
Parameterized algorithms for k - path counting

Omkar Bhalerao

Parameterized algorithms for k - path counting

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Omkar Bhalerao
[Roll No: CS2040]

under the guidance of

Dr. Arijit Ghosh
Advanced Computing and Microelectronics Unit

and

Prof. Saket Saurabh
Institute of Mathematical Sciences, Chennai

Indian Statistical Institute
Kolkata-700108, India

July 2022

To my family

CERTIFICATE

This is to certify that the dissertation titled “Parameterized algorithms for approximate
k - path counting” submitted by Omkar Bhalerao to Indian Statistical Institute, Kolkata,
in partial fulfillment for the award of the degree of Master of Technology in Computer
Science is a bonafide record of work carried out by him under our supervision and guidance.
The dissertation has fulfilled all the requirements as per the regulations of this institute and,
in our opinion, has reached the standard needed for submission.

Dr. Arijit Ghosh Prof. Saket Saurabh
Assistant Professor Professor
Advanced Computing and Microelectronics Unit Theoretical Computer Science Unit
Indian Statistical Institute, Kolkata Institute of Mathematical Sciences,

Chennai

Acknowledgement

I am extremely grateful to my advisor, Prof. Saket Saurabh for not only allowing me to work on this
problem, but for also giving me the freedom to explore various techniques along the way. His valuable
guidance and advice at different point during this thesis has definitely played a pivotal role in shaping
this work.

I would also like to express my gratitude to Prof. Arijit Ghosh, who has been an amazing mentor to
me during my journey at the ISI. His ideas, encouragement, enthusiasm and guidance has helped me
in shaping my thoughts and motivated me strive harder.

I am grateful to all the faculty members at ISI for their constant support. I am especially thankful
to Prof. Arijit Bishnu and Prof. Arijit Ghosh, since it was their course on Randomized Algorithms
which sparked my interest in the subject. Last but not the least, I would like to thank my family,

since this thesis could not have come into existence without their support. I am especially grateful to
my parents, who had to take up on some of my responsibilities during the completion of this thesis,
and bear with me during this period.

Omkar Bhalerao
Indian Statistical Institute

Kolkata - 700108, India.

i

Abstract

The problem of counting the number of subgraphs of a specific kind within an input graph G = (V,E)
has been extensively studied in literature. However, when it comes to designing good algorithms for
such problems, even the most simple cases, such as counting k - paths pose some challenges. One of
the many possible ways to cope with the hardness of such problems is by studying them from the lens
of Parameterized algorithms. In this thesis, we explore FPT approximation schemes (FPT-AS) for
counting k - paths in G.

In the first part, we look at additional parameterizations for the problem of k - path counting.
In particular, for directed graphs, we design a randomized FPT-AS, whose running time depends
upon the size of the hitting set for all k - paths in the graph, along with the parameter k. In case of
undirected graphs, we design a randomized FPT-AS, with running time dependent on k and the size
of the max-cut in G, conditioned on the existence of efficient sensitivity oracles of certain kind. For
both these algorithms, our primary tool is the KNAPSACK problem.

In the second part of the thesis, we look at the problem of counting the number of isomorphic copies
of a connected subgraph on k vertices within graphs of bounded degree. We do so by introducing
the notion of a subgraph-separating family, which is a natural extension to the Random-Separation
technique. Subsequently, by establishing its equivalence with parsimonious families in regular graphs,
we design a deterministic FPT-AS for #k-PATH.

iii

Contents

Acknowledgement i

Abstract iii

List of Figures vii

1 Introduction and Literature Survey 1

2 Techniques for counting k - paths 3

2.1 Introduction . 3

2.2 Color-Coding . 3

2.3 Extensor-Coding . 4

2.3.1 A brief detour into Exterior Algebra . 4

2.3.2 k - path counting using extensors . 5

2.4 Summary . 5

3 Counting Paths using KNAPSACK 7

3.1 Introduction . 7

3.2 KNAPSACK Problem . 7

3.3 Sensitivity Oracle for k - Path Counting . 8

3.4 KNAPSACK Problem and k - path counting . 8

3.5 Finding S through Chromatic-Coding . 11

3.6 Hitting sets in cuts . 12

3.6.1 Preliminaries and notations . 12

3.6.2 Overview of the algorithm . 13

v

3.6.3 The gory details . 14

3.7 Summary . 16

4 FPT Algorithm for counting connected graphs on k vertices in graphs of bounded
degree 17

4.1 Introduction . 17

4.2 Notations . 17

4.3 ϵ - k - path - separating family . 18

4.4 An algorithm for approximately counting k - paths . 19

4.5 Generalizing to any connected graph H on k vertices. 20

4.6 Approximately Counting the number of copies of a connected subgraph H on k vertices 21

4.7 A connection with Parsimonious Families in regular graphs 22

4.8 Summary . 23

5 Conclusion 25

List of Figures

2.1 A colorful path . 4

3.1 The cut (Z, V \ Z) . 14

4.1 Random Separation . 18

vii

Chapter 1

Introduction and Literature Survey

The problem of counting structures within a graph G has puzzled computer scientists for a long time.
Given a graph H, at times, it may be possible to determine the existence of H within G in poly-
nomial time, but the corresponding counting problem, which we typically denote by #H, may not
necessarily be solvable in polynomial time. This phenomenon was first demonstrated by Valiant [22]
in the context of matchings in a graph. In particular, he showed that a polynomial time algorithm
for counting the number of matchings in G is unlikely to exist. In order to cope with the hardness of
such problems, we divert our attention to the realm of parameterized complexity.

Given any instance I of some problem P and an associated parameter k, any algorithm with running
time O(f(k)|I|O(1)) that solves P is said to be Fixed Parameter Tractable (FPT), where f is some
computable function of k. In the context of counting subgraphs in G, the most simple structure that
one could possibly think of is a path of length k. The corresponding decision version of this prob-
lem has been extensively studied in the literature of parameterized algorithms [5, 8, 13, 14, 16, 20, 24].
Hence, one might initially hope to find an algorithm to exactly count the number of copies of a k -
path in G. However, it was not long before we figured that even the problem of counting k - paths is
not as easy as it seems. In particular, Flum and Grohe [12] proved that it is highly unlikely to find
an FPT algorithm for counting k - paths in a graph, essentially bringing us back to square-one. So,
instead of completely abandoning the problem, we started investigating FPT - approximation schemes
for approximately counting the number of k - paths in a graph. In particular, our objective was to
design algorithms with running time O(f(k, 1ϵ)n

O(1)), which could produce close approximations to
the actual count of the k - paths in the input graph. It is only recently that this problem has received
widespread attention, with a host of new techniques introduced to tackle this problem.

The #k - PATH problem has played a pivotal role in the development of parameterized algorithms
for approximate counting. The first algorithm to address this question was proposed nearly 15 years
ago [6], in which the authors combined the technique of color coding with the classical Karp-Luby
technique for approximate counting, resulting in a randomized, exponential space, O(kO(k)nO(1)) -
time algorithm. Later, the running time was improved by Alon et al. in [2], in which they proposed
an algorithm which reduced the dependence on k to single exponential. This algorithm, along with the
previous one was primarily based on the color-coding technique, introduced in [5]. The motivation for
this problem was based on trying to understand the Protien-Protein Interaction (PPI) networks within
uni-celullar organisms. Later, in 2007, Alon and Gutner proposed the first deterministic algorithm
for the #k - PATH problem [3], which had a running time of (2e)k+O(log3 k)m log n for ϵ = k−O(1),
with a continued exponential dependence on the space requirement.

After nearly a decade, In 2018, Brand et al. [9] proposed a randomized FPT-AS with running time

1

2 1. Introduction and Literature Survey

of O(4kmϵ−2) and exponential dependence on the space. Subsequently Bj¨orklund et al. [17] also
gave a deterministic algorithm with similar running time. In 2021, Lokshtanov et al. [18] proposed an
algorithm, which bridged the gap between the existing 4kpoly(n) algorithms and the conjectured [15]
2kpoly(n) algorithm, by proposing an FPT-AS with running time O(2.619kpoly(n) 1

ϵ2
).

Chapter 2

Techniques for counting k - paths

2.1 Introduction

In this chapter, we briefly discuss the techniques which have been used to design FPT-AS for #k-PATH
problem. In particular, we briefly describe the techniques of Color-coding and Extensor-coding.

2.2 Color-Coding

The principle idea behind the color-coding technique is that by coloring the input graph G = (V,E)
with a suitable number of colors, it might be possible to efficiently look for the substructure that we
are interested in.

