
Feature Extraction using Autoencoders for Various
Challenging Tasks of Pattern Recognition

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy in Computer Science

by

Debasrita Chakraborty

Under the supervision of

Prof. Ashish Ghosh

Machine Intelligence Unit
Indian Statistical Institute

203 B.T. Road, Kolkata. India - 700108
December, 2022



To my son, Samadarshi

You inspired me to be the one worthy of admiration and my life’s aim will be to never
let you down.



Acknowledgement

Without the encouragement and guidance of a certain number of great people, this thesis
wouldn’t have been possible. I extend my gratitude to all of them for making this expe-
rience possible. My heartfelt thanks go to Professor Ashish Ghosh, my supervisor who
has always been a fatherly figure to me. This work would have hardly finished without
his passion, inspiration, guidance, and constant support when I was juggling my way
through academics and motherhood simultaneously. Special mention needs to be made
of Professor Susmita Ghosh who always made time for my academic needs whenever I
needed her.

I would also like to thank our Director Prof. Sanghamitra Bandyopadhyay, our current
Dean of Studies Prof. Debasis Sengupta, former Dean of Studies Prof. Pradipta Bhat-
tacharya, and Goutam Mukherjee, Convener of Ph.D. D.Sc. committee Prof. Pradipta
Majhi and my mentors during the coursework for their technical support on my study.

I would like to thank all my friends and seniors in Machine Intelligence Unit especially, my
colleagues Anwesha Law, Subhadip Boral, Debayan Goswami and my senior Rahul Roy.
I would like to express my gratitude for all other study collaborators’ shared know-how
and perspectives and their useful input.

Finally, I thank my family deeply and sincerely for their unceasing and unparalleled love,
support, and assistance. I am thankful to my brother Debayan whose advice pushed
me to pursue this degree. I am grateful to my parents Molay Chakraborty and Dalia
Chakraborty who encouraged me selflessly to discover new ways to live and to pursue my
destiny. I would like to thank my husband Samir for always showing how proud he is of
me. Finally, my thanks go to my little one Samadarshi for showing me the wonder of life
amid the difficult moments of preparing this thesis.

Debasrita Chakraborty
Place: Indian Statistical Institute, Kolkata
Date: 20 July, 2022

ii



Abstract

Feature extraction is a technique through which existing features are transformed into

a different (usually smaller) dimension. This conceptually means that the data is rep-

resented in a different aspect than the original one. This kind of data representation is

among the key machine learning principles and often helps in finding some interesting

relationships in the data. Detecting the structure and automated identification of pat-

terns in datasets is indeed a suitable benefit as it facilitates understanding of the process

described by the data. Hence, the effectiveness of machine learning algorithms vastly

depends on the types of features they rely on due to the multi-dimensionality of infor-

mation that feeds the model. Depending on how data is represented, different models

may view the problem in different ways and try to solve it using unique techniques. Dif-

ferent pattern recognition issues and challenges of classification have been improved by

deep neural networks in recent years due to their inherent capability of learning from raw

data. Deep architectures have also demonstrated their efficiency in recording latent data

representation characteristics.

Even though deep neural networks are well capable of handling complex data, the chal-

lenges posed by imbalanced datasets, high dimensional datasets, highly chaotic time-

varying datasets, or decentralised datasets are difficult to handle. Therefore, the main

focus is on four such situations of complex datasets where standard deep neural networks

fail. However, using an autoencoder and combining it with other techniques has proven

to be beneficial in such conditions. In this thesis, the efficacy of autoencoders is argued in

some really interesting areas. The investigations show that autoencoders are particularly

useful for datasets where there is an imbalance, lack or absence of labelled samples and

chaos. Thus, the successive chapters look into some application cases of the above sce-
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narios and explore how the autoencoder supplemented methods deal with the challenges

in those applications.

For the first task, a straightforward outlier detection problem is handled. It is seen that

the autoencoders are very well capable of enhancing the performance of outlier detection

models. So, the problem is extended to another use case where the data has somewhat of

a local imbalance, high complexity and high dimensionality. This is observed for remotely

sensed hyperspectral images where the task is to detect changes between such a pair of

co-registered bi-temporal images. The tasks undertake cases where the label information

is partially absent and completely absent respectively. It is observed that autoencoders

are well suited to capture the changing neighborhood information surrounding the same

pixel location of the two images. Autoencoders are also examined under conditions where

the data is unpredictable as seen for OHLC (open high low close) stock prices. It is seen

that transformation by autoencoders are much more informative than the original feature

space. This is why an autoencoder supplemented prediction model helps in making better

predictions about the future OHLC stock prices. Since the above methods are fairly cases

of a centralised data setting, it was also necessary to examine how the autoencoders fair for

decentralised imbalance. Thus, the efficacy of autoencoder is inspected under federated

learning. It is seen that pre-training by autoencoders is particularly useful when the data

is imbalanced and thus can be used for situations where the data distribution among the

local nodes is non-i.i.d.

Since autoencoders are unsupervised feature extractors, they do not incorporate any kind

of class information during the training process. The study investigates if the use of such

training of autoencoders lead to a competitive edge in performance.
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Chapter 1

Introduction

1.1 Deep Neural Networks

A well-trained multi-layered neural network (MLNN) could learn many complex decision

regions. It was proved [1, 2] that there always exists a three-layer network (with some

desired numbers of neurons) that can approximate an arbitrary nonlinear, continuous,

multi-dimensional function f with any desired accuracy. However, the number of neurons

could go up to some thousands for a high-dimensional polynomial function. It was proved

that if a circuit with depth d needed O(n) nodes to model a function, one with depth

d− 1 will need O(2n) nodes [3, 4]. Intuitively, a four-layer neural network would perform

better in modelling non-linear problems with effectively lesser neurons than a three-layer

network.

However, many researchers found that having more than 2 hidden layers provided only

diminishing effects (slowed the training time significantly but did not improve precision).

This is due to the problem of vanishing or exploding gradients. Researchers have avoided

these problems by pre-training, savvy initialisation (like Xavier Glorot [5]) or other mod-

ifications (like using ReLU activation) and have finally managed to make deep learning
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(DL) successful in many aspects. The architecture of the network, amount of training

data, loss function, and regularization all play crucial roles. As a rule of thumb, one needs

O(d) examples, where d are the degrees of freedom (i.e, total number of weights and bias

parameters in the network) [6]. It means that more data always beats wiser algorithms.

As the data complexity grows, shallow models fail to give good accuracy and deep neural

networks (DNNs) come into the picture.

The concept of DL alleviates problems in which shallow learning (having less than two

non-linear transformations) is affected by the curse of dimensionality [7]. DL involves

multiple layers of non-linear transformations along the successive layers of the network. In

doing so, a set of statistically robust features is automatically extracted from the data. DL

is a fairly new addition to the literature on Machine Learning (ML) research. Using DL,

the prime objective of ML, which is to build a reliable Artificial Intelligence (AI), seems

plausible now. DL research is concentrated around the use of MLNNs, which are renamed

as DNNs because they have better training tricks now. Currently, many variations of

DNNs exist in the literature. Autoencoders (AEs) [8, 9], Deep Belief Networks (DBNs)

[10], Convolutional Neural Networks (CNNs) [11], Recurrent Neural Networks (RNNs)

[12] all have specific purposes and excel at their respective application areas. The beauty

of DNNs lies in their feature extracting abilities across multiple layers.

Deep networks like Autoencoders (AEs), Convolutional Neural Networks (CNNs), etc

have recently gained popularity as excellent feature extractors. The process of training a

network to encode the features and then again decode them back from the encoded version

makes them learn efficient feature representations in the encoded dimension. However,

these feature representations are problem-specific and depend on the type of dataset

provided to them. Multi-layer neural networks have been in the research field for a long

time. However, the sudden popularity of DL grew because of the ability to train DNNs.

One of the ways to train a deep network is to use AE pre-initialisation strategy. It is often

seen as a transfer learning scenario too and is claimed to be the most used technique for
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weight initialisation. This kind of pre-initialisation technique has also solved the age-old

difficulty in training an MLNN using backpropagation [8, 13]. The problems of vanishing

and exploding gradients [14, 15] are handled in such a pre-initialisation strategy. It has

been argued [9, 12, 16] that such a pre-initialisation strategy act as a regularisation to

the network and sets the weights of the network to a close enough approximate value.

Re-training the network only means a fine-tuning of the weight values. This beauty

of pre-training has therefore surpassed the concern for increased time complexity in a

two-phase backpropagation process. Nevertheless, it should not divert us from the fact

that in order to make a network learn, we are dedicating twice the amount of time for

training. Anyway, since the testing time for neural networks (NNs) is negligible, a DNN

is preferred for its enhanced performance. So, the pitfall of the training time complexity

is overlooked. However, as DNNs are NNs, there are other issues that they suffer from.

1.2 Problems Identified

DNNs like AEs or CNNs being an extension of the standard NNs suffer from masking and

swamping effects of imbalanced data [17]. This situation is aggravated as the imbalance

becomes severe. Anomalies or outliers are unusual occurrences and it is exceedingly dif-

ficult to accurately describe them. They are an extreme case of imbalanced data. When

outliers or anomalies are seen in a dataset, they often reveal some new physics behind

their occurrences. Detecting such anomalies is not an easy task. The phenomenon of

marking typical events as abnormalities are called swamping. In presence of anoma-

lies, the majority (non-anomalous) often biases the algorithm towards them. Thus, the

anomalous data samples originally belonging to a separate cluster or class are combined

into a single cluster or class when clustering or classification techniques are employed

respectively. This causes the anomaly samples to be identified as regular data points.

In such situations, the characteristics of the outliers are not identified in principle. This

phenomenon is referred to as masking. Swamping and masking effects are much more
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likely if the size of the dataset is big. As DNNs need a huge amount of data to learn,

they are much more prone to these effects. Thus, a system needs to be developed which

can leverage the power of AE-based feature extraction as well as reduce the swamping

and masking effects. This way we may find interesting physics behind the occurrence of

the outlier data which are not known otherwise.

While talking about the concerns of revealing new physics, the idea of finding changes

is quite intriguing. The above scenario described the issues with DNNs when the data

was labelled as ‘normal’ and ‘outlier’. Some samples may gradually deviate from their

‘normal’ behaviour over a fair span of time. If observed within a short time, they seem

the same, but after a fairly good amount of time, the changes are prominent. This is

particularly seen when there are gradual changes over a place. If a satellite captures

the photograph of the same location over a certain span of time, it may be seen that

the images are different in comparison to each other suggesting changes. The prominent

changes might be visible, but the tiny ones are often overlooked by most of the change

detection models as they are surrounded by a large unchanged area. Keeping a track

of those subtle changes is crucial to know about the changing dynamics of the place.

The problem becomes even more complex if the data is unlabelled. Usually studying

these changes is completely driven by RSIs captured by satellites. Detecting changes is

not an easy task as the images have comparatively low resolution and one pixel on the

image may represent a larger area (a few meters to kilometres). So, a change that has

occurred in a small area is difficult to detect. The problem becomes even more complex

if the dimensionality of the images increases as in hyperspectral images (HSIs). The total

number of changed pixels is often far less than the number of unchanged pixels. Moreover,

for the tiny changes, the local neighbourhood of the changed pixels is overwhelmed with

unchanged ones. Even though the imbalance is not as pronounced as that of an outlier

dataset, the local neighbourhood imbalance often makes the model biased. So we can say

that this problem is mostly related to detecting anomalies, except that it is looking for
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a change or difference instead of finding an abnormality. In this case, the HSI obtained

on a former date is considered as the normal perspective of the location photographed

and the HSI obtained on a later date may be considered as the changed or abnormal

perspective. Any pixel that represents a change needs to be detected. However, these

images are inherently complex and noisy. In this situation, noise may also be perceived

as a change without the presence of human annotations. Moreover, tiny subtle changes

are often overpowered by the surrounding unchanged pixels. In this regard, the potential

of AEs to extract meaningful features needs to be explored.

While we are concerned with the issue of changes over time, there is another highly

relevant issue that may arise when the changes happen rapidly over a very short duration

of time. This requires a time-series analysis of the occurrences. When it comes to time-

series data analysis, the data may adopt a chaotic nature along with the complexities

stated above. For the two problems discussed above, we were more concerned about

finding the anomaly or change. However, while we scrutinize time-varying datasets, we

are trying to find order in chaos. We do not have any idea about the underlying reason

for the behaviour of the dataset and it may seem chaotic, but according to chaos theory,

we may attempt to view this uncertainty as an effect of some latent cause. One such

application area is predicting the fluctuations of the financial markets. When it comes

to research, it has been an extremely difficult assignment given its inherent complexity,

dynamics, and chaos. This makes it exceedingly difficult to forecast the behaviour of

stock market values in the future. The behaviour is highly uncertain and there is no

concept of ‘normal’ behaviour in such time-series trends. The trends fluctuate very rapidly

depending on numerous factors. Since the behaviour of stock prices is mostly dependent

on the country’s economic scenario, it becomes rather difficult to predict whether a sudden

change will take place or not. Thus, a reliable forecasting model needs to be proposed

which can be supplemented by AE-based latent feature extraction.

Since the preceding problems concentrated on a centralised data setting, attention must
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also be extended to decentralised data settings. The training requirements of DNNs de-

mand a large amount of data for training and the data is often found in a decentralised

manner. If the data is globally imbalanced (e.g. outlier detection datasets) and is dis-

tributed across multiple local devices in a decentralised manner, the local chunks of data

do not follow the simplified assumptions of traditional federated learning (FL). As the

data becomes imbalanced in each local server, the traditional FL algorithms to train

DNNs face problems with degrading performance. The problem is even more pronounced

if most of the local datasets in one or more local devices contain samples from only the

majority class. With imbalanced datasets, therefore, the chance of a local dataset hav-

ing no samples from the minority class (classes) increases as the number of local devices

increases. So, a proper method to deal with the stated problem needs to be proposed. In

this regard, AE-based pre-training of local DNN models in each local device must also be

given importance as AEs can efficiently find suitable features for the class it observes the

most. So, one local model which is trained on a local dataset having one class may be

important to detect the majority class samples, and the other local model which is trained

on a local dataset having some minority class samples may be given more importance for

detecting the minority class samples.

In this thesis, the above problems of pattern recognition (PR) have been selected

and studied in conjunction with the strengths of AEs. The thesis explores four chal-

lenging scenarios of datasets namely, imbalanced data, high dimensional data, chaotic

time-varying data, and distributed decentralised data. The research looks into real-life

cases of the above scenarios and proposed methods to deal with the relevance of AEs in

those applications.
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1.3 Motivation

Typical usage of an NN is in a supervised training scenario. The training includes a

sample with a label at the output. The NN attempts to learn how to map the input into

the specified output label. However, when the output label is substituted with the input

vector itself, the network will try to discover the mapping from the input to the input

itself. This would mean learning a function of identity which is trivial. However, if the

NN is built in such a way that it cannot simply duplicate the input, then only the most

important details about the data will be captured by the network. This restriction offered

up an unexplored area of NN applications which became popular as AEs [8, 9]. Chapter

2 gives a detailed description of this particular network and its recent advancements in

literature. Usually, the concept of Ae has become synonymous with the study of DL.

Almost all ML algorithms rely heavily on the quality of the data it is trained on. The

results and the performance are based upon the features used to construct the training

model. Earlier, the ML community tried to improve the quality of the data using efficient

feature engineering techniques. However, in the process of general AI, algorithms must be

less reliant on the quality of data and learn to generalise the descriptive aspects of the data

on their own. AEs are one of the tools in DL which has the ability to extract meaningful

features from the data on its own. The work described in the thesis concerns designing

some efficient algorithms using AEs for learning from imbalanced, high dimensional, time-

variant, and decentralized data respectively.

The thesis mostly revolves around the beauty of AEs and their efficient feature represen-

tations. Often, these representations are termed as a ‘black box’ [18] and are inexplicable.

Even though DNNs are well capable of handling complex data, the challenges posed by

imbalanced datasets, highly chaotic time-varying datasets or decentralised datasets are

difficult to handle. The thesis mainly concerns four such situations of complex datasets

where a standard DNN fails. However, using an AE and combining it with other tech-

7



CHAPTER 1. INTRODUCTION

niques has proven to be beneficial in such conditions. The increased popularity of DL

stems from the notion of representational learning, where the model finds representa-

tions necessary to extract the characteristics from data automatically. DL’s core idea

is to pass the data through several layers where a new representation is created at ev-

ery level by using certain nonlinear functions on the output of the previous level. In

recent years research has demonstrated that this multilayered hierarchical learning may

lead to unparalleled outcomes. The AE is a fantastic variant of an NN where each data

point(sample) is mapped via several layers of hidden representations. This map is irre-

spective of basic knowledge about the truth of the matter, i.e. the network requires no

information about class or category labels. Training an AE often includes reducing the

error of reconstruction which helps in learning important hidden representations.

Since AEs are unsupervised feature extractors [19], they do not incorporate any kind

of class information during the training process. The interesting question in this context

is whether AEs are capable of learning class-specific features. It has been shown [16] that

AEs tend to map similar data to a similar range. Thus, they are capable of efficiently

capturing the class-specific data manifold while eliminating redundancy.

Like principal component analysis (PCA), AEs can be a way to learn the latent repre-

sentations in lower dimensions. However, unlike PCA, the features are not transformed

linearly. The version of kernel PCA (k-PCA) operation is somewhat identical to the

workings of an AE [20], but AEs are a more generalised concept. The method of ex-

tracting features using an AE seems to be useful, particularly if a problem is defined by

complicated interrelationships of variables. An AE is simply trained to reconstruct the

input data by passing it through one (or more) non-linear hidden layers. It consists of two

main parts namely, an encoder that encodes the input data and a decoder that decodes

the encoded data to reconstruct the input back.

This transformation in the encoder and corresponding reconstruction in the decoder
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would have been an extremely tough operation if the input features behaved indepen-

dently. Nevertheless, if there is any latent structure in the data which describes the

relationship between the features, it is possible to learn and thus harness this structure

while pushing the input via the middle (or bottleneck) layer of the network. The opti-

mal AE model optimizes between its sensitivity to accurately reconstruct the input and

its generalising capacity so as not to overfit and memorise the data. This optimisation

obliges the model to retain just the right amount of information necessary to rebuild the

input without any redundancy.

The crucial question that arises now is if an AE would be capable enough to extract

the right amount of information in case of imbalanced, time-variant, and decentralized

data respectively. This has motivated us to look into the feature extracting capabilities

of AEs in various such challenging PR problems.

1.4 Contributions

The main contribution of the thesis is to establish that an AE is an extremely versatile

feature extraction tool in ML. The thesis focuses on demonstrating that the compactness

and the adaptability offered by an AE are beneficial in any challenging pattern recognition

task. The study presented in the thesis has brought out many interesting aspects about

an AE. It has shown how an AE can be especially useful when the data is imbalanced.

Moreover, an AE is also effective at bringing out some relevant infrequent features (along

with commonly observed ones) when used in an unsupervised manner. Retraining the

AE-enabled network with labels merely fine-tuned the classifier. AE is also shown to be

useful for chaotic datasets where it can capture the underlying relationships within the

data. The thesis concerns four different challenges. It aims to investigate the potency

of using AEs in cases where the dataset poses some inherent obstacles in training a

DNN. The novelty of the thesis pertains to exploring the applicability of the feature
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representation learnt by an autoencoder where a standard DNN would fail or give a

mediocre performance. This kind of study has not been done in the literature and AEs

are often replaced with better alternatives. We argue that with slight alterations in their

structure as well as their objective function, AEs can be the core of a possible solution

to many problems.

Diversity in the challenging scenarios required different autoencoder architectures and

hence cross-comparison of the proposed models is impractical. However, in all the meth-

ods, the main contribution of the autoencoder is highlighted and it is also shown how

the models would perform if the AE is replaced by some other suitable feature extraction

method or is completely omitted. This thesis explores the suitability of AEs for problems

where repetitive or chaotic patterns often overwhelm a classifier and in many cases bias

the model towards the majority of the model fails to make an inference respectively.

The first contribution of this thesis involves a straightforward scenario of supervised

outlier detection. DNNs being an extension of multi-layer neural networks suffer a lot

from the masking and swamping effects of outliers. The problem of outlier detection may

also be viewed in a different fashion where the data can have multiple types of outliers.

Capturing such a variety in outliers would be useful in discovering different types of

anomalies and understanding the physics behind their origin. We have proposed such a

scenario to be treated in an entirely different light as a multiple outlier type detection

problem. This direction has not been explored in the literature earlier. We argue that

there is a need for a unified framework which can detect multiple types of anomalies in a

dataset. Thus, a novel framework has been developed and investigated to detect multiple

outlier types inspired by the projection capabilities of AEs. Surprisingly, the use of AEs

improved the quality of outlier detection significantly, which validates our motivation for

using an AE in the first place.

Since AEs are better at learning the patterns, they can be extended to image datasets
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as well. However, for that, we would need Convolutional Autoencoders (CAEs) which are

much more suitable for images. The second objective of the thesis is to study the efficacy

of CAEs in image datasets. As a preliminary experiment, the CAEs have been used to

develop a trigger detection system using the 24 static hand gestures of the American

Sign Language (ASL). This was extended to constructing a customizable switch that can

turn ‘on’ if it finds a trigger gesture in any video that it receives and stays ‘off’ if it does

not. It is seen that CAE is an efficient feature extractor and may be used for images

with higher dimensions. This is observed in the case of hyperspectral images. To see

the competence of a CAE, a practical situation of the unlabelled or partially labelled

imbalanced dataset is chosen. The problem of binary change detection may be regarded

as an imbalanced dataset because the changed pixels are always lesser in proportion to

the unchanged pixels. This causes a huge problem for any standard change detection

techniques as the model mostly comes across unchanged data and the minute changes

are often overlooked as noise. Handling hyperspectral images is a challenging task due to

a large number of spectral bands present in the data. Researchers, therefore, try to handle

it by reducing dimensions. Moreover, manual labelling of changes in a pair of remotely

sensed hyperspectral images is costly and time-consuming. As the label information

is less, one might take an active learning approach where the machine learning model

can learn with smart human supervision or a completely unsupervised approach where

the label information is not present. However, there is a lack of methods in literature

which undertakes the problem of change detection partially labelled hyperspectral images.

Moreover, if there is a complete absence of labels, the existing methods often fail to

grasp minute changes surrounded by large unchanged areas. Hence, the proposed work

explores building two systems for detecting changes between a pair of such bi-temporal

co-registered hyperspectral images where the label information is completely or partially

absent. For this, the work has been explored in an unsupervised and active learning

setting. It is found that the proposed methods for both the settings clearly outperformed
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the state-of-the-art methods in change detection for all the datasets.

The third objective of the thesis involves proving the relevance of AEs for time-series

datasets. Stock prices are highly volatile and sudden changes in trends are often very

problematic for traditional forecasting models to handle. The standard Long Short Term

Memory (LSTM) networks are regarded as the state-of-the-art models for such predic-

tions. But, these models fail to handle sudden and drastic changes in the price trend.

Moreover, there are some inherent constraints with the open, high, low and close (OHLC)

prices of the stocks. No method in the literature has handled the inherent property of

OHLC prices into their consideration yet. We argue that predicting the OHLC prices for

the next day is much more informative than predicting the trends of the stocks. This

is because the trend is mostly calculated using these OHLC prices only. The problem

mainly is focused on Buy-Today Sell-Tomorrow (BTST) trading. In this regard, AEs

when pre-trained with the stock prices, may be beneficial. Thus, the contribution of

this chapter is a novel framework where a pre-trained encoder is cascaded in front of the

multi-task predictor network. This hybrid network can leverage the power of a combi-

nation of networks and can both handle the OHLC constraints as well as capture any

sudden drastic changes in the prices. It is seen that such a network is much more efficient

at predicting stock prices. The experiments have been extended to recommend the most

profitable and most overbought stocks on the next day. The model has been tested for

multiple Indian companies and it is found that the recommendations from the proposed

model have not resulted in a single loss for a test period of 300 days.

The fourth contribution of the thesis deals with enhancing the performance of an AE

pre-trained classifier in a synchronised distributed DL setting with the parameter server.

Our motivation is that when multiple models in the nodes are trained on different parts

of the data, and the aggregated weight update is performed in the main parameter server,

it behaves like an ensemble system or a social learning system. Such a combination of

multiple classifiers can handle data complexity very well and supersede a single sophis-
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ticated classifier. However, it has been observed that in a parallel setting, this fact is

falsified if one uses a synchronous weight update mechanism with simple averaging at the

parameter server. It has been seen that with an increasing number of worker nodes, the

performance degrades drastically. This effect has been studied in the context of extreme

imbalanced classification (e.g. outlier detection). In this regard, the AE pre-training is

explored with an adaptive cost-sensitive re-training of the individual local classifier and

it is found that the proposed method is much more reliable than the other methods.

1.5 Organisation of the thesis

In chapter 2, we have described the working of an autoencoder and its different types. De-

pending upon the number of layers, the number of hidden nodes, and the types of hidden

layers, AEs are broadly classified into multiple types. This chapter gives a preliminary

overview of the different types of AEs and their subsequent strengths and weaknesses.

In chapter 3, we have handled a straightforward supervised anomaly detection task.

This is a challenging task where a DNN cannot be directly applied for classification. It is

obvious to see that most of the datasets do not have an exactly equal number of samples

for each class. However, there are some tasks like detection of fraudulent transactions,

for which class imbalance is overwhelming and one of the classes has a very low (even

less than 10% of the entire data) amount of samples. These tasks often fall under outlier

detection. Moreover, there are some scenarios where there may be multiple subsets of

the outlier class. In such cases, it should be treated as multiple outlier type detection

scenarios. In this chapter, we have proposed a system that can efficiently handle all the

aforementioned problems. We have used stacked autoencoders to extract features and

then used an ensemble of probabilistic neural networks to do a majority voting and detect

the outliers. Such a system is seen to have a better and more reliable performance as

compared to the other outlier detection systems in most of the datasets tested. It is seen
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that the use of autoencoders enhanced the outlier detection performance.

Chapter 4 deals with another imbalanced dataset problem where the labels are not

present. Binary change detection is a practical example of having such an unlabelled

imbalance problem. There are comparatively more unchanged pixels in the image than

the number of changed pixels. Finding changes in bi-temporal co-registered hyperspectral

images becomes an even more challenging task due to the large number of spectral bands

present in the data. Researchers, therefore, try to handle it by reducing dimensions.

The proposed work aims to build a binary change detection system for a pair of such bi-

temporal co-registered hyperspectral images using the feature extraction property of deep

CAEs. To study the efficacy of CAEs as feature extractors, a CAE pre-trained classifier

has been developed to classify images of the ASL hand gestures. It was seen that CAEs

are efficient as feature extractors. So, the concept of CAE feature extraction was directly

applied to the problem of detecting changes in bi-temporal co-registered hyperspectral

images. In this regard, a novel feature extraction system using a modified deep convo-

lutional autoencoder was proposed for dimensionality reduction for detecting changes in

hyperspectral image pairs. The proposed methodology is completely unsupervised and

hence is much more elegant than other supervised or semi-supervised methods. It is seen

that the proposed method to reduce the dimensions is highly effective in detecting the

changes and gives better performance than all other methods under comparison. The

proposed method has been compared for four hyperspectral image pairs and it is seen

that it has achieved the best result compared to the methods it has been compared to.

For cases where partial label information is present, an active learning-based approach

was also investigated along with the convolutional autoencoder-based feature extraction.

It is seen that the proposed approach outperformed the other methods even when partial

information was present.

Chapter 5 attempts to handle the problem of forecasting chaotic and rapidly changing

events in the domain of time-series datasets particularly, forecasting stock prices. Stock
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price prediction is very difficult because of the highly nonlinear nature of the stock prices

that vary vastly over a given period. It becomes even more problematic when the stock

prices undergo sudden changes in a very short time. Moreover, there are some constraints

with predicting the OHLC price of the stocks for the next day. In order to provide a

meaningful prediction, one needs to handle both the constraints of OHLC as well as

capture the sudden changes with as less error as possible. Since the prediction of stock

prices is a crucial component in making financial decisions, it is very desirable for the

prediction model to be the least erroneous. This chapter attempts to construct an efficient

BTST stock prediction model that uses the feature extracting abilities of the encoder and

decoder of an AE and the time series capturing abilities of a multi-task predictor network.

In this chapter, it has been shown that through such a hybrid combination, the prediction

obtained for a testing period of around 300 days gave the lowest error compared to other

existing models. A statistical analysis of the empirical results has also been done to show

the efficiency of the proposed prediction model. To show the efficacy of the proposed

model, experimentation has been extended to build a two-fold stock recommender system

that would recommend the top investable stocks. In the proposed recommender system,

the predicted prices of the next day are used to gather information about the stocks

which are very profitable or are overbought. To recommend the most profitable stocks

for the next day, the difference between the opening price and the highest price of the day

is considered. William’s %R is used to recommend the stocks which will be overbought

on the next day. It is seen that the proposed system reliably recommended the most

profitable and overbought stocks that matched with the actual results on that day.

In chapter 6 the thesis has been extended to the area of distributed DL research.

Federated learning weight update mechanisms have been explored for deep learning. For

most distributed DL methods, it is assumed that the worker servers (or local servers)

hold independent and identically distributed (i.i.d.) data. However, in practical cases,

the conditions of i.i.d. may not be fulfilled. There may also arise global class imbalance
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situations like that of outlier detection where the local servers receive severely imbalanced

data and may not get any samples from the minority class. In that case, the DNNs in

the local servers will get completely biased towards the majority class that they receive.

This would highly impact the learning at the parameter server (which practically does

not see any data). It has been observed that in a parallel setting if one uses the existing

federated weight update mechanisms at the parameter server, the performance degrades

drastically with the increasing number of worker nodes. This is mainly because, with the

increasing number of nodes, there is a high chance that one worker node gets a very small

portion of the data, either not enough to train the model without overfitting or having a

highly imbalanced class distribution. The chapter, hence, proposes a workaround to this

problem by introducing the concept of adaptive cost-sensitive momentum averaging. It is

seen that for the proposed system, there was no to minimal degradation in performance

while most of the other methods hit their bottom performance before that.

Chapter 7 concludes the work with discussions on some open areas and pitfalls of the

proposed methods which were not addressed in the thesis. Some possible future directions

of research are also mentioned in this chapter.
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Chapter 2

Background

2.1 Autoencoders

One of the main goals of machine learning is to ‘learn’ or infer from the data automat-

ically without explicitly programming the task. Thus, the quality of the learnt model

depends on the type of data it receives. Some tasks are privileged enough to have good

quality annotations or labels to the data. But, for many practical tasks, the quantity of

labelled data is small or is completely absent. In that scenario, we may want to use the

unlabelled dataset to bring out some underlying properties of the attributes or features.

Autoencoders (AEs) are a type of approach to learning these underlying properties in an

unsupervised fashion. This underlying property may be used for various purposes like

classification, clustering, regression, etc. This chapter will explain the concept of AEs

and their various forms. The AE is an efficient NN model which is capable of modelling

compact and meaningful data representations. Each data sample is transformed by an

AE across several layers of non-linearity [21]. This mapping is independent of the actual

class information, i.e. the AE requires no labels for the class and is therefore trained

using an unsupervised learning process. The AE is forced to reconstruct the input while

passing it through some bottle-neck layer (or layers) [Figure 2.1]. If the input is x, then
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the output y = x.

