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Abstract

Recently, deep learmning has enabled significant advancements on a variety of
challenging tasks, from machine translation and autonomous driving to master-
ing a variety of abstract board games. Practical machine learning approaches in
cryptography have primarily centred on side-channel analysis. In this disserta-
tion, we attempt to train neural networks with the unique characteristics of a round-
reduced Speck. The purpose of training neural networks is to differentiate be-
tween random data and the output of Speck with a specific input difference. We
initially determine the expected effectiveness of a few multiple-differential dis-
tinguishers for round-reduced Speck32/64 that utilise the full Markov model of
Speck32/64 in order to assess the potency of these machine-learned distinguish-
ers, i.e. all differential characteristics following a given input difference. Up to
around eight rounds past our selected input difference, a decently high detec-
tion efficiency is attained. We also performed cryptanalysis on a different cipher,
namely KATAN, with the same approach but achieved no success, thereby indi-
cating the strength of KATAN.
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Introduction

1.1 Cryptography

A method of encoding messages or information to make sure that only the intended

recipients can read and understand it. In computer science, the term "cryptography"

refers to safe information and communication methods that use mathematical prin-

ciples and a system of calculations based on rules, or algorithms, to change messages

in ways that are challenging to read. These deterministic algorithms are employed in

the creation of cryptographic keys, digital signature, online browsing on the internet,

and private communications like email and credit card transactions.

1.2 Terminologies

The major components of a cryotography-assisted communication (see Fig. 1) are

listed below.

* Plaintext: Anything that people can understand and/or relate to is considered

plaintext. It is in plaintext if you can understand what is written.

* Ciphertext: It is also known as encrypted text, is made up of a random assort-

ment of letters and numbers that are incomprehensible to humans. A plaintext
message is input into an encryption algorithm, which then processes the plain-
text to create a ciphertext. Through the process of decryption, the ciphertext can
be reversed to yield the original plaintext.

* Encryption: A process/method by which readable massage/information is con-

verted into secret code that hides the actual information’s meaning.

* Decryption: A process/method of converting an encrypted message back to its

original (readable) format.

» Key: A string of characters called a cryptographic key is used in an encryption

method to change data so that it appears random. It locks (encrypts) data, just
like a real key, so that only someone with the proper key may unlock (decrypt) it.

‘ plain text ]—‘( Encryption H Cipher text } —{ decryption H plain text ’

Figure 1: The cryptographic approach of secure communication.




1.3

1.4

The need for data encryption

Privacy- Communication and data at rest cannot be read by anybody outside
the intended recipient or the legitimate data owner thanks to encryption. This
makes it difficult for hackers, ad networks, Internet service providers, and occa-
sionally governments to intercept and read private information.

Security- Whether the data is in transit or at rest, encryption aids in the pre-
vention of data breaches. The data on a lost or stolen corporate device won't
be compromised because the hard disc is adequately encrypted. Similar to this,
encrypted communications allow communicating parties to share private infor-
mation without disclosing it.

Data integrity- On path attacks and other harmful activities are also deterred by
encryption. Encryption, coupled with other integrity safeguards, ensures that
data sent over the Internet hasn't been altered on route to the recipient.

Authentication- Among other things, public key encryption can be used to prove
that the private key listed in a website’s TLS certificate belongs to the website’s
owner. This enables website visitors to be certain that they are linked to the le-
gitimate website.

Regulations- All of these factors make it mandatory for businesses handling user
data to maintain encryption in accordance with numerous industry and govern-
mental laws. HIPAA, PCI-DSS, and the GDPR are a few examples of regulatory
and compliance standards that demand encryption.

Types of cryptography

Cryptography have mainly two different types:

Secret Key Cryptography
There is only one key, and it is used by all communicating parties for both en-
cryptionand decryption. Encryptionand decryption with the same key(see Fig. 2).

blic Key Cryptography
@ymmetric encryption, often known as public key encryption, uses two keys:
one is used for encryption and the other for decryption. The encryption key
is shared openly for use by anybody, however the decryption key is kept secret
(thus the term "private key") hence the "public key" name(see Fig. 3).
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Figure 2: The principle of secret key cryptography.
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Figure 3: The principle of public key cryptography.
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Figure 4: Classification of different cryptographic approaches.

