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ABSTRACT

Coke is mainly used in steel industry as a fuel and a reducing agent for melting iron

in the blast furnace, since it generates intense heat but little smoke. The quality of

the coke material (like porosity, wall thickness, texture etc., as seen in a microscopic

image of coke) affects the performance of blast furnace impacting the profit/loss of

the industry. Therefore it is important to determine the structure and porosity of

coke on a large scale. Manual process of coke characterisation is costly and slow. Au-

tomation of coke characterization, from microscopic images of cokes, is beneficial for

the steel industry. An attempt has been made to calculate porosity of coke from the

images, and produce semantic segmentation of the coke images into different types of

metallurgical textures like inert, incipient, circular, lenticular etc. A shallow convo-

lutional neural network (CNN) was trained with annotated coke images using cross

entropy loss (between the probability distributions of the predictions out of the CNN

and the target as per annotation, for different classes). A new contrastive loss func-

tion has been written, that maximises entropy between the probability distribution

of a training sample with another sample belonging to a different class, in addition to

minimising entropy loss between the probability distributions of the predictions and

the target. This new loss function enables faster learning, and useful when quantity

of annotations for training a model, is less. A shallow CNN model obtained higher

accuracy in prediction of class for each pixel of the coke images, and the granularity

of semantic segmentation was reduced when trained using this novel loss function.

Keywords: automated coke characterization, semantic segmentation, contrastive

training, loss, image processing, convolutional neural network.
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Chapter 1

Introduction

The steel making industry relies on the quality of coke in terms of [1] its ability

to (i) produce heat for melting the ore, to reduce the ore to metal, (ii) to import

permeability to facilitate the reactions and (iii) to bear the load of the charge in the

blast furnace. [2] The carbonisation/coking of coals produces cokes that exhibit a

variety of microscopic textures whose optical behavior in polarized light aids in their

characterization. The word texture relates to the carbons’ optical properties, while

structure relates to the amount and size of coke pores and walls. Many properties of

carbons such as their graphitizability, their electrical resistivity, reactivity to CO2 at

elevated temperatures and strength are related to the optical properties of the coke

carbon forms. To measure the characteristics of coke materials (like porosity, strength,

wall thickness, classification of binder-phase carbon form), coke micro structures are

studied under microscopes. The binder phase carbon forms can be classified into

different forms like inerts, isotropic, incipient, circular, lenticular, ribbon structures.

1.1 Coke carbon forms

The specifications of different carbon forms are tabulated in Fig. 1.1 [3].
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Figure 1.1: Size specifications of coke forms
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Some examples of incipient, inert, circular, lenticular and pore regions are shown

in Fig. 1.2. Incipient means beginning to develop. As described in [2], incipient carbon

forms are < 0.5 microns, and appear faintly textured when rotated in polarized light.

Circular anisotropic domains are relatively circular in outline and increase in size

from 0.5 to 2.0 microns. The binder phase carbons produced from medium volatile

coals, are lenticular in shape having widths that range from 1.0 to 12.0 microns, with

a length (L) to width (W) ratio of 2 to 4.

Figure 1.2: Sample inert, incipient, circular, lenticular and pore regions

Inert regions have solid white and black structures (which are minerals inside

the inertinites). If the region is porous, then it is in more black shade than the

surroundings, otherwise, if not porous, then it is whiter. Examples of porous and

non-porous inerts are shown in Fig. 1.3.
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Figure 1.3: Inerts. Porous inerts display a blackish shade, and non-porous inerts
display whitish shade in a microscopic image.

Pores are black or brown, round or oval (if multiple round pores are joined to-

gether). Pores should have floating, pale-white regions visible inside, which are re-

flections of light in the microscope from bottom of the pores (shown in Fig. 1.4.).
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Figure 1.4: When scientists take photos under the microscopes, light gets reflected
from bottom of the pores. These reflections are visible in the microscopic images
as lighter shade within dark pores. Pores can be distinguished from minerals by
inspecting such lighter shaded objects within the large black regions.

1.2 Problem statement

The goal of this thesis is to automate (1) calculation of porosity, and (2) semantic

segmentation based on binder phase carbon form, from the microscopic images of

coke.

Since the hue and intensity values of pores and minerals are similar in the coke

images, the segmentation problem is hard.

1.3 Our solution

Our approach is to first separate out the pores from carbon regions and then measure

distance between pores to calculate porosity; and pass the non-pore regions to a
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convolutional neural network (CNN) [4] for further segmentation into inert, incipient,

circular and lenticular regions.

1.3.1 Identification of pores and calculation of porosity

A flow chart for the porosity calculation process is added in Fig. 1.5. First blacker

regions are identified from the original coke images, using Otsu threshold [5]. Then

pores are selected from the identified black region, based on their bigger size and

reflections (lighter shaded regions) within them (as shown in Fig. 1.4). After pores

identification process, to calculate porosity of the coke, distance between each pair of

pores are measured and reported in a histogram.

