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ABSTRACT

Graph traversal algorithms like breadth-first search and depth-first search typically produce

an ordering of the vertices of the input graph. Properties of these vertex orderings often provide

new insights about the structure of the graphs under consideration. The existence of vertex

orderings that satisfy some special properties characterizes some well-known graph classes like

chordal graphs, comparability graphs and cocomparability graphs. Moreover, the availability of

such a characterization for a class of graphs often helps us obtain efficient recognition algorithms

for the class and also efficient algorithms for a multitude of optimization problems on graphs

belonging to the class. As a contribution to this line of research, we show how the vertex ordering

approach is useful in the study of some structural and algorithmic questions about graphs and

digraphs.

Threshold graphs are a class of graphs that have many equivalent definitions and have appli-

cations in integer programming and set packing problems. A graph is said to have a threshold

cover of size k if its edges can be covered using k threshold graphs. Let th(G) denote the least

integer k such that G has a threshold cover of size k. In 1977, Chvátal and Hammer observed

that th(G) ≥ χ(G∗), where G∗ is a suitably constructed auxiliary graph. They also asked the

question of whether there is any graph G such that th(G) > χ(G∗). Cozzens and Leibowitz

showed that for every k ≥ 4, there exists a graph G such that χ(G∗) = k but th(G) > k. Later,

Raschle and Simon settled this question for the case k = 2, by proving that for any graph G

such that χ(G∗) = 2, we have th(G) = χ(G∗). In the first part of this thesis, we show how the

lexicographic method of Hell and Huang can be used to obtain a completely new and, we believe,

simpler proof for this result. For the case when G is a split graph, our method yields a proof

that is much shorter than the ones known in the literature.

The problem of computing a minimum cardinality dominating set or absorbing set or kernel

(an independent and absorbing set of a digraph), and the problems of computing a maximum

cardinality independent set or kernel are all known to be NP-hard for general digraphs. In the

second part of the thesis, we explore the algorithmic complexity of these problems in the well

known class of interval digraphs. A digraph G is an interval digraph if a pair of intervals (Su, Tu)

can be assigned to each vertex u of G such that (u, v) ∈ E(G) if and only if Su ∩ Tv 6= ∅.

Many different subclasses of interval digraphs have been defined and studied in the literature

by restricting the kinds of pairs of intervals that can be assigned to the vertices. We observe

that several of these classes, like interval catch digraphs, interval nest digraphs, adjusted interval
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digraphs and chronological interval digraphs, are subclasses of the more general class of reflexive

interval digraphs – which arise when we require that the two intervals assigned to a vertex have

to intersect. Here we identify the class of reflexive interval digraphs as an important class of

digraphs. We show that while the problems mentioned above are NP-complete, and even hard to

approximate, on interval digraphs (even on some very restricted subclasses of interval digraphs

called point-point digraphs, where the two intervals assigned to each vertex are required to be

degenerate), they are all efficiently solvable, in most of the cases linear-time solvable, in the

class of reflexive interval digraphs. We also provide a vertex ordering characterization for the

class of reflexive interval digraphs and two structural characterizations for the class of point-

point digraphs. The results we obtain improve and generalize several existing algorithms and

structural results for subclasses of reflexive interval digraphs. Along the way, we also obtain

some new results for undirected graphs as well.

A vertex in a directed graph is said to have a large second neighborhood if it has at least as

many second out-neighbors as out-neighbors. The Second Neighborhood Conjecture, first stated

by Seymour, asserts that there is a vertex having a large second neighborhood in every oriented

graph (a directed graph without loops or digons). In the third part of the thesis, we extend

some results on this conjecture. It is straightforward to see that the conjecture is true for any

oriented graph whose underlying undirected graph is bipartite. We extend this by showing that

the conjecture holds for oriented graphs whose vertex set can be partitioned into an independent

set and a 2-degenerate graph. Fisher proved the conjecture for tournaments and later Havet and

Thomassé provided a different proof for the same using median orders of tournaments. Havet

and Thomassé in fact showed the stronger statement that if a tournament contains no sink,

then it contains at least two vertices with large second neighborhoods. Using their techniques,

Fidler and Yuster showed that the conjecture remains true for tournaments from which either

a matching or a star has been removed. Using the same tool of median orders, we extend this

result to show that the conjecture holds even for tournaments from which both a matching and

a star have been removed. This implies that a tournament from which a matching has been

removed contains either a sink or two vertices with large second neighborhoods.
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Chapter 1

Introduction

The origin of graph theory dates back to 18th century, when Euler, one of the greatest mathe-

maticians of all time, proposed an elegant solution to the famous Königsberg bridge problem. It

is quite interesting to see, how an answer to this simple puzzle has flourished into ‘graph theory’,

an important field of study in both mathematics and computer science. Its magical power to

embrace the connections between a family of objects paved the way for its use in several dis-

ciplines and real-world problems. In this work, we study a few problems in graph theory, that

can be approached via vertex orderings. Through the solution to these problems, we will try

to illustrate a couple of instances that shows how certain orderings of vertices help us to reveal

some interesting facts about some special classes of graphs.

1.1 Basic definitions and notations

First we define some basic concepts concerning undirected graphs. Let G = (V,E) (or simply

G) be an undirected graph, where V (G) denotes the vertex set of G and E(G) denotes the

edge set of G. An edge between two vertices u and v in G is denoted as uv. An edge that

is not present in G is called a missing edge (or non-edge). Any two vertices u and v are said

to be adjacent (or neighbors) in G if uv ∈ E(G); otherwise they are non-adjacent (or non-

neighbors). The neighborhood of a vertex u in G, denoted as NG(u) is defined as NG(u) = {v ∈

V (G) : uv ∈ E(G)}. Sometimes we omit the subscript in this notation, if the graph under

consideration is clear from the context. The degree of a vertex u in G is defined as |NG(u)|. A

vertex in G with zero degree is referred to as an isolated vertex in G. The complement G of

G is the graph with vertex set V (G) = V (G) and edge set E(G) = {uv : u, v ∈ V (G), u 6= v

and uv /∈ E(G)}. A graph H is said to be an induced subgraph of G if V (H) ⊆ V (G) and

1



CHAPTER 1. INTRODUCTION 2

E(H) = {uv ∈ E(G) : u, v ∈ V (H)}; we may also say that H is a subgraph induced by V (H).

For any set S ⊆ V (G), we denote by G[S] the graph induced by the set S in G. A path Pn

on n vertices is defined as the graph with V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {vjvj+1 : 1 ≤

j ≤ n− 1}. A cycle Cn on n vertices is defined as the graph with V (Cn) = {v1, v2, . . . , vn} and

E(Cn) = {vjvj+1 : 1 ≤ j ≤ n−1}∪{vnv1}. Given a graph H, a graph G is said to be H-free if G

contains no induced subgraph isomorphic to H. For example, a graph is said to be triangle-free,

if it does not contain C3 as an induced subgraph. A set S ⊆ V (G) is said to be a clique if all

the vertices in S are pair-wise adjacent in G. In particular, if V (G) itself is a clique, then G is

called a complete graph. A graph is said to be connected if any pair of vertices in it is connected

by a path. A maximal connected subgraph of a graph G is referred to as a component of G. A

graph G with V (G) = {u} ∪ {v1, v2, . . . , vn} is said to be a star if E(G) = {uvj : 1 ≤ j ≤ n}.

A graph G is called a bipartite graph if V (G) can be partitioned into two subsets A and B such

that no two vertices that belong to the same partition are adjacent; i.e. any edge in G has one

end-point in A and other end-point in B. Thus a bipartite graph is denoted as G = (A,B,E).

Given a bipartite graph G = (A,B,E), the bipartite complement of G is defined as the bipartite

graph Gb with V (Gb) = V (G) and E(Gb) = {ab : a ∈ A, b ∈ B and ab /∈ E(G)}. A bipartite

graph G = (A,B,E) is said to be a complete bipartite graph if all the vertices in A are adjacent

to all the vertices in B; i.e. E(G) = {ab : a ∈ A, b ∈ B}.

A set S ⊆ V (G) is said to be an independent set in G if all the vertices in S are pair-wise

non-adjacent in G. A proper coloring of V (G) is an assignment of colors to the vertices of G, such

that the set of vertices in each color class form an independent set in G. Note that any graph has

a trivial proper coloring using |V (G)| different colors. Therefore the interesting parameter here

is, the minimum number of colors needed for a proper coloring of V (G) known as the chromatic

number of G and is denoted as χ(G). It follows from the definition of a bipartite graph that,

graphs with chromatic number two are precisely the class of bipartite graphs. A set S ⊆ V (G) is

said to be a dominating set in G if for any v ∈ V (G)\S, there exists u ∈ S such that uv ∈ E(G).

Given a graph G, a set M ⊆ E(G) is said to be a matching if no two edges in M have a common

vertex as an end-point.

Directed graphs

Directed graphs (or digraphs) are graphs in which each edge has a direction on it. A digraph is

also denoted as G = (V,E) (or G) where V (G) (or V ) is the vertex set of G and E(G) (or E)

is the edge set (or arc set) of G. Analogous to the previous definitions for undirected graphs,
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we have the following: An edge (or arc) in a digraph, connecting two vertices u and v (possibly

u = v), and directed from u to v is denoted as (u, v). A loop in a digraph G is an arc of the form

(u, u) for some u ∈ V (G). A digraph G is said to be reflexive if all the vertices in G have loops

on them. For two distinct vertices u and v in a digraph G, if both the arcs (u, v) and (v, u) are

present in E(G) then we refer to them as a pair of symmetric arcs. A digraph G is said to be an

oriented graph if it does not contain any loops or symmetric arcs. Let H be an undirected graph.

The digraph obtained from H by replacing each edge of H by a pair of symmetric arcs is called

the symmetric digraph of H. On the other hand, given a digraph G, the underlying undirected

graph of G is defined to be the undirected graph H, with V (H) = V (G) and E(H) = {uv : u 6= v,

either (u, v) ∈ E(G) or (v, u) ∈ E(G)}. Refer to Figure 1.1 for an example of an undirected

graph and its symmetric digraph and an example of a digraph and its underlying undirected

graph. An oriented graph is called a tournament if its underlying undirected graph is a complete

graph. The complement of a digraph G is defined to be the digraph G with V (G) = V (G) and

E(G) = {(u, v) : u, v ∈ V (G) and (u, v) /∈ E(G)}. Let G be a digraph. A vertex v in G is said

to be an out-neighbor (resp. in-neighbor) of a vertex u if (u, v) ∈ E(G) (resp. (v, u) ∈ E(G)).

Two vertices u and v are said to be adjacent in G if either (u, v) or (v, u) is in E(G). The

out-neighborhood (resp. in-neighborhood) of a vertex u in G denoted as N+
G (u) (resp. N−G (u)) is

defined as N+
G (u) = {v : (u, v) ∈ E(G)} (resp. N−G (u) = {v : (v, u) ∈ E(G)}). The out-degree

of a vertex u in G is defined to be |N+
G (u)|. Let G be a digraph with V (G) = {v1, v2, . . . , vn}.

Then G is said to be a directed path if E(G) = {(vj , vj+1) : 1 ≤ j < n} and G is said to be a

directed cycle if E(G) = {(vj , vj+1) : 1 ≤ j < n}∪ {(vn, v1)}. A digraph G is said to be a acyclic

if it does not contain any directed cycle in it. Such digraphs are commonly referred to as directed

acyclic graphs (DAG).

Now here we consider the directed analogues of some concepts that we defined earlier for

undirected graphs. Let G = (V,E) be a directed graph. A set S ⊆ V (G) is said to be an

independent set of G, if for any two vertices u, v ∈ S, (u, v), (v, u) /∈ E(G). Therefore the

independent sets of a digraph G are exactly the independent sets of its underlying undirected

graph. On the other hand, we define a set S ⊆ V (G) to be a weak independent set of G, if

for any two vertices u, v ∈ S, either (u, v) /∈ E(G) or (v, u) /∈ E(G). It follows that, the weak

independent sets of a digraph G are precisely the independent sets of the undirected graph SG

with V (SG) = V (G) and E(SG) = {uv : u, v ∈ V (G) and (u, v), (v, u) ∈ E(G)}. A set S ⊆ V (G)

is said to be an absorbing (resp. dominating) set of G, if for any v ∈ V (G)\S, there exists u ∈ S

such that (v, u) ∈ E(G) (resp. (u, v) ∈ E(G)). Note that any absorbing set or dominating set
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an undirected graph H the symmetric digraph of H
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c d
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c d

a digraph G the underlying undirected
graph of G

Figure 1.1: The symmetric digraph and the underlying undirected graph

of a digraph G is a dominating set of its underlying undirected graph, but the converse is not

necessarily true. Given a digraph G, a set S ⊆ V (G) is said to be a directed feedback vertex set

of G if the digraph induced by the vertices in V (G) \S is a DAG (where loops are allowed to be

present). In other words, the removal of a directed feedback vertex set of a digraph G destroys

all the directed cycles (except for the loops) in G.

1.2 Some important classes of graphs

Interval graphs

Interval graphs are exactly the intersection graphs of a family of intervals on a real line. Formally

defining,

Definition 1 (Interval graphs). An undirected graph G is said to be an interval graph if there

exists a collection {Iu}u∈V (G), of closed intervals on the real line such that for any u, v ∈ V (G)

we have uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅. The collection {Iu}u∈V (G) is called the interval

representation of G.

See Figure 1.2 for an example of an interval graph and a corresponding interval representation

of it (note that the intervals are drawn on different horizontal lines just for ease of understanding).



CHAPTER 1. INTRODUCTION 5

a

b

cd

e
e

b

a d

c

Figure 1.2: An interval graph and a corresponding interval representation

Häjos [62] initiated the study of interval graphs, by posing the question of characterizing

graphs that are exactly intersection graphs of intervals on a real line. He proposed this problem

from a purely mathematical perspective. On the other hand, independently a well known molec-

ular biologist, Seymour Benzer [6] also asked a related question from an entirely different point

of view. During his investigations on the structure of genes, he wondered whether the internal

subelements of a gene are linked together in a linear order. A solution to this problem involved

finding whether the internal structure of a gene can be modeled as an interval graph. Later in-

terval graphs has became an extensively studied topic in the literature [11, 108, 55, 42, 116] and

have proven to be a very useful mathematical structure in modeling many real-world problems.

The following theorem gives a vertex ordering characterization for interval graphs.

Theorem 1 ([101]). A graph G = (V,E) is an interval graph if and only if V (G) has a linear

ordering < such that for any u, v, w ∈ V (G) where u < v < w, if uw ∈ E(G) then uv ∈ E(G)

(i.e. the configuration in Figure 1.3 is forbidden).

Proof. Suppose that G is an interval graph with an interval representation {Iu}u∈V (G). It is then

easy to verify that the ordering of the vertices with respect to the increasing order of the left end-

points of the intervals representing the vertices in G, satisfies the condition for <. On the other

hand, suppose that V (G) has a linear ordering < such that for any u, v, w ∈ V (G) where u <

v < w, we have uw ∈ E(G) implies that uv ∈ E(G). Let V (G) = {1, 2, . . . , n}. Let us assume

without loss of generality that <: (1, 2, . . . , n). Note that for each vertex j ∈ {1, 2 . . . , n}, the

vertices in N(j)∩{j+1, . . . , n} appear consecutively in <. Now for each vertex j ∈ {1, 2 . . . , n},

define I(j) = [j, k] where k = max{{j} ∪N(j) ∩ {j + 1, . . . , n}}. Then {Ij}j∈V (G) can be easily

verified to be an interval representation of G.

Note that throughout the thesis, for the figures containing dashed lines in it, we follow the

following terminology: a dashed line connecting u and v (resp. from u to v) indicates the

absence of the edge uv (resp. (u, v)) in the graph (resp. digraph). The edges of the graphs (resp.
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u v w

Figure 1.3: The forbidden configuration for a vertex ordering of interval graphs

digraphs) that are not drawn in such figures, may or may not be present in the corresponding

graph (resp. digraph).

Chordal graphs

Definition 2 (Chordal graphs). A graph is said to be chordal (triangulated) if G does not contain

any Ck where k ≥ 4, as an induced subgraph.

Gavril [51] proved that chordal graphs are exactly the intersection graphs of subtrees in a

tree. Chordal graphs can also be characterized using a special ordering of vertices called perfect

elimination ordering as defined below.

Definition 3 (Perfect elimination ordering). Let G be an undirected graph. A vertex v in G is

said to be a simplicial vertex in G if N(v) is a clique in G. A linear ordering (v1, v2, . . . , vn) of

vertices of G is said to be a perfect elimination ordering of G if for each i ∈ {1, 2, . . . , n}, the

vertex vi is a simplicial vertex in G[{vi, vi+1, . . . , vn}].

First Dirac [36] and later Lekkerkerker and Boland [80] proved that any chordal graph has a

simplicial vertex. Using this, Fulkerson and Gross [45] defined the perfect elimination ordering,

which yields an iterative procedure to recognize chordal graphs (note that chordal graphs are

closed under taking induced subgraphs). In fact they proved that chordal graphs are precisely

the graphs whose vertex set admits a perfect elimination ordering [45].

An undirected graph G is said to be weakly chordal (or weakly triangulated) if G does not

contain Ck or Ck for k ≥ 5, as an induced subgraph.

Cocomparability graphs:

The class of comparability and cocomparability graphs can be defined as follows.

Definition 4 (Comparability, Cocomparability graphs). An undirected graph G is said to be a

comparability graph if the edges in G admit a transitive orientation. i.e. edges of G can be oriented

to obtain an oriented graph H, such that for any three distinct vertices u, v, w ∈ V (H) = V (G),



CHAPTER 1. INTRODUCTION 7

u v w

Figure 1.4: The forbidden configuration for an umbrella-free ordering

(u, v), (v, w) ∈ E(H) implies that (u,w) ∈ E(H). The complement of a comparability graph is

called a cocomparability graph.

An umbrella-free ordering of a graph as defined below was first proposed by Damaschke [29]

and is a classical way to characterize cocomparability graphs.

Definition 5 (Umbrella-free ordering). Let G be an undirected graph. An ordering < of V (G)

is said to be an umbrella-free ordering of G if for any three distinct vertices u, v, w ∈ V (G) such

that u < v < w, uw ∈ E(G) implies that either uv ∈ E(G) or vw ∈ E(G) (i.e. the structure in

Figure 1.4 is forbidden).

We then have the following due to Damaschke [29].

Theorem 2 ([29]). An undirected graph G = (V,E) is a cocomparability graph if and only if G

has an umbrella-free ordering.

Proof. Suppose that G is a cocomparability graph. Then as G is a comparability graph, we have

that the edges in G admit a transitive orientation. Let GT be an oriented graph obtained by

transitively orienting the edges of G. Since any transitively oriented graph is a DAG, consider

< to be an ordering of the V (GT ) = V (G) = V (G) with respect to a topological ordering of

GT . Then we can verify that < satisfies the conditions for an umbrella-free ordering of V (G).

Otherwise, suppose that there exist u < v < w that forms an umbrella. Then uw ∈ E(G),

uv, vw /∈ E(G) =⇒ uw /∈ E(G), uv, vw ∈ E(G). Since < is a topological ordering, (u, v), (v, w) ∈

E(GT ). As (u,w) /∈ E(GT ), we have a contradiction to the fact that GT is transitively oriented.

On the other hand, assume that < is an umbrella-free ordering of G. Then < also has the

property that for u, v, w ∈ V (G) = V (G), if (u, v), (v, w) ∈ E(G) then (u,w) ∈ E(G). Now for

each edge xy ∈ E(G), orient xy from x to y if and only if x < y. In this way, we obtain an

orientation of edges of G, which can be easily verified to be a transitive orientation. This implies

that G is a comparability graph and therefore, G is a cocomparability graph.

Gilmore and Hoffman [54] characterized interval graphs to be exactly the graphs which are

both chordal and cocomparability. Interval graphs also have several other equivalent characteri-

zations [80, 45, 56].
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Tolerance graphs: The class of tolerance graphs was introduced by Golumbic and Monma [58]

as a generalization of interval graphs. Like interval graphs, tolerance graphs also arise from the

intersection of intervals on a real line but in a special way. The edges between the vertices

are determined by a measure of intersection region of their corresponding intervals. Informally

speaking, if the intervals corresponding to a pair of vertices can ‘tolerate’ the intersection between

them, then they are not connected by an edge. For an interval I = [x, y] on the real line (here

x, y ∈ R and x ≤ y), the length of the interval denoted by |I| is defined to be the value y − x.

The class of tolerance graphs can be formally defined as follows.

Definition 6 (Tolerance graphs). An undirected graph G is said to be a tolerance graph if each

vertex u in G can be assigned an interval Iu and a tolerance tu ∈ R+ in such a way that for

any two vertices u and v in G, uv ∈ E(G) if and only if |Iu ∩ Iv| ≥ min{tu, tv}. In addition, if

tu ≤ |Iu| for each vertex u ∈ V (G), then G is called a bounded tolerance graph.

See the book by Golumbic and Trenk [59] on tolerance graphs for a detailed study of tolerance

graphs and their variants.

Split graphs

The class of split graphs is defined as follows.

Definition 7 (Split graphs). An undirected graph G is said to be a split graph if V (G) can be

partitioned into two sets A and B such that A is a clique and B is an independent set.

Threshold graphs

The class of threshold graphs was introduced by Chvátal and Hammer [22]. Threshold graphs

have several equivalent characterizations and one way to define this class of graphs is as follows:

Definition 8 (Threshold graphs). Two edges ab, cd in an undirected graph G are said to form

an alternating 4-cycle if ad, bc /∈ E(G). Threshold graphs are precisely the class of graphs that

does not contain any pair of edges that form an alternating 4-cycle.

We will study more about threshold graphs in Chapter 2.

Chain graphs: Chain graphs can be considered as the bipartite analogues of threshold graphs.

Definition 9 (Chain graphs). A bipartite graph G = (A,B,E) is called a chain graph if for any

pair of vertices u and v that belong to A, either N(u) ⊆ N(v) or N(v) ⊆ N(u).
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Observe that if the vertices in A satisfy this property, then the vertices in B also automatically

satisfy this property. Therefore, chain graphs are precisely the class of bipartite graphs for which

the neighborhoods of the vertices in either partite set of G have a linear order with respect to

inclusion.

Interval bigraphs

A bipartite analogue of interval graphs, called interval bigraph was introduced by Harary, Kabell,

and McMorris [64] and can be defined as follows:

Definition 10 (Interval bigraph). A bipartite graph G = (A,B,E) is said to be an interval

bigraph if there exists a collection {Iu}u∈V (G), of closed intervals on a real line such that ab ∈

E(G) if and only if a ∈ A, b ∈ B and Ia ∩ Ib 6= ∅.

See Figure 1.5 for an example of an interval bigraph and a corresponding interval represen-

tation of it.

a1

a2

a3

b1

b2

b3

a3
a1 a2

b1
b2

b3

Figure 1.5: An interval bigraph and a corresponding interval representation

Interval digraphs

Interval digraphs can be considered as a directed analogue of interval graphs. The following

definition of interval digraphs is proposed by Das, Roy, Sen and West [32].

Definition 11 (Interval digraph). A digraph G is said to be an interval digraph if there exists

a collection {(Su, Tu)}u∈V (G), of pairs of closed intervals on a real line such that for any u, v ∈

V (G), we have (u, v) ∈ E(G) if and only if Su∩Tv 6= ∅. The collection {(Su, Tu)}u∈V (G) is called

the interval representation of G.

See Figure 1.6 for an example of an interval digraph and a corresponding interval represen-

tation of it (source and destination intervals of each vertex are shown in thin green and bold red

respectively).

We will study more about interval digraphs and interval bigraphs in the upcoming chapters.
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Figure 1.6: An interval digraph and a corresponding interval representation

1.3 Graph covering and graph recognition problems

Definition 12 (Graph cover). A graph G is said to be covered by graphs, H1, H2, . . . ,Hk if for

each i = {1, 2, . . . , k}, V (Hi) = V (G) and E(G) =
⋃

1≤i≤k E(Hi).

The problem of covering an arbitrary graph using graphs that belong to special graph classes,

is a well known problem in graph theory [77]. As a part of this work, we study the following

special graph covering problems.

Definition 13 (Threshold cover problem). The k-threshold cover problem asks whether an input

graph G can be covered by k threshold graphs.

Given a graph G, for each e ∈ E(G), let Ge denotes the graph with V (Ge) = V (G) and

E(Ge) = {e}. Then note that for each e ∈ E(G), Ge is trivially a threshold graph and⋃
e∈E(G)E(Ge) = E(G). This implies that any graph G can be covered by |E(G)| threshold

graphs. Therefore the interesting parameter here is, th(G) = min{k : G can be covered by k

threshold graphs}.

Definition 14 (Chain cover problem). The k-chain subgraph cover problem (in short k-CSC)

asks whether an input bipartite graph G can be covered by k chain graphs.

As in the case of threshold cover, since the graph induced by each edge is trivially a chain

graph, we have that any bipartite graph can be covered by using |E(G)| chain graphs. Therefore

the interesting parameter here is, ch(G) = min{k : G has a chain subgraph cover of size k}.

The above mentioned covering problems are well studied in the literature and we will learn

more about them and their algorithmic complexities in Chapter 2 and Chapter 3.

The graph recognition problem is an important algorithmic problem in graph theory [49].

Definition 15 (Graph recognition problem). Given a class of graphs C, the graph recognition

problem asks whether an input graph belong to the class C.
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Note that for any integer k ≥ 1, the k-threshold cover problem (resp. k-CSC problem) is

exactly the problem of recognizing graphs (resp. bipartite graphs) that can be covered by k

threshold graphs (resp. k chain graphs).

Given two problems P1 and P2, we say that the problem P1 is reducible to the problem P2 in

polynomial time if there exists a polynomially computable function f such that for any instance,

say x of problem P1, we have that f(x) is an instance of problem P2 and x is a YES instance of

problem P1 if and only if f(x) is a YES instance of problem P2.

For example, we will see in Chapter 2 that for any integer k ≥ 1, the k-CSC problem can be

reduced to the k-threshold cover problem in polynomial time.

1.4 Some well-known vertex orderings and their applications

Let us begin with the well-known graph traversal algorithms, Breadth First Search (BFS) and

Depth First Search (DFS) which are fundamentally important ingredients in various graph algo-

rithms. Roughly speaking, as their name indicates, BFS visits the vertices in the non-decreasing

order of their distances from the starting vertex, whereas DFS starts at a vertex and explores

as far as possible from the current vertex before it backtracks. Both of these were introduced

in the context of maze traversal algorithms but later became an inevitable part of various graph

algorithms. For example, BFS has applications in shortest path problems, recognition problems

of several graph classes, network flows etc. and DFS plays a very important role in the algo-

rithms for connectivity, planarity, finding cycles in graph etc. [115]. Both BFS and DFS can be

implemented in time linear to the size of the input graph.

Lex-BFS ordering: Rose, Lueker and Tarjan [109] introduced a variant of BFS called Lex-

icographic Breadth First search (Lex-BFS) to construct a linear-time algorithm for recognizing

chordal graphs. Later, Lex-BFS based algorithms were discovered for the recognition of many

different graph classes (see [24] for a survey). A Lex-BFS ordering is also a BFS ordering –

i.e., a breadth-first search algorithm can also visit the vertices in that order – but it has some

additional properties.

Let a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) are two vectors of same length defined on

the set of positive integers. We say that a is lexicographically smaller than b, if there exists an

integer i ≤ k such that ai < bi and aj = bj for each j ∈ {1, 2, . . . , i− 1}.

The procedure [14] described below is an easy way to produce a Lex-BFS ordering starting
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Figure 1.7: An example of a graph labeled with respect to a Lex-BFS ordering of its vertices

at a vertex x of an input graph G.

Procedure: Generate a Lex-BFS ordering σ starting at a vertex x of an input graph G.

σ(1) = x, mark x as visited;

for each k from 2 to n do

for each unvisited vertex u, let b(u) = (b1, b2, . . . , bk−1), where bi = 1, if σ(i) ∈ N(u)

or bi = 0, otherwise;

Let v be a vertex with lexicographically largest vector b (i.e. b(v) is a lexicographically

largest vector in {b(u) : u is unvisited});

assign σ(k) = v;

mark v as visited;

See Figure 1.7, for an example of a graph that has been labeled with respect to a Lex-BFS

ordering of its vertices. Note that even though the above procedure does not run in linear-time,

there exist linear-time algorithms [61] to produce a Lex-BFS ordering of an input graph.

In one part of this work we exploit an important property of Lex-BFS ordering, which we

will come to see in an upcoming chapter. As we have mentioned before, Lex-BFS was introduced

in the context of recognizing chordal graphs. We have already noted that chordal graphs are

precisely the undirected graphs that admits a perfect elimination ordering (see Definition 3). In

fact, Rose, Tarjan and Lueker [109] proved that an undirected graph is chordal if and only if any
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Lex-BFS ordering is the reverse of a perfect elimination ordering. Consequently, the recognition

problem of chordal graphs can be solved in linear time. Perfect elimination orderings of chordal

graphs are extremely useful in efficiently solving some of the classic graph problems like maximum

independent set, maximum clique, minimum coloring, minimum clique cover [50] etc on chordal

graphs.

Revisiting the vertex ordering characterizations for some of the graph classes that we have

defined before, we can see similar algorithmic applications. For example, the vertex ordering

characterization for interval graphs (see Theorem 1) has applications in solving several algorith-

mic problems for interval graphs including the minimum coloring problem [96], the domination

problem and its variants like independent domination, connected domination and total domina-

tion problems [101], optimal path cover problem [4], the longest path problem [71] and many

more. We have also seen a characterization of cocomparability graphs in terms of an umbrella-

free ordering (see Theorem 13) of the vertex set. This ordering is also highly useful in solving

many algorithmic problems for the class of cocomparability graphs including the domination

problem and its variants like independent domination, connected domination and total domina-

tion problems [79], Hamiltonian path problem [30], longest path problem [92] etc. Note that over

the years, several researchers have come up with various special vertex orderings with interesting

properties. Many other classes of graphs that admits vertex/edge ordering characterizations have

also been studied in the literature. See Chapter 5 of the book [15] for a detailed survey of vertex

and edge orderings.

Lexicographic method: The technique called lexicographic method is introduced by Hell

and Huang [68]. This method has a significant importance in our work. Hell and Huang [68],

demonstrated how this method can lead to shorter proofs and simpler recognition algorithms for

certain problems that involve constructing a specific 2-coloring of an auxiliary bipartite graph

whose vertices correspond to the edges of the graph. This method involves fixing an ordering <

of the vertices of the graph, and then processing the edges in the “lexicographic order” implied by

the ordering <. They showed how this technique can lead to simpler characterization proofs and

recognition algorithms for comparability graphs, proper interval graphs and proper circular-arc

graphs. We adapt this technique in our work, to construct a 2-threshold cover (if it exists) for

an input graph.

Now let us review a few special vertex orderings concerning the class of directed graphs.
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Topological ordering: It is one of the most well-known vertex ordering algorithms for di-

graphs. A linear ordering < of the vertices of a digraph G is called a topological ordering if for

any edge (u, v) ∈ E(G) we have u < v. It is easy to see that directed acyclic graphs are precisely

the digraphs that have a topological ordering. This fact can be used to develop a linear time

recognition algorithm for the class of DAG [23]. Other than its applications to solve algorithmic

problems for DAG, topological ordering also has several applications to real world problems in-

cluding scheduling, operation systems etc. and it plays an important role in problems related to

network analysis [73].

There are other classes of digraphs that can be characterized using vertex orderings. As a

part of this work, we also propose a vertex ordering characterization for a subclass of interval

digraphs and derive some interesting consequences.

Median order: This is yet another interesting notion of ordering in directed graphs. A median

order of a digraph is a linear ordering of the vertex set that maximizes the number of forward

arcs. The problem of finding a median order of a digraph is NP-hard [5] for general digraphs

and the complexity of the median order problem even in the class of tournaments seems to be

unknown [17]. The concept of median orders arises in the context of voting theory [5] and is well

studied. Havet and Thomasse [65] used median order as a tool to provide a short and constructive

proof of the Second Neighborhood Conjecture for the class of tournaments. This conjecture was

shown to be true for the class of tournaments initially by Fisher [43] using some probabilistic

arguments. A part of our work involves solving the Seymour Second Neighborhood Conjecture

for some special classes of digraphs. We also explore some properties of median orders in our

approach towards this work, which we will come across later.

1.5 Scope of the thesis and a brief review of related works

In the previous section, we have witnessed the importance of special vertex orderings in solving

various kinds of problems in graph theory. As a contribution to this line of research, we follow

an ordering approach towards most of the problems that we encounter in this thesis. The work

mainly consists of the following three problems that incorporate the flavors of both structural

and algorithmic graph theory.
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1.5.1 Lexicographic method for the threshold cover problem

An important approach towards the threshold cover problem of an input graph G that we can

see in the literature is, by studying a related parameter in the auxiliary graph G∗ that has vertex

set V (G∗) = E(G) and edge set E(G∗) = {{ab, cd} : ab, cd ∈ E(G) such that ab, cd form an

alternating 4-cycle in G}. Chvátal and Hammer observed that since for any subgraph H of G

that is a threshold graph, E(H) is an independent set in G∗, we have that th(G) ≥ χ(G∗). This

gave rise to the question of whether there is any graph G such that th(G) > χ(G∗). Cozzens and

Leibowitz [27] showed the existence of such graphs. In particular, they showed that for every

k ≥ 4, there exists a graph G such that χ(G∗) = k but th(G) > k. The question of whether such

graphs exist for k = 2 remained open for a decade (see [84]). Ibaraki and Peled [70] showed,

by means of some very involved proofs, that if G is a split graph or if G∗ contains at most two

non-trivial components, then χ(G∗) = 2 if and only if th(G) = 2. They further conjectured that

for any graph G, χ(G∗) = 2⇔ th(G) = 2. If the conjecture held, it would show immediately that

graphs having a threshold cover of size 2 can be recognized in polynomial time, since the auxiliary

graph G∗ can be constructed and its bipartiteness checked in polynomial time. Consequently,

we then also have polynomial-time algorithms for 2-CSC problem. In contrast to the case k ≤ 2,

Yannakakis [118] showed that 3-CSC is NP-complete. This again implies by a suitable reduction

that the problem of deciding whether th(G) ≤ 3 is also NP-complete, even if the input graph

G is a split graph. In fact, all these covering problems become NP-complete for any arbitrary

k ≥ 3 [118, 22]. Thus Ibaraki and Peled’s conjecture was significant to completely settle the

complexity of threshold cover problem and related covering problems. Cozzens and Halsey [26]

studied some properties of graphs having a threshold cover of size 2 and showed that it can be

decided in polynomial time whether the complement of a bipartite graph has a threshold cover

of size 2. Finally, in 1995, Raschle and Simon [102] proved the conjecture of Ibaraki and Peled

by extending the methods in [70]. To be precise, they proved that for any graph G, χ(G∗) = 2

if and only if th(G) = 2.

This proof of Raschle and Simon is very technical and involves the use of a number of

complicated reductions and previously known results. In this part of the work, we propose

a completely different and self-contained proof for the theorem of Raschle and Simon that a

graph G can be covered by two threshold graphs if and only if G∗ is bipartite. We show how the

lexicographic method of Hell and Huang can be used to obtain a completely new and, we believe,

simpler proof for this result. This shows that the applicability of the lexicographic method may

not be limited to only problems involving orientation of edges. However, it should be noted
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that unlike in the work of Hell and Huang, we start with a Lex-BFS ordering of the vertices of

the graph instead of an arbitrary ordering. We demonstrate by an example, why in the proof

for general graphs it is important to start with a Lex-BFS ordering, instead of an arbitrary

ordering. This strengthens the relevance of Lex-BFS orderings, as a useful tool in solving graph

theoretic problems. Now for the case when the input graph G is a split graph, we can use the

lexicographic method starting with any arbitrary ordering and our method yields a proof that is

much shorter than the ones known in the literature. Moreover, our proof can be used to obtain

a simple algorithm to find a 2-threshold cover (if exists) for an input graph. Further, using the

relation between threshold cover for split graphs and chain cover for bipartite graphs we have

a very simple algorithm to find a 2-chain cover (if exists) for an input bipartite graph. Both

the algorithms, for finding a 2-threshold cover and 2-chain cover can be implemented in O(m2)

time. Note that faster algorithms for finding a threshold cover of size 2 for an input graph (that

runs in O(n3) time) [112] and finding a chain cover of size 2 for an input bipartite graph (that

runs in O(n2) time) [84] are known. But these algorithms are quite involved and has several

reductions. Whereas, the strategy of our corresponding algorithms are basic, straight forward

and much simpler to implement.

1.5.2 Kernel and related problems in interval digraphs

In this part of the work, we illustrate the fact that the reflexivity of an interval digraph has

a huge impact on the algorithmic complexity of several problems related to domination and

independent sets in digraphs. In particular, here we study the following problems in the class

of interval digraphs and its subclasses (the formal definitions of these problems can be found in

Chapter 4 and Chapter 6).

(a) Independent-Set

(b) Absorbing-Set (resp. Dominating-Set)

(c) Kernel

(d) Min-Kernel and Max-Kernel

(e) Weak Independent-Set

(f) Feedback Vertex-Set

We will also see along the way that, how the solution to some of the problems above, can

be used to obtain few interesting results in some special classes of undirected graphs. Note

that the following subclasses of interval digraphs are important to us. The class of reflexive
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interval digraphs is a subclass of interval digraphs which arise when we require that the two

intervals assigned to each vertex (in an interval representation of it) have to intersect and the

class of interval nest digraphs forms a subclass of reflexive interval digraphs that has an interval

representation in which for each vertex, the destination interval is completely contained inside

the source interval. On the other hand, the class of point-point digraphs is a subclass of interval

digraphs where the two intervals assigned to each vertex are required to be degenerate (i.e. pair

of intervals corresponding to each vertex are two points). Let us briefly have a look at our

contributions in this part of the work.

Prisner [100] proved that the underlying undirected graphs of interval nest digraphs (a sub-

class of reflexive interval digraphs) are weakly triangulated graphs and notes that this means

that any algorithm that solves the maximum independent set problem on weakly triangulated

graphs can be used to solve the Independent-Set problem on interval nest digraphs and their

reversals. Since the problem of computing a maximum independent set can be solved in O(nm)

time in weakly triangulated graphs [67], it follows that there is an O(nm)-time algorithm for the

Independent-Set problem in interval nest digraphs and their reversals, even when only the

adjacency list of the input graph is given.

We provide a vertex-ordering characterization for the class of reflexive interval digraphs and

two simple characterizations for the class of point-point digraphs including a forbidden struc-

ture characterization. Our characterization of point-point digraphs directly yields a linear time

recognition algorithm for that class of digraphs. From our vertex-ordering characterization of

reflexive interval digraphs, it follows that the underlying undirected graphs of every reflexive in-

terval digraph is a cocomparability graph. Also a natural question that arises here is whether the

underlying graphs of reflexive interval digraphs is the same as the class of cocomparability graphs.

We show that this is not the case by demonstrating that the underlying graphs of reflexive inter-

val digraphs cannot contain an induced K3,3. Also, as the maximum independent set problem

is linear time solvable on cocomparability graphs [89] we now have that the Independent Set

problem is also linear time solvable on reflexive interval digraphs. This improves and generalizes

the O(nm)-time algorithm for the same problem on interval nest digraphs. In contrast, we prove

that the Independent Set problem is APX-hard even for the class of point-point digraphs.

Domination in digraphs is a topic that has been explored less when compared to its undirected

counterpart. Even though bounds on the minimum dominating sets in digraphs have been

obtained by several authors (see the book [66] for a survey), not much is known about the

computational complexity of finding a minimum cardinality absorbing set (or dominating set)
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in directed graphs. Even for tournaments, the best known algorithm for Dominating-Set does

not run in polynomial time [91, 103]. In [91], the authors give an nO(logn) time algorithm for

the Dominating-Set problem in tournaments and they also note that Sat can be solved in

2O(
√
v)nK time (where v is the number of variables, n is the length of the formula and K is a

constant) if and only if the Dominating-Set in a tournament can be solved in polynomial time.

Thus, determining the algorithmic complexity of the Dominating-Set problem even in special

classes of digraphs seems to be much more challenging than the algorithmic question of finding

a minimum cardinality dominating set in undirected graphs.

We observe that the problem of solving Absorbing-Set (resp. Dominating-Set) on a

reflexive interval digraph G can be reduced to the problem of solving Red-Blue Dominating

Set on an interval bigraph whose interval representation can be constructed from an interval

representation of G in linear time. Further, we show that Red-Blue Dominating Set is

linear time solvable on interval bigraphs (given an interval representation). Thus the problem

Absorbing-Set (resp. Dominating-Set) is linear-time solvable on reflexive interval digraphs,

given an interval representation of the digraph as input. If no interval representation is given, an

algorithm in [95] can be used to construct one in polynomial time, and therefore these problems

are polynomial-time solvable on reflexive interval digraphs even when no interval representation

of the input graph is known. In contrast, we prove that the Absorbing-Set and Dominating-

Set problems remain APX-hard even for point-point digraphs.

An independent absorbing set of a directed graph is more well-known as a kernel of the

digraph. This term is introduced by Von Neumann and Morgenstern [94] in the context of

game theory. They showed that for digraphs associated with certain combinatorial games, the

existence of a kernel implies the existence of a winning strategy. Most of the work related to

domination in digraphs has been mainly focused on kernels. We follow the terminology in [100]

and call an independent dominating set in a directed graph a solution of the graph. Unlike

its undirected counterpart, a kernel (resp. solution) of a digraph does not necessarily exist.

For example, a directed triangle with edges (a, b), (b, c) and (c, a) does not have a kernel (resp.

solution). Therefore, besides the computational problem of finding a minimum or maximum sized

kernel, called Min-Kernel and Max-Kernel respectively, the comparatively easier problem

of determining whether a given digraph has a kernel in the first place, called Kernel, is itself a

non-trivial one. In fact, the Kernel problem is known to be NP-hard for general digraphs [21].

Later, Fraenkel [44] proved that the Kernel problem remains NP-complete even for planar

digraphs of degree at most 3 having in- and out-degrees at most 2. It can be easily seen that the
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Min-Kernel and Max-Kernel problems are NP-complete for those classes of graphs for which

the Kernel problem is NP-complete. A digraph is said to be kernel perfect if every induced

subgraph of it has a kernel. Several sufficient conditions for digraphs to be kernel perfect has

been explored [106, 38, 94]. The Kernel problem is trivially solvable in polynomial time on

any kernel perfect family of digraphs. But the algorithmic complexity status of the problem of

computing a kernel in a kernel perfect digraph also seems to be unknown [98]. Prisner [100]

proved that interval nest digraphs and their reversals are kernel-perfect, and a kernel can be

found in these graphs in time O(n2) if a representation of the graph is given. We remark that

the Min-Kernel problem can be shown to be NP-complete even in some kernel perfect families

of digraphs that have a polynomial-time computable kernel.

We show that reflexive interval digraphs are kernel perfect and hence the Kernel problem is

trivial on this class of digraphs. We construct a linear-time algorithm that computes a kernel in a

reflexive interval digraph, given an interval representation of digraph as an input. This improves

and generalizes Prisner’s similar results about interval nest digraphs mentioned above. Moreover,

we give an O((n + m)n) time algorithm for the Min-Kernel and Max-Kernel problems for

a superclass of reflexive interval digraphs (here m denotes the number of edges in the digraph

other than the self-loops at each vertex). As a consequence, we obtain an improvement over

the O(n3) time algorithm for finding a minimum independent dominating set in cocomparability

graphs that was given by Kratsch and Stewart [79]. Our algorithm for Min-Kernel and Max-

Kernel problems has a better running time of O(n2) for adjusted interval digraphs. On the

other hand, we show that the problem Kernel is NP-complete for point-point digraphs and

Min-Kernel and Max-Kernel problems are APX-hard for point-point digraphs.

The directed Feedback Vertex-Set problem is one of the classic NP-complete problems

in the literature and it has various real world applications. As a consequence of the vertex

ordering characterization for reflexive interval digraphs, we can show that the problems Weak

Independent-Set and Feedback Vertex-Set are reducible to each other in linear time for

reflexive interval digraphs. We study these problems in certain subclasses of interval digraphs.

In particular we show that, the problem Weak Independent-Set and therefore, the problem

Feedback Vertex-Set are polynomial-time solvable for the class of interval nest digraphs.

Further we use this solution of the Weak Independent-Set problem for interval nest digraphs,

to give a polynomial-time algorithm for the problem of finding a maximum cardinality uniquely

restricted matching for the class of interval graphs. This result settles one of the open problem

posed by Golumbic in [57].
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1.5.3 The Seymour Second Neighborhood Conjecture for some special graph

classes

Given a digraph G, we denote by N++
G (v) the second out-neighborhood of v in G, which is

defined to be the set of vertices whose distance from v is exactly 2, i.e. N++
G (v) = {u ∈

V (G) : N−G (u) ∩ N+
G (v) 6= ∅ and u /∈ N+

G (v) ∪ {v}}. A vertex v in a digraph G is said to have

a large second neighborhood if |N++
G (v)| ≥ |N+

G (v)|. Paul Seymour conjectured the following in

1990 (see [35]):

Conjecture (Paul Seymour): Every oriented graph contains a vertex with a large second

neighborhood.

The above conjecture, if true, implies a special case of another open question concerning

digraphs called the Caccetta-Häggkvist Conjecture [16]. The Seymour Second Neighborhood

Conjecture for the special case of tournaments, was known as Dean’s Conjecture [35] and was later

solved by Fisher [43] in 1996 using some basic linear algebraic and probabilistic arguments. Later

in 2000, Havet and Thomasse [65] gave a short combinatorial proof of Dean’s Conjecture using

median orders of tournaments. They could in fact prove something stronger: in a tournament

without a sink, there exist two vertices with large second neighborhoods. Using the approach

of Havet and Thomasse, Fidler and Yuster [41] in 2007 proved that the Second Neighborhood

Conjecture is true for oriented graphs that can be obtained from tournaments by removing

edges in some specific ways. In particular, they showed that a tournament missing a matching

(an oriented graph whose missing edges form a matching), a tournament missing a star and a

tournament missing a complete graph all satisfy the conjecture. As these results hold even if

the missing matching (or star, or complete graph) is empty, they extend the proof of Dean’s

Conjecture by Havet and Thomasse. Using techniques from this paper, Salman Ghazal [52]

proved that the Second Neighborhood Conjecture is true for tournaments missing a “generalized

star” (or threshold graphs), thereby extending the result of Fidler and Yuster for tournaments

missing a star and tournaments missing a complete graph. It has to be noted that among these

results that all use the median order approach, the case of the tournament missing a matching

is by far the most difficult one, requiring a complicated proof. In this work, we introduce new

ideas to refine and extend this proof, allowing us to prove the conjecture for a superclass of

tournaments missing a matching: we show that oriented graphs whose missing edges can be

partitioned into a (possibly empty) matching and a (possibly empty) star also satisfy the Second

Neighborhood Conjecture. In fact, we prove the stronger statement that in such a graph that
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does not contain a sink, there exists a vertex that has a large second neighborhood and is not

the center of the missing star.

Ghazal [53] attempts to generalize the theorem of Havet and Thomasse by trying to prove

that there exist two vertices with large second neighborhoods in every tournament missing a

matching that does not contain a sink. He shows that if a tournament missing a matching

satisfies certain additional technical conditions, then such a result can be obtained. Our result

mentioned above directly yields a proof that shows that every tournament missing a matching

that does not contain a sink has at least two vertices with large second neighborhoods.

Other researchers have tried to attack special cases of the Second Neighborhood Conjecture

without using the median order approach. Lladó [82] proved the conjecture in regular oriented

graphs with high connectivity. Kaneko and Locke [74] verified the conjecture for oriented graphs

with minimum out-degree at most 6.