2 Block Cipher

A block cipher uses a block of plaintext bits to create an equivalent sized block of ci-
phertext bits. In the specified system, the block size is fixed. The encryption scheme’s
strength is not directly impacted by the block size selection. The length of the key has
an impact on the cipher’s strength(see Fig. 5).




Encryption Key

ﬁ Ehcrvpton Block of Cipher Text

Figure 5: The encryption process in block ciphers.

2.1 Block Cipher Schemes

There are several different block ciphers in use today. Many of them are well-known
to the public. Below is a list of the most well-known and prominent block ciphers.

* Digital Encryption Standard (DES) block cipher that was widely used inﬂe 1990s.
Currently, itis regarded as a "broken" block cipher, mostly because of its tiny key
size.

» Triple DES This alternative approach is based on applying DES repeatedly. Al-
though still regarded, it is ineffective in comparison to the newer, faster block
ciphers that are currently accessible.

. Edvanced Encryption Standard (AES) It is a relatively new block cipher that is
based on the AES design competition winner Rijndael.

2.2 Feistel Block Cipher

A design approach is used to create several distinct block ciphers. One illustration of
a Feistel Cipher is DES. The encryption and decryption processes of a cryptographic
system based on the Feistel cipher structure employ the same algorithm.

The Feistel structure is used in the encryption process, with each round of processing
the plaintext consisting of a substitution step and a permutation step.

* Eachround’sinput blockis splitinto two parts, referred to as the left halfand the
right half respectively by the letters L and R.

* Theright halfof the block R, moves through eachround unaltered. However, the
action that the left half, I, is dependent on R and the encryption key. First, we
use the encryption function f, which requires the keys K and R as inputs. The
output of the function is f(R,K). The result of the mathematical function is then
XORed with L.




* Instead of using the entire encryption key during each round in a practical Feis-
tel Cipher implementation, like DES, a round-dependent key (a subkey) is de-
rived from the encryption key. As a result, even though all of these subkeys are
connected to the original key, each round uses a different key.

* The modified L and unmodified R are switched at the permutation phase at the
end of each round. As a result, the R from the current round would be the L for
the following one. And the output L from the previous round serves as R for the
subsequent one.

. ﬁound is formed by the above substitution and permutation procedures. The
algorithm design specifies the number of rounds.

* The two subblocks, R and L are concatenated in this order after the final round
to create the ciphertext block (see Fig. 6).

Flaintext block
(Divide into fwo halves, L and B}

L R Round Keys

Round, Y 1

y v
GD(— FKR) €

Round .,

Round

I Ciphertext block I

Figure 6: The Feistel structure.

The decryption in Feistel cipher is essentially the same. The Feistel structure starts
with a block of ciphertext rather than plaintext, and from there, the process proceeds
exactly the same way as it is shown in Fig. 6. Though the procedure is essentially the
same but not exactly. The subkeys used in encryption are utilized in reverse order
during decryption, which is the only difference. In the final phase of the Feistel Cipher,
the letters L and R must be switched. The resulting ciphertext cannot be decrypted
using the same technique if they are not switched.




3 Differential Cryptanalysis

Differential cryptanalysis invest'“ates how differences spread across ciphers. Let a
function f : F? — F? and x,, xo be two different inputs for f with a difference Ax =
x, @ xp. Let y; = f(x,) and y, = f(x,) and a difference Ay = y; & y,. Then, We are curious
in the probability of a transition from Ax to Ay (Ax — Ay):

#{z|f(x) @ flox @ Ar) = Ay}

ab

P(Ax L} Ay) =

4 ﬁachine Learning

Machine learning is a subfield of artificial intelligence (Al) and computer science. It
focuses on using data and algorithms to simulate how humans learn, gradually in-
creasing the accuracy of the system. The learning mechanism in a machine learning
model can be of two main types - supervised and unsupervised. These are explained
below.

