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Abstract

Manifold Learning has been widely exploited in the arena of data analysis, machine
learning and pattern recognition. The main assumption behind manifold learning is that
the input high-dimensional data lies intrinsically on a low-dimensional manifold. This tech-
nique is to be used for non-linear dimensionality reduction. Although there are very well
known dimensionality reduction techniques are already designed such as Principal Compon-
ent Analysis (PCA), Independent Component Analysis, Linear Discriminant Analysis, and
others but they are unable to capture the non linear structure of the data so that researchers
are interested in this area. After that many manifold learning algorithms are developed such
as Multidimensional Scaling (MDS), Locally linear embedding (LLE), Hessian Eigenmap-
ping, t-distributed Stochastic Neighbor Embedding (t-SNE) etc. Multidimensional Scaling
is one of them that seeks vectorial representation of the data points given the pairwise
distance between the data points.There are two variant of Multidimensional Scaling one is
metric Multidimensional Scaling and other is non-metric Multidimensional Scaling. Our
interest on metric Multidimensional Scaling. The methodologies that are available to im-
plement classical metric-MDS boil down to finding eigen values and eigen vectors of some
matrix and which is computationally difficult for large dimensional matrix that motivate
us to implement it using neural network setup. We are implementing it using Artificial
Neural Networks and experiment it on famous Iris and Wine datasets and compare our
results with some existing methods on few other datasets also.

Keywords: Artificial Neural Networks, MDS, LLE, Sammon mapping, MLP, back-
propagation.
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1 Introduction

Human participation plays a vital role in most decisions making cases once we are analyzing the
information. Although there are huge storage capacity and computational power of computers
is accessible in modern time but they are unable to totally replace the flexibleness, perceptual
abilities, creativity, and general knowledge of human being. We must have a correct interaction
between human and computers to perform the tasks. The real world data we are using in
sciences and technologies are often high dimensional which makes it very difficult to understand
the data and extract patterns. One can achieve such an understanding by making a visual
insight into the data set. Visual data mining is one of the field of data science where the
human is integrated in the data analysis process. It mainly covers data visualization and
graphical presentation of information. The idea behind the visualization is to provide data
in some visual form so that we can understand them, gain insight into the data, draw some
conclusions and able to take some decisions. Visualization also helps us to find clusters, outliers,
or various regularities in the data. In many cases, the dataset used in the experiment is high-
dimensional but it may happen that the data lies near a lower-dimensional manifold i.e. the
high-dimensional data may be some indirect measurements of an underlying source, which
may not be measured directly. To learn low-dimensional manifold from high-dimensional data
is same as to learn the underlying source. This learning is called manifold learning and it
is one of dimensionality reduction technique used in information processing fields including
pattern recognition, data compression, machine learning, and database navigation. One of
such manifold learning techniques is multidimensional scaling. The aim of multidimensional
scaling (MDS) is to project high dimensional data points in a low dimension, often two or
three-dimensional space such that the pairwise distance between points preserved. Although
any distance measure can be used but we use Euclidean distance as it is the most popular one
given its ease of interpretation and calculation and this distance is used in classical MDS.
Amongst the earliest approaches to MDS is so-called classical multidimensional scaling, also
named as Torgerson-Gower scaling after Torgerson (1958) and Gower (1966). They had showed
that given high dimensional points a low dimensional representation will be found through
an eigendecomposition. Classical MDS is closely associated to principal component analysis.
Kruskal provide a new way to calculate the parameters for the MDS model by minimizing a
stress function. His approach has become the foremost widely used version of MDS. But the
mathematical optimization problem underlying least-squares MDS isn’t trivial. Afterthat, Jan
de Leeuw had made many alternative theoretical contributions to the numerical algorithm to
implement MDS. He had introduced the SMACOF algorithm to implement MDS. In this thesis
we introduce a new way to implement MDS by training artificial neural networks.

