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ABSTRACT

Strong phenotypic variations in lung tumors of human can be seen non-
invasively via medical imaging. These tumor phenotype can be quantified by
extracting large number image features and is referred as radiomics. It has al-
ready been shown that the radiomic signature of a tumor has significant asso-
ciation with some of its clinical parameters [2]. These radiomic characteristics
may be associated to the survival of the patient, which is studied here.

A large number of statistical techniques for the survival analysis have been
created over the years. Cox proportional hazard model [6] has been used to
explore the possible association of radiomic signature and clinical parameters
with the survial function. Radiomic signatures shows significant association
with the survival as compared to the clinical parameters [2].

Looking into the recent development of machine learning and neural net-
works, improved method to estimate the survival function has been developed
based on discrete-time survival likelihood using neural networks [12]. The sur-
vival method under consideration parameterize the discrete-time hazard rate
depending on the likelihood for right-censored survival data as well [13] with
neural network. This neural network predicts the survival curve using hand
calculated radiomic features as the covariates. As hand calculated features may
not capture all aspects of the tumor, a model based on convolution neural net-
work is proposed to extract radiomic features from tumor volume to predict the
survival function. Radiomic signature extracted from the CNN shows marginal
improvement over the hand calculated radiomic signature in survival analysis

and gives better insight to the association of the tumor radiomics with survival.
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CHAPTER 1
INTRODUCTION

1.1 Computed Tomography Scan

In clinical practise, computed tomography (CT) is frequently used to determine
lung cancer treatment. It is a key diagnostic tool for an oncologist that allowed
for risk assessment. For patients with lungs cancer, CT scan offers variety of
data, that influence the treatment procedure. However, a qualitative interpre-
tation of CT scan is still restricted to what an expert radiologist may see. This
motivates to find a need for a strong interpretation of CT scan.

CT scans of patients with lung cancer and others, have been shown that it in-
clude more information than what is visible to radiologists using quantitative
image analysis [8]. Recent developments in machine learning, particularly con-
volutional neural networks, have produced a class of potent models that show
promise for improving medical decision-making and achieving accurate diag-
nosis [17]. Using CNN-based models on imaging data can reveal clinically sig-
nificant prognostic patterns that were previously unknown or invisible to the

eye of an expert.

1.2 Survival Analysis

A statistical technique called survival analysis is used to determine how long it
will likely be before a given event occurs [15]. These events could be something

like a death in the medical area. The survival times are typically expressed in




terms of days, weeks, months or years. The years till a person’s death, for in-
stance, may be considered the survival time if the event of interest is death. The
survival function and the hazard function are the other two key functions that
make up a survival analysis. The probability that a person has “survived” ast
time ¢ is represented by the survival function, S(r) = P(T > 1). A measurement

of risk at time ¢ is the hazard function, i(r). A higher hazard ratio indicates a

higher danger of dying.

1.3 Problem Statement and Contribution

Tumors are heterogeneous, hence the biopsy or invasive extraction of tissues
usually from a very small area are not enough to characterize the tumor. Hence,
as the non invasive techniques like CT Scan, capture the comprehensive infor-
mation of the whole tumor,it is used to track the growth of the illness or how it

responds to treatment.

In this study, we have focused on survival analysis of confirmed non small
cell lungs cancer (NSCLC) patients using the information extracted non inva-
sively from their CT scan. We developed a neural network and a convolution
neural network to analyse CT images and estimate the survival function for that
patient. The most popular method for survival analysis in a wide range of do-
mains is the Cox Proportional Hazards (CPH) model [6]. Due to its simplicity
of use and speedy computation, the Cox regression model has been widely ac-
cepted by the scientific community. But it has some flaws. For example, it is
a poor model for high dimensions [3]. Also, it assumes that the hazard ratio

for two patients is constant with respect to time. It has inability to model the




non linearities. A number of studies have consistently showed that ML-based
methods may predict patient survival at least as well as traditional CPH analy-
sis [11] [16]. We used an NN based model and developed a CNN based model

to estimate the survival curve by analysing the CT scan of NSCLC patients.