* Supervised Learning: In the process of developing artificial intelligence (Al),
supervised learning involves training a computer system on input data that has
been tagged for a certain output.

* Unsupervised Learning: The process of using artificial intelligence (AI) algo-
rithms to find patterns in data sets including numeric data points that are nei-
ther categorised nor labelled.

Note that there could be semi-supervised learning too.

4.1 Working process of Machine Learning

Machine learning algorithm into three main steps.

* A Decision Process: In general, pregictions or classifications are made using
machine learning algorithms. Your algorithm will generate an estimate about
a pattern in the input data based on some input data, which can be labelled or

unlabeled.

* An Error Function: An error function is used to assess how well the model pre-
dicts. Ifthere are known examples, an error function can compare them to gauge
the model’s correctness.




* A Model Optimizationgmcess: Weights are changed to lessen the difference be-
tween the known example and the model estimate if the model can better fit the
data points in the training set. Until an accuracy level is reached, the system will
repeat this assessment and optimisation procedure, automatically by updating
weights(see Fig. 7).

Maching Laarning
Supervised Unsupervised
Learning Leaming

‘ Ciassification ‘ ‘ Regression ‘ ‘ Clustening ‘ ‘ Association ‘

Figure 7: An overview of machine learning.

5 Deep Neural Networks (DNN)

The main problem tackled by DNN is, given adataset D = (xq, yo), -- -, (Xn, ¥n), With x; € X

being samples and y; € [0,..., /] being labels, to find the optimal parameters 6* for the
DN Ny model, with the parameters 6 such that:

" = argmin Z L(y;. DN Ng(x;))

b o

and L standing for the loss function. Since it cannot be expressed literally, the approx-
imation will rely on the optimization algorithm selected, such as stochastic gradient
descent. As they have a significant impact on the final quality of the solution, hyper-
parameters of the problem parameters whose value is utilized to regulate the learning
process also need to be altered.

5.1 Residual Network (ResNet)

TheRgsidual Blocks idea was created by this design to address the issue of the vanish-
ing/exploding gradient. In this network, we use a technique called skip connections.
Skip connection bypasses some levels in between to link layer activations to subse-
quentlayers. This creates a Res block. These Res blocks are stacked to create ResNets.
The strategy behind this network is to let the network fit the residual mapping rather




than have layers learn the underlying mapping. Let the network fit instead of, say, the

original mapping H(x) (see Fig. 8).

F(x):=H(x)—x

which gives

H(x):=F(x)+x.

X
A

A

weight layer
F(x) relu .
weight layer identity
F(x) +x

Figure 8: Residual Block.

The benefit of including this kind of

skip link is that regularization will skip any

layer that degrades architecture performance. As a result, training an extremely deep
neural network is possible without encountering issues with vanishing or expanding

gradients.
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6 Problem Statement

Unlike ML, which explores patterns from the given data, cryptography aims to hide
the underlying patterns in the data [7]. Principally, one can deduce cryptanalysis as
ML tasks, be it supervised or unsupervised. This provides a way of testing the strength
of a cryptoraphic approach because the stronger the cryptosystem, the easier the de-
duced learning problem. Therefore, a provably good cryptosystem is possibly con-
vertible to a hard learning problem [5] and vice versa [6, 3]. Thus, the ML approaches
can play a major role in testing the hardness of cryptanalysis for a given cryptographic
approach.

In this thesis, we aim to address the problem of differential cryptanalysis. Differ-
ential cryptanalysis is a kind of black box cryptanalysis that aims to understand how
differences in plaintexts relate to the differences in ciphertexts. In CRYPTO 2019, Gohr
madga novel and successful attempt to apply deep learning for differential cryptanal-
ysis against NSA block cipher Speck32/64, achieving a higher accuracy than the pure
differential distinguishers [4]. Gohr trained a deep neural network using the labeled
ciphertext pairs as training data. Data with label 0 is random content, while data with
label 1 comes from an encrypted plaintext pair with a defined input difference. Then
the trained model was used to distinguish between the real ciphertext pairs and ran-
dom pairs. On applying the trained model to Speck32/64[2], a higher accuracy than
the pure differential distinguishers is obtained.

