computational complexity. 

 

1.1 Our Contribution: 
In this project we will evaluate accuracy measures in the presence of the ground 

truth text, i.e., the original raw text file. Next, we will assess efficient methods for 

the case where the ground truth is missing. Our plan is to compare the performance 

between methods that determine accuracy in the absence of the ground truth with 

respect to the methods in the presence of the ground truth.  



  6 

 

For the case where ground truth is available, we have found some efficient 

methods. First one is Jaccard index. There are two more methods depend on an 

interesting and innovative idea, the recursive alignment methods [1] [3] [4] [5] [7]: 

Hidden Markov Model probabilistic approach (HMM) and the Recursive Text 

Alignment Scheme (RETAS). These were some supervised methods which rely on 

text-to-text evaluation. There are some other processes in the supervised case, xml-

to-xml evaluation, and text-to-xml evaluation, mentioned in the paper by Romain 

Karpinski, Devashish Lohani, Abdel Belaid [5]. They also mentioned about one 

method called ZoneMapAltCnt [5] [8]. But it was easy for us to work with the text-

to-text approach only, so we didn’t focus on these methods.  

The Jaccard index is a method which deals with the very simple mathematical 

calculations, such as, union and intersection. However, it lacks the positional 

information of the words. The recursive alignment method takes care of this, by 

subdividing the text into smaller chunk of texts. Over those smaller chunks of texts, 

we run the HMM and RETAS algo. HMM [3] is a probabilistic model which keeps 

track about the relation between the original and the OCRed text by the help of one 

hidden sequence. This method involves optimizations to get these values. On the 

other hand, RETAS [1] method does a character level checking w.r.to edit distance.  

Finally, we are going to devise a method to perform the measurements in the 

absence of the ground truth. Initially, we started dictionary lookup method [6] [7], 

i.e., checking whether the words in the OCRed text are meaningful or not by 

searching them in a dictionary. Later we started working with other methods because 

there was some problem in dictionary lookup method. As it lacks positional 

information like the Jaccard index and there are problems with named entities too. 

Language model can be its one possible solution, but it can be costly with respect to 

the computational complexity, which may harm the main goal of our project, as we 

have mentioned earlier, this project is a part of a bigger project, which should not 

take long time to get finished. Hence, it was not a good idea to move forward with 

this process. So, in searching for some better algorithm we found a method based on 

confidence score (will be discussed in the section 2.4), which was provided by the 
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OCR engine. This can be a good proxy against the dictionary lookup method. We 

have tested many of the above-mentioned algorithms over several text files. Let us 

start our discussion with the OCR conversion method. 

 

1.2 OCR conversion process: 
The OCR engine we are using in this project, provides us two different 

extraction methods of the OCRed text. 

The first is text extraction method, which on an input of a pdf or image outputs 

the corresponding full text OCRed output, which totally reorders the paragraphs. So, 

this was not useful for us. 

On the other hand, the second method, namely, the docstream method outputs a 

character wise detailed output corresponding to the same input as the other method. 

In this method, not only the characters are given but also their positional information 

and the other information like bold, italics, confidence score (the probability that a 

recognition variant is correct) are given in this method too. In this method we can 

accept the output in 3 different formats: text, html, stream. We will mostly work with 

the text format output. For ease of calculation, we store this output inside a csv file, 

so that, it’s different columns will contain different attributes, such as, Character, 

font size, font style, confidence score etc. We will concatenate the characters 

depending upon some special constraints to get the full text. 
 

 
Figure 1: Comparison between the Original and the two files obtained via two different type of OCR 

conversion for a same file 
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2. Accuracy Measures (supervised and unsupervised): 
We are going to discuss about some accuracy measure techniques in this section. 

Starting with some supervised techniques we will move into the unsupervised 

techniques, as in real world scenario we may not have the ground truth text file always. 

The purpose of starting with the supervised techniques is nothing but to compare the 

efficiency of the unsupervised techniques with respect to the supervised ones.  

