
Contextual Answer Validation

Arkadeep Baksi





Contextual Answer Validation

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Arkadeep Baksi
[ Roll No: CS2006 ]

under the guidance of

Dr. Debapriyo Majumdar.
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
Kolkata-700108, India

July 2022



To my family and my guide



CERTIFICATE

This is to certify that the dissertation entitled “Contextual Answer Validation”
submitted by Arkadeep Baksi to Indian Statistical Institute, Kolkata, in partial
fulfillment for the award of the degree of Master of Technology in Computer
Science is a bonafide record of work carried out by him under my supervision and
guidance. The dissertation has fulfilled all the requirements as per the regulations of
this institute and, in my opinion, has reached the standard needed for submission.

Dr. Debapriyo Majumdar
Computer Vision and Pattern Recognition Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.



Acknowledgments

I would like to show my highest gratitude to my advisor, Dr. Debapriyo Majumdar,
Computer Vision and Pattern Recognition Unit , Indian Statistical Institute, Kolkata,
for his guidance and continuous support and encouragement. He has literally taught
me how to do good research, and motivated me with great insights and innovative
ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable
suggestions and discussions which added valuable suggestions and discussions which
added.

Finally, I am very much thankful to my parents and family for their everlasting
supports.

Last but not the least, I would like to thank all of my friends for their help and
support. I thank all those, whom I have missed out from the above list.

Arkadeep Baksi
Indian Statistical Institute

Kolkata - 700108 , India.



5

l



Abstract

Answer generation for a question, given a context has gained tremendous popularity
in the NLP research space. Benchmark datasets like SQuAD[9] have propelled the
research and recent years have seen many transformer based models achieving state
of the art (SOTA) results on Question Answering tasks even beating human level
accuracy. However the second step to a Question Answering System that Contextual
Answer Validation is a much less attempted space in NLP.

For the past few years India has seen a tremendous growth in the Edtech industry.
These edtech firms are sitting on a gold mine of data primarily in Question Answer-
ing space. As a result there is a growing demand for automatic Answer Validation
Systems as well which can bypass the norm of human evaluation, automating the
process. Apart from these, demand for such systems is also there in the Chatbot
space to validate junk/spam responses and smoothen the chatbot experience overall.

In our work we attempted the answer validation problem with the additional con-
straints of the answer being single sentence long and having 10 words atleast. However
due to the unavailability of exact datasets we had to generate synthetic data based
on the SQuAD dataset. We build our model inspired from paraphrase detection and
fine-tuned it against various datasets clubbed with the synthetic data we generated.
Our model on final evaluation even hit an accuracy of 0.83 on the highly complex
PAWS dataset which typically contains lexically highly overlapped examples.
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Chapter 1

Introduction

1.1 Natural Language Processing Overview

A combination of Artificial Intelligence and Linguistics, Natural Language Processing
paves the way for computers to comprehend literature or text published in human lan-
guages. In order to communicate with computers in natural language, as we interact
with one another as humans, a field known as Natural Language Processing, or NLP,
was created. Consequently, Machine Translation(MT) is one of the most promising
areas of research in this space. Building automatic systems that can translate text
from one human spoken language to another is the aim of Machine Translation.

One of the most challenging tasks for any computer is processing human text. Any
sentence in a language comes with an association of different things like nouns, deter-
minants, adjectives, verbs, etc. which makes the task of processing human text even
more difficult. In addition to this, the variation in interpretations of sentences, like
in the following example : “the new software version is running faster than the old
version” and “these atheletes will be running the marathon” adds to the complexity.
In both these sentences, the word “running” has a completely different meaning. The
context in which a word is used often affects its meaning, as rightly said by J.R.Firth
[24] “You shall know a word by the company it keeps”. It is challenging for computers
to parse these kinds of sentences with ambiguity in word choices.

When we consider the language’s own grammar, the task becomes even more challeng-
ing. In fact, by introducing new rules, the grammar itself can be enhanced to handle
sub-categorization (for instance, the verb would is frequently employed in conditional
sentences that begin with the word “If”). However, research have revealed that be-
cause of the complexity and ambiguity of the language, the application of rule-based
techniques does not produce superior results. Therefore, a new branch of NLP known
as Statistical NLP was created to address all of these issues. In this branch, a parsing
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1.1. Natural Language Processing Overview 5

Figure 1.1: Components of NLP[28]

rule is often given a probability with the aid of various machine learning techniques.
Many rules are gathered using these probabilities as a base, and some more general
rules are then deduced from them. These general rules then aids the process of deci-
sion making via statistical decision trees or any other machine learning model which
typically encapsulates the principle of Maximum Likelihood. Thus Statistical NLP
approaches produced good results for quite a few decades until the introduction of
deep learning in NLP.

Five main parts can be considered to make up NLP : Pragmatic Analysis, Disclo-
sure Integration, Semantic Analysis, Syntactic Analysis, and Morphological Analysis
as shown in Figure 1.1. Parsing is considered to be the main step in Syntactic Anal-
ysis where the words which constitute the text or sentence is analyzed based on the
underlying grammar of the language, to determine its syntactic structure.

By arranging the words in the text in a way that makes grammatical sense, Syn-
tax Analysis can be used to extract dictionary meaning from the text. This allows for
the evaluation of the text’s dictionary meaning based on actual grammatical rules.
Semantic analysis is used to evaluate the meaning of the constituent words as well
as their grammatical placement and usage within a text or phrase. It is used by
NLP to determine a text’s precise contextual meaning and semantic organisation.
Deep learning has recently transformed NLP and is now receiving a lot of attention
from NLP researchers. Traditional methods including Statistical NLP are merely
stagnant at this stage where deep learning based NLP methods are achieving State
of the Art(SOTA) results in almost all of the NLP tasks like Part-of-speech(POS )
tagging[[23],[33]], Named Entity Recognition (NER)[[16],[31]], Text Classification,
Text Summarization[12], etc. The major success of deep learning in NLP in the recent
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days is majorly attributed to two reasons: one being the availability of huge amount
of data and secondly the advancement and availability of fast hardware. These have
enabled a plethora of NLP-based applications ranging from Google’s powerful search
engine to Amazon’s Alexa and finally Apple’s voice assistant Siri. All these are prod-
ucts of the cutting edge NLP research that is being carried out worldwide.

1.2 Deep Learning in NLP

Deep learning involves training deep neural networks on vast amounts of data to carry
out tasks that range from straightforward text classification to complex reasoning. It
is a collection of processes that, with the ideal input dataset, can extract the best
answer to any problem. Or, to put it another way, it simply fits a difficult mathe-
matical function to the information that is given. Deep learning, broadly speaking, is
the process of identifying and evaluating significant structures and patterns in data
with the goal of developing a solution to a specific problem.

Researchers are now using deep learning architectures and methodologies to produce
state-of-the-art NLP outcomes following the Statistical NLP era. Recurrent Neural
Networks (RNN)[32], Convolutional Neural Networks (CNN)[42], Long-Short Term
Memory (LSTM)[25], and more recently Transformers[40] have all been used in sig-
nificant NLP applications work.

Some recent developments in deep learning-based natural language processing (NLP)
systems and applications were reviewed by Young et al.[41] The review and compar-
ison of models and approaches that have produced state-of-the-art (SOTA) results
on a variety of NLP tasks, including Machine Translation and Visual Question An-
swering (Visual-QA)[13], are the main topics of this paper. Often the advancement
of NLP is bound to how effectively we have achieved the task of language modelling.
A key objective of Statistical Natural Language Processing (NLP) was to offer a
probabilistic representation of linguistic word sequences, a challenging undertaking
because of the Curse of Dimensionality [29]. By learning words to have a distributed
representation (embedding) and by giving sequences a probability function, Bengio et
al.[14] provided some ground-breaking research for avoiding the Curse of Dimension-
ality. These distributed representations however gained popularity with the advent of
Continuous-Bag-of-Words(CBOW ) and the Skip Gram models[26] as they produced
high-quality word embeddings. However only distributional semantics alone was not
good enough to cater to the wide range of NLP tasks as they lacked in the flavour
of contextuality. Thus with newer tasks being added, a major goal of NLP appli-
cations have become to provide good contextual representation of texts, documents.
This paved the trail from embeddings to ELMO[35], Transformers, etc. Another key
problem in the field of NLP was the problem of transfer learning for downstream
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tasks which was again solved by the paper which introduced BERT[21]. Combining
all these techniques have paved the way for better language modelling and machine
translation, the core goals of Natural Language Processing.

