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Abstract

The rapid advances in Deep Learning (DL) techniques have allowed rapid detection, local-

isation, and recognition of objects from images or videos. DL techniques are now being

used in many different applications related to agriculture and farming and medical Science

Images. In this work we are using Deep Learning techniques such as unet,pretrained unet

and apply on CWIF data set for Anomaly Detection and anomaly is weed and on Electron

Microscopy Dataset we are detecting mitochondria in hippocampus region of the brain

we evaluate our model using different losses and evaluation metrics at the same time also

telling the drawback and advantages of different models. If we can detect the images in the

crops we can use different machines that can be used for real time detection and removal

of weed from the field Our technology can distinguish between crop and weed plants in

commercial fields where crop and weed grow near to one another and can tolerate plant

overlap. Automated crop/weed discrimination allows for targeted weed treatment in weed

management tactics to reduce expense and adverse environmental effects.

The images of hippocampus region of the brain to detect mitochondria in the images and

give lable to each pixel will it belong to mitochondria or not

Keywords Weed Detection; Segmentation ;Unet; Autoencoder; VGG16; Resnet; In-

ception; Focal Loss; Dice coefficient; Mean IOU; Jacard coefficient; Transfer Learning



Contents

1 Introduction 1

2 Problem Definition 2

3 Terminologies 3

4 Dataset Explaination 4

4.1 Dataset-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Dataset-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Data Preprocessing And Augmentation 6

5.1 Dataset 1 - Augmentation and preprocessing . . . . . . . . . . . . . . . . . 6

5.2 Dataset 2 - Augmentation and preprocessing: . . . . . . . . . . . . . . . . 6

6 Related Work 6

7 Our Contribution 8

7.1 Segmentation using U-net . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7.2 Attention-Unet-Learning Where to Look . . . . . . . . . . . . . . . . . . . 12

7.3 VGG16 with Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.4 Resnet with Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.5 Inception with Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.6 Autoencoder with Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Loss Function 32

8.1 Pixel-wise cross entropy loss . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.2 Dice coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.3 Focal Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Evaluation Metrics 35

9.1 Pixel Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.2 Intersection-Over-Union (IoU, Jaccard Index) . . . . . . . . . . . . . . . . 36

9.3 Dice Coefficient (F1 Score) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



10 Final Observations: 37

11 References 38

6



List of Figures

1 Crops,Vegetation mask and ground truth containing weed(Yellow) and car-

rot(Red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Above images is brain images and the below part is the corresponding masks

in which white part belong to mitochondria . . . . . . . . . . . . . . . . . 5

3 One Layer of encoder block . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 (a)U-net architecture used in experiment . . . . . . . . . . . . . . . . . . . 9

5 Training and Validation loss and Accuracy on weed detection . . . . . . . . 10

6 Training and Validation f1-score and Iou-score on weed detection . . . . . . 10

7 Prediction of Multi class segmentation model on weed detection . . . . . . 10

8 Mean iou at γ = 2andγ = 5 on weed detection . . . . . . . . . . . . . . . . 11

9 Training and Validation loss Electron Microscopy Dataset . . . . . . . . . . 11

10 Training and Validation f1-score and Iou-score on Electron Microscopy Dataset 11

11 Final prediction on electron microscopy images . . . . . . . . . . . . . . . . 12

12 Mean iou at γ = 2 on Electron Microscopy Dataset . . . . . . . . . . . . . 12

13 (a)A block diagram of the proposed Attention U-Net segmentation model.

Input image is progressively filtered and downsampled by factor of 2 at

each scale in the encoding part of the network (e.g.H4 = H1

8
). Nc denotes

the number of classes.Attention gates (AGs) filter the features propagated

through the skip connections.Schematic of the AGs is shown in Figure be-

low. Feature selectivity in AGs is achieved by use of contextual information

(gating) extracted in coarser scales. . . . . . . . . . . . . . . . . . . . . . . 13

14 (a)Schematic of the proposed additive attention gate (AG). Input features(xl)

are scaled with attention coefficients (α) computed in AG. Spatial regions

are selected by analysing both the activations and contextual information

provided by the gating signal (g)which is collected from a coarser scale. Grid

resampling of attention coefficients is done using trilinear interpolation. . . 14