Figure 1.5: Flow chart for the process of identification of pores and calculation of
porosity from coke images.

The details process is explained in Section 3.1.

1.3.2 Segmentation of non-pore regions

Fig. 1.6 explains the approach to segment non-pore regions further. First a few regions

of the coke images are annotated manually. Then 49 × 49 patches and corresponding

targets are extracted from the images and a shallow CNN [4] model is trained using
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them. For inference, patches from non-pore regions are extracted and their classes

are predicted using the trained model.

Figure 1.6: Flow chart for the segmentation of non-pore regions from coke images.
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Next we present related work in Chapter 2, followed by the details of methodology

in Chapter 3. Finally experimental results and its analysis are shown in Chapter 4,

followed by conclusions in Chapter 5.
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Chapter 2

Related works

One of the major challenges for segmentation of coke images, is that the intensity

levels of pores and minerals are similar, and the whole images are blackish. Based

on different parameters, an automated tool [6] have been published by Anderson et

al. to characterise coke images, however it takes a binary image in the input with

pores as black and carbon as white. Our method takes a color image with three

different channels (red, green, blue) in the input and automatically identifies pores,

and measures the porosity and produces a histogram. Based on different parameters,

[7], [8] identify pores from coke images and characterize coke micro structures, but

the images used as input to their methods have different intensities for the pores

than non-pore regions, and identification of pores were straight forward. Moreover

no paper has been published to segment out regions further in classes like circular,

lenticular etc. based on shapes of the carbon mineral.

A deep learning convolutional neural network [4] can learn the texture represen-

tations of the non-pore regions, if tens of thousands of training data is available. But

we have only 21 coke images available. There have been plenty of work done on zero

or few shot image classification, [9]–[13] are only a few of them. All of them use anno-

tated data to create a latent space, and then some criteria about the new class (with

no or very few annotations) is used to map the new class in the latent space. During

training, this latent space is learnt, and during prediction, the input image data is

mapped to the learnt latent space, and classified based on distance from the identified

classes in the latent space. To build the latent space during training, enough data

of existing available classes were used. But in our case, only a few annotations were

available.
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To mitigate the challenge of less data, the images are broken into small overlapping

patches (small enough to contain a single class of texture in it, and large enough to

capture the characteristics of the texture for the class). One image of size 1360×1024

bytes can be broken into 12, 80, 512 overlapping patches of size 49× 49 pixels. A box

of size (49× 49) can slide across the image, 1360− 2(49−1
2

) = 1, 312 times on a single

column and 1024 − 2(49−1
2

) = 976 times on a single row, resulting in 1312 × 976 =

12, 80, 512 sliding positions. A patch can be extracted from each of these sliding box

positions. In order to train a model, a small portion of data is annotated and patches

were extracted from the annotated regions only.

A shallow convolutional neural network model [4] is used as the baseline model, as

shown in Fig. 2.1. The first layer convolutes the 49× 49 patches with 21 numbers of

7×7 filters with stride 4, and transforms the patches to 11×11 files. 21 such files are

created, matching the number of filters used. Non linearity in the transformation is

introduced using scaled exponential linear unit (Selu) [14] activation function. More

details of this activation function is given in Section 3.4 of Chapter 3. The second

layer consists of 4 filters of size 7 × 7 pixels, applied with strides 5, they transform

the 11× 11 input files to 4 number of 1× 1 output data. These 4 numbers represent

the weights corresponding to the 4 output classes. Finally a softmax [15] is applied

to determine the predicted class, having maximum weight among all.

Figure 2.1: Baseline CNN model.

The whole process of extracting training patches, training and inference is de-

scribed in Fig. 2.2.
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Figure 2.2: Semantic segmentation of non-pore regions of coke images into incipient,
inert, circular and lenticular classes.

Sample training patches (examples in Fig. 2.3) are passed through the model

and predictions are compared with targets for training. During inference, for each

non-pore pixel in the image, a 49 × 49 patch is extracted keeping that pixel in its

center. Classes for the non-pore patches are predicted using the trained model, and

a semantically segmented image is created at the output accordingly.
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(a) circular (b) circular (c) circular (d) circular (e) circular

(f) incipient (g) incipient (h) incipient (i) incipient (j) incipient

(k) inert (l) inert (m) inert (n) inert (o) inert

(p) lenticular (q) lenticular (r) lenticular (s) lenticular (t) lenticular

Figure 2.3: Examples of 49 x 49 patches extracted from the image.
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Chapter 3

Methods

3.1 Identification of pores and calculation of poros-

ity

The porosity calculation process is shown in Fig. 1.5. First the pores are identified,

and segmented from the coke image, and then porosity of the coke is calculated.

