
Physical attacks on CCA-Secure Lattice-based

KEM SABER

Submitted by

Puja Mondal

roll no. crs1905

m.tech in cryptology & security

indian statistical institute
kolkata

Primary Supervisor

Dr. Bart Preneel

electrical engineering department

katholieke universiteit leuven
belgium

Secondary Supervisor

Dr. Bimal Kumar Roy

applied statistics unit

indian statistical institute
kolkata

Mentors

Angsuman Karmakar

Jose M. Bermudo Mera

Suparna Kundu

Arther Beckers

katholieke universiteit leuven
belgium

15’th June, 2021

Declaration

I hereby declare that the project entitled "Physical attack on CCA Secure Lattice-
based KEM Saber" submitted in partial fulfillment for the award of the degree of
Master of Technology in Cryptology and Security completed under the supervision of
Prof. Dr. Ir. Bart Preneel and Prof. Dr. Bimal Kumar Roy, at ISI Kolkata is an
authentic work. Further, I declare that I have not submitted this work for the award
of any other degree elsewhere.

Signature and name of the student with date

It is certified that the above statement made by the student is correct to the best of
my knowledge.

Signature and designation with date

(Primary supervisor)

(Secondary supervisor)

Abstract

Nowadays the security of most used public-key algorithms are based on the hardness of one
of the following problems :

1. The integer factorization,

2. The elliptic-curve discrete logarithm problem.

But these problems can be solved by Shor’s algorithm [38] and Proos.Zalka’s algorithm
[31] on a powerful quantum computer.

The relief is that yet there is no quantum computer available. But from the continuous
improvement of computer science, we can say that the quantum computer is coming within
a few decades. Then to secure the communication, we need many cryptographic schemes,
which are quantum secure. That is are not attacked by a powerful quantum computer. For
this reason, post-quantum cryptographic schemes are needed.

The lattice-based public-key cryptographic schemes Saber[15], Kyber[7], NTRU are secure
against attacks from a quantum computer.
These schemes are selected in the 3rd round by NIST in the Post Quantum Cryptography
standardization program. The security of Saber is based on the Module Learning with
Rounding (MLWR) problem [15], which is assumed to be computationally hard problem[2].
Saber.PKE is an IND-CPA secure scheme and can be transformed to a secure against chosen-
ciphertext attacks(IND CCA-secure) by applying well known CCA conversions such as the
Fujisaki Okamoto transform[19] .

Now the remaining important task is to check the security of implementation of the scheme
SABER. Because a perfectly secure scheme is broken if not implemented correctly.

For example: RSA is a public-key encryption[17] whose security is based on the hardness
of the prime factorization of a large number. We assume that the factorization of a large
integer is a hard problem. Till now, there is no efficient factorizing method. But at the RSA
Data Security and CRYPTO conferences in 1996, Kocher presented the ”Timing Attack” on
RSA [17].

To secure a cryptographic scheme, we have to protect it from any possible attacks. Now for
the protection, first of all, we have to analyze the algorithm. And if we see that the scheme
is mathematically secure, then we have to analyze the implemented scheme and find all such

i

possible points, where we can inject a fault. Then we have to see that whether the injected
fault leak some information about the secret. If some information leaks after injecting a fault
in the implementation, then we have to put a countermeasure to prevent this fault attack.

In this project, first, we inject a fault in the decapsulation of the CCA secure scheme SABER.
After that, we query the decapsulation oracle with constructed dummy ciphertexts (which
may not be valid ciphertext), then using attack models, we recover the whole secret. To
recover the secret, we need to query atmost 3072 number of constructed ciphertext to the
decapsulation oracle for the parameter set (n = 256, l = 3, q = 213, p = 210, µ = 8) of SABER.

ii

iii

The List of Abbreviation

BKZ Block Korkine-Zolotarev.

CCA Chosen-ciphertext attack.

CPA Chosen-plaintext attack.

CVP Closest vector problem.

DPA Differential power analysis.

SPA Simple power analysis.

ECC Elliptic curve cryptography.

FO Fujisaki-Okamoto.

KEM Key encapsulation mechanism.

LLL Lenstra-Lenstra-Lovász.

LSB Least significant bit.

LWE Learning with errors.

LWR Learning with rounding.

RLWE Ring-learning with errors.

RLWR Ring-learning with rounding.

MLWE Module learning with errors.

MLWR Module learning with rounding.

MSB Most significant bit.

NIST National institute of standards and technology.

PKC Public-key cryptography.

PKE Public-key encryption.

PRNG Pseudo-Random Number Generators.

RSA Rivest–Shamir–Adleman.

DSS Digital Signature Standard

SIS Shortest integer solution.

SVP Shortest vector problem.

PQC Post Quantum CRyptography

iv

The List of Symbols:

Z The set of integers.

R The set of real numbers.

N The set of natural numbers.

Zq The ring of integers modulo q.

Zq [x] The polynomial ring of integers modulo q.

Rq The ring Zq[x]/ 〈xn + 1〉, where xn + 1 is a polynomial.

A The matrices are represented by bold capital letter

a The vectors of polynomials are represented by bold small letter.

a The polynomials are represented by normal small letter.

a[i] The ith coefficient of the polynomial a.

|S| Cardinality of the set S.

||v|| Euclidean norm of the vector v.

〈s,v〉 inner product of two vectors s and v

brc The largest integer that does not exceed r.

bre The rounding of r. i.e., equal to br + 1
2
c.

br1e Each coefficients of r1 are rounded for the polynomial r1.

x← X x is sampled from the distribution X .

x← U(S) x is sampled uniformly from the set S.

βµ The central binomial distribution with parameter µ.

s← βµ(Rl×1
q) s ∈ Rl×1

q , and each coefficicient of a polynomial are sampled from βµ.

r >> x r is shifted right x positions.

r << x r is shifted left x positions.

bseq→p We apply the operation bsi[j]e >> (εq − εp) for all i, j, where p = 2εp and q = 2εq .

v

Contents

Abstract i

List of Abbreviations iv

List of Symbols v

Contents vi

List of Figures viii

1 Introduction 1
1.1 Motivation . 2
1.2 Our contribution . 2
1.3 Thesis Outline . 3

2 Preliminaries: 5
2.1 Lattice . 5

2.1.1 Shortest Vecor Problem (SVP) . 7
2.1.2 Closest Vector Problem (CVP)[36] 7
2.1.3 Relation between the above lattice problems: 8
2.1.4 Algorithm for solving the SVP problem: 8
2.1.5 Learning with Error (LWE) Problem and it’s varients: 9
2.1.6 Learning with rounding (LWR) and its variants: 9

2.2 Side Channel Attacks: . 9
2.2.1 Electromagnetic Attack . 10
2.2.2 Fault Attacks . 10
2.2.3 Fault injection techniques . 11
2.2.4 Example of Fault Attack . 11
2.2.5 Timing Attack . 11

2.3 Conclusion . 12

3 Description of SABER 13
3.1 Saber.PKE . 13

3.1.1 Construction . 13
3.1.2 Parameter set for Saber.PKE . 15

3.2 Saber.KEM . 15

vi

3.2.1 Construction . 16
3.2.2 Parameter set for Saber.KEM . 17

3.3 Conclusion . 18

4 Attack Models and Description 19
4.1 Previous Fault Attacks on Lattice-based KEMs 19

4.1.1 Attack 1 . 19
4.1.2 Attack 2 . 20
4.1.3 Attack 3 . 22

4.2 Preliminaries before our attack . 22
4.3 Our Proposed Attack Model 1 . 24

4.3.1 Idea of the attack: . 25
4.3.2 Fault assumption . 26
4.3.3 Method of attack . 29
4.3.4 To retrieve the full secret s . 31
4.3.5 Total number of queries . 32

4.4 Our Proposed Attack Model 2 . 32
4.4.1 Idea of the attack: . 32
4.4.2 Assumption . 33
4.4.3 Method of attack . 34
4.4.4 To retrieve the full secret s . 35
4.4.5 Total number of queries . 36

4.5 Generalize version of model 2 . 36
4.5.1 Total number of queries . 37

4.6 Our Proposed Attack Model 3 . 38
4.6.1 Observation . 38
4.6.2 Fault Assumption . 39
4.6.3 Structure of Attack Simulation Model 40

4.7 Conclusion: . 41

5 Conclusion and future work 42
5.1 Conclusion . 42
5.2 Future work . 42

A LPR scheme 48

B Psudo-code of attack model 1 49

C Simulation Program of Model 2 51

vii

List of Figures

2.1 different basis of Z2 . 6
2.2 A 2-dimensional lattice with basis vectors (b1, b2). The shortest vector of this

lattice is c. Given a point v′, the closest vector in the lattice is v. 7
2.3 Principle of timing attack . 12

4.1 Typical probability distribution of the coefficients of the noise plaintext m 0
. The solid line marks the distribution for a 0 bit, the dashed line for a 1 bit.
[29] . 21

4.2 Visualization of the decoding routine used in Kyber’s reference implementa-
tion [29] . 21

4.3 Visualization of Kyber’s decoding routine if we skip the addition of q/2. Parts
of the distribution shown in green are still correctly decoded, despite the
fault injection (ineffective fault). Red parts are incorrectly decoded (effective
fault)[29] . 21

4.4 Decapsulation of SABER . 23
4.5 Attack model 1 . 27
4.6 Binary tree with each leaf node as the secret for attack model 1 30
4.7 Binary tree with each leaf node as the secret for attack model 2 35
4.8 . 40

viii

Chapter 1

Introduction

We are entering into the digital world day by day. Most of the time in our life is being
occupied by conversation via mobile, e-mail, online transactions. Nowadays in the pandemic
situation, most of the meeting is organized at the digital platform. So, it is important to
maintain that privacy over the digital system of this world. It should maintain privacy in
such a way that only legitimate users can see the message. To complete this job, we need
cryptography. A cryptographer creates a scheme to secure the data transaction. An at-
tacker started searching the crack of this scheme and whether she(/he) finds the crack of the
scheme, then the attacker tries to break this scheme. In such a way, cryptology continues to
evolve. Mainly cryptography has two parts, one is Private-key cryptography or symmetric
key cryptography and another part is Public-key cryptography. Public-key cryptography has
two keys, one is a private key or a secret key and another one is the public key. We use the
public key to encrypt the message and a private key to decrypt the message. In 1976, Diffie
and Hellman [13] presents a public-key cryptosystem. The security of this cryptosystem de-
pends on the Discrete logarithm problem. Another public-key cryptographic scheme RSA is
proposed by Rivest et al. [37]. The security of RSA depends on the hardness of the problem
prime factorization. RSA and Diffie-Hellman are the most used public-key cryptographic
schemes. We can’t solve the underlying problems of these schemes in classical computers in
polynomial time.

In 1981, at the first conference on the physics of computation, held at MIT in May,
Famous physicist Richard Feynman gives a talk on quantum computing and he delineated
the model for a quantum machine [16]. In October 2019 IBM reveals its biggest 53 qubits
quantum computer yet and they also promise to create a 1000-qubit quantum computer by
2023. Most of the currently used Public-key cryptography (PKC) protocols are based on
the integer factorization problem and elective curve discrete logarithm problem. The prime
factorization and discrete logarithm problems can be solved in polynomial time algorithms
Shor [38] and Proos and Zalka [31] algorithms in a larger quantum computer. But these
algorithms require a large number of qubits to solve the problem. The research on quantum
computation is increasing rapidly. It is expected that a powerful quantum machine is com-
ing very soon. For this reason, we need PKC schemes that will survive in the quantum world.

NIST organized Post Quantum Cryptography standardization program in PQCrypto

1

2016 [1]. After 3rd round, four KEM schemes were selected. Three of them CRYSTALS-
KYBER, NTRU, SABER are latticed-based cryptography. The security of CRYSTALS-
KYBER is based on the RLWE [25] and the security of SABER is based on the MLWR [26].
The LWE and RLWE are reduced from the lattice problem SVP and α-SVP problem. Till
now there does not exist any polynomial-time algorithm to solve the SVP problem. So we
can believe that the public-key cryptography based on these hard problems will survive in
presence of quantum computers. So now the remaining part is to make the implementation
side-channel resistance for all these schemes. Therefore improving the side-channel analysis
is very important.

The first side-channel attack on RSA, DSS was published in 1995 by Kocher [20]. This
attack is called Timing Analysis and this requires predicting the timing behavior of the target
device. Fault attack is a special type of side-channel attack that was introduced by Boneh
et al. [5] on the public key cryptosystem RSA. In 1999 Paul Kocher introduces another
efficient side-channel analysis with help of power consumption, which is known as Power
Analysis [22]. After that in 2000 Electromagnetic side-channel attack was introduced by
Jean-Jacques[32]. Before this attack, the security of the cryptographic scheme was consid-
ered only on the hardness problem of the underlying mathematical problem. But after this
attack side-channel analysis is considered as a part of the security of cryptographic schemes.