Figure 2.1: Schematic diagram of an autoencoder

The standard method for training is the same as any other MLNN: Backpropagation

(BP) [22]. However, other training methods also exist like extreme learning machines

(ELMs) [23], evolutionary algorithms (EAs) [24], etc. Training an AE usually includes

reducing the error of reconstruction (||y − x||2). Since the desired output is the same as

the input, the training can be referred to as self-supervised learning.

2.2 Literature Survey

It was LeCun’s PhD thesis [25] which presented the original concept of an AE. Some

argue that the idea of an autoencoder was proposed much earlier by Cottrell, Munro and

Zipser in 1985 [26]. The idea was fairly the same where the data was passed through

a bottleneck and was reconstructed at the output. An AE usually consists of two basic

elements or parts: an encoder and a decoder (Figure 2.1), which are the usual NN-based

connectionist models. The encoder and decoder may be represented as two independent

modules which incorporate two functions f(x) and g(f(x)). The task of the function

f(x) is to map the data point x from the original feature space IRN to some different

(latent) feature space IRH, while g(f(x)) would try to generate a reconstruction of x by

mapping f(x) from the latent feature space IRH to the original feature space IRN. The
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two functions f(.) and g(.) in contemporary AEs are composed of non-linear functions

like sigmoid, relu, tanh [27]. As per the application perspective, it is noteworthy that it

is an undesirable trait if the AE is simply used to copy the input. In other words, AEs

are often constrained to enable them to learn an approximate version of the input. The

problem is formally defined as learning the functions f : IRN → IRH and g : IRH → IRN

such that they satisfy,

arg minf,gE[∆(x, g(f(x))] (2.1)

where E is the expectation value of the distribution of x and ∆ is the reconstruction error

between the input and the output. ∆ is usually chosen to be the mean-squared error, but

it may also be varied as per the requirements of the problem. If the functions f(.) and

g(.) and linear, then a linear AE is constructed which is said to achieve the same latent

feature space as a principal component analysis (PCA) would [28].

The main beauty of an AE lies in its ability to learn latent representations. Real-world

data often appear with a sparse high-dimensional representation. If the ML models are

trained to operate in such a large feature space, it will frequently lead to a curse of di-

mensionality [7]. The objective of the reduction of dimensionality is to discover a small,

multidimensional space called “intrinsic dimension.” The PCA [29] is a conventional tech-

nique to dimensional reduction. It involves a linear projection onto a smaller dimension,

thus the squared error of reconstruction is reduced. Nonlinear techniques like AEs, how-

ever, can and frequently yield better results. It has been shown [30] that auto-associative

networks like AEs are equivalent to a non-linear variant of PCA. However, AEs are more

generalised. There are other different approaches for learning the latent feature space too

[31]. The use of AE to learn the intrinsic dimension is pretty straightforward and its unsu-

pervised nature is one of its beauty. This unsupervised learning of features is designed to

identify suitable data representations for classification, reconstruction, visualisation and

more. Recently, substantial achievements have been achieved in deep networks due to the
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feature extracting capabilities of AEs like stacked autoencoders (SAEs) and deep-belief

networks (DBNs) that match the present state of the art [10, 32, 33].

Despite the advances, learning robust features is still confronted by issues such as

noise outliers that are often seen in real-world data. However, it is seen that AEs can

efficiently learn to map outliers differently than the inliers in the data [16]. This is quite

an attractive property which has found applications in multiple domains [34, 35, 36]. As

AEs try to learn only the important features which may be beneficial for reconstruction,

they naturally discard unnecessary variations which come due to noise. The noise in

the dataset may be further reduced by an AE using a denoising AE [8, 9]. This AE

may develop resilient representations and achieve high performance under various sorts

of noises by corrupting input data and trying to reconstruct the clean data at the output.

Feature extraction using AEs has therefore found its way into almost all modern ap-

plications like intrusion detection [37], medical image analysis [38], tactile robotics [39],

drug discovery [40], etc. It is, however, noteworthy that just like any other ML tech-

nique, AE is not an elixir for all problems and might need adaptations to suit the task.

Thus, several variations of AEs exist which try to handle different issues from different

perspectives.

2.3 Types of Autoencoders

Depending upon the number of layers, the number of hidden nodes, and the types of

hidden layers, AEs are broadly classified into multiple types. The following sections

describe the different types of AEs and their subsequent strengths and weaknesses.

2.3.1 Types Based on Number of Hidden Layers

The AE architecture may have a single hidden layer or multiple hidden layers. Depending

on the number of hidden layers, one may construct a deep autoencoder or a stacked
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autoencoder.

2.3.1.1 Deep Autoencoder (DAE)

AEs are usually simply taught with a single layer decoder and a layered decoder. This

is, however, not a necessity. In reality, it offers numerous benefits to employ deeper

architectures of encoder and decoder. The benefits of incorporating depth have been

already described in section 1.1 of Chapter 1. Since AEs are basically feed-forward NNs,

these benefits apply to AEs as well. The computing cost of some arbitrary functions may

be reduced exponentially by increasing depth [41]. Depth can also lower the quantity

of training data needed to learn certain functions [15]. A deep autoencoder (DAE) [42]

consists of a symmetrical pair of encoder and decoder [Figure 2.2]. The encoder and

decoder have more than one layer of weights and the training is usually done on the

whole network through BP in the same way as a single-layer NN. It is simply an MLNN

whose task is to reconstruct the input back.

Figure 2.2: Schematic diagram of a deep autoencoder

DAEs are efficient feature extractors and the middle-most layer is used as the code layer

whose output is usually taken as the extracted features for a given data. However, if the

DAE is too deep (i.e. has a large number of layers), it will again suffer from the problem

of vanishing and exploding gradients. In that case, the feature extracting abilities of a

DAE will be degraded.

21



CHAPTER 2. BACKGROUND

Figure 2.3: Schematic diagram of a greedy layer-wise training of stacked autoencoders

2.3.1.2 Stacked Autoencoder (SAE)

Stacked autoencoders (SAEs) [17] are trained in a greedy, layer-by-layer manner. They

are mostly used for pre-training a deep network. In an SAE, to reduce the reconstruction

loss of the second layer, the output of the first layer is considered and not the actual

input. Suppose we wish to build a DNN classifier which has 5 layers having an input

layer with I number of nodes, 3 hidden layers of h1, h2 and h3 nodes respectively and an

output layer of o number of nodes corresponding to the number of classes.

Then we would have to train three AEs which would look something like Figure 2.3.

The encoders of the three AEs will be stacked successively to get the deep network [Figure

2.4]. The decoders are discarded.

Any DNN which has been constituted by stacking multiple AEs is nothing but a cas-

cade of successive shallow NNs. Unless the DNN is re-trained with the class labels, the

classification accuracy will not be good for such DNNs. However, SAEs may be used

as good feature extractors as they successively learn the features in a greedy layer-wise

manner and can be stacked to form a very deep network [17].
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Figure 2.4: Schematic diagram of a deep network composed of stacked autoencoders

2.3.2 Types Based on Number of Hidden Nodes

It is argued that for any NN if the number of nodes in the hidden layer is kept the

same or more than the number of nodes in the input layer, then such an NN will learn

only identity function and will not be able to properly learn the underlying features

[15]. An autoencoder learns to approximate the identity function while passing through

a bottleneck. In other words, the features learned in the middle code layer of an AE

theoretically should be enough to reconstruct the input back. The identity function

appears to be especially easy to be learned; yet we can find intriguing features by imposing

restrictions on the network, for example by restricting the number of nodes in the hidden

layers. But even when the number of nodes in the hidden layers is high (maybe even higher

than the number of input nodes), such intriguing features can still be found by imposing

additional network limitations like sparsity. In this context, AEs can be classified as

under-complete and over-complete.
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2.3.2.1 Under-Complete

When data is passed through such a network, it first compresses (encodes) the input

vector to “fit” in a smaller representation and then tries to reconstruct (decode) it back.

The task of training is to minimize an error or reconstruction, i.e. find the most efficient

compact representation (encoding) for input data, by passing it through a bottleneck

[Figure 2.5].

Figure 2.5: Schematic diagram of an under-complete autoencoder

2.3.2.2 Over-Complete

When data is passed through such a network, it first transforms (encodes) the input

vector to “expand” in a much larger representation and then tries to reconstruct (decode)

it back. We can impose a “sparsity” constraint [43] on the hidden layer, which would

prevent it from mimicking the identity function. Such a network is also known as a

sparse autoencoder [Figure 2.6]. Normally, a node in a network is said to be active if

its output value is one. If the output becomes zero, then such a node will be deemed

inactive. Adding a sparsity constraint would basically imply that most of the nodes will

remain inactive or dormant and only a few nodes will be active. Such an AE is capable of

discovering interesting features in the data because such a network is forced to selectively
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Figure 2.6: Schematic diagram of an over-complete autoencoder

activate only those neurons which contribute to extracting meaningful information from

the input data.

2.3.3 Other Types

Some distinct variations of the generic AE architecture exist in order to make sure that the

transformed data represents the most significant features of the original input. Depending

upon the type of data and problem complexity, many suitable types of AEs have emerged.

The following segment describes some of the popular AEs that are used.

2.3.3.1 Fully Connected Autoencoders

Fully connected AEs or vanilla AEs are simple multi-layered networks where each neuron

in the former layer is connected to each neuron in the next layer. Examples of such

AEs are pictorially depicted in Figures 2.2, 2.5 and 2.6. They are called fully connected

because no connection between two neurons in two successive layers is dropped. This

kind of network architecture has the maximum number of connections or weights to train

among AEs.
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Figure 2.7: Schematic diagram of a denoising autoencoder

2.3.3.2 Denoising Autoencoders

A denoising autoencoder [8, 9] is a special type of AE that addresses the problem of

generalisation by randomly adding noise to the input values and corrupting the data

intentionally. This noise may be Gaussian, Poisson, salt-pepper, etc. The percentage of

corruption introduced is usually about 20-50% [8]. The optimum percentage of corruption

depends on the number of samples and the dimensionality. The original input is passed

through a noise (or corruption) module which introduces random noise into the features

[Figure 2.7]. So, the features x = {x1, x2, x3, ...xN} for an N-dimensional input now

become x̃ = {x̃1, x̃2, x̃3, ...x̃N}, where x̃i = xi if the pixel is not corrupted and x̃i ̸= xi

if it is corrupted. The AE then tries to reconstruct back the original input x. Let the

reconstructed output for the AE is ẋ, then the AE would try to reduce the error of

reconstruction given by,

Ereconstruction = ||x − ẋ||2. (2.2)

In this case, it becomes crucial to reconstruct the original input by computing the Loss

function with the actual values and not the corrupted values. This eliminates the possi-

bility of learning identity function and forces the network to extract latent characteristics.

The encoder and decoder may not always need to be fully connected layers but can be
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Figure 2.8: Schematic diagram of forward and backward pass in a restricted boltzmann
machine

made of convolution layers too.

2.3.3.3 Restricted Boltzmann Machines (RBMs)

Boltzmann Machines (BMs) [44] are stochastic energy-based neural network models which

are named after the Boltzmann distribution. Since they are generative in nature, they

are able to develop efficient feature representations and tackle challenging combinatorial

challenges (given adequate time). BMs are regarded as generative DNNs that include

merely two types of layers – visible and hidden. No output nodes are available. A BM

contains connections between the nodes of the same layer, contrary to other conventional

networks. Restricted Boltzmann Machines (RBMs) [45] are a particular class of BMs and

are ‘restricted’ by the fact that the nodes in the same layer have no connections between

them. Like a BM, though, RBMs are also neural networks of two layers and these two

layers are connected like a bipartite graph. This indicates that each node of the visible

layer is linked to each node in the hidden layer, but there are no connections between
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nodes in the same layer. Stacking RBMs may constitute a deep belief network (DBN)

[10].

There are two more bias weights (hidden bias and visible bias) present in an RBM

which is not there in AEs [Figure 2.8]. That is the difference between RBMs and AEs.

The hidden bias of RBM results in the forward pass activation and the visible bias allows

RBM to reconstruct the input in the backward pass. There is no connection between the

visible nodes and hence no method of transferring information among themselves. So,

the reconstruction always differs from the real input. It has the same aim of minimising

the reconstruction error,

Ereconstruction = ||x − ẋ||2. (2.3)

RBMs are trained using contrastive divergence [10]. Some other models have also emerged

following the footsteps of an RBM namely, variational autoencoders (VAEs) [46], gener-

ative adversarial networks (GANs) [47], etc.

2.3.3.4 Convolutional Autoencoders (CAEs)

Convolution operation [48] is a standard procedure in image processing. Usually a filter

is operated across an image and it results in a filtered image [Figure 2.9]. These filtered

images are also called feature maps. In order to get a filtered image of the same dimension

as the original image, padding needs to be done. Padding would simply add zero pixels

around the border. The general convolution operation in the N -dimensional discrete

domain is given as,

y(i1, i2, ..., iN) =
∞∑

u1=−∞

∞∑
u2=−∞

...
∞∑

uN=−∞

f(u1, u2, ..., uN)

x(i1 − u1, i2 − u2, ..., iN − uN), (2.4)
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Figure 2.9: A horizontal line detecting filter applied on a binary image (* represents the
convolution operator).

where, f() represents the N -dimensional filter, y() represents the N -dimensional output

and x represents the N -dimensional input. In the image domain, the signals have finite

length. So, for a 2D grayscale image, equation 2.4 becomes,

y(i, j) =

(2k+1)∑
u=−(2k+1)

(2k+1)∑
v=−(2k+1)

f(u, v)x(i− u, j − v), (2.5)

In order to extract a portion of its content, the convolution operator allows an input

signal to be filtered.

In a convolutional neural network (CNN) [49, 50, 51], there are multiple convolution

layers. Each convolution layer consists of multiple filters which generate multiple feature

maps. A CNN also contains some pooling layers which reduce the size of the images. An

n × n pooling layer will reduce the image dimensions by n. So, if a pooling layer gets

an image of dimension a × b, its size will be
a

n
× b

n
after pooling. Pooling operations

are mainly of three types max pooling, min pooling, and average pooling. Figure 2.10

shows the three types of 2 × 2 pooling operation on an 4 × 4 image. A CNN consists

of multiple such convolutional and pooling layers. If the CNN is trained to reconstruct
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Figure 2.10: An example of the three types of pooling operations.

the input while passing it through several convolutional and pooling layers, then it be-

comes a Convolutional Autoencoder (CAE) [Figure 2.11]. A CAE has convolutional and

pooling layers in the encoder and deconvolutional and upsampling layers in the decoder.

Traditional AEs don’t take into consideration that a signal may a sum of other signals in

their standard formulation. In a fully-connected autoencoder, the input to the network

is usually provided in a flattened format where there is no neighbourhood information.

For images, the information present in the neighbouring pixels is often relevant in un-

derstanding the dynamics of the scene represented by the image. Hence, a convolutional

neural network based autoencoder is much suited for tasks concerning image data. In-

stead of manually calculating the convolution filters f(), a CAE learns optimum filters

to reduce the reconstruction error. These filters may be applied to any input image to

extract features once they have been learned. These characteristics may thus be utilised

for all tasks, such as classification or clustering that require a concise representation of

the input. CAEs, owing to their convolutionary nature, reach high-dimensional realis-

tic representations because there is always the same amount of parameters needed for

creating a feature map, no matter how large the input is. Even though the number of
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Figure 2.11: Schematic diagram of a convolutional autoencoder.

parameters in a CAE is less, the number of updates on each filter depends on the size of

the image.

2.4 Relevance of Autoencoders in Problems Identified

AE minimises a loss function that reflects the disparity between reconstructed input and

the actual input. This optimisation gives an AE the flexibility to extract the latent

features for diverse applications. An AE thus automatically detects the underlying struc-

ture in an unsupervised manner. The results can subsequently be utilised for extracting

important features during classification, clustering, or other prediction tasks.

2.4.1 Outlier Detection

Outlier class modelling is a challenging task in which the majority of the data correspond

to the normal data instances and samples that do not correspond to the normal charac-

teristics are identified as outliers or anomalies. This has many practical application areas

fraud detections, intrusion detection, detection of novel particles in physics, etc.

This problem is addressed in a wide range of literature. Deep neural networks (DNNs)

are being extensively researched to give an answer to the problem of outlier detection [36].

Since a normal multi-layer perceptron is affected by the masking and swamping effects

of outliers, it is difficult for any feedforward multi-layer network to handle outliers.

Recently, outlier detection has been achieved using variational AEs [35] and denoising
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AEs [52] which demand a good amount of clean and noise-free data for training. The

popularity of AEs for outlier detection has gained substantial momentum in recent years

[53, 54]. Using AE for this job follows the premise that the latent subspace of the non-

outlier (normal) samples is learned by a trained AE. Once taught, an AE would produce

a low error of reconstruction for normal samples, whereas for outliers the error will be

high. This is a straightforward derivation of the fact proven by researchers [16] that AEs

map similar features to similar ranges. Thus, AEs efficiently extract the manifold of the

normal class with minimum redundancy and for the outlier class, the mapping range

is different from that of the normal class [55]. AEs thus extract those features which

differentiate between an outlier and a normal class easily.

2.4.2 Dimensionality Reduction

Autoencoders are easy to employ for dimension reduction [7]. Each under-complete AE

in the bottleneck layer efficiently compresses the data to a reduced dimensionality. The

original input is projected into the lower dimensional representation by means of the

encoder and the decoder uses that lower-dimensional representation to generate a recon-

struction of the input. The output of the encoder is the dimensionality reduced feature

vector that may be further used for classification or clustering tasks [8].

Different AEs are used for different application areas. AEs can be constructed on the

basis of customised architectures of encoders and decoders. They may be shallow with

only input and output layers or deep with more layers. The AE may learn more com-

plicated latent coding by increasing architectural complexity. The encoder and decoder

can be fully connected or, when the data is in a grid format like images, they can be

enhanced using convolution and pooling layers [49].

This property of AEs may be applied to detect meaningful features in hyperspectral

images (HSIs) [56]. Binary change detection in bi-temporal co-registered HSIs is a chal-
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lenging task due to the large number of spectral bands present in the data. Researchers,

therefore, try to handle it by reducing dimensions. Moreover for HSIs, manually labelling

the pixels becomes challenging due to the sheer number of spectral bands. Since unsu-

pervised methods [57], mainly rely on detecting the points of dissimilarities between the

two images, they do not require any manual labelling [58]. Due to this reason, unsuper-

vised methods are mostly less accurate than the supervised [51, 56, 59] or semi-supervised

[60, 61, 62] methods but are much more sophisticated in the application. Keeping the

problem statement in mind, a solution may be proposed which presents a clear change-

map showing all the changes between the two co-registered bi-temporal hyperspectral im-

ages. For the purpose of dimensionality reduction, a modified convolutional autoencoder

(CAE) may be used as it will preserve both the spatial as well as spectral information in

its hidden code layer.

2.4.3 Time-Series Prediction

Multi-variate time-series data are often very difficult to model. This is because of the

underlying intrinsic relationships between the predictor variables. AEs in this case applied

with a simple assumption that variables that have behaved similarly in the past would

behave similarly in the future as well. However, these variables are not always directly

linked but have some intrinsic driving factors which may cause fluctuations across time.

AEs can efficiently supplement the task of time-series prediction by extracting these

intrinsic latent factors [12, 63]. One such domain is the prediction of financial stock

prices. In this case, the AEs are trained to reconstruct continuous data. Traditional

AE-based stock market prediction models [12] pre-initialise the predictor network (RNN

or its variants). However, the basic AE may also be used to supplement the prediction

capabilities of the predictor network by efficient learning of latent space.

AE-based latent space representation has not been well studied in the literature on

open-high-low-close (OHLC) stock price prediction. This is partly due to the fact that
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the literature mainly revolves around predicting the direction of the trend using some

technical indicators which are basically constructed using these raw OHLC values only.

There has been no attempt in the literature as per our knowledge may predict the OHLC

prices for the next day directly. Even if a few methods claim to handle this problem,

they miss the basic properties of the OHLC values and often end up making meaningless

predictions where the predicted low price becomes higher than the predicted high price or

the predicted opening and closing prices may not fall in between the predicted low and the

high prices. Fluctuating stock prices with these constraints are very difficult to model and

often fall prey to bad choices of normalisation. Moreover, when the stock prices suddenly

rise or fall drastically in value, most of the models fail to capture these sudden events.

Since AEs capture the relationship between variables in their latent feature space, it is

wise to explore AEs for these problems.

2.4.4 Pre-initialising Deep Neural Networks

DNNs are more likely to overfit which may be identified if the same architecture is applied

to unknown data (or to a cross-validation test). Research is therefore focused on the

exploration of unsupervised pre-training approaches based on a latent representation of

the lower dimensions generated by AE [13]. This method is based on the idea that

redundant information is reduced in lower-dimensional features extracted by an AE and

the possible noise occurring due to collection and processing mistakes in the data set

may be removed, thereby reducing the chance of overfitting [33, 64]. In this regard, AE

pre-trained distributed DL architecture needs to be explored.

In addition, pre-training using AEs and the use of learned weights as pre-initialisation

of the supervised classifier network often increase the model’s generalisation capabilities

and performance. This becomes of particular importance when there are relatively few

labelled samples available. In that case, plenty of unlabeled data samples may be used

to learn the features and pre-initialise the network to a sub-optimal range. Re-training
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using the labelled data in such cases is seen as fine-tuning the network according to the

class information. Researchers have shown the accuracy of classification can routinely be

increased by a substantial margin by using AE weights for pre-initialisation [65].

2.5 Autoencoders versus other Unsupervised Feature

Extraction Techniques

The techniques for feature extraction accomplish an alteration of the original feature space

to generate a transformed space that is deemed more relevant to the task [31]. Feature

extraction can be defined as the task of construction of linear or non-linear combinations

of the input feature space with the aim of achieving high discriminating strength between

classes.

Principal Component Analysis (PCA) [29, 63] has been one of the mainstream tech-

niques for dimensionality reduction in the ML community. It has been paired with re-

ducing the dimensionality of the data with a basic intuition that the direction having

the maximum variance of the data is the one that has the highest separability strength.

PCA tries to find such orthogonal axes in the dataset in decreasing order of variance.

Thus, the direction with the highest variance is regarded as the first principal axis, the

direction with the second-highest variance is regarded as the second principal axis, and

so on. Usually for a linearly separable problem, an N -dimensional dataset can be re-

duced to lesser dimensions by projecting it on n-principal axes (n < N). However, for

non-linearly separable problems, PCA cannot be implemented straightforwardly. Some

initial variants of PCA were proposed like principal curves [66] (where instead of axes,

the transformation was based on non-linear curves). It was modified to a sophisticated

kernel version called kernel-PCA [67] where a kernel function is used to project the input

feature space to a higher dimensional space and the principal components are obtained

on that space. PCA is of good interest to the present study because AEs are said to
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perform a kind of kernel-PCA (k-PCA).

Apart from the standard PCA, there are other non-linear dimensionality reduction

methods that have gained attention in ML research. t-SNE (t-Distributed Stochastic

Neighbor Embedding) [68] is concerned about retaining the variance of the neighbourhood

points in the dataset. This means points which are nearer or far in the original feature

space will be nearer or far in the transformed feature space, respectively as well. However,

since it is a stochastic method, the results may vary each time the process is run. This

is similar to the stochastic nature observed in AE-based transformations.

Neighbourhood-based methods also include Locally Linear Embedding [69] (LLE). It

involves finding the k-nearest data points of a sample and then approximating the feature

vector of the sample as a weighted linear combination of those k-nearest data points.

The weights that are best able to reconstruct the original feature vector are chosen as

the optimum. This is analogous to the feature extraction process in AEs where we try

to minimise the error of reconstructing the input at the output while passing the data

through a bottleneck layer.

Isomap [70] is a spectral-based non-linear dimensionality reduction approach that at-

tempts to retain geodesic distances in the lower dimension. It begins by constructing

a neighbourhood network and then calculates the estimated geodesic distance between

all pairs of locations. The low dimensional embedding of the dataset is subsequently

discovered using eigenvalue decomposition of the geodesic distance matrix.

There is another dimensionality reduction method called random projections (RP) [71]

which works by projecting the original features onto a set of a randomly chosen set of axes.

This is primarily based on the Johnson-Lindenstrauss lemma which states that for suffi-

ciently high dimensional data there exists a lower dimensional space that approximately

preserves the distances between the samples. The trick here is that a simple random

matrix can be used to project the features. In Gaussian random projection (GRP) [72],
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the random matrix is generated using a Gaussian distribution. Unlike PCA, which tries

to project the features to a direction of maximum variance and is hence computationally

expensive, GRP is very fast and works very well for very high-dimensional datasets.

With all the methods described above, the problem is that there is no guarantee of

the feature transformation to be suitable for a particular dataset. With AE in the initial

layers, an NN-based model can be retrained with labels along with the final classification

layers. Thus, the features extracted by an AE in the pre-training phase can be fine-tuned

to the specific task at hand. Although, for unsupervised tasks or classification models

which do not learn through backpropagation, an AE-based feature extraction will also

be unable to guarantee its suitability. However, for imbalanced datasets, an AE is well

suited even though the class labels are not present. This is shown throughout the different

chapters of the thesis via various comparisons with the aforementioned dimensionality

reduction methods as well as other state-of-the-art techniques which are deemed more

suitable for that particular problem at hand.
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Chapter 3

Stacked Autoencoders for Supervised

Anomaly Detection

3.1 Introduction

Datasets used for PR tasks have several challenges associated with them. The approach

to handle such challenges are not always straightforward and need dedicated algorithms.

There may arise a case when the datasets are severely imbalanced such that some of the

class (or classes) have very few samples and other class (or classes) have comparatively

more samples. Such datasets have their own set of issues which make it difficult to detect

the rare classes efficiently. These rare occurrences are interesting samples which do not

conform to the normal behaviour of the other majority samples. If a model learns the

normal behaviour very well, it will ignore the abnormality in most cases. Moreover, since

the data is not clearly separable, it often needs some sort of transformation to make the

classes separable.

For many complex problems, a linear transformation fails to capture the underlying

manifold for each class in the data. So, we resort to non-linear dimensionality reduction
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techniques. Researchers in [16] have shown that it is a property of AEs to map repetitive

structures to a similar range. In this way, AEs can efficiently capture the class-specific

data manifold while eliminating the redundancy. For problems like anomaly detection,

the redundancies are inevitable as the non-outlier data forms the majority in the data

and may form repetitive structures in the underlying manifold which can often make it

difficult to differentiate the outliers. For reference, Figure 3.1 can give some idea as to

Figure 3.1: An example where the repetitive structures in the underlying manifold of the
non-outlier class can wash out outlier effects.

how the repetitive structures in the underlying manifold can wash out outlier effects. The

red points are inside the region of the helical structure. But, the distribution followed

by the non-outlier class is different from the outliers. In such cases, AEs may find the

repetitive structures in the non-outlier class and can map it in almost the same range

and outliers to a different range. AEs can enhance the outlier detection mechanism in

such cases.
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3.2 Outliers

Outliers or anomalies are certain interesting points in data that do not conform to the

expected or the natural behavior of the dataset. They represent an observation in the

data that is highly unlikely provided a model is built that generates the data [73]. In

most of the practical cases, the model is abstract like that of finding a fraudulent credit

card transaction in millions of genuine transactions. The data may also have multiple

types of outliers like different types of intrusions in a network. One might consider the

intrusions as a single outlier class and approach the problem in a binary or a multi-class

fashion. However, the practicality of such an approach is questionable as intrusions are

highly diverse and may have different reasons to appear in the data. There are many

such cases which make single type outlier detection and multiple type outlier detection

a crucial part of data analysis process. Figures 3.2 and 3.3 show the two approaches. In

the former one, the diversity of the outlier types are not considered and in the latter, the

diversity of the outlier types are considered.

Figure 3.2: Multi-class single outlier scenario

There is however a bottleneck that most of the algorithms get stuck at. Chances of
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Figure 3.3: Multi-class multiple outlier scenario

finding an outlier in any dataset is extremely rare. In most of the cases, the number

of samples from the outlier class is even below 10% of the total number of samples in

the entire training set. Identifying them becomes one of the difficult problems in data

analysis [74]. Sampling techniques are usually not preferred for outlier detection cases.

Oversampling a minority (or an outlier) class or undersampling a majority (or the inlier)

class usually affects the generalisation capability [75]. Moreover, the extreme imbalance

(below 10%) is a major challenge for many algorithms. This is because the presence of

an outlier is often misleading to algorithms like clustering, classification or regression.

There may also be cases where the outliers may arise due to different reasons and may

have diversity among them. When there are multiple types of outliers in the dataset,

each having a different property, taking all the outlier classes as a single class may not

make any sense. This differs from a multi-class imbalance problem as in this case the

outliers consist of less than 10% of the entire dataset.

Outlier classes and under-represented classes need to be clearly differentiated in that

case. Those classes which have rare occurrences in the data (say 10% or less) and do not

comply with the normal observations are to be treated as outliers; whereas the classes
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which are just under-represented (more than 10% but lesser in comparison to the majority

class) should be treated as a normal class in a multi-class dataset. Also, we need to

consider the fact that there may be more than one outlier classes originating out of

different causes. So, there will be three types of datasets handled by the proposed system:

(i) Datasets which have only two classes and one of them is the outlier class.

(ii) Datasets which have multiple classes and one of them is the outlier class.

(iii) Datasets which have multiple classes and some (more than one) of them are the

outlier classes.

The classical Random Forests is capable of handling such a situation. This is due to

the decision tree technique, it is based upon, which isolates the anomalous observations

into small leaves. However, the method again suffers from the presence of redundant

features and often cannot capture the underlying manifold for the inlier class. So, we

resort to non-linear dimensionality reduction techniques to extract more useful features.

Deep neural networks (DNNs), being one of the state of the art techniques, are still being

researched to give an answer to the problem of outlier detection. Since, a normal multi-

layer perceptron is affected by the masking and swamping effects of outliers, it is difficult

for any feedfoward multi-layer network to handle outliers. However, these methods can

only be used for datasets with a substantially larger number of samples. DNNs being an

extension of the classical neural networks, also suffer from similar masking and swamping

effects of outliers. In contrast, models like radial basis functions (RBF) neural networks or

probabilistic neural networks (PNN) are structurally more suitable for outlier detection.

3.3 Contribution

This chapter proposes and investigates a new outlier detection framework inspired by the

projection methodology through deep learning. It is shown analytically that the proposed
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method alleviates some of the drawbacks of the several existing standard approaches.

We have done multiple experiments on several datasets to prove whether the non-linear

transformation given by the AEs or the probabilistic networks used make the method

better.

The contributions are as follows:

• A novel outlier detection framework using the projection methodology of stacked

autoencoders and probabilistic neural networks.

• An efficient technique to identify outliers in both single type outlier as well as

multiple type outlier dataset.

• This chapter also highlights how the use of deep stacked autoencoders can enhance

the performance of standard outlier detection techniques.

3.4 Related works

The existing outlier detection methods [76] make different assumptions and hence differ

in the way they detect the outliers. Researchers have proposed an abundance of out-

lier detection techniques [77, 78]. Standard outlier detection techniques mostly include

distance-based methods [79, 80], and density-based methods [81]. The problem of outlier

detection is usually handled in three types of learning scenarios:

(i) Unsupervised: Learning only from the inlier class (no information of the outlier

class is provided),

(ii) Supervised: Learning from the inlier as well as outlier classes, and

(iii) Semi-supervised: Learning only from the inlier class and some unlabeled data (which

may or may not be outliers).

