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Abstract

Incomplete multi-view clustering (IMVC) has become one of the most prominent
area of research in the recent past. The objective of IMVC is to integrate a set of
pre-specified incomplete views in order to improve clustering performance. Among
various excellent solutions already proposed in literature, multiple kernel k-means
with incomplete kernels (MKKM-IK) [1] has been one of the benchmark research
works, which formulates the incomplete multi-view clustering problem as a joint op-
timization problem framework whereby the imputation and clustering paradigms are
integrated effortlessly. Both the processes are performed alternately in an iterative
fashion to make used of the advantages of clustering in the subsequent imputation
process and vice-versa. However, the computationally intensive and associated stor-
age requirements demanded more efficient methods to be devised. These include the
incomplete multi-view clustering with late fusion and the efficient and effective way
proposed by Liu et al [2]. However, all of the above mentioned algorithms initialize
the consensus clustering matrix, considering the unified kernel as a strict convex
combination of the incomplete base kernels. This bold assumption suppresses the
selectivity and representation capability of the unified kernel.

In order to find a solution to the above problem, we propose a novel method called
Optimal Neighborhood Kernel approach towards Incomplete Multi-View Clustering
(OK-IMVC) which takes into account the representability of the unified or the op-
timal kernel. The consensus clustering matrix is continually updated via kernel
k-means on the optimal neighborhood kernel, which is in turn computed based on
the clustering results at the previous iteration. Specifically, our algorithm jointly
learns a consensus clustering matrix, imputes each incomplete base matrix,learns the
optimal neighborhood kernel and optimizes the corresponding alignment matrices.
Further, we conduct comprehensive experiments to study the proposed OK-IMVC
in terms of Normalized Mutual Information (NMI) index, purity score and running
time. As indicated, our proposed method significantly and consistently outperforms
some of the state-of-the-art algorithms with much less running time and memory.
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Chapter 1

Introduction

1.1 Introduction

The task of clustering data is still a booming field of research in the context of un-
supervised learning. Data comes in various forms in real life, ranging from feature-
extracted mode to kernel form. Often, we encounter a basic problem in the proces
of clustering data. This pertains to the non-separability of observations in the data
space. As a remedy towards handling such data and cluster them via linear bound-
aries, the concept of kernel k-means came into being [3]. Kernel k-means maps the
linearly non-separable data in input space to a higher dimensional reproducing ker-
nel Hilbert space (RKHS) where the inherent data clusters become distinguishable,
via a nonlinear transformation and thereafter performs k-means in the feature space.
An important property of kernel k-means is its close association with the spectral
clustering method as demonstrated by Dhillon et al [4].

Real-world applications involve collection of data from diverse domains or vari-
ous feature descriptors. For instance, specific news articles are reported by a wide
range of media houses, expression of the same semantic meaning in multiple lan-
guages or depiction of a time-varying signal in temporal and frequency domains.
These multi-faceted representation of data is termed as multi-view data. They ex-
hibit heterogenous properties, coming from diverse domains, but hold an underlying
similarity amongst themselves. Therefore, a way to exploit this information, in or-
der to uncover the potential values of multi-view data, is very important in big data
research.

Clustering data with kernel fusion, referred to as Multiple-Kernel Clustering
(MKC), is an emerging topic in machine learning. There are a wide range of
algorithms that have been proposed in support of clustering multi-view data. A
few of the classical MKC algorithms in literature include multiple kernel fuzzy c-
means (MKFC) by Huang et al [11], the multiple kernel learning algorithms due
to Gonen and Almpaydin [5] and the work by Zhao et al [6] that aims at finding
the maximum margin hyperplane and the optimal kernel setup to cluster the data.
Liu et al [7] came up with the novel idea of facilitating the process of clustering by
carefully considering the correlation among different views. They have utilised the
view-specific weight vector to optimally weigh the correlation coefficients between
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the corresponding views as well. However, they have made use of the assumption
that all the views are complete , i.e , all the data points have been observed across
all views. Herein comes the realm of incomplete multi-view clustering techniques.

Incomplete multi-view clustering techniques fall into two categories - two-stage
category, where the clustering is performed separately after the data imputation
process and the single-stage technique, wherein the processes of imputation and
clustering are intertwined to take advantage of the effect of imputation on clustering
process. One of the first works in the two-stage category was proposed by Trivedi
et al [8] in 2010 where they've used kernel canonical correlation analysis (CCA)
to impute the missing entries of the kernel matrices. Liu [1] proposed a one-stage
method where the incomplete kernels are used as auxiliary variables to be optimized
jointly alongwith the clustering procedure. However, the number of missing entries
in the kernel matrices and hence the variables to be optimized were huge and of the
order O((n — ny,)(n + n, + 1)) in the v'" view, where n signifies the total number
of data points and n, denotes the number of observed data points in the v** view.
Thus, the overall computational and storage complexity were high.

To deal with this problem, Liu [2] came up with the idea of efficient and effective
incomplete multi-view clustering by treating the base clustering matrices per view
as the variables to be optimized alongwith the consensus clustering matrix. This
strategy effectively reduces the number of imputation variables to the order of O((n—
ny)k) in the v view, where k is the number of clusters.

The efficient and effective incomplete multi-view clustering procedure doesn’t
take into account the generalizability of the unified kernel matrix. Hence, the idea
of optimality of the kernel matrix can be imposed to provide robustness to the
clustering results. We first justify that Efficient and effective incomplete multi-view
k-means clustering can be reformulated into the optimal kernel selection strategy
suggested by J. Liu [9]. The optimal kernel selection procedure aids in learning
the kernel parameters in a generalized manner, reducing the chances of overfitting
which might come into play if the unified kernel is chosen strictly from the subspace
spanned by the component kernels.

1.2 Our contribution

Our contributions are summarized as follows -

1. We have proposed that the Efficient and Effective Incomplete Multi-View k-
means (EE-IMVC) can be reformulated into the optimal neighborhood kernel selec-
tion framework and thus developed the Optimal Neighborhood Kernel-based Incom-
plete multi-View k-means algorithm.
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2. We have proposed a new measure of Hilbert-Schmidt independence criterion
(HSIC) to determine the correlation amongst the incomplete kernels instead of the
well-known Pearson’s correlation coefficient.

3. We have also provided a performance comparison of our algorithm with state-of-
the-art methods such as Efficient and Effective Incomplete Multi-View k-means [2]
and Late Fusion Incomplete Multi-View k-means (LF-IMVC) [10]. We have mainly
evaluated our method on benchmark multi-view datasets. We have used normalized
mutual information (NMI) score and Purity index to evaluate the performance of
our proposed method.