1.1 Motivation

SABER, a lattice-based post-quantum key-encapsulation mechanism, is entered in the final
round of NIST’s ongoing post-quantum standardization program. So, now analysis of the
implementation of SABER is required. In this thesis, we explain three attack models on
SABER by EM side-channel analysis and fault attack.

1.2 Our contribution

The work in this thesis is focused on finding the weakness of the implementation of the lattice-
based KEM scheme SABER. In each case, we make some assumptions. Then applying the
attack method that we describe in chapter 4, we find the secret. We are giving a summary
for each attack model as follows

Model 1 This model assumes that i. we can inject a fault in such a way that we can skip one
instruction for one coefficient in decryption, which runs in the decapsulation process.
ii. We can distinguish particular two decrypted messages m = 0 (all bits are zero)
and m = 1 (LSB is 1 and other bits are 0) by EM side-channel analysis. Then we
construct some dummy ciphertexts in such a way that each faulted decrypted message
bit depends on a secret coefficient and decryption of that ciphertexts will either 0 or 1
based on the secret coefficients. Then querying the dummy ciphertexts to decapsulation
oracle and observing whether m = 0 or 1, we find the whole secret key. We briefly
describe the attack method in Chapter 4. To recover the secret using this method,

2

we need 3072 number of queries to make to decapsulation oracle for the parameter set
(n = 256, l = 3, q = 213, p = 210, µ = 8).

Model 2 This model assumes that we can inject a fault in decapsulation in such a way that for
each decapsulation query we can see only 0th coefficient of decrypted message. Like
model 1, we construct some dummy ciphertexts in such a way that 0th bit decrypted
message bit depends on a secret coefficient. Then querying the dummy ciphertexts to
decapsulation oracle and observing whether m[0] = 0 or 1. By this method we find a
vector s′ such that each coefficient s′[j][k] = s[j][k] or −s[j][k], where s is secret key.
Then from s′, we can find s efficiently. To recover the secret using this method, we
need 3072 number of queries to make to decapsulation oracle. We make the assumption
strong by assuming that we can inject a fault in decapsulation in such a way that for
each decapsulation query we can see only fixed ith coefficient of the decrypted message
but we don’t know the value of i. We solve it by a similar approach but this time it
requires at most 256 extra operation to find s from s′.

Model 3 The previous models don’t bother about the output of decapsulation oracle. We de-
scribe an attack model which uses the result of decapsulation oracle. In this model, we
assume that we can skip one instruction in the decryption method, which is running
in the decapsulation algorithm. Since the decryption method is required for removing
the noise, therefore after injecting this fault, either the decryption will be not able
to remove the noise or can compute the actual message. If the decryption method
computes the actual message for a ciphertext say c, then decapsulation oracle will re-
turn the valid shared key in this case we will call the fault as ineffective fault for the
ciphertext c, and otherwise it will return random shared key, then we will call as the
effective. For each query with a ciphertext to faulted decapsulation oracle, we get an
inequality on the secret by observing that the fault is effective or not. Querying with
multiple ciphertexts, we will get a system of linear inequalities. Since the secret key
satisfies this system of inequalities, therefore if we solve the inequality the secret will
be recovered. But in our thesis, we have done up to generate the system of inequalities
on secret key. In the future, we are planning to solve this system of inequalities.

1.3 Thesis Outline

The chapters in this thesis are organized in the bottom-up manner

Chapter 2 In this chapter, we define the lattice and its basis, shortest vectors, etc. After that,
we describe the lattice problems and their hardness. We also describe various types of
side-channel attacks that are affecting the cryptosystems.

Chapter 3 This chapter describes the CPA-secure and CCA-secure scheme SABER and gives their
corresponding parameters security.

Chapter 4 In this chapter, first we describe some previous fault attacks on lattice-based schemes.
After that, I briefly describe the decapsulation algorithm of CCA-secure KEM SABER.
After that, we make three attack models and describe the attacks very briefly.

3

Chapter 5 This chapter summarizes the contribution of this thesis and also describes some direc-
tions for future research.

4

Chapter 2

Preliminaries:

In the previous chapter, we have mentioned that the security of any public-key crypto-system
depends on the hardness of some underlying computational problems. A problem like prime
factorization, Discrete logarithm are computationally hard in classical computers but these
problems become easy or solvable in polynomial time with a quantum computer with a suf-
ficiently large number of qubits.

Also, there exist some problems which are assumed to be hard even against quantum
computers. The shortest vector problem (SVP), closest vector problem (CVP) or short inte-
ger solutions (SIS) are such problems. The security lattice-based cryptography is based on
these problems.

Our main target in this thesis is to attack the implementation of lattice-based crypto-
system SABER using faults. In this chapter, we discuss the basics of lattice and the un-
derlying hard problems of lattice-based cryptography, types of side-channel attacks, fault
attacks.

2.1 Lattice

Definition 2.1.1 (Lattice[36]). Let B = {α1, α2, . . . , αn} ⊂ Rm be a set of n linearly inde-
pendent vectors. Then the lattice generated by B is denoted by L(B) and defined by the set
of all integer linear combination of B i.e.,

L(B) =

{ m∑
i=1

aiαi | ai ∈ Z
}

Here B is called a basis of the lattice L(B). The cardinality of a basis is called the rank
of the lattice, and let the lattice L(B) is of dimension m. If m = n, then we say that the
lattice L(B) is of full rank. The basis B can be expressed by the matrix B, whose columns
are α1, α2, . . . , αn. Then L(B) = {B · x | x ∈ Zn}.

Example The Figure 2.1a contains a full rank Lattice generated by the linearly inde-
pendent set {(0, 1), (1, 0)}. The lattice generated by {(0, 1), (1, 0)} is Z2. Both rank and

5

(a) Lattice generated by {(0, 1), (1, 0)} (b) Lattice generated by {(1, 1), (2, 1)}

Figure 2.1: different basis of Z2

dimension of the lattice are 2. Also {(1, 1), (2, 1)} is a basis of this lattice in Figure 2.1b. So
basis of a lattice is not unique.

Definition 2.1.2 (Span Of Lattice [36]). The span of the lattice L(B) is denoted by span(L(B))
and defined by:

span(L(B)) = {B · y | y ∈ Rn}

Definition 2.1.3 (Determinant Of Lattice[36]). The determinant of the lattice L(B) is de-
noted by det(L(B)) and is defined by

det(L(B)) =
√
BTB

where B is the matrix corresponding to the basis B of lattice L.

Definition 2.1.4 (ith successive minimum[36]). Let L(B) be a lattice of rank n. Then the
ith successive minimum is denoted by λi(L(B) and is defined by

λi(L(B)) = inf

{
r | dim

(
span(L(B) ∩ B̄(0, r))

)
≥ i

}
where B̄(0, r) = {x ∈ Rn : ||x|| ≤ r}

We denote the shortest vector of a lattice L by λ(L). In the above lattice 2.1a the length of
the shorest vector of lattice L is λ = 1 and λ2(L) = 2.

Lattice Problems:

Let L be a lattice with basis B = {α1, α2, . . . , αn}. Let M =
{∑m

i=1 xiαi : xi ∈ R
}

. Then
M is a vector space over R and || · ||, be euclidean norm on M . Given the basis B of the
lattice L, we define the following problems.

6

2.1.1 Shortest Vecor Problem (SVP)

[36] There are two variants of the SVP.

Definition 2.1.5 (Search SVP Problem). To find a non zero vector v such that ||v|| ≤ ||u||,
for all u ∈ L(B)− {0}.
i.e., To find a non zero vector v such that ||v|| = λ(L).

Definition 2.1.6 (Decisional SVP problem). Given a rational r ∈ Q, determine whether
λ(L) ≤ r or not.

Till now there are no efficient algorithm to solve the shortest vector problem for a lattice.
However from Minkowski’s first theorem we can that any lattice L of rank n contains a
nonzero vector of length at most

√
n(det(L))

1
n .

One other variant of SVP is the approximate SVP. In this problem, we are interested in
finding an approximation of the shortest vector. The approximation factor is given by some
parameter α ≥ 1. Similar to the SVP problem this has also two variants.

Definition 2.1.7 (Search α-SVP Problem). Given a real number α ≥ 1. To find a non zero
vector v such that ||v|| ≤ αλ(L).

Definition 2.1.8 (Decisional-α-SVP Problem:). Given a rational r ∈ Q, determine
whether λ(L) ≤ αr or not.

Figure 2.2: A 2-dimensional lattice with basis vectors (b1, b2). The shortest vector of this
lattice is c. Given a point v′, the closest vector in the lattice is v.

2.1.2 Closest Vector Problem (CVP)[36]

Another fundamental lattice problem is closest vector problem or CVP.

Definition 2.1.9 (closest vector problem (CVP)). Given a vector t ∈M .
To find: a vector v such that ||v − t|| ≤ ||u− t|| ∀ u ∈ L. i.e., To find a vector v such that
||v − t|| ≤ dist(t,L), where dist(t,L) = inf{||v − t|| : v ∈ L}.

7

There is another varient of the CVP problem which is approximate CVP. As before for
an approximation factor α ≥ 1 there are two variants of approximate CVP.

Definition 2.1.10 (Search CV Pα problem). Given a vector t ∈M and a real number α.
To find: a vector v such that ||v − t|| ≤ α.dist(t,L).

Definition 2.1.11 (Decissional CV Pα problem). Given a vector t ∈ M and r ∈ Q,
determine whether dist(t,L) ≤ αr or not.

2.1.3 Relation between the above lattice problems:

We can reduce α−CVP from α−SVP: Let B = {α1, α2, . . . , αm} be a basis of a lattice and
we can find closed vector say ai of αi for the basis Bi = {2α1, α2, · · · , 2αi, · · · , αm}. Then
min

{
ai − αi | i = 1, · · · ,m

}
is the shortest vector of α-SVP for the basis B. If we choose

α = 1, then we can say that CVP can reduce from SVP[18].

2.1.4 Algorithm for solving the SVP problem:

Let B = {α1, α2, . . . , αn} be a basis of a lattice L. Using δ−LLL reduction[10] we construct
a basis {b1, . . . , bn} such that

1. ∀ 1 ≤ i ≤ n and j < i ,|µi,j| ≤ 1
2
.

2. ∀ 1 ≤ i < n δ||b′i||2 ≤ ||µi+1,jb
′
i + b′i+1||2, where {b′1, b′2, . . . , b′n} is orthogonal basis

reduced from {b1, . . . , bn} using Gram-Schmidt orthogonalization[28] and µi,j =
〈bi,b′j〉
〈b′j ,b′j〉

.

From the 2nd property we get the relation

||b1|| ≤ (
2√

4δ − 1
)n−1λ(L)

For δ = 3
4
, we get ||b1|| ≤ 2(n−1

2
)λ(L). So given any basis of a lattice we can find a 3

4
-LLL

reduced basis, whose b1 is non zero δ shortest vector.

The algorithm runs in polynomial time but it has an exponential approximation factor.
There is an algorithm BKZ[11] which has a small exponential approximation factor but it
runs in exponential time.

Hardness of the lattice problems: Till today, there is no such algorithm, which takes
polynomial time to solve these problems in quantum computers. So finding a good basis of
lattice, a computationally hard problem. For this reason, lattice-based cryptography survives
in the post-quantum world.

8

2.1.5 Learning with Error (LWE) Problem and it’s varients:

There are two types of Learning with error (LWE) [35] problem . One is search LWE problem
and another one is Decisional LWE problem. The problems are stated below.

Let `, k, n be positive integers and χ be a distribution over Z.

Instance:
(
A ∈ Z`×kq ,b = As + e ∈ Z`×1q

)
, where A ← U(Z`×kq) and e ← χ`×1 and

s← χk×1. (U denotes the uniform distribution).

Now the Search LWE Problem for the parameter (`, k, n, χ) is to find the secret s. whereas
the Decisional LWE Problem for the parameter (`, k, n, χ) is to distinguish the given pair
(A,b) from a pair (x,y) ∈ U(Z`×k × Z`×1)

If we use the polynomial ring Rq = Zq[X]
/

Φ(X), (where Φ(X) is irreducible polynomial)
instead of Zq and ` = k = 1, then we call the problem as Ring learning with error problem
(RLWE)[27] and when gcd(`, k) > 1, then we call the problem as Module Learning with error
problem (MLWE)[8].