2 Activation functions

Activation functions are used at each node in a neural network. After appropriately weighing
the inputs, the result is passed through the activation function which determines the output.
The activation functions are mainly needed to introduce non linear nature in the network so
that the network can capture complex patterns. In addition, the use of the activation function
limits output of the neuron to a certain range for some cases. Here I will introduce some
commonly used activation functions used in neural networks.

2.0.1 Various types of activation functions

• Threshold function: The threshold function is a binary step function sometimes used
to quantify the output of a neuron in the output layer. In this, we consider a threshold
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value and if the value of net input say x is greater than the threshold then the neuron is
activated. An example

a(x) =

{
0 x < 0

1 x ≥ 0
(1)

• Logistic/Sigmoid: Logistic or Sigmoid function is defined as

ak(x) =
1

1 + e−kx
(2)

where k is a parameter that determines the steepness of the function.

• Tanh: Hyperbolic tangent function is defined as

a(x) =
ex − e−x

ex + e−x
(3)

• ReLU: The Rectified Linear Unit or ReLU can be defined as

a(x) =

{
0 x < 0

x x ≥ 0
(4)

• Leaky ReLU: Leaky ReLU can be defined as

aα(x) =

{
αx x < 0

x x ≥ 0
(5)

where α is a parameter.

• Softmax: Softmax function is defined as

a : Rk → [0, 1]k given by a(~x)i =
exi∑
k e

xk
(6)

where ~x = (x1, x2, . . . , xk) ∈ Rk.

• GELU: GELU is defined as

GELU(x) = xφ(x) = 0.5x(1 + erf(
x√
2

) (7)

Here φ is the cumulative distribution of N(0, 1) and erf(z) = 2√
π

∫ z
0
e−t

2
dt.

3 Artificial Neural Networks

Neural networks are extensively used in machine learning that try to mimic human nervous
system. There are many sorts of artificial neural networks used as a computational tool like
Kohonen Self Organizing Neural Network, Radial basis function Neural Network, Modular
Neural Networks, Feedforward Neural Network, Convolutional Neural Network(CNN), Recur-
rent Neural Network(RNN), LSTM etc. In this section I will describe two variants of feedfor-
ward neural network architectures single-layer perceptron networks and multilayer perceptron
networks. First I will discuss on single layer perceptron as it is the simplest of the architectures
and this helps to understand multilayer perceptron networks better.
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Figure 1: The left side represents the Sigmoid function and the right represents the Tanh function

Figure 2: The left side represents the ReLU and GELU functions and the right represents the Lekey ReLU
function with α = 0.01

3.1 Single layer perceptron network

Single layer perceptron is the first proposed neural network model. The model has two layers
input layer(layer 0) and output layer(layer 1). Here input vector is multiplied with weight
vector first, then passes through an activation function to get an output. The architecture of a
single layer perceptron is given in Figure 3.

Figure 3: Single layer perceptron with threshold function as activation

3.2 Multilayer perceptron network

A multilayer perceptron network(MLP) is an extension of single layer perceptron having more
layers. The hidden layers are positioned between the input layer and the output layer. The
prediction and classification are performed by the output layer. The weights in the MLP are
trained with the back propagation learning algorithm.

Now I will introduce mathematical representation for an MLP-network. Suppose we have a
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Figure 4: Multilayer perceptron layer with single hidden layer

multilayer neural network with L layers, marked by l = 0, 1, . . . , L, where l = 0 denotes inputs,
l = 1, . . . , (L− 1) denotes hidden layers, and l = L denotes the Lth layer (outputs). Each layer
l has nl neurons. The inputs to neurons in the lth layer correspond to the outputs of neurons in
the layer (l− 1). Therefore, the output value y(l)

j of the jth neuron in the lth layer is computed
as follows:

y
(l)
j = f(a

(l)
j ) = f(

nl∑
k=0

w
(l)
jk y

(l−1)
k ), j = 1, . . . , nl, l = 1, . . . , L. (8)

where f(.) is the activation function of neurons, w(l)
jk are the weights of connections between

the kth neuron in the layer (l − 1) and the jth neuron in the lth layer, andy(l)
0 = 1 and a

(l)
j

represents the input to the jth neuron in the lth layer. Note that y(0)
k = xk, k = 0,. . . , n0. The

perceptron with one hidden layer of neurons is shown in Fig−4.

