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Abstract

Image synthesis is a significant computer vision problem with numerous applications.
With the rise of Generative Adversarial Networks, there has been a significant ad-
vancement in this area (GANs). Recent times have seen a rise in interest towards
conditional image generation from layout. To create useful applications with a user-
friendly interface, taking control of the image generating process is essential.

The focus is to study generative models for generating almost real images from the
spatial layout in which bounding boxes of objects and their categories are configured
in an image lattice, and style codes (i.e., latent vector encoding structural variation).
The study of intuitive paradigm for the problem, layout to mask to image is done. TO
connect the dap between input layout and synthesized images, layout to mask com-
ponent major role as it deeply interacts with the generator network. A GAN is built
for layout to mask to image synthesis with style control and layout control at both
object level and image level. The controllablility is realised by ISLA Norm (Instance
Sensitive and Layout Aware Normalization) scheme. We create and experiment on a
the challenging Visual Genome dataset.
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Chapter 1

Introduction

The progress of image synthesis research and applications was severely influenced by
the advent of Generative Adversarial Networks (GANs). With current methods, it
can be quite difficult to tell high resolution face images from low resolution, grayscale
face images apart from real images. Even though unconditional image synthesis is
intriguing, most real-world applications require an interface that lets users tell the
model what to generate. In recent years, conditional generative approaches have
incorporated segmentation masks, class labels, images, speech, text, layout, and com-
binations of these to obtain control over the image synthesis process. However, the
majority of these methods use ”one-shot” picture generators, which restrict changing
some characteristics of the generated image.

Although iterative image manipulation has made significant progress, researchers
have not yet researched into ways to have more control over the image generation
of complex scenes with many interacting objects. The system must be able to it-
eratively and interactively update the image in order to let the user create a scene
that reflects what he or she has in mind.By permitting customizable spatial layout
and object styles, a recent approach by Sun and Wu makes a significant advancement
towards this objective. Each object in their method has a latent style code that is
used to generate new images and is sampled from a normal distribution.

1.1 Image Synthesis

Image synthesis (generation) is the task of generating new images from an existing
dataset. They are various types of image synthesis tasks, of which two are :

1. Unconditional image synthesis refers to generating samples unconditionally from
the dataset, i.e. p(y)
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2. Conditional image synthesis (subtask) refers to synthesising samples condition-
ally from the dataset, based on a label, i.e. .p(y/z)

1.2 Visual Genome Dataset

Visual Genome Dataset is a huge collection of real world images, each equipped with
annotations of various regions in the image. The annotations include a plain text
description of the region (often comprised of sentence parts or short sentences, such as
7ared ball in the air”) as well as several other forms of properly gathered information
(attributes, objects, relationships, scene graphs, region graphs, and question-answer
pairs). Over 108K images in the Visual Genome dataset have an average of 35 objects,
21 pairwise relationships and 26 attributes between objects.

1.3 Problem Statement

The interest is to be able to achieve controllable image synthesis from reconfigurable
layouts. By reconfigurable and controllable, it means a generative model is capable
of

1. Layout Control — The model is adaptable to changes in spatial layouts within
a certain layout, as well as the style codes associated to all those changes.

2. Style Control — At both the image and object levels, the model maintains and
preserves the underlying one to many mapping from a given layout to numerous
plausible images with sufficiently different structural and appearance styles.

Let X be an image lattice (for example, 128 x 128) and by /, an image outlined on the
lattice. Let L = (I;, bbox;)™, be a layout with m bounding boxes that are labelled,
where a label i € C' (e.g., C is no. of objects like |C| = 179 in the Visual genome
dataset), and a bounding box bbox; C X. Different bounding boxes may overlap and
resulting in an arbitrary partial order of occlusion.

Let zq;, be the latent code that controls the object instance style and z,, be the
latent code that controls the image style for (I;, bboz;). Under the i.i.d. setting, the
latent codes are often randomly sampled from the standard multivariate Gaussian
distribution, N(0, 1). Denote by Zu; = zayj,1~, the set of object instance style latent
codes. The goal of learning an image synthesis from layout and style is to translate
a given input layout (L, 2jmg, Zop; ) to a synthesised image, 1°V",

]Syn — G(L, Zimgy Zob]’ @G)7
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where O¢ represents the generation function parameters. In general, underlying con-
ditional data distribution p(I|L, Zimg, Zop; ; Oc) of high dimensional space is an-
ticipated to be captured by a generator network G. Although simple to use it for
generating synthetic images, the generator G has a challenging inference phase that
must be completed in order to estimate the model’s parameters: computing the latent
codes for a real image I.