The hardness of these LWE problems are based on the computational hardness of lattice
problems α-SVP and shortest integer vector problem[35]. The security of NIST’s ongoing
Post-Quantum Cryptography candidate KYBER is based on the M-LWE problem.

2.1.6 Learning with rounding (LWR) and its variants:

If we scale down the polynomial from Rq to Rp, where p < q then the RLWE instance
becomes (a ∈ Rq, b =

⌊
p
q
as
⌉
∈ Rp). This instance is called Ring learnig with Rounding

(RLWR) [4] and the instance (A ∈ Rl×k
q ,b =

⌊
p
q
As
⌉
∈ Rl×1

p) is called Module Learning with

Rounding Problem [35].

The hardness of LWR depends on the hardness of the lattice SVP problem. SABER is
one of the NIST’s post-quantum cryptography standardization finalists and the security of
SABER is based on the MLWR problem. Till now in a classical and quantum computer,
solving the MLWR problem is known hard problem.

2.2 Side Channel Attacks:

The security of a cryptographic scheme can be categorized into two parts.

1. The security of a cryptographic scheme is always based on a computationally hard
problem.

2. The security also depends on the implementation of the scheme. That means, if there
is a flaw in the implementation, then an attacker might recover some secret data and
break the scheme.

9

A side-channel attack is an attack that gathers the information from a weak implementation
of a scheme by affecting the system hardware and find the secret information. We describe
many types of Side-channel attacks here.

2.2.1 Electromagnetic Attack

In cryptography, an EM attack is a side-channel attack. By measuring electromagnetic
radiation ejected from the device, an attacker can find information without defecting the
device.[23]. In the paper [34], they propose a practical EM-side channel attack on Lattice-
based post-quantum KEMS.

2.2.2 Fault Attacks

By putting an electronic device in an abnormal condition, we force the device to stop working
correctly. Now if a crypto-system is running on the damaged device, then sometimes it leaks
the information of secret key. [24]

Type Of Faults

Permanent : [24] This fault damage the cryptographic device permanently. i.e., in the
future, the device always works incorrectly. Example: freezing a memory cell to a constant
value, cutting a data bus wire.

Transient : [24] This fault disturbs the device only when a particular algorithm is running.
Example: abnormally high or low clock frequency, an abnormal voltage in power supply.

Error location : [24] This kind of fault attack only requires imposing an error in a very
specific location in the memory cell.

Time of occurrence : [24] This kind of fault damages the device at a specific time of
computation.

Error type : [24] We consider many types of errors. For example:

1. We introduce flips in memory, but only in one direction.

2. disables instruction decoder.

3. flip the value of some bit or some byte,

Fault attack is a real and practical threat to any cryptographic scheme. In a fault attack,
there are two steps,

1. The way of injecting fault in the cryptographic device.

2. Assuming the fault model, break the cryptosystem.

In our thesis, we have assumed a fault model and after the fault injection, we have retrieved
the secret. In the next subsection, we discuss the processes of fault injection.

10

2.2.3 Fault injection techniques

Practical fault in a device are introduced by putting the device in a abnormal condition.
Many process are abvailable to the attacker to make that condition[24]. For example:

� High or low voltage may effect a device’s behavior

� There may be occure a error by changing with high or low clock frequency

� Having the device process in extreme temperature conditions is also a potential way
to induce faults.

2.2.4 Example of Fault Attack

Attack on RSA with CRT: RSA [17] is a one of the public key cryptosystem that we
used for security. To improve the performence, RSA uses Chinese Remainder Theorem for
signature scheme. Let n = pq, where p and q are prime numbers and d and e are secret and
public key described in [17]. Then the signature scheme is given in Algorithm 1.

Algorithm 1: RSA Signature

Data: Given a message m and n = pq
Result: The signature s
mp = m mod p;
mq = m mod q;
dp = d mod (p− 1);
dq = d mod (q − 1);

xp = m
dp
p mod p;

xq = m
dq
q mod q;

s = q(q−1 mod p)xp + p(p−1 mod q)xq mod n;
return s;

Let inject a fault in the above scheme1 in such a way that xp is compute incorrectly with
high probability. Let the faulted value of xp is x′p and after faulted signature is s′. Then

s′e 6= m mod p but s′e = m mod q. So s
′e−m is divisible by q but not p. So gcd(s

′e−m,n)
is a factor q of n. So from this fractorization, the attacker can compute the secret exponent
d. This is a straight forward attack.

2.2.5 Timing Attack

If the running time of a program is not constant (i.e., the running time differs for distinct
inputs), then it may leak the information about the secret. i.e., depending on the running
time of the program for different input values, an attacker can guess the secret or get more
information about the secret. This kind of attack is called a timing attack.[24] This attack

11

was first introduced by Kocher[21].

Principle of this attack: first an attcker run the program with different type of message
and note down the run time corresponding to each message. Then try to find the secret from
the time set.

Figure 2.3: Principle of timing attack

2.3 Conclusion

In this chapter, we describe the lattice problem, because the security of our target scheme
SABER is depending on the hardness of solving the SVP problem and we describe some
side-channel attacks, fault attacks. In the next chapter, we describe the scheme SABER and
after this, we will describe how fault attacks and EM-side channel attacks break the security
of our scheme SABER.

12

Chapter 3

Description of SABER

SABER [14] is an IND-CCA2 secure Key Encapsulation Mechanism (KEM) whose security
relies on the hardness of the Module Learning With Rounding problem (MLWR). This is se-
cure against quantum computers. SABER is one of the finalists of the NIST Post-Quantum
Cryptography Standardization effort.

As the stated introduction, the object of this thesis is to analyze the implementation of the
scheme carefully and find the weakness. As we have selected SABER as our target so we
need to understand the basics of SABER. In this chapter, We have described the scheme
SABER and maintain the security based on the parameters.

3.1 Saber.PKE

3.1.1 Construction

Saber.PKE=(KeyGen,Enc,Dec) is a public key encryption scheme, it consists of three
algorithms which are described below.

Saber.PKE.KeyGen

Algorithm 2: Saber.PKE.KeyGen()

Output: A public key, secret key pair (pk, sk)

seedA ← U({0, 1}256);
A = gen(seedA) ∈ R`×`

q ;

r ← U({0, 1}256);
s = βµ(R`×1

q ; r);

b = (ATs + h) mod q >> (εq − εp) ∈ Rl×1;

return
(
pk := (seedA,b), sk := (s)

)
;

In Algorithm 2 the matrix A ∈ R`×`
q is sampled by a pseudo-random generator gen().

13

This generator is initialized with seedA. The secret s is sampled using central binomial
distribution βµ, whose coefficients in Rq. Here h ∈ R`×1

q is a constant vector of polynomials
where all coefficients of each polynomial is set to 2εq−εp−1. Finally it returns pk as public
key and sk as secret key.

Saber.PKE.Enc

Algorithm 3: Saber.PKE.Enc()

Input: pk = (seedA,b),m ∈ R2; r
Output: A ciphertext c

A = gen(seedA) ∈ R`×`
q ;

if r is not specified then
r ← U

(
{0, 1}256

)
;

s′ = βµ(R`×1; r);

b′ =
(
(As′ + h) mod q

)
>> (εq − εp) ∈ R`×1

p ;

v′ = bT(s′ mod p) ∈ Rp;
cm = (v′ + h1 − 2εp−1m mod p) >> (εp − εT) ∈ RT ;

return c :=
(
b′, cm

)
;

In Algorithm 3, a message m ∈ {0, 1}n is represented as an element of R2. At the time of
encryption s′ is sampled from central binomial distribution βµ with seed r. If r is not specified
then it is sampled uniformly. Computation of b′ and cm are shown in the algorithm. Here
h1 is a polynomial whose all coefficients are set as 2εq−εp−1. The algorithm returns (cm,b

′)
asthe ciphertext of the message m.

Saber.PKE.Dec

Algorithm 4: Saber.PKE.Dec()

Input: sk = s, c = (b′, cm)
Output: Decryption m′

v = b
′T(s mod p) ∈ Rp;

m′ = (v − 2εp−εT cm + h2 mod p) >> (εp − 1) ∈ R2;
return m′;

The decryption algorithm or Saber.PKE.Dec is very straightforward as it is shown in
Algorithm 4. Here h2 is a constant polynomial. All coefficients of the polynomial h2 are set
to 2εp−2 − 2εp−εT−1 + 2εq−εp−1. The Saber.PKE.Dec decrypts the ciphertext c.

14

3.1.2 Parameter set for Saber.PKE

The parameters for Saber are, n where n−1 is the degree of the polynomial ring Zq[X]/(Xn+
1). l is the rank of the module. q, p, T are the The moduli involved in the scheme are chosen
to be powers of 2. q = 2εq , p = 2εp and T = 2εT where εq > εp > εT . The coefficients of the
secret vectors s and s′ are sampled according to a centered binomial distribution βµ(Rl×1

q)
with parameter µ.[14] In Table 3.1 the parameters for Saber.PKE are given.

Name Security category ` n q p T µ

LightSaber-PKE 1 2 256 213 210 23 10

Saber-PKE 3 3 256 213 210 24 8

FireSaber-PKE 5 4 256 213 210 26 6

Table 3.1: Security of Saber.PKE

In Table 3.2 the security[12] of the Saber.PKE is given corresponding to the above param-
eters.

Security category Failure probability Classical Core-SVP Quantum core-SVP

1 2−120 2118 2107

3 2−136 2189 2172

5 2−165 2260 2236

Table 3.2: Security of Saber.PKE

3.2 Saber.KEM

Saber.PKE is an IND-CPA secure scheme and can be transformed to be secure against
chosen-ciphertext attacks (IND-CCA secure)[14] by applying well-known CCA conversions
such as the Fujisaki- Okamoto [19] transform.

15

3.2.1 Construction

Saber.KEM=(KeyGen,Encaps,Decaps) consists of three algorithms which are described
below. In the description F ,G,H are the hash functions which are implemented using
SHA2-256, while G is implemented using SHA2-512.

Saber.KEM.KeyGen

As we can see in Algorithm 5, first Saber.PKE.keyGen algorithm (Algorithm 2) is used to
generate a public key, secret key pair (pk, sk). Now the pk is hashed using F and taken in
pkh and a random number z is sampled uniformly from {0, 1}256.

The pair
(
pk, sk = (z, pkh, pk, s)

)
is returned as publickey, secret key pair.

Algorithm 5: Saber.KEM.KeyGen()

Output: A publickey, secret key pair (pk, sk)

(seedA,b, s) = Saber.PKE.KeyGen();
pk = (seedA,b);
pkh = F(pk);
z ← U({0, 1}256);
return (pk := (seedA,b), sk :=

(
z, pkh, pk, s)

)
;

Saber.KEM.Encaps

As we can see in Algorithm 6, First a random message m is sampled from {0, 1}256. Now
this m together with F(pk) is hashed using the hash function G, this hash value is split
into two parts K̄ and r. The message m is encrypted using Saber.PKE.Enc (Algorithm 3)
with public key pk and feeding r as a random seed. The generated ciphertext is now hashed
together with K̄ using the hash H i.e., K = H(K̄, c). The pair (c,K) is returned.

Algorithm 6: Saber.KEM.Encaps()

Input: pk := (seedA,b)
Output: A ciphertext and a hash pair

m← U({0, 1}256);
(K̄, r) = G(F(pk),m);
c = Saber.PKE.Enc(pk,m; r);
K = H(K̄, c);
return (c,K);

16

Saber.KEM.Decaps

As we see in Algorithm 7, first the ciphertext c is decrypted using the Saber.PKE.Dec (Al-
gorithm 4) with secret key sk. This decrypted message along with pkh which is F(pk) (see
Algorithm 5), is hashed using the hash function G. Similar to the Saber.KEM.Encaps we
again split this hash value into two parts i.e., K̄ ′ and r′. Now m′ is again encrypted using
Saber.PKE.Enc with public key pk and random seed r′. Now this encryption should be
similar to the encryption sent before. Therefore, we check if c and this new ciphertext c′ are
equal or not. If they are equal then we hash (K̂ ′, c) and return it otherwise we return the
hash of (z, c).

This returned hash value should be equal to K if everything goes as expected otherwise
it will return something else.