3.2.1 Training of an MLP

To train a MLP we update weights by optimizing a loss function. One of the most well-known
training algorithms is named as backpropagation algorithm and we discuss it bellow.
Backpropagation: The network learning problem is to determine optimal weights

W = {w(l)
jk , j = 1, . . . , nl, k = 0, . . . , nl − 1, l = 1, . . . , L}.

The back-propagation algorithm starts from initializing the weights to small random values,
random choice of an input vector Xi from {X1, X2, . . . , Xm}, and propagation of the signal
forward through the network. The output vector Yi = (yi1, yi2, . . . , yid) for the input vector Xi

is computed and the error function becomes Ei(W ) = 1
2

∑d
j=1(yij−tij)2 where Ti = (ti1, . . . , tid)

is the target vector associated to Xi on the output layer L. If the value of the error function
Ei(W ) is non zero, the weightsW need to be updated. Compute the error δ(L)

j of the jth neuron
in the output layer

δ
(L)
j = f ′(a

(L)
j )(yij − tij)

where f ′ is the derivative of the activation function f . Compute the error δ(l)
k of the kth neuron

for the preceding layers by propagating the errors backward:

δ
(l)
k = f ′(a

(l)
k ) =

∑nl+1

s=1 w
(l+1)
sk δ

(l+1)
s

For the hidden layer update the weights using

∆w
(l)
jk = −ηδ(l)

j y
(l−1)
jk
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where η is the learning rate.

4 Dimensionality reduction

The dimensionality reduction techniques are taking high dimensional data as input and map
those high dimensional data to a lower dimensional space. Visualizing data that has more than
three dimension is problematic therefore the data we want to visualize must have dimension
less or equal to three. Here we will discuss some of the dimensionaity reduction techniques
such as Principal Component analysis(PCA), Sammon mapping, Locally linear Embedding,
and Multidimensional scaling.

4.1 Principal Component analysis(PCA)

Principal component analysis or PCA is the most widely used technique for dimensionality
reduction. It is concerned with explaining the variance-covariance structures of a set of variables
through a linear combinations of those variables which are called principal components. Given
a set of n variables X1, X2, . . . , Xn the corresponding principal components PC1, PC2, . . . , PCn
are orthogonal linear combination of X1, X2, . . . , Xn i.e.

PC1 = a11X1 + a12X2 + · · ·+ a1nXn

PC2 = a21X1 + a22X2 + · · ·+ a2nXn

. . . . . .
PCn = an1X1 + an2X2 + · · ·+ annXn

such that PC1 has the highest variance, called first principal component, PC2 has the second
highest variance, called second principal component and so on. Although there are n principal
components corresponding to n variables X1, X2, . . . , Xn but in practice much of the variablity
can be captured by a small number k of principal components.

4.2 Sammon mapping

Sammon mapping or Sammon projection is an algorithm that maps a high-dimensional space
to a space of lower dimensionality such that pairwise distances in high-dimensional space is
as close as possible to pairwise distances lower-dimension projected space. It is a non linear
reduction technique. Suppose the distance between ith and jth objects in the original space
by d∗ij and the distance between their projections by dij. Sammon’s mapping aims to minimize
the following error function, which is calleds Sammon’s stress:

E = 1∑
i<j

d∗ij

∑
i<j

(d∗ij−dij)2

d∗ij
.

The minimization can be done using steepest descent or using some iterative methods. Many
implementations prefer to use the first Principal Components as a starting configuration.

