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Abstract

Anomaly detection in videos deals with pointing out the events that are out of normal.
Current methods deals with identification of anomalous frames in a video sequence
based on certain objects, and behaviours present in the video. Anomalies in videos
are continuous events, and due to high number of features, generally the classical
methods are not good enough for the task. Most of the reconstruction based deep
learning methods works on the assumption that anomalies are rare in nature, and
the training sets doesn’t contain any kind of anomalous events. This may work in
case of object related anomalies, but will fail in case of motion related anomalies. We
design a two-branch reconstruction and prediction based convolutional auto-encoder
which utilises future frame prediction technique along with 3D convolutions to capture
both spatial and temporal features. Moreover, the use of skip connections have been
utilised in prediction branch to avoid the loss of spatial information during prediction
in crowded frames. To overcome the problem of small dataset, we created new dataset
by superimposing images over one another. This led to more data as well as frames
containing more crowd density.
Keywords: Anomalies ; spatial information; two-branch reconstruction; temporal
features ; 3D convolution; convolutional autoencoder
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Chapter 1

Introduction

Anomaly detection in videos deals with identifying the events that are out of nor-
mal behaviour. With the increase in number of surveillance cameras, its impossible
to have dedicated people for the surveillance. This led to development of anomaly
detection algorithms. This task is extremely challenging because abnormal events
are very rare in real world, some even might not have occurred before. So, normal
classification based methods don’t work in this case. There have been relevant work
using classical methods, but as videos are high dimensional data, it’s difficult to ex-
tract quality features using hand-crafted feature based methods. To counter this,
various deep learning based techniques have been proposed. Reconstruction based
approaches using deep learning are the most popular ones, but they might work in
case of object based anomalies, but in case of motion based anomalies they don’t
seem to work very well. Moreover, the current methods are very peculiar to data-
sets they are trained on, and well generalized methods are still not available as of now.

We designed a reconstruction and prediction based deep learning that tries to predict
future frames in order to capture temporal features. Moreover, skip connections were
used in the prediction branch, to recover the lost spatial information. Also, new small
data-set was created by superimposing the images to create more crowded scenes.

Section 2 contains a brief discussion about the relevant past work. Section 3 deals
with the preliminaries, and the base model we’ve tried improving. The data-sets
used are discussed in section 4. Section 5 presents the proposed methodology and
the intuition behind it. The experimental observations are reported in Section 6. In
section 7, we have discussed about the pros and cons of our method, and in section
8, we discuss the further opportunities for the improvements. Section 9 contains all
the relevant references used.
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Chapter 2

Related Work

Based on the past work done in the field of video-anomaly detection, the related work
can be classified into two categories mainly work related to Anomaly Detection and
past work which have used 3D Convolution neural networks.

2.1 Anomaly Detection

Most of the video anomaly detection techniques train the model based on some local
hand-crafted features extracted before the training.Cong et al.[4] uses sparse recon-
struction cost with a normal dictionary for measuring the regularity score of the
test-set based on Multi-Scale Histogram of Optical Flow(MHOF). Due to the limited
representation of hand-creafted features, they are not able to handle complex video
anomaly detection tasks.
Unlike traditional methods, deep learning based methods are able to learn high-
dimensional features of videos and have proven to generate quite good results in many
Computer vision tasks. Hasan et al.[5] proposed a fully-convolutional autoencoder
for learning spatio-temporal features. This model was only able to extract spatial-
features because of the convolution operation being performed in 2-dimensions only,
eventhough multiple frames were given as input to the model. Xu et al.[16] desigend
a stacked-autoencoder to extract the features, and later utilised a one-class SVM to
separate out the anomalies. Patches are extracted from the frames and then passed to
a fully-connected autoencoder after flattening. As the fully-connected autoencoders
are permutation invariant, the spatial information was lost.

