
Secure Off-chain Transactions in Blockchain-based
Payment Channel Networks

A thesis submitted to Indian Statistical Institute
in partial fulfillment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

Author: Subhra Mazumdar

under the guidance of

Dr. Sushmita Ruj
University of New South Wales, Sydney

&
Prof. Bimal Kumar Roy

Indian Statistical Institute Kolkata

Cryptology and Security Unit

Indian Statistical Institute

203 Barrackpore Trunk Road

Kolkata, West Bengal

India - 700 108

September 2022

Dedicated to the Cypherpunks

Declaration of Authorship

I, Subhra Mazumdar, a student of Cryptology and Security Research Unit, of the Ph.D. pro-
gram of Indian Statistical Institute, Kolkata, hereby declare that the investigations presented in this
thesis are based on my works and, to the best of my knowledge, the materials contained in this
thesis have not previously been published or written by any other person, nor it has been submitted
as a whole or as a part for any degree/diploma or any other academic award anywhere before.

Subhra Mazumdar
Cryptology and Security Research Unit,
Indian Statistical Institute, Kolkata 203 Barrackpore Trunk Road,
Kolkata, West Bengal, India - 700108

i

28.09.2022

List of Pubications/Manuscript

1. Subhra Mazumdar, Sushmita Ruj. Book Chapter - Layer-1 Scaling solutions for Blockchains
in “Blockchains - A Handbook on Fundamentals, Platforms and Applications”. Editors:
Sushmita Ruj, Salil Kanhere, Mauro Conti. Springer. To Appear.

2. Subhra Mazumdar, Sushmita Ruj, Ram Govind Singh, and Arindam Pal. “HushRelay: A
privacy-preserving, efficient, and scalable routing algorithm for off-chain payments.” In
2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1-5.
IEEE, 2020. DOI: 10.1109/ICBC48266.2020.9169405

3. Subhra Mazumdar, and Sushmita Ruj. “CryptoMaze: Privacy-Preserving Splitting of Off-
Chain Payments.” In IEEE Transactions on Dependable and Secure Computing. Early Ac-
ces. Date of Publication: 07 February 2022, DOI: 10.1109/TDSC.2022.3148476

4. Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. “Time is Money: Countering Grief-
ing Attack in Lightning Network.” In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 1036-1043. IEEE,
2020. DOI: 10.1109/TrustCom50675.2020.00138

5. Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. “Griefing-penalty: Disincentivizing
Griefing Attack in Lightning Network.” Computer Communications. Manuscript Submitted.

6. Subhra Mazumdar, Prabal Banerjee, Abhinandan Sinha, Sushmita Ruj and Bimal Kumar
Roy. “Strategic Analysis of Griefing Attack in Lightning Network.” IEEE Transactions on
Dependable and Secure Computing. Manuscript Submitted.

iii

 10.1109/ICBC48266.2020.9169405
10.1109/TDSC.2022.3148476
10.1109/TrustCom50675.2020.00138
https://www.journals.elsevier.com/computer-communications
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858

Acknowledgements

I think words are not enough to express gratitude and acknowledge the support I have received
throughout this journey. For me, this is not just a degree, it was an enriching experience and as the
saying goes “Life is the best teacher!”.

I would to take this opportunity to thank my supervisor Dr. Sushmita Ruj for her continuous
support, advice, encouragement, and motivation. Her guidance and knowledge helped me in pur-
suing good research and writing this thesis. It is a privilege to have a supervisor who has constantly
supported me, both academically and personally. I would like to express my deep gratitude to my
co-supervisor, Prof. Bimal Kumar Roy for his constant support and encouragement throughout my
Ph.D. years.

I wish to offer my gratitude to my course teachers, Prof. Palash Sarkar, Prof. Rana Barua,
Prof. Sushmita Sur Kolay, Prof. Mandar Mitra, Dr. Sourav Sengupta, Dr. Pinakpani Pal, Prof.
Sandip Das, Prof. Mridul Nandi, Dr. Debrup Chakraborty, Dr. Arijit Bishnu, Dr. Sushmita Ruj,
Prof. Sasthi Charan Ghosh, Prof. Nabanita Das, Dr. Anisur Rahman Molla, and Prof. Ansuman
Banerjee. I am really fortunate to have had such mentors during my M.Tech and Ph.D. These
courses will always remain precious in my academic journey. I would be forever indebted to Dr.
Anisur Rahman Molla for his technical guidance and advice that helped me with my research. I
am obliged to Dr. Sarbani Palit for the kind help I got from her on several occasions.

My Ph.D. thesis would have remained incomplete had I not received generous support from
my collaborators. I owe a deep sense of gratitude to Dr. Arindam Pal. I was lucky to have him
as PI at TCS Innovations Labs Kolkata. He has taught me the methodology to carry out research
work and present it as clearly as possible. I convey my gratitude to Prabal Banerjee, Ram Govind
Singh, and Dr. Abhinandan Sinha. I have bugged them at odd hours with questions but they were
really kind enough to provide invaluable inputs and have discussions whenever required

I was fortunate enough to work under the supervision of Prof. Anupam Chattopadhyay at NTU
Singapore as a part of the M.Tech Summer Internship. It was my first hands-on experience on how
to work on a Blockchain project. I enjoyed all the great moments with Mayank Raikwar, Rishav
Chatterjee, and Dr. Sourav Sengupta, one of the excellent team from whom I have learned a lot.
My sincere thanks go to Dr. Binanda Sengupta, Dr. Laltu Sardar, Dr. Aparajita Khan, Nishant
Dhanaji Nikam, Manish Kumar, Debasmita Chakraborty, and Debendranath Das for discussing
research ideas and guiding me whenever I faced any problem. I am grateful to Dr. Pedro Moreno
Sanchez for providing an opportunity to work with him during my Ph.D. He is an excellent mentor
and I have learned a lot from him. I thank Dr. Sandip Chakrborty for his reviewing my paper and
providing his invaluable feedback.

Life is incomplete without friends, especially the crazy ones. Lucky to have Debasmita,

v

Sreyosi, Akanksha, Manish, Mohammad, Manabendra, and Snehal di as my constant support team.
Thanks for those virtual meetups, endless discussion on any topic, and cheering me whenever I felt
disappointed. Special thanks go to all of my friends and seniors in ISI Kolkata. Thanks to San-
jana, Subhadeep da, Ajay, Debleena, Riya, Aparajita di, Anindita di, Sebati di, Shilpa, Prabal,
Nishant, Debendra, Laltu da, Binanda da, Animesh, Jyotirmoy, Nilanjan da, Avijit da, Ashwin da,
Avishek da, Samir, Nayana, Pritam, Mostaf da, Diptendu da, Abhinandan da, Soumya da, Partha
da, Gopinath da, Suprita di, Rakesh, Sourav, Bibhas, Shibam, Panchalika, Veeresh, and many more
who helped me at different times in different ways. They made my stay in ISI Kolkata both in-
spiring and enjoyable. A healthy mind resides in a healthy body, and I could not have aced this
journey without the support of the ladies’ hostel fitness instructor Mrs. Bijaya Saha.

I express my heartfelt gratitude to the non-academic staff of ASU, CSRU, the accounts section,
and the Dean’s office, who have assisted me with several logistics and official work.

I wish to thank my teachers and friends from my alma maters, Steel Carmel School Durgapur,
and National Institute of Technology Durgapur. This list would be incomplete without thanking
Tanushree, Poulomi, Ipsita, Ria, Purnata, Nishka, Adil, and Keshaw. I have literally tortured them
with my incessant complaints and how they kept on encouraging me and acted as an anchor through
the tough days.

Last but not the least, I will remain indebted to my family for their continuous support, love,
and help. Without their encouragement, inspiration, and motivation, I would not have got the
mental strength to pursue a career in academics amidst the societal stereotypes and prejudices.

Date: 28th September, 2022 Subhra Mazumdar

vi

Abstract

Cryptocurrencies enable users to execute a financial transaction without relying on any third party.
The use of Blockchain technology guarantees the security and immutability of transactions. De-
spite these features, blockchain-based financial transactions fail to compete with conventional pay-
ment systems like Visa, and PayPal, in terms of scalability. Layer 2 protocols built on top of
blockchain solve the scaling difficulties that are faced by the major cryptocurrency networks. Pay-
ment Channel Network or PCN is one of the most widely deployed layer 2 protocols. Users are
allowed to execute off-chain payments, leading to high throughput. PCN relies on the underlying
blockchain for security. After studying the literature, we observed that routing and payment in
PCN are the two most challenging tasks. The network is susceptible to attacks where malicious
players can intentionally stall payments and eliminate their competitors from the network.

In this thesis, we propose an efficient privacy-preserving distributed routing algorithm HushRe-
lay. Experimental analysis shows that our proposed routing algorithm has a higher success ratio
and lower execution time compared to the state-of-the-art. Given a set of routes, we propose an
atomic and privacy-preserving multi-path payment protocol, CryptoMaze. No honest intermediary
loses funds in the process, ensuring balance security. We observe that CryptoMaze is quite effi-
cient and the communication overhead is within feasible bounds. We discuss the griefing attack,
a major vulnerability in Bitcoin’s PCN, and propose an efficient countermeasure for the attack,
termed Griefing-Penalty. The penalty charged compensates parties who incurred loss by lock-
ing funds. We propose a new payment protocol HTLC-GP or Hashed Timelock Contract with
Griefing-Penalty that demonstrates the utility of the countermeasure. Finally, we have analyzed
griefing attacks in the network from a game-theoretic point of view and observed that HTLC-GP
is weakly effective in disincentivizing the attacker in certain conditions. To further increase the
cost of attack, we introduce the concept of guaranteed minimum compensation and integrate it into
HTLC-GP. This modified payment protocol, HTLC-GPζ , considers the participants to act ratio-
nally. By experimenting on several real instances of PCN, we observed that HTLC-GPζ is better
than HTLC-GP to counter griefing attacks.

viii

Contents

1 Introduction 1

1.1 Factors limiting scalability in Blockchain . 1

1.1.1 Scalability Trilemma . 2

1.2 Scaling Solutions in Blockchain . 4

1.2.1 Routing in Payment Channel Network . 5

1.2.2 Multi-Path Payments in PCN . 8

1.2.3 Problem of Griefing Attack . 10

1.3 Our Contribution and Organization of the Thesis 10

1.4 List of Manuscripts and Publications . 12

2 Preliminaries and Background 13

2.1 Notations . 13

2.2 Probabilistic Polynomial-time (PPT) algorithm 13

2.3 Negligible Function . 13

2.4 Cryptographic Primitives . 14

2.4.1 Hash Function . 14

2.4.2 Elliptic Curve Groups . 15

2.4.3 Elliptic Curve Discrete Logarithm Problem 15

2.4.4 Elliptic Curve Digital Signature Algorithm (ECDSA) 16

2.4.5 Homomorphic One-Way Function . 16

2.5 Universal Composability Model . 16

2.6 Game Theory . 18

2.6.1 Dynamic Games of Incomplete Information or Sequential Bayesian Games 19

2.7 Background . 20

2.7.1 Bitcoin . 20

2.7.2 Blockchain . 21

2.7.3 Off-Chain Scaling Solutions . 22

ix

3 Literature Survey 31

3.1 Routing Algorithms in Payment Channel Network 31

3.2 Payment Protocol in Payment Channel Network 37

3.2.1 For single-path payment . 37

3.2.2 For multi-path payment . 42

3.3 Griefing Attack in Lightning Network . 45

3.3.1 Attacking Strategy . 45

3.3.2 Countermeasure for Griefing Attack . 47

4 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments 51

4.1 Our Contributions . 51

4.1.1 Organization . 52

4.2 Background . 52

4.2.1 Payment Channel Network . 52

4.2.2 Payment Flow problem . 53

4.3 Problem Statement . 54

4.4 Our Proposed Construction . 54

4.4.1 Generic Algorithm . 55

4.4.2 Proof of correctness of the HushRelay . 61

4.5 Privacy Analysis . 62

4.6 Performance Analysis . 63

4.6.1 Experimental Setup . 63

4.6.2 Evaluation . 63

4.6.3 Discussion . 65

5 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments 67

5.1 Contributions . 69

5.1.1 Organization . 70

5.2 Background . 70

5.2.1 Payment Channel Network (PCN) . 71

x

5.2.2 Off-chain Contracts . 71

5.2.3 Random Oracle Model . 71

5.3 Proposed construction . 72

5.3.1 System model . 72

5.3.2 Security and Privacy goals . 73

5.3.3 Mapping a set of paths into a set of edges 74

5.3.4 Formal definition of the protocol . 75

5.3.5 Use of scriptless lock in Cryptomaze . 78

5.4 Security definition of CryptoMaze . 81

5.4.1 Attacker model & Assumptions . 81

5.4.2 Ideal World Functionality . 81

5.4.3 Universal Composability (UC) Security 88

5.4.4 Security analysis . 88

5.5 Experimental analysis . 93

5.5.1 Evaluation methodology . 94

5.5.2 Observations . 95

5.5.3 Discussion . 97

6 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network 101

6.1 Our Goal . 103

6.2 Our Contributions . 104

6.2.1 Organization . 105

6.3 Background . 105

6.3.1 Payment Channel Network . 105

6.4 Key Idea of Griefing-Penalty . 106

6.4.1 A Simple Protocol for countering Griefing Attack: HTLC1.0 106

6.4.2 Problem of Reverse-Griefing in HTLC1.0 107

6.5 Our Proposed Protocol using Griefing Penalty . 108

6.5.1 Two party HTLC-GP . 108

xi

6.6 Multihop Payment using HTLC-GP . 112

6.6.1 System Model . 112

6.6.2 Objective . 112

6.6.3 Adversarial Model & Assumptions . 113

6.6.4 Our proposed Construction . 113

6.7 Security Analysis . 119

6.8 Performance Evaluation . 123

6.8.1 Analysis of Profit earned by eliminating a Competitor from the Network . . 123

6.8.2 Investment made by attacker for stalling the network 129

6.9 Rate of Griefing-Penalty for Practical Purpose . 130

6.9.1 From the perspective of an honest payer and honest payee 130

6.10 Discussion . 132

7 Strategic Analysis of Griefing Attack in Lightning Network 133

7.1 Contributions . 133

7.1.1 Organization . 134

7.2 Related Works . 134

7.3 Analysis of Griefing Attack in HTLC . 136

7.3.1 System Model . 136

7.3.2 Attacker Model & Assumptions . 138

7.3.3 Game Model . 138

7.3.4 Game Analysis . 143

7.4 Countermeasure for the griefing attack . 145

7.4.1 Hashed Timelock Contract with Griefing Penalty or HTLC-GP 145

7.5 Analysis of Griefing Attack in HTLC-GP . 147

7.5.1 System Model . 147

7.5.2 Attacker Model for HTLC-GP . 148

7.5.3 Game Model . 148

7.5.4 Game Analysis . 150

xii

7.5.5 Gap in Security Analysis of HTLC-GP 151

7.5.6 Effectiveness of HTLC-GP . 152

7.6 Guaranteed Minimum Compensation for further disincentivizing Griefing Attack . 154

7.6.1 Adjusting Maximum Path Length . 155

7.6.2 Estimating Rate of Griefing-Penalty γζ,k 155

7.7 Modifying HTLC-GP to HTLC-GPζ . 156

7.7.1 Protocol Description . 156

7.7.2 Effectiveness of HTLC-GPζ . 161

7.8 Experimental Analysis . 162

7.8.1 Setup . 162

7.8.2 Evaluation Methodology . 162

7.8.3 Observations . 167

7.8.4 Discussion of Results . 169

8 Conclusion and Future Work 173

xiii

xiv

List of Figures

1-1 An instance of off-chain payment between Alice and Bob 6

1-2 S knows the topology but lacks information of the residual balance of channels not
directly connected to it. 6

1-3 Complete information of residual balance in the network based on local informa-
tion possessed by each node . 7

1-4 Forwarding payment using HTLC across paths SA → AC → CR and SB →
BD → DR . 8

1-5 Griefing Attack in the path SA→ AC → CR . 10

2-1 Setting up Bidirectional channel of 0.01 BTC between Alice and Bob 23

2-2 Setup Phase of HTLC . 26

2-3 Routing payment from Alice to Carol using HTLC 27

2-4 Settling of Payment on-chain . 28

2-5 Rerouting payment from Alice to Dave via Alice → Bob → Mathew → Dave

using condition H . If Charlie establishes HTLC with Dave, then the same must be
refunded via path Dave→ Eric→ Bob→ Alice using condition Y 28

2-6 Wormhole Attack, Bob and Eve steal Charlie’s fee 29

2-7 Griefing Attack when R ignores HTLC request . 30

2-8 Funds locked in the path for 1 day . 30

3-1 Mutli-Hop HTLC construction for payment from Alice to Dave 38

3-2 Payment from Alice to Eve and from Mathew to Charlie enter a deadlock 39

3-3 Using AMHL for secure payment from P0 to Pn 40

3-4 Atomic MultiPath Payment from Alice to Bob . 43

3-5 Construction of self virtual channel for mounting griefing attack 49

4–5 Execution of HushRelay . 60

4–4 Comparative Analysis of HushRelay and SpeedyMurmur for simulated instances . 64

5-1 Paths p1 and p2 shares channels MA and DN . 69

xv

5-2 CryptoMaze executed on the network for routing payment from M to N 74

5-3 Problem of linkability between partial payments 76

5-4 Interface of ideal world functionality FECDSA−Lock 80

5-5 Execution of F with dummy parties U0, Ur representing payer and payee, Ui,Uj
representing intermediaries routing payment . 83

5-6 Ideal World Functionality for payment in PCN . 89

5-6 Ideal World Functionality for payment in PCN (Continued) 90

5-7 Submodules used in F . 91

5-8 LN snapshot March 2020, Figure on the left is (a) TTP vs transaction value and on
the right (b) Communication overhead vs transaction value 93

5-9 LN snapshot May 2021, Figure on the left is (a) TTP vs transaction value and on
the right (b) Communication overhead vs transaction value 94

5-10 Simulated Network, Figure on the left is (a) TTP vs number of nodes and on the
right (b) Communication overhead vs number of nodes 94

6-1 Bob mounts Griefing Attack . 101

6-2 Eliminating a competitor . 103

6-3 Bob is penalized . 103

6-4 Formation of contract in HTLC1.0 . 106

6-5 Reverse-Griefing attack by Charlie . 107

6-6 Payment from Alice to Bob using HTLC-GP . 109

6-7 Script Structure: Offered Cancellation Contract 110

6-8 Script Structure: Offered Payment Contract . 111

6-9 Snapshot of the network on 19thMay, 2020 . 124

6-10 When Attacker uses new channels for mounting the attack 127

6-11 When Attacker uses existing channels for mounting the attack 128

6-12 Investment made by attacker (HTLC vs HTLC-GP) 130

6-13 Plot of ratio of amount locked by the party and the total capital C, for both sender
and receiver . 131

7-1 Extensive form of game ΓHTLC . 140

xvi

7-2 Formation of contract in HTLC-CP . 146

7-3 Extensive form of the game ΓHTLC−GP . 149

7-4 Simulation of ΓHTLC . 165

7-5 Simulation of ΓHTLC−GP . 166

7-6 γ is varied between 10−3 to 10−7 . 168

7-7 Capacity locked vs Adversary’s Budget . 169

xvii

xviii

List of Tables

2.1 Notations used . 14

4.1 SpeedyMurmur vs HushRelay - Performance Analysis on Real Instances 62

5.1 Notations used in the chapter . 70

5.2 Comparative Analysis of CryptoMaze with existing Multi-path payment protocols
in terms of atomicity (At), wormhole attack (WA), Linkability (Li) and multiple
off-chain contracts on shared edges (M-OC) . 98

7.1 Notations used in this chapter . 135

7.2 Capacity Locked when k and ζ is varied . 170

Chapter 1

Introduction

Cryptocurrencies are gaining prominence as an alternative method of payment. Blockchain, a de-
centralized public ledger, forms the backbone of such currencies. The identity of transacting parties
remains hidden. The records stored in this distributed ledger are immutable and can be verified by
anyone in the network. When a new block is added to the network, it references the previous block
via its hash. Secure linking of blocks ensures that no one can modify the transactions recorded in
the blockchain. Certain participants, termed as miners, compete to create new blocks, where each
block constitutes a set of transactions. Once a block is created, the rest of the miners check the
correctness of the block. If the block is valid then the next block is mined on top of this block. The
miner who had mined the valid block gets rewarded. This entire process is termed as Nakamoto
Consensus [103]. Anyone can join the network and start mining in a permissionless blockchain like
Bitcoin and Ethereum. A new peer gets connected to the network via the gossip protocol. In this
protocol, a node propagates the information received to its neighbors and the process continues.
A Sybil-resistant paradigm termed as proof-of-work [103, 106, 33] is used where participants in a
permissionless blockchain can add blocks to the blockchain and earn rewards. Miner’s influence
in the network is bounded by the investment made in terms of computational resources, hence a
single miner cannot create an unlimited number of fake participants. The drawback of proof-of-
work is that it is computation-intensive and impedes scalability [46], [113]. Lack of scalability
hinders widespread adoption of Blockchain-based payment solutions unlike conventional methods
of electronic payments like Visa, PayPal [137]. In Bitcoin, every transaction needs to be verified
for signature and correctness of the format before it gets mined. Many blocks end up in the queue,
facing considerable waiting time before it gets verified due to increasing network size. Ethereum
[140] suffers from scalability issues due to constraints on the gas limit for processing transactions.

1.1 Factors limiting scalability in Blockchain

A limit on the block size was introduced to allow the formation of a decentralized peer-to-peer
network. Each node has low bandwidth and limited computational powers. The limit on the block
size has put a constraint on the number of transactions being processed. It is difficult to ensure
that all the nodes will be in sync in terms of the latest view of the blockchain in a decentralized
network. Once a valid block gets added to the blockchain, the next set of blocks is mined on top
of it to ensure finality. We discuss certain factors which decrease the throughput [74]:

1

2 Introduction

• Latency. It is defined as the time taken to confirm that a transaction has been included in
the Blockchain. For Bitcoin, the average time to create and secure a block in the chain takes
around 10 minutes and for Ethereum, it takes around 12.5 seconds.

• Block Size. This is the total size of the transaction that can enter the block. The limit of the
block size is around 4 MB for Bitcoin.

Both these factors, lead to a decrease in the number of transactions processed in a unit of time.
Other factors responsible are Bootstrap time and Cost per Confirmed Transaction [46]. The time
taken for a new node to download the entire blockchain to validate the current system state is the
Bootstrap time. The time factor is generally linear in the size of the chain. The cost required
to confirm each transaction in Blockchain involves mining cost - resource (in terms of hardware,
electricity) expended by miners in generating PoW for each block, validation cost - computation
needed to check the correctness of input, output, and other cryptographic verification like signature
verification, etc., bandwidth needed for transmission and receipt of blocks and the storage cost
involved in downloading the entire blockchain history as well as a set of unspent transactions.

We discuss how relaxing the limit on the block size or latency for achieving scalability is not a
solution and state the drawbacks:

• Increasing Block Size Limit: Greater the block size, the more the number of transactions
processed. But this means more bandwidth and storage are required for processing each
block. Nodes with greater processing power will be able to scale up the transactions leading
to centralization in the network. Larger blocks propagate slowly through the network leading
to an increase in the number of orphan blocks, and an increased probability of a successful
double-spend [9].

• Decreasing Latency: The faster the blocks are produced, the higher the chance that the node
produces a stale block. Given the block confirmation time in Bitcoin is 600 sec, if every 12
sec a new block is produced, then 12/600 or 0.02 stale blocks are produced per valid block.
If the time is reduced to 60 sec, then 12/60 or 0.2 stale blocks are produced per valid block.
This impacts the finality of transactions, may lead to soft forks, and reduces the security of
the network [66], [41].

1.1.1 Scalability Trilemma

It is hard to achieve Scalability, Security and Decentralization at the same time in a distributed
network. Improving one of the factors might lead to comprising at least one of the other two

Factors limiting scalability in Blockchain 3

factors [115], [18]. For example, Bitcoin is decentralized and uses a secure public blockchain,
but cannot process the order of hundreds of thousands of transactions per second. Permissioned
blockchains like Hyperledger’s Fabric have high transactional throughput but are centralized in the
sense that only a few nodes are involved in achieving consensus in the network. We discuss each
component of the trilemma.

Decentralization

A decentralized system means the system is controlled by multiple owners, and one does not
overpower the other. More decentralized a system, the more secure it is. Ethereum and Bitcoin
uses PoW [33], [106] for mining new blocks. This consumes a lot of energy and reduces speed
and efficiency. Additionally, there is no central moderator to resolve the dispute.

Security

This property allows blockchain to be resilient to external attacks as well as internal disruption.
As seen previously, the more decentralized a system, the less risk the system is susceptible to
centralized attacks. For security, the blockchain network relies on a consensus mechanism like
PoW where miners are required to solve the complex hash puzzle to include blocks. Consequently,
this reduces throughput and increases network latency, losing out on speed and efficiency offered
by centralized networks in processing transactions.

Scalability

The higher the scalability of the system, the greater is its capacity. In terms of blockchain, scalabil-
ity ensures that a large number of the transaction gets processed. However, scalability is ensured
at the cost of security. Ethereum intends to opt for an alternate mining mechanism like Proof of
Stake [84]. However, it compromises on decentralization. Further, if the difficulty level of puz-
zles used in Proof-of-Work or PoW [33] is reduced for a faster validation process then this would
compromise the security aspect.

Increasing the throughput is a challenging task. Any modification made to the underlying
blockchain or any new protocol used for enhancing scalability must not introduce vulnerability
in the system or compromise privacy. We discuss some of the scaling solutions that are adopted
widely by the blockchain community in the next section.

4 Introduction

1.2 Scaling Solutions in Blockchain

We categorize the solutions developed as on-chain scaling and off-chain scaling:

• On-Chain Solutions: On-chain refers to the Blockchain layer or Layer 1. Such solutions
aim at making changes in the underlying blockchain for achieving scalability. This involves
changing the rules of the protocol or increasing the amount of data in each block, or reducing
the latency for increasing overall network throughput. An increase in block size will lead to
the processing of more transactions. However, this would require more storage capacity of a
full node to store the entire history, as well as centralization [9]. Later, SegWit or Segregated
Witness was suggested. Since the signature of the transaction data occupied around 65% of
the block storage, SegWit proposed segregating the signature script part of each transaction
from a block and storing them into an extended block or witness [124]. This allowed packing
more transactions into a single block.

As stated previously, Proof of Work consumes too much computation resource as well as hin-
ders scalability. Proof of Stake [84], [85] holds promise as it involves participants depositing
a certain amount of cryptocurrency as a commitment to behaving honestly. Participants who
have a certain stake in the network can validate a new block. If any validator produces an
invalid block, the stakes deposited in the network get slashed. Other forms of consensus are
proof of burn - the miner must ”burn” tokens i.e., they must be sent to an address so that
these tokens are no longer accessible, to gain eligibility for mining a block. As more and
more miners want to mine, they need to consistently burn more and more tokens to stay com-
petitive [3]. In proof of capacity, miners dedicate available space of their storage device to
store the list of possible solutions before the mining commences. If a solution matches with
the hash value in the block, then it gets the mining reward [20]. Proof of elapsed time is used
primarily in permissioned blockchain. Each participant node in the network generates a ran-
dom waiting time and goes to sleep for the duration [19]. The node with the shortest waiting
time wakes up and commits a new block to the blockchain. A new consensus protocol Prism
[31, 142] achieves a throughput of over 70,000 transactions at low latency.

Sharding is gaining a lot of importance in recent years. In this solution, the blockchain is
divided into many units or shards. The workload of the master blockchain gets distributed in
each unit, and they act independently [91]. Parallel computation in each of these shards en-
ables faster computation and increases scalability. Shards can communicate with each other
but report directly to the master blockchain. However, sharded blockchain is susceptible to
51% attack, and a security failure in one of the shards can fail the entire blockchain network.

Scaling Solutions in Blockchain 5

On-chain scaling solutions may involve a hard fork in the system, and these are not easy to
implement. The amount of scalability achieved falls short of the expected level of throughput
provided by conventional payment systems.

• Off-Chain Solutions: Off-chain scaling means creating alternative protocols on top of layer
1. Hence, this is called Layer 2. Some solutions like payment channels rely on the blockchain
for the security and resolution of a dispute. Other solutions like sidechain, and commit chain
communicates with the underlying blockchain. However, each child chain follows its own
rules to realize secure off-chain payments. Off-chain solutions massively cut down data
processing on the blockchain by running computations off-chain. The trust assumption or the
consensus mechanism used in the underlying blockchain remains unchanged, and the amount
of data stored in the base layer gets minimized. It cuts down on the expensive consensus
mechanism since it relies on layer one to resolve the dispute and reach an agreement. Since
none of the transactions gets recorded in the blockchain, factors hindering scalability are the
communication bandwidth and latency of the participants.

Payment Channels [48], [113] stood out as a practically deployable solution. It is modular,
without requiring any fundamental changes in the protocol layer. Two parties with some
deposit made in the Blockchain network can mutually open a payment channel by locking
their funds for a certain period. The funds locked in the channel enable several off-chain
payments to be carried out between these two parties, by locally agreeing on the new deposit
balance. Instead of recording all the transactions on-chain, the transaction is executed off-
chain. We show in Fig. 1-1, how payments can be carried out off-chain between Alice and
Bob by constructing payment channels. Disputes arising out of such transactions can be
tracked and resolved on-chain. Nodes that are willing to transact but do not share a channel
send the coins via an existing set of channels. This set of interconnected payment channels
forms a Payment Channel Network or PCN.

1.2.1 Routing in Payment Channel Network

Routing of payment in PCN must be efficient but at the same time, it must preserve the privacy
of payments. None of the intermediate parties must be able to identify the payer and payee. The
state-of-the-art routing algorithms mainly focused on finding a single path for routing a transaction.
But it may not be feasible to route high-valued payments via a single path. The channels in the
network may not have sufficient balance for transferring the payment to the intended recipient. It
is better to split the total amount into several partial payments and route it across multiple paths.

6 Introduction

Figure 1-1: An instance of off-chain payment between Alice and Bob

The topology of PCN is publicly available since the opening of a payment channel is recorded
on the Blockchain. Only the initial balance of the channel is known. Parties in the network may
carry out several off-chain transactions that lead to a change in the residual balance of the chan-
nel. Channel’s residual balance is kept private by the local nodes sharing a channel. We ex-
plain the problem with an example. The network instance in Fig. 1-2 receives a payment request
(S,R, 7 units). S had opened channels with A and B having an initial balance of 15 units and 10
units respectively. After execution of several off-chain payments, the residual balance of channel
SA is 7 units, and the residual balance of SB is 8 units. S observes channel SA has the required
balance but the residual balance of channels AC and CR is not known. In Fig.1-3, we represent
the residual balance of individual channels based on the knowledge of each node. A knows that
the residual balance of channel AC is 6 units and C knows the residual balance of channel CR
is 6 units. Had S communicated with A and C, it would have figured out that only 6 units could
be routed through path SA → AC → CR. The rest of 1 unit could be routed through path
SB → BD → DR.

Figure 1-2: S knows the topology but lacks information of the residual balance of channels not
directly connected to it.

We infer that none of the conventional centralized routing algorithms would work for routing

Scaling Solutions in Blockchain 7

Figure 1-3: Complete information of residual balance in the network based on local information
possessed by each node

high-valued payments in PCN. Distributed routing algorithm will be applicable where each node
in the network makes a decision based on the information received from its neighbors. We discuss
some of the challenges faced while designing such a routing protocol.

1.2.1.1 Challenges Faced

State-of-the-art mentions several distributed routing algorithms for PCN, but they suffer from var-
ious disadvantages. Elias et al. [120] state that a single node maintains a list of active vertices
for executing the push relabel algorithm on single source-sink pair. Flare [114] violates privacy
as intermediate users reveal the payment channel’s residual capacity to the sender. The latter uses
this information for the computation of the maximum flow that can be routed through a given path.
Canal [136] entrusts a single node for computing maximum flow in a graph. Landmark-based
routing algorithms [92], [122] decide the number of landmarks by trial and error. If the total num-
ber of landmarks is k, then the payment value is split into k microtransactions randomly without
considering the nature of the graph. Such a myopic approach for routing each microtransaction
may fail as it does not allow optimal utilization of the available capacities present across multiple
paths.

It was first mentioned in Elias et al. [120] that push relabel fits better as a routing algorithm
for PCN because it proceeds locally, taking into account the residual capacity of each payment
channel. However, the push relabels algorithm used for single source-sink pair [120] is not de-
centralized in nature. A distributed version of the algorithm was implemented in their paper for
multiple source-sink pairs but it is not well defined. It is not clear how many payment transfers
can be allowed at a time through a channel. Further, it was assumed that each payment value for a
source-sink pair is unsplittable. This assumption does not work in real life since the payment value
might be higher than the bottleneck capacity of a single path. Deciding feasible routes even for a
single payment transfer is an involved process in a distributed network.

8 Introduction

1.2.2 Multi-Path Payments in PCN

Once the set of routes is provided, it is not possible to simply transfer the payment from S to R.
There is a risk that any intermediate party may just withhold the payment and steal coins from
S. Certain cryptographic primitives are used to construct conditional payments to avoid such a
problem. Conditional payments are a type of off-chain contract instantiated between two parties
connected by a payment channel. Such a contract is not recorded on the blockchain. If a party
P1 intends to transfer l coins to party P2 via the channel P1P2, the former constructs a puzzle and
shares it with P2. The conditional payment states that if P2 can solve the puzzle within a given
amount of time, then P2 can claim l coins from P1. If P2 fails to respond within the given time, P1

settles the transaction on-chain after the period elapses. The latter withdraws l coins locked in the
conditional payment and closes the channel with P2.

We define a conditional payment based on a hash function used for forwarding payment in
a single path across multiple hops. This type of conditional payment is called Hashed Timelock
Contract or HTLC.

Figure 1-4: Forwarding payment using HTLC across paths SA→ AC → CR and SB → BD →
DR

In Fig. 1-3, we observed that payment is routed via paths SA → AC → CR and SB →
BD → DR. Until now, we did not discuss the incentive offered to an intermediate party for routing
a payment. Each intermediate party reserves its capacity for routing the payment, hence the payer
must pay a processing fee for the service offered. We assume that each intermediate party charges a

Scaling Solutions in Blockchain 9

processing fee of 0.1 units. We explain the conditional payment HTLC with respect to the instance
shown in Fig.1-4. R samples a random value x and computes the hash Y = H(x). The value Y
is shared with S. The latter initiates the conditional payment for the path SA → AC → CR. S
constructs a conditional payment HTLC(Y, 5.2 units, T1) and forwards it to A. It means that if A
can provide the preimage of Y within time T1, it can claim 5.2 units from S. A deducts 0.1 units
and forwards a conditional payment HTLC(Y, 5.1 units, T2) to C, reusing the hash value. Finally C
deducts 0.1 units and forwards HTLC(Y, 5 units, T3) to R. Now R has the preimage of Y so it can
easily initiate the payment process by releasing x. Similarly, R will sample another random value
y, construct Z = H(y), and share it with S. The latter will generate a conditional payment using Z
for the path SB → BD → DR. It looks like a straightforward extension of single-path payment
protocol to multi-path payment protocol. However, there are quite a lot of challenges faced while
designing payment protocols for multipath payment that we discuss next:

1.2.2.1 Challenges Faced

• Atomicity of Payments: Atomicity of payment means a payer is either successful in trans-
ferring the full amount to the payee, or the payment fails in its entirety. In Fig. 1-4, if the
payment fails in the path SB → BD → DR, then R ends up receiving the partial amount
from S. Thus extending the single path payment protocol to multi-path payment may not
ensure atomicity.

• Privacy Violation: If all the intermediate nodes decide to settle the payment on-chain, then
with a high probability identity of the sender and recipient of each partial payment gets
revealed. Since the same hash value is used across all the channels routing the payment, it is
quite easy to correlate once the transaction is recorded in the blockchain.

• Stealing Fee of Honest Intermediaries: Assume that two parties B and R are controlled by
an adversary. Once R receives the conditional payment, instead of releasing the secret x to
D, it reveals the secret directly to B and cancels the conditional payment forwarded by D.
SoB receives 5.2 units from S upon releasing x. D is under the impression that the payment
got canceled, but S considers the payment successful upon receipt of x. It transfers the coins
to B. Thus B and R have successfully stolen D’s processing fee. This is called wormhole
attack and is a major vulnerability faced in HTLC.

Designing an efficient multi-path payment protocol that addresses these challenges is a non-trivial
task.

10 Introduction

1.2.3 Problem of Griefing Attack

In the payment instance discussed in Fig.1-4, R has to release the preimage x within time T3 and
claim the payment from C. If R does not respond, then after elapse of T3 unit of time, D settles
the transaction on-chain and closes the channel CR. But in the process, none of the intermediate
parties can utilize the coins locked in the conditional payment for the next T3 units of time. If T3

is around 24 hrs, then R manages to seize the coins in all the three channels SA,AC, and CR for
a single day, as shown in Fig.1-5. This attack is called Griefing Attack. If R had taken a decision
instantly, then S,A and C could have used their channel balance for routing other payments and
gained a processing fee.

Figure 1-5: Griefing Attack in the path SA→ AC → CR

An adversary may initiate an arbitrary number of HTLC payments to a node under her control
[121]. This node may then simply ignore incoming HTLC requests, forcing the involved nodes to
wait for the time locks to expire. Upon expiry, the entire state is rolled back, circumventing fee
deduction. A griefing attack allows an adversary to claim channel capacity temporarily, free of
charge. One can eliminate certain edges in the network by forcing channel closure. An adversary
can even eliminate competing nodes by mounting such an attack and stealing the profits they could
have earned by processing payments. The attack is quite effective for stalling the network, reducing
the network throughput, and liquidity, and isolating certain nodes from the network. Griefing attack
remains an unsolved problem, persisting in all the time-locked-based payment protocols. We aim
to propose a countermeasure that will disincentivize the attacker from mounting the attack.

1.3 Our Contribution and Organization of the Thesis

The rest of the chapters of the thesis are organized as follows. In Chapter 2, we discuss the nota-
tions, cryptographic primitives, and background needed to understand the thesis. In Chapter 3, we

Our Contribution and Organization of the Thesis 11

provide a detailed survey of the existing literature on payment channel networks. We summarize
our contribution in other chapters of this thesis as follows:

• HushRelay: A Scalable Routing Algorithm for Off-Chain Payments. In Chapter 4, we
discuss the problems associated with existing routing schemes for PCN. We propose an ef-
ficient privacy-preserving routing algorithm that takes into account the funds left in each
channel while splitting the transaction value across several paths. The proposed routing
algorithm is modular and can be combined with any other privacy-preserving payment pro-
tocol.

• CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments. In Chapter 5, we
state the problem associated with splitting high-valued payments across multiple paths. We
discuss state-of-the-art payment protocols that either fail to achieve atomicity of payments
across multiple paths or violate privacy. As an alternate, we propose a secure and privacy-
preserving payment protocol, CryptoMaze, which guarantees atomicity and unlinkability of
payments split across multiple paths. No honest intermediary loses funds in the process,
ensuring balance security. We define the model in the Universal Composability framework
and discuss the security of our construction.

• Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network. In Chap-
ter 6, we discuss Griefing Attack, a major vulnerability in Lightning Network, whereby an
adversary intentionally exhausts the channel capacity of the network. Mitigating Griefing At-
tack remains an open problem. We have proposed an efficient countermeasure for the attack,
known as Griefing-Penalty. Mounting such an attack requires the attacker to pay a penalty
proportional to the collateral cost of executing a payment. The penalty charged compensates
parties who incurred loss by locking funds. To realize it, we propose a new payment protocol
Hashed Timelock Contract with Griefing-Penalty or HTLC-GP. It not only preserves privacy
but also ensures that an attacker cannot ascribe blame to any honest party present in the path
of transferring the payment.

• Strategic Analysis of Griefing Attack in Lightning Network. In Chapter 7, we discuss
that HTLC-GP works under the classical assumption of participants being either honest or
malicious but fails for rational participants. The security proof of the countermeasure does
not analyze the attacker’s behavior with the increasing cost of mounting the attack. To ad-
dress the gap, we introduce a game-theoretic model for griefing attacks in Hashed Timelock
Contract or HTLC. Using the same model, we analyze another payment protocol Hashed

12 Introduction

Timelock Contract with Griefing-Penalty, or HTLC-GP, that claims to counter griefing at-
tacks. We find that HTLC-GP is weakly effective in disincentivizing the attacker in certain
conditions. To further increase the cost of attack, we introduce the concept of guaranteed
minimum compensation that is used for controlling the maximum allowed path length for
routing payment. We integrate it into HTLC-GP and propose a modified payment protocol
HTLC-GPζ . By experimenting on several instances of Lightning Network, we observed that
HTLC-GPζ is better than HTLC-GP to counter griefing attack

1.4 List of Manuscripts and Publications

1. Subhra Mazumdar, Sushmita Ruj. Book Chapter - Layer-1 Scaling solutions for Blockchains
in “Blockchains - A Handbook on Fundamentals, Platforms and Applications”. Editors:
Sushmita Ruj, Salil Kanhere, Mauro Conti. Springer. To Appear.

2. Subhra Mazumdar, Sushmita Ruj, Ram Govind Singh, and Arindam Pal. “HushRelay:
A privacy-preserving, efficient, and scalable routing algorithm for off-chain payments.”
In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). DOI:
10.1109/ICBC48266.2020.9169405

3. Subhra Mazumdar, and Sushmita Ruj. “CryptoMaze: Privacy-Preserving Splitting of Off-
Chain Payments.” In IEEE Transactions on Dependable and Secure Computing. DOI:
10.1109/TDSC.2022.3148476

4. Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. “Time is Money: Countering Grief-
ing Attack in Lightning Network.” In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). DOI: 10.1109/Trust-
Com50675.2020.00138

5. Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. “Griefing-penalty: Disincentivizing
Griefing Attack in Lightning Network.” arXiv preprint arXiv:2005.09327 (2020). Under
Submission .

6. Subhra Mazumdar, Prabal Banerjee, Abhinandan Sinha, Sushmita Ruj and Bimal Kumar
Roy. “Strategic Analysis of Griefing Attack in Lightning Network.” arXiv preprint arXiv:2203.10533
(2022). Under Submission.

 10.1109/ICBC48266.2020.9169405
10.1109/TDSC.2022.3148476
10.1109/TrustCom50675.2020.00138
10.1109/TrustCom50675.2020.00138

Chapter 2

Preliminaries and Background

In this chapter, we define the notations, formally define cryptographic primitives, and discuss the
background relevant to this thesis. Some notations and tools specific to a chapter are described in
the respective chapter.

2.1 Notations

We describe the notations we use throughout this thesis in Table 2.1.

2.2 Probabilistic Polynomial-time (PPT) algorithm

An algorithm is said to be polynomial time if for all inputs x, the algorithm has a run-time bounded
by some polynomial in |x|, where |x| is the length of x when represented as a binary string.

When an algorithm makes a random choice from two outcomes, where each choice is selected
with probability 1

2
, such algorithms are called probabilistic algorithm. The choice made is viewed

as algorithmic coin tosses. A probabilistic algorithm A on input x may have multiple outputs
depending on the outcome of coin tosses and A(x) denotes the probability distribution over all
possible outputs.

Combining these two concepts, an algorithm A is said to be probabilistic polynomial time
(PPT) if, for any input x, the expected run time taken over all possible coin tosses is polynomial in
|x|, regardless of the outcome of coins tosses [65].

2.3 Negligible Function

In cryptography, a negligible function is defined with respect to the security parameter λ [35]. A
function g : N→ R is called negligible if for all c ∈ N, there is an integer λc such that g(λ) ≤ λ−c

for all λ ≥ λc.

13

14 Preliminaries and Background

Table 2.1: Notations used

Notation Description
λ the security parameter
A,Z probabilistic polynomial-time (PPT) algorithms
Sim Simulator, also a PPT algorithm

a
$←− S a is chosen from a set S uniformly at random
N the set of natural numbers
R the set of real numbers
q A large prime number where q ∈ N
Z the set of integers
Zq the set of congruence classes of integers modulo q (or the ring of integers modulo q)
Z∗q the subset of Zq whose elements are coprime to q

G(Zq) Elliptic curve over Zq
G Base point of elliptic curve G
sk Secret key
pk Public key corresponding to secret key sk

G := (V,E) Representation of the Payment Channel Network as a bidirected graph
V Set of nodes in G
E Set of edges in G where E ⊂ V × V

(S,R, α) Transaction request in G
S Payer/Sender, S ∈ V
R Payee/Receiver, R ∈ V
α Amount to be transferred from S to R
P Path connecting S to R
n Length of the path P

Ui ∈ V, i ∈ [0, n] Nodes in P,U0 = S,Un = R, (Ui, Ui+1) ∈ E
αi Amount to be transferred from Ui to Ui+1, αn−1 = α

locked(Ui, Uj) Amount of funds locked by Ui in the payment channel (Ui, Uj)
remain(Ui, Uj) Net balance of Ui that can be transferred to Uj via off-chain transaction

f(αi) Processing fee charged by Ui for forwarding the payment αi, i ∈ [1,n-1]
H{0, 1}∗ → {0, 1}λ Standard Cryptographic Hash function

∆ Worst-case confirmation time when a transaction is settled on-chain
γ Rate of griefing penalty (per minute)

2.4 Cryptographic Primitives

2.4.1 Hash Function

Cryptographic hash function H is a one-way function that maps binary strings of arbitrary length
to binary strings of a fixed length λ. It is represented as H : {0, 1}∗ → {0, 1}λ and it must have
the following properties [81]:

Cryptographic Primitives 15

• Collision-resistance: A hash function H is said to be collision resistant if it is infeasible for
a PPT adversaryA to find a pair of values x and x′ such thatH(x) = H(x′). In other words,
if for any PPT adversary A there exists a negligible function g(λ) s.t.:

Pr[H(x) = H(x′) and x 6= x′ : (x, x′)← A(λ)] ≤ g(λ) (2.1)

The property of collision resistance is a strong security requirement.

• Second preimage resistance: A hash function H is second preimage resistant if given x it is
hard for a PPT adversary A to find x′ such thatH(x) = H(x′).

• Preimage resistance: A hash function H is preimage resistant if given some y it is hard for
a PPT adversary A to find a value x′ such that H(x′) = y. This is the property of one-way
function where it is computationally infeasible to obtain the input, given the output.

2.4.2 Elliptic Curve Groups

Given a large prime number q, an elliptic curve G is an equation of variables x and y, having the
form [81]:

y2 = x3 + Ax+B mod q (2.2)

where A,B ∈ Zq are constants with 4A3 + 27B2 6= 0 mod q. Let ˆG(Zq) denote the set of pair of
(x, y) ∈ Zq × Zq satisfying Eq. 2.2. The elements of set G(Zq) = ˆG(Zq)∪{O}, where O is the
point at infinity, are called points on the elliptic curve G.

2.4.3 Elliptic Curve Discrete Logarithm Problem

A polynimial time algorithm Gen on input 1λ, generates the elliptic curve G over Zq, with base
point G, q is large prime. the elliptic curve discrete logarithm problem (ECDLP) is defined as
follows:

Definition 2.1. (Discrete Logarithm Problem). Given points G, Q ∈ G(Zq), find an integer a such
that Q = aG, if a exists. [58].

This computational problem is called the Elliptic Curve Discrete Logarithm Problem which
forms the the fundamental building block for elliptic curve cryptography. The discrete logarithm

16 Preliminaries and Background

problem is said to be hard relative to Gen if for PPT algorithms A , there exists a negligible
function g such that

Pr[DLogA,Gen(Q) = a] ≤ g(λ) (2.3)

2.4.4 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of the Digital
Signature Algorithm (DSA) [78]. Given a collision-resistant hash functionH, a private and public
key pair is generated by sampling a random value x and corresponding public key Q = xG where
G is the base point of the elliptic curve G(Zq), the signature algorithm over a message m proceeds
as follows:

• Sample a random value k, construct R = kG and e = H(m). Take rx, which is the x co-
ordinate of R. Compute r = rx mod q and s = e+rx

k
mod q. The signature is the tuple (r, s).