1.3 Answer Validation

Generating answers for a question written, given a context has gained tremendous
popularity in the NLP research world. Through contests like NTCIR QAC (Fuku-
moto et al., 2004) and TREC QA Track (Voorhees, 2004), as well as more recently on
the SQuAD[9] dataset by Stanford, research activities in Question-Answering have
been encouraged. The opposite procedure, known as Answer Validation, requires
computers to simulate human evaluation of QA replies and determine whether or not
a response to a question is correct in light of the provided text. Language modeling,
machine comprehension and question answering have become a standard problem in
NLP with many deep learning models being proposed top solve it. However this
particular area of answer validation has not gained much attention from the NLP
community as compared to Question Answering.

In the natural world, questions can be of different types where the answers corre-
sponding to the questions can be varied as well. This makes the task of answer
validation seemingly difficult. However answer validation itself is a broad topic and
the defining scenario can be varied as well. One such scenario can be that we are
given a triplet (Context, Question, Answer) and the task is to check if the answer
given is correct according to the text or not. However a little different scenario can
be that we are given a context, a question, a correct answer to the question and a
candidate answer which we need to validate if it is correct or not. Currently with
advances in the question answering problem and some ground breaking research by
Chowdhery et al.[17], generating a correct answer to a question given a context is
feasible atleast at small scales. Hence the second scenario of answer validation seems
more frequent in reality and we try to solve this problem in our work.

However even with the defining scenario fixed, still the problem of answer valida-
tion can be varied depending on the type of answer particularly depending on their
length. In case of factoid questions, the answers typically tend to be short as they are
primarily keyword based (from the context). If a correct response to such a question
is already provided validating a candidate response just reduces to the problem of
“String Matching”. Hence such type of questions are of little interest to us and we
try to solve the problem where the question is non-factoid and the answer length is
typically greater than 9 words and consists of a single sentence. However the case
where the answer to the question spans multiple sentences is purposely not dealt in
our work owing to resource and time constraints.
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1.4 Motivation

The primary motivation propelling our work in answer validation is the intrinsic dif-
ficulty of the problem and the rising demand of such answer validation system in the
Edtech industry. According to [7], “The Indian EdTech industry was valued at USD
750 million in 2020 and is expected to reach USD 4 billion by 2025 at a CAGR of
39.77% .” This exponential growth is primarily driven by the COVID-19 pandemic
and the increasing demand for academic and non-academic courses from the tier II
and tier III cities in India. The industry is also seeing an ever-growing demand for
personalisation as more and more students are getting onboarded to different such
platforms for the preparation of various competitive exams. Now naturally this par-
ticular industry is sitting on a goldmine of data primarily constituting questions,
answers of different types and exams. However research shows that most of the the
evaluation even at this scale is done manually. Hence a very effective and state of the
art answer validation system can prove to be an asset for any such Edtech organiza-
tion.

However, the scope of such answer validation systems is not just limited to the Edtech
space. Even within the booming Chatbot industry it finds application in validating
and responses from concerned users and rejecting the ones intended at baffling the
system.

1.5 Problem Statement

The problem which we intended to solve is the Answer Validation problem with the
scenario that we are given a quadruplet (Context, Question, Correct Answer, Can-
didate Answer) and we need to verify whether the potential response is contextually
appropriate or not. Additionally as mentioned in the Section 1.3, we restricted the
problem scope where the question is not factoid and the answer is typically a single
sentence with atleast 10 words.



Chapter 2

Related Work

The exact problem that we have intended to work upon is not a very popular one
in the NLP space and to the best of our knowledge there has not been much work
catered to the exact problem. However over the last two decades there has been some
work contributing to Answer Validation although in entirety it does not align with
the problem we are solving. We will discuss some of these works here in this section.

Tonoike et al.[39] proposed an answer validation method by use of Keyword Asso-
ciation for validating factoid answers. The answer validation procedure described in
the paper can be broken down into two major steps. The first involves extracting per-
tinent keywords from the given question using features of the word and how strongly
they are associated lexically, while the second involves estimating how strongly the
keywords and candidate answer are associated based on the hits from the search en-
gine. The author’s primary premise was that if the keywords and candidate answers
are strongly associated they would co-occur more frequently online. They suggested
a Keyword Association-based strategy for factoid response validation based on this
understanding.

Answer Validation was approached by Peñas et al.[34] as a problem of Textual
Entailment(TE). The goal of the job is to recognize Textual Entailment i.e. to as-
sess if the veracity of one text necessitates the veracity of another text, referred to as
a hypothesis, or, put another way, whether the hypothesis’s meaning is incorporated
into the text’s overall meaning. The implicational link between texts is useful for a
variety of tasks, including Question Answering (QA), where the answer to a question
must be implied by the text that supports the veracity of this answer, or Automatic
Summarization, where a system may omit passages whose meaning is already implied
by other passages. To identify whether a collection of text-hypothesis pairings com-
prised the hypothesis or not, systems that recognize Textual Entailment required to
output YES or NOT for each pair. According to the authors, after some reformula-
tions, a Textual Entailment Recognizer may be used to check the responses when QA
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systems produce both an answer and a text that demonstrates the accuracy of the
answer. The reformulations they proposed are as follows:

• Create a hypothesis by transforming the question and the response into an
affirmative statement. For instance, given the response “President of Mexico”
to the inquiry “Who is Vicente Fox? ”, one viable hypothesis may be “Vicente
Fox is the President of Mexico.”

• Evaluate the entailment: The answer is anticipated to be valid if the supporting
language implies this theory.

Apart from answer validation we have used the work of Chung et al.[18] for generat-
ing distractors using BERT. The following two restrictions on the current Distractor
Generation (DG) techniques are examined in this research. First, the quality of the
Distractor Generation approaches currently in use is still far from being useful. The
quality of Distractor Generation can yet be improved. Second, the single distractor
generation is the focus of most current Distractor Generation systems. Multiple dis-
tractions are preferred, though, for effective MCQ preparation. In order to efficiently
generate a variety of distractors, the paper offers a unique Distractor Generation ap-
proach that blends negative answer training tactics with multitasking. The testing
results show that their approach increases the state-of-the-art result (BLEU 1 score)
from 28.65 to 39.81, and many of the manufactured distractions are diverse and sig-
nificantly improve student’s capacity to avoid answering multiple-choice questions.
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Proposed Work

3.1 Pre-requisites

3.1.1 Recurrent Neural Networks (RNN)

Humans do not always begin to think from scratch. Even while performing any task,
for e.g like reading, we understand each constituent word from our knowledge of pre-
vious words. Our thoughts have consistence and we don’t start to think from scratch
every time.

This is a key bottleneck of traditional neural networks. For instance, a standard
neural network might not be able to identify the type of event that is occurring at
a specific time in a video since it is unclear how it will utilise the past history of
occurrences in the video to do so.

Recurrent Neural Networks [38] try to get over this shortcoming. They are essen-
tially networks with loops in them which allows the persistence of information. In
the Figure 3.1, the neural network A examines some input xt and produces the result
ht. A loop forms the path for information to be flow from one state of the network
to the next.

Figure 3.1: Recurrent Neural Network[8]

11
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These loops make Recurrent Neural Networks a bit intimidating at a first glance,
but if we carefully look then a Recurrent Neural Network can be thought as multiple
copies of the same network with each passing some information to the next and so
on. See Figure 3.2 to look at an unrolled recurrent neural network:

Figure 3.2: Unrolled Recurrent Neural Network[8]

Due to this looping back property, during the last decade there has been tremendous
success applying RNNs to a plethora of problems ranging from speech recognition and
machine translation to image captioning. This blog [1] by Andrej Karpathy illustrates
the effectiveness of RNNs quite comprehensively. Hence readers are encouraged to
refer it.