Algorithm 7: Saber.KEM.Decaps()

Input: sk := (z, pkh, pk, s), c
Output: A hash value

m′ = Saber.PKE.Dec(sk, c);
(K̄ ′, r′) = G(pkh,m′);
c′ = Saber.PKE.Enc(pk,m′; r′);
if c = c′ then

return K = H(K̄ ′, c);
else

return K = H(z, c);

3.2.2 Parameter set for Saber.KEM

Similar to the Saber.PKE, the parameters for Saber.KEM [14] are, n where n − 1 is the
degree of the polynomial ring Zq[X]/(Xn + 1). ` is the rank of the module. q, p, T are the
The moduli involved in the scheme are chosen to be powers of 2. q = 2εq , p = 2εp and T = 2εT

where εq > εp > εT . The coefficients of the secret vectors s and s′ are sampled according to
a centered binomial distribution βµ(R`×1

q) with parameter µ. In Table 3.3 the parameters
for Saber.KEM are given.

17

Name Security category ` n q p T µ

LightSaber-PKE 1 2 256 213 210 23 10

Saber-PKE 3 3 256 213 210 24 8

FireSaber-PKE 5 4 256 213 210 26 6

Table 3.3: Security of Saber.KEM

In Table 3.4 the security of the Saber.PKE is given corresponding to the above parameters.

Security category Failure probability Classical Core-SVP Quantum core-SVP

1 2−120 2118 2107

3 2−136 2189 2172

5 2−165 2260 2236

Table 3.4: Security of Saber.KEM

3.3 Conclusion

In this chapter, we only describe the lattice-based pqc Saber.PKE and Saber.KEM mecha-
nism and the corresponding parameter sets and the security table for PKE and for KEM.
The correctness proof and security of Saber.PKE is described in the paper[15] and the whole
implementation of the scheme is described in [3]. From the security table, we see that the
LightSaber-PKE, Saber-PKE, FireSaber-PKE achieve 107, 172, 236 bit security respectively
in a quantum computer. So till now, it is almost impossible to break the scheme in a quan-
tum environment. In the next chapter we have seen that despite achieving this security, we
can break the security of saber by fault attack. In the next chapter, we will give the overview
of only the decapsulation mechanism and describe the attack idea which has been done on
the lattice-based pqc Kyber and new hope[30] previously. After this, we describe our attack
idea by assuming a fault model.

18

Chapter 4

Attack Models and Description

In this chapter, we describe some fault attacks on Lattice-based KEMs which done earlier.
Among them, we describe the attack models, which can be work for our CCA-secure scheme
SABER. Also, we will describe the models that can not work for our scheme SABER and
we will give the reason why the model does not work for SABER. After that, we make some
assumptions on fault in the target device. Depending on these assumptions, we construct
attack models which will work for our scheme SABER.

4.1 Previous Fault Attacks on Lattice-based KEMs

4.1.1 Attack 1

In the paper [33] Ravi et. al showed that by injecting a fault on key Generation and en-
capsulation, they find the secret key. They use the fact that long secrets are generated by
expanding a short seed which is used multiple times but in different domain separater. They
inject a fault in the key Generation mechanism such that it generates equal secret s and
error e by using the same domain separater. Then the public key b will be

b = a.s + e = a.s + s

One can solve the previous equation by Gaussian elimination method and can find the se-
cret s easily. This practical fault attack works for lattice-based schemes New Hope, Kyber,
Frodo, Dilithium. Because these schemes are based on the hardness of the Learning with
Errors (LWE) problem.

Now the security of our scheme Saber is based on the hardness of the Module Learning with
Rounding (MLWR) problem. In our problem the error e depends on the secret s. After
generating the secret secret s, when the key Generation generates the public key b′, then
automatically error e is made. So in our scheme, probability of getting identical secret s and
error e is negligible. For this reason, the previous model of fault attack does not work for
our scheme Saber.

19

4.1.2 Attack 2

Valencia et al. [39] have showed that by injecting a fault on decryption of CPA-secure scheme
LPR-encryption, it is possible to recover the secret. They have injected fault to the decryp-
tion method multiple times with the same secret, which may not occur almost every time in
the CPA-secure scheme. However, this model does not work for our CCA-scheme SABER,
because in this case, the Fujisaki-Okamoto transform (FO) will detect the fault. Pessl and
Prokop [29] have proposed a practical Fault Attack on CCA-secure Lattice KEMs Kyber
and New Hope and their masking algorithm. Skipping a single instruction in the decoding
process (which is a part of decapsulation), they observe the output shared key. If this fault
acually computes the incorrect decrypted message of a valid ciphertext, then the decapsu-
lation algorithm returns a random shared key and the ciphertext (they call it an effective
fault). If this fault does not change the decrypted message of a valid ciphertext, then the
decapsulation algorithm returns a shared key which depends on the message and the cipher-
text (they call it an ineffective fault). If an attacker constructs valid ciphertext by using
the encapsulation process, then she(/he) must know the valid shared key (which depends on
the message and ciphertext). So by observing the output of decapsulation, the attacker can
distinguish the cases, whether the fault is effective or not effective.

Assumptions

i. The attacker has access to encapsulation so, he (/she) can construct lots of (ciphertext,
shared key) pairs by the encapsulation mechanism.

ii. The attacker can skip an instruction in the decoding process, which is running in
decapsulation.

Structure of Attack [30]

They model their attack idea for LPR encryption and then apply their attack on the LPR-
based KEM Kyber and New Hope. The secret is involved in input of decoding process of m′

(Algorithm 14).

m′ = v − us

= br + e2 +mbq
2
c − (ar + e1)s

= asr + er + e2 +mbq
2
c − ars− e1s

= mbq
2
c+ er + e2 − e1s

Now m′ contains some terms with the message bit m, they denote the term er+ e2− e1s by
d and call it as encryption noise. i.e., for each coefficient i = 0, . . . , 255

d[i] = (e.r)[i] + e2[i]− (e1.s)[i]

. Each d[i] belongs to the interval [− q
4
, q
4
], because otherwise decording process will not be

able to remove the encryption noise. [9]

20

Figure 4.1: Typical probability distribution of the coefficients of the noise plaintext m 0 .
The solid line marks the distribution for a 0 bit, the dashed line for a 1 bit. [29]

As we can see in Figure 4.2, the decoding device of Kyber first multiplies m′ by 2, which
scales the x-axis in the figure by a factor of 2 and, after that, add q

2
with it. After the integer

is divided by q, we get a value between 0 and 2, picking the LSB then gives the correct
decoded bit.

Figure 4.2: Visualization of the decoding routine used in Kyber’s reference implementation
[29]

For the fault injection, they have skipped the addition by q
2

in decoding for one coefficient
of m′. The fault injection is showed in Figure 4.3.

Figure 4.3: Visualization of Kyber’s decoding routine if we skip the addition of q/2. Parts
of the distribution shown in green are still correctly decoded, despite the fault injection
(ineffective fault). Red parts are incorrectly decoded (effective fault)[29]

From Figure 4.3, we say that if the encryption noise d[i] ≥ 0, then the faulted coefficient
remains unchanged. so, in that case, the whole message remains unchanged (since we don’t
inject fault on decoding process of other coefficients). In this case, the fault will be inef-
fective. Otherwise, the faulted coefficient will be changed. In this case, the message will
change and, so the fault will be effective. So depending upon the fault is effective or not,

21

the attacker gets an inequality d[i] ≥ 0 or < 0. Since d[i] contain the secret value (since
d = er + e2 − e1s), so actually the attacker get a linear inequality involving the secrets
(e.r)[i] + e2[i]− (e1.s)[i] ≥ 0or < 0 . By querying a large number of times, the attacker gets
a system of inequalities. They construct an algorithm to solve this system of inequalities.

We construct a fault attack model like this (Model 3) for our scheme Saber and able to get
an inequality involving the secret by distinguishing the effective and ineffective fault. We
describe it later.

4.1.3 Attack 3

In the paper by Ravi et al. [34], they have presented a generic and practical EM side-
channel assisted chosen-ciphertext attacks applicable to six IND-CCA secure LWE/LWR
based PKE/KEMs. These schemes are also round 2 candidates in the ongoing NIST stan-
dardization process. They demonstrate very efficient strategies to instantiate the EM side-
channel as two particular plaintexts checking oracle, which facilitates their attacks over such
unprotected schemes. They demonstrate their attack on the latticed-based post-quantum
scheme KYBER and FRODO [6].

Model Of Attack

They construct the dummy ciphertexts c (may not be valid) such that all the coefficient
of the decrypted message is zero except the 0th coefficient and the 0th coefficient of the
decrypted message depends only on one secret coefficient. To find the secret coefficient s0[0],
they select construct the dummy ciphertext c = (u′, v) where u′0[0] = ku is non zero and
others coefficients of u′ are zero and v = kv. Then the decrypted message will be

m′[j] =

{
Poly to Msg(kv − kus0[0]), if j = 0

Poly to Msg(−kus0[j]), if 1 ≤ j ≤ n− 1,

where Poly to Msg() function returns the decrypted message bits of the ciphertext c, after
the calculation v − u′.s, where s is the secret. They choose the value (ku, kv) such that

m′[j] =

{
D(s0[0]), if j = 0

0, if 1 ≤ j ≤ n− 1

where D is a function depending on the secret s0[0]. So the decrypted message the value of
the decrypted message m′ = 0 or m′ = 1 solely depends on s0[0]. They observe the decrypted
message m′ = 0 or m′ = 1 by EM side-channel analysis. They are able to collect enough
ciphertexts such that they can uniquely evaluate the value s0[0], by observing the decrypted
message.

4.2 Preliminaries before our attack

SABER.KEM is a CCA-secure scheme. So the secret s are non-ephemeral. That means, if
we can recover the secret s, we can execute it multiple times. For this reason, our focus is to

22

recover the secret. If we target the Key-Generation and encapsulation mechanisms, then we
can’t take advantage because these processes are one-time operations. So by injecting fault
in these algorithms, we can’t recover the secret with very high probability. For this reason,
we target the decapsulation method to injecting the fault. The structure of decapsulation is
given by in Figure 4.4.

Figure 4.4: Decapsulation of SABER

The input of the decapsulation mechanism is a ciphertext say c. The decapsulation oracle
first decrypt the ciphertext c =

(
b, cm

)
, then re-encrypt the decrypted message and compare

the ciphertext with the given ciphertext c. If they are equal, then return the hash value
which is depending on the message and the given ciphertext c. Otherwise, it will return the
hash value which is depending on the given ciphertext c and a random value z.

Throughout this chapter we will describe some attacks on SABER for the parameter set
(l = 3, n = 256, q = 213, p = 210, T = 24, µ = 8). So for this parameter, the secret s is a
3 × 1 vector of polynomials of degree 256, where each coefficient of the polynomials are in
Z213 sampled from the central binomial distribution with parameter µ = 8.

Since the secret coefficients are in Z213 and sampled from central binomial distribution with
parameter µ = 8, so each coefficient belongs to the set {−4,−3,−2,−1, 0, 1, 2, 3, 4}. The
ciphertext c contains two parts. One part is b′ which is a 3 × 1 vector of polynomials of
degree 256, where each coefficient of the polynomials are in Z210 , so the coefficient lie in
{0, 1, . . . , 1023}. The another part of secret is cm which is a polynomial of degree 256 and
each coefficient of this polynomial are in Z24 . So each coefficient of cm are in {0, 1, . . . , 15}.

23

Let us take

s =


s0[0] + s0[1] · x+ · · ·+ s0[255] · x255

s1[0] + s1[1] · x+ · · ·+ s1[255] · x255

s2[0] + s2[1] · x+ · · ·+ s2[255] · x255


be the secret. Where si[j] ∈ S = {−4,−3,−2,−1, 0, 1, 2, 3, 4} ∀i ∈ {0, 1, 2} and ∀j ∈
{0, 1, .., 255}.

c = (b′, cm) is ciphertext, where

b′ =


b0[0] + b0[1] · x+ · · ·+ b0[255] · x255

b1[0] + b1[1] · x+ · · ·+ b1[255] · x255

b2[0] + b2[1] · x+ · · ·+ b2[255] · x255


where bi[j] ∈ {0, 1, . . . , 1023} ∀ i ∈ {0, 1, 2} and ∀ j ∈ {0, 1, . . . , 255} and cm = cm[0] +
cm[1] · x+ · · ·+ cm[255] · x255, where cm[i] ∈ {0, 1, . . . , 15} ∀ i ∈ {0, 1, . . . 255}.