 

2.1 Jaccard Index: 
It is a supervised method, i.e., it is calculated in the presence of the ground truth 

(GT) text. Vaguely speaking, Jaccard index is basically the proportion of the area of 

overlap over the area of the union. If we call the ground truth text as GT and the 

OCRed text as OCR then this method will first split both the texts in terms of the 

words and then will take set of both the lists; say, the sets are GTset and OCRset 

then, Jaccard index will be, 
 

𝐽(𝐺𝑇𝑠𝑒𝑡, 𝑂𝐶𝑅𝑠𝑒𝑡) = |𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡| ÷ |𝐺𝑇𝑠𝑒𝑡	 ∪ 𝑂𝐶𝑅𝑠𝑒𝑡| 

=
|𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡|

|𝐺𝑇𝑠𝑒𝑡| + |𝑂𝐶𝑅𝑠𝑒𝑡| − |𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡|
 

 

This method is efficient with respect to computational complexity. But the problem 

appears due to the set formation. For this not only the positional information gets lost 

but also it ignores the other important attributes such as the confidence score. So, we 

then focus on some techniques which consider the positional information. Even if we 

take weight count for each word still there could be some problems. For example, 

suppose in a text file the word ‘man’ present exactly 3 times. Suppose due to the 

OCR error one ‘man’ word has been changed into ‘men’ and some other word, say, 

‘main’ changed into ‘man’. Then, in that document, total number of the word ‘man’ 

remains constant. Hence in this method we will get an accuracy of 100% 

corresponding to the word ‘man’, but which is not correct. 
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2.2 Alignment Methods: 
As mentioned earlier, we are going to discuss about two different methods, rely on 

the alignment method, viz., RETAS method and HMM method. Let us discuss about 

the alignment technique first.  

This technique is also a supervised accuracy measuring technique. Hence, the input 

files are the OCRed, and a GT text files. On input of these two files, we first search 

for Anchor Words following this technique. Anchor words are basically the common 

unique word from both the texts. In algorithmic perspective,  

1. Search for unique words in the GT text file 

2. For each unique word in GT checks over the OCRed text file whether it is a 

unique word in that file or not 

3. If yes, then mark it as Anchor word 

4. If it does not present in the OCRed text, then search for the next word 

5. Otherwise, if the word exists more than one time in the OCRed text then checks 

for the neighbours of the word for each of its occurrence in the OCRed texts and 

returns Anchor word output for matching of the neighbouring words. 

After finding the Anchor words this technique divides the whole text with respect to 

these Anchor words, i.e., for each consecutive Anchor words A and B, take the text 

portion in between A and B. Do it for all the Anchor words. Now repeat the whole 

process over the smaller text segments, stop until no Anchor word left inside a text 

segment, or the length of the text segment is smaller than a certain threshold 

(typically 200, used in the paper by R. Manmatha [1]). Finally, we will do the 

accuracy checking over the smallest chunk of texts. 

 There are several advantages of these methods. One is obviously the positional 

information is taken care in this method, because of the smaller divisions. The other 

thing is the time complexity. Because of these divisions the complexity got reduced. 

These alignment techniques are efficient to measure the accuracy of the OCR.  

Now the obvious questions may be if there will not be enough number of unique 

words in the texts then the chunks may not be small, therefore we may do our analysis 

over a large sized text. But the thing is that one analysis from the paper by R. 
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Manmatha [1] says, a book of 500 words per page contains typically 10 to 15 unique 

word per page. So, frequency of getting unique words is high. 

 

2.2.1 HMM:  
HMM or Hidden Markov Model is a probabilistic algorithm. This method tries to 

construct a position sequence depending upon the given OCRed text sequence and 

GT text sequence. Suppose 𝑂 =< 𝑜!, 𝑜", … , 𝑜# > be the OCRed text sequence, 𝐺 =

< 𝑔!, 𝑔", … , 𝑔$ > be the ground truth and 𝑆 =< 𝑠!, 𝑠", … , 𝑠# > be the hidden 

position sequence, where 𝑠% = 𝑗 implies 	𝑖th word or character in the O corresponds 

to the 𝑗th  word or character in G. The HMM-based alignment model estimates the 

joint probability of the OCR sequence and the hidden position sequence P(O, S) as:  

P(O, S) =@P(𝑠%|𝑠%&!)P(𝑜%|𝑠%)
#

%'!