11




7 Gohr’s Architecture

7.1 Introduction of SPECK

Basic notations: Here, &, A, and B stand for "exclusive-OR", "bit-wise logical AND",
and "modular addition" respectively. « and > respectively stand for a left-to-right
bit rotation, whereas al|b represents the joining of two bitgrings, aand b.
In SPECK The plaintext (fyl|rg) — P is used to initialize the 32-bit internal state, which
isdivided into a 16-bitleft and 16-bit right part. These parts are denoted by /; and r; for

und i, respectively. The cipher’s round function is then a relatively straightforward
ﬁaistel structure with bitwise XOR and 16-bit modular addition.

In Fig. 9, where k; represents the 16-bit subkey for round i and where a =7, = 2.

The final ciphertext C is then obtained as C — (/23]|r2) . A key scheduling method that
is quite similar to the round function is used to generate the subkeys as follows.

liv1 = (i » a)mod(r;)) ® k;

riv1=((r < ﬁ]]@fﬁl

Lisq Ris1

Figure 9: The round function of SPECK.

7.2 Definitions

* The incoming data is transformed linearly by a linear neural network, which
works as follows: out = inp.A” +c. Theta is equal to (A, ¢) in this case. The percep-

12




tron layer or dense layer are other common names for the linear neural network.

* Convolution isapplied to afixed (multi-)temporal inputsignal by a one-dimensional
convolutional neural network (1D-CNN). Multiple linear neural networks (one
for each filter) applied to different portions of the input can be seen as the 1D-
CNN operation. This component is sliding, has a kernel size, stride-size pitch,
and padding-dependent start and finish locations.

* Batch Normalisation: To expedite the training process, training samples are of-
ten randomly gathered in batches. Thus, normalising the overall tensor in accor-
dance with the batch dimension is common place, can be used after the convo-
lutionlayer to lesseninternal covariate shift, which efficiently solves the gradient
disappearance issue and expedites network training.

. Qctivation functions: The two activation functions that we use here are the Rec-
tified Linear Unit (ReLU), ReLU(x) = max(0, x), the Sigmoid, s Sigmoid(x) = (x) =
1/(1+exp(—x))

* Residual Network (ResNet): For greater accuracy, ResNet can train a deeper CNN

model. Establishing "shortcuts (skip) connections" between the front layer and

E a number of Residual blocks. A

residual block can be expressed as: x,, + 1 = x, + F(x,). It has two parts: the direct
mapping part and the residual part. F(x,) is the residual part(see Fig. 10).

the back layer is the main goal. It is made up o

|
_\'J—é—»cnnv—’ BN H—ReLU—{convi—{ BN —-Rel.U—é—vx+f (x)

Figure 10: The residual block used in Gohr’s work.

7.3 Data Generation

Avector of binary valued real/random labels ¥; and uniformly distributed keys K; and
plaintext pairings P; with the input difference A = 0x0040/0000 were obtained by us-
ing the random number generator (/dev/urandom) to produce training and valida-
tion data. If Y; was set, the plaintext pair P; was then encrypted for k rounds to create

13




training or validation data for k-round Speck gherwise, the second plaintext of the
pair was changed to a newly generated random plaintext.

Data sets made up of 107 samples were created in this fashion for training. Prepro-
cessingwas done to change the data’s format to match the network’s requirements(see
Fig. 11).

v=[1188 8]

ll1eleeeelevleilsll
@el1eee
I yeeelliie

219111

lei11ee

Figure 11: Data points for SPECK.)

7.4 Architecture
Gohr's neural distinguisher has mainly three components as listed below.

1. Input Block (Block 1): It has a batch normalisation, a ReLU activation function,
and a 1D-CNN with a single kernel size (see Fig. 13).