4. We've also performed a complexity analysis as well as the storage complexity
involved in our algorithm.

1.3 Thesis Outline

The structure of the thesis is organized in the following manner. In Chapter 2,
we briefly discuss about the preliminaries and the multi-view clustering paradigm
including the Multi-kernel k-means with matrix-induced regularization scheme. In
Chapter 3, we discuss about the background related to our work including . In
chapter 4, we describe the detailed construction and the optimization problem in-
volved in our scheme. In Chapter 5, we give a detailed performance analysis of our
proposed method. In Chapter 6, we summarize the work done and discuss about
the future directions related to our work.



Chapter 2

Preliminaries

2.1 Introduction to k-means clustering

The realm of clustering data falls under the category of unsupervised learning and
is a very important machine learning tool in literature. The main objective of
clustering data is to partition a given group of unlabeled observations into disjoint
subsets, so that data points that belong to the same cluster are very similar to each
other and as dissimilar as possible to those residing in any other cluster. One of the
primitive clustering methods is the Lloyd’s k-Means heuristic algorithm. It involves
an iterative process of cluster assignment, each data point being assigned to the
closest of the k cluster centers and a center recalculation step, where the cluster
centers are updated to the mean of all data samples assigned to that cluster. The
initial cluster assignment is done arbitrarily. The process continues till a state of
convergence is reached, i.e , until there are no changes in the membership of the
clusters or after a certain number of iterations. However, the main limitation of
this iterative approach is that the boundaries separating the clusters can only be
hyperplanes, whih are necessarily affine. If the data points are so scattered that
the clusters cannot be separated via hyperplanes, the standard k-Means algorithm
will not be able to produce good results. For instance, Lloyd’s k-means algorithm
cannot cluster the data pertaining to two concentric circles efficiently, where the
data points corresponding to the two circles are inherently from different clusters.

2.2 A look into kernel k-means clustering

The limitation of k-means algorithm stems from the fact that the method actually
aims to perform clustering by forming hyperplanes between the clusters to separate
them. However, if the data becomes linearly non-separable, the Lloyd’s k-means
algorithm no longer can cluster the data efficiently. Herein comes the idea of kernel
k-means algorithm. The basic idea behind kernel methods is to map the data points
into a higher-dimensional space known as the Reproducing Kernel Hilbert Space
(RKHS). It is thus possible for a linear separator which partitions the data points
in that higher-dimensional space, to have a non-linear projection back in the original
data space, which helps us to solve the non-linear separability problem.
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The kernel trick helps us to circumvent the actual feature projection of the
data points into the high-dimensional space ,i.e, we don’t explicitly need to know
the mapping function or the actual projection o0f the data points into the higher-
dimensional space. It uses a kernel function ¢(x) to implicitly calculate the dot
products of the vectors corresponding to the projection of data point in the feature
space. If ¢(x;) and ¢(z;) are the corresponding projections of the data points z;
and z; in the feature space, then (z;, z;) = ¢(x;)T ¢(x;) gives us the kernel function
pertaining to those data points V i and j.

The Kernel k-Means algorithm due to Scholkopf et al [3] is an extension of the
Lloyd’s k-Means clustering algorithm. It involves a nice application of the kernel
trick, projecting the data onto a higher-dimensional Hilbert space and computes
Fuclidean distances between data points in that space. Let there be k clusters given
by C;,j7=1,2,...,kand data points z; ; x; €R?i =1,2,...,n. The data is linearly
non-separable in the original space and hence a mapping function ¢(.):R?* — R!
is used to project them into a high-dimensional space. With each data point being
assigned to a cluster, each cluster C; has a centroid m; in the high-dimensional
space given by :

Zziecj (b(xl)

m; =
J IC5l

where |C}] is the cardinality of the cluster C;.

The squared distance of the data point x; mapped into the feature space from
the cluster centroid m; (effectively the distance of the point z; from cluster C; in
feature space) is thus given by :

D(x;,my) = [|¢(w;) — my|?
or D(x;,my) = d(xs)" d(xs) — 2¢(x:) 'my +m]m;

Substituting the expression for m;, we get

Z eC-H(xivxk) Z ecﬂz( ec-”(mlvxk)
D(wismj) = Al x;) - 2750 + =g

The distance of data point z; from each of the k cluster centers is measured thereafter
and the data sample is then reassigned to that cluster C; with the minimum distance
D(z;, m;). This is an iterative process, in which the distances of the data points from
each of the cluster centers are computed and then they’re reassigned to the nearest
cluster , until there’s no more change in the cluster assignments or the maximum
number of iterations have been completed. The initial cluster entry assignments are
usually completely random.

10
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2.3 Multi-view learning

In most real-life machine learning applications in video surveillance, social comput-
ing and the likes, data is collected from diverse domains or different feature descrip-
tors which exhibit heterogeneous properties. These various forms of depicting the
same data or the same object with respect to different domain of data collection is
known as multi-view data and each such variable group is referred to as a particular
view. The different views for a particular data acquired can take on varied forms,
for instance, in image data can be described via - colour feature descriptor, local
binary patterns (LBPs), local shape descriptor and spatial/temporal context cap-
tured by multiple cameras for activity recognition using sparse camera networks.
Text data, on the other hand, can be described using views like : words in doc-
uments, information describing documents and the co-citation network graphs for
scientific document management tasks.

Traditional machine learning algorithms that are applied on multi-view data,
such as kernel-based classifiers and spectral clustering, concatenate all component
views into one single unified view to adapt to the learning setting. This technique
of agglomerating all the information of the different views into one single compact
structure leads to overfitting in case of small data samples and is not meaningful
either because each view describes a fixed and predefined statistical property. In
contrast to single view learning, learning in multi-view setting introduces a single
function to model a particular view and jointly optimizes all the functions pertaining
to all views to exploit the information extracted from the redundant views of the
same input data, thereby improving the learning performance. Thus, the need
to learn more sophisticated representation of the data in a multi-view setting is
necessary. As a result, multi-view learning has received enormous attention over the
past decade or so and the existing algorithms can be subtly categorised into three
groups:

o Co-training

o Multiple-kernel learning

» Subspace-based learning

2.4 Multiple kernel k-means clustering techniques

Many methods have already been proposed to tackle the issue of multiple kernel clus-
tering considering a wide range of problems ( [11]; [12]; [13]). The existing methods
in literature pertaining to multiple kernel clustering can be roughly subdivided into
two categories. The first category aims to learn a consensus matrix via low-rank
optimization ( [11]; [12]; [13]). [11] proposes to build a transition probability matrix
for each view. These view-specific matrices are then used to unearth a shared low-
rank transition probability matrix which would serves as a vital input to standard

11
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Markov chain clustering method. [12] proposes to learn the structured kernel noise
for each view which would in turn help in building a shared kernel structure acting
as the consensus. In [13], a similarity matrix modification is proposed by learning
the clustering results in one view and assigning data points to clusters in another
view. The other category of algorithms optimizes a group of kernel coefficients, and
uses the combined kernel for clustering. ([14], [15], [12],[16]). The work in [14] sug-
gests a multiple kernel k-means clustering algorithm using data fusion. Gonen and
Margolin [15] have proposed a multiple kernel k-means algorithm where the kernels
are combined together in a localized fashion to better simulate the sample-adaptive
characteristics of data.