However there are some drawbacks even to Recurrent Neural Networks. Although
powerful, Recurrent Neural Networks suffer from the problem of limited memory.
Sometimes, to do the work at hand, we only need the current knowledge. RNNs are
able to learn to utilise the previous data in situations like this, when there is a little
time gap between the relevant information and the location where it is needed. How-
ever, there are certain situations when the historical background we actually require
is rather far away. Let’s say we’re attempting to guess the final word in the sentence
“I am born and raised in France..........I can speak fluent French.” Now here is the
catch, based on the recent knowledge from past, the following term is undoubtedly
the name of a language, but in order to identify which language, we would need to
know France’s historical context, which is considerably distant from the present.

As a result, it is clear that the distance between the information we seek and the
location where it actually is may be arbitrarily wide. This problem often termed as
the Long Term Dependency Problem is caused by the fact that RNNs are unable to
connect to the information as the gap widens. If we look at Figure 3.2 mathematically,
the arrow indicates that any long-term information must pass sequentially through
all of the intermediate cell states before arriving to the current processing cell. This
indicates that it may be readily decreased by multiplying it by a large number of
small-magnitude gradients. This leads to the vanishing gradient problem, which
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is the main contributor to the long-term dependency issue. This issue is partially re-
solved by Long Short Term Memory Networks (LSTM), a modified form of recurrent
neural networks.

3.1.2 Long Short Term Memory (LSTM)

Long Short Term Memory networks [25] often abbreviated as “LSTMs” are a spe-
cial kind of Recurrent Neural Networks, which are architecturally capable of learning
long-term dependencies. Introduced by Hochreiter and Schmidhuber in 1997, LSTMs
have been in popularity especially in the last decade due to their effectiveness in ma-
chine translation tasks.

LSTMs were explicitly designed to solve the problem of long term dependency. Similar
to RNNs, LSTMs also have a chain like structure but the module which gets repeated
has a different structure than that of RNNs. Instead of a single tanh layer, there are
four neural networks which interact with each other in a special way. Considering the
Diagram 3.3, we can see a horizontal line which runs along the entire chain. This is
termed as the cell state and is the key to a LSTM. It is very easy for information to
just flow along it unchanged since it has very few linear interactions. This actually
allows a LSTM to avoid the problem of vanishing gradient by short-circuiting the
path of information flow.

Figure 3.3: Long Short Term Network[8]

LSTMs can add or delete information from the cell state by utilising certain regulatory
structures known as gates. They are built via a point-wise multiplication technique
and a sigmoid neural network. These gates allow information to move across LSTMs
on a whim. To regulate the state of the cell, an LSTM contains three different sorts
of these gates.
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The three types of regulatory gates in a LSTM cell are the forget gate, the input
gate and the output gate respectively.

• A LSTM cell’s forget gate determines which information from the cell state
should be kept and which should be deleted. The sigmoid function receives
input from the hidden state ht−1 and the current state Xt, producing a value
between 0 and 1. By producing a number that is near to 0, the sigmoid function
determines whether the old output can be eliminated or should be retained (by
generating a value close to 1). The cell will eventually utilise this f(t) value for
point-by-point multiplication.

• By changing the cell state, the input gate influences the values we will store in
the cell. The sigmoid layer must first be fed the current state Xt and the prior
hidden state ht−1 in order to determine which values we will update. The tanh
layer then creates a vector of fresh candidate values C̃t to control the network.
The cell state is updated by combining the two outputs at the end.

• The output gate ultimately determines the value of the next hidden state and
what we are going to output. To choose which portions of the cell state we will
output, we initially pass the current state and prior hidden state through the
third sigmoid function. The cell state is then multiplied point-by-point with
the output of the sigmoid gate after being sent via a tanh layer to scope the
outputs between -1 and 1. This guarantees that we only output the sections we
intended to.

Finally the new cell state and new hidden state are carried forward to the next times-
tamp. Although this mitigates the problem of long term dependency, experimentally
it has been found that even LSTMs suffer from the same problem when the sequence
length crosses a certain threshold. This is primarily because at the core, LSTM is
still a sequential model. Readers are encouraged to refer this blog [8] by Christopher
Olah which illustrates the internal workings and limitations of LSTM quite compre-
hensively.

3.1.3 Transformers

Proposed by Vaswani et al.[40] the transformer is a neural network architecture, which
constitutes an encoder and decoder within itself. The architecture managed to pro-
duce state of the art (SOTA) results for many Machine Translation tasks just with
the help of a concept called attention and some dense normalization layers. In
addition, the transformer architecture is faster to train and allows the scope for par-
allelization which was simply not possible with RNNs and LSTMs. These properties
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actually brought down the computational cost and have been the base for most of
the recent researches in the NLP space.

Now lets digress a bit into the working of a transformer. The base concept which a
Transformer uses is self-attention. The Transformer is the first transduction model
to calculate representations of its input and output only via self-attention, without
the use of convolution or sequence-aligned RNNs. Simply speaking self-attention can
be imagined as a mechanism which allows inputs to interact with each other via some
mathematical operation and decide whom to pay more attention to. Without get-
ting into the mathematical intricacies, self-attention can be simply perceived as an
embedding vector of one of the words in the input sequence. This embedding vector
then undergoes calculations with itself as well as with other embeddings of different
words from the same sequence and form interrelations among themselves. Since we
entire process goes in parallel, the embedding vectors of the words are encoded with
positional embeddings, which are calculated to represent the order of appearance of
the words in the original sequence.

Figure 3.4: Transformer[40]

Architecture: In the Figure 3.4 the encoder is shown on the left side of the diagram,
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and the decoder is shown on the right side. Both parts generate the required output
from sequences that are input as embeddings. The Encoder encodes each word into
a 512-dimensional embedding vector after taking a batch of sentences expressed as
sequences of word tokens (numerical values supplied for input corpus of words to
compute). As a result, the encoder requires [batch size, max input sentence length]
as input, which results in [batch size, max input sentence length, 512] after encoding.
On the other hand, the decoder uses the inputs from the encoder as well as the target
phrase (which is likewise represented as a series of word tokens) to train the network.
The final output from the encoder is given to the decoder at each of the ’N ’ levels
since the top portion of the decoder is stacked ’N ’ times.

Up to this point, we have a brief understanding of the Transformer’s internal connec-
tions and basic operation. However, before ending, there are a few points that are
worth a quick introduction. The parts of the architecture that we can see but have
not discussed are as follows:

• Multi-head attention: We can imagine multi-head attention as a multi-tasker
from a surface-level perspective. You talk to yourself about the need for the
transformer to learn the following word. For the same word, multi-head atten-
tion performs various parallel computations to produce various results. The best
possible word is then produced by concatenating these findings with SoftMax.
These simultaneous calculations may take into account the word’s tense, the
text’s context, the word’s type (verb or noun, etc.), and other factors. These
are then combined, and the SoftMax determines the word with the highest
probability.

• Masked multi-head attention: Similar to the previously mentioned multi-
head attention, except that it conceals the following words in the sequence with
respect to the word decoder that is currently at work. The transformer cannot
realistically learn from the data because of this masking, which prohibits it from
peering into the future.

• Residual connection: The directed arrows that connect one “Add and Norm”
to another without travelling via the attention module are known as skip con-
nections. This helps keep the network from degrading and keeps the gradient
flow consistent throughout the network for effective training.

Transformers are used to construct the majority of cutting-edge models that are
currently in use around the globe like converting talking speech into text, machine
translation, text generation, paraphrase, question-answering, sentiment analysis, and
many more. Readers are encouraged to refer this blog[6] by Jay Alammar which
provides a very thorough explanation of the internal operations and the mathematics
behind Transformers.
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3.1.4 BERT

Devlin et al.[21] introduced BERT(Bidirectional Encoder Representations from Trans-
formers) in 2018 and since then it has been the latest trend in the NLP space. In the
realm of computer vision, transfer learning is crucial, as all are aware. For instance,
a deep learning model that has previously been trained on the ImageNet dataset[37],
may be fine-tuned for a new task and still deliver reasonable results with a small
labelled dataset. Similar to this, language model pre-training has been effective in
improving a number of tasks[20] involving natural language processing.

Pre-training and fine-tuning techniques are used in the BERT framework to create
cutting-edge models for a range of applications. Some of these responsibilities in-
clude question-answering systems, sentiment analysis, and language inference. BERT
makes use of a multi-layer bidirectional Transformer encoder. Its self-attention layer
performs self-attention in both directions.