Unsupervised methods do not use any information about the outlier class. They include
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one class classifiers [82, 83], density-based methods [79, 80], clustering based methods [84]

etc. One class classifiers try to build a boundary around the inlier class and any sample

that lies outside the boundary is classified as an outlier. Density based methods find the

density at each region in the feature space and when the density is found to be low, the

region is decided to belong to the outliers. Clustering-based approaches [84] identify an

object as an outlier if it does not belong to any cluster or if the size of the cluster is

too small. All the unsupervised methods are advantageous in the sense that they do not

need any outlier information and are hence robust. However, it is to be noted that most

of these methods usually set at the outliers to a single group. Supervised methods [78]

have an edge on unsupervised methods since they use the outlier information to refine

their boundaries. However, unsupervised methods may catch any new anomaly that the

supervised method may not as it has not been trained upon that particular type of outlier.

Semi-supervised methods [36] are more elegant than the former two where they make use

of unlabelled data and train only on inlier data. There is however a claim that using a

very small fraction of outliers in the training data is always good for the flexibility of

boundaries [83]. Hence, in this chapter, we have considered only the supervised outlier

detection methodologies for a fair comparison with the proposed method.

The most popular of the supervised outlier detection algorithms is the classic and

simple k-nearest neighbor (kNN) [85]. The popular LOF (local outlier factor) method

[78, 86] also makes use of kNN search for each point. It assigns an LOF score to each

sample in the dataset irrespective of the data skewness. However, most of the state of

the art nearest neighbour based outlier detection methods [87, 88] are sensitive to the

parameter k. It means that small change in k can lead to higher misclassification rates

[89]. So, we have considered the basic kNN only for comparison purposes as the state of

the art nearest neighbour based outlier detection methods are basically based on kNN

itself.

Support vector machines (SVMs) have also been extended to one-class learning [90].
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Support Vector Data Description (SVDD) [83] has been introduced as a generative ap-

proach to the standard SVM. The idea is to build a hypersphere that encompasses all the

inlier data and the samples that lie outside are considered outliers. It was shown [83], that

SVDD performance are almost comparable to Gaussian, Parzen density estimators and

Nearest Neighbor methods. However, it is noteworthy that methods like SVDD (which

are strictly one class classifiers) assume an inevitable presence of a fraction of outlier

samples in the legitimate non-outlier data [83] to make the decision boundary flexible.

However, SVMs are not suited for datasets with large number of samples and take a long

time to train. Taking linear kernels may reduce the time complexity, but it makes no

sense to use a linear kernel for datasets that have high complexity.

The iForests (Isolation Forests) method [91] has also gained reputation in the outlier

detection community. This strategy is exceptionally helpful and is unique compared to

every single existing technique. It isolates the outliers considering them to be far from

the rest of the observations. It builds up a random forest model with a few decision

trees using only a small fixed sized sub-samples, irrespective of the size of the dataset.

Therefore, when a forest of such small random decision trees collectively give shorter

path lengths for any particular sample, it tends to be an outlier. However, the method’s

inability to detect outliers in datasets with a high percentage of irrelevant features causes

it to fail in most of the cases. It was experimentally found in [55] that dimensionality

reduction enhances the classification performance of such methods to a much significant

level.

Deep neural networks (DNNs) are being extensively researched to give an answer to

the problem of outlier detection [36]. Since, a normal multi-layer perceptron is affected

by the masking and swamping effects of outliers, it is difficult for any feedfoward multi-

layer network to handle outliers. Researchers have been using self organising maps to

handle such problems in unsupervised fashion [92]. Recently, outlier detection have been

achieved using variational AEs [35]. However, these methods can only be used for datasets
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with a substantially larger number of samples. Also, DNNs being just an extension of the

classical neural networks also suffer from similar masking and swamping effects of outliers.

In contrast, networks like radial basis functions (RBF) neural networks or probabilistic

neural networks (PNN) are structurally more suitable for outlier detection [93].

There are many methods which can detect outliers [94] in a multi-class dataset. These

methods assume that all the outliers should always belong to a single class, though practi-

cal data may have different types of outliers arising out of different causes. Such methods

can therefore be regarded as “multi-class single outlier type detection techniques”. We

have introduced the problem in a different way where the outlier class too can have mul-

tiple sub-types along with the multiple types of non-outlier classes. Outlier classes and

under-represented classes need to be clearly differentiated in that case. Those classes

which have rare occurrences in the data (10% or less) and do not comply with the normal

observations are to be treated as outliers; whereas the classes which are just under-

represented (more than 10% but lesser in comparison to the majority class) should be

treated as a normal class in a multi-class dataset. Also, we need to consider the fact that

there may be more than one outlier classes originating out of different abnormal causes.

The classical Random Forests [95] is capable of handling such a situation. It is due to

the decision tree technique, it is based upon, which isolates the anomalous observations

into small leaves.

The proposed method uses a non-linear transformation by stacked AEs [96] and then

uses an ensemble of probabilistic neural network to model the outlier class. In doing so,

it can efficiently identify outliers in both single type outlier dataset as well as multiple

type outlier dataset with better performance than the standard methods used. The

proposed method, hence, falls into a category of multi-class multiple outlier type detection

technique. There is a lack of dedicated methods in the literature that can handle the

outlier detection problem in both multi-class single outlier type detection and multi-class

multiple outlier type detection.
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3.5 Proposed Method

We have proposed a novel outlier detection technique using deep stacked AEs and prob-

abilistic neural networks. Such a system is shown to provide better results than the

state of the art techniques. The proposed method efficiently handles both the single type

outlier cases as well as multiple type outlier cases. This section discusses the concepts

and strategies employed in the proposed method. In sections 3.5.1 and 3.5.2 we briefly

explain the working of a probabilistic neural network and the AE networks. In section

3.5.3 we introduce the proposed method and the various strategies involved to perform

efficient outlier detection.

3.5.1 Probabilistic Neural Networks

A Probabilistic Neural Network (PNN) is a representation of a statistical algorithm called

Kernel Discriminant Analysis (KDA). The operations are organized into a multilayered

feedforward network with mainly three layers namely the input, pattern and summation

layers [Figure 3.4]. (In some cases, there is also an output layer, which we have omitted

in our model, as we are interested in the immediate class scores rather than hard class

labels.) In a way it estimates the probability density function (pdf ) of classes by using

the samples of the training set. In the pattern layer, each node calculates the pdf for

each training sample according to equation 3.1.

g(x) =
1

σ
F(

x − xi

σ
) (3.1)

where x is the unknown (input), xi = ith sample, F() is the weighting function and

σ is the smoothing parameter. In the pattern layer, the nodes (corresponding to the

training pattern) are grouped according to the class of the training sample. A single

group accounts operation for the next summation node.
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Figure 3.4: A schematic diagram of probabilistic neural network

If there are C classes, the kth summation node sums the values received from the

pattern nodes in the kth class, called mixed Gaussians or Parzen windows. The sums are

defined by

fk(x) =
1

nσ

nk∑
i=1

F(
x − xi

σ
), (3.2)

where nk is the number of samples in the kth class.

The output from the kth node in the summation layer corresponds to the kth class. As

newer training patterns arrive, the estimate of fk(x) is refined without the need of any
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retraining. As the number of samples increase, each summation node in the PNN tends

to get closer to the actual underlying class density functions.

Any input vector x is put through all the functions fk(x) and the maximum a posteriori

probability (MAP) value of all the fk(x) decides the class.

Usually, the weighting function F() is chosen to be a radial basis function (RBF) (also

called a kernel function). The radial basis function is so named because the radial distance

is the argument to the function. The farther a training sample is from the new unknown

point, the less influence it has. A PNN is insensitive to outliers and is hence a very good

candidate for outlier detection. PNNs also have an added benefit as new patterns arrive,

they are stored into the net. The network improves its generalization and the decision

boundary can get more complex. If the number of training patterns become large, the

value of σ can be reduced without retraining the network. It was shown by researchers

[83] that in case of high sample size, Parzen density estimators are to be preferred over

SVMs. Since, each subnetwork of a PNN act as the Parzen density estimator for the

particular class, it can easily be used for outlier detection purposes.

However, it was observed that use of PNN alone could not provide better results.

Moreover, similar to kNN, such a system has a large storage requirement. We have tried

to tackle such a high storage requirement by dimensionality reduction using stacked AEs

(SAE).

3.5.2 Autoencoders

An autoencoder (AE) is a type of multi-layer neural network that is trained to reconstruct

the input as closely as possible in its output nodes [Figure 3.5].

While stacking the AEs we use the encoder part and the hidden nodes become the

input to the next AE network. If the nodes in the hidden layers are lesser in number,

they represent a reduced representation of the input and are hence called under-complete
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Figure 3.5: A schematic diagram of an under-complete autoencoder

AEs. Such a concept of reduced representation, makes it a natural approach in outliers

detection. The basic motivation is that usually the outliers are much harder to be ac-

curately represented in such reduced representation and hence stand out of the normal

data distribution.

3.5.3 Stacked Autoencoder Probabilistic Neural Network (SAE-

PNN)

Most of the outlier detection methods, employ semi-supervised [77] or unsupervised learn-

ing [78, 97]. The semi-supervised models are usually trained using only the inlier class

because abnormal or outlier points occur rarely and hence are not easily available. Out-

liers being only a very small fraction of the data, can never be sufficient enough to

construct a binary classifier. However, they can be used to efficiently refine the decision

boundary that separates the inlier samples. In the proposed method, we have trained the
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stacked AEs using both the labelled as well as unlabelled samples. However, for the final

training of the ensemble of PNNs, we have used a tiny fraction of the labelled outlier

samples along with the majority of the inlier samples. This inclusion of outliers in the

training set was done to incorporate a refinement of the model. In case of outlier detec-

tion, we need to make a tradeoff between generalization (keeping the inliers inside the

decision boundary) and specialization (excluding the outlier patterns outside the bound-

ary). Most of the models used for outlier detection cannot specialize from data unless

they are given an internal bias. The proposed model alleviates these pitfalls. However,

there were other factors too which needed to be considered.

Figure 3.6: A diagrammatic representation of the proposed framework. (The dashed lines
suggest that the decoder part of the autoencoder was not used after feature extraction
at each stage.)
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The peak of the radial basis function in a PNN is always centered at the point it

is weighting. The smoothing parameter (σ) determines the spread of the RBF. The

primary work of training a PNN is selecting the optimal sigma values to control the

spread. Extremely large values of σ cause the model to under-fit and extremely small

values cause the model to over-fit. However, it was seen that for imbalanced datasets,

lower values of sigma gave lower false alarms and higher values of sigma produced lower

misses. Since, both the factors are important in case of efficient anomaly detection, it

motivated us to use an ensemble of PNNs, each having a different sigma value, to get the

best of the both.

Suppose the outlier set is O and the inlier set is I and the original training dataset is

S. Then,

O ∪ I = S (3.3)

The set I is randomly divided into N subsets such that

I1 ∪ I2...IN = I (3.4)

Here, N is the number of PNNs we have used in the ensemble. Each of the ith PNNs is

trained with entire set O and the set Ii. For multi-class multiple outlier type dataset,

the majority class training samples are divided into N subsets and the minority classes

as well as the outlier classes are taken as a whole.

However, such methods perform better when any dimensionality reduction has been

performed on the datasets [55]. We know that AEs provide a non-linear transforma-

tion and perform dimensionality reduction efficiently [19]. It was empirically found that

stacking more (usually greater than two) number of AEs in the feature extraction stage

resulted in better outlier detection rates. Results from section 3.6.3, present this claim.

A diagrammatic representation of the proposed framework has been shown in Figure 3.6.
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The proposed SAE-PNN model consists of two parts. The first part is a pre-trained

stacked autoencoder and the second part is an ensemble of probabilistic networks. The

output from the SAE is fed to the ensemble of PNNs. The ensemble technique needs

a decision merging function which determines the overall decision jointly made by the

models in the ensemble.

The details of the different modules are provided as follows.

3.5.3.1 Stacked Autoencoder

Let us consider after feature extraction using the stacked AE (SAE), each feature vector

gets a transformation SAE(x), where,

SAE(x) = E1(E2(...Eh(x))). (3.5)

Here Ei() represents the encoder function at the ith stacked AE and h represent the

number of hidden layers used in SAE.

3.5.3.2 Probabilistic Neural Network

The intermediate RBF scores of x belonging to each of the k classes in the nth PNN was

given according to

lnk ((x)) = fn
k (SAE(x)). (3.6)

3.5.3.3 Merging Function

If there were N PNNs used in the ensemble, the final RBF score x belonging to each of

the k classes in the entire ensemble could be obtained according to

lk(x) =
N∑

n=1

(lnk ((x))). (3.7)
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Now, the classification scores of x belonging to each of the k classes is calculated as

sk(x) =
lk(x)−min(lk(x))

max(lk(x))−min(lk(x))
. (3.8)

3.5.3.4 Class Probability

The probability of x belonging to the kth class is obtained as,

pk(x) = softmax(sk(x)). (3.9)

The node that gives the maximum probability is the true class label for the unknown

sample x.

3.6 Experiments

This section is committed to illustrate the abilities of the proposed method in various

situations of outlier detection. We have done some thorough experiments as to how the

results vary with values of σ and the depth of the SAE network used. We have given

a comparative analysis of the performance of our proposed method with some of the

standard methods used in outlier detection both with SAE and without SAE to clearly

study the effects of using SAE in outlier detection performance. Finally, we also show

that the proposed method is capable of handling multiple outlier type dataset.

For fair comparison, the value of k in k-NN was chosen using cross-validation. The

number of predictors for both iForests and Random Forests were taken at a default value

of 100. The SAE was trained using ‘adadelta’ optimiser and mean squared error was

used. The model was pre-trained for 200 epochs.
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3.6.1 Datasets used

The datasets used in the experimental analysis of the proposed method are all highly

skewed in nature. Table 3.1 shows the various single outlier type datasets used and their

properties. The main complexity of each of the datasets lies in the fact that the outlier

class is less than 10% of the total samples. We have used 10 fold cross validation to

analyse the performance on each of these datasets.

Table 3.1: List of single outlier type data sets used for experimental purpose

Dataset Number Number Percentage
of of of

Features Samples Outliers
PenDigits [98] 16 6,870 2.27%

OptDigits [99] 64 5,216 3%

Forest 10 286,048 0.9%
Cover [100]

MNIST [101] 100 7,603 9.2%

HTRU2 [102] 8 17898 9.2%

SatImage-2 [99] 36 5,803 1.2%

Credit 29 284,807 0.172%
card [103]

Speech [104] 400 3,686 1.65%

To analyse the performance of the proposed method on multiple outlier type datasets,

we have used four highly skewed datasets namely Statlog (Shuttle), Page Blocks, ANN-

Thyroid Disease and Wine Quality (White) from the UCI Machine Learning repository.

For the Statlog (Shuttle) and ANN-Thyroid Disease datasets, the training and the testing

sets were already separated. For the other two datasets, we have used 70% for training

and 30% for testing, so that the outlier fraction remains the same in both the training

and the test set.
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Table 3.2: Number of features and samples in each class for multiple outlier type datasets

Datasets
Statlog Page ANN Wine

(Shuttle) Blocks Thyroid Quality
Disease (White)

No. of features 9 10 21 12
Class 1 45586 (78.6%) 4913 (89.8%) 93 (2.47%) 20 (0.41%)
Class 2 50 (0.09%) 329 (6%) 191 (5.06%) 163 (3.32%)
Class 3 171 (0.29%) 28 (0.5%) 3488 (92.47%) 1457 (29.74%)
Class 4 8903 (15.35%) 88 (1.6%) 2198 (44.9%)
Class 5 3267 (5.63%) 115 (2.1%) 880 (17.96%)
Class 6 10 (0.017%) 175 (3.57%)
Class 7 13 (0.023%) 5 (0.1%)

Table 3.3: Confusion matrix for the non-outlier class

Actual Class

Predicted Class
Inliers Outliers

Inliers Hit False Alarms
(True Positive) (False negative)

Outliers Missed Alarms Outlier Hit
(False Positive) (True Negative)

As can be seen from Table 3.2, many classes constitute less than 10% of the data and

are therefore rarely occurring. However, each of these classes have a different reason to

appear in the data. For example, in the Page Blocks dataset there are five classes which

represent text, horizontal line, graphic, vertical line and picture, respectively. Majority

of the samples belong to text, but the other four classes vary in properties and are not

similar to each other to be put into a single outlier class. In this case, there are multiple

classes which do not conform to the majority (which in this case is ‘text’) of the data .

3.6.2 Dependence on σ

For any outlier detection problem, the confusion matrix for the non-outlier class looks

like FNR (false negative rate) suggests the rate as to how often the classifier predicts a
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sample as an outlier when actually it is not. It is given by

FNR =
False Negatives

True Positives+ False Negatives
. (3.10)

TNR (true negative rate) suggests the rate as to how often the classifier predicts a sample

as an outlier when actually it is an outlier. It can be represented as

TNR =
True Negatives

False Positives+ True Negatives
. (3.11)

Any good outlier detection method should be able to give high TNR and low FNR. So,

we can say, the detection rate (DR), where

DR = (1− FNR)× TNR (3.12)

is high. It is seen (Figure 3.7) that the value of σ has an optimal region (shaded by green)

with respect to the DR curve. Within that region of σ, it is seen that for imbalanced

datasets, lower values gave lower false alarm rates (FNR) and higher values gave a lower

outlier miss rates (FPR) so that the detection rate is quite high. Figure 3.8 shows how

the ensemble of PNNs each having a different sigma value helps us get the best of both.

In order to choose the sigma value for each PNN, we have first noted down the plateau

region of the sigma for a single PNN as shown in Figure 3.7. Now, if there are N PNNs,

the plateau region of sigma is divided equally into N equispaced values. Each of these

values are then taken as sigma for each of the N PNNs.

3.6.3 Dependence on number of autoencoders stacked

In this section we have shown an empirical investigation of the effect of stacking more

(usually greater than two) number of AEs in the feature extraction stage. Table 3.4 gives

the network specifications of stacked AEs used for each dataset. To provide a comparison
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Figure 3.7: Variation of various performance measures (TNR, FNR and (1 − FNR) ×
TNR) with respect to σ. (Calculations shown are for OptDigits dataset with the autoen-
coder configuration 64-10-10-10-10-10-10)

regarding the use of AEs with multiple PNNs against using only multiple or single PNNs

in the outlier detection problem, we have given a curve that depicts the variation of the

ROC-AUC (Area Under the Curve of Receiver Operating Characteristics) with respect

to the number of hidden layers. Figure 3.9 shows that the use of more hidden layers in

the AEs have significantly enhanced the performance. However, it is also seen that there

is an optimal depth beyond which the performance has decreased too. This suggests that

use of deep neural networks certainly enhances the performance of the model, but going

too deep is not always the best option.
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Figure 3.8: Variation of the detection rate ((1− FNR)× TNR) with respect to number
of PNNs used. (Calculations shown are for OptDigits dataset with the autoencoder
configuration 64-10-10-10-10-10-10)
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Figure 3.9: Variation of the ROC-AUC with respect to the number of hidden layers used.
(Calculations shown are for OptDigits dataset where the number of hidden neurons in
each layer is 10)
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Table 3.4: Autoencoder configuration used for each dataset

Dataset Number of Hidden Layers Nodes in each hidden layer
PenDigits 9 5

OptDigits 6 10

Forest 9 4
Cover

MNIST 4 20

HTRU2 16 7

SatImage-2 20 10

Credit 12 5
card

Speech 3 100

3.6.4 Performance of the proposed method on single outlier type

datasets

This experiment reveals the comparison of outlier detection performance of the proposed

method with some of the popular methods in literature. We have shown how the use

of stacked AEs enhances the performance of those methods too. Table 3.5 shows a

comparative analysis for the datasets mentioned in Table 3.1.

In all the datasets, the proposed method gives the highest ROC-AUC [73]. In majority

of the datasets, the F-Score [105] and G-Mean [105] of the proposed method is competitive

with the best performance.
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Table 3.5: Performance of different methods on single outlier type data sets

Dataset Performance SAE-PNN SAE-kNN SAE- PNN kNN iForests
Metrics iForests

(Proposed)
ROC-AUC 0.9923 0.9619 0.9370 0.8880 0.9848 0.8699

PenDigits F-Score 0.9656 0.9563 0.7339 0.6917 0.9387 0.7268
G-Mean 0.9659 0.9563 0.7517 0.7093 0.9409 0.7368

ROC-AUC 0.9684 0.9000 0.9056 0.8905 0.8467 0.6072
OptDigits F-Score 0.8951 0.9008 0.8925 0.8352 0.9077 0.6423

G-Mean 0.8976 0.9008 0.8925 0.8368 0.9101 0.6433
ROC-AUC 0.9324 0.8118 0.9205 0.9054 0.8453 0.7823

Forest Cover F-Score 0.9335 0.8931 0.7377 0.9216 0.9131 0.6393
G-Mean 0.9335 0.8977 0.7527 0.9244 0.9160 0.6503

ROC-AUC 0.9454 0.9381 0.9414 0.8292 0.9366 0.6786
MNIST F-Score 0.9453 0.9362 0.9410 0.8254 0.9350 0.6782

G-Mean 0.9454 0.9372 0.9412 0.8273 0.9358 0.6784
ROC-AUC 0.9262 0.8059 0.9103 0.9216 0.8233 0.7754

HTRU2 F-Score 0.9209 0.8723 0.9040 0.9103 0.8849 0.8015
G-Mean 0.9210 0.8753 0.9040 0.9104 0.8873 0.8019

ROC-AUC 0.9589 0.8833 0.9537 0.8661 0.9167 0.9564
SatImage-2 F-Score 0.9432 0.9372 0.7444 0.9088 0.9279 0.7247

G-Mean 0.9433 0.9389 0.7630 0.9099 0.9303 0.7469
ROC-AUC 0.9421 0.8821 0.9153 0.8000 0.8475 0.9008

Credit card F-Score 0.7760 0.9249 0.7269 0.7896 0.9078 0.6510
G-Mean 0.7884 0.9260 0.7428 0.7975 0.9101 0.6776

ROC-AUC 0.8769 0.6797 0.7448 0.7738 0.5400 0.4931
Speech F-Score 0.8007 0.7905 0.6644 0.6329 0.6975 0.4959

G-Mean 0.8038 0.8012 0.6683 0.6437 0.7292 0.4959
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3.6.5 Performance of the proposed method on multiple outlier

type dataset

To validate the efficiency of the proposed method on multiple outlier type dataset, we

have used four highly skewed datasets.

Table 3.6: Confusion matrix for SAE-PNN

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1302 24 40 1 36
Class 2 47 90 5 1 3
Class 3 1 0 6 0 16
Class 4 7 1 12 34 1
Class 5 0 0 0 0 16

Table 3.7: Confusion matrix for SAE-kNN (k=35)

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1389 5 0 1 8
Class 2 73 73 0 0 0
Class 3 5 0 0 1 17
Class 4 43 1 0 11 0
Class 5 4 0 0 0 12

Table 3.8: Confusion matrix for SAE-Random Forests

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1388 2 0 1 12
Class 2 77 67 0 1 1
Class 3 6 0 1 2 14
Class 4 35 0 0 20 0
Class 5 5 0 0 0 11

To show the efficacy of the proposed method, we have also provided the comparison of

confusion matrices obtained using each method for the Page Blocks dataset (Tables 3.6

- 3.11).

It can be seen from Figure 3.10 that the proposed method can detect multiple types of

outliers as well as multiple types of inliers in the data simultaneously. It is evident from
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Table 3.9: Confusion matrix for PNN

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1043 4 277 5 74
Class 2 48 62 12 19 5
Class 3 0 0 10 0 13
Class 4 0 0 8 45 2
Class 5 0 0 0 0 16

Table 3.10: Confusion matrix for kNN (k=35)

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1396 4 0 0 3
Class 2 81 65 0 0 0
Class 3 20 0 0 0 3
Class 4 52 0 0 0 3
Class 5 11 0 0 0 5

Table 3.11: Confusion matrix for Random Forests

Actual Class

Predicted Class
Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1089 37 0 255 22
Class 2 40 102 0 2 2
Class 3 0 0 0 18 5
Class 4 4 1 0 49 1
Class 5 3 0 0 8 5

Table 3.12: Performance of different methods on multiple outlier type data set

Dataset Performance SAE-PNN SAE-kNN SAE- PNN kNN Random
Metrics Random Forests

(Proposed) Forests
ROC-AUC 0.9713 0.8988 0.9176 0.9326 0.8988 0.8876

Statlog F-Score 0.9342 0.9224 0.9317 0.8459 0.9224 0.8968
(Shuttle) G-Mean 0.9349 0.9228 0.9318 0.8496 0.9228 0.8969

ROC-AUC 0.9554 0.8276 0.8139 0.8328 0.8239 0.8501
Page F-Score 0.6400 0.5392 0.6226 0.6068 0.3897 0.4550

Blocks G-Mean 0.6414 0.5422 0.6388 0.6107 0.3922 0.4603
ANN- ROC-AUC 0.9951 0.9929 0.9921 0.8715 0.8630 0.9923

Thyroid F-Score 0.8645 0.9041 0.9075 0.6502 0.6563 0.9464
Disease G-Mean 0.8685 0.9041 0.9076 0.6548 0.6747 0.9465
Wine ROC-AUC 0.7900 0.7172 0.7072 0.7867 0.7131 0.7050

Quality F-Score 0.3527 0.2246 0.3884 0.4143 0.2272 0.3965
White G-Mean 0.3544 0.2246 0.3917 0.4165 0.2272 0.3990
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Figure 3.10: ROC plots of the 7 classes for the Statlog (Shuttle) by the proposed method.

Table 3.7 that most of the classifiers failed to capture Class 3 (which belongs to only

0.5% of the data). Since, for kNN, k=35 gave the highest ROC value, we have reported

the results taking k=35 only for the comparison of confusion matrices. A quantitative

comparison have also been provided in Table 3.12 to show the effectiveness of the proposed

method in the multi-class multiple type outlier detection problem.

3.6.6 Comparison with other feature extraction methods

The above section showed how the use of AE enhanced the results of outlier detection

in both single type and multiple type outlier detection tasks. However, there also needs

to be a comparison on why AE was chosen as the feature extractor while there are other

popular existing non-linear feature extraction methods in the literature like k-PCA, t-

SNE, LLE, Isomap, GRP (refer section 2.5) etc. Table 3.13 shows a comparison between

the performance of different feature extraction methods keeping the same number of

PNNs used for classification for each dataset. It was seen that models built by pairing
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other feature extraction methods with the ensemble of PNNs mostly failed to recognise

the outliers. However, use of AE was detecting outliers fairly well.

Table 3.13: ROC-AUC of different feature extraction methods paired with ensemble of
PNNs on single outlier type datasets

Dataset SAE k-PCA t-SNE LLE Isomap GRP
PenDigits 0.9923 0.7909 0.9672 0.5018 0.7498 0.9322
OptDigits 0.9684 0.5215 0.9434 0.5021 0.5269 0.9599

ForestCover 0.9324 0.5 0.7396 0.5374 0.9325 0.9113
MNIST 0.9454 0.7513 0.8794 0.5004 0.7431 0.7987
HTRU2 0.9262 0.5 0.9052 0.5157 0.9194 0.916

SatImage-2 0.9589 0.5 0.9248 0.5576 0.9093 0.7865
Credit Card 0.9421 0.5661 0.7355 0.5095 0.8463 0.8672

Speech 0.8007 0.5185 0.748 0.5222 0.5317 0.5638

3.7 Statistical comparison of the methods

We have performed a paired t-test to compare the performance of each classifier with the

other with 95% confidence level (significance level α = 0.05 for two tailed distribution).

It can be seen that use of AEs have significantly improved the performance. For any two

classifiers, let ci1 and ci2 be the respective performance scores (in our case, the value of

ROC-AUC) on the ith out of the N data sets (here N=8). Then, the difference for the ith

dataset will be,

di12 = ci2 − ci1. (3.13)

Now, the average difference will be,

d̄12 =
1

N

N∑
i=1

di12. (3.14)

Now, the t-value for the two classifiers will be,

t12 =
d̄12

σ12/
√
N
, (3.15)
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where, where σ12 is the standard deviation of the differences between the two classifiers

over the N datasets.

Table 3.14: t-values for each pair of classifiers over the 8 single outlier type datasets.

SAE-PNN SAE-kNN SAE-iForests PNN kNN iForests
SAE-PNN 4.01 2.55 5.13 2.70 3.73
SAE-kNN -2.63 -0.05 0.72 2.12

SAE-iForests 2.25 2.37 3.56
PNN 0.41 1.93
kNN 2.08

iForests

This t-statistic will be distributed according to the t-distribution with N − 1 degrees

of freedom (we have considered the one-tailed distribution in this case.) Since, we are

comparing over 8 datasets (i.e. N = 8), our degrees of freedom will be 8 − 1 = 7.

(We have omitted the results for the multiple outlier type datasets since the method

iForests was replaced with Random Forests in that case.) The corresponding p-values

are provided in Table 3.15. Taking the Bonferroni [106] correction into consideration, we

get the Bonferroni corrected critical p-values as

pcorrectedcritical = 1− (1− pcritical/nt)
nt , (3.16)

where, nt denotes the number of comparison tests made. In our case, since fifteen com-

parisons were made, nt = 15. If we set our critical value of p to pcritical = 0.025, (which

corresponds to a 95% confidence interval for one-tailed tests) then the Bonferroni cor-

rected critical value will be pcorrectedcritical = 0.025/15 = 0.024710429.

If the p-value for the two classifiers p12 is greater than the critical value pcorrectedcritical =

0.024710429, we reject the null hypothesis. We can see from Table 3.16 that the use of

stacked AEs clearly enhanced the performance to a significant level. As both the methods

kNN and PNN have identical hypotheses, the performance of a PNN classifier and a kNN

classifier is comparable. Using SAE with iForests gave better results than using iForests
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Table 3.15: p-values for each pair of classifiers over the 8 single outlier type datasets.

SAE-PNN SAE-kNN SAE-iForests PNN kNN iForests
SAE-PNN 0.002553 0.019095 0.000679 0.015268 0.003677
SAE-kNN 0.016995 0.481958 0.246100 0.035730

SAE-iForests 0.029731 0.024950 0.004629
PNN 0.347259 0.047567
kNN 0.037999

iForests

Table 3.16: Significance results for 95% confidence (here 1 means significant and 0 means
non-significant)

SAE-PNN SAE-kNN SAE-iForests PNN kNN iForests
SAE-PNN 1 1 1 1 1
SAE-kNN 1 0 0 0

SAE-iForests 0 0 1
PNN 0 0
kNN 0

iForests

alone.

However, using stacked AEs with kNN did not give a significant improvement over kNN.

Classification with kNN in the original feature space proved out to be comparable with

the classification in the space of features extracted by SAE. Interestingly though, SAE-

kNN could outperform SAE-iForest where kNN and iForests were comparable. Using an

ensemble of PNNs in the feature space extracted by the SAE proved to be the best. The

proposed method outperformed every other method. We can therefore say that non-linear

transformations given by the AEs are helpful for highly imbalanced datasets for outlier

detection.

3.8 Conclusion

In this chapter, we have proposed a supervised setting of outlier detection using deep

learning in both single type outlier as well as multiple outlier type datasets. We have

used stacked AEs as feature extractors and then have used a set of PNNs to classify
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the outliers and inliers in the data. Such a system is shown to perform better than the

existing methods for both multi-class single type outlier detection as well as multi-class

multiple type outlier detection problems.

As we are dealing with supervised learning models, in order to have a fair comparison,

we only considered methods that use outlier information as well. We would like to explore

support vector data description (SVDD) for multi-class multiple type outlier detection

scenario in future studies. The proposed method of multiple outlier type detection may

be extended in the direction of unsupervised methods too, which currently put every new

outlier to a single outlier class only.