2.2 3D Convolutional Neural Networks

[14] shows that 3D convolution are well suited for temporal feature based tasks like
action recognition. Some early works like [7] uses 3D convolution to design a neu-
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6 2. Related Work

ral network to learn spatio-temporal features in videos. Tran et al.[15] used a large
video dataset [8] to train a deep 3D convolutional network, and was able to beat
state-of-the-art models in action recognition. Varol et al. designed a long-term tem-
poral convolution network using 3D convolutional to enhance the original models.
Moreover, there have been already quite relevant papers recommending to used 3D
convolution over 2D convolution for video related tasks. Also, due to the large imbal-
ance in the dataset, classical binary classification based approaches, and typical deep
neural network models can’t be used.



Chapter 3

Preliminaries

3.1 Convolutional AutoEncoders

Convolution Autoencoders makes use of convolution to decompose the input signal
as the sum of other signals. For an input image with single channel, the latent form
of the ith filter will be:

hi = f(x+W i) + bi (3.1)

Here, hi is the latent form, f is the activation function, x is the input, W i are the
weights of the kernel, and bi is the bias.

The encoder part in the convolutional autoencoders encodes the image in a latent
representation, and later on the decoder part tries to reconstruct the desired output
using the latent form.

Traditional Autoencoders, and PCA are permutation invariant i.e they ignore the
spatial structure in the images. Moreover, they tend to have large redundancy in the
network parameters, whereas Convolutional autoencoders tend to have fewer param-
eters due to weight sharing.

3.2 3D Convolutional Neural Networks

3D convolutional networks operates by performing convolution operation on a 3D
volume using a 3D kernel, unlike 2D convolution which uses a 2D kernel and a 2D
input.
3D ConvNets have better ability to capture temporal information from the input
volume compared to 2D ConvNets, because of 3D convolution and 3D pooling. [?]. In
3D ConvNets, the convolution and pooling operation are performed spatio-temporally
while in 2D ConvNets they are performed spatially only. Output of a 3D convolution

7



8 3. Preliminaries

is a volume instead of a 2D.
Fig. 3 represents a typical process for 3D convolution.

Figure 3.1: 3D Convolution[1]

3.3 Skip Connections

Skip connections skip some intermediate layers in a neural network to feed the out-
put of one layer as input to other layers. Skip connections can be used either in form
of addition, or either in form of concatenation. Addition is mostly used in residual
architectures, while the concatenation is used in densely connected architectures.

Addition is mostly used to overcome the gradient vanishing problem, while concate-
nation is used for feature re-usability, and making models more compact. For feature
re-usability, mostly long-skip connections are used instead of short ones.
Fig. 3.2 represents a typical example of skip connection.
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Figure 3.2: Skip Connection



Chapter 4

Datasets

4.1 UCSD Ped

UCSD Ped[2] contains two subsets, Ped1 and Ped2. Each subset is captured using
different cameras.
Ped1 is captured using a static camera. It contains 34 short video clips as training
set, and 36 clips as part of testing set. Each training video clip has around 200 frames
with a resolution of 238x158 pixels.
Ped2 contains 16 short clips as part of training set, and another 12 clips in testing
set. Each clip in training set has around 120 or 150 or 180 frames. Number of frames
in testing videos also ranges between 120 to 180. Here also, each frame is captured
by a static camera, and the resolution of each frame is 240x360 pixels.
The walking pedestrians are considered as normal, whereas bicycles, cars, carts or
people using skateboards are considered as anomaly. Moreover, unusual motion by
pedestrians is also considered as anomalous. Some frames contain high crowd density
making the dataset a bit more challenging.

(a) From Ped1 (b) From Ped2 (c) From Ped2

Figure 4.1: Sample Images from the datasets
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4.1. UCSD Ped 11