It is easy to verify that in any oriented graph, a minimum out-degree vertex whose out-

neighborhood is an independent set is a vertex with a large second neighborhood. Therefore,

the conjecture is true for bipartite graphs (in fact, it is true if the underlying undirected graph

is triangle-free). It appears difficult to prove the conjecture even for oriented graphs whose

underlying undirected graph is 3-colorable. We show that the conjecture is true for every oriented

graph whose vertices can be partitioned into two sets such that one is an independent set and

the other induces a 2-degenerate graph in the underlying undirected graph.

1.6 Outline of the thesis

The thesis is organized into three parts. The first part is primarily based on the threshold cover

problem and this consists of two chapters. In Chapter 2, we study the threshold cover problem

using the lexicographic method. This is followed by Chapter 3, that reviews the connections es-

tablished in the literature between some subclasses of bipartite graphs and digraphs. The second

part of the work, which is based on the kernel and related problems in interval digraphs, consists

of three chapters. In Chapter 4, along with an ordering characterization for the class of reflexive

interval digraphs, we propose efficient algorithms for several problems like Independent Set,

Absorbing Set, Kernel, Min-Kernel and Max-Kernel for reflexive interval digraphs. On

the other hand, in Chapter 5, we show that all these problems turn out to be NP-complete

and/or APX-hard for even a restricted subclass of interval digraphs called point-point digraphs.

In the same chapter, we also characterize point-point digraphs in two ways, and one of the char-
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acterizations leads to a linear-time recognition algorithm for the class of point-point digraphs. In

Chapter 6, we study the problems Weak Independent-Set and Feedback Vertex-Set for

some particular subclasses of interval digraphs. The third part is a study of the Seymour Second

Neighborhood Conjecture (SSNC) for some special graph classes. In particular, in Chapter 7

we show that SSNC is true for oriented graphs whose missing edges can be partitioned into a

(possibly empty) matching and a (possibly empty) star. We also observe some interesting con-

sequences of this result. In Chapter 8, we show that SSNC is true for oriented graphs in which

their vertex set can be partitioned into two sets such that one is an independent set and the

other induces a 2-degenerate graph in the underlying undirected graph. Finally, we conclude the

thesis in Chapter 9 by proposing some interesting open problems related to the work.



Part I

The Threshold Cover Problem
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Chapter 2

The Lexicographic Method for the

Threshold Cover Problem

Let us begin with a brief study of the well-known class of threshold graphs.

2.1 Threshold graphs

The class of threshold graphs was introduced by Chvátal and Hammer [22]. It is a well studied

graph class in the literature, which has numerous applications in set packing problems [63],

interger programming [22] and many more. Mahadev and Peled have given a comprehensive

survey on threshold graphs and their applications [88]. Before defining the class of threshold

graphs, first let us define a related concept.

Threshold dimension: Let G = (V,E) be an undirected graph with V (G) = {v1, v2, . . . , vn}.

Note that any set S ⊆ V (G) can be represented as a characteristic vector x = (x1, x2, . . . , xn)

such that

xi =


1, if vi ∈ S

0, otherwise

This implies that, any set S ⊆ V (G) corresponds to a corner of an n-dimensional hypercube.

Then the threshold dimension θ(G) of a graph G can be defined as follows.

Definition 16 (Threshold dimension). Given a graph G, its threshold dimension θ(G) is defined

24
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a b

cd

Figure 2.1: Alternating 4-cycle

as the minimum number k of linear inequalities

a11x1 + a12x2 + · · ·+ a1nxn ≤ t1

a21x1 + a22x2 + · · ·+ a2nxn ≤ t2
...

ak1x1 + ak2x2 + · · ·+ aknxn ≤ tk

in R such that S is an independent set in G if and only if the characteristic vector corresponding

to S satisfies all the linear inequalities above.

Speaking geometrically, the threshold dimension of a graph G can be interpreted as the mini-

mum number of halfspaces whose intersection contains exactly those corners of the n-dimensional

hypercube that correspond to independent sets in G. The threshold graphs are precisely the class

of graphs G for which θ(G) ≤ 1. Formally, we define this class of graphs as follows.

Definition 17 (Threshold graphs). A graph G is a threshold graph if there exist real number t

and real vertex weights ai for each vertex vi in G, such that the linear inequality a1x1 + a2x2 +

· · ·+ anxn ≤ t, separates independent sets and non-independent sets of G.

Threshold graphs have several equivalent characterizations. But in this work we use the

following forbidden structure characterization of threshold graphs, given by Chvátal and Ham-

mer [22]. Two edges ab, cd in an undirected graph G are said to form an alternating 4-cycle if

ad, bc /∈ E(G) (see Figure 2.1). We then have the following theorem.

Theorem 3 ([22]). An undirected graph G is a threshold graph if and only if G does not contain

any pair of edges that form an alternating 4-cycle (or equivalently, G is a {2K2, P4, C4}-free

graph).

Since the complement of each forbidden structure is also forbidden (as 2K2 = C4, P4 = P4

and C4 = 2K2), threshold graphs are closed under taking complements.



CHAPTER 2. THE LEXICOGRAPHIC METHOD 26

a b

cd

a b

cd

a b

cd

2K2 P4 C4

Figure 2.2: Forbidden structures for threshold graphs

Threshold cover: A graph G is said to be covered by graphs, H1, H2, . . . ,Hk if for each

i = {1, 2, . . . , k}, V (Hi) = V (G) and E(G) =
⋃

1≤i≤k E(Hi).

Definition 18 (Threshold cover problem). The k-threshold cover problem asks whether an input

graph G can be covered by k threshold graphs.

Given a graph G, for each e ∈ E(G), let Ge denotes the graph with V (Ge) = V (G) and

E(Ge) = {e}. Then note that for each e ∈ E(G), Ge is trivially a threshold graph and⋃
e∈E(G)E(Ge) = E(G). This implies that any graph G can be covered by |E(G)| threshold

graphs. Therefore the interesting parameter here is, th(G) = min{k : G can be covered by k

threshold graphs}.

The threshold cover number and the threshold dimension are equal

Suppose that G can be covered by k threshold graphs, i.e. there exist k threshold graphs

H1, H2, . . . ,Hk such that for each i = {1, 2, . . . , k}, V (Hi) = V (G) and E(G) =
⋃

1≤i≤k E(Hi).

Since Hi is a threshold graph for each i, by Definition 17 we have that for each i ∈ {1, 2, . . . , k},

there exist real number ti and real vertex weights aij for each vertex vj in Hi, such that the

characteristic vector of a set S ⊆ V (Hi) satisfies the linear inequality, say Li : ai1x1 + ai2x2 +

· · ·+ainxn ≤ ti if and only if S is an independent set of Hi. Note that as E(G) =
⋃

1≤i≤k E(Hi),

the independent sets of G remain as independent sets in each of the subgraphs Hi. Therefore,

the characteristic vectors of the independent sets of G satisfies each of the k linear inequalities

Li. On the other hand, if S is not an independent set in G, then there exist vertices u, v ∈ S such

that uv ∈ E(G). Then by the definition of cover, there exists some i ∈ {1, 2, . . . , k} such that

uv ∈ E(Hi). This implies that S is not an independent set in Hi and therefore, the characteristic

vector of S does not satisfy the linear inequality Li. Since the linear inequalities L1, L2, . . . , Lk

satisfies the required conditions in Definition 16, we can conclude that the threshold dimension,

θ(G) ≤ th(G).

On the other hand, assume that the threshold dimension θ(G) = k. Therefore by Defini-
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Figure 2.3: (a) a graph G, and (b) the auxiliary graph G∗ of G.

tion 16, we have that there exist k linear inequalities, say L1, L2, . . . , Lk (as in the definition)

such that a set S ⊆ V (G) is an independent set in G if and only if the characteristic vector of

S satisfies all the k linear inequalities. Now for each i ∈ {1, 2, . . . , k} we define Hi to be the

graph with V (Hi) = V (G) and E(Hi) = {uv : u, v ∈ V (G), u 6= v, and the characteristic vector

of the set {u, v} does not satisfies the inequality Li}. It can be then verified that the graph Hi

as defined above is a threshold graph for each i ∈ {1, 2, . . . , k} and E(G) =
⋃

1≤i≤k E(Hi). This

implies that G can be covered by k threshold graphs. Therefore we have th(G) ≤ θ(G).

Thus we have the following theorem.

Theorem 4. For any graph G, the threshold dimension θ(G) = th(G) = min{k : G can be

covered by k threshold graphs}.

An important approach in the literature toward the study of threshold cover problem, is by

defining an auxiliary graph and studying a related parameter on it.

2.2 The auxiliary graph G∗

Chvátal and Hammer [22] defined the auxiliary graph G∗ corresponding to a graph G as follows.

Definition 19 (The auxiliary graph G∗). Given a graph G, the graph G∗ has vertex set V (G∗) =

E(G) and edge set E(G∗) = {{ab, cd} : ab, cd ∈ E(G) such that ab, cd form an alternating 4-cycle

in G}. (See Figure 2.3 for an illustration).

Chvátal and Hammer observed that the following lower bound on th(G) holds.

Lemma 1. th(G) ≥ χ(G∗).
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Proof. LetG be covered by two threshold graphsH1 andH2. By the definition ofG∗, if {ab, cd} ∈

E(G∗) then ad, bc ∈ E(G). The fact that H1 and H2 are threshold subgraphs of G then implies

that neither H1 nor H2 can contain both the edges ab and cd. We therefore conclude that the

sets E(H1) and E(H2) are both independent sets in G∗. Since G is covered by H1 and H2, we

have that V (G∗) = E(H1) ∪ E(H2). Thus, {E(H1), E(H2) \ E(H1)} forms a bipartition of G∗

into two independent sets. This completes the proof.

This gave rise to the question of whether there is any graph G such that th(G) > χ(G∗).

Cozzens and Leibowitz [27] showed that for every k ≥ 4, there exists a graph G such that

χ(G∗) = k but th(G) > k. The question of whether such graphs exist for k = 2 remained open

for a decade (see [84]). Ibaraki and Peled [70] showed, by means of some very involved proofs,

that if G is a split graph or if G∗ contains at most two non-trivial components, then χ(G∗) = 2 if

and only if th(G) = 2. They further conjectured that for any graph G, χ(G∗) = 2⇔ th(G) = 2.

Cozzens and Halsey [26] studied some properties of graphs having a threshold cover of size 2 and

showed that it can be decided in polynomial time whether the complement of a bipartite graph

has a threshold cover of size 2. Finally, in 1995, Raschle and Simon [102] proved the conjecture

of Ibaraki and Peled by extending the methods in [70].

Theorem 5. For any graph G, χ(G∗) = 2 if and only if th(G) = 2.

2.2.1 An overview of Raschle and Simon’s proof

By proving Theorem 5, Raschle and Simon not only settled Ibraki and Peled’s conjecture, they

also gave the first polynomial-time algorithm for recognizing graphs that can be covered by

two threshold graphs. But their proof for Theorem 5 is very technical and involves the use

of previously known results and a number of complicated reductions. Their approach towards

the proof was using threshold completions. Given a graph G = (V,E) and a set S ⊆ E(G),

S is said to have a threshold completion in G if there exists a subset of edges E′ such that

S ⊆ E′ ⊆ E(G) and G′ = (V,E′) is a threshold graph. Now the problem of finding two threshold

graphs H1 and H2 such that E(G) = E(H1)∪E(H2) can be seen to be equivalent to the problem

of finding two partitions S1 and S2 of E(G) for which threshold completions exist. A sequence

of vertices v0, v1, . . . , v2k−1 of a graph G is said to form an AC2k in G if v2iv2i+1 ∈ E(G) and

v2i−1v2i /∈ E(G) (indices modulo 2k). An AC2k with respect to a set S ⊆ E(G) in G, has all its

present edges in S. Some fundamental results in the literature regarding threshold completions

are the following [63, 102]:
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(a) If a set S ⊆ E(G) has a threshold completion in G, then such a threshold completion can

be found in linear time.

(b) A set S ⊆ E(G) has a threshold completion if and only if G does not contain any AC2l

with respect to S for l ≥ 2.

Using the above results, it is now enough to prove that, if G∗ is bipartite then the vertices in

G∗ can be partitioned into two sets where both the sets are AC2l-free with respect to G for each

l ≥ 2. i.e. their goal was to find a suitable 2-coloring for the vertices in G∗, in such a way that

there does not exist an AC2l for l ≥ 2 in G with respect to each of the color classes (such a

coloring is called an AC2l-free coloring). In order to reduce this problem further, they make use

of the following result in [63].

Let G be a graph with χ(G∗) = 2. Then there exists an AC2l for l ≥ 3 in G with respect to one of

the color classes of G∗ if and only if there exists an AC6 with respect to one of the color classes

of G∗.

Note that by the definition of G∗, the color classes corresponding to any 2-coloring of G∗ are

AC4-free with respect to G. Therefore by combining the above observation with the previous

results, if G∗ is bipartite then the problem of finding a 2-threshold cover for G boils down to the

problem of finding an AC6-free 2-coloring of G∗. Now given a 2-coloring of G∗ with color classes

E1 and E2, they define an AP6 in G to be a sequence v0, v1, . . . , v5, v0 of distinct vertices of G

such that v0v1, v2v3, v4v5 ∈ Ei for some i ∈ {1, 2} and v1v2, v3v4, v5v0 ∈ E(G). A 2-coloring of

G∗ is said to be AP6-free if there is no AP6 in G with respect to that coloring. They proved

that, given an AP6-free 2-coloring of G∗, an AC6-free 2-coloring of G∗ can be computed in

O(m2) time. They further define a double AP6 to be an AP6 with an additional constraint that

v0v2, v1v5 ∈ Ei and proved that given a double AP6-free 2-coloring of G∗, an AP6-free 2-coloring

of G∗ can be computed in O(m2) time. The most intricate part is the proof of correctness of

an algorithm that computes a double AP6-free 2-coloring of G∗. In fact, they proved that a

double AP6-free coloring of G∗ can be computed in O(m2) time. Consequently, the algorithm

for finding a 2-threshold cover has to go through each of these reductions backwards, in order to

find a valid 2-threshold cover for an input graph G. Figure 2.4 briefly summarizes major steps

of the algorithm (as well as their proof for Theorem 5) for finding a 2-threshold cover given by

Raschle and Simon [102].
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Finding a double AP6-
free 2-coloring of G∗:

O(m2) time

Reduction to an AP6-
free 2-coloring of G∗:

O(m2) time

Reduction to an AC6-
free 2-coloring of G∗:

O(m2) time

Finding threshold
completions of the

two color classes in G:
O(n + m) time

Gives a
2-threshold cover

for G

Figure 2.4: Major steps in Raschle and Simon’s proof and algorithm

2.3 Our contribution to the threshold cover problem

In this part of the work, we propose a completely different and self-contained proof for the

theorem of Raschle and Simon (Theorem 5) using the lexicographic method introduced by Hell

and Huang [68]. In particular, we adapt this technique to construct a specific 2-coloring of G∗

that can be used to generate a 2-threshold cover of G (without using the notion of threshold

completions). Our proof is direct, and also gives rise to a simpler recognition algorithm for graphs

having a threshold cover of size 2. Note that faster algorithms for determining if a graph has a

threshold cover of size 2 are known. After the algorithm of Raschle and Simon [102], Sterbini and

Raschle [112] used some observations of Ma [83] to construct an O(|V (G)|3) algorithm for the

problem. But this algorithm also involves several reductions in order to construct a 2-threshold

cover (if exists).

Let G be any graph such that G∗ is bipartite. We would like to prove that G has a threshold

cover of size 2. Note that if we take an arbitrary 2-coloring of G∗ having color classes X1, X2,

the subgraph Gi of G formed by the edges in Xi (where i ∈ {1, 2}) need not necessarily be a

threshold graph. Figure 2.5 demonstrates such an example. The graph G in (a) is a complete

graph in which no pair of edges form an alternating C4. Thus G∗ has only isolated vertices and
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a b

cd

ab

ac

bc

ad bd

cd
a b

cd

(a) G (b) G∗ (c) corresponding cover

Figure 2.5: An arbitrary 2-coloring of G∗ that does not directly correspond to a 2-threshold cover
for G

(b) shows an arbitrary 2-coloring of G∗ using the colors dark red and light blue. If you look at

the corresponding edges in the respective color classes, we can observe that none of the color

classes directly provides a threshold graph (as shown in (c) the bold red edges that corresponds

to the dark red color class of G∗ form a 2K2 and the thin blue edges that corresponds to the light

blue color class of G∗ form a C4). Now as there can be an exponential number of 2-colorings

possible for G∗ (since G∗ can have many connected components), the crux of the problem is to

find a “special 2-coloring of G∗” (where some isolated vertices in G∗ may have both the colors in

it). This was the motivation for using the lexicographic method here.

2.4 The lexicographic method

The technique called the lexicographic method was introduced by Hell and Huang [68]. They

demonstrated how this method can lead to shorter proofs and simpler recognition algorithms for

certain problems that involve constructing a specific 2-coloring of an auxiliary bipartite graph

whose vertices correspond to the edges of the graph. The method involves fixing an arbitrary

ordering < of the vertices of the graph, and then processing the edges in the “lexicographic order”

implied by the ordering <. They showed how this method can lead to simpler characterization

proofs and recognition algorithms for comparability graphs, proper interval graphs and proper

circular-arc graphs. The method starts by taking an arbitrary ordering of the vertices of the

graph. It then prescribes choosing the lexicographically smallest (with respect to the given

vertex ordering) edge to orient and then orienting it in one way or the other, along with all the

edges whose orientations are forced by it. Hell and Huang showed that the lexicographic approach

makes it easy to ensure that the orientation so produced satisfies the necessary conditions, if such

an orientation exists. We adapt this technique to construct a 2-coloring of G∗ that can be used to

generate a 2-threshold cover of G. This shows that the applicability of the lexicographic method

may not be limited to only problems involving orientation of edges. However, it should be noted

that unlike in the work of Hell and Huang, we start with a Lex-BFS ordering of the vertices of the
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graph instead of an arbitrary ordering. It is an ordering of the vertices with the property that it

is possible for a Lexicographic Breadth First Search (Lex-BFS) algorithm to visit the vertices of

the graph in that order. A Lex-BFS ordering is also a BFS ordering – i.e., a breadth-first search

algorithm can also visit the vertices in that order – but it has some additional properties. Lex-

BFS can be implemented to run in time linear in the size of the input graph and was introduced

by Rose, Tarjan and Lueker [109] to construct a linear-time algorithm for recognizing chordal

graphs. Later, Lex-BFS based algorithms were discovered for the recognition of many different

graph classes (see [24] for a survey).

2.5 Preliminaries

Let G = (V,E) be any graph. Recall that edges ab, cd ∈ E(G) form an alternating 4-cycle if

bc, da ∈ E(G). In this case, we also say that a, b, c, d, a is an alternating 4-cycle in G (alternating

4-cycles are called AC4s in [102]). The edges ab and cd are said to be the opposite edges of the

alternating 4-cycle a, b, c, d, a. Thus for a graph G, the auxiliary graph G∗ is the graph with

V (G∗) = E(G) and E(G∗) = {{ab, cd} : ab, cd ∈ E(G) are the opposite edges of an alternating

4-cycle in G}. Note that it follows from the definition of an alternating 4-cycle that if a, b, c, d, a

is an alternating 4-cycle, then the vertices a, b, c, d are pairwise distinct. We shall refer to the

vertex of G∗ corresponding to an edge ab ∈ E(G) alternatively as {a, b} or ab, depending upon

the context.

Our goal is to provide a new proof for Theorem 5.

It is easy to see that χ(G∗) = 1 if and only if th(G) = 1. Therefore, by Lemma 1, it is enough

to prove that if G∗ is bipartite, then G can be covered by two threshold graphs. In order to

prove this, we find a specific 2-coloring of the non-trivial components of G∗ (components of size

at least 2) using the lexicographic method of Hell and Huang [68].

We say that (A0, A1, A2) is a valid 3-partition of E(G) if {A0, A1, A2} is a partition of E(G)

with the property that in any alternating 4-cycle in G, one of the opposite edges belongs to A1

and the other to A2. In other words, for any edge {ab, cd} ∈ E(G∗), one of ab, cd is in A1 and

the other in A2.

Given a valid 3-partition (A0, A1, A2) of E(G) and A ∈ {A1, A2}, we say that a, b, c, d is an

alternating A-path if a 6= d, ab, cd ∈ A∪A0, and bc ∈ E(G). Further, we say that a, b, c, d, e, f, a

is an alternating A-circuit if a 6= d, ab, cd, ef ∈ A ∪ A0, and bc, de, fa ∈ E(G). See Figure 2.6

for the illustration of an A-alternating path and an A-alternating circuit.
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e

f

(i) an A-alternating path (ii) an A-alternating circuit

Figure 2.6: For (i) a 6= d, ab, cd ∈ A ∪ A0 and for (ii) a 6= d and possibly, b = e or c = f ,
ab, cd, ef ∈ A ∪A0, bc, de, fa ∈ E(G)

Observation 1. Let (A0, A1, A2) be a valid 3-partition of E(G) and let {A,A} = {A1, A2}.

(a) If a, b, c, d is an alternating A-path, then ad ∈ E(G).

(b) If a, b, c, d, e, f, a is an alternating A-circuit, then ef ∈ A and ad ∈ A.

Proof. To prove (a), it just needs to be observed that if ad ∈ E(G), then a, b, c, d, a would be an

alternating 4-cycle in G whose opposite edges both belong to A∪A0, which contradicts the fact

that (A0, A1, A2) is a valid 3-partition of E(G). To prove (b), suppose that a, b, c, d, e, f, a is an

alternating A-circuit. Since a, b, c, d is an alternating A-path, we have by (a) that ad ∈ E(G).

Then since a, d, e, f, a is an alternating 4-cycle in G and ef ∈ A∪A0, it follows that ef ∈ A and

ad ∈ A.

We shall use the above observation throughout this chapter without referring to it explicitly.

Let (A0, A1, A2) be a valid 3-partition of E(G) and let {A,A} = {A1, A2}. We say that

(a, b, c, d, e) is an A-pentagon in G with respect to (A0, A1, A2) if a, b, c, d, e ∈ V (G), ac, ad, be ∈

E(G), ab, ae ∈ A, bc, bd, ec, ed ∈ A and cd ∈ A ∪ A0. We abbreviate this to just “A-pentagon”

when the graph G and the 3-partition (A0, A1, A2) of G are clear from the context. We say

that an A-pentagon (a, b, c, d, e) is a strict A-pentagon if cd ∈ A. We say that (a, b, c, d, e) is

a pentagon (resp. strict pentagon) if it is an A-pentagon (resp. strict A-pentagon) for some

A ∈ {A1, A2}. (Pentagons are similar to the “AP5-s” in [102]). Figure 2.7(i) and Figure 2.7(ii)

illustrate an A-pentagon and a strict A-pentagon.

We say that (x, y, z, w) is an A-switching path in G with respect to (A0, A1, A2) if x, y, z, w ∈

V (G), xw ∈ E(G), xy, zw ∈ A ∪ A0, and yz ∈ A. When the graph G and the 3-partition

(A0, A1, A2) of G are clear from the context, we abbreviate this to just “A-switching path”. We
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c d

(i) A-pentagon (ii) strict A-pentagon

x w

y z

x w

y z

(iii) A-switching path (iv) strict A-switching path

Figure 2.7: Edges belonging to the set A are shown in bold red and that belonging to the set A
are shown in thin blue. A black dash on an edge in (i) and (iii) indicates the possibility of the
edge being in A0 (as for A-pentagons, cd ∈ A∪A0 and for A-switching paths, xy, zw ∈ A∪A0).

say that (x, y, z, w) is a strict A-switching path if it is an A-switching path and in addition,

xy, zw ∈ A. We say that (x, y, z, w) is a switching path (resp. strict switching path) if it is an

A-switching path (resp. strict A-switching path) for some A ∈ {A1, A2}. Figure 2.7(iii) and

Figure 2.7(iv) illustrate an A-switching path and a strict A-switching path.

Note that from the definitions of pentagons and switching paths, it follows that if (a, b, c, d, e)

is a pentagon, then the vertices a, b, c, d, e are pairwise distinct, and if (a, b, c, d) is a switching

path, then the vertices a, b, c, d are pairwise distinct.

Lemma 2. Let (A0, A1, A2) be a valid 3-partition of E(G). Let {A,A} = {A1, A2}. Let

(x, y, z, w) be an A-switching path in G and let y′z′ ∈ E(G) be such that yz′, zy′ ∈ E(G).

Then,

(a) if x = y′, then (x = y′, y, z, w, z′) is an A-pentagon and

(b) if w = z′, then (w = z′, z, y, x, y′) is an A-pentagon.

Proof. Since yz ∈ A and {yz, y′z′} ∈ E(G∗) we have that y′z′ ∈ A. Suppose that x = y′. Then

y, (x = y′), z, w, (x = y′), z′, y is an alternating A-circuit (note that y 6= w as x ∈ N(y) \N(w)),

implying that yw ∈ A. This further implies that z′ 6= w. Then we also have alternating A-circuits

z′, y′, z, w, x, y, z′ and z′, (y′ = x), w, z, (y′ = x), y, z′, implying that xy ∈ A and z′w, z′z ∈ A.

Consequently, (x = y′, y, z, w, z′) is an A-pentagon. Since (w, z, y, x) is also an A-switching path,

we can similarly conclude that if w = z′, then (w = z′, z, y, x, y′) is an A-pentagon.
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Let < be an ordering of the vertices of G. Given two k-element subsets S = {s1, s2, . . . , sk}

and T = {t1, t2, . . . , tk} of V (G), where s1 < s2 < · · · < sk and t1 < t2 < · · · < tk, S is said

to be lexicographically smaller than T , denoted by S < T , if sj < tj for some j ∈ {1, 2, . . . , k},

and si = ti for all 1 ≤ i < j. In the usual way, we let S ≤ T denote the fact that either S < T

or S = T . For a set S ⊆ V (G), we abbreviate min< S to just minS. Note that the relation <

(“is lexicographically smaller than”) that we have defined on k-element subsets of V (G) is a total

order. Therefore, given a collection of k-element subsets of V (G), the lexicographically smallest

one among them is well-defined.

The following observation states a well-known property of Lex-BFS orderings [24].

Observation 2 ([24]). Let < denote a Lex-BFS ordering of the vertices of a graph G. For

a, b, c ∈ V (G), if a < b < c, ab /∈ E(G) and ac ∈ E(G), then there exists x ∈ V (G) such that

x < a < b < c, xb ∈ E(G) and xc /∈ E(G) (See Figure 2.8).

a b cx

Figure 2.8: Property of Lex-BFS ordering

2.6 Proof of Theorem 5

Assume that G∗ is bipartite.

We shall now construct a partial 2-coloring of the vertices of G∗ using the colors {1, 2} by

means of an algorithm that consists of three phases. We shall describe the first two phases here,

after which a partial 2-coloring of G∗ is obtained. The third phase, which will be described later,

modifies this coloring so as to obtain a 2-threshold cover of G.

Phase I. Construct a Lex-BFS ordering < of G.

Recall that every vertex of G∗ is a two-element subset of V (G).

Phase II. For every non-trivial component C of G∗, perform the following operation:

Choose the lexicographically smallest vertex in C (with respect to the ordering <) and

assign the color 1 to it. Extend this to a proper coloring of C using the colors {1, 2}.
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Figure 2.9: A strict F -pentagon together with the path c0d0, c1d1, . . . , ckdk (possibly, some of
the vertices in the figure may coincide)

Note that after Phase II, every vertex of G∗ that is in a non-trivial component has been

colored either 1 or 2. For i ∈ {1, 2}, let Fi = {e ∈ V (G∗) : e is colored i}. Further, let F0

denote the set of all isolated vertices (trivial components) in G∗. Clearly, F0 is exactly the set of

uncolored vertices of G∗ and we have V (G∗) = F0 ∪ F1 ∪ F2. Note that since the opposite edges

of any alternating 4-cycle in G correspond to adjacent vertices in G∗, one of them receives color

1 and the other color 2 in the partial 2-coloring of G∗ constructed in Phase II. It follows that

(F0, F1, F2) is a valid 3-partition of E(G).

2.6.1 No strict pentagons

In this section we shall prove that there are no strict pentagons in G with respect to (F0, F1, F2).

Let {F, F} = {F1, F2}. Let (a, b, c, d, e) be a strict F -pentagon and c0d0, c1d1, . . . , ckdk be a

path in G∗, where c0 = c, d0 = d, k ≥ 0, and for each i ∈ {0, 1, . . . , k− 1}, cidi+1, dici+1 ∈ E(G).

Since cd = c0d0 ∈ F , it follows that cidi ∈ F for all even i and cidi ∈ F for all odd i (See

Figure 2.9).

Observation 3. For each i ∈ {0, 1, . . . , k}, the edges cib, cie, dib, die exist and they belong to F

when i is odd and to F when i is even.

Proof. We prove this by induction on i. This is easily seen to be true when i = 0. Suppose that

i > 0. We shall assume without loss of generality that i is odd as the other case is symmetric.
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Then by the induction hypothesis, ci−1b, di−1b, ci−1e, di−1e ∈ F . Then ci, di, ci−1, b, e, di−1, ci is

an alternating F -circuit (note that ci 6= b as di−1 ∈ N(b) \ N(ci)), implying that cib ∈ F . By

symmetric arguments, we get cie, dib, die ∈ F .

Remark 1. By the above observation, we have that:

(a) for each i ∈ {0, 1, . . . , k}, ci, di /∈ {b, e},

(b) if {ci, di} ∩ {cj , dj} 6= ∅ for some 0 ≤ i, j ≤ k, then i ≡ j mod 2, and

(c) for each even i ∈ {0, 1, . . . , k}, we have a /∈ {ci, di}.

Observation 4. If c1 6= a, then (d, b, c1, a, e) is a strict F -pentagon. Similarly, if d1 6= a, then

(c, b, d1, a, e) is a strict F -pentagon.

Proof. By Observation 3, we have c1b, c1e, d1b, d1e ∈ F . Suppose that c1 6= a. Then c1, b, e, a, c, d, c1

is an alternating F -circuit, and therefore we have that ac1 ∈ F . It now follows that (d, b, c1, a, e)

is a strict F -pentagon. By similar arguments, it can be seen that if d1 6= a, then ad1 ∈ F and

therefore (c, b, d1, a, e) is a strict F -pentagon.

Observation 5. Let S0 = {a, c0, d0} and for 1 ≤ i ≤ k, let Si = Si−1 ∪ {ci, di}. Let i ∈

{0, 1, . . . , k}. For each z ∈ {ci, di}, there exist xz, yz ∈ Si such that (xz, b, yz, z, e) is a strict

F -pentagon when i is even and a strict F -pentagon when i is odd.

Proof. We are given an i ∈ {0, 1, . . . , k} and a vertex z that is either ci or di. First let us consider

the case when z = a. Since z ∈ {ci, di}, we have by Remark 1(c), that i is odd, which implies

that i ≥ 1. Note that we have either c1 6= a or d1 6= a. If c1 6= a, we define xz = d, yz = c1 and

if d1 6= a, we define xz = c, yz = d1. Clearly, xz, yz ∈ S1 ⊆ Si, since i ≥ 1. By Observation 4,

we get that (xz, b, yz, z, e) is a strict F -pentagon, and so we are done. Therefore, we shall now

assume that z 6= a.

We shall now prove the statement of the observation by induction on i. Clearly, when i = 0,

z ∈ {c0, d0}, so we can choose xz = a, yz ∈ {c, d} \ {z} such that (xz, b, yz, z, e) is a strict

F -pentagon (note that xz, yz ∈ S0 as required). So let us assume that i ≥ 1. If z ∈ {cj , dj} for

some j < i, then by Remark 1(b) we have that j ≡ i mod 2 and by the induction hypothesis

applied to j and z, there exist xz, yz ∈ Sj ⊆ Si (as j < i) such that (xz, b, yz, z, e) is a strict

F -pentagon if i is even and a strict F -pentagon if i is odd, completing the proof. Therefore, we

assume that there is no j < i such that z ∈ {cj , dj}. Since we have already assumed that z 6= a,

we now have z /∈ Si−1.
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Observe that there exists z′ ∈ {ci−1, di−1} such that z′z ∈ E(G). Then by the induction

hypothesis, there exist xz′ , yz′ ∈ Si−1 such that (xz′ , b, yz′ , z
′, e) is a strict F -pentagon if i − 1

is even and a strict F -pentagon if i − 1 is odd. Define xz = z′ and yz = xz′ . Then we have

xz, yz ∈ Si−1 ⊆ Si. Since yz ∈ Si−1 and z /∈ Si−1, we also have that yz 6= z. Using Observation 3

and the fact that (xz′ , b, yz′ , z
′, e) is a strict F -pentagon (resp. F -pentagon) if i is odd (resp.

even), we now have that (yz = xz′), b, e, z, z
′, yz′ , (xz′ = yz) is an alternating F -circuit (resp.

F -circuit). Therefore, yzz ∈ F if i is odd and yzz ∈ F if i is even. Consequently we get that

(xz, b, yz, z, e) is a strict F -pentagon when i is even and a strict F -pentagon when i is odd.

It is easy to see that Observation 5 implies the following.

Remark 2. Let {F, F} = {F1, F2} and let (a, b, c, d, e) be any strict F -pentagon in G with respect

to (F0, F1, F2). Let c′d′ be a vertex in the same component as cd in G∗. Then for each z ∈ {c′, d′},

there exist xz, yz ∈ V (G) such that (xz, b, yz, z, e) is a strict F -pentagon if c′d′ ∈ F and a strict

F -pentagon if c′d′ ∈ F .

Suppose that there is at least one strict pentagon in G with respect to (F0, F1, F2). We

say that a pentagon (a, b, c, d, e) is lexicographically smaller than a pentagon (a′, b′, c′, d′, e′) if

{a, b, c, d, e} < {a′, b′, c′, d′, e′}. Consider the lexicographically smallest strict pentagon (a, b, c, d, e)

inG. Let {F, F} = {F1, F2} such that (a, b, c, d, e) is a strict F -pentagon. Since cd ∈ F , it belongs

to a non-trivial component C of G∗. Therefore, there exists uv ∈ E(G) such that cv, du ∈ E(G)

(so that {cd, uv} ∈ E(G∗)). Clearly, at least one of u, v is distinct from a. We assume without

loss of generality that u 6= a (by interchanging the labels of c and d if necessary). By applying

Observation 4 to the path (c0d0 = cd), (c1d1 = uv) in G∗, we get that (d, b, u, a, e) is a strict

F -pentagon, which implies that au ∈ F . By Observation 3 applied to the same path, we get

that ub, ue ∈ F .

Observation 6. a > min{c, d}.

Proof. Suppose for the sake of contradiction that a < min{c, d}. If u < c, then (d, b, u, a, e) is

a strict F -pentagon that is lexicographically smaller than (a, b, c, d, e), which is a contradiction.

So we can assume that c < u, which gives us a < c < u. As ac ∈ E(G) and au ∈ E(G),

by Observation 2, there exists a vertex x such that x < a < c < u, xc ∈ E(G) and xu ∈

E(G). Since a, u, x, c, a is an alternating 4-cycle in which au ∈ F , we have that xc ∈ F . Then

b, a, c, x, u, e, b is an alternating F -circuit (note that b 6= x as u ∈ N(b) \ N(x)), and therefore

xb ∈ F . Symmetrically, we also get that xe ∈ F . Then d, b, e, x, u, a, d is an alternating F -circuit
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(note that x 6= d as x < a < min{c, d}), and therefore we have xd ∈ F . Now (u, b, x, d, e) is a

strict F -pentagon that is lexicographically smaller than (a, b, c, d, e), which is a contradiction.

Let c′d′ be the lexicographically smallest vertex in C.

Observation 7. min{c′, d′} = min{c, d}.

Proof. We know that c′d′ ≤ cd, and therefore min{c′, d′} ≤ min{c, d}. Suppose that z =

min{c′, d′} < min{c, d}. From Remark 2, we have that for each z ∈ {c′, d′}, there exist vertices

xz, yz ∈ V (G) such that (xz, b, yz, z, e) is a strict pentagon. Since a > min{c, d} by Observation 6,

we have a > z. Then (xz, b, yz, z, e) is a lexicographically smaller strict pentagon than (a, b, c, d, e)

which is a contradiction.

Observation 8. a > max{c, d}.

Proof. Let {y, y} = {c, d} such that y < y. By Observation 6 it is now enough to show that

y < a < y is not possible. Since ya ∈ E(G) and yy ∈ E(G), y < a < y implies by Observation 2

that there exists x < y such that xa ∈ E(G) but xy ∈ E(G). Then x, a, y, y, x is an alternating

4-cycle, and therefore xa and yy = cd belong to the same component C of G∗. Thus c′d′ ≤ xa,

which implies that min{c′, d′} ≤ min{x, a}. Since min{x, a} = x < y = min{c, d}, we now have

min{c′, d′} ≤ min{x, a} < min{c, d}. This contradicts Observation 7.

Since c′d′ is the lexicographically smallest vertex in C, our algorithm would have colored it

with the color 1. Therefore, we have c′d′ ∈ F1. Consider a path c0d0, c1d1, . . . , ckdk in G∗, where

c0 = c, d0 = d, ck = c′ and dk = d′, in which for each i ∈ {0, 1, . . . , k− 1}, cidi+1, dici+1 ∈ E(G).

Suppose that cd ∈ F2. Then since ckdk = c′d′ ∈ F1, we have that k is odd. Now by Remark 1(b),

we have that {c0, d0} ∩ {ck, dk} = ∅. But this contradicts Observation 7. Thus we have that

cd ∈ F1. Therefore, (a, b, c, d, e) is a strict F1-pentagon, or in other words, F = F1. Then, our

earlier observations imply that ub, ue ∈ F1 and au ∈ F2.

Since ec, ab, ed and bc, ae, bd are paths in G∗, it follows that ec, ed lie in one component of

G∗ and bc, bd also lie in one component of G∗. Let D be the component containing bc, bd and D′

the component containing ec, ed in G∗. Consider the lexicographically smallest vertex in D∪D′.

Let us assume without loss of generality that this vertex is in D (we can interchange the labels

of b and e if required). Define p0 = b, q0 = c. Then in G∗, there exists a path p0q0, p1q1, . . . , ptqt

between bc and the lexicographically smallest vertex ptqt in D. As before, for 0 ≤ i ≤ t− 1, we

have piqi+1, qipi+1 ∈ E(G) and for 0 ≤ i ≤ t, we have piqi ∈ F1 when i is odd and piqi ∈ F2
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a

d

e

q0 = cq1q2qt−1qt

p0 = bp1p2pt−1pt

u v

Figure 2.10: A strict F -pentagon together with the paths p0q0, p1q1, . . . , ptqt and cd, uv where
a 6= u (possibly, some other vertices in the figure may coincide) – (d, b, u, a, e) is an F -pentagon

when i is even. Also, since ptqt is the lexicographically smallest vertex in its component in G∗,

we know that ptqt ∈ F1, which implies that t is odd (See Figure 2.10).

Observation 9. Let i ∈ {0, 1, . . . , t}. Then if i is odd, we have

(a) pi /∈ {b, e},

(b) qi /∈ {a, c, d},

(c) pib, pie ∈ F1,

(d) Either pi = a or pia ∈ F2, and

(e) Either qic ∈ F2 or qid ∈ F2.

and if i is even, we have

(a) qi /∈ {b, e},

(b) pi /∈ {a, c, d},

(c) qib, qie ∈ F2,

(d) Either qi = d or qid ∈ F1, and

(e) Either piu ∈ F1 or pia ∈ F1.

Proof. We shall prove this by induction on i. If i = 0, then the statement of the lemma can

be easily seen to be true. Suppose that i > 0. We give a proof for the case when i is odd (the

case when i is even is symmetric and can be proved using similar arguments). By the induction

hypothesis, qi−1b, qi−1e ∈ F2, and therefore since piqi−1 ∈ E(G), we have pi /∈ {b, e}. We now

prove the following claim.
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Claim 1. For x ∈ {a, u}, if pi = x or pix ∈ F2, then pib, pie ∈ F1.

If pi = x then there is nothing to prove as we already know that ab, ae, ub, ue ∈ F1. So

assume that pix ∈ F2. Let {z, z̄} = {b, e}. Then pi, x, d, z, z̄, qi−1, pi is an alternating F2-circuit

(recall that pi /∈ {b, e}), which implies that piz ∈ F1. We thus get that pib, pie ∈ F1. This proves

the claim.

By the induction hypothesis we know that either pi−1a ∈ F1 or pi−1u ∈ F1, and also that

pi−1 /∈ {c, d}. First suppose that pi−1a ∈ F1. This implies that qi 6= a. Let {y, ȳ} = {c, d}.

Then we have that pi−1, a, ȳ, y is an alternating F1-path implying that pi−1y ∈ E(G). Thus,

pi−1c, pi−1d ∈ E(G). This implies that qi /∈ {c, d}. By the induction hypothesis we also have

that qi−1y ∈ F1 for some y ∈ {c, d}. Then qi, pi, qi−1, y, a, pi−1, qi is an alternating F1-circuit,

which implies that qiy ∈ F2. If pi 6= a, then pi, qi, pi−1, a, y, qi−1, pi is an alternating F1-circuit,

implying that pia ∈ F2. Since we have either pi = a or pia ∈ F2 we are done by Claim 1.

Therefore we can assume that pi−1a /∈ F1. If i = 1, then we know that pi−1a = ba ∈ F1,

so we can assume that i ≥ 2. By the induction hypothesis, we have that for some y ∈ {c, d},

qi−2y ∈ F2. Therefore if pi−1a ∈ E(G), then we have that pi−1, a, y, qi−2, pi−1 is an alternating

4-cycle in which qi−2y ∈ F2, implying that pi−1a ∈ F1 which is a contradiction. Since we

know that pi−1 6= a by the induction hypothesis, we can assume that pi−1a ∈ E(G). Note

that since pi−1a /∈ F1, we have by the induction hypothesis that pi−1u ∈ F1. If qi−1 = d,

then pi−1, (qi−1 = d), u, a, pi−1 is an alternating 4-cycle whose opposite edges both belong to

F2, which is a contradiction. Therefore by the induction hypothesis we have qi−1d ∈ F1. If

qi = a (resp. qi = c) then pi, (qi = a), d, qi−1, pi (resp. pi−1, u, d, (c = qi), pi−1) is an alternating

4-cycle whose opposite edges are both in F1, which is a contradiction. Therefore, qi /∈ {a, c}. If

pia ∈ F2 then we have that a, pi, qi−1, pi−1, a is an alternating 4-cycle whose opposite edges are

both in F2, which is a contradiction. This implies that pia /∈ F2 and therefore pi 6= u. Then

pi, qi, pi−1, u, d, qi−1, pi is an alternating F1-circuit, implying that piu ∈ F2. Therefore by Claim 1,

we have that pib, pie ∈ F1. Now if a 6= pi, then pi, b, e, a, d, qi−1, pi is an alternating F1-circuit,

which implies that pia ∈ F2 which is a contradiction. This implies that a = pi, which further

implies that qi 6= d. Then qi, pi, qi−1, d, u, pi−1, qi is an alternating F1-circuit, which implies that

qid ∈ F2 and we are done.

Observation 10. For each even i ∈ {0, 1, 2, . . . , t}, either api ∈ E(G) or both dqi−1, dqi+1 ∈

E(G).

Proof. Suppose that there exists an even i ∈ {0, 1, 2, . . . , t} and j ∈ {i − 1, i + 1} such that
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api, dqj /∈ E(G). By Observation 9, we know that pi 6= a and qj 6= d. So we have api, dqj ∈ E(G).

Now if d 6= qi, then we have by Observation 9 that qid ∈ F1. Then pj , qj , d, qi, pj is an alternating

4-cycle whose both opposite edges belong to F1, which is a contradiction. Therefore we can

assume that d = qi. Then (d = qi), pi, a, u, (d = qi) is an alternating 4-cycle whose opposite

edges both belong to F2, which is again a contradiction.

Recall that D′ is the component containing ec in G∗.

Observation 11. For any odd i ∈ {0, 1, . . . , t}, if api−1 ∈ E(G), then for each y ∈ {c, d} for

which yqi ∈ E(G), we have yqi ∈ D′. On the other hand, if api−1 /∈ E(G), then dqi ∈ D′.

Proof. We prove this by induction on i. When i = 1, we have ap0 = ab ∈ E(G) and for each

y ∈ {c, d} such that yq1 ∈ E(G), we have that ec, (ab = ap0), yq1 is a path in G∗. We thus have

the base case. We shall now prove the claim for i ≥ 3 assuming that the claim is true for i− 2.

Suppose that api−1 ∈ E(G). By Observation 9, there exists y′′ ∈ {c, d} such that y′′qi−2 ∈ E(G).

By the induction hypothesis, either y′′qi−2 ∈ D′ or dqi−2 ∈ D′ (depending upon whether api−3

is an edge or not). Thus in any case, we have that there exists y′ ∈ {c, d} such that y′qi−2 ∈ D′.

Now for each y ∈ {c, d} such that yqi ∈ E(G), since y′qi−2, api−1, yqi is a path in G∗, we get that

yqi ∈ D′, so we are done. Next, suppose that api−1 /∈ E(G). Then by Observation 9, we have

upi−1 ∈ E(G) and by Observation 10, we have dqi−2, dqi ∈ E(G). We then have by the induction

hypothesis that dqi−2 ∈ D′. Since dqi−2, upi−1, dqi is a path in G∗, we have dqi ∈ D′.

Recall that C is the component of G∗ containing the vertex cd.

Observation 12. For each odd i ∈ {0, 1, . . . , t}, if a 6= pi then api ∈ C.

Proof. We prove this by induction on i. The base case when i = 1 is true since if a 6= p1 then

by Observation 9, ap1 ∈ E(G), and since {ap1, (q0 = c)d} ∈ E(G∗), we have ap1 ∈ C. Assume

that i ≥ 3 and the claim is true for i − 2. Suppose that a 6= pi. Then we have api ∈ E(G) by

Observation 9. If d = qi−1 then we have {api, c(qi−1 = d)} ∈ E(G∗), so we have api ∈ C. So we

assume that d 6= qi−1. Then by Observation 9, we have that dqi−1 ∈ E(G). By the induction

hypothesis, we have that either api−2 ∈ C or a = pi−2. If api−2 ∈ C, then since api, dqi−1, api−2

is a path in G∗, we have api ∈ C. On the other hand, if a = pi−2 then we again have api ∈ C as

api, dqi−1, u(pi−2 = a), cd is a path in G∗.

Recall that t is odd, ptqt ∈ D, and ptqt is the lexicographically smallest vertex in D ∪D′.

Observation 13. pt < min{c, d}
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Proof. Let {y, ȳ} = {c, d}, where y < ȳ. Note that pt /∈ {c, d}, since by Observation 9, ptb ∈ F1,

but we know that cb, db ∈ F2. By the same lemma, we also have that qt /∈ {c, d}. Therefore as

min{pt, qt} ≤ min{c, d} (since ptqt < bc, bd), we have that min{pt, qt} < min{c, d} = y. Now if

pt = min{pt, qt} then we are done. Therefore let us assume that qt = min{pt, qt}, and so qt < y.

Suppose that yqt ∈ E(G). If yqt /∈ D′, then by Observation 11, we have that apt−1 /∈ E(G)

and yqt ∈ D′. By Observation 9, we know that pt−1 6= a, which implies that apt−1 ∈ E(G). By

our choice of ptqt, we now have that ptqt < yqt, which implies that pt < y. Now by Observation 8,

pt 6= a, which implies by Observation 9 that pta ∈ F2. Then a, pt, qt−1, pt−1, a is an alternating 4-

cycle in which both opposite edges belong to F2, which is a contradiction. We can thus conclude

that yqt ∈ D′. Then by our choice of ptqt, we have that pt < y, and we are done. So we assume

that yqt /∈ E(G).