Figure 3.5: Bert base and large[5]

The authors have released two variants of the BERT model:

• BERT Base: Number of Transformers layers = 12, Total Parameters = 110M

• BERT Large: Number of Transformers layers = 24, Total Parameters = 340M

By pre-training on two tasks, Next Sentence Prediction and Masked Language
Model, BERT employs bidirectionality.

• Masked Language Modeling (MLM) : In Masked Language Modeling, ini-
tially a part of the input tokens are masked randomly. Then the objective is
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to predict the actual vocabulary index of the masked token solely based on its
context. In contrast to left-to-right language model pre-training, the MLM goal
allows the representation to merge the left and the right context, thus enabling
the pre-training of a deep bidirectional Transformer.
In each sequence, the authors randomly masked 15% of the words. The task
was to anticipate these hidden words. However the [MASK] token would never
emerge during fine-tuning, therefore the masked words were not always substi-
tuted with the [MASK] tokens. The researchers therefore employed the following
method:

– 80% of the time, the masked token [MASK] was used in place of the words.

– 10% of the time, random words were used in place of the terms.

– 10% of the time, the words remained unchanged.

.

• Next Sentence Prediction: Language models sometimes overlook how sen-
tences that are followed by one another relate to one another. BERT was also
pre-trained for this task. Sentence pairs serve as the training data for BERT’s
language model pre-training algorithm. Each pair’s selection of sentences is
pretty intriguing. Let’s use an illustration to try to comprehend it.
Imagine that we want to use a dataset of 100,000 text phrases to pre-train a
BERT language model. Therefore, there will be 50,000 training instances or
sentence pairs in the training data. In half of the pairings, the second sen-
tence would actually come after the first sentence. In the remaining 50% of
the pairings, a randomly chosen sentence from the corpus would be the second
sentence.

As demonstrated by architectures like BERT, Unsupervised pre-training and Un-
supervised fine-tuning will play a significant role in many language comprehension
systems. These deep bidirectional topologies can be quite beneficial for low resource
activities in particular. Readers are again encouraged to refer this blog[6] by Jay
Alammar which illustrates the details of BERT comprehensively with visualizations.

3.1.5 T5-Transformer

Let us consider the example of a BERT-style architecture that is enhanced for down-
stream tasks after being pre-trained on a Masked Language Model and Next Sentence
Prediction target (like predicting the class label for a classification task or detecting
the starting and ending of the answer in QA). Here, we individually fine-tune a num-
ber of instances of pre-trained models for a range of downstream tasks.
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Contrarily, the text-to-text framework advises applying the same model, loss func-
tion, and hyperparameters to all NLP applications. In this method, the inputs are
modelled such that the model will be able to identify a task, and the output is only
a text representation of what is intended to happen.
Pre-training language models using sizable unlabelled datasets has been common by
now. Among these is the Common Crawl dataset[2]. It is acquired via scrap-
ing web pages, skipping over any HTML markup. Each month, it generates about
20TB of data via scraping. However, a significant quantity of Common Crawl con-
tains duplicate or garbage material, such as menus and error notices. Additionally,
there is a considerable amount of pointless content related to our activities, such as
foul language, placeholder text, or source codes. This led to the creation of a highly
clean dataset of 750GB, that is comparatively larger than the majority of pre-training
datasets existing.

Input and Output Representations : This is one of T5’s top goals since it makes
it possible to use the unified text-to-text technique. In order to have the same model
for all downstream tasks, the model’s initial input is augmented with a task-specific
text prefix. This text prefix is also thought of as a hyperparameter.
The proposed model is basically an encoder-decoder transformer[40] with minor ar-
chitectural changes. These changes include adding a Normalization layer before a sub
layer and then appending the initial input to the sub-layer output: also termed as
pre-norm. The model configuration is also comparable to the BERT base[21].

Figure 3.6: Model Structures from [36]

Architecture : There are numerous alternatives for choosing the training strategy
at the architectural level: The paper[36] provides a thorough analysis of numerous
contemporary methods for interpreting language. The comparison and exploration of
numerous architectural requirements has hence resulted.

• Encoder-Decoder (Left) : The decoder is trained in a causal fashion inspired
from GPT’s, whereas the encoder is trained in a fully observable, BERT-style



20 3. Proposed Work

manner where each token have some contribution towards the calculation of the
attention values of every other token in the same sequence. The conventional
seq2seq architecture, or the traditional encoder-decoder is used here.

• Language Model (Middle) : This mechanism for causal attention is essen-
tially the same as the one that was previously discussed. It bases its methods
on autoregressive modelling.

• Prefix LM (Right) : The BERT-style and language model techniques are
combined in this. For instance, a BERT-style attention could be placed on the
work of translating from English to German: “translate English to German:
That is good. target:”. The translation “Das ist gut.” will subsequently be
attended autoregressively after that.

The authors have investigated some of the practical approaches with regard to the
pre-training goal as well:

• Language Modeling : This strategy focuses primarily on the causal prediction
problem, or guessing the next word in a sentence while taking into account all
the words that came before it.

• Deshuffling : The model is trained to predict the original text after all the
words in a sentence are randomly shuffled.

• Corrupting Spans : Removing some words from the sentence, then teach-
ing the model to anticipate those removed terms,also termed as a denoising
objective.

The authors remarked that the denoising objective have shown the best results after
experimentations.

T5 has surpassed benchmarks for translation and summarization as well as the state
of the art in several GLUE[4] and SuperGLUE[10] tasks. T5 uses a fill-in-the-blanks
task that it is accustomed to from pre-training to produce realistic text. This is why
we also employed T5 for some text generation task in our work.
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3.2 Overview of our Approach

Reiterating from Section 1.5, we are solving the problem of Answer Validation where
we assume that we are given a quadruplet (Context, Question, Correct Answer, Can-
didate Answer) and we need to verify whether the potential response is contextually
appropriate or not. Also since we are not interested in factoid questions we limit the
scope of the problem to only those cases where the answer is a single sentence with
atleast 10 words.

To solve such a problem we need to fix a model architecture that could solve our
task and then we need to search for suitable datasets (if available) to train the model.
Now to fix the architecture we take an even closer look at the problem. If we think
intuitively we have a correct answer and we need to validate if the candidate an-
swer is semantically correct or not . This situation closely resembles the problem of
paraphrase detection. For readers who are not familiar with the term of paraphrase
detection: It is nothing but the problem to identify if two sentences which are lin-
guistically different but semantically convey the same meaning.

However, is the problem that we are solving just a mere example of paraphrase de-
tection? At a first glance although it might seem affirmative but the answer is no.
This is because there is an additional constraint of contextuality, i.e. the candidate
answer should not only be correct but also has to be contextual with respect to the
given context. So a natural question arises here, that if the correct answer and the
candidate answer are paraphrases doesn’t this imply that the candidate answer is also
contextual? Unfortunately no because two sentences might be paraphrases but not
contextual and vice versa.

Now the question arises that which model to choose, and how to train such a model
which can identify contextual paraphrases. We tackle this additional constraint of
contextuality via data itself. We propose fine-tuning a paraphrase detection model on
data which contain both positive and negative samples for contextual paraphrases.
This way we can transfer-learn the ability to detect such paraphrases and such a
model can then be effectively used to determine if the candidate answer is contex-
tually and semantically same as that of the correct answer. However although data
for paraphrase detection is readily available and is a widely researched topic, dataset
we are wanting is not available to the best of my knowledge. Hence we had no other
option but to generate synthetic data.

We fine-tune the BERT base uncased Sequence Classifier[21] for paraphrase iden-
tification. 12 layers of Transformer encoder, 12 attention heads, 768 hidden size, and
110M parameters make up the BERT base uncased model. We fine-tune it on the



22 3. Proposed Work

famous MRPC[22] dataset. Created by Dolan et al., the Microsoft Research para-
phrase Corpus (MRPC) is a dataset that includes 4583 pairs of sentences with labels
that specify whether or not they are paraphrases. This serves as the foundational or
baseline model for our work.