We can conclude that the use of stacked AEs clearly enhances the performance of all the

methods. However, the proposed method outperforms all other methods. Experiments

have also revealed that going deep (or using more hidden layers) in the feature extraction

stage provided an enhancement of performance of the proposed method. But, too much

depth degrades the performance again.
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Chapter 4

Deep Feature Extraction for Change

Detection using Unsupervised and

Active Learning

4.1 Convolutional Autoencoder

Convolutional autoencoders (CAE) are another types of AEs which are efficient for image

data. They have the same task as an ordinary AE: to reconstruct the input. In chapter 2,

the concept of a CAE is already described. Usually in the middle code layer, a standard

undercomplete convolutional autoencoder (CAE) would have the maximum number of

filters and the size of the image will be reduced. If there are multiple (more than two)

layers of non-linearity (in this case convolution layers are the non-linear operations),

then the CAE is termed as a deep convolutional autoencoder (DCAE). This is depicted

in Figure 4.1. The number of filters in each layer successively increase in the encoder part

till the middle layer, and then the number of filters in each layer successively decrease in

the decoder part. This bottleneck allows the network to extract some interesting features

which are very compact descriptors of the input image. To understand the efficiency
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Figure 4.1: Architecture of a standard deep convolutional autoencoder.

of a DCAE in supervised setting, we have explored the idea of trigger detection as an

extension to supervised learning of hand gestures in the American sign language.

4.1.1 Application as a Feature Extractor in Trigger Detection

Recently the technique of automatic speech recognition (ASR) [107] has gained significant

reputation as an important part of artificial intelligence. As one of the most prominent

applications, automatic trigger-word (also known as wake-up-word) recognition has devel-

oped. These methods are also known as automated voice trigger systems. Such systems

play an important role in human-computer interaction. These systems act as a contact-

less switch instead of the traditional push-to-talk mode and appropriately fit the recent

multitasking lifestyle.

However, these methods being voice activated are inefficient for people who are in-

capable of speech or are in some silence zone. Touch based trigger gesture detection

has been developed and can be seen to be used in mobile phones, laptops, etc. How-

ever, contactless trigger gesture detection still lacks a substantial research. Therefore, a

computer vision based contactless switch should be developed so that it could be used

universally without any difficulties. Recognition of hand gestures can be done in two

ways. People use electromagnetic gloves and sensors which capture the features like hand

shape, movements and orientation of the hand and try to figure out the shape. How-

ever, such method is not cost effective as people cannot always afford the gloves or the
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sensors. Therefore, researchers from computer vision have developed gesture recognition

systems, which involves image processing tasks [108]. Researchers have recently diverted

their attention to machine learning for such gesture recognition tasks [109]. However,

the literature lacks a development towards a trigger detection system using such gesture

recognition techniques.

We have developed a trigger detection system [49] for the ASL by making use of

Convolutional Autoencoder pre-initialisation. By trigger detection, we aim at building

a customisable contactless switch that can turn ‘on’ if it finds a trigger gesture in any

video that it receives and stays ‘off’ if it does not. For simplicity, we have considered

the well known American Sign Language (ASL) [110] for experimental purposes. It is

a complete and complex language, in which people use hand signs to communicate. It

is the fourth most commonly used sign language in the world. This language has 26

alphabetical signs, two of which (alphabets J and Z) are motion based gestures. A sign

language based MNIST dataset was developed in [111] that consists of images for the 24

static hand gestures (alphabets J and Z were excluded as they are motion gestures).

Developing voice activated trigger systems [112, 113] is an extensively researched topic

in the literature. Researchers have been using Hidden Markov Models (HMM) [114] for

such speech recognition tasks. Recent trends witness use of deep neural networks (DNN)

[115] for such trigger-word recognition. Recurrent neural networks (RNNs) are also being

used [116] for such wake-up-word or trigger-word detection in speech. However, such voice

activated systems are often useless for deaf and mute people. Since, such people use sign

languages to communicate, there have been many attempts to automatically recognise

the gestures [108, 109, 117, 118]. For static hand gesture recognition in real time, we

need models which have real time testing phase. Support Vector Machine (SVM) models

[109, 117] are quite efficient, but, they are a bit slow as compared to real time deployment.

In [109], they have extracted HOG features from the image and used an SVM to classify
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the gestures. [119] has examined various classifiers like C4.5, Random Tree, Naive Bayes,

Random Forest, SVM (linear kernel), SVM (RBF kernel) and Artificial Neural Network

(ANN-Multilayer Perceptron) in context of gesture recognition. It was seen that Random

Forest, SVM and ANN performed better than others. Using RBF kernel in SVM did not

produce any added efficiency over linear kernel, but increased the time complexity.

Deep neural networks have also been used to recognise sign languages [120, 121, 122].

However, such methods use spatial-temporal features from raw videos in the training

set and are much more complex to be used for small scale trigger applications. We

have developed a much simpler trigger detection system that uses convolutional neural

networks (CNN). In the training phase, we have used images of all the 24 static hand

signs and trained our CNN model on these images. During the testing phase, each video

frame captured in real time was analysed and if the trigger image was present anywhere

in the video, the system would trigger. Our model is efficient as it does not run through

the remaining video frames once a trigger is detected. The switch will be turned ‘on’ only

on detecting the trigger and otherwise will remain dormant.

To the best knowledge of the authors, the gesture recognition problem was not extended

to any kind of trigger detection scenario. It was therefore the only choice to compare

out method with the existing gesture recognition methods in literature like SVM [117],

Random Forests, ANN [119] and HOG+SVM [109].

4.1.2 Convolutional Autoencoder for Pre-training

The proposed method makes use of deep convolutional neural network (Deep CNN) for

gesture recognition. We argue that using CNN was essential to capture the complexity of

the hand signs as most of them look similar. Figure 4.2 [111] shows the various gestures

and the alphabets they represent. It is evident that most of the signs like ‘m’ and ‘n’ are

very similar.
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Figure 4.2: 24 Static Hand Gestures for American Sign Language Letters

The similarity among the various hand gestures make it a difficult problem to clearly

differentiate them. CNNs can capture the variations in the different signs and therefore is

opted for most of the computer vision tasks [15]. It is an advantageous property of CNN

to automatically extract features at each hidden layer and hence make it very efficient

for raw data processing tasks. Unlike other computer vision gesture recognition systems

CNN does not need any feature engineering. Therefore, using a CNN was an inevitable

choice for the contactless gesture trigger detection problem. To do so, we have extended

a conventional multi-class gesture recognition problem to a trigger detection problem.

We have used a convolutional auto-encoder network for pre-training purposes. The

architecture of the convolutional auto-encoder network is shown in Figure 4.3. A con-

volutional auto-encoder learns to reconstruct the input and thus learns a transformed

feature space which is capable of reproducing the input approximately. A typical CAE

combines the advantages of a CNN as well as a normal auto-encoder (AE). It is known
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Figure 4.3: Architecture of the Convolutional Auto-Encoder Network used for Pre-
Training Purposes

that unsupervised pre-training enhances the performance of a multi-layer neural network

by setting the random weights to a stricter region of weight space and hence the super-

vised fine tuning finds the good weights easily. In contrast to the fully connected topology

for AE, CAE is made of an encoder which contains convolutional and maxpooling layers

and a decoder which contains deconvolutional and unpooling (or upsampling) layers.

They are trained to recreate the input at the output nodes, and are thus used as feature

extractors or as a pre-trained model for the final convolutional network.

4.1.3 Supervised Classifier

The encoder of the CAE is stacked on top of a fully connected network with 24 output

nodes.

We have used four convolutional layers and three maxpool layers in the Deep CNN

model. Finally the model was re-trained on the training sample labels to minimise the

training loss. The architecture of the model is shown in Figure 4.4.

A schematic diagram of the proposed trigger detection system has been shown in 4.5.

The CNN learns all the 24 gestures during this training phase. During the test phase,

we add a customising module that allows the user to select his/ her preferred gesture for
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Figure 4.4: Architecture of the Deep CNN Model used for Gesture Classification

Figure 4.5: Architecture of the Total Model used for Custom Trigger Gesture Detection
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Table 4.1: Comparison of the Accuracy of Trigger Detection for each Trigger Gesture Ti

Trigger Proposed HOG + SVM Random SVM MLP
Alphabet (Linear Forest (Linear (2 Hidden

Ti Kernel) Kernel) Layers)
A 1.0000 1.0000 0.9819 1.0000 1.0000
B 0.9606 0.9884 0.8194 0.9005 0.8449
C 0.8677 1.0000 0.9258 0.9839 0.9710
D 0.9224 0.9184 0.8327 0.9592 0.8816
E 0.9940 0.9820 0.8815 0.9659 0.9659
F 1.0000 1.0000 0.8947 0.9150 0.9150
G 0.9397 0.9310 0.7845 0.8994 0.8276
H 0.9977 0.9495 0.8073 0.8303 0.8440
I 1.0000 0.8646 0.4653 0.9028 0.6667
K 0.9305 0.8731 0.4743 0.4773 0.5347
L 1.0000 0.8134 0.8612 0.8421 1.0000
M 0.9467 0.9086 0.5533 0.7487 0.6726
N 0.9794 0.7491 0.3952 0.6942 0.5704
O 0.9228 0.9146 0.6585 0.7398 0.8943
P 1.0000 0.9625 0.9308 0.9395 1.0000
Q 1.0000 0.8720 0.9573 0.9024 0.7439
R 0.9514 0.8542 0.4375 0.7153 0.5694
S 0.9106 0.9146 0.3862 0.6829 0.4634
T 0.8347 0.7500 0.5968 0.6734 0.6331
U 0.9887 0.8759 0.3383 0.6241 0.4586
V 0.8353 0.9364 0.3237 0.7139 0.5000
W 1.0000 0.8981 0.4126 0.8058 0.8058
X 1.0000 0.9326 0.5281 0.6217 0.6966
Y 0.8795 0.8825 0.4910 0.6205 0.7048

trigger. The model is then allowed to check through all the frames in the video.

If any frame has the trigger gesture Ti, the node Oi at the output layer will have the

maximum response. Then the model will automatically switch to the ‘on’ or ‘1’ state

from its dormant ‘0’ state and will not check any further frames in that video. Suppose

there are Nj frames {F1, F2, ...FNj
} in the video Vj (where j=1, 2, ..., 7000). If a frame

Fk is fed forward through the CNN, it will produce response at the output nodes as

O = {O1, O2, ..., O24}.
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4.1.4 Results

To establish the efficacy of such a model, we have compared our model with four other

state of the art methods. We have given a complete view of how our model performs for

different gestures selected as the trigger gesture by the user. A comparative analysis of

the various methods have been shown in Table 4.1.

It is evident that most of the other methods perform poorly for some of the confusing

signs like ‘M’ and ‘N’ and ‘G’ and ‘H’. Our method can clearly capture the complex differ-

ence between the gestures except for some where HOG+SVM performs better. However,

in those cases too, the proposed method is competitive to HOG+SVM as the difference

in performance is not too pronounced except for the letter ‘V’ and ‘C’.

4.2 Convolutional Autoencoders as Unsupervised Im-

age Feature Extractors

In the above section, it was established that CAEs could clearly capture the variations

in the different signs which look similar to human eye and thus, are excellent feature

extractors for images. The above experiment was performed to see the capabilities of a

CAE for supervised image classification. However, in cases of unsupervised tasks, the

potency of CAEs need to be explored. If the CAEs have more than two convolution

layers, they may be termed as deep convolutional autoencoders (DCAE) as they have

multiple layers of non-linearity.

To prove that CAEs are good feature extractors, we need to concentrate on more com-

plex images like hyperspectral images and more complicated tasks like change detection.

Therefore, this has motivated us to extend the use of CAEs to Hyperspectral Images in

the following parts. Binary change detection in bi-temporal co-registered hyperspectral

images is a challenging task due to the large number of spectral bands present in the data.
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Researchers, therefore, try to handle it by reducing dimensions. The following work aims

to build a binary change detection system for a pair of such bi-temporal co-registered

hyperspectral images using the feature extraction property of DCAE.

4.3 Deep Convolutional Autoencoder for Unlabelled

Hyperspectral Images

A remotely sensed hyperspectral image (HSI) [123] is a complex image data which has

multiple bands (narrowly spaced). Each band of a remotely sensed hyperspectral image

of a particular region captures multiple wavelengths of the electromagnetic spectrum.

Hyperspectral imaging seeks to utilize the spectral information which has more informa-

tion about the region than multi-band images. Hyperspectral images are basically, image

cubes that consist of hundreds of spatial images. Each spatial image, or spectral band,

records the responses of ground objects at a different wavelength. For example, the NASA

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) captures the spectral images

in 224 contiguous spectral bands at the visible and near-infrared regions. The spectral

range in hyperspectral data extends beyond the visible range (ultraviolet, infrared). All

these images may not be visible to the human eye, but contain important information

to identify ground objects. Hyperspectral images helps us to explore the unexplored, by

visualizing information invisible to human eyes.

However, since it contains multiple bands, sometimes the information about different

changes is often found in different bands. That is why, it becomes a complicated task

to detect changes between two registered hyperspectral images of the same place when

there are diverse minute and bigger changes. To do the same in an unsupervised manner

is even more challenging. Researchers have proposed a wide range of such digital change

detection methods ranging from supervised, semi supervised and unsupervised methods.
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Supervised methods [124] include training the system with some training labels from the

ground truth data. A majority of the pixels (usually 70 percent) are labelled as changed

or unchanged. The classifier system tries to learn the changed and unchanged classes

through the labels provided. It then detects which of the remaining pixels are changed or

unchanged. This kind of supervised change detection may be regarded as a problem of

classifying imbalanced classes (as the number of unchanged pixels are more than number

of changed pixels). Semi-supervised methods [60, 125] provide limited training data to

the classifier system. There are only a few labelled samples (mostly from the unchanged

class). Researchers have also explored different selective labelling techniques like active

learning which share resemblance to the semi-supervised methods. Manual labelling of

pixels are quite cumbersome and expensive. Moreover for HSIs, the labelling becomes

challenging due to the sheer number of spectral bands. Since unsupervised methods [57],

mainly rely on detecting the points of dissimilarities between the two images, they do not

require any manual labelling. Due to this reason, unsupervised methods are mostly less

accurate than the supervised [51, 56, 59] or semi-supervised [60, 61, 62] methods but are

much more sophisticated in application.

In this chapter, an unsupervised change detection system is proposed that makes use

of feature extraction by a novel feature fusion convolutional autoencoders (FFCAE).

The traditional convolutional autoencoders is modified to suit the feature extraction

process for change detection in hyperspectral images. The proposed feature extraction

technique addresses three main concerns that arise during change detection in bi-temporal

co-registered HSIs:

(i) Given two HSI, lower their dimensionality in the most efficient way possible.

(ii) Detection of minute changes with lesser misses and false alarms.

(iii) No manual labelling required.

Keeping the problem statement in mind, the proposed solution presents a lower dimen-
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sional feature map which is enough to detect the changes between the two co-registered

bi-temporal hyperspectral images. The feature extracting FFCAE network has multiple

hidden layers in the encoder as well as the decoder part unlike a stacked version of au-

toencoder. It is different from a standard deep convolutional autoencoder (DCAE) as it

preserves both the spatial as well as the spectral information in its hidden code layer along

successive levels and multiple receptive fields. Results show that the proposed method

outperforms all the other methods it has been compared with.

The subsequent section 4.3.1 describe the literature survey on the present topic. Section

4.3.2 provides a detailed overview of the proposed methodology and section 4.3.4 reports

the results obtained. Finally, section 4.5 concludes the chapter and also suggests the

directions of future works.

4.3.1 Literature Survey

Most change detection algorithms for HSIs [51, 59, 60, 126] can detect major changes

i.e. major land transformations but they are not able to detect subtle changes, which

appear only in few spectral bands like water content, crop growth differences, land cover

transitions etc. Noise generated by both external sources (atmospheric effects due to

absorption and scattering) and internal sources (instrument noise) also affect the hyper-

spectral sensors. For this reason, need of robust methods of change detection is necessary.

Supervised models classify the pixels of each single image from different time periods

using supervised classifiers and then compare the generated maps to detect changes.

Recent supervised methods which show promising performance are using convolutional

neural networks [51, 56, 59] for classification of pixels, but this requires the ground truth.

Manually labelling ground reference data is expensive and unfavourably low. This is

why, semi-supervised [60, 61, 62] or unsupervised [127] methods of change detection are

favoured which do not require extensive efforts of human annotation. A recent semi-
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Figure 4.6: A conceptual diagram of a hyperspectral image.

supervised method of change detection in hyperspectral images [60] involves the use

of pseudo-labels. However, such methods are again dependent on human labelling of

unchanged pixels. To avoid the expenses of gathering ground truth data, unsupervised

change detection methods are much more gracious. This chapter, therefore primarily

concentrates with the domain of unsupervised change detection only.

Traditional unsupervised solutions include finding the difference image (DI) and then

thresholding it or clustering the pixels. Let a hyperspectral image I be of size m×n and

has b number of bands as shown in Figure 4.6. So, each pixel of image I, denoted as pij

will be a vector of b dimensions.

pij = {p1ij, p2ij, p3ij, ..., pbij}, (4.1)

where, i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n.

Let us consider a pair of bi-temporal co-registered hyperspectral images (with b bands)
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I1 and I2 of the same location photographed over different times. The assumption of

them being co-registered fulfil that for all the pixels in the two images, pixel p1
ij for I1

and pixel p2
ij for I2 represent the corresponding point of the original location. The change

occurred over the location can be seen by generating a binary change map C such that

the ijth pixel cij of C is marked as changed (by setting the value to one) if the location

captured by the ijth pixels for both images has changed and is marked as unchanged (by

setting the value to zero) if the location has not changed. The generation of change map

may be formally constructed by the equation,

C = g(f(I1)⊖ f(I2)), (4.2)

where, f() is the feature transformation function, g() is the decision function and ⊖ is

the difference operator.

Simple image differencing technique [128] just subtracts the two images pixel by pixel.

Some techniques include generation of a change vector [129, 130]. The change vector is a

m× n image with all the spectral information is aggregated into a single plane. Another

method is image ratioing. However, as the ratio is not a normal distribution, researchers

have criticised its usage in change detection methods. Researchers [131] therefore use a

log ratio of images.

Without feature transformation, one may often end up struggling with noise which are

falsely detected as changes [57]. Feature transformation model the relationship between

the image object and its real-world geographical feature as closely as possible by reducing

the amount of such false alarms and missed changes. Considering only the spectral pixel

level information often results in high false alarms [57]. For this reason, many methods

incorporate pixel level information as well as spatial-context information. Researchers

have proposed many methods to handle this problem. In the line of linear feature trans-

formation methods, a PCA based technique is proposed [132], which employs an advanced
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technique by doing a window based PCA technique for hyperspectral images. This incor-

porates both the spatial as well as spectral information. However, a linear transformation

is often not enough to represent the complex relationships between the two images. So,

researchers have proposed non-linear methods like iteratively re-weighted multivariate al-

teration detection (IRMAD) [133] which has been claimed to be better at dimensionality

reduction of hyperspectral images for change detection. This method has recently been

supplemented with synthetic fusion of images [134] called SFI-IRMAD which has shown

to give a boost to the change detection performance. Another recent method showed

promising results for change detection in hyperspectral images using synthetic fusion of

images [58]. In this case, they have used a custom difference operator that is mainly

based on the spectral angle mapper (SAM) [135]. With the popularity of deep learning,

some deep convolutional networks have also been proposed [56, 126] for change detection.

A method called S3DCAE [56] uses a three dimensional deep convolutional autoencoder

to extract relevant features from the hyperspectral images. However, the results reported

make use of limited labelled samples and falls under the domain of semi-supervised change

detection. They claim that their method of feature extraction is robust and thus the ex-

tracted features may easily be used for unsupervised change detection as well. Another

unsupervised deep convolutional autoencoder based method called DSFANet [126] is pro-

posed which showed good change detection capabilities. This method uses deep feature

extraction of the two images and then does a slow feature analysis on the absolute differ-

ence image generated by the two features. It is quite obvious that all of these methods

are basically reducing the dimensions of the two hyperspectral images and have mostly

used k-means as the final decision function g() on the difference image generated. All

these methods somehow try to reduce the missed changes and false changes as much as

possible. Any method which provides a better balance will be deemed superior. Thus,

the present chapter proposes a novel unsupervised method of feature extraction that is

capable of detecting changes with a better performance than the above state of the art
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methods. The details of the proposed architecture is provided in the next section.

4.3.2 Proposed Methodology

The proposed methodology utilises an unsupervised neural network to train on a pair

of bi-temporal co-registered [136] images of a particular region. The main motivation is

that, the neural network learns to compress all the band information into a transformed

image of lower dimension, which would retain maximum possible information from all.

The description of the datasets is provided in the next section.

4.3.2.1 Dataset Description

Each of the datasets taken in the study are a pair of bi-temporal hyperspectral co-

registered [136] images. We have taken four pairs of hyperspectral images for the study.

The first pair of images, named as USA dataset, corresponds to an irrigated agricultural

land in the Hermiston city of USA. The two hyperspectral images, each with a size of

307 × 241 pixels, were acquired by the Hyperion sensors respectively on May 1, 2004,

and May 8, 2007 [137]. The second pair of images are, named as the China dataset,

corresponds to a farmland in the Jiangsu province of China. These images were acquired

by the Hyperion sensors May 3, 2006, and April 23, 2007, respectively [137] and have a

size of 420 × 140 pixels. Both the USA dataset and the China dataset images consist of

154 spectral bands. The third dataset in consideration, named as River dataset, is of the

Yangtze river in the Jiangsu Province of China [59]. The two images were captured by

the Hyperion sensors on May 3, 2013, and December 31, 2013, respectively. The River

dataset has a size of 463 × 241 pixels and has 198 spectral bands. It is to be noted that

although the intrinsic number of bands for the Hyperion sensors is 242, the above datasets

available freely had lesser number of bands as they were already subjected to the band

removal process and only the bands with high signal to noise ratio were available publicly

[59]. We have not used any kind of pre-processing on the available images and have
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considered them in our study in the same form as they were available. The Hermiston

dataset [138] was aquired by the Hyperion Sensors in the years 2004 and 2007 respectively

over the Hermiston City area in Oregon. The image sizes are 390 × 200 each and includes

242 spectral bands. Out of these 242 bands, only 198 channels were informative. The

rest of the 44 channels had the same value in all the pixels and hence had zero entropy

(i.e. no information). So, the 44 channels with zero-entropy were omitted and only the

198 channels were considered for further processing. Although, the ground truth showed

5 types of changes related with crop transitions, we converted this to a binary change vs

no-change problem and all the 5 change classes were merged to the single change class.

The next subsection describes the particular type of autoencoder configuration that

has been used.

4.3.2.2 Proposed Feature Fusion Convolutional Autoencoder (FFCAE)

Figure 4.7: Architecture of the proposed FFCAE (blue arrows represent the trainable
weights).

The main challenge with the afore-mentioned hyperspectral images are that they have

a huge number of bands, each of which contain a great deal of information about the

topology of the region. Moreover, the dimensions of these images are usually of the

order of hundreds or thousands. So, to use a supervised convolutional network (CNN)

would become very time consuming. On the other hand, AEs would be quite efficient
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Figure 4.8: Overall procedure of change detection.

in reducing the dimensions (both in bands as well as in size) of these images. AEs map

different values into different ranges [16, 17]. Noise are treated differently than changes in

an AE. An undercomplete AE passes the input through a bottleneck which discards the

sporadic values (as observed for noise) while learning informative features that is used

to reconstruct the input back. The majority of the patterns present in the data (here

unchanged pixels) get mapped to similar value ranges while the changed pixel values will

be revealed as they get mapped to a different range. Thus, it is intuitive that AEs can

be used to reduce dimensionality of HSIs because if a pixel has changed its value between

two images, the two values will be mapped to different ranges.

CAEs are good for image data as they take both spectral as well as spatial information

into consideration. A standard undercomplete convolutional autoencoder would alter the

size of the images using pooling and upsampling operation as well as change the number

of filters through the convolutional and deconvolutional operations. They are primarily

equipped with ReLU (rectified linear units) as activation along the layers.

The proposed architecture [Figure 4.7] is different from any traditional convolutional

autoencoder architecture. The novelty of the proposed architecture is that it has exploited

the possibility of playing with the size as well as the number of filters in a convolutional

autoencoder and added skip connections to create a fusion of lower level and higher
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level features. In the proposed architecture, the original image is convolved with filters

of two different sizes successively. This results in the generation of lower level features

with different receptive fields. The features are then concatenated and is convolved with

another filter to generate a higher level feature representation. Then both the lower

level features and the higher level features are concatenated with a skip connection at

the next level (which is the middle code layer). This is the part where feature fusion is

taking place. The decoder then convolves the fused feature with filters of two different

sizes again and then the concatenated feature maps is convolved with another filter to

reconstruct the original image back.

Choosing the window size and the number of filters in a CAE is crucial because the

entire physics behind the feature extraction property of a CAE depends on these two

parameters mainly. Usually the filter windows in a CAE are taken to be odd i.e. 1× 1,

3 × 3, 5 × 5, 7 × 7, etc depending on the type of image (1 × 1 is usually not taken as it

implies no spatial information is considered). The windows 1×1 and 3×3 are considered

to be smaller size and 5× 5, 7× 7, etc are considered as larger sizes. If the window size is

taken smaller, then it may miss some spatial contextual information but as the number of

parameters is less, it would be less prone to overfitting. On the other hand, larger window

size might cause overfitting but can capture spatial information well. We can combine

these two effects by using a multi-window approach during feature extraction. Window

size in a CAE is equivalent to the receptive field (i.e. how much of the image the filter sees

at a time). Effect of larger receptive field can be achieved by increasing depth. However,

going too deep is also problematic for training sometimes. Depth captures higher level

features which imply strong object level semantic information and the first layer extracts

lower level features which have acute discriminative capabilities. However, there needs to

be a balance. Acute discriminative features get influenced by noise while strong object

level features often ignore tiny changes. Thus, a fusion of higher level and lower level

features may create this balance.
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In the proposed architecture, twin filters are used (3 × 3 and 5 × 5) i.e. n1 = 3 and

n2 = 5. Adding another layer extracted higher level features, and inherently increased

the receptive field. We chose n3 = 3 as it gave the effect of a 5×5 and 7×7 receptive field.

Increasing the depth would have increased the receptive field even more, but that would

incorporate additional burden of increased number of parameters. Using two filters ensure

that both the spatial information as well as subtle changes are captured. The fusion of

lower level features and higher level features is obtained through a skip connection. The

code-layer therefore produces the most compact transformed image which would have

both the spatial as well as spectral information of the change. It must be noted that even

after passing through the layers of the network, the image size is not reduced below its

actual size anywhere. This was purposely done to preserve the resolution in the extracted

feature maps. After the FFCAE network is trained to reconstruct the input back, the

encoder part may be used to extract the deep feature maps (DFM) from the middle code

layer.

The proposed FFCAE being an extension of CAEs is structurally built to extract

features to reconstruct the input. Since there is no label information provided to the

network, it captures some common generic features shared by both the images. However,

these features are mapped in different feature maps than the discriminating ones. We

can, therefore, easily discard such feature maps which are the same for both images using

a simple entropy based filtering i.e. reject the feature maps for which,

ϵ(f(I1)⊖ f(I2)) = 0, (4.3)

where, ϵ() is the entropy of an image. The feature maps which are selected (Sel-DFM)

are used for further change analysis. The overall procedure of change detection is shown

in Figure 4.8.

The trick is that, the same FFCAE was trained with only two images for 50 epochs. It
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is done with the intuition that most of the pixels in the two images are almost identical

as they have no change. So, it would be much more gracious to train a single network to

reconstruct the two images.

4.3.3 Contributions

The proposed method handles the major challenges faced in hyperspectral change detec-

tion problems which are under-detection and over-detection of changed pixels. They are

usually caused due to similarity in the intensity values of the changed and unchanged

regions, faulty classification by colour thresholding or texture features. If there are many

types of changes occurring over long periods of time, then this makes the task much

more complicated. The changes are usually distinguished by their characteristic spectral

signatures and thus, some minute changes might often get overshadowed by a prominent

large change. The proposed method thus adds two major contributions to the change

detection task:

i light-weight feature extraction which maps discriminating features into separate fea-

ture maps, and

ii detection of both minute and major changes simultaneously without any label infor-

mation.

4.3.4 Results

The proposed method was implemented and compared with six state-of-the art change

detection methods. In order to have a fair comparison, the methods which use any kind

of labelling (supervised, semi-supervised, active etc) are excluded. Most of the methods

in the literature have tested their methods on either one or two hyperspectral datasets.

This is mainly due to the lack of hyperspectral datasets with available ground truth.

However, the present chapter has made an attempt to incorporate as many datasets as
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possible into the experimentation.

4.3.4.1 Performance Metrics Used

To quantify the performance of the proposed method, five performance metrics are used,

namely, overall accuracy (OA), Cohen’s kappa measure (κ), f − score, percentage of

wrong classification (PWC) and Detection Rate (DR). The metrics are calculated from

the confusion matrix given in Table 4.2.

Table 4.2: Confusion Matrix

Actual
Positive Negative
Class Class

Positive True False
Predicted Class Positive (TP) Positive (FP)

Negative False True
Class Negative (FN) Negative (TN)

The overall accuracy suggests how accurately the model detects both the changed as

well as unchanged pixels.

OA =
TP + TN

TP + FP + TN + FN
. (4.4)

The Cohen’s kappa measure takes into account actual agreement and chanced agreement.

So, it is a much preferable measure for change detection purposes as the number of

changed pixels is often less than the number of unchanged pixels. It is given by,

κ =
OA− CA

1− CA
, (4.5)

where, OA is the overall accuracy or the actual agreement while CA is the accuracy by

chance expressed as

CA = CAClassU + CAClassC . (4.6)

Here, the accuracy obtained by chance for unchanged class (CAClassU) and changed class
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(CAClassC) are given by

CAClassU =
(TP + FP )× (TP + FN)

(TP + TN + FP + FN)2
, (4.7)

and

CAClassC =
(TN + FN)× (TN + FP )

(TP + TN + FP + FN)2
. (4.8)

The f − score is given by,

f − score =
2× precision× recall

precision+ recall
(4.9)

where,

precision =
TP

TP + FP
, (4.10)

and

recall =
TP

TP + FN
. (4.11)

The percentage of wrong classification is given by,

PWC =
100× (FP + FN)

TP + FP + TN + FN
%. (4.12)

A lower value of PWC means that the model is better.

FNR (false negative rate) suggests the rate as to how often the method predicts a pixel

as changed when actually it is not. It is given by

FNR =
FN

FN + TN
. (4.13)

TNR (true negative rate) suggests the rate as to how often the method predicts a pixel

92



CHAPTER 4. DEEP FEATURE EXTRACTION FOR CHANGE DETECTION
USING UNSUPERVISED AND ACTIVE LEARNING

as a change when actually it is a change. It can be represented as

TNR =
TN

FP + TN
. (4.14)

Any good change detection method should be able to give high TNR and low FNR. So,

we can say, the detection rate (DR) [17], where

DR = (1− FNR)× TNR, (4.15)

is high for a better change detection method.

4.3.4.2 Comparison with existing feature extracting models

For comparison, Window-based PCA+kmeans [132], IRMAD [133], SFI-IRMAD [134],

SFI-DSP [58] and DSFANet [126] are used in the present study. S3DCAE [56] is used for

comparison as the deep features extracted by it could be used for unsupervised change

detection too. All these methods have used K-means as the segmentation or clustering

algorithm for differentiating the changed regions from the unchanged regions. So, the

proposed method has also been analysed with K-means as the function g(). The difference

operator ⊖ has been chosen to be the absolute difference (AD) between the feature maps

and spectral angle mapper (SAM) [135] as the comparison methods have used either one

of the two.