15 Attention Training and Validation loss on weed detection Dataset . . . . . 15

16 Attention Training and Validation f1-score and Iou-score on weed detection

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7



17 Mean iou and prediction at γ = 2onweeddetectionDataset . . . . . . . . . 16

18 Mean iou and prediction at γ = 3onweeddetectionDataset . . . . . . . . . 16

19 Mean iou and prediction at γ = 5 on weed detection Dataset . . . . . . . . 16

20 Training and Validation loss and Mean-iou on electron microscopy Dataset 16

21 Training and Validation f1-score and Iou-score on electron microscopy Dataset 17

22 Prediction on electron microscopy using attention . . . . . . . . . . . . . . 17

23 The architecture of UNet-VGG16 with transfer learning . . . . . . . . . . . 18

24 Training and Validation Loss and Mean iou . . . . . . . . . . . . . . . . . 19

25 Training and Validation f1-score and Iou-score . . . . . . . . . . . . . . . . 19

26 Final Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

27 Training and Validation Loss and Mean iou on Electron Microscopy dataset 20

28 Training and Validation f1-score and Iou-score on Electron Microscopy dataset 20

29 Residual learning: a building block. [15] . . . . . . . . . . . . . . . . . . . 22

30 Residual learning: a building block. [15] . . . . . . . . . . . . . . . . . . . 22

31 Training and Validation Loss and Mean iou on weed detection dataset . . . 23

32 Training and Validation f1-score and Iou-score on weed detection dataset . 23

33 Final Predictions on weed detection dataset . . . . . . . . . . . . . . . . . 24

34 Training and Validation Loss and Mean iou on electron microscopy dataset 24

35 Training and Validation f1-score and Iou-score on electron microscopy dataset 24

36 Final Predictions on electron microscopy dataset . . . . . . . . . . . . . . . 24

37 Inception Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

38 Training and Validation Loss and Mean iou on weed detection dataset . . . 26

39 Training and Validation f1-score and Iou-score on weed detection dataset . 26

40 Training and Validation Loss and Mean iou on electron microscopy dataset 27

41 Training and Validation f1-score and Iou-score on electron microscopy dataset 27

42 A autoenoder visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

43 Encoder of autoencoder to use in Unet as a part of encoder . . . . . . . . . 30

44 Autoencoder images Reconstrution . . . . . . . . . . . . . . . . . . . . . . 30

45 Loss and Iou Using Random Weights . . . . . . . . . . . . . . . . . . . . . 31

46 Iou-score and F1-score Using Pretrained weights Weights . . . . . . . . . . 31

47 Iou-score on all images and a single image . . . . . . . . . . . . . . . . . . 31

8



48 (a) pixel-wise cross entropy loss . . . . . . . . . . . . . . . . . . . . . . . . 32

49 (a) Dice Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9



1 Introduction

In order to manage and remove weeds effectively and increase yields, recognition and

prevention of weeds can be crucial. Although both weeds and crops have similar colours

(’green-on-green’), and because their shapes and textures can be extremely similar through-

out the growth period, weed detection in crops from pictures is naturally a difficult and

tough challenge. Also, a crop in one setting can be considered a weed in another. Our

task is to detect weed in given input vegetation mask and classifying EACH PIXEL of the

input image to be weed or crop. Here we are using supervised as well as semi supervised

learning techniques. For this segmentation task we are using the U-net architecture as

our base model and different metrics as our evaluation metrics. In the second technique

we are using attention U-net and apply model on two different datasets to get to know

the power of attention U-net and how attention is useful in dealing with the pixel be-

longing to rare class. In the third technique we are using weights of pre- trained network

like VGG16,Resnet,Inception as a part of encoder in u-net and doing segmentation task

In forth technique we are using pre-trained autoencoder which is trained on our specific

task(Images) and used that as apart of encoder in the u-net architecture.

Now based on our observation of different models and evaluation we are concluding that

using a pre-trained autoencoder as a part of u-net architecture will definitely beneficial for

the task of weed detection and detetcting mitochondria in brain microscopy images

Section 2 contains a formal problem definition

Section 3 contains the terminologies and various definition for explanation of the key-

words

Section 4 contains a brief explanation of the dataset. section 5 Data preprocessing and

Augmentation section 6 contains a brief discussion of some relevant research works.

Section 7 our contribution for the given problem definition

Section 8 -9 performance evaluation metrics and loss function used for the task

section 10 Contains all the results and performance of different models(Technique)

section 11 contains all the references of this thesis.
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2 Problem Definition

Given images which contains crops(Carrot) and a weed in a single image and the ground

truth of the input images which will actually tell which part belong to weed and which part

belong to crops ,with the help of ground truth we will use supervised learning techniques

to evaluate our model performance which will tell us that which technique is good for

classification between crop and weed in images at pixel level, we have to detect which part

of the image belong to crop and which part will belong to weed and the remaining will be

background

For this we will trained a u-net where input is a image and output is a vegetation mask

Now we have the vegetation mask we will give this vegetation mask as a input to a different

U-net trained specifically for segmenting task and now we will do our prediction and based

on that and evaluate the model performance

For the performance we are using evaluation metrics as f1-score and Iou-Score as well

as Mean-Iou at Some points

In the next task we are taking the images of hippocampus region of brain and detecting

mitochondria in it and doing the pixel level classification(PLA)
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3 Terminologies

• Segmentation: In plain English, segmentation is the process of giving pixels labels.

Each pixel or piece of a picture assigned to the same category has a unique label.

• Weed Detection:Unmechanized weed control is one of the current issues in agri-

culture, and weed detection systems are significant solutions. Weed identification

also contributes to the reduction or elimination of pesticide use, minimising the neg-

ative effects of agriculture on the environment and human health, and enhancing

sustainability.