In the context of k - paths, if we independently assign to every vertex of G a color, chosen uni-
formly at random from a set of [k] colors, then with probability at least 1

ek
, given a k - path P, every

vertex on P will receive a different color. This reduces the problem of finding k - paths to the relatively
easier problem of finding colorful k - paths, which can be solved deterministically in O(2knO(1)) time
using dynamic programming.

However, the technique by itself cannot be employed directly for approximate counting of k - paths
in G. In order to extend its functionality in the context of #k-PATH problem, Alon and Gutner
introduced the notion of a balanced family of hash functions [3]. More concretely,

Definition 2.2.1. Let 1 ≤ k ≤ n and δ > 1. A family of functions from [n] to [k] is a δ - balanced

(n, k) - family of hash functions if there exists a constant T > 0 such that for every S ∈
([n]
k

)
, the

number of functions in the family which are injective on S lies within T
δ and δT .

In [3], the authors proposed a construction of a relatively small δ - balanced (n, k) - family of hash
functions. It is now easy to note that if we color the vertices of G using the functions defined in
the above family, then every k - path P will be colored colorfully by at least T

δ and at most Tδ
colorings within the family. Hence the problem of counting k - paths reduces to counting colorful
k - paths, which can be solved in 2knO(1) - time using dynamic-programming. If we denote the δ -
balanced family of (n, k) - functions by F , and for a given f ∈ F , the number of colorful k-paths in G

with respect to f by Nf , then
∑

f∈F
Nf

T represents an approximation to the count of the k - paths in G.

3

4 2. Techniques for counting k - paths

Thus, for the above technique to work, it is absolutely essential that |F| is relatively small. This
is guaranteed by the following theorem:

Theorem 2.2.1. [3] For a fixed 1 ≤ δ ≤ 2, a δ - balanced (n, k) - family of perfect hash functions of
size 2O(k log log k) can be constructed in 2O(k log log k)n log n time.

Figure 2.1: A colorful path

2.3 Extensor-Coding

2.3.1 A brief detour into Exterior Algebra

Here we briefly discuss the details of exterior algebra. A relatively detailed exposition to the subject
can be found in [7]. Consider a field F and a positive integer k. Let V = Fk be a k-dimensional vector
space over F with basis elements e1, e2, · · · , ek. We wish to extend V to a 2k-dimensional vector space
W . In order to do so, it is sufficient to put together a set of 2k linearly independent vectors and let
W be their span i.e. we let W to be the set of all possible linear combinations of the elements in
the basis set B. We can uniquely identify the elements in B by indexing them with subsets of [k]. In
particular, B =

{
eI | I ⊆ [k]

}
.

Consider any x ∈ W. Then x =
∑

I∈B aIeI , where the constants aI are drawn from the field F.
In order to compute linear combinations of the elements in W , we need to be able to add vectors in
W and take scalar product of a vector in W with a scalar a ∈ F. Both these operations are very similar
to what we would usually do when dealing with polynomials. For instance, if x = 3e{

1,2
} + 4e{

3
}

and y = e{
2
} − 2e{

1,2
}, then x+ 2y = 2e{

2
} − e{

1,2
} + 4e{

3
}.

The next obvious question is how to compute the basis elements in B. In order to address this
question, we transform W into an algebra Λ(Fk) by introducing the notion of a wedge product. In
particular, for any eI ∈ B, eI =

∧
i∈I ei. The wedge product satisfies the properties of bilinearity and

associativity, which allows us to restrict our attention to the behaviour of the wedge product for the
elements in B only. This is an easy consequence of bilinearity of Λ, which facilitates in extending the
definition of wedge product to elements in Λ(Fk).

Given two sets I, J ⊆ [k], if I ∩ J ̸= ϕ, then eI
∧
eJ = 0. Otherwise, eI

∧
eJ = ± eI∪J . Equipped

with the above definition, it is immediately evident that Λ(Fk) is closed under
∧
. In order to deter-

mine the sign associated with the wedge product eI
∧

eJ , we first sort the elements in I and J , and
then combine them in that order into a sequence σ. Then eI

∧
eJ = (−1)sign(σ)eI∪J . Hence, we can

conclude that the wedge product between the elements in all possible subsets of the canonical basis

2.4. Summary 5

vectors for Fk constitute the basis set for Λ(Fk). This leads to the following crucial observations for
the wedge product between elements in Λ(Fk) :

1. For any i, j ∈ [k], ei
∧
ej = e{

i,j
} = −ej

∧
ei, i.e. the wedge product is anti-commutative on

the elements of Fk.

2. An immediate consequence of this anti-commutativity is that for any x ∈ Fk, x
∧
x = 0.

3. Further, for any v1, v2, · · · , vk ∈ Fk,
∧

i∈[k] vi = det(v1|v2| · · · |vk)
∧

i∈[k] ei = det(v1|v2| · · · |vk)e[k].

Equipped with these properties, we now take a look at how this technique can be employed for
counting k - paths. The elements of Λ(Fk) are called extensors.

2.3.2 k - path counting using extensors

Suppose G = (V,E) is a simple, directed graph on n vertices and m edges. Let us assign a unique k
- dimensional Vandermode extensor to every vertex in G. In particular, associate with every vertex
viinV , a unique vector χ(vi) in Fk, which is given by (1, j, j2, · · · , jk−1) where j = f(i) for some
injective function f . Further, assign a unique constant yuv to every edge (u, v) ∈ E(G). Let Ws(G)
denote the collection of all possible walks of length s− 1 in G.

Given any walk w = u = v1 − v2 − · · · − vk = v in Wk(G), define the walk extensor χ(w) associated
with w as χ(w) = χ(u)

∧
yu,v1

∧
χ(v1)

∧
yv1,v2

∧
χ(v2)

∧
· · ·

∧
χ(vk). Let Z =

∑
w∈Wk−1(G) χ(w). We

now make the following observations regarding the properties of these extensors:

1. Note that a path is distinguished from a walk by a repeated vertex. More precisely, every walk
has at least one repeated vertex whereas no vertex is repeatedly visited in a path. This implies
that for any w ∈Wk(G), if w is a walk, then χ(w) = 0. So, the only k - walks which contribute
to Z are the ones which are k - paths.

2. Every k - path will make a contribution towards Z. More precisely, the coefficient associated
with every k - path will be non-zero. This is because, for any k - path w ∈Wk, we can pull out
the constants from χ(w), effectively producing a wedge product between k unique Vandermonde
extensors. This translates to computing the determinant of the matrix, whose columns are these
k - dimensional Vandermonde extensors. Since they are unique, the determinant of this matrix
will always be non-zero.

In the light of the above mentioned properties, it follows that every k - path gets accounted within
Z, and has a unique monomial in the variables

{
yu,v | (u, v) ∈ E(G)

}
as its coefficient. Now, if we

set each yu,v to 1 and sample the vectors χ(vi) uniformly at random from
{
− 1, 1

}k
for every vi ∈ V ,

then the expected value of the coefficient of e[k] in Z is proportional to the the number of k - paths in
G. [9]. Thus, through exterior algebra, it is possible to design an FPT-AS for #k - PATH problem.

2.4 Summary

In this chapter, we took a close look at some of the techniques that are widely used in designing FPT-
AS for the #k - PATH problem. In particular, we briefly discussed the color-coding and extensor-
coding techniques for counting k - paths in an input graph G.

Chapter 3

Counting Paths using KNAPSACK

3.1 Introduction

In this chapter, we carry out multi-variate analysis f algorithms for approximately counting the num-
ber of k - paths in both, directed and undirected graphs. We present separate randomized FPT
algorithms for the above problem. The first algorithm is parameterized by k and the size of the hit-
ting set for k - paths in G. The second algorithm, under certain assumptions, gives an FPT algorithm,
parameterized by k, the size of the hitting set for specific paths and the size of the max-cut in G.
Further, under certain additional assumptions, the running time of this algorithm can be modified to
be dependent only on k and the size of the max-cut in G.

The primary object in each of the above algorithms is the KNAPSACK problem.

3.2 KNAPSACK Problem

The classical 0/1 knapsack problem is as follows:

Let I =
{
i1, i2, · · · , in

}
be a set of n items. For every 1 ≤ j ≤ n, the item ij has an associated

non-negative weight wj and a non-negative profit pj . Given a knapsack of capacity W , the problem
asks to fill the knapsack with a subset of items from I, so that the total profit incurred from the items
placed in the knapsack is maximized, subject to the constraint that their total weight does not exceed
W.