Recall that qt < y (and therefore yqt ∈ E(G)). Now if y < pt then we have qt < y < pt

where qty /∈ E(G) and qtpt ∈ E(G). By Observation 2, this implies that there exists x < qt

such that xy ∈ E(G) and xpt /∈ E(G) (which means that xpt ∈ E(G) since x < pt). Then

{xy, ptqt} ∈ E(G∗), which implies that xy ∈ D. But xy < ptqt, which contradicts our choice of

ptqt. We can thus conclude that pt < y (recall that pt 6= y as pt /∈ {c, d}) and we are done.

Note that by Observation 13 and Observation 8 we have that a 6= pt. Then by Observation 12,

we have apt ∈ C. By Observation 13 and Observation 7, pt < min{c′, d′}, which implies that

apt < c′d′. This is a contradiction to our choice of c′d′. Therefore we have the following lemma.

Lemma 3. There are no strict pentagons in G (with respect to (F0, F1, F2)).

2.6.2 No strict switching paths

In this section, we show that there are no strict switching paths either in G with respect to

(F0, F1, F2). First we note the following observation.

Observation 14. Let (x, y, z, w) be a strict switching path with respect to (F0, F1, F2). Let

y′z′ ∈ E(G) be such that yz′, zy′ ∈ E(G). Then, y′ 6= x and z′ 6= w.

Proof. Let {F, F} = {F1, F2}. Suppose that (x, y, z, w) is a strict F -switching path. Then we

have that xy, zw ∈ F , yz ∈ F , and xw ∈ E(G). By Lemma 2 and the fact that zw, xy ∈ F ,

we know that if y′ = x then (x = y′, y, z, w, z′) is a strict F -pentagon, and if z′ = w then

(w = z′, z, y, x, y′) is a strict F -pentagon. Since we know by Lemma 3 that there are no strict

pentagons in G, we can conclude that y′ 6= x and z′ 6= w.
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Now we show that there are no strict switching paths in G. Suppose not. Then let (a, b, c, d)

be the lexicographically smallest strict switching path in G.

Observation 15. (a, b, c, d) is not a strict F1-switching path.

Proof. Suppose for the sake of contradiction that (a, b, c, d) is a strict F1-switching path. Let C

be the component of G∗ containing bc. Let b0c0, b1c1, . . . , bkck, where b0 = b and c0 = c, be a

path in C between bc and the lexicographically smallest vertex bkck in C. We assume that for

each i ∈ {0, 1, . . . , k − 1}, bici+1, cibi+1 ∈ E(G). As b0c0 ∈ F2, it follows that bici ∈ F2 for each

even i and bici ∈ F1 for each odd i. Since bkck is the lexicographically smallest vertex in its

component in G∗, we know that bkck ∈ F1, which implies that k is odd.

We claim that bia, cid ∈ F1 for each even i and bia, cid ∈ F2 for each odd i, where 0 ≤ i ≤ k.

We prove this by induction on i. The case where i = 0 is trivial as b0 = b and c0 = c. So let

us assume that i > 0. Consider the case where i is odd. As i − 1 is even, by the induction

hypothesis we have bi−1a, ci−1d ∈ F1. Since bi−1ci−1 ∈ F2, we can observe that, (a, bi−1, ci−1, d)

is a strict F1-switching path. Then by Observation 14, we have that a 6= bi and d 6= ci. Now the

alternating F1-circuits bi, ci, bi−1, a, d, ci−1, bi and ci, bi, ci−1, d, a, bi−1, ci imply that bia, cid ∈ F2.

The case where i is even is symmetric and hence the claim.

By the above claim, bka, ckd ∈ F2. Since bkck ∈ F1, we now have that (a, bk, ck, d) is a

strict F2-switching path. Since bkck < bc, we have that {a, bk, ck, d} < {a, b, c, d}, which is a

contradiction to our assumption that (a, b, c, d) is the lexicographically smallest strict switching

path in G.

Observation 16. (a, b, c, d) is not a strict F2-switching path.

Proof. Suppose for the sake of contradiction that (a, b, c, d) is a strict F2-switching path. By the

symmetry between a and d, we can assume without loss of generality that a < d.

As bc ∈ F1, the vertex bc belongs to a non-trivial component of G∗. Then there exists a

neighbor uv of bc inG∗ such that bv, uc ∈ E(G). As bc ∈ F1, we have uv ∈ F2. By Observation 14,

we have that u 6= a. Then a, b, v, u, c, d, a is an alternating F2-circuit, implying that au ∈ F1.

As ab ∈ F2, we know that ab is not the lexicographically smallest vertex in its component. Let

a0b0, a1b1, . . . , akbk be a path in G∗ between ab and the lexicographically smallest vertex akbk

in its component, where a0 = a, b0 = b, and for 0 ≤ i < k, aibi+1, ai+1bi ∈ E(G). Note that

for 0 ≤ i ≤ k, aibi ∈ F2 if i is even and aibi ∈ F1 if i is odd. Since akbk ∈ F1 (as it is the

lexicographically smallest vertex in its component in G∗), this implies that k is odd.
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We claim that for 0 ≤ i ≤ k, aiu, bic ∈ F1 if i is even and aiu, bic ∈ F2 if i is odd. We

prove this by induction on i. The base case when i = 0 is trivial, since au, bc ∈ F1. Let i > 0

be odd. By the induction hypothesis we have that ai−1u, bi−1c ∈ F1. Since ai−1bi−1 ∈ F2 we

can observe that (u, ai−1, bi−1, c) is a strict F1-switching path. Therefore by Observation 14, we

have that ai 6= u and bi 6= c. Then we have alternating F1-circuits ai, bi, ai−1, u, c, bi−1, ai and

bi, ai, bi−1, c, u, ai−1, bi, implying that aiu, bic ∈ F2. The case when i is even is symmetric. This

proves our claim. Since k is odd, we now have that aku, bkc ∈ F2. Note that now (c, bk, ak, u) is

a strict F2-switching path.

Suppose that d < b. Then we have that a < d < b, where ad ∈ E(G) and ab ∈ E(G).

Therefore by Observation 2, there exists x < a such that xd ∈ E(G) and xb ∈ E(G). Then

x, d, a, b, x is an alternating 4-cycle in which ab ∈ F2, implying that xd ∈ F1. Then we have a

strict F1-switching path (x, d, c, b) such that {x, d, c, b} < {a, b, c, d}, which is a contradiction to

the choice of (a, b, c, d). Therefore we can assume that b < d. Since akbk < ab and a, b < d, we

have that {c, bk, ak, u} < {a, b, c, d}. As (c, bk, ak, u) is a strict switching path, this contradicts

the choice of (a, b, c, d).

From Observation 15 and Observation 16, we have the following lemma.

Lemma 4. There are no strict switching paths in G (with respect to (F0, F1, F2)).

Remark 3. Recall that, given a 2-coloring of G∗ in which the color classes are denoted by E1 and

E2, Raschle and Simon [102] define an AP6 in G to be a sequence v0, v1, . . . , v5, v0 of distinct

vertices of G such that v0v1, v2v3, v4v5 ∈ Ei for some i ∈ {1, 2} and v1v2, v3v4, v5v0 ∈ E(G).

Raschle and Simon observed that if G∗ has an AP6-free 2-coloring, then G has a 2-threshold

cover and it can be computed in time O(|E(G)|2) (using Theorem 3.1, Theorem 2.5, Fact 2

and Fact 1 in [102]). The major part of the work of Raschle and Simon is to show that an

AP6-free 2-coloring of G∗ always exists if G∗ is bipartite and that it can be computed in time

O(|E(G)|2) (Sections 3.2 and 3.3 of [102]). It can be seen that any 2-coloring of G∗ obtained

by extending the partial 2-coloring of G∗ computed after Phases I and II of our algorithm is

in fact an AP6-free 2-coloring of G∗ as follows. Let E1 and E2 be the color classes of such a

2-coloring of G∗. We can assume without loss of generality that F1 ⊆ E1 and F2 ⊆ E2. Note

that F0 ⊆ E1 ∪ E2. Suppose that there is an AP6 v0, v1, . . . , v5, v0 in G with respect to this

coloring where the edges v0v1, v2v3, v4v5 ∈ Ei, where i ∈ {1, 2}. Note that (∅, E1, E2) is a valid

3-partition of E(G). For each even j ∈ {0, 1, . . . , 5}, since vj , vj+1, vj+2, vj+3 (subscripts modulo

6) is an alternating Ei-path, we have that vjvj+3 ∈ E(G). This implies that for each even
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c d
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Figure 2.11: An F -pentagon and an F -pentagon having same edge cd (possibly, a1 = a2)

j ∈ {0, 1, . . . , 5}, vj , vj+1, vj+2, (vj+5 = vj−1), vj is an alternating 4-cycle in G (note that from

the previous observation, we have vj+2vj+5 ∈ E(G)), from which it follows that vjvj+1 is in a

non-trivial component of G∗. Therefore, v0v1, v2v3, v4v5 /∈ F0. Since these edges belong to Ei, it

follows that v0v1, v2v3, v4v5 ∈ Fi. Then v0, v1, . . . , v5, v0 is an alternating Fi-circuit, and therefore

v0v3 ∈ F3−i. This implies that (v2, v3, v0, v1) is a strict Fi-switching path in G, which contradicts

Lemma 4. Thus the proof of Theorem 5 can already be completed using the observations in [102].

In the next section, we nevertheless give a self-contained proof that shows that G has a 2-threshold

cover without using the “threshold completion” method used in [70, 102]. Also note that since it

is clear that Phases I and II of the algorithm, and also the initial construction of G∗, can be done

in time O(|E(G)|2), we obtain a simple algorithm with the same time complexity that computes

the 2-threshold cover of a graph G whose auxiliary graph G∗ is bipartite (note however that there

is a faster algorithm for computing a 2-threshold cover due to Sterbini and Raschle [112]).

2.6.3 Constructing the 2-threshold cover of G

Observation 17. There does not exist a1, a2, b1, b2, e1, e2, c, d ∈ V (G) such that (a1, b1, c, d, e1)

is an F1-pentagon and (a2, b2, c, d, e2) is an F2-pentagon.

Proof. Suppose not (see Figure 2.11). Then as b1c, e1c ∈ F2 and b2c, e2c ∈ F1, we have {b1, e1}∩

{b2, e2} = ∅. Then b1, a1, c, b2 and e1, a1, c, e2 are alternating F1-paths, implying that b1b2, e1e2 ∈

E(G). As b1, b2, e2, e1, b1 is an alternating 4-cycle, we have {b1b2, e1e2} ∈ E(G∗). Thus, b1b2 /∈

F0, or in other words, b1b2 ∈ F1 ∪ F2. If b1b2 ∈ F1, then (c, b1, b2, a2) is a strict F2-switching

path, which contradicts Lemma 4. On the other hand, if b1b2 ∈ F2, then (c, b2, b1, a1) is a strict

F1-switching path, which again gives a contradiction to Lemma 4.
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We shall now describe Phase III of the algorithm that yields a partial 2-coloring of G∗ that

can be directly converted into a 2-threshold cover of G.

Phase III. For each i ∈ {1, 2}, let

Si = {cd ∈ F0 : ∃a, b, e ∈ V (G) such that (a, b, c, d, e) is an Fi-pentagon in G with

respect to (F0, F1, F2)}.

Color every vertex in S1 with 2 and every vertex in S2 with 1.

Let F ′0 be the set of vertices of G∗ that are uncolored after Phase III, and for i ∈ {1, 2}, let

F ′i be the set of vertices of G∗ that are colored i. Clearly, F ′0 = F0 \ (S1 ∪ S2), F ′1 = F1 ∪ S2 and

F ′2 = F2 ∪ S1. Note that S1, S2 ⊆ F0 and that S1 ∩ S2 = ∅ by Observation 17. It is easy to see

that {F ′0, F ′1, F ′2} is a partition of E(G). Further, since F1 ⊆ F ′1, F2 ⊆ F ′2 and (F0, F1, F2) is a

valid 3-partition of E(G), it follows that (F ′0, F
′
1, F

′
2) is also a valid 3-partition of E(G). We shall

show that (V (G), F ′0 ∪ F ′1) and (V (G), F ′0 ∪ F ′2) are both threshold graphs, thereby completing

the proof of Theorem 5. From here onwards, we use the terms “pentagons” and “switching paths”

with respect to (F ′0, F
′
1, F

′
2) unless otherwise mentioned.

Lemma 5. There are no pentagons in G with respect to (F ′0, F
′
1, F

′
2).

Proof. Suppose for the sake of contradiction that (a, b, c, d, e) is a pentagon in G with respect to

(F ′0, F
′
1, F

′
2). Let i ∈ {1, 2} such that (a, b, c, d, e) is an F ′i -pentagon. Recall that ec, ab, ed and

bc, ae, bd are paths in G∗ and hence each of ab, ae, bc, bd, ec, ed is in a non-trivial component of

G∗. Thus none of them is in F0. Since ab, ae ∈ F ′i and bc, bd, ec, ed ∈ F ′3−i, this implies that

ab, ae ∈ Fi and bc, bd, ec, ed ∈ F3−i. Since (a, b, c, d, e) is an F ′i -pentagon, we have cd ∈ F ′0 ∪ F ′i .

This implies that cd /∈ F ′3−i and that cd ∈ F0∪Fi. If cd ∈ F0, then (a, b, c, d, e) is an Fi-pentagon

in G with respect to (F0, F1, F2), which implies that cd ∈ Si, and therefore cd ∈ F ′3−i. Since this

is a contradiction, we can assume that cd ∈ Fi. Then (a, b, c, d, e) is a strict Fi-pentagon in G

with respect to (F0, F1, F2), contradicting Lemma 3.

Lemma 6. There are no switching paths in G with respect to (F ′0, F
′
1, F

′
2).

Proof. Suppose not. Let (a, b, c, d) be a switching path in G with respect to (F ′0, F
′
1, F

′
2). Let

i ∈ {1, 2} such that (a, b, c, d) is an F ′i -switching path. Then we have ad ∈ E(G), ab, cd ∈ F ′i ∪F ′0,

and bc ∈ F ′3−i. Suppose that bc belongs to a non-trivial component of G∗. Then there exists

uv ∈ E(G) such that bv, cu ∈ E(G). By Lemma 2 and Lemma 5, we have that a 6= u and

d 6= v. Notice that since bc ∈ F ′3−i and b, c, u, v, b is an alternating 4-cycle, we have uv ∈ F ′i .
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a d

cb

Figure 2.12: F -switching cycle – ab, cd ∈ F ∪ F ′0 and bc, ad ∈ F

Then d, c, u, v, b, a, d and a, b, v, u, c, d, a are alternating F ′i -circuits, implying that dv, au ∈ F ′3−i
and ab, cd ∈ F ′i . This further implies that (a, b, c, d) is a strict F ′i -switching path with respect to

(F ′0, F
′
1, F

′
2). Since b, a, d, v, b and c, d, a, u, c and b, c, u, v, b are alternating 4-cycles, we also have

that ab, cd, bc /∈ F0, which further implies that ab, cd ∈ Fi and bc ∈ F3−i. Then (a, b, c, d) is also

a strict Fi-switching path with respect to (F0, F1, F2), which is a contradiction to Lemma 4.

Therefore we can assume that bc belongs to a trivial component in G∗, i.e. bc ∈ F0. Since

bc ∈ F ′3−i, it should be the case that bc ∈ Si, which implies that there exists an Fi-pentagon

(x, y, b, c, z) in G with respect to (F0, F1, F2). Since ab, cd ∈ F ′i ∪ F ′0 ⊆ Fi ∪ F0, we know that

a, d /∈ {x, y, z}. Since a, b, x, y and d, c, x, z are alternating Fi-paths, we have that ay, dz ∈ E(G).

Since a, y, z, d, a is an alternating 4-cycle, we know that one of ay, dz is in Fi and the other in

F3−i. Because of symmetry, we can assume without loss of generality that ay ∈ Fi and dz ∈ F3−i

(by renaming (a, b, c, d) as (d, c, b, a) and interchanging the labels of y and z if necessary). Then

a, y, z, x, c, d, a is an alternating Fi-circuit, implying that ax ∈ F3−i. Then (a, x, z, d) is a strict

F3−i-switching path in G with respect to (F0, F1, F2), which again contradicts Lemma 4.

Let {F, F} = {F ′1, F ′2}. We say that (a, b, c, d) is an F -switching cycle in G with respect to

(F ′0, F
′
1, F

′
2) if ab, cd ∈ F ∪ F ′0 and bc, ad ∈ F . As before, we say that (a, b, c, d) is a switching

cycle in G with respect to (F ′0, F
′
1, F

′
2) if there exists F ∈ {F ′1, F ′2} such that (a, b, c, d) is an

F -switching cycle. See Figure 2.12 for an illustration.

Lemma 7. There are no switching cycles in G with respect to (F ′0, F
′
1, F

′
2).

Proof. Suppose not. Let (a, b, c, d) be a switching cycle in G with respect to (F ′0, F
′
1, F

′
2). Let

i ∈ {1, 2} such that (a, b, c, d) is an F ′i -switching cycle. Then we have ab, cd ∈ F ′i ∪ F ′0 and

ad, bc ∈ F ′3−i. Suppose that bc belongs to a non-trivial component of G∗. Then there exists

uv ∈ E(G) such that bv, cu ∈ E(G). Since b, c, u, v, b is an alternating 4-cycle and bc ∈ F ′3−i, we

have that uv ∈ F ′i . If u = a and v = d, then b, (a = u), c, (d = v), b is an alternating 4-cycle

in which both the opposite edges belong to F ′i ∪ F ′0, which is a contradiction. Therefore, either

u 6= a or v 6= d. Because of symmetry, we can assume without loss of generality that u 6= a

(by renaming (a, b, c, d) as (d, c, b, a) and interchanging the labels of u and v if necessary). Then
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a, b, v, u is an alternating F ′i -path, implying that au ∈ E(G). If au ∈ F ′i ∪ F ′0 then (c, d, a, u)

is an F ′i -switching path, and if not, then au ∈ F ′3−i, in which case (b, a, u, v) is an F ′i -switching

path. In both cases, we have a contradiction to Lemma 6.

Therefore we can assume that bc belongs to a trivial component of G∗, i.e. bc ∈ F0. Since

bc ∈ F ′3−i, it should be the case that bc ∈ Si, which implies that there exists an Fi-pentagon

(x, y, b, c, z) in G with respect to (F0, F1, F2). Since ab, cd ∈ F ′i ∪ F ′0 ⊆ Fi ∪ F0, a, d /∈ {x, y, z}.

As y, x, b, a and z, x, c, d are alternating Fi-paths, we have that ya, zd ∈ E(G). Now if both

ya, zd ∈ F ′i ∪ F ′0 we have that (y, a, d, z) is an F ′i -switching path, which is a contradiction to

Lemma 6. On the other hand, if ya ∈ F ′3−i or zd ∈ F ′3−i, then since xy, xz ∈ Fi ⊆ F ′i , we have

that either (x, y, a, b) or (x, z, d, c) is an F ′i -switching path, which again contradicts Lemma 6.

We are now ready to complete the proof of Theorem 5. Consider the graphs H1, H2, having

V (H1) = V (H2) = V (G), E(H1) = F ′1 ∪ F ′0 and E(H2) = F ′2 ∪ F ′0. We claim that H1 and

H2 are both threshold graphs. Suppose for the sake of contradiction that Hi is not a threshold

graph for some i ∈ {1, 2}. Then there exist edges ab, cd ∈ E(Hi) such that bc, ad ∈ E(Hi). If

bc, ad ∈ E(G), then a, b, c, d, a is an alternating 4-cycle in G whose opposite edges both belong to

F ′i ∪ F ′0, which contradicts the fact that (F ′0, F
′
1, F

′
2) is a valid 3-partition. So we can assume by

symmetry that bc ∈ E(G). Since bc ∈ E(Hi), bc /∈ F ′i ∪F ′0, which implies that bc ∈ F ′3−i. Now if

ad ∈ E(G), then (a, b, c, d) is an F ′i -switching path in G with respect to (F ′0, F
′
1, F

′
2), which is a

contradiction to Lemma 6. On the other hand, if ad ∈ E(G), then ad ∈ F ′3−i (since ad ∈ E(Hi)),

which implies that (a, b, c, d) is an F ′i -switching cycle in G with respect to (F ′0, F
′
1, F

′
2), which

contradicts Lemma 7. Thus we can conclude that both H1 and H2 are threshold graphs. Since

E(G) = E(H1) ∪ E(H2), we further get that {H1, H2} is a 2-threshold cover of G.

2.7 Simpler proofs for paraglider-free graphs and split graphs

We now show that our proof of Theorem 5, as well as the algorithm to construct a 2-threshold

cover of a graph G whose auxiliary graph G∗ is bipartite, becomes considerably simpler if G is

a “paraglider-free graph” or a “split graph”. A paraglider is the graph P3 ∪K2 (See Figure 2.13).

Note that the subgraph formed by the edges of a pentagon in a graph is a paraglider. A graph

is said to be paraglider-free if it contains no induced subgraph isomorphic to a paraglider. Thus,

paraglider-free graphs cannot contain any pentagons with respect to any valid 3-partition of

E(G).

A graph G = (X,Y,E) is said to be a split graph if X is a clique in G, Y is an independent
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Figure 2.13: Paraglider graph

set in G and V (G) = X ∪ Y . It is also known that split graphs are precisely {2K2, C4, C5}-free

graphs. As the paraglider contains an induced C4, split graphs are paraglider-free.

Let G be a graph such that G∗ is bipartite. Suppose that G is paraglider-free. Then the

proof of Theorem 5 can be simplified as follows. We skip Phase III of our algorithm. Thus, once

we finish running Phases I and II of our algorithm and obtain the valid 3-partition (F0, F1, F2)

of E(G), we output H1 = (V (G), F1 ∪ F0) and H2 = (V (G), F2 ∪ F0) as the two threshold

graphs that form a 2-threshold cover of G. We can do this because, the fact that G is paraglider-

free implies that G does not contain any pentagons after Phase II. Thus we can conclude that

Lemma 3 holds without any proof (the whole of Section 2.6.1 can be omitted). Using Lemma 3,

we can prove Observations 14, 15 and 16 as before without any modification. We now simply

set F ′0 = F0, F ′1 = F1 and F ′2 = F2 without running Phase III, as the fact that there are no

pentagons in G implies that S1 = S2 = ∅. The statement of Lemma 5 can be directly seen

to be true without any proof. Lemmas 6 and 7 can be proved as before; actually, the second

paragraphs of both these proofs can be omitted as these cases only arise when bc ∈ Si for some

i ∈ {1, 2}. It now follows as before that H1 and H2 form a 2-threshold cover of G.

For the case of split graphs (which are a special kind of paraglider-free graphs), we can

additionally also skip Phase I of our algorithm. Suppose that G = (X,Y,E) is a split graph.

We start with an arbitrary ordering < of the vertices of G, and once we get the valid 3-partition

(F0, F1, F2) after running Phase II of the algorithm, we can output H1 = (V (G), F1 ∪ F0) and

H2 = (V (G), F2∪F0) as the two threshold graphs that form a 2-threshold cover of G. We follow

the same proof as the one for paraglider-free graphs, with the only change being made to the last

paragraph of the proof of Observation 16, where Observation 2 is used (note that Observation 2

no longer holds as < is not necessarily a Lex-BFS ordering). We replace this paragraph with the

following:

Recall that a0b0, a1b1, . . . , akbk is a path in G∗, such that for any i ∈ {0, 1, . . . , k−
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1}, aibi+1 ∈ E(G) and biai+1 ∈ E(G). Let i ∈ {0, 1, . . . , k − 1}. If ai and bi+1 both

belong to one of X or Y , then it should be the case that ai, bi+1 ∈ Y (recall that X is

a clique in G). Since aibi, ai+1bi+1 ∈ E(G) and Y is an independent set in G, we then

have bi, ai+1 ∈ X. Since X is a clique, this contradicts the fact that biai+1 ∈ E(G).

Therefore we can conclude that for each i ∈ {0, 1, . . . , k − 1}, one of ai, bi+1 belongs

to X and the other to Y . By the same argument, we can also show that for each

i ∈ {0, 1, . . . , k− 1}, one of bi, ai+1 belongs to X and the other to Y . Since k is odd,

it now follows that one of (a = a0), bk belongs to X and the other to Y , and similarly,

one of (b = b0), ak belongs to X and the other to Y . We can therefore conclude that

a 6= bk and b 6= ak. Recall that akbk < ab, a < d, (c, bk, ak, u) is a strict F2-switching

path, and aiu, bic ∈ F1 (resp. aiu, bic ∈ F2) for each even i (resp. odd i). Then we

have aku, bkc ∈ F2 and au, bc ∈ F1, which implies that ak 6= a and bk 6= b. We now

have {a, b}∩{ak, bk} = ∅, and therefore min{ak, bk} < min{a, b}. But then as a < d,

we have {c, bk, ak, u} < {a, b, c, d}, which is a contradiction to the choice of (a, b, c, d).

Ibaraki and Peled [70] were the first to show that if G is a split graph, then G has a 2-

threshold cover if and only if G∗ is bipartite. Our proof, simplified as described above, yields a

different proof for this fact which we believe is much simpler than the proofs in [70] or [102].

2.7.1 The chain subgraph cover problem

A bipartite graph G = (A,B,E) is called a chain graph if for any pair of vertices u and v that

belong to A, either N(u) ⊆ N(v) or N(v) ⊆ N(u). Equivalently, chain graphs are the class of

bipartite graphs that does not contain a pair of edges whose end-points induce a 2K2 in G. A

collection of chain graphs {H1, H2, . . . ,Hk} is said to be a k-chain subgraph cover of a bipartite

graph G if it is covered by H1, H2, . . . ,Hk. The problem of deciding whether a bipartite graph

G can be covered by k chain graphs, i.e. whether G has a k-chain subgraph cover, is known as

the k-chain subgraph cover (k-CSC) problem.

Yannakakis [118] credits Golumbic for the following observation. Given a bipartite graph

G = (A,B,E), let Ĝ be the split graph obtained from G by adding edges between every pair of

vertices in one of the partite sets, say A: i.e. V (Ĝ) = V (G) and E(Ĝ) = E(G)∪{uv : u, v ∈ A}.

Suppose that there exist vertices a, c ∈ A and b, d ∈ B such that the edges ab, cd ∈ E(G)

form a 2K2 in G. Then as ba, ac, cd ∈ E(Ĝ) and ad, bc, bd /∈ E(Ĝ) the vertices a, b, c, and d

induces a P4 in Ĝ. This implies that, if G is not a chain graph then Ĝ is not a threshold graph.
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On the other hand, we know that the split graph Ĝ does not contain 2K2 or C4 (as they are

forbidden for split graphs). Suppose that the vertices x, y, u, and v induces a P4 in Ĝ with edges

say, xy, yu, uv ∈ E(Ĝ) and xu, yv, xv /∈ E(Ĝ). Then, as Ĝ[A] is a complete graph and B is an

independent set, it should be the case that both the edges xy, uv has one end-point in A and other

end-point in B. This implies that x, v ∈ B and y, u ∈ A, and therefore the edges xy, uv ∈ E(G)

form a 2K2 in G. Thus if Ĝ is not a threshold graph then G is not a chain graph. Therefore

we can conclude that G is a chain graph if and only if Ĝ is a threshold graph. Further we can

see that G has a k-chain subgraph cover if and only if the split graph Ĝ has a k-threshold cover.

This implies that the k-chain subgraph cover problem for bipartite graphs can be reduced to the

k-threshold cover problem for split graphs in polynomial time. In fact, the reverse reduction is

also possible in polynomial time. Let G be a split graph with vertex partitions A and B, where

A is a clique and B is an independent set. By removing all the edges between the vertices in A,

we obtain a bipartite graph G′ = (A,B,E). As in the former case, it can be easily verified that

G has a k-threshold cover if and only if the bipartite graph G′ has a k-chain subgraph cover.

Thus we have the following theorem.

Theorem 6 ([118]). For k ≥ 1, the following problems are reducible to each other in polynomial-

time.

(a) Recognizing whether a bipartite graph can be covered by k chain graphs.

(b) Recognizing whether a split graph can be covered by k threshold graphs.

Yannakakis [118] showed that k-CSC is NP-complete for each fixed k ≥ 3, which implies by

the above theorem that the problem of deciding whether th(G) ≤ k for an input graph G is also

NP-complete for each fixed k ≥ 3. He also pointed out that using the results of Ibaraki and

Peled [70], the 2-CSC problem can be solved in polynomial time (since by the above theorem,

2-CSC can be reduced to the problem of determining whether a split graph can be covered by

two threshold graphs). Thus our algorithm for split graphs described in Section 2.7 can also be

used to compute a 2-chain subgraph cover, if one exists, for an input bipartite graph G in time

O(|E(G)|2) (note that even though |E(Ĝ)| > |E(G)|, the vertices in Ĝ∗ corresponding to the

edges in E(Ĝ) \ E(G) are all isolated vertices and hence can be ignored while computing the

partial 2-coloring of Ĝ∗). Note that Ma and Spinrad [84] proposed a more involved O(|V (G)|2)

algorithm for the problem. However, our algorithm for split graphs, and hence the algorithm for

computing a 2-chain subgraph cover that it yields, is considerably simpler to implement than

the algorithms of [70, 84, 102, 112].
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Figure 2.14: (a) the graph G from Figure 2.3, with its vertices numbered according to a non-
Lex-BFS ordering, and (b) the graph G∗ and its partial 2-coloring after Phases II and III.

2.8 Significance of Lex-BFS ordering

Would running just Phases II and III of our algorithm always produce a valid 2-threshold cover

of G for any graph G? That is, could we have started with an arbitrary ordering of the vertices of

G instead of a Lex-BFS ordering? We show that the algorithm may fail to produce a 2-threshold

cover of the graph G shown in Figure 2.3 if the algorithm starts by taking an arbitrary ordering

of vertices in Phase I. Suppose that the vertices of the graph are ordered according to their labels

as shown in Figure 2.14(a). Clearly, it is not a Lex-BFS ordering of the vertices, as since the

vertex in the second position is not a neighbor of the vertex in the first position, it is not even

a BFS ordering. The sets F ′0, F ′1, F ′2 computed by our algorithm after Phases II and III will be

as shown in Figure 2.14(b) – the vertices of G∗ in the set F ′1 are shown as dark red, the ones

in F ′2 as light blue and the ones in F ′0 as white. In Figure 2.14(a), the bold red edges form

the graph H1 and the thin blue edges form the graph H2. Clearly, neither is a threshold graph

(for example, both contain a C4). On the other hand, Figure 2.15 shows the 2-threshold cover

of G computed by our algorithm if it starts with the Lex-BFS ordering of the vertices of G as

indicated by the labels of the vertices in Figure 2.15(a). Note that starting with a BFS ordering

instead of a Lex-BFS ordering will also not work, since we can always add a universal vertex to

the graph G shown in Figure 2.14(a) and number it 0, so that the vertex ordering is now a BFS

ordering. It is not difficult to see that the graphs H1 and H2 computed in this case also fail to

be threshold graphs (in fact, the edges incident on the vertex labeled 0 are all isolated vertices

in the auxiliary graph, and none of them belong to any pentagons; hence they all belong to F ′0,

and the sets F ′1 and F ′2 will be exactly the same as before).

Thus the graph G shown in Figure 2.3 demonstrates that even though Phase I is optional

for split graphs, for general graphs, our algorithm may not produce a 2-threshold cover of the
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Figure 2.15: (a) the graph G from Figure 2.3, with its vertices numbered according to a Lex-BFS
ordering, and (b) the graph G∗ and its partial 2-coloring after Phases II and III.

input graph if Phase I is skipped. Note that the graph G is not a paraglider-free graph. We

have not found an example of a paraglider-free graph for which our algorithm will fail if Phase I

is skipped. We believe that our result demonstrates once again the power of the lexicographic

method in yielding elegant proofs for certain kinds of problems that otherwise seem to need more

complicated proofs. Further research could establish the applicability of the method to a wider

range of problems.



Chapter 3

Bigraphs and Digraphs

In this chapter, we review some connections established in the literature between some special

subclasses of bipartite graphs and digraphs. In particular, we are interested in the directed

analogue of chain cover problem and the close relationship between the class of interval bigraphs

and the class of interval digraphs. We also discuss a few characterizations that are known in the

literature for both of these classes of graphs.

3.1 Chain graphs and Ferrers digraphs

In this section, we revisit the class of chain graphs and chain cover problem and review some

results concerning the directed analogue of chain cover problem. Here we also study a method

by which the classes of bigraphs and digraphs can be transformed to each other.

Recall that, chain graphs are precisely the class of bipartite graphs for which the neighbor-

hoods of the vertices in either partite set of G have a linear order with respect to inclusion.

Equivalently, they are 2K2-free bipartite graphs. Since the bipartite complement of a 2K2 is also

a 2K2, we can observe that the class of chain graphs are closed under taking bipartite comple-

ments. Analogous to the threshold cover problem for general undirected graphs, we came across

the chain cover problem for bipartite graphs: the k-CSC problem asks whether an input bipartite

graph G can be covered by k chain graphs.

3.1.1 Ferrers digraphs

The class of digraphs called Ferrers digraphs were independently introduced by Guttman [60]

and Riguet [107]. A digraph G is said to be a Ferrers digraph if the out-neighborhoods (or in-

55
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a b

cd

Figure 3.1: Alternating 4-anticircuit

neighborhoods) of vertices in G have a linear order with respect to inclusion. It is evident from

this definition that the class of Ferrers digraphs is very closely related to the classes of threshold

graphs and chain graphs. A directed notion of alternating 4-cycle called alternating 4-anticircuit

can be defined as follows. Given a digraph G, two edges (a, b), (c, d) in G are said to form an

alternating 4-anticircuit in G if (a, d), (c, b) /∈ E(G) (refer to Figure 3.1). Thus equivalently, a

Ferrers digraph can be defined as follows:

Definition 20 (Ferrers digraphs). A digraph G is a Ferrers digraph if and only if no pair of

edges in G form an alternating 4-anticircuit.

From the above definitions it is not difficult to see that the Ferrers digraphs can also be

characterized to be the digraphs whose adjacency matrix does not contain a 2× 2 permutation

matrix, i.e. one of the matrices

1 0

0 1

 or

0 1

1 0

, as a submatrix.

Given a digraph G, we say that G has a Ferrers cover of size k if the input digraph G can

be covered by k Ferrers digraphs.

Definition 21 (Ferrers cover problem). The k-Ferrers cover problem asks whether an input

digraph G can be covered by k Ferrers digraphs.

As in the case of threshold cover and chain cover problems, since each edge of a digraph is

trivially a Ferrers digraph, it is easy to see that any digraph G can be covered by using |E(G)|

Ferrers digraphs.

3.1.2 Transformations between bigraphs and digraphs

Given a digraph G = (V,E), we can define the splitting bigraph of G as follows. This concept

appears in the work of Müller [95].

Definition 22 (Splitting bigraph). Let G be a digraph. The splitting bigraph BG of G is defined

as the bipartite graph with two partite sets, V ′ = {u′ : u ∈ V (G)} and V ′′ = {u′′ : u ∈ V (G)},

and E(BG) = {u′v′′ : (u, v) ∈ E(G)}. (Refer to (a) and (b) of Figure: 3.2 for an example)
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(a) a digraph G (b) the splitting bigraph BG

(c) a bipartite graph G (d) the digraph
−→
G

Figure 3.2: Transformations from a digraph to a bipartite graph and vice-versa

Note that for a digraph G, two edges (a, b), (c, d) ∈ E(G) form an alternating 4-anticircuit in

G if and only if the edges a′b′′, c′d′′ ∈ E(BG) form a 2K2 in BG. This implies that G is a Ferrers

digraph if and only if BG is a chain graph.

Connection between threshold cover, chain cover, and Ferrers cover: It is easy to

verify that a digraph G has a Ferrers cover of size k if and only if the splitting bigraph BG

has a chain cover of size k. This implies that the k-Ferrers cover problem for digraphs can be

reduced to the k-chain subgraph cover problem for bipartite graphs in polynomial time (since

given any digraph G, the splitting bigraph BG can be constructed in polynomial time). On the

other hand, given a bipartite graph G = (A,B,E), consider the digraph
−→
G obtained from G

by orienting all the edges from A to B. Then we have that, for vertices a, c ∈ A and b, d ∈ B,

two edges ab, cd ∈ E(G) form a 2K2 in G if and only if the edges (a, b), (c, d) ∈ E(
−→
G) form an

alternating 4-anticircuit in
−→
G . This implies that G is a chain graph if and only if

−→
G is a Ferrers

digraph. Further this implies that the k-chain subgraph cover problem for bipartite graphs can

be reduced to the k-Ferrers cover problem for digraphs in polynomial time. Figure 3.2 provides

an example that illustrates the above transformations – a digraph transformed to a bipartite

graph and vice-versa.
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The above observations together with Theorem 6, gives the following theorem.

Theorem 7 ([118, 32]). For k ≥ 1, the following problems are reducible to each other in poly-

nomial time.

(a) Recognizing whether a digraph can be covered by k Ferrers digraphs.

(b) Recognizing whether a bipartite graph can be covered by k chain graphs.

(c) Recognizing whether a split graph can be covered by k threshold graphs.

Recall that, the k-CSC problem is NP-complete for each fixed k ≥ 3 where as it is polynomial-

time solvable for k ≤ 2. Thus, above theorem implies that k-Ferrers cover problem is also

NP-complete for each fixed k ≥ 3 and it is polynomial-time solvable for k ≤ 2.

Graph partitioning problem: We define a variant of cover called partition as follows.

Definition 23 (Graph partition). A graph G is said to be partitioned into k graphs, H1, H2, . . . ,Hk

if for each i ∈ {1, 2, . . . , k} we have V (Hi) = V (G) and E(G) =
⋃

1≤i≤k, E(Hi), where for any

i, j ∈ {1, 2, . . . , k} such that i 6= j, E(Hi) ∩ E(Hj) = ∅; i.e. G can be covered by k pair-wise

(edge) disjoint subgraphs.

As in the case of graph covering problems, it is interesting to study the problem of partitioning

an input graph into graphs that belong to special graph classes.

In fact, using the same transformations that we have discussed above and in Theorem 6, we

have the following corollary of Theorem 7.

Corollary 1. For k ≥ 1, the following problems are reducible to each other in polynomial time.

(a) Recognizing whether a digraph can be partitioned into k Ferrers digraphs.

(b) Recognizing whether a bipartite graph can be partitioned into k chain graphs.

(c) Recognizing whether a split graph can be partitioned into k threshold graphs.

We will see the complexity status of the above problems later in this chapter.

3.2 Interval bigraphs and interval digraphs

First let us define one of the well-known classes of undirected graphs called intersection graphs.
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Definition 24 (Intersection graph). Let F be a family of subsets of a universal set U . Given

an undirected graph G, a collection {Su}u∈V (G) where Su ∈ F is said to be an intersection

representation of G with respect to F if for any u, v ∈ V (G) we have uv ∈ E(G) if and only

if Su ∩ Sv 6= ∅. A graph that has an intersection representation with respect to F is called an

intersection graph of sets from F .

It was Marczewski [113] who first noted that any undirected graph G is an intersection graph.

This can be seen by defining F = {Sv : v ∈ V }, where Sv denotes the set of all edges incident

to v in G. Note that for different choices of geometric objects as the universal set, we obtain

different graph classes. Graphs like interval graphs (intersection graphs of intervals on the real

line), circular-arc graphs (intersection graph of arcs on a circle), rectangle graphs (intersection

graphs of rectangles in R2), string graphs (intersection graphs of curves on the plane) etc... are a

few of them [111]. McKee and McMorris [90] have presented a detailed overview of intersection

graphs and their several variants. The class of interval graphs is one of the most prominent

variants of intersection graphs.

Intersection bigraphs and interval bigraphs: A bipartite analogue of intersection graphs,

called intersection bigraph was introduced by Harary, Kabell, and McMorris [64] and can be

defined as follows:

Definition 25 (Intersection bigraph). Let F be a family of subsets of a universal set U . Given a

bipartite graph G = (A,B,E), a collection {Su}u∈V (G), where Su ∈ F is said to be an intersection

representation of G w.r.t. F if ab ∈ E(G) if and only if a ∈ A, b ∈ B and Sa∩Sb 6= ∅. A bipartite

graph that has such an intersection representation with respect to F is called an intersection

bigraph of sets from F .

In particular, the class of bipartite graphs called interval bigraphs are precisely the inter-

section bigraphs of a family of intervals on the real line: i.e. a bipartite graph G = (A,B,E) is

said to be an interval bigraph if there exists a collection {Iu}u∈V (G), of closed intervals on the

real line such that ab ∈ E(G) if and only if a ∈ A, b ∈ B and Ia ∩ Ib 6= ∅ (refer to Figure 1.5 for

an example).

Intersection digraphs and interval digraphs The class of intersection digraphs can be con-

sidered as a directed analogue of intersection graphs. Note that in an intersection representation

of a digraph, along with the connection between a pair of vertices we also have to incorporate

the direction on the edge connecting them. This gives us an indication that, unlike in the case
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of undirected graphs, a collection of single sets may not be sufficient for an intersection repre-

sentation for digraphs. The study of intersection digraphs was initiated by Maehara [85]. He

introduced the notion called pointed-set, which is defined as a set S together with a base point

b ∈ S and is denoted by the pair (S, b). He then defined a family of digraphs called catch digraphs,

which are exactly the digraphs G for which there exist a family {(Su, bu)}u∈V (G) of pointed-sets

such that (u, v) ∈ E(G) if and only if bv ∈ Su. He proved that every digraph can be represented

as a catch digraph of pointed convex sets in R2 as follows: Let G be a digraph. For each vertex

u in G, let bu be a distinct point on the circumference of a circle in R2. Now by defining Su to be

the convex hull of the points {bu} ∪ {bv : (u, v) ∈ E(G)}, it can be seen that the catch digraph

of the pointed convex sets {(Su, bu)}u∈V (G) is isomorphic to G.

Later Das, Roy, Sen and West [32] generalized the concept of catch digraphs to intersection

digraphs by replacing the pointed set (S, b) with a pair of sets (S, T ).

Definition 26 (Intersection digraph). Let F be a family of subsets of a universal set U . Given a

digraph G, a collection {(Su, Tu)}u∈V (G) of F ×F is said to be an intersection representation of

G w.r.t. F if for any u, v ∈ V (G), we have (u, v) ∈ E(G) if and only if Su ∩ Tv 6= ∅. A digraph

that has an intersection representation with respect to F is called an intersection digraph of sets

from F × F .

Similar to the observation made for the class of intersection graphs, it can be shown that

any digraph is an intersection digraph – given a digraph G, define for each u ∈ V (G), Su =

{(u, v) ∈ E(G) : v ∈ V (G)} and Tu = {(v, u) ∈ E(G) : v ∈ V (G)}. Then it can be verified

that {(Su, Tu)}u∈V (G) is a valid intersection representation of G. As in the case of undirected

graphs, there are several variants for intersection digraphs, of which interval digraphs is the

most popular one. Interval digraphs are exactly the intersection digraphs of intervals on a real

line. Das, Roy, Sen and West [32] defined interval digraphs as follows: a digraph G is said to be

an interval digraph if there exists a collection {(Su, Tu)}u∈V (G), of pairs of closed intervals on a

real line such that for any u, v ∈ V (G), we have (u, v) ∈ E(G) if and only if Su ∩ Tv 6= ∅. The

collection {(Su, Tu)}u∈V (G) is called the interval representation of G (refer to Figure 1.6 for an

example).

Müller [95] has noted the following connection between interval digraphs and interval bi-

graphs, using transformations similar to the ones we encountered in Section 3.1.2.

Proposition 1 ([95]). The following statements are true.
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(a) A digraph G is an interval digraph if and only if the splitting bigraph BG is an interval

bigraph.

(b) A bipartite graph G = (A,B,E) is an interval bigraph if and only if the digraph
−→
G obtained

from G by orienting all the edges from one partite sets to other is an interval digraph.

Moreover, the recognition problems for the classes of interval digraphs and interval bigraphs are

reducible to each other in linear time.

Proof. (a) Suppose that G = (V,E) is an interval digraph with an interval representation

{(Su, Tu)}u∈V (G). Consider the splitting bigraph BG = (V ′, V ′′, E) of G where V ′ = {u′ :

u ∈ V (G)} and V ′′ = {u′′ : u ∈ V (G)}, and E(BG) = {u′v′′ : (u, v) ∈ E(G)}. Define

Iu′ = Su for each u′ ∈ V ′ and Iu′′ = Tu for each u′′ ∈ V ′′. Then it can be seen that

{Iu′ : u′ ∈ V ′} ∪ {Iu′′ : u′′ ∈ V ′′} is an interval representation of BG, implying that BG is

an interval bigraph. On the other hand, suppose that BG is an interval bigraph with an interval

representation {Iu′ : u′ ∈ V ′} ∪ {Iu′′ : u′′ ∈ V ′′}. Define Su = Iu′ and Tu = Iu′′ . It can be then

verified that G is an interval digraph with an interval representation {(Su, Tu)}u∈V (G).

(b) Suppose that G = (A,B,E) is an interval bigraph with an interval representation {Iu}u∈V (G).

Let
−→
G denote the digraph obtained from G by orienting all the edges from one partite sets to

other, say A to B. For each u ∈ V (
−→
G), define Su = Iu, Tu = ∅, if u ∈ A and Su = ∅, Tu = Iu, if

u ∈ B. Then it can be verified that {(Su, Tu)}u∈V (G) is an interval representation of
−→
G , which

implies that
−→
G is an interval digraph. On the other hand, if the digraph

−→
G obtained from G

by orienting all the edges from A to B is an interval digraph, with an interval representation

{(Su, Tu)}
u∈V (

−→
G)

, then by defining Iu = Su for each u ∈ A and Iu = Tu for each u ∈ B we obtain

an interval representation of G, implying that G is an interval bigraph.

Now let us review some of the important structural results in the literature, concerning the

classes of interval digraphs and interval bigraphs.

The first characterization for the class of interval digraphs was proposed by Das, Roy, Sen

and West [32]. They proved the following theorem.

Theorem 8 ([32]). Let G be a digraph. Then the following conditions are equivalent.

(a) G is an interval digraph.

(b) The rows and columns of the adjacency matrix of G can be independently permuted to obtain

a matrix in which each 0 can be replaced by either R or C in such a way that every R has

only R’s to its right and every C has only C’s below it.
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(c) G can be partitioned into two Ferrers digraphs. i.e. there exist Ferrers digraphs H1 and H2

such that E(G) = E(H1) ∪ E(H2) and E(H1) ∩ E(H2) = ∅.

Later Sanyal and Sen [110] used a notion called consistent ordering of edges to give an edge

ordering characterization for interval digraphs. Given a digraph G = (V,E), a linear ordering

< of E(G) is said to be a consistent ordering if, for (p, q), (t, s), (p, u), (t, q) ∈ E(G) we have:

(p, q) < (t, s) < (p, u) implies that (p, s) ∈ E(G) (q 6= u) and (p, q) < (t, s) < (t, q) implies that

(t, s) ∈ E(G) (p 6= t). They proved that G is an interval digraph if and only if E(G) has a

consistent ordering.

The class of interval bigraphs are also studied by several authors. First we note the following

characterization for interval bigraphs.

Theorem 9 ([32]). An undirected bipartite graph G is an interval bigraph if and only if the

bipartite complement Gb of G can be partitioned into two chain graphs.

Proof. Let G be an undirected bipartite graph. Note that by a transformation that we have used

to prove Corollary 1, we have that the bipartite complement Gb of G can be partitioned into two

chain graphs if and only if the digraph, H =
−→
Gb (obtained from Gb by orienting all the edges,

say from A to B) can be partitioned to two Ferrers digraphs. As the bipartite complement Gb of

G is also a bipartite graph, by the definition of H we have that V (H) also has the same partite

sets A and B and all the edges in H are directed from A to B. Let H ′ be the digraph obtained

by adding all possible symmetric arcs between the vertices belonging to the same partition of

V (H). I.e. V (H ′) = V (H) and E(H ′) = E(H) ∪ {(a, a′), (a′, a) : a, a′ ∈ A} ∪ {(b, b′), (b′, b) :

b, b′ ∈ B}. Then we can prove that the digraph H has a partition into two Ferrers digraphs if

and only if the digraph H ′ has a partition into two Ferrers digraphs. In fact, it can be shown as

follows: If there exist two Ferrers digraphs H1 and H2 such that E(H) = E(H1) ∪ E(H2) and

E(H1)∩E(H2) = ∅ then define the digraphs, H ′1 andH ′2 with V (H ′1) = V (H ′2) = V (H ′) = V (H),

E(H ′1) = E(H1) ∪ {(a, a′), (a′, a) : a, a′ ∈ A} and E(H ′2) = E(H2) ∪ {(b, b′), (b′, b) : b, b′ ∈ B}.