• U-net: It is currently one of the methods used the most frequently for semantic

segmentation tasks. It is a fully convolutional neural network built with a smaller

training sample size in mind. It is an upgrade over the current FCN, which Jonathan

designed as ”Fully convolutional networks for semantic segmentation.” Long et al. in

(2014).

• Multiclass Segmentation: we instead of binary we have multiple class to segment

or when given a pixel we have more then 2 classes to segment

• VGG16 : A convolutional neural network with 16 layers is called VGG-16. The

ImageNet database contains a pretrained version of the network that has been trained

on more than a million photos. The trained network can identify 1000 different object

types in pictures.

• Resnet34: Resnet34 is a modern image classification model that consists of a 34

layer convolutional neural network. This model was previously trained using the

ImageNet dataset, which contains more than 100,000 images across 200 different

classifications.. However, it is different from traditional neural networks in the sense

that it takes residuals from each layer and uses them in the subsequent connected

layers (similar to residual neural networks used for text prediction)

• Inception-V3: On the ImageNet dataset, it has been demonstrated that the pic-

ture recognition model Inception v3 can achieve higher than 78.1 percent accuracy.

3



The model is the result of numerous concepts that have been established by various

researchers over the years.

• Autoencoder: A particular kind of neural network called an autoencoder is capable

of learning a compressed representation of raw data. Encoder and decoder sub-models

make up an autoencoder. The input is compressed by the encoder, and the decoder

makes an effort to reconstruct the input from the encoder’s compressed form.

• Transfer Learning: Transfer learning (TL) is a machine learning (ML) research

subject that is concerned with the storage of knowledge obtained while resolving one

problem and its subsequent application to another similar but unrelated problem.

For instance, understanding acquired in learning to recognise. one type of crop could

apply when trying to recognize other type of crop.

4 Dataset Explaination

4.1 Dataset-1

Figure below displays example images from the dataset together with all annotations. The

following section describes the content of the dataset, the acquisition parameters as well

as the exact format of the image data and metadata.[2]

(a)

Figure 1: Crops,Vegetation mask and ground truth containing weed(Yellow) and car-

rot(Red)
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The dataset contain total 60 images and corresponding vegetation masks and also corre-

sponding Ground truth images which contain back colour pixel belongs to background red

pixel belong to crop and yellow pixel belong to weed part

4.2 Dataset-2

Their are total images size 1065x2048x1536 volume of tif stake of Electron microscopy

and the corresponding mask images which are total 1980 images(After breaking them into

patches) The dataset available for download on this webpage represents[1] a 5x5x5µm

(a)

Figure 2: Above images is brain images and the below part is the corresponding masks in

which white part belong to mitochondria

section taken from the CA1 hippocampus region of the brain.Although our line of research

was primarily motivated by the need to accurately segment mitochondria and synapses,

other structures are of interest for neuroscientists such as vesicles or cell boundaries.
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5 Data Preprocessing And Augmentation

5.1 Dataset 1 - Augmentation and preprocessing

As we are doing our task of pixel classification with use of deep learning techniques and

deep learning task required a lot of data but data for weed detection contain only 60 im-

ages and corresponding masks so we need to do data augmentation,for this task we are

flipping and rotating the images and corresponding ground truth images so that their will

be no discrepancy when we are training our supervised models. By doing this we will be

generating 500 images and corresponding masks so total we have 1000 images to work with

5.2 Dataset 2 - Augmentation and preprocessing:

In this data set we have total volume of 1065 × 2048 × 1536 and have a similar tif stake

of masks. we will divide the images into 256 × 256 with a step size of 256 so we have no

overlapping, we also doing the same for ground truth

By this process we have 1980 images of size 256 × 256 and masks in total which is good

for deep learning tasks.

6 Related Work

When focusing solely on leaves, techniques based on shape, colour, and texture character-

istics have shown promise in differentiating between various leaf kinds. With an average

accuracy of 85%, Beghin et al. [1] categorise leaves from 10 species based on form and

texture. . Kumar et al. [2] developed a Northeastern United States smartphone applica-

tion for categorising tree leaves These methods have a common input—an image of a flat

leaf taken against a largely uniform background—with other works[beghin2010shape].

Machine vision can be used in agriculture for intelligent weed control, however often, com-

mercial field settings do not call for the use of single leaf images.In order to control the

application of herbicides, remote sensing has been effectively used to predict weed den-
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sities and dispersion on a field level [5]. However, a far finer scale of plant classification

is required for the precision agricultural activities that are taken into consideration here

[6]. Camera-based sensing can be used to classify and identify individual plants as well as

groupings of a few plants on the ground. A robot and computer vision system developed

by Hemming et al. [7] reliably detects 51 to 95 percent of plants based on the colour and

shape of segmented plants in top-down images.They draw the conclusion that segmenting

plants into distinct entities is challenging and requires more research. Similar character-

istics are used by Astrand Baerveldt [8] to classify segmented plants. They test their

system in greenhouse tests with big plants (approximately 5 cm in diameter), but they

don’t give quantitative information on categorization performance. To facilitate crop /

weed distinction, leaf segmentation has also been studied in field settings [9, 10].Neto et

al. [11] introduce a method for segmenting leaves that works well for convex leaves but

not for other leaf shapes (like carrots considered here). They come to the conclusion that

these circumstances require greater inquiry..