2. Res Block (Blocks 2-i): It has one to ten layers, with two 1D-CNNs with 3-kernel
sizes making up each layer. Each layer is then followed by batch normalisation
and a ReLU activation algorithm (see Fig. 14).

3. Prediction block (Block 3): Its nonlinear final classification block is made up of
three perceptron layers and is divided into two sections by batch normalisation

and ReLU functions. A sigmoid function completes the structure (see Fig. 15).

1
The input to the first convolution block (Block 1) is a 4 x 16 matrix, where each row

having 16-bit value in this order (C;, C,,Ci,, C;), aconvolution layer with 32 filters isthen
applied. The kernel size of this 1D-CNN is 1 thus, it maps this (C,, C;, C;, cHto

14
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Figure 12: The whole pipeline of Gohr’s deep neural network.

ComnviD Batch
Kermel Size=1 Normalization
Filters=32 Relu

Shortcut
32x16

Figure 13: Initial convolution Block(Block-1) of Gohr’s network.

(filterl,filter2,.., filter32) And Each filter is a non-linear combination of the fea-
tures (Cy, C,, C;, C;) after the ReLU activation function depending on the value of the
inputs and weights learned by the 1D-CNN. In the residual block, the output of the
first block is connected with the input and combined with the output of the next layer.
Both 1D-CNNs in the residual blocks (Blocks 2-i) contain a kernel of size 3 and a tem-
poral dimension that is invariant across layers thanks to padding and strides of size
1 and 3,J0 avoid the pertinent input signal from being wiped away across layers, the
outpufa—reach layeris connected to the input and added to the output of the following
layer. A (32 x 16) feature tensor is the result of a residual block. .

The atteneghoutput tensor of the residual block is the input for the final classifi-
cation block. With batch normalisation and ReLU activation functions for the first
two layers and a final sigmoid activation function performing the binary classifica-
tion, this 512 x 1 vector is sent into three perceptron layers (also known as MLPs).

ConviD
kemel
size=3
filtters=32
padding=1

ConviD Batch
kemnel siz2=3 o rmalizatio
fitters=32 Relu
padding=1

Shortcut
2x16

Intermediate
32x16

Figure 14: The residual block(Block(2-i)) of Gohr’s network.
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Figure 15: Final block of Gohr’s network.

7.5 Results

Basic Training Pipeline-200 epoch were performed on the 107 dataset. The datasets
were processed in 5000 batches. The final 10° samples were held back for validation.
The L2 weights regulariﬁtion was used to optimise against mean square error loss
with a minimal penalty. with regularization parameter ¢ = 10°, using the Adam algo-
rithm with defa arameters in Keras . A cyclic learning rate schedule was used, set-
ting the learning rate /; for epochito /; := a + (ni)mod(n + 1)(a — f)/n,

with @ =107, =2 x 1072 and n = 9. The networks obtained at the end of each epoch
were stored and the best network by validation loss was evaluated against a test set of
size 10° not used in training or validation. These are accuracies of neural distinguish-
ers for the rounds 5, 6, 7 and 8.

[ round testaccuracy ||

5 0.929
6 0.788
7 0.616
8 0.514

Table 1: Accuracy for different rounds (using Gohr’s architecture).
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8 Proposed Architecture

8.1 Architecture

In this Architecture we propose 'Stocastic Approach’ for skip connections.
It has mainly three components as listed below.

Input Block (Block-1): It has a batch normalisation, a ReLU activation function, and
a 1D-CNN with a single kernel size(see Fig. 17).

Res Block (Blocks 2-i): It has one to ten layers, with two 1D-CNNs with 3-kernel sizes
making up each layer. Each layer is then followed by batch normalisation and a ReLU
activation algorithm(see Fig. 18).

Prediction block (Block 3): Its nonlinear final classification block is made up of three
perceptron layers and is divided into two sections by batch normalisation and ReLU
functions. A sigmoid function completes the structure .

In this approach we use probability. Suppose P is the probability of each skip con-
nection. For Gohr's model, we take P = 1.