Note that (r,−s) also forms a valid signature.

Given (m,r,s) and public key Q, the verification algorithm proceeds as follows:

• Compute e = H(m) and calculate S ′ = eG+r.Q
s

. Let x co-ordinate of S’ be sx. If r ?
=

sx mod q then return 1 else return 0.

2.4.5 Homomorphic One-Way Function

A function ĝ : X → Y is one-way if, given a random element y ∈ Y , it is hard to compute a
x ∈ X : ĝ(x) = y. A function ĝ is homomorphic if X and Y are two abelian groups and for each
pair (x1, x2) ∈ X2, it holds that ĝ(x1 ◦ x2) = ĝ(x1) ◦ ĝ(x2), where ◦ denotes the group operation
[94]. On multiplying a scalar quantity, say j, with ĝ(x) results ĝ(jx).

2.5 Universal Composability Model

For modeling the security and privacy definition of payment across several payment channels under
concurrent execution of an instance of a protocol described in Chapter 5, we take the help of
the Universal Composability framework, first proposed by Canetti et al. [43]. Notations and
assumptions used for ideal functionality are similar to [93]. The nodes of the network are modeled

Universal Composability Model 17

as interactive Turing machines, denoted by U = {Ui}, 0 ≤ i ≤ r , r ∈ N, U0 denotes the initiator
of protocol and Ur denotes the receiver, which communicates with an ideal functionalityF , defined
later, via secure and authenticated channels. We model the attacker A as a PPT machine that is
allowed to corrupt a subset of nodes in the network. Upon corruption, it gets access to its internal
state and controls any transmission of information to and from the corrupted node. As of now, only
static corruption is allowed, i.e. adversary must specify the nodes it wants to corrupt before the
start of the protocol.

Given a real protocol Π, which is also termed as the real-world execution, where parties in-
teract amongst themselves, we need to define an ideal functionality F that mimics the execution
of protocol in a trusted environment. Both worlds receive their inputs and send their output to
the environment Z . In static corruption, adversary A can corrupt parties before execution of the
protocol. We denote REALZ,AΠ (λ, x) as the output of the real-world execution of protocol Π with
input x. In the ideal world, each party in set U is a dummy party. Such parties forward their inputs
to the ideal functionality F . This same as the honest parties communicating via secure authenti-
cated communication channels in the real world. The ideal functionality F mimics the execution
of protocol Π in a trusted environment. The security properties of the protocol Π are defined and
proved for the ideal world execution. The ideal world adversary, defined Sim, attacks the ideal
functionality F and receives input and sends output to Z . IDEALZ,SimF (λ, x) denotes the output
of the ideal world execution. The task of Z is to try to distinguish between the interactions of the
real world and the ideal world. A protocol Π is said to be UC-secure if any PPT environment Z
can distinguish with negligible probability whether it is interacting with the ideal or real world. We
formally define this as follows:

Definition 2.2. UC Definition of Security. Given that λ is the security parameter, a protocol Π,
UC-realizes an ideal functionality F if for all computationally bounded adversary A attacking Π

there exist a probabilistic polynomial time (PPT) simulator Sim such that for all PPT environ-
ment Z such that IDEALZ,SimF (λ, x) andREALZ,AΠ (λ, x) are computationally indistinguishable.

One can use some ideal functionalities like F1,F2, . . . ,Fm as subroutines in the protocol Π as
per the universal composition theorem [42]. Such a protocol Π is said to be UC-realize the ideal
functionality F in the hybrid world [49]. In other words, any PPT environment Z can distinguish
its interaction with the ideal world and hybrid world with negligible probability. Later the ideal
functionalities in protocol Π are replaced with the respective protocol, and it must be shown that
the environment Z cannot distinguish whether it is interacting with the hybrid world or the real
world.

18 Preliminaries and Background

2.6 Game Theory

Game defines the interaction between rational players, where each player chooses his or her strate-
gies to maximize a well-defined payoff. Each player is considered intelligent enough to compute
his or her best strategies knowing that all other players are also trying to obtain their respective
best possible outcomes [95]. Game theory is the logical and mathematical analysis that models
the interaction between the rational players and describes a method for predicting the result of the
interactions among the players using equilibrium analysis [104].

An extensive form representation of a game provides a detailed representation of a game, in-
cluding the sequence of moves and information beneficial to players. Before formally defining the
extensive form representation, we explain the concept of information set of a player [104].

Definition 2.3. (Information Set). An information set of a player describes a collection of all
possible distinguishable circumstances based on which a player chooses to make a move. Each
decision node corresponds to a unique sequence of actions from the root node of the game tree to
the decision node, thus each information set of a player consists of all proper subhistories relevant
to that player which are indistinguishable to that player.

Definition 2.4. (Extensive Form Game)[104]. “An extensive form game Γ is a tuple Γ = 〈N, (Ai)i∈N,H,
P, (Ii)i∈N, (ui)i∈N〉 where :

• N = {1, 2, . . . , n} is a finite set of players.

• Ai for i = 1, 2, . . . , n is the set of actions available to player i.

• H is the set of all terminal histories where a terminal history is a path of actions from the
root to a terminal node. Note that a particular terminal history is not a proper subhistory
of any other terminal history. SH is the set of all proper subhistories (including the empty
history ε) of all terminal histories.

• P : SH → N is a player function that associates each proper subhistory to a certain player.

• Ii for i = 1, 2, . . . , n is the set of all information sets of player i

• ui : H → R for i = 1, 2, . . . , n gives the utility of player i corresponding to each terminal
history.”

Definition 2.5. (Game with perfect information and game with imperfect information) A game
with perfect information is one where the players are fully informed about the entire history. By

Game Theory 19

entire history, we mean that each player is aware of the past moves of all other players as well as
his past moves before he makes a move. If the player is partially informed, then it is called a game
with imperfect information [104].

Definition 2.6. (Game with complete information and incomplete information) A game with in-
complete information is one in which some players have private information about the game that
other players do not know before the players to begin their first move. The initial private infor-
mation that a player has, just before making a move in the game, is called the type of the player
[104]. In a game with complete information, every aspect of the game is common knowledge.

For the work done in Chapter 7, we specifically focus on dynamic games of incomplete infor-
mation.

2.6.1 Dynamic Games of Incomplete Information or Sequential Bayesian
Games

In this class of games, players move in sequence, with at least one player being uncertain about
another player’s payoff. To approach these games, it is necessary to define a belief system and
a player’s behavioral strategy. We define a type space for a player that is the set of all possible
types of that player. A belief system in a dynamic game describes the uncertainty of that player
of the types of the other players. A behavioral strategy of a player i is a function that assigns to
each of i′s information set a probability distribution over the set of actions to the player i at that
information set, with the property that each probability distribution is independent of every other
distribution. A dynamic game of incomplete information consists of [62]:

• A set of players I;

• A sequence of histories Hm at the mth stage of the game, each history assigned to one of the
players (or to Nature/Chance);

• An information partition. The partition determines which of histories assigned to a player
are in the same information set;

• A set of pure strategies for each player i, denoted as Si;

• A set of types for each player i : θi ∈ Θi;

• A payoff function for each player i : ui(s1, s2, . . . , sl, θ1, θ2, . . . , θl);

20 Preliminaries and Background

• A joint probability distribution p(θ1, θ2, . . . , θl) over types.

To analyze dynamic games with incomplete information, a new equilibrium concept perfect
Bayesian equilibrium is used, which is defined as follows:

Perfect Bayesian Equilibrium: A perfect Bayesian equilibrium in a dynamic game of incom-
plete information is a strategy profile s and belief system θ such that:

• s is sequentially rational given beliefs θ. It means, given the beliefs and other players’
strategies, no player can improve his or her payoffs at any stage of the game.

• θ is consistent with s, i.e., at information sets both on and off the equilibrium path, beliefs
are determined by Bayes’ rule and player’s strategy profile s.

2.7 Background

2.7.1 Bitcoin

A secure, distributed currency must guarantee that only the owner of a coin can decide when and
how to transfer a coin, and at the same time, prevent someone spends a coin twice (double spend-
ing). With the inception of Bitcoin by Satoshi Nakamoto in 2008 [103], a financial revolution
began. It is the first open distributed system that allows users to transact securely and efficiently.
In other words, Bitcoin enables users to join and leave the system on-the-fly without the need for
identities (open/permissionless), does not require a trusted third party (decentralized), and guar-
antees that all transactions will be permanently written in an accessible and verifiable transaction
ledger via an efficient consensus mechanism that is resilient to participants that deviate arbitrarily
from the protocol specification, called Byzantine (secure). To achieve all these properties, Bitcoin
employs a combination of tools, which we analyze below.

Addresses in Bitcoin. Users may generate any number of private/public key pairs. A Bitcoin
address is derived from a public key and is used as a pseudonymous identity [23]. A private/public
key pair can uniquely identify the owner of funds of an address. The addresses are used to send
and receive bitcoins.

Transactions in UTXO model We define the unspend transaction output or UTXO model [27]
before we go into the details of inserting conditions in the Bitcoin script. In this model, the output

Background 21

of Bitcoin transaction is defined as θ consisting of tuple (cash, φ). θ.cash denotes the number of
coins held in the output and θ.φ denotes the criteria that need to be fulfilled for spending the coins,
encoded in the scripting language. If one single party has ownership of the coins, θ.φ consists of a
digital signature verification script. Similarly, if multiple parties have ownership of coins in output
then a multi-signature forms the condition for spending the output. The signature can be verified
using the party’s public key. The signature scheme used in Bitcoin is the Elliptic Curve Digital
Signature Algorithm (ECDSA).

Changing the ownership of output can be realized via transactions. A transaction is defined
as tx=(id,input,output). Transaction input is the existing outputs assigned to an owner
who has the right to spend the coins. tx.id is the hash of tx.input and tx.output. Here
we denote tx.output=(θ1, θ2, . . . , θn) where each θi consists of coins and condition needed to
spend these coins. A transaction is considered valid if it possesses a valid witness for every input
which has not been spent previously. Such a transaction gets added to the blockchain only after it
is accepted following the underlying consensus mechanism. The upper bound on the time taken to
finalize a transaction is defined as ∆.

2.7.2 Blockchain

Blockchain is an ordered list of blocks. Each block contains a set of transactions. The first block
in the blockchain is called the genesis block. It is the common parent of all the blocks in the
blockchain. Height of the blockchain refers to the distance from the genesis block. Each block
contains the hash of the parent block inside its block header. Sequences of hashes linking each
block to its parent create a chain. A block has one parent but can have more than one child. Such a
situation is termed as fork in the network. The issue is resolved when one of the children becomes
part of the blockchain following the network’s consensus [23].

Records in the blockchain are immutable. The property comes from the fact that a change in
one block results in a change in the hash of the block. This results in a change in the child’s hash
that triggers changes in the grandchild’s block, which in turn changes its grandchild. Recalculation
of the hash value for a trail of blocks is computation-intensive. The longer the chain, the better is
the security.

Consensus in Blockchain. Nakamoto’s consensus ensures that all the independent nodes in the
blockchain agree on the validity of a given block without relying on a third party. It involves the
following steps [23]:

• Each transaction is verified by a node, i.e., the correctness of input and outputs, signature,

22 Preliminaries and Background

and whether is any double-spending of a particular input.

• Once transactions are verified they are aggregated into a block by a miner. All the miners
compete to demonstrate their computation power by solving a cryptographic hard puzzle
through a proof-of-work algorithm, which we will explain later.

• A miner that adds the puzzle’s solution in the block before anyone else emerges as the winner.
It then broadcasts the block in the network. Participants verify the block independently, and
the block is added to the chain if found valid.

Mining and Proof-of-Work

Mining ensures the security of the bitcoin system and enables participants to reach a consensus in
a decentralized network without involving a third party [23]. Any node in the network can become
a miner. The latter’s job is to validate new transactions and record them in the blockchain. If a
transaction becomes part of the blockchain then it is considered confirmed. Owners of the output
of such a transaction can spend those coins. If a block is confirmed, then miners receive a block
mining reward and transaction fees for all transactions in the block. A transaction fee is a difference
between the transaction inputs and transaction outputs. To mine a block, miners compete to solve
a cryptographic hash puzzle with a specified difficulty. Once a solution to the puzzle is discovered,
it is included in the block. This process is called Proof-of-Work. It prevents a node from generating
unlimited Sybil nodes in the network as they need to have sufficient computation power to win the
mining race. This idea forms the basis of Bitcoin’s security. When a miner has solved the puzzle,
it receives a block mining reward for expending computation effort.

Due to the complexity of verification and proof-of-work algorithm, transactions in blockchain
are slower compared to traditional payment systems.

2.7.3 Off-Chain Scaling Solutions

Off-chain scaling solutions address the problem of scalability in blockchain. These solutions, also
known as Layer 2 protocols, sit on top of the Blockchain layer. Parties mutually agree to execute
transactions without recording them in the blockchain. However, the parties are not trusted and
they could deviate from the protocol. In case of such disputes, second-layer solutions use the
underlying blockchain to prevent a malicious party from stealing an honest party’s funds. We
discuss a layer 2 protocol, payment channels in the next section.

Background 23

2.7.3.1 Bidirectional Payment Channel

The payment layer, also termed as Lightning Network for Bitcoin, proposed by Poon and Dryja
[113] enables a large amount of off-chain payments without recording the same in the blockchain,
leveraging on the security of the underlying Bitcoin Blockchain. The bidirectional channel between
two parties allows the participants to lock funds in a joint multi-sig account, termed as creation
of channel. Parties can then shift funds between themselves as per the transaction request. Such
parties are also called lightning nodes. Such a set of nodes can be interconnected to form a network
that can route payment between any parties. In the following sections, we describe the process of
opening the channel, updating the channel balance, and closing the channel.

Opening of Channel

Figure 2-1: Setting up Bidirectional channel of 0.01 BTC between Alice and Bob

With mutual consent from both parties, they can deposit funds in a 2-out-of-2 multi-sig address
to initiate a funding transaction. A multi-sig address is a bitcoin address that requires multiple

24 Preliminaries and Background

private keys or the signature of the owners of such private keys to spend the bitcoins from the
address. Once the amount is sent to the multi-sig address, the parties create the first commitment
transaction before exchanging the signature for the funding transaction.

What if the opening transaction is signed before the creation of the first commitment
transaction? Suppose both the parties exchange signature for the funding transaction. Then either
of the parties has the right to broadcast the transaction and record the channel opening on-chain.
If they do so, the funds can remain locked forever if either of the parties doesn’t cooperate while
spending from the funding transaction.

In the example illustrated below in Fig. 2-1, parties Alice and Bob send 0.005 BTC in the
2-out-of-2 multi-sig address but don’t broadcast the funding transaction as of now. They create a
first commitment transaction which allows each party to spend 0.005 BTC each before the funding
transaction gets broadcasted. Alice and Bob both create a secret and exchange the hash HAlice and
HBob.

Alice creates a copy of the first commitment transaction for Bob where Alice sends 0.005 BTC
to herself and the rest of the amount to Bob to a second multi-sig address. But Bob is allowed to
spend the money sent to the second multi-sig address after a relative lock time from the time it
got broadcasted in Blockchain. This is realized in the output script using a CheckSequenceVerify-
Lock or CSV-lock. Alice can spend the amount from the second multi-sig address if Bob shares
the preimage of the hash HBob. Alice signs her copy of the commitment transaction and sends it to
Bob. Bob creates a similar copy of the commitment for Alice providing his signature. It contains
output of 0.005 BTC which can be immediately spent by Bob and the rest of the output of 0.005
BTC for Alice to a second multi-sig address. Alice cannot spend this output before the elapse of
the relative timelock period. Bob can spend the output of the second multi-sig address, provided
Alice has provided the preimage of the hash HAlice. With the half-signed transaction in place, both
parties now exchange their signature and broadcast the funding transaction, which confirms the
opening of channel [135].

Updating Channel Balance

Before creating a fresh commitment transaction, the parties exchange the preimage of the hashes
exchanged for the previous commitment transaction. This procedure is known as invalidating a
transaction. In the next step, both of them update the balance as per the terms of the transaction.
Say if Alice wants to transfer 0.001 BTC to Bob. Both of them create fresh hash values HAlice1

and HBob1 and exchange them. Then Alice creates a fresh commitment transaction with Alice

Background 25

sending 0.004 BTC to herself and 0.006 BTC to a second multi-sig address which can spend either
by Bob after a relative timelock period or if Alice gets the preimage of the new hash value HBob1.
Similarly, Bob creates a similar copy of the transaction and shares it with Alice. If either of the
parties broadcasts an older transaction, then the counterparty uses the preimage of the stale hash
value, HAlice/HBob, and spends the output of such transaction immediately. The malicious party
gets penalized since all the fund it had deposited into the channel is slashed from its account.

Closing Channel

Both parties can mutually decide to close the transaction by creating a new transaction reflecting
the final balance based on the latest state of the channel. Alice and Bob put their signature on the
closing transaction so that they can immediately spend the output of the transaction. If a party
doesn’t co-operate, then the counterparty can unilaterally close the channel by broadcasting its
copy of the final transaction where it has to wait for the relative period before spending the output.

2.7.3.2 Payment Channel Network

Instead of opening a new channel, a party can find a path connecting it to a destination via some
intermediaries. This saves the cost of locking fresh collateral in the channel as well as recording
another transaction on the blockchain. This set of interconnected channels forms the Payment
Channel Network. To send money from a payer to a payee via a set of nodes, it must be ensured
that the intermediaries do not cheat and extort money from the payer, and at the same time, the
payee receives the intended amount. We describe a very simple payment protocol that uses the
hash as the cryptographic primitive in each of the off-chain contracts instantiated for forwarding
conditional payment.

Hashed Timelock Contract or HTLC

Off-Chain contracts are smart contracts where the logic encoded in the contract is not run by
the miners. It is mutually executed by the participants involved in instantiating the contract. The
advantage of having off-chain contracts is that computation-intensive tasks can be executed without
involving blockchain as long as participants behave honestly. An individual player can prove the
correct contract state independently. Cheating is prevented as the state of the contract is signed by
all the players. If a party misbehaves by broadcasting a wrong state in blockchain, the counterparty
can raise a dispute and publish the valid accepted state. Hashed Timelock Contract or HTLC [113]

26 Preliminaries and Background

is one such example used in PCN for forwarding conditional payments in the network. The logic
used is a hash function, where players need to provide the preimage of the hash to claim coins.

Suppose Alice wants to transfer 0.001 BTC to Charlie via Bob, the latter claiming a processing
fee of 0.001 BTC. Charlie samples a random value x and computes H = H(x) and sends it to
Alice, as shown in Fig. 2-2. Alice uses onion routing for forwarding the conditional payment
across the path Alice → Bob → Charlie. She forwards a conditional payment of 0.002 BTC to
Bob. She sends the money to a different multi-sig address with the hash H . The output from the
multi-sig address can be spent in two ways. Either Bob can provide the preimage x, provide his
signature, and claim 0.002 BTC from Alice. Else after a certain period, say t units, Alice can sign
and unlock this money. Note that this period is not a relative timelock but an absolute timelock
(mentioned in the script as CheckLockTimeVerify or CLTV). Either Bob can settle the transaction
off-chain with Alice by updating the channel balance upon providing the preimage x. But Bob still
has not got the preimage. Upon decrypting the encrypted onion blob, he finds that the conditional
payment has to be forwarded to Charlie. Hence, he will create a similar contract with Charlie,
whereby it transfers 0.001 BTC to a new multi-sig address. The time period within which Charlie
must provide the preimage is t1 where t1 < t, as shown in Fig. 2-3. This will allow Bob to get the
preimage x and claim money from Alice [134], [107].

Figure 2-2: Setup Phase of HTLC

Let us define the procedure in detail. Let the initial balance of the channel between Alice and
Bob be 0.01 BTC each, with either of the parties depositing 0.005 BTC. Alice creates a new multi-
sig address sending 0.002 BTC with two options of spending the amount as mentioned before.
Alice has a balance of 0.003 BTC, Bob has a balance of 0.005 BTC, and the money locked in
hashed timelock contract is 0.002 BTC. Bob can use the preimage to claim the amount. If he

Background 27

Figure 2-3: Routing payment from Alice to Carol using HTLC

goes on-chain and broadcasts the transaction then Alice can spend 0.003 BTC immediately. Bob
can spend his output of 0.005 BTC after a relative timelock period. He can also claim the money
locked in hashed timelock contract by providing his preimage and signature. However, again a
relative timelock is added to this output as well where Bob can spend a transaction after a certain
period has elapsed. Had Alice broadcasted the commitment transaction, then Bob could have spent
immediately 0.005 BTC as well as the money locked in the hashed timelock contract.

Apart from Lightning Network, hashed timelock contract is used for routing payments in
Raiden Network as well, a payment channel network for Ethereum.

Protection Mechanisms in Lightning Network

It might be possible that the path selected for routing payment may suffer from the failure of
intermediate nodes. This might hinder the payment but we state two countermeasures to handle
such situations [113]. We discuss certain protection mechanisms to prevent an honest node from
losing money upon routing payments.

• Settling on-chain. While resolving a conditional payment, if a party finds its counterparty
has stopped responding then it goes on-chain, reveals the preimage to claim payment, and
closes the channel. For example, in Fig. 2-4, if Bob doesn’t respond, Charlie broadcasts its
transaction with preimage and signature and closes the channel formed with Bob. Charlie
claims the money and Alice withdraws the money locked in the contract with Bob after
elapse of lock time.

• Rerouting. An intermediate can stop forwarding the conditional payment to the next neigh-
bor. For example, in Fig. 2-5, in the path Alice → Bob → Charlie → Dave, Charlie

28 Preliminaries and Background

Figure 2-4: Settling of Payment on-chain

may not forward the payment. Ultimately the contract doesn’t reach the recipient Dave.
Alice may not wait for an indefinite period and start forming HTLCs across another path
Alice → Bob → Mathew → Dave. Simultaneously a new path connecting Dave to Alice
is searched for so that in case of the HTLC via path Alice→ Bob→ Charlie→ Dave gets
established, the money can be transferred back to Alice via path Dave → Eric → Bob →
Alice. This ensures a risk-free payment via another path.

Figure 2-5: Rerouting payment from Alice to Dave via Alice→ Bob→Mathew → Dave using
condition H . If Charlie establishes HTLC with Dave, then the same must be refunded
via path Dave→ Eric→ Bob→ Alice using condition Y .

2.7.3.3 Vulnerabilities in PCN

We state the plausible attacks on Lightning Network which lead to loss of funds, loss of privacy,
or even jamming of the network rendering it unsuitable for processing any payment.

Wormhole Attack

The Hashed Timelock Contract (HTLC) Protocol uses the same commitment across the path rout-
ing the payment. For example, if Alice wants to transfer 1 unit of the coin to Dave via Bob, Charlie,

Background 29

and Eve, then Eve constructs a hash value H and shares it with Alice. We assume that each party
charges 0.1 unit as a processing fee. Thus Alice will transfer 1.3 coins via this path. After the
conditions of payment reach Dave, he releases the preimage to Eve. However, as discussed before,
this is susceptible to Wormhole Attack [94]. Eve and Bob can collude. Upon seeing that both have
received the same condition for payment, instead of sharing the preimage with Charlie, she shares
it directly with Bob. Just before elapse of lock time, Eve cancels the contract with Charlie and
Charlie cancels the contract with Bob. But Bob and Eve manage to steal Charlie’s processing fee,
as shown in Fig. 2-6.

Figure 2-6: Wormhole Attack, Bob and Eve steal Charlie’s fee

Griefing Attack

Given a PCN, consider a payment α has to be made via a path from payer to payee consisting of n
payment channels, where n ∈ N, n > 1. Let us index each channel by i where i ∈ {1, 2, . . . , n}.
The channel connected directly to the payer is indexed 1 and the channel ending with the payee is
indexed n. For executing the payment, an amount α is locked in each of the payment channel i for
a period of (n− i + 1)∆, which is also termed as locktime. ∆ > 0 is the worst-case confirmation
time when the transaction is settled on-chain. Once the amount gets locked, it cannot be utilized
before the elapse of the lock time. If an adversary controlling channel j, where j ∈ [1, n], refuses
to resolve the contract off-chain and raises a dispute, then the time taken to resolve it will be
(n − j + 1)∆. It manages to lock α coins each in the preceding j payment channels, just by
locking α coins in (j + 1)th channel. If the adversary is controlling the receiver then without
incurring any cost for mounting the attack, it locks (n − 1)α for ∆ unit of time. If an adversary
manages to capture any node present in the middle of the path, then the attack results in worst-case
collateral damage. The amount of fund locked is approximately n

2
α for a time period of O(n∆),

thus total loss incurred is O(n2∆α).

Example 1. A wants to transfer funds to a node R. It leverages the existing payment channels AB,
BC, CD, and DR for relaying funds from A to R, as shown in Fig. 2-7. A locks fund with B for 4

30 Preliminaries and Background

A RB C D

off-chain contract
timeout: 4 days

R ignores off-chain
contract request, from D

off-chain contract
timeout: 3 days

off-chain contract
timeout: 2 days

off-chain contract
timeout: 1 day

Figure 2-7: Griefing Attack when R ignores HTLC request

A RB C D

R ignores off-chain
request from D

A's money locked in
the contract for 24

hours

B's money locked in
the contract for
24 hours

C's money locked in
the contract for
24 hours

D's money locked in
the contract for
24 hours

Figure 2-8: Funds locked in the path for 1 day

days, B locks its fund with C for 3 days, C locks funds with D for 2 days and ultimately D locks
fund with R for 1 day. R ignores the request and refrains from releasing the payment condition,
as shown in Fig. 2-8. The payment fails and D rolls back to its previous state after one day. D
terminates its off-chain contract with C, and C cancels its contract with B, B, and A following suit
as well. Hence R manages to lock coins in each payment channel for one entire day. None of the
channels can utilize the locked amount before the contract established in the channel DR expires.

Chapter 3

Literature Survey

3.1 Routing Algorithms in Payment Channel Network

Routing payments from sender to receiver via a set of intermediate nodes without trusting any
of them is a crucial problem in PCN. The difficulty lies in discovering channels with sufficient
capacity for routing a payment. The opening balance of the channel is known publicly, the residual
capacity of a channel might be different due to several off-chain payments. The routing algorithm
must not reveal the identity of the payer or payee. We discuss a few routing algorithms and the
security guarantee it offers.

“Flare: An approach to routing in lightning network” by Prihodko, Zhigulin, Sahno, Ostro-
vskiy, and Osuntokun (2016)

This routing algorithm for Lightning Network uses a trustless source routing scheme. It can also
be scaled to the network size of at least several hundred or thousand nodes [114]. The algorithm
comprises two different stage: Proactive and Reactive.

• Route Discovery (Proactive Part): Each node in Lightning Network constructs a routing
table. The routing table is a subset of channels and helps in finding a path to the recipient.
If the information is not sufficient to find a route, the table is used to determine the beacon
nodes that assist in finding the route. In the initial stage, a node has a clear view of the
neighboring nodes. With the help of beacon nodes, the visibility of the network for a given
node is increased beyond its local neighborhood by incorporating random nodes. Hence with
high probability, a node determines whether it can reach a particular node or not.

• Route Selection (Reactive Part): When a node receives a request to route a payment to a
particular payee, it uses the routing table and the routing table of the payee to figure out a
route from the payer to the payee. If no such routes exist, the beacon node corresponding to
the payee and other nodes can pitch in with their routing table in constructing an appropriate
path. If there exist several such routes, they can be ranked accordingly. The ranking is done

31

32 Literature Survey

based on some predetermined cost function. The cost function is defined based on static
information like route length and dynamic information, like fees to use channels.

Based on the ranks assigned to the routes, the sender selects the best feasible path for routing
its payment.

In this algorithm, each node keeps track of all the neighbors that are at a hop length of k from
itself, i.e, k − neighbourhood, and figures out the weight of the links in this k − neighborhood.
Privacy gets violated. Additionally, any credit change needs to be communicated in the k −
neighborhood, leading to flooding of messages in the network, which is quite inefficient.

“SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Networks” by
Malavolta, Moreno-Sanchez, Kate and Maffei (2017)

SilentWhispers [92] proposes a distributed protocol for finding routes in a credit network that can
transfer payment between a pair of sender and receiver. It applies a distributed landmark routing-
based approach [136] for the credit network design [57]. Also, this is the first payment system that
does not require the use of blockchain to ensure the integrity of the transactions. The steps of the
protocol are as follows:

i. Routing: Given the assumption that the credit network is a connected graph and the set of
landmarks is fixed, each landmark periodically constructs a spanning tree to account for the
change in the network. To create the spanning tree, the landmark executes two instances
of the Breadth-First-Search or BFS algorithm rooted in itself. The first instance calculates
the shortest path from the landmark to each node, termed as arborescence, and the second
instance calculates the shortest path from each node back to the landmark, termed as anti-
arborescence.

ii. Finding credit on a path: Multi-Party Computation is used for secure computation of the
credit available in a certain path. The landmarks receive a share of the credit on each link
from the sender to the receiver. Given this information, the set of landmarks jointly computes
the credit on the entire path. None of the landmarks learn about the result of the computation
nor the credit on each link.

iii. Path construction: For the construction of the path, a user routing payment from sender to
receiver uses a short-term verification key along with the long-term key. A user first signs a
fresh verification key with her long-term key and creates a chain of signatures.

Routing Algorithms in Payment Channel Network 33

iv. Accountability: To resolve the dispute between two users of a link, the logs from the user are
used to get the real value of the link.

“Settling payments fast and private: Efficient decentralized routing for path-based transac-
tions” by Roos, Moreno-Sanchez, Kate and Goldberg (2018)

SilentWhisper has a lot of computation overhead, and the path returned by the algorithm may not
be optimal. SpeedyMurmur [122] overcomes the problem by taking into account the availability
of funds in the channel and the proximity of a neighbor to a given destination. This results in an
efficient algorithm with flexible path selection. A set of landmark nodes is identified. Generally, a
node that is highly connected forms the landmark. A payer traces a route to a landmark, and a payee
traces a route to a landmark. Concatenating both, a route from payer to payee gets constructed. We
describe the main subroutines as follows:

• setRoutes: Assuming k such landmarks have been selected, iterate over each landmark and
assign a BFS-based coordinate to each of the nodes per landmark. Once a landmark is
selected, an empty vector is assigned as its coordinate. The landmark selects all its neighbors
and probes whether the links to such nodes have enough credit and have not been assigned
any coordinate. If such a node is found, it is added to the spanning tree. The coordinate
assigned to such a node is the concatenation of the parent’s coordinate along with a random
b− bit string. In an asynchronous setting, an upper bound on the time limit is set by a node.
If a neighbor of a node has to be added to the spanning tree, it must send a message within
this time-bound. Once such a request is received, the node assigns this neighbor as its parent.
Initially, a node adds all those neighbors having bidirectional non-zero capacity links. Later,
all nodes having unidirectional non-zero capacity links get added.

The process is repeated for the k landmarks resulting in k such spanning trees and coor-
dinates based on each of the spanning tree. This is termed as prefix embedding. Let the
coordinate with respect to landmark L1 for node u and v be id1(u) and id1(v); then the
distance between node u and v is

dist(id1(u), id1(v)) = |id1(u)|+ |id1(v)| − 2cpl(id1(u), id1(v)) (3.1)

id1(u) denotes coordinate length, cpl(id1(u), id1(v)) denotes the length of the common pre-
fix i.e. when the id is assigned to each node u and v, this is the portion of the string matching
in both. Such common prefix signifies the shared ancestor. To avoid double counting, this
value needs to be deducted.

34 Literature Survey

• setCred: A pair of nodes may need to change the capacity of the link (or the channel) present
between them. Later, they check if such a change of capacity leads to a change in the
coordinate. We describe the situations when there would be a possibility that the coordinates
might change:

– New non-zero link: Given a pair of nodes, if one of them does not belong to the tree
then it chooses the other node as its parent.

– New non-zero link: Given a pair of nodes say (u, v), if u has a parent with a unidirec-
tional link and later, v forms a bidirectional link with u, then u must change its parent
to v.

– Removed link: If a node loses its link to its existing parent (i.e. credit in the link drops
to 0), it should find a new parent.

If a node changes its parent then its descendants must undergo a coordinate change
as well. They inform their neighbors about the deletion of the existing coordinates.
Later a new parent is chosen, and it undergoes a coordinate reassignment. If a node
receives several requests from neighbors who can be its potential parent, it chooses the
one having the shortest route to the landmark. The configuration change is recorded
for each of the landmark nodes.

• routePay: For payment of value v from payer to payee, the payer splits the total transaction
value into k − shares i.e. v1, v2, . . . , vk for each of the k landmarks. k such paths needs to
discovered for transmitting each of the payment and k different addresses of the receiver is
generated i.e. desti(recv), i ∈ [1, k]. For the share vi, the path needs to be found out based
on the coordinate assigned using landmark Li, i ∈ [1, k] as the reference. Starting from the
payer, a neighbour, saym, is selected such that the distance to the destination node is shortest
i.e. d(idi(m), desti(recv)) is minimum and the link has capacity at least vi. This is repeated
for rest of the k − 1 shares as well. If the routing fails, then the route-search procedure is
repeated for a different split of the transaction value.

“Coinexpress: A fast payment routing mechanism in blockchain-based payment channel
networks” by Yu, Ruozhou, et al. (2018)

Landmark routing assumes a small set of trusted landmark users who controls the entire routing
process. This may lead to the centralization of the P2P network. Coinexpres alleviates the problem
by taking a distributed approach for PCN routing. It uses distributed Ford-Fulkerson algorithm
and applies a locking technique for resolving concurrency among multiple simultaneous requests

Routing Algorithms in Payment Channel Network 35

in a particular channel [144]. The drawback of the algorithm is that it is not privacy-preserving, as
intermediate parties routing payment come to know about the channels and their residual balance
in such a path.

“Flash: efficient dynamic routing for off-chain networks” by Wang, Xu, Jin, and Wang
(2019)

SpeedyMurmur suffers from low transaction throughput and is susceptible to failure because the
split in transaction value doesn’t take into consideration the change in the capacity of each link.
Flash deals with the problem by differentiating large payments, termed as elephant payments,
from small-valued payments, termed as mice payments [138]. For elephants payments, a modified
max-flow algorithm based on Edmond-Karp [54] is used for finding k such a set of good paths
with sufficient capacity for routing large valued payments. Given the set of k paths, to route the
payment using a minimum fee, an optimization program is designed to split the payments over
k paths. For mice payments, each node maintains a routing table that figures out the path to the
receiver. Each payer figures out m such shortest path where m < k. If such paths don’t exist,
they can be computed dynamically using the local topology and existing routing information. The
routing table is periodically refreshed based on the change in the topology of the payment channel
network. Once m such paths are found, the sender tries to route the full payment value via one
path. If it doesn’t succeed, it checks the amount remaining to be routed and tries to route it via the
next available path.

“High throughput cryptocurrency routing in payment channel networks” by Sivaraman et
al. (2020)

In landmark-based routing, dynamic update of the topology and link balances is a challenging task.
To avoid such problems, a high throughput routing algorithm, Spider [125], has been proposed
that packetizes transactions, splits them into several transaction units, and sends them via different
paths at different rates. Each transaction unit can be transmitted using onion encryption, to hide
the full route from intermediate routers. Breaking up payments into packets allows completing
even large transactions on low-capacity payment channels over time. Congestion control across
multiple paths ensures balance utilization of channels and fairness across flows.

Each payment channel has a router that maintains price variables, updated periodically based
on the current arrival rate of transaction units in the channel, available channel balance, and the
number of transactions currently queued up in the router. Transaction queues up in the router

36 Literature Survey

present in each payment channel whenever the channel lacks funds to forward them immediately.
Queuing of the transaction indicates that either the transaction is being processed at a faster rate
and the rate needs to be brought down or the channel lacks capacity. If the node uses a congestion
control protocol that controls queues, it could detect both capacity and imbalance violations. Any
standard congestion control algorithm used for routing in the network can be adapted in PCN. The
routers monitor the time that each packet spends in its queue. If the time spent exceeds a certain
threshold, the packet is marked. If the packet is already marked then these are forwarded. Once
the receiver receives the packet, it sends an acknowledgment back to the sender that can interpret
the existence of a route.

“RobustPay+: Robust Payment Routing With Approximation Guarantee in Blockchain-
Based Payment Channel Networks” by Zhang, Yuhui, and Dejun Yang (2021)

Spider [125] ignores the impact of constraints like transaction fees and timeliness of payment.
Zhang et al. [147] had proposed CheaPay which aims to minimize the fee for routing payment
across a single path. The drawback is that the algorithm is not resilient to transaction failures. [146]
has proposed an efficient routing algorithm that is resistant to transaction failure but minimizes the
worst-case transaction fee for a given payment. The protocol consists of three stages:

i. Payment Path Construction: Two node-disjoint paths are constructed for a given payment
to guarantee robustness. The rationale behind this is that if one path fails, payment can be
routed via the other path. A distributed 2-approximation algorithm is used here to minimize
the worst-case transaction fee for routing payment.

ii. Hashed Timelock Contract (HTLC) Establishment: HTLC is modified to handle cancelation
of payment. If the conditional payment is canceled or not satisfied in one of the paths, the
coins locked in the conditional payment via the second path are refunded to the original
sender. The modification is made by the use of two different preimages on each of the paths
for each of the hash values.

iii. Payment Forwarding: After the HTLC establishment phase, if the payment is transferred
successfully via one of the paths, the conditional payment via the other path must be invali-
dated. In case the receiver tries to claim both payments, the sender initiates a refund on one
of the paths.

Another work [45] proposes an algorithm that returns the most economical path for a given pay-
ment by designing a transaction fee model.

Payment Protocol in Payment Channel Network 37

Privacy-Preserving Route Discovery (2021)

The lightning network maintains a set of trampoline nodes to enable efficient and scalable discov-
ery of routes [128]. These nodes may act selfishly and leak information about routes, frequency
of transactions in a particular channel, etc. The state-of-the-art routing algorithm discussed till
now might reveal critical information, violating privacy. In [105], the authors have discussed how
gossiping and probing can be used to leak the residual balance of a channel and proximity of the
recipient while the discovery of the route. To counter these problems, Pietrzak et al. have pro-
posed LightPIR [112], a privacy-preserving discovery of the shortest path connecting source to
destination. The algorithm relies on a simple hub labeling heuristic combined with private infor-
mation retrieval. Previously, the algorithms were executed under the assumption that the network
is fully known by at least one participant. Avarikioti et al. [29] was the first to propose an efficient
route discovery algorithm considering the payment channel network topology is partially known.
Instead of using expensive multi-party computation (MPC) on the entire network, the sender and
receiver propagate gossip messages across the network involving a small fraction of nodes. A path
is discovered when a node receives both messages.

3.2 Payment Protocol in Payment Channel Network

We discuss some construction for single path and multi-path payment that is privacy-preserving
and efficient.

3.2.1 For single-path payment

“Concurrency and Privacy with Payment-Channel Networks” by Malavolta et al. (2017)

Prior to this work, TumbleBit [71] and Bolt [67] proposed off-chain path-based payments via a
single hub or tumbler. However, these protocols worked for single-hop payments, and there is no
mention of how these protocols can be extended for multi-hop payments. HTLC used in Lightning
Network is susceptible to wormhole attack. Since the conditional payment forwarded on the path
uses the same hash value, malicious parties can collude and prevent honest users from gaining fees
by processing off-chain transactions. Also, HTLC lacks any rigorous security and privacy analysis.
We discuss a smart contract construction termed as Multi-Hop HTLC which preserves the privacy
of payment and hides the identity of payer and payee [93]. Later, we discuss two protocols that
deal with concurrency and privacy of payments in PCN.

38 Literature Survey

Figure 3-1: Mutli-Hop HTLC construction for payment from Alice to Dave

Multi-Hop HTLC. In the Fig. 3-1, Alice samples 4 random numbers x1, x2, x3 and x4. It
constructs y4 = H(x4) where H is any standard one-way hash function. Next it constructs y3 =

H(x3 ⊕ x4) and a zero knowledge proof π3 for the statement ”given y3 and y4, there exists an
x : y4 = H(x) and y3 = H(x3 ⊕ x)”. Similarly, it constructs y3 = H(x2 ⊕ x3 ⊕ x4) and a
zero knowledge proof π2 for the statement ”given y2 and y3, there exists an x : y3 = H(x) and
y2 = H(x2 ⊕ x)”. It constructs y1 = H(x1 ⊕ x2 ⊕ x3 ⊕ x4) and a zero knowledge proof π1 for
the statement ”given y1 and y2, there exists an x : y2 = H(x) and y1 = H(x1 ⊕ x)”. It sends the
value (x1, y1, y2, π1) to Bob, (x2, y2, y3, π2) to Charlie, (x3, y3, y4, π3) to Eve and (x4, y4) to Dave
via a secure anonymous channel.

(a) Contract Creation Phase. Bob, Charlie, and Eve check whether the zero-knowledge proof
received is correct or not. Alice forms the contract with Bob using condition y1. If π1 is correct,
Bob accepts the payment, else he will abort. Bob forwards the payment to Charlie using the
condition y2. Charlie forwards the payment to Eve using the condition y3 and Eve does the same
to Dave using the condition y4.

(b) Contract Release Phase. Upon receiving the conditional payment, Dave checks if y4
?
=

H(x4). If this holds true, Dave send x4 to Eve and claims payment. Eve calculates x3 ⊕ x4, sends
it to Charlie and claims payment. Charlie computes x2 ⊕ x3 ⊕ x4, claims payment from Bob upon
releasing this key. Bob computes x1 ⊕ x2 ⊕ x3 ⊕ x4 and claims payment from Alice. None of the
intermediate participants can correlate the payments as every channel uses a different condition.

Concurrency Issue in PCN. It might be the case that several concurrent payments might enter
a deadlock due to a lack of channel capacity. Consider the example shown in Fig. 3-2. Alice
tries to send a payment of 1 unit to Eve via path Alice → Bob → Charlie → Dave → Eve

and simultaneously, Mathew wants to send a payment of 1 unit to Charlie via path Mathew →
Dave → Eve → Bob → Charlie. Assuming each channel has a capacity of 1 unit, the payment
from Mathew to Charlie gets blocked because the link Bob-Charlie has forwarded the payment
request sent by Alice. Payment from Alice to Eve gets blocked because of the link Dave-Eve has
forwarded the payment request by Mathew.

The problem can be solved by either using the concept of Blocking Payments or Fulgor or the

Payment Protocol in Payment Channel Network 39

Figure 3-2: Payment from Alice to Eve and from Mathew to Charlie enter a deadlock

concept of Non-Blocking Payments or Rayo. In Fulgor, both the payments stated in Fig. 3-2 is
allowed to fail. The money locked in each contract is sent back to the party forwarding conditional
payment. Each sender (Mathew and Charlie in this context) waits for a random amount of time
before reattempting the payment. A decrease in throughput is observed. In Rayo, at least one of the
concurrent payments is allowed to complete. A global ordering of payment is maintained. A user
can queue payments with identifiers higher than the payment currently being served and ignore
all such payments with a low valued identifier. Rayo provides non-blocking progress of payment
and higher throughput but at cost of less anonymity guarantee. On the other hand, Fulgor provides
stronger anonymity.

“Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability” by Mala-
volta et al. (2018)

Multi-Hop HTLC [93] requires exchanging non-trivial amounts of data and computation of com-
plex zero-knowledge proof during the setup phase. It lacks interoperability since it requires that
any cryptocurrency using it must support HTLC. Anonymous Multihop Locks or AMHL [94] can
be used for both script-based settings or even scriptless setting leveraging on Schnorr signature and
ECDSA signature. It reduces the transaction size, and blockchain load and guarantees interoper-
ability.

We state a generic script-based construction of AMHL in Fig. 3-3. Given a party P0 wants
to transfer an amount to party Pn via path P = 〈P0, P1, , Pn〉 and a homomorphic one-way func-
tion g : D → R, in the setup phase P0 samples n values (y0, y1, . . . , yn−1). Using anonymous

40 Literature Survey

Figure 3-3: Using AMHL for secure payment from P0 to Pn

communication channel, P0 sends (g(
i−1∑
j=0

yj), g(
i∑

j=0

yj), yi) to each of the party Pi, i ∈ [1, n − 1]

along with a zero knowledge proof πi for the statement ”∃y : g(y + yi) = g(
i∑

j=0

yj)”. P0 sends a

key kn =
n−1∑
j=0

yj to Pn. Each party checks whether the received message is consistent using ho-

momorphic properties of g. A pair of party Pi and Pi+1 sharing a channel agrees on the common

value Yi = g(
i∑

j=0

yj) serving as the lock. Rest of the parties does the same. Once Pn receives

the conditions of payment from Pn−1, it checks whether Yn−1
?
= g(kn). If this holds true, then it

releases kn to Pn−1. Pn−1 upon receiving kn−1, computes kn−1 = kn− yn−1 where Yn−2 = g(kn−1

and sends this value to Pn−3. In general, this can be stated as party Pi and Pi+1 opens the lock by

using g(ki+1 − yi) = g(
i∑

j=0

yj − yi) = g(
i−1∑
j=0

yj) = Yi.

We can use either Schnorr or ECDSA (compatible with Bitcoin) signature scheme for scriptless
construction. We discuss the schnorr signature scheme.

Scriptless Schnorr Construction: Given a message m ∈ M, for a given public key pk, any
two-party can construct an incomplete signature over message m. This incomplete signature acts
as the lock. Completion of the signature acts like the release of the lock. For an elliptic curve
group G having generator G of prime order q, we discuss the steps in detail:

• Two parties Pi and Pi+1 have public key PKi = x0G and PKi+1 = x1G where x0
$← Zq and

x1
$← Zq.

• Using the common lock value Yi =
i∑

j=0

yjG, they chooses random value R0 and R1 where

R0 = r0G, created by Pi and R1 = r1G, created by Pi+1.

• Both the parties generate R = R0 + R1 + Yi and construct s = r0 + r1 + e(x0 + x1) where
e = H((PKi + PKi+1)||R||m), H is a standard hash function. The pair (R, s) forms the

Payment Protocol in Payment Channel Network 41

lock. It is not a valid signature on m, since it lacks the term y : Yi = yG.

• Once y is revealed, Pi+1 can construct s∗ = s+ y and complete the signature.

• Note that the lock between Pi and Pi+1 is conditioned on the lock between Pi+1 and Pi+2.
Once these parties complete their signature and release the lock only then Pi+1 can complete
the signature on Pi and Pi+1.

“MAPPCN: Multi-hop Anonymous and Privacy-Preserving Payment Channel Network” by
Tripathy and Mohanty (2020)

In AMHL, the sender had to construct the random values for all the intermediate nodes. It was
assumed that the sender transmits these values using anonymous secure communication channels
to all the intermediate nodes during the setup phase. MAPPCN [131] does not require the sender
to communicate with each intermediate party. The computational overhead of the sender is very
less. The protocol offers a better privacy guarantee and is resistant to several attacks. We provide
a high level overview of the protocol where S routes v coins to recipient R via intermediaries
u1, u2, . . . , un.

• A base point G of an elliptic curve group is chosen.

• The sender S generates a random number r and shares (r,G) with the receiver via a secure
channel.

• S sends 〈S, u1, v1, β1, α1, t1〉 to its next neighbor u1 where β1 and α1 are a pair of random
numbers, t1 is the lock time of the off-chain contract between S and u1 and v1 is the coins
locked in the contract.

• If we state in general, each user ui generates a random number li and computes βi+1 = liβi

and αi+1 = liαi. It sends 〈βi+1, αi+1〉 to its next neighbor ui+1.

• Finally, R receives 〈βn+1 αn+1〉 from neighbor un. It now verifies whether αn+1
?
= rβn+1G,

computes Γn+1 = rβn+1 and returns it to un. The latter verifies if Γn+1G
?
= αn+1 and

releases the coins to R.