Another work done by Sebastian Haug and Andreas Michaels They evaluate their ap-

proach using a collection of pictures taken by a field robot operating autonomously on an

organic carrot farm. Cross-validating with a leave one out strategy while using photos

from our dataset as input results in an average classification accuracy of 93.8.%.

The data of electron microscopy to detecting mitochondria is a open source data for

different uses so no pixel level classification accuracy is given
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7 Our Contribution

7.1 Segmentation using U-net

One of the main advantages of using U-Net is its ability to yield relatively good results on

pixel-labelling tasks with limited dataset images.

One Layer of Encoder block will be shown below:

(a)

Figure 3: One Layer of encoder block

256X256 → 128X128 → 64X64 → 32X32 → 16X16 → 32X32 → 64X64 → 128X128 → 256X256

The actual Unet architecture is shown above, when we are dealing with multiclass Classi-

fication we use Softmax in the last layer of Decoder block of Unet.When we are dealing

with Binary classification we will be using Sigmoid this we shoud we have to remember

in every time when we are training our model

Classical U-Net architecture includes the down-sampling and up-sampling paths. The

down-sampling path has four blocks. Each block does two 3x3 unpadded convolutions, a

rectified linear unit (ReLu)[Relu], a 2x2 max pooling operation with stride 2, and a rec-

tified linear unit (ReLu)[Relu]. However, Leaky ReLu with a 0.3 value was utilised in its

8



(a)

Figure 4: (a)U-net architecture used in experiment

place. ReLu unit may reach a point where it solely outputs zeros, which would prohibit

some neural network components from learning. The number of feature channels doubles

with each block.. The up-sampling path has four blocks as well. Every block along this

route upsamples a feature map, performs a 2x2 convolution to cut the number of feature

channels in half, concatenates the upsampled feature map with the downsampled feature

map, and then does two 3x3 unpadded convolutions and a leaky ReLu. In this method,

a 256x256 image with a 256x256 mask is sent to the input layer. The final layer of the

network maps the feature vector to two classes using 1x1 convolution and the softmax

function. Architecture has a total of 29 levels. There are 20 convolutional layers total,

followed by Leaky ReLu, 4 max-pooling down-sampling layers, 4 up-sampling up-sampling

layers, and an output layer. Adam optimizer was used for optimization, with categorical

cross-entropy as the loss function..

Some times we also used Focal Loss and negative of jacard coefficient and negative of Dice

coefficient and also used Binary focal loss when we are dealing with binary classification

Results :
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(a) Training and Validation loss (b) Training and Validation Accuracy

Figure 5: Training and Validation loss and Accuracy on weed detection

(a) Training and Validation f1-score (b) Training and Validation Iou-score

Figure 6: Training and Validation f1-score and Iou-score on weed detection

(a) Prediction

Figure 7: Prediction of Multi class segmentation model on weed detection
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(a) Mean Iou γ = 2 (b) Mean Iou γ = 5

Figure 8: Mean iou at γ = 2andγ = 5 on weed detection

(a) Training and Validation loss

Figure 9: Training and Validation loss Electron Microscopy Dataset

(a) Training and Validation f1-score (b) Training and Validation Iou-score

Figure 10: Training and Validation f1-score and Iou-score on Electron Microscopy Dataset
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(a) prediction (b) prediction

Figure 11: Final prediction on electron microscopy images

(a) Mean Iou γ = 2

Figure 12: Mean iou at γ = 2 on Electron Microscopy Dataset

7.2 Attention-Unet-Learning Where to Look

Attention Gates:For tasks like image captioning [1], machine translation [2, 30], and

classification [11, 31, 32], AGs are frequently employed in natural image analysis, knowl-

edge graphs, and language processing (NLP). Prior research investigated attention-maps

by analysing the gradient of output class scores in relation to the input image. On the other

hand, trainable attention is imposed by design and divided into hard- and soft-attention.

Model training is more challenging because hard attention [21], such as iterative region pro-

posal and cropping, is frequently non-differentiable and requires on reinforcement learning

for parameter updates. [36] use recursive hard attention to find anomalies in chest X-ray

data. Contrarily, soft attention uses normal back-propagation and is probabilistic without

the need for Monte Carlo sampling.For instance, additive soft attention has recently been

utilised to classify images [11, 32] and is used in sentence-to-sentence translation [2, 29].

In [10], which was the top performer in the ILSVRC 2017 image classification challenge,

channel-wise attention is used to emphasise significant feature dimensions. To end the

reliance on outside gating information, self-attention approaches [11, 33] have been sug-

gested. For instance, [33] uses non-local self attention to identify long-range dependencies.

Self-attention is used to achieve class-specific pooling in [11, 32], leading to more precise

and reliable image classification performance.