P=0
P=0.8—— —P=0.8

—

©o
b X
: ™ ‘; > | Block 1 Blzo_ik %0 leog.K i YT T — orp 82|01%K Xor Block 3
Sz

o
—

L_p-pg—

Figure 16: Architecture for P=0.8 probability.

The 1put to the first convolution block (Blocnl] is a 4 x 16 matrix, where each row
having 16-bit value in this order (C;, C,, C;, C)), a convolution layer with 32 filters is
then applied. The kernel size of this 1D-CNN is 1, thus, it maps this [Cg,C,-,C;,C:.] to
(filterl,filter2,.., filter32) And Each filter is a non-linear combination of the fea-
tures (C;, C,, C:,, C)) after the ReLU activation function depending on the value of the
inputs and weights learned by the 1D-CNN. The output of the first block is connected
to the input and added to the output of the subsequent layer in the residual block .
Both 1D-CNN:s in the residual blocks (Blocks 2-i) contain a kernel of size 3 and a tem-
poral dimension that is invariant across layers thanks to padding and strides of size 1

17




and 3.Here for each skip connection we assign P probabilityglo avoid the pertinentin-
put signal from being wiped away across layers, the output 6f each layer is connected
to the input and added to the output of the followinglayer. A (32 x 16) feature tensor is
the result of a residual block. .

ConviD Batch
Kernel Size=1 Normalization
Filters=32 Relu

Shortcut
32x16

Figure 17: Block-1 for propose Architecture.

Conv1D

Shortcut ConviD Batch kemel

3216

kemel size=3 o majization  SiZe=3

filters=32 Rely fiters=32 32x16

padding=1 padding=1

Figure 18: Block 2-i for propose Architecture.

The attgred output tensor of the residual block is the input for the final classifica-
tion block with batch normalisation and ReLU activation functions for the first two
layers and a final sigmoid activation function performing the binary classification,
this 512 x 1 vector is sent into three perceptron layers (also known as MLPs).

First If we take P = 0.8 that mean we drop 20 percent skip connections and keep 80
percent skip connection. By this way we only use 80 percent skip connection and get-
ting same results.We try it with different - different P and getting almost same results.
After that We try it for the probability P = 0.8,0.6 and 0.4.

8.2 Results

Basic Training Pipeline-For training we take 107 data points .Training was run for 50
iterations. Batches of 5000 records per dataset were processed. The 10° samples were
held back for validation. Based on L2 weights regularisation (with regularisation pa-

meter), optimization was done against mean square error loss plus a modest penalty
¢ =107%) using the Adam algorithm withgefault parameters in Keras The learningrate
was established using a cyclic schedult:.ﬂaming rate [; for epochito

li=a+ni)modn+1)(a—-pH)/n,
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witha =107, f =2x1077 and n=9. The networks that were obtained at the end of each
epoch were saved, and the top network by validation loss was evaluated against a test

set with a 10° size that was not used for training or validation. We get same accuracy
as Gohr but we use less probability of skip connection.
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Figure 19: Training/validation Accuracy and loss for round =5.

|| Probability of skip Time(in seconds) best validation accuracy test accuracy ||

1 10594.624483 0.9286370
0.8 10475.326285 0.9239220
0.6 10715.470632 0.9274809
04 10399.968406 0.9231290

0.928929
0.923371
0.928158
0.923135

Table 2: Test/validation accuracy and loss for round = 5.
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Figure 20: Training/validation accuracy and loss for round = 6.

|| Probability of skip Time(in seconds) best validation accuracy test accuracy ||

1
0.8
0.6
04

10785.07476634
10415.16607141
10535.71463910
10442.90266807

0.78772199
0.7869390
0.78755897
0.78510

0.787872
0.786619
0.787301
0.786066

Table 3: Test/validation accuracy and loss for round = 6.

|| Probability of skip Time(in seconds) best validation accuracy test accuracy ||