• In general, a node ui computes Γi
?
= l−1

i Γi+1 to ui−1, where i ∈ [0, n], and claims the coins.
This continues till u0 = S releases the coins to u1.

42 Literature Survey

Another work, n-HTLC [101] offer better privacy and faster than AMHL. The protocol uses
garlic routing that is compatible with cryptocurrencies like Monero [133], Verge [126]. The au-
thors have also proposed another symmetric key encryption-based payment protocol, kTLC. It is
compatible with Lightning Network and Raiden Network [13].

In [87], the authors have proposed Generalized Multi-Hop Locks (GMHL) that are used to de-
sign a general PCN. The construction has a lightweight setup, and unlike AMHL, the computation
load is borne by all the participants. GMHL is built on a Guillou-Quisquater-based adaptor signa-
ture and a proposed novel RSA-based randomizable puzzle. Thus GMHL can be applied to any
blockchain.

3.2.2 For multi-path payment

“Atomic MultiPath Payment” by Osuntokun (2018)

For high-valued payments, it might not be feasible to find a single path in a network to route a
payment. Instead, it is advisable to split such payments into several micropayments. Routing each
micropayment can be accomplished by using HTLC where the same hash value is reused across
all the paths. The downside of an approach is that the payments can be correlated, it is susceptible
to wormhole attacks. Even if the payment fails in one of the paths, the receiver might still be able
to claim the full payment as the same preimage can solve all the conditional payments.

Atomic MultiPath Payment or AMP [10] resolves these issues guaranteeing atomicity, either
all payments succeed or none succeeds. Once the receiver receives all the conditional payments
from different routes, it can claim the payment. The payment hash used across different routes
is different, preventing any correlation. The setup is non-interactive where the payer need not
coordinate with the payee.

Construction. Alice needs to send an amount v to Bob. It figures n paths P1, P2, . . . , Pn, with

each path transferring v1, v2, . . . , vn : v =
n∑
i=1

vi as shown in Fig. 3-4. Alice samples secret

s1, s2, . . . , sn. The master secret s = s1 ⊕ s2 ⊕ . . .⊕ sn can be generated. Using s, she generates
the condition of payment for each path Pi as follows: Hi = H(s||i), i ∈ [1, n]. For each path Pi,
the conditions of payment Hi is forwarded using onion routing, where the the tuple (si, i) is send
as an encrypted onion blob or EOB which can only be decrypted by Bob. Upon receiving all the
conditions from n paths, Bob computes s and constructs the preimage s||i for each path Pi in order
to claim payment. If any of the path fails, then Bob will not be able to claim payment.

The drawback of the construction is the latency involved. The time taken by the receiver to

Payment Protocol in Payment Channel Network 43

Figure 3-4: Atomic MultiPath Payment from Alice to Bob

receive all the conditional payments is slowed down by the path having the slowest propagation
rate. Another multipath payment, Boomerang [32], addresses these issues by enabling redundancy.
Alice can use more than the transaction value v for forwarding her payment via k such paths where
k > n. Later, she can reclaim the funds that exceed v. If some of the paths fail, still the success
rate of payment increases as the rest of the paths might be successful in propagating the desired
value. The disadvantage of Boomerang is that excess collateral gets locked up due to the use of
redundant paths that could have been utilized for routing other payments.

“Split payments in payment networks” by Piatkivskyi and Nowostawski (2018)

In AMP [10], either the entire payment must succeed or fails. This may result in payment remaining
unresolved if any of the partial payment remains stuck and funds remain locked. In this work [111],
the issue is resolved by allowing partial payments to be spread evenly across a given execution
time window, called as time taken to live or TTL. Since each partial payment is executed through
a subsequent amount of time, they might eventually succeed due to a change in the channel’s
residual balance over time. If the payment is fully transferred within TTL, then it is considered to
be successful. The success ratio of payment is higher than AMP.

“Splitting Payments Locally While Routing Interdimensionally” by Eckey, Faust, Hostáková
and Roos (2020)

In this protocol [53], instead of the sender specifying the path from sender to receiver and com-
puting for the setup phase, each party independently decides on the split of the payment value.
Initially, the receiver sends the hash of a secret preimage xR, to the sender. Let it be denoted as

44 Literature Survey

H : H = H(xR) . Note that the hash function used here is an additive homomorphic one-way
function. The sender splits the amount based on the channel’s residual capacity. It decides on the
conditional payment for each split by sampling different random values. If sender splits the pay-
ment t into k parts, then it samples x1, x2, . . . , xk. The hash of the receiver’s preimage and the hash
of the sender’s preimage for each split is added, H +H(xi), i ∈ [1, k] and forwarded to the neigh-
bor along with the address of the receiver and encrypted value of each random value, denoted as
EncHE(xi). The encryption used here is homomorphic, using the public key of the receiver. If two
encrypted values are added, then upon decryption we get the summation of these two values. The
neighbor upon receiving the packet decides upon the next neighbor which can forward the packet
to the receiver. It performs the same step as done by the sender and combines its encrypted random
value with that received from the sender. When the receiver receives the conditional payments for
all the splits, it decrypts the encrypted value and adds the preimage it had sampled initially. It
now claims the payment by releasing this preimage. The sender can generate a valid receipt of the
payment provided the sender receives the secret preimage sampled by the receiver. For routing,
it uses a new algorithm, Interdimensional SpeedyMurmur. The main advantage of this protocol is
that it combines both routing and payment, guaranteeing higher throughput.

Another work based on Non-Atomic Payment Splitting (NAPS) [51] allows the intermediate
parties routing payment to split recursively into several partial payments. However, the protocol
does not ensure atomicity and considers the partial success of payment valid. The advantage of this
protocol is that it does not use computation-intensive cryptographic primitives like homomorphic
encryption, unlike [53].

“Spear: fast multi-path payment with redundancy” by Rahimpour and Khabbazian (2021)

In the previous work, a payment fails or gets delayed for an indefinite period even if one of
the partial payments fails or delays. This problem was mitigated to some extent in Boomerang
[32], however, the protocol still suffers from higher latency and computational complexity. Spear
[116] is more efficient in terms of computation cost and requires half the maximum lock time of
Boomerang. Given that Alice needs to make a payment α to Bob, she follows the following steps:

i. Bob samples a hash digest and shares it with Alice.

ii. She divides α across k such paths, where the partial payment may not be equally divided.
For each path, she samples a new hash digest, whose preimage is unique to that path. Note
that summation of partial payment across k path is greater than α to allow redundancy.

Griefing Attack in Lightning Network 45

iii. Once Bob receives all the partial payment, he informs Alice. Now Alice reveals the preimage
to a subset of hash digest such that summation of the subset of partial payment is α.

iv. Upon getting the preimage from Alice, Bob ensures that he has enough time left to claim the
payment and it cancels the rest of the redundant payments.

3.3 Griefing Attack in Lightning Network

A vulnerability on mainnet Lightning [76], the victim does not lose any money but is forced to pay
for an expensive channel close. An adversary to disrupt competitors or jam a significant portion of
the network will mount this attack.

3.3.1 Attacking Strategy

In this section, we discuss a few papers that define the attacking strategy for stalling the network
using a griefing attack and the damage inflicted on the network.

“Discharged Payment Channels: Quantifying the Lightning Network’s Resilience to Topology-
Based Attacks” by Rohrer, Malliaris and Tschorsch (2019)

Rohrer et al. [121] have discussed the topology of Lightning Network. Upon analysis, the network
was found to follow a small world, scale-free structure. The authors have also investigated the
resilience of the network towards random failures and targeted attacks. Several attack vectors have
been defined that cause exhaustion of the payment channel’s capacity and isolation of nodes in
the network. The impact of the damage gets amplified due to payment griefing. The adversary
initiates an arbitrary number of HTLC payments to a node under its control. The former instructs
the corrupted node to ignore such payment requests forcing other nodes in the path to wait for the
HTLC timelocks to expire. No cost is involved in mounting the attack as the payment balance
is restored after the contract timeouts. However, intermediate parties cannot use their channel
capacity for the designated period, allowing the adversary to freeze the channel’s liquidity.

Various attacking strategies have been discussed where the adversary either targets highly cen-
tral nodes in the network or applies the highest-ranked minimum cut strategy. Nodes with high
centrality mean they are important to the network. Such nodes either have a high degree or high
betweenness or high eigenvector centrality. Removing these nodes might lead to the partitioning of

46 Literature Survey

the network or an abrupt reduction of liquidity. A minimum cut set of a graph is a set of edges with
minimal cumulative capacity that partitions the graph if removed from the graph. An adversary
with a limited budget chooses a minimum cut strategy but to inflict substantial damage, a powerful
adversary with a substantial budget will choose to remove highly central nodes.

In [109], an adversary conducts self-payment blocking the outgoing capacity of the channel,
similar to a channel exhaustion attack. When the victim runs an LND implementation, 80% of
the capacity of the victim can be locked during 287 blocks (almost two days) in any balance
distribution tested.

“Congestion Attacks in Payment Channel Networks” by Mizrahi and Zohar (2020)

Paralyzing the network for multiple days by overloading each channel with maximum unresolved
HTLCs has been studied in [100]. The attack is mainly dependent on the limits imposed on the
number of unresolved payments a channel can have. The authors have discussed three versions
of the attack - blocking several high liquidity channels, disconnecting many pairs of nodes, and
isolating several nodes from the network. The attacker either chooses the longest feasible route or
selects the hub node. The paper discusses two proof of concept implementations for mounting the
attack. In both cases, the attacker sends several self-payment requests. After sending such requests,
it can either wait for the HTLC timelock to elapse or it can cancel the payment just before elapse
of lock time. In the first case, the channel connected to the attacker who has stopped responding is
closed and the honest party is forced to settle on-chain. In the second case, the payment is canceled
leading to the failure of HTLCs along the entire route but none of the channels gets closed. The
attacker can continue locking channel liquidity without opening fresh channels with the victim
nodes. It reduces the success rate of payment and increases the average attempts made for routing
payments.

“Bank run Payment Channel Networks” by Lu, Han, and Yu (2020)

Bankrun attacks exploit payment griefing to bank-run PCNs. In this attack, the attacker generates
Sybil nodes, establishes channels with hubs in the network, makes payments between his nodes,
and starts griefing simultaneously [89]. If the adversary has sufficient coins, he can lock a high
percentage of coins in the PCN, so that the PCN may no longer handle normal payments. This
leads to repeated attempts for payment. Payers may resort to longer paths increasing the fee per
transaction. The evaluation result shows that using channels with 1.5% high capacity nodes, the
attacker can lock 83% of the capacity in the entire network. If the attacker forms connections to

Griefing Attack in Lightning Network 47

these nodes, then by investing just 77 BTC, the former can lock up to 45% (around 267 BTC) of
coins in the entire network for an entire day, or longer as per the HTLC timeout period.

In [90], a general congestion attack was introduced, which generalizes the existing conges-
tion attack in terms of attacking strategies and targeted metrics. The strategies defined here for
mounting the attack focus on the network’s liquidity.

“Route Hijacking and DoS in Off-Chain Networks” by Tochner, Zohar and Schmid (2020)

In this paper [130], an adversary establishes a set of edges in a topologically important location
i.e., increasing its centrality. It announces a very low fee thereby attracting parties to select the
adversary as an intermediate node for routing. Once it receives the conditional payment, it drops
the payload and stops responding. The payment does not take place and the sender waits for the
HTLC timeout period before attempting to resend the payment. If the attacking node has very high
centrality, it will be able to hijack a large number of paths. The attack may be further amplified if
the attacker sets a higher timeout value for the HTLCs. The coins locked in the contract cannot be
utilized and can be unlocked once the period elapses. With the help of the attack, residual channel
balance is disclosed and the network’s liquidity reduces.

In another work, [139], a denial-of-service attack on SpeedyMurmurs is performed in two
ways. The first method is the same as discussed before where an attacker attracts payments to be
routed through itself and then drops them. The second method performs griefing by delaying the
payment.

3.3.2 Countermeasure for Griefing Attack

Several ideas have been proposed for countering the griefing attack. A limit on the number of
incoming channels and the channel capacity was proposed in [121] as a countermeasure for node
isolation attacks. However, the attacker may split the funds over multiple identities and channels to
bypass the restrictions imposed. Faster resolution of HTLC [100] was proposed as another method
to avoid the disadvantage of having staggered lock time across payment channels. However, such
a feature would violate the purpose of having HTLC timeout which acts as a safety net against
other possibly malicious activities. All these payment protocols had a staggered lock time over
each channel responsible for routing the payment. The collateral cost incurred for staggered lock
time protocols is substantial. We discuss several countermeasures for griefing attacks based on (i)
construction of constant lock time payment protocols (ii) virtual payment channel construction and

48 Literature Survey

lastly, (iii) penalization mechanism.

3.3.2.1 Constant Locktime Payment Protocols

“Atomic Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-
Channel Networks” by Egger, Moreno-Sanchez and Maffei (2019)

Payment protocols are susceptible to Griefing Attack where a receiver can stop responding. If the
path routing payment from payer to payee is of length n and the time taken to settle a transaction
on-chain is ∆, then in the worst case, if all parties go on-chain and settle the payment, the collateral
across the path is locked for O(n∆). To reduce the worst-case collateral locked, a variant of pay-
ment channel construction supporting Ethereum-styled smart contracts, Sprites [99] was proposed.
Sprites support partial withdrawals and deposits, and the channel can continue to operate without
interruption while such operations are being performed.

In Sprites, the authors had made a conjecture that the locking of constant collateral cannot be
achieved in Bitcoin scripts. The conjecture was refuted in the work by Egger et al. [55]. In this
protocol, a solution has been proposed that uses MIMO transactions. A MIMO transaction sup-
ports multiple inputs and multiple outputs in a transaction. It enables synchronizing the off-chain
updates of multiple payment channels while ensuring that each payment channel can function inde-
pendently after the protocol is executed. The drawback of the protocol is that it violates relationship
anonymity and relies on a coordinator to control and keep track of the initiation and completion
of each phase. The identity of all the parties must be known to ensure whether a payment fails or
succeeds.

“Blitz: Secure Multi-Hop Payments Without Two-Phase Commits” by Aumayr, Moreno-
Sanchez, Kate and Maffei (2021)

We discussed previously that [55] violates relationship anonymity by revealing the identity of each
participant to one another. Thus, another single round multi-hop payment protocol Blitz [27] was
proposed that ensures the privacy of participants, resilient to wormhole attack. The protocol locks
constant collateral like the atomic multi-channel update. This ensures that the PCNs are far more
robust against griefing attacks and have a higher transaction throughput.

Blitz builds on standard PCN and makes use of timelocks and signatures as the cryptographic
primitives. It can be widely deployed across cryptocurrencies that do not support hash locks or
scripts like Monero, Stellar, etc. To allow fast tracking of payments, the authors have extended the

Griefing Attack in Lightning Network 49

Figure 3-5: Construction of self virtual channel for mounting griefing attack

protocol to Blitz-FT with an optional second round of communication. Fast tracking of payments
allows the honest users on the path to update their channel when the coins have been transferred
from the payer to the payee.

The problem with Blitz is that it supports only path-based payments. Another work by Aumayr
et al. [25] presents an off-chain protocol that enables atomic multi-channel updates across generic
topologies and is not just restricted to path-based payments. It also achieves value privacy where
channel owners need not disclose the payment amount and they can still update their channel.

3.3.2.2 Virtual Payment Channel Constructions for Bitcoin Blockchain

Dziembowski et al. [50, 52] had proposed virtual state channels that is used for executing applica-
tions that are more complex than just payments. Such state channels eliminate the need to interact
with any intermediary nodes unlike in HTLC where intermediate parties are paid some processing
fee for forwarding the payment. Two parties not sharing a state channel can perform a transaction
as if they are directly connected. The creation of virtual state channels requires blockchain with
smart-contract capability, thus they cannot be extended to Bitcoin-based PCNs.

Jourenko et al. propose a UTXO based lightweight virtual payment channel construction for
blockchains such as Bitcoin [79]. The cryptographic primitive used is the same as Blitz. The
construction consists of three phases: Open VC, Close VC and Enforce VC. Open VC and
Close VC is used for setup and tear down of virtual channels. Enforce VC is used to resolve
any dispute that arises while transactions are executed off-chain. To construct virtual payment
channels across multiple hops, the protocol is applied iteratively. Another work, Elmo [83], men-
tions a recursive virtual channel construction, offering optimal round complexity even in the pes-
simistic case. However, such construction suffers from virtual griefing attack. In this attack, a
payer opens a virtual channel to itself as shown in Fig. 3-5. The channel is kept open before the
timelock of payment expires. Funds remain locked at each virtual channel in the underlying recur-
sion layer. The problem with this construction is that only a fixed number of transactions can be

50 Literature Survey

executed within the virtual channel’s lifetime. A generalized construction of Bitcoin compatible
virtual channel [26] eliminates the problem, and it can be used to run any application off-chain,
supported by Bitcoin script.

The construction of a lightweight virtual payment channel is re-used for a low-collateral pay-
ment tree protocol [80]. The damage due to the griefing attack is less in this case, however, the
protocol requires all the parties to remain online and interact with each other, leaking sensitive
information. Recently, Aumayr et al. proposed a one-round virtual channel construction Donner
[28] that addresses the problems discussed above. The payment channel construction is efficient,
privacy-preserving, and resistant to virtual griefing attacks.

3.3.2.3 Penalization Mechanism

State-of-the-art discusses alternate mitigation strategies by incentivizing or punishing nodes. The
use of up-front payment was first proposed in [16]. A party has to pay a fee to the other party for
accepting the HTLC in up-front payment. An excess fee paid is returned to the sender upon suc-
cessful payment. This introduces a lot of economic barriers where up-front payment may exceed
the transaction fee. For small valued payments, a large up-front payment adds a burden on the
sender. In [11], the concept of reverse-bond was proposed that is similar to our proposed strategy.
The counterparty accepting the HTLC will have to pay a hold fee on a per unit interval basis as if
it has rented the HTLC. However, it has not been stated formally how this can be realized. There
is no way to track per unit interval in a decentralized asynchronous setup. Up-front payments have
also been used to disincentivize an attacker from griefing in atomic swaps [72]. In [8], Proof-of-
Closure of channels was proposed, where each HTLC will have a hard timeout and a soft timeout
period. However, a malicious node can set up several Sybil nodes just for this purpose so that
channel closure doesn’t affect its normal activity in the network.

Chapter 4

HushRelay: A Scalable Routing Algorithm
for Off-Chain Payments

Payment channel networks (PCN) are used in cryptocurrencies to enhance the performance and
scalability of off-chain transactions. Except for the opening and closing of a payment channel,
no other transaction requests accepted by a PCN get recorded in the Blockchain. Only the parties
which have opened the channel will know the exact amount of funds left at a given instant.

For routing payment to a particular node in the network, a party need not open a direct channel.
It can route the payment along a path in the network via several intermediaries. However, it might
be difficult to find a single path with sufficient capacity for transferring a high-valued payment. In
such cases, it is better to split the amount and send partial payments via multiple paths. While there
exist several approaches for multi-path routing of transactions, they are either quite inefficient or
leaks sensitive information [92]. For example, in SpeedyMurmur [122], the decision taken on the
number of splits at the initial phase of the routing algorithm might not be accurate. We observed
that finding feasible routes even for a single payment in PCN is a challenging task. Such factors
motivated us to design a new routing algorithm for PCN that is privacy-preserving, efficient, and
scalable.

4.1 Our Contributions

We have made the following contributions in this chapter :

• We have proposed a privacy-preserving distributed routing algorithm, HushRelay, in the pay-
ment channel network.

• We have implemented the scheme and compared the performance of HushRelay with Speedy-
Murmur [122] in terms of success ratio and time taken to route (TTR) a payment. We used a
snapshot of Ripple Network and Lightning Network and our results show that HushRelay attains
a success ratio of 1 in both cases having an execution time of 2.4s and 0.15s. However, Speedy-
Murmur attains a success ratio of 0.98 and 0.91 provided the number of landmarks is 6. The

51

52 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

execution time is higher, around 4.7s and 1.9s for the snapshot of Ripple Network and Lightning
Network, respectively. Our observation shows that HushRelay is efficient and scalable. The
code is provided in [6].

• The proposed routing algorithm is modular and can be combined with any other privacy-preserving
payment protocol.

4.1.1 Organization

Section 4.2 provides the background needed for understanding the chapter. Section 4.3 defines the
problem statement and section 4.4 discusses the protocol HushRelay with section 4.4.1 dealing
with generic construction and section 4.4.2 providing the proof of correctness. We provide the
privacy analysis in section 4.5. We have compared the performance of HushRelay with the state-
of-the-art SpeedyMurmur in section 4.6.

4.2 Background

In this section, we provide the background for understanding this chapter. The terms source/payer
means the sender node. Similarly, sink/payee/destination means the receiver node, and transaction
means payment transfer.

4.2.1 Payment Channel Network

Definition 4.1. A Payment Channel Network (PCN) [93] is represented as a bidirected graph
G := (V,E), where V is the set of nodes and E ⊂ V × V is the set of edges connecting the nodes
in V , also termed as payment channels. Only the opening and closing of payment channels get
recorded on blockchain. Disputes arising in an off-chain transaction are settled by broadcasting
the transaction on blockchain.

Basic operations of PCN [93]-

• openPaymentChannel(v1, v2, α, t,m) : For a given pair of accounts v1, v2 ∈ V , chan-
nel capacity α (initial balance escrowed), timeout value of t and processing fee charged m,
openPaymentChannel creates a new payment channel (id(v1,v2), α, t,m) ∈ E, where id(v1,v2)

Background 53

is the channel identifier, provided both v1 and v2 has authorized to do so and the funds con-
tributed by each of them sum up to value α.

• closePaymentChannel(id(v1,v2), α̃) : Given a channel identifier id(v1,v2) with balance α̃,
closePaymentChannel removes the channel from G provided it is authorized to do so
by both v1, v2 ∈ V . The balance α̃ gets written on blockchain and this amount is distributed
between v1 and v2 as per the net balance recorded.

• payVal(p(s, r), val) : p(s, r) denotes a path between sender s and receiver r. It is defined by
a set of identifiers id(s,v1), id(v1,v2), . . . , id(vn,r), s, v1, v2, . . . , vn, r ∈ V , having enough credit to
allow transfer of val from s to r, if for each payment channel denoted by id(vi,vi+1) has capacity
of at least β ≥ val′i, val

′
i = val′i+1 +f(val′i+1), 0 ≤ i ≤ n−1, val′n−1 = val, v0 = s and vn+1 =

r, where f(val′i) is the processing fee charged by each intermediate node vi for forwarding val′i
coins in path p(s, r). A successful payVal operation leads to a decrease of capacity of each
payment channel id(vi,vi+1) by val′i. Else the capacity of the channel remains unaltered.

4.2.2 Payment Flow problem

Consider a directed graph G := (V,E) : n = |V |,m = |E|,m ≥ n− 1, having two distinguished
vertices, source s ∈ V , sink r ∈ V, s 6= r, as a flow network. For a pair of vertices v, w, distance
from v to w in graphG is defined by dG(v, w), the minimum number of edges on the path from v to
w; if there is no path from v to w, dG(v, w) =∞. A positive real-valued capacity c(v, w), defined
by c : E → R, is the maximum amount of funds that can be transferred across a payment channel.
For every edge (v, w) ∈ E ; if (v, w) 6∈ E, then c(v, w) = 0. A flow fl on G is a real-valued
function on vertex pairs satisfying the constraints [63], [110] :

fl(v, w) ≤ c(v, w), ∀(v, w) ∈ V × V (capacity),
f l(v, w) = −fl(w, v), ∀(v, w) ∈ V × V (antisymmetry),
Σu∈V fl(u, v) = 0 ∀v ∈ V − {s, r} (flow-conservation),

(4.1)

The net flow into the sink is given by f , where:

f = Σv∈V fl(v, r) (4.2)

A payment channel network is mapped to a flow network with channels forming the edges and
funds locked on each channel becoming the edge capacity. Finding the maximum flow value from
source to sink for a flow network is termed as the Maximum Flow problem. In the context of PCN,

54 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

given a payment value val, one has to find a feasible flow from payer to payee, which is termed
here as Payment Flow problem. Any max-flow algorithm with subtle modifications can be applied
here, taking into account the pre-flow fl of each vertex (except the source and sink) on the network.
A pre-flow is a real-valued function on a vertex pair that satisfies the first two constraints of Eq.
4.1 and a weaker form of the third constraint :

Σu∈V fl(u, v) ≥ 0, ∀v ∈ V − {s, r} (non-negativity constraint), (4.3)

A residual capacity of an edge (v, w) ∈ E is the amount of capacity remaining after the preflow
fl, i.e. c(v, w) − fl(v, w) and it is denoted by rfl(v, w). A residual graph Gfl = (V,Efl) for
a preflow fl is the graph whose vertex set is V and edge set Efl is the set of residual edges
(v, w) ∈ E : rfl(v, w) > 0. The flow excess e(v) of a vertex v is the net balance of funds in node
v denoted by Σu∈V fl(u, v). The algorithm ends with all vertices except s and r having zero excess
flow. If the sink is unreachable or if the network does not have adequate capacity for transferring
the payment val, then the excess value is pushed back to source s.

4.3 Problem Statement

It is not always possible to route the transaction across a single path as the value may be quite high
compared to minimum capacity of the designated path. Hence it is better to find set of paths such
that the total amount to be transferred is split across each such path. We define the problem as
follows -

Problem 1. Given a payment channel network G(V,E), a transaction request (s, r, val) for a
source-sink pair (s, r), the objective is to find a set of paths p1, p2, . . . , pm for transferring the fund
from s to r such that p1 transfers val1, p2 transfers val2, . . . , pm transfers valm : val = Σm

i=1vali

without violating transaction level privacy i.e. neither the sender nor the receiver of a particular
transaction must be identified as well as hiding the actual transaction value from intermediate
parties.

4.4 Our Proposed Construction

In this section, we provide a detailed overview of the routing algorithm, HushRelay. The payment
network comprises set of payment channels denoted by channel identifier id(i,j), (i, j) ∈ E. We

Our Proposed Construction 55

describe the model and state the assumptions.

Network Model and its Assumptions

• The network is static i.e. no new channels get added or an existing channel is removed during
the execution.

• The topology of the network is known by all the nodes in the network since any opening or
closing of a channel gets recorded on the blockchain.

• The residual balance of each payment channel is not known publicly.

• Users sharing a payment channel use secure and authenticated channels (such as TLS) for com-
munication.

4.4.1 Generic Algorithm

Since we consider PCN as a flow network, for solving the payment flow problem in the given
network for executing a transaction request (s, r, val), we propose a routing algorithm inspired
from distributed push relabel algorithm stated in [63], [110]. The algorithm proceeds locally by
the exchange of messages between neighboring nodes. No single entity controls the flow in the
network.

Before discussing the algorithm, we briefly describe the Push Relabel algorithm for a single
source-sink pair (as stated in [63]):

• The instruction push redirects the excess flow of a vertex to the sink via its neighbouring vertices.
The amount of excess flow that can be pushed from a vertex v to one of its neighbouring vertex
w is δ = min(e(v), rfl(v,w)), where rfl(v,w) is the residual capacity of edge (v, w). The value δ
is added to the preflow value fl(v, w) (subtracted from fl(w, v)) and subtracted from e(v). Any
push which results in zero residual capacity of the edge is said to be saturating.

• A valid labeling function d : V → I+ ∪ {0,∞} is used for estimating the distance of a vertex v
from sink r. d(s) = n, d(r) = 0 and d(v) ≤ d(w) + 1 for every residual edge (v, w). The label
d(v) < n forms the lower bound on the actual distance from v to r in the residual graph Gfl and
if d(v) ≥ n, then d(v)− n is a lower bound on the actual distance from r in the residual graph.

56 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

• A relabeling operation is triggered when a vertex with the excess flow has a label value less
than or equal to that of the neighboring vertex. Once relabeling is done, it can initiate a push
operation. So one can think of labels to denote the potential level, where the flow can occur
from a region of higher potential to a region of lower potential.

• A vertex v is defined as active v ∈ V \ {s, r}, d(v) < ∞, and e(v) > 0. The maximum-flow
algorithm is initialized with preflow value f , which is summation of the edge capacities of all
edges incident from the source vertex s and rest all other edges have zero flow.

For our distributed algorithm, HushRelay, the basic operations are Push and Relabel, with all
the nodes acting as individual processing units in parallel. The network model considered for the
payment channel network is asynchronous. Synchronization across all the nodes is achieved via
use of acknowledgements [63]. A vertex v tries to push excess flow to one of its neighbouring
vertex w if and only if, as per the information maintained by v, label d(v) = d(w)+1. It first sends
a request message with the information (v, δ, d(v), e(v)). Vertex w can either accept the push by
sending an acknowledgement or it may reject it by sending a negative acknowledgement (NAK).
If d(v) = d(w)+1, then w sends to v a message of the form (accept, w, δ, d(w)) and v initiates the
push. Otherwise, if d(w) ≥ d(v) or d(v) < d(w) + 1, then it sends a message (reject, w, δ, d(w))

where d(w) is the updated distance label of w. A reject message will cause v to update the value
of d(w). When a distance label of the vertex increases, it sends the information of new label to all
its neighbouring nodes.

As seen in Push Relabel algorithm [63], the label initially set for source and sink node reveals
the identity of payer and payee. To obfuscate their identity from other intermediate nodes in the
network, we use a dummy source vertex s′ for node s and a dummy sink vertex r′ for node r.
Note that the existence of dummy node is known only by the source and sink. In the initialization
phase of HushRelay, a directed virtual edge from s′ to s and from r to r′ is established. Since s′, r′

are virtual entities, introduction of edge (s′, s) and (r, r′) is not recorded in the blockchain. The
capacity is initialized to c(s′, s) = val, c(r, r′) = val and the label is set as d(s′) = n + 2, d(s) =

0, d(r) = 0 and d(r′) = 0. The flow fl(s′, s) is set to val, fl(r, r′) = 0, excess flow e(s) = val,
e(r) = e(r′) = 0. For all vertices v ∈ V − {s, r}, d(v) = 0, e(v) = 0, fl(w, v) = 0, (w, v) ∈
E,w, v ∈ V − {s, r}. We mention the procedure of Push, Push-request and Relabel for a vertex
in Procedure 1, 2 and 3 respectively. The algorithm terminates when there are no active vertex left
(except the dummy source and dummy sink) in the graph.

Example 2. Consider a network given in Fig. 4–5. Sender S intends to make a payment of 15 units
to receiver R. Dummy vertices S ′ and R′ is added to the network with edges (S ′, S) and (R,R′).

Our Proposed Construction 57

Procedure 1: Push(v,w,d)
Input : Active vertex v ∈ V, e(v) > 0, vertices w : (v, w) ∈ E
if v 6= r′ and v 6= s′ then

Set find neighbour=0
while neighbour w of v : e(v) > 0, rfl(v, w) > 0 and d(w) < d(v) do

v generates a push of the value δ = min(e(v), rfl(v, w)
fl(v, w) = fl(v, w) + δ
e(v) = e(v)− δ
rfl(v, w) = c(v, w)− fl(v, w)
Send Push-request(w,v,fl(v, w), δ) to node w
if NAK received then

Update information d(w)
fl(v, w) = fl(v, w)− δ
e(v) = e(v) + δ
rfl(v, w) = c(v, w) + fl(v, w)

end
else

Set find neighbour = 1
end

end
if find neighbour = 0 then

Call Relabel function.
end

end

Procedure 2: Push-request(v,w,fl(w, v),δ)
Input : Active vertex w ∈ V, e(w) > 0, vertex v : (w, v) ∈ E
if d(v) < d(w) then

rfl(v, w) = fl(w, v)
e(v) = e(v) + δ
if v 6= t′ and v 6= s′ then

send Push request to its neighbouring nodes.
end
Send push request accepted message to node w.

end
else

Send negative acknowledgement (NAK) message and current value of d(v) to node w.
end

58 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

Procedure 3: Relabel(v,w,d)
Input : Active vertex v ∈ V, e(v) > 0, vertices w : (v, w) ∈ E, rfl(v, w) > 0, d(v) ≤ d(w)

1. Update d(v) = min(d(w), (v, w) ∈ E) + 1

2. Inform all the neighbours of vertex v about the updated label d(v).

The edge capacities are as follows : c(S ′, S) = 15, c(S,A) = 10, c(S,B) = 10, c(A,C) =

10, c(B,C) = 15, c(C,R) = 20 and c(R,R′) = 15. HushRelay is implemented on the network to
obtain a feasible flow of value 15 from source node S to sink node R. The initial state is given in
Fig. 4–5 (a). In the initialization phase, each nodes is assigned a label of 0 except dummy vertex
S ′ where d(S’) is the count of the number of nodes (except S’) in the network. As given in Fig. 4–5
(b), S’ sends a push request of 15 units to S.

A

B

S

0

0

0

0

C R
0

10

10
15

10

20

(a) Initial state

A

B

S

 0

C R

10

10
15

10

20

R’

d=0

d=0

d=0

d=0 d=0

d=0S’ d=6

 0

 0

 0

 0

 PR 15

(b) After adding dummy vertices

In Fig. 4–5 (c), S accepts the push request as d(S) < d(S ′) and an excess flow of 15 units is
assigned to S. S changes its label calling relabel function and changes d = 1. Now S sends a push
request of 10 units to A, bounded by the capacity of payment channel SA. In Fig. 4–5 (d), A accepts
the push request as d(A) < d(S) and gets an excess flow of 5 units. d(A) is changed to 1. S still
has an excess flow of 5. It sends a push request to B. Simultaneously, A sends a push request of 10
units to C.

A

B

S

Push req 10

0

0

C R
0

10

10
15

10

20

R’

d=1

d=0

d=0

d=0 d=0

d=0S’ d=6

15 0

(c) Push request to A

A

B

S

 10
Push
Request 10

0

C R
0

0

10
15

10

20

R’

d=1

d=0

d=1

d=0 d=0

d=0S’ d=6

15 Push
request

(d) Push request to C

Our Proposed Construction 59

In Fig. 4–5 (e), B accepts the push request as d(B) < d(S) and has excess flow of 5 units.
d(B) is changed to 1. Similarly, C accepts push requests as d(C) < d(A) and has an excess flow
of 10 units. d(C) is changed to 1. B sends a push request to C, and C sends a push request to R.
In Fig. 4–5 (f), upon receipt of a request from B, C finds that d(C) = d(B) and hence it sends a
NAK to B. R accepts the push request from C and gets an excess flow of 10. It changes its label to
d(R) = 1, and consequently, it sends a push request of 10 units to R’. In Fig. 4–5 (g), B changes

A

B

S

 10

C R

Push request
10

0

5
15

0

20

R’

d=1

d=1

d=1

d=1 d=0

d=0S’ d=6

15 5

 10

Push
Request 5

(e) Push request to C and R

A

B

S

 10

C R
10

0

5
15

0

10

R’

d=1

d=1

d=1

d=1 d=1

d=0S’ d=6

15 5

 10

NAK,d=1

Push request
10

(f) NAK to B

its label to d(B) = 2. R’ accepts the push request. In Fig. 4–5 (h), B sends a push request of 5
units to C.

A

B

S

 10

C R
10

0

5
15

0

10

R’

d=1

d=2, relabel

d=1

d=1 d=1

d=0S’ d=6

15 5

 10

 10
 0

(g) Relabeling of B

A

B

S

 10

C R
10

0

5
15

0

10

R’

d=1

d=2

d=1

d=1 d=1

d=0S’ d=6

15 5

 10

 10

 Push request
 5

(h) Push request to C after relabeling

In Fig. 4–5 (i), C accepts the push request and changes it label to 1. It sends a push request of
5 units to R. In Fig. 4–5 (j), R finds that d(R) = d(C) and hence it sends a NAK to C.

A

B

S

 10

C R

Push
Request 5

0

5
10

0

10

R’

d=1

d=2

d=1

d=1 d=1

d=0S’ d=6

15 5

 10

 10
 5

(i) Push request to R after relabeling

A

B

S

 10

C R
NAK, d=1

0

5
10

0

10

R’

d=1

d=2

d=1

d=1 d=1

d=0S’ d=6

15 5

 10

 10
 5

(j) NAK to C

60 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

In Fig. 4–5 (k), C undergoes a relabeling operation and d(C) is changed to 2. In Fig. 4–5
(l), C again sends a push request of 5 units to R. In Fig. 4–5 (m), R accepts the push request and

A

B

S

 10

C R

0

5
10

0

10

R’

d=1

d=2

d=1

d=2, relabel d=1

d=0S’ d=6

15 5

 10

 10
 5

 10

(k) Relabeling of C

A

B

S

 10

C R

0

5
10

0

10

R’

d=1

d=2

d=1

d=2 d=1

d=0S’ d=6

15 5

 10

 10
 5

 Push req-
 uest 5

(l) Push Request to R

it sends a push request of 5 units to R’. In Fig. 4–5 (n), the algorithm terminates transferring 15
units to R’

A

B

S

 10

C R

0

5
10

0

5

R’

d=1

d=2

d=1

d=2 d=1

d=0S’ d=6

15 5

 10

 Push
 request 5

 5

 15

(m) Push request to R’

A

B

S

 10

C R

0

5
10

0

5

R’

d=1

d=2

d=1

d=2 d=1

d=0S’ d=6

15 5

 10

15
 5

 15

(n) Final State

Figure 4–5: Execution of HushRelay

4.4.1.1 Propagating the flow information to source node

We describe the procedure by which the sink propagates the routing information back to the source.

• Participants of an edge e ∈ E involved in the transfer of payment from source to sink gener-
ates a temporary key ke. The key is used for encrypting the flow message to be propagated
back to the source node.

• The sink node r generates a key kr as well some random message Y , equivalent to the size
of the packet or its multiple. Each such packet contains flow information that is shared with
a predecessor node.

• Sink r constructs a message m′ containing the information of identity of preceding vertex
w, the non negative flow fl(w, r) > 0 along with key kwr. It encrypts the packet with kr,

Our Proposed Construction 61

E ′ = Enckr(w, fl(w, r), kwr), and concatenates the randomly generated message rm with
the encrypted packet to construct message E ′||Y .

• Sink shares this information with w. If w is honest, it will construct a similar message m′,
for its neighbour say u containing the identity of u, flow fl(u,w), key kuw. It is encrypted
with kwr to get E ′′. The encrypted message is concatenated with the message received from
its successor i.e. E ′′||E ′||Y .

• The process is repeated till all the packets reach the source vertex s. The sink vertex shares kr
and a set of randomly generated message Y with source vertex s via a secure communication
channel.

• s discards Y from the received message and starts decrypting, beginning with the message
encrypted by the sink. Upon decryption, the source retrieves the flow information, identity
of vertex, and key with which it will decrypt the next encrypted packet. All duplicate in-
formation on flow is discarded, and the rest is used for reconstructing the flow across the
network. The routing information is denoted by P .

4.4.2 Proof of correctness of the HushRelay

We state the following lemmas which justify the correctness of our routing algorithm.

Lemma 4.1. If val ≤ maximum flow in G, then s can successfully transfer funds to r.

Proof of Lemma 4.1. Given that d̃ < maximum flow, let us assume that transaction from s

to r fails due to non existence of sufficient capacity from sender to receiver. Now we execute the
distributed push relabel algorithm which will return the maximum flow in the graph. Let us denote
it by fm. But our algorithm was able to find augmenting path for flow till d̃ − γ, where γ > 0

is an integral value, since our transaction failed. If there exists no more augmenting paths, then
fm = d̃− γ, which implies fm < d̃. This contradicts the fact that fm > d̃. Hence our assumption
was wrong.

Lemma 4.2. For v ∈ V \ {s′, r′}, e(v) = 0 on termination.

Proof of Lemma 4.2. Assume that there exist one vertex v̂ ∈ V \ {s′, r′} : e(v̂) > 0 after ter-
mination. But since termination condition has been reached, it means that vertex s is not reachable

62 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

from vertex v̂. Let the set of vertices not reachable from v̂ be V ′ and those reachable from v̂ be
V − V ′. Thus s ∈ V ′.

e(v̂) = Σk∈V,(v̂,k)∈Efl(k, v̂)

= Σk∈V ′,(v̂,k)∈Efl(k, v̂) + Σk∈V−V ′,(v̂,k)∈Efl(k, v̂)

= Σk∈V ′,(v̂,k)∈Efl(k, v̂)

(∵ Σk∈V−V ′,(v̂,k)∈Efl(k, v̂) = 0,flow conservation constraint)

(4.4)

Since e(v̂) > 0, Σk∈V ′,(v̂,k)∈Efl(k, v̂) > 0. This implies that there exists some augmenting path
from s to v̂. The result contradicts our assumption.

Lemma 4.3. For all edges (v, w) ∈ E, v, w ∈ V , fl(v, w) ≤ c(v, w).

Proof of Lemma 4.3. In the algorithm Push, for a given edge (v, w) ∈ E, the flow value
fl(v, w) from vertex v to vertex w is decided by min(e(v), rfl(v, w)). Since rfl(v, w) = c(v, w)−
fl(v, w), fl(v, w) ≤ c(v, w) and e(v) ≤ d̃. Flow is either bounded by d̃, if d̃ < c(v, w) or c(v, w).

Table 4.1: SpeedyMurmur vs HushRelay - Performance Analysis on Real Instances

Network/Algorithm

SpeedyMurmur HushRelay
Success Ratio Time taken (in s) Success

Ratio
Time
taken

Number of Landmarks Number of Landmarks
1 2 4 6 1 2 4 6

Ripple Network 0.38 0.7 0.92 0.98 1.66 2.2 3.23 4.74 1 2.4
Lightning Network 0.42 0.65 0.83 0.91 0.61 0.69 0.83 1.94 0.99 0.15

4.5 Privacy Analysis

Theorem 4.1. Given a transaction request (s, r, val) for a source-sink pair (s, r) ∈ V × V, s 6= r

to be routed through the network G, any node v ∈ V \ {s, r} must not know the identity of payer
and payee.

Proof Sketch. In push relabel algorithm, labels assigned are d(s) = n, where n = |V |, d(r) = 0

and d(v) ≤ d(w) + 1 for every residual edge (v, w) ∈ Efl. This labeling leaks the identity of the
source and sink. Thus a pair of dummy vertices s′ and r′ is introduced where s′ is connected to s
and r is connected to s. The label assigned to s′ is same as the label assigned to the source vertex

Performance Analysis 63

involved in executing the push relabel algorithm, thus s′ acts as dummy source. r′ acts as the
dummy sink and r has a non-zero label after the execution of an instance of HushRelay. Thus the
label assigned to s and r gives the impression that they are intermediate nodes routing the payment
without revealing their actual role in the network.

Even while propagating the information P to the source s, since the random information Y is
multiple of single message size, even if some of the users are corrupt they will get information of
the subpath rather than the full path.

Theorem 4.2. PCN achieves value privacy if corrupted users outside the payment path must not
have any information regarding the payment value in a pay operation involving only honest users.

Proof Sketch. In HushRelay, the algorithm is initiated by the source s when it gets a payment
request from sink or payee r. Therefore, an adversary will not get any information about the
payment value, if it is neither controlling the payer nor the payee. Any communication between
honest intermediaries routing the payment happens via a secure communication channel. Value
privacy is preserved.

4.6 Performance Analysis

4.6.1 Experimental Setup

In this section, we define the experimental setup. The code for HushRelay is available in [6]. Sys-
tem configuration used is : Intel Core i5-8250U CPU, Kabylake GT2 octa core

processor, frequency 1.60 GHz, OS : Ubuntu-18.04.1 LTS (64 bit). The programming
language used is C, compiler - gcc version 5.4.0 20160609. The library igraph was used for gener-
ating random graphs of size ranging from 50 to 25000, based on Barábasi-Albert model [22], [34].
PCN follows the scale free network where certain nodes function as hubs, having higher degree
compared to other nodes [75]. For implementing the cryptographic primitives, we use the library
Libgcrypt, version-1.8.4 [7], which is based on code from GnuPG.

4.6.2 Evaluation

We use the following metrics to compare the performance of the routing algorithm, HushRelay
with SpeedyMurmur [122]

64 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

0 5000 10000 15000 20000 25000
0

0.2

0.4

0.6

0.8

1

1.2

HushRelay vs SpeedyMurmur

HushRelay

SpeedyMurmur - |L|=1

SpeedyMurmur - |L|=2

SpeedyMurmur - |L|=4

SpeedyMurmur - |L|=6

Number of Nodes

S
u
c
c
e
s
s

R
a
t
i
o

(a) Success Ratio vs Number of Nodes

0 5000 10000 15000 20000 25000
0

1

2

3

4

5

6

7

HushRelay vs SpeedyMurmur

HushRelay

Speedy murmur ; |L|=1

SpeedyMurmur ; |L|=2

SpeedyMurmur ; |L|=4

SpeedyMurmur ; |L|=6

Number of Nodes

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

(b) Time To Route vs Number of Nodes

Figure 4–4: Comparative Analysis of HushRelay and SpeedyMurmur for simulated instances

• Success Ratio: It is the ratio of the number of successful payments to the total number of pay-
ment transfer requests submitted in an epoch.

• TTR (Time Taken to Route): When a transaction request arrives in the network, it is the time
taken from the start of routing protocol till its completion (returning the set of feasible paths).

We allow just one trial (i.e. a = 1) of SpeedyMurmur since HushRelay executes just once. The
number of landmarks varies between 1,2,4 and 6.

• Real Instances- We execute HushRelay and SpeedyMurmur on snapshots of Ripple Network
[93] and Lightning Network [123]. The results are recorded in Table 4.1. We observe that
HushRelay attains a success ratio of 1 with an execution time of 2.4s and SpeedyMurmur [122],
attains a success ratio of 0.98 when the number of landmarks used is 6 but the execution time is
around 4.8s for Ripple Network. In the case of the Lightning network, we observe that HushRe-
lay attains a success ratio of 0.99 with an execution time of 0.15s. However, SpeedyMurmur
attains a success ratio of 0.91, with an execution time of 1.9s when the number of landmarks
increases.

• Simulated Instances- The capacity of each payment channel is set between 20 to 100, and each
transaction value ranges between 10 to 80. For each synthetic graph, we execute a set of 2000
transactions, each execution is done on the original state of the graph. The source code for
SpeedyMurmur is available in [15]. It is written in Java and makes use of the graph analysis tool

Performance Analysis 65

GTNA1. From the graphs plotted in Fig. 4–4 a), we observe that as the number of landmarks
increases, SpeedyMurmur gives a better success ratio. However, Fig. 4–4 b), we observe that
execution time for routing increases with an increase in the number of landmarks. On the other
hand, HushRelay achieves a better success ratio having less execution time.

4.6.3 Discussion

Run time Complexity. Time complexity of HushRelay is O(n2) for the asynchronous case. For
SpeedMurmur, the execution time is O(l2), where l is the height of the breadth-first search or BFS
tree rooted at a landmark node. The upper bound on the height of the tree is equal to the diameter
of the network D where D ≤ n.

We infer from the results that splitting payment value without any knowledge of the channel’s
residual balance may lead to failure in routing. The success ratio for SpeedyMurmur is higher
when the number of landmarks is high but at the cost of higher execution time. On the other hand,
HushRelay has a higher success ratio since the flow is split on the fly as per the residual balance
of the channels. The run time of SpeedyMurmur is higher than HushRelay when the number of
landmarks increases. This is because for finding each path in SpeedyMurmur, a BFS tree rooted at
the landmark needs to be explored.

Communication Complexity. The number of messages exchanged (for push request, push ac-
cepted/NAK, height updation) is also bounded. The communication complexity and termination
condition of the algorithm in the given graph are stated in [110]. O(n2m) messages are exchanged
in the asynchronous implementation. The overhead lies in the interprocessor communication be-
tween a vertex and its neighbors. SpeedyMurmur has O(m) message complexity. The communi-
cation complexity is lower than HushRelay, but the latter is more efficient with a higher success
ratio.