The KNAPSACK problem is known to be NP-Complete. However, given an instance Π of the
KNAPSACK problem, if OPT(Π) denotes the total profit incurred from an optimal solution to Π,
then there exists an FPTAS (Fully Polynomial Time Approximation Scheme), which for any 0 < ϵ < 1,
returns a solution that ϵ - approximates OPT(Π). In particular, if PA denotes the profit earned from
the solution to Π obtained by running the FPTAS - A on it, then PA ∈ [(1 − ϵ)OPT(Π),OPT(Π)]
for any 0 < ϵ < 1. Further, the running time of the algorithm is O(n2⌊nϵ ⌋). In conclusion:

Lemma 3.2.1. [23] There exists a fully polynomial approximation scheme for the KNAPSACK
problem, with running time O(n2⌊nϵ ⌋)

7

8 3. Counting Paths using KNAPSACK

3.3 Sensitivity Oracle for k - Path Counting

Sensitivity oracles are typically studied in the context of dynamic graphs. Given a positive integer
l and an directed graph G = (V,E), an ideal l - sensitive oracle for k - path counting takes G as
its initial input and pre-processes it in order to extract necessary information. Subsequently, when
queried with a sequence of at most l updates to the edges of G, in the form of edge insertions or
deletions, the oracle returns the count of the k - paths in the updated graph. For an l - sensitive
oracle to be efficient, it is imperative that the time it needs to pre-process G is O(f(k)nO(1)) and the
time to respond to the queries is O(poly(l)f(k)nO(1)).

However, note that it is difficult to construct an ideal l - sensitive oracle for counting k - paths
in dynamic setting. Instead, we resort to an ϵ - approximate l - sensitive oracle, which approximates
the number of k - paths in the updated graph. In particular, the estimate returned by the oracle
lies within a ((1− ϵ), (1 + ϵ)) factor of the actual count of the k - paths in the modified graph. The
following lemma guarantees the existence of such oracles.

Lemma 3.3.1. [1] For an initial graph G on n vertices and m edges, there exists a random sensitivity
oracle that, given any ϵ > 0 and k, produces and estimate to the number of k paths , that with
probability > 99 %, is within ϵ relative error, with pre-processing time 1

ϵ2
4kpoly(k)poly(n) and update

time 1
ϵ2
l22ωk.

3.4 KNAPSACK Problem and k - path counting

Let G = (V,E) be a simple directed graph on n vertices and m edges, and Fk be the family of k - paths
in G. Let Hk ⊆ E be a hitting set of smallest size for the paths in Fk i.e. every k - path in G nec-
essarily passes through at least one edge inHk. Further, assume that |Hk| = t and S ⊆ E containsHk.

Suppose S =
{
e1, e2, · · · , es

}
, where s = |S|. Consider the following instance of the KNAPSACK

problem, which we shall denote by ΠK :

1. I = S

2. Every edge in S is assigned unit weight.

3. W = |S|, and

4. For every edge ei ∈ S, define the profit pi associated with ei as the number of k - paths in
G \

{
ej | i+ 1 ≤ j ≤ s

}
, that pass through ei and haven’t already been accounted in the profit

pj for any j < i.

Intuitively, it is evident that

1. every k - path in Fk will contribute towards the profit of some edge in S and

2. every k - path will be accommodated in the profit of exactly one edge in S.

The reason for the latter claim is as follows: Suppose we want to determine pi for some 1 < i < s.
Let P := ei1 − ei2 − · · · − eik−1

be a k - path in Gi := G \
{
ej | i+1 ≤ j ≤ s

}
, that passes through ei.

If P were to pass through ej for some j > i, then it would not have existed in Gi in the first place.

3.4. KNAPSACK Problem and k - path counting 9

Consequently, at this moment, its contribution to pj for every j > i is 0. Further, based on the way
in which we have defined the profits, it follows that unless P ’s contribution to the profits has already
been taken care of in some pj , j < i, it will be counted in pi. Once it has been accounted in pi, no
matter what j > i we choose, P will not contribute to pj . These arguments are formalised in Lemma-3.

In order to compute the profits for the edges in S, we employ a 1-sensitive oracle O. Note here that
we assume O to be an ideal sensitivity oracle for k - path counting. Given access to O, algorithm-1
outlines a procedure to compute the profits of the edges in S. We assume that O is equipped with
a subroutine COUNT-O(e), which returns the number of k - paths in G

′ ∪
{
e
}
, where G

′
represents

the current state of the original graph.

Algorithm 1 PROFIT-S(S,G,O)
C0 ← 0
GS = G \ S ▷ G \ S is the graph obtained by deleting the edges in S from G
O(GS) ▷ Feed G \ S as input to O for pre-processing
for i← 1 to s do

Ci ← COUNT-O(ei)
pi ← Ci − Ci−1

end for
return

{
p1, · · · , ps

}
Lemma 3.4.1. Every k - path in G will contribute to the profit of exactly one edge in S, where the
profits are computed using PROFIT-S(S,G,O)

Proof. Note that since S contains a hitting set for Fk, it is clear that every k - path necessarily passes
through at least one edge in S. Consequently, every k - path will make its way into the profit of at
least one edge in S. To show that each k - path contributes to the profit of exactly one edge, we
proceed by proving the Loop-invariant described below. In order to do so, we induct on the number
of iterations of the ”for” - loop in the subroutine PROFIT-S(S,G,O).

The Loop-invariant: ”At the end of the ith - iteration of the for - loop, pi will be equal to the
number of k - paths in Gi := G \

{
ej | i + 1 ≤ j ≤ s

}
, which go through the edge ei. Further-

more, every other k - path in Gi would be accommodated in the profit of exactly one of the edges in{
e1, e2, · · · , ei−1

}
” For the sake of convenience, we shall denote this statement by P (i).

Base-case: Suppose i = 1. At the end of the 1st - iteration, p1 should be equal to the number of
k - paths in G1, that pass through e1. This is precisely the number represented by C1. Since the
subroutine PROFIT-S(S,G,O) assigns C1 to p1 in the 1st iteration of the for loop, we indeed have
p1 = C1. Further, since S contains a hitting set for all k - paths in G, it is not possible for G \ S to
contain any k - path. Hence, the base case follows immediately.

Induction-Step: Assume P (i) to be true for every i ≤ j − 1 and consider the jth iteration of the
for loop.

Let ∆j = Cj−Cj−1. ∆j is the number of k - paths introduced in Gj−1 due to the insertion of the edge
ej . Note that every such newly created k - path will definitely pass through ej in Gj−1 ∪

{
ej
}
= Gj ,

and hence would contribute to pj . Observe that none of these k- paths contribute to pj for every
j < i, because if any such k-path did make a contribution to some pj ,wherej < i , then it should have
existed prior to the addition of ej , which is a contradiction.

10 3. Counting Paths using KNAPSACK

Now suppose P = ei1 − ei2 − · · · − eik is a k - path in Gj , that does not pass through ej . Let
Sp denote the subset of edges on P which belong to S and let el be the most recently inserted edge
among the edges in Sp. Since el ̸= ej (and hence no other edge in Sp), it follows that P was created
prior to the insertion of ej . More concretely, it was introduced the moment el was inserted in Gl−1.
Note that it is not possible for P to have come into existence unless el was added. Now, by the
induction hypothesis, P would contribute to pl, for some l < j. Further, its contribution to pj will be
0, since it gets counted once in Cj and then its contribution to pj gets subtracted in Cj−1. Hence the
induction hypothesis holds.

Termination: A similar argument will establish the correctness of P (i) when i = s.

Note that the above claim implies that every k - path will contribute to the profit associated with
exactly one edge. This proves the lemma.

Theorem 3.4.1. Let ΠK be an instance of the KNAPSACK problem defined as above. Then the
profit incurred from any optimal solution to ΠK will be equal to |Fk|

Proof. It is obvious to note that the optimal solution to Πk will incorporate all of S. Hence, the profit
earned by including all the edges from S into the knapsack will be

∑s
i=1 pi. By lemma-3.4.1, every k

- path gets counted exactly once in
∑s

i=1 pi, therefore,
∑s

i=1 pi = |Fk|.

Consequently, to obtain an exact count of the number of k - paths in G, it is sufficient to solve Πk

exactly. However, note here that we assumed O to be an ideal 1-sensitive oracle. Turns out, under
certain assumptions, we may not be able to construct an ideal 1 - sensitive oracle. Therefore, we rely
on an ϵ1 - approximate 1-sensitive oracle, which we shall denote by Oϵ1 . The existence of such an
oracle is guaranteed by lemma-3.3.1. The following lemma essentially states that by using Oϵ1 , we
can compute estimates of the profits associated with the edges in S, upto a relative error of ϵ1, where
0 < ϵ1 < 1.

Lemma 3.4.2. The profits p̂i, obtained by replacing O with Oϵ1 within the subroutine PROFIT-
S(S,G,O), satisfy (1− ϵ)pi ≤ p̂i ≤ (1 + ϵ)pi for every 1 ≤ i ≤ s with high probability.