In this research, we present a novel self-attention gating module that may be used for dense
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label predictions in CNN-based standard image analysis models. We also look at how AGs

can be used for medical image analysis, namely for picture segmentation. The following is

a summary of this work’s contributions::

(a)

Figure 13: (a)A block diagram of the proposed Attention U-Net segmentation model.

Input image is progressively filtered and downsampled by factor of 2 at each scale in the

encoding part of the network (e.g.H4 = H1

8
). Nc denotes the number of classes.Attention

gates (AGs) filter the features propagated through the skip connections.Schematic of the

AGs is shown in Figure below. Feature selectivity in AGs is achieved by use of contextual

information (gating) extracted in coarser scales.

Attention Gates in U-Net Model:To draw attention to important features that

are sent over skip connections, the suggested AGs are implemented into the conventional

U-Net design (see Figure 5). In order to distinguish between irrelevant and noisy responses

in skip connections, information retrieved from coarse scale is used in gating. To merge

just pertinent activations, this is done just prior to the concatenation step. Additionally,

both during the forward pass and the reverse pass, AGs filter neuron activations. During

the backward pass, gradients coming from background regions are given a lower weight.
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(a)

Figure 14: (a)Schematic of the proposed additive attention gate (AG). Input features(xl)

are scaled with attention coefficients (α) computed in AG. Spatial regions are selected by

analysing both the activations and contextual information provided by the gating signal

(g)which is collected from a coarser scale. Grid resampling of attention coefficients is done

using trilinear interpolation.

This enables shallower layer model parameters to be changed primarily depending on spa-

tial areas that are important to a specific task. The following can be used to develop the

update rule for layer ”l” - 1’s convolution parameters:

∂(x̂l
i)

∂(Φ(l − 1))
=

∂(αl
if(x(l − 1)i; Φ(l − 1)))

∂(Φ(l − 1))
= αl

i

∂(f(x(l − 1)i; Φ(l − 1)))

∂(Φ(l − 1))
+

∂(αl
i)x

l
i

∂(Φ(l − 1))

The first gradient term on the right-hand side is scaled with αl
i. In case of multi-

dimensional AGs, corresponds to a vector at each grid scale. In each sub-AG, comple-

mentary information is extracted and fused to define the output of skip connection. To

reduce the number of trainable parameters and computational complexity of AGs, the lin-

ear transformations are performed without any spatial support (1x1x1 convolutions) and

input feature-maps are downsampled to the resolution of gating signal, similar to non-local

blocks [33]. The corresponding linear transformations decouple the feature-maps and map

them to lower dimensional space for the gating operation. As suggested in [11], low-level

feature-maps, i.e. the first skip connections, are not used in the gating function since they

do not represent the input data in a high dimensional space. We use deep-supervision
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(a) Training and Validation loss

Figure 15: Attention Training and Validation loss on weed detection Dataset

(a) Training and Validation f1-score (b) Training and Validation Iou-score

Figure 16: Attention Training and Validation f1-score and Iou-score on weed detection

Dataset

[16] to force the intermediate feature-maps to be semantically discriminative at each im-

age scale. This helps to ensure that attention units, at different scales, have an ability to

influence the responses to a large range of image foreground content. We therefore prevent

dense predictions from being reconstructed from small subsets of skip connections

Observations : With the use of attention gates we will be increasing the time for a single

epoch to complete but due to attention we will be getting the same f1 score(as in simple

Unet) in less no.of epochs,so with the help of attention gets model is learning where to

look for weed and mitochondria in respective images in less no of epochs so here we are

saving our time and convergence will be faster

Results :
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(a) Mean Iou γ = 2 (b) Prediction

Figure 17: Mean iou and prediction at γ = 2onweeddetectionDataset

(a) Mean Iou γ = 3 (b) Prediction

Figure 18: Mean iou and prediction at γ = 3onweeddetectionDataset

(a) Mean Iou γ = 5 (b) Prediction

Figure 19: Mean iou and prediction at γ = 5 on weed detection Dataset

(a) Training and Validation loss (b) mean-iou

Figure 20: Training and Validation loss and Mean-iou on electron microscopy Dataset
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(a) Training and Validation f1-score (b) Training and Validation Iou-score

Figure 21: Training and Validation f1-score and Iou-score on electron microscopy Dataset

(a) Prediction

Figure 22: Prediction on electron microscopy using attention

7.3 VGG16 with Unet

One of the CNN architectures used exclusively for picture segmentation is called U-Net.