3.1.1 Identification of pores

To identify pores, in the beginning, histogram equalisation [16] is performed on the

input coke image to improve contrast, then Otsu’s threshold [5] is applied on in-

tensity levels to separate out pore-like black regions. Since pores are usually bigger

than minerals, a morphological open operation [17] is performed on the negative of

the binary image, to eliminate smaller regions, representing minerals. As shown in

Fig. 1.4, pores are large, and consist of reflections of lighter shade inside them. They

can be distinguished as large contours with holes inside them. So contours having

hole(s) inside, are first identified as pores. Then the size of other contours (with no

hole inside), are checked. If the area of the contour is more than 0.19% of the whole

image, then the contour is chosen as a pore, or else it is identified as a non-pore

region. The threshold (0.19%) is fixed based on manual inspection of the available

coke images. A binary image, with pores segmented (in black colour) from non-pore

regions (in white colour), is shown in Fig. 3.1e. All images obtained from each of the

internal steps, as discussed above, are shown in Fig. 3.1.
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3.1.2 Calculation of porosity

To calculate porosity of the coke, thickness of each pore wall is calculated as the

distance between every pair of pores. Pores are first approximated as polygons. Ac-

curacy for polygonal approximation [18], is taken as 0.1, ensuring that the maximum

distance from the approximated polygon to the actual pore border curve, is 0.1% of

the perimeter of the pore [19]. The polygons are drawn on the original image, in green

colour, as shown in Fig. 3.1f. A yellow line is drawn joining each vertex of every pairs

of polygons. If the yellow line is crossing any pore, then that line is discarded and not

drawn. The length of these yellow lines measure the distances between every pair of

pores. These distances are reported using a histogram (in Fig. 3.2). This histogram

portrays the porosity and wall thickness of the coke.
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(a) Original coke image
(b) Improved contrast after histogram
equalisation

(c) Otsu’s threshold applied
(d) Smaller regions removed after mor-
phological open

(e) Pores identified as large contours and
medium ones with hole inside

(f) Polygonal approximation of pores in
green, and distances between polygon
vertices in yellow

Figure 3.1: Images out of each step of the porosity calculation process.
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Figure 3.2: Porosity histogram with pore distances from Fig. 3.1f

3.2 Collecting sample patches for training a shal-

low CNN [4] model

Patches are collected from the annotated regions of the images only. Within the

annotated regions, random pixels are selected. Annotations for all pixels that are

within a 49 × 49 pixels box, keeping the initially selected pixel in the middle of the

box, are checked. If all these 49×49 pixels belong to same class as per the annotations,

then that 49 × 49 pixels patch and its class is collected as a training sample. Refer

to Fig. 3.3 and Fig. 3.4. If all pixels inside the 49 × 49 box are not assigned a class

in the annotation, or if any of them belong to a different class, then that patch is

rejected and another random pixel position is checked. While collecting the sample

patches, it is ensured that same (or similar) number of patches are collected from each

of the annotated training images. Also, a tab is kept on the higher limit of patches
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to be collected for a single class, to make sure that the total number of samples for

each class is same (or similar). Total 10, 000 training patches are obtained, using this

automated patch collection process, out of which 2, 500 samples belong to each of the

incipient, inert, circular and lenticular classes.

Figure 3.3: Automated patch collection process.
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Figure 3.4: A patch is added to the training data, if it belongs to a single class, or
else it is rejected.
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3.3 Determining class of a sample patch

During the process of patch collection from the annotated coke images (refer to Sec-

tion 3.2), for training the CNN model (in Fig. 2.1), the target class of the sample

patch could be determined in two ways -

1. If all pixels, in the 49× 49 neighborhood in the annotated image, belong to the

same target class, then take that class.

2. Take the class on which majority of the pixels, in the 49× 49 neighborhood in

the annotated image, are assigned to.

Using K-fold cross validation, the accuracy of the model (in Fig. 2.1) is obtained

using above two approaches of patch collection, and compared in Table 3.1.

K is chosen as 5. The training data of 10, 000 patches and their target classes

are randomly split into 5 equal parts. As shown in Fig. 3.5, 5 folds are created

sequentially and the CNN models (with different hyper-parameters described in next

paragraph) are trained using train data (8, 000 patches and their target classes) and

validated using validation data (2, 000 patches and their target classes). Fold 0 takes

the 1st split as validation data, and 2nd − 5th split as training data, Fold 1 takes the

2nd split as validation data, and 1st, 3rd − 5th split as training data, and so on.
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Figure 3.5: 5-Fold cross validation.

The average is calculated as the average of all folds (Fold 0 to Fold 4). The

accuracy values obtained by approach 1 above, is denoted as ”Same” in the 1st row,

and the accuracy values obtained from approach 2 are denoted as ”Majority” in the

2nd row.