The results for the image pair datasets are given in Tables 4.3-4.6. The results marked

in bold represent the best performance and those marked in red represent the second

best performance on the particular dataset. Although, it may seem a bit misleading to

use accuracy for an unsupervised method, but since we already have the ground truth to

compare with, we can actually see how accurately our proposed method can identify the

actual changes. The detected change map for the various models are reported in Figures

4.9-4.12.
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Table 4.3: Results for China Dataset

OA κ f − score PWC DR
Windows 0.8688 0.6801 0.8429 13.1241 0.7673
PCA
IRMAD 0.8659 0.6801 0.8408 13.4150 0.7864
SFI 0.8784 0.7165 0.8583 12.1582 0.8284
IRMAD
SFI-DSP 0.8817 0.7168 0.8595 11.8316 0.8020
S3DCAE-AD 0.8885 0.7333 0.8677 11.1463 0.8108
Deep SFA 0.8920 0.7419 0.8719 10.8010 0.8166
FFCAE-SAM 0.8934 0.7489 0.8746 10.6650 0.8360
FFCAE-AD 0.8956 0.7604 0.8804 10.4422 0.8725

Table 4.4: Results for USA Dataset

OA κ f − score PWC DR
Windows 0.9106 0.7111 0.8662 8.9435 0.8182
PCA
IRMAD 0.9217 0.7471 0.8847 7.8298 0.8303
SFI 0.9230 0.7518 0.8868 7.6959 0.8325
IRMAD
SFI-DSP 0.9228 0.7508 0.8863 7.7230 0.8319
S3DCAE-AD 0.9229 0.7511 0.8865 7.7135 0.8321
Deep SFA 0.9317 0.7867 0.8990 6.8323 0.8592
FFCAE-SAM 0.9462 0.8421 0.9215 5.3780 0.9143
FFCAE-AD 0.9447 0.8360 0.9189 5.5321 0.9057

Table 4.5: Results for River Dataset

OA κ f − score PWC DR
Windows 0.8863 0.4879 0.7630 11.3736 0.9562
PCA
IRMAD 0.9401 0.5663 0.7888 5.9920 0.9116
SFI 0.9415 0.5311 0.7846 5.8530 0.8984
IRMAD
SFI-DSP 0.9491 0.6464 0.8261 5.0886 0.9274
S3DCAE-AD 0.9420 0.5535 0.7896 5.7966 0.9044
Deep SFA 0.9461 0.6645 0.8323 5.3933 0.9443
FFCAE-SAM 0.9584 0.7454 0.8730 4.1646 0.9610
FFCAE-AD 0.9604 0.7436 0.8720 3.9630 0.9519
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Comparison of results for China Dataset: (a) Windows PCA, (b) IRMAD,
(c) SFI-IRMAD, (d) SFI-DSP, (e) S3DCAE-AD, (f) Deep SFA, (g) FFCAE-SAM, (h)
FFCAE-AD, (i) Ground Truth
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Comparison of results for USA Dataset: (a) Windows PCA, (b) IRMAD,
(c) SFI-IRMAD, (d) SFI-DSP, (e) S3DCAE-AD, (f) Deep SFA, (g) FFCAE-SAM, (h)
FFCAE-AD, (i) Ground Truth

96



CHAPTER 4. DEEP FEATURE EXTRACTION FOR CHANGE DETECTION
USING UNSUPERVISED AND ACTIVE LEARNING

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: Comparison of results for River Dataset: (a) Windows PCA, (b) IRMAD,
(c) SFI-IRMAD, (d) SFI-DSP, (e) S3DCAE-AD, (f) Deep SFA, (g) FFCAE-SAM, (h)
FFCAE-AD, (i) Ground Truth
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Comparison of results for Hermiston Dataset: ((a) Windows PCA, (b)
IRMAD, (c) SFI-IRMAD, (d) SFI-DSP, (e) S3DCAE-AD, (f) Deep SFA, (g) FFCAE-
SAM, (h) FFCAE-AD, (i) Ground Truth
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Table 4.6: Results for Hermiston Dataset

OA κ f − score PWC DR
Windows 0.9670 0.8503 0.9252 3.3013 0.9584
PCA
IRMAD 0.9618 0.8348 0.9178 3.8154 0.9679
SFI 0.9751 0.8837 0.9426 2.4936 0.9588
IRMAD
SFI-DSP 0.9752 0.8872 0.9437 2.4795 0.9666
S3DCAE-AD 0.9751 0.8842 0.9427 2.4872 0.9594
Deep SFA 0.9742 0.8833 0.9417 2.5795 0.9674
FFCAE-SAM 0.9812 0.9145 0.9574 1.8756 0.9727
FFCAE-AD 0.9819 0.9176 0.9589 1.8051 0.9730

4.3.5 Statistical-significance test

The performance of different models is assessed by several performance scores. We should

not, however, accept any of the metrics in isolation to prove that one is better than the

other. No metric alone can encompass every area of interest. Even for one element

of interest, several metrics must be given to detail the performance of a model. The

statistical tests often evaluate the superiority of the a model by encompassing a single

metric only.

Therefore, this chapter shows a ranked ordering of the models taking all the perfor-

mance metrics into account. The average ranking of the compared models on all the

four datasets on the five metrics are reported in the Table 4.7. To avoid rewriting the

names of the models, the models are denoted as A (Windows PCA), B (IRMAD), C

(SFI-IRMAD), D (SFI-DSP), E (S3DCAE-AD), F (Deep SFA), G (FFCAE-SAM) and

H (FFCAE-AD).

It can be seen that the proposed FFCAE with SAM and AD have more or less similar

ranks, but are better in ranks than the others. For statistical test, one can perform a

Tukey HSD test [139] as a post-hoc test to justify the superiority of the proposed model.

There are eight models (k = 8) being compared against each other and thus 28 pairs of
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Table 4.7: Average ranking of the compared models on all the four datasets on the five
metrics.

A B C D E F G H
Accuracy 7.50 7.50 5.25 4.25 4.50 4.00 1.75 1.25
Kappa 7.75 6.75 5.50 4.50 4.75 3.75 1.50 1.50
f-score 7.50 7.25 5.50 4.50 4.50 3.75 1.50 1.50
PWC 7.50 7.50 5.25 4.25 4.50 4.00 1.75 1.25
DR 6.50 5.75 5.50 5.50 5.75 3.75 1.50 1.75

Table 4.8: Value of Tukey HSD Q-statistic for the models compared.

A B C D E F G H
A 0 2.11 10.26 14.47 13.42 18.43 30.27 31.06
B 0 8.16 12.37 11.32 16.32 28.16 28.95
C 0 4.21 3.16 8.16 20.00 20.79
D 0 1.05 3.95 15.79 16.58
E 0 5.00 16.84 17.63
F 0 11.84 12.63
G 0 0.79
H 0

models to compare. Degrees of freedom for the error term is ν = k(k + 1) = 32. The

error obtained is 5.775 and since the degree of freedom for error ν = 32, the mean-square

error, MSE = 5.775/ν = 0.1805. Thus, the Tukey HSD Q-statistic is given as,

Qi,j = |r̄i − r̄j|.
√

n

MSE
. (4.16)

Here, r̄i and r̄j correspond to the performance of the ith and jth model respectively.

The critical value at 95% confidence (α = 0.05 significance level) Qα=0.05,k=8,ν=32
critical =

4.5209. Table 4.8 shows the Tukey HSD Q-statistic for the compared models. Any value

greater than Qα=0.05,k=8,ν=32
critical implies significance. The values marked in bold suggest

that the difference is significant and those marked in red suggest insignificance. It is

evident that the proposed models FFCAE-SAM and FFCAE-AD (renamed as G and H,

respectively for simplicity) are significantly better than all other models. However, there

is no significant difference between FFCAE-SAM and FFCAE-AD which is quite intuitive
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as the proposed feature extraction method is the same for both.

4.4 Deep Convolutional Autoencoder for Partially La-

belled Hyperspectral Images

The classification performance is often influenced by the quality of labelled samples used

during the training. Manual generation of training set is often accomplished by visual

assessment of the scene and sequential labelling of each pixel. This step is both time

intensive and very redundant. In reality, the training set includes numerous neighborhood

pixels with the same information. Although such redundancy is not hazardous to the

quality of the outcomes if handled appropriately, it significantly slows down the training

process. To make the models as efficient as feasible, the training set should be kept as

small as possible and concentrated on the pixels that truly contribute to increase the

model’s performance. Algorithms involving active learning [140, 141], on the other hand,

can assist in overcoming the paucity of training data.

This section presents an active learning for semi-automatic change detection in hy-

perspectral images. A convolutional autoencoder (CAE) [96] based model is used which

would reduce the dimensionality of the pixels. The autoencoder based model is partic-

ularly suited in this context as it can learn features from unlabelled data as well. In

that case, the re-training with labelled samples would help in fine-tuning. The proposed

classifier uses a twin encoder and scores the unlabeled pixels. At each epoch it automat-

ically selects top k samples deemed most uncertain, thus reducing the need for a large

training set. The label information of the selected pixels are provided to the model for

improvement, and the procedure is iterated by adding the labelled samples to the training

set. Starting with a short and non-optimal training set, the model constructs the ideal

collection of samples to minimise classification error. The outcomes of the experiments

confirm the consistency of the procedures.
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4.4.1 Related Research

Active learning algorithms [140, 141] actively seek labels from the user or oracle. At each

iteration the model itself chooses a few uncertain samples and queries the oracle about the

label information. Because the model selects the instances, the number of examples nec-

essary to train the model is substantially smaller than the number required in traditional

supervised learning. Active learning algorithms are widely used in environmental moni-

toring [142] and classification [143], species classification [144], multi-label classification

[145], classification of hyperspectral images [146], etc. Recently, active learning has been

adopted in the change detection literature [62]. The complexity of labelling each pixel (as

changed or unchanged) in a pair of hyperspectral images, thus makes it particular match

for active learning application, which requires comparatively lesser labelled samples. The

high dimensionality of these images, on the other hand, is another interesting property

which is both useful as well as a challenge.

Deep learning [8, 9] has emerged as a relatively impressive technique for dimensionality

reduction. In recent years, they have been notably used for analysing remotely sensed

satellite images [147] and change detection [141]. Deep learning has been paired with

active learning for change detection in areal images [148]. However, the literature on

change detection in hyperspectral images with active learning is still lacking. This is

mainly because of lack of labelled data as well as high dimensionality. In these cases,

unlabelled data are abundant. Thus, autoencoder (AE) based feature extraction is an

inevitable choice [8, 9]. An AE can be used to learn repeated patterns [16] because it maps

similar values to similar ranges. So, pixels which are similar in nature will be efficiently

mapped to similar range in the reduced dimension too. Borrowing this idea, this article

proposes a CAE based model which would reduce the dimensionality of the pixels. The

model is then fine-tuned by stacking the encoder of the CAE on a classification layer

which is trained using active learning.
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4.4.2 Proposed Method

The proposed method utilises active learning to train a CAE pre-trained convolutional

neural network which would classify the changed pixels from the unchanged pixels in

a semi-automated manner. The subsequent section describes the dataset on which the

experiments have been performed.

4.4.2.1 Dataset Description

In this study, two pairs of hyperspectral images are considered for analysis. These two

datasets have incomplete ground truth data i.e. they have some unknown pixels along

with the labelled change and unchanged pixels. The first dataset is Bay Area [149] which

was taken on the years 2013 and 2015 respectively with the Aviris sensor surrounding the

city of Patterson (California). There are 224 spectral bands and the image size is 600

× 500. In the ground truth data, there are 39,270 pixels which are labelled as changed,

34,211 pixels which are labelled as unchanged and 2,26,519 pixels which are unlabelled or

unknown. There is a similar scenario with the second dataset Santa Barbara [149] which

was taken on the years 2013 and 2014 with the Aviris sensor over the Santa Barbara

region (California). There are 224 spectral bands and the image size is 984 × 740. In the

ground truth data (Figure 4.13), there are 52,134 pixels which are labelled as changed,

80,418 pixels which are labelled as unchanged and 5,95,608 pixels which are unlabelled

or unknown.

4.4.2.2 Unsupervised pre-training of Sliding Convolutional Autoencoder

The proposed method a single CAE for feature extraction which slides over the two

images. The network architecture is shown in Figure 4.14. The two networks slide across

the images by a fixed stride of one. To avoid boundary issues, the images are suitably

padded with zeros. The network takes a small (9 × 9) neighborhood of pixels and tries to

reconstruct it back at the output. In order not to increase the computational complexity
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(a)
(b)

Figure 4.13: Ground Truth for (a) Bay Area and (b) Santa Barbara dataset. (Black-
Unchanged, White- Changed, Gray- Unknown).

Figure 4.14: Architecture of the CAE network used.

and to avoid the effects of noisy points, the neighborhood is not taken any larger or

smaller respectively. The CAE is trained for 50 epochs with adam optimiser to minimise

the mean squared error of reconstruction. The input to the network is, therefore 9 ×

9 × 224. The network learn the spatial as well as spectral features and reduces the

dimensionality of the input space while trying to reconstruct it back. Since an AE maps

different input values to different ranges [16], the CAE will learn to map the unchanged

pixels from both the images into the same range as both the images would have similar

intensity values for those pixels. On the other hand, if the pixels represent a changed

region, the intensity values will be different, and hence the CAE will map the pixel values
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Figure 4.15: Architecture of the classifier network used.

for the two images to different range. The network will, in a way, learn to distinguish

between the changed and unchanged pixels. The CAE is useful because it can also make

use of samples which are unlabelled. Using active learning based re-training, the network

can be fine-tuned further with very few labels.

Table 4.9: Comparison of the results obtained on the two datasets by various models.

Bay Area Santa Barbara
ROC-AUC Accuracy F-Score ROC-AUC Accuracy F-Score

Proposed 0.9979 0.9843 0.9843 0.9983 0.9851 0.9844
Method 1 0.9915 0.9646 0.9649 0.9915 0.9694 0.9679
Method 2 0.9870 0.9559 0.9560 0.9879 0.9647 0.9630
Method 3 0.9923 0.9645 0.9649 0.9868 0.9647 0.9629

4.4.2.3 Active re-training of Change Detector Model

After the CAE is trained, the network is replicated into two identical copies (one for

each image). Two images are simultaneously passed through the encoders they become

input to a fully connected classification network . The label information of a pixel at

the final layer corresponds to the central pixel of the 9 × 9 input neighborhood. The
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labelled samples in the dataset are divided into training and testing set in a 70% and 30%

proportion respectively. In the first epoch, the network Figure 4.14 is provided with a

random percentage (between 10-20%) of the training labels for forming the initial decision

boundary. This is the initial tiny training set for the model assumed to be marked by

the experts. After each epoch, the network would make predictions based on the current

decision boundary and would decide on the most uncertain pixels. The uncertainty of

the pixels depend on how close they are to the decision boundary which is characterised

by the output (O) of 0.5 (suggesting a mid point between the classes represented by 0

and 1 at the output). The uncertainty is modelled as a beta distribution function given

by,

U =
Oα−1(1−O)β−1

B(α, β)
, (4.17)

where α and β are the shape parameters. The beta function B is usually represented in

terms of gamma functions (Γ) as,

B(α, β) =
Γ(α + β)

Γ(α)Γ(β)
, (4.18)

for normalisation purposes. In this case, the values of α and β are chosen to be 2. This

indicates that if the output O is close to 0 or 1 suggesting a high confidence of belonging

to either one of the classes, it will not be treated as an uncertain sample as the value

of U would be close to zero. However, a point lying close to the decision boundary will

generate an output near to the midpoint of 0.5 and the value of U would be close to 1.

If the samples are ranked in decreasing order by U at the output, the most uncertain

samples will be the topmost one. At each epoch the model is allowed to choose only the

top k of those uncertain samples (or pixels in this case). The labels to those chosen pixels

are provided to the model and those samples are included in the training set. The model

is trained for 100 epochs with Adam optimiser to minimise the cross-entropy loss.
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Figure 4.16: Variation of F-Score with the percentage of training samples

4.4.3 Results

The model is compared with the proposed FFCAE based unsupervised change detection

(Method 1) and a semi-supervised [125] (Method 2) method. Due to the lack of change

detection methods in hyperspectral images involving active learning, active learning based

models could not be analysed. The model is also compared with a case where the same

proposed model is trained on the full training set (70% of the labelled samples) (Method

3). This would be a fully supervised model. The results are reported on the testing set

for all the models.

4.4.3.1 Variation of F-Score with the percentage of training samples

In order to decide on the value of k, we used 10-fold cross validation on the initial tiny

training set provided to the model. It has been observed that the optimal value of k for

the Bay Area images was 12 and for Santa Barbara images was 24. After 100 epochs, the

model needed only 8817 and 17231 training samples for the Bay Area and Santa Barbara

images simultaneously which constitute only 17.14% and 18.57% of the training samples.

The variation of F-Score with the percentage of training samples is provided in Figure

4.16.
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4.4.3.2 Comparison with other methods

Pre-training the network using the sliding CAE resulted in a form of self-supervised

feature extraction. Re-training with labels just fine-tuned the extracted features for the

desired classification task. Since such semi-supervised models are scarce, the sliding

CAE based model was compared with the unsupervised FFCAE method proposed in the

section 4.3.2. The change maps generated by the various models are provided in Figures

4.17 and 4.18. For most of the pixels, the labels are unknown. Hence the change map

may be used as a supplementary specimen for the human annotator.

It would have been unfair to compare the proposed sliding CAE with other existing

semi-supervised or active learning based models which are not built for HSIs. Almost all

such models handle only a few selected bands from SAR images or multispectral images.

So, the capabilities of sliding CAE as a feature extractor can only be argued on the basis

of its light-weight implementation and suitability for bigger sized images. The results of

comparison of performances for different methods are reported in Table 4.9.

4.5 Conclusion and Future Work

One of the major challenges faced in these hyperspectral change detection problems are

the under-detection and over-detection of changed pixels. They are usually caused due

to similarity in the intensity values of the changed and unchanged regions, faulty clas-

sification by colour thresholding or texture features. If there are many types of changes

occurring over long periods of time, then this makes the task much more complicated.

The changes are usually distinguished by their characteristic spectral signatures and thus,

some minute changes might often get overshadowed by a prominent large change. The

proposed FFCAE has been aimed to handle these issues. The results obtained for the

four hyperspectral datasets show promising feature extraction capabilities of the FFCAE.
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(a) (b)

(c) (d)

Figure 4.17: Change map (Black- Unchanged, White- Changed) obtained for Bay Area
dataset by the (a) proposed model, (b) Method 1, (c) Method 2 and (d) Method 3.
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(a)
(b)

(c) (d)

Figure 4.18: Change map (Black- Unchanged, White- Changed) obtained for Santa Bar-
bara dataset by the (a) proposed model, (b) Method 1, (c) Method 2 and (d) Method 3.
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We can safely claim that the proposed method of feature extraction performed better

than all the methods compared with respect to the four datasets and all the five metrics.

The proposed method takes only twin filters into account. Increasing the number of filters

would give rise to situations of overfitting and using filters of size more than 5× 5 would

only contribute to the effect of suppressing the small changes. However, the consequence

of increasing the depth in detecting changes is a matter of further investigation and needs

a separate study in itself. In that case, the presence or absence of skip connections may

be further investigated from the direction of residual networks. However, it was clear

that an autoencoder based training (as done for FFCAE) is significantly better than the

state-of-the-art feature extraction models for unsupervised change detection in a pair of

HSIs.

However, if limited labelled data is present, then unsupervised FFCAE based model

might give poor results compared to models which make use of that limited amount of

labels. As observed from the experiments, the active learning based model used very

little (only 17.14% and 18.57%) training data to achieve an elevated accuracy. Surpris-

ingly, the proposed active learning based model could achieve better accuracy than the

corresponding supervised model (which used 100% of the training data) even after using

a comparatively lesser amount of training data. This is because active learning uses a

concept of smart selection of labelled samples rather than the random selection as in su-

pervised learning. Since the datasets are incompletely labelled, the proposed model can

also be used as a complementary option for finding the labels of the pixels. However, it

is observed [Figure 4.17] that many tiny localised regions of changes are predicted by the

model for the unknown pixels. The information about these pixels being actual changes

or simply noise can only be judged after they are validated by a domain expert.

Although this chapter has compared the suitability of CAE in supervised and semi-

supervised change detection, the capabilities or adaptations of FFCAE feature extraction

in a supervised or semi-supervised setting and that of sliding CAE in unsupervised setting
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is still left unexplored. Moreover, the works described in this chapter concern only with

binary change detection where the problem only is to identify between changed and

unchanged pixels. Including the label information in the dimensionality reduction process

may also be extended to multi-class change detection as well. Research should also be

extended to cases where a pixel changes from one class to other over time. This can

also be explored under the dynamic data setting to study evolving classes due to climate

changes.
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Chapter 5

Autoencoder based Hybrid Multi-Task

Predictor Network for Daily Stock

Prices Prediction

5.1 Introduction

In order to study the dexterity of AEs in chaotic time-varying datasets, this chapter

presents a stock price prediction system. Stock price trends [150] is inherently very

difficult to model due to its uncertain nature but has become one of the widely researched

topics among the machine learning enthusiasts. Investors look forward to statisticians to

predict the stock market trends. However, using traditional statistics, the prediction of

prices becomes one of the most difficult tasks to do because of its dependency on multiple

issues like physical factors, foreign markets trends, domestic market trends, news, people

sentiments etc. This task is a multivariate time-series prediction problem. Such data

is highly chaotic and can be treated as a complex adaptive system or dynamic system

[151]. The problem is often tackled in two approaches. Researchers either look at market

factors and try to predict the movement of stocks or study the historical to predict the
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future prices.

Thus, stock market analysis is broadly of two types: fundamental analysis [152, 153]

and technical analysis [154]. The first one concentrates on the current economic and

financial situation of the company, considering the company’s assets, market value, debt

inquired, profit, loss, balance sheet and other major economic reports describing the

performance of the company. The second one studies the past market actions and price

values, to determine its future performance. To develop machine learning models, the

primary focus is usually on the price of the stocks, and the volume of stocks that are

traded on a regular basis, and other factors include the supply and demand that captures

the movement of the stock market.

In his theory, Burton [155] points out that the stock market forecasting or modeling is

not practical, as price fluctuations are unexpected in the actual world. Every movement

in financial market pricing is dependent on current economic events or announcements.

Traders are profit-oriented, and their judgments are taken based on most current occur-

rences, irrespective of prior analyses or expectations. The dispute about this hypothesis

of an efficient market has never been resolved. There is no substantial evidence to show

whether or not the efficient marketing theory is correct. But stock markets, according

to Y. S. Abu-Mostafa [156], are to some extent predictable. The future finance markets

are impacted by previous experience of numerous price fluctuations over a period in the

stock sector and from the unreported serial connections of critical economic situations.

Stock prices from history are used to predict the future value of a stock corresponding

to the stock exchange. These predicted stock prices helps the investors or traders to

decide whether they want to trade stocks now or hold them for some time. Therefore,

stock market analysis can be broadly classified into, short term trading, high-frequency

trading, long-term trading, intraday trading [157] and interday trading [158]. This work

concentrates on buy-today and sell-tomorrow (BTST) trading only. Traders buy and sell

114



CHAPTER 5. AUTOENCODER BASED HYBRID MULTI-TASK PREDICTOR
NETWORK FOR DAILY STOCK PRICES PREDICTION

stocks in large numbers with the intention of booking the highest amount of profit in a

day. Such trading, being short term, is a lot more riskier than investing in the regular

stock market. So, it is very crucial to know the prices of the stocks on the next day to

gain profit. Various models [159, 160, 161] have been proposed in this regard to predict

the prices of stocks. However, almost all the models try to predict the movement of the

prices using some indicator variables [162] which are mostly modelled on the opening,

high, lowest and closing (OHLC) prices of a stock on a particular day. Studies on direct

prediction of OHLC prices are not so widespread in the machine learning community.

Although there have been some attempts to predict the closing prices [163], high prices

[164] or the average prices [165] independently, the literature has somewhat ignored the

possibility of modelling OHLC prices together.

With the advancement in the field of neural networks, it has become comparatively

easier to model the stock prices variations up to a fairly good extent [63]. Long Short

Term Memory (LSTM) networks [166] and Gated Recurrent Unit (GRU) networks [167]

have become the state of the art models for efficiently predicting the stocks. But, these

neural networks come with a cost. If the normalisation of the input variables are not done

carefully, the predictions often end up being faulty [168]. This calls for a new variation in

normalisation of stock prices. Moreover, since there is an angle of financial risk to these

models, they need to be as accurate as possible in their predictive capabilities. As argued

by most deep learning researchers [169], recurrent neural networks (RNNs) perform better

predictions if the raw data is transformed to a different feature space. There have been

studies [17] which show that autoencoders are good feature extractors. This has been

the motivation consider such autoencoder based feature extracting methods for predicting

stocks. Combined with the time series forecasting abilities of LSTM networks and feature

learning capabilities of AEs, this chapter presents a hybrid network which takes help of

multi-task learning to learn the OHLC relationships. It is seen that using the proposed

model, the most profitable stocks can be recommended efficiently. A momentum indicator
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known as William’s %R [154] is used to determine the stocks which would be overbought

the next day. Such a recommender system would help the investors make profitable

decisions while trading.

Existing research on predicting open, high, low and close price (OHLC) data suffers

from two flaws. There are two main reasons behind this. This means that all values

must be positive, the low price must always be less than or equal to the high price, and

that both the open and close prices must fall between two defined limits in order for

the OHLC data to be valid. Constraints must be taken into account when using the

time-series modelling techniques for the four variables of OHLC data. The contributions

of this chapter is three fold, namely,

(i) A novel normalisation approach for the prediction of OHLC prices,

(ii) a novel hybrid multi-task network of AE and LSTM-RNN, and

(iii) a system to recommend the most profitable and overbought stocks (using William’s

%R indicators) for the next day.

The remaining chapter gives a detailed overview of the work presented. The following

section 5.2 contains the description of related works. Section 5.3 gives a preliminary

description of the building blocks of the proposed method. Section 5.4 contains the

dataset description, data pre-processing, and describes the working of the system. In

section 5.5, experimental results are shown containing all the result visualization. The

conclusions drawn from the proposed system has been provided at the end in section 5.6

followed by the scope of future works.

5.2 Related Works

A commendable amount of work has been done in the field of stock price prediction. Past

studies [170] have shown that it is impossible to predict the stock prices accurately as it
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depends on so many factors including the domestic market trends, population sentiments,

news, foreign market trend, etc. The stock price time series follows a random walk model

which makes it less likely to be predictable. However, with the recent advancements in

the field of machine learning, it has become possible to predict the stock prices accurately

up to a fairly good extent.

There has been a benchmark survey [159] of techniques including Logistic Regression,

Support Vector Machines (SVM), Artificial Neural Networks (ANN), k-Nearest Neighbor

(kNN) and other ensemble models, which can predict stock prices. Researchers [171]

implemented SVM along with kNN to analyse stock market trends on Indian stocks.

Researchers [172, 173] have been much appreciative of autoregressive models like ARIMA

(auto-regressive integrated moving average) which have been proven to be robust for

short-term forecasting. A triple stage method was proposed [174] for forecasting the

stock prices. It included a stepwise regression analysis, grouping of selected variables

by a differential evolution-based fuzzy clustering method and a fuzzy inference neural

network for final prediction. A similar work [175] has also been proposed which combines

dimensionality reduction using principal component analysis (PCA) with ANN for S&P

500 Index exchange-traded fund (SPY) stock market returns. Hybrid models of fuzzy time

series and automata [176], granular computing [177] were also explored. Support vector

regression (SVR) models have been explored [178] for stock price prediction. Hybrid of

neural networks [179] have also been used to predict the volatility of stocks.

Deep neural networks are the state of the art models [160] for stock prediction. Re-

cently, research has been diverted to using LSTM [180, 166, 181] models. Researchers

[161] have used LSTM and GARCH [182] to forecast the volatility of stock price index.

A standard LSTM network [180, 181] or a standard GRU network [183] would simply

takes in the stock prices and predicts the next day’s price. LSTM networks have been

used to predict the closing price of the stocks [163] recently. However, there are only a

handful of works to the knowledge of the authors which have handled the prediction of
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OHLC prices. It may be argued that predicting OHLC prices directly makes more sense

as the technical indicators used for stock price modelling are built on these OHLC values

only and a novice trader will not understand the meaning of these indicators. However,

anyone can understand that one can make high profit is he buys a stock closer to the

low price and sells it on the highest price. The bullish and bearish signals can also be

judged by looking at the opening and closing price for the next day. If the opening price

is greater than the closing price, it is a bearish signal and indicates that the market is

going to be unfavourable. On the other hand if the opening price is lesser than the closing

price, it is a bullish signal and indicates that the market is going to be favourable. Thus,

the present study concentrates on efficient prediction of OHLC prices directly.

A novel loss function based LSTM network has been proposed to predict the opening,

high, lowest and closing prices separately known as FLF-LSTM [184]. Even though they

have not explicitly identified or handled the OHLC constraints, it is found that the model

is capable of making meaningful OHLC predictions. Another research [165] proposed

predicting the average of the OHLC using an LSTM network, but was eventually unable

to make meaningful predictions as seen in the experiments. A bi-directional LSTM based

multi-task model has been proposed to predict OHLC prices [185]. It is shown [186]

that multi-task models which make use of hard parameter sharing [187] are less prone

to overfit and can efficiently learn the relationships in the data. However, the proposed

model fails to make any meaningful predictions and the predicted values do not follow

the constraints of an OHLC data (explained in section 5.3.2). This is mainly because

their model assumes independence of the OHLC values in their proposed model as they

start with the task-specific layers in the initial layers and then try to aggregate using a

shared layer in the latter part of the network. Thus, the proposed work aims to take a

critical angle at predicting meaningful OHLC prices and also reducing the financial losses

incurred by following the less accurate stock price prediction models. The following

section explains some preliminary concepts used in the proposed method.
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5.3 Preliminaries

Stock market predictions are used to estimate the true value of stock for the upcoming

days. Basically, the aim is to understand the future behaviour of the stock market on

the basis of previous performance of the stocks and the information about the company’s

stocks.

To analyze the stocks is a very challenging task, as it requires a deep understanding of

the stocks and market trends, and of other factors, including current industrialized poli-

cies, effect of foreign markets, country’s financial situation, past market behavior, etc.

The other major difficulty is the volatility of the stock market [150, 188] which makes it

nearly impossible to understand the trends in the stock price. With the increasing re-

search in the field of RNNs, such time varying trends are easily recognised. The following

section gives a very brief overview of the LSTM cell and the OHLC properties.

5.3.1 Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) [189] cell is a special kind of RNN node with a forget

gate. A LSTM cell consist of four parts i.e. input gate (it), output gate (ot), cell state

(C̄t), and forget gate (ft). The LSTM cell[166] takes three inputs, the output from

previous unit ht−1, the memory of the previous unit (cell state) Ct−1, and the input of

the current time step xt.

This single unit makes decision by considering the three features and produces a new

output, and alter its memory. Ct and Ct−1 represents the cell state at time step t and

t − 1 respectively, similarly ht and ht−1 represents the hidden state output at time step

t and t − 1 respectively. xt is the input at time t [Figure 5.1]. The input xt and the

previous hidden state output ht−1 are concatenated as [ht−1,xt] and are multiplied by

respective weights for each gate.
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Figure 5.1: A pictorial representation of LSTM Cell.