The complexity of U-Net (this research contains 31,031,685 parameters) affects the exe-

cution time, and the U-Net design cannot be executed on some systems due to their low

specification. To solve this issue, we suggested a novel model that combines the U-Net de-

sign with the VGG16 architecture to lower the layer and parameter of U-Net. VGG16 was

chosen because it has fewer parameters than U-Net and is similar to the contracted layer

of U-Net. Additionally, VGG16 already contains weights for easily accessible parameters,

so we apply these weights to our new model. The expanding layer and contracting layer

are typically present in several segmentation models. In this study, the VGG16 architec-

ture was altered to mimic the U-Net architecture by including an expanding layer at the

end of the VGG16 architecture that included numerous upsampling layers and convolution

layers. This is carried out up until the model’s overall architecture is symmetrical and

takes the form of the letter U. As a result, the UNet-VGG16 model’s design will consist
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of two layers: the VGG16, which serves as the contracting layer, and the expansion layer,

which will be introduced later. The parameters will be decreased with this new architec-

ture to 17,040,001 with about 2,324,353 trainable parameters. The UNet-VGG16 model

with the Transfer Learning approach will be used to train the MRI brain tumour picture.

By freezing the contraction layer in UNet-VGG16, this technique prevents the weighted

layer from being modified when training data is executed. Instead, we make advantage of

the VGG16 model’s convolution layer weight. The objective is to shorten the computation

time and shorten the model’s training period. Figure 6 depicts the process visualisation of

image segmentation under the new proposed architecture, whereas Figure 5 displays the

architecture of the proposed model, namely UNet-VGG16 with Transfer Learning.

Observation: With the use of transfer learing and using vgg 16 pretarined weights which

is trained on imagenet dataset so vgg 16 is locally optimized for a pearticular task ,here we

are increasing the parameters but we are saving time in converging to best f1 score because

of the concept of transfer learning we are converging more faster than we have attention

gates plus Unet. here we are again saving more time with respect to no of epochs

(a)

Figure 23: The architecture of UNet-VGG16 with transfer learning

Results :
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(a) Training and Validation Loss (b) Mean Iou-score

Figure 24: Training and Validation Loss and Mean iou

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 25: Training and Validation f1-score and Iou-score

(a) Predictions

Figure 26: Final Predictions
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(a) Training and Validation Loss (b) Mean Iou-score

Figure 27: Training and Validation Loss and Mean iou on Electron Microscopy dataset

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 28: Training and Validation f1-score and Iou-score on Electron Microscopy dataset
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7.4 Resnet with Unet

One of the problems ResNets solve is the famous known vanishing gradient. This is because

when the network is too deep, the gradients from where the loss function is calculated easily

shrink to zero after several applications of the chain rule. This result on the weights never

updating its values and therefore, no learning is being performed.

With ResNets, the gradients can flow directly through the skip connections backwards

from later layers to initial filters.

Take H(x) as an underlying mapping that can be fitted by a few stacked layers (but not

necessarily the complete net), with x indicating the inputs to the first of these layers. It

is analogous to hypothesising that numerous nonlinear layers may asymptotically approx-

imate the residual functions, i.e., H(x)− x, if one believes that they can do so for difficult

functions (assuming that the input and output are of the same dimensions). Therefore, we

explicitly allow these layers to approach a residual function F (x) := H(x)− x rather than

assuming that they will approximate H(x). Thus, the initial function becomes F (x) + x.

Although (as expected) both forms should be able to asymptotically approximate the de-

sired functions, the learning curve for each form may be different.

21



Figure 29: Residual learning: a building block. [15]

Figure 30: Residual learning: a building block. [15]

From this above observation taking a little bit further on that. Based on the plain

network fig we insert shortcut connections which turn the network into its counterpart

residual version. The identity shortcuts can be directly used when the input and output

are of the same dimensions. In fig We can observe that the ResNet is made up of four

layers with similar behaviour after one convolution and pooling stage (on orange). The

same pattern is followed by each layer. By passing the input every two convolutions, they

perform a 3x3 convolution with fixed feature map dimensions (F) of 64, 128, 256, and

512, respectively. Additionally, during the entire lay, the measurements of width (W) and

height (H) stay unchanged.

we are using resnet as a part of encoder in unet and using in unet so due to Pre trained

weights in the encoder block of unet (resnet as backbone) and with the concept of transfer
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(a) Training and Validation Loss (b) Mean Iou-score

Figure 31: Training and Validation Loss and Mean iou on weed detection dataset

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 32: Training and Validation f1-score and Iou-score on weed detection dataset

learning the no. of epochs required to give the best f1 score we need less no of epochs
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(a) Predictions

Figure 33: Final Predictions on weed detection dataset

(a) Training and Validation Loss (b) Mean Iou-score

Figure 34: Training and Validation Loss and Mean iou on electron microscopy dataset

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 35: Training and Validation f1-score and Iou-score on electron microscopy dataset

(a) Predictions

Figure 36: Final Predictions on electron microscopy dataset
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7.5 Inception with Unet

Stage 1 and 2 The network starts with an image size of 224x224x3. Then it goes through

a 1x1 Conv, 3x3 MaxPool, 1x1 Conv, 3x3 Conv, and a 3x3 MaxPool, and results in an

image of size 192x28x28.

This part of the network is very similar to AlexNet, except that the image size in

AlexNet is further reduced to 256x12x12.