Accuracy is defined as the number of ’true positive’s (as described in Fig. 3.6) for
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all four classes, divided by the total number of samples predicted.

Figure 3.6: Confusion matrix.

Based on observed data, it is decided that approach 1 is giving better performance.

Therefore all pixels are checked for the training patches, and the patch is selected as

a training data, only if all the pixels belong to a same valid class, in the annotated

image.

Table 3.1: Accuracy for 5-Fold cross validation using two types of train patches:
patches with same label in all pixels; and patches with label same as majority of
pixels

Accuracy
Average Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Same 0.67 0.67 0.65 0.66 0.67 0.68
Majority 0.62 0.62 0.60 0.61 0.64 0.62

3.4 Choice of the activation function used for non

linearity in the shallow CNN [4] model

SELU (scaled exponential linear units) activation function is proposed by Klambauer

et. al, in [14].

selu(x) = λ

{
x, x > 0

αex − α, x ≤ 0
..................................(1)

This activation function is created to construct self-normalising neural networks,

with pre-defined constants α = 1.67, λ = 1.05.
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Selu activation function has following properties, please refer to Fig. 3.7 for the

graph of Selu activation function.

1. Negative and positive values at the output, for controlling the mean to be near

zero, hence normalising the output

2. Saturation regions (derivatives approaching zero) to dampen the variance, for

negative net inputs, hence diminish the vanishing/exploding gradient effect

3. A slope larger than one to increase the variance for positive inputs

4. A continuous curve ensuring a fixed point, where variance damping is equalized

by variance increasing

Figure 3.7: Selu activation fuction.
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To compare performances of Relu and Selu activation units, the model in Fig. 2.1

has been trained for 5 epochs, using Selu [14] and Relu [20] activation functions. Based

on the results documented in Table 3.2, it is decided that the model is learning faster

with Selu activation function.

Table 3.2: Losses when a shallow CNN model [4] is trained with Selu and Relu.

Losses
epoch 1 epoch 2 epoch 3 epoch 4 epoch 5

Selu 17.56 19.09 18.99 13.46 11.49
Relu 29.23 25.04 22.37 19.91 15.19

3.5 Choice of model hyper-parameters

3.5.1 Choice of input patch size and number of intermittent
channels

The optimum size of patches for the train samples, and the number of channels in

between the two CNN layers in a shallow CNN model, are decided by K-fold cross

validation, as described in Section 3.3.

Fig. 3.8 is the same diagram of the CNN model in Fig. 2.1, with arrows pointing

at the parameters being decided by this K-fold cross validation.
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Figure 3.8: The Baseline CNN model parameters : input patch size and number of
channels in between two convolution layers.

To estimate the best performing hyper-parameters, first the input patch size is

kept at 49, number of channels of the intermittent file in between two convolution

layers of the model (in Fig. 3.8) are varied, and the accuracy (defined in Section 3.3)

is checked for each fold (Fold 0 to Fold 4) to find out an optimum value. The hyper-

parameters of the model, for which accuracy is maximum and consistent among each

folds, are chosen. It is observed that, increasing intermittent channels beyond 12

does not result in much improvement in the accuracy. Please refer to Table 3.3

for the accuracy of each fold for different hyper-parameters set. Then keeping the

number of channels in intermittent files as 12, patch size of the training samples are

varied. For square patches of side above 49 pixels, observed accuracy across different

folds are not uniform and accuracy is decreasing for patch size below 49. Variance

among accuracy across folds, for patch sizes 61 and 11, are large (7.691 and 6.419

respectively), whereas variance of the accuracy highlighted in green colour is only

1.353. Based on this experimental data, patch size is chosen as 49 and the number of

intermittent channels between two convolution layers, is kept as 21.
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Table 3.3: List of accuracy obtained by a shallow CNN model as in Fig. 3.8, with
varying model parameters (patch size, number of internal channels between 2 CNN
layers), for 5 different folds of the 5-Fold cross validation

Accuracy
Patch
size

Int.
chnls

Average
(%)

Fold 0
(%)

Fold 1
(%)

Fold 2
(%)

Fold 3
(%)

Fold 4
(%)

Comments

49 3 25.44 23.25 27.56 25.87 24.80 25.72
49 7 30.36 36.23 23.42 24.69 32.92 34.56 Increasing
49 12 39.17 36.64 31.49 42.13 41.41 44.17 Increasing
49 21 41.38 40.27 39.78 43.97 40.95 41.92
61 12 40.26 43.89 23.54 44.44 46.29 43.15 Unstable
35 12 38.45 37.24 44.81 42.75 35.61 31.86 Reduced
11 12 33.56 25.00 24.91 39.47 38.79 39.63 Unstable

3.5.2 Choice of optimizer and learning rate

Machine learning involves using an algorithm to learn and generalize from test data,

in order to make predictions on new test data. The machine learning algorithm

defines a parameterized mapping function and an optimization algorithm is used to

find the values of the parameters (model weights) that minimize the error (loss) of

the function when used to map inputs to outputs. Every time the machine learning

algorithm is fit on a training data set, it solves an optimization problem.