4.3 Locally Linear Embedding

Locally Linear Embedding (LLE) another kind of dimensionality reduction technique. The
idea behind LLE is to find a set of weights that perform local linear interpolations that closely
approximate the data. The steps in LLE are

• Define neighbors for each data point Xi
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• Define weights that allow neighbors to interpolate original data accurately (represented
as a matrix W)

• Given those weights, find new data points Yi’s that minimize interpolation error in lower
dimensional space

Here the weight matrix W in second step is obtained by minimizes the cost function

ε(W ) =
∑

i ‖Xi −
∑

jWijXj‖2

subject to the constraints that Wij = 0 if Xj is not a neighbor of Xi and that the rows of the
weight matrix sum to one:

∑
jWij = 1.

4.4 Multidimensional Scaling

Multidimensional scaling (MDS) is a non linear dimensionality reduction techniques for gener-
ating a spatial representation out of the proximities of objects. The main principle of multidi-
mensional scaling is that distances of datapoints in the representation that the method creates
should be as close the real distances as possible.
Multidimensional scaling can be divided into metric and non-metric multidimensional scaling.
A particular case of metric multidimensional scaling is classical multidimensional scaling where
the distance is Euclidean distance. Here I will briefly discuss about classical multidimensional
scaling as our work is motivated from here and also introduce about non-metric multidimen-
sional scaling.

4.4.1 Classical Multidimensional Scaling

Classical MDS can be considered the first algebraic approach to MDS. It has been independently
proposed by several authors: Torgerson (1958), Gower (1966), and Kloek and Theil (1965).
Given a distance matrix DX , classical MDS attempts to find t data points y1, . . . , yk in d
dimensions, such that if dYij denotes the Euclidean distance between yi and yj, then the matrix
DY is similar to the matrix DX . Here we minimize the following stress

min
Y

k∑
i=1

k∑
i=1

(dXij − dYij)2 (9)

where dXij = ||xi − xj|| and dYij = ||yi − yj||.
The distance matrix DX can be converted to a kernel matrix K in the following way

K = −1
2
HDXH

where H = I − 1
k
11T where 1 is the column vector of all 1’s.

Now we have the following theorem
Theorem: Let D be a distance matrix. If K is define as above then D is Euclidean if and
only if K is positive semi-definite.
Now our distance matrices DX and DY are Euclidean therefore the corresponding kernel
matrices are positive semi-definite. We know that if K is positive definite then K can be
written as K = T TT. Then the stress in equation (10) can be reduce to

min
Y

k∑
i=1

k∑
i=1

(xTi xi − yTi yi)2 (10)

This expression can be converted to the following trace
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minY Tr(X
TX − Y TY )2

Now consider the singular value decomposition of XTX and Y TY which are given by XTX =
V ΛV T and Y TY = QΛ̂QT . Then the cost function reduce to

minQ,Λ̂ Tr(V ΛV T −QΛ̂QT )2

= minQ,Λ̂ Tr(Λ− V TQΛ̂QTV )2

= minG,Λ̂ Tr(Λ−GΛ̂GT )2

= minG,Λ̂ Tr(Λ
2 +GΛ̂GTGΛ̂GT − 2ΛGΛ̂GT )

where G = V TQ.
Now for fixed Λ̂ one can minimize for G and the result is G = I.
So, the cost function becomes minΛ̂ Tr(Λ

2 + Λ̂2 − 2ΛΛ̂) = minΛ̂ Tr(Λ− Λ̂)2

To make the two matrices Λ and Λ̂ similar as possible one can choose top t diagonal elements
of Λ as Λ̂.
Now, from G = V TQ we have Q = V as G = I. Then Y = Λ̂

1
2Q = Λ̂

1
2V.

Thus classical multidimensional scaling boils down to finding the eigen values and eigen vectors
of the kernel matrix corresponding to DX .