1
0.8
0.6
04

10510.768701
10535.5821011
10595.134
10237.53489

0.613547
0.611773
0.61383
0.50102299

0.611766

0.611844

0.612601
0.49980

Table 4: Test/validation accuracy and loss for round = 7.
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Figure 21: Training/validation accuracy and loss for round = 7.

|| Probability of skip Time(in seconds) best validation accuracy test accuracy ||

1
0.8
0.6
04

0.5011019
0.50060397
0.5005000
0.50051999

0.50032
0.499447
0.499865
0.500113

10707.3002479
10390.6936800
10496.271875
10293.482472

Table 5: Test/Validation Accuracy for Round=8.
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Figure 22: Training/Validation Acuuracy and Loss for round=8.
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9 Differential Cryptanalysis on KATAN Cipher

9.1 The KATAN Set of Block Ciphers

The three KATAN cipher versions are KATAN32, KATAN48, and KATAN64. The ciphers
of the KATAN family all use the same nonlinear functionsand have the same key sched-
ule, which accepts an 80-bit key and 254 rounds.

We begin by describing KATAN32, and then we go on to discuss the distinctions be-
tween KATAN48 and KATAN64. The smallest member of this family, KATAN32, has a
32-bit plaintext and ciphertext sizgml'he plaintext is loaded into two registers (L;) and
(Lz), which have alength of 13 bits and 19 bits, respectively. The least significant bit of
the plaintext is loaded to bit 0 of the larger register (L), and the most significant bit is
loaded to bit (L,) of the smaller register (L,). The least significant bits of L; and L, are
loaded with the newly computed bits after shifting L; and L; to the left (bit i is moved
to position i + 1). The ciphertext, which is exported as the contents of the registers af-
ter 254 rounds (bit 0 of L, is the least significantbit of the ciphertext), is then generated.

Each iteration of KATAN32 employs the nonlinear functions f,() and f;,(). The fol-
lowing definitions apply to the nonlinear functions f,() and f3():

fa(L1) = Li[z1] @ Ly[z2] ® (La[za] - La[za]) @ (La[zs] - IR) @ ka
fo(L2) = L![.’;‘l] 2] I—'.'[,*F:] -'":L![.U'i: 'L:_..f.‘l]," '-':!’-:_..f.‘i: . Lz[,!.h:-_l B ky

Where IR stands for irregular update rule, k, and kj; are the two subkey bits, and
L, [xs] is XORed in rounds where the irregular update is utilized.

The definition of k, for round i is k»;, but k;, is k»;,,. Each variant’s choice of the
bits x; andy; is specified independently and is listed in Table.

Thegegisters L, and L, are shifted after the nonlinear functions have been com-
puted, where the MSB falls off (into the corresponding nonlinear function) and the
LSB is loaded with the output of the second nonlinear function. thus, following the
round, the LSB of L, is the output of f;, and the L.SB of L, is the output of f.

The 80-bit key is loaded into an LFSR by the KATAN32cipher’s key schedule (and
that of its two further variants, KATAN48 and KATANG64) the least significant bit of the
key is loaded to position 0 of the LFSR. The round’s subkeys k»; and k»;,; are used to
produce positions 0 and 1 of the LFSR for each round, and the LFSR is timed twice.

The feedback polynomial used has a minimal hamming weight of 5 and is a basic
polynomial (There are no degree 80 primitive polynomials with just three monomi-
als.)
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X804 X014 X0+ X341

We point out that because these places make up a complete difference set, they are
less likely to be the target of guess and determine attacks than a thorough key search.

To put it another way, if K is the key, then i is the round’s subkey. k4l kj, = k2;l1k2i 41
where

E K; fori=0...70
'\ Kieso ® Ki—g) B Kiso € kicaa Otherwise

The variations among the different versions of KATAN ciphers include the follow-
ing:

The size of the plaintext/ciphertext.
e Thesize of L; and L,
7
¢ The order in which bits enter nonlinear functions

* The frequency of application of the nonlinear functions in each iteration.

While the first distinction is readily apparent, we define the register lengths and
the locations of the bits that enter the ciphers nonlinear functions in Table 23. Each
variant’s choice of the bits x; and y; is specified separately and is presented in Table.