Proof. Let Ĉi denote the estimate of the count of k - paths in G, obtained by invoking Oϵ1 in the
ith - iteration of the for loop within the subroutine PROFIT-S(S,G,O). Then, from the definition of
Oϵ1 and lemma-3.4.2, with high probability, (1 − ϵ1)Ci ≤ Ĉi ≤ (1 + ϵ1)Ci for each 1 ≤ i ≤ s. Since
p̂i = Ĉi − ˆCi−1, we can conclude that with high probability, every p̂i satisfies the conditions stated in
the lemma.

We are now in a position to use the FPTAS A on Πk, with ϵ2 being an additional error parameter.
This leads us to the following theorem:

Theorem 3.4.2. Let G be a directed graph on n vertices. Assume that S ⊆ E contains a hitting set
for all k - paths in G. Given S, let Πk be the instance of the KNAPSACK problem, obtained using the
procedure whose details are outlined above. Then, given any 0 < ϵ1, ϵ2 < 1, there exists a randomized
FPT algorithm, which with high probability, returns an estimate of the number of k - paths in G within

a relative error of ((1− ϵ1)(1− ϵ2)|Fk|, (1 + ϵ1)|Fk|), and has running time O(1
ϵ1ϵ2

2(2k+
ωk
2
)poly(n)).

Proof. For the sake of convenience, given a value x, we shall denote its estimate by x̂. From lemma-
3.4.2, it is clear that with high probability, (1− ϵ1)pi ≤ p̂i ≤ (1+ ϵ1)pi where pi is the profit associated
with the edge ei in S. With these estimates as profits, the total profit incurred from any optimal

3.5. Finding S through Chromatic-Coding 11

solution to Πk satisfies (1 − ϵ1)|Fk| ≤ ˆ|Fk| ≤ (1 + ϵ1)|Fk|. This is a consequence of theorem-3.4.1.
Finally, by executing A on Πk, we get the desired approximation factor for |Fk|.

As for the running time, the majority of the time the algorithm spends is in pre-processing G \ S,
followed by responding to the |S| queries concerning edge insertions. This takes O(1

ϵ1
2(2k+

ωk
2
)poly(n))

- time. Combining this with the running time of O(1
ϵ2
poly(n)), introduced due to the execution of A

on Πk, gives us the running time stated in Theorem-2.

It is clear that the correctness of our algorithm is crucially dependent on the existence of a set S, that
contains Hk. In order to find S, we resort to Chromatic-Coding.

3.5 Finding S through Chromatic-Coding

The technique of Chromatic-Coding was introduced by Alon et. al [4] for giving a subexponential
algorithm for Feedback Arc Set in Tournaments. This technique is used primarily for edge modification
problems. Suppose the number of edge modifications required in a given problem in upper bounded
by k. Further, assume that every vertex of the input graph is colored independently with a color,
chosen uniformly at random from a palette of o(k) colors. The hope is that, the edges which belong
to the solution set of the given problem, will end up being properly colored i.e. both the end points
of every edge in the solution set will receive distinct colors. As a result, it would suffice to consider
only the properly colored edges of the graph, while looking for a solution to the problem in question.
The following theorem formalises this intuition.

Theorem 3.5.1. [11] If the vertices of a simple graph G on k edges are colored independently and
uniformly at random with

√
8k colors, then the probability that E(G) is properly colored is at least

2
−
√

k
2 .

Let G = (V,E) be a simple directed graph on n vertices and m edges. Assume the size of the minimal
hitting set for all k - paths in G to be exactly t. Let us denote this set by H. If we color each vertex
of G independently with a color, chosen uniformly at random from a palette of

√
8t colors, then from

theorem-3.5.1, we can conclude that with probability at least 2−
√

t
2 , G

′
= (V,H) will be properly

colored. Consequently, if we let S to be the subset of all those edges in G, both of whose end-points
receive different colors, then with certain probability, S will contain H. Equipped with such an S, we
can obtain the corresponding KNAPSACK instance and resort to theorem-3.4.2 in order to approxi-
mately count the number of k - paths in G.

In order to boost the probability of finding an S which will contain H, we carry out 2
√

t
2 inde-

pendent executions of the algorithm for estimating |Fk|, and subsequently return the maximum of all
the estimates obtained so far. This implicitly involves the coloring step, described in the preceding
paragraph. The probability that none of coloring-steps produce a set S with the given property is at
most (

1− 1

2
√

t
2

)2

√
t
2

≤ 1

e

Therefore, with probability at least 1− 1
e , one of the 2

√
t
2 estimates will be obtained by operating on

a set S, which will contain H. This leads to algorithm-2. Hence we have the following result:

Theorem 3.5.2. Let G be a directed graph on n vertices and Let t be the size of the smallest hitting
set for the paths in Fk. Then with constant probability, algorithm-2 returns an estimate of the number

12 3. Counting Paths using KNAPSACK

of k - paths in G, which lies within a factor of ((1 − ϵ1)(1 − ϵ2), (1 + ϵ1)) - times the actual number

of k - paths in G, and has running time O(1
ϵ1ϵ2

2(2k+
ωk
2
+
√

t
2
)poly(n))

Proof. Let S1, S2, · · · , ST denote the sets obtained by coloring the vertices of G independently for

T = 2
√

t
2 iterations. Note that none of the estimates of |Fk| can exceed (1 + ϵ1)|Fk|. So, for the

variable ’max’ to be at least (1 − ϵ2)(1 − ϵ1)|Fk|, it must be the case that at least one of the Sj ’s
contains Hk. Additionally, conditioned on the existence of such Sj , the estimates for the profits of the
edges in Sj should satisfy the conditions in lemma-3.4.2. The former event occurs with probability at
least 1− 1

e and the latter with probability at least 0.99. The running time estimate follows immediately
from the algorithm itself. This completes the proof.

Algorithm 2 PROFIT-S(G,Oϵ1 , ϵ2)

max ← 0
for i ← 1 to 2

√
t
2 do

S ← ϕ
for v ∈ V do

c(v) ← a color chosen independently and uniformly at random from [
√
8k] - colors

Color v with c(v)
for w ∈ N+(v) do ▷ N+(v) consists of the ”out” neighbours of v

if w is colored and c(v) ̸= c(w) then
S ← S ∪

{
(v, w)

}
▷ Adding properly colored edges to S

end if
end for

end for
GS = G \ S ▷ Equipped with S, we proceed to compute the profits
Oϵ1(GS)
C0 ← 0
for i← 1 to |S| do

Ci ← COUNT-Oϵ1(ei)
pi ← Ci − Ci−1

end for
Πk ← (S,

{
1, 1, · · · , 1

}
, |S|,

{
p1, · · · , p|S|

}
) ▷ The set of 1’s are the unit weights for the edges in

S
P ← A(Πk, ϵ2) ▷ P is the profit obtained by running the FPTAS A on Πk.
if max > P then

max ← P ▷ ”max” contains the maximum profit.
end if

end for
return max

3.6 Hitting sets in cuts

3.6.1 Preliminaries and notations

Let G = (V,E) be a simple undirected graph on n vertices and m edges. Assume that the minimum
degree of G, denoted by δ(G), is at least 3. Given A ⊂ V , define ∂A, which we shall refer to as the
boundary of the cut (A, V \ A), as the set of edges in G which cross the cut (A, V \ A). For every

3.6. Hitting sets in cuts 13

u ∈ V and integers 1 ≤ x < y ≤ n, let Fu
[x,y] denote the family of l - length paths in G, which originate

from u, where x ≤ l ≤ y. We shall represent the hitting set corresponding to the paths in Fu
[x,y] by

Hu
[x,y]. In general, F[x,y] will represents the family of paths with length between x and y, inclusive of

x and y both. Note that Hu
[2,k−1] will contain a hitting set for the k - paths in G that start at u. We

shall denote the family of such k - paths by Fu and its hitting set by Hu. Further, we shall continue
denoting the collection of k - paths in G by Fk and its corresponding hitting set by Hk. We assume
that G contains a hitting set H[2,k−1] of size at most t. Finally, let Oϵ1 =

{
Oϵ1

u,v | u, v ∈ V, u ̸= v
}
,

where Oϵ1
u,v is an ϵ1 - approximate 1 - sensitive oracle for the number of k - paths from u to v.

We now present the following definition: Let F be a family of connected subgraphs of G, such
that every subgraph in F has non-empty intersection with a set T of vertices. Suppose S ⊆ E is
a hitting set for F . The set of vertices that are not reachable from T in G\S constitute a shadow of S.