Video clip No. of frames Anomaly Type Anomalous Frames
1 200 Bicycle 60 - 152
2 200 Bicycle, Skateboard 50 - 175
3 200 Bicycle 91 - 200
4 200 Skateboard 31 - 168
5 200 Bicycle 5 - 90, 140 - 200
6 200 Bicycle, Skateboard 1 - 100, 110 - 200
7 200 Bicycle, Skateboard 1 - 175
8 200 Skateboard 1 - 94
9 200 Walking on the grass 1 - 48
10 200 Skateboard 1 - 140
11 200 Walking on the grass 70 - 165
12 200 Skateboard 130 - 200
13 200 Trolley 1 - 156
14 200 Bicycle, Truck 1 - 200
15 200 Bicycle 138 - 200
16 200 Bicycle, Walking on the grass 123 - 200
17 200 Bicycle 1 - 47
18 200 Skateboard 54 - 120
19 200 Van 64 - 138
20 200 Truck 45 - 175
21 200 Bike 31 - 200
22 200 Skateboard 16 - 107
23 200 Bike, Skateboard 8 - 165
24 200 Cart, Skateboard 50 - 171
25 200 Skateboard 40 - 135
26 200 Bicycle 77 - 144
27 200 Truck 10 - 122
28 200 Bicycle 105 - 200
29 200 Bicycle 1 - 15, 45 - 113
30 200 Bicycle 175 - 200
31 200 Bicycle, Walking on the grass 1 - 180
32 200 Bicycle 1 - 52, 65 - 115
33 200 Bicycle 5 - 165
34 200 Skateboard 1 - 121
35 200 Skateboard 86 - 200
36 200 Bicycle and Truck 15 - 108

Table 4.1: UCSD ped1 test set



12 4. Datasets

Video clip No. of frames Anomaly Type Anomalous Frames
1 180 Bicycles 61 - 180
2 180 Bicycles 95 - 180
3 150 Bicycles 1 - 146
4 180 Carts and Bicycles 31 - 180
5 150 Bicycles 1 - 129
6 180 Bicycles 1 - 159
7 180 Bicycles and Skateboards 46 - 180
8 180 Bicycles and Skateboards 1 - 180
9 120 Bicycles 1 - 120
10 150 Bicycles 1 - 150
11 180 Bicycles 1 - 180
12 180 Skateboards 88 - 180

Table 4.2: UCSD ped2 test set



Chapter 5

Proposed Methodology

5.1 Data Augmentation and Pre-processing

The training frames were pre-processed to create a volume of k consecutive frames
by sliding a window of size k with stride of 1. For each volume, the next set of k
consecutive frames were treated as the output for prediction branch.
Moreover, for each training set, after splitting it in two equal halves, consecutive
images at same indices in both the halves were superimposed on each other to create
more crowded scenes, so as to let the model learn how to extract features even in case
of crowded videos.
Each test frame is labelled as 1 or 0. 1 for being anomalous, and 0 for being a
normal frame. Similar to training data, volumes were created for testing data as well.
Labelling was done for each volume. If at least 40 percent of the frame in a volume
are anomalous, the the volume is treated as anomalous else it is treated as a normal
volume.

(a) First Image (b) Second Image
(c) Superimposed
Image

Figure 5.1: Creating densely crowded images
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14 5. Proposed Methodology

5.2 Network Architecture

Instead of detecting anomality for each frame, we try to find whether a volume of
frame is anomalous or not. As the anomalies are continuous in nature [11], we assume
that concluding a random frame as anomalous from a video captured in high fps is not
plausible. Instead a continuous volume of frames can be used to detect whether a part
of video is anomalous or not. A 2-branch output model consisting of a reconstruction
and prediction branch respectively, which is inspired from [18].
The volume size is set to k = 8, and each frame was resized to 64 × 128 × 1. So,
the input volume has the shape 8 × 64 × 128 × 1. The encoder part has four 3D
convolution [14] layers to extract the spatio-temporal features from the input volume.
We have used the kernel of 3 × 3 × 3 with strides of 1 × 1 × 1 in all the layers as
suggested by Trans. et al [15]. The feature maps produced by each Convolution layer
is a 3D tensor containing the temporal information as well. Number of kernels are
first increased sequentially to encode the image in latent form, and in decoder part
the kernels are used in symmetric manner to deconvolve the inputs. To accelerate
the convergence during training, batch normalization [6] has been used. Leaky ReLU
[10] is used as activation function in all the intermediate layers. 3D max-pool layers
are used after the activation, with strides of 2 × 2 × 2 and pool size of 2 × 2 × 2.
Gradient operation of convolution called Deconvolution operation [17] is used in the
decoder part instead of 3D convolution. The last layer of the decoder part is a 3D
convolution layer which tries to restore back the number of channels with respect to
the input image. For input data normalization, Sigmoid activation function is being
used at the last layer.