1https://github.com/BenjaminSchiller/GTNA

66 HushRelay: A Scalable Routing Algorithm for Off-Chain Payments

Chapter 5

CryptoMaze: Privacy-Preserving Splitting of
Off-Chain Payments

Payment Channel Networks or PCNs solve the problem of scalability in Blockchain by executing
payments off-chain. Designing privacy-preserving routing and payment protocols for such net-
works is a big challenge. Most of the routing algorithms focus on finding a single path for routing
a transaction. However, routing high-valued payments via a single path may not be feasible. After
several payments get executed in the network, channels in a path may not have sufficient balance
to relay the funds. In such circumstances, it is better to split high-valued payments across multiple
paths to increase the success rate of transactions.

Several single path payment protocols like Hashed Time-Lock Contract or HTLC [113], Multi-
Hop HTLC [93], Anonymous Multi-Hop Lock or AMHL [94] have been proposed that works for
single-path payment. However, a direct extension of such protocols into multi-path payment may
fail to guarantee atomicity. Sprites [99] was proposed for Ethereum-styled PCN guarantees atom-
icity of payments and locks constant collateral. In [55], [27], a similar construction has been pro-
posed Bitcoin-compatible PCN. However, such protocols work for single-path and lack discussion
on multi-path settings.

The multi-path payment was first discussed in SilentWhisper [92], but at the cost of substantial
computation overhead. The protocol was not atomic. Osuntokun [10] was the first to propose
a protocol that guarantees the atomicity of split payments. It uses linear secret sharing of the
commitments shared across the multiple paths routing partial payments. But this protocol is sus-
ceptible to wormhole attack and high latency. In [111], split payments was proposed where the
payment is split into unit-amounts and routed through the same or different routes. However, the
authors state that their protocol does not stress achieving atomicity. Partial satisfaction of payment
is considered a favorable outcome. The problem of latency and throughput in AMP is addressed
by another payment protocol, Boomerang [32]. However, the protocol suffers from the problem of
wormhole attack and requires locking of excess collateral. In [86], a payment protocol termed D-
HTLC was proposed for multiple paths. However, the protocol relies on the atomicity of payments
using a penalization mechanism. Levying penalty is not a good method since honest nodes might
lose coins without any fault. A protocol Non-Atomic Payment Splitting (NAPS) that recursively

67

68 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

splits payment is discussed in [51]. However, the protocol does not aim for atomicity, and partial
payment is considered a valid outcome. Eckey et al. [53] had proposed an atomic payment pro-
tocol that allows intermediaries to split payments dynamically by adapting to the local condition.
The protocol is atomic, privacy-preserving, and not susceptible to wormhole attacks. However,
each node forwarding payment uses homomorphic encryption to encrypt the payment information.
Such an operation is quite computation-intensive. The receiver’s public key is forwarded to all the
nodes routing partial payments. Though the authors claim that partial payments remain unlinkable,
colluding parties can link payments if they observe that the same public key is circulated. It is a
non-trivial task to design a protocol for multi-path payment, and we discuss the challenges faced.

Challenges faced in multi-path payments

• Atomicity of payments: Several distributed routing algorithms [120, 114, 92, 122, 136, 144,
73, 138, 98, 86] have been proposed for relaying transaction across multiple paths. Applying
existing payment protocols like Hashed Timelock Contract [113], [102], BOLT [67], Sprites
[99], [93], Anonymous Multihop Lock or AMHL [94], individually on each of the paths might not
guarantee atomicity. It is quite possible that an instance of the protocol might fail in a particular
path due to resource constraints or malicious behavior of nodes [55], [121]. The payment must
be atomic - either all the micro-transactions succeed, and the receiver receives the full amount
or it fails completely. If funds get transferred partially, the sender has to make several attempts
for the residual amount.

• Susceptible to wormhole attack: Existing multi-path payment protocols like AMP[10], Boomerang
[32] achieve atomicity. Each path forwarding the partial payment uses the same commitment,
making it susceptible to wormhole attack [94]. Malicious parties in a given path may collude
and steal an honest party’s processing fee.

• Multiple off-chain contracts on shared channels: Multiple paths routing a single payment may
not be edge-disjoint. In Fig. 5-1, M wants to transfer 5.1 units to N . The payment is split
across two paths p1 = 〈MA → AB → BD → DN〉 and p2 = 〈MA → AC → CD → DN〉
into 2.6 units and 2.5 units respectively. Each intermediate parties charge a processing fee of 0.1
units. The two paths share channels MA and DN . Two distinct off-chain contracts are created
on these shared channels for routing partial payment. Also, nodes A and D get paid twice for
forwarding each partial payment. This creates an additional cost overhead on the sender M .
Instead of multiple off-chain contracts, it is better to construct one off-chain contract on shared
payment channels for a single payment instance.

Contributions 69

Figure 5-1: Paths p1 and p2 shares channels MA and DN

• Linkability between partial payments: A given node will be willing to route full payment instead
of partial payments [53]. If a partial payment fails in one of the paths, then the entire payment
rolls back. Fearing a lower success rate on routing split payments, if colluding parties can link
partial payments, they will tend to reject such requests and preserve their channel capacity for
routing the full amount. Unlinkability must be ensured to prevent censoring split payments.

Our goal is to construct a payment protocol that addresses all the shortcomings discussed above.

5.1 Contributions

• We propose CryptoMaze, an efficient, privacy-preserving, atomic multi-path payment pro-
tocol. Our protocol optimizes the setup cost by avoiding the formation of multiple off-chain
contracts on a channel shared by partial payments. To date, no other protocol has been able
to achieve this optimization.

• Our protocol ensures balance security, i.e., honest intermediaries do not lose coins while
forwarding the payment.

• Our protocol description ensures unlinkability between partial payments.

• We have modeled CryptoMaze and defined its security and privacy notions in the Universal
Composability or UC framework.

• Experimental Analysis on several instances of Lightning Network and simulated networks
show that our proposed payment is as fast as Atomic Multi-path Payment [10]. The run time
is around 11s for routing a payment of 0.04 BTC in a network instance of 25600 nodes.

70 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Notation Description
C : E × N→ R+ Capacity function

idi,j Identifier of payment channel (Ui, Uj) ∈ E
B Blockchain
U0 Payer, a node in set V
Ur Payee, a node in set V

gain : V → R+ Function defining coins gained by a node
PC Set of payment channels, created by U0

Ti Timestamp at which node Ui receives
its first incoming contract request.

δ latency
F Ideal functionality for payment in PCN
FB Ideal functionality for Blockchain B
Fsmt Ideal functionality for secure message

transmission

Table 5.1: Notations used in the chapter

The communication overhead is within feasible bounds, being less than 1MB. The code is
available in [6].

5.1.1 Organization

The rest of the chapter has been organized as follows: Section 5.2 provides the background con-
cept needed for understanding the chapter. Our proposed protocol has been described in detail in
Section 5.3. We discuss the security of our protocol in Universal Composability (UC) framework
in Section 5.4 and provide the security analysis. The experimental observation has been provided
in Section 5.5.

5.2 Background

In this section, we provide the required background for understanding our protocol. The terms
source/payer means the sender node. Similarly, sink/payee/destination means the receiver node. A
payment channel has been referred to as an edge. Table 5.1 states the notations used in the chapter.

Background 71

5.2.1 Payment Channel Network (PCN)

A Payment Channel Network is modeled as a bidirected graph G = (V,E) where V represents the
participants in the network and E ⊆ V ×V denotes the payment channels existing between parties
[113], [48]. Opening a payment channel (Ui, Uj) is equivalent to the opening of two unidirectional
payment channels (Ui, Uj) and (Uj, Ui). The channel identifier for (Ui, Uj) is denoted as idi,j . The
underlying blockchain, denoted as B, acts like a trusted append-only ledger recording the opening
and closing of payment channels. A capacity function, defined as C : E × N → R+, denotes
the balance of each party in the channel at a given time. For example, C((Ui, Uj), t) denotes the
balance of party Ui in the channel idi,j at time t. We define the fee charged by each node as
f : V → R+. The fee calculated is proportional to the coins a particular node is routing through its
channel. If a party Ui receives a request to transfer val coins at time tcurrent to a node Uj , it checks
locally whether there exist payment channels connected to Ui and C((Ui, Uj), tcurrent) ≥ val.

5.2.2 Off-chain Contracts

Off-Chain contracts are smart contracts where the logic encoded in the contract is not run by the
miners. It is mutually executed by the participants involved in instantiating the contract. The ad-
vantage of having off-chain contracts are that computation-intensive tasks can be executed without
involving blockchain as long as participants behave honestly. An individual player can prove the
correct contract state independently. Cheating is prevented as the state of the contract is signed by
all the players. If a party misbehaves by broadcasting a wrong state in blockchain, the counterparty
can raise a dispute and publish the valid accepted state. Hashed Timelock Contract or HTLC [113]
is one such example used in PCN for routing payments in the network. The logic used is a hash
function, where players need to provide the preimage of the hash to claim coins.

5.2.3 Random Oracle Model

The random oracle model is used to in place of hash functions in a variety of applicatons. Proving
security of protocols in this model are often very simple and efficient.

The hash function H is modeled as a truly random function O. If the hash function H maps
a message in message space M to fixed length tag in tag space T , then function O is sampled
uniformly from the set Funs[M, T]. Here, Funs[M, T] denotes the set of all possible random
functions f :M→ T .

72 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

The function O is called random oracle and proof in this setting is said to be secure in the
random oracle model [38]. The random oracle works like a box that returns a binary string as
output when the input supplied is a binary string. Both the honest and malicious parties can interact
with the random oracle. The working of random oracle is consistent, i.e., if O outputs y on input
x, then the answer returned is same whenever a query is made on input x. It is assumed that the
input to the random oracle is private [81].

5.3 Proposed construction

We provide a detailed overview of our protocol using a payment instance. U0 wants to transfer val
coins to Ur efficiently via the PCN G = (V,E), where U0 ∈ V, Ur ∈ V . None of the nodes in
the network must learn the identity of the payer, payee, or the coins transferred. Any honest party
must not lose coins while routing the payment. We discuss the system requirements, security, and
privacy goals, followed by a formal description of the proposed protocol for realizing the payment.

5.3.1 System model

Given the PCN G = (V,E), a function gain : V → R+ is defined to quantify the coins any node
has gained or lost while running an instance of the protocol. If we assume that the protocol starts
at time t0 and ends at time t′ then, for a node v, gain(v) =

∑
u∈V,(v,u)∈E

C((v, u), t′)−C((v, u), t0).

The global ideal functionality for blockchain FB [93] maintains B. An arbitrary condition can
be specified in the contract in order to execute a transaction in B. FB is entrusted to enforce
fulfillment of the contract before the corresponding transaction is executed. tend is the least timeout
period set for an off-chain contract. ∆ is the worst-case time taken for a transaction to settle on-
chain. Each node Ui ∈ V has its pair of the private key and public key. A pair of honest users
sharing a payment channel communicate using ideal functionality for secure message transmission
Fsmt [43]. Ui send (sid, instruction, Ui, Uj,m), containing the secret message m, to Uj via Fsmt.
(sid, instruction, Ui, Uj, |m|) is leaked to an adversary, where |m| is the message length.

System Assumption. Any user can get information of the network topology by sending a read
instruction to FB. The latter replies by sending the whole transcript of B. The residual balance
of each payment channel is kept private by the users sharing a payment channel. Payment fee
charged by a user is publicly known. All the nodes know each other’s public keys. We do not
discuss other problems occurring in the network like individual channel congestion, blocking of

Proposed construction 73

nodes, etc. These issues are orthogonal to the problem addressed in this chapter. Problems arising
due to concurrent payments can be addressed with the solutions proposed in [93].

Communication Model. We consider the bounded synchronous communication model [24].
In this model, time corresponds to the number of entries of B, denoted by |B|, divided into fixed
communication rounds. If a user sends a message in a round, the intended recipeint gets the
message within a bounded time. If no message is received in a round then it indicates there was no
communication.

5.3.2 Security and Privacy goals

We identify the following security and privacy notions:

• Correctness: Given all the nodes routing the payment are honest, gain(U0) = −(val +∑
(Ui,Uj)∈PC:Ui /∈{U0,Ur}

f(vali,j)), gain(Ur) = val and gain(Ui) = f(vali),∀Ui ∈ V \ {U0, Ur}

where f(vali) =
∑

∀Uj∈V,(Ui,Uj)∈PC
f(vali,j).

• Consistency: No intermediate node Ui ∈ V \ {U0, Ur} can provide the decommitment for the
preceding off-chain contracts before the release of the decommitment in at least one of the
succeeding off-chain contracts. If this holds, then no wormhole attack is possible as intermediate
nodes cannot be bypassed.

• Balance Security: Honest intermediary does not lose coins, i.e., for any honest Ui ∈ V \
{U0, Ur}, gain(Ui) ≥ 0.

• Value Privacy: Corrupted users outside the payment path must not have any information regard-
ing the payment value in a pay operation involving only honest users.

• Unlinkability: Given a node Ui splits the payments val into k parts val1, val2, . . . , valk among
the k neighbors Ui,1, Ui,2, . . . , Ui,k : (Ui, Ui,j) ∈ E, j ∈ [1, k]. If all the neighbors collude, they
cannot figure out whether they are part of the same payment or different payment.

• Relationship Anonymity: Given two simultaneous successful pay operations of the form (U0, Ur, val)

and (U ′0, U
′
r, val), using the same set of intermediate nodes and payment channels for routing

payment, with at least one honest intermediate user Ui, corrupted intermediate users cannot de-
termine whether the payment is from U0 to Ur or from U ′0 to U ′r with a probability greater than
1
2
.

74 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

• Atomicity: If all the nodes preceding Ur have forwarded their partial payments, then only the
receiver can start claiming payments. Even if one of the nodes fails to forward the payment,
then gain(Ur) = 0 and gain(Ui) = 0,∀Ui ∈ V \ {U0}.

5.3.3 Mapping a set of paths into a set of edges

In the example shown in Fig. 5-2,M wants to transfer an amount 5.1 units toN . Each intermediate
node charges 0.1 unit as a processing fee. Initially, the set of routes must be realized by M . Any
known routing algorithm like [122, 144, 86, 138] or [98] can be used. The paths returned are
p1 = 〈idM,A → idA,B → idB,D → idD,N〉 and p2 = 〈idM,A → idA,C → idC,D → idD,N〉. Given
that there are four intermediate nodes, M forwards 5.5 units to A, the latter will deduct 0.1 units,
split the amount, and forwards 2.7 units each to channels idA,B and idA,C . Node B and C charge
0.1 units each and forwards 2.6 units to channels idB,D and idC,D respectively. D deducts 0.1 unit
and forwards 5.1 units to N . In the paths p1 and p2, the channels idM,A and idD,N are shared.
Instead of considering each path individually, a union of all the edges present in p1 and p2 is taken
and set PC is constructed. The channels are inserted into the set in breadth-first order, starting
from M . The set PC = {idM,A, idA,B, idB,D, idA,C , idC,D, idD,N} is used as the protocol’s input.
Thus, mapping a set of paths into a set of edges allows a shared edge to appear not more than once
in PC.

Figure 5-2: CryptoMaze executed on the network for routing payment from M to N

Proposed construction 75

5.3.4 Formal definition of the protocol

The protocol involves three phases: Preprocessing Phase, Contract Forwarding Phase and Release
Phase. U0 forms the set PC and uses it as an input for Preprocessing Phase. We define each phase
in detail.

5.3.4.1 Preprocessing phase

U0 extracts out the set of edges from PC. We divide the phase into sub-phases, explained as
follows:

(i) Secret value for claiming Payment. The payee Ur samples a random number xŕ and sends
Xŕ = xŕG to U0 via a secure communication channel. U0 checks the number of incoming channels
sending partial payments to Ur. If there are k such channels, U0 samples yi ∈ Zq. The latter
constructs the condition for each off-chain contract in reverse order, starting from node Ur. For

any channel idb,r ∈ PC,U ∈ V, Rb,r = eb,r
k∑
i=1

yiG + Xŕ. Rb,r is the condition encoded in the

off-chain contract formed on the channel idb,r. eb,r is blinding factor for hiding the secret value

y =
k∑
i=1

yi. It is defined as eb,r = H(
k∑
i=1

yi||idb,r). Ur needs to provide the discrete logarithm of

Rb,r for claiming coins from Ub.

(ii) Conditions for off-chain contracts. If any intermediate node Ui is forwarding payment to a
single node, U0 samples independent strings xi ∈ Zq for the node. If a node Ui forwards payments
to multiple neighbors, then it must be ensured that Ui does not lose coins when one of the neighbors
fail to release the decommitment of an off-chain contract. To avoid this problem, our protocol uses
a 1-out-of-m policy where even if one of the outgoing neighbors of Ui responds, the latter can
claim the coins. We first explain the procedure for computing secrets for a node that splits the
payment value and forwards it to multiple neighbors with an example.

In Figure 5-2, the condition used in the contracts established on each of the channels are de-
noted as follows: RM,A for idM,A, RA,B for idA,B, RA,C for idA,C , RB,D for idB,D, RC,D for idC,D,
andRD,N for idD,N . NodeA splits the payment and sends it to nodesB andC. The conditionRM,A

must be constructed so that the secrets provided by either B or C helps A in claiming the amount
from M . If A establishes the same contract R with nodes B and C, then RM,A = R + eM,AxAG.
If B and C collude, they can link their payments. The situation is shown in Figure 5-3. To avoid
the problem, two different conditions RA,B and RA,C are assigned to off-chain contracts on chan-
nels idA,B and idA,C . A adjusts the value by adding xA,BG to RA,B and xA,CG to RA,C to ensure

76 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

equality. Thus, we haveRM,A = RA,B+eM,AxAG+xA,BG whereRA,B+xA,BG = RA,C +xA,CG.

Figure 5-3: Problem of linkability between partial payments

Let Z = RA,B + xA,BG = RA,C + xA,CG. If we fix the discrete logarithm of Z to x : Z =

xG = RA,B + xA,BG = RA,C + xA,CG, we can calculate the values xA,B and xA,C . Again,
xA = xA,B + xA,C . Even if the off-chain contracts RA,B, RA,C and RM,A are settled on-chain, still
a miner cannot establish linkability between the three. If xA,B and xA,C is not known to the miner,
then it can establish a relationship between discrete logarithm of RM,A and discrete logarithm of
RA,B or RA,C with negligible probability.

Summarizing the procedure, for a pair of channels idi,j and idj,k, having conditions Ri,j and
Rj,k where Uj 6= Ur, ei,j = H(xj||idi,j):

(a) If Uj forwards payment to only one neighbor Uk, the condition Ri,j is defined as follows:

Ri,j = ei,jxjG +Rj,k (5.1)

(b) If Uj splits the payment and forwards it to one of the neighbour Uk, Ri,j is defined as
follows:

Ri,j = ei,jxjG +Rj,k + xj,kG (5.2)

where Uk ∈ neighbor(Uj), idj,k ∈ PC.

To compute xj,k for Rj,k, U0 generates a random value x̂ such that x̂G + Xŕ = Rj,k +

xj,kG, ∀Uk ∈ V, idj,k ∈ PC. Fixing discrete logarithm as x̂ helps U0 to calculate xj,k for each
channel idj,k corresponding to node Uk. The expression can be rewritten as follows:

xj,kG = Xŕ + x̂G −Rj,k (5.3)

Proposed construction 77

The discrete logarithm ofXŕ+x̂G−Rj,k is known to U0, i.e. xj,k = x̂−dlog(Rj,k−Xŕ), where
dlog is the discrete logarithm. Once each xj,k gets computed, U0 computes xj =

∑
Uk∈V,idj,k∈PC

xj,k.

Thus, for any node Ui forwarding payments to multiple neighbors, the discrete logarithm for Ri,j

can be supplied by any of the outgoing neighbors of Uj . Substituting the value of xj,kG obtained
from (5.3) in (5.2), we have:

Ri,j = ei,jxjG +Xŕ + x̂G (5.4)

(iii) Setting timeout period. The least timeout period assigned to the all incoming contract of
Ur is denoted as tend. Starting from this point, the timeout period of all the preceding contracts
get decided. For time-locked contracts established with any channel idi,j, Uj 6= Ur, assign ti,j =

max
∀Uk∈V,idj,k∈PC

{tj,k}+ ∆ as the timeout period of the contract on payment channel idi,j .

5.3.4.2 Contract Forwarding Phase

Each node Ui uses shared variable flagi and Ti, both initialized to 0. The variable flagi is set to 1
if the node Ui has received all the incoming contracts. Ti is set to the current time when Ui receives
its first incoming contract request. Ui waits for time Ti + δ to receive all the incoming contract
requests, where δ > 0 is the latency. If the time elapsed is greater than Ti + δ but flagi is still 0,
then Ui sends abort to its preceding contracts, canceling the payment.

Starting from node U0, any node Ui 6= Ur sends the request (Ri,j, vali,j, ti,j) for forming con-
tracts to all its neighbor via Fsmt, once flagi is set to 1. For ease of analysis, we explain the
procedure for one of its neighbors, say Uj . If the latter accepts the request, it gets the encrypted
message Zi,j . Upon decryption, it gets Mj = {(valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈ V, idj,k ∈ PC},
where Zj,k is the encrypted message to be forwarded to the node Uk. Uj checks the consistency of
incoming contracts with the terms stated for an outgoing contract by calling the subroutine Time-
LockContractForward, described in Module 4. The checks mentioned in this subroutine ensure
the integrity of the phase. If the subroutine returns failure, then Uj cancels all the off-chain con-
tracts formed with preceding nodes. Else, Uj waits for all preceding contracts such that the total
value from the incoming contract is the summation of the fee charged by Uj and the coins it needs
to lock in all the outgoing contracts specified in Mj . After Uj receives all the contracts within time
Tj + δ, then it begins forwarding the payment to its neighbor. The steps are defined in Procedure
6. The execution time is determined by the degree of the node and thus the time complexity of the
procedure is O(|E||V |) where |E| is the number of edges and |V | is the number of vertices in G.

78 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

A node can identify its predecessor if the former obtains similar messages upon decryption.
The node can forward one such message and discard the rest. This phase continues till all partial
payments reach Ur. Even if there is one off-chain contract that did not get instantiated in a payment
channel belonging to PC, Ur cannot compute the secret y for claiming coins. Satisfying this con-
straint implies that all the partial payments have been combined properly, guaranteeing atomicity.
Once the receiver has received all the partial payments within a bounded amount of time, it triggers
the Release Phase.

5.3.4.3 Release Phase

Ur gets the secret share from all the incoming off-chain contracts forwarding the payment. The
former can compute the secret y as described in Procedure 7. Upon computing the secret, Ur calls
the subroutine TimeLockContractRelease defined in Module 5. The module returns the solution
for the condition encoded in the incoming contracts forwarded by its neighbor. If the solution
is correct, Ur sends a decision of acceptance to its predecessor along with the secret. Else, it
sends an abort message to the neighbors and the payment fails. The abort process is mentioned in
Procedure 9. Any intermediate node, involved in forwarding conditional payment can claim the
coins if at least one of the neighbors responds. The steps followed by an intermediate node for
claiming payment have been defined formally in Procedure 8. Time complexities of Procedure 7
and Procedure 8 are O(|E||V |) each.

Scriptless lock based on a two-party ECDSA signature [94] can be easily integrated into our
framework for conditional payments. We have discussed the construction in the next section.

5.3.5 Use of scriptless lock in Cryptomaze

We leverage the use of scriptless scripts, where a signature scheme can be used simultaneously for
authorization and locking. The crux of a scriptless locking mechanism is that the lock can consist
only of a message m and a public key pk of a given signature scheme, and can be released only
with a valid signature σ of m under pk. We next define how scriptless ECDSA signature can be
used as a locking mechanism, the construction is similar to the one defined in [94]. The main
idea used here is that the locking algorithm is initiated by two users Ui and Uj who agree on a
message m, for our purpose we consider m = idi,j , and on the value Ri,j = ri,jG of unknown
discrete logarithm. The two parties then generate a random number k and agree on a randomness
R = kRi,j . The shared ECDSA signature is computed by “ignoring” the Ri,j , since the parties
are unaware of its discrete logarithm. The signature computed is (rx, s) where it can be written as

Proposed construction 79

Module 4: TimeLockContractForwardPhase for node Uj
Input : (info)
Parse info to get Dj, ti,j, Ri,j .
Parse Dj = {(idj,k, xj,k, Rj,k, tj,k) : ∀k ∈ V, idj,k ∈ E}
Compute xj =

∑
∀k∈V,idj,k∈E

xj,k

Compute ei,j = H(xj||idi,j)
if |Dj| > 1 then

for k ∈ V : idj,k ∈ E do

if Ri,j
?
= ei,jxjG +Rj,k + xj,kG and ti,j

?

≥ tj,k + ∆ then
continue

end
else

return failure
end

end
end
else

if Ri,j 6= ei,jxjG +Rj,k or ti,j < tj,k + ∆ then
return failure

end
end
return success

Module 5: TimeLockContractReleasePhase for node Uj
Input : (info)
Parse info to get xj, idi,j, rj,k.
Compute ei,j = H(xj||idi,j)
Compute ri,j = ei,jxj + rj,k
return ri,j

80 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

KeyGen
Upon receiving (sid, keygen, Uj) from Ui and (sid, keygen, Ui) from Uj:

• Sample a secret key sk ← Zq

• Compute a public key pk = sk.G

• Output the message (keygen, sid, pk) to Ui and Uj

• Store (sid, keygen, sk)

Lock
Upon receiving (sid, lock,m,Ri,j, pk) from both Ui and Uj:

• If (sid, lock) is already stored, abort.

• Check if (sid, keygen, sk) for the given pk : pk = skG has been stored.

• Sample k ← Zq and compute (rx, ry) = R = kRi,j

• Query the Random Oracle at point (sid,m), which returnsH(m).

• Compute s = k−1(H(m) + rx∆sk)

• Send a output (lock, sid, (rx, s)) to Ui and Uj

• Store (sid, lock)

Verify
Upon receiving (sid, verify,m, r′, z′, pk) from both Ui and Uj , where Ri,j =
ri,jG:

• If (sid, lock) is not stored then abort.

• Parse z′ and retrieve (rx, s)

• Query the Random Oracle at point (sid,m), which returnsH(m).

• Compute s′ = s
ri,j

and (sx, sy) = S ′ = H(m)G+rx.pk
s′

• Check sx
?
= rx, if true return (sid, verified) to Uj

Figure 5-4: Interface of ideal world functionality FECDSA−Lock

Security definition of CryptoMaze 81

(rx, s
′ri,j). The signature (rx, s

′) is a valid ECDSA signature on m. Once ri,j is released by node
Uj , it is used for completing the signature.

We define this as an ideal functionalityFECDSA−Lock in Fig. 5-4, which has access to a Random
Oracle [44]. The interfaces are KeyGen, Lock and Verify. KeyGen generates a common public
key for a payment channel idi,j between parties Ui and Uj . The Lock Phase and Verify Phase have
been discussed previously. CryptoMaze accesses this ideal functionalityFECDSA−Lock for forming
the lock and releasing it as well.

5.4 Security definition of CryptoMaze

For modeling security and privacy definition of payment across several payment channels under
concurrent execution of an instance of CryptoMaze, we take the help of Universal Composability
framework, first proposed by Canetti et al. [43]. Notations used here are similar to [93].

5.4.1 Attacker model & Assumptions

The real world execution of the protocol is attacked by an adversary A, a PPT or probabilistic
polynomial-time algorithm. We assume that only static corruption is allowed, i.e., the adversary
must specify the nodes it wants to corrupt before the start of the protocol [49], [94]. Once a node
is corrupted, A gets access to its internal state and controls any transmission of information to and
from the corrupted node. The attacker is provided with the internal state of the corrupted node.
Also, the incoming and outgoing communication of such a node gets routed through A.

5.4.2 Ideal World Functionality

Notations. We define an ideal functionality F for payment in PCN. Honest nodes in the network
are modeled as interactive Turing machines. Such nodes are termed as dummy parties and they
can communicate with each other via F . U0 denotes the initiator of the protocol and Ur denotes
the receiver. The latter internally access the global ideal functionality FB, defined in Section 5.3.1.
Any payment channel existing in B is denoted by (idi,j, vi,j, t

′
i,j, fi,j), where idi,j is the channel

identifier of the payment channel existing between dummy parties Ui and Uj , vi,j is the capacity of
the channel, t′i,j is the expiration time of the channel and fi,j is the associated fee charged for the
channel idi,j . F maintains two lists internally - one for keeping track of the list of closed channels,
denoted by C, and one for keeping track of the list of off-chain payments, denoted by L [93]. Upon

82 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Procedure 6: Contract Forwarding Phase for node Uj ∈ V
Upon input (forward,m) from Ui, parse m to get Ri,j, vali,j, ti,j .
Initialize proceed=0
valj = valj + vali,j
Form contract with Ui using condition Ri,j , receive Zi,j from Ui.
if Uj 6= Ur then

Decrypt Zi,j to get Mj = {(idj,k, valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈ V, idj,k ∈ E}
Form set Dj = {(idj,k, xj,k, Rj,k, tj,k) : ∀k ∈ V, idj,k ∈ E}
Call TimeLockContractForward Phase with (Dj, ti,j, Ri,j) as the input
if (receives success) then

Set proceed=1
if Tj = 0 then

Set Tj = Tcurrent
end

end
if proceed=1 then

if valj <
∑

∀Uk∈V,idj,k∈E
valj,k + f(valj,k) then

Wait for timeperiod of Tj + δ
if timeperiod has elapsed and flagj = 0 then

Set proceed=0
end

end
else

Set flagj = 1
for Uk ∈ V : idj,k ∈ Dj do

Send (forward, Rj,k, valj,k, tj,k) to Uk, receive response from Uk
C(Uj, Uk) = C(Uj, Uk)− valj,k
Set Contract(idj,k)=1, send Zj,k to Uk

end
end

end
if proceed=0 then

for Um ∈ V : idm,j ∈ E do
if isContract(idm,j) = 1 then

Send (abort) to Um.
end

end
end

end

Security definition of CryptoMaze 83

else
if Tr = 0 then

Set Tr = Tcurrent
end
if valr < val then

Wait for timeperiod of Tr + δ.
if timeperiod has elapsed and flagr = 0 then

for Ub ∈ V : idb,r ∈ E do
if isContract(idb,r) = 1 then

Send (abort) to Ub
end

end
end

end
else

Set flagr = 1.
Call Release Phase defined in Procedure 7

end
end

Figure 5-5: Execution of F with dummy parties U0, Ur representing payer and payee, Ui,Uj rep-
resenting intermediaries routing payment

executing an off-chain payment in the channel idi,j , (idi,j, v
′
i,j, ti,j, h

′
i,j) is entered into L where v′i,j

is the residual capacity of the channel and ti,j is the expiration time of the payment, h′i,j is the event
identifier. When a channel idi,j is closed on-chain, it is entered into the list C. Payment channels

84 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Procedure 7: Release Phase for receiver Ur
Set stop = 0
for Ub ∈ V : idb,r ∈ E do

Decrypt Zb,r to get {yb,r, tend}
if tb,r = tend then

y = y + yb,r
end
else

stop=1
break from the loop

end
end
if stop=0 then

for Ub ∈ V : idb,r ∈ E do
Call TimeLockContractRelease Phase with (y, xŕ, idb,r) as input, gets rb,r.
if Rb,r 6= rb,rG then

stop=1
break from the loop

end
else

Store rb,r.
end

end
end
if stop = 1 then

for Ub ∈ V : idb,r ∈ E do
if isContract(idb,r) = 1 then

Send (abort) to Ub
end

end
end
else

for Ub ∈ V : idb,r ∈ E do
Send (accept, rb,r) to Ub

end
end

Security definition of CryptoMaze 85

Procedure 8: Release Phase for node Uj ∈ V \ {Ur}
Upon receiving input (Ui, accept,m), parse m to get rj,i
C(Ui, Uj) = C(Ui, Uj) + valj,i
if releasej=0 then

Set releasej=1
if Uj had forwarded payment to more than one node then

rj,i = rj,i + xj,i
xj =

∑
∀Ui∈V :idj,i∈E

xj,i

end
for Um ∈ V : idm,j ∈ E do

Call TimeLockContractRelease Phase with (rj,i, xj, idm,j) as input, gets rm,j .
Send (accept, rm,j) to Um.

end
end

Procedure 9: Abort for node Uj ∈ V
Upon receiving input (Ui, abort)
Set flag = 0
C(Uj, Ui) = C(Uj, Ui) + valj,i
for idj,k ∈Mj do

if isContract(idj,k) = 1 then
flag = 1
break from the loop

end
end
if flag = 0 then

for Um ∈ V : idm,j ∈ E do
Send (abort) to Um.

end
end

86 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

forwarding the payment from U0 to Ur are put in set PC, added serially upon breadth-first traversal
of the network, starting from U0. The flow in each channel idi,j present in PC is denoted by vali,j .

5.4.2.1 Operations

We describe the operation PAY in the ideal world. F initializes a pair of local empty lists (L, C).
Each session is denoted by a session identifier sid. The phase is initiated by U0, sending the
payment value val to be paid to Ur, the least timeout period of off-chain contract tend. The other
inputs are the set of payment channels PC along with the flow in each channel vali,j and the
timeout period of off-chain contracts established on each channel, denoted as ti,j , ∀idi,j ∈ PC. F
initializes the variable contract(sid, idi,j) = 0, ∀idi,j ∈ PC to indicate that till now no off-chain
contract got established in this session. PAY is divided into two phases: (i) Contract Forwarding
Phase and (ii) Release Phase, defined in Fig. 5-6.

(i) The Contract Forwarding Phase is triggered after U0 sends the pay instruction along with
the set PC and the value of the payment. The inputs provided from environment Z are marked
in red, as shown in Fig. 5-5(i). Each node Ui 6= Ur, Ui ∈ PC is visited in breadth-first fashion
and the nodes are inserted in the queue Qpay. Before sending the request to Uj , F checks whether
an open channel idi,j exists in B. Next, it checks whether the channel idi,j has enough capacity
for forwarding the payment. The consistency of the timeout period for incoming and outgoing
contracts is checked as well. If any of the conditions fail, F removes any entry for off-chain
payments in L and aborts. If all the criteria hold, F forwards the partial payment to node Uj ,
output arrow marked in blue, shown in Fig. 5-5(i). If all preceding contracts of Uj got established,
then it becomes a candidate for forwarding the payment. Uj is thus inserted into Qpay. If Uj sends
abort, then all the entries in L are removed and F aborts.

(ii) Once the payment reaches Ur, it triggers the Release Phase by sending a response to F ,
input arrows marked in red, shown in Fig. 5-5(ii). If Ur sends abort, then the payment is considered
to have failed. All the entries are removed from L and F aborts. If Ur responds with success,
then F sends a success message to predecessors of Ur, updates the entry in L. The output of
the intermediate parties sent to environment Z is marked as blue arrows in Fig. 5-5(ii). If the
predecessor sends an abort message, then such a node is marked as visited and the entry is pushed
in Qfailure. Else, that node is considered as the candidate for forwarding the success message to
its predecessors and marked as visited, if it has not been visited before. Nodes in Qfailure are dealt
with later after all the successful payments get settled. Each of these nodes sends an abort message
to its predecessor. If a predecessor has not visited before, then it is pushed in Qfailure and the
process continues.

Security definition of CryptoMaze 87

5.4.2.2 Discussion

The operation PAY defined in ideal functionality F satisfies privacy properties of CryptoMaze in
the following ways:

• Correctness: In Contract Forwarding phase, each intermediate node Ui gets instructions for for-
warding payment fromF on behalf of nodeUj , provided

∑
Uk∈V,idk,j∈PC

valk,j =
∑

Um∈V,idj,m∈PC
valj,m+

f(valj,m). Ur triggers the release phase and responds with success, provided it has received the
amount val. If all the parties have behaved honestly and Ur responds with success in the release
phase, then F updates in L the channels present in PC. Thus, U0 can successfully complete the
payment by forwarding val +

∑
(Ui,Uj)∈PC:Ui /∈{U0,Ur}

f(vali), where each node Ui ∈ V \ {U0, Ur}

gains f(vali) and Ur gets the amount val.

• Consistency: Release Phase defined in Fig. 5-6 shows that Ui is pushed into the queue T only if
there is a successor Uj that had resolved the off-chain contract forwarded by Ui. Once Ui enters
into T , then it will be popped out of the queue for resolving its preceding contracts. If all the
neighbors of Ui have sent abort, then none of the preceding contracts forwarded to Ui will get
resolved.

• Balance Security: Any intermediate node Ui can claim payment from its preceding neighbors if
at least one of the outgoing neighbors of Ui accepted the payment. If Ui receives abort from all
the successors, it will abort as well. The total balance of Ui either remains unchanged or it gains
a processing fee f(vali) where f(vali) =

∑
∀Uj∈V,(Ui,Uj)∈PC

f(vali,j).

• Value Privacy: The ideal functionality F does not contact any user that does not belong to the
set PC, hence they learn nothing about the transacted value.

• Unlinkability: For all the neighbors Uj of node Ui, F samples a random identifier h′i,j . Even if
the neighbors collude, they cannot find any correlation amongst the payment identifiers.

• Relationship Anonymity: Follows from unlinkability. If there exist at least one honest inter-
mediate node Ui, then it receives a unique event identifier from F for each payment over any
of its outgoing payment channels. Since all the event identifiers are independently generated,
if at least one honest user Ui lies in a payment path, any two simultaneous payments getting
routed over the same set of payment channels for the same value val are indistinguishable to
the outgoing neighbors of Ui receiving the request for forwarding the payments. This implies

88 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

that any corrupted node cannot distinguish between the payments (U0, Ur, val) and (U ′0, U
′
r, val)

with probability greater than 1
2
.

• Atomicity: If Ur triggers the release by responding with success, it means that it has received
all the partial payments. If Ur fails to receive even one partial payment, then it will send abort
signaling a failed payment.

5.4.3 Universal Composability (UC) Security

The ideal functionality F can be attacked by an ideal world adversary called a simulator or Sim,
a PPT algorithm. An additional special party called the environment Z which observes both the
real world and the ideal world, provides the inputs for all parties, and receives their outputs. Z can
use the information leaked by adversary A or actively influence the execution. Adversary A can
corrupt any party before the protocol starts. However, the former doesn’t get any information from
communication occurring between honest parties. Let REALΠ,A,Z be the ensemble of the outputs
of the environment Z when interacting with the attacker Z and users running protocol Π,

Definition 5.1. UC Security. Given that λ is the security parameter, a protocol Π UC-realizes
an ideal functionality F if for all computationally bounded adversary A attacking Π there exist
a probabilistic polynomial time (PPT) simulator Sim such that for all PPT environment Z ,
IDEALF ,Sim,Z , and REALΠ,A,Z are computationally indistinguishable.

5.4.4 Security analysis

From Definition 5.1, a protocol Π is said to be UC-secure if Z cannot distinguish whether it
is interacting with the ideal world or real world even in presence of a computationally bounded
adversary A. Since our protocol execution in real world relies on ideal functionalities Fsmt and
FB, we define our protocol in the hybrid world [49] instead of real world.

Theorem 5.1. Given λ is the security parameter, elliptic curve group of order q is generated by the
base point G, the protocol CryptoMaze UC-realizes the ideal functionality F in the (FB,Fsmt)-
hybrid world.

Proof. We design Sim for the ideal world execution for the following cases: either the sender is
corrupt or the receiver is corrupt, or one of the intermediate node is corrupt. The only event which
distinguishes hybrid world from ideal world is when the Sim aborts in ideal world.

Security definition of CryptoMaze 89

PAY

(ii) Contract Forwarding Phase U0 invokes F with message
(sid, pay, Ur, val, tend, {(idi,j, vali,j, ti,j) : idi,j ∈ PC},PC).

• For each idi,j ∈ PC, set contract(sid, idi,j) = 0.

• F forms a set VPC = {Ui} such that Ui ∈ V and has a channel in PC.

• Initialize an empty queue Qpay. Push U0 into queue Qpay.

• While Qpay is not empty:

– Pop Ui from Qpay.

– For each Uj ∈ VPC : idi,j ∈ PC:

∗ If Uj sends (sid, abort) to F then it removes all entries such entries from L added in this
phase, cancel their contracts by resetting the variable to 0, and abort.
∗ F checks isChannel(idi,j) = 1. If the check fails, then remove all entries di from L

added in this phase and abort.
∗ Create zi,j = {(idj,k, valj,k, tj,k) : ∀Uk ∈ VPC, idj,k ∈ PC}, if Uj 6= Ur. Else zi,r =
{val, tend}.

∗ F checks ti,j
?

≥ max
Uk∈VPC,idj,k∈zi,j

{tj,k} + ∆ and vali,j ≤
∑

Uk∈VPC,idj,k∈zi,j
valj,k + f(valj,k).

If any of the checks fail, then remove all entries from L added in this phase, cancel their
contracts by resetting the variable to 0, and abort.
∗ F checks whether for (idi,j, v

′
i,j, ., .) ∈ L, if v′i,j ≥ vali,j . If that is the case, then add

di,j = (idi,j, v
′
i,j − vali,j, ti,j,⊥) to L, where (idi,j, v

′
i,j, ., .) ∈ L is the entry with the

lowest v′i,j . If the conditions are not met, F removes all entries from L added in this
phase and abort.
∗ If the conditions are met, set contract(sid, idi,j) = 1. Sample an identifier h′i,j and send

request (sid, forward, Ui, idi,j, vali,j, ti,j, h′i,j, zi,j) to Uj .
∗ If isPred(sid, Uj,PC,VPC) returns success, push Uj to Qpay.

Figure 5-6: Ideal World Functionality for payment in PCN

• U0 is corrupted: A acts like the sender U0, and forms packet (Ri,j, vali,j, ti,j, Zi,j), for each
idi,j ∈ PC, Ui 6= Ur. The encrypted message Zi,j upon decryption gives
Mj = {(idj,k, valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈ V, idj,k ∈ PC}, when Uj 6= Ur and Mj =

{(yi,j, tend)}, when Uj = Ur. A forwards the packet to Sim.

For each node Ui ∈ V, Ui 6= {U0, Ur}, Sim does the following:

90 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

(ii) Release Phase Ur invokes F with message (sid, response).

• For each Uj ∈ VPC:

– Set visited(Uj) = 0.

• Initialize flagabort = 0 and initialize empty queues T and Qfailure.

• If response = ⊥, then set flagabort = 1.

• If flagabort = 0, push Ur in T .

• While T is not empty:

– Pop node Uj from T .

– For each Ui ∈ VPC : idi,j ∈ PC and contract(sid, idi,j) = 1:

∗ Update di,j ∈ L to (−,−,−, h′i,j), send (sid, success, h′i,j) to Ui and Uj , set
contract(sid, idi,j) = 0.
∗ If Ui sends (sid, abort) then visited(Ui) = 1, push Ui in Qfailure.
∗ Else if visited(Ui) = 0 and Ui 6= U0, set visited(Ui) = 1 and push Ui in T .

• If flagabort = 1, then :

– Push Ur to T .

– While T not null:

∗ Pop node Uj from T .
∗ If Uj 6= U0, go to the next step, else go back to previous step and continue.
∗ For each Ui ∈ VPC : idi,j ∈ PC and contract(sid, idi,j) = 1:
· set contract(sid, idi,j) = 0. Remove di,j from L, send (sid,⊥, h′i,j) to Ui and Uj .
∗ If Ui /∈ T , push Ui in T .

• Else:

– While Qfailure is not empty:

∗ Pop node Uj from Qsuccess

∗ For each Ui ∈ VPC : idi,j ∈ PC and contract(sid, idi,j) = 1:
· set contract(sid, idi,j) = 0. Remove di,j from L, send (sid,⊥, h′i,j) to Ui and Uj .
· If visited(Ui) = 0, set visited(Ui) = 1, push Ui in Qfailure.

Figure 5-6: Ideal World Functionality for payment in PCN (Continued)

Security definition of CryptoMaze 91

isChannel(idi,j) :

• F sends idi,j to FB. The latter checks for an entry in B of the form (idi,j, vi,j, t
′
i,j, fi,j).

• If the entry does not exist, then return 0.

• If the entry exists, then check if there is an entry idi,j in C. If it is true, then return 0, else
return 1.

isPred(sid, Ui,PC,VPC) :

• For each Uk ∈ VPC : idk,i ∈ PC:

– If contract(sid, idk,i) = 0, then return failure.

• Return success

Figure 5-7: Submodules used in F

– Form set Di = {(idi,k, xi,k, Ri,k, ti,k) : ∀k ∈ V, idi,k ∈ PC}.

– For each Uj ∈ V : idj,i ∈ PC:

∗ Get (Rj,i, tj,i), call TimeLockContractForward Phase with input (Di, tj,i, Rj,i) as input.
If it returns failure, then abort.

Sim checks
∑

Uj∈V :idj,i∈PC
valj,i =

∑
Uk∈V :idi,k∈PC

vali,k + f(vali,k). If the check fails, abort.

If the process didn’t abort, Sim sends (sid, pay, Ur, val, tend, {(idi,j, vali,j, ti,j) : idi,j ∈ PC},PC)

to F . Sim has already checked the flow consistency for the intermediate honest nodes, as well
as consistency of terms of incoming and outgoing contracts before it forwards the conditional
payment.

In the release phase, if Ur aborts, then the process aborts as well. If Ur has released the secret,
then Sim checks that any node Ui claiming payment from Uj has released the discrete logarithm
for Rj,i. We consider that an honest intermediate node Um splits the transaction value across
multiple payment channels, and a partial value gets routed via channel idm,i. We identify a bad
event E1: if adversary A has released rm,i for Rm,i : rm,iG = Rm,i but ∃Uk where idk,m ∈ PC,
r = rm,i + ek,mxm + xm,i and Rk,m 6= rG then Sim aborts the simulation.

Claim 5.1.1. The probability of E1 is 0.

Proof. Sim checks the relation Rk,m
?
= Rm,i + ek,mxmG + xm,iG,∀Ui ∈ V, idm,i ∈ PC at the

start. If Rm,i = rm,iG but Rk,m 6= rG, then r 6= rm,i + ek,mxm + xm,i, which contradicts event

92 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

E1. Hence, the probability is 0.

• An intermediate party Um is corrupted: IfA is able to release the discrete logarithm of the state-
ment used in the incoming channel’s contract of node Um before the secret is revealed, Sim
aborts.

When Sim gets (sid, forward, Uj, idj,m, valj,m, tj,m, h′j,m, zj,m) from F on behalf of all incom-
ing nodes Uj of node Um, it samples xm,k for each Uk ∈ zj,m, computes xm =

∑
Uk∈V,idm,k∈PC

xm,k.

Sim sends (forward,Rj,m, valj,m, tj,m), Zj,m toA on behalf of allUjs. A sends (Rm,k, valm,k, tm,k)

to Sim for all such Uks, on behalf of Um. Sim checks whether ∀Uj ∈ V , Rj,m
?
= xmG + Rm,k +

ej,mxm,kG and tj,m
?
= ∆ + max

Uk∈V,idm,k∈PC
{tm,k} and

∑
Uj∈V,idj,m∈PC

valj,m
?
=

∑
Uk∈V,idm,k∈PC

valm,k +

f(valm,k),∀Uk ∈ V, idm,k ∈ PC. If any of the checks fail, then it sends abort to F .

Consider Ut as the incoming node forwarding payment to Um and Uh as the outgoing neighbor
of Um. Sim samples r∗ such that Rm,h = r∗G and Rt,m = xm,hG+ et,mxmG+Rm,h. We identify
another bad event E2: if A releases r′ such that Rt,m = r′G without querying Sim on the event
identifier h′m,h, Sim aborts.

Claim 5.1.2. The probability of E2 is 1
q
, where G is an elliptic curve group with large order q

i.e. |G| = q.

Proof. Follows from the discrete logarithm hardness assumption, given a random point h ∈ G,
it is possible to guess the value logGh with probability 1

q
.