Equipped with the definition of the shadow of a hitting set, we now state the following result:

Theorem 3.6.1. [21] Let F be a family of connected subgraphs of G, such that every subgraph in F
has non-empty intersection with a set T of vertices. If G has a hitting set of size at-most t for the
subgraphs in F , then with probability 2−O(t), G contains an optimal hitting set S for F which has the
following properties:

1. shadow of S is covered by Z,

2. no edge of S is contained in Z,

where Z is a subset of V , which can be computed in 2O(t)nO(1) time.

3.6.2 Overview of the algorithm

We begin with an overview of the algorithm. Suppose we fix a vertex u ∈ V and consider the set
Fu
[2,k−1]. Observe that

1. every graph in Fu
[2,k−1] is connected and

2. every path in Fu
[2,k−1] has a non-empty intersection with T =

{
u
}
.

Since G has a hitting set H[2,k−1] of size at most t, it follows that G also consists of a hitting set
for the paths in Fu

[2,k−1], whose size is upper bounded by t. Therefore, from theorem-3.6.1 we can

conclude that, that with probability at least 2−O(t), there exists a minimum hitting set H′

[2,k−1] in G
for the paths in Fu

[2,k−1], which has the following properties:

1. Z covers the shadow of H′

[2,k−1] and

2. every edge of H′

[2,k−1] lies outside Z,

where Z ⊆ V can be determined in 2O(t)nO(1) time.

The following discussion is based on the assumption that G indeed contains such a hitting set. Since
none of the edges in H′

[2,k−1] belong to Z, every edge in H′

[2,k−1] either crosses the cut (Z, V \ Z), or

14 3. Counting Paths using KNAPSACK

has both of its endpoints within Z. Theorem-3.6.2 essentially states that it is not possible for any
edge in H′

[2,k−1] to be completely within G \ Z. Therefore, we have a cut (Z, V \ Z), which has the

property that every edge in H′

[2,k−1] lies in ∂(Z). By letting S = ∂(Z), we have essentially found a
subset of edges in G, which contains a hitting set for all the k - paths in Fu

[2,k−1], and hence Fu. This

allows us to adopt the techniques we saw in section-3 to find an approximation to |Fu|.

More precisely, conditioned on the existence of Oϵ1 , we can effectively translate the above prob-
lem of estimating |Fu| into an instance of the KNAPSACK problem. In particular, we let I = S,

assign unit weight to the edges in S and let W = |S|. To compute the profit p̂iu for every ei ∈ S, we

first collect the estimates ˆpiu,v for ei, obtained from the oracles Oϵ1
u,v for every v ∈ V \

{
u
}
, and then

set p̂iu =
∑

v∈V \
{
u
} ˆpiu,v. Observe that

∑
ei∈S p̂iu gives us an estimate of |Fu|. This is because every

k - path in Fu ends in some w ∈ V \
{
u
}
. Consequently, by adopting the proof of lemma-3.4.1 for

the oracles in Oϵ1 , we can conclude that every such k - path is bound to contribute to the estimated
profit of exactly one edge in S. Once we have the estimates p̂iu for the profits of the edges ei in S, we
can run our FPTAS A to obtain the desired approximation to |Fu|. But note that this is contingent
on the fact that S contains a hitting set for Fu, which in turn is determined by the set Z. To boost
the probability of succeeding in finding a set which will contain the desired hitting set, we obtain
2O(t) independent instances of the KNAPSACK problem, each producing some estimate of |Fu|, and
subsequently select the maximum of these estimates. Let us denote by Su, the set that achieves this
maximum.

We now repeat the procedure described in the preceding paragraph for every vertex in G, and then
compute

∑
v∈V

ˆ|Fv| to obtain an estimate of the number of k - paths . However, note that every k
path will be counted twice, once for each of its endpoints. For instance, consider a k - path from u to
v in G. This path will be counted once in the profit of some edge in Su and once in the profit of some

edge in Sv. Consequently, we must return
∑

v∈V
ˆ|Fv |

2 as the estimate of the number of k - paths in G.

Let β(G) denote the size of the max-cut in G. Then it is quite clear that |S| ≤ β(G). One can
easily note that the running time of this algorithm is O(2O(t)f(k)g(k)β(G)poly(n)), where f(k) and
g(k) denote the maximum pre-processing and response time taken by any oracle in Oϵ1 .

Now suppose that t is the size of the optimal hitting set for paths in F[2,k−1]. Then, since ∂(Z)
contains an optimal hitting set for the paths in F[2,k−1], it has to be the case that t ≤ β(G). This

gives us a running time of O(2O(β(G))f(k)g(k)β(G)poly(n)).

Figure 3.1: The cut (Z, V \ Z)

3.6.3 The gory details

We now prove the following theorem:

3.6. Hitting sets in cuts 15

Theorem 3.6.2. Every edge which belongs to H′

[2,k−1] crosses the cut (Z,G \ Z).

Proof. We will prove this statement by contradiction. Let (x, y) ∈ H′

[2,k−1] so that both x and y

belong to G \ Z i.e. the edge (x, y) lies completely inside G \ Z. Since neither x nor y belong to Z,
it follows that both x and y lie outside the shadow of H′

[2,k−1]. Hence there exist paths Px and Py

from u to x and y respectively in G \ H′

[2,k−1]. Note that u ∈ G \ Z, since u is reachable from itself.

Since the edges in H′

[2,k−1] hit every path of length between 2 and k − 1, it must be the case that
the lengths of Px and Py either exceed k − 1 or are at most 1. If any one of the two paths satisfies
the former condition, then we immediately have a contradiction, since we would have found a path of
length k − 1, which is disjoint from H′

[2,k−1]. Since neither of the two paths can be of length 0, let us
assume that the lengths of Px and Py are 1.

Since δ(G) ≥ 3, y must have at least one neighbour t which is different from x and u. Similarly,
x must have at least one neighbour w, which is different from y and u. Let N(x) and N(y) denote the
neighbourhoods of x and y in G. If for any t ∈ N(y), the edge (y, t) /∈ H′

[2,k−1], then we immediately

have a contradiction, since we would end up with a u − y − t - path in G \ H′

[2,k−1]. Consequently,

every edge incident on y should be in H′

[2,k−1]. By a similar argument, every edge incident on x should

be contained within H′

[2,k−1].

Now, consider any path that passes through (x, y). Any such path enters x via one of its neigh-
bours and leaves y through one its neighbours. Therefore, every such path will be hit by at least
one of the edges incident on x and y. Since all the edges incident on x and y belong to H′

[2,k−1],

we can conclude that every path through x, y is hit by H′

[2,k−1]. Consequently, if we remove (x, y)

from H′

[2,k−1], we will obtain a smaller set, which continues to intersect every path through (x, y).

This contradicts the minimality of H′

[2,k−1]. Hence, we can conclude that no edge in H′

[2,k−1] can lie

completely within G \ Z.

Equivalently, theorem-3.6.2 can be stated in the following terms: with probability at least 2−O(t),
there exists a minimal hitting set for Fu

[2,k−1], whose edges lie within ∂(Z), where Z can be computed

in 2O(t)poly(n) time.

Equipped with theorem-3.6.2 and the discussion in the preceding section, we have the following
theorem:

Theorem 3.6.3. Let G = (V,E) be a simple undirected graph on n vertices and m edges. Assume
δ(G) ≥ 3. Let H[2,k−1] be a hitting set for the paths in F[2,k−1] of size at most t. Assume on
the existence of an efficient Oϵ1, and let f(k) and g(k) denote the functions of k, representing the
maximum pre-processing and response times among the oracles in Oϵ1. Then for any 0 < ϵ1, ϵ2 < 1,

1. there exists a randomized FPT algorithm, which approximates the number of k - paths within a
multiplicative error of ((1−ϵ1)(1−ϵ2), (1+ϵ1)) with running time O(1

ϵ1ϵ2
2O(t)f(k)g(k)β(G)poly(n))

2. If H[2,k−1] is an optimal hitting set, then the same algorithm has running time

O(1
ϵ1ϵ2

2O(β(G))f(k)g(k)β(G)poly(n))

16 3. Counting Paths using KNAPSACK

3.7 Summary

To summarize, we explored additional parameterizations for the problem of k - path counting in this
chapter. Our primary tool for the algorithms discussed in this chapter was the KNAPSACK problem.
Further, we formulated randomized FPT algorithms for the #k - PATH problem, parameterized by
the size of hitting set of the paths in Fu and the max-cut β(G).

Chapter 4

FPT Algorithm for counting connected
graphs on k vertices in graphs of
bounded degree

4.1 Introduction

Let G = (V,E) be a simple, undirected and d - regular graph on n vertices and H be a simple,
undirected and connected graph on k vertices. We present a randomized FPT algorithm, which can
be used for approximately counting the number of copies of H in G. Throughout, we will assume
that G is connected. However, our algorithm can be easily extended to disconnected graphs. Further,
our algorithm can be directly employed to obtain an approximation to the number of copies of H in
graphs of bounded degree.