Now we need to fine-tune our baseline model with such data so that the ability
to identify contextual paraphrases is learned by it. For this we use the widely known
SQuAD[9] dataset. The SQuAD dataset contains tuples with a context, a question, a
correct answer and the starting position of the answer in the context. We first sampled
out only those answers which are atleast 10 words long. This reduced the dataset size
from 86K to 6213. Now clearly the SQuAD dataset alone is not enough to achieve the
objective we are aiming for as it contains tuples with correct answers only. We need
both positive(paraphrase) and negative(distractor) samples for the SQuAD dataset.
For obtaining positive samples we used the technique of Back Translation[15]. The
process of converting a target text to some other language and back again to the
source language is termed as Back Translation. We back translated the answers from
each tuple of the SQuAD dataset to obtain contextual paraphrases or positive sam-
ples. For generating negative samples or distractors we used the BERT model as
described in this paper[18]. This way we formed a dataset of contextual paraphrases
and distractors. We fine-tuned our baseline model again on this augmented dataset.

Finally we want our model to be able to detect paraphrases which have high lexical
overlap. For this we use the PAWS (Paraphrase Adversaries for Word Scrambling)
Wiki dataset developed by Zhang et al.[43]. Below are two examples from the dataset:

Sentence 1 Sentence 2 Label
Kristoffer together
with Karen had eight
children.

Kristoffer had eight
known children
together with Karen.

1

Saunders defeated
Dan Barrera at by
unanimous decision.

By unanimous
decision Dan Barrera
defeated Saunders.

0

Table 3.1: Lexically highly overlapped examples

The example shows that PAWS Wiki contains positive and negative samples of para-
phrases which are lexically highly overlapped. But again to add tackle the constraint
of contextuality we need PAWS like paraphrases for the answers in SQuAD dataset.
For this we employed the text-to-text T5-Transformer[36] for generating such para-
phrases. For such text generation tasks, the text-to-text T5-Transformer is widely
renowned for producing state of the art results. Hence we fine-tuned it first on
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the PAWS English dataset and then used this fine-tuned T5-Transformer to generate
PAWS like paraphrases for the SQuAD answers. Finally we appended these synthetic
data with the original PAWS English dataset and used it to fine-tune the paraphrase
detection model. The final results which we achieved were very promising.
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3.3 Datasets

3.3.1 SQuAD

A span of text from the corresponding reading passage serves as the answer to each
question in the Stanford Question Answering Dataset (SQuAD)[9], a reading com-
prehension dataset made up of questions prepared by crowdworkers on a collection
of Wikipedia articles. The question itself may also be unanswerable.

In addition to the 100,000 questions from SQuAD1.1, SQuAD2.0 contains 50,000
more questions that cannot be answered but have been crafted by crowdworkers to
resemble the answerable ones. Hence systems must be able to recognise when an
answer is not supported by the paragraph and refrain from responding in order to do
well on SQuAD2.0

The top 10,000 Wikipedia articles were sampled for SQuAD, with 536 selected by
the creators. They extracted a total of 23,215 distinct paragraphs from each of these
chosen articles (making sure to filter for paragraphs that were too small). They di-
vided the dataset into training, development and testing sets, with 80% of the articles
going into the training set, 10% into the development set, and 10% into the testing set.

Annotating SQuAD : Annotating SQuAD was the most crucial component that
Mechanical Turk workers did. These workers were only chosen if they have a track
record of producing excellent work (as measured by the HIT approval rate). The
employees were tasked with coming up with and responding to 5 questions regarding
the content of each chosen paragraph. They might put their question in a text box
given and then highlight the responses in the paragraph. SQuAD’s designers took
extra care to ensure that the questions the employees came up with were written in
their own terms, even turning off the copy-paste feature.

Categories for responses : The categories “date,” “other numeric,” “person,”
“place,” “other entity,” “common noun phrase,” “adjective phrase,” “verb phrase,”
“clause,” and “other” were used to group each response. They discovered that nouns
made up 32.6%, noun-phrases made up 31.8%,miscellaneous categories made up 15.8%
of the responses and Dates and numbers made up the remaining 19.8% percent of the
answers.

Reasons to choose SQuAD :

• SQuAD is big : Deep Read and MCTest, two more reading comprehension
datasets, are both too small to support extensive and complicated models. Only
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2,640 questions make up the MCTest, and only 600 questions make up Deep
Read. These datasets are dominated by SQuAD, which has more than 100,000
questions.

• SQuAD is challenging : The solution to a particular question can be found
in several documents in other document-based question-answering datasets that
emphasise answer extraction. However, with SQuAD, the model can only access
a single passage, making the task much more challenging because it is less
forgiving if the response is incorrect.

• SQuAD requires reasoning : The Cloze dataset, which asks a model to
anticipate a missing word in a text, is a common form of dataset. These datasets
are sizable and present a task that is fairly similar to SQuAD. The main change
that SQuAD introduces in this area is that SQuAD is better at assessing model
understanding and capabilities since SQuAD’s solutions are more complicated
and demand more rigorous reasoning.

3.3.2 MRPC

The Microsoft Research Paraphrase Corpus(MRPC) is derived from a collection of
13,127,938 sentence pairs, taken from 9,516,684 sentences in 32,408 news clusters
gathered from the World Wide Web in two years. Dolan et al.[22] explain the meth-
ods and hypotheses utilised to construct this initial data set. To create the first
database, two algorithms based on shared lexical features and sentence position in
the text were used. A training subset of 4,076 sentence pairs, of which 2,753 are
paraphrases, are taken from the entire corpus of 5801 sentences, and a test subset is
taken from the remaining sentences (1,725 pairs of which 1,147 are paraphrases).

We used the MRPC dataset to build our baseline paraphrase detection model.

3.3.3 PAWS

Sentence pairings with significant lexical overlap that are not paraphrases are scarce
in the existing datasets for paraphrase identification. Models developed using such
data are unable to distinguish between pairs of flights, such as those from Mumbai
to Kolkata and Kolkata to Mumbai. Here, the 108,463 well-formed paraphrase and
non-paraphrase pairs with significant lexical similarity from the PAWS (Paraphrase
Adversaries from Word Scrambling) dataset[43] are discussed.

Controlled word swapping and reverse translation are employed to make difficult
pairs, which are then evaluated by human validators for paraphrasing. The accuracy
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of contemporary models trained on current datasets is only approximately 40% on
PAWS, but when these models also incorporate PAWS training data, their accuracy
rises to 83% while retaining accuracy on existing tasks. However, models that do
not take contextual data that is not local into consideration suffer even with PAWS
training data. As a result, PAWS provides a useful tool for developing models that
utilise structure, context, and pairwise comparisons more efficiently.

This dataset serves as an example of the value of word order, context, and structural
modelling for the task of paraphrase recognition. There are 656k noisy labelled pair-
ings and 108,463 human-labeled pairs in total. The Quora Question Pairs (QQP)
dataset[9] and Wikipedia, respectively, are the bases for two subsets of the dataset.

Below are two examples from the dataset:
The first is a paraphrase while the second pair is semantically different.

Sentence 1 Sentence 2 Label
Kristoffer together
with Karen had eight
children.

Kristoffer had eight
known children
together with Karen.

1

Saunders defeated
Dan Barrera at by
unanimous decision.

By unanimous
decision Dan Barrera
defeated Saunders.

0

Table 3.2: Lexically highly overlapped examples from PAWS

PAWS-Wiki :

• PAWS-Wiki Labeled (Final) : Comprised of pairings produced using back
translation and word swapping techniques. All pairs are divided into Train/Dev/Test
parts and have received human evaluations for both fluency and paraphrase.

• PAWS-Wiki Labeled (Swap-only) : Including pairs that are not part of
the first set because they lack equivalents in the back translation. They can be
used as an additional training set because they are high-quality pairings with
human judgments on both fluency and paraphrase.

• PAWS-Wiki Unlabeled (Final) : The pairs in this collection can also be
utilised as an additional training set because they have noisy labels without
human evaluations. Both word swapping and back translation techniques are
used to produce them.
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Each file in the dataset has four columns and is in the tsv format:.

Column Name Data
id A unique id for each pair
sentence1 The first sentence
sentence2 The second sentence
(noisy )label (Noisy) label for each pair

Table 3.3: Table to test captions and labels.