4.4.2 Non Metric Multidimensional Scaling

In contrast to metric MDS, non metric multidimensional scaling dealing with non-metric data
which means that the dissimilarities cannot be interpreted as distances i.e. the dissimilarities
given in some ordinal scale. The standard non-metric multidimensional scaling problem is
as follows: Given a symmetric matrix with zero diagonals ∆ = [δij]nxn of dissimilarities find
Y = [yi] ∈ Rdxn where columns are points in projected space such that

∀i, j, k, l, δij < δkl ⇔ ||xi − xj||22 < ||xk − xl||22 (11)

5 Our Methodology

I have already discussed the multilayer perceptron networks and the multidimensional scaling
in details in previous sections. Here I will combine those two concepts to implement MDS.
I have chosen the MLP model for the purposes of construction for the reason that it can be
expressed in a very compact algebraic form and it has universal approximation properties. We
know that the aim of MDS is find an embedding of a given set of points such that the pairwise
distance between points are preserved. We have already seen that classical MDS boils down
eigendecomposition problem which is computationally difficult for large dimensional matrix.
Here we will approximate this linearity by introducing non linearity with help of neural net-
works. Now I will present the idea of our works.
Given a setX = {x1, x2, . . . , xn} of n d-dimensional points we try to find points Y = {y1, y2, . . . , yn}
in k-dimensional space where k << d such that

||xi − xj||2 ≈ ||yi − yj||2 ∀i 6= j

which is same as to minimize the following objective function∑
i<j(||xi − xj||22 − ||yi − yj||22)2

In our work, the embedded points yi’s are the outputs of a multilayer perceptron network N
corresponding to the point xi’s i.e. yi = N(xi). To train the network, each pair (xi, xj), where
i < j of multidimensional points feed to the network and the error Eij = (||xi−xj||22−||yi−yj||22)2

is calculated. After feeding all the pairs the total error becomes

12



Etotal =
∑

i<j Eij =
∑

i<j(||xi − xj||22 − ||yi − yj||22)2

We have considered a scaled version of the above loss function for our work which is given
bellow

E = 1∑
i<j ||xi−xj ||22

Etotal = 1∑
i<j ||xi−xj ||22

∑
i<j(||xi − xj||22 − ||yi − yj||22)2

we have used stochastic gradient decent with momentum to update the weights in the network.
We also use hyperbolic tangent activation function in our network. Now, I will discuss the
weight update rules to train the network.
Suppose the network has L layers and the l-th layer contains nl number of nodes for l =
1, 2, . . . , L. The inputs are the given data points xi’s. Let w(l)

ji is the weight between the jth
neuron in the lth layer and the ith neuron in the layer (l− 1). The weight w(l)

j0 is the bias term.
Let y(l)

j be the output of the j-th neuron of the l-th layer. Then

y
(l)
j = f(a

(l)
j ) = f(

nl−1∑
i=0

w
(l)
ji y

(l−1)
i ) (12)

where f is the activation function. The error Epq corresponding to the points xp and xq is given
by

Epq = c(||xp − xq||22 − ||yp − yq||22)2

where c = 1∑
i<j ||xi−xj ||22

.

For the last layer i.e. l = L,
∂Epq

∂w
(L)
kj

= c.2(||xp − xq||22 − ||yp − yq||22).(−2)(y
(L)
pk − y

(L)
qk ).(f ′(a

(L)
pk )y

(L−1)
pj − f ′(a(L)

pk )y
(L−1)
qj )

= -4c(||xp − xq||22 − ||yp − yq||22)(y
(L)
pk − y

(L)
qk )(f ′(a

(L)
pk )y

(L−1)
pj − f ′(a(L)

qk )y
(L−1)
qj )

Now, f(z) = tanh(z). So, f ′(z) = 1− tanh2(z) = 1− f(z)2.
Then, f ′(a(L)

pk ) = 1− y(L)
pk

2, and f ′(a(L)
qk ) = 1− y(L)

qk
2.