Given any 0 < ϵ < 1, we introduce the notion of an ϵ - H - separating family, which allows us
to extend the technique of Random Separation [10, 11] to approximately count the copies of H in G.
We begin our discussion with the specific case of H being a path on k vertices (or equivalently a k -
path), and later examine how these ideas can be generalised to count any simple, connected subgraph
on k vertices.

4.2 Notations

As stated before, let G = (V,E) be a simple, undirected and d - regular graph on n vertices and H be
a simple, undirected and connected graph on k vertices. Given a set X and a positive integer j, we
shall denote the collection of all j - element subsets of X by

(
X
j

)
. Note that if j > |X|, then

(
X
j

)
= ϕ.

Suppose E = [N], i.e. the edges of G are labelled with integers from [N] =
{
1, 2, · · · , N

}
, where

N = dn
2 , provided |V | = n. Let CPk denote the family of all k - paths and CH

k denote the family of all
copies of H in G. Furthermore, we define a pair of distinct edges to be adjacent to each other if they
are incident on the same vertex. Let ∆(G) denote the maximum degree of G.

17

18 4. FPT Algorithm for counting connected graphs on k vertices in graphs of bounded degree

4.3 ϵ - k - path - separating family

Given a 2-coloring χ : E →
{
R,B

}
of the edges of G and a k - path P ∈ CPk , we say that χ successfully

separates P if and only if :

1. every edge on P is colored red(R) and

2. every edge which is not on P, but is adjacent to some edge on P is colored blue(B).

Figure 4.1: Random Separation

With the above definition at hand, we now proceed to define an ϵ - k - path - separating family.

Definition 4.3.1. Given a simple, undirected graph G = (V,E), a family F of 2 - colorings of the
edges of G is said to be an ϵ - k - path - separating family if there exists a constant T > 0 such that
for every P ∈ CPk , if NP denotes the number of colorings in F which successfully separate P, then
(1− ϵ)T ≤ NP ≤ (1 + ϵ)T for any 0 < ϵ < 1.

The following result provides a probabilistic construction of an ϵ - k - path - separating family for d
- regular graphs with N edges. Note that construction presented below can also be used to construct
an ϵ - k - path - separating family for graphs of bounded degree.

Theorem 4.3.1. There exists a family F of 2-colorings of the edges of G of size O(1
ϵ2
k2dk loge(N)),

such that with probability at least 1 − 2
kk
, for every k - path P ∈ CPk , the number of colorings in F

that succeed in separating P lies within the interval ((1 − ϵ)T, (1 + ϵ)T) for any 0 < ϵ < 1, where
T = T (N, ϵ, k, d) is a positive constant.

Proof. Let F =
{
χ1, χ2, · · · , χs

}
be a family of 2 - colorings of the edges of G. For every 1 ≤ i ≤ s,

construct χi ∈ F by coloring every edge of G independently with either Red or Blue color, chosen
uniformly at random. Note that the colorings in F are independent of each other.

Let us fix a k - path P ∈ CPk and let Ei,P denote the event that χi succeeds in separating P. For
the moment, let us assume that P(Ei,P) = ρ. Note that ρ will be independent of i.

For every χi ∈ F , define an indicator random variable Xi,P as follows:

4.4. An algorithm for approximately counting k - paths 19

Xi,P =

{
1 if χi successfully separates P
0 otherwise

(4.1)

Therefore, if the random variable YP denotes the total number of colorings in F that succeed in sep-
arating P, then YP =

∑s
i=1Xi,P . Hence E[YP] = E[

∑s
i=1Xi,P] =

∑s
i=1 E[Xi,P] =

∑s
i=1 P(Ei,P) = sρ.

Since the Xi,P ’s are independent, using Chernoff bound, for any 0 < ϵ < 1, we have that P(|YP−sρ| ≥
ϵsρ) ≤ 2e−

ϵ2sρ
3 .

Let T = sρ. Using the union bound, the probability of there being a k - path P in CPk , for which the
number colorings in F which successfully separate P does not lie within the interval ((1−ϵ)T, (1+ϵ)T),

is upper bounded by C = 2|CPk |e
− ϵ2sρ

3 ≤ 2
(
N
k

)
e−

ϵ2sρ
3 ≤ 2(Ne

k)ke−
ϵ2sρ
3 .

Now observe that ρ ≥ 1
2dk

. Consequently, for s = 3
ϵ2
k2dk loge(eN), it follows that 2(Ne

k)ke−
ϵ2sρ
3 ≤

2(Ne
k)k 1

(Ne)k
= 2

kk
. Therefore, with probability at least 1 − 2

kk
, for every P ∈ CPk , |YP − T | ≤ ϵT for

any choice of ϵ between 0 and 1.

4.4 An algorithm for approximately counting k - paths

Suppose we are given an ϵ - k - path - separating family F , a simple, undirected and connected d -
regular graph G = (V,E) and some 0 < ϵ < 1. For each χi ∈ F , let Gχi,R denote the subgraph of
G, obtained by collecting those edges which have been assigned Red color under χi and let

{
Gχi,R

}
be the family of such subgraphs, obtained from all the colorings in F . Then note that every path
P ∈ CPk occurs as a connected component in NP - many subgraphs of the family

{
Gχi,R

}
, where

(1 − ϵ)T ≤ Np ≤ (1 + ϵ)T . This observation leads to the following straight forward algorithm to
approximately count the number of k - paths in G. (refer Algorithm 1).

Algorithm 3 Approximately counting k paths in d - regular graphs : COUNT(F , T, ϵ,G)

count← 0
for each χ ∈ F do

Color the edges of G with χ.
Gχ ← Gχ,R

for every connected component C of Gχ on k vertices do
if C is a k - path then ▷ Can be checked in kO(d log d) time

count← count + 1
end if

end for
end for
return count

T

Theorem 4.4.1. The count of the k - paths returned by COUNT(F , T, ϵ,G) lies within the interval
((1− ϵ)|CPk |, (1 + ϵ)|CPk |) with high probability.

Proof. Let us fix a k - path P ∈ CPk . Let FP denote the subfamily of
{
Gχi,R

}
, consisting of graphs in

which P occurs as a connected component. These graphs correspond precisely to those colorings in F ,
which succeed in separating P. Further, let EF ,P denote the event that at least (1− ϵ)T and at most
(1+ϵ)T of the colorings in F successfully separate P. Then clearly, P(EF ,P) ≥ P(∩P∈CP

k
EF ,P) ≥ 1− 2

kk
.

20 4. FPT Algorithm for counting connected graphs on k vertices in graphs of bounded degree

So, with high probability, (1 − ϵ)T ≤ |FP | ≤ (1 + ϵ)T . Infact, based on the previous argument, for
every P ∈ CPk , it follows that with high probability, (1 − ϵ)|T ≤ |FP | ≤ (1 + ϵ)T . Therefore,
(1 − ϵ)T |CPk | ≤

∑
P∈CP

k
|FP | ≤ (1 + ϵ)T |CPk |. Observe that the value assumed by the variable count,

which is defined within the subroutine COUNT(F , T, ϵ,G), is exactly
∑

P∈CP
k
|FP | at the end of the

outer for loop. Therefore, with high probability, (1− ϵ)|CPk | ≤
count
T ≤ (1 + ϵ)|CPk |

Theorem 4.4.2. The running time of COUNT(F , T, ϵ,G) is O(1
ϵ2
2dkkO(d log d)poly(n))

Proof. Given any χ ∈ F , it takes O(N) time to identify the red colored edges with respect to χ in
G. This is precisely the time needed to construct the graph Gχ,R. Since the number of connected
components in Gχ,R cannot exceed n = |V (G)|, it follows that the time taken to determine all the k -
paths among the components of Gχ,R is O(kO(d log d)poly(n)) [19]. Since F houses O(1

ϵ2
k2dk loge(N))

many functions, it follows that the running time of the algorithm is O(1
ϵ2
2dkkO(d log d)poly(n)).

4.5 Generalizing to any connected graph H on k vertices.

We now shift our attention to the case when H is a simple, undirected and connected graph on k
vertices, while G continues to remain a d - regular graph on n vertices and N edges.

Given a 2-coloring χ : E →
{
R,B

}
of the edges of G and a subgraph H ∈ CHk , we say that χ

successfully separates H if and only if :

1. every edge in H is colored red(R) and

2. every edge which is not in H, but adjacent to some edge in H is colored blue(B).

As before, we now proceed to define the notion of an ϵ - H - separating family.