The learning rate controls how quickly the model is learning. Smaller learning

rates require more training epochs given the smaller changes made to the weights

each update, whereas larger learning rates result in rapid changes and require fewer

training epochs.

Different optimizers (Stochastic Gradient descent (SGD) [21], Adam [22], RProp

[23], SGD with momentum [24] etc.) and learning rates are used to train the model

in Fig. 2.1. It is observed that maximum train accuracy is obtained using an Adam

optimiser [22] with learning rate of 0.0001.

3.5.3 Loss function

Neural Networks are trained using optimization process (refer to Section 3.5.2 ) that

tries to reduce the loss. This loss depicts the difference of the predicted output

from the expected (target output). Since the output predictions from the model

are probability distributions for the four output classes, cross entropy loss is used
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that measures the loss in terms of the entropy between the predicted and target

distributions.

3.5.3.1 Cross Entropy Loss (CE)

The existing cross entropy loss minimises the distance between the predicted class

distribution with its target distribution. Refer to Fig. 3.9. The loss function min-

imises the distance between the probability distributions of the predicted data and

corresponding distribution of one-hot encoding of the target class. Cross entropy is

calculated as

CE = − 1

n

n∑
i=1

c∑
k=1

tik ln yik........................................................................(2)

where where yik is the soft assignment (prediction percentage probability) of the

ith patch of the batch to the kth class; and tik is the kth component of the one-hot

encoding distribution of the target class of the ith patch, i.e. tik = 1, if the ith patch

belongs to kth class, otherwise it is 0.
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Figure 3.9: Cross entropy loss minimises entropy between predicted and target dis-
tributions.

3.5.3.2 Custom Cross Entropy Loss

As less annotations were available on the coke images, three new losses are defined,

which make use of contrastive learning, by maximising the distance between distri-

butions of class predictions of patches belonging to different classes, in addition to

minimising the distance between distribution of prediction of a patch and its target

class. Refer to Fig. 3.10. The concept of ’minimizing intra-class spread and maximiz-

ing inter-class distances’ is already used in Fisher Rao discrimination [25] since the

first half of 20th century, but it is used in deep learning, recently. These losses are
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described below.

Figure 3.10: Contrastive cross entropy loss maximises entropy between distributions
of prediction and a target belonging to a different class; in addition to minimising
entropy between predicted and target distributions.

Custom cross entropy - subtraction (CCE-Sub) The custom cross entropy

subtraction loss is defined as

CCE − Sub = − 1

n

n∑
i=1

(
c∑

k=1

tik ln yik −
c∑

i ̸=j,l=1

tjl ln yil)..............................................(3)

where j is a random patch present in the batch (hopefully) belonging to a different

class than the ith sample in the batch. tjl are the one-hot encoding of the jth target

to lth class i.e. tjl = 1, if patch j belongs to the lth class, otherwise 0.

Custom cross entropy - division (CCE-Div) The custom cross entropy divi-

sion loss is defined as

CCE −Div =
1

n

n∑
i=1

(

∑c
k=1 tik ln yik∑c

i ̸=j,l=1 tjl ln yil
)............................................................(4)

where j is a random patch present in the batch (hopefully) belonging to a different

class than the ith sample in the batch. tjl are the one-hot encoding of the jth target

to lth class i.e. tjl = 1, if patch j belongs to the lth class, otherwise 0.
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Custom cross entropy - power (CCE-Pow) The custom cross entropy power

loss is defined as

CCE − Pow =
1

n

n∑
i=1

(−
c∑

k=1

tik ln yik)
∑c

i̸=j,l=1 tjl ln yil)..............................................(5)

where j is a random patch present in the batch (hopefully) belonging to a different

class than the ith sample in the batch. tjl are the one-hot encoding of the jth target

to lth class i.e. tjl = 1, if patch j belongs to the lth class, otherwise 0.

3.5.4 Deciding optimum number of epochs for training

The training procedure of the CNN model (Fig. 2.1) is explained in detail in Section

3.6. The plot of the train and validation accuracy are shown in Fig. 3.11b. This plot

illustrates that the accuracy for validation data is saturated after 150 epochs, after

which validation accuracy is not increasing along with rising train accuracy.
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(a) Train loss (b) Accuracy

(c) Precision vs Recall (d) Execution log

Figure 3.11: CNN model (Fig. 2.1) performance with 1000 epochs of training.