• Ur is corrupted: Sim receives (sid, forward, Uj, idj,r,
valj,r, tj,r, h

′
j,r, zj,r) on behalf of all incoming nodes Uj of node Ur from F . Sim gets Xŕ from

A and samples yj , creates Rj,r = Xŕ + ej,ryG, where y =
∑

Uj∈V :idj,r∈PC
yj , for all the incoming

neighbors Uj of node Ur. It sends (forward,Rj,r, valj,r, tj,r), Zj,r toA on behalf of all Ujs. We
identify another bad event E3: if there exists a node Uk : idk,r ∈ PC such thatA releases x′ such
that Rk,r = x′G without querying Sim on the event identifier h′k,r, Sim aborts the simulation.

Claim 5.1.3. The probability of E3 is 1
q
, where G is an elliptic curve group with large order q

i.e. |G| = q.

Proof. A knows dlog(Xŕ), but it doesn’t know y. Hence, A can guess dlog(Rk,r) with probabil-
ity 1

q
.

�

Experimental analysis 93

Indistinguishability from the ideal world. The simulator Sim designed is efficient since it runs
a polynomially-bounded algorithm. To argue that Z’s view in simulation is indistinguishable from
the execution protocol in the hybrid-world protocol, we consider the occurrence of a bad event in
PAY:
(i) When U0 is corrupted, the random values sampled by Sim and the values are chosen by an
honest U0 follow the same distribution. Similarly, when Ur is corrupted or an intermediate node
is corrupted, the random values sampled by Sim remain indistinguishable from the data used in
honest execution.
(ii) Indistinguishability breaks when Sim aborts in the ideal world. We infer from Claim 5.1.1,
Claim 5.1.2, and Claim 5.1.3, that bad events occur with negligible probability and hence Sim
aborts with negligible probability.

Thus, we have proved that our protocol CryptoMaze UC-realizes the ideal functionality F in
the (FB,Fsmt)-hybrid world. If the security and privacy goals stated in Section 5.3.2 are realized
by F , then as per UC Definition of Security stated in Definition 5.1 these security notions are
satisfied by our protocol as well.

Figure 5-8: LN snapshot March 2020, Figure on the left is (a) TTP vs transaction value and on the
right (b) Communication overhead vs transaction value

5.5 Experimental analysis

We choose to compare our protocol with Multi-Hop HTLC [93], Atomic Multi-path Payment [10]
and Eckey et al. [53]. Multi-Hop HTLC is a single-path payment protocol, and we show how
extending it to a multiple-path payment would work. In this protocol, a node forwarding payment
in a given path gets a tuple (y, h1, h2) along with the non-interactive zero-knowledge proof Π for
the statement “∃x′ : h1 = H(x′) and h2 = H(y ⊕ x′)′′. Atomic Multi-path Payment or AMP is the

94 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Figure 5-9: LN snapshot May 2021, Figure on the left is (a) TTP vs transaction value and on the
right (b) Communication overhead vs transaction value

Figure 5-10: Simulated Network, Figure on the left is (a) TTP vs number of nodes and on the right
(b) Communication overhead vs number of nodes

most efficient protocol in the existing state-of-the-art in terms of run time (considering best-case
run time) as well as communication cost. If there are n paths in AMP, then the payer generates
secret shares x1, x2, . . . , xn for each path from the master secret x : x = x1 ⊕ x2 ⊕ . . . ⊕ xn. We
find the objective of the protocol proposed in Eckey et al. similar to ours. However the payment
split is decided on the fly and sharing of public key leads to linkability between partial payments.

5.5.1 Evaluation methodology

In this section, we define the experimental setup. The code is available in [6]. System configuration
used is Intel Core i5-8250U CPU, Operating System: Kubuntu-20.04.1, and Memory: 7.7
GiB of RAM. The programming language used is C, compiler - gcc version 5.4.0 20160609. For
implementing the cryptographic primitives in CryptoMaze, Atomic Multi-path Payment or AMP
and Multi-Hop HTLC, we use the library OpenSSL, version-1.0.2 [127]. For constructing the
zero-knowledge proof for Multi-Hop HTLC, we have used C-based implementation of ZKBoo[17]

Experimental analysis 95

and libgcrypt version-1.8.4 1. The number of rounds for ZKBoo is set to 136. This guarantees
a soundness error of 2−80 for the proof and witness length is set to 32 bytes. For elliptic curve
operations in CryptoMaze and Eckey et al., we have considered the elliptic curve secp224r1. For
homomorphic encryption using Paillier Cryptosystem in Eckey et al., libhcs is used [12]. It is a C
library implementing a number of partially homomorphic encryption schemes [47].

5.5.1.1 Metric Used

The following metrics are used to compare the performance of CryptoMaze with other state-of-
the-art protocols.

• TTP (Time taken for payment): It is the time taken for searching of eligible paths for routing a
payment, formation of off-chain payment contracts, and completion of payment upon success-
fully fulfilling the criteria set in the contract. It is measured in seconds or s.

• Communication Overhead: For the given payment protocol, the number of messages exchanged
between the nodes while searching for a set of paths and execution of the payment protocol,
measured in kilobytes or KB.

5.5.2 Observations

We use the distributed routing algorithm HushRelay [98] for our protocol, Atomic Multi-path Pay-
ment and Multi-Hop HTLC, that returns the set of paths. Based on this set of paths as input, we run
each instance of the payment protocol. Since the time taken for routing is taken into account while
estimating TTP, it can be further optimized by using a more efficient distributed routing algorithm.

5.5.2.1 Evaluation on Real Instances

We select two snapshots of Lightning Network taken on March 2020 [14] and May 20212. The
first instance has 6329 nodes and the second instance has 11072 nodes. The payment amount is
varied between 0.0025 BTC - 0.04 BTC.

(a) Optimization in terms of off-chain contracts. Before stating the observation in terms of
execution time and communication cost, we analyze the saving in terms of off-chain contracts

1https://gnupg.org/software/libgcrypt/index.html
2https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN 25 05 2021.json?dl=0

https://gnupg.org/software/libgcrypt/index.html
https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN_25_05_2021.json?dl=0

96 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

established in shared edges. Since state-of-the-art protocols instantiate multiple contracts on shared
edges, we choose anyone as a representative and compare it with our protocol. We run 20000
payment instances for a given transaction value and state our results for the two Lightning Network
instances.

• LN instance, March 2020: When the transaction value was increased from 0.0025 BTC to 0.04
BTC, the payment instances that had multiple routes sharing payment channels increased from
1% to 38%. The number of payment channels shared in a single payment instance increased
from 33% to 55%. The number of times a particular payment channel got shared increased from
2 to 5. The total number of off-chain contracts per payment instance increased from 24% to
68.75% for state-of-the-art.

• LN instance, May 2021: Payment instances sharing channels for a single payment increased
from 0.04% to 38.6%. Channels shared for a given instance increased from 33% to 42.8%. A
channel gets shared not more than 4 times. The total number of off-chain contracts per payment
instance increased up to 54.5% for state-of-the-art.

(b) Computation and Communication Cost. We analyze the efficiency of CryptoMaze com-
pared to state-of-the-art in terms of the metric stated, when executed on a single payment instance.

• TTP for CryptoMaze is equivalent to Atomic Multi-path Payment, not exceeding 0.39s on aver-
age as shown in Fig. 5-8 (a) and it is around 1.85s in Fig. 5-9 (a) for the second snapshot. Our
protocol is approximately 3 times faster than Eckey et al. and 17.5 times faster than Multi-Hop
HTLC for both instances.

• The communication overhead in Fig. 5-8 (b) is 53.18KB and in 5-9 (b) is 93.203KB, on average.
The overhead is 14.5 times greater than that of Atomic Multi-path Payment and 2 times more
than that of Eckey et al. for both instances. The communication overhead of Multi-Hop HTLC
is 297 times more than CryptoMaze.

5.5.2.2 Evaluation on Simulated Instances

Payment Channel Networks follow a small-world, scale-free structure [121]. For generating syn-
thetic graphs of size ranging from 200 to 25600 based on Barábasi-Albert model [22], [34], library
igraph was used. Optimization in terms of off-chain contracts are not analyzed since these are
synthetic graphs. The topology of the synthetic graph may not be able to mimic the execution of

Experimental analysis 97

multiple payment instances in the Lightning Network. We make the following observations based
on executing a single payment instance:

• TTP for CryptoMaze increases gradually with the increase in the size of the network. The
execution time does not exceed 11s upon execution on an instance of size 25600. Run time of
AMP is 1.7 times of CryptoMaze, that of Eckey et al. and Multi-Hop HTLC being 3.5 times and
18 times that of our protocol on an average. The plot is given in Fig. 5-10(a).

• The communication overhead in Fig. 5-10 (b) increases with an increase in the size of the
network, with the communication overhead not exceeding 1000KB or 1MB on an instance of
size 25600. On average, the communication overhead of CryptoMaze is 5 times of Eckey et al.
and 33 times of Atomic Multi-path Payment. However, the overhead is 105 times less compared
to Multi-Hop HTLC.

5.5.3 Discussion

(i) Optimization in terms of off-chain contracts: When the transaction amount per payment was
increased, the liquidity of channels decreased. Payments were split into smaller amounts and
routed via multiple paths. Thus, we observed that the number of instances where the routes were
not edge-disjoint increased. With the increase in transaction amount, the number of paths routing
a payment increased due to the increase in the split. The number of off-chain contracts established
per payment increased for the state-of-the-art protocols. When the size of the network increases,
the higher the chance of finding routes with higher capacity, the more options of edge-disjoint
routes. Hence, a decrease in the number of off-chain contracts is observed.

CryptoMaze combines the conditions for each of the partial payments routed via shared edges
and form a single off-chain contract, our protocol saves around 50% − 60% compared to state-
of-the-art in terms of setup cost. Also, it does not have to pay a node more than once for routing
payment, thus saving on the processing fee.

(ii) Efficiency in terms of computation and communication cost: We discuss our observation in
terms of the metric used.

• Time taken to execute CryptoMaze is comparable to AMP, sometimes even lower than the latter.
The reason is the mapping set of routes into a set of edges before establishing the off-chain
contracts. All the previous protocols considered each route individually, increasing the setup
time. Eckey et al. have a higher run time due to the use of homomorphic encryption. In Multi-

98 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Hop HTLC, generating zero-knowledge proofs for the preimage of a given hash value is an
expensive process in terms of computation cost.

Overall, the time taken to execute the payment protocol increases slightly with an increase in the
transaction amount and an increase in the network size. The higher is the transaction amount, the
higher the chance of the payment being split into multiple partial payments. When the network
size increases, the time taken to process the network for searching paths for routing the payment
increases as well.

• It is observed that AMP has the lowest communication overhead because each node forwards
just a single commitment to its neighbor in the path routing payment. However, each path is
susceptible to wormhole attack. Eckey et al. have a higher communication overhead. Here, each
node forwards the public key and an encrypted message to its neighbor. In CryptoMaze, each
node forwards a set of conditions and a set of secret values to its neighbor. The communication
overhead is slightly greater than Eckey et al.. However, the surge in communication overhead
is to some extent compensated in the shared channels, where a single off-chain contract instead
of multiple off-chain contracts. Multi-Hop HTLC has the highest communication cost. The
zero-knowledge proof Π forwarded to each node has a significant size, plus multiple off-chain
contracts are formed on shared edges, increasing the communication overhead.

The result demonstrates that our proposed protocol is efficient and scalable in terms of compu-
tation cost and resource utilization.

AMP [10] [111] [32] NAPS [51] [53] This work
At 3 7 3 7 3 3

WA 3 3 3 7 7 7

Li 7 7 7 3 3 7

M-OC 3 3 3 3 3 7

Table 5.2: Comparative Analysis of CryptoMaze with existing Multi-path payment protocols in
terms of atomicity (At), wormhole attack (WA), Linkability (Li) and multiple off-chain
contracts on shared edges (M-OC)

We provide a comparative analysis of our protocol with the state-of-the-art multi-path payment
in Table 5.2. Our protocol is atomic, wormhole attack resistant and guarantees unlinkability be-
tween partial payments. None of the shared edges require multiple off-chain contracts for a single
payment instance. A new protocol, xLumi [143] was proposed for blockchain systems. This pro-
tocol creates unidirectional channels. Unlike Lightning Network, xLumi drastically reduces the
number of interactions and complexity of opening a payment channel. Users are not required to

Experimental analysis 99

store a new secret for every off-chain transaction. However, xLumi has not been expanded to bidi-
rectional channels and payment channel networks. It would be interesting to see how CryptoMaze
can be adapted in xLumi based PCN.

100 CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments

Chapter 6

Griefing-penalty: Countermeasure for Grief-
ing Attack in Lightning Network

Lightning Network can execute an unlimited number of off-chain payments, without incurring the
cost of recording each of them in the blockchain. If a sender and a recipient of payment do not
share a channel, such payments make use of Hashed Timelock Contracts or HTLCs [113]. Since
the payment gets routed via several intermediaries, a specific condition is imposed via off-chain
contracts to prevent cheating. Payments are contingent on the fulfillment of this condition. We
describe with an example how conditional payments get executed between parties not directly
connected by payment channels in Lightning Network. Suppose Alice wants to transfer p coins to
Bob via path comprising payment channels Alice-Dave, Dave-Charlie and Charlie-Bob, as shown
in Fig. 6-1. Each intermediate node charge a processing fee of p′. Alice forwards a conditional
payment to Dave, forming an off-chain contract, denoted as Contract(p + 2p′, t + 2∆), locking
p + 2p′ coins for a time period t + 2∆. Here ∆ is the worst-case confirmation time for settling a
transaction on-chain. Dave deducts p′ coins from the amount and forwards the payment to Charlie
by forming a off-chain contract, locking p + p′ coins for t + ∆. Finally, Charlie deducts p′ coins
from the payment amount and locks p coins with Bob for a time period t. In order to claim p coins
from Charlie, Bob must resolve the payment within time period t. If the period elapses, Charlie
goes on-chain to claim a refund, closes the channel Charlie-Bob and unlocks the money from the
contract. Using the information released by Bob, the rest of the intermediaries resolve the payment
as well, each claiming a processing fee of p′.

Figure 6-1: Bob mounts Griefing Attack

Suppose Bob stops responding. Charlie can go on-chain and withdraw the coins locked in the

101

102 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

contract only after the elapse of the contract’s lock time. Thus Bob manages to lock O(p) coins
in each of the preceding payment channels for a period of t units, without investing any coin. t
could be of the order of 24 hours. In that case, none of the parties can utilize the amount locked
in their respective off-chain contracts for an entire day. Thus, Bob has mounted a griefing attack,
illustrated in Fig. 6-1. Griefing attack was first mentioned in [119]. Paralyzing the network for
multiple days by overloading each channel with maximum unresolved HTLCs has been studied
in [100], [129]. In [89], Sybil nodes initiate several payments via multiple paths and griefs them
simultaneously.

Motive behind Griefing Attack By mounting a griefing attack, an adversary may try to achieve
either of the objectives:

• Stalling network using self-payment: The adversary controls the sender and receiver of several
payment requests, blocking multiple intermediaries from accepting any other payments to be
routed through it [89], [8]. To decrease the network throughput, an adversary may set up several
Sybil nodes at strategic positions across the PCN and amplify the damage by submitting several
payment requests.

• Eliminating a competitor from the network: The adversary tries to eliminate a competitor and
block all its existing channel’s outgoing capacity [55], [8]. The adversary sets the victim as
an intermediate node in the path carrying out the self-payment. The transaction value of self-
payment is equivalent to the victim’s outgoing channel capacity, jamming all the channels of
the victim node. The victim cannot utilize the fund until the adversary claims the payment.
As a result, the former cannot process several payment requests could due to a lack of channel
liquidity. Adversary reaps the indirect economic benefit by claiming the processing fee for
routing such transactions. For example, B has outgoing channel with A and C, each of capacity
0.1 BTC (each party having a balance of 0.05 BTC), shown in Fig. 6-2. Node D has channel
with A and C, each of capacity 0.2 BTC. It conducts self-payment of 0.05 BTC, in each direction.
By griefing for 24 hrs,D has managed to blockB from accepting any transaction request. A and
C, having residual outgoing capacity of 0.1 BTC each in channel AD and CD, are now forced to
route all the payments via D.

• Stalling network using intermediary: The adversary controls a node with a high degree of cen-
trality and broadcasts its processing fee to be extremely low to ensure multiple payments get
routed through such nodes [121]. It later ignores all the payments by not forwarding the mes-
sage to outgoing neighbors. Funds remain locked across multiple paths, affecting a large portion

Our Goal 103

A B

M

C

D

0.05 BTC 0.05 BTC

0.05 BTC
0.05 BTC0.05 BTC

0.05 BTC

0.05 BTC 0.05 BTC

Figure 6-2: Eliminating a competitor

of the network.

Figure 6-3: Bob is penalized

6.1 Our Goal

Griefing attack in Lightning Network cannot be prevented as long as a malicious node has nothing
to lose or there is nothing at stake. If the attacker is penalized, it will be discouraged from mounting
the attack. The amount deducted from the adversary’s balance must be able to compensate all the
parties which got affected by the attack. A high-level idea of the countermeasure is represented in
Fig. 6-3. Alice forwards the payment to Bob via some intermediaries. Each party accepting the
off-chain contract is supposed to lock an amount, which gets deducted if the party fails to resolve
the payment before the contract timeout period. Bob doesn’t respond intentionally, allowing the
timeout period of the contract to elapse. As per the terms of the contract, he gets penalized and the
funds slashed from his account are used to compensate Alice, Dave and Charlie.

104 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

6.2 Our Contributions

In this paper, we have made the following contributions:

• We propose a countermeasure for mitigating griefing attack in Lightning Network, known as
Griefing-Penalty. To illustrate the benefit of the proposed countermeasure, we propose a new
payment protocol, called HTLC-GP or Hashed Timelock Contract with Griefing-Penalty. The
penalty deducted is a fraction of the coins locked by the attacker per unit of time. This fraction
is termed as rate of griefing penalty.

• We propose a construction for secure multihop payment using HTLC-GP and provide security
analysis. It proves that our protocol is privacy-preserving and mitigates loss due to griefing
attacks by compensating the honest nodes.

• We study two attacking strategies for eliminating competitor nodes from the network. Upon
mounting the griefing attack following either of the strategies, we compare the profit made
by the attacker in HTLC and HTLC-GP, by executing the protocols on several snapshots of
Lightning Network. The profit is termed as Return on Investment (RoI). It is observed that RoI
is negative for HTLC-GP compared to a positive RoI in HTLC, hence disincentivizing a node
from mounting griefing attack due to substantial loss incurred.

• We compare the investment made by the adversary for mounting the attack in both HTLC-
GP and HTLC upon varying path length and rate of griefing-penalty. The budget needed for
mounting a griefing attack in HTLC-GP is 4 times more than the budget needed for HTLC when
the path length is set to 4. The ratio increases to 12 for a path length of 20, the maximum hop
count allowed in Lightning Network. For a fixed path length, the ratio increases up to 500 for
the rate of griefing penalty exceeding 10−3.

• We suggest a suitable range for selecting the rate of griefing-penalty, from the perspective of an
honest payer and an honest payee. We observe that selecting the rate of griefing penalty in the
range (10−5, 10−3] ensures that the cumulative penalty to be locked by the recipient of a given
payment is neither too high nor too low. At the same time, the collateral locked upon mounting
a griefing attack in HTLC-GP is lower than that in HTLC for a given attacker’s budget.

Background 105

6.2.1 Organization

We discuss the necessary background by defining payment channel networks in Section 6.3. We
provide a high-level overview of our proposed countermeasure, Griefing-Penalty, in Section 6.4.
Based on this idea, we have proposed a new payment protocol, HTLC-GP or Hashed Timelock
Contract with Griefing-Penalty in Section 6.5. We provide a detailed construction of Multi-hop
payment using HTLC-GP in Section 6.6. Security analysis of the proposed multi-hop payment
protocol has been provided in Section 6.7. We divide the Performance Evaluation into two parts
in Section 6.8. Firstly, we analyze the profit earned by eliminating competitors in Section 6.8.1,
demonstrating the efficiency of HTLC-GP over HTLC in countering the griefing attack. Next, we
discuss in Section 6.8.2 the impact of certain parameters on the investment made by an attacker
in HTLC-GP. In Section 6.9, we suggest bounds on the amount of griefing-penalty charged that
works for practical purposes.

6.3 Background

6.3.1 Payment Channel Network

A Payment Channel Network or PCN is defined as a bidirected graph G := (V,E), where V is
the set of nodes and E is the set of payment channels opened between a pair of nodes. A PCN is
defined with respect to a blockchain. Apart from the opening and closing of the payment channel,
none of the transaction gets recorded on the blockchain. Upon closing the channel, the final balance
is credited to each user’s wallet as per the recent state of the payment channel. Every node v ∈ V
charges a processing fee f(val), for relaying val coins to its neighbor with which v shares a
payment channel. Correctness of payment across each channel is enforced cryptographically by
hash-based scripts [113] or scriptless locking [94]. Each payment channel (vi, vj) has an associated
capacity locked(vi, vj), denoting the amount locked by vi and locked(vj, vi) denoting the amount
locked by vj . remain(vi, vj) signifies the residual amount of coins vi can transfer to vj . Suppose
sender S, which is node v0, wants to transfer amount α to R, which is node vn through a path
v0 → v1 → v2 . . .→ vn. If remain(vi, vi+1) ≥ αi : αi = αi+1 +f(αi+1), i ∈ [0, n−1], αn−1 = α,
then funds can be relayed across the channel (vi, vi+1). The residual capacity is updated as follows
: remain(vi, vi+1) = remain(vi, vi+1)− αi and remain(vi+1, vi) = remain(vi+1, vi) + αi. Each
processing node vi charges a processing fee f(αi), i ∈ [1, n− 1]. Lightning Network (LN) [113] is
the most widely accepted Bitcoin-compatible PCN.

106 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

6.4 Key Idea of Griefing-Penalty

Designing fair protocols on Bitcoin, where an adversary is forced to pay a mutually predefined
monetary penalty to compensate for the loss of honest parties was first introduced by Bentov et
al. [36]. Inspired by this idea, we propose a countermeasure for griefing attack, termed Griefing-
Penalty. The griefing penalty imposed on an adversary for mounting a griefing attack on a path
of length, n is proportional to the summation of collateral cost of each payment channel involved
in routing. Collateral cost per payment channel is defined as the product of the amount locked in
the off-chain contract and the expiration time of the contract. The amount deducted per unit time
from the adversary’s balance is a fraction of the collateral locked. This fraction is termed as rate of
griefing penalty or γ. We account for the expiration time of the contract while calculating the grief-
ing penalty to compensate participants for the lost opportunity cost. In the next section, we discuss
how to incorporate griefing-penalty into the existing payment protocol, Hashed Timelock Contract
or HTLC. Note that the use of Griefing-Penalty is independent of the cryptographic primitive used
for the underlying payment protocol.

6.4.1 A Simple Protocol for countering Griefing Attack: HTLC1.0

Figure 6-4: Formation of contract in HTLC1.0

We incorporate Griefing-Penalty into HTLC [113]. Let us rename the modified payment pro-
tocol as HTLC1.0. A payment instance using HTLC1.0 for multihop payment is shown in Fig.6-4.
Alice wants to transfer p coins to Bob. Bob shares the hash H with Alice offline. This is used as
the condition for the off-chain contracts established in the route forwarding the payment. Given
the rate of griefing-penalty as γ per unit of time, 0 ≤ γ < 1, and locktime of the contract being
(t + 2∆), Dave is expected to lock γ(p + 2p′)(t + 2∆) coins as griefing-penalty in the off-chain
contract, (p + 2p′)(t + 2∆) being the collateral cost in channel Alice-Dave. If Dave provides the

Key Idea of Griefing-Penalty 107

preimage of H within this period, he will claim p + 2p′ coins and withdraw γ(p + 2p′)(t + 2∆)

coins locked in the contract. Dave forwards a conditional payment of p + p′ coins to Charlie
by forming similar off-chain contract using payment hash H and locktime (t + ∆). Upon grief-
ing, Charlie must pay a compensation of γ(p + p′)(t + ∆). However, this amount is not suf-
ficient to compensate both Dave and Alice. Hence he has to lock a cumulative griefing-penalty
γ(p + 2p′)(t + 2∆) + γ(p + p′)(t + ∆) in the contract. This cumulative griefing-penalty is the
summation of collateral cost in channel Alice-Dave and Dave-Charlie. Charlie forwards a condi-
tional payment of p coins to Bob by forming an off-chain contract for locktime of t units. Bob has
to lock γ(p+ 2p′)(t+ 2∆) + γ(p+ p′)(t+ ∆) + γpt coins. This amount is the cumulative penalty
to be distributed among Alice, Dave and Charlie, if Bob griefs.

Suppose Bob griefs and refuses to release the preimage of H , waiting for time t to elapse.
He will pay a compensation of γ(p + 2p′)(t + 2∆) + γ(p + p′)(t + ∆) + γpt coins to Charlie,
as per the terms of the contract. After the timelock t expires, Charlie goes on-chain. He closes
the channel, unlocks p coins and claims γ(p + 2p′)(t + 2∆) + γ(p + p′)(t + ∆) + γpt coins as
the compensation. He requests Dave to cancel the off-chain contract offering a compensation of
γ(p+ 2p′)(t+ 2∆) + γ(p+ p′)(t+ ∆). Dave cancels the contract off-chain, unlocks p+ p′ coins
from the contract and claims the compensation from Charlie. If Charlie decides to grief, Dave
can claim the compensation by going on-chain and closing the channel. Dave requests Alice to
cancel the contract by offering a compensation of γ(p + 2p′)(t + 2∆). Thus except Bob, none of
the parties lose funds in order to compensate any of the affected parties.

6.4.2 Problem of Reverse-Griefing in HTLC1.0

Figure 6-5: Reverse-Griefing attack by Charlie

A drawback of the protocol is that with the introduction of the griefing penalty, a malicious
party can now ascribe the blame of griefing to an honest party as well. In the previous example,

108 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

Bob cancels the payment under following conditions - if Alice uses a wrong hash value or the
HTLC timeout period is closer to the current block height of the blockchain or the value of the
transaction forwarded is less than the agreed value [2], then. However, Charlie can deny settling
the contract off-chain. Bob has no way to prove his innocence. Ultimately, with elapse of lock
time, Charlie goes on-chain, claiming Bob’s coins, as shown in Fig. 6-5. This attack is termed
Reverse Griefing. There exist several nodes in the network that earns either low or zero processing
fees. Either they charge a very negligible amount of fee for large valued transactions [37], or they
remain inactive for most of their lifetime in the network. Such nodes have a higher tendency to
deviate as the profit earned by reverse-griefing is higher than the total anticipated processing fee.

6.5 Our Proposed Protocol using Griefing Penalty

It is observed in HTLC1.0 that establishing a single contract with minimal changes to the script
is not sufficient to protect a party from being cheated. We propose a new payment protocol for
Lightning Network, termed as Hashed Timelock Contract with Griefing-Penalty or HTLC-GP to
avoid the problem of reverse-griefing.

In this protocol, the locking of the penalty and the payment amount are executed in separate
rounds. Instead of both parties locking their funds into a single contract, the payer locks funds
in one contract, the Payment Contract, and the payee locks his penalty in a separate contract, the
Cancellation Contract. The two contracts are bound together using two different hashes, termed
as Payment Hash and Cancellation Hash. The payee can unlock the penalty deposited in Cancel-
lation Contract either by providing the preimage to the first hash, i.e., the payment hash, or by
releasing the preimage to the second hash, i.e., the cancellation hash. We change the order with the
payee initiating the first round of the protocol. The former locks the penalty into the Cancellation
Contract and forwards it to the payer. After the payer receives the contract, it initiates the second
round. The payer locks the fund into the Payment Contract and forwards it to the payee. Since
the payee has preimages corresponding to both the hashes, even if the payer denies forming the
payment contract, it cannot mount a reverse-griefing attack on the payee. After waiting for a short
duration, the payee will cancel the contract by releasing the cancellation hash.

6.5.1 Two party HTLC-GP

Alice has a payment channel with Bob where each party had deposits 5 msat in the channel. She
intends to transfer 1 msat to Bob. The rate of griefing penalty is set to 0.001 per minute. Bob

Our Proposed Protocol using Griefing Penalty 109

samples r and x, creates the cancellation hash Y = H(r) and payment hash H = H(x), and
forwards both the hashes to Alice. The timeout period for the contract is set as 3 days or 72 hrs,
and hence the penalty amount is 0.001 ∗ 72 ∗ 60 ∗ 1 = 4.32 msat. The condition for payment is as
follows: Given H = H(x) and Y = H(r) in the contract, Bob can claim a fund of 1 msat from
Alice contingent on the knowledge of x, within 3 days and unlocks 4.32 msat from the contract.
If Bob fails to do so, then after a timeout of 3 days, it pays a penalty of 4.32 msat to Alice and
at the same time, Alice withdraws 1 msat. If Bob desires to cancel the contract, then it releases
the preimage r. In that case, Alice withdraws 1 msat, and Bob withdraws 4.32 msat locked in the
contract. Initially, Bob locks the penalty by establishing an off-chain contract with Alice. After
accepting the contract from Bob, Alice locks the payment value in an off-chain contract with Bob,
as shown in Fig. 6-6.

Figure 6-6: Payment from Alice to Bob using HTLC-GP

In the first round of locking, Bob forwards the cancellation contract to Alice by locking 4.32
msat. Bob can withdraw the entire amount contingent on the knowledge of the preimage corre-
sponding to the cancellation hash Y or payment hash H . If Bob fails to respond, Alice claims the
entire amount after 3 days. The state of the channel is: Alice has a balance of 5 msat, Bob has
a balance of 0.68 msat, coins locked in HTLC-GP is 4.32 msat. In the second round of Locking,
Alice forwards the payment contract to Bob by locking 1 msat. The state of the channel is: Alice
has a balance of 4 msat, Bob has a balance of 0.68 msat, coins locked in first HTLC-GP is 4.32
msat, and coins locked in second HTLC-GP is 1 msat. Bob can claim the coins from both contracts
contingent on the knowledge of preimage corresponding to the payment hash H . If Bob reveals
the preimage corresponding to cancellation hash Y , Alice withdraws 1 msat and Bob withdraws
4.32 msat from the contract. If Bob doesn’t respond before the lock time expires, Alice claims the
coins that are locked in both the contracts.

110 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

HTLC-GP Script

The structure of the script is as per the convention used in [1]. For the implementation of HTLC-
GP in Lightning Network, we discuss how to design the output scripts for Cancellation Contract
and Payment Contract.

Figure 6-7: Script Structure: Offered Cancellation Contract

OP DUP OP HASH160 〈 RIPEMD160 (SHA256 (revocationpubkey))〉
OP EQUAL
OP IF

OP CHECKSIG
OP ELSE
〈 remote htlcgppubkey〉 OP SWAP OP SIZE 32 OP EQUAL
OP NOTIF

OP IF
OP HASH160 〈 RIPEMD160 (payment hash)〉 OP EQUALVERIFY
2 OP SWAP 〈 local htlcgppubkey 〉 2 OP CHECKMULTISIG

OP ELSE
OP HASH160 〈 RIPEMD160 (cancellation hash) 〉

OP EQUALVERIFY
2 OP SWAP 〈 local htlcgppubkey 〉 2 OP CHECKMULTISIG

OP ENDIF
OP ELSE

OP DROP 〈 cltv expiry 〉 OP CHECKLOCKTIMEVERIFY OP DROP
OP CHECKSIG

OP ENDIF
OP ENDIF

HTLC-GP Offered Cancellation Contract: Bob offers this script to Alice. This output sends
funds to either the remote node after the HTLC-GP timeout or using the revocation key, or to an
HTLC-GP -success transaction either with a successful payment preimage or cancellation preim-
age. The output is a P2WSH, with a witness script:

• Release the funds if the script is signed by the revocation key (revocationpubkey).

• If the above condition fails, then check if the HTLC-GP public key of the party not publishing
the commitment (remote public key), i.e., of Alice, has been provided. Now check which of the
condition holds:

Our Proposed Protocol using Griefing Penalty 111

– The publisher of the commitment, i.e., Bob, can publish the HTLC-GP-success by using the
notif clause. It ignores the condition if the remote public key is not provided. Bob will earn
coins by publishing the contract only if either of the condition is satisfied:

∗ Bob can use the preimage of cancellation hash. Release the funds if the preimage is re-
leased and signed by both Alice and Bob,

∗ Bob can use the preimage of payment hash. Release the funds if the preimage is released
and signed by both Alice and Bob.

– If Bob didn’t react, Alice can publish the HTLC-GP-timeout transaction.

The Bitcoin script structure is shown in Fig.6-7.

Figure 6-8: Script Structure: Offered Payment Contract

OP DUP OP HASH160 〈 RIPEMD160 (SHA256 (revocationpubkey))〉
OP EQUAL
OP IF

OP CHECKSIG
OP ELSE
〈 remote htlcgppubkey〉 OP SWAP OP SIZE 32 OP EQUAL
OP NOTIF

OP DROP 2 OP SWAP 〈 local htlcgppubkey 〉 2
OP CHECKMULTISIG

OP ELSE
OP IF

OP HASH160 〈 RIPEMD160 (cancellation hash) 〉
OP EQUALVERIFY

OP CHECKSIG
OP ELSE

OP HASH160 〈 RIPEMD160 (payment hash)〉 OP EQUALVERIFY
OP CHECKSIG

OP ENDIF
OP ENDIF

OP ENDIF

HTLC-GP Offered Payment Contract: Alice offers this script to Bob. This output sends funds
to either an HTLC-timeout transaction after the HTLC-timeout or to the remote node using either
the payment preimage or cancellation image or the revocation key. The output is a P2WSH, with a
witness script:

112 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

• Release the funds if the script is signed by the revocation key (revocationpubkey).

• If the above condition fails, then check if the HTLC-GP public key of the party not publishing the
commitment (remote public key), i.e., of Bob, was provided. Now check which of the condition
holds:

– The publisher of the commitment, i.e., Alice, can publish the HTLC-GP-timeout by using the
notif clause.

– Else, Bob can publish HTLC-GP success if any of the conditions holds:

∗ Bob can use the preimage of cancellation hash. Release the funds if the preimage is re-
leased and signed by both Alice and Bob,

∗ Bob can use the preimage of payment hash. Release the funds if the preimage is released
and signed by both Alice and Bob.

The Bitcoin script structure is shown in Fig.6-8. In the next section, we provide an instantiation of
multihop payment using HTLC-GP.

6.6 Multihop Payment using HTLC-GP

6.6.1 System Model

All the participants know the topology of the Lightning Network. Pairs of honest users, sharing
a payment channel, communicate through secure and authenticated channels. An honest party
willing to send funds to another party will adhere to the protocol. It will not change the terms
of the off-chain contract and disrupt the protocol. We assume the communication model to be
synchronous, with all the parties following a global clock for settling payments off-chain.

6.6.2 Objective

• Guaranteed compensation for an honest node: All the honest parties affected by the grief-
ing attack get compensated by the griefer. Except for the griefer, none of them must lose
funds to pay compensation to any affected parties.

• Payer and Payee’s Privacy: None of the intermediate nodes involved in routing a payment
must be able to identify its exact position in the path as well as figure out the identities of the
sender and receiver of the payment.

Multihop Payment using HTLC-GP 113

6.6.3 Adversarial Model & Assumptions

An adversary introduces multiple Sybil nodes and places them strategically in the network to max-
imize the collateral damage. Such Sybil nodes may be involved in self-payment or transfer funds
from one Sybil node to the other for mounting the griefing attack. An intermediate node routing
payment may be a Sybil node. The adversary can perform the following arbitrary actions to keep
funds locked in the network for a substantial amount of time: (i) it withholds the solution without
resolving the incoming off-chain payment request, (ii) it may refrain from forwarding the off-chain
payment request to the next neighbor, (iii) it just refuses to sign any incoming off-chain contract
request.

We assume that at least one node in the path will be honest. So in the worst case, except for one
node (either sender or receiver or any intermediate party), the rest all the parties may be corrupt and
controlled by the adversary. We also assume that an honest party cannot be denied going on-chain
by the adversary during the protocol. Using untrusted/semi-trusted third-party service provider,
WatchTowers, prevents such attackers from mounting time dilation attacks [118] and censoring
transactions. Recently, [88] have proposed a method for censoring attacks where shorter deadlines
are used in off-chain contracts for the good case but the deadline can be extended, if congestion
occurs. The countermeasure would prevent the attacker from censoring the HTLC-GP success
transaction and mounting reverse-griefing.

6.6.4 Our proposed Construction

For secure transfers of funds from sender U0 to the receiver, the former selects an optimal route in
the Lightning network for transferring funds to the payee. Since the path length n, we index the
receiver as Un. Let the path be P = 〈U0, U1, . . . , Un〉, via which payer U0 will relay fund of value
α to payee Un, each Ui is a node in the graph and (Ui, Ui+1), i ∈ [0, n − 1] denotes a payment
channel. Each party Ui, i ∈ [1, n− 1] charge a service fee of f(αi) for transferring αi to Ui+1 and
αn−1 = α. Hence the total amount that U0 needs to transfer is α̃ = α + Σn−1

i=1 f(αi). We denote
each αi = α̃ − Σi

j=1f(αj), i ∈ [1, n − 1], α0 = α̃. Each node Ui samples pair of secret key and
public key (ski, pki), the public key of each node is used to encrypt the information of establishing
contract with the neighbouring node.

114 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

Parameters used

• Rate of Griefing-penalty γ: It decides the amount to be deducted per unit of time as compen-
sation from the balance of a node responsible for griefing. It is set as a system parameter with
0 ≤ γ ≤ 1, measured in terms of per minute.

• Routing Attempt Cost ψ: U0 has to figure out the path by probing channels that will be able to
route the transaction. Finding a route has an extra computational and resource overhead on U0.
Thus U0 adds the cost of routing attempt to the compensation withdrawn from the griefer. This
is a variable quantity and the quantity is kept hidden from other nodes but generally, a sender

sets the value ψt0 ≥ α((k + 1)t0 +
k∑
l=1

l∆), k ∈ N and preferably k > 3. Here k is the masking

factor, t0 is the period of the contract established between U0 and U1, and ∆ is the time taken
for a transaction to settle on-chain.

Computing Griefing-Penalty

U0 shares φ(n) with Un, where φ is a function used for blinding the exact value of n, φ(n).αtn−1 ≈
((ψ+α0)t0 + Σn−1

j=1αjtj), adding the extra cost for routing to the compensation it must claim from
U1. Similar to HTLC, tn−1 is the least timeout period, assigned to the off-chain contract between
Un−1 and Un where tn−1 > ∆. For rest of the off-chain contracts established between Ui and
Ui+1, i ∈ [0, n − 2], the timeperiod of the contract ti > ti+1 + ∆. Adding the routing attempt
costs to the compensation disallows U1 from inferring the identity of the sender of a particular
payment. It cannot distinguish whether ψ is routing attempt fee or the cumulative flow from any
predecessors of U0. Even other nodes must not be able to figure out their position in the path with
the information of cumulative griefing-penalty.

The maximum compensation earned by Ui, i ∈ [1, n − 1] is γ.αiti, where αi is the amount to
be transferred to Ui+1, if the latter resolves the contract within ti. If Ui+1 does not respond, then
it has to pay compensation to all the parties which got affected, starting from Ui till U0. Hence
compensation charged by each channel (Uk, Uk+1), k ∈ [0, i], must be withdrawn from the faulty
node Ui+1. The total griefing-penalty to be paid is γ.(Σi

j=1(αjtj) + (α0 +ψ)t0), so that each party
Um,m ∈ [1, i], gets a compensation of γ.αmtm and U0 gets a compensation of γ(ψ + α̃)t0.

6.6.4.1 Protocol Description

Our protocol involves the following three phases:

Multihop Payment using HTLC-GP 115

Pre-processing Phase

• Un samples the preimages x and r, x 6= r and constructs the two hashes: H = H(x) and
Y = H(r).

• It shares H, Y with the payer, U0. The payer uses standard onion routing [64] for propagating
the information needed by each node Ui, i ∈ [1, n], across the path P .

• The cumulative griefing-penalty for node U0 is defined as tgp0 = γ(ψ + α̃)t0 and for any node
Ui, i ∈ [1, n− 1] as tgpi = γ.(Σi

j=1(αjtj) + (α0 + ψ)t0).

• U0 sendsM0 = E(. . . E(E(E(φ, Zn, pkn), Zn−1, pkn−1), Zn−2, pkn−2). . . , Z1, pk1) toU1, where
Zi = (H, Y, αi, ti−1, tgpi−1, Ui+1), i ∈ [1, n − 1] and Zn = (H,Y, αn−1, tn−1, tgpn−1, null).
Here Mi−1 = E(Mi, Zi, pki) is the encryption of the message Mi and Zi using public key pki,
Mn = φ.

• U1 decryptsM0, gets Z1 andM1. M1 = E(. . . E(E(E(φ, Zn, pkn), Zn−1, pkn−1), Zn−2, pkn−2),

. . . , Z2, pk2) is forwarded to the next destinationU2. This continues till partyUn getsE(φ, Zn, pkn).

Two-Round Locking Phase It involves two rounds: establishing Cancellation Contract and
establishing Payment Contract.

• Establishing Cancellation Contract: Since the flow of griefing-penalty is in the opposite direc-
tion of the actual payment, it is logical for Un to initiate this round.

– Un decrypts to get Zn. It checks γφ(n)tn−1
?
≈ tgpn−1 and αn−1

?
= α. If this holds true, it

forms a contract with Un−1, locking tgpn−1.

– For the rest of the parties, Ui, i ∈ [1, n− 1] first checks tgpi − γαiti
?
= tgpi−1 and then forms

the off-chain contract with Ui−1, locking tgpi−1.

– The terms of the contract is defined as follows: ‘Ui+1 can withdraw the amount tgpi =

γ.(Σi
j=1(αjtj) + (α0 + ψ)t0) from the contract provided it reveals either x : H = H(x)

or r : Y = H(r) within a period of ti else Ui claims this amount as griefing-penalty after the
elapse of the locktime.’.

Bad Case: If Ui−1 denies signing the cancellation contract then Ui will abort. Since Un locks a
substantial amount as griefing-penalty, it will wait for a bounded amount of time for confirma-
tion. We denote this time as δ : δ ≤ tn−1. If Un−1 stops responding after establishment of the
cancellation contract, Un releases on-chain the preimage r corresponding to cancellation hash

116 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

after waiting for δ units of time and unlock the penalty tgpn−1 from the contract. The preimage
r is now used by other parties Uj, j ∈ [i+1, n] to cancel their respective off-chain contracts with
Uj−1. So even if Ui aborts, Ui+1 can go on-chain, close the channel and withdraw the amount
locked in the contract.

The pseudocode of the first round of Locking Phase for Un, any intermediate party Ui, i ∈
[1, n− 1] and payer U0 is stated in Procedure 10, Procedure 11 and Procedure 12 respectively.

Procedure 10: Establishing Cancellation Contract: First Round of Locking Phase for Un
Input: (Zn, φ(n), γ, α)
Un parses Zn and gets H ′, Y ′, α′, t′, tgpn−1.

if t′ ≥ tnow + ∆ and α′ ?
= α and γ(φ(n)α)t′ ≈ tgpn−1 and H ′ ?

= H and Y ′ ?
= Y and

remain(Un, Un−1) ≥ tgpn−1 then
Send Cancel Contract Request(H,Y, t′, tgpn−1, γ) to Un−1

if acknowledgement received from Un−1 then
remain(Un, Un−1) = remain(Un, Un−1)− tgpn−1

establish Cancel Contract(H,Y, t′, tgpn−1) with Un−1

Record tformn = current clock time
end
else

abort
end

end
else

abort.
end

• Establishing Payment Contract: U0, upon receiving the cancellation contract, initiates the next
round by establishing chain of contracts in the forward direction, till it reaches the payer Un.
This proceeds as normal HTLC.

– Each node Ui, i ∈ [0, n− 1] forwards the terms of off-chain contract to Ui+1, locking αi.

– The off-chain contract is defined as follows: ‘Ui+1 can claim the amount αi provided it reveals
x : H = H(x) within a period of ti. If not, then Ui withdraws the amount either contingent to
the knowledge of r : Y = H(r) or after the elapse of locktime.’

Bad Case: If Ui+1 doesn’t sign the payment contract, Ui aborts from the process. Similar
to the first round of locking phase, if Un−1 doesn’t form the payment contract within time δ, Un
releases the preimage r and unlocks the penalty tgpn−1 from the contract. Ui will not be able to

Multihop Payment using HTLC-GP 117

Procedure 11: Establishing Cancellation Contract: First Round of Locking Phase for Ui,
i ∈ [1, n− 1]

Input: (H ′, Y ′, t′, tgpi, γ)
Ui parses Zi and gets H,Y, αi, ti−1, tgpi−1.

if H ′ ?
= H and Y ?

= Y ′ and t′ + ∆
?

≤ ti−1 and tgpi − γαit′
?
= tgpi−1 and

remain(Ui, Ui+1) ≥ αi and remain(Ui, Ui−1) ≥ tgpi−1 and (current time not close to
contract expiration time) then

Sends acknowledgment to Ui+1 and waits for the off-chain contract to be established
Send Cancel Contract Request(H,Y, ti−1, tgpi−1, γ) to Ui−1

if acknowledgement received from Ui−1 then
remain(Ui, Ui−1) = remain(Ui, Ui−1)− tgpi−1

establish Cancel Contract(H, Y, ti−1, tgpi−1) with Ui−1

end
else

abort
end

end
else

abort.
end

Procedure 12: Establishing Cancellation Contract: First Round of Locking Phase for U0

Input: (H ′, Y ′, t′, tgp′, γ)

if t′ ?
= t0 and tgp′ ?

= tgp0 and H ′ ?
= H and Y ′ ?

= Y and remain(U0, U1) ≥ α0 then
Sends acknowledgment to U1

Confirm formation of penalty contract with U1

Initiate the second round, the establishment of payment contract
end
else

abort.
end

118 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

reverse-grief Ui+1 by aborting since the latter can go on-chain and withdraw the amount locked in
the contract.

The pseudocode of the second round of Locking Phase for U0 and any intermediate party
Ui, i ∈ [1, n− 1] is stated in Procedure 13 and Procedure 14 respectively.

Release Phase: Un waits for δ units of time before initiating this round. If the payment
contract received from Un−1 is correct, it releases the preimage x or payment witness and resolves
the contract off-chain. If Un−1 has not responded or the terms of the contract are not correct (wrong
payment or penalty value, invalid lock time), Un releases the cancellation preimage r. In case of
dispute, Un goes on-chain and releases either of the preimages for settling the contract. The process
is repeated for other parties Ui, i ∈ [1, n− 1], which upon obtaining the preimage claims payment
from the counterparty or withdraws funds from the contract.

If Ui+1 griefs and refuses to release preimage to Ui, it has to pay the a griefing-penalty for
affecting the nodes Uk, 0 ≤ k ≤ i, so that all the nodes obtain their due compensation. The
pseudocode of the Release Phase for Un and any intermediate party Ui, i ∈ [1, n − 1] is stated in
Procedure 15 and Procedure 16 respectively.

Procedure 13: Establishing Payment Contract: Second Round of Locking Phase for U0

Input: (H, Y, α0, t0)
if (U1 has agreed to form the contract) and (current time not close to contract expiration
time) then

remain(U0, U1) = remain(U0, U1)− α0

establish Payment Contract(H, Y, t0, α0) with U1

end
else

abort
end

Safeguard against Reverse-Griefing. Any request for off-chain termination of the contract
by a party Ui, i ∈ [1, n − 1], without providing a valid preimage, will not be accepted by Ui−1

unless Ui is compensating it for the loss of time. If the party Ui−1 mutually terminates the contract
without the knowledge of any of the preimage before elapse of lock time, Ui−2 may refuse to cancel
the contract and wait for the contract to expire. This might lead to the problem of reverse-griefing
where Ui−1 loses funds. Hence to safeguard itself, a party will agree to terminate the contract
off-chain either on receiving griefing-penalty or on receiving one of the preimages.