Definition 4.5.1. Given a simple, undirected graph G = (V,E), a family of 2 - colorings of the
edges of G is said to be an ϵ - H - separating family if there exists a constant T > 0 such that
for every H ∈ CHk , if NH denotes the number of colorings in F which successfully separate H, then
(1− ϵ)T ≤ NH ≤ (1 + ϵ)T for any 0 < ϵ < 1.

The existence of small ϵ - H - separating families for d - regular graphs can be shown using ex-
actly the same construction, that was used in the proof of Theorem-1. For the sake of completeness,
we present the proof again in the following theorem. As noted before, the procedure outlined in the
following theorem can be directly employed for the construction of an ϵ - H - separating family for
graphs of bounded degree.

Theorem 4.5.1. There exists an ϵ - H - separating family F of size O(1
ϵ2
k2dk loge(n)) such that with

probability at least 1− 2
kk
, for every H ∈ CHk , the number of colorings in F that succeed in separating

H lies within the interval ((1− ϵ)T, (1 + ϵ)T) for any 0 < ϵ < 1, where T = T (n, ϵ, k, d) is a positive
constant.

Proof. Let F =
{
χ1, χ2, · · · , χs

}
be a family of 2 - colorings of the edges of G. For each 1 ≤ i ≤ s,

in order to construct χi ∈ F , we color every edge of G independently with either Red or Blue color,
chosen uniformly at random. Note that the colorings in F are independent of each other.

Let us fix someH ∈ CHk and let Ei,H denote the event that χi succeeds in separatingH. Let P(Ei,H) = ρ.

4.6. Approximately Counting the number of copies of a connected subgraph H on k vertices 21

Note that ρ will be independent of i.

For any S ⊆ E(G) and σ ∈
{
R,B

}
, let ES,σ denote the event that the edges in S are colored with σ.

Further, assume that Γ(H) consists of those edges in G, which are not in H, but adjacent to some edge
in E(H). Then ρ = P(EE(H),R∩EΓ(H),B). Since the edges in G are colored independently and every edge

is equally likely to receive either R or B color, it follows that ρ = P(EE(H),R)P(EΓ(H),B) =
1

2|E(H)|+|Γ(H)| .

Since G is d regular, |E(H)|+ |Γ(H)| ≤ dk. Therefore, ρ ≥ 1
2dk

.

Now, for every χi ∈ F , define an indicator random variable Xi,H as follows:

Xi,H =

{
1 if χi successfully separates H
0 otherwise

(4.2)

Therefore, if the random variable YH denotes the total number of colorings in F that succeed in sep-
arating H, then YH =

∑s
i=1Xi,H. Hence E[YH] = E[

∑s
i=1Xi,H] =

∑s
i=1 E[Xi,H] =

∑s
i=1 P(Ei,H) = sρ.

Since the random variables Xi,H are independent, using Chernoff bound, for any 0 < ϵ < 1, we

have P(|YH − sρ| ≥ ϵsρ) ≤ 2e−
ϵ2sρ
3 .

Let T = sρ. Using union bound, the probability that for some H ∈ CHk , the number of successful
separating colorings in F does not lie within the interval ((1 − ϵ)T, (1 + ϵ)T) is upper bounded by

C = 2|CHk |e
− ϵ2sρ

3 ≤ 2
(
n
k

)
e−

ϵ2sρ
3 ≤ 2(nek)ke−

ϵ2sρ
3 ≤ 2(nek)ke

− ϵ2s

3·2dk .

Since s = 3
ϵ2
k2dk loge(en), it follows that 2(nek)ke−

ϵ2sρ
3 ≤ 2(nek)k 1

(ne)k
= 2

kk
. Therefore, with prob-

ability at least 1− 2
kk
, for every H ∈ CHk , |YH − T | ≤ ϵT for any choice of ϵ between 0 and 1.

4.6 Approximately Counting the number of copies of a connected
subgraph H on k vertices

The idea behind the algorithm to approximately count the number of copies of H in G is exactly
same as that of the algorithm presented in section - 4.

Suppose we are given an ϵ - H - separating family F , a simple, undirected and connected d - regular
graph G = (V,E) and some 0 < ϵ < 1. For each χi ∈ F , let Gχi,R denote the subgraph of G formed by
its red colored edges, after coloring G with χi. Let

{
Gχi,R

}
be the family of such subgraphs, obtained

from the colorings in F . Then note that every H ∈ CHk occurs as a connected component in NH -
many subgraphs of the family

{
Gχi,R

}
, where (1−ϵ)T ≤ NH ≤ (1+ϵ)T . This observation leads to the

following straight forward algorithm to approximately count the copies of H in G (refer Algorithm 2).
As before, the correctness of the algorithm is an immediate consequence of the definition of F itself.
The following theorem proves the correctness of the subroutine COUNT-H(F , T, ϵ,G,H).

Theorem 4.6.1. The count of the number of copies of H returned by COUNT-H(F , T, ϵ,G) lies
within the interval ((1− ϵ)|CHk |, (1 + ϵ)|CHk |) with high probability.

Proof. Let us fix some H ∈ CHk . Let FH denote the subfamily of
{
Gχi,R

}
, that contains the graphs in

which H occurs as a connected component. These correspond precisely to those colorings in F , which
succeed in separating H. Further, let EF ,H denote the event that at least (1−ϵ)T and at most (1+ϵ)T
of the colorings in F successfully separate H. Then clearly, P(EF ,H) ≥ P(∩H∈CH

k
EF ,H) ≥ 1 − 2

kk
.

22 4. FPT Algorithm for counting connected graphs on k vertices in graphs of bounded degree

Algorithm 4 Approximately counting number of copies of H in d - regular graphs : COUNT-
H(F , T, ϵ,G,H)

count← 0
for each χ ∈ F do

Color the edges of G with χ.
Gχ ← Gχ,R

for every connected component C of Gχ on k vertices do
if C is isomorphic to H then ▷ Can be checked in kO(d log d) time

count← count + 1
end if

end for
end for
return count

T

So, with high probability, (1 − ϵ)|T ≤ |FH| ≤ (1 + ϵ)T . Infact, based on the previous argument, it
is evident that for every H ∈ CHk , with high probability, (1 − ϵ)T ≤ |FH| ≤ (1 + ϵ)T . Therefore,
(1− ϵ)T |CHk | ≤

∑
H∈CH

k
|FH| ≤ (1 + ϵ)T |CHk |. Observe that the value assumed by the variable count,

which is defined within the subroutine COUNT-H(F , T, ϵ,G), is exactly
∑

H∈CH
k
|FH| at the end of

the outer for loop. Therefore, with high probability, (1− ϵ)|CHk | ≤
count
T ≤ (1 + ϵ)|CHk |.

Note that the running time of the algorithm is O(|F|kO(d log d)poly(n)) = O(1
ϵ2
2dkkO(d log d)poly(n)).

Theorem 4.6.2. The running time of COUNT-H(F , T, ϵ,G) is O(1
ϵ2
2dkkO(d log d)poly(n))

Proof. Given any χ ∈ F , it takes O(N) time to identify the red colored edges under χ in G. This is
precisely the time needed to construct the graph Gχ,R. Since the number of connected components
in Gχ,R cannot exceed n = |V (G)|, it follows that the time taken to determine all the components
of Gχ,R, which are isomorphic to H is O(kO(d log d)poly(n)) [19]. Since F contains O(1

ϵ2
k2dk loge(n))

many functions, it follows that the running time of the algorithm is O(1
ϵ2
2dkkO(d log d)poly(n)).

It is not very difficult to note that all the ideas presented in the preceding sections are indeed
extensible to the case of graphs with bounded degree.

4.7 A connection with Parsimonious Families in regular graphs

As before, assume G = (V,E) to be a connected, undirected and d - regular graph on n vertices and N
edges, where N = nd

2 . Similarly, assume H to be an undirected and connected graph on k vertices and
let CHk be the family of subgraphs of G which are isomorphic to H. Given any H ∈ CHk , let p = |E(H)|
and q = |Γ(H)|, where Γ(H) consists of all the edges of G, which are not in H, but adjacent to some
edge in E(H). Note that while Γ(H) may differ across the subgraphs in CHk , |Γ(H)| will be the same
for every H ∈ CHk , since G is a regular graph.