Chapter 2

Previous Work

Generative models such as Variational Autoencoders (VAEs) Autoregressive models
and Generative Adversarial Networks (GANs) have been studied widely in the re-
cent years. VAEs simultaneously train an encoder and a decoder, with the former
converting images into a latent distribution and the latter creating images based on
the distribution. PixelCNNs and PixelRNNs are examples of image generation for
autoregressive models that create images pixel by pixel based on conditional distri-
bution over pixels. GANs are capable of synthesising realistic and high-resolution
images under diverse conditions, including unconditional and conditional tasks. A
GAN typically comprises of a Generator, which produces realistic fake images from
input (such as random noise), and a Discriminator, which distinguishes synthesized
images from real ones. The model used, which is based on GANs and aims to generate
images conditioned on coarse semantic layouts, was developed.

2.1 Conditional Image Synthesis

In conditional image synthesis, additional data, such as class information, the input
image, a text description, and scene graphs, are used as inputs. Numerous approaches
have been studied to determine how to feed conditional information to a GAN model.
First, conditional information is encoded into a vector representation in each tech-
nique. Different approaches employ the encoded condition vector in different ways. In
Generative adversarial text to image synthesis and Conditional image synthesis with
auxiliary classifier gans, the encoded condition vector and a sampled latent vector are
concatenated as the input to the generator network. In StackGAN and Generative
adversarial text to image synthesis, the encoded condition vector is utilized by the dis-
criminator by simply concatenating with the input or intermediate feature maps. The
inner product between the discriminator’s features and the encoded condition vector
is often used in projection-based approaches in cGANs with projection discriminator
to effectively increase the quality of class conditional image generation. In Large scale
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GAN training by A. brock et. al, Semantic image synthesis by T.Park et. al, learned
representation for artistic style by V. Duomulin et.al, the conditional BatchNorm is
constructed by using the encoded condition vector to govern the re-scaling and re-
shifting parameters in the BatchNorm layers. An annotated semantic label map is
used by GauGANSs to further develop spatially adaptive re-scaling and re-shifting pa-
rameters for BatchNorm. The proposed ISLA-Norm in the earlier LostGAN-V1 is a
concurrent effort with the feature normalisation approach in GauGANs, but without
the use of annotated semantic label mappings. From coarse layout information, it
learns the layout to mask mapping. Additionally, the projection-based techniques for
exploiting conditional information in the discriminator are adopted by the suggested
Lost GANS.

2.2 Image Synthesis from Layout

In the most recent literature, image synthesis from layout has been explored and
shown to be a challenging task. Layout2image by B. Zhao et al. is the first study
on the layout to image task, and it uses a variational autoencoders based network
together with long-short term memory (LSTM) for object feature fusion. In Pastegan,
authors provide an external memory bank that contains objects that were cropped
from real images during training and are then retrieved and pasted to synthesize
images from layouts with a resolution of 64x64. In Image generation from scene
graphs by J.Johnson et. al, Object-driven text to image synthesis by W. Li et.al,
layout and object information are utilised in text to image synthesis and scene-graph
to image synthesis to generate scene images from given masks by matching the shape,
context and parts to a library that is maintained. Locations of multiple objects in
text to image synthesis are controlled by including an additional object pathway in
both the generator and discriminator, according to T. Hinz et al papers ” Generating
multiple objects at spatially distinct locations” and ”Semantic object accuracy for
generative text to image synthesis.” The two processes involved in image synthesis
are creating the semantic layout (bounding boxes, class label, and semantic mask)
from a text description or a scene graph, and then synthesising images conditioned
on the predicted semantic layout and text description.



Chapter 3

Related Work

3.1 Class-Conditional Image Synthesis

Probably the most direct way to gain control on what image to generate is to generate
images with a class label. Initial approaches condition the generator by concatenating
the noise vector with encoded label. Recent approaches have considerably improved
the resolution, image quality, and diversity of generative models. However, they
have two major drawbacks that restrict their practical application: they are based on
single-object datasets, and they do not allow the reconfiguration of individual aspects
of the image to be generated.