Note that the edges which belong to the same partite sets are added to the subgraphs H ′1 and

H ′2 in such a way that, these edges cannot be a part of any alternating 4-anticircuit in H ′1 or H ′2.

Now the fact that H1 and H2 are Ferrers digraphs gives us that H ′1 and H ′2 are also both Ferrers

digraphs. Clearly H ′1 and H ′2 form a partition of H ′ as well. On the other hand, if there exist two

Ferrers digraphs H ′1 and H ′2 such that E(H ′) = E(H ′1) ∪ E(H ′2) and E(H ′1) ∩ E(H ′2) = ∅ then

define the digraphs, H1 and H2 with V (H1) = V (H2) = V (H) = V (H ′), E(H1) = E(H ′1)∩E(H)

and E(H2) = E(H ′2)∩E(H). Since the edges in H1 and H2 are all oriented from A to B, by the
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definitions of E(H1) and E(H2), we can observe that any pair of edges that forms an alternating

4-anticircuit in H1 (resp. H2) remain as an alternating 4-anticircuit in H ′1 (resp. H ′2). Therefore

the fact that H ′1 and H ′2 are Ferrers digraphs imply that both the digraphs H1 and H2 are Ferrers

digraphs that form a partition of H. Applying Theorem 8(c), we then have that the digraph H ′

can be partitioned into two Ferrers digraphs if and only if the complement H ′ of H ′ is an interval

digraph. Recall that the digraph H =
−→
Gb is the digraph obtained from Gb by orienting all its

edges from A to B and H ′ is the digraph obtained from H by adding all possible symmetric

arcs between the vertices in the same partite sets. We then have that the complement H ′ of

H ′ is exactly the digraph, say
←−
G whose underlying undirected graph is G and all its edges are

oriented from the partite set B to A. Therefore by Proposition 1, we have that the digraph
←−
G = H ′ is an interval digraph if and only if G is an interval bigraph. Combining with the

previous observations, we then have the theorem.

Note that, the above theorem tells us that the recognition problem of interval bigraphs can

be reduced to the 2-chain partition problem – whether there exists two chain graphs that form

an (edge) partition of the input graph

Now the following characterization for interval bigraphs proposed by Hell and Huang [69]

connects interval bigraphs to a subclass of circular-arc graphs.

Theorem 10 ([69]). A bipartite graph G is an interval bigraph if and only if the complement G

of G is a circular-arc graph with clique number two (vertices can be partitioned into two cliques)

that has a circular-arc representation in which no two arcs together cover the whole circle.

Hell and Huang [69] also proposed the following two vertex ordering characterizations for the

class of interval bigraphs.

Theorem 11 ([69]). Let G be a bipartite graph with partite sets X and Y . Then the following

statements are equivalent.

(a) G is an interval bigraph.

(b) The vertex set of G has an ordering < such that for any u, v, w ∈ V (G) = X ∪ Y with

u < v < w, the configuration in Figure 3.3 is forbidden (dark red vertices are in X and

light blue vertices are in Y , or conversely).

(c) The vertex set of G has an ordering < such that for any u, v, w, x ∈ V (G) = X ∪ Y with

u < v < w < x, the configurations in Figure 3.4 is forbidden (dark red vertices are in X

and light blue vertices are in Y , or conversely).
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Figure 3.3: Forbidden configuration

a b c d a b c d a b c d a b c d

Figure 3.4: Forbidden configurations

Unfortunately, neither of the above characterizations directly yields a polynomial-time recog-

nition algorithm for the class of interval bigraphs (resp. interval digraphs). The only known

polynomial-time algorithm known for recognizing the class of interval bigraphs (resp. interval

digraphs) is the one proposed by Müller [95], which can be implemented in O(n.m6(n+m) log n)

time. He used a dynamic programming approach for the same. He also notes that, any interval

bigraph is chordal bipartite, and this observation is very crucial in the development of this algo-

rithm. Applying Theorem 9 and Theorem 10, Mülller’s algorithm can also be used to solve the

recognition problems for the class of 2-chain partitionable graphs and the class of circular-arc

graphs with clique number two and having a circular-arc representation in which no two arcs

cover the whole circle. By Corollary 1, this algorithm can be further used to solve the recognition

problems for the class of digraphs that can be partitioned into two Ferrers digraphs and the split

graphs that can be partitioned into two threshold graphs.

However the problem of finding a simpler recognition algorithm for the class of interval

bigraphs or interval digraphs is a long standing open problem. In the same paper [95], Müller also

provides some structures that are necessarily forbidden in an interval bigraph, and conjectured

that they are sufficient as well. But later Hell and Huang [69] disproved this conjecture. Thus

the question of a forbidden structure characterization for interval bigraphs or interval digraphs

still remains as an interesting open problem. Moreover, the complexities of all the recognition

problems listed in Corollary 1 also remain open for k > 2.
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On the Kernel and Related Problems in

Interval Digraphs
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Chapter 4

Algorithms for Reflexive Interval

Digraphs

4.1 Introduction

In this chapter, we study some of the classic computation problems on digraphs in a subclass of

interval digraphs, called reflexive interval digraphs. Our basic goal here is to illustrate the fact

that the reflexivity of an interval digraph has a huge impact on the algorithmic complexity of

several problems related to domination and independent sets in digraphs. First let us recall the

definitions of the undirected counterparts of those problems.

Let H = (V,E) be an undirected graph. A set S ⊆ V (H) is said to be an independent set

in H if for any two vertices u, v ∈ S, uv /∈ E(H). A set S ⊆ V (H) is said to be a dominating

set in H if for any v ∈ V (H) \ S, there exists u ∈ S such that uv ∈ E(H). A set S ⊆ V (H)

is said to be an independent dominating set in H if S is dominating as well as independent.

Note that any maximal independent set in H is an independent dominating set in H, and

therefore every undirected graph contains an independent dominating set, which implies that

the problem of deciding whether an input undirected graph contains an independent dominating

set is trivial. On the other hand, finding an independent dominating set of maximum cardinality

is NP-complete for general graphs, since independent dominating sets of maximum cardinality

are exactly the independent sets of maximum cardinality in the graph. The problem of finding

a minimum cardinality independent dominating set is also NP-complete for general graphs [49]

and also in many special graph classes (refer to [81] for a survey). Now we study the directed

analogues of these problems, which are also well-studied in the literature.
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Figure 4.1: Examples: the vertices that constitute the corresponding sets are shown in dark red.

Some computational problems in digraphs: Let G = (V,E) be a directed graph. A set

S ⊆ V (G) is said to be an independent set in G, if for any two vertices u, v ∈ S, (u, v), (v, u) /∈

E(G). A set S ⊆ V (G) is said to be an absorbing (resp. dominating) set in G, if for any

v ∈ V (G) \ S, there exists u ∈ S such that (v, u) ∈ E(G) (resp. (u, v) ∈ E(G)). As any set of

vertices that consists of a single vertex is independent and the whole set V (G) is absorbing as

well as dominating, the interesting computational problems that arise here are that of finding a

maximum independent set, called Independent-Set, and that of finding a minimum absorbing

(resp. dominating) set in G, called Absorbing-Set (resp. Dominating-Set). A set S ⊆ V (G)

is said to be an independent dominating (resp. absorbing) set if S is both independent and

dominating (resp. absorbing). Note that unlike undirected graphs, the problem of finding a

maximum cardinality independent dominating (resp. absorbing) set is different from the problem

of finding a maximum cardinality independent set for directed graphs. An independent absorbing

set in a directed graph is more well-known as a kernel of the digraph. We follow the terminology

in [100] and call an independent dominating set in a directed graph a solution of the graph. It

is easy to see that a kernel in a directed graph G is a solution in the directed graph obtained

by reversing every arc of G and vice versa. Note that unlike in the case of undirected graphs, a

kernel need not always exist in a directed graph. For example, it is easy to see that a directed

triangle with arcs say, (a, b), (b, c) and (c, a) does not have a kernel. Therefore, besides the

computational problems of finding a minimum or maximum sized kernel, called Min-Kernel

and Max-Kernel respectively, the comparatively easier problem of determining whether a given

directed graph has a kernel in the first place, called Kernel, is itself a non-trivial one. Figure 4.1

illustrates through an example the notions of independent sets, absorbing sets and kernels for

digraphs.
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Recall that given a digraph G, a collection {(Su, Tu)}u∈V (G) of pairs of intervals is said to be

an interval representation of G if (u, v) ∈ E(G) if and only if Su ∩Tv 6= ∅. A digraph G that has

an interval representation is called an interval digraph [32]. We consider a loop to be present on

a vertex u of an interval digraph if and only if Su ∩ Tu 6= ∅. An interval digraph is a reflexive

interval digraph if there is a loop on every vertex.

By imposing restrictions on the source and destination intervals for each vertex in the repre-

sentation of interval digraphs, we obtain several subclasses of interval digraphs.

4.1.1 Subclasses of interval digraphs

Many subclasses of interval digraphs have attracted the interest of researchers over the years.

The authors of [32] studied a special subclass of interval digraphs called interval point digraphs,

which are those interval digraphs G with an interval representation {(Su, Tu)}u∈V (G) such that

Tu is a degenerate interval, i.e. a point. When, in addition, the point Tu lies inside the interval

Su for each vertex u ∈ V (G), the graph G is said to be an interval catch digraph. Even more

restrictively, if the point Tu is the left end-point of the interval Su for each vertex u, then the graph

is said to be a chronological interval digraph, which were introduced and characterized in [31].

Note here that interval catch digraphs were defined and studied in the work of Maehara [85]

that predates the introduction of interval digraphs (the term “interval digraph” was used with

a different meaning in this work). Prisner [100] generalized interval catch digraphs to interval

nest digraphs – they are the interval digraphs with an interval representation {(Su, Tu)}u∈V (G)

such that Tu ⊆ Su for each u ∈ V (G). When the intervals Su and Tu for each vertex u ∈ V (G)

are required to have a common left end-point, the interval digraphs that arise are called adjusted

interval digraphs, which were introduced by Feder, Hell, Huang, and Rafiey [40]. The class of

adjusted interval digraphs has an association to the list homomorphism problem.

For digraphs G and H, a function f : V (G)→ V (H) is said to be a homomorphism from G to

H if (f(u), f(v)) ∈ E(H) whenever (u, v) ∈ E(G). Given a list L = {L(v) ⊆ V (H) : v ∈ V (G)},

a list homomorphism (with respect to L) is a homomorphism f from G to H, with an additional

property that f(v) ∈ L(v) for each v ∈ V (G). The list homomorphism problem L-HOM(H)

asks whether an input digraph G with a list L, admits a list homomorphism to a target digraph

H with respect to L. Feder, Hell, Huang, and Rafiey [40] showed that the list homomorphism

problem for a target digraph H is polynomial-time solvable if H is an adjusted interval digraph

and conjectured that if H is not an adjusted interval digraph, then the problem is NP-complete

(see [40]). This conjecture if true, is analogous to the dichotomy result of list homomorphism
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Adjusted interval digraphs

Interval nest digraphs Interval catch digraphs Chronological interval
digraphs

Reflexive interval digraphs

Interval point digraphs Point-point digraphs

Figure 4.2: Subclasses of interval digraphs (source intervals are shown in thin green and desti-
nation intervals are shown in bold red)

problem for reflexive undirected graphs which states that, the list homomorphism problem for

a target reflexive undirected graph H is polynomial-time solvable if H is an interval graph, and

NP-complete otherwise.

We observe that several of these classes, like interval catch digraphs, interval nest digraphs,

adjusted interval digraphs and chronological interval digraphs, are subclasses of the more general

class of reflexive interval digraphs – which arise when we require that the two intervals assigned

to a vertex have to intersect. On the other hand, interval point digraphs and even the restricted

class of interval point digraphs called point-point digraphs, where the two intervals assigned to

each vertex are required to be degenerate, (i.e. they consist of a single point each) need not be

reflexive. Figure 4.2 depicts the properties of the intervals representing a vertex that belongs to

the corresponding subclass of interval digraphs. Note that the interval representation of a vertex

in an adjusted interval digraph can be either of two types as shown in the figure.

Tolerance digraphs The class of tolerance digraphs naturally evolve from undirected tolerance

graphs. Note that when two vertices u and v of a tolerance graph are adjacent, then it should be

the case that either |Iu∩Iv| ≥ tu or |Iu∩Iv| ≥ tv or both. This observation motivates Bogart and

Trenk [10] to think of a directed analogue of tolerance graphs called tolerance digraphs which

is defined as follows: A graph G is said to be a tolerance digraph if each vertex u in G can be

assigned an interval Iu on a real line and a tolerance tu ∈ R+ in such a way that for two vertices
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u and v in G, (u, v) ∈ E(G) if and only if |Iu ∩ Iv| ≥ tv. In addition, if tu ≤ |Iu| for each

u ∈ V (G), then we call G as a bounded tolerance digraph. Bogart and Trenk generalized the

notion of bounded tolerance digraphs to bounded bitolerance digraphs. In bounded bitolerance

digraphs, each vertex is assigned with a pair of tolerances instead of one.

Definition 27 (Totally bounded bitolerance digraphs). A digraph G is said to be a bounded

bitolerance digraph if each vertex u ∈ V (G) is assigned a real interval Iu = [l(u), r(u)], a left

tolerant point lt(u) ∈ Iu, and a right tolerant point rt(u) ∈ Iu such that for any two vertices u

and v, (u, v) ∈ E(G) if and only if Iu ∩ Iv * [l(v), lt(v)) and Iu ∩ Iv * (rt(v), r(v)]. In addition,

if lt(u) ≤ rt(u) for each vertex u ∈ V (G) then G is called a totally bounded bitolerance digraph.

For more on these aspects of tolerance in graphs, see Golumbic and Trenk [59].

For an interval I = [x, y] of the real line (here x, y ∈ R and x ≤ y), we denote by l(I) the left

end-point x of I and by r(I) the right end-point y of I.

It is interesting to note that the class of totally bounded bitolerance digraphs coincides with

the class of interval nest digraphs [10]. Suppose that G is a totally bounded bitolerance digraph

with a collection of intervals {Iu}u∈V (G), left tolerant points {lt(u)}u∈V (G) and right tolerant

points {rt(u)}u∈V (G). Note that by the definition of totally bounded bitolerance digraphs, we

know that for each vertex u ∈ V (G), we have lt(u), rt(u) ∈ Iu and lt(u) ≤ rt(u). It is then easy

to verify that, G has an interval nest representation {(Su, Tu)}u∈V (G) by defining for each vertex

u ∈ V (G), Su = Iu and Tu = [lt(u), rt(u)]. On the other hand, suppose that G has an interval

nest representation {(Su, Tu)}u∈V (G). Thus for each vertex u ∈ V (G), we have that Tu ⊆ Su.

Then for each vertex u ∈ V (G), by defining the interval representing the vertex u as, Iu = Su,

the left tolerant point of the vertex u, lt(u) = l(Tu) and the right tolerant point of the vertex u,

rt(u) = r(Tu), it can be proved that G is a totally bounded bitolerance digraph.

In this chapter, we see as our main contribution the identification of the class of reflexive in-

terval digraphs as an important class of digraphs. In particular, we show that the problems Ker-

nel, Min-Kernel, Max-Kernel, Absorbing-Set, Dominating-Set, and Independent-

Set are efficiently solvable in the class of reflexive interval digraphs. The significance of reflexivity

of interval digraphs will be more evident when we show in an upcoming chapter that, all these

problems are NP-complete and/or APX-hard even on point-point digraphs. Along the way we

obtain new characterizations of both these graph classes, which reveal some of the properties of

these digraphs.

For a bipartite graph having two specified partite sets A and B, a set S ⊆ B such that
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b

b′

Figure 4.3: The set {b, b′} forms an A-dominating set

⋃
u∈B N(u) = A is called an A-dominating set. For example, for the bipartite graph given in

Figure 4.3, {b, b′} is an A-dominating set. Note that the bipartite graph G = (A,B,E) does

not contain an A-dominating set if and only if there are isolated vertices in A. The problem

of finding an A-dominating set of minimum cardinality in a bipartite graph with partite sets A

and B is more well-known as the Red-Blue Dominating Set problem, which was introduced

for the first time in the context of the European railroad network [117] and plays an important

role in the theory of fixed parameter tractable algorithms [37]. This problem is equivalent to the

well known Set Cover and Hitting Set problems [49] and therefore, it is NP-complete for

general bipartite graphs. The problem remains NP-complete even for planar bipartite graphs [2].

Recall from Chapter 3 that the class of interval bigraphs are closely related to the class of interval

digraphs. These are undirected bipartite graphs with partite sets A and B such that there exists

a collection of intervals {Su}u∈V (G) such that uv ∈ E(G) if and only if u ∈ A, v ∈ B, and

Su ∩ Sv 6= ∅. We also study the Red-Blue Dominating Set problem in the class of interval

bigraphs and we use this to solve the problem Absorbing-Set for reflexive interval digraphs.

4.1.2 Literature survey

The problems of computing a maximum independent set and minimum dominating set in undi-

rected graphs are two classic optimization problems in graph theory. As we have noted before,

the Independent-Set problem in a directed graph coincides with the problem of finding a max-

imum cardinality independent set of its underlying undirected graph. Also, in order to find a

maximum independent set in an undirected graph, one could just orient the edges of the graph in

an arbitrary fashion and solve the Independent-Set problem on the resulting digraph. There-

fore, there is an easy reduction from the problem of computing a maximum independent set in

undirected graphs to the Independent-Set problem on digraphs and vice versa, implying that

these two problems have the same algorithmic complexity. On the other hand, it seems that

the directed analogue of the domination problem is harder than the undirected version, since



CHAPTER 4. ALGORITHMS FOR REFLEXIVE INTERVAL DIGRAPHS 72

even though one can find a minimum dominating set in an undirected graph by replacing every

edge with symmetric arcs and then using an algorithm for Dominating-Set on digraphs, a

reduction in the other direction is not known. In particular, a minimum dominating set in the

underlying undirected graph of a digraph need not even be a dominating set of the digraph.

For example, any vertex of a complete graph is a dominating set of size 1, implying that the

problem of finding a minimum cardinality dominating set in a complete graph is trivial, while

no polynomial time algorithm is known to solve the Dominating-Set problem for the class of

tournaments, which are precisely orientations of complete graphs. Domination in tournaments is

well studied in the literature [91, 3, 20], but still the best known algorithm for Dominating-Set

does not run in polynomial time [91, 103]. In [91], the authors give an nO(logn) time algorithm

for the Dominating-Set problem in tournaments and they also note that Sat can be solved

in 2O(
√
v)nK time (where v is the number of variables, n is the length of the formula and K is

a constant) if and only if the Dominating-Set in a tournament can be solved in polynomial

time. Thus, determining the algorithmic complexity of the Dominating-Set problem even in

special classes of digraphs seems to be much more challenging than the algorithmic question of

finding a minimum cardinality dominating set in undirected graphs. Even though bounds on the

minimum dominating sets in digraphs have been obtained by several authors (see the book [66]

for a survey), not much is known about the computational complexity of finding a minimum

cardinality absorbing set (or dominating set) in directed graphs. Nevertheless, Kernel is a

variant of Dominating-Set that has gained the attention of researchers over the years.

The term kernel of a digraph, is introduced by Von Neumann and Morgenstern [94] in the

context of game theory. They showed that for digraphs associated with certain combinatorial

games, the existence of a kernel implies the existence of a winning strategy. Most of the work

related to domination in digraphs has been mainly focused on kernels. In fact, the Kernel

problem was shown to be NP-complete in general digraphs by Chvátal [21]. Later, Fraenkel [44]

proved that the Kernel problem remains NP-complete even for planar digraphs of degree at

most 3 having in- and out-degrees at most 2. It can be easily seen that the Min-Kernel

and Max-Kernel problems are NP-complete for those classes of graphs for which the Kernel

problem is NP-complete. A digraph is said to be kernel perfect if every induced subgraph of it has

a kernel. Several sufficient conditions for digraphs to be kernel perfect has been explored [106,

38, 94]. The Kernel problem is trivially solvable in polynomial-time on any kernel perfect

family of digraphs. But the algorithmic complexity status of the problem of computing a kernel

in a kernel perfect digraph also seems to be unknown [98]. Prisner [100] proved that interval
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nest digraphs and their reversals are kernel-perfect, and a kernel can be found in these graphs

in time O(n2) if a representation of the graph is given. Note that the Min-Kernel problem

can be shown to be NP-complete even in some kernel perfect families of digraphs that have

a polynomial-time computable kernel (see Remark 4). Apart from game theory, the notion of

kernel historically played an important role as an approach towards the proof of the celebrated

‘Strong perfect graph conjecture’ (now Strong Perfect Graph Theorem). A digraph G is called

normal if every clique in G has a kernel (that is, every clique contains a vertex that is an out-

neighbor of every other vertex of the clique). Berge and Duchet (see [12]) introduced a notion

called kernel-solvable graphs, which are undirected graphs for which every normal orientation

(symmetric arcs are allowed) of it has a kernel. They conjectured that kernel solvable graphs

are exactly the perfect graphs. This conjecture was shown to be true for various special graph

classes [9, 86, 87]. In general graphs, it was proved by Boros and Gurvich [12] that perfect graphs

are kernel solvable and the converse direction follows from the Strong Perfect Graph Theorem.

Kernels are also closely related to Grundy functions in digraphs (for a digraph G = (V,E), a

non-negative function f : V → N>0 is called a Grundy function, if for each vertex v ∈ V , f(v) is

the smallest non-negative integer that does not belong to the set {f(u) : u ∈ N+(v)}). Berge [7]

showed that if a digraph has a Grundy function then it has a kernel. Even though the converse

is not necessarily true for general digraphs, Berge [7] proved that every kernel-perfect graph has

a Grundy function. It is known that almost every random digraph has a kernel [34]. Kernels, its

variants and kernel-perfect graphs are topics that have been extensively studied in the literature,

including in the works by Richardson [105], Galeana-Sánchez and Neumann-Lara [47], Berge and

Duchet [8], and many more. See [13] for a detailed survey of results related to kernels.

Though every normal orientation of a perfect graph has a kernel, the question of finding a ker-

nel has been noted as a challenging problem even in such digraphs. Polynomial-time algorithms

for the Kernel problem, that also compute a kernel in case one exists, have been obtained for

some special graph classes. König (see [66]), who was one of the earliest to study domination in

digraphs (he called an independent dominating set a ‘basis of second kind’), proves that every

minimal absorbing set of a transitive digraph is a kernel and every kernel in a transitive digraph

has the same cardinality. Thus the Kernel problem is trivial for transitive digraphs and there

is a simple linear time algorithm for the Min-Kernel problem in such digraphs. The problem

of computing a kernel, if one exists, can be solved in polynomial time for digraphs that do not

contain odd directed cycles using Richardson’s Theorem [104]. This implies that this problem is

also polynomial-time solvable in directed acyclic graphs. Polynomial-time algorithms for finding
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a kernel, if one exists, is also known for digraphs that are normal orientations of permutation

graphs [1], Meyniel orientations (an orientation D of G for which every triangle in D has at least

two symmetric arcs) of comparability graphs [1], normal orientations (without symmetric arcs)

of claw-free graphs [98], normal orientations of chordal graphs [98] and normal orientations of

directed edge graphs (intersection graphs of directed paths in a directed tree) [98, 33]. For the

class of normal orientations of line graphs of bipartite graphs, Maffray [87] observed that kernels

in such graphs coincide with the stable matchings in the corresponding bipartite graphs. Thus

in this graph class, a kernel can be computed in polynomial time using the famous Gale and

Shapley algorithm [46] for stable matchings in bipartite graphs. It is shown in [98] that for any

orientation (without symmetric arcs) of circular-arc graphs, kernel can be solved in polynomial

time and a kernel, if one exists, can also be computed in polynomial time. The problem was also

solved for the class of interval nest digraphs by Prisner [100].

4.1.3 Notation

For a closed interval I = [x, y] of the real line (here x, y ∈ R and x ≤ y), we denote by l(I) the

left end-point x of I and by r(I) the right end-point y of I. We use the following observation

throughout the paper: if I and J are two intervals, then I∩J = ∅ ⇔ (r(I) < l(J))∨(r(J) < l(I)).

Given an interval representation of a graph, we can always perturb the end-points of the intervals

slightly to obtain an interval representation of the same graph which has the property that no

end-point of an interval coincides with any other end-point of an interval. We assume that every

interval representation considered in this paper has this property.

Let G = (V,E) be a directed graph. For u, v ∈ V (G), we say that u is an in-neighbor (resp.

out-neighbor) of v if (u, v) ∈ E(G) (resp. (v, u) ∈ E(G)). For a vertex v in G, we denote by

N+
G (v) and N−G (v) the set of out-neighbors and the set of in-neighbors of the vertex v in G

respectively. When the graph G under consideration is clear from the context, we abbreviate

N+
G (v) and N−G (v) to just N+(v) and N−(v) respectively. We denote by n the number of vertices

in the digraph under consideration, and by m the number of edges in it not including any self-

loops.

For i, j ∈ N such that i ≤ j, let [i, j] denote the set {i, i + 1, . . . , j}. Let G be a digraph

with vertex set [1, n]. Then for i, j ∈ [1, n], we define N+
>j(i) = N+(i) ∩ [j + 1, n], N−>j(i) =

N−(i) ∩ [j + 1, n], N+
<j(i) = N+(i) ∩ [1, j − 1], and N−<j(i) = N−(i) ∩ [1, j − 1]. We denote by

N+
>j(i) and N−>j(i) the sets [j + 1, n] \N+

>j(i) and [j + 1, n] \N−>j(i) respectively.
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4.2 Ordering characterization

We first show that a digraph is a reflexive interval digraph if and only if there is a linear ordering

of its vertex set such that none of the structures shown in Figure 4.4 are present.

a b c d a b c d a b c d
(i) (ii) (iii)

a b c d a b c d a b c d
(iv) (v) (vi)

Figure 4.4: Forbidden structures for reflexive interval digraphs (possibly b = c in (i), (ii), (iv)
and (v)). Note that the vertices are assumed to have self-loops since a vertex without a self-loop
is itself forbidden in a reflexive interval digraph.

Theorem 12. A digraph G is a reflexive interval digraph if and only if V (G) has an ordering <

in which for any a, b, c, d ∈ V (G) such that a < b < c < d, none of the structures in Figure 4.4

occur (b and c can be the same vertex in (i), (ii), (iv), (v) of Figure 4.4).

Proof. Let G be a reflexive interval digraph with an interval representation {(Sv, Tv) : v ∈ V (G)}.

For any vertex v ∈ V (G), let xv be the left-most end-point of the interval Sv ∩ Tv(which is well

defined as G is a reflexive interval digraph). Let < be an ordering of V (G) with respect to the

increasing order of the points xv. Now we can verify that structures in Figure 4.4 are forbidden

with respect to the order <.

Suppose not. Let a < b < c < d be such that of Figure 4.4(i). a < b, c < d and (a, b), (c, d) /∈

E(G) implies that r(Sa) < l(Tb) and r(Sc) < l(Td). Since b ≤ c, we also have that l(Tb) ≤ r(Sc).

Combining these observations we then have that r(Sa) < l(Td), which further implies that (a, d) /∈

E(G), which is a contradiction to Figure 4.4(i). Let a < b < c < d be such that of Figure 4.4(ii).

Then a < c, b < d and (a, c), (b, d) /∈ E(G) implies that r(Sa) < l(Tc) and r(Sb) < l(Td). Since

(a, d) ∈ E(G), we also have that l(Td) < r(Sa). Combining these observations we then have,

r(Sb) < l(Tc) implying that (b, c) /∈ E(G), which is a contradiction to Figure 4.4(ii). Suppose

that a < b < c < d be such that of Figure 4.4(iii). Then (a, c), (b, d) ∈ E(G) implies that

l(Tc) < r(Sa) and l(Td) < r(Sb). Since a < d, (a, d) /∈ E(G), we also have that r(Sa) < l(Td).

Combining these observations we then have, l(Tc) < r(Sb) implying that (b, c) ∈ E(G), which

is a contradiction to Figure 4.4(iii). Since we arrive at a contradiction in every case, we can

conclude that none of the structures in Figures 4.4(i), (ii) or (iii) can be present. Similarly, by
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interchanging the roles of source and destination intervals in the above proof, we can also prove

that none of the structures in Figures 4.4(iv), (v) or (vi) can be present with respect to the

ordering <.

Conversely, assume that < is an ordering of V (G) for which the structures in Figure 4.4

are absent. Let n = |V (G)|. We can assume that V (G) = [1, n] and that < is the ordering

(1, 2, . . . , n). First, we note the following observation.

Observation 18. For any two vertices i, j such that i < j, we have the following:

(a) either N+
>j(i) ⊆ N

+
>j(j) or N+

>j(j) ⊆ N
+
>j(i) and

(b) either N−>j(i) ⊆ N
−
>j(j) or N−>j(j) ⊆ N

−
>j(i).

Proof. Suppose not. Due to the symmetry between (a) and (b), we prove only the case where (a)

is not true. Then there exists two distinct vertices xi, xj ∈ {j + 1, . . . , n} such that xi ∈

N+
>j(i) \ N

+
>j(j) and xj ∈ N+

>j(j) \ N
+
>j(i). Now if xi < xj , then the vertices i < j < xi < xj

form Figure 4.4(iii) which is forbidden and if xj < xi, then the vertices i < j < xj < xi form

Figure 4.4(ii) which is also forbidden. As we have a contradiction in both the cases, we are

done.

We now define for each i ∈ {1, 2, . . . , n}, a pair of intervals (Si, Ti) as follows. For each

i ∈ {1, 2, . . . , n}, let

yi =


minN+

>i(i), if N+
>i(i) 6= ∅

n+ 1, otherwise
and zi = |N+

>yi(i)|.

.

Define, r(Si) = yi − 1 + zi
n+1 and l(Ti) = min

(
{i} ∪ {r(Sj) : j ∈ N−<i(i)}

)
.

Similarly let,

y′i =


minN−>i(i), if N−>i(i) 6= ∅

n+ 1, otherwise
and z′i = |N−

>y′i
(i)|.

.

Define, r(Ti) = y′i − 1 +
z′i
n+1 and l(Si) = min

(
{i} ∪ {r(Tj) : j ∈ N+

<i(i)}
)
.

Note that for each vertex i ∈ V (G), by the above definition of intervals corresponding to i,

we have that the point i ∈ Si ∩ Ti, yi − 1 ≤ r(Si) < yi and y′i − 1 ≤ r(Ti) < y′i. Also for any two

vertices i, j such that yi = yj = p, we have by Observation 18 that r(Si) ≤ r(Sj) if and only if
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zi ≤ zj if and only if N+
>p(i) ⊆ N+

>p(j). Similarly, for any two vertices i, j such that y′i = y′j = q,

we have that r(Ti) ≤ r(Tj) if and only if z′i ≤ z′j if and only if N−>q(i) ⊆ N−>q(j).

Now we have to prove that E(G) = {(i, j) : Si∩Tj 6= ∅}. Let (i, j) ∈ E(G) be such that i < j.

If j < yi, then we have l(Si) ≤ i < j ≤ r(Si), implying that Si ∩ Tj 6= ∅ (recall that j ∈ Sj ∩ Tj).

Suppose that yi < j. Then we have l(Tj) ≤ r(Si) < yi < j < r(Tj) implying that Si ∩Tj 6= ∅. In

a similar way, by interchanging the roles of source and destination intervals and that of i and j,

we can also prove that: if (i, j) ∈ E(G) be such that j < i, then Si ∩Tj 6= ∅. On the other hand,

suppose that (i, j) /∈ E(G), where i < j. Clearly, then yi ≤ j. For the sake of contradiction

assume that Si ∩ Tj 6= ∅. Since r(Si) < yi, this is possible only if l(Tj) ≤ r(Si) < yi ≤ j. Thus,

l(Tj) < j, which implies by the definition of intervals that N−<j(j) 6= ∅. Let k ∈ N
−
<j(j) such that

r(Sk) = min{r(Sl) : l ∈ N−<j(j)}. Since (k, j) ∈ E(G) and r(Sk) = l(Tj) < j, we can conclude by

the definition of r(Sk) that yk < j. Suppose that yi = yk = p. Then, since r(Sk) = l(Tj) ≤ r(Si),

we can conclude by our earlier observation that N+
>p(k) ⊆ N+

>p(i), which contradicts the fact

that j ∈ N+
>p(k) \ N+

>p(i). We can thus infer that yi 6= yk. This together with the fact that

yk − 1 ≤ r(Sk) = l(Tj) < yi, implies that yk < yi. Suppose that yk ≤ i, then k < yk ≤ i < j,

(k, j) ∈ E(G), and (k, yk), (i, j) /∈ E(G), which gives us Figure 4.4(i), which is a contradiction.

Therefore we can assume that i < yk, which further implies that (i, yk) ∈ E(G) (recall that

yk < yi). Now we have yk ∈ N+
>max{i,k}(i) \N

+
>max{i,k}(k) and j ∈ N+

>max{i,k}(k) \N+
>max{i,k}(i),

which contradicts Observation 18. As we arrive at a contradiction in every case, we can conclude

that Si ∩ Tj = ∅. The case where (i, j) /∈ E(G) such that j < i is symmetric.

Now we define the following.

Definition 28 (DUF-ordering). A directed umbrella-free ordering (or in short a DUF-ordering)

of a digraph G is an ordering of V (G) satisfying the following properties for any three distinct

vertices i < j < k:

(a) if (i, k) ∈ E(G), then either (i, j) ∈ E(G) or (j, k) ∈ E(G), and

(b) if (k, i) ∈ E(G), then either (k, j) ∈ E(G) or (j, i) ∈ E(G).

Definition 29 (DUF-digraph). A digraph G is a directed umbrella-free digraph (or in short a

DUF-digraph) if it has a DUF-ordering.

Then the following corollary is an immediate consequence of Theorem 12.

Corollary 2. Every reflexive interval digraph is a DUF-digraph.
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Let G be an undirected graph. We define the symmetric digraph of G to be the digraph

obtained by replacing each edge of G by symmetric arcs.

The following characterization of cocomparability graphs was first given by Damaschke [29].

Theorem 13 ([29]). An undirected graph G is a cocomparability graph if and only if there is

an ordering < of V (G) such that for any three vertices i < j < k, if ik ∈ E(G), then either

ij ∈ E(G) or jk ∈ E(G).

Then we have the following corollary.

Corollary 3. The underlying undirected graph of every DUF-digraph is a cocomparability graph.

Note that there exist digraphs which are not DUF-digraphs but their underlying undirected

graphs are cocomparability (for example, a directed triangle with edges (a, b), (b, c) and (c, a)).

But we can observe that the class of underlying undirected graphs of DUF-digraphs is precisely

the class of cocomparability graphs, since it follows from Theorem 13 that the symmetric digraph

of any cocomparability graph is a DUF-digraph. In contrast, the class of underlying undirected

graphs of reflexive interval digraphs forms a strict subclass of cocomparability graphs. We prove

this by showing that no directed graph that has K3,3 as its underlying undirected graph can be

a reflexive interval digraph (K3,3 can easily be seen to be a cocomparability graph). This would

also imply by Corollary 2 that the class of reflexive interval digraphs forms a strict subclass of

DUF-digraphs.

Theorem 14. The underlying undirected graph of a reflexive interval digraph cannot contain

K3,3 as an induced subgraph.

Proof. Since the class of reflexive interval digraphs is closed under taking induced subgraphs, it

is enough to prove that the underlying undirected graph of a reflexive interval digraph cannot

be K3,3. Let H be an undirected graph. An ordering < of V (H) is said to be a special umbrella-

free ordering of H, if for any four distinct vertices a, b, c, d ∈ V (G) such that a < b < c < d,

ad ∈ E(H) implies that either ab ∈ E(H) or cd ∈ E(H). Let G be any reflexive interval digraph.

By Theorem 12, we have that V (G) has an ordering such that none of the structures in Figure 4.4

are present. It follows that this ordering is also a special umbrella-free ordering of the underlying

undirected graph of G. Therefore we can conclude that the underlying undirected graph of any

reflexive interval digraph has a special umbrella-free ordering. We claim that K3,3 does not have

a special umbrella-free ordering, which then implies the theorem.
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Let A and B denote the two partite sets of the bipartite graph K3,3. Suppose for the sake

of contradiction that K3,3 has a special umbrella-free ordering <= (v1, v2, . . . , v6). Suppose that

v1 and v6 belong to different partite sets of K3,3. Without loss of generality, we can assume that

v1 ∈ A and v6 ∈ B. This implies that there cannot exist vertices vi, vj ∈ {v2, v3, v4, v5} such

that vi < vj , vi ∈ A and vj ∈ B, as otherwise we have v1 < vi < vj < v6, v1v6 ∈ E(K3,3), and

v1vi, vjv6 /∈ E(K3,3), which contradicts the fact that < is a special umbrella-free ordering. This

further implies that v2, v3 ∈ B and v4, v5 ∈ A. Then we have v2 < v3 < v4 < v5, v2v5 ∈ E(K3,3),

and v2v3, v4v5 /∈ E(K3,3), which is again a contradiction. Therefore we can assume that v1 and v6

belong to the same partite set of K3,3. Without loss of generality, we can assume that v1, v6 ∈ A.

Now if v2 ∈ A, then we have v3, v4, v5 ∈ B. Then we have v1 < v2 < v3 < v4, v1v4 ∈ E(K3,3),

and v1v2, v3v4 /∈ E(K3,3), which is again a contradiction. This implies that v2 ∈ B. Now if there

exists a vertex x ∈ {v4, v5} ∩ A, then we have v3 ∈ B, in which case we have v2 < v3 < x < v6,

v2v6 ∈ E(K3,3), and v2v3, xv6 /∈ E(K3,3), which is again a contradiction. Therefore we can

assume that v4, v5 ∈ B, implying that v3 ∈ A. Then we have v1 < v3 < v4 < v5, v1v5 ∈ E(K3,3),

and v1v3, v4v5 /∈ E(K3,3), which is again a contradiction. This shows that K3,3 has no special

umbrella-free ordering, thereby proving the theorem.

Prisner [100] proved the following.

Theorem 15 ([100]). The underlying undirected graphs of interval nest digraphs are weakly

triangulated graphs.

By Corollaries 2, 3 and Theorem 14, we can conclude that the underlying undirected graph of

reflexive interval digraphs are K3,3-free cocomparability graphs. This strengthens Theorem 15,

since now we have that the underlying undirected graphs of interval nest digraphs are K3,3-free

weakly triangulated cocomparability graphs.

4.3 Algorithms for reflexive interval digraphs

Here we explore the three different problems defined in Section 4.1 in the class of reflexive interval

digraphs.

Let G be a reflexive interval digraph. Note that any induced subdigraph of G is also a

reflexive interval digraph and that the “reversal” of G – the digraph obtained by replacing each

edge (u, v) of G by (v, u)) – is also a reflexive interval digraph. Since in any digraph, a set S

is an absorbing set (resp. kernel) if and only if it is a dominating set (resp. solution) in its
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reversal, this means that any algorithm that solves Absorbing-Set (resp. Kernel) problem

for the class of reflexive interval digraphs can also be used to solve the Dominating-Set (resp.

Solution) problem on an input reflexive interval digraph. Therefore, in the sequel, we only

study the Absorbing-Set and Kernel problems on reflexive interval digraphs.

4.3.1 Kernel

We use the following result of Prisner that is implied by Theorem 4.2 of [100].

Theorem 16 ([100]). Let C be a class of digraphs that is closed under taking induced subgraphs.

If in every graph G ∈ C, there exists a vertex z such that for every y ∈ N−(z), N+(z) \N−(z) ⊆

N+(y), then the class C is kernel-perfect.

In fact, the following lemma guarantees the existence of such a vertex z (as specified in

Theorem 16) in reflexive interval digraphs. Since the class of reflexive interval digraphs are closed

under taking induced subgraphs, further we will see that how such a vertex can be iteratively

used to find a kernel for any digraph belonging to this class.

Lemma 8. Let G be a reflexive interval digraph G with interval representation {(Su, Tu)}u∈V (G).

Let z be the vertex such that r(Sz) = min{r(Sv) : v ∈ V (G)}. Then for every y ∈ N−(z),

N+(z) \N−(z) ⊆ N+(y).

Proof. Let x ∈ N+(z)\N−(z) and y ∈ N−(z). We have to prove that x ∈ N+(y). By the choice

of z, we have that r(Sx), r(Sy) > r(Sz). As Sz ∩ Tz 6= ∅ (since G is reflexive interval digraph),

we have l(Tz) < r(Sz). Combining with the previous inequality, we have l(Tz) < r(Sx). As

x /∈ N−(z), it then follows that l(Sx) > r(Tz). Since y ∈ N−(z), we have that l(Sy) < r(Tz).

We now have that l(Sy) < l(Sx). As l(Sx) < r(Tx) this further implies that l(Sy) < r(Tx). Now

if x /∈ N+(y), it should be the case that l(Tx) > r(Sy) > r(Sz) which is a contradiction to the

fact that x ∈ N+(z).

Since reflexive interval digraphs are closed under taking induced subgraphs, by Theorem 16

and Lemma 8, we have the following.

Theorem 17. Reflexive interval digraphs are kernel-perfect.

It follows from the above theorem that the decision problem Kernel is trivial on reflexive

interval digraphs. As explained below, we can also compute a kernel in a reflexive interval digraph

efficiently, if an interval representation of the digraph is known.
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Let G be a reflexive interval digraph with an interval representation {(Su, Tu)}u∈V (G). Let

G0 = G and z0 be the vertex in G such that r(Sz0) = min{r(Sv) : v ∈ V (G)}. For i ≥ 1,

recursively define Gi to be the induced subdigraph of G with V (Gi) = V (Gi−1) \ ({zi−1} ∪

N−(zi−1)) and if V (Gi) 6= ∅, define zi to be the vertex such that r(Szi) = min{r(Sv) : v ∈

V (Gi)}. Let t be smallest integer such that V (Gt+1) = ∅. Note that this implies that V (Gt) =

{zt} ∪ N−Gt
(zt). Clearly t ≤ n and r(Sz0) < r(Sz1) < · · · < r(Szt). By Lemma 8, we have

that for each i ∈ {1, 2, . . . , t}, zi has the following property: for any y ∈ N−Gi
(zi) we have

N+
Gi

(zi) \N−Gi
(zi) ⊆ N+

Gi
(y).

We now recursively define a set Ki ⊆ V (Gi) as follows: Define Kt = {zt}. For each i ∈

{t− 1, t− 2, . . . , 0},

Ki =


{zi} ∪Ki+1 if (zi, zj) /∈ E(G), where j = min{l : zl ∈ Ki+1}

Ki+1 otherwise.

Lemma 9. For each i ∈ {1, 2, . . . , t}, Ki is a kernel of Gi.

Proof. We prove this by reverse induction on i. The base case where Kt = {zt} is trivial since

V (Gt) = {zt} ∪ N−Gt
(zt). Assume that the hypothesis is true for all j such that j > i. If

Ki = Ki+1 then it implies that there exists zj ∈ Ki+1 such that zj ∈ N+(zi). Further as

zj ∈ V (Gi+1) = V (Gi) \ ({zi} ∪N−Gi
(zi)), we have that zj ∈ N+

Gi
(zi) \N−Gi

(zi). Let y ∈ N−Gi
(zi).

Since N+
Gi

(zi) \N−Gi
(zi) ⊆ N+

Gi
(y), we then have that y ∈ N−Gi

(zj). Thus N−Gi
(zi) ⊆ N−Gi

(zj). As

zi ∈ N−(zj), it follows that every vertex in V (Gi) \ V (Gi+1) = {zi} ∪N−Gi
(zi) is an in-neighbor

of zj . We can now use the induction hypothesis to conclude that Ki = Ki+1 is a kernel of

Gi. On the other hand, if Ki = {zi} ∪ Ki+1, then it should be the case that (zi, zj) /∈ E(G)

where j = min{l : zl ∈ Ki+1}. Now consider any zl ∈ Ki+1 where zl 6= zj . By definition of

j, we have l > j. If (zi, zl) ∈ E(G), then as r(Szi) < r(Szj ) < r(Szl), it should be the case

that l(Tzl) < r(Szi) < r(Szj ) < r(Szl). We also have l(Szj ) < l(Szl) as otherwise Szj ⊆ Szl ,

implying that Szl ∩Tzj 6= ∅, contradicting the fact that (zl, zj) /∈ E(G) (as zl and zj both belong

to Ki+1, which by the induction hypothesis is a kernel of Gi+1). Since r(Tzl) > l(Szl) > l(Szj )

and r(Szj ) > l(Tzl), we now have that Szj ∩ Tzl 6= ∅, which is a contradiction to the fact that

(zj , zl) /∈ E(G) (as zj , zl ∈ Ki+1, which by the induction hypothesis is a kernel of Gi+1). Thus

no vertex in Ki+1 can be an out-neighbor of zi. By definition of Gi+1, no vertex in Gi+1, and

hence no vertex in Ki+1, can be an in-neighbor of zi. Then we have by the induction hypothesis

that Ki = {zi} ∪ Ki+1 is an independent set. Since the only vertices in V (Gi) \ V (Gi+1) are
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{zi}∪N−Gi
(zi), and Ki+1 is an absorbing set of Gi+1 by the induction hypothesis, we can conclude

that Ki = {zi} ∪Ki+1 is an absorbing set of Gi. Therefore Ki is a kernel of Gi.

By the above lemma, we have that K0 is a kernel of G. We can now construct an algorithm

that computes a kernel in a reflexive interval digraph G, given an interval representation of it.

We assume that the interval representation of G is given in the form of a list of left and right

end-points of intervals corresponding to the vertices. We can process this list from left to right

in a single pass to compute the list of vertices z0, z1, . . . , zt in O(n+m) time. We then process

this new list from right to left in a single pass to generate a set K as follows: initialize K = {zt}

and for each i ∈ {t−1, t−2, . . . , 0}, add zi to K if it is not an in-neighbor of the last vertex that

was added to K. Clearly, the set K can be generated in O(n + m) time. It is easy to see that

K = K0 and therefore by Lemma 9, K is a kernel of G. Thus, we have the following theorem.

Theorem 18. A kernel of a reflexive interval digraph can be computed in linear-time, given an

interval representation of the digraph as input.

The linear-time algorithm described above is an improvement and generalization of the Pris-

ner’s result that, interval nest digraphs and their reversals are kernel-perfect, and a kernel can

be found in these graphs in time O(n2) if a representation of the graph is given [100].

Now it is interesting to note that even for some kernel perfect digraphs with a polynomial-time

computable kernel, the problems Min-Kernel and Max-Kernel turn out to be NP-complete.

The following remark provides an example of such a class of digraphs.

Remark 4. Let C be the class of symmetric digraphs of undirected graphs. Note that the class C

is kernel-perfect, as for any G ∈ C the kernels of the digraph G are exactly the independent

dominating sets of its underlying undirected graph. Note that any maximal independent set

of an undirected graph is also an independent dominating set of it. Therefore, as a maximal

independent set of any undirected graph can be found in linear-time, the problem Kernel is

linear-time solvable for the class C. On the other hand, note that the problems Min-Kernel

and Max-Kernel for the class C is equivalent to the problems of finding a minimum cardinality

independent dominating set and a maximum cardinality independent set for the class of undirected

graphs, respectively. Since the latter problems are NP-complete for the class of undirected graphs,

we have that the problems Min-Kernel and Max-Kernel are NP-complete in C.