3.6 Training procedure

The training procedure is shown in Fig. 3.12. Total 15 partially annotated coke images

were available. Out of them, 10 images were used for training and validation, and rest

5 were kept aside, as data unseen by the model, for testing. 10, 000 patches of size

49×49 pixels were collected from the 10 training annotated images, using the process

described in Section 3.2. A 5-Fold cross validation is performed using this training

data (with 10, 000 patches and their targets) to determine hyper-parameters so that

the model (as shown in Fig. 2.1 and using cross entropy loss as in equation (2)) is

robust and stable (refer to Section 3.3 and Section 3.5.2). After that, the highest
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performing model from this 5-Fold cross validation (the model obtained from Fold 3

with accuracy 43.97% in Table 3.1) is taken, and is trained further with almost full

training data, to increase performance.

The training data (with 10, 000 patches and their targets) is randomly divided

into 9 : 1 ratio, and used as training and validation data respectively. It is validated

that both training and validation data contains data from all four classes.

With above 9 : 1 training and validation data, first the CNN model (in Fig. 2.1)

is trained for 1000 epochs using cross entropy loss, as in equation (2). Then again

the best performing model (obtained from Fold 3 of 5-Fold with accuracy 43.97% in

Table 3.1) is taken and trained with above 9 : 1 training and validation data, for 1000

epochs using custom cross entropy subtraction (CCE-Sub) loss, as in equation (3).

Then similar training is performed using the other two loss functions (CCE-Div and

CCE-Pow), as shown in equations (4) and (5). The accuracy, precision and recall are

provided in Chapter 4.

Accuracy is defined in Section 3.3. Precision is defined as number of true positive

/ number of predicted positive, i.e. (true positive + false positive). And recall is

defined as number of true positive / number of actual positive, i.e. (true positive +

false negative). Please refer to Fig. 3.6 for definition of ’true positive’, ’false positive’,

’false negative’ etc.
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Figure 3.12: The training process.
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Fig. 4.6 and Fig. 4.7 display correct identification of incipients, which are majority

in that specimen images. However the pore identification process failed to identify

some portions of the pores, due to high intensity regions touching the border of the

image (since a contour inside a contour, is not considered inside it, if it is touching

the image border). And those pore regions are passed to the CNN (process described

in Fig. 2.2), and classified as inerts wrongly.

(a) Original (b) Pores identified

(c) Segmented with CCE-Sub loss

Figure 4.6: (a) original image, (b) binary image with pores identified in black, (c)
segmentation by CCE-Sub. Some of the pore regions are not marked as pore by the
pore identification process, due to high intensity regions touching the border. These
regions are wrongly identified as inerts by the CNN model, due to their uniform
texture. Some inert regions are marked as pore, by the pore identification process,
which could have been classified as inert by the CNN otherwise. This coke image
contains maximum of the non-pore regions as incipient, which are correctly classified
by the CNN model.
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Chapter 4

Results

4.1 Performance metrics

When the shallow CNN model (described in Fig. 2.1) is trained with same data

(using procedure explained in Section 3.6, and in Fig. 3.12) and same number of

epochs, but different loss functions as discussed in Section 3.5.3), it is observed that

the model trained using custom cross entropy loss (defined in equations (3)) is learning

faster than the model trained using cross entropy loss (CE) (as in equation (2)). The

precision, recall and accuracy values obtained after training the models for 150 epochs

are reported in Table 4.1 and Fig. 4.1.

Performance of these models on test data, are shown in Table 4.2 and Fig. 4.2.

Table 4.1: Precision, recall and accuracy values obtained after training the models
for 150 epochs.

Training Overall Circular Incipient Inert Lenticular

150 epoch
Accuracy

(%)
Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

CE 54 53 54 48 45 61 85 56 44 47 41
CCE-Sub 57 56 57 53 47 65 84 58 54 49 44
CCE-Div 43 45 43 35 36 44 58 62 39 40 40
CCE-Pow 38 39 38 29 43 52 58 39 24 35 26
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(a) CE loss (b) CCE-Sub loss (c) CCE-Div loss (d) CCE-Pow loss

(e) Accuracy (f) Precision vs. recall

(g) Circular (h) Incipient (i) Inert (j) Lenticular

Figure 4.1: Loss, accuracy, precision, recall on train data after training the models
for 150 epochs.

Table 4.2: Performance of the models on test data.

Test Overall Circular Incipient Inert Lenticular
Accrcy
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

Prec.
(%)

Rec.
(%)

CE 68.2 53 58 22 53 91 87 97 63 01 27
CCE-Sub 71.5 54 60 24 36 91.5 89 98 69 01 47
CCE-Div 63.6 41 42 4 9 61 99 98 57 0.1 2
CCE-Pow 6 6 25 6 1 0 0 0 0 0 0
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(a) Precision vs. recall

(b) Circular (c) Incipient (d) Inert (e) Lenticular

Figure 4.2: Precision and recalls obtained on test data using the models trained with
different losses.