There are two possible values for each label: 0 denotes that the pair is different
semantically, and 1 denotes that it is a paraphrase. Details of the PAWS-Wiki dataset
are shown below:

Data Train Dev Test Yes%
Labeled
(Final)

49,401 8,000 8,000 44.2%

Labeled
(Swap-only)

30,397 — — 9.6%

Unlabeled
(Final)

645,652 10,000 — 50.0%

Table 3.4: Proportion of paraphrase (Yes%) pairs in PAWS-Wiki

PAWS-QQP The pairs in this corpus were built using the Quora Question Pairs
corpus. We are unable to directly offer the original PAWS-QQP data due to the
QQP licensing. However one can recreate the data by running some scripts on the
raw file (which can be downloaded) and then attaching the corresponding labels.

Data Train Dev and Test Yes%
PAWS-QQP 11,988 677 31.3%

Table 3.5: Proportion of paraphrase (Yes%) pairs in PAWS-QQP

PAWS-X The PAWS examples are translated into six typologically different lan-
guages in this corpus: French, Spanish, German, Chinese, Japanese, and Korean.

We used the PAWS-Wiki(labelled version) dataset for our work which can be eas-
ily downloaded using the Tensorflow Dataset API[11].
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3.4 Dataset Pre-Processing

We used three datasets in our work namely the MRPC[22] dataset, SQuAD1.1[9]
dataset and the PAWS-Wiki [43] dataset. The MRPC and PAWS are typical para-
phrase detection datasets while SQuAD1.1 is a Question Answering dataset. We
mainly needed to perform some data pre-processing step on the SQuAD dataset only.

We are solving the problem of answer validation where we constrained ourselves to
only non-factoid questions with answers comprising of a single sentence with atleast
10 words. Now we need to make sure that these constraints are satisfied by the data
on which we are fine-tuning the model. The examples of MRPC and PAWS followed
these constraints but the answers of the SQuAD dataset didn’t. Following is the
distribution of the answer length in SQuAD1.1 dataset :

Figure 3.7: Answer Length Frequency of SQuAD1.1 Dataset

So we sampled out only those data points for which the answer length was atleast 10
words. The sampled data from SQuAD1.1 had 6217 data points.



3.5. Methodology/Approach 29

3.5 Methodology/Approach

3.5.1 Baseline Model Fine-Tuning

For the baseline model we fine-tune the BERT base uncased Sequence Classifier[21]
for paraphrase identification. We fine-tune it on the famous MRPC dataset. Created
by Dolan et al [22], the Microsoft Research paraphraseCorpus (MRPC) is a dataset
containing 4583 pair of sentences along with labels dicating whether the pair is a
paraphrase or not.

Model Architecture : We use the the Bert base uncased model for paraphrase
identification task. Architecturally the numbers for Bert base uncased are as follows:-
Number of Layers L=12, Size of the hidden layer, H=768, and Self-attention heads,
A=12 with Total Parameters=110M.

Fine-Tuning inputs :

Figure 3.8: Training Input Format [21]

Using the shown format, we provide input to BERT. Two unique tokens [CLS] and
[SEP] along with a pair of sentences collectively referred to as sequences make up the
input.

Therefore, in this example, for the two lines “my dog is cute” and “he likes playing”
BERT first utilises wordpiece tokenization to break the sequence into tokens, adding
the [CLS] token at the beginning and the [SEP] token at the end and begining of the
second sentence.

Therefore, in the example-pair, “my dog is cute” and “he enjoys playing”, BERT uses
wordpiece tokenization to first divide the sequence into tokens, adding the [CLS] token
at the start and the [SEP] token at the end and beginning of the second sentence.

Words like playing must necessarily be broken down into “play” and “ing” due to the
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wordpiece tokenization utilised in BERT. It does it in two ways:

• It helps to limit the size of our vocabulary by eliminating terms like solving,
solves, solver, etc.

• It aids us in learning unfamiliar words. For instance, even though plays are
absent from the language, play and s may still have embedded meanings.

Token Embeddings : The Token embeddings are then obtained by indexing a
30000x768 Matrix (H). After wordpiece tokenization, the vocabulary length in this
case is 30000. This matrix’s weights would be learned throughout training.

Fine Tuning : Finally we fine-tune the BERT on the MRPC dataset for the sentence
pair classification task by adding a Linear+Softmax layer atop the 768 sized [CLS]
token.
Thus at the end of this stage we are in possession of our baseline model fine-tuned on
the MRPC dataset and capable of identifying paraphrases. However this model will
need further fine-tuning on contextual paraphrases generated from SQuAD dataset.

Evaluation Method : Accuracy is the evaluation method used for performance
assessment. It is calculated by the formula :

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

where TN stands for True Negative, FN for False Negative, TP for True Positive and
FP for False Positive.

3.5.2 Positive and Negative Sample Generation for

SQuAD Dataset

Positive Sample Generation : We first need to be clear what does positive sample
mean in this context. So now we have our baseline model and the sampled SQuAD
dataset with us. We are using SQuAD1.1 solely to make our baseline model learn to
identify contextual paraphrases. However SQuAD is a Question Answering dataset
and the model we are fine-tuning is a paraphrase detection model. So we need to
convert the SQuAD dataset into a paraphrase dataset. For this we need to generate
paraphrases (positive samples) for the answers in the sampled SQuAD dataset. Sim-
ilarly we need to generate negative samples as well so that while fine-tuning we do
not introduce any bias.

For the generation of positive samples we used the technique of Back Translation[15].
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Back translation, also known as reverse translation, is the process of literally trans-
lating text back into the source language from the target language. To achieve this
we used MarianMT [27] Machine Translation Model via HuggingFace Model API
to translate the english answers of SQuAD1.1 to Russian and then again back to
English. This way we achieved high quality paraphrases (positive samples) for the
answers. However some back translated answers were exactly equal to the original
answers and hence we found it best to remove them. This reduced the size of sampled
SQuAD from 6217 to 5239. To really check if the positive samples generated were
semantically really the same, we took the help of external validator, details of which
are added in the Experiments section

Negative Sample Generation :
We used a BERT based model as described in [19] to generate negative samples also
termed as distractors.

Model : Tasks involving language modelling at the sequence-level classification and
token-level prediction levels can both be completed using BERT. For these jobs, there
are three distinct tokens: [C], [S], and [M]. The token embedding [C] is meant to be
used as the representation of the aggregated sequence for classification tasks. Given
that the input token sequence may consist of a pack of many sentences, the [S] is
made to discriminate between the various sentences in a sequence of tokens (to con-
vey or indicate data from several sentences). The [M] token, on the other hand, is
intended for use in prediction at token-level (for example, using the context to predict
the masked token or predicting the probability of the starting or ending position for
span-based tasks like QA tests).

BERT is essentially a language modelling auto-encoder that attempts to recover the
original data from distorted inputs. BERT frequently yields illogical and rambling
results when asked to anticipate a series of related masked tokens. For instance, the
identical prediction outcome for the tokens is frequently seen when using BERT to
forecast three successive [M] masked tokens. The resulting sentences are incoher-
ent since the context (the data used to forecast the tokens) for the masked tokens
is almost identical but for the position embedding. As a result, while decoding the
subsequent distractor token, we take into account the previous decoding outcomes.
Three inputs are provided in a situation where a distractor is generated: a paragraph
P, a question Q and a response A. Let us take C as the Context Sequence which refers
to the token order produced by joining P, Q, and A. Distractor tokens are produced
by the BDG (Bert Distractor Generation) model in an auto-regressive manner. In
particular, the BDG model makes token-by-token predictions based on (1) the con-
text sequence C that has been provided and (2) the previously anticipated distractor
tokens. To produce a distractor, the BDG model goes through several rounds. Note
that the model predicts a token based on C and the previously generated tokens at
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each iteration. When [S] is anticipated, the generation comes to an end.

Input : The input sequence Xi to BERT is specifically Xi =([C], C, [S], d1,..., di, [M])
at iteration i. Let’s say that h[M ] ∈ Rh stands for the hidden representation of [M]
of Xi that the BERT transformer stacks have returned. The following linear layer
transformation WDG ∈ Rh×V and softmax activation to all vocabulary dimensions
provide the prediction of di.

p(w|Xi) = softmax(h[M ] ×WDG + bDG) (3.2)

di+1 = argmaxwPr(w|Xi) (3.3)

The freshly created token di is then attached to the new Xi+1, and the distractor
creation procedure is continued using the new Xi+1. The procedure comes to an end
when [S] is predicted.