Forget gate takes two inputs i.e. ht−1 and xt, representing the output at time t−1, and

input at time t, respectively. The vectors ht−1 and xt are concatenated to form a vector

[ht−1,xt] and is multiplied by the forget weight matrix Wf . The equation governing this

operation is given by equation 5.1.

ft = σ(Wf .[ht−1,xt] + bf ). (5.1)

Here, ft represents the forget gate output and bf is the forget gate bias. The forget gate,

decides the amount of information to retain and it will forget the remaining information.

Next, the input gate decides the amount of information addition to the cell state. The

concatenated vector [ht−1,xt] is passed to the sigmoid function, and the tanh activation

function simultaneously. The sigmoid gate represents the input gate [equation 5.2] and

the tanh gate represents the cell state gate [equation 5.3].

it = σ(Wi.[ht−1,xt] + bi), (5.2)

where, Wi represents the input gate weights, it represents the input gate output and

bi is the input gate bias. The input gate, decides the amount of information that would

be updated.
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C̄t = tanh(WC .[ht−1,xt] + bC). (5.3)

Here, WC represents the cell state gate weights, C̄t represents the candidate cell state

gate vector and bC is the cell state gate bias. In the cell state gate, a vector of new

candidate values C̄t are created, which would be added to the final cell state.

The final cell state is given by equation 5.4.

Ct = ft.Ct−1 + it.C̄t. (5.4)

The cell state transfers relevant information down the sequence processing. Thus, it

can learn long-term dependencies. Now, the concern is about which filtered part of the

cell state is needed to go to the output. It is decided by the output gate result ot, given

by,

ot = σ(Wo.[ht−1,xt] + bo). (5.5)

Here, Wo represents the output gate weights and bo is the output gate bias.

The final hidden state output thus can be written as,

ht = ot.tanh(Ct). (5.6)

Using these four gates, the LSTM can decide which information to forget and which

information to retain down the memory and thus can be used to model time-series data

efficiently.
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5.3.2 Open-High-Low-Close (OHLC) Constraints

Daily stock prices are often represented in terms of four variables namely opening, high,

low and closing prices. The names of these variables indicate straightforward price values.

Since the stock prices vary in real-time, the data of a day is stored with respect to how

high the stock price has been (high price), how low it has been (low price), at what price

of the stock the market opened (open price) and at what price of the stock the market

closed (close price). The open price of a particular stock is determined by the demand

and supply at the start of the market and close price is the final price at which the stock

is sold for the day. The Bombay Stock Exchange usually opens at 9.15 a.m. and closes

at 3.30 p.m. Thus, the maximum value that the stock has attained within this time is

called the high price and the minimum value that the stock has attained within this time

is called the low price.

Thus, there are some clear indications as to what kind of constraints these variables

should have. Then, it is obvious that the high price will have the highest value and the

low price will the lowest value among these four variables. The open and close price

should lie somewhere in between the former two extremal values. Let us denote the open,

high, low and close prices of a particular stock as XO, XH , XL and XC . The following

constraints exist which should be maintained during prediction tasks.

(i) The values of the prices must not be negative or zero.

XO > 0, (5.7)

XH > 0, (5.8)

XL > 0, and (5.9)

XC > 0. (5.10)
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(ii) The high price should be greater than the low price.

XH > XL (5.11)

(iii) The open and close price should lie in between the high and the low price.

XO ∈ [XH , XL], and (5.12)

XC ∈ [XH , XL]. (5.13)

These are also often represented as a Japanese candlestick chart [43] [Figure 5.2].

Figure 5.2: Pictorial representation of Japanese candlestick chart for OHLC data.

When the body is solid or filed in black, it indicates a bearish signal and when it

is hollow or white, it indicates a bullish signal. There are many interesting patterns

which can be found in such OHLC based charts and often depict emotions of the people

surrounding a stock and are hence much informative than other trading indicators.

5.3.3 Multi-task Learning

While we are training a ML model for a certain task, the traditional method is to train

a single model or an ensemble till its performance no longer improves. This makes the
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model to focussed on that specific task and so, we often ignore how this model can be

utilised to learn for some related tasks. Transfer Learning [190] has been explored in

the attempt to learn related tasks. However, such tasks are often independent of each

other and mostly belong to different domains. So, they can utilise the same optimisation

function for both the tasks. Multi-task learning [185, 191] (MTL) enables sharing of

representations which takes into account the relationships between the related tasks,

even if they are constrained. MTL models have two main types of layers when it comes

to neural networks: shared layers and task specific layers [Figure 5.3]. The shared layers

Figure 5.3: Pictorial representation of an multi-task learning model with shared and
task-specific layers.

perform a sort of inductive transfer of information across the multiple tasks and the

task-specific layers allow the independent learning of tasks. In the present case, we have

the tasks of predicting the OHLC values which may seem to behave independently on

a macro level (as the day’s opening price cannot judge what the lowest or highest will

be), but are constrained in a micro level (as described in section 5.3.2). MTL allows a

124



CHAPTER 5. AUTOENCODER BASED HYBRID MULTI-TASK PREDICTOR
NETWORK FOR DAILY STOCK PRICES PREDICTION

restrained independence by drawing insights from it. This particular property allows an

MTL model to be prone to overfitting as it is trying to capture the representations of

all the tasks simultaneously. It has been shown [186] that as the number of tasks grows,

the risk of overfitting the shared parameters becomes less than the risk of overfitting the

task-specific layers.

5.4 Proposed Method

The proposed method takes advantage of the feature extracting capabilities of the autoen-

coder and the predictive abilities of LSTM network. The experiments show that using

a single-task learning model to predict OHLC prices is not enough to have profitable

recommendations for investable stocks. So, a MTL model is proposed in this regard. The

entire method deals with prediction of OHLC prices of stocks and then recommending

the relevant stocks to the user. It is observed that the proposed method does not result

in a single loss over a test period of 350 days if the top profitable recommended stocks

are actually invested in. The following segments describe the datasets and the proposed

method in detail.

5.4.1 Dataset Description

In this analysis twenty seven Indian companies’ stocks are considered which are listed by

Fortune India 500. The data has been taken from the Bombay Stock Exchange website

(www.bseindia.com). The datasets contain the open, high, low and close prices of the 27

stocks from the date 01-01-2014 to date 01-01-2019. There are several days in between

this date range when the stock market was closed due to holidays. So, the effective

number of samples were only available for 1234 days. The last 350 days (about 30%)

from 02-08-2017 to 01-01-2019 for all the companies are taken as the testing period and

the former days (from 01-01-2014 to 01-08-2017) are taken for training (around 70%) and
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validation of the model.

5.4.2 Proposed Normalisation Strategy

The main restriction to stock-price modelling lies in the normalisation strategy. For any

neural network, a proper normalisation always offers benefits [192]. It has been show

[193] that since stock prices have a wide range of values, normalisation of the prices to

a fixed scale improves the prediction capabilities of deep RNNs. In this context, several

normalisation methods have been used in the literature. Since the prediction models

often take a window of past values into account to predict the next day’s value, most of

the methods till rely on the min-max normalisation of the prices over that window. For

example, if a stock is studied for 100 days, its price may fluctuate from the order of tens

to the order of thousands within a few days. If the window is chosen to be 20, then one

would get 81 overlapping windows of data each of which will have a desired prediction

value for training. And each of these 81 windows will be individually normalised using

min-max normalisation. So, the price value which is the highest among each window will

be mapped to 1 and the lowest will be mapped to zero. This implies that the same value

may get different mappings if the window contains different values. For training data, this

normalisation is easy. But, for data where the desired prediction value is not present, or

for days when the prediction value makes a sudden jump from a very low range to a very

high range or from a high range to a very low range, the predicted value should ideally

be more than 1 or less than 0 respectively. In that case, de-normalisation becomes faulty.

So, a proper normalisation strategy is important which will handle all the situations and

all possible values of prices. A sigmoid-like function is much desirable in such cases where

the values [−∞,∞] is mapped to [0, 1]. However, using sigmoid straightaway is again

problematic as any value greater than two will be mapped near to 1. So, the values in the

order of hundreds or thousands will not be as much differentiable from one another. Now,

one may utilise the properties of OHLC prices (that they cannot be negative or zero),
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and construct a logarithmic alternative. Thus, the proposed normalisation strategy is

given as,

y′ =
1

(1 + e−z)
, (5.14)

where,

z = log10(1 + x). (5.15)

Then, the de-normalisation is straightforward given by,

x = 10
(−ln(

1

y′
−1)

− 1, (5.16)

The factor 1 is added to x to avoid any computational restrictions for very low (>0)

values of x. This normalisation is independent of any window operation and may be

applied to any unknown price ranges as well. It can be proven that if the proposed

normalisation is applied to OHLC data, the normalised values are also OHLC in nature.

The normalised values lie in the range (0.5, 1] for x in range (0, 1]. Thus, for OHLC,

the values XO, XH , XL and XC being greater than zero, the normalise values are also

greater than zero. Moreover, since the sigmoid function and the logarithmic function is

monotonically increasing for x>0, then the other constraints of OHLC also hold which

makes the normalised value of XH the highest and the normalised value of XL the lowest.

The normalised values of XC and XO will lie between the normalised value of XH and XL

respectively. Let us denote the normalised value of XO, XH , XL and XC as y′O, y′H , y′L and

y′C . These normalised values capture the variation of price ranges with respect to time.

However, we need one extra set of features from the OHLC data, which would capture

the variation of the prices with respect to each other without any temporal component

to them.

We can construct another normalisation such that for prices XO, XH , XL and XC , the
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normalised prices are given by,

yO =
XO −XL

XH −XL

, (5.17)

yH =
XH −XL

XH

, (5.18)

yL = ϵ, and (5.19)

yC =
XC −XL

XH −XL

. (5.20)

The values yO, yH , yL and yC all lie in the range (0, 1]. This is equivalent to row-wise

normalisation of the variables, which incorporate inter-variable relationships.

Thus, the proposed method uses eight variables {y′O, y′H , y′L, y′C , yO, yH , yL, yC} for each

date as input to the model.

5.4.3 Model Architecture

The proposed model consists of an MTL model consisting of LSTM layers preceded by

an autoencoder’s encoder pre-trained on the prices of the training days to reconstruct the

input. The encoder of the pre-trained autoencoder is cascaded before the input of the

proposed MTL model. There was a single hidden layer in the autoencoder with 4 hidden

units. The number of hidden units for the AE network was selected using Shibata Ikeda’s

method [194]. The architecture of the AE used is given in Figure 5.4. After the AE is

trained, the decoder is discarded and the encoder is used to extract the features from

the eight variables of each date. These features are then fed to the predictor network

for further prediction. The predictor network is constructed in a MTL fashion having

some shared and some task-specific layers. It should be noted that the encoder is also a

part of the shared layers if the entire model is considered. A pictorial representation of

the entire model is given in Figure 5.5. For predictive tasks, the input is often a series

of feature values from which the future values of certain variables are sought as output.
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Figure 5.4: Pictorial representation of the AE network used in the proposed method.

Hence, for the present multi-task learning setting, the initial layers should be shared by

the individual task (each task in the given scenario corresponds to predicting one of the

output values). The shared layers would learn the inter-relationships between the input

variables and pass it to the task specific layers which would, in turn, learn to predict the

output values independently as a separate task.

The choice of the number of shared layers and task specific layers have been done

using cross-validation and is elaborated in section 5.5. Since the predictions need to be

made on the next day’s OHLC values, one may predict any one of y′O, y′H , y′L and y′C

to get the range of values and rest three of yO, yH , yL and yC for finding the inter-

variable relationship for the next day. The last dense layers consists of sigmoid activation

function. Thus, the output prediction is always in the range [0, 1] as desired. In the

proposed model, the four variables chosen to be predicted are y′L, yO, yH and yC . Let the

predicted values of the four variables are y′Pred
L , yPred

O , yPred
H and yPred

C . It was seen by

experiments (section 5.5) that the low price is less volatile than all the other prices. So,

predicting the range of values based on the low price would be much more suitable and

other price values may be rebuilt using that. Thus, the actual predicted values of prices
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Figure 5.5: Pictorial representation of the proposed multi-task learning model.
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may be rebuilt using the following equations,

XPred
L = 10

(−ln(
1

y′Pred
L

−1)

− 1, (5.21)

XPred
H =

(1− yPred
H )

XPred
L

(5.22)

XPred
O = yPred

O .(XPred
H −XPred

L ) +XPred
L (5.23)

XPred
C = yPred

C .(XPred
H −XPred

L ) +XPred
L (5.24)

Thus, by default these predicted values maintain the OHLC constraints.

The entire model is trained using a sliding window [195] based backpropagation. A

look-back period or window size of 20 days is taken to predict the next day’s prices.

For the training data, the predicted day’s values are matched with the actual values

for that day and the model is trained to reduce the mean squared error of each price

independently in the task specific layers. For the testing days, the past 20 days’ values

are used to predict the next day’s values.

5.4.4 Recommendations

After the training, the Opening Price, Closing Price, High Price and Low Price for the

next day are predicted for each stock, taking the last 20 days’ features as input. Since the

proposed method considers only intra-day trading scheme, we are only concerned about

the behaviour of the stocks on the next day. As the behaviour is predicted one day ahead,

the stocks that the user may buy the next day can be efficiently recommended. Using

the predicted data for the ith day, two indicator variables namely Profit and William’s

%R [196] are constructed for the ith predicted day.

Let us use the abbreviations where, XPred
O (i) indicate the predicted opening price,

XPred
H (i) indicate the predicted highest price, XPred

L (i) indicate the predicted lowest price

and XPred
C (i) indicate the predicted closing price on the ith day. Similarly, XActual

O (i)
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indicate the actual opening price, XActual
H (i) indicate the actual highest price, XActual

L (i)

indicate the actual lowest price and XActual
C (i) indicate the actual closing price on the ith

day.

It is quite intuitive that the maximum profit one can attain in a particular stock is

when he/ she buys the stock on the previous day i− 1 (when the price was the lowest i.e.

at XActual
L (i−1)) and holds it for the next day i till it achieves a highest price (XActual

H (i))

will be given as equation 5.25.

ActualProfit = (XActual
H (i)−XActual

L (i− 1)), (5.25)

So, one may sell closer to the predicted highest price on ith day to attain a profit close

to the actual profit. The profit obtained by the person by following the proposed model’s

recommendation is given by equation 5.26.

Profit = (XPred
H (i)−XActual

L (i− 1)), (5.26)

Another important momentum indicator used by traders is the William’s %R. It is used

to know about the stocks which a user should buy. Its value oscillates between values 0

to -100. It is given as equation 5.27.

William′s%R =
(XH(Max)−XPred

C (i)

(XH(Max)−XL(Min))
× 100%, (5.27)

Here, XH(Max) signifies the highest high price obtained in the recent d days. The value

of d is usually chosen to be 14 by the stock analysts. In order to choose the XH(Max),

the past d− 1 days of actual high price data is present. So, including the predicted high

price XPred
H (i) in consideration would make more sense to calculate the predicted value
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of William’s %R. So, XH(Max) is given as,

XH(Max) = max(XActual
H (i− d), XActual

H (i− d+ 1), XActual
H (i− d+ 2),

...XActual
H (i− 1), XPred

H (i)) (5.28)

Also, XL(Min) signifies the lowest low price achieved in the recent d days. Since the

actual data for d− 1 days is present and one can only predict the lowest price of the next

day (XPred
L (i)), XL(Min) is calculated as,

XL(Min) = min(XActual
L (i− d), XActual

L (i− d+ 1), XActual
L (i− d+ 2),

...XActual
L (i− 1), XPred

L (i)). (5.29)

It is indicated that a William %R mark below -80 is considered to be an oversold case

[154] and suggests a buying signal.

In order to test the proposed model’s efficacy, we are recommending stocks in two

phases:

(i) Highest profitable stocks: From the list of the profits generated by each stock on

a particular day, the top company is chosen, which can maximize the predicted

amount of profit on the next day.

(ii) Stocks which will be overbought: The predicted William’s %R is calculated and if

any stock crosses the -80 mark (which suggests an overbought case), it is recom-

mended.

The following section describes the various experiments conducted and results obtained

for all the 27 Indian companies’ stocks.
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5.5 Experimental results

There are several aspects of experimentation as the proposed method tries to handle the

problem of stock price prediction from various perspectives. The first experiment reveals

why the proposed normalised low price (y′Pred
L ) was chosen to be used as a prediction vari-

able. The second experiment looks into various existing models and checks whether those

really make meaningful predictions or not. The third experiment shows a comparison of

various methods

5.5.1 Low Price is Less Volatile

It was shown by Gorenc and Velušček [164], that high price is less volatile than closing

price. However, their experiments did not take the low and opening price into their con-

sideration. Following the same argument, if we plot the normalised standard deviations

of the various prices of the companies for the entire training period data, it is seen that

the low prices is the least volatile [Figure 5.6] for most companies.

Figure 5.6: Graph showing the volatility of different prices.
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The standard deviation is normalised to a range 0 to 1. Normalised standard deviation

has been used in this case because the different companies had different price ranges and

required mapping to a same range to view the effective results. It can be seen that the

high prices have the highest volatility (highest standard deviation), which contradicts

the earlier findings. This is mainly due to the fact that the authors used a window

based normalisation of OHLC features prior to calculating the standard deviation which

contributed to the faulty interpretation.

5.5.2 How do Autoencoders Benefit in Stock Data?

AEs have a tendency to map similar data to similar ranges. Now, if a particular stock has

drastic value fluctuations within a very short period of time, the actual OHLC feature

space would be overwhelmed with the disparity in values and will fail to capture the

interesting trends in the data. This is analogous to a sudden event in the time. However,

it cannot be directly termed as an anomaly as the state of increased or decreased value

persist for a long time after it has started. This has been observed for many stocks in the

dataset. One such stock is of Reliance India Limited, where in the test days, the value of

the stock fell drastically (to almost half the value in a single day) as seen in Figure 5.7

(marked in red).

The original OHLC feature space only captured the difference between values, but the

interesting relationships between the prices were completely lost. As seen in figure 5.8,

none of the four OHLC features could show any difference between the bull or bear days.

However, AE was not so overwhelmed with the difference in prices and the four features

extracted by AE could easily differentiate between the bull and bear days (Figure 5.9).

5.5.3 Existing Methods Fail to Capture OHLC Constraints

The proposed method used rolling windows model for all the RNN based models. The

predicted prices are a stock’s open price, close price, high price, low price for the next
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Figure 5.7: OHLC candlestick chart for Reliance India Limited for the test days. (The
point of drastic decrease in price has been marked by red in the figure.)

(a) (b)

(c) (d)

Figure 5.8: Plot of four original OHLC features with respect to one another. (Green
points represent Bullish days and red points represent Bearish days.) (a) Features O, H
and L, (b) Features O, H and C, (c) Features O, L and C, (d) Features H, L and C.
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(a) (b)

(c) (d)

Figure 5.9: Plot of four AE extracted features with respect to one another. (Green points
represent Bullish days and red points represent Bearish days.) (a) Features 1, 2 and 3,
(b) Features 1, 2 and 4, (c) Features 1, 3 and 4, (d) Features 2, 3 and 4.
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day. In all the cases a separate network is trained for each company in the dataset.

Since the existing models used for stock price prediction do not take into account the

OHLC constraints, we have compared the proposed method with only those models which

predicted proper OHLC prices to keep the comparison fair. Although some existing

methods [165, 185, 197]claim to predict OHLC, they fail to capture the constraints. In

order to support our claim that existing methods fail to follow OHLC constraints, we

have tested checked the predictions for all the 27 companies. If any of the constraints do

not hold for any of the test days, we have increased the number of failure counts by one.

The observations are given in Table 5.1.

Table 5.1: Number of test days when the existing methods fail to follow the OHLC
constraints.

Name of Stock Proposed ARIMA[197] MTL with BI-LSTM [185] LSTM [165]
APSEZ 0 1 0 1
ASIAN PAINTS 0 0 1 0
AXIS BANK 0 2 1 2
BAJAJ AUTO 0 2 15 10
BAJAJ FINSERV 1 3 20 23
BPCL 0 1 1 2
AIRTEL 0 0 0 0
CIL 0 1 2 1
GAIL INDIA 0 2 0 0
HCL 0 2 2 3
HDFC BANK 0 1 2 7
HINDALCO 0 2 0 2
HP 0 0 1 1
ICICI BANK 0 4 18 12
ITC 0 0 0 4
IOCL 0 1 9 12
INFOSYS 0 1 0 1
KOTAK MAHINDRA BANK 0 0 0 0
L&T 0 1 3 2
M & M 0 0 0 1
NTPC 0 0 0 0
ONGC 0 2 0 0
PFC 0 0 0 0
POWERGRID 0 0 0 0
PNB 0 2 14 9
REL 0 0 5 17
RELIANCE 0 3 2 13

It can be seen that the proposed method maintains the OHLC constraints for all
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the companies’ stocks for all the test days while the existing methods fail for multiple

companies.

5.5.4 Comparison of Methods

It would be unfair to compare the proposed model with the methods which fail to fol-

low OHLC constraints. Thus, standard models like ARIMA [197], VAR (vector auto-

regression) [198], SVR (support vector regression) [178], VEC (vector error correction)

[198], etc which have no intrinsic ability to capture the OHLC constraints, were not con-

sidered. However, there are some methods which capture the OHLC constraints like the

FLF-LSTM [184] (even though they explicitly do not handle it) and existing methods

with LSTM [165] and Bi-LSTM based multi-task model [185] may be modified according

to the proposed features and AE to predict the proposed outputs. Hence, the following

methods have been compared:

(i) Proposed AE-MTL hybrid model with the proposed features as inputs. Let us

denote it by PF-AE-PMTL.

(ii) Proposed MTL model without AE and just the proposed features as inputs. Let us

denote it by PF-PMTL.

(iii) LSTM model [165] without AE and just the proposed features as inputs. Let us

denote it by PF-LSTM.

(iv) LSTM model [165] with AE and the proposed features as inputs. Let us denote it

by PF-AE-LSTM.

(v) Bi-LSTM based multi-task model [185] without AE and just the proposed features

as inputs. Let us denote it by PF-BiLSTM-MTL. (This model cannot be hybridised

with AE as the authors have assumed the initial layers to be task specific layers.)

(vi) FLF-LSTM [184] with the original non-normalised OHLC features (as the authors
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suggest that the method needs no normalisation.)

Figures 5.10 5.11, 5.12 and 5.13 show the root-mean square error (RMSE), mean ab-

solute error (MAE), mean absolute percentage error (MAPE) and R-squared (R2) value

of different methods for various company’s stocks averaged over 10 independent runs.

Figure 5.10: Comparison of root-mean squared error (RMSE) of different methods.
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Figure 5.11: Comparison of mean absolute error (MAE) of different methods.

Figure 5.12: Comparison of mean absolute percentage error (MAPE) of different methods.
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Figure 5.13: Comparison of R-squared (R2) of different methods.

Let us assume that the original OHLC prices for the ith day are denoted by XActual
O (i),

XActual
H (i), XActual

L (i) and XActual
C (i), respectively and the predicted OHLC prices for the

same ith day are denoted by XPred
O (i), XPred

H (i), XPred
L (i) and XPred

C (i), respectively.

Calculation for RMSE, MAE, MAPE and R2 can be given by equations 5.30, 5.31, 5.32

amd 5.33.

RMSE =
1

N

N∑
i=1

[(XActual
O (i)−XPred

O (i))2 + (XActual
H (i)−XPred

H (i))2+

(XActual
L (i)−XPred

L (i))2 + (XActual
C (i)−XPred

C (i))2]

1

2 . (5.30)

MAE =
1

N

N∑
i=1

[|XActual
O (i)−XPred

O (i)|+ |XActual
H (i)−XPred

H (i)|+

|XActual
L (i)−XPred

L (i)|+ |XActual
C (i)−XPred

C (i)|]. (5.31)
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MAPE =
1

N

N∑
i=1

[|X
Actual
O (i)−XPred

O (i)

XActual
O (i)

|+ |X
Actual
H (i)−XPred

H (i)

XActual
H (i)

|+

|X
Actual
L (i)−XPred

L (i)

XActual
L (i)

|+ |X
Actual
C (i)−XPred

C (i)

XActual
C (i)

|]. (5.32)

R2 = 1− SSResidual

SSTotal

, (5.33)

where, the sum of squared residuals (SSResidual) and total squared error (SSTotal) are

given by,

SSResidual =
N∑
i=1

[(XActual
O (i)−XPred

O (i)2 + (XActual
H (i)−XPred

H (i))2+

(XActual
L (i)−XPred

L (i))2 + (XActual
C (i)−XPred

C (i))2], (5.34)

and,

SSTotal =
N∑
i=1

[(XActual
O (i)−mean(XActual

O ))2 + (XActual
H (i)−mean(XActual

H ))2+

(XActual
L (i)−mean(XActual

L ))2 + (XActual
C (i)−mean(XActual

C ))2]. (5.35)

It can be seen that the proposed method (PF-AE-PMTL) has the lowest RMSE, MAE

and MAPE for all the stocks. The proposed method has also consistently achieved a R2

value close to 1 for all the stocks (a model that has R2 value equal to 1 is a model with

the best performance). Some of the methods have shown negative R2 values indicating

that the model does not capture the trend of the data at all. The results also show that

the use of AE has clearly enhanced the performance of the proposed MTL model. It is

evident from the fact that the RMSE, MAE and MAPE for PF-AE-PMTL is lesser than

that of PF-PMTL for all the stocks. This shows that the proposed model is comparatively

a better model than the other models in terms of predicting the stock prices accurately.
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Figure 5.14: Comparison of the average training time of different methods.

The average training time taken for training of each method is shown in Figure 5.14.

The values are averaged over 10 independent runs of each method. It can be seen that

the training time for the proposed method is comparable to the method with the lowest

time for training (PF-AE-LSTM) and differs only by around 8 seconds. This shows that

the proposed method is not so expensive in terms of training time.

5.5.5 Look-back Period or Window Size

In order to know which look-back period was sufficient for training the proposed model,

a validation data (10%) was separated out of the training days. This consisted of the

last 123 days of the training days and the various parameters of the proposed model

was validated on this particular chunk of the data. The RMSE, MAE and MAPE were
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(a) (b) (c)

Figure 5.15: Plot of the (a)RMSE, (b)MAE and (c)MAPE for various look-back periods.

calculated for 10 independent runs of the model for various look-back periods upto 50

days for the Reliance India Limited’s stock. It can be seen [Figure 5.15] that the look-

back period of 20 days was the best in terms of all the three metrics. Thus, the look-back

period for 20 was chosen for the proposed method. Increasing the look-back period might

have resulted in lesser error rates, but increasing the look-back period would imply a

higher dimensional input and hence increased complexity.

5.5.6 Number of Shared and Task-Specific Layers

Finding the number of shared and task-specific layers is a crucial task for the MTL

models in general. Thus, various experiments were conducted to fix the architecture of

the proposed MTL model. Since the model already had an encoder layer and a final dense

layer is needed for the output, the number of shared and task-specific layers indicate the

hidden layers in between. The experiments were conducted on the validation data as

used in section 5.5.5.

Table 5.2: The RMSE, MAE and MAPE values for different number of shared layers in
the model for the Reliance India Limited’s stock.

Number of Shared Layers RMSE MAE MAPE
0 24.65 15.29 0.0133
1 15.38 5.51 0.0070
2 5.72 3.66 0.0052
3 10.29 5.11 0.0057
4 7.03 4.46 0.0054
5 12.81 4.6 0.0058
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Table 5.3: The RMSE, MAE and MAPE values for different number of task-specific layers
in the model for the Reliance India Limited’s stock.

Number of task-specific layers RMSE MAE MAPE
0 258.77 162.78 0.1498
1 5.72 3.66 0.0052
2 17.46 4.49 0.0076
3 9.80 4.05 0.0066
4 21.08 4.99 0.0094
5 9.08 3.79 0.0062

It can be seen from tables 5.2 and 5.3 that having two shared layers and one task-

specific layers resulted in the least error. It is to be noted that the This is analogous to

the fact that too much depth in a DNN is often not good.

5.5.7 Recommender system

In order to show the applicability of the proposed model as a deployable solution, the

proposed model has been used to recommend stocks which would prove to be the most

profitable next day. In order to do so, Profit was calculated as given in equation 5.26 and

based on that the top profitable stocks were recommended. The recommender system

would predict the high price for the next day and would recommend the stocks for which

the net profit per share is the maximum. Since the Profit (from equation 5.26) is a

predicted value and holds no practical relevance, to show the efficacy of the model, the

ActualProfit (as calculated by equation 5.25), was plotted against each of the test days

[Figures 5.16 - 5.21 ]. The intuition is that a good recommendation model will cause

lesser (or almost no) losses on any of the test days. It can be seen from Figures 5.16,

5.17, 5.18 and 5.20 that all the other methods had multiple occasions in the test days

where the ActualProfit was negative (which indicates a loss). However, as seen from

Figure 5.21, the proposed model had not made a loss for even a single day for all the test

days.
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Figure 5.16: Actual profit obtained by the recommendations of the model PF-LSTM.

Figure 5.17: Actual profit obtained by the recommendations of the model PF-AE-LSTM.
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Figure 5.18: Actual profit obtained by the recommendations of the model PF-BiLSTM-
MTL.

Figure 5.19: Actual profit obtained by the recommendations of the model FLF-LSTM.
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Figure 5.20: Actual profit obtained by the recommendations of the model PF-PMTL.

Figure 5.21: Actual profit obtained by the recommendations of the proposed model PF-
AE-PMTL.

The next recommendation is based on William %R. This is a very important trend
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indicator for the investors. It is said that the investors usually buy the stock when the

William %R is below -80. In order to give this particular type of recommendation, the

proposed PF-AE-PMTL was analysed for ten random test dates.

Table 5.4: Comparison of actual and predicted William’s %R for stocks which were
recommended by the proposed model for buying.

Date Stocks Predicted %R Actual %R
14-09-2017 RELIANCE -98.39 -96.26
10-10-2017 L&T -80.35 -88.09
15-11-2017 IOCL -81.04 -92.94
22-02-2018 BAJAJ AUTO -82.73 -97.15

IOCL -81.41 -96.61
PNB -87.41 -94.26

21-03-2018 IOCL -93.60 -99.17
PFC -83.83 -78.88

23-03-2018 IOCL -95.37 -98.70
25-04-2018 BPCL -80.76 -81.34

HP -82.72 -98.49
PNB -80.16 -97.97

10-05-2018 CIL -80.67 -88.55
HCL -87.00 -88.97

28-05-2018 RELIANCE -83.89 -86.76
10-09-2018 BAJAJ FINSERV -80.19 -94.50

INFOSYS -97.04 -98.01

It can be seen from Table 5.4 that most of the recommended stocks actually crossed

the -80 mark of William %R on the five random test days. Only one recommended stock

(PFC) did not cross the -80 mark on 21-03-2018, but the actual value of its William’s

%R was close to -80.

It can be seen from the experiments that the proposed model is quite efficient in making

profitable recommendations to the users who follow the predictions for investing in stocks.
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5.5.8 Autoencoders replaced by other feature extraction meth-

ods

It was evident that AE based projection of the proposed feature set was helpful in bring-

ing out the inter-relationships between the variables (Section 5.5.2). But, it would be

interesting to see if only AEs give this benefit or other projection methods too can give

similar boost. Thus, an experiment was conducted by replacing the AE in the proposed

model by different feature extraction methods like k-PCA, t-SNE, LLE, Isomap and GRP

applied on the proposed feature set. Results are shown for the Reliance India Limited

stocks because this particular stock had a sudden event of market crash as shown in Fig-

ure 5.7. It can be seen from Table 5.5 that the errors obtained by replacing AE with other

Table 5.5: The RMSE, MAE and MAPE values for the proposed PMTL model using
different feature extraction methods for the Reliance India Limited’s stock.