2.4.1 Multipe kernel k-means with matrix-induced regular-
ization

The data in a multiple-kernel framework can be represented by a group of feature
maps {¢;(.)}/_,, one for each view. Each data sample z; can be represented in a
multi-view setting via : [¢1(x;), P2(xj), ..., ¢v(z;)]; where V depicts the total num-
ber of views and ¢, (z;) corresponds to the representation of data point z; in the r*
view. The view-wise kernel weight vector is given by g = [u1, pta, . . . , pty]T. Thus, the
combined kernel matrix that is used for clustering is K, = p2K, , where K, corre-
sponds to the kernel matrix for the v view. Hence, K, (z;,2;) = SO, 2K, (24, 7;)
gives us the entry of the unified kernel function corresponding to the data points z;
and z;. The kernel function is usually chosen in such a manner that the component
kernel matrices and hence the unified kernel matrix all are symmetric and positive
semi-definite. The kernel functions that are most commonly used in these methods
are the Gaussian (RBF) kernel, polynomial kernel or tanh kernel.

The optimization procedure involved in single-view kernel k-means is given by:

ming Tr(K (I, — HHT)) st H eR™* ; HTH = I,

where K refers to the kernel matrix corresponding to the single view and H is
the clustering matrix we need to determine. Number of data points is given by n
and there are k clusters. I refers to the identity matrix of dimension k.

Similarly, the clustering procedure in multi-view setup can be reduced to the
above framework by replacing the kernel K with our unified kernel matrix K, which
is nothing but the linear combination of the base kernels. Hence, the optimization
framework in multi-kernel k-means can be devised as follows :

ming Tr(K,(I, — HH")) st H eER™* ; H'H =1, ; p"1y =1

which is equivalent to the following -

12
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ming S0 p2Tr(Ki(I, — HHT)) st H €R™* s HTH =1, ; S i =1

From the above discussion, it is clear that the relative value of u, is only de-
pendent on H and the corresponding v kernel K,. This certifies the fact that
state-of-the-art multiple kernel k-means (MKKM) algorithms do not adequately ac-
count for the mutual influence of these kernels in the process of updating the view
coefficients. The algorithm proposed by X. Liu et al [19] considers the mutual depen-
dence of the component kernels, thereby selecting and weighing them accordingly.
The kernels with high correlation with each other would be selected together and
assigned to similar weights. This particular approach results in a sparse framework
for the selection of the component kernels. Thus, with a view to reduce the redun-
dancy and enhance the diversity of the unified kernel matrix, a regularization term
is proposed in [19], which necessarily takes into the account the correlation amongst
the given base kernels.

A new criteria M(.,.) is introduced to capture the correlation between each
pair of base kernels. The quantity M (K, K;) gives us the correlation between the
kernel matrices K; and K. In order to incorporate high selectivity of non-correlated
kernels , the regularization term corresponding to two correlated kernels K; and K
is given by : M(K;, K;) = M;; pip; M (K, K;). The view-specific weights are thus
modified during optimization process in such a way that almost the total weight
is distributed among the non-correlated kernels, which are the ones desired to be
picked. This regularization term enhances the chances of the weights p; and pu; to
assume high values if the kernels K; and K are less correlated. Based on these
observations, the regularization term incorporated is given by :

MiTNy,e Ry Eszl pitti M;; = " M p such that p1y =1

Incorporating the regularization term in the framework, the optimization prob-
lem looks like :

mingeposi yery Tr(K (I, — HHY)) + 3" Mp

The alternate optimization procedure involved in solving the above problem
consists of to steps -

o Update the clustering matrix H by performing a simple kernel k-means on
the unified kernel K, with p fixed.

o Update the view-specific weight vector p by solving the following quadratic
programming problem with H fixed.

13
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min ¢ gy 2T + AMp st p'1y =1

where T = diag([Tr(K,(I,—HHT)), Tr(Ky(I,—HHT),... , Tr(Ky(I,—HHT)]
is a V x V diagonal matrix.

14



Chapter 3

Related work

3.1 Past works on incomplete multi-kernel clus-
tering

Different approaches have been proposed in order to handle missing entries in multi-
view data for clustering purposes. We'll do a brief survey of the already suggested
methods to cluster data in a multi-view setup for both complete and incomplete
views.

Liu et al[7] proposed to incorporate a matrix-induced regularization technique to
take into account the correlation among different views in order to perform cluster-
ing on kernels which are more diverse and less redundant. They have used a convex
combination of all the kernels as the unified kernel, and used the same weight vec-
tor for the kernels to take into account the correlations between the corresponding
kernels. Similarly, Liu et al [17] suggested to use the concept of an optimal neigh-
borhood kernel matrix, which significantly enhances the representation capability
of the unified kernel so chosen. This framework aims at finding the best kernel ma-
trix GG, which closely resembles the convex combination of the component kernels in
positive semi-definite (P.S.D) space, but possesses a more general representation.

The kernel-based clustering methods pertaining to incomplete views have become
popular in recent years. The presence of incomplete base kernel matrices makes it
more challenging to utilize the information of all views for clustering. Most of the
real-world datasets comes in the form of inaccuracies involving missing observations
due to sensor component failure or noisy environment. The approach followed to
cluster such incomplete multi-view data requires extra consideration. The research
models proposed along this line is termed as - incomplete multi-view clustering
(IMVC). There are two broad categories into which the proposed methods in this
particular field can be classified. The first category deals with the imputation and
clustering tasks separately , performing traditional clustering on the data in post-
imputation phase. Thus, these are also termed as "two-stage” incomplete multi-
view clustering algorithms. The second category of algorithms aims at preserving
the basic relationship that exists between the two processes.

15
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KERNEL APPROACH

The most popular imputation techniques in practice include zero-filling, mean
value filling, k-nearest-neighbor filling and expectation-maximization (EM) filling
[18]. Some advanced methods have also been proposed to perform matrix-based
imputation such as [15], [19], [20], [21]. The first work to deal with incomplete view
clustering was proposed in [8]. It uses the kernel representation of a particular view
as the similarity matrix and employs Laplace’s regularization to impute missing en-
tries of the other views. This method, however, constraints the fact that one view
should be completely observed with all the data points. The "one-stage” algorithms
aim at unifying imputation and clustering into one global optimization procedure
and instantiate a clustering algorithm termed as multiple kernel k-means with in-
complete kernels (MKKM-IK) algorithm proposed by Liu et al.[1] . The clustering
results at the previous iteration is used to guide the imputation procedure of absent
kernel entries, and the latter is used in turn to conduct the subsequent clustering.
By this way, these two procedures are effortlessly interleaved, with the objective of
better clustering performance.