4.2 Qualitative results

Porosity calculation results and semantic segmentation of unseen images are shown

in this section.

In Fig. 4.3, the segmented image produced from the model trained using CCE-

Sub loss function (described in equation (3)), is more solid and less grainy than the

segmentation created out of the model trained using CE loss (shown in equation (2)).

The inert regions are identified accurately in blue color, and rest of the regions are

classified as pore (black), circular (red) or lenticular (green), based on the texture.

The pore distances and their histogram is also shown.
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(a) Original (b) Pores identified
(c) Annotated image - inert
in grey

(d) Segmented using CE loss (e) Segmented using CCE-Sub loss

(f) Pore distances (g) Porosity histogram

Figure 4.3: (a) Original image, (b) binary image showing pores in black color and
non-pores in white, (c) manual annotations (ground truth), Color code: grey (inert),
red (circular), green (lenticular)(d) the segmented image using the CNN model, with
Cross Entropy loss. Color code: black (pores and incipients), blue (inert), red (cir-
cular), green (lenticular), (e) the segmented image using the CNN model, with the
Contrastive Cross Entropy loss (Sub), (f) polygonal approximation of pores in green
lines, and the distances between pores in yellow, (g) porosity histogram with pore
distances calculated from (f).
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Fig. 4.4 shows some accurate and some incomplete identification of inert regions in

semantic segmentation created by the model trained using CCE-Sub loss (equation

(3)). The failure cases are the inerts having comparatively narrow structure than

other inerts. This type of narrow inert structures were not present in the annotations

used for training. So the model was unable to identify them as inerts.
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(a) Original

(b) Segmented with CCE-Sub loss

Figure 4.4: (a) original image, (b) segmented image by CCE-Sub. The inert regions,
marked with green border, are classified accurately. But the ones marked in red
border, are the failure cases, where inert regions are not identified fully as inert, but
as a grainy segmentation, consisting of inert, circular and lenticular regions.
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In Fig. 4.5, almost all regions are classified properly, except the fact that the

whole segmentation is grainy. Some incipient regions, correctly identified, are marked

in green border.
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(a) Original

(b) Segmented with CCE-Sub loss

Figure 4.5: (a) original, (b) segmented by CCE-Sub. Incipient regions are correctly
identified (marked with green border). Other regions are properly segmented too,
except that the whole segmented image is grainy
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(a) Original

(b) Segmented with CCE-Sub loss

Figure 4.7: (a) original image, (b) segmented image from CCE-Sub. Majority of
the non-pore region is incipient, and classified accurately. Inerts are also identified
properly (marked with green border). But some pores (red border) and a small
portion of incipient in the left bottom portion of the image are classified as inert.
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Chapter 5

Conclusions

As the number of training samples were increased by collecting small patches, the

CNN model trained using CCE-Sub loss (described in equation (3)) had learnt the

class representations reasonably well. Using the contrastive approach in the loss

function has helped the model learn representations well, provided the scarcity of

annotated data. However the segmented images were still grainy. That is because

the test precision for the circular and lenticular classes could not be increased to

more than 24%. With a more accurate model, the grains could be reduced. Also,

classification was done for only four broad classes, but there were other classes, like

ribbon, isotropic; moreover each of the circular, lenticular and ribbon classes could

be sub-divided into fine, medium and coarse structures. Annotations for these finer

divisions and ribbon structures were not available. So these classes could not be not

used for segmentation of the images.

43



Bibliography

[1] N. Choudhury, D. Mohanty, P. Boral, S. Kumar, and S. K. Hazra, “Microscopic
evaluation of coal and coke for metallurgical usage,” Current Science, vol. 94,
no. 1, pp. 74–81, 2008.

[2] Southern Illinois University. “Crelling’s petrographic atlas of coals and car-
bons.” (), [Online]. Available: https://coalandcarbonatlas.siu.edu/ (vis-
ited on 07/21/2022).

[3] R. J.Gray, “Some petrographic applications to coal, coke and carbons,” Organic
Geochemistry, vol. 17, no. 4, pp. 535–555, 1991.

[4] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation Applied to Hand-
written Zip Code Recognition,” AT’I&’T Bell Laboratories, 1989. [Online].
Available: http://yann.lecun.com/exdb/publis/pdf/lecun- 89e.pdf
(visited on 07/21/2022).

[5] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[6] A. A. Agra, A. Nicolodi, B. D. Flores, et al., “Automated procedure for coke mi-
crostructural characterization in imagej software aiming industrial application,”
Fuel, vol. 304, pp. 121–374, 2021.