1.4 Organization

In chapter 2, we have discussed the previous works done in the field of survival
analysis. In chapter 3, we have explained the proposed methodology with an
elaborate explanation. We explain the dataset we used for the study. We explain
the architectures of NN and CNN model used along with the loss function used
to optimize those models. Finally in chapter 4, we discussed the results and

conclude our study:.




CHAPTER 2
RELATED WORK

The survival analysis is frequently used to forecast a patient’s prognosis. Nu-
merous research have been carried out using the Kaplan-Meier [10] survival

estimator and the Cox hazard model [6].

One of the most often used approaches for estimating survival is the Kaplan-
Meier estimator [10]. It can’t be used to estimate an individual’s survival time
because it does not incorporates any of the patient’s variables (e.g. clinical pa-

rameters). It predicts the survival distribution function only from survival data.

The Cox hazard model calculates an individual’s hazard ratio and assesses
the impact of patient’s covariates on the survival models. Different modified
Cox models have been proposed over the years, for instance the Cox Boost al-
gorithm [4], Lasso Cox model [20] and many others. Some new model based
on deep learning methods that uses cox regression model loss function have
been developed like DeepSurv [11] and DeepHit [14] and they outperforms the
conventional methods. However, a specific family distribution for the hazard

function has to be selected to get the survival function for a patient.




CHAPTER 3
METHODOLOGY

3.1 Overview

Using the non invasive imaging technique, we want to estimate the survival
function of the patient diagnosed with non small cell lung cancer (NSCLC). We
used hand calculated features as well features extracted using convolution neu-
ral network. A neural network model is trained using hand calculated features.
A separate Convolution neural network is also trained. Survial estimates for
both of these models are compared with that of classical Cox proportional haz-

ard regression. Fig.3.1 shows the basic idea of the work flow.

Cox proportional |
Radiomic Features hazard mode

Tumeor Voliume
DICOM data fie Neural Network  —»

Survival function

Convolution NN M

B4x64464

Figure 3.1: Analysis workflow: The radiomics features extracted from the tumor
volume is used to train CPH and NN model the survial probability with respect
to the time. Tumor volume is used in CNN model to get the same output.

3.2 Data

Lungl data set: The Lungl dataset includes clinical information and computed

tomography (CT) scans from 422 non-small cell lung cancer (NSCLC) patients




who underwent radiotherapy [1] at MAASTRO Clinic in Netherlands. CT im-
ages, manual delineations of tumor, clinical information, and survival data were
available for these patients. However, as we are estimating the survival curves
using non invasive techniques, we only use the CT scans and survival data of
the patients. The resolution for CT scan was 512 x 512. Each patient has dif-
ferent number of CT scan slices ranging from 90 to 150. Survival data includes
number of days of survival after diagnosis and their death status (death status
= 0 if still alive and is called right-censored). After the pre-processing, data for

414 patients [1] were used in this study.

3.2.1 Data Pre-processing

The CT scans were available in DICOM format. DICOM Segmentation (SEG)
files included in this data contain the manually delineation of different anatomy
(i.e., hearts, lungs, neoplasm and esophagus) by radiation oncologist. The neo-
plasm’ label from DICOM-SEG was the tumor in which we are interested and
was used to create the 3d mask for the tumor volume. Using this mask and the

CT scan of corresponding patients, 3d volume was generated.