3.2 Layout to Image

The direct layout to image problem was initially studied in Layout2Im using a VAE-
based approach that could generate a variety of 64x64 pixel images by breaking down
the representation of each object into a specified label and an unspecified (sampled)
appearance vector. Using a reconfigurable layout, LostGAN improves control over
individual objects while maintaining the integrity of existing objects in the output
image. This is accomplished by giving each object an individual latent style code,
whereby one code for the whole image allows the generation of diverse images from
the same layout when the object codes are fixed.
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3.3 Scene-Graph to Image

Scene graphs use a graph structure to represent a scene of multiple objects, with the
objects being encoded as nodes and the relationships between them as edges. Scene
graphs have recently been used in a multiple image generation approaches due to their
practical and flexible structure. Typically, a scene layout with segmentation masks
and bounding boxes for each object is predicted using a graph convolution network
(GCN), which is then utilised to produce an image. Scene graphs, however, can be
difficult to edit and do not allow for the direct specification of object locations on the
image canvas.

3.4 Text to Image

Conditional image synthesis can be done in an intuitive way using textual descriptions.
Current methods first produce a text embedding, which is then input into an image
generator with multiple stages. In order to learn the features of individual objects and
control object locations, additional layout information is used by adding an object
pathway. It has been explored to break down the work into predicting a semantic
layout from text and then generating images that are conditioned on both the text
and the semantic layout. Other works focus on text-guided image manipulation and
separating content from style. However, textual descriptions are difficult to obtain by
and natural language can be ambiguous.
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Data Preprocessing

We need to preprocess the data. To clean the data, we will divide it into train, val, and
test halves, consolidate all scene graphs into HDF'5 files, using several heuristics. We
specifically ignore images that are too small and only take into account object cat-
egories that appear a certain number of times in the training set. We also ignore
objects that are too small and set minimum and maximum values for the number of
objects and relationships that appear per image.

A vocab file is created containing visual genome vocabulary

1. Images which are too small in size are removed

2. vocab file for objects and relationships is generated by encoding objects and
relationships

p object_name_to_idx {179}
p object_idx_te_name [179]
p attribute_name_to_idx {86}
p attribute_idx_to_name [80]

p pred_name_to_idx {46}

p pred_idx_to_name [46]

Figure 4.1: Description of how vocab.json created looks

11
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Layout to Image Synthesis

5.1 Introduction

We implement a GEnereative Adversarial Netwroks (GANs) and use a layout and
style-based architecture and learning paradigm for GANs to learn controllable image

synthesis from changeable layouts and style codes. This propsed method is termed
as LostGAN.

By training GANs for layout to mask to image synthesis, the proposed LostGAN
solves the layout to image synthesis problem. Learning how to use layout to mask
is a simple intermediate step that has advantages in two folds for accounting for the
gap between bounding boxes in a layout and underlying object shapes: It helps in
attaining objects with finer grained style control in image synthesized. Additionally, it
helps in the separation of the learning of the object’s geometry and learning of object’s
appearance. Since object appearance is disregarded, the layout to mask generation
process is easier than the direct layout to image synthesis. It also makes sense to
incorporate a layout to mask component in the interim, driven by the excellent recent
development on conditional picture synthesis from semantic label maps. The learning
of mask to image synthesis can benefit from the best practises in conditional image
synthesis utilising semantic label maps if reasonably good object masks can be inferred
for an input layout. The development of two-stage generators is a naive approach that
might lead to less practical solutions. We Use is a single-stage learning model(i.e.,
using a single generator).

12
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5.2 Generator

There are three inputs to the generator:

1. A spatial layout, L consisting of a number of object bounding boxes in an image
lattice

2. For style control, a latent vector, z;,, at the image level is used, and

3. a concatenation vector that joins the label embedding vector of the layout’s
object instances and a collection of object latent vectors, zobji.

The style control of individual object instances is done through the object latent
vectors. The generator uses a new feature normalisation approach based on (2) as its
direct input for object-level style control while using (2) as its direct input for overall
style control (3)

5.2.1 ISLA-Norm

The layout to mask to image synthesis pipeline in our LostGANSs is presented, and to
implement it, the Instance-Sensitive and layout Aware Feature Normalization (ISLA-
Norm) approach is proposed. It consists of two parts as a feature normalisation
scheme: feature standardisation and feature recalibration. The former is carried out
using the BatchNorm, in which a mini-batch is used to compute the channel-wise
mean and standard deviation. T he latter is different compared to the BatchNorm.