Therefore,
∂Epq

∂w
(L)
kj

= −4c(||xp − xq||22 − ||yp − yq||22)(y
(L)
pk − y

(L)
qk )((1− y(L)

qk
2)y

(L−1)
pj − (1− y(L)

qk
2)y

(L−1)
qj )

Let,

δ
(L)
k (p, q) = −4c(||xp − xq||22 − ||yp − yq||22)(y

(L)
pk − y

(L)
qk )

∆
(L)
kj (p) = δ

(L)
k (p, q)(1− y(L)

pk
2)

∆
(L)
kj (q) = δ

(L)
k (p, q)(1− y(L)

qk
2)

So, ∂Epq

∂w
(L)
kj

= ∆
(L)
kj (p)y

(L−1)
pj −∆

(L)
kj (q)y

(L−1)
qj

Thus, ∆w
(L)
kj = −η ∂Epq

∂w
(L)
kj

= −η(∆
(L)
kj (p)y

(L−1)
pj −∆

(L)
kj (q)y

(L−1)
qj ).

For the hidden layer l = L− 1, L− 2, . . . , 1,

∆w
(l)
ji = −η ∂Epq

∂w
(l)
ji

= −η(∆
(l)
ji (p)y

(l−1)
pi −∆

(l)
ji (q)y

(l−1)
qi )

where ∆
(l)
ji (p) = δ

(l)
j (p)(1− y(l)

pj
2) and ∆

((l)
ji (q) = δ

(l)
j (q)(1− y(l)

qj
2).

Also,

13



δ
(l)
j (p) =

∑
k ∆

((l+1)
kj (p)w

((l+1)
kj and δ(l)

j (q) =
∑

k ∆
((l+1)
kj (q)w

((l+1)
kj .

Now, we are using stochastic gradient decent with momentum for updating the weights so the
weight update rules are becomes

∆w
(l)
ji (t) = −η ∂Epq

∂w
(l)
ji

+ α∆w
(l)
ji (t− 1)

∆w
(l)
ji (t) = −η(∆

(l)
ji (p)y

(l−1)
pi −∆

(l)
ji (q)y

(l−1)
qi ) + α∆w

(l)
ji (t− 1)

In our experiment η takes values from {0.01, 0.001} and α takes values from {0.7, 0.8, 0.9}.
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6 Experiments and results

The first step is training the Multilayer perceptron network. For the traning we must have
sufficient amount of data points for input and the corresponding distances of the data points
in the original space. But we can calculate the distances by using our desire metric from the
data points in the original space. We can calculate the distances for the outputs in the same
way. After we trained the network, the MLP can be given data points from the original space
as an input and the perceptron transforms these points into the projected space space. For the
case of successful training the transformation should preserve the distances as well as possible.
In each layer of the network the weights are randomly initialized that may results in diffrent
stress values. For lower stress value we get better performance of the network.

In this section we will discuss about three experiments and the corresponding results. The
first one is a simple linear transformation from three dimensions into two dimensions. The
second experiment is a classification problem on the basis of the well-known Iris flower data set
introduced by R.A. Fisher. The last experiment is also a classification problem but using the
wine data set having larger number of attributes. We also give some comparative results on
various datasets at the end of this section.

6.1 Results on diagonal data

In this experiment we simulated data from the diagonal of a unit cube and project the data into
two dimension. We train the MLP by taking 25 simulated samples. The training set is defined as

Xtrain =


0.04 0.04 0.04
0.08 0.08 0.08
. . . . . . . . .
1.00 1.00 1.00



Figure 5: Training data Xtrain
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Figure 6: Visualization of diagonal data for number of nodes in hidden layer 1(left), 2(right) respectively

Figure 7: Visualization diagonal data for number of nodes in hidden layer 3(left), 4(right) respectively

The corresponding 25x25 distance matrix is calculated from Xtrain and represented by the
matrix D. For error calculation we only need to consider upper triangular part of the distance
matrix.
After training the weights the original inputs Xtrain were entered to the trained network. We
also generated a test set Xtest to check our model performance. Xtest nothing but Xtrain−0.02.