The inner product of the vectors of polynomials b′ and s is a polynomial in Rp and is
denoted by 〈b′, s〉 and ith coefficient of the polynomial is given by

〈b′, s〉[i] =
2∑

k=0

i∑
j=0

bk[i− j·]sk[j]−
2∑

k=0

255∑
j=i+1

bk[256 + i− j] · sk[j] mod p,

where i ∈ {0, 1, . . . , 255}

Throughout this chapter when we say the secret s, the ciphertext b′ and cm we mean
that they look like as above. We denote the ith coefficient of message by m′[i]. By denoting
m′ = 0, we mean that m′[i] = 0 ∀ i ∈ {0, 1, . . . , 255}. Also by denoting m′ = 1, we mean

that m′[i] =

{
0 ∀i 6= 0

1 for i = 0

4.3 Our Proposed Attack Model 1

In the paper [34] Ravi et al. describe their attack for the latticed-based KEM KYBER and
Frodo. To find a secret coefficient say si[j], they construct a set of dummy ciphertext such
that the decrypted message will be m′ = 0 (all the bits are zero) and m′ = 1 (The only first
bit is one) depending only secret coefficient si[j]. And they show that they can distinguish
the two messages m′ = 0 (all the bits are zero) and m′ = 1 (only the first bit is one) by
EM-side channel analysis. We have described this attack previously.

In our attack model, we skip an instruction in the decryption process which, runs in the
decapsulation method. Then we construct some dummy ciphertexts such that all the bits

24

of the decrypted message will be zero except the 1st bit and, the 1st bit will be either 0 or
1 depending on only one secret coefficient. i.e., the faulted decrypted message m′ will be
either 0(all the bits are zero) or 1(Only the first bit is one) for our constructed ciphertext.
We assume that we can distinguish two messages m′ = 0 and m′ = 1 by EM-Power analysis.
We will describe our attack briefly.

4.3.1 Idea of the attack:

We construct a dummy ciphertext pair c = (b′, cm) (may be not valid ciphertext 1) such
that

1. the decrypted message of c will be: m′[i] = Saber.PKE.Dec(c) = 0 ∀i ∈ {0, 1, . . . , 255}.
i.e., for this ciphertext the decrypted message does not depends on the secret value.

2. Now we inject a fault in the decryption method, which is a part of decapsulation. After
injecting the fault, the decrypted message will be:

m′[i] =

{
0 ∀i 6= 0

Dc(sk[i]) for i = 0

where Dc : S → {0, 1} is a function, which computes the 0th element of decrypted
message and this function depends on only one secret variable sk[i].

After injecting the fault, if the decapsulation oracle decrypt the ciphertext c having above
two properties, then the decrypted message m′ will be either 0 (all coefficient is zero) or 1
(least significant bit is 1 and others are 0).

From the paper of Ravi et al. [34] we see that we can identifying the two cases m′ = 0
and m′ = 1 by EM side-channel information. After identifing the decrypted message m′, we
guess the secret s.

First we will demonstrate our attack simulation to retrieve one coefficient s0[0]. If we
choose the ciphertext c = (b′, cm) (may be invalid) with b0[0] as non zero and other coeffi-
cients of b′ are set to zero and cm = a + a · x + a · x2 + · · · + a · x255, where a ∈ Z24 . Then
from the Algorithm 4, we get the decrypted message as

m′[i] = (s0[i]b0[0]− 2εp−εT a+ h2 mod p) >>9 , for all i ∈ {0, 1, . . . , 255}

So each m′[i] depends on b0[0], a and s0[i], where b0[0] ∈ Z210 , s0[i] ∈ S = {−4,−3, . . . , 3, 4}
and a ∈ Z24 . We compute (s.x′ − 2εp−εT y′ + h2 mod p)>>9, for all x′ ∈ Z210 , s ∈ S =
{−4,−3, . . . , 3, 4} and y′ ∈ Z24 . And by observing the computation value, we find the pairs
(x, y) such that (s.x − 2εp−εT y + h2 mod p)>>9 = 0 ∀s ∈ S. So if (b0[0], a) = (x, y), then
(s0[i].b0[0]− 2εp−εT a+ h2 mod p)>>9 = 0 ∀i ∈ 0, 1, . . . , 255 and s0[i] ∈ S.
Therefore if we choose (b0[0], a) = (x, y), then m′ = 0. We run the Algorithm 8 and get a
list of (x, y) pairs which we have maintained above.

1Running with the ciphertext c the decapsulation oracle may return the random key

25

Algorithm 8: Algorithm to generate suitable ciphertexts for the attack

Result: a list of pairs (x, y) such that (s.x− 2εp−εT y + h2 mod p)>>9 = 0∀s ∈ S
for x = 0;x < 1023;x+ + do

for y = 0; y < 15; y + + do
count = 0;
for s runs on the set S do

m = s.x− 26y + h2 mod p>>9 ;
if m = 0 then

count = count+ 1;

if count = |S| then
print (x, y);

From the above list of pairs we take the pairs (b0[0], a) as (0x1,0x0),(0x11,0xf),(0x10,0x1),
(0x16,0xf),(0x16,0x1),(0x21,0x1),(0x21,0xf),(0x3c7,0x0) to solve our problem. So
the ciphertext c = (b′, cm) with above (b0[0], a)’s satisfies the first criteria of chosen-ciphertext
described in 1.

4.3.2 Fault assumption

We inject a fault in such a way that when the decapsulation oracle decrypts the ciphertext
c, then it skips the instruction “adding with h2“ for 0th coefficient. For 0th coefficient of the
decrypted message, we skip the step in decapsulation as shown in the figure Figure 4.5

After injecting the fault, the decrypted message for the above structured ciphertext (b′, cm)
will be

m′′[i] =

{
(s0[0]b0[0]− 2εp−εT a mod p)>>9 , for i = 0

(s0[i]b0[0]− 2εp−εT a+ h2 mod p)>>9 , for all i ∈ {1, . . . , 255}

So for a fixed pair (b0[0], a) which we select from the algorithm8, m′[i] = 0∀i 6= 0, and m′[0]
is depends on the secret coefficient s0[0]. So the constructed ciphertext satisfy the 2nd con-
dition1. For a fixed pair (b0[0], a) we call the secret coefficient s0[0] is in class X, if m′′[0] = 1
otherwise we call s0[0] is in class O.

Now we compute the value (s.x′ − 2εp−εT y′ mod p)>>9 ∀x′ ∈ Z210 , ∀s ∈ S and ∀y′ ∈ Z24 .
By observing the values we find a set
X={(x, y) : (x, y) is one of the member of the list, getting from Algorithm 8 and

(s.x−2εp−εT y mod p)>>9 = 0 for some s ∈ S and (s.x−2εp−εT y mod p)>>9 = 1 for some s ∈
S}.

i.e., if we choose (b0[0], a) = (x, y), where (x, y) ∈ X, then (s0[i].b0[0] − 2εp−εT a + h2
mod p)>>9 = 0, ∀s0[i] ∈ S,∀i ∈ {1, 2, . . . , 255} but the value of (s0[0].b0[0] − 2εp−εT a

26

Figure 4.5: Attack model 1

mod p)>>9 = 0 depends on the secret coefficient s0[0].
i.e., if we choose (b0[0], a) = (x, y), where (x, y) ∈ X, then

m′′[i] =

{
Depends on s0[0] , for i = 0

0 , for all i ∈ {1, . . . , 255}

Now running the Algorithm 9 we get the list of touple (x, y, s,m′′), such that (x, y) ∈ X and
if we choose (b0[0], a) = (x, y), then m′′[0] = (s0[0].b0[0]−2εp−εT a mod p) >> 9 for s0[0] = s.

27

Algorithm 9:

Result: a list of pairs (x, y, s,m′′) such that
(s.x− 2εp−εT y + h2 mod p)>>9 = 0 ∀s ∈ S but
(s.x− 2εp−εT y mod p)>>9 = 0 or 1 depending on s ∈ S

for x = 0;x < 1023;x+ + do
for y = 0; y < 15; y + + do

count = 0;
count′ = 0 for s runs on the set S do

m′ = s.x− 26y + h2 mod p>>9 [εp − εT = 6];
m′′ = s.x− 26y mod p>>9 //fault step;
if m′ = 0 then

count = count+ 1;

if m′′ = 0 then
count′ = count′ + 1;

if count = |S| then
for s runs on the set S do

if count′ 6= 0 and count′ 6= |S| then
m′′ = s.x− 26y mod p>>9 ;
print (x, y, s,m′′);

Let (x, y, s,m′′) be an output of the Algorithm 9. Now we choose (b0[0], a) = (x, y) and
s0[0] = s. Then we say

s0[0] ∈

{
class O , if m′′ = 0

class X , if m′′ = 1

From the outputs of Algorithm 9, we take some outputs to construct the Table 4.1.

(x, y) c1 c2 c3 c4 c5 c6 c7 c8

s (0x1,0) (0x11,0xf) (0x10,0x1) (0x16,0xf) (0x16,0x1) (0x21,0xf) (0x21,0x1) (0x3c7,0)

−4 X X X X X X X O

−3 X O X X X X X O

−2 X O X O X X X O

−1 X O X O X O X O

0 O O X O X O X O

1 O O X O X O X O

2 O O X O X O O X

3 O O X O O O O X

4 O O O O O O O X

Table 4.1

28

The i, jth element of the table is defined by

Ti,j =

{
O , if (b0[0], a) = cj and s0[0](= the value of s in ith row) ∈ class O

X , if (b0[0], a) = cj and s0[0](= the value of s in ith row) ∈ class X

Now if we choose (b0[0], a) = ci, from the above table, then before injecting fault, m′ was
zero2 . After injecting fault,

m′ =

{
0, if s0[0] ∈ class O

1, if s0[0] ∈ class X

For example, if we choose (b0[0], a) = (0x1, 0x0), then after decryption with fault, if we see
that m′ = 0, then s0[0] ∈ {0, 1, 2, 3, 4}. if we see that m′ = 1, then s0[0] ∈ {−4,−3,−2,−1}.

4.3.3 Method of attack

We inject the fault in the decapsulation process and then query to the decapsulation oracle
with ciphertexts (b′, cm).

We choose c = (b′, cm), of the form b′ =


b0[0]

0

0

, and cm = a+ a · x+ · · ·+ a · x255

Now we will send the ciphertext c = c1, c2, . . . , c8 one by one (maintaining the order). By
observing the decrypted message m′ we write the corresponding class (i.e., class O or
class X). This way we will get a ordered sequence of class O and class X of length
eight. This ordered sequence will uniquely represent one row of the table 4.1 because we
have constructed the table in that way. The secret coefficient s0[0] will be the value of s
corresponding to that row.

Example: With this method, if we get the ordered sequence (X, X, X, X, X, X, X, O). This se-
quence is the first row of the Table 4.1, so the secret coefficient s0[0] will be the value of s cor-
responding to the first row, which is −4. If we get the ordered sequence (O, O, X, O, O, O, O, X).
This sequence is the eighth row of the Table 4.1, so the secret coefficient s0[0] will be the
value 3.

To find s0[0], we have to query for eight ciphertexts by using this process. We now describe
another technique to decrease the number of queries.

2We can check that all decryption message whether zero or not by using power/EM side
channel information.

29

Reducing the number of queries

We divide the set of secrets S into two disjoing proper subsets say S1 and S2, by following
the rule:

1 We query to decapsulation oracle with some ciphertext c with (b0[0], a) = ci. Then we
observe the class of the secret belonging.

If the secret s is in class O, then s ∈ S1

If the secret s is in class X, then s ∈ S2

2 Then we again divide the subsets S1 and S2, by applying the above rule 1.

By dividing the set S into smaller subsets with the above rule, we have the following binary
tree in Figure 4.6.

s0[0] ∈ {−4, . . . , 4}
c1

s0[0] ∈ {0, 1, 2, 3, 4} s0[0] ∈ {−1,−2,−3,−4}

O X

c4

s0[0] ∈ {−2,−1} s0[0] ∈ {−3,−4}

O X

c6

s0[0] = −1 s0[0] = −2

O X

c2

s0[0] = −3 s0[0] = −4

O X

c5

s0[0] ∈ {3, 4} s0[0] ∈ {0, 1, 2}

O X

c3

s0[0] = 4 s0[0] = 3

O X

c7

s0[0] = 2 s0[0] ∈ {0, 1}

O X

c8

s0[0] = 0 s0[0] = 1

O X

Figure 4.6: Binary tree with each leaf node as the secret for attack model 1

After injecting the fault in device, we query to decapsulation oracle with a constructed
ciphertext c1. Then we can move to left or right down the tree depending on the secret
coefficient is in class(O) or class (X). Now we can arrive at any leaf node of the tree in Figure
4.6 starting from the root by exactly one path. The height of the tree is 4. So to find the
secret coefficient s0[0], we have to query at most 4 times.

Example:

Suppose the secret coefficient s0[0] = 0. We will use our technique to find this secret.