Suppose we could deterministically construct a family F of 2-colorings of the edges of G, which has
the property that for any P ∈

(
E
p

)
and Q ∈

(
E
q

)
such that P ∩Q = ϕ, (1− ϵ)T ≤ |F [P : Q]| ≤ (1+ ϵ)T

for some positive constant T , where |F [P : Q]| denotes the number of colorings in F which map the
edges in P to Red color and edges in Q to Blue color, then we would be done. In particular, if we set
p = |E(H)| and q = |Γ(H)|, then since |E(H)| ∩ |Γ(H)| = ϕ, each H ∈ CHk will be separated by NH -

4.8. Summary 23

many colorings within F , where (1− ϵ)T ≤ NH ≤ (1 + ϵ)T for some choice of T > 0. We now define
the notion of parsimonious families, introduced in [17]

Definition 4.7.1. [17] Let n, p, q ∈ N and 0 < δ < 1. DenoteK = p+q. A family F of sets over a uni-
verse U of size n is a δ-parsimonious (n, p, q) - universal family if there exists T = T (n, p, q, δ) > 0 such
that for each pair of disjoint sets A ∈

(U
p

)
and B ∈

(U
q

)
, it holds that (1−δ)T ≤ |F [A : B]| ≤ (1+δ)T ,

where |F [A : B]| denotes the number of sets in F which contain P and are disjoint from Q.

Let p = |E(H)|, q = |Γ(H)|, K = dk
2 and U = E(G). Further, every subset A of U in F can be

viewed as a function fA : U →
{
0, 1

}
where for every u ∈ U

fA(u) =

{
1 if u ∈ A

0 otherwise
(4.3)

Equivalently, we can interpret the function fA as assigning either Red or Blue colors to the edges of
G, where 0 corresponds to Red color and 1 corresponds to Blue color. Then from the definition of
an ϵ - parsimonious (N, p, q) - family, it follows that the number of colorings in F which successfully
separate every H ∈ CHk lies between (1− ϵ)T and (1+ ϵ)T for some T > 0. This is precisely the notion
of an ϵ−H - separating family. Therefore, we can conclude that for regular graphs, ϵ - H - separating
families are equivalent to ϵ - parsimonious families. Since we know that deterministic constructions
for ϵ - parsimonious families do exist [11], we can conclude that for regular graphs, there exists a
deterministic algorithm which can approximately count the number of copies of H in G.

Algorithm 5 Approximately counting number of copies ofH in d - regular graphs deterministically
: DET-COUNT-H(ϵ,G,H)

count← 0
F ← ϵ− parsimonious (N, |E(H)|, |Γ(H)|) - family ▷ Can be constructed deterministically
for A ∈ F do

V (GA)← V (G)
E(GA)← ϕ
for a ∈ A do

E(GA)← E(GA) ∪
{
a
}

▷ Note that the elements of the universe are edges of G
end for
for every connected component C of GA on k vertices do

if C is isomorphic to H then ▷ Can be checked in kO(d log d) time
count← count + 1

end if
end for

end for

return count
T

4.8 Summary

In this chapter, we studied the problem of counting k - connected subgraphs in graphs of bounded
degree. In particular, we showed that there exists an FPT-AS for counting an connected subgraph on
k vertices in graphs of bounded degree. Further, we also showed an explicit connection between ϵ−H
- separating families and ϵ - parsimonious families for regular graphs, which lead to a deterministic
algorithm for the above problem. Note that all the algorithms proposed above are essentially extenions
of the Random Separation technique, and utilise polynomial space.

Chapter 5

Conclusion

In this thesis we primarily focused on coming up with additional parameterizations for the #k-PATH
problem. In particular, we designed separate FPT algorithms for approximate counting of k - paths
in the input graph G = (V,E). The running time of the former algorithm is dependent upon k and
the size of the hitting set for all k - paths in G. The latter algorithm runs in time, dependent on k
and the size of the max-cut in G, conditioned on the existence of efficient, approximate sensitivity
oracles for #k-PATH.

We also designed an FPT algorithm, which can be employed for approximately counting the number
of k - paths in graphs of bounded degree. This algorithm is essentially an extension of the Random
Separation technique. We also described a deterministic FPT-AS for #k-PATH problem in regular
graphs, by establishing the equivalence between parsimonious families and separating families.

25

Bibliography

[1] Alman, J., and Hirsch, D. Parameterized sensitivity oracles and dynamic algorithms using
exterior algebras. CoRR abs/2204.10819 (2022).

[2] Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., and Sahinalp, S. C. Biomolec-
ular network motif counting and discovery by color coding. In Proceedings 16th International
Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto, Canada, July 19-23,
2008 (2008), pp. 241–249.

[3] Alon, N., and Gutner, S. Balanced families of perfect hash functions and their applications.
ACM Trans. Algorithms 6, 3 (2010), 54:1–54:12.

[4] Alon, N., Lokshtanov, D., and Saurabh, S. Fast FAST. In Automata, Languages and
Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009,
Proceedings, Part I (2009), S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas,
and W. Thomas, Eds., vol. 5555 of Lecture Notes in Computer Science, Springer, pp. 49–58.

[5] Alon, N., Yuster, R., and Zwick, U. Color coding. In Encyclopedia of Algorithms - 2008
Edition, M. Kao, Ed. Springer, 2008.

[6] Arvind, V., and Raman, V. Approximation algorithms for some parameterized counting prob-
lems. In Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver,
BC, Canada, November 21-23, 2002, Proceedings (2002), P. Bose and P. Morin, Eds., vol. 2518
of Lecture Notes in Computer Science, Springer, pp. 453–464.

[7] Babai, L., Frankl, P., and of Chicago. Department of Computer Science, U. Linear
Algebra Methods in Combinatorics. Part 1. University of Chicago, Department of Computer
Science, 1988.

[8] Björklund, A., Kamat, V., Kowalik, L., and Zehavi, M. Spotting trees with few leaves.
SIAM J. Discret. Math. 31, 2 (2017), 687–713.

[9] Brand, C., Dell, H., and Husfeldt, T. Extensor-coding. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018 (2018), I. Diakonikolas, D. Kempe, and M. Henzinger, Eds., ACM, pp. 151–164.

[10] Cai, L., Chan, S. M., and Chan, S. O. Random separation: A new method for solving
fixed-cardinality optimization problems. In Parameterized and Exact Computation, Second In-
ternational Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings
(2006), H. L. Bodlaender and M. A. Langston, Eds., vol. 4169 of Lecture Notes in Computer
Science, Springer, pp. 239–250.

[11] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., and Saurabh, S. Parameterized Algorithms. Springer, 2015.

27

28 BIBLIOGRAPHY

[12] Flum, J., and Grohe, M. The parameterized complexity of counting problems. In 43rd Sym-
posium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver,
BC, Canada, Proceedings (2002), IEEE Computer Society, p. 538.

[13] Fomin, F. V., Lokshtanov, D., Panolan, F., and Saurabh, S. Efficient computation of
representative families with applications in parameterized and exact algorithms. J. ACM 63, 4
(2016), 29:1–29:60.

[14] Kneis, J., Mölle, D., Richter, S., and Rossmanith, P. Divide-and-color. In Graph-
Theoretic Concepts in Computer Science, 32nd International Workshop, WG 2006, Bergen, Nor-
way, June 22-24, 2006, Revised Papers (2006), F. V. Fomin, Ed., vol. 4271 of Lecture Notes in
Computer Science, Springer, pp. 58–67.

[15] Koutis, I., and Williams, R. Algebraic fingerprints for faster algorithms. Commun. ACM
59, 1 (2016), 98–105.

[16] Koutis, I., and Williams, R. LIMITS and applications of group algebras for parameterized
problems. ACM Trans. Algorithms 12, 3 (2016), 31:1–31:18.

[17] Lokshtanov, D., Björklund, A., Saurabh, S., and Zehavi, M. Approximate counting of
k -paths: Simpler, deterministic, and in polynomial space. ACM Trans. Algorithms 17, 3 (2021),
26:1–26:44.

[18] Lokshtanov, D., Saurabh, S., and Zehavi, M. Efficient computation of representative
weight functions with applications to parameterized counting (extended version). In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021 (2021), D. Marx, Ed., SIAM, pp. 179–198.

[19] Luks, E. M. Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci. 25, 1 (1982), 42–65.

[20] Marx, D. A parameterized view on matroid optimization problems. In Algorithms and Com-
plexity in Durham 2006 - Proceedings of the Second ACiD Workshop, 18-20 September 2006,
Durham, UK (2006), H. Broersma, S. S. Dantchev, M. Johnson, and S. Szeider, Eds., vol. 7 of
Texts in Algorithmics, King’s College, London, p. 158.

[21] Marx, D. Randomized techniques for parameterized algorithms. In IPEC 2012 (Ljubljana,
Slovenia, 2012).

[22] Valiant, L. G. The complexity of computing the permanent. Theor. Comput. Sci. 8 (1979),
189–201.

[23] Vazirani, V. V. Approximation Algorithms, 1 ed. Springer Berlin, Heidelberg.

[24] Williams, R. Finding paths of length k in o*(2k) time. Inf. Process. Lett. 109, 6 (2009),
315–318.