3.2 Multi-view clustering using optimal neighbor-
hood kernel approach

3.2.1 Selection and tuning of optimal neighborhood kernel
in clustering

The approach of optimal neighborhood kernel learning is guided by the fact that
in most of the multi-view clustering algorithms, the unified kernel is taken as a
convex combination of the component kernels. This reduces the variability of the
unified kernel and does not consider the effect of clustering on the learning process
of the optimal kernel. The optimal neighborhood kernel clustering framework was
suggested by Liu [17] on complete multi-view data. The algorithm effectively enlarges
the space from which an optimal kernel can be selected and thus, incorporates
variability in the clustering procedure. One of the first works in the realm of optimal
kernel selection was given by J. Liu [9] for the task of classification via SVM. This
approach was extended to handle multi-view clustering framework pertaining to
complete kernels by X. Liu . One cool advantage of the optimal neighborhood
kernel is that it is iterativey updated according to the clustering results at every
iteration, keeping it in “close” proximity with the linearly combined base kernels.
The optimal neighborhood kernel clustering (ONKC) framework suggested by X.
Liu is given by -

ming oy Tr(G(I, — HH)) 4+ £||G — K.||% + 3a" Ma

where G is the optimal kernel which is required to be positive semi-definite and the
distance between G and K, = >.I" | a;K; (K; being the i component kernel and
a denotes the view-specific weight vector ; number of views = m) is expressed as
the squared Frobenius norm of their matrix difference, |G — K,||% . This particular

16
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algorithm effectively widens the region from which an optimal kernel can be selected,
which allows it to be in a better position than the traditional methods to identify
a robust kernel for clustering. The learning process of the optimal kernel G' and
the clustering matrix H are essentially coupled with each other to extract the very
essence of one procedure aiding the other and vice-versa.

Algorithm for multi-view clustering using optimal neighborhood kernel

The algoritm described in [17] is described as follows -

Input : Component kernel matrices {K;}7, , regularization parameters p and A
, number of clusters : k, threshold : €
Output : Optimal neighborhood kernel matrix GG , clustering matrix H |, view-specific
weight vector «

o Initialize 0¥ = 1,,/m , G© = K and z = 0.
 Iterate until convergence :

— 1. Determine the unified kernel matrix at the 2z iteration by weighing
the component kernels according to the vie-specific weights , K ) =

Z?;l QEZ)Ki

— 2. Update the clustering matrix H*) by application of kernel k-means
on the optimal neighborhood kernel G at the previous iteration. The
optimization procedure involved is given by -

ming Tr(G(I, — HHT)) such that H eR™** | HTH = I,

— 3. Update the optimal neighborhood kernel matrix by minimizing the
objective w.r.t G , which can be re-written as :

ming (|G — (Ko — 5(I, — HH"))||% such that G is PSD.

This optimization problem involves minimizing the squared Frobenius
norm of the matrix difference of G and B = K, — (I, — HH") such

1
that G is positive semi-definite (PSD). This surmouﬁts to nothing but
to project the matrix B onto the PSD space. This can be done by per-
forming singular-value decomposition (SVD) on B and extracting the
non-negative singular values of the same in order to reconstruct it. The
optimal solution can thus be written as G = USTVT, where B = USVT
is the SVD decomposition of the matrix B. S* is obtained from the diag-
onal matrix S of singular values of B, by replacing the negative singular

values with zeros and keeping the remaining ones intact.

17
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— 4. Update the view-specific weight vector a® at the 2! iteration by
solving the quadratic programming involving « -

min, %QTMQ — b"a such that a’1,, =1

where M is the maxm matrix capturing the correlation between the com-
ponent views with M;; = Tr(K!K;) and b is a m-vector where the
element is given by b, = pTr(GK,)

— Increment the iteration count z = z + 1

3.3 Multi-view clustering with incomplete views

Most of the traditional multi-view clustering methods in practice as well as the
above specified algorithms make an assumption that all the views available are com-
plete, i.e. , all the data points have been observed across all the views. However,
in practice, due to inaccuracies in data acquisition or sensor faults. It is a common
occurrence to observe that some views of a sample are absent in practical appli-
cations such as prediction of Alzheimer’s disease or cardiac disease discrimination.
The literature covering this realm of clustering data with incomplete views is termed
as Incomplete Multi-View Clustering (IMVC). These methods can be broadly clas-
sified into two categories : two-stage and single-stage algorithms. The former is
computation-heavy and doesn’t take into account the relation between imputation
and clustering steps. The latter set of algorithms aim at imputing the data and per-
forming the clustering procedure in an interleaved manner. Two of the most famous
single-stage methods proposed in literature are : Late Fusion Incomplete Multi-
View Clustering by X. Liu et al [10] and Efficient and Effective Incomplete
Multi-View Clustering by X. Liu et al [2].

3.3.1 Late Fusion Incomplete Multi-View Clustering (LF-
IMVC)

LF-IMVC aims to simultaneously perform clustering and imputation of the incom-
plete base clustering matrices H ", of the component views instead of directly
filling the missing entries of the incomplete kernel matrices. It aims to learn a con-
sensus I across all views from the complete base clustering matrices HJ ;' , and in
turn imputes the missing part from the learned consensus. Thus, the two processes
are made to negotiate with each other to achieve better performance. The mathe-

matical model involved can be proposed as follows :

maz, m, v, w, ) Tr(HT (20, HiW;))
st H eR™k HTH = I,
W, eR¥** - WTW, = I,

H, €R™* 1 H,(s,,) = HY ; HTH, = I
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3.3. MULTI-VIEW CLUSTERING WITH INCOMPLETE VIEWS

where H, is the v"" base clustering matrix such that H,(s,,:) refers to the rows
corresponding to the observed data entries, s, being the indices corresponding to
the observed data points for the v*" view.

Algorithm for Late Fusion Incomplete Multi-View Clustering (LF-IMVC)
The algoritm described in [22] is described as follows -

Input : Incomplete component kernel matrices {K;}™, , regularization parame-
ters p and A , number of clusters : k , threshold : €
Output : Consensus clustering matrix H

o Initialize Wv(o) vm:1 =1, Héo) Um:1 = 0,,.+ and iteration count z = 0
o Iterate until convergence

— 1. Update the consensus clustering matrix H*) using base clustering
matrices { H,}" ; andbase clustering alignment matrices {W,}” ,, which
is essentially a SVD problem. The equivalent optimization procedure is
given by :

maxy Tr(H'P) st H eR™* ; H'H = I,

where P =Y H,W, . The optimal solution to the above optimization
problem is given by H = UV7T | such that P = USVT is the SVD
decomposition of P. This is a single SVD optimization problem and its
complexity is given by O(nk?).