1. First we query the ciphertext (b0[0], a) = c1, from the Table 4.1 we observe that s0[0]
is in class 0. So according to the Figure 4.6, s0[0] ∈ {0, 1, 2, 3, 4}.

2. Now we query with the ciphertext (b0[0], a) = c5 and from the Table 4.1 we can observe
that the secret s0[0] is in class X . Again from the Figure 4.6, s0[0] ∈ {0, 1, 2}

30

3. We query with the ciphertext (b0[0], a) = c7 and again we observe that the secret s0[0]
is in class X and that gives us s0[0] ∈ {0, 1}.

4. Finally we query with the ciphertext (b0[0], a) = c8 and we will observe that the secret
s0[0] is in class 0 and finally we are arrived at the leaf node and found the secret
s0[0] = 0.

4.3.4 To retrieve the full secret s

To find the secret si[j], First we have to construct the ciphertext c = (b′, cm) such that
0th bit of the decrypted message depends on the secret si[j], where i ∈ {0, 1, 2} and
j ∈ {0, 1, . . . , 255}.

Now if we choose c = (b′, cm), such that only bi[k] is non zero, where i ∈ {0, 1, 2} and
k ∈ {0, 1, . . . , 255}, others coefficients of b′ are zero and cm = a+ a · x+ · · ·+ a · x255, where
a ∈ Z24 . Then the decrypted message will be
∀t ∈ {0, 1, . . . , 255}

m′[t] =


(si[j] · bi[k]− 2εp−εT a+ h2 mod p)>>9 if

k = t− j
(−si[j] · bi[k]− 2εp−εT a+ h2 mod p)>>9 if

k = 256 + t− j

So each m′[t] depends on bi[k], a and si[j]., where k = t− j or k = 256 + t− j

We run the Algorithm 8 and get a list of (x, y) pairs such that the decrypted message m′

will be 0 (all coefficient is zero) for all si[j] ∈ S.

Now, after injecting the fault, we will get all the coefficients of the decrypted message
m′′ to remain unchanged except the 0th coefficient. The 0th coefficient will be changed or
remain unchanged depending on the secret coefficient si[j]. Now after fault injection to the
0th coefficient of at the time of decryption will be:

m′′[0] =

{
(si[j] · bi[k]− 2εp−εT a mod p)>>9 if j + k = 0

(−si[j] · bi[k]− 2εp−εT a mod p)>>9 if j + k = 256

So for a fixed pair (bi[k], a) which we select using the Algorithm 8, we have the decryption
m′′[i] = 0 ∀i 6= 0, and m′′[0] is depends on the secret coefficient si[j]. So the constructed
ciphertext satisfy the second condition 1.

Let

s′i[j, k] =

{
si[j] if j + k = 0

−si[i] if j + k = 256

31

Then we can write the 0th coefficient of decrypted message of the constructed ciphertext c ,
after fault injection as follows:

m′′[0] = (s′i[j, k] · bi[k]− 2εp−εT a mod p)>>9

For a fixed pair (bi[k], a) we call the coefficient s′i[j, k], is in class X, if

m′′[0] = 1

otherwise we call s′i[j, k] is in class O. We choose pair (bi[k], a) = (b0[0], a) and processing
similar steps of finding the secret s0[0], we can find s′i[j, k] ∀i, j. Then from there we can
derive si[j] depending on the value of j and k.

4.3.5 Total number of queries

For each secret si[j], we have to query almost 4 times to the decapsulation oracle. Now there
are 768 many secret coefficients. So the total number of the query is almost 768× 4 = 3072.
So we need to conduct at most 3072 many faults.

In this section, we describe an attack model to recover the secret s. Here we construct the
model by assuming the assumptions stated above. From the paper of Pessl and Prokop [29]
we know that injecting this fault is practically possible. Also from the paper of Ravi et al.
[34] we got that information that by EM-power analysis we can distinguish two messages
m = 0 and m = 1. We are expecting that we can do this attack practically. Now we write
a program of this model. In the end, the program returns a vector s′. We check that s′

satisfies the relation bA.seq→p = b. Algorithm 15 is the pseudo-code to simulate the attack.
If we make this fault physically, then our attack model will work.

4.4 Our Proposed Attack Model 2

In this attack model, we are not injecting any fault. In this model, we only construct the
ciphertext with a special pattern. Here we do not choose a ciphertext such that the decryp-
tion of the ciphertext is zero or one. The decrypted message could be anything. Here we
assume that we can see only one particular bit of the decrypted message.

4.4.1 Idea of the attack:

We construct ciphertexts c = (b′, cm) (maybe not valid ciphertext 3) such that One bit of
decrypted message m′[i] only depends on one coefficient of the secret s . If an attacker is
able to see only one decrypted message bit, then by querying these kinds of ciphertext to
the decapsulation oracle, the attacker can recover the full secret key.

3If we query to the decapsulation oracle with c, then it may return the random shared key

32

4.4.2 Assumption

We can see only 0th coefficient of the decrypted message m′ in decapsulation. We will recover
the coefficients of s one by one.

First we will demonstrate our attack simulation to recover one coefficient s0[0]. If we
construct the ciphertext c = (b′, cm) (may be invalid) with b0[0] as non zero and other
coefficients of b′ are set to zero and cm = 0 (all coefficient of cm is zero). In this attack
model, when we say the ciphertext c = (b′, cm) with some value of b0[0], we mean that
except b0[0] the other coefficient of b′ are zero and cm until we mention other ciphertext
construction.
Then the decrypted message of c will be:

m′[i] = (s0[i]b0[0] + h2 mod p)>>9 , for all i ∈ {0, 1, . . . , 255}

So each m′[0] depends on b0[0] and s0[0]. Hence for fixed b0[0] the 0th bit of the decrypted
message of c only depends on the secret s0[0]. We run the following algorithm and get a list
of x value such that for fixed b0[0] = x, the decrypted message bit m′[0] will vary when we
select different s0[0] from the set S.

Algorithm 10: Algorithm to generate suitable ciphertext

Result: a list of pairs x such that 0th bit of decrypted message of the construced
ciphertext depends on the value of s0[0]

for x = 0;x < 1023;x+ + do
count = 0;
for s runs on the set S do

m = s.x+ h2 mod p>>9 ;
if m = 0 then

count = count+ 1;

if count 6= |S| and count 6= 0 then
print (x);

From the list of x’s, we take the values 0x8e, 0x11c, 0x10a, 0x5f, 0xc7, 0x1a2, 0x73, 0x1ba
for our attack simulation. For a fixed constructed ciphertext c with non zero coefficient
b0[0], we call the secret coefficient s0[0] is classX1 if m[0] = 1, otherwise we call the secret
coefficient s0[0] is in classX0.

Now for the constructed ciphertext c with b0[0] = x, where x belongs to the above selected
list, we observe the following result, where each row represent the class of secrets for fixed
coefficient b0[0] = ci.
Now if we choose b0[0] from the above table then,

m′[0] =

{
0 if s0[0] is in class X0

1 if s0[0] is in class X1

33

ci x s = −4 s = −3 s = −2 s = −1 s = 0 s = 1 s = 2 s = 3 s = 4

c1 0x8e X1 X1 X1 X0 X0 X0 X1 X1 X1

c2 0x11c X0 X0 X1 X1 X0 X1 X1 X0 X0

c3 0x10a X0 X0 X1 X1 X0 X0 X1 X0 X0

c4 0x5f X1 X1 X0 X0 X0 X0 X0 X1 X1

c5 0xc7 X0 X1 X1 X0 X0 X0 X1 X1 X0

c6 0x1a2c X1 X1 X0 X1 X0 X1 X0 X0 X1

c7 0x73 X1 X1 X1 X0 X0 X0 X0 X1 X1

c8 0x1ba X0 X1 X0 X1 X0 X1 X0 X1 X1

Table 4.2

4.4.3 Method of attack

To find s0[0] we query to the decapsulation oracle with ciphertexts c. where c = (b′, cm), of

the form b′ =


b0[0]

0

0

, and cm = 0.

Now we will send the ciphertext c with b0[0] = c1, c2, . . . , c8 one by one (maintaining the or-
der). Observing the 0th coefficient m

′
[0] of decryted message m′ we write the corresponding

class (i.e., class X0 or classX1). Doing this way we will get a ordered sequence of class X0 and
class X1 of length 8. This ordered sequence will be only one column of the table 4.2 because
we have constructed the table in this way. The secret coefficient s0[0] will be the value of s
lies on that column.

Example: Suppose we get the ordered sequence (X1, X0, X0, X1, X1, X1, X1, X1) by doing this
method. This sequence is the 2nd secret column of the table4.2, so the secret coefficient s0[0]
will be the value of s of the 2nd secret column, which is −3. Similarly If we get the ordered
sequence (X0, X0, X0, X0, X0, X0, X0, X0), then the secret coefficient s0[0] will be the value of s of
the 5th column, which is 0.

In this process to find s0[0], we have to query 8 ciphertexts. We now describe another tech-
nique to decrease the number of queries.

Reducing the number of queries

We divide the set of secrets S into two disjoing proper subsets say S1 and S2, by following
the rule:

34

We query to decapsulation oracle with some ciphertext c with b0[0] = ci. Then we
observe the class of the secret belonging.

1. If the secret s is in class X0, then s ∈ S1

2. If the secret s is in class X1, then s ∈ S2

Then we again divide the subsets S1 and S2, by applying the above rule.

By in method, we construct the tree:

s0[0] ∈ {−4, . . . , 4}
c1

s0[0] ∈ {−1, 0, 1} s0[0] ∈ {−4,−3,−2, 2, 3, 4}

X0 X1

c2

s0[0] = 0 s0[0] ∈ {−1, 0, 1}

X0 X1

c3

s0[0] = 1 s0[0] = −1

X0 X1

c4

s0[0] ∈ {−2, 2} s0[0] ∈ {−4,−3, 3, 4}

X0 X1

c7

s0[0] = 2 s0[0] = −2

X0 X1

c5

s0[0] ∈ {−4, 4}s0[0] ∈ {−3, 3}

X0 X1

c8

s0[0] = −4 s0[0] = 4

X0 X1

c6

s0[0] = 3 s0[0] = −3

X0 X1

Figure 4.7: Binary tree with each leaf node as the secret for attack model 2

Now we can arrive at any leaf node of the tree4.7 from the root by exactly one path. The
height of the tree is 4. So to find the secret coefficient s0[0] we have to query atmost 4 times.

Example: Suppose the secret coefficient s0[0] = 0.
First we query the ciphertext c with b0[0] = c1. Then from the table4.2, we observe that
s0[0] is in classX0. After that we query with the ciphertext c with b0[0] = c2 and from the
table4.2 we will observe that the secret s0[0] is in class X0 and finally we arrive at the leaf
node and we get the secret s0[0] = 0.

s0[0] is any one of the leaf nodes of the above tree. From the beginning, we reach a leaf node
of the above tree, by using atmost 4 many queries to the decapsulation oracle.
So, to find s0[0], We have to query atmost 4 times to the decapsulation oracle.

4.4.4 To retrieve the full secret s

To find the secret si[j], first we have to construct the ciphertext c = (b
′
, cm) such that 0th

bit of the decrepted message is depends on the secret si[j]4.4.1.

Now if we choose c = (b′, cm), such that only bi[k] is non zero, where k is a number such
that j + k = 0 others coefficients of b′ are zero. and cm = 0. Then the 0th coefficient of the
decrypted message will be:

35

m′[0] =

{
(si[j]bi[k] + h2 mod p)>>9 if j + k = 0

(−si[j]bi[k] + h2 mod p)>>9 if j + k = 256

i.e.,

m′[0] =

{
(si[j]bi[k] + h2 mod p)>>9 if j = k = 0

(−si[j]bi[k] + h2 mod p)>>9 if k = 256− j

So each m′[0] depends on bi[k], a and si[j] (or −si[(j + k) mod 256] depending on the con-
dition (j + k) = 0 or (j + k) = 256.

So for a constructed fixed ciphertext c with non zero value bi[k], (where j + k = 0 or
j + k = 256) which we select from the 4.2, m′[0] = 0 or not depends on the secret coefficient
si[j] if j = k = 0 or on −si[j], if k = 256− j.

Let

s′i[j, k] =

{
si[j] if j = k = 0

−si[i] if k = 256− j

Then we can write the 0th coefficient of decrypted message of the constructed ciphertext c
as follows:

m′[0] = (s′i[j, k]bi[k] + h2 mod p)>>9

For fixed (bi[k], a) we call the coefficient s′i[j, k] is in class X1, if

m′[0] = 1

otherwise we call s′i[j] is in class X0. We choose bi[(256− j) mod 256] = b0[0] and processing
similar steps of finding the secret s0[0], we can find s1i[j] ∀i, j. Then from this we get si[j].