 

Here, P(𝑠%|𝑠%&!) is the transition probability, i.e., the probability of a successful 

transition from the state 𝑠%&! to the state 𝑠% in the ground truth text and P(𝑜%|𝑠%) is 

called the generative probability, which is the probability of generating OCR term 

𝑜% from the ground truth term at the position 𝑠%. The definitions of these terms are 

given in the paper by Feng and Manmatha [3]. 

Then our goal will be to maximize P(O, S) with respect to S, i.e.,  

𝑆A = argmax
(
P(O, S) 

Using the Viterbi algorithm [9] the authors Feng and Manmatha, determine the 

most likely state sequence 𝑆A through decoding over the OCR sequence. So, by 

solving the last equation given, we get a sequence of positions in the ground truth 

with the same length as the OCR output sequence. For each OCR term, the assigned 

position value indicates the ground truth term from which it is generated. 

 

2.2.2  RETAS:  
This method is an edit distance-based method. Edit distance is the minimum 

number of edits required to obtain a word from a given word. Edits can be of three 
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types, viz., Insertion, Deletion and Substitution. Insertion is adding a character at any 

place of the string 1 to get the string 2, while deletion is removing, and substitution 

is replacement of one character. The cost of these operations is 1, 1 and 2 

respectively. For example, the word ‘spring’ is of distance 2 from the word ‘ring’ (2 

deletions from spring), the word ‘art’ is of distance 1 from the word ‘are’ (1 

substitution). Previously Rice proposed an idea of edit distance-based accuracy 

measurement with the help of Ukkonen’s Algorithm [2]. This method was efficient 

in smaller texts than the larger ones. So here REATS method uses this algorithm after 

making the chunk of the text smaller. This method checks the edit distances between 

the words sequentially over the smallest chunks of texts and with respect to the edit 

distance they align the whole text. If edit distance is 0 then that is considered as 

correctly OCRed word. Otherwise, they put a ‘@’ or a null value in the place of 

wrongly OCRed characters. On an input of a OCRed and GT file it outputs a 

comparison-based output file which consists of detailed character-wise information, 

which will be discussed later.  
 

2.3 Dictionary Lookup Method: 
This is the first unsupervised method we are going to discuss about, here the 

ground truth text is absent. This method is very simple, but little bad with respect to 

the time complexity. This method simply for all word in the OCRed document search 

it in a dictionary or a text file with a rich vocabulary. It recognizes a word as wrongly 

OCRed if it is not in that dictionary.  

Now, there are several problems in this method. For example, suppose in the 

ground truth text there is a word ‘main’ somewhere. But due to OCR the word has 

been changed into ‘man’. Now both the two words will be there in the dictionary and 

as a result this method will identify the wrongly OCRed ‘man’ word as a correct one, 

which will affect the accuracy. 

There is one more crucial problem in this method, i.e., named entity recognition. 

There can be hundreds of named entities which may not be present in the dictionary. 

For those words even after being correctly recognized, this method will classify those 
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as wrongly classified. Now the thing is even after having this type of major problems 

the overall performance of this method was up to the mark. The comparisons are 

given in the next section.  
 

2.4 Confidence Score based Accuracy measure: 
In the dictionary lookup method, we observed several problems. Previously we 

have mentioned that there is an attribute called confidence score is given in the output 

of the OCR engine. So, we are trying to use those confidence scores in our accuracy 

measurement analysis, as its computational complexity is not high like the language 

model. 

The confidence score is a value between 0 to 100, which represents the probability 

of confidence. Basically, the OCR engines outputs a character via a classification 

model. This confidence score is the percentage of the character to be correct after 

OCR. We took an average value over the confidence scores to get the accuracy in the 

method 1. And in the other method we ignore all non-alphabets. In this process we 

took the characters between two non-alphabets as a word, calculated its average 

confidence score and finally output the average confidence scores of all the words as 

the accuracy measure. We took the RETAS method output to check the efficiency of 

this method. From that analysis we developed the later method of accuracy measure. 

We got some impressive results in this method, which is in the next section.  
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3. Experimental Results: 

In this section we are going to show some sample outputs we got in several steps. 