Stage 3 As we see in Figure 6, stage 3 has two Inception blocks and in the end a Max

Pool layer. But the inception blocks do not have the same channel allocation, as seen in

the figure. Block 1 has 256 channels, whereas block 2 has 480 channels. So the input image

of 192x28x28 now becomes 480x14x14, after the two inception blocks and the MaxPooling

layer.

Stage 4 and 5 Stage 4 and 5 are very similar to stage 3. Stage 4 has 5 inception blocks

followed by a MaxPool, and stage 5 has 2 inception blocks followed by a GlobalAverage-

Pool.

So this is the Inception or GoogleLeNet architecture that was originally published. But

later the architecture has been further improved in various different versions v2, v3, and

v4.

Inception V2 —Add batch normalization

Inception V3—Modified inception block (replace 5x5 with multiple 3x3 convolutions,replace

5x5 with 1x7 and 7x1 convolutions,replace 3x3 with 1x3 and 3x1 convolutions,have deeper

stacks)

Observation: Inception,VGG16,Resnet34 as a encoder in Unet- In this ex-

periment of transfer learning we are using we have observed that resnet34 will be act-

ing as a good encoder for Unet and the model is giving its best accuracy in less no of

epochs;henceforth we are converging faster
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Figure 37: Inception Block

(a) Training and Validation Loss (b) Mean Iou-score

Figure 38: Training and Validation Loss and Mean iou on weed detection dataset

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 39: Training and Validation f1-score and Iou-score on weed detection dataset
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(a) Training and Validation Loss (b) Mean Iou-score

Figure 40: Training and Validation Loss and Mean iou on electron microscopy dataset

(a) Training and Validation Iou-score (b) Training and Validation f1-score

Figure 41: Training and Validation f1-score and Iou-score on electron microscopy dataset

27



7.6 Autoencoder with Unet

Background: Autoencoder is an unsupervised artificial neural network that learns how

to efficiently compress and encode data then learns how to reconstruct the data back from

the reduced encoded representation to a representation that is as close to the original input

as possible.

Autoencoder, by design, reduces data dimensions by learning how to ignore the noise

in the data.

Autoencoder Components:

Autoencoders consists of 4 main parts:

1- Encoder:In which the model learns how to reduce the input dimensions and com-

press the input data into an encoded representation.

2- Bottleneck: which is the layer that contains the compressed representation of the

input data. This is the lowest possible dimensions of the input data.

3- Decoder: In which the model learns how to reconstruct the data from the encoded

representation to be as close to the original input as possible.

4- Reconstruction Loss:This is the method that measures measure how well the

decoder is performing and how close the output is to the original input.

The training then involves using back propagation in order to minimize the network’s

reconstruction loss

Now we will train a auto encoder on our mask images and then we will use the weights

of autoencoder and transfer these weights to the unet for the training and testing purpose

by we can say that when we use vgg16,resnet and inception we are getting the same results

in less no of epoches now if we train a auto encoder on our data set and train it and use

weights in our unet architecture we can say that the model will converge faster

When we are using transfer learning at that time we are thinking that we will be transfering

the weights of a model which is trained on imagnet dataset why we build a autoencoder

and use the weights of encoder and populate it in the encoder of the Unet now train our

unet for segmentation. Surperisingly the result we got after this process are not improved

in terms of f1 score but we will be getting same value of f1-score in less no of epochs,so
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Figure 42: A autoenoder visualization

again we are saving time

Results :
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Figure 43: Encoder of autoencoder to use in Unet as a part of encoder

(a) Image Reconstruction using Autoencoder (b) Image Reconstruction using Autoencoder

Figure 44: Autoencoder images Reconstrution
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(a) Training and Validation Loss (b) Training and Validation f1-score

Figure 45: Loss and Iou Using Random Weights

(a) Training and Validation Loss (b) Training and Validation f1-score

Figure 46: Iou-score and F1-score Using Pretrained weights Weights

(a) Mean Iou (b) Iou-score Calculated on single Image

Figure 47: Iou-score on all images and a single image
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8 Loss Function

8.1 Pixel-wise cross entropy loss

This loss compares the class predictions (a depth-wise pixel vector) against our one-hot

encoded target vector for each particular pixel.

We are effectively asserting equal learning to each pixel in the image because the cross

entropy loss analyses the class predictions for each pixel vector individually before averaging

over all pixels. This can be a concern because training might be dominated by the class

that is shown in the image the most frequently. For each output channel, Long et al. (FCN

article) consider weighting this loss to account for the dataset’s class imbalance. [1]

(a)

Figure 48: (a) pixel-wise cross entropy loss
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8.2 Dice coefficient

In essence, it is a measurement of sample overlap. The Dice coefficient, which spans from

0 to 1, represents perfect and total overlap. Initially designed for binary data, the Dice

coefficient can be calculated as:

Dice =
2 |A ∩B|
|A| + |B|

where |A ∩B| represents the common elements between sets A and B, and |A| represents

the number of elements in set A (and likewise for set B).

For the case of evaluating a Dice coefficient on predicted segmentation masks, we can

approximate |A ∩B| as the element-wise multiplication between the prediction and target

mask, and then sum the resulting matrix.