Loss Function : The loss function used is shown below:

minimize
θ

∑
(C,D)

|D|∑
i=0

(log2p(di+1|C, d1:i; θ)) (3.4)

Using this model we generated distractors or negative samples for the answers of
our sampled SQuAD dataset. First of all some of the distractors generated were
exactly same as the original answers and we removed them. This downsized the
dataset from 6217 to 5839 data points. Secondly to really check if the distractors
were really authentic and conveyed negative meaning we took the help of external
validator, details of which are added in the Experiments section. Next we clubbed
the positive and negative samples generated and fine tuned the baseline model on
this. However before fine-tuning we observed the performance of the baseline model
on this synthetic data and again observed its performance after fine tuning. Results
observed where affirmative and showed that our model improved.

3.5.3 Generation of PAWS-like positive samples

for SQuAD and fine-tuning

Experimentations were needed to see how our model performs when subjected to lex-
ically highly overlapped sentences like given in Table 3.1. We ran inference over the
PAWS dataset and found that the model performance is utterly bad. The accuracy
merely hit 0.50

Fine-tuning was the only option to have the model learn to classify such lexically
overlapped sentences. However we needed to make sure that the model is also fine-
tuned on contextual PAWS like examples. We decided to follow the same path as
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before and generate some PAWS like samples for SQuAD. For this we employed
the T5 transformer discussed in detail in Section 3.1.5 as it produces state of the
art(SOTA) results on text generation tasks. We used a T5-Transformer which was
already fine-tuned on PAWS dataset from HuggingFace to generate paraphrases for
the sampled SQuAD1.1 dataset. We validated a subset of these synthetic paraphrases
by an external validator, details of which are added in the Experiments section. Again
some of the paraphrases generated were exactly same as the original answer text and
hence they were dropped from consideration. Overall the generated dataset equalled
5189 data points and we clubbed it with the PAWS dataset. Finally we fine-tuned
our model with the dataset we formed. Results observed were very positive and the
accuracy hit 0.83 after fine-tuning.
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Experiments and Results

4.1 Baseline Model

The baseline model is a BERT base uncased model fine-tuned on the MRPC dataset.
The MRPC dataset is splitted into train,test and val sets with the train set having
3668 data points, test set having 1725 data points and the validation set having
408 data points. Following is the summary of the training and validation loss for
the baseline model: So we have our baseline model giving an accuracy of 0.86 on

Epoch Step Training
Loss

Validation
loss

Accuracy

1 230 0.5981 0.4548 0.7798
2 460 0.3739 0.3806 0.8345
3 690 0.1991 0.2345 0.8529
4 920 0.1286 0.2023 0.8529
5 1150 0.0812 0.2187 0.8601

Table 4.1: Baseline Model fine-tuning summary

the MRPC dataset. We also experimented with the hyperparameters and after fine
tuning the following values gave us the best results :

• learning rate: 3e-05

• training batch size: 16

• eval batch size: 8

• lr scheduler type: linear
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• num of epochs: 5

• optimizer: Adam with betas=(0.9,0.999) and epsilon=2e-08

• seed: 47

4.2 Generation of positive and negative
samples for SQuAD and fine-tuning

At this stage we have a baseline model giving an accuracy of 0.86 on the MRPC
dataset. We generated both positive samples or paraphrases and negative samples
or distractors for the SQuAD dataset. However for both the positive and negative
samples some were exactly same as the original answers in SQuAD and hence were
dropped. Overall there were 5239 positive samples and 5839 negative samples which
were generated and used for further experimentations. However to validate the au-
thenticity of the samples generated we first have a subset of them validated by an
external validator.

The external validator is a Computer Science Engineering graduate with profi-
ciency in English. However this was a voluntary support on part of the validator and
there were no financial contract. The strategy that we use is simple we first sample
out a subset of 500 positive and 500 negative samples. We tried to maintain the
distribution of answer length in these subsets. Among each subset of 500 samples we
again divided it into 3 sets I, II, III of 200, 200, 100 samples each. Set I of 200 sam-
ples was validated by us while the Set II of 200 samples was validated by the external
validator. Finally the remaining set of 100 was validated by both of us individually.
Note here validation means that we just marked whether the corresponding sample
was really a positive or negative sample

For the positive samples, the following was the summary of the validation experi-
mentation: So in set III for positive samples which was validated by both of us, we

Set Type Validator No.of
samples

Generated
Correct

Generated
Wrong

Doubtful

I External 200 197 2 1
II Us 200 198 2 0
III Both 100 97(By

both)
3(By

both)
0

Table 4.2: Validation summary for positive samples
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were in consensus that 97 of them generated correctly while 3 generated were not
correct. We also made an observation that all the samples which were incorrectly
generated were sentences which had more than 27 words. This hinted us that the
quality of back translation might not have been good for very long sentences.

For the negative samples, the following was the summary of the validation exper-
imentation: So in set III for negative samples which was validated by both of us, we

Set Type Validator No.of
samples

Generated
Correct

Generated
Wrong

Doubtful

I External 200 193 6 1
II Us 200 194 5 1
III Both 100 93(By

both)
7(By

both)
0

Table 4.3: Validation summary for negative samples

were in consensus that 93 of them were generated correctly while 7 generated were
not correct. We also made a similar observation like before that all the samples which
were incorrectly generated were sentences which had more than 25 words. This hinted
us that the quality of distractor generation might not have been good for very long
sentences.

The validation exercises instilled confidence about the generation of the synthetic
samples. However since nearly 4% of the negative samples were generated wrong in
the subset of 500 validated, so we randomly removed 4% of the negative samples with
all the samples removed were atleast 25 words long. With the remaining generated
samples we went ahead for fine-tuning the model. We now had a total of 5239 positive
and 5606 negative samples totalling to 10,845 samples which was splitted into train,
test and eval sets in the ratio 70:20:10. In all there were 7591 samples in the train
set, 2169 samples in the test set and remaining 1085 samples in eval set. Focus was
given to maintain class balance in all the sets. Before fine-tuning our baseline model
gave an accuracy of 0.8219 on the test set of the generated samples.



4.3. Fine-tuning on PAWS and generation of PAWS-like samples 37

Following is the summary of the training and validation loss for the fine-tuning of the
model:

Epoch Training Loss Validation loss Accuracy
1 0.4971 0.3548 0.8306
2 0.3739 0.3006 0.8415
3 0.2345 0.2465 0.8528
4 0.1261 0.2023 0.8567
5 0.1012 0.2063 0.8678
6 0.0916 0.2879 0.8688

Table 4.4: Model fine-tuning on Generated samples summary

Thus after fine-tuning the model accuracy on the Generated samples improved from
0.82 to 0.86. The hyperparameter values which we listed above in Section 4.1 gave
us the best results again.

4.3 Fine-tuning on PAWS and generation
of PAWS-like samples

Before we began fine-tuning we first evaluated our current model on the PAWS
dataset. The accuracy figures merely hit 0.50. So we had to fine-tune the model on
the PAWS datset. However to meet the constraint of contextuality we also generated
some PAWS-like paraphrases for the SQuAD dataset using the T5-Transformer(fine-
tuned on PAWS) for paraphrase generation. But just like we have seen before, some
of the samples generated were exactly same as the answers in SQuAD and hence were
dropped reducing the number of generated samples to 5189.
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Just like before we followed a validation exercise combining us and an external valida-
tor in this case as well. Following was the summary of the validation experimentation
:

Set Type Validator No.of
samples

Generated
Correct

Generated
Wrong

Doubtful

I External 200 190 10 0
II Us 200 192 7 1
III Both 100 95(By

both)
5(By

both)
0

Table 4.5: Validation summary for PAWS-like generated samples

Again we had a similar observation like before that all the samples which were incor-
rectly generated were sentences which had more than 22 words. This hinted us that
the quality of sample generation might not have been good for very long sentences.
Since nearly 4% of the samples were generated wrong in the subset of 500 validated,
so we randomly removed 4% of the generated samples with all the samples removed
having atleast 22 words. With the remaining generated samples of 4982 data points
we went ahead for fine-tuning the model.