To improve style control and diversity, object latent vectors are used at every stage
of the generation process, much as StyleGANSs.

The ISLA Norm first learns object instance-sensitive channel-wise affine transforma-
tions from the concatenation of object label embedding and object style latent vectors,
in contrast to the BatchNorm, which learns channel-wise affine transformation pa-
rameters, beta (for re-shifting) and gamma (for rescaling), as model parameters and
shared across spatial dimensions by all instances. This is similar to the projection-
based conditional BatchNorm in ¢GANs and the adaptive instance normalisation
(AdaIN) used in StyleGANs. Better object masks are learnt by ISLA Norm for ob-
jects in an input layout using two different learning pathways. One pathway learns
a label map from each layer in the generator, and the other pathway learns a label
map from the concatenation vector between the object label embedding vector and
the object style latent vectors. At one point in the generator, the inferred label map
is a learnable weighted sum of the two label maps. Then, in order to obtain fine-
grained spatially distributed multi-object style control for an input layout, we embed
the object instance-sensitive channel-wise affine transformations in the learned label
map. This generates the instance-sensitive and layout aware affine transformations
for feature recalibration in the generator.
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5.3 Discriminator

There are two inputs to the discriminator: an input image, either real or fake, and
the corresponding spatial layout. There are three components in discriminator:

1. a ResNet is used as backbone,

2. an image head classifier using the extracted features to compute the image
realness score (the higher the score is, the more real an image is), and

3. an object head classifier computes the realness scores for the object instances.
Although we do not apply the likelihood-based learning method in training, the
realness score can also be seen as playing as the negative energy in energy-based
models.

By using the bounding box in a given layout, the RolAlign operator computes the
feature representation for an object instance .

5.4 Loss Function

The loss function consists of both image and object adversarial hinge loss terms
(balanced by a trade-off parameter, A). The hinge loss aims to improve a synthesised
image’s realness score from a real image by a predetermined margin. The hinge loss
performs better in the two player min-max game setup of GANs to enforce both
the generator and the discriminator to be more aggressive in synthesising images of
greater quality



Chapter 6

Experimentation

6.1 Motivation

6.1.1 Using ResNet as (Generator and backbone of Discrim-
inator

In general, we believe that when it comes to convolutional neural networks (CNNs),
"the deeper the model, the better it is.” This makes sense since, because they have a
larger parameter space to explore, the models should be more capable (more adaptable
to any space). The performance appears to deteriorate when the depth is increased,
though. Prior to 2015, this was one of the network bottlenecks. ResNet provides
a residual learning architecture that makes it easier to train networks that are sig-
nificantly deeper while maintaining performance. It has won the 1st place on the
ILSVRC 2015 for classification localization task. For many visual recognition tasks,
the depth of representation is very important, thus we used this deep representation
to generate class activation maps that indicate the discriminating image regions used
by the CNN used to identify that category.

6.2 Preliminaries

6.2.1 Generator Architecture

The Genereator is composed of a linear full-connected (FC) layer, a no. of residual
building blocks (ResBlocks), which depend on the target resolution of the synthesised
image, and a "ToRGB” module for the output of the image. The architecture is
illustrated in detail below.

15
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The ISLA Norm realises the learning of layout to mask to image synthesis. The

intermediate masks help to improve the image synthesis output, leading to joint
image and label map synthesis.

ResBlock

- ™

ISLA Norm

UpSample

UpSample

ISLA Norm

1x1 Conv

Figure 6.2: ResBlock in Generator Architecture

6.2.2 Discriminator Architecture

/DISCRIMINATOR

~

Simg _— !ﬁmg

aimea
lanaT]
abew)|

AR )
Real Images S| lolls Advesarial
& allall% hinge losses
Generated Images el ||| M, Ag

. /

Figure 6.3: Discriminator Architecture

The image-level feature and the object-level feature share ResBlocks which depends
on the target resolution



18 6. Experimentation

ResBlock

DownSample

K DownSample 4-6(1@/

¥

Figure 6.4: ResBlock in Discriminator Architecture

6.2.3 Methodolgy

There are two ISLA Norm modules in a ResBlock.ISLA Norm learns instance sensitive
and layout aware affine transformation parameters, v and 5.

Computing v & 3 is a multi step process:

1. Label Embedding: For each of the m object instances in the layout L, we apply
one hot label vector, resulting in a one hot label matrix, represented by Y, of
the size m xd;, where d; is the number of object categories. Label embedding
is the process of computing the vectorized representation for labels by learning
an d; x d, embedding matrix, denoted by W.