Feature Extraction: For the analysis of survival using cox-regression and
neural networks, 808 features quantifying tumor shape, intensity and textures
were extracted using pyradiomics [19].Features including first order statistics
(e.g.,mean, deviation, energy, entropy, etc. ), shape based features (e.g., volume,
surface area, compactness, etc.) and for textures based on gray level cooccur-

4

rence matrix, gray level run length matrix, gray level side zone matrix and gray

level dependence matrix were extracted from the original volume. The first or-
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Figure 3.2: Building hand crafted radiomic signature

der statistics and texture based features were also extracted from the 8 volumes
decomposed using wavelet (high pass and low low pass in each of the three
axis). These features were standardized for further processing. To eliminate
the redundancy in the feature group, dimensions were reduced using Principal
component analysis (PCA). 64 eigen vectors were selected as they collectively
explained the 98.16% of the total variance in the data set. We refer the features
projected on these new 64 dimensions as hand calculated radiomic signatures as
shown is Fig.3.2. We used the radiomic signature in the survival analysis using

Cox regression and neural network.

Preparation of data for convolution neural network: The size of the tumor
and slices of the CT scan for each patient is different. Consequently, the di-
mensions of the 3d tumor volume is different for each patients. For the CNN,
we needed every tumor volume be made to same dimension. To do that, we
cropped up the boundary box of the tumor. Then we zero padded in every di-
rection symmetrically such that the dimension of the 3d volume is 512x512x512.
Now, the 3d volume is resized to 64 x 64 x 64. This 3d tumor volume is used in

survival analysis of patient using CNN.




3.3 Neural Network Architecture

The framework for NN architecture is show in the Fig.3.3. This network takes
the radiomic signature (x) as input. The input layer has 64 neurons. There are
4 hidden layers in the network . Each is Leaky-ReLU activated with batch nor-
malisation and with dropout probability of 0.1. This network was trained with
a batch-size of 32. The output layer consists of 10 neurons each representing a
discrete time point (#;). Each neuron of output layer gives the hazard rate cor-
responding to that discrete time. As the hazard function (k(r;)) as defined in
section 3.5.1, is a probability, its value should lie between 0 and 1. Applying the
logistic function (sigmoid function) to the output (¢(x)) of neural network will
do this. Survival probabilities corresponding to the discrete time can be then
calculated as using equation 3.3. The model was implemented using pytorch
and the snapshot of the implemented is shown in Fig.3.4. The "Layer’ column
describes the every layer of the NN model, 'Param #” describes the number of

parameter required for the corresponding layer.

| Radiomic Signature =X

l

| Leaky-RelLU(0.1), Dropout = 0.1, Batch Mormalization |

l

| Leaky-RelLU(0.1), Dropout = 0.1, Batch Nommalization

l

| Leaky-ReLU(0.1), Dropout = 0.1, Batch Nommalization

|

Input layer
64

Hidden layer
84

Hidden layer
32

Hidden layer
32

Hidden layer
18

|Leah':r-ReLL,l_El. 1), Dropout = 0.1, Batch Norma ||zat|on|

¢ (X ), Sigmoid

Output layer
10

Figure 3.3: NN architecture model used for survival analysis




Linear-1 32, @, 64] 4,168
LeakyRelLU-2 32, 9, 64] [:]
Batchiormid-3 32, 8, 64] 128
Dropout-4 32, 8, 64] ]
Linear-5 12, e, 32] 2,880
LeakyRelU-6 32, @, 32] 2]
BatchNormld-7 32, @, 32] 64
Dropout-8 32, @, 32] ]
Linear-9 32, @, 32] 1,856
LeakyRelU-1@ 32, @, 32] L]
Batchhormld-11 32, 8, 32] 64
Dropout-12 32, @, 32] [:]
Linear-13 32, @, 16] 528
LeakyRelU-14 32, @, 16] L:]
BatchNormld-15 32, 9, 16] 32
Dropout-16 32, 08, 18] [:]
Linear-17 32, 9, 10] 178

Total params: 8,282
Trainable params: 8,282
Non-trainable params: @

Input size (MB): ©.00
Forward/backward pass size (MB): @.0@
Params size (MB): 8.63