Firstly, I am going to show one typical output we got in the time of OCR by the above 

mentioned docstream method (section 1.2) of the OCR engine. 

 
Figure 2: This is an output file of the OCR Engine using text extension. The red marked column is the 

Confidence score. 

 
Figure 3: Sample output file using html extension 
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In the figure 3, this is one sample html type output obtained from the OCR engine. In 

figure 2 the marked column is the confidence score. 

Now, as we previously told, the OCR accuracy has a huge dependency on the font 

style. Here one sample output is shown below: 

 
Table 1: Comparison between the Jaccard indices using different fonts for a same text file. 

 

It can be shown that how simply changing the font style can affect a text’s OCR 

accuracy. 

Now let us start with RETAS method as our 1st method, i.e., Jaccard index is too easy 

to calculate. We got a repository [11] for the RETAS method from [1]. Here one typical 

output file of the RETAS method is given below: 
 

 

Figure 4: Sample output file of the RETAS method 

 

For the dictionary lookup method, already there was an algorithm at iManage. We have 

done a little modification to that algorithm. The algorithm first converts everything into 

small letters and then drop every character except alphabets and spaces and finally 

tokenize those into words. We just modified two things, one is in the time of text 

processing and the other in the time of tokenization. In the previous algo some null 

value was being considered, for these two changes that problem got resolved. 

So, we have worked with these four methods; two supervised, Jaccard Index & RETAS, 

and two unsupervised, Dictionary Lookup & Confidence score based approach. We 

have done the whole experiment in 3 ways. Initially, we have done the experiments 
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using files downloaded from project Gutenberg [10] website. Then, we have 

synthetically generated some input texts and have done the same experiments over 

these files too. Finally, we take a combination of both of the files and do the same 

experiments. The main reason behind using these synthetic input or synthetic output 

methods is to create some documents with ‘bad’ OCR accuracy, as most of the real 

world documents have an OCR accuracy around 80% to 100%. 

We also have done another experiment using synthetic output documents. The main 

difference between synthetic input based method and the synthetic output based 

method is in the first one we will try to generate fake GT text and in the latter case we 

will try to generate fake OCRed text data. Let us start our discussion with the synthetic 

output based method. 

 

3.1 Synthetic Output based approach: 
The main goal of the project was to find an efficient OCR accuracy measuring 

method or ensure the efficiency of the previous one (Dictionary Lookup). Here in 

this synthetic output based approach we tried to do that comparison; but in the 

absence of the OCR engine. Basically, for a given  

GT document we tried to generate its corresponding OCRed text file. Now, we are 

going to discuss the algorithm to generate the files. This algorithm can be broken 

down into two parts; namely, the text generation and the confidence score generation. 

We are going to discuss these for each of the files. 

• Text generation: 

For each files: 

® Pick a number from 0 to 1 (say 𝛼) (100𝛼 will be the expected 

accuracy for that document) 

® For each word in the text 

® Draw a random number between 0 and 1 (say 𝛽)  

® If 𝛽 < 𝛼: then predict the word as correctly OCRed 

® Else: predict as incorrectly OCRed * 
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® Keep non-alphanumeric values unchanged and output the result 

as OCRed text corresponding to the given GT text 

* Types of incorrect OCRs: 

1. Wrong but same length with correct word 

2. Wrong prediction by breaking a word 

3. Combination of 1 and 2 

We will randomly do any of the 3 methods. 

• Confidence Score Generation: 

We will do this in two major steps: 

1. Observing the distribution of the word-wise confidence scores both for the 

correctly predicted and incorrectly OCRed words. 

2. Generation of the confidence score per word for the synthetic output files 

depending upon the word was OCRed correctly or not.  

For (1) we need the output files of RETAS method for some previously tested files. 

We divided the files into train and test files in 5:1 ratio. We will follow the following 

algorithm to generate the distribution: 

1. Create 2 list (or dataframe or set) True and False. 

2. Input the output file performed by the RETAS method with True/False labelling 

corresponding to each word. 

3. Take the average confidence scores corresponding to each word which will be 

calculated using the confidence scores per letter and append that in the 

corresponding dictionary. 