Note that unlike the class of reflexive interval digraphs, the class of DUF-digraphs are not

kernel perfect. Figure 4.5 provides an example for a DUF-digraph that has no kernel. Since that
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Figure 4.5: An example of a DUF-digraph that has no kernel.

graph is a semi-complete digraph (i.e. each pair of vertices is adjacent), and every vertex has an

out-neighbor which is not its in-neighbor, it cannot have a kernel. The ordering of the vertices

of the graph that is shown in the figure can easily be verified to be a DUF-ordering.

In contrast to Remark 4, even though DUF-digraphs may not have kernels, we show in the

next section that the problems kernel and Min-Kernel can be solved in polynomial time in

the class of DUF-digraphs. In fact we give a polynomial-time algorithm that, given a DUF-

digraph G with a DUF-ordering as input, either finds a minimum sized kernel in G or correctly

concludes that G does not have a kernel.

4.3.2 Minimum sized kernel

Let G be a DUF-digraph with vertex set [1, n]. We assume without loss of generality that

< : (1, 2, . . . , n) is a DUF-ordering of G. For ease of notation, in this section, we shorten N+
>i(i)

and N−>i(i) to N+
> (i) and N−> (i) respectively. We further define N>(i) = N+

> (i)∪N−> (i) and for

each A ∈ {N+
> (i), N−> (i), N>(i)}, we define A = [i+ 1, n] \A.

For any vertex i ∈ {1, 2, . . . , n}, let Pi = {j : j ∈ N>(i) such that [i + 1, j − 1] ⊆ N−(i) ∪

N−(j)} and let G[i, n] denote the subgraph induced in G by the set [i, n]. Note that we consider

[i + 1, j − 1] = ∅, if j = i + 1. For a collection of sets S, we denote by Min(S) an arbitrarily

chosen set in S of the smallest cardinality. For each i ∈ {1, 2, . . . , n}, we define a set K(i) as

follows. Here, when we write K(i) =∞, we mean that the set K(i) is undefined.

K(i) =


{i}, if N−> (i) = {i+ 1, . . . , n}

{i} ∪Min{K(j) 6=∞ : j ∈ Pi}, if Pi 6= ∅ and ∃j ∈ Pi such that K(j) 6=∞

∞, otherwise

Note that it follows from the above definition that K(n) = {n}. For each i ∈ {1, 2, . . . , n},

let OPT (i) denote a minimum sized kernel of G[i, n] that also contains i. If G[i, n] has no kernel

that contains i, then we say that OPT (i) =∞. We then have the following lemma.
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Lemma 10. The following hold.

(a) If K(i) 6=∞, then K(i) is a kernel of G[i, n] that contains i, and

(b) if OPT (i) 6=∞, then K(i) 6=∞ and |K(i)| = |OPT (i)|.

Proof. (a) We prove this by the reverse induction on i. Suppose that K(i) 6= ∞. The base

case where i = n is trivially true. Assume that the hypothesis is true for every j > i. It is

clear from the definition of K(i) that i ∈ K(i). If K(i) = {i}, then it should be the case that

N−> (i) = {i + 1, . . . , n}, implying that the set K(i) = {i}, is both an independent set and an

absorbing set in G[i, n], and we are done. Otherwise, K(i) = {i}∪K(j) for some j ∈ Pi such that

K(j) 6=∞. By the definition of Pi, we have that j ∈ N>(i) and [i+ 1, j − 1] ⊆ N−(i) ∪N−(j).

Since j > i, we have by the induction hypothesis that K(j) is an independent and absorbing set

in G[j, n]. Suppose that there exists k ∈ K(j), such that k ∈ N(i). Since j ∈ N>(i) we have that

j 6= k, which implies that k > j. We then have vertices i < j < k such that k ∈ N(i), j /∈ N(i)

and k /∈ N(j), which is a contradiction to the fact that < is a DUF-ordering. Therefore we can

conclude that K(i) = {i} ∪K(j) is an independent set in G[i, n]. Since j ∈ Pi, we have by the

definition of Pi that [i+ 1, j− 1] ⊆ N−(i)∪N−(j). It then follows from the fact that K(j) is an

absorbing set of G[j, n] containing j that K(i) = {i} ∪K(j) is an absorbing set of G[i, n]. Thus

K(i) is a kernel of G[i, n] that contains i.

(b) Suppose that OPT (i) 6= ∞. The proof is again by reverse induction on i. The base case

where i = n is trivially true. Assume that the hypothesis is true for any j > i. If |OPT (i)| = 1,

then it should be the case that OPT (i) = {i} and j ∈ N−(i) for each j ∈ {i + 1, . . . , n}, i.e.

N−> (i) = {i + 1, . . . , n}. By the definition of K(i), we then have K(i) = {i}, and we are done.

Therefore we can assume that |OPT (i)| > 1. Let j = min(OPT (i) \ {i}). Clearly, j > i.

As OPT (i) is an independent set, we have that j ∈ N>(i). We claim that j ∈ Pi. Suppose

that there exists a vertex y ∈ [i + 1, j − 1] such that y /∈ N−(i) ∪ N−(j). Since OPT (i) is an

absorbing set in G[i, n], there exists a vertex k ∈ OPT (i) \ {i, j} such that y ∈ N−(k). By

the choice of j and the definition of k, we have that j < k and (j, k) /∈ E(G). Then we have

y < j < k, (y, k) ∈ E(G), and (y, j), (j, k) /∈ E(G), which is a contradiction to the fact that

< is a DUF-ordering. Therefore we can conclude that [i + 1, j − 1] ⊆ N−(i) ∪ N−(j), which

implies by the definition of Pi that j ∈ Pi. This proves our claim. Note that if there exists a

vertex z ∈ (N−(i) \N−(j)) ∩ [j, n], then we have vertices i < j < z such that (z, i) ∈ E(G) and

(z, j), (j, i) /∈ E(G), which is a contradiction to the fact that < is a DUF-ordering. Therefore

we can assume that N−(i) ∩ [j, n] ⊆ N−(j) ∩ [j, n]. This implies that OPT (i) \ {i} is a kernel
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of G[j, n] that contains j. Thus OPT (j) 6= ∞, which implies by the induction hypothesis that

K(j) 6= ∞ and |K(j)| = |OPT (j)| ≤ |OPT (i) \ {i}|. Since j ∈ Pi and K(j) 6= ∞, we have

K(i) 6=∞, and further we have |K(i)| ≤ |{i} ∪K(j)| ≤ 1 + |OPT (i) \ {i}| = |OPT (i)|. By (a),

K(i) is a kernel of G[i, n] that contains i, and hence we have |K(i)| = |OPT (i)|.

Suppose that G has a kernel. Now let OPT denote a minimum sized kernel in G. Let

K = {K(j) 6= ∞ : [1, j − 1] ⊆ N−(j)}. Note that we consider [1, j − 1] = ∅ if j = 1. By

Lemma 10(a), it follows that every member of K is a kernel of G. So if G does not have a kernel,

then K = ∅. The following lemma shows that the converse is also true.

Lemma 11. If G has a kernel, then K 6= ∅ and |OPT | =
∣∣Min(K)

∣∣.
Proof. Suppose that G has a kernel. Then clearly, OPT exists. Let j = min{i : i ∈ OPT}. Then

it should be the case that [1, j − 1] ⊆ N−(j). As otherwise, there exist vertices j′ ∈ [1, j − 1]

and k ∈ OPT such that j′ ∈ N−(k) \ N−(j). Since OPT is an independent set, this implies

that we have vertices, j′ < j < k such that (j′, k) ∈ E(G) and (j′, j), (j, k) /∈ E(G) which is

a contradiction to the fact that < is a DUF-ordering. Also by the choice of j, we have that

OPT ⊆ [j, n]. Then as OPT is a kernel of G, OPT is a kernel of G[j, n] that contains j. This

implies that OPT (j) 6= ∞ and |OPT (j)| ≤ |OPT |. Therefore by Lemma 10, we have that

K(j) 6= ∞ and |K(j)| = |OPT (j)|. Thus K(j) ∈ K, which implies that K 6= ∅. Further,∣∣Min(K)
∣∣ ≤ |K(j)| = |OPT (j)| ≤ |OPT |. Since every member of K is a kernel of G, it now

follows that
∣∣Min(K)

∣∣ = |OPT |.

We thus have the following theorem.

Theorem 19. The DUF-digraph G has a kernel if and only if K(j) 6= ∞ for some j such that

[1, j − 1] ⊆ N−(j). Further, if G has a kernel, then the set {K(j) 6= ∞ : [1, j − 1] ⊆ N−(j)}

contains a kernel of G of minimum possible size.

Let G be a DUF-digraph with vertex set [1, n]. For each i ∈ [1, n], we can compute the set Pi

in O(n + m) time as follows. We mark the in-neighbors of i in [i, n] and then scan the vertices

from i to n in a single pass in order to collect the vertices which are not in-neighbors of i in an

ordered list L. Initialize Pi = ∅. We mark every out-neighbor of i in L. Now for each unmarked

vertex j in L (processed from left to right), we add j to Pi if and only if every vertex of L before

j is an in-neighbor of j. Note that this computation of Pi can be done in O(n+m) time. This

implies that we can precompute the set {Pi : i ∈ [1, n]} in O((n+m)n) time. Now since |Pi| ≤ n,

it is easy to see from the recursive definition for K(i) that {K(i) : i ∈ [1, n]} can be computed in
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O(n2) time. For j ∈ [1, n], we can check in O(n+m) time whether [1, j − 1] ⊆ N−(j). Thus in

O((n+m)n) time, we can compute the minimum sized set in {K(j) 6=∞ : [1, j − 1] ⊆ N−(j)}.

Therefore by Theorem 19, we have the following corollary.

Corollary 4. The Min-Kernel problem can be solved for DUF-digraphs in O((n+m)n) time

if the DUF-ordering is known. Consequently, for a reflexive interval digraph, the Min-Kernel

problem can be solved in O((n+m)n) time if the interval representation is given as input.

Let G be a cocomparability graph. Let H be the symmetric digraph of G. Now it is easy to

see that a set K ⊆ V (H) = V (G), is a kernel of H if and only if K is an independent dominating

set of G. Therefore a kernel of minimum possible size in H will be a minimum independent

dominating set in G. Note that a vertex ordering of a cocomparability graph that satisfies the

properties in Theorem 13 can be found in linear time [89]. Let < be such a vertex ordering of G.

As noted before, H is a DUF-digraph with DUF-ordering <. Thus an algorithm that computes

a minimum sized kernel in H also computes a minimum independent dominating set in G. From

Corollary 4, we now have the following.

Corollary 5. An independent dominating set of minimum possible size can be found in O((n+

m)n) time in cocomparability graphs.

The above corollary is an improvement over the result by Kratsch and Stewart [79] that an

independent dominating set of minimum possible size problem can be computed in O(n3) time

for cocomparability graphs.

We now show that a minimum sized kernel of an adjusted interval digraph, whose interval

representation is known, can be computed more efficiently than in the case of DUF-digraphs. Let

G be an adjusted interval digraph with an interval representation {(Su, Tu)}u∈V (G). Note that

by the definition of adjusted interval digraphs, we have that l(Su) = l(Tu) for each u ∈ V (G).

Let < be an ordering of vertices in G with respect to the common left end-points of intervals

corresponding to each vertex. Then < has the following property: for any three distinct vertices

u < v < w, if (u,w) ∈ E(G) then (u, v) ∈ E(G) and if (w, u) ∈ E(G) then (v, u) ∈ E(G). Then

note that < is also a DUF-ordering of V (G). Further, the out-neighbors (resp. in-neighbors)

of every vertex occur consecutively in <. This implies that the neighbors of every vertex occur

consecutively in <. Further we have

if [x, y] ⊆ N−(y) (resp. N+(y)) then for any z ∈ [x, y], we have [x, z] ⊆ N−(z) (resp. N+(z)).

(4.1)
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Let V (G) = [1, n] so that <= (1, 2, . . . , n). We can compute the sets {maxN+(i) : i ∈ [1, n]}

and {maxN−(i) : i ∈ [1, n]} in O(n + m) time by just preprocessing the adjacency list of G.

Since the vertices in N+
> (i) (resp. N−> (i)) occur consecutively in <, we can also compute the

set {minN>(i) = maxN(i) + 1: i ∈ [1, n]} in O(n + m) time (if maxN(i) = n, then we

set minN>(i) = n + 1). Let i ∈ [1, n]. We can construct Pi as follows. We compute x =

min{maxN+(j) : j ∈ [minN−> (i) = maxN−(i)+1, n]} in O(n) time (note that if maxN−(i) = n,

then minN>(i) = n+1, in which case we can just set Pi = ∅). We claim that Pi = [minN>(i), x].

To see this, first note that for every vertex i, N+
> (i) = [i + 1,maxN+(i)]. Therefore, since for

any vertex z ∈ [minN−> (i), x], we have maxN+(z) ≥ x, we can conclude that (z, x) ∈ E(G).

Thus [minN−> (i), x] ⊆ N−(x). Therefore by property (4.1), for each z ∈ [minN>(i), x] ⊆

[minN−> (i), x], we have that [minN−> (i), z] ⊆ N−(z). Since the vertices of N−> (i) are consecutive

in <, this means that [i, z] ⊆ N−(i) ∪ N−(z). Therefore we have that [minN>(i), x] ⊆ Pi.

Now consider any z > x. By the definition of x, there exists j ∈ [minN−> (i), x] such that

maxN+(j) = x. Then as x < z, we have (j, z) /∈ E(G), which implies that j /∈ N−(i) ∪N−(z).

Thus z /∈ Pi. Therefore we can conclude that Pi = [minN>(i), x]. Note that if minN>(i) > x,

then Pi = ∅. It is clear that the set Pi can be computed in this way in O(n) time for an i ∈ [1, n].

So the set {Pi : i ∈ [1, n]} can be computed in O(n2) time. The sets {K(i) : i ∈ [1, n]} can

then be computed in O(n2) time as before. Now we compute y = min{maxN+(j) : j ∈ [1, n]}

in O(n) time. Then [1, y − 1] ⊆ N−(y). Therefore by property (4.1), for each z ∈ [1, y] we

have [1, z − 1] ⊆ N−(z). Now consider any z > y. By the definition of y, there exists j ∈ [1, y]

such that y = maxN+(j). Then as y < z, we have that (j, z) /∈ E(G), which implies that

[1, z − 1] 6⊆ N−(z). Therefore we can conclude that [1, y] = {j : [1, j − 1] ⊆ N−(j)}. By

Theorem 19, we can just output in O(n) time a set of minimum size in {K(i) : i ∈ [1, y] and

K(i) 6=∞} as a minimum sized kernel of G. Thus we have the following corollary.

Corollary 6. The Min-Kernel problem can be solved in O(n2) time in adjusted interval di-

graphs, given an adjusted interval representation of the input graph.

Remark 5. Note that the Max-Kernel problem can also be solved in O((n + m)n) time for

the class of DUF-digraphs, by a minor modification of our algorithm that solves Min-Kernel

problem (replace Min{K(j) 6= ∞ : j ∈ Pi} in the recursive definition of K(i) by Max{K(j) 6=

∞ : j ∈ Pi} and follow the same procedure. Then we have that if kernel exists, then a maximum

sized kernel is given by Max(K)). Further, the recursive definition can also be easily adapted to

the weighted version of the problems Min-Kernel and Max-Kernel in O((n+m)n) time.
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4.3.3 Minimum absorbing set

Recall that given any digraph G, the splitting bigraph BG is defined as follows: V (BG) is

partitioned into two sets V ′ = {u′ : u ∈ V (G)} and V ′′ = {u′′ : u ∈ V (G)}, and E(BG) =

{u′v′′ : (u, v) ∈ E(G)} (refer to (a) and (b) of Figure 3.2 for an illustration). Müller [95] observed

that G is an interval digraph if and only if BG is an interval bigraph (Proposition 1 (b)).

Recall that for a bipartite graph having two specified partite sets A and B, a set S ⊆ B such

that
⋃
u∈S N(u) = A is called an A-dominating set (or a red-blue dominating set). If G is a

reflexive interval digraph, then every V ′-dominating set of BG corresponds to an absorbing set of

G and vice versa. To be precise, if S ⊆ V ′′ is a V ′-dominating set of BG, then {u : u′′ ∈ S} is an

absorbing set of G and if S ⊆ V (G) is an absorbing set of G, then {u′′ : u ∈ S} is a V ′-dominating

set of BG (note that this is not true for general interval digraphs). Thus finding a minimum

cardinality absorbing set in G is equivalent to finding a minimum cardinality V ′-dominating set

in the bipartite graph BG. We show in this section that the problem of computing a minimum

cardinality A-dominating set is linear time solvable for interval bigraphs. This implies that the

Absorbing-Set problem can be solved in linear time on reflexive interval digraphs.

Consider an interval bigraph H with partite sets A and B. Let {Iu}u∈V (H) be an interval

representation for H; i.e. uv ∈ E(H) if and only if u ∈ A, v ∈ B and Iu∩Iv 6= ∅. Let |A| = t. We

assume without loss of generality that A = {1, 2, . . . , t}, where r(Ii) < r(Ij) ⇔ i < j. We also

assume that there are no isolated vertices in A, as otherwise H does not have any A-dominating

set. For each i ∈ {1, 2, . . . , t}, we compute a minimum cardinality subset DS(i) of B that

dominates {i, i+1, . . . , t}, i.e. {i, i+1, . . . , t} ⊆
⋃
u∈DS(i)N(u). Then DS(1) will be a minimum

cardinality A-dominating set of H. We first define some parameters that will be used to define

DS(i).

Let i ∈ {1, 2, . . . , t}. We define ρ(i) = maxu∈N(i) r(Iu) and let R(i) be a vertex in N(i) such

that r(IR(i)) = ρ(i). Since A does not contain any isolated vertices, ρ(i) and R(i) exist for each

i ∈ {1, 2, . . . , t}. Let λ(i) = min{j : ρ(i) < l(Ij)}. Note that λ(i) may not exist. It can be seen

that if λ(i) exists, then λ(i) > i in the following way. Let j = λ(i). Clearly, ρ(i) < l(Ij). As

R(i) ∈ N(i), we have l(Ii) < ρ(i), which implies that i 6= j. If j < i, then it should be the case

that l(Ii) < ρ(i) < l(Ij) < r(Ij) < r(Ii), which implies that any interval Ix, where x ∈ B, that

intersects Ij also intersects Ii, and r(Ix) > ρ(i). But this contradicts our choice of ρ(i) and R(i).

Thus N(j) = ∅, implying that j is an isolated vertex in A, which is a contradiction. Therefore,

we can conclude that for any i ∈ A, λ(i) > i.
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Lemma 12. Let i ∈ {1, 2, . . . , t}. If λ(i) exists, then R(i) dominates every vertex in {i, i +

1, . . . , λ(i)− 1} and otherwise, R(i) dominates every vertex in {i, i+ 1, . . . , t}.

Proof. We first note that as R(i) ∈ N(i), we have l(IR(i)) ≤ r(Ii), as otherwise the intervals IR(i)

and Ii will be disjoint.

Suppose that λ(i) exists. Then consider any j ∈ {i, i+ 1, . . . , λ(i)− 1}. Suppose for the sake

of contradiction that R(i) /∈ N(j). Clearly, j 6= i as R(i) ∈ N(i). So we have i < j < λ(i).

Since IR(i) and Ij are disjoint, we have either ρ(i) = r(IR(i)) < l(Ij) or r(Ij) < l(IR(i)). In the

former case, since i < j < λ(i), we have a contradiction to the choice of λ(i). So we can assume

that r(Ij) < l(IR(i)). Recalling that l(IR(i)) ≤ r(Ii), we now have that r(Ij) < r(Ii), which

contradicts the fact that j > i. Thus, R(i) dominates every vertex in {i, i + 1, . . . , λ(i) − 1}.

Next, suppose that λ(i) does not exist. Then consider any vertex j > i. Since λ(i) does not exist,

we have l(Ij) ≤ ρ(i) = r(IR(i)). Since l(IR(i)) ≤ r(Ii) and r(Ii) < r(Ij), we have l(IR(i)) < r(Ij).

Thus, the intervals Ij and IR(i) intersect for every j > i, implying that R(i) dominates every

vertex in {i, i+ 1, . . . , t}.

We now explain how to compute DS(i) for each i ∈ {1, 2, . . . , t}. We recursively define DS(i)

as follows:

DS(i) =


{R(i)} ∪DS(λ(i)) if λ(i) exists

{R(i)} otherwise

Lemma 13. For each i ∈ {1, 2, . . . , t}, the set DS(i) as defined above is a minimum cardinality

subset of B that dominates {i, i+ 1, . . . , t}.

Proof. We prove this by reverse induction on i. The base case where i = t is trivial, by the

definition of R(t). Let i < t. Assume that the hypothesis holds for any j > i. If λ(i) does

not exist, then by Lemma 12, R(i) dominates every vertex in {i, i + 1, . . . , t}. This implies

that DS(i) = {R(i)} is a minimum cardinality subset of B that dominates {i, i + 1, . . . , t} and

we are done. Therefore let us assume that λ(i) exists. Then by the recursive definition of

DS(i), we have that DS(i) = {R(i)} ∪ DS(λ(i)). Since λ(i) > i, we have by the inductive

hypothesis that DS(λ(i)) is a minimum cardinality subset of B that dominates every vertex

in {λ(i), λ(i) + 1, . . . , t}. Since by Lemma 12, we have that R(i) dominates every vertex in

{i, i+ 1, . . . , λ(i)− 1}, we then have that DS(i) = {R(i)} ∪DS(λ(i)) dominates every vertex in

{i, i+ 1, . . . , t}. Consider any set OPT ⊆ B that dominates {i, i+ 1, . . . , t}. Clearly, there exists

a u ∈ OPT such that i ∈ N(u). By the definition of R(i), we know that r(Iu) ≤ r(IR(i)) = ρ(i).
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Since ρ(i) < l(Iλ(i)), this implies that λ(i) /∈ N(u). Then, since λ(i) ∈ {i, i + 1, . . . , t}, there

must exist a vertex v ∈ OPT \ {u} such that λ(i) ∈ N(v). Now consider any vertex j ∈ N(u) ∩

{λ(i), λ(i) + 1, . . . , t}. We have r(Ij) ≥ r(Iλ(i)) ≥ l(Iλ(i)) > ρ(i) ≥ r(Iu). Since j ∈ N(u), we

have l(Ij) ≤ r(Iu), which implies that l(Ij) < l(Iλ(i)) ≤ r(Iλ(i)) < r(Ij). This implies that every

interval that intersects Iλ(i) also intersects Ij , in particular j ∈ N(v). Applying the argument

for every j ∈ N(u) ∩ {λ(i), λ(i) + 1, . . . , t}, we can conclude N(u) ∩ {λ(i), λ(i) + 1, . . . , t} ⊆

N(v). Since OPT dominates every vertex in {λ(i), λ(i) + 1, . . . , t}, this implies that OPT \ {u}

dominates every vertex in {λ(i), λ(i) + 1, . . . , t}. Since by the inductive hypothesis, DS(λ(i)) is

a minimum cardinality subset of B that dominates every vertex in the same set, we have that

|OPT \ {u}| ≥ |DS(λ(i))|. Then |OPT | ≥ |DS(λ(i)) ∪ {R(i)}| = |DS(i)|. This proves that

DS(i) is a minimum cardinality subset of B that dominates every vertex in {i, i+ 1, . . . , t}.

It is not difficult to verify that given an interval representation of the interval bigraph H with

partite sets A and B, the parameters R(i) and λ(i) can be computed for each i ∈ A in O(n+m)

time. Also, given a reflexive interval digraph G, the interval bigraph BG can be constructed in

linear time. Thus we have the following corollary.

Corollary 7. The Red-Blue Dominating Set problem can be solved in interval bigraphs

in linear time, given an interval representation of the bigraph as input. Consequently, the

Absorbing-Set (resp. Dominating-Set) problem can be solved in linear time in reflexive

interval digraphs, given an interval representation of the input digraph.

Note that even if an interval representation of the interval bigraph is not known, it can be

computed in polynomial time using Müller’s algorithm [95]. Thus given just the adjacency list

of the graph as input, the Red-Blue Dominating Set problem is polynomial-time solvable

on interval bigraphs and the Absorbing-Set (resp. Dominating-Set) problem is polynomial-

time solvable on reflexive interval digraphs.

4.3.4 Maximum independent set

We have the following theorem due to McConnell and Spinrad [89].

Theorem 20. An independent set of maximum possible size can be computed for cocomparability

graphs in O(n+m) time.

Let G be a DUF-digraph. Let H be the underlying undirected graph of G. Then by Corol-

lary 3, we have thatH is a cocomparability graph. Note that the independent sets of G andH are
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exactly the same. Therefore any algorithm that finds a maximum cardinality independent set in

cocomparability graphs can be used to solve the Independent-Set problem in DUF-digraphs.

Thus by the above theorem, we have the following corollary.

Corollary 8. The Independent-Set problem can be solved for DUF-digraphs in O(n + m)

time. Consequently, the Independent-Set problem can be solved for reflexive interval digraphs

in O(n+m) time.

The above corollary generalizes and improves the O(mn) time algorithm due to Prisner’s [100]

observation that underlying undirected graph of interval nest digraphs are weakly triangulated

(Theorem 15) and the fact that maximum cardinality independent set problem can be solved

for weakly triangulated graphs in O(mn) time [67]. Note that the weighted Independent-

Set problem can also be solved for DUF-digraphs in O(n+m) time, as the problem of finding a

maximum weighted independent set in a cocomparability graphs can be solved in linear time [76].



Chapter 5

Hardness Results for Point-Point

Digraphs

In this chapter, we prove the hardness results for the problems Kernel, Min-Kernel, Max-

Kernel, Absorbing-Set, Dominating-Set, and Independent-Set (studied in the last

chapter) for the class of point-point digraphs. Here we also provide two characterizations for

point-point digraphs. One of the characterization helps us to study the hardness of the before

mentioned problems for point-point digraphs and the other characterization yields a linear-time

recognition algorithm for the class of point-point digraphs.

First let us give a brief introduction to the approximation hardness of the problems.

5.1 Approximation hardness

Refer to [28] for a detailed overview of the following concepts.

NPO: An NP-optimization problem Q can be defined as a quadruple (IQ, solQ, cQ, type) satis-

fying the following conditions.

(a) IQ denotes the set of all instances of Q which are polynomial-time recognizable.

(b) For an instance x ∈ IQ, solQ(x) denotes the set of all feasible solutions of x. There exists

a polynomial p such that for any y ∈ solQ(x), |y| ≤ p(|x|)|. Moreover for any x ∈ IQ and

y with |y| ≤ p(|x|), whether y ∈ solQ(x) can be determined in polynomial time.

(c) Given an instance x ∈ IQ and a feasible solution y ∈ solQ(x), cQ is a polynomial-time

computable function that measures the value of the solution y, and is denoted as cQ(y).

(d) type ∈ {min,max}.

92
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The objective of an NP-optimization problem Q is to find an optimum solution, OPTQ for a

given instance x ∈ IQ, i.e. a feasible solution OPTQ of x such that cQ(OPTQ) = type{cQ(y) :

y ∈ solQ(x)}. NPO stands for the class of all NP-optimization problems.

Let Q be an NP- optimization problem. Given an instance x ∈ IQ and a feasible solution

y ∈ solQ(x), we can define the ratio, RQ(x, y) = max
{

cQ(y)
cQ(OPTQ) ,

cQ(OPTQ)
cQ(y)

}
.

APX: Let Q be an NP-optimization problem. Let A be an algorithm such that A ∈ solQ. For a

rational number r > 1, A is said to be an r-approximation algorithm for Q if for any instance x

of Q, A(x) can be computed in polynomial time and the ratio, RQ(x,A(x)) ≤ r. Moreover, an

NPO-problem Q is said to belongs to the class APX if there exists an r-approximation algorithm

for Q for some rational r > 1.

PTAS: An NP-optimization problem Q is said to belongs to the class PTAS if for each rational

r > 1, there exists an algorithm A such that A is an r-approximation algorithm for Q.

Clearly, PTAS ⊆ APX ⊆ NPO. Note that the inclusions are strict if and only if P 6=

NP [28]. The reducibility 6 is said to preserves membership in a class C, if A 6 B and B ∈ C

implies that A ∈ C. Moreover, the reducibility 6 is said to be approximation preserving if it

preserves membership in either APX, PTAS or both. There are various types of approximation

preserving reductions available in the literature (see [28]).

An approximation preserving reduction, called L-reduction [97] can be defined as follows.

Definition 30 (L-reduction). Let P1 and P2 be two NP-optimization problems with cost functions

cP1 and cP2 respectively. Let f be a polynomially computable function that maps the instances

of problem P1 to the instances of problem P2. Then f is said to be an L-reduction from P1 to

P2 if there exist a polynomially computable function g and constants α, β ∈ (0,∞) such that the

following conditions hold:

(a) If y ∈ solP2(f(x)) then g(y) ∈ solP1(x), where x ∈ IP1.

(b) OPTP2(f(x)) ≤ αOPTP1(x), where OPTP2(f(x)) and OPTP1(x) denote the optimum value

of respective instances for the problems P2 and P1 respectively.

(c) |OPTP1(x) − cP1(g(y))| ≤ β|OPTP2(f(x)) − cP2(y)|, for every instance x of P1 and y ∈

solP2(f(x)).

Note that for any instance x of P1, y denote a solution of f(x) that is produced by the

approximation algorithm for the problem P2 when run on the instance f(x).
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Let Q be an NP-optimization problem. Then Q is said to have a polynomial-time approx-

imation algorithm with worst case error ε if for any instance x ∈ IQ and a feasible solution

y ∈ solQ(x), we have |cQ(y)−OPTQ(x)|
OPTQ(x) ≤ ε.

The following proposition was proved in [97].

Proposition 2 ([97]). Let P1 and P2 be two minimization (resp. maximization) problems such

that P1 is L-reducible to P2. Let α and β be the constants as given in Definition 30. If there

is a polynomial-time approximation algorithm for the problem P2 with worst case error ε then

there is a polynomial-time approximation algorithm for the problem P1 with worst case error αβε.

Consequently, an L-reduction preserves membership in PTAS.

Proof. Suppose that P1 and P2 are two minimization problems. Since P1 is L-reducible to P2,

by Definition 30 we have that there exist polynomially computable functions f, g and constants

α, β ∈ (0,∞) such that the following conditions (a) and (b) hold for every instance x of P1 and

y ∈ solP2(f(x)):

(a) OPTP2(f(x)) ≤ αOPTP1(x),

(b) cP1(g(y)) ≤ OPTP1(x) + β[cP2(y)−OPTP2(f(x))].

Since P2 is a minimization problem that has an approximation algorithm with worst case

error ε, we have cP2
(y)−OPTP2

(f(x))

OPTP2
(f(x)) ≤ ε, i.e.

(c) cP2(y) ≤ (1 + ε)OPTP2(f(x)), for any y ∈ solP2(f(x)).

As in Definition 30, also note that if y ∈ solP2(f(x)) then g(y) ∈ solP1(x), where x ∈ IP1 .

Therefore, for any x ∈ IP1 and g(y) ∈ solP1(x), we have,

cP1(g(y)) ≤ OPTP1(x) + β[cP2(y)−OPTP2(f(x))] ( by (b))

≤ OPTP1(x) + β[(1 + ε)OPTP2(f(x))−OPTP2(f(x))] ( applying (c))

≤ OPTP1(x) + βεαOPTP1(x) ( applying (a))

= (1 + αβε)OPTP1(x).

This implies that P1 has a (1 + αβε) approximation algorithm.

A similar proof holds for the case in which P1 and P2 are two maximization problems. This

proves the proposition.

A problem Q is said to be APX-hard if there is a PTAS preserving reduction from every

other problem in APX to Q. If a problem Q is APX-hard as well as belongs to the class APX,
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then we say that the problem Q is APX-complete. Note that PTAS 6= APX, if P 6= NP [28].

Thus we have that no APX-hard problem has a PTAS, if P 6= NP . Therefore, in order to prove

that an NPO-problem Q is APX-hard, it is enough to show that the problem Q has a PTAS

preserving reduction from an APX-hard problem. In particular, in this work, in order to prove

that an NPO-problem Q is APX-hard, we show that the problem Q has an L-reduction from an

APX-hard problem (this is valid by Proposition 2).

5.2 Characterizations for point-point digraphs

Let G = (V,E) be a digraph. We say that a, b, c, d is an anti-directed walk of length 3 if

a, b, c, d ∈ V (G), (a, b), (c, b), (c, d) ∈ E(G) and (a, d) /∈ E(G) (the vertices a, b, c, d need not be

pairwise distinct, but it follows from the definition that a 6= c and b 6= d). Refer to Figure 5.1.

a b c d

Figure 5.1: An anti-directed walk of length 3 (possibly, some of the vertices may coincide)

Recall that given a digraph G, BG = (X,Y,E) is a splitting bigraph of G where X = {xu :

u ∈ V (G)} and Y = {yu : u ∈ V (G)} and xuyv ∈ E(BG) if and only if (u, v) ∈ E(G). We then

have the following theorem.

Theorem 21. Let G be a digraph. Then the following conditions are equivalent:

(a) G is a point-point digraph.

(b) G does not contain any anti-directed walk of length 3.

(c) The splitting bigraph of G is a disjoint union of complete bipartite graphs.

Proof. (a)⇒ (b): LetG be a point-point digraph with a point-point representation {(Su, Tu)}u∈V (G).

Suppose that there exist vertices a, b, c, d in G such that (a, b), (c, b), (c, d) ∈ E(G). By the def-

inition of point-point representation, we then have Sa = Tb = Sc = Td. This implies that

(a, d) ∈ E(G). Therefore we can conclude that G does not contain any anti-directed walk of

length 3.

(b) ⇒ (c): Suppose that G does not contain any anti-directed walk of length 3. Let BG =

(X,Y,E) be the splitting bigraph of G. Let xuyv be any edge in BG, where u, v ∈ V (G). Clearly,

by the definition of BG, (u, v) ∈ E(G). We claim that the graph induced in BG by the vertices
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N(xu)∪N(yv) is a complete bipartite graph. Suppose not. Then it should be the case that there

exist two vertices xa ∈ N(yv) and yb ∈ N(xu) such that xayb /∈ E(BG), where a, b ∈ V (G). By

the definition of BG, we then have that (a, v), (u, v), (u, b) ∈ E(G) and (a, b) /∈ E(G). So a, v, u, b

is an anti-directed walk of length 3 in G, which is a contradiction to (b). This proves that for

every p ∈ X and q ∈ Y such that pq ∈ E(BG), the set N(p)∪N(q) induces a complete bipartite

subgraph in BG. Therefore, each connected component of BG is a complete bipartite graph.

(This can be seen as follows: Suppose that there is a connected component C of BG that is not

complete bipartite. Choose p ∈ X ∩ C and q ∈ Y ∩ C such that pq /∈ E(BG) and the distance

between p and q in BG is as small as possible. Let t be the distance between p and q in BG.

Clearly, t is odd and t ≥ 3. Consider a shortest path p = z0, z1, z2, . . . , zt = q from p to q in BG.

By our choice of p and q, we have that z1zt−1 ∈ E(BG). But then p ∈ N(z1), q ∈ N(zt−1) and

pq /∈ E(BG), contradicting our observation that N(z1) ∪ N(zt−1) induces a complete bipartite

graph in BG.)

(c)⇒ (a): Suppose that G is a digraph such that the splitting bigraph BG is a disjoint union of

complete bipartite graphs, say H1, H2, . . . ,Hk. Now we can obtain a point-point representation

{(Su, Tu)}u∈V (G) of the digraph G as follows: For each i ∈ {1, 2, . . . , k}, define Su = i if xu ∈

V (Hi) and Tv = i if yv ∈ V (Hi). Note that (u, v) ∈ E(G) if and only if xuyv ∈ E(BG) if and only

if xu, yv ∈ V (Hi) for some i ∈ {1, 2, . . . , k}. Therefore we can conclude that (u, v) ∈ E(G) if and

only if Su = Tv = i for some i ∈ {1, 2, . . . , k}. Thus the digraph G is a point-point digraph.

Using the equivalences of (a) and (c) we have the following corollary.

Corollary 9. Point-point digraphs can be recognized in linear time.

5.3 Hardness results for point-point digraphs

5.3.1 Subdivision of an irreflexive digraph

For an undirected graph G, the k-subdivision of G, where k ≥ 1, is defined as the graph H having

vertex set V (H) = V (G) ∪
⋃
ij∈E(G){u1ij , u2ij , . . . , ukij}, obtained from G by replacing each edge

ij ∈ E(G) by a path i, u1ij , u
2
ij , . . . , u

k
ij , j.

The following theorem is adapted from Theorem 5 of Chlebík and Chlebíková [19].

Theorem 22 (Chlebík and Chlebíková). Let G be an undirected graph having m edges. Let

k ≥ 1.
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(a) The problem of computing a maximum cardinality independent set is APX-complete when

restricted to 2k-subdivisions of 3-regular graphs for any fixed integer k ≥ 0.

(b) The problem of finding a minimum cardinality dominating set (resp. independent domi-

nating set) is APX-complete when restricted to 3k-subdivisions of graphs having degree at

most 3 for any fixed integer k ≥ 0.

Note that the independent sets, dominating sets and independent dominating sets of an

undirected graph G are exactly the independent sets, dominating sets (which are also the ab-

sorbing sets), and solutions (which are also the kernels) of the symmetric digraph of G. Clearly

the symmetric digraph of G is irreflexive. Since the Max-Kernel problem is equivalent to

the Independent-Set problem in symmetric digraphs, we then have the following corollary of

Theorem 22.

Corollary 10. The problems Independent-Set, Absorbing-Set, Min-Kernel and Max-

Kernel problems are APX-complete on irreflexive symmetric digraphs of in- and out-degree at

most 3.

Suppose that k ≥ 0. Let H be the 2k-subdivision or 3k-subdivision of an undirected graph

and let G be the symmetric digraph of H. Note that the independent sets, dominating sets,

and independent dominating sets of H are exactly the independent sets, dominating sets (which

are also the absorbing sets), and solutions (which are also the kernels) of G. Therefore from

Theorem 22 we have that the Independent-Set problem is APX-hard on irreflexive symmetric

digraphs of 2k-subdivisions of 3-regular graphs, and that the Absorbing-Set and Min-Kernel

problems are APX-hard on the symmetric digraphs of 3k-subdivisions of graphs of degree at most

3 for each k ≥ 0. But note that for k ≥ 1, the symmetric digraph of the 2k-subdivision or 3k-

subdivision of an undirected graph contains an anti-directed walk of length 3 (unless the graph

contains no edges), and therefore by Theorem 21, is not a point-point digraph. Thus we cannot

directly deduce the APX-hardness of the problems under consideration for point-point digraphs

from Theorem 22.

We define the subdivision of an irreflexive digraph, so that the techniques of Chlebík and

Chlebíková can be adapted for proving hardness results on point-point digraphs.

Definition 31 (k-subdivision). Let G be an irreflexive digraph (i.e. G contains no loops). For

k ≥ 1, define the k-subdivision of G to be the digraph H having vertex set V (H) = V (G) ∪⋃
(i,j)∈E(G){u1ij , u2ij , . . . , ukij}, obtained from G by replacing each edge (i, j) ∈ E(G) by a directed

path i, u1ij , u
2
ij , . . . , u

k
ij , j.
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a b

cd

a b

cd

G G2

Figure 5.2: An irreflexive digraph and its 2-subdivision

Figure 5.2 provides an example of a 2-subdivision of an irreflexive digraph G. The additional

vertices in G2 that are not present in G are shaded green. Note that the k-subdivision of any

irreflexive digraph is also an irreflexive digraph. We then have the following lemma.

Lemma 14. For any k ≥ 1, the k-subdivision of any irreflexive digraph is a point-point digraph.

Proof. Let k ≥ 1 and let G be any irreflexive digraph. By Theorem 21, it is enough to show

that the k-subdivision H of G does not contain any anti-directed walk of length 3. Note that

by the definition of k-subdivision, all the vertices in V (H) \ V (G) have both in-degree and out-

degree exactly equal to one. Further, for every vertex v in H such that v ∈ V (G), we have

that N+(v), N−(v) ⊆ V (H) \ V (G). Suppose for the sake of contradiction that u, v, w, x is an

anti-directed walk of length 3 in H. Recall that we then have (u, v), (w, v), (w, x) ∈ E(H), u 6= w

and v 6= x. By the above observations, we can then conclude that v ∈ V (G) and further that

u,w ∈ V (H) \ V (G). Then since (w, x) ∈ E(H) and v 6= x, we have that w has out-degree at

least 2, which contradicts our earlier observation that every vertex in V (H)\V (G) has out-degree

exactly one. This proves the lemma.

Theorem 23. The problem Independent-Set is APX-hard for point-point digraphs having

maximum degree at most 3.

Proof. We show a reduction from the Independent-Set problem in 2-subdivisions of 3-regular

undirected graphs (which is APX-hard by Theorem 22(a)). Let G be a 3-regular undirected

graph and let H be its 2-subdivision. Let D be the digraph obtained by assigning an arbitrary

direction to each edge of G. Clearly, D is irreflexive. Let D′ be a 2-subdivision of the directed

graph D. Note that the underlying undirected graph of D′ is H. It is clear that given H, the

graph D′ can be constructed in polynomial time. By Lemma 14, D′ is a point-point digraph.

Since the independent sets of H are exactly the independent sets of D′, and D′ has maximum
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degree at most 3, we can conclude from Theorem 22(a) that the problem Independent-Set is

APX-hard for point-point digraphs having maximum degree at most 3.

5.3.2 Kernel

Lemma 15. Let G be an irreflexive digraph and let k ≥ 1. Then G has a kernel if and only

if the 2k-subdivision of G has a kernel. Moreover, G has a kernel of size q if and only if the

2k-subdivision of G has a kernel of size q + km. Further, given a kernel of size q + km of the

2k-subdivision of G, we can construct a kernel of size q of G in polynomial time.

Proof. Let H be the 2k-subdivision of G and let
⋃

(i,j)∈E(G){u1ij , u2ij , . . . , u2kij } be the vertices in

V (H) \ V (G) as defined in Section 5.3.1.

Suppose that G has a kernel K ⊆ V (G). We define the set K ′ ⊆ V (H) as K ′ = K ∪⋃
(i,j)∈E(G) S(i, j), where

S(i, j) =


{u2lij : l ∈ {1, 2, . . . , k}}, if j /∈ K

{u2l−1ij : l ∈ {1, 2, . . . , k}}, if j ∈ K

We claim that K ′ is a kernel in H. Note that as K is an independent set in G, for any edge

(i, j) ∈ E(G), we have that i /∈ K whenever j ∈ K. Thus by the definition of 2k-subdivision

and K ′, it is easy to see that K ′ is an independent set in H. Therefore in order to prove our

claim, it is enough to show that K ′ is an absorbing set in H. Consider any (i, j) ∈ E(G). It is

clear from the definition of K ′ that for each t ∈ {1, 2, . . . , 2k − 1}, either the vertex utij or ut+1
ij

is in K ′. Further, we also have that either the vertex u2kij or j is in K ′. Thus for every vertex

x ∈ V (H) \V (G), either x or one of its out-neighbors is in K ′. Now consider a vertex i in V (H)

such that i ∈ V (G). If i ∈ K, then i ∈ K ′. On the other hand, if i /∈ K, then since K is a kernel

of G, there exists an out-neighbor j of i such that j ∈ K, in which case we have u1ij ∈ K ′. Thus

in any case, either i or an out-neighbor of i is in K ′. This shows that K ′ is a kernel of H.

Note that by the definition of K ′, we have |K ′ \ K| = km. Therefore if |K| = q then

|K ′| = q + km.

Now suppose that K ′ ⊆ V (H) is a kernel in H.

Claim 1. Let (i, j) ∈ E(G) and t ∈ {1, 2, . . . , 2k − 1}. Then utij ∈ K ′ if and only if ut+1
ij /∈ K ′.

If utij ∈ K ′, then since K ′ is an independent set in H, we have ut+1
ij /∈ K ′. On the other hand,

if utij /∈ K ′, then since K ′ is an absorbing set in H, we have ut+1
ij ∈ K ′. This proves the claim.
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We first show that K ′ ∩ V (G) is an independent set of G. Consider any edge (i, j) ∈ E(G).

Suppose that i ∈ K ′. Then since K ′ is an independent set in H, we have u1ij /∈ K ′. Applying

Claim 1 repeatedly, we have that u2kij ∈ K ′, which implies that j /∈ K ′. Thus, the set K ′ ∩ V (G)

is an independent set in G. Next, we note that K ′ ∩ V (G) is also an absorbing set of G. To see

this, consider any vertex i of H such that i ∈ V (G). If i /∈ K ′, then since K ′ is an absorbing set

in H, there exists (i, j) ∈ E(G) such that u1ij ∈ K ′. Applying Claim 1 repeatedly, we have that

u2kij /∈ K ′. Then since K ′ is an absorbing set in H, we have that j ∈ K ′. Thus K ′ ∩ V (G) is an

absorbing set of G, which implies that K ′ ∩ V (G) is a kernel of G.

Note that by Claim 1, we have that |K ′ \ V (G)| ≤ km. Let (i, j) ∈ E(G). Since K ′ is an

absorbing set in H, for each t ∈ {1, 2, . . . , 2k − 1}, either utij ∈ K ′ or u
t+1
ij ∈ K ′. This implies

that |K ′ ∩ {u1ij , u2ij , . . . , u2kij }| ≥ k. This further implies that |K ′ \ V (G)| ≥ km. Therefore we

can conclude that |K ′ \ V (G)| = km. Thus, if |K ′| = q + km then |K ′ ∩ V (G)| = q. Clearly,

given the kernel K ′ of H, the kernel K ′ ∩V (G) of G can be constructed in polynomial time.

Theorem 24. The problem Kernel is NP-complete for point-point digraphs.

Proof. We show a reduction from the Kernel problem in general digraphs to the Kernel

problem in point-point digraphs. Let G be any digraph. Let G′ be the digraph obtained from

G by removing all loops in it. Then note that the kernels in G and G′ are exactly the same.

Let H be a 2-subdivision of G. Since G′ is an irreflexive digraph, by Lemma 15 we have that G′

has a kernel if and only if H has a kernel. Also, we have by Lemma 14 that H is a point-point

digraph. Therefore we can conclude that G has a kernel if and only if the point-point digraph H

has a kernel. Thus a polynomial-time algorithm that solves the Kernel problem in point-point

digraphs can be used to solve the Kernel problem in general digraphs in polynomial time. This

proves the theorem.

Note that Kernel is known to be NP-complete even on planar digraphs having degree at

most 3 and in- and out-degrees at most 2 [44]. The above reduction transforms the input digraph

in such a way that every newly introduced vertex has in- and out-degree exactly 1 and the in- and

out-degrees of the original vertices remain the same. Moreover, if the input digraph is planar,

the digraph produced by the reduction is also planar. Thus we can conclude that the problem

Kernel remains NP-complete even for planar point-point digraphs having degree at most 3 and

in- and out-degrees at most 2.

As we have noted in Section 5.1, in order to prove that a problem Q is APX-hard, it is enough

to show that the problem Q has an L-reduction from an APX-hard problem.
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Theorem 25. For k ≥ 1, the problems Min-Kernel and Max-Kernel are APX-hard for 2k-

subdivisions of irreflexive symmetric digraphs having in- and out-degree at most 3. Consequently,

the problems Min-Kernel and Max-Kernel are APX-hard for point-point digraphs having in-

and out-degree at most 3.