RMSE MAE MAPE
AE 6.528 3.838 0.004

k-PCA 80.544 19.51 0.017
t-SNE 60.763 28.006 0.026
LLE 21.936 7.374 0.007

Isomap 54.14 9.537 0.008
GRP 84.065 11.37 0.009

feature extraction methods are substantially bigger in magnitude than what is obtained

by using AE.

5.6 Conclusions and Future Work

This chapter presents an hybrid AE multi-task model for stock prediction. The work

has been extended to build a recommender system. The inclusion of pre-trained encoder

modules clearly helped in increasing the predictive capabilities of the proposed MTL

model for OHLC predictions. The novelty of the proposed model lies in the unique

normalisation strategy for OHLC data and explains why an AE might be better to use
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in problems like stock markets where the prices may fluctuate drastically. This angle of

stock price prediction has mostly been overlooked in the literature. Thus, this work tries

to address the gap of using ML in financial prediction tasks.

It is to be noted that the proposed work considers straightforward price values of stocks

and does not consider any indicator variables used by the financial analysts. However, we

are hoping to extend this work in future using other technical indicators as well. In this

present analysis the information regarding the volume of stocks sold is not incorporated

as the data for some companies had no information on volume. In future, we therefore

wish to incorporate some volume indicators as well. We also hope to make a composite

model in future which would combine both the fundamental as well as technical analysis

for recommendation of stocks. The proposed models would have been more practical if

the predictions could have given for very short-term or very long-term trading purposes,

which is also one of the planned future directions.
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Chapter 6

Autoencoder Pre-trained Distributed

Deep Neural Networks for Outlier

Detection

6.1 Introduction

In the former chapters, it is witnessed that AEs have been useful in extracting mean-

ingful feature representations for datasets with imbalanced class distributions. Thus,

it is intriguing to study how the problem extends to decentralised data settings. AEs

have an innate ability to capture the outlier features (as seen in chapter 3). Now, the

question arises whether the AE pre-initialisation [10] given to a DNN adds any further

improvement to the capability of learning from imbalanced datasets. DNNs are inher-

ently biased by the majority class and often fail to give good performance if the classes

are severely imbalanced [36]. This problem is a big limitation when it comes to achieving

high classification performances as compared to balanced classification tasks where DL

thrives. DL in distributed setting [199] is a boon for the current times when we are facing

the data deluge. Reports show that human beings have generated more data in just the
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last decade than has been produced over the last hundred years. This astonishing fact is

seen as the foundation for several experiments of concurrent and distributed computation

and distributed methodologies in computer science education. Distributed computation

is a necessity of this age and it is the pinnacle of this area of science to combine it with

sophisticated learning approaches such as DL (neural nets). However, distributed DL in

an imbalanced scenario is a big gap that needs to be addressed. If the distributed model

uses non-independent and non-identical (or simply non-i.i.d) chunks of data in each local

computation server, the imbalance becomes critical and often too overwhelming for a

DNN to handle. This is, however, a paradox as multiple experts are being used to model

the classification boundary.

This may be viewed as an extension of the concept of using multiple classifiers to

obtain a better classification performance. Such a setting is often regarded as Social

Learning System (SLS) [200] or an Ensemble [201] or a Multi-Classifier System (MCS)

[202]. This is due to the complementary nature of each of the classifiers in the SLS

[200]. This diversity is usually achieved either through diversity in data or diversity in

models. Deep neural networks under such ensemble settings have been proven to give

better performance than their single model counterparts [201]. Perceiving that every

independent classifier may make complementary errors, we can merge the decisions from

all classifiers to build a composite framework that outperforms any single classifier. Such

a combination of multiple classifiers can handle data complexity very well and supersede

a single sophisticated classifier. Owing to the training on different inputs, the pool of

predictors is ensured to be highly diverse and mutually complementary.

Borrowing the idea of these SLSs, it is expected that a distributed DL model should

give better performance than their single model analogy. We can view this particular

setting as an ensemble or a social learning system where multiple models in the nodes are

trained on different parts of the data, and the aggregated weight update is performed in

the main parameter server, it behaves like an SLS. This is also known as federated learning
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(FL). In the parameter server version of the distributed setting the data, and samples are

spread through a variety of processing nodes and each node has one deep network. There

is a parameter server that receives all the parameters (weights and biases) after each

communication round, aggregates them and sends the updated aggregated weights to all

the worker nodes for the next communication round to begin [Figure 6.1]. This method

of weight update often results in decreased performance as the number of predictors

increases. This is mostly because the data distribution across the worker nodes does not

have identical distributions and might also have local class imbalance issues. DNNs being

just an extension of the traditional neural networks suffer from masking and swamping

effects. However, DNNs are state-of-the-art models for most classification tasks. This

problem is aggravated if the actual data has an inherent global imbalance (as in the

case of outlier detection where the class imbalance is severe) and is so big that it needs

distributed processing. As DNNs are inherently unsuitable for the problem of such outlier

detection, distributed models fail. However, as seen in Chapter 3 and also identified by

many researchers [16, 34], AEs are better suited as outlier detection models. Thus, it

would be interesting to see how the AE pre-initialised DNNs perform for outlier detection

tasks.

It is even more intriguing to study how an AE pre-initialised distributed architecture

of DNNs using a global weight update mechanism at the parameter server would handle

the severely imbalanced datasets as with the outlier detection problem. The global data

is itself severely imbalanced (outlier class constitute <10% of the total samples) and thus

the local datasets might be critically imbalanced (some may have a negligible percentage

or completely lose samples from the minority class). Here arises Hace’s theorem of Big

Data [203] when the data is not globally available to all the worker nodes, each of the

nodes train independently over any arbitrary portion of the data and makes predictions

on that.

In a federated learning [204, 205, 206, 207] scenario, the local workers do not commu-
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Figure 6.1: Schematic representation of a federated deep learning setting (DNN represents
a deep neural network)

nicate among themselves and can only communicate indirectly via the parameter server

where they only send the model parameters for aggregation. The parameter server does

not contain any data for training. Training is only done in the worker nodes. Each worker

node has one deep neural network (DNN) model and a portion of the entire dataset and

all the neural networks of each worker node have identical architectures. The idea of

FL is that each of the worker nodes does not reveal their local datasets to each other.

This property is quite useful in scenarios where data privacy preservation is important

among collaborating nodes. The parameter server has an identical deep neural network

only for storing the final updated parameters after each communication round. The basic

assumption for such FL implementations is that the data division across the worker nodes

is independent and identically distributed (i.i.d) [208].

The traditional method, known as federated averaging (FedAvg) [209] works simply by

averaging all the respective parameters from the worker nodes. This method works well

in cases of i.i.d data sample division across worker nodes and is highly scalable. However,

for the non-i.i.d setting, this method fails as the number of worker nodes increases [210].

Moreover, scenarios of class imbalance introduce saturation problems for neural networks

[211]. The non-i.i.d nature of data sample distribution and class imbalance across worker

nodes are practical issues and may arise if the local datasets at each worker node come
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from mostly (or completely) one particular class.

In that case, that particular local model never sees the samples from the minority class.

The proposed method handles these intriguing situations when the data is distributed

across the local workers such that, the total data is severely imbalanced (in the case of

under-represented class <10%) and some of the local workers may not get any samples

of the under-represented class. The present manuscript proposes an alternative by in-

troducing a cost-sensitive momentum averaging scheme. The proposed method has been

shown to handle these two problems better than the state-of-the-art methods.

The total size of the actual global dataset is constant. To get severely imbalanced global

data, we used some datasets with outliers [73] (one class had <10% of the total samples).

The number of samples each worker node receives is chosen carefully by clustering (details

in section 6.4) to avoid human bias. Under such conditions, it has been seen that with

an increasing number of worker nodes, the performance of the state-of-the-art methods

degrades drastically. This degradation is more pronounced when the data is already

globally imbalanced. It has been observed that the proposed method is robust in handling

the scenario. The chapter, hence, proposes a workaround by introducing the concept of

local cost-sensitive momentum averaging. It is seen that for the proposed system, there

was minimal degradation in performance and was more robust than the other methods.

6.2 Contributions

In this chapter, it is shown that AE pre-initialisation strategy works best for outlier

detection tasks using a neural network when retraining is done by the focal loss function.

Further, this chapter proposes an adaptive focal loss for learning from severely imbalanced

datasets in a distributed deep learning setting. In this context, a critical class imbalance

is explored. We argue that standard methods for federated learning fail to learn from

severely imbalanced data and hence face a criticality issue. This is mostly due to either
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a lesser number of samples at the local worker (which makes the local model overfit) or

severely imbalanced partitions at the local worker such that most of the workers do not

get a single sample from the minority class. We have shown that as the number of workers

is increased, the homogeneity [212] of the local datasets also increase and tends to 1. If

all the local datasets contain only a single class sample, then the homogeneity becomes

1. If the local datasets have perfectly identical representations of the classes as the global

dataset then the homogeneity becomes zero. For any severely imbalanced dataset, the

homogeneity is seen to increase with the number of workers. So, the assumption, that an

increasing number of workers result in situations where one or more local datasets have

no samples from the minority class (or classes), holds. So, the major contribution of this

chapter is as follows:

(i) study on how AE pre-initialisation helps for imbalanced learning (as in outlier de-

tection tasks),

(ii) handling outlier detection in federated deep learning, and

(iii) a novel adaptive focal loss function.

The problem of critical class imbalance in federated deep learning has not been explored

or handled in the literature to the best knowledge of the authors. This problem is

inherently unique due to its complex nature and resembles a very practical situation

(described in section 6.4.1). The basic assumption of i.i.d data distribution across workers

is violated in such cases and along with that, the severe class imbalance also affects the

performance of the local model for each worker. Related studies have either assumed

the data across workers to be i.i.d sampled or having an imbalanced class. However, no

method has handled the two issues simultaneously.

There may be a criticism of the assumption that the number of samples in the global

dataset is constant and that doesn’t make the comparison fair on the grounds of an

unequal number of samples for a different number of nodes. In that light, it needs to
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be explained that the experiment aims to study a practical situation occurs where small

chunks of data are generated by several remote devices and data privacy is a concern.

The aim was to use the entire training data each time without making any inherent

assumption of a local data chunk being more important than the other. This study is

different from all the existing studies in this aspect too. The following section describes

the related state-of-the-art literature around FL.

6.3 Related Works

The manuscript deals with the concepts of FL for classification using pre-trained fully

connected deep neural networks. FL in DL is still in its pristine state. The collaborative

learning mechanism is perfect for reaping the benefits of DL in distributed data settings.

The era of Big Data and the expertise of DL algorithms have forced researchers to devise

novel ways to develop deep distributed learning [199]. The solutions, however, are problem

specific. In cases where the data is too big to be contained in a single machine, but the

DL model can be trained in a single machine, the data is distributed and the model is

replicated across different machines. Each of these machines performs local computations

on the models and interacts with each other directly or through a server to understand

a global view of the data without transferring the data as a whole. This is called data-

distribution architecture [213]. In cases where the data is not so big, but the DL model

has so many parameters that it cannot be trained in a single machine, the model is

distributed and the data is replicated across different machines. This is called model-

distribution architecture [214]. In cases where both the data as well as the DL model

are too big for a single machine, both the data as well as the model are distributed.

This is known as hybrid-distribution architecture [215]. This manuscript is concerned

with data-distribution architecture with the workers and parameter server model shown

in Figure 6.1.
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In this context, many researchers have come up with methods that are capable of

training deep neural networks where data is distributed across worker nodes, also known

as Federated Deep Learning [216]. Each of the worker nodes trains a local model on

the local dataset that they contain and send the updates (change in weights of the local

models) to the parameter server. The parameter server then aggregates the updates or

parameters (in this case weights and biases) and sends the aggregated parameters back

to the worker nodes for re-initialising the local models after each communication round.

The standard method of aggregation is simple averaging [209], also known as FedAvg.

In that case the weights of the parameter server are simple average of the weights of the

nodes.

wt
param =

N∑
i=1

wt
i

N
, (6.1)

where, wt
param is weights of the parameter server model at tth round and wt

i are the weights

of the ith worker’s local model at tth round. N represents the number of total models

participating in the training. This equation is also often written in terms of the weight

change vector (∆w) too.

∆wt
param =

N∑
i=1

∆wt
i

N
, (6.2)

where, ∆wt
param is the change in weights of the parameter server model at tth round and

∆wt
i are the change in weights of the ith worker’s local model at tth round.

There are several variations on the simple averaging where the sample size each local

model gets is also taken into account [206, 209]. In sample size weighted averaging

(SSFedAvg), the weights of the local networks are multiplied by the proportion of the

total dataset they contain. So, if an ith worker contains di samples, then the weight
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aggregation rule is given as,

wt
param =

N∑
i=1

diw
t
i

N
N∑

i′=1

di′

(6.3)

Some other researchers studied the effects of non-i.i.d data settings across the worker

nodes and found that the standard variations of FedAvg fail to converge faster. Moreover,

the weights of the local models drift apart and the aggregation then requires some adaptive

form which prevents the drift. In this context, an adaptive aggregation strategy (FedAdp)

was proposed [210] which takes into account the direction of an individual local gradient

concerning the global server gradient. The weight update at each ith worker node at

communication round t is given by,

wt+1
i = wt

param − η∆Fi(w
t
param), (6.4)

where, Fi() is the error function at ith worker node and since the local weights are up-

dated by the global aggregated weight at each communication round, the local weight is

updated on top of the parameter server weights calculated at the previous round wt−1
param.

∆Fi(w
t
param) denotes the local gradient of ith worker node’s model at communication

round t. So, the global gradient is given by,

∆F (wt
param) =

N∑
i=1

di∆Fi(w
t
param)

N
N∑

i′=1

di′

. (6.5)

The angle of deviation between the global gradient and the local gradient at ith node is

given by,

θti = arc cos
⟨∆F (wt

param).∆Fi(w
t
param)⟩

||∆F (wt
param)||||∆Fi(wt

param)||
. (6.6)

So, if θti is small, it means that the local model is updated in the same direction as the

global model and would contribute more to the aggregation. The angles are smoothed
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and a non-linear decreasing function is imposed on it. Smoothed angle in radian is given

by,

θ̃ti = θti , if t = 1 (6.7)

=
t− 1

t
θ̃t−1
i +

1

t
θti , if t > 1, (6.8)

and the non-linear decreasing function is given by,

f(θ̃ti) = α(1− e−e−α(θ̃ti−1)

), (6.9)

where α is a constant.The adaptive weight for each ith model in aggregation becomes,

ϕt
i =

N∑
i=1

die
f(θ̃ti)

N
N∑

i′=1

di′f(θ̃ti′)

. (6.10)

So, now the weight aggregation rule becomes,

wt
param =

N∑
i=1

ϕiw
t
i (6.11)

However, even though the method of FedAdp was capable of handling non-i.i.d data

settings, it did not take into account cases of extreme imbalance. Moreover, for non-i.i.d

data, the number of rounds needed to achieve the desired performance for 10 participating

worker nodes was in the order of hundreds.

Another method of aggregation was introduced [217] which could improve the perfor-

mance of the worker models by allowing them to explore and fluctuate from the parame-

ter’s centre variables. They argued that since it is a collaborative learning strategy, there

might be numerous local optima. The method is called Elastic Averaging (EASGD). In
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this method, the aggregated weight is a moving average of the local weights.

wt
param = γwt−1

param + (1− γ)
N∑
i=1

wt
i

N
(6.12)

However, in a situation of local imbalance across the workers for non-i.i.d data setting, it

is observed that EASGD fails as the number of worker nodes increases.

A detailed study [218] on some of the methods for selecting some well-learnt workers to

update the global model has been done in the context of imbalanced class distribution.

However, such methods aim at discarding a number of workers that are supposedly not

good enough to contribute to the global model. In doing so, they are rejecting the data

that the rejected workers hold and the global model does not get to learn from that

particular portion of the data.

Researchers have focussed on the problem of data imbalance across worker nodes and

have proposed methods to overcome the challenges [207, 219]. A self-balancing methodol-

ogy known as Astraea is adapted such that the local datasets in each node are rebalanced

by augmentation. However, such methods often work on augmenting the local datasets

on workers with the minority class. Thus, have an inherent assumption that the local

models have seen at least some actual samples of the minority class. In cases when one or

more local models are completely deprived of one or more classes, the problem cannot be

handled by minority class data augmentation. Resampling is a popular method to allevi-

ate the imbalance problem by undersampling or over-sampling. However, over-sampling

usually is susceptible to errors owing to excess or additional noise, while undersampling

lowers the volume of training data from which the model can learn. This makes the above

two approaches useless.

Focal loss [220] is a specific loss function that has been presented for a binary clas-

sification job that imbalances and reshapes a conventional model cross-entropy loss to

weigh down well-classified instances and may concentrate on the learning of the hard
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imbalanced outliers. The focal loss for binary classification is given as,

E = −ρ{p1(1− p2)
ξlog(p2) + p2(1− p1)

ξlog(p1)}, (6.13)

where, p1 and p2 represent the predicted probabilities of the two classes. Usually for a

binary classification problem p2 = 1− p1. The constant ρ (0 < ρ ≤ 1) is a scaling factor

which treats the errors made by the two classes differently and ξ determines how much

the easily classified samples (majority class in case of imbalanced data) will contribute to

the error. For larger values of ξ, a lesser number of easily classified samples will contribute

to error. In a multi-class setting, the focal loss may be written as,

E = −
C∑
i=1

ρ{pi(1− p̂i)
ξlog(p̂i)}, (6.14)

where, C represents the number of classes and pi and p̂i represent the predicted proba-

bilities of the class i and not-class i. Focal loss has been directly applied to the federated

learning paradigm [204]. However, the method again focused more on selecting well-learnt

worker nodes rather than directly handling the imbalance. A similar loss function called

GHMC loss [221] (Gradient Harmonizing Mechanism Classification loss) is also proposed

to handle outliers in a non-distributed setting. These methods can be straightforwardly

applied to federated learning settings as they consider the imbalance of the current worker

model. MFE loss [222] is another cost-sensitive method that requires knowledge about

the minority classes. It generates a modified form of loss using false positives and false

negatives. However, such a piece of prior knowledge is impractical in FL. A new loss func-

tion called the Ratio Loss [205] has been proposed recently. The method incorporates a

monitoring scheme at each communication round and keeps track of the local imbalance

in the training data. However, this loss function again needs to identify the minority

class in the global dataset as an added burden. Moreover, it is stated by the authors that

as the global imbalance increases, the effective performance of the ratio loss degrades. If
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the global dataset itself poses an outlier detection problem (where the imbalance is severe

i.e. the minority class is only 10% of the dataset), it will fail. Thus, a new loss function

is proposed which would modify the local weights in such a manner that even critical

imbalance is handled.

Therefore, there is a dire need for an efficient method to handle an extreme class imbal-

ance in local nodes. Moreover, the existing methods of handling class imbalance mostly

use pre-trained models. Hence, it has never been studied how the pre-initialisation strat-

egy would affect the learning process in such an imbalanced data setting. Because the

training data is consolidated in a centralised setting in typical training situations, there

is no differentiation between local and global imbalance values. Thus, minimising the

negative impact of imbalance is considerably easier than in the cases of decentralised

data. It should be noted that in federated learning, each local model training might

be considered as regular centralised training. Intuitively, we might use the existing ap-

proaches to handle the local imbalance problem at each round. However, local models

exist only momentarily on the local worker nodes and are replaced by the most recent

global model after each training cycle. As a result, fixing local imbalances may have little

influence. Furthermore, because of the misalignment between local and global imbalances,

just implementing known procedures at local devices is often ineffective and may even

have a detrimental influence on the global model. Thus, there needs to be a mechanism

which can handle each of these local imbalances and the training would work on resolving

the global imbalance. The proposed method aims to handle the afore-mentioned issues

and also provides a boost in performance. The following section describes the proposed

method in detail.

165



CHAPTER 6. AUTOENCODER PRE-TRAINED DISTRIBUTED DEEP NEURAL
NETWORKS FOR OUTLIER DETECTION

6.4 Proposed Method

The manuscript studies situations where imbalanced data portions may degrade the in-

dividual classification ability of the worker nodes. A deep neural network is inherently

unsuitable for imbalanced classification due to masking and swamping effects. Thus,

researchers have proposed many methods to train a neural network using cost-sensitive

backpropagation [220, 221, 222]. As the data is distributed across worker nodes, it be-

comes relatively difficult to handle the class imbalance. This work does not use any freely

available pre-trained models. The local models are first pre-trained using an autoencoder

and are then re-trained with class labels. So, each of the local models trains over the data

in two phases. Autoencoder pre-training is useful for class imbalance situations because

the network gets biased towards learning the majority class’ features efficiently. So, any

data that doesn’t fit into the description of the majority class may be picked up as an

outlier easily [16, 73]. The re-training is just done to learn the classification between the

majority and minority classes. The following section describes the proposed method to

deal with the severe class imbalance in a distributed setting.

6.4.1 Division of Data Across Worker Nodes

The data is arbitrarily distributed and resembles a practical scenario where a user has no

control over the number of samples each node gets. In both cases, the datasets were par-

titioned and given to each worker node. Partitioning the data into non-overlapping por-

tions makes the data across local workers ‘non-independent’. To remove the ‘identically-

distributed’ assumption of i.i.d, the global data clustered and each cluster represented a

partition of the dataset. For this, we used k-means clustering where k is equal to the

number of worker nodes. Thus, it was ensured that the local datasets that the worker

nodes get are non-i.i.d. As the number of clusters grows (which is the same as increasing

the number of local workers), the probability of each cluster having samples from only
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a single class increases [212]. Thus, as the number of local workers grows, there is an

increased chance that the local datasets are mostly of a single class only. This method

of data division is merely mimicking a practical data distribution scenario across the

workers which assumes that the data generated by each local worker is mostly similar.

To understand the practical implication of this assumption, let us consider an example

where there are two branches of a company located across two different locations in the

world. It may happen that for one of the locations, the workers are mostly relatively

younger and for the other location the workers are mostly older. Thus, the first company

can produce goods at a much faster rate with fewer errors while the second company

produces goods at a slower pace and with more errors than the first one. Thus, the data

obtained from the first location will have more samples and a majority of the samples

will pass the quality check. On the other hand, the data from other locations will have

lesser samples and a majority of the samples will not pass the quality check. So, if one

attempts to learn the model of a quality check from both companies, he or she needs to

learn in an imbalanced and distributed setting simultaneously.

6.4.2 Cost-sensitive Neural Network Training

The focal loss may be extended to a cost-sensitive federated learning scenario by incor-

porating an adaptive scaling factor in each local model. Since each model gets a different

number of samples and the class distribution in each model is different, we need to adapt

the value to ρ accordingly. So, an adaptive focal loss function is proposed in this context.

For a C-class classification problem involving N models (one in each local worker node),

each local model j would have the proposed focal loss as,

Ej = −
C∑
i=1

ρj{pi(1− p̂i)
ξlog(p̂i)}, (6.15)

where, C represents the number of classes, pi and p̂i represent the predicted probabil-
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ities of the class i and not-class i and ρj is the adaptive scaling factor of the jth, local

model. Since, the main motive for imbalanced data is to avoid the masking phenomena

(labelling all the samples with the majority class label), it is intuitive to express ρj in

terms of an crude class imbalance ratio mj for each local dataset, such that,

ρj =
a

(1 + e−b∗(mj−1))
(6.16)

where,

mj = 1−
dmajority
j

dtotalj

. (6.17)

Here, dmajority
j and dtotalj represent the number of samples in the majority class of the local

dataset in jth worker and the total number of samples in the local dataset in jth worker

respectively. A crude class imbalance is much simpler than having class wise imbalance

ratio for extremely imbalanced datasets. This is because it is only the majority class

which overpowers the minority classes. The other minority classes do not affect each

other much as they are themselves smaller in number. For the present work, the values of

a and b were chosen to be 2 and 3 respectively. So, if a local dataset has all the samples

from the majority class only (mj = 0), the local model would be completely masked and

must not be able to make decent contributions to the error. So, if mj = 0 then instead

of pushing ρj to zero, we are just mapping it to a value close to zero (but not exactly

zero) using the scaled sigmoid function. Pushing ρj to zero would mean that the model is

correct and will not add anything to the server weights. This would imply a complete loss

of information from one worker which is undesirable. Thus, the value of ρj being close

to zero would mean that the local models would at least have some small contribution to

the server model.

Another intuitive explanation for this adaptive function is that each model is indepen-

dently moving towards convergence. This rate of movement depends on the individual

loss they incur. Now, if a local model is overwhelmed with severe imbalance, then the
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constant ρj would prevent that model to overfit the majority class too much. This would

imply that the more severe the imbalance a local model would face, the lesser it would

deviate from the last global update, but the information would not be completely lost.

This would help the global weights not drift randomly. It can be proved that there would

always at least be one local data portion that will not have the severity in imbalance,

and the model trained on that particular data would always govern the global weights.

However, that model alone is not enough to learn the entire data space. So, the other

models which are inflicted with severe imbalance would add the fine-tuning to the global

weights accordingly.

Theorem 1. If the global dataset P has an outlier ratio r, and it is partitioned across N

divisions namely, P1, P2... PN , then there would be atleast one division Pi which would

have outlier ratio ≥ r.

Proof. Suppose the global data having n1 samples from the minority or outlier class

(denoted as class 1) and n2 samples from the majority or inlier class (denoted as class 2),

is partitioned into N local datasets. The global outlier ratio r is given by,

r =
n1

n1 + n2

(6.18)

For the ith partition (local dataset) Pi, let there are ni,1 samples from the minority class

and ni,2 samples from the majority class. Then the outlier ratio of that partition is given

by,

ri =
ni,1

ni,1 + ni,2

(6.19)

Now, as the global dataset is partitioned into N local data partitions,

N∑
i=1

ni,1 = n1, and (6.20)
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N∑
i=1

ni,2 = n2. (6.21)

Equation 6.19 can be written as,

ni,2 = (1− ri)ni,1, (6.22)

and, from equation 6.18, we get

n2 = (1− r)n1. (6.23)

Replacing equations 6.20 and 6.21 in equation 6.23, we get,

r =

N∑
i=1

rini,1

N∑
i=1

ni,1

(6.24)

For argument, if we assume that for all partitions, the outlier ratio ri is strictly less than

the the global outlier ratio r, then,

ri < r, for i = 1, 2, 3, ..., N. (6.25)

Multiplying both sides of equation 6.25 by mi,1, summing over all the partitions on both

sides and rearranging we get,

r >

N∑
i=1

rini,1

N∑
i=1

ni,1

(6.26)

It can be seen that the equations 6.24 and 6.26 contradict each other. Thus, there exist

atleast one partition of local data which has an outlier ratio ≥ r.
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6.4.3 Overall Method

EASGD has been proven to be stable [217] in cases of distributed deep learning. It

induces an elastic force that does not allow the local model’s weight matrix to deviate

too much from the global weight matrix whereas also allowing some independence. The

proposed method incorporates the concept of EASGD with the proposed adaptive focal

loss [equation 6.15]. The training of the network is done in two phases.

(i) pre-training the network using deep autoencoders and

(ii) retraining the entire network using class labels.

While pre-training the network, since there are no class labels involved, and the mod-

els merely learn to reconstruct the input, the unnecessary involvement of the adaptive

cost-sensitive loss function is not needed. So, the autoencoders are trained by the stan-

dard EASGD (equation 6.12) to minimise the reconstructional mean squared error loss.

Now, for the retraining, the model must learn the discrimination between classes even in

presence of severe class imbalance. So, retraining needs the cost-sensitive loss function

along with EASGD. The cost-sensitive adaptive focal loss function determines how much

independence the individual local model would get in determining the optimum weights

depending on the class imbalance they witness.

The pre-training without cost-sensitivity allows the autoencoders to distinguish be-

tween the majority and the minority classes. It has been proven that autoencoders map

similar values to similar ranges [16] and thus for classification in such severe imbalanced

datasets, they are very useful. Autoencoders are extensively employed in outlier iden-

tification [54, 223], where an input with a substantial reconstruction error is identified

as out-of-distribution, as the quality of reconstruction is expected to decrease for inputs

that are considerably different from the majority of the training data. The traditional

AE-based pre-training is also favoured since it is highly stable and simple, as well as pro-
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Table 6.1: Dataset description

Name of Number of Number of Percentage of
the dataset Samples features Outliers
Credit Card 284807 29 0.1761

HTRU2 17898 8 9.11
MNIST 7603 100 8.7373
Pulsar 17898 8 9.204119

Forest Cover 286048 10 0.9484
Mammogram 7828 6 2.325373
Pen Digits 4808 16 2.271404

ALOI 34999 28 3.016121

vides a decent initialisation, to begin with. So, the retraining is to just fine-tune the local

models according to the proportion of the different classes present in the local dataset.

6.5 Experiments and Results

To establish the supremacy of the proposed model, the study explores many different

angles on an empirical note. For a fair comparison between the methods, the number of

models was increased. The model architecture was kept the same for all the methods.

All the methods were compared with the same partitions of the data produced by k-

means clustering (as assumed in section 6.4.1). Each of the methods was run for only 20

communication rounds between the parameter server and the workers. The datasets used

were highly imbalanced. We have chosen eight binary-class outlier detection datasets for

this purpose which had the outlier class samples representing less than 10% of the total

dataset. The description of the datasets is provided in Table 6.1. Table 6.2 provides the

description of the architecture of the autoencoder used for various datasets.

The following sections provide the results of the experiments conducted. The results

reported are the median over ten independent runs.
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Table 6.2: Architecture of the autoencoder used for various datasets.

Number of Number of nodes
layers in each layer

Credit Card 3 10
HTRU2 16 7
MNIST 4 20
Pulsar 3 4

Forest Cover 9 4
Mammogram 3 4
Pen Digits 9 5

ALOI 3 10

6.5.1 Autoencoders versus other Feature Extraction Methods

Since a standard neural network fails to detect outliers and is often biased towards the

majority class, we want to see the performance with the focal loss which is designed for

imbalanced datasets. In doing so, we also need to examine the usefulness of an AE. So,

we replaced the layers of the network which are pre-trained with AE by different feature

extraction methods like k-PCA, t-SNE, LLE, Isomap and GRP and used the same neural

network’s classification layers for all. The classifier network minimises focal loss function

in all the cases. Since the other feature extraction methods are not undergoing any

re-training, we have frozen the weights of the AE layers to have a fair comparison.

Table 6.3: ROC-AUC Obtained by Various Feature Extraction on the Imbalanced Clas-
sification Performance

AE kPCA tSNE LLE Isomap GRP
Credit Card 0.9197 0.5 0.5 0.5 0.5992 0.8084

HTRU2 0.9301 0.5 0.8094 0.7505 0.8762 0.8987
MNIST 0.9423 0.5262 0.7282 0.7364 0.5 0.9207
Pulsar 0.9387 0.5 0.8727 0.7628 0.8795 0.8777

Forest Cover 0.9798 0.5 0.5 0.5 0.5 0.5
Mammogram 0.8525 0.5 0.7545 0.5 0.5201 0.8492
Pen Digits 0.9543 0.6292 0.9212 0.5 0.9456 0.9477

ALOI 0.9612 0.5 0.6618 0.7048 0.5 0.5

It can be seen from Table 6.3 that the model using AE is the best for all datasets.