Now, for the step (2), i.e., the generation of the confidence score we will 1st check 

for each word whether the words are correctly OCRed or not. Depending upon that 

‘True’ or ‘False’ labelling we will draw randomly a confidence score from the 

corresponding list (or set or dataframe). Thus, for all word we will do the same. Now, 

we have trained and tested these over some documents. These graphs are given 

below. 
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Original Confidence Score Synthetically Generated Confidence Score 

  

 

Figure 5.1: Distribution of the Confidence Score per word for all the words in the documents 

  

 

Figure 5.2: Distribution of the Confidence Score per word for the correctly OCRed words in the documents 

  

 

Figure 5.3: Distribution of the Confidence Score per word for the incorrectly OCRed words in the documents 
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Here in the diagrams given above in the left-side diagram at each level those are the 

diagrams for the words from the real documents and in the right-side those are the 

documents from the documents with synthetically generated confidence scores for 

the documents from the test set. The y-axis denotes the accuracy score (a number 

from 0 to 1) and the x-axis is the number of words. 

 Now, we can see the generated confidence score was quite similarly distributed 

like the real-world documents. So, depending on these generated synthetic output 

datasets we tried to analyze the unsupervised accuracy measuring methods. 

 

 

Figure 6.1 

 

 

Figure 6.2 

Correlation Heatmap and boxplots for the two unsupervised methods using synthetically generated 

output files. For the boxplot in the y-axis the accuracy is given (a value from 0 to 1) and the x-axis, the 

methods 
 

Now, the problem with this method is that, in this method the OCR engine is not 

involved. So, we look for some better method to generate synthetic data, i.e., the 

synthetic input method. In this method we try generating some input file which 

should perform badly in the time of OCR conversion. But before discussing this 

method let us discuss the results, we got using real text documents collected from 

Project Gutenberg website [10].  

 

3.2 Analysis using text data collected from online resources: 
We used python library BeautifulSoup from bs4 to automate the process of 

downloading. To be precise we didn’t download the files rather just copy the text 

from the website. After that we have used python library FPDF to convert these into 

pdf files. We have used the font style Arial for the pdfs. After getting the pdfs and the 
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text files we automate the process of pdf to text conversion. For this conversion we 

use a CentOS virtual machine. So, we used os.system() call to perform the command 

line arguments. But there was a little problem in it, as every time even after a 

successful conversion the OCR engine ended up with a segmentation fault. We used 

the integer output given by the OCR engine after a successful run to tackle this 

problem. Finally, we used all the four accuracy measuring methods (including both 

old and new methods of dictionary lookup) over these files. Here there are the results 

we got: 
 

 

Figure 7.1 

 

Figure 7.2 

 
Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using files 

downloaded from the project Gutenberg website. For the boxplot in the y-axis the accuracy is given (a 

value from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised) methods. 
 

Here in the figure 7.1 we can see the correlation coefficients are not so good. That is 

because there are some outliers in the data, which is clearly visible in the figure 7.2. 

And this is one of the main reasons behind exploring the method based on 

synthetically generated text files. So, let us start discussion on this.  

 

3.3 Synthetic Input based approach: 
There are two main reasons behind using this particular approach. These are: 

1. The number of ‘real’ documents were not sufficient enough to conclude any 

results. 
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2. The reason already been told in the section 3.2. We need to manage the 

proportion of outliers.  

One possible solution can be to remove those outliers, but instead of doing that we 

want to add some data files with ‘low’ accuracy score. In this section, we will discuss 

the case using synthetically generated text files first, and then finally, we do the same 

using both synthetic input and real text documents. 

In the generation process of synthetic input text we will follow the similar 

algorithm like the synthetic output one. The basic idea is to create two dataframe (or, 

other datatypes like list) one containing the correctly predicted words and the other 

containing the incorrectly predicted words and then appending those in a certain 

proportion to get the text files.  

The main intuition behind this approach is: the word which previously have been 

OCRed correctly will certainly have a high probability to be OCRed correctly again 

and the same thing goes for the incorrectly predicted words too. So, using the 

labelling from the RETAS method’s output file we want to do the job. Now, let us 

discuss the algorithm of generating the files. 