Y=YW
, Yisamxd,

2. Joint Label and Style Encoding: We sample from the object standard Gaussian
distribution the object style latent codes Zobj which is a mxdobj noise matrix.
Let S be the concatenation of label and style encoding,

S = (Ya Zobj);

which is a m x (d. + d,p; matrix.
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3. Mask Prediction from S: In the layout L, mask for each object is predicted first
at a predefined size, p X p (e.g., p = 32) individually by a sub network made of
up-sample convolutions and sigmoid transformation. Then the predicted masks
are resized to the sizes of corresponding bounding boxes at a ResBlock stage in
the generator.

4. Computing ISLA v and B: The gamma and beta parameters are unsqueezed to
their appropriate bounding boxes, weighted by the predicted masks, and lastly
added with an averaged sum used for overlapping regions. LostGAN achieves
better and more precise control over the image generation process since the
affine transformation parameters depend on specific objects in a sample (class
labels, bounding boxes, and styles). By changing the layout and sampling latent
codes, the user is able to construct an image iteratively and interactively.

6.2.4 Experimental Setup:
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(module): ResnetGeneratorl28(
(label_embedding): Embedding(179, 188, padding_idx=8)
(attribute_features): Sequential(
(@): Linear(in_features=88, out_features=2048, bias=True)

{1): ReLU()

(2): Linear(in_features=2848, out_features=1024, bias=True)
{3): ReLU()

(4): Linear(in_features=1024, out_features=512, bias=True)
(5): ReLU()

(6): Linear(in_features=512, out_features=256, bias=True)
(7): RelLU()

{8): Linear(in_features=256, out_features=188, bias=True)

(fc): Linear({in_features=128, out_features=16384, bias=True)
(res1): ResBlock(
{convl): Conv2d(1e24, 1824, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(1@24, 1824, kernel_size=(3, 3), stride={1, 1), padding=(1, 1))
(bl): SpatialadaptiveSynBatchNorm2dv2(1824)
(b2): SpatialAdaptiveSynBatchNorm2dv2(1824)
(c_sc): Conv2d(1le24, 1024, kernel_size=(1, 1), stride=(1, 1))
(activation): RelLU()
{conv_mask): Sequential(
(@): Conv2d(1@24, 182, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): SynchronizedBatchNorm2d (188, eps=1e-85, momentum=©.1, affine=True, track_running_stats=True)
{2): ReLU()
(3): Conv2d(1ee, 184, kernel_size=(1, 1), stride=(1, 1))
}
3
(res2): ResBlock(
{convl): Conv2d(1@24, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
{(bl): SpatialAdaptiveSynBatchNorm2dv2 (1824)
(b2): SpatialAdaptiveSynBatchMorm2dv2 (512)
(c_sc): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
(activation): ReLU()
{conv_mask): Sequential(
(@): Conw2d(512, 108, kernel_size=(32, 3), stride=({1, 1), padding=(1, 1})
(1): SynchronizedBatchNorm2d (188, eps=1e-85, momentum-@.1, affine=True, track_running_stats=True)
(2): RELU()
(3): Conv2d(1@@, 184, kernel_size=(1, 1), stride={1, 1))
}
)
(res3): ResBlock(
(convl): Conv2d(512, 256, kernel size=(3, 3), stride={1, 1), padding={(1, 1))
(conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(bl): SpatialAdaptivesynBatchMorm2dv2(512)
{b2): SpatialadaptiveSynBatchNorm2dv2(256)
{c_sc): Conv2D(512, 256, kernel_size=(1, 1), stride=(1, 1))
{activation): RelLU()
(conv_mask): Sequential(
(@): Conw2d(256, 188, kernel size=(3, 3), stride={(1, 1), padding={1, 1))
(1): SynchronizedBatchMorm2d({1@8, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
{2): ReLU()
(3): Conv2d(1@@, 1B4, kernel_size=(1, 1), stride=(1, 1))
}