4.4.5 Total number of queries

For each secret si[j], we have to query atmost 4 times to the decapsulation oracle. Now there
are total 768 many secret coefficients. So the total number of the query is 768× 4 = 3072.

In this section, we describe an attack model to recover the secret s. Here we construct
the model by assuming the assumptions stated above. We have not demonstrated the attack
practically. We only write a program which is following this model and at the end this
program outputs a vector s′. We check that s′ satisfies the relation bA.seq→p = b. So in the
future, if we are able to inject this fault practically in the device where the decapsulation
mechanism runs, then our model will work. The pseudo-code to simulate attack is described
in Algorithm16.

4.5 Generalize version of model 2

There is no speciality of the 0th coefficient. If we assume that we can see only the kth bit
of decryption message m′ but we don’t know the position k. Now we construct ciphertext

36

c = (b′, cm), where bi[j] as non zero and cm = 0 while all the other coefficients of b′ are set
to zero. Then the kth coefficient of the message is:

m′[k] =

{
(si[p]bi[j] + h2 mod p)>>9 if p+ j = k

(−si[p]bi[j] + h2 mod p)>>9 if p+ j = k + 256

The set of (p, j) pairs such that p+ j = k is ={(0, k), (1, k − 1), (k, 0)}. So if we query
the constructed ciphertext with non zero bi[k], then by previous method, we recover si[0],
similarly with non zero (bi[k − 1]), we recover si[1] so on.

If we query the constructed ciphertext with non zero bi[255], then by previous method,
we recover −si[k + 1], similarly with non zero bi[254], we recover −si[k + 2] so on. Proceed-
ing similar way we can find si[j], where i ∈ {0, 1, 2} and 0 ≤ j < 256. Here k will be any
position of {0, 1, . . . , 255}. For each k ∈ {0, 1, . . . , 255}, we get a vector of polynomials say

s(k). Then starting from k = 0 we check bA · s(k)e = b′ or not. If they are equal, then the
secret s = s(k) and we stop the process, otherwise we increase k by 1 and continue this process.

After getting the values si[0], si[1], . . . , si[k],−si[k + 1],−si[k + 2], . . . ,−si[255], where
i ∈ {0, 1, 2} and k is fixed number, we use the Algorithm 11 to get the actual secret s.

Algorithm 11:

Data: The values Rotr(si, j)[k], where i ∈ {0, 1, 2}, j ∈ {0, 1, . . . , 255}, public key
pk = (A,b′)

Result: The actual secret s
for k = 0; k < 255; k+ do

for i = 0; i < 3; i+ + do
for j = 0; j ≤ k; j + + do

s(k)[i][j] = s(k)[i][j];

for j = k + 1; j ≤ 255; j + + do
s(k)[i][j] = −s(k)[i][j];

b(k) = bA.s(k)e;
if b(k) = b′ then

s = s(k);
break;

4.5.1 Total number of queries

First we get the sequence si[0], si[1], . . . , si[k],−si[k + 1],−si[k + 2], . . . ,−si[255], where i ∈
{0, 1, 2} by processing similar way. Now we know k is a fixed value but we don’t know the
value k. So the number of position of k is 256. For each case we find the corresponding
secret and check that this secret is actual or not.

37

4.6 Our Proposed Attack Model 3

In this model first, we generate valid ciphertext and corresponding shared key with help of
the encapsulation process. Then inject a fault by skipping one instruction for one coefficient
of decryption posses which is running in the decapsulation mechanism. After that, we query
this valid ciphertext to the faulted decapsulation oracle. Then depending upon the fault is
effective 4 or ineffective 5 we construct a system of linear inequality with secret variables.
In the paper [29] Pessl present a fault attack on Kyber and New Hope. By skipping one
instruction in the decapsulation method, they generate a system of linear inequality with
unknown secrets. Then solving the inequality, they are able to find the secret. In this
section, we describe the model up to generating the linear inequality, by skipping a fault in
the decapsulation process.

4.6.1 Observation

Now in the decryption (Algorithm 4) we calculate the two steps Input:(b′, cm)
v = b

′T.s
m′ = (v − 2εp−εT · cm + h2)>>9

Let M ′ = v − 2εp−εT · cm + h2 then,

M ′ = v − 2εp−εT · cm + h2

= b
′T.s− p

T
· cm + h2

= b
′T.s− (

p

T
· cm + E2) + h2

= b
′T.s− (bT.s′ + h1 −

p

2
·m)− E2 + h2

= b
′T.s− (bT.s′ + h1) +

p

2
·m− E2 + h2

where v = b
′T.s ∈ Rp and 2εp−εT = p

T
, E2 is a rounding error and the value cm taken from

Algorithm 3. Let d be the decryption noise i.e.,

d = b
′T.s− (bT.s′ + h1)− E2 + h2 mod p

= b
′T.s− (bT.s′ + h1 −

p

2
·m)− p

2
·m− E2 + h2 mod p

= b
′T.s− p

T
· cm −

p

2
·m+ h2 mod p

4If the decrypted message changed after injecting fault, then the decapsulation oracle return a random
shared key, then we call it as effective fault

5If the decrypted message remains the same after injecting fault, then the decapsulation oracle return the
shared key, which we get from encapsulation process, then we call it as ineffective fault

38

where cm = bT · s′ + h1 − p
2
·m. Now 0 ≤ d < p

2
, because if d ≥ p

2
, then we can’t recover the

actual message. So

p

2
·m ≤ d+

p

2
·m <

p

2
+
p

2
·m

i.e.,
p

2
·m ≤M ′ <

p

2
+
p

2
·m

So if m = 1, then p
2
≤M ′ < p. Also if m = 0, then 0 ≤M ′ < p

2
.

Let d′ = d− h2 mod p and M ′′ = d′ + p
2

mod p. Then

− h2 mod p ≤ d− h2 mod p <
p

2
− h2 mod p

i.e., − h2 mod p ≤ d′ <
p

2
− h2 mod p

If 0 ≤ d < h2, then −h2 mod p ≤ d′ < 0. In this case

p

2
·m− h2 mod p ≤ d′ +

p

2
·m <

p

2
·m

i.e.,
p

2
·m− h2 mod p ≤M ′′ <

p

2
·m

If 0 ≤ d < h2 and we skip the addition with h2 in the last step of decryption, then the
decrypted message will be M ′′>>9. In this case if actual message bit m = 1, then p

2
− h2

mod p ≤M ′′ < p
2
. So in this case the faulted decrypted message bit m′ will be 0. By similar

calculating, we see that if the actual message bit is m = 0, the decrypted message bit m′

will be 1.

So from the above observation, we can say that if we don’t add h2 in the last step of
decryption and 0 ≤ d < h2, then the decrypted message bit is not equal to the actual
message bit. 6 Also by similar calculation we can see that if we don’t add h2 in the last step
of decryption and d ≥ h2, then the decrypted message bit is equal to the actual message bit.

Now we query with a valid ciphertext c to decapsulation oracle and h2 is not added for
one coefficient in the last step of decryption, which is a part of the decapsulation process.
If the oracle gives a valid shared key for that ciphertext, then we will arrive at a conclusion
that d ≥ h2 otherwise d ≤ h2.

4.6.2 Fault Assumption

We inject a fault in decapsulation in such a way that, when it decrypt the 0th coefficient,
then it skips the instruction “adding with h2”.

6if the encryption noise 0 ≤ d < h2, then the faulted decoding returns an incorrect result.i.e, the fault is
effective. and if the encryption noise h2 ≥ d, then the faulted decoding returns an correct result. i.e., the
fault is ineffective.

39

(a) Without injecting the fault (b) After injecting the fault

Figure 4.8

4.6.3 Structure of Attack Simulation Model

1. We construct a valid ciphertext c = (b′, cm), for a messagem of 256 bits by KEM.Encaps
algorithm.

2. We query with the ciphertext c to the decapsulation oracle in which we inject a fault
(stated in Fault Assumption).

3. If the decapsulation output is H(K̄ ′, c), then we consider it as ”ineffective fault” and
d[0] and otherwise we call it as ”effective fault” for the ciphertext c.

4. If we see that the fault is effective for the ciphertext c, then the 0th coefficient of the
decryption noise d[0] for the ciphertext c will be < h2. i.e.,

d[0] = ((b
′T .s)[0]− p

T
· cm[0]− p

2
·m[0] + h2) mod p < h2

.

i.e.,
2∑

k=0

(bk[0 · sk[0]−
255∑
j=1

bk[256− j · sk[j]) mod p <
p

T
· cm[0] +

p

2
·m[0] mod p

5. If we see that the fault is ineffective for the ciphertext c, then the 0th coefficient of the
decryption noise d[0] for the ciphertext c will be ≥ h2. i.e.,

d[0] = ((b
′T .s)[0]− p

T
· cm[0]− p

2
·m[0] + h2) mod p ≥ h2

i.e.,

2∑
k=0

(bk[0 · sk[0]−
255∑
j=1

bk[256− j · sk[j]) mod p ≥
p

T
· cm[0] +

p

2
·m[0] mod p

6. From the above step we get a linear inequality which contains 3 × 256 = 768 many
unknowns si[j].

7. Repeating the whole process many times and store the inequality in a file.

8. In this method we get a system of linear inequalities, with 768 many unknowns.

40

9. Now our problem is reduce to the problem find a solution of a system of linear inequal-
ities where the unknowns si[j] ∈ {−4,−3, . . . , 0, 1, . . . , 4}.

10. After solving this system of inequality we can extract the secret s.

In [29], they have done similar work to attack Kyber. We have done the above process up
to storing a system of a linear-inequality.

4.7 Conclusion:

In this chapter we describe three attack models, we are able to find secrets by attack simula-
tion for two models (Model1 and Model 2). In practical purpose Model 1, is totally depends
on the practicality of skipping an instruction in the decryption process and capability of
distinguishing message 0 and 1 by Em-power analysis. In the paper [34], they show that by
EM-power analysis, we are able to distinguish two cases. This attack seems to be practically
possible.

41

Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we have seen that if we assume the assumption of model 1 and model 2, then
we can recover the secret. Here we present our attack for the parameter set (n = 256, l =
3, q = 213, p = 210, µ = 8). The parameter set has no extra significance in these attacks. So
can do the same attacks for the others parameters of SABER. In this thesis, we describe
an attack model 3 and we can construct a system of linear inequality such that the secret
satisfies the linear inequality. Our next target is to solve this system of inequality.

5.2 Future work

During my master’s thesis we get some models Model 1 and Model 2 and then doing the
attack simulation, we have seen that we recover the secret. Now we are planning to do the
following after this internship:

� From the paper of Ravi et al. [34], we have seen that we can distinguish two cases:
1. when the decrypted message m

′
= 0 (all bits are zero) and 2. when the decrypted

message m
′

= 1 (all bits are zero except the LSB) and from the paper of Pessl and
Prokop [29], we have seen that we can skip one instruction for one step. Based on these
assumption, we have constructed our model 1 thus have done the attack simulation.
But we want to do this attack physically. Also, we want to check if there is another
way to distinguish between these two cases.

� Assuming that we can see one decrypted message bit, we complete our attack 2. But
we don’t know how much feasible this assumption is for practical purposes. So my
next target is to check the practicality of model 2.

� My 3rd and the most important target is to solve the system of inequalities, which
recovers the actual secret, described in mode 3. It is important because the assumption
of model 3 is weak (i.e., this assumption is practically possible)[29].

� Now we compute the inner product of the vectors s and b
′

in decryption, which is
a part of the decapsulation algorithm. For computing the inner product, we use the

42

karatsuba, Toom-Cook 3 and school-book multiplications. we have observed that the
multiplication steps depend on the secret coefficients. we want to check whether the
secret information is being licked or not after injecting fault in some step of multipli-
cation.

� After the fault attack, the important task is to strong the scheme SABER with halp
of the countermeasure against these fault attacks.

43

Bibliography

[1] Post-quantum cryptography pqc. URL https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-3-submissions.

[2] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. On the complexity of the bkw algorithm on lwe. Cryptology ePrint Archive,
Report 2012/636. https://eprint.iacr.org/2012/636.

[3] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede. Time-
memory trade-off in toom-cook multiplication: an application to module-lattice based
cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(2):222–244. doi: 10.13154/tches.v2020.i2.222-244. URL https://tches.iacr.

org/index.php/TCHES/article/view/8550.