For file in files_to_be_generated: 

↦ Pick a number from 0 to 1 (say 𝛼) 

↦ Generation of the text 

↦ Draw a random number between 0 and 1 (say 𝛽) 

↦ If  𝛽 < 𝛼: 

↦ Pick a word randomly from the dataframe of correctly OCRed words 

↦ Else: 

↦ Pick a word randomly from the dataframe of incorrectly OCRed 

words 

↦ Put a space between every words 

Thus, we can get a text file with 100𝛼% words from the correctly OCRed collections. 

Notice that we are not using any non-alphanumeric characters here. In this generation 

we want to generate files with OCR conversion accuracy around 100𝛼%. One 

obvious question may be asked that why we should need 𝛽. The thing is 𝛼 divides 
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the interval into two parts [0, 𝛼)	and [𝛼, 1]. Probability of getting a number from the 

1st interval, which is the interval corresponding to the correctly predicted words, is 

100𝛼%, which is the expected accuracy. In this whole process 𝛽 is used for selecting 

the interval. 

 Once the generation is done, we will output the text-format file and convert those 

into pdfs using python module FPDF. After getting both the text and pdf format 

documents we will do the same thing we did in the section 3.2. Now let us look into 

the results we got in this method. 

 
Figure 8.1 

 

Figure 8.2 

Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using 

synthetically generated input text files only. For the boxplot in the y-axis the accuracy is given (a value 

from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised) methods. 

 

These results were looking good, i.e., synthetic input method can be a good proxy 

for the real datafiles. So finally, we added some of these synthetically generated files 

with all the real datafiles. We took synthetic input datafiles with RETAS accuracy 

only above 80%, as we already have the real datafiles for this range. Here are those 

results. 
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Figure 9.1 

 

Figure 9.2 

 Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using both 

synthetically generated input text files and the files downloaded from project Gutenberg website. For the 

boxplot in the y-axis the accuracy is given (a value from 0 to 1) and the x-axis, all the four (two 

supervised and two unsupervised) methods. 

 

Now even after using the synthetic input documents there are several outliers in the 

and that affects the correlation too. We have used some outlier removal technique 

(IsolationForest, with hyper-parameter contamination) to observe how good the 

result look like without outliers. Here are the results depending upon several values 

of the hyper-parameter contamination. 

 

 

 
Figure 10.1 
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Figure 10.2 

Boxplots and correlation heatmaps for the above mentioned four accuracy methods for several values of 

the hyperparameter contamination using the outlier detection method isolation forest 

 

These results were not only better than the previous one, but also it ensures us that 

the unsupervised methods correlate well with the supervised methods. Specially the 

Dictionary lookup method. The confidence score-based approach correlates well 

with the other methods, but one major problem with this approach is that, in most of 

the cases the confidence score takes a value around 80 to 100; that is why even after 

correlating well with the other methods this method returns a very high value 

comparing to the other methods. As a result, the boxplot is so dense comparing to 

the others in this method. One possible solution can be fixing some threshold for this, 

for example, 80% in RETAS ~ 92% in this method. 

 Finally, we tried not to eliminate the outliers, i.e., if we can generate some datafiles 

with accuracy ranging from 0% to 60% then the problem will be solved. To do this 

we used a trick, inspiring by the results of Table 1. That means, we changed the font 

to get some low accuracy pdfs. In this method we used add_font() function of FPDF 

module. We replaced half of the synthetic input documents from each range, [10, 
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20), [20, 30), [30, 40), … [90, 100]. Here the proportion of this replacement is given 

below. 