— 2. Update the base clustering alignment matrices {W,} ; using base
clustering matrices {H,}" ; and the consensus H, which is also a SVD
problem. The equivalent optimization procedure is given by :

maxyy, Tr(WrQ,) st W, eRF*F . WIW, = I

where Q, = >, HTH . The optimal solution to the above optimization
problem is given by W, = UV” | such that Q, = USV7T is the SVD
decomposition of ¢),. This particular optimization process involves m
SVD problems in order to determine the alignment matrices for all the
views. Each SVD optimization sub-problem takes O(k?%) time.

— 3. Update the base clustering matrices {H,}J, using base clustering
alignment matrices {W,}i", and the consensus H, which is also a SVD
problem to solve. The equivalent optimization procedure is given by :

maxg, Tr(H'R,) s.t H, ER™* ; H'H, = I,

where R, =Y HW[ . The optimal solution to the above optimization
problem is given by H, = UVT | such that R, = USVT is the SVD
decomposition of R,. This particular optimization process involves m
SVD problems in order to determine the alignment matrices for all the
views. Each SVD optimization sub-problem incurs O(nk?) time.

19



3.3. MULTI-VIEW CLUSTERING WITH INCOMPLETE VIEWS

— Increment iteration count z = z + 1

3.3.2 Efficient and Effective Incomplete Multi-View Clus-
tering (EE-IMVC)

EE-IMVC aims to simultaneously perform clustering and imputation of the incom-
plete base clustering matrices H{ ", of the component views instead of directly
filling the missing entries of the incomplete kernel matrices. It aims to learn a con-
sensus H across all views from the complete base clustering matrices Hy ", and
in turn imputes the missing part from the learned consensus. The two processes
are made to negotiate with each other to achieve better performance. However, in
this particular method, the alignment of the consensus with the convex-weighted
combination of the base clustering matrices is maximized as part of the optimiza-
tion procedure. The updation of the weights of the corresponding base clustering
matrices adds up as an extra step in the framework as compared to LF-IMVC. The

mathematical model involved can be proposed as follows :

max, m, v, w, e Tr(HT (0T o H;W;))
st HeRvr: HTH = I,
W, eERFF ; WIW, = I,
H, ER™* ; H,(s,,)) = H" ; HTH, = I,
acRhRm;all, =1

where H, is the v"" base clustering matrix such that H,(s,,:) refers to the rows
corresponding to the observed data entries, while the other entries are to be imputed.
s, are the indices corresponding to the observed data points for the v™* view.

Algorithm for Efficient and Effective Incomplete Multi-View Clustering
(EE-IMVC)

The algoritm described in [22] is described as follows -

Input : Incomplete component kernel matrices { K;}™, , regularization parame-
ters p and A , number of clusters : k , threshold : €
Output : Consensus clustering matrix H

T (o™ _ (o™ _ : - _
o Initialize Wy’ =1, Hy ' ,_; = 0, and iteration count z = 0

o [terate until convergence
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3.3. MULTI-VIEW CLUSTERING WITH INCOMPLETE VIEWS

— 1. Update the consensus clustering matrix H® using base clustering
matrices {H,}7 , , base clustering alignment matrices {W,}” ; and the
view-wise weight vector a, which is essentially a SVD problem. The
equivalent optimization procedure is given by :

maxy Tr(H'P) st H eR™* ; H'H = I,

where P =) «;H,W, . The optimal solution to the above optimization
problem is given by H = UVT | such that P = USVT is the SVD
decomposition of P. This is a single SVD optimization problem and its
complexity is given by O(nk?).

— 2. Update the base clustering alignment matrices {W,}" ; using base
clustering matrices {H,}",, view weight vector o and the consensus
H, which is also another SVD problem. The equivalent optimization
procedure is given by :

maxyy, Tr(WrQ,) st W, eRF*F . WIW, = I,

where Q, = > HI'H . The optimal solution to this optimization prob-
lem is given by W, = UVT | where Q, = USVT is the SVD decomposition
of ),. This particular optimization process involves m SVD problems in
order to determine the alignment matrices for all the views. Each SVD
optimization sub-problem takes O(k?*) time.

— 3. Update the base clustering matrices { H, }"; using previously updated
base clustering alignment matrices {W, }7, and the consensus H, which
is also a SVD problem to solve. The equivalent optimization procedure
is given by :

maxg, Tr(H'R,) s.t H, ER™* ; H'H, = I,

where R, =Y HW. . The optimal solution to the above optimization
problem is given by H, = UVT | such that R, = USVT is the SVD
decomposition of R,. This particular optimization process involves m
SVD problems in order to determine the alignment matrices for all the
views. Each SVD optimization sub-problem incurs O(nk?) time.

— 4. Update the view-specific weight vector a by solving the following
optimization problem :

max, flo st a €ER™

>,y =1
where f = [f17f27 s >fm] ; fr‘ = TT(HTHTWT)

The optimal solution to this problem is given by : o = H%II

— Increment iteration count z = z + 1
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Chapter 4

Method

4.1 Notations

The previous notations defined in Section 2.4.1 for Multiple kernel k-means
matrix-induced regularization remains the same for our proposed method.

using

Notations

Description

The number of observations
The number of views
Dataset in the form of a kernel matrix
The kernel matrix corresponding to i view
The k'™ cluster center/ The k' cluster
Number of observations in cluster Cj,
Indices for the observed data points for the v** view
Number of data points that could be observed in v view
Optimal neighborhood kernel matrix
Consensus clustering matrix across all views
Base clustering matrix for v** view
Base clustering alignment matrix for v*
Entries of H, that are to be imputed
View-specific correlation matrix
View-specific weight vector

view

Table 4.1: Notations used in our method

4.2 Introduction to imputation-based optimal ker-
nel clustering for incomplete multi-view data

Traditional multi-view clustering algorithms on incomplete views fall into two cat-
egories : the "two-stage” algorithms , wherein the missing entries in the incomplete
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4.3. SELECTION OF OPTIMAL NEIGHBORHOOD KERNEL FOR
CLUSTERING INCOMPLETE MULTI-VIEW DATA

views are filled by an imputation scheme like zero-filling , mean substitution, k-
nearest neighbor filling , expectation-maximization (EM) filling , stochastic regres-
sion filling and many other advanced techniques. Thereafter , a standard multi-view
clustering scheme is deployed to satisfactorily partition the data into disjoint groups.
The second class of algorithms tries to unify the two processes involved - imputation
of incomplete views and subsequent clustering into a single optimization problem.
The two processes are alternately performed , i.e., the clustering result at the pre-
vious iteration guides the imputation procedure at the next iteration and so on.
The clustering scheme used in both classes of algorithms involves selection of a uni-
fied kernel matrix , which is essentially considered to be a linear combination of all
the kernel matrices pertaining to the different views. This strong assumption puts
a hard constraint on the space in which the unified kernel matrix resides, which
significantly supresses the representability of the unified/optimal kernel.