[7] E. Donskoi, A. Poliakov, M. R. Mahoney, and O. Scholes, “Novel optical im-
age analysis coke characterisation and its application to study of the relation-
ships between coke Structure, coke strength and parent coal composition,” Fuel,
vol. 208, pp. 281–295, 2017.

[8] F. Meng, S. Gupta, D. French, P. Koshy, C. Sorrell, and Y. Shen, “Character-
ization of microstructure and strength of coke particles and their dependence
on coal properties,” Powder Technology, vol. 320, pp. 249–256, 2017.

[9] Y. Zheng, J. Wu, Y. Qin, F. Zhang, and L. Cui, “Zero-Shot Instance Segmen-
tation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. doi: 10.1109/CVPR46437.2021.00262.

44



[10] L. Bo, Q. Dong, and Z. Hu, “Hardness Sampling for Self-Training Based Trans-
ductive Zero-Shot Learning,” Conference: 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), doi: 10.1109/CVPR46437.
2021.01623.

[11] Z. Han, Z. Fu, S. Chen, and J. Yang, “Contrastive Embedding for Generalized
Zero-Shot Learning,” Conference: 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), doi: 10.1109/CVPR46437.2021.
00240.

[12] M. F. Naeem, Y. Xian, F. Tombari, and Z. Akata, “Learning Graph Embeddings
for Compositional Zero-shot Learning,” Conference: 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), doi: 10.1109/
CVPR46437.2021.00101.

[13] A. Ben-Cohen, N. Zamir, E. B. Baruch, I. Friedman, and L. Z. Manor, “Semantic
Diversity Learning for Zero-Shot Multi-label Classification,” 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), doi: 10.1109/ICCV48922.
2021.00068.

[14] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-Normalizing
Neural Networks,”Advances in Neural Information Processing Systems 30 (NIPS
2017), pp. 972–981, 2017. doi: https://dl.acm.org/doi/abs/10.5555/
3294771.3294864.

[15] J. s. Bridle, “Training Stochastic Model Recognition Algorithms as Networks
can lead to MaximumMutual Information Estimation of Parameters,” Advances
in Neural Information Processing Systems 2 (NIPS 1989), 1989. doi: https://
proceedings.neurips.cc/paper/1989/hash/0336dcbab05b9d5ad24f4333c7658a0e-

Abstract.html. (visited on 07/21/2022).

[16] Y. C. Hum, K. W. Lai, M. Salim, and M. Irna, “Multiobjectives bihistogram
equalization for image contrast enhancement,” Complexity, vol. 20, no. 2, pp. 22–
36, 2014.

[17] OpenCV: Open Source Computer Vision. “Morphological transformations.” (),
[Online]. Available: https://docs.opencv.org/4.x/d9/d61/tutorial_py_
morphological_ops.html (visited on 07/21/2022).

[18] U. RAMER, “An iterative procedure for the polygonal approximation of plane
curves,” Computer Graphics and Image Processing, vol. 1, no. 3, pp. 244–256,
1936.

[19] OpenCV: Open Source Computer Vision. “Approxpolydp.” (), [Online]. Avail-
able: https://opencv-laboratory.readthedocs.io/en/latest/nodes/
imgproc/approxPolyDP.html (visited on 07/22/2022).

[20] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” Bi-
ological Cybernetics, vol. 20, pp. 121–136, 1975.

45



[21] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals
of Mathematical Statistics, vol. 22, no. 3, pp. 400–400, 1951.

[22] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
International Conference on Learning Representations, 2015. doi: https://
doi.org/10.48550/arXiv.1412.6980. (visited on 07/21/2022).

[23] M. Riedmiller and H. Braun, “Rprop - A Fast Adaptive Learning Algorithm,”
International Symposium on Computer and Information Science, vol. VII, 1992.

[24] G. Nakerst, J. Brennan, and M. Haque, “Gradient descent with momentum —
to accelerate or to super-accelerate?” arxiv.org, 2020. doi: arXiv:2001.06472.
(visited on 07/21/2022).

[25] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-
nals of Eugenics, vol. 7, no. II, pp. 179–188, 1936.

46


	54b8c44c4b2f0b3fbdc76255fe73b9d97475e9451de2a573bd6d81b905777c84.pdf
	1d40cfd0eed1507e84cbae85dfa9a49e9487c0eafad5df6dcea79a15316871e4.pdf
	54b8c44c4b2f0b3fbdc76255fe73b9d97475e9451de2a573bd6d81b905777c84.pdf
	54b8c44c4b2f0b3fbdc76255fe73b9d97475e9451de2a573bd6d81b905777c84.pdf
	54b8c44c4b2f0b3fbdc76255fe73b9d97475e9451de2a573bd6d81b905777c84.pdf
	54b8c44c4b2f0b3fbdc76255fe73b9d97475e9451de2a573bd6d81b905777c84.pdf