 
Figure 11: Comparison between the number of total files and the number of files to be replaced by the 

files with  different fonts, where x-axis denotes the accuracy ranges and y axis denoted the number of 

files in that range 

 

We replaced these texts with documents using 10 different fonts and using different 

proportion of words taken from both the text sets (correct and incorrect). Once the 

replacement is done, we started running all the four accuracy measuring methods 

over these files again. After doing these we measured the correlation, RMSE, R2 

scores between all the four methods. Also plotted the boxplot. If we look at the box 

plot (figure 12.2) then we can see that there are still some outliers, but the number of 

values less than 20% accuracy is much higher than the previous one. That obviously 

help us in the analysis. Notice that, in every other boxplot graphs the graph 

corresponding to the confidence score is very dense except this one. That is because 

while converting scripted font documents the OCR Engine getting confused between 

the letters, hence giving us a very bad confidence score. That is why the boxplot for 

the confidence score-based accuracy score is surprisingly much wider in terms of its 

range.  
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Figure 12.1 

 
Figure 12.2 

 
Figure 12.3 

 
Figure 12.4 

Correlation Heatmap (12.1), boxplot (12.2), RMSE (12.3) and R2 score (12.4) for the two supervised 

and two unsupervised methods using both synthetically generated input files, files with scripted fonts 

and the files downloaded from the project Gutenberg website. For the boxplot in the y-axis the accuracy 

is given (a value from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised) 

methods. 
 

We also have plotted the scatter plot between the 4 methods, that means 6 scatter plots 

in total. In those scatter plots the comparison between the accuracy scores for all the 

methods are given. 
 

 
Figure 13.1: Jaccard index vs Confidence Score 

based approach 

 
Figure 13.2: Dictionary Lookup vs Confidence 

Score based approach 
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Figure 13.3: Jaccard index vs RETAS method 

 

 
Figure 13.4: RETAS method vs Dictionary 

Lookup method 

 
Figure 13.5: Jaccard index vs Dictionary Lookup 

method 

 

 
Figure 13.6: RETAS method vs Confidence Score 

based approach 

Pairwise comparison of the accuracy values’ distribution among all the 4 methods via scatter plots. 

 

3.4 Analysis using real life scanned documents: 

So far, we have done all the analysis either using the synthetically generated data 

or, some text-file downloaded from some website. But, for the final evaluation of the 

newly proposed confidence score-based approach or the previously used Dictionary 

Lookup method, some real-life documents were needed. For this we have used some 

files already present in iManage. These documents were mostly scanned images. 

Also, there was some signatures, dates in handwritten fonts. We have taken around 

50 such type of documents. We have checked the accuracy scores for each documents 

using both the unsupervised accuracy measures.  

In this evaluation process we did not have any ground truth text. So, we have done 

a manual checking and assigned a rating as per our preference out of 10 for each file. 
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Basically, for each scanned documents we arbitrarily have chosen some 2 or 3 pages 

and compare the corresponding page for the OCRed text file. Considering the fact 

that this evaluation may be biased, which is the biggest disadvantage of this manual 

checking; we also have found some advantages too. The very first advantage is the 

fact that we at least have some proxy to the ground truth. The other advantage was 

actually some interesting observations, which we have made during this manual 

checking. In spite of giving us nearly 100% accuracy for the printed non-scripted 

normal fonts, the OCR engine performs horribly for the handwritten digits. The other 

observation was that for the low-quality scanned images (hazy picture or some 

unnecessary marks in the pdf) the OCR engine gives us very low ‘confidence score’ 

even for the correctly recognized characters. As a result, our newly approached 

confidence score-based accuracy measure fails badly for these documents. Here I’m 

providing the correlation coefficients and the boxplots corresponding to these. Also, 

follow the Appendix (section 6) for the detailed table corresponding to these scanned 

documents. 

 

 
Figure 14.1: Correlation heatmap for 

confidence score-based accuracy measure, 

dictionary lookup method and OCR quality 

rating given by me for scanned documents 

 
Figure 14.2: Boxplots for confidence score-based 

accuracy measure, dictionary lookup method and OCR 

quality rating given by me for scanned documents 
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4. Conclusion: 

In search of an efficient algorithm for the unsupervised accuracy measuring 

technique, the method we found based on Confidence score can be a very good proxy 

against the dictionary lookup method already present inside the company.  

Initially in the testing phase we notice that one problem with the confidence score 

is whenever the font style of the pdf is like the typical printed format font, not like 

scripted font or handwritten digits, then the confidence scores for each character lies 

around 80 to 100%. As a result, the accuracy seems high comparing to the other 

methods and its boxplots become dense most of the cases. But at the same time, it 

correlates well with the other accuracy measuring methods. So, fixing a threshold can 

resolve the problem.  