(res4): ResBlock(
(convl): Conv2d(256, 128, kernel size=(3, 32), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(b1): SpatialadaptivesynBatchNorm2dv2(256)
{b2): SpatialAdaptiveSynBatchMorm2dv2(128)
(csc): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
{activation): ReLU()
{conv_mask): Sequential(
(@): PSPModule(
(stages): ModuleList(
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(@): Sequential(
{@): AdaptiveAwvgPool2d{output_size=(1, 1))
{1): Conv2d(128, 186, kernel size=({1, 1), stride={1, 1), bias=False)
(2): BatchNorm2d({18@&, eps=1e-85%, momentum=8.1, affine=True, track_running_stats=True)
{3): ReLU()
)
(1): Sequential(
(@): AdaptiveaAvgPool2d{output_size=(2, 2))
{1): Conv2d(128, 188, kernel size=(1, 1), stride=(1, 1), bias=False)
{2): BatchNorm2d{188, eps=1le-85, momentum=8.1, affine=True, track_running_stats=True)
{3): ReLU()
)
(2): Sequential(
(@): AdaptiveAvgPool2d(output_size=(3, 3))
{(1): Conv2d(128, 188, kernel size=(1, 1), stride={1, 1), bias=False)
{2): BatchNorm2d({18@, eps=1le-85, momentum=8.1, affine=True, track_running_stats=True)
{3): ReLU()
)
(3): Sequential(
(@): AdaptiveAvgPool2d{output_size=(6, 6))
{1): Conv2d(128, 188, kernel size=({1, 1), stride={1, 1), bias=False)
(2): BatchNorm2d(1@@&, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)
(3): ReLU()
)
)
(bottleneck): Sequential(
(@): Conv2d(528, 188, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): SynchronizedBatchNorm2d(18@, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout2d({p=©8.1, inplace=False)
3

{1): Conwv2d(1@e, 184, kernel size=(1, 1), stride={1, 1))

)

(res5): ResBlock(
(convl): Conv2d(128, &4, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
{bl): SpatialadaptiveSynBatchNorm2dv2(128)
{(b2): SpatialAdaptiveSynBatchNorm2dv2(64)
(c_sc): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(activation): RelLU()

(final): Sequential(
(@): SynchronizedBatchMorm2d{64, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)

(1): ReLU()
(2): Conv2d(64, 3, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
{3): Tanh()

)
(mapping): Sequential()
(sigmoid): Sigmoid()
(mask_regress): MaskRegressNetwv2(
(fc): Linear(in_features=488, out_features=4896, bias=True)
(convl): Sequential(
(@): Conwv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
{1): InstanceNorm2d(256, eps=1e-85, momentum=8.1, affine=False, track_running_stats=False)
(2): ReLU()
3
(conv2): Sequential(
(@): Conw2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
{1): InstanceNorm2d(256, eps=1e-85, momentum=8.1, affine=False, track_running_stats=False)
{2): RelLU()

(conv3): Sequential(
(@): Conwv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
{1): InstanceNorm2d(256, eps=le-85, momentum=8.1, affine=False, track_running_stats=False)
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{2): RelLU()
(3): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1)),
(4): Sigmodd()
)
]

DataParallel |
(module) : Combinediscriminator128(
{obD): ResnetDiscriminatorl2s(
(blockl): OptimizedBlock(

(convl): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding={(1, 1)),
(conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(c_sc): Conv2d(3, 64, kernel size=(1, 1), stride=(1, 1))

{activation): RelU{)

(block2): ResBlock(
(convl): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)),
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
{(activation): RelLU{)
(c_sc): Conw2d(64, 128, kernel_size=(1, 1), stride=(1, 1))

)

(block3): ResBlock(
(convl): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conwv2d(256, 256, kernel_size=(3, 3), stride={1, 1), padding={(1, 1))
{activation): RelU{)
(c_sc): Conw2d(128, 256, kernel_size=(1, 1), stride=({1, 1))

)

(blockd): ResBlock(
{(convl): Conwv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding={1, 1))
(conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
{activation): RelLU{)
(c_sc): Conv2d(256, 512, kernel_size=({1, 1), stride=(1, 1))

(block5): ResBlock(
(convl): Conv2d(512, 1824, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(conw2): Conv2d(1824, 1624, kernel_size=(3, 3), stride={1, 1), padding=(1, 1))
(activation): ReLU{)
(c_sc): Conv2d(512, 1@24, kernel_size=(1, 1), stride=(1, 1))

(block6): ResBlock(
(convl): Conv2d(1824, 1824, kernel size=({3, 3),
stride=(1, 1), padding={1, 1)),
(conv2): Conv2d(1824, 1824, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)),
{activation): RelU{)