Xtest =


0.02 0.02 0.02
0.06 0.06 0.06
. . . . . . . . .
0.98 0.98 0.98


We also feed the test set to the trained network. We mark the training point by red dots and
test points by blue stars.

Figure 8: Visualization diagonal data for number of nodes in hidden layer is 5

16



The visualized results show the rotation and location of points varies notably. Artificial neural
network generates the initial weights randomly so if we train the network twice with the same
training data we will get different weights both times. Therefore, when looking the visual-
ization of the results one must not be confused by the values of location or by the different
rotation. Instead one should concentrate on on the fact that pairwise distances between points
are preserved.
From the visualization it is clear that the projected points form a straight line most of the cases
and the test points are located in between the output of the training data which is desirable.
Even when the size of the hidden layer is only one, the results seem correct. As the results
seem promising so it is reasonable to carry on into the more meaningful experiments.

6.2 Results on iris dataset

The Iris data set (Fisher 1936) is a classification dataset consisting of 150 samples and three
classes: Iris Setosa, Iris Versicolour, and Iris Virginica with 50 samples from each class. Each
sample has four numerical attributes, which are sepal length, sepal width, petal length and petal
width. For our experiment we consider the standardized Iris data and have done 80−20% split
of the dataset into training set and test set. The dimensionality reduction was performed
separately to both 2D and 3D.

Here are the visualized results of the experiment conducted on the Iris data set for single hidden
layer with different size of nodes. ’o’-marks indicate the network output with the data used for
training and ’*’-marks indicate the network output for the testing set. The color indicates the
class of the flower (purple = Iris Setosa, blue = Iris Versicolour, yellow = Iris Virginica).

From the visualization result in 2D, we found that Iris Setosa can be seen clearly apart from
the other two. Versicolour and Virginica are overlapping a little bit but they can be easily
distinguished from each other. The results of 3D case are very similar to ones in 2D. For only
one node in hidden layer and we are projecting data into two dimension, the network output
forms a completely straight line. Similar effect can be observed in the case of projecting the
data into 3D.

Figure 9: Visualization of Iris data for number of nodes in hidden layer 1(left), 2(right) respectively

6.3 Results on wine dataset

The wine data set has thirteen numerical variables: alcohol, malic acid, ash, alcalinity of ash,
magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity,
hue, OD280/OD315 of diluted wines, and proline. The data set contains 178 instances from
three different classes. The classification is made based on the type of wine. All wines were
produced in the same region but by using different varieties. or our experiment we consider the
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Figure 10: Visualization of Iris data for number of nodes in hidden layer 3(left), 4(right) respectively

Figure 11: Visualization of Iris data for number of nodes in hidden layer 1(left), 2(right) respectively

Figure 12: Visualization of Iris data for number of nodes in hidden layer 3(left), 4(right) respectively
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standardized Iris data and have done 80%− 20% split of the dataset into training set and test
set. The dimensionality reduction was performed separately to both 2D and 3D.

The wine data set is usually used by choosing only few variables at a time for visualization so
that the differences between the classes might be clear to see. However, in this case where we
try to visualize thirteen variables in 2D it is only anticipated that results do not distinguish
the classes clearly. Fortunately the results show some kind of concentrations instead of total
chaos. Here are the visualized results of the experiment conducted on the Iris data set for
single hidden layer with different size of nodes. ’o’-marks indicate the network output with the
data used for training and ’*’-marks indicate the network output for the testing set. The color
indicates the class of the flower (yellow = class0, blue = class1, yellow = class2).

From the visualization result in 2D, we found that class0 can be seen clearly apart from the
other two but class2 and class3 are overlapping a little bit. Similar effect can be observed in
the case of projecting the data into 3D.