Estimated Total Size (MB): @.83

Figure 3.4: Snapshot of the summary of the NN model implemented in pytorch

3.4 Convolution Neural Network Architecture

The proposed framework for CNN architecture is shown in Fig.3.5. This net-
work take the 3d volume of the tumor as input. The size of the input is
64 x 64 x 64. The first hidden layer produces 16 output features maps using
kernel of size 3 x 3 x 3 using 3d convolution. The same procedure is repeated
for next two layers. The last feature map is then flattened and is fully connected
to 2 more hidden layers with 512 and 64 nodes respectively. The output layer
consists of 10 neurons each representing a discrete time point. Again sigmoid
function is used to get the values between 0 and 1 for the hazard function. Sur-
vival probabilities corresponding to the discrete time can be then calculated us-
ing equation 3.3. This model was implemented using the pytorch Fig.3.6 shows
the snapshop of the architecture of the model. Here again "Layer’ column shows

all the layers in the CNN model. In "Output Shape’, first number is the batch
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Figure 3.5: CNN architecture model used for survival analysis

Layer (type) Output Shape Param #
convid-1 [1, 16, 62, 62, 62] 448
MaxPool3d-2 [1, 16, 31, 31, 31] 2]
Conv3d-3 [1, 16, 29, 29, 29] 6,928
MaxPool3d-4 [1, 16, 14, 14, 14] e
Conv3d-5 [1; 16, 32, 12, 12] 6,928
MaxPool3d-6 [1, 16, 6, 6, 6] 2]
Linear-7 [1, 512] 1,769,984
LeakyRelLU-8 [1, 512] ]
Dropout-9 [1, 512] 5]
Linear-1@ [1, 64] 32,832
LeakyRelLU-11 [1, 64] 2]
Dropout-12 [1, 64] 5]
Linear-13 [1, 18] 658
LeakyRelU-14 [1, 18] )
Dropout-15 [1, 10] %]

Total params: 1,817,779

Trainable params: 1,817,770
Non-trainable params: @

Input size (MB): 1.0@
Forward/backward pass size (MB): 36.29

Params size (MB): 6.93
Estimated Total Size (MB): 44.23

Figure 3.6: Snapshot of the summary of the CNN model implemented in py-
torch

size, and the second number is the number of kernels in that layer. The last three
numbers are the dimensions of the feature map. For linear layer, first number is
the batch size and the second number is the number of nodes. ‘Param # column

contains the number of parameters required for that layer.
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3.5 Loss Function

We begin by providing a quick overview of key terminologies used in the field
of survival analysis. This is followed by the discussion on the loss function
for right-censored survival data and discrete time model as discussed by Tutz
(2016) [18] and Lee (2018) [14]. The implementation of this loss function was

available in pycox library.

3.5.1 Background

Let us assume that the time has discrete value t; € 7 where 7 = {11, », ..., 1,,}. The
time of event (in our case death of the patient) is denoted as 7" € 7. Let the pmf
of such event is

f))=P(T =1)) (3.1)

The survival function is defined as the probability of a patient to survive past a

certain time ¢#;. It can be written as
S(t;) = P(T > t)) (3.2)

The hazard function is defined as the probability of death of a patient at time ¢;

given that the patient survived till 7;_;. It can be denoted as

h(t) = PCT = t)T > t,.1) = f@)  Ski)-S@)

= 33
S(rj—l) S('rj—l) ( )

Keeping in mind the above equation, it implies that the expression for the sur-

vival function can be rewritten as

}
Sy =] [ - hw) (3.4)

k=1
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Kvamme and Borgan (see [12] for more information) derived the loss func-

tion using the mean negative log-likelihood which is given by
n K
l 1
loss =~ Z: Zl(y,-j log(h(tlx)) + (1 - y,) log(1 = h(t;|x)) (3.5)
i=l j=
Here, for a patient i, x; is the radiomic signature. k(1') € {0, 1, ..., m} defines the
discrete time index of time ¢’ (i.e., ' = 1,). y;; corresponds to the event status
at time r; (i.e. death status of the i patient) We identify this loss function as

the negative log likelihood for Bernoulli data, often known as the binary cross-

entropy, a significant finding first made by Brown [5].