Figure 5.2: Base model Architecture
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The improved version of the base model contains skip connections in the prediction
branch, so as to reuse the feature maps from the common encoder part. It was in-
spired from other models using skip connections like U-net [12] etc. As the prediction
branch deals with temporal features, it was favouring temporal features over the spa-
tial ones, leading to poor reconstruction even in case of normal data. This was a
major problem in crowded frames. Skip connections allows the decoder part to reuse
the spatial features obtained during encoding leading to better reconstruction.
In this architecture, skip connections are used as long-skip connections, with concate-
nation operation. The concatenation happens in the last dimension of the tensors,
concatenating the feature maps from encoder part to the decoder part.

Figure 5.3: Base model with Skip connections



16 5. Proposed Methodology

5.2.1 Objective Function and Loss Functions

The Reconstruction loss can be given by:

lossrec =
1

N

N∑
i=1

||Vi − frec(Vi)||22 (5.1)

Here, N is the batch size, Vi is the ith volume in the batch, and frec(Vi) is the recon-
structed ith volume.

The prediction loss can be given as:

losspred =
1

N

N∑
i=1

||Vi − fpred(Vi)||22 (5.2)

Here, N is the batch size, Vi is the ith volume in the batch, and fpred(Vi) is the pre-
dicted i+ 1th volume.

The optimization objective of the model is:

min
w

w1 ∗ lossrec + w2 ∗ losspred (5.3)

Here, w is the parameters of the model, lossrec and losspred are the reconstruction
loss and prediction loss respectively, and w1 and w2 are the weights assigned to re-
construction loss and prediction loss respectively.

5.3 Evaluation criteria

The volume with error greater than a particular threshold are treated as abnormal
volumes, while those with error lower than the threshold are treated as normal ones.
Once, the errors for all the volumes from a particular video are calculated, the errors
are normalized using the equation 5.4.

e(v) =
e(v)−minve(v)

maxve(v)−minve(v)
(5.4)

5.3.1 Abnormality Score

The abnormality score for a video sequence v can be given by:

a(v) =
e(v)−minve(v)

maxve(v)
(5.5)
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Here, e(v) is the error for volume v, minve(v) is the minimum of all the reconstruction
errors in the whole dataset, and maxve(v) is the maximum of all the reconstruction
errors in the whole dataset.

Volume containing anomalous events will have higher value of a(v) compared to a
normal volume. In the real world, future data is not available, so minve(v) and
maxve(v) are set experimentally after the training.



Chapter 6

Experimental Results

All the three variations of the model was tested on Ped1 and Ped2. The results
were calculated for each video to investigate the model’s performance with respect to
different types of anomalies, and later a combined result was calculated in terms of
AUC score and EER score to get the overall idea of how the model performs on the
whole data-set.

6.1 Base Model

6.1.1 Ped1

Figure 6.1 shows a frame containing a van. The corresponding heatmaps clearly shows
the reconstruction error in blue color bounded in red rectangle. Figure 6.2 clearly
shows that the model is not able to reconstruct a small but crowded group of people
leading to a false alarm. Figure 6.3 shows a skateboarder being captured during the
reconstruction as well as prediction phase.
Figure 6.4 shows the AUC-ROC curve for the model with a score of 0.768. Table 6.1
shows the false alarms, missed alarms, AUC, and EER for each video respectively.

18



6.1. Base Model 19

Figure 6.1: Sample from Testing video 19: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.2: Sample from Testing video 34: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps



20 6. Experimental Results

Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycle 25 0 0.97 0.098
2 Bicycle, Skateboard 12 1 0.99 0.015
3 Bicycle 15 0 0.99 0.043
4 Skateboard 26 42 0.46 0.609
5 Bicycle 28 33 0.61 0.36
6 Bicycle, Skateboard 0 45 0.99 0.02
7 Bicycle, Skateboard 0 5 0.99 0.01
8 Skateboard 46 20 0.72 0.37
9 Walking on the grass 70 0 0.99 0.04
10 Skateboard 0 22 0.97 0.05
11 Walking on the grass 22 78 0.37 0.64
12 Skateboard 8 18 0.79 0.23
13 Trolley 0 10 0.98 0.06
14 Bicycle, Truck 0 63 - -
15 Bicycle 49 2 0.89 0.19
16 Bicycle, Walking on the grass 77 0 0.87 0.23
17 Bicycle 80 34 0.23 0.63
18 Skateboard 81 41 0.30 0.67
19 Van 29 2 0.98 0.02
20 Truck 0 38 0.92 0.21
21 Bike 20 47 0.59 0.38
22 Skateboard 29 17 0.69 0.33
23 Bike, Skateboard 19 39 0.56 0.40
24 Cart, Skateboard 27 1 0.99 0.001
25 Skateboard 5 10 0.97 0.09
26 Bicycle 25 15 0.74 0.27
27 Truck 0 39 0.99 0.004
28 Bicycle 70 15 0.42 0.61
29 Bicycle 8 31 0.91 0.21
30 Bicycle 8 0 1.0 0.0
31 Bicycle, Walking on the grass 0 21 0.98 0.14
32 Bicycle 1 0 0.99 0.03
33 Bicycle 0 20 1.0 0.0
34 Skateboard 66 60 0.11 0.81
35 Skateboard 28 34 0.76 0.33
36 Bicycle and Truck 0 26 0.90 0.16

Table 6.1: UCSD ped1 results
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Figure 6.3: Sample from Testing video 35: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.4: AUC-ROC curve for ped1

6.1.2 Ped2

Figure 6.5, and 6.6 shows poor reconstruction as well poor prediction leading to high
reconstruction for crowd in the heatmaps.
Figure 6.7 shows the AUC-ROC curve for the model with a score of 0.777. Table 6.2
shows the false alarms, missed alarms, AUC, and EER for each video respectively.
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Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycles 56 28 0.26 0.63
2 Bicycles 1 0 1.0 0.0
3 Bicycles 0 10 - -
4 Carts and Bicycles 0 6 1.0 0.0
5 Bicycles 0 34 0.89 0.22
6 Bicycles 7 22 0.83 0.09
7 Bicycles and Skateboards 2 0 1.0 0.0
8 Bicycles and Skateboards 0 29 - -
9 Bicycles 0 17 - -
10 Bicycles 0 72 - -
11 Bicycles 0 57 - -
12 Skateboards 44 4 0.80 0.28

Table 6.2: UCSD ped2 results

Figure 6.5: Sample from Testing video 4: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Figure 6.6: Sample from Testing video 12: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.7: AUC-ROC curve for Ped2
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6.2 Base Model with Skip connections in Predic-

tion branch

6.2.1 Ped1

Figure 6.8 shows a frame containing a van. The corresponding heatmaps clearly
shows the reconstruction error in blue color bounded in red rectangle. Because the
anomalous object is big enough, there seems to be no difference from the output
produced by the base model. Heatmaps in Figure 6.9 clearly shows that the model
is able to reduce the reconstruction error for the small but crowded group of people
preventing a false alarm. Figure 6.10 shows a skateboarder being reconstructed well,
but still the reconstruction error seems high maybe because of shifting of pixels due
to temporal information.
Figure 6.11 shows the AUC-ROC curve for the model with a score of 0.757. Table 6.3
shows the false alarms, missed alarms, AUC, and EER for each video respectively