Security Analysis 119

Procedure 14: Establishing Payment Contract: Second Round of Locking Phase for Ui, i ∈
[1, n− 1]

Input: (H,Y, αi, ti)

if ti−1 ≥ ti + ∆ and αi−1
?
= αi + f(αi) and (Ui+1 has agreed to form the contract) and

(current time not close to contract expiration time) then
remain(Ui, Ui+1) = remain(Ui, Ui+1)− αi
establish Payment Contract(H,Y, ti, αi) with Ui+1

end
else

abort
end

6.7 Security Analysis

Theorem 6.1. (Guaranteed compensation for an honest node). Given a payment request (U0, Un, α0)

to be transferred via path P = 〈U0, U1, . . . , Un〉, if at least one party Uk, k ∈ [1, n] mounts griefing
attack then any honest party Uj ∈ P, j ∈ [0, k − 1] will earn compensation, without losing any
funds in the process.

Proof: We consider the worst case in which we assume only a single node is honest in a
path and the rest of the nodes act maliciously. We note that if fewer parties are corrupted, the
honest nodes still interact with malicious neighbors and hence they get reduced to cases mentioned
here. In particular, we analyze interactions between honest and dishonest parties in our system and
ensure that honest parties do not get cheated and get their due.

• Case 1 : U0 is honest
In the Pre-processing Phase, the honest sender builds the onion packets containing
terms of contract which are propagated through the nodes in the path. While the values in
the packets are contingent on the values sent by R, honest S is in no position to verify it. At this
point, S just follows the protocol.

In the Two Round Locking Phase:

– Establishing the Cancellation Contract: Since U0 is the last party to receive the contract,
in case any party Ui, i ∈ [1, n] griefs, then it will end up paying a cumulative penalty of
γ.(Σi−1

j=1(αjtj) + (α0 + ψ)t0), whereby U0 earns a compensation of γ(α0 + ψ)t0.

– Establishing the Payment Contract: U0 may not be able to forward the contract to U1 if there
is discrepancy in the terms of the outgoing contract or if U1 has stopped responding. Since

120 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

Procedure 15: Release Phase for Un
Input: Message M , time bound δ
if M ?

= Payment Contract(H,Y, α′, t′) and current clock time− tformn ≤ δ then
Parse M and retrieve (H, Y, α′, t′)
if t′ ≥ tnow + ∆ and α′ = α then

z = x
end
else

z = r
end

end
else

z = r
end
Release z to Un−1

if current time < tn−1 then
if Un and Un−1 mutually agree to terminate Payment Contract and Cancellation Contract
then

if z=x then
remain(Un, Un−1) = remain(Un, Un−1) + α + tgpn−1

end
else

remain(Un, Un−1) = remain(Un, Un−1) + tgpn−1

remain(Un−1, Un) = remain(Un−1, Un) + α
end

end
else

Un goes on-chain for settlement by releasing preimage z.
end

end
else

Un−1 goes on-chain for settlement, claims (α + tgpn−1).
z = null

end
Call Release Phase(Un−1, z)

Security Analysis 121

Procedure 16: Release Phase Ui, i ∈ [1, n− 1]

Input: z
Release z to Ui−1

if z 6= null and current time < ti−1 then
if Ui and Ui−1 mutually agree to terminate Payment Contract and Cancellation Contract
then

if z=x then
remain(Ui, Ui−1) = remain(Ui, Ui−1) + αi−1 + tgpi−1

end
else

remain(Ui, Ui−1) = remain(Ui, Ui−1) + tgpi−1

remain(Ui−1, Ui) = remain(Ui−1, Ui) + αi−1

end
end
else

Ui goes on-chain for settlement by releasing preimage z.
end

end
else

Ui−1 goes on-chain for settlement after elapse of locktime ti−1, claims (αi−1 + tgpi−1).
end
Call Release Phase(Ui−1, z)

122 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

Un is dishonest, it will not release the preimage r for cancelling the contracts established in
the first round. As per the terms of the contract, after the elapse of locktime tn−1, it pays a
cumulative griefing-penalty γ.(Σn−1

j=1 (αjtj) + (α0 + ψ)t0) to Un−1. This money is used for
compensating rest of the parties, starting from U0 till Un−1. Even if U1 griefs, as per the terms
of the contract it has to pay the required compensation γ(α0 + ψ)t0 to U0. Hence U0 will not
lose funds.

In the Release Phase, we make a similar argument. Assuming that two round locking
phase got executed successfully if U1 is not able to release the preimage corresponding to either
cancellation hash or payment hash before the elapse of the contract’s lock time, it will have to
pay a penalty to U0.

• Case 2 : An intermediate node Ui, i ∈ [1, n− 1] is honest
For the Pre-processing Phase, if Ui does not receive the onion packet, the payment
won’t get instantiated.

In the Two Round Locking Phase:

– Establishing the Cancellation Contract: Ui may not be able to forward the contract to Ui−1

if the latter stops responding. Since Un is dishonest, it will not release the preimage r for
cancelling the contracts established in the first round. As per the terms of the contract, after
the elapse of locktime tn−1, it pays a cumulative griefing-penalty γ.(Σn−1

j=1 (αjtj)+(α0 +ψ)t0)

to Un−1. Even if Ui+1 griefs, as per the terms of the contract it has to pay the required
compensation γ((α0 + ψ)t0 + Σi

j=1(αjtj)) to Ui. Since no contract has been established
between Ui and Ui−1, Ui retains the entire compensation.

– Establishing the Payment Contract: Ui may not be able to forward the contract to Ui+1 if Ui+1

stops responding. The same logic stated for cancellation contract holds true except now Ui

can retain γαiti as compensation and forward the rest of the amount to node Ui−1. Even if
Ui−1 doesn’t respond and wait for the locktime ti−1 to elapse, Ui will not lose funds.

In the Release Phase, Ui can be griefed in the following ways:

– Ui+1 withholds the preimage (either cancellation or payment) from Ui and waits for the con-
tract locktime to expire. In that case, Ui+1 has to pay compensation of γ((α0 + ψ)t0 +

Σi
j=1(αjtj)) to Ui. Even if Ui−1 reverse-griefs, Ui will be able to compensate without in-

curring any loss.

• Case 3 : Un is honest
Receiver Un initiates the release of preimage. It will resolve the payment within a bounded

Performance Evaluation 123

amount of time either by releasing the preimage for payment hash or cancellation hash, as per
the situation. Un−1 cannot reverse-grief and force receiver to pay a griefing-penalty.

Theorem 6.2. (Payer and Payee’s Privacy). Given the information of griefing-penalty in the off-
chain contract, an intermediate node cannot infer its exact position in the path for routing payment.

Proof: For routing payment of amount α from U0 to Un via intermediaries Ui, i ∈ [1, n − 1],
several instances of off-chain contract is established across the payment channels. The amount
locked by party Uj and Uj+1 in their off-chain contract is αj and γ((ψ + α0)t0 + Σk=j

k=1αjtj), j ∈
[0, n − 1], respectively. Let us assume that there exists an algorithm τ which reveals the exact
position of any intermediate node D : D ∈ {U1, U2, . . . , Un−1} in the path. This implies that
given the information of cumulative griefing-penalty mentioned in the contract, it can distinguish
between the penalty charged by channel (Uj, Uj+1), j ∈ [1, n− 1] and penalty charged by channel
(U0, U1), which is γ((ψ + α0)t0). However, the routing attempt cost ψ, was added by node U0

as an extra compensation charged to cover up for routing attempt expense as well as hiding its
identity from its next neighbour. This is information is private and not known by any node except
U0. Additionally, the value of ψ is set such that ψt0 ≥ α((k+ 1)t0 + Σk

l=1l∆), k ∈ N. Any number
being selected from N being equiprobable, the probability of distinguishing becomes negligible.

Note: In practical application, there is a limit on the routing attempt fee which a sender can
charge. The set from which k is selected is significantly smaller compared to N. But even under
such circumstances, the best inference made by any intermediate node Uj about its location is that
it is located at position (j+k) where ψt0 ≥ α.t0 +α.(t0 +∆)+α.(t0 +2∆)+ . . .+α.(t0 +k∆), k

acts as the blinding factor.

6.8 Performance Evaluation

6.8.1 Analysis of Profit earned by eliminating a Competitor from the Net-
work

The motivation of the griefer is to eliminate a competitor. The attacker tries to exhaust all the
channel capacity of the victim. Transaction requests in the future get routed through the attacker,
enabling the latter to steal the victim’s processing fee.

Return on Investment or RoI is the profit earned by the attacker with respect to the investment
made in the network. Here investment means the liquidity utilized by the attacker for simulating

124 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

an attack. In Lightning Network, the RoI of a node processing transaction request is calculated as
follows:

profit processed = Ntx(base fee+ fee rate ∗ tx value)
RoI = profit processed− total griefing penalty

(6.1)

profit processed is calculated based on [4], [5]. Ntx is the total number of transactions processed by
the node and tx value is the amount transferred from payer to payee. total griefing penalty is the
penalty required to pay as compensation to the affected parties upon mounting griefing-attack. For
HTLC, the total griefing penalty is 0 since there is no concept of penalizing the attacker. Hence
the node always earns a non-negative RoI.

For HTLC-GP, if the node mounts a griefing attack, it has to pay a griefing penalty pro-
portional to the collateral locked for the given period. If the total griefing penalty exceeds the
profit processed, the node incurs a loss . In the next section, we define two strategies that can be
opted by the attacker. Based on these strategies, we compare the Return on Investment obtained
for HTLC and HTLC-GP for a given budget.

(a) Attacker establishes two edges
with a targeted source and tar-
geted sink connected to the vic-
tim

(b) Attacker uses existing channel
for mounting the attack

Figure 6-9: Snapshot of the network on 19thMay, 2020

Performance Evaluation 125

6.8.1.1 Attacking Strategies

(a) Attacker establishes additional channels

Nodes with high betweenness centrality tend to act as intermediaries for routing payments. The at-
tacker selects such nodes as its victim. We illustrate the situation by studying the structure of an in-
stance of Lightning Network. The snapshot taken on 19th May, 2020, in Fig. 6-9(a). Nodes marked
as Targeted Source and Targeted Sink routes their payment via node Victim. A mali-
cious node establishes new channels with the Targeted Source and Targeted Sink. It se-
lects the route Attacker→Targeted Source→Victim→Targeted Sink→Attacker,
sends self-payment requests and mounts griefing attack. The path Targeted Source→Victim
→Targeted Sink gets blocked. All the payments from Targeted Source gets routed
through the path Targeted Source→ Attacker→Targeted Victim.

(b) Attacker uses existing channels

In the previous strategy, the attacker had to establish channels before mounting the attack. To
avoid the cost of establishing new channels, the attacker makes use of its existing payment chan-
nels to block payments received by its competitor. Illustrating the attack on the same instance of
Lightning Network, as shown in Fig. 6-9(b), we consider that the node marked as Hub routes
all the payment request via Victim node and ignores sending any payment via Attacker
node. In order to steal payments being routed via Victim node, it selects the route Attacker
Node→Hub→Victim Node→Neighbour. . .→Attacker Node for self-payment and mounts
griefing attack. The path Hub→Victim Node→Neighbour. . . →Attacker Node gets
blocked. Now Hub will be forced to route such payment request through Attacker Node.

6.8.1.2 Experimental Analysis

Setup: For our experiments, we use Python 3.8.2 and NetworkX, version 2.4 [69] - a Python
package for analyzing complex networks. System configuration used is Intel Core i5-8250U CPU,
Operating System: Kubuntu 20.04, Memory: 7.7 GiB of RAM. The code for our implementa-
tion is available on GitHub 1. From the dataset mentioned in [100], we took twelve snapshots of
Bitcoin Lightning Network over a year, starting from September 2019. Each snapshot provides
information regarding the public key of the nodes and the aliases used. The network is represented

1https://github.com/subhramazumdar/GriefingPenaltyCode

https://github.com/subhramazumdar/GriefingPenaltyCode

126 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

in the form of channels, a pair of public keys. The channel capacity and the channel identifier are
mentioned as well. Each node of the channel follows a node policy that mentions the base fee
in millisatoshi, fee rate per million (in millisatoshi), and time lock delta. The capacity denotes
the coins deposited while the opening of the channel. Thus each snapshot of Lightning Network
undergoes preprocessing where we filter out channels that are marked as disabled. Next, we select
the largest connected component in the network. Since our proposed strategy for countering grief-
ing attacks requires both parties to fund the channel, we divide the channel’s capacity into equal
halves and allocate each half as the balance of a counterparty. The preprocessed graphs are used
for evaluating both HTLC and HTLC-GP.

Designing transaction set: The best way to approximate the maximum value routed through
a node is to map it into a flow problem and compute the maximum flow [56] from multiple pay-
ers/sources to multiple payees/sinks. The flow across each channel is the upper bound of the
number of transactions being processed. If the attacker manages to block at least one path con-
necting a payer and payee, then the payer will route its transaction via the attacker. Since it is
easier to analyze the situation in a hub-and-spoke network, we select a subgraph of LN having a
similar structure. Nodes with high betweenness centrality [121] have high probability of being a
potential hub node. We select such a hub node where a subset of the pendant nodes connected to
the hub forms the set of sources, and the rest of the neighbors form the sink. Once a maximum flow
is computed, the flow through a channel connecting a source to the hub and through the channel
from the hub to a sink forms the maximum valued payment through the path. The attacker targets
such a source-sink pair with the hub acting as its victim. The attacker selects the victim and blocks
its channels. Once the maximum flow across such source-sink pairs gets computed, the attacker
checks the fraction of flow that gets routed through itself. To estimate the transaction set size, the
attacker divides the flow by the amount per transaction. Return on Investment can be calculated for
all such transactions based on Eq. 6.1.

Data Used: We vary the range of transaction amount between 1 satoshi to 100000 satoshi
[37], increasing the amount by multiple of 10. For the attack involving the establishment of new
channels by the attacker, we vary the level of the budget of the adversary as 3000 satoshi, 30000
satoshi, 300000 satoshi, . . . , 3 BTC. For the attack involving the use of existing channels by the
attacker, we vary the level of the budget of the adversary as 3000 satoshi, 30000 satoshi, 300000
satoshi, . . . , 0.03 BTC. Increasing the budget beyond 0.03 BTC is of no use since a substantial
amount of the budget remains unutilized after this point. The budget allotted is utilized by the
attacker for instantiating payment and locking cumulative griefing-penalty, ignoring the cost of
establishing the channels in the network.

Performance Evaluation 127

Simulation Result

The Return on Investment (RoI) is measured in log-scale. For negative RoI, we use log-modulus
transformation [77].

Average value per transaction (in satoshi)

R
oI

 (i
n

lo
 s

ca
le

)

-10

-5

0

5

10

1 10 100 1000 10000 100000

RoI (HTLC) in satoshi RoI (HTLC-GP) in satoshi

(a) RoI vs Average value per transaction: Fixed
Budget - 0.03 BTC

Budget (in satoshi)

R
oI

 (i
n

lo
g

sc
al

e)

-8

-6

-4

-2

0

2

4

3000 30000 300000 3000000 30000000 300000000

RoI (HTLC) in satoshi RoI (HTLC-GP) in satoshi

(b) RoI vs Budget: Fixed Average value per trans-
action - 10000 satoshi

Rate of Griefing-Penalty

R
at

io
 (

in
 lo

g
 s

ca
le

)

-6

-4

-2

0

2

4

0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1

RoI (HTLC-GP) RoI (HTLC)

(c) RoI vs Rate of Griefing-Penalty: Fixed Average
value per transaction - 10000 satoshi

Figure 6-10: When Attacker uses new channels for mounting the attack

• Using attacking strategy 1: The first result RoI vs Average value per transaction, for a fixed
budget of 0.03 BTC and fixed rate of griefing-penalty of 0.001 per minute, shows that as the
average value of each transaction increases, the processing fee earned by the attacker decreases
due to decrease in the maximum number of payments processed for HTLC. However, for HTLC-
GP, as the average value per transaction increases, RoI becomes negative, shown in Fig. 6-10(a).
The processing fee earned becomes negligible compared to the penalty incurred.

The second result RoI vs Budget, for a fixed average value of transaction of 10000 satoshi and
fixed rate of griefing-penalty of 0.001 per minute, shows that as the budget of the attacker in-
creases, the processing fee earned by the attacker increases linearly. But a reverse trend is

128 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

observed for HTLC-GP. RoI decreases linearly, as shown in Fig. 6-10(b). This is because is the
amount of cumulative penalty is directly related to the total collateral locked by the attacker.

The third result RoI vs Rate of Griefing-Penalty, for a fixed average value of transaction of 10000
satoshi and fixed budget of 0.03 BTC, the return on investment for HTLC remains constant since
the rate of griefing-penalty has no impact in this case. But the loss incurred increases with
increase in γ, as observed for HTLC-GP in Fig. 6-10(c).

Average value per transaction (in satoshi)

R
oI

 (i
n

lo
g

sc
al

e)

-10

-5

0

5

10

1 10 100 1000 10000 100000

RoI (HTLC) in satoshi RoI (HTLC-GP) in satoshi

(a) RoI vs Average value per transaction: Fixed
Budget - 0.03 BTC

Budget (in satoshi)

R
oI

 (i
n

lo
g

sc
al

e)

-6

-4

-2

0

2

4

3000 30000 300000 3000000

RoI (HTLC) in satoshi RoI (HTLC-GP) in satoshi

(b) RoI vs Budget: Fixed Average value per trans-
action - 10000 satoshi

Rate of Griefing-Penalty

R
o

I
(in

 lo
g

sc
a

le
)

-6

-4

-2

0

2

4

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01

RoI (HTLC-GP) RoI (HTLC)

(c) RoI vs Rate of Griefing-Penalty: Fixed Average
value per transaction - 10000 satoshi

Figure 6-11: When Attacker uses existing channels for mounting the attack

• Using attacking strategy 2: For a fixed budget of the attacker, loss incurred for HTLC-GP using
second attacking strategy is higher than the first attacking strategy for all the three cases, as
shown in Fig Fig. 6-11(a), Fig. 6-11(b) and Fig. 6-11(c). The reason being the average path
length for self-payment is around 6.5 compared to the first attacking strategy, where the average
path length remains fixed at 4.

Performance Evaluation 129

6.8.2 Investment made by attacker for stalling the network

For a path of length n, the cumulative griefing-penalty is γ((ψ+α0)t0 +Σn−1
j=1αjtj) for transferring

an amount of αn−1 from sender U0 to receiver Un. In case of HTLC, for blocking liquidity of at
least αn−1 in each of the n channels, the attacker needs to invest α0 and execute a self-payment.
In case of HTLC-GP, in order to execute a self-payment of α0, the attacker needs to invest α0 +

γ((ψ + α0)t0 + Σn−1
j=1αjtj). If we take the ratio of the investment made for HTLC and investment

made by attacker for HTLC-GP for a fixed transaction value,

α0

α0+γ((ψ+α0)t0+Σn−1
j=1 αjtj)

≤ 1

1+γ(t0+Σn−1
j=1

αj
α0
tj)

(6.2)

• Path Length: For fixed γ and α, the ratio will be strictly less than 1 for any n > 1, since
γ(t0 + Σn−1

j=1
αj
α0
tj) > 0.

• Rate of Griefing-Penalty: For fixed n and αn fixed, the ratio will be strictly less than 1 for any
value of γ ∈ (0, 1) since γ(t0 + Σn−1

j=1
αj
α0
tj) > 0.

Evaluation. We use the same experimental setup and graph instances as in Section 6.8.1.2.

• Impact of Path Length. For a given transaction value and fixed rate of griefing-penalty set to
0.001 per minute, we vary the path length in the range from 4 to 20, and transaction value as
50000 satoshis, 70000 satoshis, 90000 satoshis, 110000 satoshis. The ratio of the adversary
budget needed for mounting a griefing attack in HTLC-GP and the adversary budget needed
for mounting a griefing attack in HTLC is around 4.7 when the path length is 4 and around
12 when the path length is 20. The ratio increases linearly with an increase in path length, as
observed in Fig. 6-12(a). Upon varying the transaction value, we do not observe any change
in this trend.

• Impact of Rate of Griefing-Penalty. For a fixed transaction value of 50000 satoshi and given
path length, we vary the rate of griefing-penalty γ in the range {10−8, 10−7, 10−6, . . . , 0.01, 0.1}
and the path length as 5,10,15,20. The ratio of the adversary budget needed for mounting a
griefing attack in HTLC-GP and HTLC increases exponentially with an increase in the rate
of griefing-penalty. The rate of increase in the ratio is almost equal till γ is 10−4, invariant
of change in path length. When γ > 10−3, the rate of increase in the ratio is the lowest for a
path length of 5 and increases faster for a path length of 20, as shown in Fig. 6-12(b).

The result shows that the investment made by the attacker for HTLC-GP is higher than the
investment made by the attacker for HTLC thereby strongly disincentivizing the griefing
attack.

130 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

Path Length

R
at

io

0

5

10

15

4 6 8 10 12 14 16 18 20

Transaction Value 50000 satoshi Transaction Value 70000 satoshi
Transaction Value 90000 satoshi Transaction Value 110000 satoshi

(a) Impact of path length on the investment
made by attacker for launching griefing attack
(HTLC-GP vs HTLC)

Rate of Griefing Penalty (per min)

R
at

io

5

10

50

100

500

1000

1.00E-07 1.00E-05 1.00E-03

Path Length 5 Path Length 10 Path Length 15 Path Length 20

(b) Impact of rate of griefing-penalty on the invest-
ment made by attacker for launching griefing
attack (HTLC-GP vs HTLC)

Figure 6-12: Investment made by attacker (HTLC vs HTLC-GP)

6.9 Rate of Griefing-Penalty for Practical Purpose

In this section, we provide an estimated range for the rate of griefing penalty to be selected for
practical purposes. The decision is taken from the perspective of an honest payer and honest
payee. We assume that the transaction value or the penalty locked is less than the capacity of each
payment channel.

6.9.1 From the perspective of an honest payer and honest payee

For a given payment instance, the amount of penalty locked by a recipient must not become either
too low or too high. Given the amount to be transferred from payer to payee as α and the path
length as n, the cumulative penalty to be locked is γΣn−1

j=0αtj (ignoring routing attempt fee and the
processing fee charged by intermediate nodes for ease of analysis). We consider a model where
the summation of the amount routed by the sender and the cumulative griefing penalty locked by
the receiver is constant. Let this quantity be C. Thus we have the following equation:

α + γΣn−1
j=0αtj = C (6.3)

where γ is the rate of griefing-penalty. From Eq. 6.3, α is C

(1+γ
n−1∑
j=0

tj)

.

The ratio of the amount the sender can transfer in HTLC-GP and the amount the sender could
have transferred in HTLC, denoted as RatioSender, is α

C
. The ratio between the amount the receiver

Rate of Griefing-Penalty for Practical Purpose 131

Se sSender’s curve

Rate of Griefing Penalty (per min)

R
at

io

0.0

0.25

0.5

0.75

1.0

1.00E-08 1.00E-07 1.00E-06 1.00E-05 0.0001 0.001 0.01 0.1

Path Length 5
(Receiver Ratio)

Path Length 5
(Sender Ratio)

Path Length 10
(Receiver Ratio)

Path Length 10
(Sender Ratio)

Path Length 15
(Receiver Ratio)

Path Length 15
(Sender Ratio)

Path Length 20
(Receiver Ratio)

Path Length 20
(Sender Ratio)

Receiver’s curve

Figure 6-13: Plot of ratio of amount locked by the party and the total capital C, for both sender
and receiver

needs to lock as cumulative penalty and the maximum cumulative penalty that the receiver incurs,

denoted as RatioReceiver, is
γ
n−1∑
j=0

αtj

C
.

When the rate of griefing-penalty almost tends to 0, transaction value α is equivalent to C.
The protocol functions like HTLC in terms of the payment routed from payer to payee without
overburdening intermediaries. Throughput of payment will be almost equivalent to what has been
observed for HTLC. If the incidence of the attack increases, the value of γ must be increased
to protect the affected parties. The transaction value decreases, and cumulative griefing-penalty
increases. Intermediate parties are forced to lock a substantial channel funds for a very small-
valued transaction. Payments may not get routed because of a lack of liquidity in channels. Large-
valued payments get discouraged, and the throughput of payment falls substantially.

Experimental Analysis. For a fixed value of C=50,000 satoshi, and a given path length, we
vary the rate of griefing-penalty as {10−8, 10−7, . . . , 0.01, 0.1}. We plot both RatioSender and
RatioReceiver for path length {5, 10, 15, 20}, depicted in Fig. 6-13. For γ between 10−8 to 10−5,
the transaction value lies between 37,500 satoshi - 48,000 satoshi, rest of the amount being the
cumulative griefing-penalty. When γ is > 10−5 and ≤ 10−3, the transaction value routed and
cumulative griefing-penalty locked becomes almost equivalent. Beyond this range, the transaction
value falls abruptly with cumulative griefing-penalty increasing at an equal rate. To avoid this
problem, a range > 10−5 but ≤ 10−3 looks suitable for practical purpose.

132 Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network

6.10 Discussion

• Other forms of griefing attack: We do not consider the case where a counterparty resolves
the contract just before the expiration of lock time. It is difficult to record the time elapsed
in an asynchronous system. In such a system, time intervals may have different meanings to
different nodes in the network. For example, a malicious party may manipulate the clock so
that time elapses slower than that of other parties. Additionally, it is difficult to say whether
a party is delaying intentionally or if it is due to network congestion. It might be the case
the party who has to pay a penalty tampers the information of elapsed time and pays a lower
penalty. No one can raise a dispute as the Bitcoin script cannot currently decide the penalty
for each time interval in a single contract. The closest match is the CheckSequenceVerify
opcode. However, this enables the broadcast of a transaction after a certain block height
has been reached. But there is no way to execute a transaction like this: If t’ time units
have elapsed, pay amount p. If t’+1 time units have elapsed, pay amount p + δ. CheckSe-
quenceVerify imposed on the first condition of elapse of t’ time unit makes it eligible for the
broadcasting event after elapse of time t’+1. Hence imposing a penalty for the milder form
of griefing has not been considered.

• Rate of Griefing-Penalty γ: If each node had a different rate of griefing-penalty, then it
becomes difficult for the receiver to check the correctness of cumulative penalty using the
modified path length φ(n) and lock time tn−1. In that case, the sender has to send the entire
set of γi,∀i ∈ [0, n− 1], to Un. Revealing γi may leak information regarding the identity of
an intermediate node to the receiver. Hence, for ease of analysis, we keep the rate constant.
Moreover, we envisage the rate to be determined by the market. If the rate is too steep, the
entry barrier for new participants will be high and there will be liquidity concerns. On the
other hand, if the rate is too low, the disincentivization will be minimal and griefing attacks
will remain rampant. Hence, the rate will be adjusted by the community based on the current
scenario of the network. The method is similar to the adjustment of the difficulty parameter
of Bitcoin.

• Censoring attacks on HTLC-GP success transaction: The cost involved in censoring a trans-
action is too much. Rational participants may not be interested in mounting such an attack
considering the long-term profits. There are several countermeasures like MAD-HTLC [132]
where miners act as watchtowers and Sliding Window Protocol [88] protocol that defends
from attacking miners. We can incorporate these countermeasures in HTLC-GP to prevent
censoring of transactions.

Chapter 7

Strategic Analysis of Griefing Attack in Light-
ning Network

A griefing attack allows a malicious node to claim the network’s liquidity for a certain duration.
Sybil nodes submit several payments in the network and grief [89]. The network gets jammed,
and the honest nodes cannot process payment. In Chapter 6, we discussed how HTLC-GP can
be used to counter griefing attacks. However, such protocols work under the assumption that
participants are either honest or malicious, but fail for a rational participant. A rational adversary
will change its attacking strategy to avoid being penalized. Similarly, a rational non-attacking
participant will follow the steps of the protocol only if it is profitable. The security proofs focus
on the cryptographic aspect but do not capture the impact a penalty would have on the attacker’s
behavior. We address the gap by proposing a game-theoretic model for griefing attacks in Lightning
Network. An attacker with a given budget will try to maximize the damage inflicted on the network.
It targets certain nodes in the network and offers a bribe. Such nodes are corrupt, and they mount
the griefing attack on behalf of the attacker. We model the strategic interaction between any two
players in the network connected by a payment channel. The first player is assumed to have
received the conditional payment, and the second player is the neighbor of the former to whom the
conditional payment request must get forwarded. The latter can either be corrupt or uncorrupt. We
use the model to analyze the countermeasure HTLC-GP and state our observations.

7.1 Contributions

We have made the following contributions:

• Given a fixed budget of the attacker, we model griefing attack in HTLC, as a two-player dynamic
game of incomplete information.

• Based on the model, we formulate another two-player game to analyze griefing attacks in the
payment protocol Hashed Timelock Contract with Griefing Penalty or HTLC-GP [96]. We ob-
serve that a corrupt player can mount a griefing attack without paying any penalty. We infer that
it is infeasible to design a protocol that will compensate parties affected by a griefing attack.

133

134 Strategic Analysis of Griefing Attack in Lightning Network

• We observe that the introduction of penalty increases the cost of the attack, and thus, we measure
the effectiveness of HTLC-GP in terms of the capacity locked by the attacker in the network. We
claim that HTLC-GP is weakly effective in countering the attack when the rate of griefing-penalty
is too low.

• We introduce the concept of guaranteed minimum compensation, ζ , to control the maximum
allowed path length for routing and further increase the cost of the attack. We modify HTLC-
GP to HTLC-GPζ by including the concept of ζ .

• We simulate the game model for griefing attacks in both HTLC and HTLC-GP and provide some
interesting analysis. By experimenting on several instances of Lightning Network, we observe
that if the guaranteed minimum compensation for each affected party is 2.5% of the transaction
amount, the maximum allowed path length drops to 10 and the capacity locked by the attacker
drops to 28% in HTLC-GPζ . This quantity is 27% less than the capacity locked in HTLC-GP.
We infer from the results that HTLC-GPζ is far more effective than HTLC-GP. The code is
provided in GitHub1.

7.1.1 Organization

Section 7.2 discusses the state-of-the-art. In Section 7.3, we propose a game-theoretical analysis
of the payment protocol HTLC, and discuss griefing attack in this model. We discuss an existing
countermeasure for griefing attack, HTLC-GP, in Section 7.4.1 and in Section 7.5, we analyze
griefing attack in HTLC-GP and discuss the effectiveness of the protocol. In Section 7.6, we pro-
pose the concept of guaranteed minimum compensation ζ . We modify HTLC-GP into HTLC-GPζ

by incorporating the concept of minimum compensation in Section 7.7. Experimental results ob-
tained upon simulating the game models of HTLC and HTLC-GP, and measuring the efficiency of
HTLC-GP and HTLC-GPζ is provided in Section 7.8. The notation used in the chapter has been
defined in Table 7.1.

7.2 Related Works

We discuss some of the works that analyze the payments executed in Lightning Network from a
game-theoretic point of view. In [145], a framework for formally characterizing the robustness of
blockchain systems in the presence of Byzantine participants has been proposed. The paper defines

1https://github.com/subhramazumdar/Strategic Analysis Griefing

https://github.com/subhramazumdar/Strategic_Analysis_Griefing

Related Works 135

Notation Description
D Least HTLC Timeout period
ti HTLC Timeout period in channel (Ui, Ui+1), i ∈ [0, n− 1]
M Average mining fee for closing a payment channel

ΓHTLC Extensive form of a 2-party sequential Bayesian game in HTLC
γ Rate of griefing penalty (per minute)
T Lifetime of a channel
ti,j The time at which the channel between Ui and Uj was opened

tcontract initiate Timestamp at which off-chain contract got initiated
ΓHTLC−GP Extensive form of a 2-party sequential Bayesian game in HTLC-GP

ζ Guaranteed Minimum Compensation
ñ Maximum path length in HTLC-GPζ , ñ ≤ n
k Ratio of the cumulative penalty locked by payer

and the payment value locked by payee
γζ,k Rate of griefing-penalty in HTLC-GPζ for a given ζ and k

Table 7.1: Notations used in this chapter

the routing module HTLC as a game between three participants. However, they have considered
that a payment can be accepted or rejected. This work doesn’t capture the case when a malicious
party can intentionally stop responding. It is not justified to consider a lack of response equivalent
to rejecting a payment instantly since the parties cannot utilize the coins locked in the contract.
Assigning a payoff of 0 for a failed payment doesn’t account for the opportunity cost of coins
locked in an off-chain contract. Another work [117] discusses the shortcoming of the game model
of multi-hop payment proposed in [145]. They have improved the model that is capable of detect-
ing wormhole attacks in the network, but the work does not discuss the griefing attack. In [141],
a game-theoretic analysis of atomic cross-chain swaps using HTLC has been provided. They have
studied the impact of token price volatility on the strategic behavior of the participants initiating
the swap and suggested the use of collateral deposits to prevent parties from canceling the swap.
Using premium for fairness in the atomic cross-chain swap was proposed in [70]. The authors have
suggested penalty as a countermeasure for countering the griefing attack in the context of atomic
swap. However, the paper lacks a detailed analysis of how the introduction of premiums might
ensure a faster exchange of assets. Additionally, there is no mention of loss incurred due to the rise
in the opportunity cost of locked assets.

This is the first attempt to model griefing attack in Lightning Network as a sequential Bayesian
game. It provides us a better insight into how a participant will behave based on its type and helps
design suitable countermeasures.

136 Strategic Analysis of Griefing Attack in Lightning Network

7.3 Analysis of Griefing Attack in HTLC

Before modeling griefing attack as a two-player sequential Bayesian game [62], we state the system
requirements, attack model, and assumptions.

7.3.1 System Model

Lightning Network is modeled as a bidirected graph G := (V,E), where V is the set of accounts
dealing with cryptocurrency and E is the set of payment channels opened between a pair of ac-
counts. Every node charges a processing fee for relaying funds across the network. Fee is defined
by a function f , where f : R+ → R+. Correctness of payment across each channel is enforced
cryptographically using hash-locks and time-locks [113]. Each payment channel (Ui, Uj) ∈ E is
assigned an identifier idi,j . The channel idi,j has an associated capacity locked(Ui, Uj), denoting
the amount locked by Ui and locked(Uj, Ui) denoting the amount locked by Uj . Let us denote the
amount as vali,j = locked(Uj, Ui) + locked(Ui, Uj). The transaction recorded in the blockchain is
(idi,j, vali,j, ti,j, T) where ti,j is the timestamp at which the channel was opened. In the context of
the Bitcoin blockchain, this will be the block height. T is the expiration time of the channel idi,j ,
i.e., once a channel is opened, it is expected to remain active till T 2. remain(Ui, Uj) signifies the
residual amount of coins Ui can transfer to Uj via off-chain transactions. M denotes the average
fee for mining a Bitcoin transaction.

Given an instance of payment where payer wants to transfer α coins via maximum allowed
path length n. The payer U0 wants to transfer α coins to payee Un through path P = 〈U0 →
U1 → U2 . . . → Un〉. A node Ui−1 can locks coins αi−1 in an off-chain contract formed with Ui
if remain(Ui−1, Ui) ≥ αi−1 : αi−1 = αi + f(αi), i ∈ [1, n], αn−1 = α, then funds can be relayed
across the channel (Ui−1, Ui). Node Ui−1 gets a processing fee f(αi−1). If Ui claims the coins,
the residual capacity is updated as follows : remain(Ui−1, Ui) = remain(Ui−1, Ui) − αi−1 and
remain(Ui, Ui−1) = remain(Ui, Ui−1) + αi−1. Un generates a payment condition H = H(x)

and shares it with U0. The HTLC timeout period in the contract between Ui−1 and Ui is set to
ti−1, i ∈ [1, n].

2Each channel in Lightning Network has an infinite lifetime. However, we assume an upper bound on the channel
lifetime for our analysis. Setting channel expiration time has been used in the literature as well [94]

Analysis of Griefing Attack in HTLC 137

7.3.1.1 System Assumption

All the nodes in the network are rational [30], [59]3. Rational processes always seek to maximize
their expected utility. They will deviate from a prescribed protocol if and only if doing so increases
their expected utility. Uncorrupt nodes may or may not participate in the execution of the protocol,
depending on the utility. This is different from the classical model, where an honest node always
follows the steps of the protocol. We assume that a channel between Ui−1 and Ui is unilaterally
funded by Ui−1, i ∈ [1, n], i.e., locked(Ui, Ui−1) = 0.

Functions used. We define a function O : R+ ×W × R+ → R+ ∪ {0}, where O(rU , t, val)

is the expected revenue a node U would have earned had it utilized the amount val for processing
transactions in period of t units given that rU is the rate of payments processed by U per unit
time. In other words, O defines the opportunity cost [40]. The primary source of revenue for
a routing node in the Lightning Network is the fee obtained by processing transactions [108].
Also, the arrival of payment in a channel follows a Poisson process 4 [61], [68], [82]. U expects
each transaction size to be per tx val. Given the number of coins locked is val, the number of
transactions U expects to receive in period of t units is J = val

per tx val
. Given X is the number of

transactions in that interval or X ∼ Poisson(rU t), we have.

P (X = x) = e−rU t(rU t)
x

x!
(7.1)

where 0 ≤ x ≤ J . Expected number of transactions in t unit of time

E(X) =
J∑
x=0

xP (X = x) (7.2)

The fee earned by processing a transaction of size per tx val is defined as [4],[5]:

Feeper tx val = base fee+ fee rate× per tx val (7.3)

Thus, the revenue U expects to earn within period t or in other words, the opportunity cost

3For our model, we restrict it to just rational participants. Since the attacker has a fixed budget, it will not be able
to bribe all the nodes in the network. However, the Lightning network may have Byzantine as well as altruistic nodes.
We leave the analysis of griefing attack in the BAR model [21] as future work.

4All the papers assumed the arrival of transaction in the Bitcoin blockchain as a Poisson process but the validity
of the assumption was not verified. It was first analyzed in [61, 60] and the authors have reported that transactions’
inter-arrival times can be approximately fitted with an exponential distribution, which partially supports the Poisson
arrival assumption but with noticeable deviation. In our paper, we consider the arrival of transactions in the Bitcoin
blockchain following a Poisson process, and the same holds for transactions arriving in Lightning Network.

138 Strategic Analysis of Griefing Attack in Lightning Network

O(rU , t, val) is defned as:

O(rU , t, val) = E(X)Feeper tx val (7.4)

7.3.2 Attacker Model & Assumptions

An attacker with budget BEX has the objective of disrupting the network by jamming the network
[30]5. Given the budget, the attacker will be able to incentivize a certain number of nodes in the
network to mount the griefing attack. We define the model and assumptions as follows:

• If a node has accepted the bribe, then it implies that the expected earning by cooperating with
other nodes is lower than the bribe. Such nodes act as per the instructions received from the
attacker.

• All corrupt nodes know each other and the rest of the uncorrupt nodes in the network. The
uncorrupt nodes remain unaware of a given node’s nature.

• Corrupt nodes may open additional payment channels in the network just for the attack.

(i) Method for mounting Griefing Attack. If a node is corrupt, it executes a self-payment of
amount α (where it acts as both payer and payee, i.e. U0 = Un) via a route of the maximum
allowed path length. The timeout period for each HTLC is defined in a fashion such that the least
timeout period tn−1 ≈ D. After the conditional payment reaches the payee Un, it stops responding,
locking collateral of (n− 1)α for D units in the path routing payment.

(ii) Bribe offered per attack. In the system model, we consider that each payment is of value
α. The attacker fixes the bribe offered to a node to L coins. The amount L is α+ ID,α +C, where
C is the cost of routing payment and ID,α is used to compensate the node for keeping α coins
unutilized for the next D units of time. ID,α ≈ 2O(rU , D, α),∀U ∈ V so that once the corrupt
node locks an amount α for time D, even after losing O(rU , D, α), the net gain would still be at
least O(rU , D, α). This ensures that the corrupt nodes will not switch to being altruistic.

7.3.3 Game Model

We model the interaction between any two entities present in path P . Assuming that every in-
cidence of griefing attack gets reported in the network, Ui−1 form a belief, defined as θi, where

5In this work, we consider the incentives at play to be external to the system. It is standard practice, and several
works have adhered to this model [59].

Analysis of Griefing Attack in HTLC 139

θi ∈ [0, 1]. Ui can be corrupt with probability θi or uncorrupt with probability 1− θi.

(i) Belief Model: Any uncorrupt player is unaware of the attacker’s budget. Since an attacker
wants to corrupt as many nodes as possible for a given budget, it will select nodes in the network
that either has a low centrality measure or a meager expectation of earning by processing transac-
tion. If the node has a high degree of betweenness centrality, it is difficult to corrupt such a node as
it would prefer to act honestly rather than accept the bribe. A rational player forms a belief about
the expected behavior of other nodes based on their position in the network and their reputation.

(ii) Choice of players: The interaction can be modeled for any pair of node Ui−1 and Ui, i ∈
[1, n]. However, a corrupt node will execute a self-payment via maximum path length for mounting
the attack. Other intermediate nodes can choose to grief, but the attacker will not pay a node that
is not hijacking as many channels as possible. Thus griefing will be a loss-making strategy for a
rational intermediate node routing the payment.

We discuss the action set of a pair of nodes Ui−1 and Ui, i ∈ [1, n]:

• Ui−1’s action: The action space of Ui−1 is defined as follows: it can either forward (F) the
conditional payment to Ui or it can choose to not forward (NF). If it chooses to forward the
payment, it forms a contract with Ui, locking the designated amount in the channel idi−1,i for
time ti−1, which is the HTLC timeout period. If i > 1, then Ui−1 gets a fee of f(αi−1) from
Ui−2, if Ui resolves the payment and claims the coins. If i = 1, then U0 will be satisfied if the
payment succeeds. In this case, we consider f(α0) as the level of satisfaction. If Ui delays, then
opportunity cost of coins locked in the off-chain contract increases, and a loss is incurred. If Ui
doesn’t respond within the deadline, then Ui−1 closes the channel and withdraws its coins from
the contract.

• Ui’s action: If Ui−1 has forwarded the payment, then Ui can choose its action from the following:
accept the payment or Ac, reject the payment or Rt, wait and then accept or W & Ac, wait and
then reject or W & Rt, and grief or Gr.

– An uncorrupt Ui’s expected behavior is to resolve the payment instantly, i.e., Ac or Rt. Still,
there is a probability that it ends up delaying or griefing. These actions lead to a loss in terms
of the opportunity cost of locked coins and the closure of the channel.

– A corrupt Ui’s (when i = n) expected behavior is to grief, Gr or wait and reject the payment,
W & Rt, just before contract timeout. The attacker offers a bribe to such a node and instructs
to mount the griefing attack.

140 Strategic Analysis of Griefing Attack in Lightning Network

We model interaction between Ui−1 and Ui as a sequential Bayesian game ΓHTLC . The game
begins with Nature (N) choosing the type of Ui, either corrupt or uncorrupt, respectively. Ui−1

believes that a corrupt Ui will be selected with probability θi, whereas an uncorrupt Ui will be
selected with probability 1 − θi. After N makes its move, Ui−1 selects its strategy based on the
belief of Ui’s type. Finally, Ui chooses its strategy, provided Ui−1 has forwarded the payment.

Definition 7.1. The extensive-form game ΓHTLC , represented in Fig.7-1, is defined as tuple ΓHTLC =

〈N, (ΘUi−1
,ΘUi), (SUi−1

, SUi), pUi−1
, (uUi−1

, uUi)〉 [104]:

• The set of players N = {Ui−1, Ui} where i ∈ [1, n].

• Since player Ui−1 has received the payment request, it has just has one type, i.e., rational. Thus
ΘUi−1

= {rational(r)}. Since, it is a singleton set, we ignore this factor while defining payoff.

• The type of player Ui defined as ΘUi = {Corrupt(co), Uncorrupt (uco)}

• The set of actions for player Ui−1, SUi−1
= {F,NF}

• The set of actions for player Ui, SUi = {Ac, Rt, W & Ac, W & Rt, Gr}

• Probability function pUi is a function from ΘUi−1
into p(ΘUi), where the p(ΘUi) denotes the set

of probability distribution over ΘUi . Since Ui−1 has just one type. pUi−1
specifies a probability

distribution pUi−1
(|r) over the set ΘUi representing what player Ui−1 beliefs about the type of

player Ui. Here pUi−1
(Corrupt) = θi, pUi−1

(Uncorrupt) = 1− θi.

• The payoff function uk : Θ × S → R for any player k ∈ {Ui−1, Ui}, where Θ = ΘUi and
S = SUi−1

× SUi , is such that for any profile of actions and any profile of types (θ̂, s) ∈ Θ× S,
specifies the payoff the player k would get, if the player’s actual type were all as in θ̂ and the
players all chose their action as in s.

Figure 7-1: Extensive form of game ΓHTLC

Analysis of Griefing Attack in HTLC 141

7.3.3.1 Payoff Model

If Ui−1 chooses not to forward, then either party receives a payoff 0 since no off-chain contract got
established, i.e., uUi−1

(θb, NF, sb) = uUi(θb, NF, sb) = 0, θb ∈ ΘUi and sb ∈ SUi .

We analyze the payoff of Ui−1 when it has chosen F :

A. N had chosen an uncorrupt Ui. We analyze the payoff of each case:

I. Instantaneous Response, i.e., t→ 0: Payoff of both the parties, is discussed.

a. Ui accepts the payment: Ui claims the payment and Ui−1 gets processing fee f(αi−1)

from its preceding neighbour Ui−2. The payoffs are defined as uUi−1
(uco, F,Ac) =

f(αi−1) and, uUi(uco, F,Ac) = αi−1 respectively.
b. Ui rejects the payment: None of them gains anything, and the channel balance is

restored.
uUi−1

(uco, F,Rt) = uUi(uco, F,Rt) = 0.

II. Delayed Response, i.e., 0 < t < ti−1: Payoff of both the parties is discussed.

a. Ui waits and then accepts the payment:

• Ui−1 can earn f(αi−1) only after Ui resolves the payment. However, if Ui delays
for t units in acquiring αi−1 coins, then Ui−1 suffers a loss due to coins remaining
locked in channel idi−1,i. The opportunity cost is defined as O(rUi−1

, t, αi−1). It is
also denoted as ot,αi−1

i−1 . This factor is subtracted from the payoff Ui−1 obtains if Ui
had accepted the payment instantly. uUi−1

(uco, F,W & Ac) = f(αi−1)− ot,αi−1

i−1 .
• Ui loses the opportunity to earn profit by utilizing αi−1 coins for the next t unit

of time. The expected profit that Ui could have made using αi−1 within the next t
units is O(rUi , t, αi−1), also denoted as ot,αi−1

i . This shows that delaying is costly.
Thus, uUi(uco, F,W & Ac) = αi−1 − ot,αi−1

i .

b. Ui waits and then rejects the payment: The payoff ofUi−1, denoted as uUi−1
(uco, F,W &Rt),

is −ot,αi−1

i−1 . Payoff of Ui, denoted as uUi(uco, F,W & Rt), is −ot,αi−1

i , since it loses
the opportunity to utilize the coins.

III. Ui griefs: If Ui fails to respond within time ti, Ui−1 will close the channel by going on-
chain.

• Ui−1 cannot utilize αi−1 coins locked in the off-chain contract. The opportunity cost
is O(rUi−1

, ti−1, αi−1), also denoted as oti−1,αi−1

i−1 . Additionally, due to closure of chan-
nel, Ui−1 fails to utilize the residual capacity remain(Ui−1, Ui) for the next T − (ti−1 +

142 Strategic Analysis of Griefing Attack in Lightning Network

tcontract initiate−ti−1,i) unit of time, where ti−1,i is the timestamp at which channel idi−1,i

was opened and tcontract initiate is the current timestamp at which the off-chain contract
got initiated in the channel. We use a shorter notation t̃i−1,i to denote T − (ti−1 +

tcontract initiate − ti−1,i). The opportunity cost of the remaining balance is O(rUi−1
, T −

(ti−1 + tcontract initiate − ti−1,i), remain(Ui−1, Ui)) or ot̃i−1,i,remain(Ui−1,Ui)
i−1 . Along with

thatUi−1 has to pay the transaction feeM for settling on-chain. Hence, payoff uUi−1
(uco, F,Gr) =

−oti−1,αi−1

i−1 − ot̃i−1,i,remain(Ui−1,Ui)
n−1 −M .