Since our target mask is binary, any pixels from our prediction that are not ”activated”

in the target mask are effectively zeroed out. We effectively penalise low-confidence predic-

tions for the remaining pixels; a greater value for this expression, which is in the numerator,

results in a better Dice coefficient.

In order to quantify |A| and |B|, Some scholars perform this calculation using the simple

sum, while others favour using the squared sum. I’ll let you test them both and decide

which performs better because I lack the practical knowledge to know which empirically

outperforms the other over a wide range of tasks.

In case you were wondering, the Dice coefficient is calculated with a 2 in the numerator

since our denominator ”twice counts” the elements that are shared by the two sets. In

order to formulate a loss function which can be minimized, we’ll simply use 1 − Dice.

Because we directly use the predicted probabilities rather than thresholding and turning

them into a binary mask, this loss function is also referred to as the ”soft Dice loss.”

The numerator of the neural network output reflects the shared activations between

our prediction and the target mask, whilst the denominator reflects the total number of

activations across each mask individually. So that the soft Dice loss does not have trouble

picking up new information from classes that have less spatial representation in an image,

this has the effect of normalising our loss in accordance with the size of the target mask.
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(a)

Figure 49: (a) Dice Coefficient

8.3 Focal Loss

Another way to think of focal loss (FL) is as a variant of binary cross-entropy. It allows

the model to put greater emphasis on learning challenging examples by de-weighting the

contribution of simple examples. It functions well in situations with extreme class imbal-

ance, as seen in Fig. 1. Let’s examine the design of this focus loss. To understand how

Focal loss is generated from cross-entropy, we will first examine binary cross entropy loss.

CE =

−log(p) if y = 1

−log(1 − p) otherwise

To make convenient notation, Focal Loss defines the estimated probability of class as:

Pt =

p if y = 1

1 − p otherwise

Therefore, Now Cross-Entropy can be written as

CE(p, y) = CE(pt) = −log(pt)

Focal Loss proposes to down-weight easy examples and focus training on hard negatives
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using a modulating factor((1 − p)t)γ as shown below

FL(pγ) = −αγ(1 − pt)
γlop(pt)

Here, γ > 0 and when γ = 1 Focal Loss works like Cross Entropy loss function.

Similarly, generally range from [0,1], It can be set by inverse class frequency or treated as

a hyperparameter.

9 Evaluation Metrics

9.1 Pixel Accuracy

The concept of pixel precision is likely the simplest to grasp. It is the proportion of correctly

categorised pixels in your image. Even though it is simple to understand, this metric is far

from ideal.

It could be challenging to detect the problem with this measure at first look. Here is a

situation that will reveal this measure for what it actually is: Let’s imagine that you put

your segmentation model to use on the image to the left. The ground truth, or annotation,

is shown in the picture to the right (what the model is supposed to segment). Our model

is here attempting to identify ships in a satellite image..

Simply said, one class made up 95% of the original picture. Therefore, if the model assigns

every pixel to that class, 95% of the pixels are correctly classified while the remaining 5%

are not. Because of this, even though your accuracy is a stunning 9%, your model is giving

a prediction that is absolutely meaningless. This is intended to demonstrate that higher

segmentation skills aren’t always implied by high pixel precision.

Class imbalance is the term for this problem. When our classes are severely out of balance,

one or more classes dominate the picture while other classes make up a very minor fraction

of it. Unfortunately, class imbalance can’t be disregarded because it can be seen in many

real-world data sets.
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9.2 Intersection-Over-Union (IoU, Jaccard Index)

The Intersection-Over-Union (IoU), also known as the Jaccard Index, is one of the most

commonly used metrics in semantic segmentation. . . and for good reason. The IoU is a

very straightforward metric that’s extremely effective.

Look at the illustration to the left before continuing to the next sentence. According to

the graphic on the left, the IoU is the area of union between the predicted segmentation

and the ground truth divided by the area of overlap between the predicted segmentation

and the ground truth. This metric ranges from 0–1 (0–100%) with 0 signifying no overlap

and 1 signifying perfectly overlapping segmentation.

The mean IoU of the picture is determined for binary (two classes) or multi-class segmen-

tation by averaging the IoU of each class. (The code does it a little bit differently.)

Now let’s use the identical example as section 1 to try to understand why this statistic is

superior to pixel precision. Let’s assume for the sake of simplicity that the ships (coloured

boxes) all belong to the same class.

9.3 Dice Coefficient (F1 Score)

The IoU and the Dice coefficient are quite similar. They are positively associated, thus if

one claims that model A is superior to model B at picture segmentation, the other will

also claim the same. They both have a range of 0 to 1, like the IoU, with 1 denoting the

greatest resemblance between expected and truth.

IoU and the Dice Coefficient are the two metrics for semantic segmentation that are most

frequently utilised.
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10 Final Observations:

In our All experiments we are concerned about the time to converge the unet So we here

realise that with the help of transfer learning and pre trained auto encoder on our data set

can greatly reduces the no. of epochs to converge
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