For KATANA48, the functions f, and f; are applied twice throughout one round of
the cipher. After updating the registers, the first pair of f, and f; is applied, and then
they are applied once again using the same subkeys. Of course, a successful imple-

entation can carry out these two processes simultaneously. Each round of KATANG64
applies f, and f;, three times (again, with the same key bits).

Tiphor B TTal =1 72 =5 =1 =%
KATANIZ 13 19 12 7 E3 5 3
KATAN4E 19 29 15 12 15 T G
KATANG4 2% . M 15 W 11 9
Cipher i e =
KATANIZ is 7 12z 10 & 3
KATAN4S 28 1 21 13 15 6
KATANGL 3 25 33 W 10

Figure 23: Parameters defined for the KATAN family of ciphers.

In Figure, we present the structure of KATAN32, which resembles the round func-
tion of any form of KATAN (see Fig. 24,
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Figure 24: Outline of a round of KATAN ciphers.

Finally, we define the counter that counts the number of rounds in terms of specifi-
cations. The feedback polynomial is used to clock the round-counter LFSR once after
initialising it to the state of all 1’s.

X804 x614 x50, x13 41

After 254 more clocks, the encryption process begins and is completed when the LESR
returns to the all-ones state. As previously stated, we employ the LFSR’s most impor-
tantbit to regulate theirregular update (i.e., as the IR signal)l he sequence of irregular
rounds is provided in Table for the sake of completeness. T means that the irregular
update rule is used in this round, while 0 means that this is not the case (see Fig. 25).

[Feounds LE] 10-19 020 3030
gular{| 1111111000 | 1101010101 | 1110110011 | 0010100
[Fixr] TO-TH i ™

00 | 0111110011 | 1111010100 | ©

10 140-149

T i)
10001 1000 | 1111000010
TORF- 1061 T 110

o ff (X 1011111011

1178

1 ]
o[ 1o | o
K 210-218 )
V10000 | 1110100100 | 0!

(OO0 I-l 101

240-249 I50-253
110000001 (0]

|
g
i

Irregula

Figure 25: The sequence of irragular update in KATAN

9.2 Applying Different Classification Models on KATAN

We take 10* training data(see Fig. 26) and 10° test data.We try Logistic Regression,
support-vector machines (SVM) and random forest classifier (RFC) for different rounds
of outputs received from the KATAN cipher and obtained the classification accuracies
reported in Table 6.
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Figure 26: Data generation approach for KATAN.

JRounds| 1 | 2 | 3 | 4 | 5 | 6 [ 7 | 8 | 9 [ 10 |
LR [ 052 [0.514 [ 0.507 [ 0.506 [ 0.491 [ 0.529 [ 0.509 [ 0.491 [ 0.5 [0.494
RFC | 0.516 | 0.528 | 0.519 | 0.512 | 0.498 | 0.512 | 0.51 | 0.505 | 0.57 | 0.478
SVM | 0.527 | 0.49 | 0.511 | 0.494 | 0.516 | 0.505 | 0.49 | 0.501 | 0.507 | 0.497

Table 6: Test accuracy for different rounds of KATAN cipher.

10 Conclusion and Future Work

We try Gohr’s architecture with different skip connection probabilities (to be precise -
0.4, 0.6 and 0.8) to overcome the vanishing gradient problem. With this approach, we
obtained almost the same accuracy of differential cryptanalysis. For the fifth, sixth,
seventh and eighth rounds, we received test accuracy around 92%, 78%, 61% and 50%,
respectively, for differentvalues of the skip probability. We also tried to construct a dif-
ferent architecture for KATAN aiming a good accuracy for round reduced differential
attack [1]. We attempted this only for some initial rounds of KATAN without any ma-
jor success. Thus far our observations through the experiments highlight that KATAN
is presumably a better cipher than SPECK. We may improve the given architecture to
obtain better accuracy for higher rounds for SPECK and initial rounds of KATAN.
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