Proof. By Corollary 10, we have that the problems Min-Kernel and Max-Kernel are APX-

complete for irreflexive symmetric digraphs having in- and out-degree at most 3. Here we give

an L-reduction from the Min-Kernel and Max-Kernel problems for irreflexive symmetric

digraphs having in- and out-degree at most 3 to the Min-Kernel and Max-Kernel problems

for 2k-subdivisions of irreflexive symmetric digraphs having in- and out-degree at most 3. Let

G be an irreflexive symmetric digraph of in- and out-degree at most 3, where |V (G)| = n and

|E(G)| = m. For k ≥ 1, let H be the 2k-subdivision of G. Clearly, H can be constructed in

polynomial time. And let K(G) (resp. K ′(G)) and K(H) (resp. K ′(H)) denote a minimum

(resp. maximum) sized kernel in G and H respectively. Since G is a digraph of in- and out-

degree at most 3, we have that m ≤ 3n. Note that every absorbing set of G has size at least
n
4 , since each vertex has at most 3 in-neighbors. As a minimum (resp. maximum) kernel of G

is an absorbing set of G, we have |K(G)| = q ≥ n
4 (resp. |K ′(G)| = q′ ≥ n

4 ). By Lemma 15,

we have that |K(H)| = q + km (resp. K ′(H) = q′ + km). Therefore, |K(H)|
|K(G)| ≤ 1 + 12k (resp.

|K(H′)|
|K(G′)| ≤ 1 + 12k). We can now choose α = 1 + 12k and β = 1 so that our reduction satisfies

the requirements of Definition 30 (Lemma 15 guarantees that condition (c) of Definition 30

holds, and also that the function g in the definition is polynomial-time computable). Thus our

reduction is an L-reduction, which implies that the problems Min-Kernel and Max-Kernel

are APX-hard for 2k-subdivisions of irreflexive symmetric digraphs having in- and out-degree

at most 3. Now by Lemma 14, we have that the 2k-subdivision of any irreflexive digraph G is

a point-point digraph. Therefore, now we can conclude that the problems Min-Kernel and

Max-Kernel are APX-hard for point-point digraphs.

5.3.3 Minimum absorbing set

Lemma 16. Let G be an irreflexive digraph and let k ≥ 1. Then G has an absorbing set of size at

most q if and only if the 2k-subdivision of G has an absorbing set of size at most q+km. Further,

given an absorbing set of size at most q + km in the 2k-subdivision of G, we can construct in

polynomial time an absorbing set of size at most q in G.

Proof. Let H be the 2k-subdivision of G and let
⋃

(i,j)∈E(G){u1ij , u2ij , . . . , u2kij } be the vertices in

V (H) \ V (G) as defined in Section 5.3.1.
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Suppose that G has an absorbing set A ⊆ V (G) such that |A| ≤ q. We define the set

A′ ⊆ V (H) as A′ = A ∪
⋃

(i,j)∈E(G)A(i, j), where

A(i, j) =


{u2lij : l ∈ {1, 2, . . . , k}}, if j /∈ A

{u2l−1ij : l ∈ {1, 2, . . . , k}}, if j ∈ A

We claim that A′ is an absorbing set in H of size at most q + km. Consider any (i, j) ∈ E(G).

It is clear from the definition of A′ that for each t ∈ {1, 2, . . . , 2k − 1}, either the vertex utij or

ut+1
ij is in A′. Further, we also have that either the vertex u2kij or j is in A′. Thus for every vertex

x ∈ V (H)\V (G), either x or one of its out-neighbors is in A′. Now consider a vertex i in H such

that i ∈ V (G). If i ∈ A, then i ∈ A′. On the other hand, if i /∈ A, then since A is an absorbing

set in G, there exists an out-neighbor j of i such that j ∈ A, in which case we have u1ij ∈ A′.

Thus in any case, either i or an out-neighbor of i is in A′. This shows that A′ is an absorbing

set in H. As A′ is obtained from A by adding exactly k new vertices corresponding to each of

the m edges in G, we also have that |A′| ≤ q + km. This proves our claim.

For any set S ⊆ V (H) and (i, j) ∈ E(G), we define Sij = S ∩ {u1ij , u2ij , . . . , u
2k−1
ij , u2kij }. Now

suppose that H has an absorbing set A′ of size at most q+ km. Let F = {(i, j) ∈ E(G) : |A′ij | >

k}. Now define the set A′′ = (A′ \
⋃

(i,j)∈F A
′
ij) ∪

⋃
(i,j)∈F ({u2l−1ij : l ∈ {1, 2, . . . , k}} ∪ {j}).

Clearly, A′′ is also an absorbing set in H, |A′′| ≤ |A′| ≤ q + km. Since A′′ is an absorbing set in

H, for (i, j) ∈ E(G) and each t ∈ {1, 2, . . . , 2k − 1}, either utij ∈ A′′ or u
t+1
ij ∈ A′′. This implies

that |A′′ij | ≥ k. From the construction of A′′, it is clear that for each (i, j) ∈ E(G), |A′′ij | ≤ k.

Therefore, we can conclude that |A′′ij | = k for each (i, j) ∈ E(G). It then follows that for each

t ∈ {1, 2, . . . , 2k − 1}, exactly one of utij , u
t+1
ij is in A′′. We now claim that A = A′′ ∩ V (G) is

an absorbing set in G. Let i ∈ V (G). Suppose that i /∈ A, which means that i /∈ A′′. Since

A′′ is an absorbing set in H, we have that there exists a vertex j ∈ N+
G (i) such that u1ij ∈ A′′.

By our earlier observation that exactly one of utij , u
t+1
ij ∈ A′′ for each t ∈ {1, 2, . . . , 2k − 1}, we

now have that u2kij /∈ A′′. This would imply that j ∈ A′′. Therefore we can conclude that for

any vertex i ∈ V (G), either i ∈ A or one of its out-neighbors is in A. This implies that A is an

absorbing set in G. Since |A′′ij | = k for each (i, j) ∈ E(G) and |E(G)| = m, we now have that

|A| = |A′′|−km ≤ q. It is also easy to see that given the absorbing set A′ of H, we can construct

A′′ and then A′′ ∩ V (G) in polynomial time. This proves the lemma.

Theorem 26. For k ≥ 1, the problem Absorbing-Set is APX-hard for 2k-subdivisions of

irreflexive symmetric digraphs having in- and out-degree at most 3. Consequently, the problem
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Absorbing-Set is APX-hard for point-point digraphs having in- and out-degree at most 3.

Proof. This can be proved in a way similar to that of Theorem 25. By Corollary 10, we have that

the Absorbing-Set problem is APX-complete for irreflexive symmetric digraphs having in- and

out-degree at most 3. We give an L-reduction from the Absorbing-Set problem for irreflexive

symmetric digraphs having in- and out-degree at most 3 to the Absorbing-Set problem for 2k-

subdivisions of irreflexive symmetric digraphs having in and out-degree at most 3. Let G be an

irreflexive symmetric digraph of in- and out-degree at most 3, where |V (G)| = n and |E(G)| = m.

For k ≥ 1, let H be the 2k-subdivision of G. Clearly, H can be constructed in polynomial time.

And let A(G) and A(H) denote a minimum sized absorbing set in G and H respectively. Since

G is a digraph of in- and out-degree at most 3, as noted in the proof of Theorem 25, we have

that m ≤ 3n and |A(G)| ≥ n
4 . By Lemma 16, we have that |A(H)| ≤ |A(G)| + km. Therefore

as |A(H)|
|A(G)| ≤ 1 + 12k, we can now choose α = 1 + 12k and β = 1 so that our reduction satisfies

the requirements of Definition 30 (Lemma 16 guarantees that condition (c) of Definition 30

holds, and also that the function g in the definition is polynomial-time computable). Thus our

reduction is an L-reduction, which implies that Absorbing-Set is APX-hard for 2k-subdivisions

of irreflexive symmetric digraphs having in- and out-degree at most 3. Since the 2k-subdivision

of any irreflexive digraph G is a point-point digraph by Lemma 14, we can now conclude that

the problem Absorbing-Set is APX-hard for point-point digraphs.

5.4 Comparability relations between classes of digraphs

Figure 5.3 shows the inclusion relations between the classes of digraphs that we studied for the

problems, Kernel, Min-Kernel, Max-Kernel, Absorbing-Set, Dominating-Set, and

Independent-Set.

Note that the class of interval digraphs and the class of DUF-digraphs are incomparable to

each other. This can be shown as follows: a directed triangle with edges (a, b), (b, c), (c, a) is

a point-point digraph (refer to Figure 5.4), but it is easy to see that there is no DUF-ordering

for this digraph. Thus, the class of point-point digraphs is not contained in the class of DUF-

digraphs. On the other hand, consider a symmetric triangle G as shown in Figure 5.5. Then

any permutation of the vertices in G is a DUF-ordering of G. Note that the splitting bigraph

BG of G is an induced cycle of length 6. If G is an interval digraph, then BG is an interval

bigraph, which contradicts Müller’s observation [95] that interval bigraphs are chordal bipartite
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Interval digraphs DUF-digraphs∗

Reflexive
DUF-digraphs∗

Reflexive interval
digraphs

Interval-point
digraphs

Point-point
digraphs

Adjusted interval
digraphs

Chronological
interval digraphs

Interval nest digraphs
= Totally bounded
bitolerance digraphs

Interval catch di-
graphs = Reflexive

interval-point digraphs

Reflexive point-
point digraphs

ABSORBING SET: OPEN!

Figure 5.3: Inclusion relations between graph classes. In the diagram, there is an arrow from A
to B if and only if the class B is contained in the class A. Moreover, each inclusion is strict. The
problems studied are efficiently solvable in the classes shown in light green, while they are NP-
hard and/or APX-hard in the classes shown in dark red (∗ the complexity of the Absorbing-Set
problem on DUF-digraphs and reflexive DUF-digraphs remain open).

graphs (bipartite graphs that do not contain any induced cycle Ck, for k ≥ 6). Thus G is not

an interval digraph, implying that the class of DUF-digraphs is not contained in the class of

interval digraphs. Further note that, even the class of reflexive DUF-digraphs is not contained

in the class of interval digraphs, as otherwise every reflexive DUF-digraph should have been a

reflexive interval digraph, which is not true: by Theorem 14, the underlying undirected graph

of a reflexive interval digraph cannot contain K3,3 as an induced subgraph, but orienting every

edge of a K3,3 from one partite set to the other and adding a self-loop at each vertex gives a

reflexive DUF-digraph (any ordering of the vertices in which the vertices in one partite set all

come before every vertex in the other partite set is a DUF-ordering of this digraph). Clearly,

there are DUF-digraphs that are not reflexive, implying that the class of reflexive DUF-digraphs
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a b c
Sa Sb Sc

Ta Tb Tc

G a point-point representation of G

Figure 5.4: A point-point digraph that is not a DUF-digraph

a b c

Figure 5.5: A DUF-digraph that is not an interval digraph

forms a strict subclass of DUF-digraphs.

v1

v2 v3 v4

v1

v2 v3 v4

G an adjusted interval representation of G

Figure 5.6: An adjusted interval digraph that is not an interval nest digraph

It is easy to see that the class of point-point digraphs is not contained in the class of reflexive

interval digraphs as point-point digraphs contain digraphs that are not reflexive. Now in [32],

the authors give an example of a digraph which is not an interval point digraph as follows: The di-

graph has vertex set {v1, v2, v3, v4} and edge set {(v2, v2), (v3, v3), (v4, v4), (v2, v1), (v3, v1), (v4, v1)}.

They observed that this digraph is not an interval point digraph. We slightly modify the above

example by adding a loop at v1 and call the resulting reflexive digraph as G (refer to Fig-

ure 5.6). It is then easy to verify that the modified digraph G is not an interval nest digraph

(Note that in any interval nest representation of G, there exists x ∈ {v2, v3, v4} such that

Sx ⊆ Sv1 ∪
⋃
a∈{v2,v3,v4}\{x} Sa. As Tx ⊆ Sx, this implies that either (v1, x) ∈ E(G) or there ex-

ists an a ∈ {v2, v3, v4}\{x} such that (a, x) ∈ E(G), which is a contradiction to the definition of

G.) But Figure 5.6 gives an adjusted interval representation of G, where thin green and bold red

intervals respectively denote the source and destination intervals corresponding to the vertices in

G. This shows that G as defined above is an adjusted interval digraph. Since G is not an interval
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nest digraph, we can conclude that the class of adjusted interval digraphs (and therefore, the

class of reflexive interval digraphs) is not contained in the class of interval nest digraphs (and

therefore, not contained in the class of interval catch digraphs). Since interval catch digraphs

are exactly reflexive interval-point digraphs, this also means that the class of adjusted interval

digraphs (and therefore, the class of reflexive interval digraphs) is not contained in the class of

interval-point digraphs.

a b

cd

a
c

b d

G an interval catch representation of G

Figure 5.7: An interval catch digraph that is not an adjusted interval digraph

Now consider the digraph G with V (G) = {a, b, c, d} and edges (a, b), (a, d), (c, b), (c, d) in

addition to loops at each vertex. Figure 5.7 gives an interval catch representation of G, where

thin green intervals and dark red points respectively denote the source and destination intervals

corresponding to the vertices in G. But note that the underlying undirected graph of G is an in-

duced C4. This implies that G is not an adjusted interval digraph, as otherwise it contradicts the

fact that the underlying undirected graphs of adjusted interval digraphs are interval graphs [40].

This proves that the class of interval catch digraphs (and therefore, the class of reflexive interval

digraphs) is not contained in the class of adjusted interval digraphs.

a

b d

c

a c

b

d

G an interval nest digraph representation of G

Figure 5.8: An interval nest digraph that is not an interval catch digraph
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Now let G be a digraph with V (G) = {a, b, c, d} and edges (a, b), (c, b), (b, d), (d, b) in addition

to loops at each vertex (refer to Figure 5.8). The digraph G is not an interval catch digraph, as

in any interval catch representation of G, the point Tb contained in each of the intervals Sa, Sb

and Sc. Thus the intervals Sa, Sb, Sc intersect pairwise, which implies that one of the intervals

Sa, Sb, Sc is contained in the union of the other two. We have that Sa is not contained in Sb∪Sc,

since otherwise the fact that Ta ∈ Sa implies that either (b, a) or (c, a) is an edge in G, which

is a contradiction. For the same reason, we also have that Sc is not contained in Sa ∪ Sb. We

can therefore conclude that Sb ⊆ Sa ∪ Sc. But as (b, d) ∈ E(G), we have that Td ∈ Sb, which

implies that either (a, d) or (c, d) is an edge in G – a contradiction. Thus G is not an interval

catch digraph. On the other hand, G has an interval nest representation as shown in Figure 5.8,

where the thin green and bold red intervals respectively denotes the source and destination

intervals corresponding to the vertices in G. This implies that G is an interval nest digraph that

is not an interval catch digraph. This further implies that the class of interval nest digraphs is

not contained in the class of interval catch digraph (and therefore not contained in the class of

interval point digraphs, as we have noted before).

a b c d

a
b

c

d

G a chronological interval representation of G

Figure 5.9: A chronological interval digraph that is not a point-point digraph

Consider a digraph G with V (G) = {a, b, c, d} and edges (a, b), (a, c), (b, c), (c, b), (c, d) in

addition to loops at each vertex. Figure 5.9 gives a chronological interval representation for

G, where the thin green and bold red intervals respectively denotes the source and destination

intervals corresponding to the vertices in G. But as

(a, b), (c, b), (c, d) ∈ E(G) and (a, d) /∈ E(G), we have that a, b, c, d is an anti-directed walk of

length 3. Therefore by Theorem 21, we have that G is not a point-point digraph. Thus we

have that the class of chronological interval digraphs is not contained in the class of point-point

digraphs. The above observations explains the comparability relations for the classes of digraphs

in Figure 5.3.
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5.5 Some remarks

After work on this part had been completed, we have been made aware of a recent manuscript

of Jaffke, Kwon and Telle [72], in which unified polynomial-time algorithms have been obtained

for the problems considered in this part for some classes reflexive intersection digraphs including

reflexive interval digraphs. Their algorithms are more general in nature, and consequently have

much higher time complexity, while our targeted algorithms are much more efficient; for example,

our algorithm finds a minimum dominating (or absorbing) set in a reflexive interval digraph in

time O(m+ n), while the general algorithm of [72] has complexity O(n8).

Müller [95] showed the close connection between interval digraphs and interval bigraphs

and used this to construct the only known polynomial-time recognition algorithm for both these

classes (refer to Chapter 3 for more details). Since this algorithm takes O(nm6(n+m) log n) time,

the problem of finding a forbidden structure characterization for either of these classes or a faster

recognition algorithm are long standing open questions in this field. But many of the subclasses

of interval digraphs, like adjusted interval digraphs [114], chronological interval digraphs [31],

interval catch digraphs [99], and interval point digraphs [100] have simpler and much more

efficient recognition algorithms. It is quite possible that simpler and efficient algorithms for

recognition exist also for reflexive interval digraphs. As for the case of interval nest digraphs, no

polynomial-time recognition algorithm is known. The complexities of the recognition problem

and Absorbing-Set problem for DUF-digraphs also remain as open problems.



Chapter 6

The Weak Independent Set and

Directed Feedback Vertex Set Problems

6.1 Introduction

Given a digraph G, we call a set S ⊆ V (G) a weak independent set of G, if for any two vertices

u, v ∈ S, either (u, v) /∈ E(G) or (v, u) /∈ E(G). As any set that consists of a single vertex is

a weak independent set of G, the interesting computational problem that arises here is that of

finding a maximum cardinality weak independent set, called Weak Independent-Set problem.

Since independent sets of an undirected graph G are exactly the weak independent sets of the

symmetric digraph of G, it can be easily seen that the Weak Independent-Set problem is

NP-complete. We will see that in the case of reflexive interval digraphs, the notion of weak

independent set has a close connection to another well-known problem in the literature. Given a

digraph G, a set S ⊆ V (G) is said to be a directed feedback vertex set of G if the digraph induced

by the vertices in V (G) \ S is a DAG (where loops are allowed to be present). In other words,

the removal of a feedback vertex set of a digraph G destroys all the directed cycles (except for

the loops) in G. The problem of finding a minimum cardinality directed feedback vertex set,

called Feedback Vertex-Set problem is a classic problem that is shown to be NP-complete

by Karp [75] along with the first list of NP-complete problems. The Feedback Vertex-Set

problem has a significant role in the study of deadlock recovery in the field of database systems [48]

and is applicable to many other real life problems as well. Several approaches can be seen towards

the Feedback Vertex-Set problem including a parameterized approach which was motivated

by Chen, Liu and Lu [18].

Figure 6.1 illustrates through an example the notions of weak independent sets and feedback

109
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a b

d c

f

g

a b
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f

g

(a) A weak independent set (b) a feedback vertex set

Figure 6.1: Examples: the dark red vertices in (a) and (b) respectively denote a weak independent
set and a feedback vertex set of the given digraph.

vertex sets for digraphs.

In this chapter we will see that the problems Weak Independent-Set and Feedback

Vertex-Set can be reduced to each other for DUF digraphs in linear time. We also study

these problems in some particular subclasses of interval digraphs such as interval nest digraphs,

point-point digraphs and adjusted interval digraphs. Moreover our solution to the Weak

Independent-Set problem for interval nest digraphs has an interesting consequence as well.

6.2 The weak independent set and feedback vertex set problems

for DUF digraphs

We have the following lemma.

Lemma 17. Let G be a DUF digraph. A set S ⊆ V (G) is a weak independent set of G if and

only if V (G) \ S is a feedback vertex set of G.

Proof. Suppose that V (G) \ S is a feedback vertex set of G. Then we have that the subgraph

G[S] is a DAG. Therefore as G[S] does not contain any directed cycles, we have in particular

that G[S] does not contain any directed cycles of length 2. In other words, there cannot exist

two vertices u, v ∈ V (G) such that (u, v), (v, u) ∈ E(G), implying that S is a weak independent

set of G.

On the other hand, assume that S ⊆ V (G) is a weak independent set of G. For the sake of

contradiction assume that V (G)\S is not a feedback vertex set. Therefore we have that G[S] has

at least one directed cycle in it and let C be the directed cycle in G[S] whose length is minimum,

say k. Clearly, C is an induced cycle in G. As S is a weak independent set of G, we have that
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k > 2. Since G is a DUF digraph, we have that the vertices in G have a DUF ordering <. Let x

be the vertex in C that has the least index in the ordering <. I.e. x = min< V (G)∩V (C). Since

x ∈ V (G)∩ V (C) and k > 2, there exist two distinct vertices, say y, z ∈ V (G)∩ V (C) such that

y ∈ N+
G (x) and z ∈ N−G (x). By symmetry we can assume that y < z. Since each vertex in C has

exactly one out-neighbor and one in-neighbor in V (G) ∩ V (C), and z ∈ N−G (x), we then have

that z /∈ N−G (y). Also, as S is a weak independent set and y ∈ N+
G (x) we have that y /∈ N−G (x).

Thus we have vertices x < y < z such that (z, x) ∈ E(G) and (z, y), (y, x) /∈ E(G), which form a

directed umbrella that is forbidden in <. This is a contradiction and therefore we can conclude

that V (G) \ S is a feedback vertex set.

Now the following corollary is an easy consequence of the above theorem.

Corollary 11. The problems Weak Independent-Set and Feedback Vertex-Set are re-

ducible to each other for DUF digraphs and therefore, for reflexive interval digraphs in linear

time.

6.2.1 The weak independent set problem for point-point digraphs and ad-

justed interval digraphs

Now we evaluate the complexities of the above problems in some subclasses of interval digraphs.

First we note the following observation. Let G be a digraph. Let SG be the undirected graph

with V (SG) = V (G) and E(SG) = {uv : (u, v), (v, u) ∈ E(G)} (see Figure 6.2 for an example).

Note that by the definition of SG, the weak independent sets of G are exactly the independent

sets of SG. Therefore we have that the Weak Independent-Set problem for G is equivalent

to the maximum independent set problem for SG. We use this equivalence to solve the Weak

Independent-Set problem for point-point digraphs and adjusted interval digraphs.

Lemma 18. The following is true.

(a) If G is a point-point digraph then SG is P4-free.

(b) If G is an adjusted interval digraph then SG is an interval graph.

Proof. Suppose that G is a point-point digraph. By Theorem 21, we have that G does not

contain an anti-directed walk of length 3. Recall that a, b, c, d is an anti-directed walk of length

3 if a, b, c, d ∈ V (G), (a, b), (c, b), (c, d) ∈ E(G) and (a, d) /∈ E(G). We then claim that SG

is P4-free. Suppose not. Let x, y, z, w be a P4 in SG; then x, y, z, w ∈ V (G) = V (SG),

xy, yz, zw ∈ E(SG), and xw /∈ E(SG). Therefore by the definition of SG, we have that
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(a) G (b) SG

Figure 6.2: An example

(x, y), (y, x), (y, z), (z, y), (z, w), (w, z) ∈ E(G) and since xw /∈ E(G), we also know that ei-

ther (x,w) /∈ E(G) or (w, x) /∈ E(G). Now if (x,w) /∈ E(G), then x, y, z, w forms an an

anti-directed walk of length 3, since (x, y), (z, y), (z, w) ∈ E(G) and (x,w) /∈ E(G). On the

other hand, if (w, x) /∈ E(G), then w, z, y, x forms an an anti-directed walk of length 3, since

(w, z), (y, z), (y, x) ∈ E(G) and (w, x) /∈ E(G). As we have a contradiction in both the cases we

can conclude that SG is P4-free.

Now suppose that G is an adjusted interval digraph. Let < be an ordering of vertices in G

with respect to the common left end-points of intervals corresponding to each vertex. Then <

has the following property: for any three distinct vertices u < v < w, if (u,w) ∈ E(G) then

(u, v) ∈ E(G) and if (w, u) ∈ E(G) then (v, u) ∈ E(G). Thus for any three distinct vertices

u < v < w, if the vertices u and w are connected by a symmetric arc in G, then it implies

that the vertices u and v are also connected by a symmetric arc in G. By the definition of

SG, this implies that the V (SG) = V (G) has an ordering < with the property that, for any

u, v, w ∈ V (SG) = V (G) such that u < v < w we have: uw ∈ E(SG) =⇒ uv ∈ E(SG). By

Theorem 1, we then have that SG is an interval graph.

Since the maximum independent set problem is linear-time solvable for P4-free graphs [89]

and interval graphs [96], we then have the following theorem by a previous observation and

Lemma 18.

Theorem 27. The Weak Independent-Set problem can be solved in linear time for point-

point digraphs and adjusted interval digraphs.

As the class of adjusted interval digraphs forms a subclass of reflexive interval digraphs, the

following corollary is a consequence of Corollary 11.
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Corollary 12. The Feedback Vertex-Set problem can be solved in linear time for adjusted

interval digraphs.

6.2.2 The weak independent set problem for interval nest digraphs

Recall that the class of interval nest digraphs is a subclass of reflexive interval digraphs that

has an interval representation {(Su, Tu)}u∈V (G) having the property that Tu ⊆ Su for every

u ∈ V (G). In this section, we present a polynomial-time dynamic programming algorithm to

compute a maximum cardinality weak independent set for an interval nest digraph G, whose

interval nest representation is given. Note that we can assume that every interval in the interval

nest representation has distinct integer end-points. As there are four end-points corresponding

to each vertex, we can assume that each end-point in the representation is a unique integer in

[1, 4|V (G)|].

Let the interval nest representation of the input interval nest digraph G be {(Su, Tu)}u∈V (G).

For a vertex u ∈ V (G), let Su = [Lu, Ru] and Tu = [lu, ru]. Because of our assumptions about

the interval nest representation, we have Lu < lu < ru < Ru.

For any vertex x ∈ V (G), let η(x) denote the vertex such that lx < lη(x) but there does not

exist any vertex x′ ∈ V (G) such that lx < lx′ < lη(x).

For vertices u, v ∈ V (G), we define

X(u, v) =

 {y ∈ V (G) : ru < Ly < Ry < lv} when ru < lv and Lv < ru,

∅ otherwise

In addition, for u, v, x ∈ V (G), define

Y (u, v, x) =

 {y ∈ X(u, v) : ly ≥ lx} when ru < lx < lv

∅ otherwise

Note that X(u, v) = Y (u, v, η(u)). We shall now define our dynamic programming table S

in which there is an entry S(u, v, x) ⊆ Y (u, v, x) for every triple of vertices (u, v, x) ∈ V (G)3

(= V (G) × V (G) × V (G)). Note that by our definition of X(u, v) and Y (u, v, x), the entry

S(u, v, x) corresponding to the triple (u, v, x) will be ∅ if at least one of the conditions ru < lv,

Lv < ru or ru < lx < lv is not true. We shall ensure that S(u, v, x) is a weak independent set

of maximum possible cardinality among all the weak independent sets that contain only vertices

in Y (u, v, x). In other words, S(u, v, x) is a maximum cardinality weak independent set in the
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subdigraph induced in G by Y (u, v, x).

We give below the pseudocode for a procedure that computes S(u, v, x), given u, v, x ∈ V (G).

Procedure ComputeS(u, v, x)

1. if Y (u, v, x) = ∅ then

2. set S(u, v, x) = ∅

3. return

4. Set T = S(u, v, η(x))

5. if x ∈ X(u, v) then

6. Set T ′ = {x} ∪ S(x, v, η(x))

7. if |T ′| > |T | then set T = T ′

8. Set B = {y ∈ Y (u, v, x) : Ly < rx and Rx < ly}

9. for each y ∈ B,

10. Set T ′ = {x} ∪ S(x, y, η(x)) ∪ S(u, v, y)

11. if |T ′| > |T | then set T = T ′

12. Set S(u, v, x) = T

Lemma 19. For (u, v, x) ∈ V (G)3, S(u, v, x) is a subset of Y (u, v, x) and is a weak independent

set in G.

Proof. We shall prove this by induction on lv − lx. If lv − lx ≤ 0, then we have Y (u, v, x) = ∅

and therefore S(u, v, x) = ∅. Clearly, the statement of the lemma is true in this case. Now let us

assume that the statement has been proved for all (u′, v′, x′) ∈ V (G)3 such that lv′− lx′ < lv− lx.

If S(u, v, x) = ∅, then there is nothing to prove. Otherwise, it is the set that got assigned to

T in the last step where the value of T was changed. This last step where T ’s value was changed

might be step 4, step 7 or an iteration of step 11. Moreover, Y (u, v, x) 6= ∅ from which it follows

that lx > ru.

First, let us consider the case when the last time T got assigned was in step 4. In this case,

S(u, v, x) = S(u, v, η(x)). As lv− lx > lv− lη(x), we can use the induction hypothesis to conclude



CHAPTER 6. THE WEAK INDEPENDENT SET PROBLEM 115

that S(u, v, η(x)) ⊆ Y (u, v, η(x)). Since Y (u, v, η(x)) ⊆ Y (u, v, x) (recall that lx > ru), we have

S(u, v, x) = S(u, v, η(x)) ⊆ Y (u, v, x). It is immediately clear from the induction hypothesis

that S(u, v, η(x)) = S(u, v, x) is a weak independent set in G.

Next, we consider the case when the last time T got assigned a set was in step 7. Then,

we know that x ∈ X(u, v) which implies that x ∈ Y (u, v, x). We also have S(u, v, x) = {x} ∪

S(x, v, η(x)). Again, by the induction hypothesis, we have S(x, v, η(x)) ⊆ Y (x, v, η(x)) and that

S(x, v, η(x)) is a weak independent set in G. As x ∈ X(u, v), we have Y (x, v, η(x)) ⊆ Y (u, v, x).

Since we also have x ∈ Y (u, v, x), we can conclude that S(u, v, x) = ({x} ∪ S(x, v, η(x))) ⊆

Y (u, v, x). To see that {x} ∪ S(x, v, η(x)) is a weak independent set in G, observe that for

every vertex w ∈ S(x, v, η(x)) ⊆ Y (x, v, η(x)) = X(x, v), we have rx < Lw, implying that

(w, x) /∈ E(G).

Finally, consider the case when the last time that an assignment to T took place was in

an iteration of step 11. Again, it must be the case that x ∈ X(u, v), which implies that x ∈

Y (u, v, x). Also, we have S(u, v, x) = {x}∪S(x, y, η(x))∪S(u, v, y) for some y ∈ B ⊆ Y (u, v, x) ⊆

X(u, v). By the induction hypothesis, we have S(x, y, η(x)) ⊆ Y (x, y, η(x)) and S(u, v, y) ⊆

Y (u, v, y). As we have x, y ∈ X(u, v), we can conclude that Y (x, y, η(x)) ⊆ Y (u, v, x) and

thereby S(x, y, η(x)) ⊆ Y (u, v, x). From the definition of B, it is clear that lx < ly, implying

that Y (u, v, y) ⊆ Y (u, v, x), and therefore S(u, v, y) ⊆ Y (u, v, x). Altogether, we now have

S(u, v, x) = ({x} ∪ S(x, y, η(x)) ∪ S(u, v, y)) ⊆ Y (u, v, x). It only remains to be shown that

S(u, v, x) = {x} ∪ S(x, y, η(x))∪ S(u, v, y) is a weak independent set in G. It is easy to see that

for every vertex w ∈ S(x, y, η(x)) ⊆ Y (x, y, η(x)) = X(x, y), we have rx < Lw and therefore,

(w, x) /∈ E(G). Now consider a vertex w′ ∈ S(u, v, y) ⊆ Y (u, v, y). Clearly, lw′ ≥ ly. From the

definition of B, we have Rx < ly which now gives us Rx < lw′ . This means that (x,w′) /∈ E(G).

Finally, let us consider a vertex w ∈ S(x, y, η(x)) ⊆ Y (x, y, η(x)) = X(x, y) and a vertex

w′ ∈ S(u, v, y) ⊆ Y (u, v, y). Clearly, Rw < ly ≤ lw′ , implying that (w,w′) /∈ E(G).

Lemma 20. Let (u, v, x) ∈ V (G)3 and let S′ ⊆ Y (u, v, x) be a weak independent set in G. Then

|S′| ≤ |S(u, v, x)|.

Proof. We shall prove this by induction on lv − lx. If lv − lx ≤ 0, then we have Y (u, v, x) = ∅

and therefore S(u, v, x) = ∅. Clearly, the statement of the lemma is true in this case. Now let us

assume that the statement has been proved for all (u′, v′, x′) ∈ V (G)3 such that lv′− lx′ < lv− lx.

First let us note that the procedure ComputeS(u, v, x) actually computes S(u, v, x) as given

by the following expression, where Max(F) denotes a set of maximum cardinality in a family F
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of sets.

S(u, v, x) =



S(u, v, η(x)) if x /∈ X(u, v)

Max


{S(u, v, η(x)), {x} ∪ S(x, v, η(x))}

∪

{{x} ∪ S(x, y, η(x)) ∪ S(u, v, y) : y ∈ B}

 if x ∈ X(u, v)

(6.1)

Let S′ ⊆ Y (u, v, x) be a weak independent set in G. Let us first consider the case in which

x /∈ S′. In this case, it is easy to see that S′ ⊆ Y (u, v, η(x)). From the induction hypothesis, we

have |S′| ≤ |S(u, v, η(x))|. It follows from equation (6.1) that |S(u, v, x)| ≥ |S(u, v, η(x))| and

therefore we are done.

Now let us consider the case when x ∈ S′. Note that since S′ ⊆ Y (u, v, x) ⊆ X(u, v), we now

have x ∈ X(u, v).

Suppose first that there exists some vertex z ∈ S′ \ {x} such that Lz < rx. Then let z

be that vertex in S′ \ {x} with Lz < rx such that there exists no vertex z′ ∈ S′ \ {x} with

lz′ < lz and Lz′ < rx. Let S′1 = S′ ∩ X(x, z) and S′2 = S′ \ ({x} ∪ S′1). Note that S′ is

a disjoint union of the sets {x}, S′1 and S′2 and that z ∈ S′2. We claim that for each vertex

w ∈ S′2, we have lw ≥ lz. Suppose that there exists w ∈ S′2 such that lw < lz. As S′ is a

weak independent set containing both w and z, it must be the case that rw < lz (otherwise,

[lw, rw] ∩ [lz, rz] 6= ∅, implying that both (w, z), (z, w) ∈ E(G)). If Lw < rx, then we have a

contradiction to our choice of z. Therefore, we have rx < Lw. Recalling that Lz < rx, we now

have Lz < rx < Lw < rw < lz. Then, the only reason w /∈ X(x, z) must be the fact that

lz < Rw. But now we have Lz < rw < lz < Rw, implying that both (w, z), (z, w) ∈ E(G). But

this is impossible as both z and w belong to a weak independent set S′ of G. This allows us

to conclude that every vertex w ∈ S′2 has the property that lw ≥ lz. Therefore, recalling that

S′ ⊆ X(u, v), we can infer that S′2 ⊆ Y (u, v, z). Clearly, S′1 ⊆ X(x, z) = Y (x, z, η(x)). Since

S′ ⊆ Y (u, v, x) and z ∈ S′ \ {x}, we have lx < lz < Rz < lv, implying that lv − lz < lv − lx

and lz − lη(x) < lv − lx. By the induction hypothesis, we now have |S′2| ≤ |S(u, v, z)| and

|S′1| ≤ |S(x, z, η(x))|. Therefore, |S′| = 1+ |S′1|+ |S′2| ≤ 1+ |S(x, z, η(x))|+ |S(u, v, z)|. Recalling

that lx < lz, Lz < rx and that both z and x belong to a weak independent set S′ of G, we

can conclude that Rx < lz. This means that z ∈ B and from equation (6.1), we now have
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|S(u, v, x)| ≥ |{x} ∪ S(x, z, η(x)) ∪ S(u, v, z)| = 1 + |S(x, z, η(x))|+ |S(u, v, z)| (as the sets {x},

S(x, z, η(x)) and S(u, v, z) are pairwise disjoint). This shows that |S(u, v, x)| ≥ |S′|.

Next, we shall consider the case when there does not exist any vertex z ∈ S′ \ {x} such

that Lz < rx. Then for every w ∈ S′ \ {x}, we have rx < Lw, which implies that S′ \ {x} ⊆

X(x, v) = Y (x, v, η(x)). As S′ \ {x} is a weak independent set in G and lv − lη(x) < lv − lx, we

have |S′ \ {x}| ≤ |S(x, v, η(x))| by our induction hypothesis. Therefore, |S′| = 1 + |S′ \ {x}| ≤

1 + |S(x, v, η(x))| = |{x} ∪ S(x, v, η(x))| (note that x /∈ S(x, v, η(x))). From equation (6.1), it is

clear that |S(u, v, x)| ≥ |{x} ∪ S(x, v, η(x))|. We thus have |S′| ≤ |S(u, v, x)| as required.

Theorem 28. The Weak Independent-Set (resp. Feedback Vertex-Set) problem for

interval nest digraphs can be solved in O(n4) time, given the interval nest representation of the

digraph as input.

Proof. Add the intervals corresponding to two dummy vertices a and b to the input interval nest

representation. Recalling that the left-most end-point in the input representation was 1 and

the right-most 4|V (G)|, let La = −4, la = −3, ra = −1, Ra = 0, Lb = −2, lb = 4|V (G)| + 1,

rb = 4|V (G)|+2 and Rb = 4|V (G)|+3. The setsX(u, v) for all u, v ∈ V (G)∪{a, b} and Y (u, v, x)

for all (u, v, x) ∈ (V (G)∪ {a, b})3 can be computed in O(n4) time. The algorithm then calls the

procedure ComputeS(a, b, η(a)) and outputs the set S(a, b, η(a)). Note that this being a dynamic

programming algorithm, a call to S(u, v, x) for some (u, v, x) ∈ (V (G) ∪ {a, b})3 is made only if

S(u, v, x) has not been computed before – or in other words, the algorithm ensures that a call to

ComputeS(u, v, x) is made at most once for each triple (u, v, x) ∈ (V (G) ∪ {a, b})3. Therefore,

the total number of times the procedure ComputeS needs to be called recursively during the

execution of ComputeS(a, b, η(a)) is at most (n + 2)3. It is easy to see from the procedure

ComputeS(u, v, x) that the time spent in the computation of S(u, v, x) outside the recursive calls

to the procedure is O(n). Therefore, the total running time of ComputeS(a, b, η(a)) is O(n4),

implying that our algorithm has time complexity O(n4). We only need to show that the output of

the algorithm, S(a, b, η(a)), is a maximum cardinality weak independent set in G. It is clear that

X(a, b) = Y (a, b, η(a)) = V (G). Therefore, by Lemmas 19 and 20, S(a, b, η(a)) is a maximum

cardinality weak independent set in G. This together with Corollary 11 proves the theorem.

Now in the next section we will see how the solution for the Weak Independent-Set

problem for interval nest digraphs can be used to solve an interesting problem for the class of

interval graphs.
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6.3 The uniquely restricted matching problem

Given an undirected graph G, a set M ⊆ E(G) is said to be a matching if no two edges

in M has a common vertex as an end-point. The problem of finding a maximum cardinality

matching in a given graph is polynomial-time solvable [39]. A matching M in an undirected

graph G is said to be uniquely restricted if there is no other matching in G that matches the

same set of vertices as M . Unlike the problem of maximum cardinality matching, the problem

of finding a maximum cardinality uniquely restricted matching is shown to be NP-hard even

for the special graph classes like bipartite graphs and split graphs [57] by Golumbic, Hirst,

and Lewenstein. In fact, this problem is shown to be APX-complete even for the bipartite

graphs of degree at most 3 by Mishra [93]. In their paper initiating the study of uniquely

restricted matchings, Golumbic, Hirst, and Lewenstein [57] proposed linear time algorithms for

the problem on threshold graphs, proper interval graphs, cacti, and block graphs while leaving

open the question of whether polynomial-time algorithms exist for the problem on interval graphs

and permutation graphs. As a consequence of our solution for the Weak Independent-Set

problem for interval nest digraphs, here we settle the complexity of the maximum cardinality

uniquely restricted matchings for the class of interval graphs.

Before going to our theorem, we state the following definitions and some of the results from

[57].

Definition 32 (Alternating cycle with respect to M). Let G be an undirected graph and M ⊆

E(G) be a matching in M . An even length cycle with edges, say e0, e1, . . . , ek is said to be

an alternating cycle with respect to M in G if ei ∈ M and ei+1 /∈ M (i modulo k) for each

i ∈ {0, 1, . . . , k}.

Golumbic, Hirst, and Lewenstein [57] proved the following theorem:

Theorem 29 ([57]). Let G be an undirected graph and let M be a matching in G. Then M is a

uniquely restricted matching in G if and only if there is no alternating cycle in G with respect to

M .

In particular for interval graphs they proved the following theorem.

Theorem 30 ([57]). Let G be an undirected graph and let M be a matching in G. Then the

following conditions are equivalent.

(a) M is a uniquely restricted matching.

(b) G does not contain any alternating cycle of length 4 with respect to M .
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(c) For any pair of edges e, e′ ∈ E(G) we have that e, e′ is a uniquely restricted matching in G.

Now for the alternating cycles of length 4, we note the following observation.

Observation 19. Let G be a graph and let {e, e′} be a matching in G such that e = uv and

e′ = u′v′. Then {e, e′} form an alternating cycle of length 4 if and only if for each w ∈ {u, v} we

have N(w) ∩ {u′, v′} 6= ∅ and for each w′ ∈ {u′, v′} we have N(w′) ∩ {u, v} 6= ∅.

Proof. Suppose that {e, e′} form an alternating cycle of length 4. Then it should be either of

the forms uvu′v′u or uvv′u′u. By the definition of alternating cycle, in both the cases it is easy

to see that, for each w ∈ {u, v}, we have N(w) ∩ {u′, v′} 6= ∅ and for each w′ ∈ {u′, v′}, we have

N(w′) ∩ {u, v} 6= ∅.

On the other hand, suppose that for each w ∈ {u, v} we have N(w)∩{u′, v′} 6= ∅ and for each

w′ ∈ {u′, v′} we have N(w′)∩ {u, v} 6= ∅. If vu′ /∈ E(G) or v′u /∈ E(G), then by our assumption,

we have uu′ ∈ E(G) and vv′ ∈ E(G), implying that uvv′vu is an alternating cycle of length 4

in G. Therefore we can assume that vu′ ∈ E(G) and v′u ∈ E(G), implying that vu′v′uv is an

alternating cycle of length 4 in G.

Here we solve the uniquely restricted matching problem for interval graphs by reducing it

from the weak independent set problem for the interval nest digraphs as described below.

6.3.1 The uniquely restricted matching problem for interval graphs

Let G be an interval graph for which we wish to compute a maximum cardinality uniquely

restricted matching. Note that we can assume that the interval representation of the input

graph G is at our disposal. This is because even if the input graph is provided as an adjacency

list, there are well-known algorithms that can generate an interval representation of G in linear-

time [80, 25, 61]. Let {Iu}u∈V (G) be an interval representation of G. For a vertex u ∈ V (G), let

Iu = [lu, ru].

We shall define an interval nest digraph H with V (H) = E(G). The arcs of H are defined by

specifying the interval nest representation {(Se, Te)}e∈V (H) of H as follows. For each e = uv ∈

V (H), where u, v ∈ V (G), we define Se = Iu ∪ Iv and Te = Iu ∩ Iv. Clearly, for each e ∈ V (H),

we have Te ⊆ Se and therefore this is an interval nest representation (note that the union or

intersection of any two intervals that have a nonempty intersection is again an interval). Thus,

H is an interval nest digraph.

Theorem 31. Let G and H be as defined above. Let S ⊆ E(G). Then S is a weak independent

set in H if and only if S is a uniquely restricted matching in G.
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Proof. Suppose that S is a weak independent set in H. Let e, e′ ∈ S and let e = uv and e′ = u′v′.

We first show that e and e′ cannot be incident on a common vertex. Suppose for the sake of

contradiction that the edges e and e′ of G share a common vertex. We shall assume without

loss of generality that v = v′. Then clearly, Te′ = (Iu′ ∩ Iv′) ⊆ Iv′ = Iv ⊆ (Iu ∪ Iv) = Se,

implying that Se ∩ Te′ 6= ∅ and therefore, (e, e′) ∈ E(H). Similarly, we have Te = (Iu ∩ Iv) ⊆

Iv = Iv′ ⊆ (Iu′ ∪ Iv′) = Se′ , leading us to infer that (e′, e) ∈ E(H). But this contradicts the

fact that both e and e′ belong to a weak independent set S in H. Thus, we can conclude that

the edges e and e′ in G have no common vertex, or in other words, {e, e′} is a matching in G.

Next, we show that there is no alternating cycle with respect to {e, e′} in G. Suppose for the

sake of contradiction that there is such a cycle. Then by Observation 19, we know that in G,

each of u, v has at least one neighbor in {u′, v′} and each of u′, v′ has at least one neighbor in

{u, v}. This means that each of Iu and Iv intersects Iu′ ∪ Iv′ and each of Iu′ and Iv′ intersects

Iu ∪ Iv. Since uv, u′v′ ∈ E(G), this implies that Iu ∩ Iv intersects Iu′ ∪ Iv′ and Iu′ ∩ Iv′ intersects

Iu ∪ Iv. We thus have Te ∩Se′ 6= ∅ and Te′ ∩Se 6= ∅. By definition of H, it must then be the case

that (e, e′), (e′, e) ∈ E(H). But this contradicts the fact that both e and e′ belong to a weak

independent set S in H. We thus conclude that for any two edges e, e′ ∈ S, {e, e′} is a matching

in G and that there is no alternating cycle with respect to {e, e′} in G. As G is an interval graph,

this implies, by Theorem 30, that S is a uniquely restricted matching in G.

Now suppose that S is a uniquely restricted matching in G. Again let e, e′ ∈ S and let

e = uv and e′ = u′v′. Suppose for the sake of contradiction that (e, e′), (e′, e) ∈ E(H). As

(e, e′) ∈ E(H), we can infer that Se ∩ Te′ 6= ∅, which means that Iu′ ∩ Iv′ intersects Iu ∪ Iv.

Therefore, both Iu′ and Iv′ intersect at least one of Iu or Iv. We can thus conclude that each

of u′, v′ is adjacent to at least one vertex in {u, v}. Now since (e′, e) ∈ E(H), we can follow the

same arguments to reach the conclusion that each of u, v is adjacent to at least one vertex in

{u′, v′}. From Observation 19, we now have that there is an alternating cycle with respect to

{e, e′} in G. But this contradicts the fact that both e and e′ belongs to a uniquely restricted

matching S in G. Therefore, for any pair of edges e, e′ ∈ S, we have either (e, e′) /∈ E(H) or

(e′, e) /∈ E(H), which allows us to conclude that S is a weak independent set in H.

Theorem 32. There is a polynomial-time algorithm that computes a maximum cardinality

uniquely restricted matching in an interval graph.

Proof. We can generate an interval representation of the input graph G in O(n+m) time using

any of the several well-known algorithms (for example, [78]). The interval nest representation of
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the digraph H corresponding to the interval representation of G can be computed in O(m) time.

The algorithm described in the proof of Theorem 28 can now be used to compute a maximum

cardinality weak independent set in H in O(m4) time. It follows from Theorem 31 that this weak

independent set corresponds to a maximum cardinality uniquely restricted matching in G.

In this chapter we gave polynomial-time algorithms for the problems Weak Independent

Set and Feedback Vertex-Set for some particular subclasses of interval digraphs. But the

complexity status of these problems for the class of reflexive interval digraphs or for a more

general class of interval digraphs remain open.



Part III

Extending Some Results on the

Seymour Second Neighborhood

Conjecture (SSNC)

122



Chapter 7

SSNC for Tournaments Missing a

Matching and a Star

7.1 Introduction

Let G = (V,E) be a digraph with vertex set V (G) and arc set E(G). As usual, N+
G (v) (resp.

N−G (v)) denotes the out-neighborhood (resp. in-neighborhood) of a vertex v ∈ V (G). Let

N++
G (v) denote the second out-neighborhood of v, which is the set of vertices whose distance

from v is exactly 2, i.e. N++
G (v) = {u ∈ V (G) : N−G (u)∩N+

G (v) 6= ∅ and u /∈ N+
G (v)∪ {v}}. The

out-degree of a vertex v is defined to be |N+
G (v)|. The minimum out-degree of G is the minimum

value among the out-degrees of all vertices of G. We omit the subscript if the digraph under

consideration is clear from the context.