After considering the low accuracy documents via synthetic input method, the 

method dictionary lookup and Confidence score both gave us a correlation above 70% 

in all the cases. The main advantage of the confidence score-based approach is we can 

fetch our required information directly from the output file our OCR Engine (preferably 

in .csv format), unlike the dictionary lookup method. In the dictionary lookup method 

text formation and tokenization of words is needed before checking. Even the checking 

itself is a time-consuming method comparing to the confidence score-based approach.  

But when we consider the real world scanned documents, the scenario got changed. 

The method for evaluating OCR quality using confidence scores produced by the OCR 

engine yield a strong correlation neither with the dictionary lookup method, nor with 

the accuracy scores given by us by manual inspection. Probably this problem arose 

because of the document picture quality. But whatever the problem is, these results 

help us to conclude that this method is not good enough comparing to the dictionary 

lookup method, as it correlates better with the scores given by us manually, that is in 

simple words, dictionary lookup performed better for real-life scanned documents.  

Finally, I want to conclude that, in spite of this poor correlation values I am still 

sure about the fact that the confidence score can be a really good proxy for the 

dictionary lookup method, which definitely will be more efficient than the dictionary 
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lookup in terms of the computational complexity.  Initially, we tried to use median, 

mode, GM instead of mean (AM), but accuracy scores obtained from all these methods 

have a high correlation (95%) with the method explained in this project. So, our final 

conclusion is that confidence score can be used in accuracy measurement but with some 

different approach, which requires further research.  
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6. Appendix: 
This is the table of the scanned documents used to evaluate the performance of the two 

unsupervised accuracy measuring methods (Confidence score based accuracy measuring method 

in column 3 and Dictionary Lookup method in column 4). In column 2 the accuracy rating (out 

of 10) given by manual evaluation is there. In the correlation and boxplot calculation we 

transformed these values out of 1 instead of 10. 
Filename Manual Evaluation Confidence Score Dictionary Lookup 

file01 10 0.980327127 0.992424978 

file02 8 0.648290348 0.98214857 

file03 9 0.956337246 0.986263335 

file04 10 0.926827821 0.992468462 

file05 9 0.836073035 0.985192351 

file06 9 0.940471223 0.987251402 

file07 10 0.980456206 0.992453107 

file08 9 0.985240164 0.979654501 

file09 8 0.870989639 0.953535177 

file10 9 0.847800648 0.959615581 

file11 9 0.812905561 0.967689048 

file13 10 0.973620899 0.991226819 

file15 9 0.956082992 0.985557769 

file16 8 0.485856164 0.975984932 

file17 9 0.892498635 0.975535684 

file18 10 0.978154464 0.986168313 

file19 10 0.783051549 0.99123506 

file20 9 0.906417042 0.977149075 

file21 8 0.82442636 0.954450435 

file22 9 0.638171728 0.987480714 

file23 8 0.668211588 0.964593809 

file24 9 0.627219124 0.978441352 

file26 9 0.883809263 0.958711479 

file27 8 0.902921526 0.963208502 

file28 9 0.986444172 0.985742727 

file29 10 0.413059553 0.991772763 

file30 9 0.978413432 0.985276796 

file31 9 0.651442126 0.984913793 

file32 8 0.588968884 0.958221701 

file33 9 0.951716902 0.979841173 

file34 9 0.859702395 0.97795668 

file35 8 0.459272959 0.938186382 

file36 10 0.866232768 0.99154334 

file37 9 0.74152156 0.989981666 

file38 9 0.818444358 0.992875424 

file39 9 0.756090875 0.988804071 

file40 9 0.725221065 0.992689613 

file41 9 0.946890715 0.982369824 

file42 9 0.311077744 0.988047809 

file43 9 0.993372993 0.968798066 

file44 9 0.794622355 0.951055231 

file45 9 0.995054048 0.987853403 

file46 10 0.872043542 0.987962167 

file47 9 0.495809897 0.978995757 

file48 10 0.983768411 0.993015307 

file49 9 0.666142686  0.97892198  

_________________ 