We minimise this loss function in out neural network for the purpose of esti-
mating hazard function. Survival function then can be obtained using equation
3.4. Considering ¢(x) € R") be the output of the neural network corresponding
to the m discrete time 1. As hazards are probabilities, and require h(z|x) € [0, 1],
we use logistic function to the output layer (¢(x)) of the neural network to make

it possible [7].
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CHAPTER 4
RESULTS AND CONCLUSIONS

For training and validation of all the models, the data set was divided in train-
ing set of 265 patients and validation set of 66 patients. A test set 83 patients
was used as an independent dataset for the testing and comparing the models.
All the models were train using the same set of training, validation and testing
datasets. All the models were trained in Kaggle Notebook, which is a cloud
computational environment. The training and validation loss with respect to

epoch for NN and CNN model is shown in Fig.4.1.

train_loss = frain_loss
val_loss 12 val_loss

loss
loss

: Nﬂlﬁl\f\'ﬂvﬂn ' \

LJW\A_\/ 2 e —

0 10 20 30 40 50 60 70 0o 25 50 15 10.0 125 150 17.5
Epoch Epoch

Figure 4.1: Training and validation loss vs epoch for NN (left) and CNN (right).

41 Comparing the Survival Curves

The survival probability with respect to the time is estimated for two example
patients and are shown in Fig.4.2. In the left graph of Fig.4.2, the survival curves
of a patient estimated by the CNN and NN models are very close as compared to
that of Cox regression, On the other hand, the right graph of Fig.4.2, we can see

the curve estimated by the CNN model is quite close to that of Cox regression

13




as compared to the curve estimated by NN model.

10 [y — Cox 10 — Cox
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Figure 4.2: Survival function of two example patient estimated by NN and CNN
compared against Cox regression. The time axis are in days.

4.2 Evaluating the Model

The model outputs the survival function. The area under the survival func-
tion is inversely proportional to the risk score (higher the area under the curve,
lower the risk score). This indicates that the model can predict the sequence of
event based on the area (i.e. sequence of the patient more likely to pass away).

Therefore, We employ Harrell’s concordance index to evaluate our model [9].

c-Index: The c-index evaluates the rank correlation between the estimated
risk score from the models and the actual time point of the event (in our case,
death of the patient). A c-index of 0.5 a random estimation of life expectancy,
where as a c-index of 1 means that the model is able to perfectly predict the risk

for the patient. The formulation of c-index is as follows:

number of concordant pairs

¢ — index =

total number of possible pairs (1)

14




The pair here is considered to be actual time of survival of the patient and

the area under the survival function of that patient estimated by the model.

Model Concordance Index
Cox regression 0.5863
Neural Network 0.6248
Convolution Neural Network 0.6316

Table 4.1: Evaluation using c-index of different models

4.3 Conclusions

Table 4.1 shows the c-index of all the three models. As we can observe, the
neural network performs much better then classical cox proportional hazard re-
gression with the hand calculated radiomic signature as input. The proposed
model using CNN performs similar to the neural network. There was no signif-
icant difference the performance as the c-indices for both models as quite close.
However, reducing the dimension of the tumor volume from 512 x 512 x 512 to
merely 64 x 64 x 64 for the CNN, might result in loss of some important features.
The hand crafted features were calculated from full resolution images, hence
the NN did not have that problem. The dimension of the tumor was needed to
be reduced in order to lower the training parameters of the CNN model. Due
to flexibility of the NN and CNN model as compared to the Cox regression, we
get a higher performance. In conclusion, we showed that the invisible informa-
tion in CT scan, a non invasive imaging technique, can be quantified and are

clinically important as well.
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