• If Ui−1 had previously transferred coins to Ui then remain(Ui, Ui−1) > 0. In that case,
Ui incurs a loss O(rUi , T − (ti−1 + tcontract initiate − ti−1,i), remain(Ui, Ui − 1)), also
denoted as ot̃i−1,i,remain(Ui,Ui−1)

i , due to closure of channel after timeout period ti−1. Ad-
ditionally, it loses oti−1,αi−1

i , as it fails to earn and utilize the coins for other purpose.
Hence, payoff uUi(uco, F,Gr) = −ot̃i−1,i,remain(Ui,Ui−1)

i − o
ti−1,αi−1

i . Since Ui doesn’t
respond, we do not subtract M from the payoff, as it has not gone on-chain for settling
the transaction.

B. N has chosen a corrupt node. The latter executes a self-payment of amount α via a path of
length n via n − 1 intermediaries. This implies that U0 = Un. The amount forwarded is

α+
n−1∑
i=1

f(αi), where, f(αi) is the fee charged by an intermediate node Ui, i ∈ [1, n− 1]. Since

the cost incurred per payment is C and Un has to keep α coins locked for time D, the bribe
offered must compensate for all these costs. The amount of bribe offered by the attacker is L
where L = α + C + ID,α, where ID,α ≈ 2oD,αn . Since the purpose of Un is to mount attack,
it would not be interested in performing payments like other participants. This implies that Un
has not accepted any payment from Un−1 and remain(Un, Un−1) = 0. We analyze each case as
follows:

I. Instantaneous Response, i.e., t→ 0:

a. Ui or Un accepts the payment: Un ends up losing approximatey
n−1∑
i=1

f(αi), as it needs

to pay (n − 1) intermediaries. It had already incurred a cost C. Un−1 has suc-
cessfully forwarded the amount. Thus, payoffs are uUn−1(co, F,Ac) = f(αn−1) and

uUn(co, F,Ac) = −C −
n−1∑
i=1

f(αi).

b. Ui or Un rejects the payment: uUn−1(co, F,Rt) = 0 and uUn(co, F,Rt) = −C.

II. Delayed Response, i.e., 0 < t < tn−1 where tn−1 = D:

a. Ui or Un waits and then accepts the payment:

Analysis of Griefing Attack in HTLC 143

• Payoff of Un−1 is same as the payoff it had obtained when Un is not corrupt and
chooses to wait and accept the payment. Thus uUn−1(co, F,W & Ac) = f(αn−1)−
o
t,αn−1

n−1 .
• ηt,αn−1

n defines the net profit received by Un for keeping αn−1 coins unutilized till
time t, where:

ηt,αn−1
n =

−C −O(rUn , t, αn−1), 0 < t < D − δ

L− C −O(rUn , t, αn−1), t ≥ D − δ
(7.5)

Delaying till time t < D − δ, will not result in any profit, Un loses the setup cost
and the revenue had it utilized αn−1 for t units of time. If it delays for at least
D − δ, it gets paid for the work done, i.e. ηD−δ,αn−1

n . Since δ → 0, ηD−δ,αn−1
n ≈

ηD,αn−1
n = L − C − O(rUn , D, αn−1). But ID,αn−1 ≈ 2oD,αn−1

n , which implies
L−C−oD,αn−1

n = α+C+ ID,αn−1−C−oD,αn−1
n ≈ α+oD,αn−1

n . Upon accepting
a self-payment, it ends up paying a processing fee to n − 1 intermediaries. Thus,

the payoff of Un, uUn(co, F,W & Ac) = −
n−1∑
i=1

f(αi) + ηt,αn−1
n .

b. Ui orUn waits and then rejects the payment: Payoff ofUn−1 andUn are uUn−1(co, F,W &Rt) =

−ot,αn−1

n−1 and uUn(co, F,W & Rt) = ηt,αn−1
n respectively.

III. Ui or Un griefs: Un successfully mounts the attack, it gets an incentive L from attacker.
It loses C, which is the cost for mounting the attack and the opportunity cost oD,αn−1

n .
Since the channel is unilaterally funded by Un−1, remain(Un, Un−1) = 0. Thus there is
no loss associated due to closure of channel. The payoff of Un−1 is the same as the payoff
it had obtained when Un is uncorrupt and chooses to grief. Thus, uUn−1(co, F,Gr) =

−oD,αn−1

n−1 − ot̃n−1,n,remain(Un−1,Un)
n−1 −M and uUn(co, F,Gr) = L−C − oD,αn−1

n = ηD,αn−1
n .

7.3.4 Game Analysis

We infer from the payoff model that the corrupt node can select either of the strategies for mounting
the attack:

• Reject the payment just before lock time D elapses: Uni (or Un) rejects the conditional payment
forwarded by Ui−1 just before the contract’s lock time elapses. With high probability, Ui−1

will choose to co-operate and settle the transaction off-chain. The benefit is that Ui can go on
executing several instances of griefing attacks without the need of opening a fresh channel each
time.

144 Strategic Analysis of Griefing Attack in Lightning Network

• Do not respond: This is as per the conventional definition of griefing. Ui (or Un) chooses not to
respond, and Ui−1 closes the channel unilaterally after the contract’s lock time expires.

We assume that the corrupt node applies a mixed strategy over these two strategies, selecting
the first strategy with probability q and the second strategy with probability 1− q, q ∈ [0, 1].

Given U ′i−1s belief that N selects a corrupt Ui with probability θi and an uncorrupt Ui with
probability 1 − θi, the expected payoff of Ui−1 is calculated by applying backward induction on
the game tree ΓHTLC shown in Fig. 7-1. If Ui−1 plays NF, then Ui cannot take any action, hence
both gets a payoff of 0. If Ui−1 plays F; an uncorrupt Ui chooses Ac as its best response since
uUi(uco, F,Ac) ≥ uUi(uco, F, s

′), ∀s′ ∈ SUi; a corrupt Ui (also Un) can choose either to grief or
Wait & Reject at D− δ as its best response since uUi(co, F,Gr) = uUi(co, F,W & Rt at time D−
δ) ≥ uUi(co, F, s

′′),∀s′′ ∈ SUn . A corrupt Ui (or Un) applies mixed strategy, either choosing to
Grief with probability 1−q or it can Wait and Reject at timeD−δ with probability q. The expected
payoff of Ui−1 for selecting forward, denoted as EUi−1

(F), and expected payoff for selecting not
forward, denoted as EUi−1

(NF) are:

EUi−1
(F) = θi

(
− qoD−δ,αn−1

n−1 + (1− q)(−oD,αn−1

n−1 − ot̃n−1,n,remain(Un−1,Un)
n−1 −M)

)
+(1− θi)f(αi−1)

EUi(NF) = 0

(7.6)

Since δ → 0, we consider oD−δ,αn−1

n−1 ≈ o
D,αn−1

n−1 . Substituting in Eq. 7.6, if EUi−1
(F) >

EUi−1
(NF) thenU ′i−1s best response is F and we derive θi <

f(αi−1)

o
D,αn−1
n−1 +f(αi−1)+(1−q)(o

t̃n−1,n,remain(Un−1,Un)

n−1 +M)
.

Hence, Un−1 chooses Forward if θi <
f(αi−1)

o
D,αn−1
n−1 +f(αi−1)+(1−q)(o

t̃n−1,n,remain(Un−1,Un)

n−1 +M)
, else it chooses

Not Forward; corrupt Un can either choose Grief or Wait & Reject at time D − δ; uncorrupt Un
chooses Accept; is a perfect Bayesian equilibrium.

Comparative Static Analysis. We take the derivative of EUi−1
(F) with respect to θi, to observe

how the expected payoff of Ui−1 changes with small change in θi, keeping other variables constant.

dEUi−1
(F)

dθi
= −f(αi−1)− oD,αn−1

n−1 − (1− q)(ot̃n−1,n,remain(Un−1,Un)
n−1 +M) (7.7)

dEUi−1
(F)

dθi
< 0 implies that EUi−1

(F) is a decreasing function upon varying θi. The higher

Countermeasure for the griefing attack 145

the probability of selecting a corrupt node, the expected payoff of Ui−1 will go down because of
the probability of facing an attack increases. The loss incurred is mainly due to delay in resolution
of payment and closure of channel (in some cases), as fee f(αi−1) is negligible compared to the
other two factors. In other words, if θi decreases, the higher the chance an uncorrupt recipient gets
selected. U ′i−1s expected payoff will increase.

7.4 Countermeasure for the griefing attack

Several countermeasures have been proposed to counter griefing attacks. Upfront payments for
incentivizing rational nodes for faster resolution of payments have been discussed in [16]. How-
ever, this scheme introduces a huge amount of economic barriers for a payer. Also, it will never
demotivate an attacker from mounting the attack as it will never lose any coins. Proof-of-Closure
of channels was proposed in [8] where two timeouts were set for ab HTLC, a hard timeout, and a
soft timeout period. The countermeasure does not work because the malicious node does not lose
anything in the process. In the next section, we discuss another payment protocol, Hashed Time-
lock Contract with Griefing Penalty or HTLC-GP, that claims to address the above shortcomings
and disincentivize griefing attacks.

7.4.1 Hashed Timelock Contract with Griefing Penalty or HTLC-GP

The protocol HTLC-GP [97], [96] has been developed after modifying HTLC to counter griefing
attack. The underlying idea is that if the party griefs, it gets penalized, and the amount locked is
distributed as compensation amongst the affected parties. The total penalty charged is proportional
to the summation of the collateral locked in each channel, forming the path routing payment.
Collateral locked in a channel by an off-chain contract is the product of coins locked in the off-
chain contract and timeout period of the contract. We provide a high-level overview of the protocol
HTLC-GP in the next section.

7.4.1.1 Overview

If the party wants to cancel the conditional payment in HTLC, it may simply request the counter-
party forwarding the contract to cancel it mutually. The counterparty complies with the request, as
it has no intention of keeping the coins unutilized. To incorporate penalty in HTLC, both parties
must lock coins. The condition is that a party that has formed the contract for claiming a condi-

146 Strategic Analysis of Griefing Attack in Lightning Network

tional payment needs to resolve it within a given time. Failure to respond will result in the loss of
coins. There is no way for a party to unilaterally cancel the conditional payment by going on-chain
in HTLC. The counterparty may take advantage of this situation and refuse to cancel the contract
mutually. After the lock time elapses, the counterparty goes on-chain and claims the penalty. The
problem is termed reverse griefing. Thus, a new protocol termed HTLC-GP was proposed. It is
a two-round protocol where the first round involves locking of penalty, termed as Cancellation
round. The round is initiated by the payee and proceeds in the reverse direction. The penalty is
locked by the party as a guarantee against a payment to be forwarded by the counterparty in the
next round. The second round is termed as Payment round. It involves locking the payment value
in off-chain contracts from payer to payee.

Figure 7-2: Formation of contract in HTLC-CP

We explain the protocol with the help of an example shown in Fig. 7-2. Alice wants to transfer b
units to Bob. Each party that forwards a payment must be guaranteed by its counterparty to receive
compensation if there is an incidence of a griefing attack. The amount of compensation charged
must be proportional to the collateral locked in the path. We define this proportionality constant as
the rate of griefing-penalty per unit time, denoted as γ.

The first round termed as Cancellation round proceeds in the following way: Bob has to lock
γbD1 + γbD2 + γbD coins for D unit of time. This amount is the cumulative penalty to be
distributed among Alice, Dave and Charlie, if Bob griefs. After Charlie receives the cancellation
contract, he locks γbD1 + γbD2 in the contract formed with Dave for D2 units. The latter locks
γbD1 coins in the contract formed with Alice for D1 units of time. The second round termed as
Payment round proceeds in a similar way like in HTLC. Payment value b is forwarded from Alice
to Bob via the intermediaries.

Calculation of cumulative penalty In the example, Bob is required to lock γbD1 +γbD2 +γbD

coins as a guarantee against the payment amount to be forwarded by Charlie. Since the lock time

Analysis of Griefing Attack in HTLC-GP 147

of the contract is D, one might question why Bob must take into account the lock time of the other
contracts while locking penalty. We do so to prevent other intermediate parties from becoming a
victim of reverse griefing. Consider the situation where Bob locks 3γbD coins as penalty, Charlie
locks 2γbD2 as penalty and Dave locks γbD1. If Bob griefs, Charlie keeps the compensation γbD
and forwards 2γbD to Dave. Dave is greedy and refuses to cancel the off-chain contract with
Charlie. After elapse of D2, it goes on-chain and claims 2γD2. Since D2 > D, Charlie incurs
a loss of 2γb(D2 − D). Thus, we account for the lock time of each contract while calculating
compensation to prevent the loss of coins of uncorrupt parties.

Countering Griefing Attack Suppose Bob griefs. He will pay a compensation of γbD1+γbD2+

γbD units to Charlie, as per the terms of the contract. After D expires, Charlie goes on-chain. He
closes the channel, unlocks b coins, and claims compensation. He requests Dave to cancel the
off-chain contract, offering a compensation of γbD1 + γbD2. Dave cancels the contract off-chain,
unlocks b units from the contract, and claims the compensation from Charlie. If Charlie decides to
grief, Dave can claim the compensation by going on-chain and closing the channel. Dave requests
Alice to cancel the contract by offering a compensation of γbD1. Except for Bob, none of the
parties lose coins.

In the next section, we formulate a game model for griefing attacks in HTLC-GP and study its
effectiveness.

7.5 Analysis of Griefing Attack in HTLC-GP

7.5.1 System Model

For payment of α from U0 to Un via (n−1) intermediaries, we denote the cumulative compensation
to be locked by Ui if Ui−1 forwards αi−1 as Zαi−1,i, i ∈ [1, n] where Zαi−1,i = Zαi−2,i−1 + cαi−1,i−1;
cαi−1,i−1 is the compensation charged by node Ui−1 and Zαi−2,i−1 is used for compensating other
nodes Uj, j < i. Note that Zval,0 = 0,∀val ∈ R+, αn−1 = α. cαi−1,i−1 charged by a node Ui−1,
must be proportional to the collateral it has locked in the off-chain contract formed with node Ui
for timeout period ti−1, i ∈ [1, n]. ti−1 = ti + ∆, tn−1 = D and cαi−1,i−1 = γαi−1ti−1, γ being
the rate of griefing-penalty per unit time. An off-chain contract between node Ui−1 and Ui requires

Ui−1 locking an αi−1 coins and Ui must lock Zαi−1,i coins. Here Zαn−1,n denoted as Zα =
n−1∑
i=0

cαi,i

is locked by Un as guaranteed compensation against the amount locked by party Un−1. Again,

148 Strategic Analysis of Griefing Attack in Lightning Network

Un−1 has locked Zαn−2,n−1 with the contract formed with Un−2 for time tn−1.

7.5.1.1 Change in System Assumption

In HTLC-GP, we consider a payment channel to be dual-funded. This implies that even in chan-
nel idi−1,i, i ∈ [1, n] both the parties Ui−1 and Ui lock coins i.e., locked(Ui−1, Ui) > 0 and
locked(Ui, Ui−1) > 0.

7.5.2 Attacker Model for HTLC-GP

The cost of the attack increases as Un has to lock extra coins as guarantee. However, the attacker
does not increase the incentive offered per attack. Thus, Un will not lock more than α coins. The
former will distribute this amount between the cumulative penalty locked in the contract formed
with Un−1 and the amount to be forwarded for payment. This implies α is the summation of

transaction value v +
n−1∑
i=1

f(vi) and the cumulative penalty imposed Zv =
n−1∑
i=0

cvi,i = γ
n−1∑
j=0

vjtj

where vj = v0 −
j∑

k=1

, j ∈ [0, n− 1]. Since
n−1∑
i=1

f(vi) << v, we consider v0 +Zv ≈ v +Zv = α or,

v = α

1+γ
n−1∑
j=0

tj

.

Un executes a self-payment of v coins, choosing a path of length n. Each intermediate party
and the recipient Un have to lock coins as a guarantee against the payment amount forwarded.

7.5.3 Game Model

It is feasible adapt the game model ΓHTLC used for HTLC in HTLC-GP. We study the interaction
between Ui−1 and Ui as a sequential Bayesian game ΓHTLC−GP , shown in Fig. 7-3.

7.5.3.1 Payoff Model

When Ui−1 chooses not to forward, both Ui−1 and Ui receives a payoff 0 since no off-chain contract
got established, i.e., uUi−1

(θb, NF, sb) = uUi(θb, NF, sb) = 0, θb ∈ ΘUi and sb ∈ SUi . We analyze
the payoff of each case when Ui−1 chooses to forward:

A. N had chosen an uncorrupt Ui. We analyze the payoff of each case:

Analysis of Griefing Attack in HTLC-GP 149

Figure 7-3: Extensive form of the game ΓHTLC−GP

I. Instantaneous Response, i.e., t→ 0: Upon instant acceptance or rejection of payment, the
payoffs are the same as that observed in ΓHTLC .

II. Delayed Response, i.e., 0 < t < ti:

a. Ui waits and then accepts the payment:

• Ui−1 incurs loss due to rise in opportunity cost of αi−1 coins locked in off-chain
contract with Ui. Thus uUi−1

(uco, F,W & Ac) = f(αi−1)− ot,αi−1

i−1 .
• Ui has to keep Zαi−1,i coins locked in the contract established in channel idi−1,i.

Thus, it faces loss not only due to delay in claiming αi−1 coins from Ui−1 but also
due to unutilization of Zαi−1,i. The expected profit that could have been made using
αi−1 and Zαi−1,i within the next t unit of time is O(rUi , t, αi−1), also denoted as

o
t,αi−1

i , and O(rUi , t, Zαi−1,i), denoted as o
t,Zαi−1,i

i . Thus, uUi(uco, F,W & Ac) =

αi−1 − ot,αi−1

i − ot,Zαi−1,i

i .

b. Ui waits and then rejects the payment: The payoff ofUi−1 is uUi−1
(uco, F,W &Rt) =

−ot,αi−1

i−1 and payoff of Ui is uUi(uco, F,W & Rt) = −ot,αi−1

i − ot,Zαi−1,i

i .

III. Ui griefs:

• Even in this case, due to closure of channel Ui−1 fails to utilize the residual capacity
remain(Ui−1, Ui) for the next T − (ti−1 + tcontract initiate − ti−1,i) unit of time. Ui−1

incurs a loss of oti−1,αi−1

i−1 + o
t̃i−1,i,remain(Ui−1,Ui)
i−1 + M . However, it can claim a compen-

sation of Zαi−1,i by going on-chain and closing the channel. Payoff uUi−1
(uco, F,Gr) =

−(o
ti−1,αi−1

i−1 + o
t̃i−1,i,remain(Ui−1,Ui)
i−1 +M) + Zαi−1,i.

• Ui incurs loss of Zαi−1,i coins to compensate Ui−1. It fails to earn revenue due to non-
utilization ofZαi−1,i coins in channel idi−1,i for period ti−1. The additional loses suffered

150 Strategic Analysis of Griefing Attack in Lightning Network

are due to inability to claim αi−1 coins and using it within ti−1 unit of time and failure in
utilizing the residual capacity remain(Ui, Ui−1) for the next T−(ti−1+tcontract initiate−
ti−1,i) unit of time. Thus, payoff of Ui is uUi(uco, F,Gr) = −ot̃i−1,i,remain(Ui,Ui−1)

i −
o
ti−1,αi−1

i − oti−1,Zαi−1,i

i − Zαi−1,i.

B. N has chosen a corrupt node. The latter executes a self payment of amount v, as stated in
Attacker Model in Section 7.5.2. The payoffs for each case has been defined as follows:

I. Instantaneous Response, i.e., t→ 0: Upon instant acceptance or rejection of payment, the
payoffs are the same as that observed in ΓHTLC .

II. Delayed Response, i.e., 0 < t < D:

a. Ui or Un waits and then accepts the payment:

• Payoff of Un−1 is uUn−1(co, F,W & Ac) = f(vn−1) − o
t,vn−1

n−1 , due to delay in
claiming of vn−1 coins as Un delays in resolving payment.
• Un keeps v + Zv ≈ α coins locked for mounting the attack and receives a bribe L.

The value ηt,αn is the same as defined in Eq.7.5. Upon accepting a self-payment of
amount v, the corrupt node ends up paying a processing fee to n−1 intermediaries.

Thus, the payoff of Un is uUn(co, F,W & Ac) = −
n−1∑
i=1

f(vi) + ηt,αn .

b. Ui orUn waits and then rejects the payment: Payoff ofUn−1, uUn−1(co, F,W &Rt) =

−ot,vn−1

n−1 and uUn(co, F,W & Rt) = ηt,αn . When t ≈ D − δ where δ → 0, ηt,αn attains
the maximum value.

III. Ui or Un griefs: Un successfully mounts the attack, it gets an incentive L from the at-
tacker, but at the same time loses Zv in order to compensate the affected parties. Un−1

loses channel and the expected revenue due to coins remaining locked but gets the com-
pensation Zv. Thus, the payoffs of Un−1 and Un are uUn−1(co, F,Gr) = −oD,vn−1

n−1 −
o
t̃n−1,n,remain(Un−1,Un)
n−1 −M+Zv and uUn(co, F,Gr) = L−C−oD,αn −Zv−o

t̃n−1,n,remain(Un,Un−1)
n−1 =

ηD,αn − Zv − o
t̃n−1,n,remain(Un,Un−1)
n respectively.

7.5.4 Game Analysis

The expected payoff ofUi−1 is calculated by applying backward induction to the game tree ΓHTLC−Penalty

shown in Fig. 7-3. If Ui−1 plays NF, then Ui cannot take any action, hence both gets a payoff of 0.
If Ui−1 plays F; an uncorrupt Ui chooses Ac as its best response but a corrupt Ui will choose Wait
& Reject atD−δ as its best response since uUi(co,W &Rt at time D−δ) ≥ uUi(co, F, s

′′),∀s′′ ∈

Analysis of Griefing Attack in HTLC-GP 151

SUi . The expected payoff of Ui−1 for selecting forward, denoted as EUi−1
(F), and expected payoff

for selecting not forward, denoted as EUi−1
(NF) are:

EUi−1
(F) = θi(−oD−δ,vn−1

n−1) + (1− θi)f(αi−1)

EUi(NF) = 0
(7.8)

Since δ → 0, we consider oD−δ,vn−1

n−1 ≈ o
D,vn−1

n−1 . Substituting in Eq. 7.8, if EUi−1
(F) >

EUi(NF), then Ui−1 chooses F and we derive θi <
f(αi−1)

f(αi−1)+o
D,vn−1
n−1

. Hence, Ui−1 chooses Forward

if θi <
f(αi−1)

f(αi−1)+o
D,vn−1
n−1

, else it chooses Not Forward; corrupt Ui chooses Wait & Reject at time

D − δ; uncorrupt Ui chooses Accept; is a perfect Bayesian equilibrium.

Comparative Static Analysis. We take the partial derivative of EUi−1
(F) with respect to θi, to

observe how the expected payoff of Ui−1 changes with small change in θi, keeping other variables
constant.

dEUi−1
(F)

dθi
= −f(αi−1)− oD,vn−1

n−1 (7.9)

dEUi−1
(F)

dθi
< 0 implies that EUi−1

(F) is a decreasing function upon varying θi. It implies a

higher probability of selecting a corrupt node, the expected payoff of Ui−1 will go down as the
probability of facing an attack increases. However, Ui−1 doesn’t lose the channel, unlike in the
game ΓHTLC , where Ui−1 had to settle on-chain if the corrupt node did not respond.

Comparing θi for which Ui−1 chooses F in ΓHTLC and ΓHTLC−GP : Since f(αi−1) + o
D,vn−1

n−1 <

o
D,αn−1

n−1 + f(αi−1) + (1 − q)(o
t̃n−1,n,remain(Un−1,Un)
n−1 + M), the cut-off of θi for which Ui−1 will

choose to forward a payment is higher in ΓHTLC−GP than in ΓHTLC even if q → 0. The corrupt
player has to invest some amount as penalty and as a consequence, the payment amount reduces
from αn−1 to vn−1. Additionally, the corrupt player now fixes its strategy to cancel the payment
just before elapse of locktime. Hence, the player Ui−1 is not bound to go on-chain and unlock the
coins from the off-chain contract.

7.5.5 Gap in Security Analysis of HTLC-GP

The security goal of HTLC-GP [96] states that the protocol punishes the attacker and compensates
the victims. A detailed security analysis has been provided in the paper but it works under the

152 Strategic Analysis of Griefing Attack in Lightning Network

assumption that the attacker will not respond and the victim will go on-chain to claim the penalty.
To avoid paying the griefing penalty, a rational corrupt node will cancel the payment just before
the contract lock time elapses i.e., at time D − δ, where δ → 0 [8]. Such a node doesn’t lose its
channel, providing the advantage of mounting the attack repeatedly.

The uncorrupt parties cannot be protected from griefing attacks if we do not penalize the corrupt
node for each time interval. Since Bitcoin scripting language is not Turing-complete, we cannot
have a single off-chain contract where we can define penalty as a function of time. There is no
way to execute a transaction like this: If t’ time units have elapsed, pay amount p. If t’+1 time
units have elapsed, pay amount p+δ. CheckSequenceVerify [39] imposed on the first condition of
elapse of t’ time unit makes the transaction eligible for broadcasting on-chain after elapse of time
t’+1. This might lead to a race condition, and the victim might not receive proper compensation.
Thus it is not possible to design a protocol to compensate the victims affected by other forms of
griefing attacks with the current scripting language.

Until now, our focus was on whether a corrupt party is losing coins if it attacks the network.
We did not analyze the impact of the penalty on the attacker’s behavior. The attacker will continue
to invest in the network if the return on investment is good enough. If the return on investment
diminishes, the attacker will refrain from mounting the attack and instead prefer to invest in another
activity. Based on this idea, we analyze the effectiveness of HTLC-GP in the next section.

7.5.6 Effectiveness of HTLC-GP

The attacker has an objective of maximizing the damage by locking as much network liquidity
possible for the given budget BEX . Penalty involves locking extra coins, and this increases the cost
of the attack. Once the cost of the attack increases, the attacker will be able to corrupt fewer nodes.
We define a metric that measures the coins remaining unutilized in the network.

Measuring success rate of attack Capacity locked in a path routing payment is the summation
of the coins locked in the off-chain contract instantiated on the channel forming the path. It is the
metric used for measuring the success of the attack from the attacker’s point of view [89], [90].

Ignoring the processing fee (negligible quantity), assuming all the payments executed are of
value α and the bribe offered per instance is L, the attacker can corrupt BEX

L
nodes in the networks.

We also assume that for any node U ∈ V , EU(F) > EU(NF). So each self-payment gets routed
and reaches the payee.

Analysis of Griefing Attack in HTLC-GP 153

Claim 7.0.1. Given the total budget of the attack is BEX , incentive per attack being L, transaction
value per payment being α, HTLC timeout period is D, time taken to settle a transaction on-chain
being ∆, n is the maximum allowed path length and a corrupt recipient rejects the payment at time
t′ = D − δ, where δ → 0, the capacity locked upon using HTLC-GP is less than the capacity

locked in HTLC, the loss percent being γn(D
2

+
∆(n−2)

6
)

1+γn(D+
(n−1)∆

2
)

Proof: In HTLC, a given instance of attack locks (n− 1)α coins in the path routing payment. The
capacity locked in BEX

L
(n− 1)α.

In HTLC-GP, Un executes self-payment of amount v. It cancels the contract at time t′ = D−δ.

Capacity locked is ((n − 1)v +
n−1∑
i=1

Zvi−1,i)
BEX
L

. In both the cases, we exclude the coins locked

by the corrupt node while computing the unusable capacity and fee charged by the intermediate
parties. Thus we substitute Zvi−1,i with Zv,i. We measure the difference in capacity locked to judge
the effectiveness.

BEX
L

(n− 1)α−
(BEX

L
(n− 1)v + BEX

L

n−1∑
i=1

Zv,i
)

= BEX
L

((n− 1)α− (n− 1)v −
n−1∑
i=1

Zv,i)

= BEX
L

((n− 1)α− (n− 1)v − γv
n−1∑
i=0

i∑
j=0

tj)

(7.10)

Substituting v = α

1+γ
n−1∑
j=0

tj

,

= γ α

1+γ(nD+
n(n−1)∆

2
)
n(n− 1)BEX

L
(D

2
+ ∆(n−2)

6
) (7.11)

The loss percent is the ratio of the difference between capacity locked in HTLC and HTLC-GP
and capacity locked in HTLC.

γ α

1+γ(nD+
n(n−1)∆

2)
n(n−1)

BEX
L

(D
2

+
∆(n−2)

6
)

BEX
L

(n−1)α

=
γn(D

2
+

∆(n−2)
6

)

1+γn(D+
(n−1)∆

2
)

(7.12)

154 Strategic Analysis of Griefing Attack in Lightning Network

The loss percent of capacity locked by the attacker is γn(D
2

+
∆(n−2)

6
)

1+γn(D+
(n−1)∆

2
)
. The value is greater than

0 for n ≥ 2. This proves that attacker ends up locking less capacity when HTLC-GP is used as a
payment protocol. �

Inference We observe that the loss percent γn(D
2

+
∆(n−2)

6
)

1+γn(D+
(n−1)∆

2
)

is dependent on γ. If γ is too low, the

loss percent is not substantial, then the attacker can still go ahead with corrupting the nodes in the
network. Hence the payment protocol HTLC-GP is weakly effective in disincentivizing the attack.

7.6 Guaranteed Minimum Compensation for further disincen-
tivizing Griefing Attack

If the incidence of griefing attack increases, then γ can be increased. However, the disadvantage
of increasing the rate of griefing penalty means uncorrupt nodes have to put a higher amount at
stake for routing small-valued payments. The success rate of payments decreases due to a lack
of liquidity in the channels. Our objective is to increase the cost of the attack without forcing
uncorrupt parties to lock high penalties. The objective can be achieved if the maximum path
length allowed for routing payments is decreased accordingly. Mizrahi and Zohar [100] suggested
that decreasing the maximum path length for routing payments increases the cost of the attack.
However, an abrupt reduction in the maximum allowed path length may lead to higher failure in
executing transactions. Thus we must design a mechanism by which one can adjust the path length
based on the rate of incidence of griefing attacks in the network.

The major source of earning for a node is the processing fee by routing transactions. If there
is a griefing attack, then the affected parties fail to earn due to locked collateral. We introduce a
new parameter ζ , termed as Guaranteed Minimum Compensation. If payment forwarded by Ui−1

is α, Ui must lock a minimum cumulative penalty iζα, i ∈ [1, n], where each party Uj, j ∈ [0, i)

is entitled to receive a compensation ζα. Based on the data provided [37], the fee earned by each
node on a single day is quite low compared to the amount routed. Thus, we set ζ in the range [0, 1)

to avoid over-compensation. For a given rate of penalty, the maximum cumulative penalty, Zα,max,
that Un is required to lock, is γα

∑n
i=1(D + (n − i)∆) 6. If γ

∑n
i=1(D + (n − i)∆) is k, where

k ∈ R+ then Zα,max = kα.

6For ease of analysis, we ignore the processing fee charged by each intermediate party

Guaranteed Minimum Compensation for further disincentivizing Griefing Attack 155

7.6.1 Adjusting Maximum Path Length

We estimate the maximum allowed path length, ñ, for routing payments when a minimum thresh-
old on compensation ζ is imposed.

Proposition 7.1. Given the maximum cumulative griefing-penalty for a payment α is kα, and the
guaranteed minimum compensation ζ , the maximum path length for routing transaction is k

ζ
.

Proof: In HTLC-GP, Zα,max = kα. Upon introduction of guaranteed minimum compensation, any
node routing a payment α is entitled to a minimum compensation ζα upon being affected by the
griefing attack. If the compensation falls below this amount, the node will refuse to forward the
contract. Thus, the recipient must bear a cumulative penalty of at least ζñα for a path of length ñ.
Thus, the following criteria must hold:

ñζα ≤ Zα,max

or, ñζα ≤ kα

or, ñ ≤ k
ζ

(7.13)

Thus the maximum path length in HTLC-GPζ is k
ζ
. �

If the incidence of griefing attack increases, then the maximum allowed path length can be
decreased by increasing ζ .

7.6.2 Estimating Rate of Griefing-Penalty γζ,k

Once the maximum path length is adjusted, the rate of griefing-penalty γ is no more a free variable
that can be set too high or too low. Given that kα is the maximum cumulative penalty for routing
a payment of α, and the path length decreases from n to ñ then γ must be increased. We call this
new rate of griefing-penalty γζ,k and calculate the rate of griefing-penalty based on these factors.

Proposition 7.2. Given ζ as the guaranteed minimum compensation, ratio of maximum cumulative
griefing penalty and the transaction amount is k, and the least timeout period of the off-chain
contract being D, the rate of griefing-penalty γζ,k is 2ζ2

2ζD+∆(k−ζ) .

Proof: Using the value of Zα,max = kα and maximum path length for routing is ñ, we estimate

156 Strategic Analysis of Griefing Attack in Lightning Network

γζ,k:

kα = γζ,k
∑ñ

i=1(D + (ñ− i)∆)α

or, γζ,k = k
∆ñ(D

∆
+ ñ−1

2
)

(7.14)

Replacing ñ by the expression given in Proposition 7.1, we have γζ,k = 2ζ2

2ζD+∆(k−ζ) . �

7.7 Modifying HTLC-GP to HTLC-GPζ

In this section, we discuss the modified payment protocol HTLC-GPζ . The corrupt node can
still mount the attack without paying any penalty. However, our objective is to disincentivize the
attacker by abruptly decreasing the capacity locked.

7.7.1 Protocol Description

For relaying funds from U0 to Uñ, both of them decides on k for a given ζ and sets ñ. The
rate of griefing-penalty γζ,k is calculated accordingly for a given HTLC timeout period D. The

total amount that the payer needs to transfer is α̃ = α +
ñ−1∑
i=1

f(αi). We denote each αi =

α̃ −
i∑

k=1

f(αk), i ∈ [0, ñ − 1], α0 = α̃. Each node Ui samples a pair of secret key and public

key (ski, pki), the public key of each node is used to encrypt the information of establishing con-
tract with the neighboring node. An off-chain contract between Ui and Ui+1 has a timeout period
of ti. tñ−1 is set to D. We discuss the various phases of the modified version of payment protocol,
the description being similar to HTLC-GP [96].

Pre-processing Phase

U0 must not use the exact path for routing payment. If the exact path length is used, U1 locks a
penalty γζ,kα0t0 with U0, it can easily figure out the identity of the sender, violating privacy. Thus,
it randomizes the exact path length using a random function φ, and shares φ(ñ) with Uñ. The latter
calculates the cumulative penalty γζ,kφ(ñ)αD used for establishing the cancellation contract.

Modifying HTLC-GP to HTLC-GPζ 157

Calculating φ(ñ) A routing attempt cost ψ is added such that γζ,kφ(ñ)αD ≈ γζ,k((ψ + α0)t0 +

Σñ−1
j=1αjtj). This acts like a blinding factor and U1 cannot infer the identity of the sender from the

penalty it locks in the off-chain contract formed with U0.

The following steps of the protocols are executed:

• Uñ samples two random numbers x and r where x 6= r. It constructs the payment hash H =

H(x) and the cancellation hash Y = H(r).

• The payee shares both the hashes H and Y with the payer U0.

• The cumulative griefing-penalty to be locked by U1 is cgp0 = γζ,k(ψ + α̃)t0. The cumulative
griefing-penalty to be locked by any other node Ui+1, i ∈ [1, ñ−1] is cgpi = γζ,k.(Σi

j=1(αjtj)+

(α0 + ψ)t0).

• The payer uses standard onion routing [64] for propagating the information needed by each node
Ui, i ∈ [1, ñ], across the path P . U0 sendsM0 = E(. . . E(E(E(φ, Zñ, pkñ), Zñ−1, pkñ−1), Zñ−2, pkñ−2)

. . . , Z1, pk1) toU1, whereZi = (H, Y, αi, ti−1, cgpi−1, Ui+1), i ∈ [1, ñ−1] andZñ = (H,Y, αñ−1,

tñ−1, cgpñ−1, null). Here Mi−1 = E(Mi, Zi, pki) is the encryption of the message Mi and Zi
using public key pki, Mñ = φ.

• U1 decryptsM0, gets Z1 andM1. M1 = E(. . . E(E(E(φ, Zñ, pkñ), Zñ−1, pkñ−1), Zñ−2, pkn−2),

. . . , Z2, pk2) is forwarded to the next destinationU2. This continues till partyUñ getsE(φ, Zñ, pkñ).

Two-Round Locking Phase It involves two rounds: establishing Cancellation Contract and
establishing Payment Contract.

• Establishing Cancellation Contract: Uñ initiates this round and each player Ui, i ∈ [1, ñ] locks
their respective cumulative griefing-penalty cgpi−1.

– Uñ decrypts and gets Zñ. It checks γζ,kφ(ñ)αD
?
= cgpñ−1 and αñ−1

?
= α. If this holds true,

the payer forms a contract with Uñ−1, locking cgpñ−1.

– For any other party Ui, i ∈ [1, ñ−1], it first checks cgpi−γζ,kαiti
?
= cgpi−1. This ensures that

there is sufficient coins to be locked as penalty in the contract to be formed with Ui−1. Next,
it checks γζ,kαiti ≥ ζαi. This check ensures that Ui is guaranteed a minimum compensation
upon being affected by griefing attack. If both the condition satifies, Ui forms the off-chain
contract with Ui−1, locking cgpi−1.

158 Strategic Analysis of Griefing Attack in Lightning Network

– The off-chain contract for locking penalty in layman terms: ‘Ui+1 can withdraw the amount
cgpi = γζ,k.(Σi

j=1(αjtj) + (α0 + ψ)t0) from the contract contingent to the release of either
x : H = H(x) or r : Y = H(r) within time ti. If the locktime elapses and Ui+1 does not
respond, Ui claims cgpi after the locktime elapses.’.

The pseudocode of the first round of Locking Phase for Uñ, any intermediate party Ui, i ∈
[1, ñ− 1] and payer U0 is stated in Procedure 17, Procedure 18 and Procedure 19 respectively.

Procedure 17: Establishing Cancellation Contract: First Round of Locking Phase for Uñ
Input: (Zñ, φ(ñ), γζ,k, α)
Uñ parses Zñ and gets H ′, Y ′, α′, t′, cgpñ−1.

if t′ ≥ tnow + ∆ and α′ ?
= α and kα ?

= cgpñ−1 and H ′ ?
= H and Y ′ ?

= Y and
remain(Uñ, Uñ−1) ≥ cgpñ−1 then

Send Cancel Contract Request(H,Y, t′, cgpñ−1, γ
ζ,k) to Uñ−1

if acknowledgement received from Uñ−1 then
remain(Uñ, Uñ−1) = remain(Uñ, Uñ−1)− cgpñ−1

establish Cancel Contract(H,Y, t′, cgpñ−1) with Uñ−1

Record tformñ = current clock time
end
else

abort
end

end
else

abort.
end

• Establishing Payment Contract: U0 initiates the next rounded provided it has received the can-
cellation contract and cgp0 ≥ ζα0. The conditional payment is forwarded till it reaches the
payer Uñ. This proceeds as normal HTLC.

– Each node Ui, i ∈ [0, ñ − 1] checks that for a belief θi+1 regarding Ui+1’s type, the expected
payoff on forwarding the contract is greater than 0. If so, it forwards the terms of the off-chain
contract to Ui+1, locking αi coins.

– The off-chain contract for payment in layman terms: ‘Ui+1 can claim αi coins contingent to
the release of x : H = H(x) within time ti. If Ui+1 does not respond, Ui unlocks αi coins
from the contract either by releasing preimage r : Y = H(r) or after the locktime elapses.’

Modifying HTLC-GP to HTLC-GPζ 159

Procedure 18:
]Establishing Cancellation Contract: First Round of Locking Phase for Ui, i ∈ [1,n-1]
Input: (H ′, Y ′, t′, cgpi, γ

ζ,k)
Ui parses Zi and gets H,Y, αi, ti−1, cgpi−1.

if H ′ ?
= H and Y ?

= Y ′ and t′ + ∆
?

≤ ti−1 and cgpi − γζ,kαit′
?
= cgpi−1 and γζ,kαit′ ≥ ζαi

and remain(Ui, Ui+1) ≥ αi and remain(Ui, Ui−1) ≥ cgpi−1 and (current time not close to
contract expiration time) then

Sends acknowledgment to Ui+1 and waits for the off-chain contract to be established
Send Cancel Contract Request(H,Y, ti−1, cgpi−1, γ

ζ,k) to Ui−1

if acknowledgement received from Ui−1 then
remain(Ui, Ui−1) = remain(Ui, Ui−1)− cgpi−1

establish Cancel Contract(H, Y, ti−1, cgpi−1) with Ui−1

end
else

abort
end

end
else

abort.
end

Procedure 19: Establishing Cancellation Contract: First Round of Locking Phase for U0

Input: (H ′, Y ′, t′, cgp′, γζ,k)
if t′ ?

= t0 and cgp′ ?
= cgp0 ≥ ζα0 and H ′ ?

= H and Y ′ ?
= Y and remain(U0, U1) ≥ α0 then

Sends acknowledgment to U1

Confirm formation of penalty contract with U1

Initiate the second round, the establishment of payment contract
end
else

abort.
end

160 Strategic Analysis of Griefing Attack in Lightning Network

The pseudocode of the second round of Locking Phase for U0 and any intermediate party
Ui, i ∈ [1, ñ− 1] is stated in Procedure 20 and Procedure 21 respectively.

Procedure 20: Establishing Payment Contract: Second Round of Locking Phase for U0

Input: (H, Y, α0, t0)

if θ1 <
f(α0)

f(α0)+ot0,α0
and (U1 has agreed to form the contract) and (current time not close to

contract expiration time) then
remain(U0, U1) = remain(U0, U1)− α0

establish Payment Contract(H, Y, t0, α0) with U1

end
else

abort
end

Procedure 21:
]Establishing Payment Contract: Second Round of Locking Phase for Ui, i ∈ [1,n-1]
Input: (H, Y, αi, ti)

if θi+1 <
f(αi)

f(αi)+o
ti,αi
i

and ti−1 ≥ ti + ∆ and αi−1
?
= αi + f(αi−1) and (Ui+1 has agreed to

form the contract) and (current time not close to contract expiration time) then
remain(Ui, Ui+1) = remain(Ui, Ui+1)− αi
establish Payment Contract(H, Y, ti, αi) with Ui+1

end
else

abort
end

Release Phase: Uñ waits for µ units of time before either accepting or canceling the payment.
If the payment contract received from Uñ−1 is correct, Uñ releases the preimage x for payment
hash H and claims the coins from Uñ−1. If the latter has not forwarded the conditional payment,
or the payer has encountered an error (mismatch in payment or penalty value, invalid lock time)
in the terms stated in the incoming off-chain contract, Uñ releases the cancellation preimage r. In
case of dispute, the payer goes on-chain and releases one of the preimages for settling the contract.
The rest of the parties Ui, i ∈ [1, ñ − 1] either claim the coins or cancel the payment based on the
preimage released. If Ui+1 griefs and refuses to release preimage to Ui, the former has to pay the
cumulative griefing-penalty cgpi for affecting the nodes Uk, 0 ≤ k ≤ i, so that all the nodes obtain
their due compensation.

The pseudocode of the Release Phase for Uñ and any intermediate party Ui, i ∈ [1, ñ − 1] is
stated in Procedure 22 and Procedure 23 respectively.

Modifying HTLC-GP to HTLC-GPζ 161

7.7.2 Effectiveness of HTLC-GPζ

A corrupt node can still mount the attack by canceling the payment just before the off-chain con-
tract’s lock time elapses. However, we intend to study the impact of the reduced maximum allowed
path length on the effective capacity locked by the attacker in the network. We assume that for any
node U ∈ V , EU(F) > EU(NF) and thus each self-payment gets routed and reaches the payee.

Claim 7.2.1. Given the total budget of the attack is BEX , incentive per attack being L, transaction
value per payment being α, HTLC timeout period is D, time taken to settle a transaction on-chain
being ∆, n is the maximum allowed path length for HTLC, ñ is the maximum allowed path length
for HTLC-GPζ and a corrupt recipient rejects the payment at time t′ = D − µ, where µ → 0,
the capacity locked in HTLC-GPζ is less than the capacity locked in HTLC, the loss percent being

n−ñ

(n−1)

(
1+γζ,knD+γζ,kn∆n−1

2

) +
γζ,kñ((n−1)(D+

(ñ−1)∆
2

)− ñ−1
2

(D+
(2ñ)∆

3
))

(n−1)

(
1+γζ,knD+γζ,kn∆n−1

2

)

Proof: In HTLC-GPζ , the capacity locked is ((ñ − 1)v +
ñ−1∑
i=1

Zv,i)
BEX
L

. In both the cases, we

exclude the coins locked by the corrupt node while computing the capacity locked. We measure
the difference in capacity locked in HTLC and HTLC-GPζ .

BEX
L

(n− 1)α− BEX
L

((ñ− 1)v +
ñ−1∑
i=1

Zv,i)

= BEX
L

(
(n− 1)α− ((ñ− 1)v +

ñ−1∑
i=1

Zv,i)
)

= BEX
L

(
(n− 1)v(1 + γζ,k

ñ∑
j=1

tj)− ((ñ− 1)v +
ñ−1∑
i=1

Zv,i)
)

= vBEX
L

(
(n− ñ) + γζ,kñ((n− 1)(D + (ñ−1)∆

2
)− ñ−1

2
(D + (2ñ−1)∆

3
))
)

(7.15)

The loss percent is ratio of difference of capacity locked in HTLC and HTLC-GPζ and capacity
locked in HTLC.

v
BEX
L

(
(n−ñ)+γζ,kñ((n−1)(D+

(ñ−1)∆
2

)− ñ−1
2

(D+
(2ñ−1)∆

3
))

)
BEX
L

(n−1)α

(7.16)

Considering tn−1 = D and ti = D+(n− i−1)∆, i ∈ [0, n−1], where
n−1∑
j=0

tj = nD+ n(n−1)
2

∆

162 Strategic Analysis of Griefing Attack in Lightning Network

and substituting α = v(1 + γζ,k
n−1∑
j=0

tj), the loss percent is

v
BEX
L

(
(n−ñ)+γζ,kñ((n−1)(D+

(ñ−1)∆
2

)− ñ−1
2

(D+
(2ñ−1)∆

3
))

)
BEX
L

(n−1)v(1+γζ,k
n−1∑
j=0

tj)

= n−ñ

(n−1)

(
1+γζ,knD+γζ,kn∆n−1

2

) +
γζ,kñ((n−1)(D+

(ñ−1)∆
2

)− ñ−1
2

(D+
(2ñ)∆

3
))

(n−1)

(
1+γζ,knD+γζ,kn∆n−1

2

) (7.17)

�

Inference The loss percent is dominated by the factor n−ñ
n−1

. For a given k, the higher the factor
ζ , lower is the maximum path length ñ, greater is the loss incurred.

7.8 Experimental Analysis

7.8.1 Setup

For our experiments, we use Python 3.8.2 and NetworkX, version 2.4 [69]. It is a Python package
for analyzing complex networks. System configuration used is Intel Core i5-8250U CPU, Oper-
ating System: Kubuntu 20.04, Memory: 7.7 GiB of RAM. The code for our implementation is
available on GitHub7. From the dataset mentioned in [100], twelve snapshots of Bitcoin Lightning
Network taken over a year, starting from September 2019, have been used. Each snapshot provides
information regarding the public key of the nodes and the aliases used. The network is represented
in the form of channels, as a pair of public keys along with the channel capacity and the channel
identifier. Since our proposed strategy for countering griefing attacks requires both the parties to
fund the channel, we divide the capacity of the channel into equal halves, allocating each half as
the balance of a counterparty.