Clubbing the generated samples with PAWS english dataset we had 52,886 training
samples, 8997 test samples and 8499 validation samples. Following is the summary
of the training and validation loss for the fine-tuning of the model: The hyperpa-

Epoch Training Loss Validation loss Accuracy
1 0.7249 0.6978 0.5096
2 0.5045 0.5007 0.6435
3 0.4099 0.3878 0.7028
4 0.2967 0.2866 0.7576
5 0.2345 0.2142 0.8016
6 0.2045 0.1945 0.8233
7 0.1675 0.1610 0.8399

Table 4.6: Model fine-tuning on PAWS summary

rameters which are mentioned in Section 4.1 gave the best results for this fine-tuning
experiment as well. Finally as evident from Table 4.6, we were able to improve the
accuracy of our model from 0.50 to 0.83 which is a great leap in terms of accuracy.
This is the final model that we settle with.



Chapter 5

Conclusion and Future Work

In our work we attempted to solve the problem of contextual answer validation where
we scoped out that the answer should be atleast 10 words long. We started with a
baseline model inspired from paraphrase detection which achieved state of the art
accuracy of 0.86. However due to the unavailability of exact datasets for this task,
we generated synthetic data based on the SQuAD dataset using techniques like back
translation etc. Finally we even generated PAWS like synthetic data for SQuAD and
clubbed it with the PAWS dataset to fine tune our model. This greatly improved our
model’s accuracy from 0.50 to 0.83 for PAWS dataset which is a great leap. The final
answer validation model thus has the ability to validate lexically highly overlapped
contextual answers as correct or not.

In our work we primarily focussed on validating answers which are single sentence
long and have atleast 10 words. However in a typical real world setting, this doesn’t
hold necessarily and often we find answers to span multiple sentences. Hence there is
a tremendous scope of work where one can try the answer validation problem for long
answers. To aid to the fortune, there are also readily available contextual Question
Answering datasets which cater to long answers like Eli5 (Explain me like I am 5)
dataset[3] from Facebook, Natural Questions dataset[30] from Google, etc.

39



Bibliography

[1] Andrej karpathy’s blog on effectiveness of rnns. http://karpathy.github.io/
2015/05/21/rnn-effectiveness/, accessed: 2022-06-29

[2] Common crawl dataset. https://commoncrawl.org/the-data/, accessed:
2022-06-29

[3] Eli5 dataset from facebook. https://facebookresearch.github.io/ELI5/, ac-
cessed: 2022-06-30

[4] Glue tasks. https://gluebenchmark.com/tasks, accessed: 2022-06-29

[5] Illustrated bert. https://jalammar.github.io/illustrated-bert/, accessed:
2022-06-29

[6] Illustrated transformer. https://jalammar.github.io/

illustrated-transformer/, accessed: 2022-06-29

[7] MS Windows NT kernel description. https://www.ibef.org/blogs/

india-to-become-the-edtech-capital-of-the-world, accessed: 2022-
06-30

[8] Olah’s blog on rnn and lstm. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/, accessed: 2022-06-29

[9] Squad competition stanford. https://nlp.stanford.edu/blog/

cs224n-competition-on-the-stanford-question-answering-dataset-with-codalab/,
accessed: 2022-06-29

[10] Superglue tasks. https://super.gluebenchmark.com/tasks, accessed: 2022-
06-29

[11] Tensorflow dataset hyperlink. https://www.tensorflow.org/datasets, ac-
cessed: 2022-06-29

[12] Aghajanyan, A., Shrivastava, A., Gupta, A., Goyal, N., Zettlemoyer, L., Gupta,
S.: Better fine-tuning by reducing representational collapse. arXiv preprint
arXiv:2008.03156 (2020)

40

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://commoncrawl.org/the-data/
https://facebookresearch.github.io/ELI5/
https://gluebenchmark.com/tasks
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.ibef.org/blogs/india-to-become-the-edtech-capital-of-the-world
https://www.ibef.org/blogs/india-to-become-the-edtech-capital-of-the-world
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://nlp.stanford.edu/blog/cs224n-competition-on-the-stanford-question-answering-dataset-with-codalab/
https://nlp.stanford.edu/blog/cs224n-competition-on-the-stanford-question-answering-dataset-with-codalab/
https://super.gluebenchmark.com/tasks
https://www.tensorflow.org/datasets


BIBLIOGRAPHY 41

[13] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh,
D.: Vqa: Visual question answering. In: Proceedings of the IEEE international
conference on computer vision. pp. 2425–2433 (2015)

[14] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic lan-
guage model. journal of machine learning research, vol. 3, no (2003)

[15] Brislin, R.W.: Back-translation for cross-cultural research. Journal of cross-
cultural psychology 1(3), 185–216 (1970)

[16] Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional lstm-cnns.
Transactions of the association for computational linguistics 4, 357–370 (2016)

[17] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,
Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling
language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)

[18] Chung, H.L., Chan, Y.H., Fan, Y.C.: A BERT-based distractor generation
scheme with multi-tasking and negative answer training strategies. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing: Findings. pp. 4390–4400. Association for Computational Linguistics, Online
(Nov 2020), https://www.aclweb.org/anthology/2020.findings-emnlp.393

[19] Chung, H.L., Chan, Y.H., Fan, Y.C.: A bert-based distractor generation
scheme with multi-tasking and negative answer training strategies. arXiv preprint
arXiv:2010.05384 (2020)

[20] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.:
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860 (2019)

[21] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

[22] Dolan, B., Brockett, C.: Automatically constructing a corpus of sentential para-
phrases. In: Third International Workshop on Paraphrasing (IWP2005) (2005)

[23] Dos Santos, C., Zadrozny, B.: Learning character-level representations for part-
of-speech tagging. In: International Conference on Machine Learning. pp. 1818–
1826. PMLR (2014)

[24] Firth, J.: A synopsis of linguistic theory 1930-1955 in studies in linguistic anal-
ysis, philological society. Links (1957)

[25] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

https://www.aclweb.org/anthology/2020.findings-emnlp.393


42 BIBLIOGRAPHY
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[34] Peñas, A., Rodrigo, A., Sama, V., Verdejo, F.: Testing the reasoning for question
answering validation. Journal of Logic and Computation 18(3), 459–474 (2008)

[35] Peters Matthew, E., Mark, N., Mohit, I., Matt, G., Christopher, C., Kenton, L.:
Deep contextualized word representations.(2018) (1802)

[36] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., Liu, P.J., et al.: Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

[37] Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: trans-
fer learning from unlabeled data. In: Proceedings of the 24th international con-
ference on Machine learning. pp. 759–766 (2007)



BIBLIOGRAPHY 43

[38] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representa-
tions by error propagation. Tech. rep., California Univ San Diego La Jolla Inst
for Cognitive Science (1985)

[39] Tonoike, M., Utsuro, T., Sato, S.: Answer validation by keyword association.
In: Proceedings of the 3rd workshop on RObust Methods in Analysis of Natural
Language Data (ROMAND 2004). pp. 95–103 (2004)

[40] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser,  L., Polosukhin, I.: Attention is all you need. Advances in neural infor-
mation processing systems 30 (2017)

[41] Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. ieee Computational intelligenCe magazine
13(3), 55–75 (2018)

[42] Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015)

[43] Zhang, Y., Baldridge, J., He, L.: Paws: Paraphrase adversaries from word scram-
bling. arXiv preprint arXiv:1904.01130 (2019)


	Introduction
	Natural Language Processing Overview
	Deep Learning in NLP
	Answer Validation
	Motivation
	Problem Statement

	 Related Work 
	Proposed Work
	Pre-requisites
	Recurrent Neural Networks (RNN)
	Long Short Term Memory (LSTM)
	Transformers
	BERT
	T5-Transformer

	Overview of our Approach
	Datasets
	SQuAD
	MRPC
	PAWS

	Dataset Pre-Processing
	Methodology/Approach
	Baseline Model Fine-Tuning
	Positive and Negative Sample Generation for SQuAD Dataset
	Generation of PAWS-like positive samples for SQuAD and fine-tuning


	Experiments and Results
	Baseline Model
	Generation of positive and negative samples for SQuAD and fine-tuning
	Fine-tuning on PAWS and generation of PAWS-like samples

	Conclusion and Future Work