Figure 13: Visualization of wine data for number of nodes in hidden layer 1(left), 2(right) respectively.

Figure 14: Visualization of wine data for number of nodes in hidden layer 3(left), 4(right) respectively.
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Figure 15: Visualization wine data for number of nodes in hidden layer 1(left), 2(right) respectively.

Figure 16: Visualization of wine data for number of nodes in hidden layer 3(left), 4(right) respectively.

Figure 17: Visualization of wine data in 2d and 3d with 5 nodes in hidden layer
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6.4 Some comparative results

As we are interested in dimensionality reduction then one best way to check model performance
is by plotting our original data into lower dimension. We have visualized the data into two
dimension by using various visualization techniques such as Sammon mapping, classical MDS,
PCA, LLE and MDS(ours) methods and the comparison results are given bellow.

6.4.1 Comparative result on Iris dataset

Here, we have visualized Iris dataset by using Sammon mapping, classical MDS, PCA, LLE
together with ours MDS methods. In each method, Iris Setosa(purple) forms a purely different
cluster whereas there is a slightly overlap between the other two clusters of points of classes
Iris Versicolour(blue) and Iris Virginica(yellow). From the figure it is clear that our method
provide the best visualization compared to the other methods.

Figure 18: Visualization of Iris data using Sammon, MDS, PCA, LLE and MDS(ours)
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6.4.2 Comparative result on Wine dataset

The visualization of the wine dataset by using Sammon mapping, classical MDS, PCA, LLE
and MDS(ours) is given in the bellow figure. From the figure it is clear that LLE performs very
poorly on wine data. PCA performs better than LLE but not giving better result like classic
MDS and Sammon mapping. There is a slight overlap between the classes in each visualization
result but our method outperform over others.

Figure 19: Visualization of Wine data using Sammon, MDS, PCA, LLE and MDS(ours)
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6.4.3 Comparative result on digits dataset

This dataset is made up of 1797 8x8 images. Each image is a hand-written digit. In order to
utilize an 8x8 figure like this, we transform each image into a feature vector with length 64.
Although the dataset contains ten classes but in our experiment we only consider six classes,
from digits 0 to 5, to get a clear representation of the classes. A small section of the data and
the visualization results by different techniques are given bellow

Figure 20: Some points in digits dataset

Figure 21: Visualization of digits data using Sammon, MDS, PCA, LLE and MDS(ours)
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6.4.4 Comparative result on Sphere data

This dataset is a synthesized dataset of 1000 sample points generated from the surface of a unit
sphere. This is not a labelled dataset unlike other datasets of our experiment. A pictorial view
of the dataset is given bellow.

Figure 22: Sphere data

Like other datasets, we visualize this dataset into two dimension by various techniques same
as before. From the visualization we can conclude that our method gives similar result like
sammon mapping and classical MDS but perform much better than PCA and LLE.

Figure 23: Visualization of sphere data using Sammon, MDS, PCA, LLE and MDS(ours)
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7 Conclusion

The experiments we have done above give some proof that the our method does indeed achieve
its goals. From the comparison results we can conclude that our method perform well in
many casses. Nevertheless, the algorithm needs to be further examined and verified. The four
experiments in the thesis do not give accurate results on the trustworthiness of the algorithm.
As we are using multilayer perceptron network in our work then an important part is choosing
the appropriate number of neurons in hidden layers which is not automatically determined by
our method. One of the disadvantage of MLP is the number of parameters can grow very high
if we increase the number of nodes in hidden layers or the number of hidden layers that makes
computations difficult and time consuming. Another drawback of MLP is that a trained network
cannot be trained with new data without starting the whole process from the beginning. Also
layer weights generate randomly that take longer time for convergence. For future work, it will
be interesting to see if we can use some pretrained networks to get faster convergence. Also,
it will be interesting to see how our model performs on large dimensional datasets like image
datasets.
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