4.3 Selection of optimal neighborhood kernel for
clustering incomplete multi-view data

Learning a compact representation of the unified kernel in case of multi-view data
for incomplete views require careful handling of the incomplete component kernels
and also the parameters involving the consensus clustering matrix. In this method,
we incorporate the idea of selecting an optimal neighborhood kernel to combine the
influence of the incomplete base kernels which are given as input and the view-wise
base clustering matrices which are continually updated on the run. This refor-
mulation of the incomplete multi-view clustering into the mould of optimal kernel
strategy also gives us an idea of the overall location of the data samples which are
missing in most of the views.

The optimal neighborhood kernel corresponding to the incomplete views should
belong to the space of positive semi-definite kernels. It necessarily gives us

4.4 The proposed formulation

In this section, we describe the scheme of imputation-based clustering using opti-
mal kernel selection strategy for incomplete multi-view data (OK-IMVC). Here, we
assume that the pre-specified kernel matrices K; ; ¢ = 1,2,...V are only a noisy
observation of the "ideal” kernel matrix L , where V is the number of views. The
mathematical model of the incomplete multi-view clustering scheme is given below

ming y, iyip-12..v Tr(L(L, — HAT)) +||L — K, |7
st He Rk HTH = I,
Yy =157 >0
14
K, = Zj:l K;
Ky(to, t) = K ¢ K, is P.S.D Vo

23



4.4. THE PROPOSED FORMULATION

where ¢, denotes the sample indices for which the v view is present and K is
the corresponding submatrix generated from these samples. G corresponds to the
optimal kernel matrix which should be , according to Frobenius norm , as close to
the linear combination of the view-specific kernel matrices as possible.

We also define the base clustering matrices for the different views as-

HU = [H?So 7H?SG)T]T )

where the v"* base clustering matrix HY) € R™7* can be obtained by solving the
kernel k-means problem on the v** incomplete base kernel matrix K,(t,,t,) = qucc).
(v=1,2,...V).

HY € Rn=m)zk denote the absent part of the v base clustering matrix H,. The
main crux of our algorithm is to simultaneously perform clustering and imputation
of the present base clustering matrices HY directly while keeping the portion HY
unchanged during the learning course. Also, we need to construct a consensus
clustering matrix H € R™* which should reflect the agreement between the V
base clustering matrices for the different views. These two processes are seamlessly
integrated so as to utilise the result of clustering at the previous iteration to help
impute the base clustering matrices. At every iteration, we shall update the optimal
kernel matrix G' € R™" which shall be in the neighborhood of K., , with respect to
the updated kernel weight vector v € RV ; 471, = 1. This kernel weight vector
plays an important role in the selection of different base kernels in order to determine
the optimal kernel matrix. We need to sufficiently consider the mutual correlation
between the different kernel matrices, where kernels corresponding to complementary
information are the most likely ones to be picked owing to the sparsity ({1 -norm)
constraint applicable to the kernel weights. This enhances the diversity of the unified
kernel. We account for this predicament by adding a matrix-induced regularization
term to the resultant objective.

The consensus clustering matrix H is updated following a simple kernel k-means
over the optimal neighborhood kernel matrix L. We want to maintain a semblance
of agreement of the individual base clustering matrices and the consensus H, using a

matriz dot product form, given by Tr(H” S2V_, %[HTSO)T, HS“)T]TWU). The weighted

incomplete base clustering matrices [HéO)T, Héa)T]T are aligned with respect to the
consensus via orthogonal matrix W,,, pertinent to the v"* view and so on. Keeping
H fixed, the incomplete base clustering matrices alongwith the alignment matrices
W, are updated with a view to maximize the agreement between them and the
consensus. The optimal kernel L is in turn updated using the clustering results and
the view-specific weights at the previous iteration.

The above idea can thus be fulfilled using two optimization schemes as follows :-
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4.5. INITIALIZATION OF Hy AND Wy

ming w, ~,L Tr(L(I, — HHT)) + §||L - KvH% + %'VTM’Y )
max, @ Tr(H" SV 4, [H HO''W,)
st He R H'H = I,

where L is the optimal kernel for the incomplete base kernels. L is required to
be positive semi-definite (P.S.D) and the distance between L and K, = 3.V K, |,
which is the linearly weighted combination of the incomplete kernels, is expressed
in terms of the squared Frobenius norm of their matrix difference. The correlation
between the views in the form of Hilbert-Schmidt norm is expressed as- M € RV*V
with the element M;; = Tr(K;QK;Q) ; Q = 2(I, — 1,1} capturing the correlation
between the i*" and ;% kernel matrices K; and K; respectively. H and H,'™ are
the consensus clustering matrix and the absent portion of the v* base clustering
matrix which needs to be imputed , W, is the v*"* permutation matrix to optimally
align H, with H. v = [y1,72,....7v]7 , which corresponds to the weight vector for
the V base clustering matrices as well as the base kernel matrices in order to seek
the optimal kernel L.

So the total objective to be realised here involves a sort of minimax optimization
over the consensus clustering indicator matrix H , as the selection of the optimal
kernel L based on the linearly combined incomplete kernels involves a minimization
procedure and the alignment criterion of the V' base clustering matrices H, for
v=1,2,...,V with the global consensus involves a trace maximization operation.
The two objectives need to be tuned seamlessly by the corresponding regularization
parameters in such a way that they agree upon a common clustering setup.

4.5 Initialization of H, and W,

In our proposed method, the consensus clustering matrix is obtained by performing
a simple kernel k-means procedure on the optimal neighborhood kernel L, where L
is initially composed of the linearly weighted combination of the observed portion
of the component kernel matrices K,(t,,t,) €R™*"™  n, being the number of data
points observed in the v* view. The incomplete portions of the base clustering
matrices as well as the kernel alignment matrices are initialised with zeros. The
entries of the base clustering matrices corresponding to the observed data samples
for each view are initialized by performing a simple kernel k-means on the kernel
sub-matrix formed by those entries for each view. The base clustering alignment
matrices W, are initialized to the identity matrix of order k£ for each view. This
initialization has well demonstrated good clustering performance via our proposed
OK-IMVC framework.
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4.6. ALTERNATE OPTIMIZATION

4.6 Alternate optimization

Jointly optimizing all the unknowns is difficult. So we propose a four-step alter-
nate optimization scheme to solve our dual objective problem efficiently. The view-

specific weight vector v is uniformly initialized as follows : 4 =y = ... =y = #

i) Optimizing H with fixed v , L ,(W,)Y_, and (H,)".