(17): Linear({in features=1824, out_features=1, bias=True)
(activation): ReLU()
{roi_align_s): Rolalign(output_size=(8, 8), spatial_scale=9.25, sampling_ratio=@8, aligned=False)
(roi_align_1): RolAlign{output_size=(8, 8), spatial_scale=8.125, sampling_ratio=@8, aligned=False)
({block_obj3): ResBlock(

(convl): Conv2d(12B, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

(conv2): Conwv2d(256, 256, kernel_size=(3, 3), stride={1, 1), padding={(1, 1))

(activation): RelLU{)

{c_sc): Conv2d({128, 256, kernel_size=(1, 1), stride=(1, 1))

(block_obja): ResBlock(
(convl): Conw2d(256, 512, kernel size=(3, 3), stride={1, 1), padding={1, 1))
(conv2): Conv2d(512, 512, kernel_size=(3, 3}, stride=(1, 1), padding=(1, 1)
{activation): RelU({)
(c_sc): Conw2d(256, 512, kernel_size=(1, 1), stride=(1, 1))

—

)

(block_obj5): ResBlock(
(convl): Conv2d(512, 1824, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(Conv2): Conv2d(1824, 1824, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
{activation): RelU{)
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(c_sc): Conw2d(512, 1824, kernel size=(1, 1), stride={1, 1))
)
(1_obj): Linear(in features=1824, out_features=1, bias=True)
(1l_w): Embedding (179, 1824, padding_idx=8)
(attribute features): Linear({in features=81, out_features=1824, bias=True)
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6.2.5 Loss Function:

Below are the plots of changes in loss values at every step of epoch visualised on
tensorboard :

Dloss
tag Dloss

Full Discriminator Loss

Dloss/fake_objects

B oaa/lak - .

1ag: DLosa/ake-_abjects DLoss/real_objects
tag: DLoss/reel_abjects

0k 20k 30k A0k

Discriminator Loss on fake objects Discriminator Loss on real objects

DLoss/real_mages

[loss/fake_images
; tag: DLoss/real_images

tag: DLoss/ake_images

Discriminator Loss on fake images Discriminator Loss on real images

Figure 6.5: Discriminator Losses
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Gloss
tag: Gloss

i} 106 2k {Hip LI

Generator Loss

Gloss/ fake_images
Gloss/fake_chjects tag GLossfake, images
tag: Gloss/fake_objects

b ki N 10k Tk ¥k Ak

Generator Loss on fake objects Generator Loss on fake images

Figure 6.6: Generator Losses
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6.2.6 Result

To compare the quality of the images synthesized on the built GAN, we use FID score
(Frechet Inception Distance). we evaluate the FID between real images and 5061 fake
generated images, the FID score came around 10.44.

Figure 6.7: FID score

Below are comparison between samples of real images and fake images generated with
image size set to 128 x 128:

real fake

Figure 6.8
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real

real
fake

real fake

Figure 6.9
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real

real

real fake

Figure 6.10: Comparison of real images and fake generated images
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Results for Layout to image synthesis is provided by manually providing bounding
boxes and mapping them to objects. Here one such result is generated.

Selected class: 11 Output

Figure 6.11: Layout to image generation



Chapter 7

Future Work and Conclusion

7.1 Conclusion

In this thesis, we study the generative learning problem of layout to image with a fo-
cus on controllable image synthesis from reconfigurable structured layouts and styles.
We implement layout and style-based architecture for generative adversarial networks
(termed LostGANSs). On training the implemented GAN with image size as 128 x
128 and training for 200 epochs, we were able generate images with an FID score of
10.44 and further use the generator to perform image synthesis from layouts.

7.2 Future Work

The generative learning task of layout to image synthesis is still at a nascent stage
of research in terms of synthesising high-fidelity images. Overall,on study it’s found
that the quality of image generation from layout is still not good enough.

Since each object in this method has a latent style code that is used to generate new
images and is sampled from a normal distribution. There is lack of control which
results in the inability to specify a certain style (for example, to change the colour of
a jacket from red to yellow, one would need to sample new latent codes and manually
inspect whether the generated style conforms to the requirement). To enable users
to generate the images they imagine, it is essential to be able to control individual
aspects of the generated image without affecting others.

For this to happen, we propose to introduce embedding for attributes specified for ob-
jects and concatenate them with label embedding and train the mask image synthesis
component.

30
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