[4] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. Cryptology ePrint Archive,
Report 2015/769. https://eprint.iacr.org/2015/769.

[5] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic
protocols for faults (extended abstract). In EUROCRYPT.

[6] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe. Cryptology ePrint Archive, Report 2016/659,
. https://eprint.iacr.org/2016/659.

[7] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehle. Crystals - kyber: A cca-secure
module-lattice-based kem. In 2018 IEEE European Symposium on Security and Privacy
(EuroS P), pages 353–367, . doi: 10.1109/EuroSP.2018.00032.

[8] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals – kyber: a cca-
secure module-lattice-based kem. Cryptology ePrint Archive, Report 2017/634, . https:
//eprint.iacr.org/2017/634.

[9] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals – kyber: a cca-
secure module-lattice-based kem. Cryptology ePrint Archive, Report 2017/634, 2017.
https://eprint.iacr.org/2017/634.

44

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2012/636
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634

[10] Murray R. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm
and Its Applications. CRC Press, Inc., USA, 1st edition. ISBN 1439807027.

[11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information Security,
volume 7073 of LNCS - Lecture Notes in Computer Science, pages 1–20, Seoul, South
Korea. Springer. doi: 10.1007/978-3-642-25385-0\ 1. URL https://hal.inria.fr/

hal-01109961.

[12] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side
information: Attacks and concrete security estimation. Cryptology ePrint Archive,
Report 2020/292. https://eprint.iacr.org/2020/292.

[13] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976. doi: 10.1109/TIT.1976.1055638.

[14] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-secure
kem. Cryptology ePrint Archive, Report 2018/230, . https://eprint.iacr.org/2018/
230.

[15] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-secure
kem. Cryptology ePrint Archive, Report 2018/230, . https://eprint.iacr.org/2018/
230.

[16] Richard P Feynman. Simulating physics with computers. International journal of
theoretical physics, 21(6/7):467–488.

[17] Borko Furht, editor. The RSA Public-Key Encryption Algorithm, pages 757–757.
Springer US, Boston, MA. ISBN 978-0-387-30038-2. doi: 10.1007/0-387-30038-4 206.
URL https://doi.org/10.1007/0-387-30038-4_206.

[18] O. Goldreich, D. Micciancio, S. Safra, and J. P. Seifert. Approximating shortest lattice
vectors is not harder than approximating closet lattice vectors. Inf. Process. Lett., 71
(2):55–61. ISSN 0020-0190. doi: 10.1016/S0020-0190(99)00083-6. URL https://doi.

org/10.1016/S0020-0190(99)00083-6.

[19] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. Cryptology ePrint Archive, Report 2017/604. https:
//eprint.iacr.org/2017/604.

[20] P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, 1996.

[21] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual International

45

https://hal.inria.fr/hal-01109961
https://hal.inria.fr/hal-01109961
https://eprint.iacr.org/2020/292
https://eprint.iacr.org/2018/230
https://eprint.iacr.org/2018/230
https://eprint.iacr.org/2018/230
https://eprint.iacr.org/2018/230
https://doi.org/10.1007/0-387-30038-4_206
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1016/S0020-0190(99)00083-6
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604

Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceed-
ings, volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.
doi: 10.1007/3-540-68697-5 9.

[22] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’99, page 388–397, Berlin, Heidelberg, 1999. Springer-Verlag.
ISBN 3540663479.

[23] F. Koeune and François-Xavier Standaert. A tutorial on physical security and side-
channel attacks. In FOSAD, .

[24] Franço is Koeune and François-Xavier Standaert. A Tutorial on Physical Security
and Side-Channel Attacks, page 78–108. Springer-Verlag, Berlin, Heidelberg, . ISBN
3540289550.

[25] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Cryptology ePrint Archive, Report 2012/230, .

[26] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6), November . ISSN 0004-5411. doi: 10.1145/
2535925. URL https://doi.org/10.1145/2535925.

[27] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Cryptology ePrint Archive, Report 2012/230, . https://eprint.
iacr.org/2012/230.

[28] Isaiah Lankham Bruno Nachtergaele and Anne Schilling. The Gram-Schmidt Orthog-
onalization procedure. URL https://math.libretexts.org/@go/page/260. [Online;
accessed 2021-07-01].

[29] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice kems. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2021(2):37–60, . doi:
10.46586/tches.v2021.i2.37-60. URL https://tches.iacr.org/index.php/TCHES/

article/view/8787.

[30] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice kems. Cryptology
ePrint Archive, Report 2021/064, . https://eprint.iacr.org/2021/064.

[31] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. Quantum Info. Comput., 3(4):317–344, July 2003. ISSN 1533-7146.

[32] Jean-Jacques Quisquater. Electromagnetic analysis.

[33] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. Number ”not used” once - practical fault attack on pqm4
implementations of nist candidates. Cryptology ePrint Archive, Report 2018/211, .
https://eprint.iacr.org/2018/211.

46

https://doi.org/10.1145/2535925
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://math.libretexts.org/@go/page/260
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://eprint.iacr.org/2021/064
https://eprint.iacr.org/2018/211

[34] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. Generic
side-channel attacks on cca-secure lattice-based pke and kems. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(3):307–335, . doi: 10.13154/
tches.v2020.i3.307-335. URL https://tches.iacr.org/index.php/TCHES/article/

view/8592.

[35] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, page 84–93, New York, NY, USA, . Association for Computing Machinery.
ISBN 1581139608. doi: 10.1145/1060590.1060603. URL https://doi.org/10.1145/

1060590.1060603.

[36] Oded Regev. Lecture notes: Lattices in computer science. . URL https://cims.nyu.

edu/~regev/teaching/lattices_fall_2009.

[37] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978. ISSN 0001-
0782. doi: 10.1145/359340.359342. URL https://doi.org/10.1145/359340.359342.

[38] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509. ISSN
0097-5397. doi: 10.1137/S0097539795293172. URL https://doi.org/10.1137/

S0097539795293172.

[39] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. Exploring the
vulnerability of r-lwe encryption to fault attacks. In Proceedings of the Fifth Workshop
on Cryptography and Security in Computing Systems, CS2 ’18, page 7–12, New York,
NY, USA. Association for Computing Machinery. ISBN 9781450363747. doi: 10.1145/
3178291.3178294. URL https://doi.org/10.1145/3178291.3178294.

47

https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009
https://doi.org/10.1145/359340.359342
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/3178291.3178294

Appendix A

LPR scheme

Algorithm 12: LPR Key Generation

Input:
Output: Keypair (pk, sk)
s, e ∈ Rq ← X n;
a← Unq ;

b = as+ e;
return(pk = (a, b), sk = (a, s));

Algorithm 13: LPR Encryption

Input: Public key pk = (a, b), n− bit message m
Output: Ciphertext (u, v)
1: r, e1, e2 ∈ Rq → X n;
2: u = ar + e1;
3: v = br + e2 +mb q

2
c;

4: return (u, v);

Algorithm 14: LPR Decryption

Input: Secret key sk = (a, s), ciphertext (u, v)
Output: Message m
1: m

′
= v − us;

2: return Decode(m
′
);

48

Appendix B

Psudo-code of attack model 1

15
Algorithm 15: Attack Simulation

Output: Secret s
for i = 0; i < 3; i+ + do

for j = 0; j < 256; j + + do
c1 = (0x1, 0x0);
create ciphertext(i, (256− j) mod 256, c1, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

c5 = (0x16, 0x1);
create ciphertext(i, (256− j) mod 256, c5, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

c3 = (0x10, 0x1);
create ciphertext(i, (256− j) mod 256, c3, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

s[i][j] = −4;
else

s[i][j] = −3;

else
c7 = (0x21, 0x1);
create ciphertext(i, (256− j) mod 256, c7, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

s[i][j] = −2;
else

c8 = (0x3c7, 0x0);
create ciphertext(i, (256− j) mod 256, c8, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

s[i][j] = 0;
else

s[i][j] = −1;

else
c4 = (0x16, 0xf);
create ciphertext(i, (256− j) mod 256, c4, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

c6 = (0x21, 0xf);
create ciphertext(i, (256− j) mod 256, c6, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

s[i][j] = 1;
else

s[i][j] = 2;

else
c2 = (0x11, 0xf);
create ciphertext(i, (256− j) mod 256, c2, ciphertext) ;
decaps fault(ciphertext, t);
if t = 0 then

s[i][j] = 3;
else

s[i][j] = 4;

for i = 0; i < 3; i+ + do
s[i][0] = −s[i][0];

In the attack simulation algorithm (Algorithm 15) we use two functions create ciphertext()

49

and decaps fault(). Here using the function create ciphertext, we create a ciphertext =
(b′, cm) (may not be valid) such that the bi[(256− j)] = c[0] and others coefficients of b′ are
zero and each coefficient of cm is c[1].

Using the function decaps fault, we send the structured ciphertext to faulted decapsu-
lation oracle and t is the distingusher of two cases m′ = 0 and m′ = 1.

After running the Attack simulation algorithm we get a secret s, then we check each coef-
ficient si[j] with the actual secret. We see that both are the same. So our attack simulation
is successful.

50

51

Appendix C

Simulation Program of Model 2

Algorithm 16: Attack Simulation2

Input:
Output: Secret s
for i = 0; i < 3; i+ + do

for j = 0; j < 256; j + + do
c1 = 0x8e;
create ciphertext(i, (256− j) mod 256, c1, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

c2 = 0x11c;
create ciphertext(i, (256− j) mod 256, c2, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

s[i][j] = 0
else

c3 = 0x10a;
create ciphertext(i, (256− j) mod 256, c3, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

s[i][j] = 1;
else

s[i][j] = −1;

else
c4 = 0x5f ;
create ciphertext(i, (256− j) mod 256, c4, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

c7 = 0x73;
create ciphertext(i, (256− j) mod 256, c7, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

s[i][j] = 2;
else

s[i][j] = −2;

else
c5 = 0xc7;
create ciphertext(i, (256− j) mod 256, c7, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

c8 = 0x1ba;
create ciphertext(i, (256− j) mod 256, c8, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

s[i][j] = −4;
else

s[i][j] = 4;

else
c6 = 0x1a2;
create ciphertext(i, (256− j) mod 256, c6, ciphertext) ;
decaps fault2(ciphertext, t);
if t = 0 then

s[i][j] = 3;
else

s[i][j] = −3;

for i = 0; i < 3; i+ + do
s[i][0] = −s[i][0];

52

In the attack simulation2 algorithm (Algorithm 16) we use two functions create ciphertext()
and decaps fault2(). Here using the function create ciphertext, we create a ciphertext =
(b′, cm) (may not be valid) such that the bi[k] = c1, where k depend on j and others coeffi-
cientsof b′ are zero and each coefficient of cm is 0. Using the function decaps fault2, we
send the structured ciphertext to faulted decapsulation oracle and t is the first coefficient of
decrypted message.

After running the Attack simulation algorithm2 we get a s, then we check each coeffi-
cient si[j] with actual secret up to 13 bits. We see that both are the same. So our attack
simulation is successful.

53

	Abstract
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	Introduction
	Motivation
	Our contribution
	Thesis Outline

	Preliminaries:
	Lattice
	Shortest Vecor Problem (SVP)
	 Closest Vector Problem (CVP)OdedLecture
	Relation between the above lattice problems:
	Algorithm for solving the SVP problem:
	 Learning with Error (LWE) Problem and it's varients:
	 Learning with rounding (LWR) and its variants:

	Side Channel Attacks:
	Electromagnetic Attack
	Fault Attacks
	Fault injection techniques
	Example of Fault Attack
	Timing Attack

	Conclusion

	Description of SABER
	Saber.PKE
	Construction
	Parameter set for Saber.PKE

	Saber.KEM
	Construction
	Parameter set for Saber.KEM

	Conclusion

	Attack Models and Description
	Previous Fault Attacks on Lattice-based KEMs
	Attack 1
	Attack 2
	Attack 3

	Preliminaries before our attack
	Our Proposed Attack Model 1
	Idea of the attack:
	Fault assumption
	Method of attack
	To retrieve the full secret s
	Total number of queries

	Our Proposed Attack Model 2
	 Idea of the attack:
	Assumption
	Method of attack
	To retrieve the full secret s
	Total number of queries

	Generalize version of model 2
	Total number of queries

	Our Proposed Attack Model 3
	Observation
	Fault Assumption
	Structure of Attack Simulation Model

	Conclusion:

	Conclusion and future work
	Conclusion
	Future work

	LPR scheme
	Psudo-code of attack model 1
	Simulation Program of Model 2