v=1 v=1 -

The equivalent optimization boils down to the following :

ming Tr(L(I, — HH")) s.t H € R"™* and H'H = I,

This is effectively a kernel k-means problem with L as the kernel matrix and k
being the number of clusters. This problem can be optimally solved to obtain the
consensus matrix H, by stacking the k eigenvectors of the optimal neighborood
kernel matrix L, corresponding to the top k eigenvalues.

ii) Optimizing (W,)Y_, with fixed v, L ,H and (H,)Y_, :

The equivalent optimization boils down to the following :

maxy Tr(WIY) st W, € R** and WIW, = I
where Y = HI' H

This is effectively a singular value decomposition problem and can effectively be
solved in O(k?) , k being the number of clusters. Let the singular value decom-
position of Y be given by : Y = USVT | where S is the diagonal-like matrix
comprising the singular values of X. Let B =S > . then the optimization prob-
lem can be expressed as : maxyy, wrw,—r, Tr(W,] UB*VT) = Tr(W]UB)(VB)T)
= (WIUB, BV).

iii) Optimizing ~ with fixed (H{")"_, , L ,H and (W,)"_,
The equivalent optimization is formulated as follows :

min,, LIVAT Ny — Ty
S.t ”)/Tlv =1
where b = [by, by, .....by|T with b,, = pTr(LK,,) +Tr(H"H,,W,,)

This is effectively a quadratic programming problem with linear constraints.

iv) Optimizing L with fixed (IT-L(,G))X:1 , v ,H and (W,)Y.

v=1

The optimization problem for determination of the optimal kernel matrix G is given
below:
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4.6. ALTERNATE OPTIMIZATION

miny, 3||L — B||% s.t L is positive semi-definite.
where B = K., — (I, — HHT)

1
p

The objective of this problem is to find the projection of B in P.S.D space. Accord-
ing th Theorem 2 in (Zhou et al. 2015),it’s optimal solution can be readily written
as G = UpSEVE where B = UpSpVE and S} is a diagonal matrix keeping the
positive singular values of Sp and setting the others to zeroes.

v) Optimizing (Hé“))vvzl with fixed v, L ,H and (W,)Y_; :
The equivalent optimization boils down to the following :

max @ Tr(H"TZ) s.t HY" € R and HYYTH" = I,
where Z = H(t,,: )W}

where ¢, denotes the indices for which the v view is absent or missing.
This is effectively a singular value decomposition problem and can effectively be
solved in O((n — n,)k?) , k being the number of clusters.

The selection of the regularization coefficients A and p should be done with utmost
care so that the two objectives involved in the optimization process mutually agree
towards an optimal solution. We have observed that the second objective which aims
at maximizing the alignment of the base clustering matrices with the consensus is
involved directly in a remarkable tug of war with the second term ||L — K, ||3. of the
first objective , which aims at selection of the optimal kernel matrix L. The two
terms involved get stuck in a race against each other , one decreases slightly when
the other increases and vice-versa towards reaching a point of convergence.
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4.7. THE ALGORITHM

4.7 The algorithm

Algorithm 1: OK-IMVC Algorithm

Data: {K;}/_;: Kernel matrices for v views, {;}}_, : List of indices of the
data samples unobserved in each view, A | p ,
Result: Consensus clustering matrix H, view-specific weight vector v ,
optimal neighborhood kernel L , Base clustering matrices {H;}Y_, |
Base clustering alignment matrices {W;}Y_,
Calculate view-wise correlation matrix M
for i=1to V do
(a) Initialize the " base clustering matrix H;(;,:) by performing kernel
k-means on the sub-matrix K;(¢;,t;) and fill the other entries with zeros
(b) Initialize the i base clustering alignment matrix : W; = I,
end
Initialize the consensus clustering matrix Hy by performing kernel
k-means over the averaged incomplete base kernel Ky = Zyzl %Ki;
Calculate the optimal neighborhood kernel L for the first iteration by
performing SVD on (K — %(In — HoH (%))) and selecting the non-negative
singular values ;
t=0;
while (0bj®-0bj*~D <eobjV ) do
Perform kernel k-means on the optimal kernel L to obtain the consensus
clustering matrix H
for i=1 to vdo
Calculate the i base clustering alignment matrix W; by performing
an SVD operation on Hl H.
end
Determine the view-specific weight vector v by performing a quadratic
programming problem with linear constraints given by :

min, LIVAT Ny — Ty
S.t ’)/Tlv =1
where b = [by, by, .....by|T with b,, = pTr(LK,,) +Tr(HT H,,W,,)

With the newly updated eight vector, compute K., = ZYZI Vi Ki;
Update the optimal neighborhood kernel L by performing an SVD over
(K, — %(In — HHT)) and rejecting the negative singular values.

for i=1 to v do
Calculate the i* base clustering matrix H; by performing an SVD
operation on HW/ .

end

Determine the cluster membership from the consensus H by the

following procedure : C(i) = argmax,H (i,p) ;

Update iteration count t =t + 1;

end
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Chapter 5

Performance analysis of our
proposed method

5.1 Complexity Analysis

The computational complexity of classical kernel k-means procedure is O(n?k) ,
where n is the number of data points and k is the number of clusters. The FE —
IMVC algorithm proposed by Liu et al. has a total running time of O(nk?+ Vk3 +
ZZ:1(” —n,)k?) , where n , V and k are the number of samples, views and clusters
respectively. The number of observable data points in the v* view is given by n,. So,
the proposed OK — IMV (' framework will understandably incur a larger running
time due to the incorporation of two subtle aspects - considering the correlation
between the different views and also the estimation of the optimal neighborhood

kernel matrix.

The optimization process involved in the OK — IMV (' algorithm comprises
a kernel k-means structure for estimating the consensus clustering matrix. This
involves a running time of O(n?k). This is followed by solving two SVD problems,
one for determining the view-specific base clustering matrices (H,)Y_,, which can
be done in O(3.V_, (n —n,)k?) time ; while the other aims at computing the cluster
alignment matrices (1,)Y_,, which costs a running time of O(Vk?). Thereafter, the
optimal kernel L is computed as a modified SVD problem, which further requires

O(n?) time.

5.2 Experimental Results

In this section, we evaluate the performance of our OK-IMVC algorithm on a few
benchmark multi-view datasets. Our algorithm has been implemented in Python
3.7 and the results obtained have been performed on a Windows machine with a
4-core 2.30 GHz processor and 8 GB RAM.
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5.3. DESCRIPTION OF THE MULTI-VIEW DATASETS IN OUR STUDY

5.2.1 Parameter Settings

The OK — IMV C algorithm is characterized by two tunable parameters : A and p.
The regularization term A is used to take into account the parity between the overall
objective and the quadratic term 77 M+, which necessarily relates to the weighted
view-specific correlation terms. The parameter p, on the other hand, ensures that
the optimal neighborhood kernel L is in close vicinity of the weighted combination
of incomplete kernels.