7.8.2 Evaluation Methodology

Attacking Strategy: The attacker corrupts the nodes that are either pendant vertices or have just one
channel in the network. It is easier and cost-effective to target such peripheral nodes rather than
nodes with high centrality. A highly central node tends to earn a higher profit as transactions tend

7https://github.com/subhramazumdar/Strategic Analysis Griefing

https://github.com/subhramazumdar/Strategic_Analysis_Griefing

Experimental Analysis 163

Procedure 22: Release Phase for Uñ
Input: Message M , time bound µ
if M ?

= Payment Contract(H, Y, α′, t′) and current clock time− tformñ ≤ µ then
Parse M and retrieve (H,Y, α′, t′)
if t′ ≥ tnow + ∆ and α′ = α then

z = x
end
else

z = r
end

end
else

z = r
end
Release z to Uñ−1

if current time < tñ−1 then
if Uñ and Uñ−1 mutually agree to terminate Payment Contract and Cancellation Contract
then

if z=x then
remain(Uñ, Uñ−1) = remain(Uñ, Uñ−1) + α + cgpñ−1

end
else

remain(Uñ, Uñ−1) = remain(Uñ, Uñ−1) + cgpñ−1

remain(Uñ−1, Uñ) = remain(Uñ−1, Uñ) + α
end

end
else

Uñ goes on-chain for settlement by releasing preimage z.
end

end
else

Uñ−1 goes on-chain for settlement, claims (α + cgpñ−1).
z = null

end
Call Release Phase(Uñ−1, z)

164 Strategic Analysis of Griefing Attack in Lightning Network

Procedure 23:
]Release Phase for Ui, i ∈ [1,ñ-1]
Input: z
Release z to Ui−1

if z 6= null and current time < ti−1 then
if Ui and Ui−1 mutually agree to terminate Payment Contract and Cancellation Contract
then

if z=x then
remain(Ui, Ui−1) = remain(Ui, Ui−1) + αi−1 + cgpi−1

end
else

remain(Ui, Ui−1) = remain(Ui, Ui−1) + cgpi−1

remain(Ui−1, Ui) = remain(Ui−1, Ui) + αi−1

end
end
else

Ui goes on-chain for settlement by releasing preimage z.
end

end
else

Ui−1 goes on-chain for settlement after elapse of locktime ti−1, claims (αi−1 + cgpi−1).
end
Call Release Phase(Ui−1, z)

Experimental Analysis 165

(a) Payoff of Ui−1, varying transaction value (b) Payoff of Ui, varying transaction value

(c) Payoff of Ui−1, varying rate of arrival of trans-
action

(d) Payoff of Ui, varying rate of arrival of transac-
tion

Figure 7-4: Simulation of ΓHTLC

to get routed through such nodes. Also, the attacker needs to offer a higher incentive per attack,
which may not be a good strategy. On the other hand, peripheral nodes can be easily incentivized
to deviate, as they haven’t gained much trust in the network. Such nodes do not expect to earn
much by behaving altruistically.

We divide the analysis into three parts, the first part simulating the sequential Bayesian Games,
and the next two parts deal with the evaluation of HTLC-GP and HTLC-GPζ .

7.8.2.1 Dataset and Parameters

• (i) Simulation of sequential Bayesian games: The first part analyzes the payoff of Ui−1 and
Ui involved in the games ΓHTLC and ΓHTLC−GP . We simulate the games ΓHTLC and,
ΓHTLC−GP respectively, and estimate the payoff of Un−1 and Un. We consider a Poisson
distribution for the arrival of transaction in a given channel [82]. The rate of arrival of the
transaction is varied between 1 and 4 for the next 10 blocks. The path length is set at 20

166 Strategic Analysis of Griefing Attack in Lightning Network

(a) Payoff of Ui−1, varying transaction value (b) Payoff of Ui, varying transaction value

(c) Payoff of Ui−1, varying rate of arrival of trans-
action

(d) Payoff of Ui, varying rate of arrival of transac-
tion

Figure 7-5: Simulation of ΓHTLC−GP

and D = 100. The transaction amount is varied from 15000 satoshis to 60000 satoshis. The
mining fee for closing a channel is 0.00000154 BTC8. q is set to 0.7. If the coins remain-
ing unutilized are C, the party tries to estimate the fee earned in the future had it utilized
the coins. We set per tx val to 1000 satoshis, thus a party will earn by processing C

1000

transactions.

Assumptions. Note that while analyzing the effectiveness of HTLC-GP and HTLC-GPζ , we
ignore the fact that a node may not be willing to forward the payment request based on the
belief it has regarding the neighbor. It would require rigorous statistical analysis to set a
belief for each node and we skip this analysis when the payment request is routed across the
network. Instead, we focus on the worst-case capacity locked, assuming any node receiving
a payment request forwards it to its neighbor.

8We have considered the data for mining fee observed for one particular channel closure https://blocks
tream.info/tx/c0471c9ff72a883aa45058029049ffa12b92d7379f44447bc1df5238
2c725c01, the mining fee can vary as observed for various closed channels in https://1ml.com/channe
l?order=closedchannels

https://blockstream.info/tx/c0471c9ff72a883aa45058029049ffa12b92d7379f44447bc1df52382c725c01
https://blockstream.info/tx/c0471c9ff72a883aa45058029049ffa12b92d7379f44447bc1df52382c725c01
https://blockstream.info/tx/c0471c9ff72a883aa45058029049ffa12b92d7379f44447bc1df52382c725c01
https://1ml.com/channel?order=closedchannels
https://1ml.com/channel?order=closedchannels

Experimental Analysis 167

• (ii) Capacity locked by the attacker in HTLC-GP: The second part analyses the decrease in
capacity locked compared to HTLC when a penalty is introduced. We also analyze the rate
of the successful transaction when γ is varied. The transaction value is varied between 10000

satoshis to 100000 satoshis. γ is varied between 10−3 to 10−7.

– (a) The budget of the attacker is varied between 0.05 BTC − 6.25 BTC. The path
length is set to 20 and D is set to 100.

– (b) This set of experiments analyzes the rate of the successful transaction when there
is no griefing attack. We vary the number of transactions between 3000-9000 and path
length is varied between 5 and 20.

• (iii) Capacity locked by the attacker in HTLC-GPζ : The third part analyses the further de-
crease in capacity locked compared to HTLC-GP when the concept of guaranteed minimum
compensation is introduced. The budget of the attacker is varied between 0.05 BTC −
6.25 BTC. The transaction value is varied between 10000 satoshis to 100000 satoshis. We
vary the parameter k between 0.005 to 2. For a fixed k, ζ is varied so that path length ranges
between 2 to 20. Both D and ∆ are set to 100.

7.8.3 Observations

We discuss our observation in this section:

• Simulation Result of the Games:

– ΓHTLC : For transaction value ranging 15000 − 60000 (in satoshis) and rate of arrival of
transaction fixed to 10 within 10 blocks , the plots in Fig. 7-4(a) and 7-4(b) shows the expected
payoff of Ui−1 and expected payoff of Ui varying with the belief θi. Ui−1’s payoff decreases
with increase in θi, confirming the theoretical result provided in Comparative Static Analysis
in Section 7.3.4. Payoff of Ui remains more or less constant for a fixed transaction amount,
but increases with increase in the transaction amount. For θi ≥ 0.025, Ui−1 acts cautious and
chooses not forward, as forwarding will lead to negative payoff. Both Ui−1’s and Ui’s payoff
drops to 0 from this point onwards.

In Fig. 7-4(c) and 7-4(d), the rate of arrival of transaction is varied between 1 and 4 within a
period of 10 blocks and transaction amount is 15000 satoshi. We observe that for θi < 0.025,
payoff of Ui−1 and Ui remains positive and invariant.

168 Strategic Analysis of Griefing Attack in Lightning Network

• ΓHTLC−GP : The plots in Fig. 7-5(a) and 7-5(b) shows that for θi ≥ 0.1, Ui−1 acts cautious
and chooses not forward for transaction varying between 30000 satoshi and 60000 satoshis. For
transaction amount 15000, expected payoff of Ui−1 and Ui remains positive till θi < 0.7.

In Fig. 7-5(c) and 7-5(d), given the rate of arrival of transaction is 1, Ui−1 chooses to forward
till θi ≤ 0.2. When the rate of arrival of transaction is 2, Ui−1 chooses to forward till θi ≤ 0.7

and when rate of arrival is 4, θi ≤ 0.9.

(a) Capacity locked (in BTC) vs Adversary’s Bud-
get

(b) Ratio of successful transaction (HTLC-
GP/HTLC) upon varying γ

Figure 7-6: γ is varied between 10−3 to 10−7

• Effectiveness of HTLC-GP: We discuss our observation for HTLC-GP:

– The capacity locked drops from 90% to 20% when γ is varied between 10−7 to 10−3 as
shown in Fig.7-6(a). We see a sharp decrease in capacity locked when γ increases from
10−6 to 10−5, with the capacity, locked dropping from 82% to 50%. When γ is 10−4, the
capacity locked drops to 25%.

– In Fig.7-6(b), the ratio of successful transaction executed drops to 54% when γ is 10−3 and
it is around 99% when γ is 10−7.

• Effectiveness of HTLC-GPζ : The observation for percentage loss in capacity is tabulated in Table
7.2 and the corresponding plot is shown in Fig.7-7(a)-(i). k is varied between 0.005 and 2, and
for each k, the factor ζ is varied so that the maximum path length ranges between 2 and 20. We
observe that on varying k and ζ , γ varies between 10−7 to 10−3. The drop in capacity locked
in the network ranges between 18% to 46%. The drop in collateral locked is significant for the
lower value of γ and the difference reduces for γ > 10−5.

Experimental Analysis 169

(a) k =
0.005, ζ ∈
{0.00025,0.0005,
0.0025}

(b) k =
0.01, ζ ∈
{
0.0005,
0.001,
0.0045}

(c) k =
0.05, ζ ∈
{0.0025, 0.005, 0.025}

(d) k =
0.1, ζ ∈
{0.005, 0.001, 0.05}

(e) k =
0.25, ζ ∈
{0.0125,0.025,0.1125}

(f) k =
0.5, ζ ∈
{0.025, 0.05, 0.25}

(g) k =
0.75, ζ ∈
{0.0375, 0.075, 0.375}

(h) k = 1, ζ ∈ {0.05, 0.1, 0.5}

(i) k = 2, ζ ∈ {0.1, 0.2, 0.95}

Figure 7-7: Capacity locked vs Adversary’s Budget

7.8.4 Discussion of Results

• Expected Payoff in ΓHTLC and ΓHTLC−GP :

– Transaction amount is varied: We see that expected payoff of Ui−1 in ΓHTLC−GP remains
positive for a higher value of θi compared ΓHTLC . The reason is that in the first game, Ui can
choose not to respond, forcing Ui−1 to go on-chain and close the channel. Since the mining fee
for closing the channel is quite high, the stakes are higher. Thus Un−1 tends to stop forwarding
payment for θi as low as 0.025. In the second game, Ui will always resolve the payment just
before the lock time elapses to avoid paying penalty. This prevents abrupt closure of the
channel. It is observed that the cutoff value of θi is higher for transaction amount 150000

satoshis. This is because the capacity locked is higher when the transaction amount increases,
hence the risk is higher.

– Rate of the arrival of the transaction is varied: In ΓHTLC , varying the rate of arrival of the
transaction has no impact on the payoff of both Ui−1 and Ui because mining fee of channel
closure dominates the result. In ΓHTLC−GP , the value of θi increases with an increase in the

170 Strategic Analysis of Griefing Attack in Lightning Network

k ζ γζ,k Maximum Path Length γ Maximum Path Length Ratio of capacity locked

HTLC −GP ζ HTLC −GP ζ HTLC-GP HTLC-GP HTLC−GP ζ
HTLC

HTLC−GP
HTLC

0.005 0.00025 2.4× 10−7 20 2.4× 10−7 20 96.89% 96.89%
0.0005 9.1× 10−7 10 9.1× 10−7 20 46.3% 89.86%
0.0025 1.4× 10−5 2 1.4× 10−5 20 5.21% 50.7%

0.01 0.0005 4.7× 10−7 20 4.7× 10−7 20 94% 94%
0.001 1.8× 10−6 10 1.8× 10−6 20 44.8% 81.5%
0.005 2.8× 10−5 2 2.8× 10−5 20 5.1% 42%

0.05 0.0025 2.4× 10−6 20 2.4× 10−6 20 78% 78%
0.005 9.1× 10−6 10 9.1× 10−6 20 38.2% 54%
0.025 1.6× 10−4 2 1.6× 10−4 20 4.7%% 33%

0.1 0.005 4.8× 10−6 20 4.8× 10−6 20 67.5% 67.5%
0.01 1.8× 10−5 10 1.8× 10−5 20 33.5% 45.5%
0.05 3.3× 10−4 2 3.3× 10−4 20 4.45% 32.5%

0.25 0.0125 1.2× 10−5 20 1.2× 10−5 20 53% 53%
0.025 4.5× 10−5 10 4.5× 10−5 20 28% 40%
0.1125 6.9× 10−4 2 6.9× 10−4 20 4.2% 32%

0.5 0.025 2.4× 10−5 20 2.4× 10−5 20 44% 44%
0.05 9.1× 10−5 10 9.1× 10−5 20 22.1% 38.5%
0.2 1.1× 10−3 2 1.1× 10−3 20 3.8% 31.5%

0.75 0.0375 3.6× 10−5 20 3.6× 10−5 20 41% 41%
0.075 1.36× 10−4 10 1.36× 10−4 20 21.2% 35.6%
0.3 1.7× 10−3 2 1.7× 10−3 20 3.51% 30.04%

1 0.05 4.8× 10−5 20 4.8× 10−5 20 38% 38%
0.1 1.8× 10−4 10 1.8× 10−4 20 20% 34%
0.5 3.3× 10−3 2 3.3× 10−3 20 3.4% 29.98%

2 0.1 10−4 20 10−4 20 35% 35%
0.2 3.6× 10−4 10 3.6× 10−4 20 18% 32%

0.95 6.1× 10−3 2 6.1× 10−3 20 3.34% 29.01%

Table 7.2: Capacity Locked when k and ζ is varied

rate of arrival of the transaction. The reason is that the distribution is positively skewed for a
lower arrival rate. The Poisson distribution becomes more symmetric and less peaked as the
rate increases.

• HTLC-GP: If γ increases, the net capacity locked by the attacker decreases. However, with
increasing γ, honest participants have to lock extra collateral for a given transaction. They
might have to forgo other transaction requests due to a lack of liquidity in channels. Thus the
success rate of transactions drops sharply with an increase in γ.

• HTLC-GPζ : When γ increases, percentage loss in capacity locked for HTLC-GP increases as
well. But this is at the cost of a high failure rate of transactions. In this protocol, we observe
that the capacity locked drops substantially even for lower values of γ when k and ζ are ad-
justed to reduce the maximum path length. So one need not compromise on the success rate of
transactions.

(i) D is varied: The limit on the maximum timeout period is 2016 blocks, i.e., the maximum
timeout period cannot exceed this value in a given path [100]. So a corrupt node will divide 2016
blocks by ñ to get the value D. γζ,k will decrease if D increases. The penalty locked doesn’t
change much, hence the capacity locked will not differ.

Experimental Analysis 171

(ii) ζ is varied: For a fixed value of k, ζ can be increased, reducing the maximum path length
available for routing. This will increase the cost of the attack. When the majority of participants
in the network adhere to non-attacking behavior, then the compensation offered can be reduced,
readjusting the path length. Hence, the parameters must be chosen accordingly.

172 Strategic Analysis of Griefing Attack in Lightning Network

Chapter 8

Conclusion and Future Work

In this thesis, we have defined the problems faced while scaling transactions in the blockchain.
Our thesis specifically deals with payment channel networks. We have done an extensive litera-
ture review, categorizing the literature into routing, payment, and griefing attacks mounted on the
payment channel network. Apart from that, we have also mentioned about strategic analysis of
payment in the network.

We have proposed a novel privacy-preserving routing algorithm for the payment channel net-
work, HushRelay suitable for simultaneous payment across multiple paths. From the results, we
inferred that our proposed routing algorithm outperforms landmark-based routing algorithms in
terms of success ratio and the time taken to the route. Currently, all our implementations assume
that the network is static. In the future, we would like to extend our work for handling dynamic
networks as well. Our algorithms were defined for a transaction between a single-payer and payee
but they can be extended to handle multiple transactions by enforcing blocking protocol or non-
blocking protocol to resolve deadlocks in concurrent payments. [93].

We have proposed a novel privacy-preserving, atomic multi-path payment protocol CryptoMaze.
Multiple paths routing partial payments are mapped into a set of edges. Off-chain contracts are
instantiated on these edges in a breadth-first fashion, starting from the sender. The use of this
technique avoids the formation of multiple off-chain contracts on channels shared across multi-
ple paths, routing partial payments. Partial payments remain unlinkable which prevents colluding
parties from censoring split payments. We execute the protocol on some instances of Lightning
Network and simulated networks. We infer that our protocol has less execution time and feasible
communication overhead compared to existing payment protocols from the results. As part of our
future work, we intend to improve the protocol by incorporating a dynamic split of payments, sim-
ilar to the work in [53]. This will reduce the computation overhead of the sender by eliminating
the preprocessing step of constructing conditions for each off-chain contract. However, the main
challenge is to realize such a protocol without violating unlinkability.

We have proposed a strategy for mitigating griefing attacks in Lightning Network by impos-
ing a penalty on the adversary. This increases the total cost for launching such an attack as well
as compensates for other nodes in the network affected by griefing. We have shown how our
proposed strategy works in time-locked payments by proposing a new protocol HTLC-GP. The

173

174 Conclusion and Future Work

proposed construction not only preserves privacy but also ensures that none of the honest interme-
diary presents in the path gets affected due to the imposition of a penalty. As part of our future
work, we would like to extend the concept of griefing-penalty to Atomic Cross-Chain Swap. A
game-theoretic analysis for cross-chain swaps using HTLC in [141] states the locking collateral
by both the parties results in a higher success rate of transaction. However, this protocol assumes
both parties lock the same amount of collateral in a single smart contract belonging to either of
the blockchains. We would like to study the impact of exchange rate volatility, and lock time of
contract on the cumulative griefing penalty, with each party locking collateral in different contracts
belonging to different blockchains.

Lastly, we perform a strategic analysis of griefing attacks in Lightning Network. A two-player
game model has been proposed where one party chooses its strategy based on its’ belief of the
other player’s type. We have analyzed the effectiveness of payment protocol HTLC-GP in the
same model. It is observed that the cost of attack increases with the introduction of the penalty.
However, HTLC-GP is found to be weakly effective in countering the attack as it is dependent on
the rate of griefing penalty. To further increase the cost of the attack, we introduce the concept
of guaranteed minimum compensation for the affected parties, which allows us to control the
maximum path length used for routing. We discuss a modified payment protocol HTLC − GP ζ

and our experimental results show that the former is more effective than HTLC-GP in countering
the griefing attack. As a part of our future work, we want to propose a fair compensation protocol
considering different routing nodes have different estimates of loss suffered upon being subjected
to a griefing attack. We would like to study the attack when the network has Byzantine, altruistic
and rational participants [21], and analyze the effectiveness of the countermeasure in the new
model.

Bibliography

[1] Bolt 3: Bitcoin transaction and script formats. https://github.com/lightningnetw
ork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outp

uts.

[2] Bolt 4: Onion routing protocol. https://github.com/lightningnetwork/lightn
ing-rfc/blob/master/04-onion-routing.md#returning-errors.

[3] Proof of burn. https://en.bitcoin.it/wiki/Proof of burn.

[4] Lightning 101: Lightning network fees. https://blog.bitmex.com/the-lightnin
g-network-part-2-routing-fee-economics/, 2019. Accessed: 2019-01-22.

[5] The lightning network (part 2) - routing fee economics. https://blog.bitmex.com/

the-lightning-network-part-2-routing-fee-economics/, 2019. Accessed:
2019-03-27.

[6] Cryptomaze. https://www.dropbox.com/sh/x9pngj005dxh87b/AAAJNt-WquV0J
ZTspnijEXNVa?dl=0, 2020.

[7] Libgcrypt, version 1.8.4. gnupg.org/software/libgcrypt/, 26 October, 2018.

[8] Proof-of-closure as griefing attack mitigation. https://lists.linuxfoundation.or
g/pipermail/lightning-dev/2020-April/002608.html, April 2020.

[9] Block size limit controversy. https://en.bitcoin.it/wiki/Block size limit c

ontroversy, August, 2015.

[10] Amp: Atomic multi-path payments over lightning. https://lists.linuxfoundat

ion.org/pipermail/lightning-dev/2018-February/000993.html, February
2018.

[11] A proposal for up-front payments: Reverse bond payment. https://lists.linuxf

oundation.org/pipermail/lightning-dev/2020-February/002547.html,
February 2020.

[12] Libhcs : A partially homomorphic c library. https://github.com/tiehuis/libhcs,
January, 2018.

[13] Raiden network. http://raiden.network/, July 2017.

175

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#returning-errors
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#returning-errors
https://en.bitcoin.it/wiki/Proof_of_burn
https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/
https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/
https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/
https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/
https://www.dropbox.com/sh/x9pngj005dxh87b/AAAJNt-WquV0JZTspnijEXNVa?dl=0
https://www.dropbox.com/sh/x9pngj005dxh87b/AAAJNt-WquV0JZTspnijEXNVa?dl=0
gnupg.org/software/libgcrypt/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-April/002608.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-April/002608.html
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-February/002547.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-February/002547.html
https://github.com/tiehuis/libhcs
http://raiden.network/

176 BIBLIOGRAPHY

[14] Snapshots : Lightning network. https://github.com/ayeletmz/Lightning-Netw
ork-Congestion-Attacks/blob/master/Attack-Simulation/lightning con

gestion/snapshots/LN 2020.03.17-08.00.01.json.zip, May, 2020.

[15] Source code : Speedymurmurs: Fast and private path-based transactions. https://crys
p.uwaterloo.ca/software/speedymurmurs/, Nov 25, 2017.

[16] A proposal for up-front payments. https://lists.linuxfoundation.org/piperm
ail/lightning-dev/2019-November/002282.html, November 2019.

[17] Source code : C based implementation of zkboo. https://github.com/Sobuno/ZKBo
o/, October, 2016.

[18] The scalability trilemma in blockchain. https://medium.com/@aakash 13214/the

-scalability-trilemma-in-blockchain-75fb57f646df, October 2018.

[19] Proof of elapsed time (poet) (cryptocurrency). https://www.investopedia.com/ter
ms/p/proof-elapsed-time-cryptocurrency.asp, October, 2020.

[20] Proof of capacity (cryptocurrency). https://www.investopedia.com/terms/p/pro
of-capacity-cryptocurrency.asp, September, 2020.

[21] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin,
and Carl Porth. Bar fault tolerance for cooperative services. In Proceedings of the twentieth
ACM symposium on Operating systems principles, pages 45–58, 2005.

[22] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Re-
views of modern physics, 74(1):47, 2002.

[23] Andreas M Antonopoulos. Mastering bitcoin. 2019.

[24] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

[25] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. Thora: Atomic and privacy-
preserving multi-channel updates. Cryptology ePrint Archive, 2022.

[26] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Siavash
Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez. Bitcoin-compatible virtual chan-
nels. In 2021 IEEE Symposium on Security and Privacy (SP), pages 901–918. IEEE, 2021.

https://github.com/ayeletmz/Lightning-Network-Congestion-Attacks/blob/master/Attack-Simulation/lightning_congestion/snapshots/LN_2020.03.17-08.00.01.json.zip
https://github.com/ayeletmz/Lightning-Network-Congestion-Attacks/blob/master/Attack-Simulation/lightning_congestion/snapshots/LN_2020.03.17-08.00.01.json.zip
https://github.com/ayeletmz/Lightning-Network-Congestion-Attacks/blob/master/Attack-Simulation/lightning_congestion/snapshots/LN_2020.03.17-08.00.01.json.zip
https://crysp.uwaterloo.ca/software/speedymurmurs/
https://crysp.uwaterloo.ca/software/speedymurmurs/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-November/002282.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-November/002282.html
https://github.com/Sobuno/ZKBoo/
https://github.com/Sobuno/ZKBoo/
https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df
https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df
https://www.investopedia.com/terms/p/proof-elapsed-time-cryptocurrency.asp
https://www.investopedia.com/terms/p/proof-elapsed-time-cryptocurrency.asp
https://www.investopedia.com/terms/p/proof-capacity-cryptocurrency.asp
https://www.investopedia.com/terms/p/proof-capacity-cryptocurrency.asp

BIBLIOGRAPHY 177

[27] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Secure
multi-hop payments without two-phase commits. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

[28] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Donner: Utxo-
based virtual channels across multiple hops. Cryptology ePrint Archive, 2021.

[29] Zeta Avarikioti, Mahsa Bastankhah, Mohammad Ali Maddah-Ali, Krzysztof Pietrzak, Jakub
Svoboda, and Michelle Yeo. Route discovery in private payment channel networks. Cryp-
tology ePrint Archive, 2021.

[30] Sarah Azouvi and Alexander Hicks. Sok: Tools for game theoretic models of security for
cryptocurrencies. arXiv preprint arXiv:1905.08595, 2019.

[31] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019.

[32] Vivek Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy improves latency
and throughput in payment networks. arXiv preprint arXiv:1910.01834, 2019.

[33] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah
Meiklejohn, and George Danezis. Consensus in the age of blockchains. arXiv preprint
arXiv:1711.03936, 2017.

[34] Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific american,
288(5):60–69, 2003.

[35] Mihir Bellare. A note on negligible functions. Journal of Cryptology, 15(4), 2002.

[36] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, pages 421–
439, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[37] Ferenc Béres, István András Seres, András Benczúr, et al. A cryptoeconomic traffic analysis
of bitcoin’s lightning network. CRYPTOECONOMIC SYSTEMS, 2020:1–24, 2020.

[38] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Recuperado de
https://crypto. stanford. edu/˜ dabo/cryptobook/BonehShoup 0 4. pdf, 2017.

178 BIBLIOGRAPHY

[39] BtcDrak, Mark Friedenbach, and Eric Lombrozo. Bip 112, checksequenceverify. https:
//github.com/bitcoin/bips/blob/master/bip-0112.mediawiki, 2015-08-10.

[40] James M Buchanan. Opportunity cost. In The world of economics, pages 520–525. Springer,
1991.

[41] Vitalik Buterin. Toward a 12-second block time. https://blog.ethereum.org/2014
/07/11/toward-a-12-second-block-time/, July, 2014.

[42] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
CRYPTOLOGY, 13(1):143–202, 2000.

[43] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
136–145. IEEE, 2001.

[44] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM (JACM), 51(4):557–594, 2004.

[45] Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. Mpcn-rp: A
routing protocol for blockchain-based multi-charge payment channel networks. IEEE Trans-
actions on Network and Service Management, 2021.

[46] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling decentralized
blockchains. In International Conference on Financial Cryptography and Data Security,
pages 106–125. Springer, 2016.

[47] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of paillier’s public-
key system with applications to electronic voting. International Journal of Information
Security, 9(6):371–385, 2010.

[48] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages 3–18.
Springer, 2015.

[49] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly exchange
digital goods. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 967–984. ACM, 2018.

https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

BIBLIOGRAPHY 179

[50] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptographic currencies. Technical report, IACR Cryptology ePrint
Archive 2017, 2017.

[51] Stefan Dziembowski et al. Non-atomic payment splitting in channel networks. Cryptology
ePrint Archive, 2020.

[52] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel net-
works. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 949–966, 2018.

[53] Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. Splitting payments
locally while routing interdimensionally. IACR Cryptol. ePrint Arch., 2020:555, 2020.

[54] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[55] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic multi-channel up-
dates with constant collateral in bitcoin-compatible payment-channel networks. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 801–815, 2019.

[56] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. In Classic
papers in combinatorics, pages 243–248. Springer, 2009.

[57] Ryan Fugger. Money as ious in social trust networks & a proposal for a decentralized
currency network protocol. Hypertext document. Available electronically at http://ripple.
sourceforge. net, 106, 2004.

[58] Steven D Galbraith and Pierrick Gaudry. Recent progress on the elliptic curve discrete
logarithm problem. Designs, Codes and Cryptography, 78(1):51–72, 2016.

[59] Juan Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Rational
protocol design: Cryptography against incentive-driven adversaries. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 648–657. IEEE, 2013.

[60] Befekadu G Gebraselase, Bjarne E Helvik, and Yuming Jiang. An analysis of transac-
tion handling in bitcoin. In 2021 IEEE International Conference on Smart Data Services
(SMDS), pages 162–172. IEEE, 2021.

180 BIBLIOGRAPHY

[61] Befekadu G Gebraselase, Bjarne E Helvik, and Yuming Jiang. Transaction characteristics of
bitcoin. In 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 544–550. IEEE, 2021.

[62] Robert S Gibbons. Dynamic games of complete information. In Game Theory for Applied
Economists, pages 55–142. Princeton University Press, 1992.

[63] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[64] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications of
the ACM, 42(2):39–41, 1999.

[65] Shafi Goldwasser. Mathematical foundations of modern cryptography: computational com-
plexity perspective. arXiv preprint cs/0212055, 2002.

[66] Grayblock. Blockchain scaling: Why pow networks can’t scale. https://medium.com
/coinmonks/blockchain-scaling-30c9e1b7db1b, September, 2018.

[67] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized cur-
rencies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 473–489. ACM, 2017.

[68] Paolo Guasoni, Gur Huberman, and Clara Shikhelman. Lightning network economics:
Channels. Available at SSRN 3840374, 2021.

[69] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

[70] Runchao Han, Haoyu Lin, and Jiangshan Yu. On the optionality and fairness of atomic
swaps. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
pages 62–75, 2019.

[71] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Gold-
berg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. In Network
and Distributed System Security Symposium, 2017.

[72] Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. The arwen trading protocols.
In International Conference on Financial Cryptography and Data Security, pages 156–173.
Springer, 2020.

https://medium.com/coinmonks/blockchain-scaling-30c9e1b7db1b
https://medium.com/coinmonks/blockchain-scaling-30c9e1b7db1b

BIBLIOGRAPHY 181

[73] Philipp Hoenisch and Ingo Weber. Aodv–based routing for payment channel networks. In
International Conference on Blockchain, pages 107–124. Springer, 2018.

[74] iryna pavlenko. Block size limit controversy. https://applicature.com/blog/blo
ckchain-technology/blockchain-scalability, November, 2018.

[75] Marco Alberto Javarone and Craig Steven Wright. From bitcoin to bitcoin cash: a network
analysis. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for
Distributed Systems, pages 77–81. ACM, 2018.

[76] Jestopher. Good griefing: A lingering vulnerability on lightning network that still needs
fixing. https://bitcoinmagazine.com/technical/good-griefing-a-ling

ering-vulnerability-on-lightning-network-that-still-needs-fixing,
2021.

[77] JA John and Norman R Draper. An alternative family of transformations. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 29(2):190–197, 1980.

[78] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature
algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[79] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. Lightweight virtual payment
channels. In International Conference on Cryptology and Network Security, pages 365–
384. Springer, 2020.

[80] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. Payment trees: Low collateral
payments for payment channel networks. In International Conference on Financial Cryp-
tography and Data Security, pages 189–208. Springer, 2021.

[81] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.

[82] Yoshiaki Kawase and Shoji Kasahara. Transaction-confirmation time for bitcoin: A queue-
ing analytical approach to blockchain mechanism. In International Conference on Queueing
Theory and Network Applications, pages 75–88. Springer, 2017.

[83] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. Elmo: Recursive virtual payment
channels for bitcoin. Cryptology ePrint Archive, 2021.

[84] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19, 2012.

https://applicature.com/blog/blockchain-technology/blockchain-scalability
https://applicature.com/blog/blockchain-technology/blockchain-scalability
https://bitcoinmagazine.com/technical/good-griefing-a-lingering-vulnerability-on-lightning-network-that-still-needs-fixing
https://bitcoinmagazine.com/technical/good-griefing-a-lingering-vulnerability-on-lightning-network-that-still-needs-fixing

182 BIBLIOGRAPHY

[85] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. Securing
proof-of-stake blockchain protocols. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 297–315. Springer, 2017.

[86] Changting Lin, Ning Ma, Xun Wang, and Jianhai Chen. Rapido: Scaling blockchain with
multi-path payment channels. Neurocomputing, 406:322–332, 2020.

[87] Zilin Liu, Anjia Yang, Jian Weng, Tao Li, Huang Zeng, and Xiaojian Liang. Gmhl: Gener-
alized multi-hop locks for privacy-preserving payment channel networks. Cryptology ePrint
Archive, 2022.

[88] Ayelet Lotem, Sarah Azouvi, Patrick McCorry, and Aviv Zohar. Sliding window challenge
process for congestion detection. arXiv preprint arXiv:2201.09009, 2022.

[89] Zhichun Lu, Runchao Han, and Jiangshan Yu. Bank run payment channel networks. Cryp-
tology ePrint Archive: Report 2020/456, 2020.

[90] Zhichun Lu, Runchao Han, and Jiangshan Yu. General congestion attack on htlc-based
payment channel networks. In 3rd International Conference on Blockchain Economics,
Security and Protocols (Tokenomics 2021), 2021.

[91] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 17–30. ACM, 2016.

[92] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers:
Enforcing security and privacy in decentralized credit networks. In Network and Distributed
System Security Symposium, 2017.

[93] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi.
Concurrency and privacy with payment-channel networks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 455–471. ACM,
2017.

[94] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Matteo
Maffei. Anonymous multi-hop locks for blockchain scalability and interoperability. In
NDSS, 2019.

BIBLIOGRAPHY 183

[95] Michael Maschler, Eilon Solan, and Shmuel Zamir. Game theory (translated from the he-
brew by ziv hellman and edited by mike borns). Cambridge University Press, Cambridge,
pp. xxvi, 979:4, 2013.

[96] S. Mazumdar, P. Banerjee, and S. Ruj. Time is money: Countering griefing attack in light-
ning network. In 2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pages 1036–1043, 2020.

[97] Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. Griefing-penalty: Countermeasure
for griefing attack in lightning network, 2020.

[98] Subhra Mazumdar, Sushmita Ruj, Ram Govind Singh, and Arindam Pal. Hushrelay: A
privacy-preserving, efficient, and scalable routing algorithm for off-chain payments. arXiv
preprint arXiv:2002.05071, 2020.

[99] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Payment
channels that go faster than lightning. In Twenty-Third International Conference on Finan-
cial Cryptography and Data Security 2019, 2019.

[100] Ayelet Mizrahi and Aviv Zohar. Congestion attacks in payment channel networks. In Finan-
cial Cryptography and Data Security, pages 170–188. Springer Berlin Heidelberg, 2021.

[101] Susil Kumar Mohanty and Somanath Tripathy. n-htlc: Neo hashed time-lock commitment
to defend against wormhole attack in payment channel networks. Computers & Security,
106:102291, 2021.

[102] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy preserving
payments in credit networks. In Network and Distributed Security Symposium, 2015.

[103] Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(17.07. 2019),
2008.

[104] Yadati Narahari. Game theory and mechanism design, volume 4. World Scientific, 2014.

[105] Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker. Toward ac-
tive and passive confidentiality attacks on cryptocurrency off-chain networks. arXiv preprint
arXiv:2003.00003, 2020.

[106] Karl J O’Dwyer and David Malone. Bitcoin mining and its energy footprint. 2014.

184 BIBLIOGRAPHY

[107] Toju Ometoruwa. An introductory guide to hashed timelock contracts. https://btcman
ager.com/an-introductory-guide-to-hashed-timelock-contracts/, April,
2019.

[108] Olaoluwa Osuntokun, Conner Fromknecht, Wilmer Paulino, Oliver Gugger, and Johan
Halseth. Lightning pool: A non-custodial channel lease marketplace. 2020.

[109] Cristina Pérez-Sola, Alejandro Ranchal-Pedrosa, Jordi Herrera-Joancomartı́, Guillermo
Navarro-Arribas, and Joaquin Garcia-Alfaro. Lockdown: Balance availability attack against
lightning network channels. In International Conference on Financial Cryptography and
Data Security, pages 245–263. Springer, 2020.

[110] Thuy Lien Pham, Ivan Lavallee, Marc Bui, and Si Hoang Do. A distributed algorithm for the
maximum flow problem. In The 4th International Symposium on Parallel and Distributed
Computing (ISPDC’05), pages 131–138. IEEE, 2005.

[111] Dmytro Piatkivskyi and Mariusz Nowostawski. Split payments in payment networks. In
Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 67–75.
Springer, 2018.

[112] Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, and Michelle Yeo. Lightpir: Privacy-
preserving route discovery for payment channel networks. In 2021 IFIP Networking Con-
ference (IFIP Networking), pages 1–9. IEEE, 2021.

[113] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

[114] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa
Osuntokun. Flare: An approach to routing in lightning network. White Paper
(bitfury.com/content/5-white-papers-research/whitepaper
flare an approach to routing in lightning n etwork 7 7 2016. pdf), 2016.

[115] Kaihua Qin and Arthur Gervais. An overview of blockchain scalability, interoperability and
sustainability. Hochschule Luzern Imperial College London Liquidity Network, 2018.

[116] Sonbol Rahimpour and Majid Khabbazian. Spear: fast multi-path payment with redundancy.
In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, pages
183–191, 2021.

https://btcmanager.com/an-introductory-guide-to-hashed-timelock-contracts/
https://btcmanager.com/an-introductory-guide-to-hashed-timelock-contracts/

BIBLIOGRAPHY 185

[117] Sophie Rain, Zeta Avarikioti, Laura Kovács, and Matteo Maffei. Towards a game-theoretic
security analysis of off-chain protocols. arXiv preprint arXiv:2109.07429, 2021.

[118] Antoine Riard and Gleb Naumenko. Time-dilation attacks on the lightning network. arXiv
preprint arXiv:2006.01418, 2020.

[119] Daniel Robinson. Htlcs considered harmful. In Stanford Blockchain Conference, 2019.

[120] Elias Rohrer, Jann-Frederik Laß, and Florian Tschorsch. Towards a concurrent and dis-
tributed route selection for payment channel networks. In Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, pages 411–419. Springer, 2017.

[121] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged payment channels: Quan-
tifying the lightning network’s resilience to topology-based attacks. In 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages 347–356. IEEE, 2019.

[122] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. In Network and
Distributed System Security Symposium, 2018.

[123] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. Topological analysis
of bitcoin’s lightning network. arXiv preprint arXiv:1901.04972, 2019.

[124] Amritraj Singh, Reza M Parizi, Meng Han, Ali Dehghantanha, Hadis Karimipour, and
Kim-Kwang Raymond Choo. Public blockchains scalability: An examination of sharding
and segregated witness. In Blockchain Cybersecurity, Trust and Privacy, pages 203–232.
Springer, 2020.

[125] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan
Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput
cryptocurrency routing in payment channel networks. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), pages 777–796, 2020.

[126] CryptoRekt Sunerok and Buk-Lee. Verge: An anonymity-centric crypto-currency. https:
//cryptoactu.com/wp-content/uploads/2017/08/Verge-Anonymity-Centri

c-CryptoCurrency.pdf, 2017.

[127] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.openssl.
org, 10 September, 2019.

https://cryptoactu.com/wp-content/uploads/2017/08/Verge-Anonymity-Centric-CryptoCurrency.pdf
https://cryptoactu.com/wp-content/uploads/2017/08/Verge-Anonymity-Centric-CryptoCurrency.pdf
https://cryptoactu.com/wp-content/uploads/2017/08/Verge-Anonymity-Centric-CryptoCurrency.pdf
www.openssl.org
www.openssl.org

186 BIBLIOGRAPHY

[128] Saar Tochner and Stefan Schmid. On search friction of route discovery in offchain networks.
In 2020 IEEE International Conference on Blockchain (Blockchain), pages 257–264. IEEE,
2020.

[129] Saar Tochner, Stefan Schmid, and Aviv Zohar. Hijacking routes in payment channel net-
works: A predictability tradeoff. arXiv preprint arXiv:1909.06890, 2019.

[130] Saar Tochner, Aviv Zohar, and Stefan Schmid. Route hijacking and dos in off-chain net-
works. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 228–240, 2020.

[131] Somanath Tripathy and Susil Kumar Mohanty. Mappcn: Multi-hop anonymous and privacy-
preserving payment channel network. In International Conference on Financial Cryptogra-
phy and Data Security, pages 481–495. Springer, 2020.

[132] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. Mad-htlc: because htlc is
crazy-cheap to attack. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1230–
1248. IEEE, 2021.

[133] Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.

[134] Aaron van Wirdum. Understanding the lightning network, part 2: Creating the network.
https://bitcoinmagazine.com/articles/understanding-the-lightning-n

etwork-part-creating-the-network-1465326903, June, 2016.

[135] Aaron van Wirdum. Understanding the lightning network, part 1: Building a bidirectional
bitcoin payment channel. https://bitcoinmagazine.com/articles/understan
ding-the-lightning-network-part-building-a-bidirectional-payment

-channel-1464710791, May, 2016.

[136] Bimal Viswanath, Mainack Mondal, Krishna P Gummadi, Alan Mislove, and Ansley Post.
Canal: Scaling social network-based sybil tolerance schemes. In Proceedings of the 7th
ACM european conference on Computer Systems, pages 309–322. ACM, 2012.

[137] Ryan Vlastelica. Why bitcoin wont́ displace visa or mastercard soon. https://www.ma
rketwatch.com/story/why-bitcoin-wont-displace-visa-or-mastercard-s

oon-2017-12-15, December 2017.

https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-creating-the-network-1465326903
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-creating-the-network-1465326903
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791
https://www.marketwatch.com/story/why-bitcoin-wont-displace-visa-or-mastercard-soon-2017-12-15
https://www.marketwatch.com/story/why-bitcoin-wont-displace-visa-or-mastercard-soon-2017-12-15
https://www.marketwatch.com/story/why-bitcoin-wont-displace-visa-or-mastercard-soon-2017-12-15

BIBLIOGRAPHY 187

[138] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: efficient dynamic routing for offchain
networks. In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, pages 370–381, 2019.

[139] Ben Weintraub, Cristina Nita-Rotaru, and Stefanie Roos. Structural attacks on local routing
in payment channel networks. In 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 367–379. IEEE, 2021.

[140] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

[141] Jiahua Xu, Damien Ackerer, and Alevtina Dubovitskaya. A game-theoretic analysis of
cross-chain atomic swaps with htlcs. In 2021 IEEE 41st International Conference on Dis-
tributed Computing Systems (ICDCS), pages 584–594. IEEE, 2021.

[142] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse, Giulia Fanti, and
Pramod Viswanath. Prism: Scaling bitcoin by 10,000 x. arXiv preprint arXiv:1909.11261,
2019.

[143] Ningchen Ying and Tsz Wai Wu. xlumi: Payment channel protocol and off-chain payment
in blockchain contract systems. arXiv preprint arXiv:2101.10621, 2021.

[144] Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Dejun Yang, and Jian Tang. Coinexpress:
A fast payment routing mechanism in blockchain-based payment channel networks. In 2018
27th International Conference on Computer Communication and Networks (ICCCN), pages
1–9. IEEE, 2018.

[145] Paolo Zappalà, Marianna Belotti, Maria Potop-Butucaru, and Stefano Secci. Game theoreti-
cal framework for analyzing blockchains robustness. In Proceedings of the 4th International
Symposium on Distributed Computing, Leibniz International Proceedings in Informatics
(LIPIcs), Freiburg (virtual conference), Germany, pages 49:1–49:3, 2020.

[146] Yuhui Zhang and Dejun Yang. Robustpay+: Robust payment routing with approximation
guarantee in blockchain-based payment channel networks. IEEE/ACM Transactions on Net-
working, 29(4):1676–1686, 2021.

[147] Yuhui Zhang, Dejun Yang, and Guoliang Xue. Cheapay: An optimal algorithm for fee
minimization in blockchain-based payment channel networks. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2019.

	Introduction
	Factors limiting scalability in Blockchain
	Scalability Trilemma

	Scaling Solutions in Blockchain
	Routing in Payment Channel Network
	Multi-Path Payments in PCN
	Problem of Griefing Attack

	Our Contribution and Organization of the Thesis
	List of Manuscripts and Publications

	Preliminaries and Background
	Notations
	Probabilistic Polynomial-time (PPT) algorithm
	Negligible Function
	Cryptographic Primitives
	Hash Function
	Elliptic Curve Groups
	Elliptic Curve Discrete Logarithm Problem
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Homomorphic One-Way Function

	Universal Composability Model
	Game Theory
	Dynamic Games of Incomplete Information or Sequential Bayesian Games

	Background
	Bitcoin
	Blockchain
	Off-Chain Scaling Solutions

	Literature Survey
	Routing Algorithms in Payment Channel Network
	Payment Protocol in Payment Channel Network
	For single-path payment
	For multi-path payment

	Griefing Attack in Lightning Network
	Attacking Strategy
	Countermeasure for Griefing Attack

	HushRelay: A Scalable Routing Algorithm for Off-Chain Payments
	Our Contributions
	Organization

	Background
	Payment Channel Network
	Payment Flow problem

	Problem Statement
	Our Proposed Construction
	Generic Algorithm
	Proof of correctness of the HushRelay

	Privacy Analysis
	Performance Analysis
	Experimental Setup
	Evaluation
	Discussion

	CryptoMaze: Privacy-Preserving Splitting of Off-Chain Payments
	Contributions
	Organization

	Background
	Payment Channel Network (PCN)
	Off-chain Contracts
	Random Oracle Model

	Proposed construction
	System model
	Security and Privacy goals
	Mapping a set of paths into a set of edges
	Formal definition of the protocol
	Use of scriptless lock in Cryptomaze

	Security definition of CryptoMaze
	Attacker model & Assumptions
	Ideal World Functionality
	Universal Composability (UC) Security
	Security analysis

	Experimental analysis
	Evaluation methodology
	Observations
	Discussion

	Griefing-penalty: Countermeasure for Griefing Attack in Lightning Network
	Our Goal
	Our Contributions
	Organization

	Background
	Payment Channel Network

	Key Idea of Griefing-Penalty
	A Simple Protocol for countering Griefing Attack: HTLC1.0
	Problem of Reverse-Griefing in HTLC1.0

	Our Proposed Protocol using Griefing Penalty
	Two party HTLC-GP

	Multihop Payment using HTLC-GP
	System Model
	Objective
	Adversarial Model & Assumptions
	Our proposed Construction

	Security Analysis
	Performance Evaluation
	Analysis of Profit earned by eliminating a Competitor from the Network
	Investment made by attacker for stalling the network

	Rate of Griefing-Penalty for Practical Purpose
	From the perspective of an honest payer and honest payee

	Discussion

	Strategic Analysis of Griefing Attack in Lightning Network
	Contributions
	Organization

	Related Works
	Analysis of Griefing Attack in HTLC
	System Model
	Attacker Model & Assumptions
	Game Model
	Game Analysis

	Countermeasure for the griefing attack
	Hashed Timelock Contract with Griefing Penalty or HTLC-GP

	Analysis of Griefing Attack in HTLC-GP
	System Model
	Attacker Model for HTLC-GP
	Game Model
	Game Analysis
	Gap in Security Analysis of HTLC-GP
	Effectiveness of HTLC-GP

	Guaranteed Minimum Compensation for further disincentivizing Griefing Attack
	Adjusting Maximum Path Length
	Estimating Rate of Griefing-Penalty ,k

	Modifying HTLC-GP to HTLC-GP
	Protocol Description
	Effectiveness of HTLC-GP

	Experimental Analysis
	Setup
	Evaluation Methodology
	Observations
	Discussion of Results

	Conclusion and Future Work