There are some methods which are comparable in performance to AE in some datasets,
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but they are failing for others. Moreover, as AE can be fine-tuned, it is much more

convenient to use AE and increase the classification performance.

6.5.2 How Pre-initialisation affects Outlier Detection?

The initialization phase is essential to the model’s eventual output and mandates an ef-

fective approach. Traditionally, weight initialization entailed employing smaller random

values (close to zero). However, over the last decade, better explicit heuristics that utilise

network architecture information, for example, the type of activation being utilised or the

number of inputs to the network, have been developed. These rather specific strategies

can lead to more successful neural network model construction when using the stochas-

tic gradient descent optimization algorithm. This optimization procedure necessitates

a starting point in the universe of possible weight values wherein the optimization may

commence. Deep model training is a challenging enough process that the initialization

method used has a significant impact on most techniques. The starting point can decide

whether or not the process converges at all, with certain initial values being so unstable

that the algorithm runs into numerical challenges and fails. Many initialisation strategies

are gradually developed. Some popular methods used these days are Random Normal

[224], Random Uniform [224], Xavier-Glorot Normal [5], Xavier-Glorot Uniform [5], He

Normal [225] and He Uniform [225]. AEs were also proposed as a pre-initialisation strat-

egy to avoid the problem of vanishing and exploding gradients [15]. While techniques like

AE pre-training certainly laid the groundwork for many essential principles in today’s

deep learning methodologies, the compelling necessity for pre-training neural networks

has waned in recent times. This was largely due to various advancements in regularisation,

network architectures, and enhanced optimization methods. Despite these advancements,

training deep neural networks to generalise well to a wide range of complicated tasks re-

mains a major issue. One of these is the issue of imbalanced datasets. Neural networks

get biased towards the majority class. However, as observed in chapter 3, AEs are well
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suited for outlier detection tasks. Hence, to strengthen the position of AE pre-training

in outlier detection tasks, it was compared with the popular initialisation strategies. The

models use various initialisation schemes and the training for classification is done using

the focal loss function [equation 6.13] (because for a single model, the equations 6.13 and

6.15 are identical). Table 6.4 gives a comparison of how the various initialisations perform

for severely imbalanced datasets (where the minority class has less than 10% represen-

tation) with respect to all the four metrics namely ROC-AUC (Area Under the Curve

of Receiver Operating Characteristic) [73], F-Score [105], DR (Detection Rate) 3.12 and

G-Mean [105]. It can be seen that AE pre-training added advantage to the performance

of a deep neural network for all the eight datasets under consideration.

It can be seen that AE pre-trained models are better in performance for outlier detec-

tion tasks. This supports the findings as observed in chapter 3 that AE are better feature

extractors for outlier detection tasks. Thus, the experiments can now be extended to

multiple models in a federated setting as described in the next sections.

6.5.3 Data Division and Critical Imbalance

Data division in a non-i.i.d setting violates two main properties of i.i.d [208]. Firstly,

the data is divided in an insufficiently random order, which generates a violation of

independence. Secondly, there are varying amounts of data in each division (concerning

class labels or sample quantity, or both). This implies that each data division must

follow a separate distribution which is not identical to the global data distribution. Let

the global data distribution is D, then in an i.i.d data division, every ith portion of

data P(i) has the same distribution D. However, for non-i.i.d data division, every ith

portion of data P(i) might follow a different distribution D(i), which means that there is

an underlying structure in each data portion. To mimic this property, one may safely

consider clustering the data into k groups. In this work, the clustering has been done

using k-means clustering algorithm. This preserves the non-i.i.d properties that the
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Table 6.4: Effect of Various Network Initialisations on the Imbalanced Classification
Performance

Dataset Metrics
Xavier- Xavier-

AE- Random Random Glorot Glorot He He
Pretraining Normal Uniform Normal Uniform Normal Uniform

Credit Card

ROC 0.9537 0.5000 0.9339 0.9365 0.9379 0.9323 0.9461
F-Score 0.9346 0.5000 0.9036 0.9159 0.9176 0.9098 0.9104
DR 0.8083 0.0000 0.7870 0.7799 0.7799 0.7870 0.7941
G-Mean 0.9351 0.5000 0.9037 0.9163 0.9180 0.9100 0.9105

HTRU2

ROC 0.9756 0.5000 0.9726 0.9737 0.9736 0.9737 0.9731
F-Score 0.9425 0.0000 0.9309 0.9340 0.9348 0.9336 0.9316
DR 0.8491 0.0000 0.8450 0.8343 0.8407 0.8364 0.8257
G-Mean 0.9426 0.0000 0.9309 0.9342 0.9349 0.9337 0.9317

MNIST

ROC 0.9952 0.9831 0.8459 0.9907 0.9885 0.9856 0.9885
F-Score 0.9548 0.9359 0.7506 0.9340 0.9422 0.9278 0.9355
DR 0.9339 0.8734 0.3696 0.8550 0.8920 0.8595 0.8642
G-Mean 0.9549 0.9359 0.7537 0.9340 0.9422 0.9278 0.9355

Pulsar

ROC 0.9797 0.5000 0.9752 0.9733 0.9693 0.9723 0.9758
F-Score 0.9528 0.0000 0.9400 0.9449 0.9250 0.9325 0.9387
DR 0.8590 0.0000 0.8153 0.8369 0.7669 0.7909 0.8150
G-Mean 0.9530 0.0000 0.9405 0.9452 0.9257 0.9330 0.9391

Forest Cover

ROC 0.9999 0.5000 0.9994 0.9989 0.9993 0.9994 0.9995
F-Score 0.9910 0.0000 0.9805 0.9779 0.9794 0.9778 0.9777
DR 0.9774 0.0000 0.9524 0.9310 0.9690 0.9476 0.9548
G-Mean 0.9910 0.0000 0.9805 0.9780 0.9794 0.9778 0.9777

Mammogram

ROC 0.9389 0.5000 0.9223 0.9306 0.9311 0.9341 0.9231
F-Score 0.8817 0.0000 0.8565 0.8362 0.8365 0.8413 0.7470
DR 0.6980 0.0000 0.6844 0.5892 0.6163 0.5756 0.3731
G-Mean 0.8823 0.0000 0.8566 0.8373 0.8370 0.8431 0.7499

Pendigits

ROC 0.9876 0.5000 0.5000 0.9706 0.9779 0.9753 0.9761
F-Score 0.9660 0.0000 0.0000 0.9339 0.9486 0.9601 0.9495
DR 0.9763 0.4888 0.4888 0.9049 0.9636 0.9755 0.9543
G-Mean 0.9112 0.0000 0.0000 0.9334 0.8670 0.8891 0.8891

ALOI

ROC 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000
F-Score 0.9994 0.0000 0.9966 0.9983 0.9983 0.9977 0.9977
DR 1.0000 0.0000 0.9908 0.9954 0.9954 0.9931 0.9931
G-Mean 0.9994 0.0000 0.9966 0.9983 0.9983 0.9977 0.9977
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Figure 6.2: Variation of the Homogeneity Metric with the Number of Data Portions

data portions do not follow an identical distribution (as each cluster consists of similar

samples and samples from different clusters are dissimilar to each other) and are also

not independent (as both the proportion of class labels and the number of samples vary

in each cluster). The number k is not always equal to the number of classes in the

dataset. This is because any clustering algorithm groups data according to the similarity

of the samples and not according to the labels. Homogeneity metric [212] indicates the

conditional entropy of a clustering algorithm in identifying the correct classification and

is bounded between 0 to 1. This means that if more clusters contain samples from only

one class, the score will increase. This is evident from our findings too [Figure 6.2]. It

can be seen that as the number of data portions increased (or number of worker nodes

increased), there were multiple clusters which had no samples from the minority class
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Figure 6.3: Imbalance Becomes Critical with the Increasing Number of Data Portions

[Figure 6.3] (result shown for Credit Card dataset). The number of data portions having

an imbalance ratio below the global imbalance ratio kept on increasing with the number

of data portions (or the number of worker nodes) [Figure 6.3]. This indicates a critical

imbalance situation that federated learning suffers from.

6.5.4 Performance under Critical Imbalance

As can be seen from Figure 6.3, with an increasing number of partitions, there are multiple

local datasets which suffered critical imbalance (i.e. have no samples from the outlier

class). Under such conditions, we need to analyse how the performance of the global

model varies with each communication round. For experimental purposes, we have taken

10 worker nodes for the Credit Card dataset. It can be seen from Figure 6.3 that for

10 worker nodes, there was 1 data portion which had zero samples from the outlier class

and 9 data portions having an outlier ratio less than the global outlier ratio (including

the one which has no outlier samples). Figure 6.4 shows the F-Score obtained on the
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Figure 6.4: F-Score of Individual Local Models and the Global Model vs Communication
Round

test data for each local model before each communication round and the global model

after each communication round. This is a clear indication of the stability of the elastic

averaging [217].

It can be seen from figure 6.4 that the individual models gradually coincided with

similar performance on the test data with each communication round. It can be seen

that several models were not performing well in the initial rounds. Models 1, 2, 3, 4, 6,

7 and 9 were only capable of detecting the samples from the majority class after the first

round. However, due to the learning obtained from the other well-performing models,

they gradually shifted to a better performance in classifying the samples. This indicates

that even though there are some underperforming models in the learner pool, the global

model will not be so severely affected by it and there will be gradual learning eventually.

However, the maximum number of under-performing models allowed for the global model

to learn properly has not been experimented with in this thesis. This can be a future

direction of research in this regard.
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6.5.5 Number of workers vs overall performance

Under the above conditions, another important aspect is to study how the increasing

number of worker nodes affects the overall performance of the global model. In the case

presented, the total data is always constant and each worker gets a unique partition of the

dataset. Thus, as the number of worker nodes increases, the number of samples in each

worker node will decrease. So, increasing the number of workers above a certain limit is

not possible to prevent the unlikely condition of models getting insufficient samples for

training. It has been seen that all the existing methods tend to be biased towards the

majority class as the number of workers grows. It is noteworthy that by increasing the

number of workers in the present assumption of experiments that the data samples are

partitioned (i.e. increasing the number of workers would decrease the number of samples

in each partition), not having enough quantity of the data in each worker node will be

an inevitable cause of performance degradation. Hence, the study mainly shows that the

proposed method yields a consistent performance with increasing worker nodes while the

existing methods hit a saturation point after a certain limit. The proposed method has

been compared with the existing methods used for outlier detection in federated learning:

EASGD (with cross-entropy loss) [217], Astraea[219], FedFocal [204], and Ratio Loss

[205].

As observed from the above experiments (Figures 6.5-6.12), the outlier detection abil-

ities of EASGD (with cross-entropy loss) suffer a fast degradation with an increasing

number of nodes. Astraea improved on the detection abilities but with an increasing

number of nodes, showed incompetence. The Ratio Loss method and the method FedFo-

cal were more or less similar in performance and were able to detect outliers fairly up to

an appreciable number of nodes before suffering failure. The proposed method had the

best performance among all the methods and the performance was more or less steady

with an increasing number of nodes and was still able to detect outliers while all the
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Figure 6.5: Variation of F-Score Obtained by Various Methods for Different Numbers of
Worker Nodes on Credit Card Dataset.

Figure 6.6: Variation of F-Score Obtained by Various Methods for Different Numbers of
Worker Nodes on HTRU2 Dataset.
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Figure 6.7: Variation of F-Score Obtained by Various Methods for Different Numbers of
Worker Nodes on MNIST Dataset.

Figure 6.8: Variation of F-Score Obtained by Various Methods for Different Numbers of
Worker Nodes on Pulsar Dataset.
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Figure 6.9: Variation of F-Score Obtained by Various Methods for Different Numbers of
Worker Nodes on Forest Cover Dataset.

Figure 6.10: Variation of F-Score Obtained by Various Methods for Different Numbers
of Worker Nodes on Mammogram Dataset.
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Figure 6.11: Variation of F-Score Obtained by Various Methods for Different Numbers
of Worker Nodes on Pen Digits Dataset.

Figure 6.12: Variation of F-Score Obtained by Various Methods for Different Numbers
of Worker Nodes on ALOI Dataset.
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detection abilities of the other existing methods already collapsed. There was a gradual

decrease in the performance of the proposed method for some datasets due to the lack

of enough training samples in each local partition with the increasing number of nodes.

This is an expected consequence of our assumption that the total number of samples in

the global dataset is constant.

6.6 Discussion and Conclusion

In this chapter, it has been shown that AE pre-training is better for outlier detection tasks.

The study is then extended to the use of AE pre-training in a distributed setting. In this

context, an adaptive version of the focal loss function is introduced to handle the critical

imbalance in the distributed data sets. The main assumptions in the experiments were

that the data available at each local node is mutually exclusive. If one local node fails, it

is assumed that there is a backup node for each local node which would continue with the

learning process. Under such assumptions, it has been observed that the proposed method

can handle the critical imbalance better than the existing methods. The experiments

show that even when some local datasets did not have any samples from the outlier class,

the proposed method drove the global model and each of the local models to similar

performance on the test data.

However, there might arise an extreme case of imbalance where one local model may

contain a lot of outlier samples such that the outlier class becomes the majority for that

particular local dataset and all the other local datasets do not contain any outlier sample

at all. In that case, the present solution might not work as it relies on the outlier ratio.

Such an extreme case would practically imply that all the anomalies are generated at the

same location while others do not generate any at all. This problem needs to be handled

in a different light and has been set aside as a direction for future research. The research

may also be extended to handle multiple classes where the local imbalance is critical and
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the global imbalance may or may not be present.
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Chapter 7

Conclusion, Discussion and Scope of

Further Work

7.1 Conclusion

AEs usually follow a bottleneck design which is believed to be the key feature for detecting

efficient representations of the data. To avoid the bottleneck one might also include

sparsity or introduce skip connections. The main task of an AE is to reconstruct the

input. However, the output is not a replica of the input and just shares a good amount

of similarity. Thus, the features extracted in the hidden layers are very interesting to

notice. Unlike PCA (where the projections are orthogonal), AEs bring out some really

interesting correlated projections too. The intuition is that the hidden layer must need to

capture the essential amount of information which is sufficient to reconstruct the input at

the output layer. However, just like an NN, AEs learn what they see. Thus, the patterns

which are frequently seen by the AEs are often learnt much better than the rare patterns.

This is a particularly peculiar observation which makes an AE suitable for tasks where

repetitive samples overwhelm a model. This has been the main idea behind the tasks

that the thesis aimed to handle. It is observed that using AE as a supplement boosted
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the performance significantly.

The thesis establishes AE as a beneficial addition to the models. Other existing feature

extraction methods might give comparable results in some specific datasets but are not

as versatile as AE. Still, the relevance of features extracted by an AE can only be fine-

tuned through supervision or can be selected by some particular criteria fit for the task.

It should also be mentioned that although pre-training by AEs might not be beneficial

against other initialization strategies when data is imbalanced AE pre-training works

slightly better. This has been shown in the different chapters of the thesis. However,

there are also some aspects which are unexplored and overlooked in each chapter.

7.1.1 Chapter 3

Most of the datasets existing are not a hundred per cent perfect. An individual will be

incredibly lucky if they ever receive a perfectly balanced dataset. Usually, the datasets

are such that each class has a varying number of samples. Concern for the minority

classes is only really important if we worry about them. Suppose we are attempting to

determine whether or not we should buy a property in light of the market’s condition, its

features, and our budget. This is a significant investment, so it is vital to make the correct

selection. If the model says not to buy the property when it should be bought actually,

then the buyer does not lose anything. There are other properties available which he

may choose from. However, making a poor investment in such an important asset would

be disastrous. When it decides on buying, the class that represents the “buy” signal is

critical and the decision must be correct. The class that represents the “not-buy” signal

is not so important. However, in practice, since purchasing a property is considerably

more unusual than not buying, the model will be biased towards learning the “not-buy”

class extremely well since it constitutes the maximum percentage in data. The model

could do badly in the “buy” class since it has fewer representative data points.
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Now, if we aim to achieve the highest accuracy without giving any undue importance

to any of the classes, then we should not think much about detecting the minority classes.

Most of our accuracy will be due to the classes constituting most of the training exam-

ples. Classification problems with an unequal number of instances per class are referred

to as imbalanced classification problems. However, it must not be confused with the

‘unbalanced’ classification problem. Unbalanced cases occur when the original data was

balanced, but due to some reason, it has lost the balance. An example may be the

scenario of the ratio between male and female babies born at a particular place. The

situation is more or less balanced technically. If it is not balanced, then there is a definite

and peculiar reason behind it. However, imbalanced classes are inherently skewed and

represent rare occurrences. For example, if we consider normal healthy babies and babies

with genetic anomalies, the number of normal babies is higher than babies with genetic

anomalies. There is a definitive physics working behind it. No matter how much we try,

we cannot alter this imbalance in any way.

Although ML research tries to handle both problems unanimously, the two different

problems need different outlooks. This may be a newer direction of research which can be

pursued. As per my belief, the methods which include upsampling or downsampling of the

datasets are conceptually much more suited for unbalanced classification than imbalanced

classification tasks. This is because sampling forces the data to look balanced. If the

dataset’s core property is in its skewed nature, then it is not appropriate to use sampling

and destroy the core property.

The area of unbalanced datasets is still not recognised as a separate direction of re-

search. Moreover, the issues of imbalanced classification also need to be explored given

stronger algorithms which are more robust to handling the skewness directly. Most of

the algorithms work well with perfectly separable classes irrespective of whether they are

balanced or not. So, efficient feature representations are necessary which would enhance

the separability between the classes.
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In this thesis, AEs are explored as a solution to increase the class separability in

severely imbalanced datasets which contain outliers or anomalies. In future, AEs may

also be used to solve the problems of unbalanced classification by generating samples

of the minority classes using generative models like generative adversarial networks or

some other modified models. Whether it be imbalanced or unbalanced classification,

they come with their own set of issues. Both the problems are unique and challenging in

the fact that they reveal a new physics behind the occurrences. The former reveals why

a particular ‘normal’ behaviour is not seen in some samples and the latter reveals why

the entire dataset is behaving ‘abnormally’.

7.1.2 Chapter 4

There are concerns about samples changing their behaviour over a span of time. The

act of recognising changes in the environment around us is very crucial to us. The cars

passing by us on the road continuously alter their location and occasionally their speed

and direction. To prevent accidents, we must be able to detect and react to any changes

in the environment. Humans (and most animals) are therefore quite excellent at detecting

such changes in general. But our understanding of how changes are identified is still in a

state of incompleteness.

According to the standard definition, “change detection” refers to the process through

which an observer notices that a change has occurred. As well as detecting and localising

changes, these skills presumably entail distinct processes. It has proven to be challenging

for humans to have full knowledge of the change. This is partly because human vision is

attention specific and may completely miss changes outside the attention region. Change

detection intuitions are frequently very incorrect, as well. Most people assume that they

can readily perceive any change in front of them, as long as the change is significant

enough. However, research on “change blindness” has shown that we often fail to notice

changes that have been occurring for a long time or that are expected. It is a phenomenon
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that runs against our intuitions about how change detection should operate, and it is one

that is hard to explain. However, we have learnt a lot about what change detection is or

how it functions to have such paradoxical outcomes.

This has motivated ML researchers to think about change detection using machines

which do not have any biased expectations. Thus, detecting the changed regions of a

location or scene across multiple images taken at different times has gained immense

popularity. Applications of such ML models are found in diverse disciplines, including

remote sensing, automatic video surveillance, medical image prognosis, civil engineering,

and oceanography. “Change mask” refers to the collection of pixels that are “substantially

different” from one picture to another in a timeline. When an item appears or disappears,

or when it moves in relation to its surroundings, a change mask may be created by a

combination of variables. Objects that are fixed can also vary in brightness or colour as

a result of external influences.

Change detection in remotely sensed imagery is an area that has grown in prominence.

Despite the fact that much work has been done in this area, it remains a busy and

exciting field of research. The method of spotting distinct changes on the Earth’s surface

using remotely sensed images has been achieved through this method. The alterations

can be both natural and induced by humans and hold crucial importance for various

applications like military surveillance, agricultural study, environmental monitoring etc.

Change detection algorithms focus on colour, texture, and/or shape features. These

algorithms, however, are not precise enough to detect all sorts of changes in every image.

This is a highly hard undertaking since there are several elements that must be considered

in order for it to perform successfully. More integrated techniques like DNNs, intuitive

pre-processing and post-processing, resilient statistics and meta-heuristic techniques are

expected to drive future advancements. Segmentation, land-use monitoring, etc are only

a few of the linked fields of research that will benefit from these future advances.
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7.1.3 Chapter 5

Slow gradual changes as stated above are hard for humans to comprehend correctly all

the time. However, when the changes are chaotic, it is almost impossible for humans to

predict the behaviour of the next state. This is particularly witnessed while observing

changes in the financial market. It is both difficult and risky. Moreover, these changes

occur so frequently that they are often termed ‘chaotic’. Traders purchase and sell stocks

depending on their intuition. This needs a lot of expertise and knowledge. Over ninety-

five per cent of traders lose money [226]. The concepts of the Open, High, Low and Close

price (OHLC) data indicate the price trend of specific financial products over a specific

period of time. As a result, investors continue to make purchases and sales according

to correct forecasts of OHLC data, earning profits as a result. This is why it is vital to

forecast the OHLC data, which was also our focus in this chapter.

To make extra gains, one should acquire specific financial products at prices close to the

projected lows, and then sell them at prices close to the predictions of their highs. Data

from the OHLC system may also be used to create candlestick charts, which illustrate

the power of demand and supply in financial markets, as well as market conditions and

public emotions.

However, there is a limit to such predictive capabilities. The stock prices are heavily

chaotic and dependent on many external factors. Other variables such as demonetization

or mergers and acquisitions might also impact the stock price. These intangible variables

make it difficult to foresee the trends in advance. Moreover, the issues with customer

trust always plague the adoption of ML models. First and foremost, the clients demand

to understand how ML predictions differ from other quantitative conventional methods.

In addition, consumers need to be made aware that they will not be able to follow or un-

derstand the logic behind the system’s results, as with classic econometric models. When

it comes to critical financial decisions, clients always want to understand what factors
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drive the model’s predictions. This demand has given rise to research on explainable AI.

DL-based models are still at their nascent stage in the direction of explainable AI. This is

one future direction of research that holds immense scope. This would imply transparent

solutions and increased acceptability of AI in the critical decision-making paradigms of

the practical world. People are now ready to accept AI solutions for many tasks and are

using them without even knowing. This is a hopeful outlook for AI researchers.

7.1.4 Chapter 6

As people rely on data-driven methods, they are becoming more concerned about sharing

their data too. Thus, there is a dire need to preserve privacy. Also, the data generated by

a single source may be small but if the data from all the sources is aggregated, the volume

becomes unmanageable for a centralised computing system. This is called ‘small big data’.

Leveraging the power of so much data is a lucrative opportunity for ML researchers but

is also challenging. The privacy issues and limitations of centralised computing have

urged researchers to move to decentralised computing where the data is not exchanged

across networks. Research on federated learning (FL) has allowed the ML community to

harness the power of big data by treating each localised data segment independently and

each local device as a centralised computing platform. It would then aggregate the learnt

parameters from the local devices into a centralised server. Thus, data privacy is ensured

as well as the model is learnt on the global data without the complexity of data transfer.

However, the heterogeneity of datasets across the local devices is often a challenge. The

local datasets are not a proper representation of the global data. Thus, local models learnt

on local datasets are often different from each other. Aggregation of such different models

is often erroneous. Also, there are practical issues such as concept drift, communication

expenses, scalability, etc which still have hindered FL to be accepted in practicality.

Future holds great hopes for DNNs trained on such a massive scale of datasets through
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FL. There are some key considerations which need to be made before that. When it comes

to multi-device federated learning, it must be ensured that devices have the capacity to

train models. Also, the number of local models that can be parallelly learnt through FL

still has a limit. In future, we may hope for better algorithms which may help increase

the scalability.

7.2 Discussions

The thesis tried to handle a variety of pattern recognition challenges that come with the

datasets. Within the framework of the research conducted, AEs (AEs) are particularly

focused. However, as already mentioned in Chapter 1, AE is not a panacea and there are

obviously many limitations which they suffer from. Vanilla AEs (AEs with a single hidden

layer) might reduce the dimensions without the complexity of vanishing and exploding

gradients, but they are not as efficient as the deep AEs. However, deep AEs on the

other hand might again give rise to issues which arise with depth. There is still a lack of

research on the limit to which this depth might be permissible. Residual networks [141]

with skip connections are proposed as an alternative for deeper architectures, but the

research is still in its nascent stages.

As for AEs, the bottleneck dimension is again another hyperparameter that greatly

affects the performance. The important features/ information might get lost due to

the lower dimension of the bottleneck layer. This problem might be avoided by testing

reconstruction accuracy by varying dimensions of the bottleneck layer. A trade-off has

to be done between the varying dimension of the bottleneck layer and reproduction loss.

AEs being trained in an unsupervised fashion require a huge amount of unlabelled data.

Thus, to develop a robust AE, a large amount of training data is required. However,

possible solutions like data augmentation can solve this issue by a substantial amount.

Along with the huge amount of data, the data should be relevant to make the model
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generalize properly to the required application for which the model is designed.

Compression against conceptualization is a typical challenge for AEs. We want AEs

to learn concepts rather than simply compressing data, yet the optimisation we do is

to reduce the error of reconstruction. A proper theoretical understanding of AEs needs

to be explored. Algorithms need to be devised which would help an AE differentiate

between relevant and irrelevant features. This has given rise to some preliminary research

regarding the limited use of labels in training an AE [227, 228]. In such cases, the

issue of reducing the error of reconstruction may be augmented with the available label

information. This would ensure that only relevant features are extracted.

AE-based data compression is learnt and is lossy. This makes their use limited. They

cannot be applied to the use cases where compression degradation affects system perfor-

mance in a significant way. Moreover, the decoder process is never perfect. A decision has

to be taken about how much loss is tolerable for the use case. Since it is unsupervised,

identification of relevant or important variables becomes critical. This is observed in the

experiments done in Chapter 4 section 4.3.2. However, there is a desirable property of

AE that the mappings produced by an AE are distinct. This is why AEs can be more

sensitive to input errors than manual approaches, which might sometimes be desirable as

in the case of outlier detection shown in Chapter 3.

AEs have another property which makes them desirable. It is the ability of transfer

learning [229, 230]. Since the AE is learnt in an unsupervised manner, any pre-trained

AE trained using data of a similar domain might be stacked on top of a classifier and be

re-trained for a related domain. However, there is no guarantee that the features common

between the two domains may be interpretable.

In this thesis, it is shown that AEs are well suited for certain tasks of pattern recog-

nition. However, there are other tasks for which a different variety of AE may be much

more suitable. There are several existing AE architectures which are not explored in this
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study.

7.3 Directions Unexplored

In the due course of the research, various interesting AE architectures have emerged

which have their own strengths and shortcomings. The thesis has not explored the gen-

erative models of AE like Generative Adversarial Networks (GANs) [47] and Variational

autoencoders (VAEs) [46]. GANs and VAEs fall under the category of a deep generative

model which is used to generate realistic data like images, text, or sound artificially.

Generative modelling is an unsupervised learning job that incorporates the automated

discovery and learning of the behaviour patterns or structures of input data utilised to

create new instances in such a manner that might seem conceivably be taken from the

original data.

GANs are one of the wisest approaches to training a generative model by approaching

the task using two sub-models with a supervised training matter: the generator model

designed in order to create fresh examples, and the discriminatory model which attempts

to identify instances as real or fraudulent (generated). The two sub-models are trained in

an adversarial zero-sum game until the discriminatory model is mistaken for about half

the time, which means that the generator creates believable instances.

GANs provide the promise of generative models in order to produce realistic instances

across a number of problem domains, especially in picture-to-picture translation tasks

such as transforming pictures from summer to winter or day to night and producing

photorealistic photos of items, settings and humans https://thispersondoesnotexist.

com/ that even humans cannot tell are machine-generated and not actually photographed.

VAEs belong to the families of probabilistic graphical models and variational Bayesian

methods. Here, the encoder compresses the input data into a constrained multivariate
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latent distribution (encoder) to enhance the accuracy of the reconstruction (decoding).

A VAE is an AE where during training of the encoder, the distribution is regularized

to ensure that the latent space has required features that are capable to generate new

data. A VAE uses probability to describe an observation in latent space. So, instead of

developing an encoder which produces a single value as output to describe each latent

state attribute, the encoder is formulated to describe a probability distribution for each

latent attribute. For VAEs, the encoder model is sometimes referred to as the recognition

model whereas the decoder model is sometimes referred to as the generative model.

It differs from the normal AE where the input data gets converted into an encoded

vector where each dimension represents some learned attributes representing the given

data but in VAE, the encoder model’s output is comprised of parameters that describes

a distribution for each dimension of the latent space.

There are other AE models being developed like LSTM-AEs [231] which are currently

used for sequential modelling. For sequential data, an LSTM-AE is created to read the

input sequence, encode it, decode it, and recreate it. These types of AEs work well with

datasets having temporal dependencies.

Each AE variant is built with a specific problem in mind. As the ‘No Free Lunch

Theorem’ states, there is no algorithm which might be deemed as the best of all for all

possible problems in the world. This is because every algorithm makes some assumptions

regarding approaching a specific problem. These assumptions sometimes may suit the

problem, in which case the algorithm outperforms others and sometimes may not suit

the problem in which case the algorithm will fail.
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7.4 Future Scope

The work of the thesis mainly revolves around the property of AE to map atypical patterns

to different values. In that regard, we plan to look into the practical implementations

of this property. Since this thesis has proposed an AE-supplemented outlier detection

mechanism, it might be extended in future to modern IoT scenarios like smart homes,

smart cities, etc. The data generated in such cases is extremely varied as these IoT

devices might be highly diverse. In addition, multiple network protocols might generate

data in varied formats. These impact the characteristics of supervised and unsupervised

outlier detection algorithms. The multi-class and multi-type categorization of diverse

forms of anomalies will be hard and would require a multi-modal approach.

Change detection would also find great applications in such smart cities. Automatic

inspection of landscapes would be much easier. However, these would again require real-

time models which would learn in an unsupervised manner. In future, we plan to adapt

our proposed FFCAE model for such real-life problems.

While talking about real-life problems, only designing smart infrastructure won’t suf-

fice. One would need strong financial means to afford those technologies too. In that

case, everyone would need smart financial planning. We intend to scale up the proposed

financial forecasting model with real-time news and other market events too. The pro-

posed model may also be adapted in future for crypto-currencies and forex trading. This

would prove to be of substantial interest to investors and may pave the way for increased

economic growth.

Lastly, if we wish to build these models for such a huge-scale practical scenario, we

would need to think in the direction of distributed computing too. Blockchain concepts

may be integrated into the proposed distributed deep learning paradigm in future. The

research on AI is already marked by various disruptive technologies built on top of an-
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other. These developments will be further propelled by the reduced prices of processing

units like GPGPUs (general purpose graphics processing units).

In general, the research on AEs is quite generic. AEs are not as commonly utilised

in actual applications and if used, they only find applicability for denoising of data,

reduction of dimensionality and as generative models for data augmentation. They are

nonetheless extremely straightforward and may be utilised efficiently for the extraction

of features. This is why they are most attractive for applications which do not have

high-quality manual labelling available. There has been very limited research on the

applicability of AEs for practical problems. They have always been used as a supplement

to some other method. However, there needs to be a separate direction of research on the

relevance of AEs in different domains of machine learning like self-supervised learning,

active learning, reinforcement learning etc.
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