Figure 6.8: Sample from Testing video 19: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycle 36 1 0.99 0.01
2 Bicycle, Skateboard 22 0 0.99 0.01
3 Bicycle 13 6 0.97 0.09
4 Skateboard 26 49 0.41 0.62
5 Bicycle 36 31 0.67 0.29
6 Bicycle, Skateboard 0 19 0.99 0.008
7 Bicycle, Skateboard 0 7 0.99 0.01
8 Skateboard 28 0 0.98 0.06
9 Walking on the grass 89 0 0.98 0.06
10 Skateboard 0 11 0.98 0.07
11 Walking on the grass 31 71 0.43 0.55
12 Skateboard 8 59 0.76 0.19
13 Trolley 0 7 0.98 0.01
14 Bicycle, Truck 0 69 - -
15 Bicycle 61 0 0.90 0.14
16 Bicycle, Walking on the grass 85 0 0.83 0.23
17 Bicycle 80 24 0.28 0.58
18 Skateboard 67 17 0.44 0.51
19 Van 8 2 0.93 0.05
20 Truck 0 34 0.92 0.23
21 Bike 26 20 0.73 0.27
22 Skateboard 47 1 0.68 0.33
23 Bike, Skateboard 25 8 0.28 0.62
24 Cart, Skateboard 10 2 0.98 0.04
25 Skateboard 4 16 0.93 0.13
26 Bicycle 63 10 0.82 0.21
27 Truck 0 33 0.98 0.05
28 Bicycle 68 35 0.33 0.66
29 Bicycle 60 14 0.73 0.38
30 Bicycle 23 0 1.0 0.0
31 Bicycle, Walking on the grass 0 41 0.99 0.005
32 Bicycle 14 3 0.98 0.10
33 Bicycle 0 31 0.99 0.003
34 Skateboard 64 38 0.35 0.63
35 Skateboard 16 42 0.82 0.25
36 Bicycle and Truck 0 25 0.87 0.16

Table 6.3: UCSD ped1 results
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Figure 6.9: Sample from Testing video 34: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.10: Sample from Testing video 35: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Figure 6.11: AUC-ROC curve for ped1

6.2.2 Ped2

Figure 6.12 shows high reconstruction error for both the bicyle and the truck in the
heatmap, compared to the crowd. Figure 6.13 also shows fairly well reconstruction
leading to low reconstruction error in heatmap.
Figure 6.14 shows the AUC-ROC curve for the model with a score of 0.796, and Table
6.4 shows the false alarms, missed alarms, AUC, and EER for each video respectively.

Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycles 56 53 0.16 0.78
2 Bicycles 0 0 1.0 0.0.
3 Bicycles 0 14 - -
4 Carts and Bicycles 0 7 1.0 0.0
5 Bicycles 0 16 0.99 0.01
6 Bicycles 0 31 0.83 0.22
7 Bicycles and Skateboards 4 0 1.0 0.0
8 Bicycles and Skateboards 0 29 - -
9 Bicycles 0 29 - -
10 Bicycles 0 71 - -
11 Bicycles 0 76 - -
12 Skateboards 37 4 0.91 0.17

Table 6.4: UCSD ped2 results
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Figure 6.12: Sample from Testing video 4: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.13: Sample from Testing video 12: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Figure 6.14: AUC-ROC curve for Ped2

6.3 Base Model with Skip connections and Data

Augmentation

6.3.1 Ped1

Figure 6.15, 6.16, and 6.16 shows, there doesn’t seems to be much difference between
the images produced by the base model with skip connections and this model.
Figure 6.18 shows the AUC-ROC curve for the model with a score of 0.768, and Table
6.5 shows the false alarms, missed alarms, AUC, and EER for each video respectively.
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Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycle 36 0 0.99 0.01
2 Bicycle, Skateboard 16 0 0.99 0.004
3 Bicycle 9 5 0.98 0.09
4 Skateboard 26 55 0.40 0.68
5 Bicycle 30 31 0.65 0.32
6 Bicycle, Skateboard 0 34 0.99 0.002
7 Bicycle, Skateboard 0 21 0.99 0.008
8 Skateboard 15 0 0.97 0.08
9 Walking on the grass 78 0 0.98 0.10
10 Skateboard 0 13 0.98 0.04
11 Walking on the grass 29 73 0.42 0.54
12 Skateboard 8 59 0.76 0.20
13 Trolley 0 7 0.99 0.02
14 Bicycle, Truck 0 81 - -
15 Bicycle 56 0 0.89 0.19
16 Bicycle, Walking on the grass 84 0 0.77 0.30
17 Bicycle 72 25 0.34 0.54
18 Skateboard 65 52 0.40 0.58
19 Van 8 3 0.93 0.05
20 Truck 0 43 0.91 0.25
21 Bike 24 25 0.78 0.22
22 Skateboard 45 1 0.69 0.30
23 Bike, Skateboard 25 37 0.37 0.56
24 Cart, Skateboard 8 2 0.99 0.04
25 Skateboard 27 6 0.96 0.10
26 Bicycle 34 18 0.77 0.28
27 Truck 0 59 0.99 0.04
28 Bicycle 75 1 0.40 0.57
29 Bicycle 34 19 0.81 0.27
30 Bicycle 13 0 1.0 0.0
31 Bicycle, Walking on the grass 0 42 0.99 0.01
32 Bicycle 12 2 0.99 0.04
33 Bicycle 0 41 1.0 0.0
34 Skateboard 63 39 0.40 0.55
35 Skateboard 14 52 0.79 0.33
36 Bicycle and Truck 0 24 0.90 0.14