A vertex v in a digraph G is said to have a large second neighborhood if |N++(v)| ≥ |N+(v)|.

Oriented graphs are digraphs without loops or digons: i.e. they can be obtained by orienting the

edges of a simple undirected graph. Paul Seymour conjectured the following in 1990 (see [35]):

Conjecture 1 (The Second Neighborhood Conjecture). Every oriented graph contains a vertex

with a large second neighborhood.

The above conjecture, if true, implies a special case of another open question concerning

digraphs called the Caccetta-Häggkvist Conjecture [16], which says that every oriented graph

with n vertices and minimum out-degree r contains a directed cycle of length at most dnr e. To

be precise, if the Second Neighborhood Conjecture is true then it would imply the Caccetta-

Häggkvist Conjecture for the particular case in which both in and out-degree is at least n
3 . Note

that a sink trivially has a large second neighborhood and therefore the Second Neighborhood

123
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Conjecture is true for any oriented graph that contains a sink.

Conjecture 1 for the special case of tournaments, was known as Dean’s Conjecture [35] and

was later solved by Fisher [43] in 1996 using some basic linear algebraic and probabilistic ar-

guments. Later in 2000, Havet and Thomasse [65] gave a short combinatorial proof of Dean’s

Conjecture using “median orders” of tournaments. They could in fact prove something stronger:

in a tournament without a sink, there exist two vertices with large second neighborhoods. Using

the approach of Havet and Thomasse, Fidler and Yuster [41] in 2007 proved that the Second

Neighborhood Conjecture is true for oriented graphs that can be obtained from tournaments by

removing edges in some specific ways. In particular, they showed that a tournament missing a

matching (an oriented graph whose missing edges form a matching), a tournament missing a star

and a tournament missing a complete graph all satisfy the conjecture. As these results hold even

if the missing matching (or star, or complete graph) is empty, they extend the proof of Dean’s

Conjecture by Havet and Thomasse. Using techniques from this paper, Salman Ghazal [52]

proved that the Second Neighborhood Conjecture is true for tournaments missing a “generalized

star” – a {P4, C4, 2K2}-free graph (or equivalently, a threshold graph) – thereby extending the

result of Fidler and Yuster for tournaments missing a star and tournaments missing a complete

graph. It has to be noted that among these results that all use the median order approach, the

case of the tournament missing a matching is by far the most difficult one, requiring a compli-

cated proof. In this chapter, we introduce new ideas to refine and extend this proof, allowing

us to prove the conjecture for a superclass of tournaments missing a matching: we show that

oriented graphs whose missing edges can be partitioned into a (possibly empty) matching and

a (possibly empty) star also satisfy the Second Neighborhood Conjecture. In fact, we prove the

stronger statement that in such a graph that does not contain a sink, there exists a vertex that

has a large second neighborhood and is not the center of the missing star.

Ghazal [53] attempts to generalize the theorem of Havet and Thomasse by trying to prove

that there exist two vertices with large second neighborhoods in every tournament missing a

matching that does not contain a sink. He shows that if a tournament missing a matching

satisfies certain additional technical conditions, then such a result can be obtained. Our result

mentioned above directly yields a proof that shows that every tournament missing a matching

that does not contain a sink has at least two vertices with large second neighborhoods.

We also ask whether it is true that if there is exactly one vertex with a large second neigh-

borhood in an oriented graph, then it is a sink. We note that such a result would imply the

Second Neighborhood Conjecture.
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a b

c d
a b c d a bc d

(i) T (ii) (a,b,c,d) is not a median
order

(ii) (a,c,b,d) is a median
order

Figure 7.1: An example to illustrate median order of a tournament

7.2 Graphs that are almost tournaments

In this section, our main aim will be to show that Conjecture 1 is true for tournaments whose

missing edges can be partitioned into a matching and a star. By reviewing median orders of

tournaments and their properties, we then study tournaments missing a matching, wherein we

introduce the notions and structural results that we need to prove our main result. Along the

way, we reprove the result of Fidler and Yuster that the Second Neighborhood Conjecture is true

for tournaments missing a matching using these ideas.

7.2.1 Median orders of tournaments

Given an ordering of the vertices of a tournament, an arc of the tournament is said to be a

“forward arc” if the starting vertex of the arc occurs earlier than its ending vertex in the ordering.

A median order of a tournament is an ordering of its vertices with the most number of forward

arcs. Formally, an ordering (x1, x2, . . . , xn) of the vertices of a tournament T that maximizes

|{(xi, xj) ∈ E(T ) : i < j}| is said to be a median order of T . The feed vertex of a median order

(x1, x2, . . . , xn) is the last vertex xn in that ordering of vertices. Figure 7.1 provides an example

of a tournament for which (a, b, c, d) is an ordering of the vertices in T that is not a median order

(as there are two backward arcs), where as (a, c, b, d) is a median order of T (as the tournament

T contains a directed cycle b, c, d in it, any ordering of V (T ) would have at least one backward

arc). Havet and Thomasse [65] proved the following.

Theorem 33 ([65]). Let T be a tournament and L be a median order of T with feed vertex d.

Then |N+
T (d)| ≤ |N++

T (d)|.

The following properties of median orders of tournaments are not difficult to verify (see [65]).

Proposition 3. Let (x1, x2, . . . , xn) be a median order of a tournament T , and let xi and xj be

such that 1 ≤ i < j ≤ n. If T ′ = T [{x1, x2, . . . xn}], then:
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(a) (xi, xi+1, . . . , xj) is a median order of T ′, and

(b) if (y1, y2, . . . , yj−i+1) is a median order of T ′, then (x1, x2, . . . , xi−1, y1, y2, . . . , yj−i+1, xj+1,

xj+2, . . . , xn) is a median order of T .

Proposition 4 (The feedback property [65]). Let (x1, x2, . . . , xn) be a median order of a tour-

nament T and let xi and xj be such that 1 ≤ i < j ≤ n. Then:

(a) |N+(xi) ∩ {xi+1, . . . , xj}| ≥ |N−(xi) ∩ {xi+1, . . . , xj}|, and

(b) |N+(xj) ∩ {xi, . . . , xj−1}| ≤ |N−(xj) ∩ {xi, . . . , xj−1}|.

Proposition 5. Let (x1, x2, . . . , xn) be a median order of a tournament T and let xi and xj be

such that 1 ≤ i < j ≤ n. Then:

(a) if |N+(xi) ∩ {xi+1, . . . , xj}| = |N−(xi) ∩ {xi+1, . . . , xj}|, then (x1, x2, . . . , xi−1, xi+1, xi+2,

. . . , xj , xi, xj+1, xj+2, . . . , xn) is also a median order of T , and

(b) if |N+(xj)∩{xi, . . . , xj−1}| = |N−(xj)∩{xi, . . . , xj−1}|, then (x1, x2, . . . , xi−1, xj , xi, xi+1,

. . . , xj−1, xj+1, xj+2, . . . , xn) is also a median order of T .

Proposition 6. Let L = (x1, x2, . . . , xn) be a median order of a tournament T and let (xj , xi) ∈

E(T ), where i < j. Then L is also a median order of the tournament T ′ with V (T ′) = V (T ) and

E(T ′) = (E(T ) \ {(xj , xi)}) ∪ {(xi, xj)}.

Proof. If L is not a median order of T ′, then there exists an ordering L̂ of V (T ′) = V (T ) such that

(T ′, L̂) has at least one more forward arc than (T ′, L) and therefore at least two more forward

arcs than (T, L). But then (T, L̂) has at least one more forward arc than (T, L), contradicting

the fact that L is a median order of T . Therefore, L is a median order of T ′ as well.

Modules Given an oriented graph G, a set S ⊆ V (G) is said to be a module in G, if for any

two vertices u, v ∈ S, N+(u) \ S = N+(v) \ S and N−(u) \ S = N−(v) \ S.

Proposition 7. Let G be an oriented graph and S a module in it.

(a) For u ∈ S, let G′ = G− (S \ {u}). Then, N++
G′ (u) = N++

G (u) \ S.

(b) For u, v ∈ S, N++
G (u) \ S = N++

G (v) \ S.

Proof. Clearly, N++
G′ (u) ⊆ N++

G (u)\S. Consider any vertex x ∈ N++
G (u)\S. Then (u, x) /∈ E(G)

and there exists w ∈ V (G) such that (u,w), (w, x) ∈ E(G). As we have x /∈ S, (w, x) ∈ E(G),

(u, x) /∈ E(G), and S is a module containing u, we have w /∈ S. Then since u,w, x ∈ V (G′),

we have that (u,w), (w, x) ∈ E(G′) and (u, x) /∈ E(G′), implying that x ∈ N++
G′ (u). Therefore,

N++
G (u) \ S ⊆ N++

G′ (u), proving (a).



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 127

Note that for proving (b), we only need to prove that N++
G (u) \ S ⊆ N++

G (v) \ S, as u and

v are symmetric. Consider any vertex x ∈ N++
G (u) \ S. As noted above, (u, x) /∈ E(G) and

there exists w ∈ V (G) such that (u,w), (w, x) ∈ E(G). Since u and v belong to the module S

in G, we have that (v, w) ∈ E(G) and (v, x) /∈ E(G), implying that x ∈ N++
G (v) \ S. Therefore,

N++
G (u) \ S ⊆ N++

G (v) \ S.

Proposition 8. Let (x1, x2, . . . , xn) be a median order of a tournament T . Let i, j ∈ {1, 2, . . . , n}

such that i < j − 1 and xi and xj belong to a module in T and every vertex in {xi+1, . . . , xj−1}

is outside this module. Then:

(a) (x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xj−1, xi, xj , xj+1, . . . , xn) is a median order of T , and

(b) (x1, x2, . . . , xi, xj , xi+1, xi+2, . . . , xj−1, xj+1, . . . , xn) is a median order of T .

Proof. Consider the set of vertices X = {xi+1, xi+2, . . . , xj−1}. Suppose that |N+(xi) ∩ X| >

|N−(xi) ∩ X|. As xi and xj belong to a module in T and every vertex of X is outside this

module, we have N+(xj) ∩ X = N+(xi) ∩ X and N−(xj) ∩ X = N−(xi) ∩ X. This gives

us |N+(xj) ∩ X| > |N−(xj) ∩ X|, which contradicts Proposition 4(b) applied on xi+1 and xj .

Therefore, |N+(xi) ∩ X| ≤ |N−(xi) ∩ X|. Then by Proposition 4(a) applied on xi and xj−1,

we have |N+(xi) ∩ X| = |N−(xi) ∩ X|. Applying Proposition 5(a) on xi and xj−1, we now

get that (x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xj−1, xi, xj , xj+1, . . . , xn) is a median order of T . This

proves (a). It is easy to see, by repeating the same arguments for xj and X, that (b) is also

true.

Good median orders We now define a special kind of median order of tournaments, along the

lines of Ghazal [53]. Given a partition I = {I1, I2, . . . , Ir} of V (T ) such that each Ii, 1 ≤ i ≤ r,

is a module in T , we say that a median order of T is a good median order with respect to I if

for each i ∈ {1, 2, . . . , r}, the vertices of Ii appear consecutively in it (note that this is slightly

different from the “good median orders” defined by Ghazal [53]). Ghazal notes the following

property of good median orders (which can be considered as a consequence of Proposition 8(a)).

Lemma 21 ([53]). Let I = {I1, I2, . . . , Ir} be a partition of the vertex set of a tournament T

into modules and let L be a median order of T . Then there is a good median order L′ of T with

respect to I such that L and L′ have the same feed vertex.

Proof. Given an ordering P of the vertices of T and a module I ∈ I, a maximal subset of I that

is consecutive in P is said to be a “fragment” of I in P . Clearly, the fragments of a module I ∈ I

are ordered from left to right in P . We define the “weight” of a vertex v ∈ I with respect to P
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to be the number of fragments of I that occur after the fragment of I containing v. The weight

of P is defined to be the sum of the weights of all the vertices with respect to P . Note that the

median orders of T with zero weight are exactly the good median orders of T with respect to I.

Now suppose that P is a median order of T with non-zero weight. Then there exists I ∈ I and

u, v ∈ I such that they are not consecutive in P and no vertex between them in P belongs to I.

Let P ′ be the median order of T obtained from P by applying Proposition 8(a) to P , u and v.

It can be verified that the weight of P ′ is strictly less than the weight of P and that P and P ′

have the same feed vertex. This means that by applying the above procedure repeatedly to the

median order L of T , we can obtain a median order L′ of T with zero weight (hence, it is a good

median order of T with respect to I) having the same feed vertex as L.

Proposition 9. Let d be the feed vertex of a median order of a tournament T and let I be a

module in T containing d. Then for any vertex v ∈ I, |N+(v) \ I| ≤ |N++(v) \ I|.

Proof. Let I = {I} ∪ {{u} : u /∈ I}. It is easy to see that I is a partition of V (T ) into modules.

By Lemma 21, there exists a good median order L = (x1, x2, . . . , xn = d) of T with respect to I.

Then, there exists i ∈ {1, 2, . . . , n} such that I = {xi, xi+1, . . . , xn}. By Proposition 3(a), L′ =

(x1, x2, . . . , xi) is a median order of T ′ = T − (I \ {xi}). By Theorem 33, |N+
T ′(xi)| ≤ |N++

T ′ (xi)|.

Consider any v ∈ I. As I is a module containing xi and v, N+
T (v)\I = N+

T (xi)\I = N+
T ′(xi). By

Proposition 7, we also have that N++
T ′ (xi) = N++

T (xi) \ I = N++
T (v) \ I. Combining the above

observations, we get |N+
T (v) \ I| ≤ |N++

T (v) \ I|.

7.2.2 Tournaments missing a matching

In this section, we prove that the Second Neighborhood Conjecture is true for tournaments

missing a matching. Throughout this section, we denote by G an oriented graph that can be

obtained from a tournament by removing a (possibly empty) matching.

For a vertex u ∈ V (G), we say that the vertices in N+
G (u) ∪ N−G (u) are the neighbors of u

and that the vertices in V (G) \ (N+
G (u) ∪ N−G (u)) are the non-neighbors of u. It is easy to see

that every vertex in G has at most one non-neighbor. If there is no edge between two distinct

vertices x and y in G, i.e., x is a non-neighbor of y (and vice versa), then we say that {x, y} is

a missing edge in G. We denote this missing edge as x y (or, equivalently y x). For an arc

(x, y) ∈ E(G), we use the notation x → y (in other words, y ∈ N+
G (x)). If (x, y) ∈ E(G) is an

arc with the additional property that x /∈ N++
G (y), then we say that (x, y) is a special arc, and

denote it as x� y. Note that there can be no directed triangle in G containing a special arc.



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 129

a0

a1

a2

ai−1

ai

ai+1

ak−2

ak−1

Figure 7.2: Illustration of Lemma 22

Lemma 22. Let C = a0 → a1 � a2 � a3 � · · ·� ak−1 → a0 be a cycle in G. Then:

(a) a0 has a non-neighbor in C, and

(b) if a0 ai, then for j ∈ {1, . . . , i− 1}, a0 → aj and for j ∈ {i+ 1, . . . , k − 1}, aj → a0.

(See Figure 7.2 for an illustration of the lemma)

Proof. Since G is an oriented graph that has no directed triangle containing a special arc, we

have that k ≥ 4.

(a) Assume to the contrary that a0 has no non-neighbor in C, i.e., ∀i 6= 0, a0 → ai or

ai → a0. For some i 6= 0, if a0 → ai, then a0 → ai+1, because otherwise, a0 → ai � ai+1 → a0

forms a directed triangle containing a special arc. Now since a0 → a1, applying this observation

repeatedly gives us a0 → a2, a0 → a3, . . . , a0 → ak−1, which is a contradiction to the fact that

ak−1 → a0.

(b) Let a0 ai. As ai is the only non-neighbor of a0 in G, for each j /∈ {0, i}, we have

either a0 → aj or aj → a0. Suppose that for some j ∈ {1, . . . , i − 1}, we have aj → a0, then

consider the cycle C ′ = a0 → a1 � · · · � aj → a0. Then a0 has no non-neighbor in C ′, which

is a contradiction to (a). Similarly, if there is some j ∈ {i + 1, . . . , k − 1} such that a0 → aj ,

then there is no non-neighbor of a0 in the cycle a0 → aj � aj+1 � · · · � ak−1 → a0, again

contradicting (a).

Special cycles We call a cycle in G a special cycle if it consists only of special arcs. It is easy

to see that any special cycle contains at least 4 vertices. The following corollary is an immediate

consequence of Lemma 22.
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Figure 7.3: Illustration of Lemma 23: dark red and light green vertices belong to V (G) \ C and
the vertices in C are given in white

Corollary 13. Let C = a0 � a1 � a2 � a3 � · · ·� ak−1 � a0 be a special cycle in G. Then:

(a) Each vertex in C has a non-neighbor in C,

(b) if ai aj, then N+
G (ai)∩V (C) = {ai+1, ai+2, . . . , aj−1} and N−G (ai)∩V (C) = {aj+1, aj+2,

. . . , ai−1}, where subscripts are modulo k.

Lemma 23. Let C = a0 � a1 � a2 � a3 � · · ·� ak−1 � a0 be a special cycle in G. Then:

(a) k is even,

(b) for each vertex ai ∈ V (C), ai ai+ k
2
(subscripts modulo k),

(c) V (C) forms a module in G.

(See Figure 7.3 for an illustration of the lemma).

Proof. Using Corollary 13(a), we have that every vertex of C has exactly one non-neighbor in

C. This proves (a).

(b) Let aj be the non-neighbor of ai in C. Suppose that j 6= i+ k
2 (modulo k). Then one of the

sets {ai+1, ai+2, . . . , aj−1}, {aj+1, aj+2, . . . , ai−1} (subscripts modulo k) is larger than the other.

We shall assume without loss of generality that |{ai+1, ai+2, . . . , aj−1}| > |{aj+1, aj+2, . . . , ai−1}|.

This means that there exists ap, aq ∈ {ai+1, ai+2, . . . , aj−1} such that ap aq, where ap occurs

before aq in the ordering ai+1, ai+2, . . . , aj−1. By Corollary 13(b), we know that ai → aq. Now

consider the cycle C ′ = aq � aq+1 � · · ·� ai−1 � ai → aq (subscripts modulo k). There is no

non-neighbor of aq in C ′ (as ap is the only non-neighbor of aq), which contradicts Lemma 22(a).
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(c) Since every vertex of C has a non-neighbor in C, for any x ∈ V (G) \ V (C), x is a

neighbor of every vertex in V (C) = {a0, a1, . . . , ak−1}. This implies that if x → ai for any

i ∈ {0, 1, . . . , k − 1}, then we also have x → ai+1 as otherwise, x → ai � ai+1 → x would

be a directed triangle containing a special arc (subscripts modulo k). Therefore applying this

observation repeatedly starting from a0, we get N−G (a0) \ V (C) ⊆ N−G (a1) \ V (C) ⊆ N−G (a2) \

V (C) ⊆ · · · ⊆ N−G (ak−2) \ V (C) ⊆ N−G (ak−1) \ V (C) ⊆ N−G (a0) \ V (C). Similarly, if ai → x for

any i ∈ {0, 1, . . . , k−1}, then we also have ai−1 → x, as otherwise x→ ai−1 � ai → x would be a

directed triangle containing a special arc (subscripts modulo k). Again applying this observation

repeatedly starting from a0, we get N+
G (a0) \ V (C) ⊆ N+

G (ak−1) \ V (C) ⊆ N+
G (ak−2) \ V (C) ⊆

· · · ⊆ N+
G (a2) \ V (C) ⊆ N+

G (a1) \ V (C) ⊆ N+
G (a0) \ V (C). This shows that for any two vertices

ai, aj ∈ V (C), we have N+
G (ai) \ V (C) = N+

G (aj) \ V (C) and N−G (ai) \ V (C) = N−G (aj) \ V (C),

implying that V (C) forms a module in G.

The relation R and the digraph ∆(G) Let M be the set {(x, y) : x y}. We define a

relation R on M as follows. For distinct (a, b), (c, d) ∈ M , we say that (a, b)R(c, d) if and

only if there exists the four cycle a → c � b → d � a in G (refer to Figure 7.4). Note

that (a, b)R(c, d) if and only if (b, a)R(d, c). Following Fidler and Yuster [41], we now define

an auxiliary digraph ∆(G) whose vertices are the missing edges of G. This graph has the

vertex set V (∆(G)) = {{a, b} : a b} and edge set E(∆(G)) = {({a, b}, {c, d}) : (a, b)R(c, d)}.

In other words, there is an edge between vertices {a, b} and {c, d} in ∆(G) if and only if either

(a, b)R(c, d) or (a, b)R(d, c). Note that from the definition of R, we cannot have both (a, b)R(c, d)

and (a, b)R(d, c).

a
b c

d

Figure 7.4: Situation that leads to (a, b)R(c, d).

Lemma 24 ([41]). For any vertex e ∈ V (∆(G)), we have |N+(e)| ≤ 1 and |N−(e)| ≤ 1.

Proof. Let e = {a, b}. Suppose that it has two out-neighbors in ∆(G), say e1 = {c1, d1},

e2 = {c2, d2}. Recalling the definition of ∆(G), we can assume without loss of generality that

(a, b)R(c1, d1) and (a, b)R(c2, d2). That is, we have a → c1 � b → d1 � a and a → c2 � b →

d2 � a in G. As d1 is already a non-neighbor of c1, we cannot have c1 d2. Now if c1 → d2 then
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we have the directed triangle a→ c1 → d2 � a containing a special arc, which is a contradiction.

Similarly, if d2 → c1 then b→ d2 → c1 � b is a directed triangle containing a special arc, which

is again a contradiction. Thus, |N+(e)| ≤ 1.

Now suppose e = {a, b} has two in-neighbors in ∆(G), say e1 = {c1, d1}, e2 = {c2, d2}.

Again, we can assume without loss of generality that (c1, d1)R(a, b) and (c2, d2)R(a, b). Then

we have c1 → a � d1 → b � c1 and c2 → a � d2 → b � c2 in G. As before, we cannot have

c1 d2. If c1 → d2 then we have the directed triangle c1 → d2 → b� c1 containing a special arc

and if d2 → c1, we have another directed triangle d2 → c1 → a � d2 containing a special arc.

Since we have a contradiction in both cases, we conclude that |N−(e)| ≤ 1.

Therefore, ∆(G) is a disjoint union of directed paths and directed cycles. Let P denote the

collection of these directed paths and C denote the collection of these directed cycles.

For a cycleQ ∈ C, we let Γ(Q) =
⋃
{u,v}∈V (Q){u, v}. That is, ifQ = {a1, b1}{a2, b2} · · · {at, bt}

{a1, b1}, then Γ(Q) = {a1, b1, a2, b2, . . . , at, bt}.

Lemma 25. Let Q ∈ C. Then there exists a special cycle C in G such that V (C) = Γ(Q).

Proof. Let Q = {a1, b1}{a2, b2} · · · {ak, bk}{a1, b1}. Note that ai bi, for 1 ≤ i ≤ k. We shall

assume that k is even as the case when k is odd is similar. Also, we can assume without loss of

generality that for every i ∈ {1, 2, . . . , k− 1}, (ai, bi)R(ai+1, bi+1) (since we can always exchange

the labels of ai and bi, if required, so that this condition is satisified). Then by the definition of

R, we have ai → ai+1 � bi → bi+1 � ai for each i ∈ {1, 2, . . . , k − 1}. Now if (ak, bk)R(a1, b1)

then we have ak → a1 � bk → b1 � ak (so k > 2, implying that k ≥ 4). This together with the

previous observation implies that C = a1 � bk � ak−1 � bk−2 � ak−3 � · · · � b2 � a1 (as k

is even) is a special cycle in G, which contains only those ai’s where i is odd and those bi’s where

i is even. This contradicts Corollary 13(a), as for any odd i, the only non-neighbor bi of ai is not

contained in C. Therefore, we have (ak, bk)R(b1, a1). Then, ak → b1 � bk → a1 � ak, which

when combined with the previous observations gives us that C = a1 � ak � bk−1 � ak−2 �

bk−3 � · · · � a2 � b1 � bk � ak−1 � bk−2 � ak−3 � · · · � b2 � a1 is a special cycle in G

with V (C) = Γ(Q).

Corollary 14. Let Q ∈ C and u ∈ Γ(Q). Then:

(a) there exists v ∈ Γ(Q) such that u v, and

(b) Γ(Q) forms a module in G.
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Proof. The proof of (a) is immediate from Lemma 25 and Corollary 13(a). Similarly, (b) is a

direct consequence of Lemma 25 and Lemma 23(c).

Lemma 26. Let Q ∈ C. Then for each u ∈ Γ(Q), we have |N+
G (u) ∩ Γ(Q)| = |N++

G (u) ∩ Γ(Q)|.

Proof. As Q ∈ C, by Lemma 25 there exists a special cycle C in G such that V (C) = Γ(Q).

Let this cycle be C = a0 � a1 � a2 � · · · � a2l−1 � a0 (note that by Lemma 23(a), C

has even length; also note that l ≥ 2). Consider a vertex ai ∈ V (C). By Lemma 23(b), we

have ai ai+l and by Corollary 13(b), N+
G (ai) ∩ V (C) = {ai+1, ai+2, . . . , ai+l−1} (subscripts

modulo 2l). Recalling that V (C) = Γ(Q), we now get |N+
G (ai) ∩ Γ(Q)| = l − 1. Now, consider

any ap ∈ {ai+l, ai+l+1, . . . , ai+2l−2 = ai−2}. Clearly, ap /∈ N+
G (ai). Note that for any choice

of ap, the vertex ap+l+1 ∈ N+
G (ai) ∩ V (C). By Lemma 23(b), we have that ap ap+l. Now

applying Corollary 13(b) to ap, we have that ap+l+1 ∈ N−G (ap) ∩ V (C). This gives us that

ap ∈ N++
G (ai) ∩ Γ(Q) for each choice of ap ∈ {ai+l, ai+l+1, . . . , ai+2l−2 = ai−2}, implying that

|N++
G (ai) ∩ Γ(Q)| ≥ l − 1. Noting that the vertex ai−1 /∈ N++

G (ai) (as ai−1 � ai), we can now

conclude |N++
G (ai) ∩ Γ(Q)| = l − 1 = |N+

G (ai) ∩ Γ(Q)|.

Unforced and singly-forced missing edges We now label some missing edges of G as

unforced and some others as singly-forced.

Definition 33 (Singly forced missing edge). A missing edge e = a b is said to be singly-forced

if exactly one of the following conditions hold.

(1) There exists v ∈ V (G) such that b� v → a in G.

(2) There exists u ∈ V (G) such that a� u→ b in G.

If (1) holds then we say that e is forced in the direction b to a, and if (2) holds then we say that

e is forced in the direction a to b. If neither (1) nor (2) hold, then e is unforced. Note that it is

possible for a missing edge to be forced in both directions. (See Figure 7.5).

Proposition 10. Let e = a b. If there exist u, v ∈ V (G) such that b� v → a and a� u→ b,

then (u, v)R(b, a). Consequently, if any missing edge is forced in both directions in G, then it has

an in-neighbor in ∆(G).

Proof. Note that u 6= v. Now, if v → u or u → v, then u → b � v → u or v → a � u → v

would form a directed triangle containing a special arc, which is a contradiction. Therefore,

u v. Then, the fact that u→ b� v → a� u implies that (u, v)R(b, a) and hence {u, v} is an

in-neighbor of e in ∆(G).
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Figure 7.5: A singly forced missing edge is either of the form (i) or (ii) and (iii) shows a missing
edge that is forced in both the directions

Proposition 11. Every singly-forced missing edge is the starting vertex of some path in P.

Proof. Let a b be a singly-forced missing edge. It is enough to prove that {a, b} doesn’t have

any in-neighbor in ∆(G). Assume to the contrary that {a, b} has an in-neighbor {c, d} in ∆(G).

Then by definition of ∆(G) we can assume without loss of generality that (c, d)R(a, b), i.e., there

exists a cycle c→ a� d→ b� c in G. Note that now we have both b� c→ a and a� d→ b,

implying that both conditions (1) and (2) of Definition 33 hold. This contradicts the fact that

a b is a singly-forced missing edge.

Completions and special in-neighbors A tournament T is said to be a completion of G

if V (G) = V (T ) and E(G) ⊆ E(T ). It is easy to see that a completion of G can be obtained

by “orienting” every missing edge of G, i.e., by adding an oriented edge in place of each missing

edge of G. Our strategy will be to show that there exists a way to orient the missing edges of

G so that the resulting completion T of G has the property that the feed vertex of any median

order of T has a large second neighborhood not just in T , but also in G. A missing edge a b

of G that has been oriented from a to b in T is denoted by a 99K b.

Definition 34 (Type-I and Type-II special in-neighbors). Given a completion T of G and a

vertex v ∈ V (T ), we say that an in-neighbor b of v is a special in-neighbor if b � v and

b ∈ N++
T (v). Further, we say that a special in-neighbor b of v is of Type-I if there exists

a ∈ V (T ) such that v → a 99K b � v. Similarly, we say that a special in-neighbor b of v is of

Type-II if there exists a ∈ V (T ) such that v 99K a → b � v. Note that any special in-neighbor

of v is either Type-I or Type-II or both. (See Figure 7.6).
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Figure 7.6: (i) b is a Type-I in-neighbor of v and (ii) b is a Type-II in-neighbor of v

Lemma 27. Let T be a completion of G and let v ∈ V (T ). If there exists a vertex x such that

x ∈ N++
T (v) \N++

G (v) then x is a special in-neighbor of v.

Proof. Consider x ∈ N++
T (v) \ N++

G (v). As x ∈ N++
T (v), x ∈ N−T (v), implying that we have

either x → v or x 99K v. Furthermore, there exists a ∈ V (T ) such that a ∈ N+
T (v) ∩ N−T (x).

Since x /∈ N++
G (v), we know that either v 99K a or a 99K x. As the missing edges of G form a

matching, this implies that x → v. Again using the fact that x /∈ N++
G (v), we conclude that

x� v. This shows that x is a special in-neighbor of v.

Lemma 28. Let T be a completion of G and L a median order of T such that the feed vertex d of

L does not have a special in-neighbor of Type-I. Then d is a vertex with large second neighborhood

in G.

Proof. We claim that there exists a completion T ′ of G such that L is a median order of T ′ and

d has no special in-neighbors in T ′. If there does not exist a vertex a ∈ V (T ) such that d 99K a,

then clearly T ′ = T is a completion of G satisfying our requirements. So we shall assume that

there exists a ∈ V (T ) with d 99K a. Now, consider the completion T ′ of G obtained from T by

reorienting the missing edge d 99K a as a 99K d. By Proposition 6, L is a median order of T ′ as

well. Further, it can be easily seen that d does not have any special in-neighbors of Type-I in T ′

either. As the only missing edge incident on d is oriented towards d in T ′, d does not have any

special in-neighbors of Type-II in T ′. This proves our claim.

By Lemma 27 applied on T ′ and L, we have N++
T ′ (d) ⊆ N++

G (d). By Theorem 33, |N+
G (d)| =

|N+
T ′(d)| ≤ |N++

T ′ (d)| (the first equality is because a 99K d in T ′). Combining this with the

previous observation, we have |N+
G (d)| ≤ |N++

G (d)|.

Safe completions We now construct a completion T of G by orienting the missing edges of

G in a particular fashion. We start by orienting the missing edges that are the starting vertices

of paths in P. Among them, we orient the singly-forced missing edges in the direction in which

they are forced and the others in an arbitrary direction. Then, repeatedly do the following until



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 136

every missing edge that is in a path in P is oriented: if a b is unoriented and has an in-neighbor

{c, d} in ∆(G) which has been oriented as c 99K d, then orient a 99K b if (c, d)R(a, b) and orient

it as b 99K a if (c, d)R(b, a). The remaining unoriented missing edges are those that belong to

cycles in C. Orient them in arbitrary directions. By Proposition 11, this strategy orients every

singly-forced missing edge in the direction in which it is forced.

Definition 35 (Safe completion). A completion T of G is said to be safe if it can be obtained

from G by applying the above strategy. Formally, a completion T of G is a safe completion if it

satisfies the following two conditions:

(1) If a b is a singly-forced missing edge that is forced in the direction from a to b, then

a 99K b in T , and

(2) if {a, b} does not lie in any cycle in C, (c, d)R(a, b) and c 99K d in T , then a 99K b in T .

Recall that (c, d)R(a, b) if and only if (d, c)R(b, a). Therefore, if {a, b}, {c, d} are two missing

edges that do not lie on any cycle in C and (c, d)R(a, b), then in any safe completion, c 99K d if

and only if a 99K b.

As the above strategy of constructing a safe completion of G never fails, we have the following

remark.

Remark 6. Every oriented graph whose missing edges form a matching has a safe completion.

Lemma 29. Let T be a safe completion of G. Let v ∈ V (T ) and b be a Type-I special in-neighbor

of v. Then there exist a, u ∈ V (T ) such that v → a 99K b� v, a� u→ b and u v. Moreover,

b is the only Type-I special in-neighbor of v.

Proof. As b is a Type-I special in-neighbor of v, there exists a ∈ V (T ) such that v → a 99K b� v

in T . Then by Definition 33, a b is forced in the direction b to a. But as we have a 99K b in

T , and every singly-forced missing edge of G was oriented in T in the direction in which it was

forced (as T is a safe completion), it must be the case that a b is also forced in the direction

a to b. That is, there exists u ∈ V (T ) such that a � u → b (refer to Definition 33). Using

Proposition 10, we can now conclude that (u, v)R(b, a), which further implies that u v. If

there exists a Type-I special in-neighbor b′ of d such that b′ 6= b, then the same arguments can be

used to infer that there exist a′, u′ ∈ V (T ) such that (u′, v)R(b′, a′) (which means that u′ v).

Since v has at most one non-neighbor, we have that u′ = u, which gives (u, v)R(b′, a′). As it can

be easily seen that {a′, b′} 6= {a, b}, the missing edge {u, v} has more than one out-neighbor in

∆(G), which is a contradiction to Lemma 24. Hence b is the only Type-I special in-neighbor of

v.
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Lemma 30. Let T be a safe completion of G and let L be a median order of T with feed vertex

d. If d has a Type-I special in-neighbor b and there exists w ∈ V (T ) such that d 99K w, then:

(a) N++
T (d) \ {b} ⊆ N++

G (d), and

(b) d is a vertex with large second neighborhood in G.

Proof. By Lemma 29, there exist a, u ∈ V (T ) such that d→ a 99K b� d, a� u→ b and u d.

As the only non-neighbor of d is w, we have u = w.

(a) Consider a vertex x ∈ N++
T (d) \ {b}. Suppose for the sake of contradiction that x /∈

N++
G (d). Then by Lemma 27, we know that x is a special in-neighbor of d. Since x 6= b, we

know by Lemma 29 that x cannot be a Type-I special in-neighbor of d. Therefore, x is a Type-II

special in-neighbor of d, i.e., d 99K w → x� d (as w is the only non-neighbor of d). It is easily

verified that a 6= x. Further, {a, x} cannot be a missing edge since a b and x 6= b. If x → a

or a → x, then either a � u = w → x → a or d → a → x � d would be a directed triangle

containing a special arc, which is a contradiction. This proves (a).

(b) We have |N+
G (d)| = |N+

T (d)| − 1 ≤ |N++
T (d)| − 1 = |N++

T (d) \ {b}| ≤ |N++
G (d)| (the first

equality is because d 99K w, the second inequality by Theorem 33, the third equality is because

b ∈ N++
T (d), and the fourth inequality by (a)).

Consider a module I in G such that |I| ≥ 2 and a vertex v ∈ I. Clearly, any non-neighbor of

v outside I has to be a non-neighbor of every vertex in I. As |I| ≥ 2 and the missing edges of G

form a matching, this can only mean that v has no non-neighbors outside I. We thus have the

following remark.

Remark 7. If I is a module in G such that |I| ≥ 2 and v ∈ I, then v has no non-neighbors

outside I.

Lemma 31. Let T be a safe completion of G and let I be a module in G with |I| ≥ 2. Then for

any v ∈ I, N++
T (v) \ I ⊆ N++

G (v) \ I.

Proof. First, suppose that there exists a Type-I special in-neighbor x of v outside I. By

Lemma 29, there exists a vertex u ∈ V (T ) such that u v and u → x. By Remark 7, u ∈ I.

Now we have x → v and u → x, which contradicts the fact that u and v belong to the module

I in G and x is outside that module. Therefore, v has no Type-I special in-neighbors outside

I. Next, suppose that there exists a Type-II special in-neighbor x of v outside I. Then, there

exists a vertex y such that v 99K y → x� v. By Remark 7, we know that y ∈ I. Then we have

x → v and y → x, which contradicts the fact that v and y belong to the module I in G (recall
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that x is outside I). Therefore, we can conclude that v has no special in-neighbors outside I.

This implies, by Lemma 27, that N++
T (v) \ I ⊆ N++

G (v) \ I.

Corollary 15. Let T be a safe completion of G and let d be the feed vertex of some median order

of T . Let I be a module in G containing d where |I| ≥ 2. Then for any v ∈ I, |N+
G (v) \ I| ≤

|N++
G (v) \ I|.

Proof. It is easy to see that as the missing edges of G form a matching, every module in G is

also a module in T . Therefore I is a module in T containing d. Then we have from Proposition 9

and Lemma 31 that |N+
G (v) \ I| ≤ |N+

T (v) \ I| ≤ |N++
T (v) \ I| ≤ |N++

G (v) \ I|.

Prime vertices We define

I(u) =

 Γ(Q) if ∃Q ∈ C such that u ∈ Γ(Q),

{u} otherwise.

Note that as any vertex u can be a part of at most one missing edge, there can be at most one

cycle Q ∈ C such that u ∈ Γ(Q), and therefore I(u) is well defined. We define a vertex u in G to

be prime, if I(u) = {u}; in other words, a vertex u is said to be prime if u /∈ Γ(Q) for any Q ∈ C.

Note that if u is prime, we have I(u) = {u} and therefore, |N+
G (u)∩I(u)| = |N++

G (u)∩I(u)| =

0. On the other hand, if u ∈ Γ(Q) for some Q ∈ C, then I(u) = Γ(Q), and by Lemma 26, we get

that |N+
G (u) ∩ I(u)| = |N++

G (u) ∩ I(u)|. We thus have the following.

Remark 8. For any vertex u ∈ V (G), |N+
G (u) ∩ I(u)| = |N++

G (u) ∩ I(u)|.

Theorem 34. Let d be the feed vertex of some median order of a safe completion T of G. Then

every vertex in I(d) has a large second neighborhood in G.

Proof. Suppose that d is prime. Then, I(d) = {d}. If d has no special in-neighbor of Type-I in

T , then we are done by Lemma 28. So let us assume that d has a special in-neighbor b of Type-I

in T . Then by Lemma 29, there exist a, u ∈ V (T ) such that d→ a 99K b� d, a� u→ b, where

u d. This means that (u, d)R(b, a). If u 99K d, then since T is a safe completion of G, the fact

that a 99K b implies that {u, d} and {b, a} lie in some cycle in C, contradicting the assumption

that d is prime. Therefore, we have d 99K u. Then we are done by Lemma 30(b).

Next, consider the case when d is not prime, i.e. d ∈ Γ(Q) for some Q ∈ C. Note that we

then have I(d) = Γ(Q) and therefore, |I(d)| ≥ 2. Consider any vertex v ∈ I(d). As I(d) = Γ(Q)

is a module (Corollary 14(b)), we have by Corollary 15 that |N+
G (v)\I(d)| ≤ |N++

G (v)\I(d)|. By
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Remark 8, |N+
G (v)∩ I(d)| = |N++

G (v)∩ I(d)|. We now have |N+
G (v)| = |N+

G (v)\ I(d)|+ |N+
G (v)∩

I(d)| ≤ |N++
G (v) \ I(d)|+ |N++

G (v) ∩ I(d)| = |N++
G (v)|. Hence the theorem.

As u ∈ I(u) for every vertex u ∈ V (G), Remark 6 and Theorem 34 give us the following

corollary.

Corollary 16. Every oriented graph whose missing edges form a matching contains a vertex

with a large second neighborhood.

A useful lemma about special arcs We now state a property of special arcs that are “reverse

arcs” in a median order, which will be useful for deriving the results in the next section.

Definition 36 (Reverse special arc). Given a median order L = (x1, x2, . . . , xn) of any comple-

tion T of G, a special arc xj � xi is said to be a reverse special arc in (T, L) if i < j.

Lemma 32. Let L = (x1, x2, . . . , xn) be a median order of a completion T of G and xj � xi be

a reverse special arc in (T, L). Then at least one of the following conditions hold:

(a) there exists xk such that xi 99K xk → xj, where i < k < j, or

(b) there exists xl such that xi → xl 99K xj, where i < l < j.

Moreover, if exactly one of the above conditions holds, then L′ = (x1, x2, . . . , xi−1, xi+1, . . . , xj , xi,

xj+1, . . . , xn) is also a median order of T .

Proof. For the purposes of this proof, for u ∈ {xi, xi+1, . . . , xj}, we shall abbreviate N+
T (u) ∩

{xi, xi+1, . . . , xj} and N−T (u) ∩ {xi, xi+1, . . . , xj} to just N+
i,j(u) and N−i,j(u) respectively. By

Proposition 4, we have

∣∣∣N+
i,j(xi)

∣∣∣ ≥ j − i
2

and
∣∣∣N−i,j(xj)∣∣∣ ≥ j − i

2
(7.1)

Alternatively, ∣∣∣N−i,j(xi)∣∣∣ ≤ j − i
2

and
∣∣∣N+

i,j(xj)
∣∣∣ ≤ j − i

2
(7.2)

We shall first make an observation about any vertex xp ∈ N+
i,j(xi) \ N

+
i,j(xj). Clearly,

xp ∈ N+
i,j(xi) ∩ N

−
i,j(xj) (recall that xj � xi). Note that either xi 99K xp or xp 99K xj , as

otherwise xi → xp → xj � xi would form a directed triangle containing a special arc, which

is a contradiction. Since the missing edges of G form a matching, this implies that either

xi 99K xp → xj or xi → xp 99K xj .
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Suppose that neither of the conditions in the lemma hold. Then from the above observation,

it is clear that N+
i,j(xi) ⊆ N

+
i,j(xj). Note that xi /∈ N

+
i,j(xi) but xi ∈ N

+
i,j(xj). Therefore we have,∣∣∣N+

i,j(xi)
∣∣∣ < ∣∣∣N+

i,j(xj)
∣∣∣ ≤ j−i

2 (by (7.2)), which contradicts (7.1). Therefore at least one of the

conditions (a) or (b) should hold.

Now suppose that exactly one of the conditions (a) or (b) holds. Note first that from the

previous observation and the fact that the missing edges of G form a matching, it follows that

if there exist two distinct vertices xp, xq in N+
i,j(xi) \ N

+
i,j(xj), then xi 99K xp → xj and xi →

xq 99K xj , implying that both conditions hold. Therefore, there is exactly one vertex in N+
i,j(xi)\

N+
i,j(xj), i.e., |N

+
i,j(xi) \ N

+
i,j(xj)| = 1. Since xi ∈ N+

i,j(xj) \ N
+
i,j(xi), we have that |N+

i,j(xi) \

(N+
i,j(xj)\{xi})| = 1. This means that |N+

i,j(xi)|−(|N+
i,j(xj)|−1) ≤ 1, implying that |N+

i,j(xi)| ≤

|N+
i,j(xj)|. Hence,

j−i
2 ≤

∣∣∣N+
i,j(xi)

∣∣∣ ≤ ∣∣∣N+
i,j(xj)

∣∣∣ ≤ j−i
2 (from (7.1) and (7.2)). Therefore, we have∣∣∣N+

i,j(xi)
∣∣∣ = j−i

2 =
∣∣∣N−i,j(xi)∣∣∣ (which means that j − i is even). Then by Proposition 5(a),

L′ = (x1, x2, . . . , xi−1, xi+1, . . . , xj , xi, xj+1, . . . , xn) is also a median order of T .

In Section 7.2.4, we shall use the concepts introduced so far in order to generalize Corollary 16

to show that in any graph whose missing edges can be partitioned into a matching and a star,

there exists a vertex with a large second neighborhood. We need the notion of “sedimentation”

of median orders, first introduced by Havet and Thomasse [65], to derive our result.

7.2.3 Sedimentation of a good median order

Ghazal modified the notion of sedimentation of median orders to apply to good median orders.

We slightly modify this so as to redefine sedimentation without referring to the “good” and “bad”

vertices that appear in the work of Havet and Thomasse and Ghazal.

Suppose that L = (x1, x2, . . . , xn) is a good median order of a tournament T with respect to

I, where I is a partition of V (T ) into modules. Let I be the set in I containing xn and t = |I|.

Then I = {xn−t+1, xn−t+2, . . . , xn}. Recall that by Proposition 9, |N+(xn) \ I| ≤ |N++(xn) \ I|.

Then the sedimentation of L with respect to I, denoted by SedI(L), is an ordering of V (T )

that is defined in the following way. If |N+(xn) \ I| < |N++(xn) \ I|, then SedI(L) = L.

If |N+(xn) \ I| = |N++(xn) \ I|, then SedI(L) is defined as follows. Let b1, b2, . . . , bk be the

vertices in N−(xn)\N++(xn) which are outside I and v1, v2, . . . , vn−t−k the vertices in N+(xn)∪

N++(xn) which are outside I, both enumerated in the order in which they appear in L (note

that in any tournament, N++(u) ⊆ N−(u) for any vertex u in it). Then SedI(L) is the order

(b1, b2, . . . , bk, xn−t+1, xn−t+2, . . . , xn, v1, v2, . . . , vn−t−k).
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We shall now prove the following proposition and theorem which are adapted from the proof

of Havet and Thomasse so as to incorporate our slightly changed definition of sedimentation.

Proposition 12. Let T be a tournament and L = (x1, x2, . . . , xn) be a median order of T such

that |N+(xn)| = |N++(xn)|.

(a) If N−(xn) = N++(xn), then (xn, x1, x2, . . . , xn−1) is a median order of T , and

(b) if N−(xn) \N++(xn) 6= ∅ and xi is the vertex in N−(xn) \N++(xn) that occurs first in L,

then (xi, x1, x2, . . . , xi−1, xi+1, . . . , xn) is a median order of T .

Proof. (a) Since |N+(xn)| = |N++(xn)| andN−(xn) = N++(xn), we have |N+(xn)| = |N−(xn)|.

Therefore, by Proposition 5(b) applied on x1 and xn, we have that (xn, x1, x2, . . . , xn−1) is a

median order of T .

(b) Let D = {x1, x2, . . . , xi−1} and U = {xi, xi+1, . . . , xn}. By Proposition 3(a), (xi, xi+1,

. . . , xn) is a median order of the subtournament T [U ] of T . Applying Theorem 33 to this

median order of the tournament T [U ], we have |N+
T (xn) ∩ U | = |N+

T [U ](xn)| ≤ |N++
T [U ](xn)| ≤

|N++
T (xn) ∩ U |. This together with the fact that, |N+

T (xn)| = |N+
T (xn) ∩ D| + |N+

T (xn) ∩ U |,

|N++
T (xn)| = |N++

T (xn) ∩ D| + |N++
T (xn) ∩ U | and |N+

T (xn)| = |N++
T (xn)| (assumption of the

lemma) implies that |N+
T (xn) ∩ D| ≥ |N++

T (xn) ∩ D|. As xi ∈ N−T (xn) \ N++
T (xn), we have

that N+
T (xn) ∩ D ⊆ N+

T (xi) ∩ D and N−T (xi) ∩ D ⊆ N−T (xn) ∩ D. As xi is the first vertex

in L that belongs to N−T (xn) \ N++
T (xn), we also have that N−T (xn) ∩ D = N++

T (xn) ∩ D.