Our experimental observations show that the results are satisfactory for values
of X\ taken from the grid of {275 2749 ..., 2725} | Likewise, the range of values
for p can be taken from the set {277,2765 ... 274} to achieve the best possible
clustering results. Thus, we can observe that tuning these hyperparameters is of
utmost importance to obtain desirable results.

Also, we need to fix the value of the threshold parameter e; anything in the
interval [10~*, 1072] works fine .

5.3 Description of the multi-view datasets in our

study
Dataset Name Samples n || Number of views V' K
Flowers17 1360 7 17
ProteinFold 694 12 27
Caltech102-30 3060 48 102
Digital 2000 3 10
Flowers102 8189 4 102

Table 5.1: Description of benchmark multi-view kernel datasets

5.4 Evaluation on the real-world multi-view datasets

We apply the OK-IMVC algorithm with parameters set in the range given by : A
is chosen from the set {275 2749 .. 2725} while p is chosen from the given set
{277,2765 .., 271} on the different multi-view datasets described above, with in-
complete views. The algorithm is given as input the missing indices of the data
points corresponding to every view. The results of the clustering are collected in
terms of Normalized Mutual Information (NMI) score and clustering Purity index.
These indicators are thereafter used to compare our proposed OK-IMVC algorithm
with the state-of-the-art methods in incomplete multi-view clustering including the
following :
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5.4. EVALUATION ON THE REAL-WORLD MULTI-VIEW DATASETS

i) Efficient and Effective Incomplete Multi-View Clustering (EE-IMVC) [2]
ii) Late Fusion Incomplete Multi-View Clustering (LF-IMVC) [10]
iii) Localized Incomplete Multiple Kernel k-means (LI-MKKM) [22]
iv) Multiple Kernel k-means with alignment-maximization filling (MKKM+AF) [23]
v) Multiple Kernel k-means with mean-value filling (MKKM+MF)
vi) Multiple Kernel k-means with zero-filling (MKKM~+ZF) -*

H Method H Flowers-17 ‘ ProteinFold ‘ Caltech102-30 ‘ UCI-Digital ‘ Flowers-102 H

OK-IMVC 50.35 45.21 54.58 62.45 50.14
LF-IMVC 45.89 34.83 53.37 68.99 49.90
EE-IMVC 45.19 36.91 52.9 69.76 50.80
MKKM-IK 43.76 34.60 40.4 46.87 39.60
LI-MKKM 44.62 35.40 45.6 45.35 41.70

MKKM+AF 40.30 31.25 39.1 46.98 37.80

MKKM+MF 36.46 30.72 37.7 40.01 37.40

MKKM+ZF 37.0 30.60 37.7 41.77 37.40

Table 5.2: Performance comparison in terms of NMI values of OK-IMVC with
state-of-the-art incomplete multi-view clustering algortihms on real-world multi-
view datasets

In both the tables, the best values for a particular dataset is highlighted in bold.
The second-best values obtained are italicized. We can observe that our algorithm
achieves best performance in most of the cases involving both clustering measures.

H Method H Flowers-17 ‘ ProteinFold ‘ Caltech102-30 ‘ UCI-Digital ‘ Flowers-102 H

OK-IMVC 53.78 49.86 34.38 68.73 39.37
LF-IMVC 53.40 36.70 34.85 79.80 49.90
EE-IMVC 47.72 41.35 34.38 62.51 41.80
MKKM-IK 45.90 29.82 18.60 50.75 26.20
LI-MKKM 48.80 28.34 23.40 48.60 28.10

MKKM+AF 42.20 27.52 16.90 50.39 17.00

MKKM+MF 38.20 27.16 15.30 43.26 16.90

MKKM+ZF 38.40 27.22 15.30 44.64 15.30

Table 5.3: Performance comparison in terms of Purity values of OK-IMVC with
state-of-the-art incomplete multi-view clustering algortihms on real-world multi-
view datasets

31



Chapter 6

Conclusion

Clustering of multi-view data is challenging due to the diverse representation of data
according to different views. In our study, which is inspired by the literature of in-
complete multi-view clustering (IMVC), we proposed a novel optimal neighborhood
kernel-based approach to handle incomplete views with an additional regularization
term. Based on the framework, we have developed an efficient method to solve the
problem and named it as Optimal Neighborhood Kernel-based Incomplete Multi-
View k-means Clustering (OK-IMVC) algorithm. Our algorithm is based on the
optimal neighborhood kernel strategy for k-means clustering in the works proposed
by J. Liu et al [9] and X. Liu et al [17].

The experimental results obtained in section 5.4 confirmed the outperformance
of our approach over other approaches like the Efficient and Effective IMVC (EE-
IMVC) [2] and Late Fusion IMVC (LF-IMVC) [10] in most of the cases. We have
mainly worked with the benchmark multi-view kernel datasets. Our algorithm out-
performs both of the above-mentioned algorithms in most of the cases. Even for
the UCI Digital and FLowers-102 datasets, our method has outperformed many of
the existing state-of-the-art techniques in the realm of incomplete multi-view clus-
tering. In the cases where the other two algorithms have produced better clustering
indexes such as NMI score or purity index, our scheme is only marginally behind.
For our comparisons, we have used the original Matlab codes by X. Liu et al [2],[24],
[10] for EE-IMVC and LF-IMVC respectively. The code for our implementation of
the Optimal Neighborhood kernel-based incomplete multi-view k-means algorithm
is available at LIN K.

6.1 Extension of our method and scope for future
work

Despite the good performance of our proposed method over a wide range of cases,
it poses a few limitations and there is definitely scope for improvement. The per-
formance of clustering is dependent meticulously on the selection of regularization
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parameters A and p, which needs to be selected with care and cannot be auto-tuned.
The values of the coefficients have been tuned via grid search in order to promote
good clustering results. Moreover, our proposed algorithm doesn’t adequately take
into account the influence of the incomplete base clustering matrices on one an-
other. The correlation between the incomplete component kernels can be replaced
over iteration, by a regularization term which captures the correlation between the
base clustering matrices instead. This correlation term can be expressed in terms
of various divergence measures like K L-divergence or Itakura-Saito distance , and
other metrics like Hilbert-Schmidt Independence Criterion (HSIC) or other forms of
Bregman divergence metrics.

This work can be further extended to the realm of clustering multi-view data
streams. The paradigm of multi-view data stream clustering is a relatively less
explored field of research. Incomplete multi-view data stream poses a novel research
problem to tackle, given that all the information regarding the data needs to be
stored and subsequently updated in the form of specific statistical measures. The
dynamism involved in the data acquisition process requires smarter algorithms to
counter data incompleteness problems.
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Chapter 7
Appendix-I

Provide a convergence proof here if needed with plots of the objective function over

iteration.
Clustering results with plots for missing ratio = 0.1-0.9
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