Table 6.5: UCSD ped1 results
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Figure 6.15: Sample from Testing video 19: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.16: Sample from Testing video 34: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Figure 6.17: Sample from Testing video 35: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.18: AUC-ROC curve for ped1

6.3.2 Ped2

Figure 6.19, and 6.20 clearly shows that the crowded scenes are reconstructed well,
leading to decrease in number of false alarms. The result seems to be similar to base
model with skip connections.
Figure 6.21 shows the AUC-ROC curve for the model with a score of 0.823, and Table
6.6 shows the false alarms, missed alarms, AUC, and EER for each video respectively.
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Video clip Anomaly Type False Alarms Missed Alarms AUC EER
1 Bicycles 41 57 0.33 0.66
2 Bicycles 0 0 1.0 0.0
3 Bicycles 0 15 - -
4 Carts and Bicycles 0 10 1.0 0.0
5 Bicycles 0 15 1.0 0.0
6 Bicycles 0 33 0.83 0.09
7 Bicycles and Skateboards 0 1 1.0 0.0
8 Bicycles and Skateboards 0 37 - -
9 Bicycles 0 29 - -
10 Bicycles 0 68 - -
11 Bicycles 0 89 - -
12 Skateboards 39 4 0.90 0.18

Table 6.6: UCSD ped2 results

Figure 6.19: Sample from Testing video 4: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps
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Figure 6.20: Sample from Testing video 12: Upper half contains the reconstruction
phase, and lower half contains the prediction phase. First column contains ground
truth images, while second column contains the reconstructed and predicted frames
respectively. Third column contains the respective heatmaps

Figure 6.21: AUC-ROC curve for Ped2
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6.4 Overall Results

After analysing the results, its obvious that skip connections leads to improvement
in UCSD Ped2, but not in UCSD Ped1. Compared to the base model, there have
been an increase of around 0.05 in AUC score for Ped2 in the final model. Moreover,
the heatmaps for the base model with skip connections and data augmentation shows
reduced number of high error pixels compared to that in base model and base model
with skip connections. Qualitatively,iIt is evident from the Figure 6.6, 6.13, and 6.20.
Pre-training on some larger video datasets might have increased the overall scores.

Overall scores for all the models are given in Table 6.7. S.C. and D.A. in Table
6.7 denotes Skip connections and Data Augmentation respectively.

Model Ped1 AUC Ped1 EER Ped2 AUC Ped2 EER
Base Model 0.768 0.258 0.776 0.305

Base Model with S.C. 0.764 0.294 0.796 0.274
Base Model with S.C. and D.A. 0.768 0.283 0.823 0.250

Table 6.7: Score for all the models



Chapter 7

Conclusion and Future Work

The model works fairly well for videos containing anomalous objects having relatively
larger size, but it fails to identify the smaller anomalous objects. Moreover, after
experimenting with the weights assigned to the reconstruction and prediction losses
in the objective function, its evident that the spatial features plays a major role in
detecting anomalies compared to the temporal features. Even in case of temporal
anomalies, model seems to work well when the frames are sparsely crowded, but in
case of normal but densely crowded frames, the model fails to generalize well leading
to false alarms.
Future work involves further improving the model for smaller anomalous objects, as
well as designing generalized models which might be able to perform fairly on all kinds
of datasets. Moreover, designing better techniques to capture temporal features can
be one of the research problem in this domain. Also, designing the models which can
work fairly well, even in case of densely crowded images can be considered as good
area for future research.
Most of the researchers tend to use small datasets, on which the scores have been
saturated. New datasets with more challenging anomalies can be designed to make
more generalized models.

36
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