By Proposition 4(a) applied to x1 and xi, we get |N+
T (xi) ∩ D| ≤ |N−T (xi) ∩ D|. Combining

everything, we have |N+
T (xn)∩D| ≤ |N+

T (xi)∩D| ≤ |N−T (xi)∩D| ≤ |N−T (xn)∩D| = |N++
T (xn)∩

D|. Recalling our previous observation that |N+
T (xn) ∩ D| ≥ |N++

T (xn) ∩ D|, we then have

|N+
T (xi) ∩ D| = |N−T (xi) ∩ D|. Now from Proposition 5(b) applied on x1 and xi, we get that

(xi, x1, x2, . . . , xi−1, xi+1, . . . , xn) is a median order of T .

Following is the theorem from [65] that we need.

Theorem 35 ([65]). Let T be a tournament and L = (x1, x2, . . . , xn) be a median order of it

such that |N+(xn)| = |N++(xn)|. Let b1, b2, . . . , bk be the vertices in N−(xn) \ N++(xn) and

v1, v2, . . . , vn−k−1 be the vertices in N+(xn) ∪N++(xn), both enumerated in the order in which

they appear in L. Then (b1, b2, . . . , bk, xn, v1, v2, . . . , vn−k−1) is a median order of T .

Proof. We prove this by induction on |N−(xn) \ N++(xn)|. If |N−(xn) \ N++(xn)| = 0, then

we are done by Proposition 12(a). So let us assume that N−(xn) \ N++(xn) 6= ∅ and that

b1, b2, . . . , bk, v1, v2, . . . , vn−k−1 are the vertices as defined in the statement of the theorem. By
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Proposition 12(b), we know that L̂ = (xi, x1, . . . , xi−1, xi+1, . . . , xn) is a median order of T ,

where xi = b1. By Proposition 3(a), we know that L′ = (x1, x2, . . . , xi−1, xi+1, . . . , xn) is a

median order of T ′ = T − {b1}. It is easy to see that N+
T ′(xn) = N+

T (xn), N−T ′(xn) = N−T (xn) \

{b1} and N++
T ′ (xn) = N++

T (xn). Therefore, |N+
T ′(xn)| = |N++

T ′ (xn)| and N−T ′(xn) \ N++
T ′ (xn) =

{b2, b3, . . . , bk}. By the induction hypothesis applied on the tournament T ′ and the median

order L′, we get that (b2, b3, . . . , bk, xn, v1, v2, . . . , vn−k−1) is a median order of T ′. Now by

Proposition 3(b), we can replace the subsequence (x1, . . . , xn) of L̂ with any median order of T ′

to obtain a median order of T . Therefore, (b1, b2, . . . , bk, xn, v1, v2, . . . , vn−k−1) is a median order

of T .

Given below is the main theorem that we need for sedimentation of median orders. This is a

modification of a result of Ghazal [53] to apply to our version of sedimentation (we again want

to avoid using the “good vertices” of Havet and Thomasse).

Theorem 36 ([53]). Let T be a tournament. If I is a partition of V (T ) into modules and L is

a good median order of T with respect to I, then SedI(L) is also a good median order of T with

respect to I.

Proof. Let L = (x1, x2, . . . , xn) and let I ∈ I be the module containing xn. If |N+
T (xn) \ I| <

|N++
T (xn) \ I|, then SedI(L) = L and there is nothing to prove. Therefore, by Proposition 9, we

can assume that |N+
T (xn) \ I| = |N++

T (xn) \ I|. Let t = |I|. Then I = {xn−t+1, xn−t+2, . . . , xn}.

Let b1, b2, . . . , bk be the vertices outside I that are in-neighbors of xn but not its second out-

neighbors (i.e., {b1, b2, . . . , bk} = (N−T (xn) \N++
T (xn)) \ I), where 0 ≤ k ≤ n− t, and v1, v2, . . . ,

vn−t−k the vertices in (N+
T (xn) ∪ N++

T (xn)) \ I, both enumerated in the order in which they

appear in L.

For ease of notation, we denote xn−t+i by ui, for each i ∈ {1, 2, . . . , t}. Then u1 = xn−t+1

and ut = xn. By Proposition 3(a), L′ = (x1, x2, . . . , xn−t+1 = u1) is a median order of T ′ =

T − {u2, u3, . . . , ut}. As u1 and xn belong to the module I of T , N+
T ′(u1) = N+

T (u1) \ I =

N+
T (xn) \ I and N−T ′(u1) = N−T (u1) \ I = N−T (xn) \ I. By Proposition 7, we further have

N++
T ′ (u1) = N++

T (u1) \ I = N++
T (xn) \ I. Since |N+

T (xn) \ I| = |N++
T (xn) \ I|, it then follows

that |N+
T ′(u1)| = |N++

T ′ (u1)| and that N−T ′(u1) \N++
T ′ (u1) = {b1, b2, . . . , bk}.

By Theorem 35 applied on T ′ and L′, we get that (b1, b2, . . . , bk, u1, v1, v2, . . . , vn−t−k) is

a median order of T ′. From Proposition 3(b), we know that we can replace the subsequence

(x1, x2, . . . , xn−t+1 = u1) of L with this new median order of T ′ to get another median order

(b1, b2, . . . , bk, u1, v1, v2, . . . , vn−t−k, u2, u3, . . . , ut) of T . By repeatedly applying Proposition 8(b)
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on the median order (b1, b2, . . . , bk, u1, u2, . . . , ui, v1, v2, . . . , vn−t−k, ui+1, ui+2, . . . , ut) of T and

the vertices ui and ui+1, for each value of i from 1 to t − 1, we can conclude that SedI(L) =

(b1, b2, . . . , bk, u1, u2, . . . , ut, v1, v2, . . . , vn−t−k) is a median order of T .

It only remains to be proven that SedI(L) is a good median order of T with respect to I. It

can be easily seen that for any J ∈ I, if there exists u ∈ J such that u ∈ N−T (xn) \N++
T (xn) =

{b1, b2, . . . , bk}, then J ⊆ N−T (xn) \ N++
T (xn). As {u1, u2, . . . , ut} = I ∈ I, this implies that

every other module in I is a subset of either {b1, b2, . . . , bk} or {v1, v2, . . . , vn−t−k}. Since the

vertices in each set in I occur in SedI(L) in the same order as they occur in L, and L is a good

median order of T with respect to I, we can conclude that the vertices in each module in I occur

consecutively in SedI(L) too.

Stable and periodic median orders Following Ghazal and Havet and Thomasse, we induc-

tively define Sed0I(L) = L and for integer q ≥ 1, SedqI(L) = SedI(Sed
q−1
I (L)). We say that a

good median order L of T with respect to some I is stable if there exists integer q ≥ 0 such that

Sedq+1
I (L) = SedqI(L). Otherwise, we say that L is periodic.

7.2.4 Tournaments missing a matching and a star

In this section, we shall show that if the missing edges of an oriented graph can be partitioned

into a matching and a star, then it contains a vertex with a large second neighborhood. As noted

in the beginning, any sink in an oriented graph is a vertex with a large second neighborhood.

Therefore, we only need to show the result for graphs that contain no sink. In fact, we show the

following stronger result.

Theorem 37. Let H be an oriented graph that does not contain a sink and z ∈ V (H) such that

G = H − {z} is a tournament missing a matching. Then there exists a vertex in V (G) that has

a large second neighborhood in both G and H.

When H is a tournament missing a matching and a star, and H does not contain a sink, we

can apply the above theorem taking z to be the center of the star, to obtain the result that there

is a vertex other than z having a large second neighborhood in H.

For the remainder of this section, we assume that H is an oriented graph without a sink

containing a vertex z ∈ V (H) such that G = H − {z} is a tournament missing a matching.

We say that the “value” of a tournament is the number of forward arcs in any median order

of it. Let T be a safe completion of G with largest value. In other words, T is a safe completion

of G with smallest feedback arc set (a set of arcs whose removal makes T acyclic). Henceforth,
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we shall use T to denote such a completion of G. We immediately have the following observation

about any median order of T .

Lemma 33. If L = (x1, x2, . . . , xn) is a median order of T , then there cannot exist a missing

edge xj 99K xi, where i < j, such that {xi, xj} is an isolated vertex of ∆(G) and xi xj is

unforced.

Proof. Let T ′ be the tournament obtained from T by reversing the arc xj 99K xi. By Proposi-

tion 6, L is a median order of T ′ as well. Also, as xi xj is unforced and {xi, xj} is an isolated

vertex in ∆(G), the tournament T ′ is also a safe completion of G. This contradicts our choice of

T as T ′ has higher value than T .

Lemma 34. Let L be a median order of T having feed vertex d. If d does not have a large second

neighborhood in H, then:

(a) z ∈ N+
H (d), and

(b) @u ∈ N+
H (z) such that u ∈ N−T (d) \N++

T (d).

Proof. (a) If z /∈ N+
H (d), then by Theorem 34 and the fact that N++

G (d) ⊆ N++
H (d), we have

|N+
H (d)| = |N+

G (d)| ≤ |N++
G (d)| ≤ |N++

H (d)|. This contradicts the assumption that d does not

have a large second neighborhood in H.

(b) Suppose for the sake of contradiction that such a u exists. From (a), z ∈ N+
H (d). As

z ∈ N+
H (d)∩N−H (u) and u ∈ N−T (d), we get u ∈ N++

H (d). Note that as u ∈ N−T (d) \N++
T (d), we

have u /∈ N++
G (d). Combining all these together we get,

|N+
H (d)| = |N+

G (d)|+ 1 (as z ∈ N+
H (d))

≤ |N++
G (d)|+ 1 (by Theorem 34)

= |N++
G (d) ∪ {u}| (as u /∈ N++

G (d))

≤ |N++
H (d)| (as N++

G (d) ⊆ N++
H (d) and u ∈ N++

H (d))

and therefore d has a large second neighborhood in H, which is a contradiction.

Define I(G) = {I(u) : u ∈ V (G)} = {Γ(Q) : Q ∈ C} ∪ {{u} : u is prime}. By Corollary 14(b),

I(G) is a partition of V (G) into modules of G. As noted before, it can be easily seen that since

the missing edges of G form a matching, every module in G is also a module in T . This implies

that I(G) is a partition of V (T ) into modules of T as well. Therefore, by Lemma 21, there exists

a good median order of T with respect to I(G).



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 145

Lemma 35. If there exists a good median order L of T with respect to I(G) which is periodic,

then there exists x ∈ V (G) such that x has a large second neighborhood in both G and H.

Proof. For the purposes of this proof, given an ordering of vertices L̂ = (x1, x2, . . . , xn) and a

vertex v ∈ {x1, x2, . . . , xn}, we define the “index of v in L̂” to be the integer i such that xi = v.

Let us denote the feed vertex of SediI(G)(L) by di. In particular, d0 = d. By Theorem 36,

we know that for any integer i ≥ 0, SediI(G)(L) is a good median order of T with respect to

I(G). Note that we then have by Theorem 34 that for every integer i ≥ 0, di has a large second

neighborhood in G.

As H does not have any sink, there exists u ∈ V (G) such that u ∈ N+
H (z). If there exists an

integer i ≥ 0 such that di = u, then as z /∈ N+
H (di), by Lemma 34(a), di = u has a large second

neighborhood in H too, and we are done. This means that there exists an integer q ≥ 0 such

that the index of u in Sedq+1
I(G)(L) is less than its index in SedqI(G)(L) (recall that L is periodic).

Then u must be in N−T (dq) \N++
T (dq), which implies by Lemma 34(b) that dq has a large second

neighborhood in H.

By the above lemma, henceforth we can focus our attention on the case when every good

median order of T with respect to I(G) is stable. That is, for any good median order L of T

with respect to I(G), there exists a median order SedqI(G)(L) (where q ≥ 0) whose feed vertex

d satisfies |N++
T (d) \ I(d)| > |N+

T (d) \ I(d)|. Therefore, to complete the proof of Theorem 37,

we only need to show that if d is the feed vertex of a median order of T satisfying the above

property, then d has a large second neighborhood in H. The remainder of the section is devoted

to proving this fact, which we state as Lemma 42.

Lemma 36. Let L be a median order of T having feed vertex d such that |N++
T (d) \ I(d)| >

|N+
T (d) \ I(d)|. If either d has no special in-neighbors or d has a special in-neighbor of Type-I,

then d has a large second neighborhood in H.

Proof. If z /∈ N+
H (d), then we are done by Lemma 34(a). So we can assume that z ∈ N+

H (d).

Suppose that d has no special in-neighbors. Then, by Lemma 27, we have N++
T (d) ⊆ N++

G (d).

Consequently, N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d).

Now suppose that d has a special in-neighbor of Type-I and d is not prime. Then there exists

Q ∈ C such that I(d) = Γ(Q). By Lemma 31, we have N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d).

Therefore, if d has no special in-neighbors or if d has a special in-neighbor of Type-I but d is



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 146

not prime, we have N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d). In that case, we get,

|N+
H (d)| = |N+

G (d)|+ 1 (as z ∈ N+
H (d))

= |N+
G (d) \ I(d)|+ |N+

G (d) ∩ I(d)|+ 1

≤ |N+
T (d) \ I(d)|+ |N++

G (d) ∩ I(d)|+ 1 (since N+
G (d) ⊆ N+

T (d) and by Remark 8)

≤ |N++
T (d) \ I(d)|+ |N++

G (d) ∩ I(d)| (as |N++
T (d) \ I(d)| > |N+

T (d) \ I(d)|)

≤ |N++
G (d) \ I(d)|+ |N++

G (d) ∩ I(d)| (as N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d))

= |N++
G (d)|

≤ |N++
H (d)|

and hence d has a large second neighborhood in H. Now, to prove the lemma, it only remains

to consider the case when d has a special in-neighbor b of Type-I and d is prime. Then by

Lemma 29, there exist a, u ∈ V (T ) such that d → a 99K b � d and a � u → b, where u d.

This means that (u, d)R(b, a). If u 99K d, then since T is a safe completion of G, the fact that

a 99K b implies that {u, d} and {b, a} lie in some cycle Q in C. But then d ∈ Γ(Q), which

contradicts the fact that d is prime. Therefore, we have d 99K u. Then by Lemma 30(a), we have

N++
T (d) \ {b} ⊆ N++

G (d). Combining all these together, we have

|N+
H (d)| = |N+

G (d)|+ 1 (as z ∈ N+
H (d))

= |N+
T (d)| − 1 + 1 (as d 99K u in T )

≤ |N++
T (d) \ {b}| (as I(d) = {d}, we have |N++

T (d)| > |N+
T (d)|)

≤ |N++
G (d)| (as N++

T (d) \ {b} ⊆ N++
G (d))

≤ |N++
H (d)|

Hence the lemma.

The relation F Define a relation F on V (G) as follows. For x, y ∈ V (G) such that x is prime,

we say that xFy if and only if there exists x′ ∈ V (G) such that x� y → x′, x x′ in G and the

missing edge x x′ is singly-forced. Note that if xFy, then the missing edge x x′ is forced in

the direction x to x′, and the condition that x x′ is singly-forced ensures that it is not forced

in the direction x′ to x.

Lemma 37. Let x be the feed vertex of a median order L of T . Suppose that x is prime and there
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exists y ∈ V (G) such that xFy. Then, there exists y′ ∈ V (G) such that y y′ and y 99K y′ → x

in T . Moreover, y is prime.

Proof. By the definition of xFy, we have that there exists x′ ∈ V (G) such that x � y → x′,

where x x′ is singly-forced and is forced in the direction from x to x′. As T is a safe completion,

we then have x 99K x′. Since x is the feed vertex of L, x � y is a reverse special arc in (T, L),

where the only missing edge x x′ that is incident on x is oriented as x 99K x′. This implies

that condition (b) of Lemma 32 does not hold. Therefore, condition (a) of the lemma must be

true, i.e. there should exist y′ ∈ V (T ) such that y 99K y′ → x in T . Now, if y is not prime,

then we have that, y ∈ Γ(Q) for some Q ∈ C. Therefore by Corollary 14(a), y′ ∈ Γ(Q). But we

have a vertex x ∈ V (G) \ Γ(Q) (as x is prime) such that x → y and y′ → x. As y, y′ ∈ Γ(Q),

this contradicts the fact that Γ(Q) forms a module in G (by Corollary 14(b)). Therefore we can

conclude that y is prime.

Lemma 38. The relation F is not cyclic, i.e. there does not exist vertices x1, x2, . . . , xk ∈ V (G)

such that x1Fx2F · · · FxkFx1.

Proof. Suppose not. Then there exist vertices x1, x2, . . . , xk ∈ V (D) such that x1Fx2F · · ·

FxkFx1. Therefore by the definition of F , there is a special cycle C = x1 � x2 � x3 � · · · �

xk � x1. By Corollary 13(a), we know that there exists i ∈ {3, 4, . . . , k − 1} such that x1 xi.

Then by the definition of F , the fact that x1Fx2 implies that the missing edge x1 xi is forced

in the direction x1 to xi and not forced in the direction xi to x1. But since the only non-neighbor

of xi is x1, the fact that xiFxi+1 similarly implies that the missing edge x1 xi is forced in the

direction xi to x1, which is a contradiction.

Lemma 39. Let L be a median order of T having feed vertex d and let y be a vertex such that

dFy. Then there exists a median order of T having feed vertex y.

Proof. As dFy, by the definition of F , there exists d′ such that d� y → d′ where d d′ is singly-

forced in the direction from d to d′ and hence, d 99K d′ in T (recall that T is a safe completion).

As d is the feed vertex of L, d� y is a reverse special arc in (T, L). Since the only missing edge

d d′ that is incident on d is oriented as d 99K d′, condition (b) of Lemma 32 does not hold.

Therefore, condition (a) of Lemma 32 should be true. Now as exactly one of the conditions of

the lemma is satisfied, if L = (x1, x2, . . . , xn = d) and y = xi, for some i ∈ {1, 2, . . . , n− 1}, we

have that L′ = (x1, x2, . . . , xi−1, xi+1, . . . , xn, xi = y) is also a median order of T .
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Lemma 40. Let L be a median order of T whose feed vertex d is prime. Suppose that there exists

d′ ∈ V (T ) such that d 99K d′ in T . Then the missing edge {d, d′} does not have an in-neighbor

in ∆(G).

Proof. Suppose not. Let {a, a′} be an in-neighbor of {d, d′} in ∆(G). Then, without loss of

generality, by the definition of ∆(G), we can assume that (a, a′)R(d, d′), and therefore there

exists the four cycle a → d � a′ → d′ � a. As d is prime, d does not belong to Γ(Q) for any

Q ∈ C. This means that {d, d′} does not lie in any cycle in C. Then as T is a safe completion,

d 99K d′ and (a, a′)R(d, d′), we have that a 99K a′ in T . As d is the feed vertex of L, d � a′ is

a reverse special arc in (T, L). Note that the only missing edge d d′ incident on d is oriented

as d 99K d′, and the only missing edge a a′ incident on a′ is oriented as a 99K a′. This implies

that neither of the conditions (a) or (b) of Lemma 32 hold, which is a contradiction.

Lemma 41. Let d be the feed vertex of a median order L of T and d′ ∈ V (T ) be such that

d 99K d′ in T . If d has no Type-I special in-neighbor then d is not prime.

Proof. Suppose for the sake of contradiction that d has no Type-I special in-neighbor and d is

prime. Then, by Lemma 40, the missing edge {d, d′} does not have an in-neighbor in ∆(G).

Now, suppose that {d, d′} has an out-neighbor, say {a, a′} in ∆(G). Without loss of generality,

by the definition of ∆(G), we can assume that (d, d′)R(a, a′). That is, there exists the four cycle

d → a � d′ → a′ � d. As d is prime, the missing edge {d, d′} does not lie on any cycle in

C. Since T is a safe completion, d 99K d′ and (d, d′)R(a, a′), we have a 99K a′ in T . Then,

d→ a 99K a′ � d, implying that a′ is a Type-I special in-neighbor of d, which is a contradiction.

Therefore, we can conclude that the missing edge {d, d′} is an isolated vertex in ∆(G). Then,

by Lemma 33, we have that d d′ is not an unforced missing edge. Now, if d d′ is forced in

both directions, by Proposition 10, we have that {d, d′} has an in-neighbor in ∆(G), which is a

contradiction. Therefore, we can conclude that d d′ is singly-forced in G.

As d 99K d′ in T and T is a safe completion, it should be the case that d d′ is singly-forced in

the direction d to d′ in G. Then by Definition 33, there exists v ∈ V (G) such that, d� v → d′.

This together with the assumption that d is prime implies that dFv. Let y1, y2, . . . , yk be a

sequence of vertices of maximum length such that dFy1Fy2F · · ·Fyk, where y1 = v. Note that

k ≥ 1, and since F is acyclic as shown in Lemma 38, such a sequence exists and each vertex

in d, y1, y2, . . . , yk is distinct. Now let L0 = L and let L1, L2, . . . , Lk be the median orders of T

such that for each i ∈ {1, . . . , k}, Li is obtained by applying Lemma 39 on Li−1. As yk−1 is the

feed vertex of Lk−1 and yk−1Fyk, by Lemma 37, we have that there exists y′k ∈ V (T ) such that



CHAPTER 7. SSNC FOR TOURNAMENTS MISSING A MATCHING AND A STAR 149

yk 99K y′k → yk−1 in T and that yk is prime.

Since yk is the feed vertex of Lk, and yk 99K y′k, by Lemma 40, we have that {yk, y′k} has no

in-neighbor in ∆(G). Now, suppose that the {yk, y′k} has an out-neighbor {b, b′} in ∆(G). Then,

without loss of generality, we can assume that (yk, y
′
k)R(b, b′), i.e. there exists the four cycle

yk → b � y′k → b′ � yk. As yk is prime, the missing edge {yk, y′k} does not lie on any cycle in

C. Therefore, since T is a safe completion, yk 99K y′k and (yk, y
′
k)R(b, b′), we have that b 99K b′.

Since yk−1Fyk, there exists a vertex y′k−1 such that yk−1 y′k−1 is singly-forced in the direction

from yk−1 to y′k−1. As T is a safe completion, this means that yk−1 99K y′k−1. As the missing

edge incident on b′ is oriented towards b′ in T , this implies that b′ 6= yk−1. Clearly, b 6= yk−1 (as

yk−1 � yk, but yk → b). Recalling that b b′, we now have that either b → yk−1 or yk−1 → b.

Now if b → yk−1, then b → yk−1 � yk → b would form a directed triangle containing a special

arc and if yk−1 → b, then yk−1 → b � y′k → yk−1 would form a directed triangle containing

a special arc. As we have a contradiction in both cases, {yk, y′k} has no out-neighbor in ∆(G).

Therefore, {yk, y′k} is an isolated vertex in ∆(G).

By Lemma 33 applied on the median order Lk of T , we have that yk y′k is not an unforced

missing edge. As {yk, y′k} has no in-neighbor in ∆(G), by Proposition 10, yk y′k is not forced

in both directions. Therefore, we can conclude that, yk y′k is singly forced. As yk 99K y′k and

T is a safe completion, we know that yk y′k is forced in the direction yk to y′k, i.e. there exists

a vertex u such that yk � u→ y′k. As yk is prime, this further implies that ykFu. We now have

dFy1Fy2F · · ·Fyk−1FykFu. By Lemma 38, u 6= d and u 6= yi for any i ∈ {1, 2, . . . , k}. This

contradicts the choice of y1, y2, . . . , yk.

Lemma 42. Let L be a median order of T having feed vertex d. If |N++
T (d) \ I(d)| > |N+

T (d) \

I(d)|, then d has a large second neighborhood in H.

Proof. If z /∈ N+
H (d), then we are done by Lemma 34(a). So we can assume that z ∈ N+

H (d).

If d has no special in-neighbors or has a special in-neighbor of Type-I, then we are done

by Lemma 36. Therefore, we shall assume that d has no Type-I special in-neighbors but has

at least one Type-II special in-neighbor. Let x be any Type-II special in-neighbor of d. Then

there exists d′ ∈ V (T ) such that d 99K d′ → x � d in T . As d has no Type-I special in-

neighbors, by Lemma 41, we get that d is not prime, i.e. I(d) = Γ(Q) for some Q ∈ C.

Therefore, by Corollary 14(a), d′ ∈ Γ(Q). Now suppose that x /∈ Γ(Q). Then since d′ → x,

x → d and d, d′ ∈ Γ(Q), we have a contradiction to the fact that Γ(Q) is a module in G (by

Corollary 14(b)). Therefore, every special in-neighbor of d is contained in Γ(Q) = I(d); in other
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words, there are no special in-neighbors of d in N++
T (d) \ I(d). Then by Lemma 27, we have

that N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d). By Remark 8, we have |N+
G (d) ∩ I(d)| = |N++

G (d) ∩ I(d)|.

Combining our observations, we get

|N+
H (d)| = |N+

G (d)|+ 1 (as z ∈ N+
H (d))

= |N+
G (d) \ I(d)|+ |N+

G (d) ∩ I(d)|+ 1

≤ |N+
T (d) \ I(d)|+ |N+

G (d) ∩ I(d)|+ 1 (since N+
G (d) ⊆ N+

T (d))

≤ |N++
T (d) \ I(d)|+ |N++

G (d) ∩ I(d)| (as |N++
T (d) \ I(d)| > |N+

T (d) \ I(d)|)

≤ |N++
G (d) \ I(d)|+ |N++

G (d) ∩ I(d)| (as N++
T (d) \ I(d) ⊆ N++

G (d) \ I(d))

= |N++
G (d)|

≤ |N++
H (d)|

Therefore, d has a large second neighborhood in H.

We are now ready to give a formal proof of Theorem 37.

Proof of Theorem 37

Proof. Let T be the completion of G chosen as explained before: i.e. T is a safe completion of

G which has maximum value, where the value of a tournament is the number of forward arcs in

any median order of it. By Lemma 21, there exists a good median order L of T with respect

to I(G). If L is periodic, then we are done by Lemma 35. Therefore, we can assume that L is

stable. Then, by the definition of a stable median order, there exists an integer q ≥ 0 such that

Sedq+1
I(G)(L) = SedqI(G)(L). By Theorem 36, L′ = SedqI(G)(L) is a median order of T . Let d be the

feed vertex of L′. By Theorem 34, d has a large second neighborhood in G. As SedI(G)(L
′) = L′,

we have |N++
T (d) \ I(d)| > |N+

T (d) \ I(d)|. We can then conclude by Lemma 42 that d has a

large second neighborhood in H as well.

Corollary 17. Every oriented graph whose missing edges can be partitioned into a matching and

a star contains a vertex with a large second neighborhood.

Corollary 18. Every oriented graph whose missing edges form a matching and does not contain

a sink contains at least two vertices with large second neighborhoods.

Proof. Let H be an oriented graph whose missing edges form a matching and does not contain a

sink. By Corollary 16, we know that there exists a vertex z in H with a large second neighbor-

hood. As H − {z} is an oriented graph whose missing edges form a matching, by Theorem 37,
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we can infer that there exists a vertex z′ ∈ V (H) \ {z} that has a large second neighborhood in

H.

Figure 7.7: A tournament missing a matching with no sink and exactly two vertices with large
second neighborhoods (those vertices are shown in dark red).

The graph shown in Figure 7.7 is a tournament missing a matching without a sink that

contains exactly two vertices with large second neighborhoods. Therefore, Corollary 18 is tight.



Chapter 8

SSNC for Graphs with Constraints on

Out-degree

8.1 Introduction

In the study of the Seymour Second Neighborhood Conjecture so far, we can see that other

researchers have tried to attack special cases of the Second Neighborhood Conjecture without

using the median order approach. For example, Lladó [82] proved the conjecture in regular

oriented graphs with high connectivity. Kaneko and Locke [74] verified the conjecture for oriented

graphs with minimum out-degree at most 6. We state their result below as we use it later.

Theorem 38 ([74]). Every oriented graph with minimum out-degree less than 7 has a vertex

with a large second neighborhood.

Let G be an oriented graph with a minimum degree vertex, say v and having the property

that, the out-neighborhood of v, N+(v) is an independent set. Let w ∈ N+(v). Then as N+(v)

is independent, we have that N+(v) ∩ N+(w) = ∅. This implies that N+(w) ⊆ N++(v). Also

by the choice of v, we have that |N+(v)| ≤ |N+(w)| ≤ |N++(v)|. Therefore we can conclude

that v is a vertex with large second neighborhood. This proves that the conjecture is true for

bipartite graphs (in fact, it is true if the underlying undirected graph is triangle-free). It appears

difficult to prove the conjecture even for oriented graphs whose underlying undirected graph is

3-colorable. In this chapter, we show that the conjecture is true for any oriented graph G such

that V (G) is the disjoint union of two sets A and B where G[A] is 2-degenerate and G[B] is an

independent set.The proof relies on some counting arguments.

152
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8.2 Graphs with constrained out-degree

An undirected graph H is said to be 2-degenerate if every subgraph of H has a vertex of degree

at most two. We say that an oriented graph is 2-degenerate if its underlying undirected graph is

2-degenerate. Note that every subgraph of a 2-degenerate graph is also 2-degenerate.

Proposition 13. Let H = (V,E) be an oriented graph on n vertices which is 2-degenerate.

Then,

(a) If n ≥ 2 then |E(H)| ≤ 2n− 3.

(b) H has at least one vertex with out-degree at most 1.

Proof. (a) We prove this by induction on |V (H)| = n. It is trivially true in the base case

where n = 2. Assume that the statement is true for all 2-degenerate graphs with less than n

vertices. As H is 2-degenerate, it has a vertex of degree at most 2, say x. Now the subgraph

H − {x} of H is itself 2-degenerate and has only n − 1 vertices. Therefore, by the induction

hypothesis, |E(H − {x})| ≤ 2(n − 1) − 3. As x has at most 2 edges incident to it, we have

|E(H)| ≤ |E(H − {x})|+ 2 ≤ 2n− 3.

(b) Note that |E(H)| =
∑

u∈V (H) |N+(u)|. Therefore, if |N+(u)| ≥ 2 for every vertex u ∈

V (H), then we would get |E(H)| ≥ 2n, contradicting (a).

For the remainder of this section, we denote by G = (V,E) an oriented graph whose vertex

set has a partition (A,B) such that B is an independent set of G and G[A] is 2-degenerate. Refer

to Figure 8.1 for an example of such an oriented graph.

a1

a2

a3

a4

b1

b2

b3

b4

b5

Figure 8.1: An example

Let d be the minimum out-degree of G.

Lemma 43. If there is a vertex in B with out-degree d in D, then G has a vertex with large

second neighborhood.
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Proof. Suppose not. Let v ∈ B be a vertex such that |N+(v)| = d. We can assume that

d ≥ 2, as otherwise either D contains a sink or v can be easily verified to be a vertex with

large second neighborhood. As v ∈ B and B is an independent set, we have N+(v) ⊆ A. Let

N++(v) = X ∪ Y , where X ⊆ A, Y ⊆ B. Also, let |X| = x and |Y | = y. As v does not have

a large second neighborhood and |N+(v)| = d, we have x + y ≤ d − 1. Consider the subgraph

H = G[N+(v) ∪ X ∪ Y ]. As N+(v) ∪ X ⊆ A and G[A] is 2-degenerate, by Proposition 13(a),

the maximum number of edges in G[N+(v) ∪ X] is 2(d + x) − 3. Together with the at most

dy edges between N+(v) and Y , we get that the number of edges in H that have at least one

end-point in N+(v) is at most 2(d + x) + dy − 3. i.e., |{(p, q) ∈ E(H) : {p, q} ∩N+(v) 6= ∅}| ≤

2(d + x) + dy − 3. Also since each vertex u ∈ N+(v) has out-degree at least d, we have that

|{(p, q) ∈ E(H) : p ∈ N+(v)}| ≥ d2. Therefore we can conclude that,

2d+ 2x+ dy − 3 ≥ d2 (8.1)

Suppose that y ≤ d− 2. Then we have,

2d+ 2x+ dy − 3 = 2d+ 2(x+ y) + (d− 2)y − 3 (adding and subtracting 2y)

≤ 2d+ 2(d− 1) + (d− 2)2 − 3 (since x+ y ≤ d− 1 and y ≤ d− 2)

= d2 − 1 < d2

which is a contradiction to (8.1). Therefore, y ≥ d − 1. Since x + y ≤ d − 1, this implies

that x = 0 and y = d − 1. As N+(v) ⊆ A, we know that G[N+(v)] is 2-degenerate. Then by

Proposition 13(b), there exists a vertex w ∈ N+(v) whose out-degree in G[N+(v)] is at most 1.

In fact, the out-degree of w in G[N+(v)] is exactly 1, as otherwise N+(w) ⊆ Y , implying that

y ≥ |N+(w)| ≥ d, which contradicts the fact that y = d− 1. Let w′ be the unique out-neighbor

of w in G[N+(v)]. Note that since w ∈ N+(v), we have N+(w) ⊆ N+(v) ∪N++(v), or in other

words, N+(w) ⊆ N+(v)∪X ∪ Y . Then the fact that N+(w)∩N+(v) = {w′} and x = 0 implies

that N+(w) ⊆ {w′} ∪ Y . Since y = d − 1, this further implies that |N+(w)| = d; in particular,

N+(w) = Y ∪ {w′}. Again, as with w, it can be seen that N+(w′) ⊆ N+(v) ∪X ∪ Y . As x = 0

and w′ has at most d − 1 out-neighbors in N+(v), it is clear that w′ should have at least one

out-neighbor in Y , say z. Then z ∈ N+(w) ∩ N+(w′). As Y is an independent set, we have

N+(z) ⊆ A \ {w,w′}, implying that N+(z) is disjoint from N+(w) = Y ∪ {w′}. This means

that N+(z) ⊆ N++(w), which gives |N++(w)| ≥ |N+(z)| ≥ d = |N+(w)|. Hence w has a large

second neighborhood in G, which is a contradiction.
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Lemma 44. If the out-degree of every vertex in B is at least d + 1, then G has a vertex with

large second neighborhood.

Proof. Suppose not. Note that from Theorem 38, we have d > 6. Clearly, there is a vertex v ∈ A

such that |N+(v)| = d. Let N+(v) = X ∪ Y , where X ⊆ A and Y ⊆ B, and N++(v) = X ′ ∪ Y ′,

where X ′ ⊆ A and Y ′ ⊆ B. Also, let |X| = x, |Y | = y, |X ′| = x′ and |Y ′| = y′. Note that

x + y = d, and since v does not have a large second neighborhood, x′ + y′ ≤ d − 1. Since

each vertex of Y has at least d + 1 out-neighbors, all of which lie in X ∪ X ′, we further have

x+ x′ ≥ d+ 1.

Claim 1. x ≥ 3.

Assume to the contrary that x ≤ 2. Then since x′ ≤ d− 1 and x+ x′ ≥ d+ 1, it should be

the case that x = 2, x′ = d−1, y′ = 0 and x+x′ = d+1. This implies that N+(u) = X∪X ′

for all u ∈ Y . Then, neither vertex in X can have an out-neighbor in Y . Now if w ∈ X is a

vertex that has no out-neighbor in X (clearly, such a vertex exists as x = 2), the fact that

y′ = 0 implies that N+(w) ⊆ X ′. But x′ = d − 1, implying that |N+(w)| < d, which is a

contradiction. This proves the claim.

Now, consider the subgraph H = G[X ∪ Y ∪ X ′ ∪ Y ′]. As X ∪ X ′ ⊆ A, x + x′ ≥ 2 and

G[A] is 2-degenerate, by Proposition 13(a), the maximum number of edges in G[X ∪ X ′] is

2(x + x′) − 3. Together with the at most xy edges between X and Y , the at most xy′ edges

between X and Y ′ and the at most yx′ edges between Y and X ′, we get that the number of edges

in H with at least one end-point in N+(v) = X ∪ Y is at most 2(x + x′) − 3 + xy + xy′ + x′y,

i.e., |{(p, q) ∈ E(H) : {p, q} ∩N+(v) 6= ∅}| ≤ 2(x+ x′)− 3 + xy+ xy′ + x′y. There are at least d

edges going out from each vertex of X and at least d+ 1 edges going out from each vertex of Y .

Therefore, |{(p, q) ∈ E(H) : p ∈ X}| ≥ dx and |{(p, q) ∈ E(H) : p ∈ Y }| ≥ (d+ 1)y. Altogether,

we have |{(p, q) ∈ E(H) : p ∈ N+(v)}| ≥ dx + (d + 1)y = d2 + y (as x + y = d). Hence we can

conclude that,

2(x+ x′)− 3 + xy + xy′ + x′y ≥ d2 + y (8.2)

Claim 2. At most one of x and x′ can be greater than or equal to d
2 + 1.
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Suppose for the sake of contradiction that x = d
2 + r and x′ = d

2 + s, where r, s ≥ 1. As

x+ y = d and x′ + y′ ≤ d− 1 we have y = d
2 − r and y′ ≤ d

2 − s− 1. By substituting these

in the LHS of the equation (8.2) we have,

2(x+ x′)− 3 + xy + xy′ + x′y ≤ 2(d+ r + s)− 3 +

(
d

2
+ r

)(
d

2
− r
)

+

(
d

2
+ r

)(
d

2
− s− 1

)
+

(
d

2
+ s

)(
d

2
− r
)

≤ 3d2

4
+ 2d+ r − 3− r2 − d

2
(as r ≥ 1 we have rs ≥ s)

Combining the last inequality with (8.2), we get

3d2

4
+ 2d+ r − 3− r2 − d

2
≥ d2 + y

6d+ 4r ≥ d2 + 4y + 12 + 4r2

d2 + 4r > d2 + 4y + 12 + 4r2 (as d > 6)

4r > 4y + 12 + 4r2

This is a contradiction as r ≥ 1 and y ≥ 0. This proves the claim.

Now, consider the LHS of (8.2).

2(x+ x′)− 3 + xy + xy′ + x′y = 2x+ 2x′ − 3 + xy + y′(x+ y) + x′(x+ y)− xx′ − yy′

(adding and subtracting xx′ + yy′)

= 2x+ 2x′ − 3 + xy + d(x′ + y′)− xx′ − yy′

(as x+ y = d)

≤ 2x+ 2x′ − 3 + xy + d(d− 1)− xx′ − yy′ (8.3)

(as x′ + y′ ≤ d− 1)

Now, suppose that x′ ≥ y + 2. Then (8.4) implies,

2(x+ x′)− 3 + xy + xy′ + x′y ≤ 2x+ 2x′ − 3 + xy + d(d− 1)− x(y + 2)− yy′

= d2 + 2x′ − 3− d− yy′
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Combining this inequality with (8.2), we have

d2 + 2x′ − 3− d− yy′ ≥ d2 + y

2x′ − 3− d− yy′ ≥ y (8.4)

Therefore we get,

2x′ − 3− d− yy′ + 2x ≥ y + 2x

2(x+ x′)− 3− d− yy′ ≥ 2d− y (as x+ y = d)

As max{x, x′} = d and by Claim 2, min{x, x′} ≤ d
2 + 1, we have x+ x′ ≤ 3d

2 + 1.

Combining this with the above inequality, we have

3d− 1− d− yy′ ≥ 2d− y

y ≥ yy′ + 1

This implies that y′ = 0. Then (8.4) becomes

2x′ − 3− d ≥ y

2x′ ≥ x+ 2y + 3 (as d = x+ y)

x′ ≥ y + 3 (as x ≥ 3 by Claim 1)

Substituting this together with y′ = 0 in the RHS of (8.4) we get,

2(x+ x′)− 3 + xy + xy′ + x′y ≤ 2x+ 2x′ − 3 + xy + d(d− 1)− x(y + 3)

= d2 + 2x′ − 3− d− x

Combining this with (8.2), we have

d2 + 2x′ − 3− d− x ≥ d2 + y

x′ ≥ d+
3

2
(as x+ y = d)

which contradicts the fact that x′ + y′ ≤ d− 1. Therefore, we can assume that x′ ≤ y + 1.
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In fact, x′ = y + 1, as otherwise, x + x′ < x + y + 1 = d + 1, which is a contradiction to our

earlier observation that x+ x′ ≥ d+ 1. Now, substituting x′ = y+ 1 in the RHS of (8.4), we get

2(x+ x′)− 3 + xy + xy′ + x′y ≤ 2x+ 2(y + 1)− 3 + xy + d2 − d− x(y + 1)− yy′

= d2 + d− 1− x− yy′ (as x+ y = d)

Now, combining this with (8.2), we have

d2 + d− 1− x− yy′ ≥ d2 + y

yy′ + 1 ≤ 0 (as x+ y = d)

which is a contradiction. This proves the lemma.

Theorem 39. Let G = (V,E) be an oriented graph whose vertex set V (G) has a partition (A,B),

such that B is an independent set and G[A] is 2-degenerate. Then G has a vertex with a large

second neighborhood.

Proof. The proof is immediate from Lemma 43 and Lemma 44.

8.3 Some related conjectures

The question of whether there exists two vertices with large second neighborhoods in any oriented

graph without a sink seems to be open.

Conjecture 2. Any oriented graph without a sink contains at least two vertices with large second

neighborhoods.

Clearly, Conjecture 2 implies Conjecture 1 (the Seymour Second Neighborhood Conjecture).

We propose the following conjecture, which though apparently weaker at first sight, can be shown

to be equivalent to Conjecture 2.

Conjecture 3. If an oriented graph contains exactly one vertex with a large second neighborhood,

then that vertex is a sink.

Proposition 14. Conjecture 3 implies Conjecture 1.

Proof. Suppose that Conjecture 3 is true but Conjecture 1 is not. Let G be a minimal coun-

terexample to Conjecture 1: i.e., G is an oriented graph with minimum number of vertices and
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edges in which no vertex has a large second neighborhood. In particular, G cannot have a sink.

Let (u, v) ∈ E(G). Consider the graph G′ obtained by removing the edge (u, v) from G. As

G is a minimal counterexample to Conjecture 1, we know that G′ contains at least one vertex

with a large second neighborhood. We claim that G′ contains at least two vertices with large

second neighborhoods. Suppose not. Then by Conjecture 3, G′ has a sink in it. As there is

no sink in G and every vertex other than u has the same out-neighborhood in both G and G′,

this means that u must be a sink in G′. Then, N+
G (u) = {v} and N+

G (v) ⊆ N++
G (u). Since

v is not a sink in G, we also have that |N+
G (v)| ≥ 1, which gives us |N++

G (u)| ≥ 1. There-

fore, u has a large second neighborhood in G, which is a contradiction. This proves that G′

contains at least two vertices with large second neighborhoods. Then there exists a vertex

w 6= u in G′ such that |N+
G′(w)| ≤ |N++

G′ (w)|. As w 6= u, by the definition of G′, we have that

N+
G (w) = N+

G′(w) and N++
G′ (w) ⊆ N++

G (w). Combining this with the previous observation, we

get |N+
G (w)| ≤ |N++

G (w)|, implying that w has a large second neighborhood in G, which is a

contradiction.

By the above proposition, it can be easily seen that Conjecture 3 implies Conjecture 2 and

therefore they are equivalent. We do not know if these conjectures are equivalent to Conjecture 1

or if they hold for the class of graphs studied in this chapter.



Chapter 9

Conclusion

9.1 A brief summary of the work

In this work, we explored a few graph theoretical problems using the approach of some special

vertex orderings. The major problems that we encountered in this thesis and the vertex ordering

techniques that we adapted for solving those problems are briefly summarized as follows:

(a) The threshold cover problem – our results majorly relied on the lexicographic method

introduced by Hell and Huang [68]. We also make use of a property of Lex-BFS orderings.

(b) On the kernel and related problems in interval digraphs – this work includes a vertex

ordering characterization (using some forbidden patterns) for reflexive interval digraphs,

that can be used to solve some of the problems that we deal in this part. Some other

problems that we studied here for interval bigraphs and some subclasses of interval digraphs

also make use of the vertex orderings based on the end-points of the intervals representing

vertices.

(c) Extending the Seymour Second Neighborhood Conjecture for some special graph classes –

here we make use of the notions such as median order of tournaments and the sedimentation

of median order.

9.2 Some open problems

Here we will list some of the interesting open problems related to the work done in this thesis.

1. As we have seen in Chapter 2, Chvátal and Hammer first asked the question of whether

there is any graph G such that th(G) > χ(G∗), where th(G) denotes the size of a minimum

threshold cover of G. Cozzens and Leibowitz [27] showed that for every k ≥ 4, there exists

160
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a graph G such that χ(G∗) = k but th(G) > k. Raschle and Simon [102] settled the

conjecture for the case k = 2, by proving that for any graph G such that χ(G∗) = 2, we

have th(G) = χ(G∗). But the status of the above question for the case k = 3 is still open.

2. In Chapter 3, we defined the 2-chain partition problem – that asks for any input bipartite

graph G, whether there exist two chain graphsH1 andH2 such that E(G) = E(H1)∪E(H2)

and E(H1) ∩ E(H2) = ∅. We have seen that the 2-chain partition problem is polynomial-

time solvable as it can be reduced to the recognition problem of interval bigraphs which

can be solved in polynomial time [95]. It would be interesting to explore the complexity of

the k-chain partition problem for k > 2.

3. Using a close relationship between interval digraphs and interval bigraphs, Müller [95]

gave a polynomial time algorithm that can be used to recognize both the classes interval

digraphs and interval bigraphs (refer to Chapter 3 for details). As this algorithm takes

O(nm6(n + m) log n) time, it is a long standing open problem in the literature to find a

simpler and efficient algorithm for recognizing the classes of interval bigraphs and interval

digraphs. The question of a forbidden structure characterization for these classes are also

open.

4. The recognition algorithm for interval digraphs given by Müller [95] can be easily adapted

to recognize reflexive interval digraphs (as in addition, it is only required to check whether

each vertex has a loop). We have witnessed in Chapter 4 how the reflexivity of interval

digraphs has a significant role in allowing efficient algorithms for all the computational

problems that we studied for interval digraphs. Therefore it is interesting to see whether

there exist a simpler and more efficient algorithm for the recognition problem for the class

of reflexive interval digraphs.

5. Many of the subclasses of interval digraphs, like adjusted interval digraphs [114], chrono-

logical interval digraphs [31], interval catch digraphs [99], and interval point digraphs [100]

have simpler and much more efficient recognition algorithms. But the complexity status of

the recognition problem for the class of interval nest digraphs is still open.

6. In Chapter 4, we in fact solved the problems Independent Set, Kernel, Min-Kernel

and Max-Kernel for a super class of reflexive interval digraphs called DUF-digraphs. But

we could solve the Absorbing-Set problem only for reflexive interval digraphs. Therefore

the complexity status of the Absorbing-Set problem for the class of DUF-digraphs remains
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open.

7. In Chapter 6, we solved the Weak Independent-Set (resp. Feedback Vertex-Set)

problem for some subclasses of interval digraphs. But the complexities of the Weak

Independent-Set (resp. Feedback Vertex-Set) problem for the class of reflexive

interval digraphs and more generally for the class of interval digraphs remain open.

8. In Chapter 7 and Chapter 8 we studied the Seymour Second Neighborhood Conjecture

(SSNC) for some special graph classes. Therefore, an obvious problem that we can think

here is extending SSNC for other classes of oriented graphs. As it is easy to verify SSNC to

be true for the oriented graphs whose underlying graph is bipartite, it would be interesting

to think about SSNC for the class of oriented graphs whose underlying graph is 3-colorable.

9. As a strengthening of the result of Havet and Thomasse [65] that “any tournament without

a sink has at least two vertices with large second neighborhood”, in Chapter 7 we could

prove that “any tournament whose missing edges form a matching and has no sink has at

least two vertices with large second neighborhood”. The question of whether there exists

two vertices with large second neighborhoods in any oriented graph without a sink seems to

be open.

In regard to this, we propose the following two conjectures.

• Conjecture 1: Any oriented graph without a sink contains at least two vertices with

large second neighborhoods.

• Conjecture 2: If an oriented graph contains exactly one vertex with a large second

neighborhood, then that vertex is a sink.

Note that clearly, Conjecture 1 implies SSNC and we have proved in Chapter 8 that Con-

jecture 2 also implies SSNC. It is also shown that Conjecture 1 and Conjecture 2 are

equivalent.
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