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Abstract

Significant advancements in deep learning have been made in image understanding tasks
including object detection, image classification and segmentation. But the effectiveness
of image recognition mostly depends on supervised learning, which necessitates a large
number of labels that have been manually annotated. But in general , the amount of un-
labelled data is present much more than the labelled ones. Also, the pre-trained models
from the natural images are not useful on medical images since the intensity distribution is
different. Although labelling natural images are easy as because just simple human knowl-
edge is enough. However, the annotation for medical images requires expert knowledge.
So, how should we learn representations without labels? We need to get supervision from
the data or image itself. We may do this by structuring a supervised learning assignment
in a certain way to predict just a portion of information while utilising the remaining data.
This is known as self-supervised learning (SSL). SSL algorithms like Jigsaw Puzzle Solv-
ing, Rotation Prediction, SimCLR, BYOL, Barlow Twins, MoCo etc. have been proposed
over the recent years and have achieved state-of-the-art performance in image recogni-
tion tasks. Different variants of these algorithms have also been used for applications
in medical image analysis, image segmentation tasks, etc. In this project, we have used
BYOLMed2D, a variant of BYOL, for self-supervised learning of representations from
Knee MR data. The dataset on which the experiments were performed is MRNet, which
is a knee MRI dataset. From the experimental evidence, it is evident that the proposed
method succeeds in achieving performance at par with the existing state-of-the-art SSL
methods for learning representation on the MRNet dataset.
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Chapter 1

Introduction

1.1 Introduction

Medical image analysis is the study of images produced during clinical practice to resolve
clinical issues [1]. Learning good representations of image is very much important in
computer vision as it helps in efficient training on downstream tasks like classification,
segmentation, etc. To learn these representations, a variety of training methods have
been developed, most of which rely on visual pretext tasks. Modern contrastive tech-
niques are trained by increasing the distance between representations of augmentations
from distinct images, often known as negative pairs, and decreasing the distance between
representations of different augmentations of the same image known as positive pairs.
These techniques rely on huge batch sizes and need careful handling of negative pairs.
Additionally, the selection of image augmentations has a significant impact on how well
they perform.

1.2 Self-supervised learning:

We have focused on self-supervised representation learning, a subtype of unsupervised
learning, in our effort. Without the requirement for human supervision, self-supervised
learning may be used to extract meaningful feature representations from many forms of
data. The two basic components of self-supervised learning are pretext and downstream.
The model acquires representations by completing a variety of tasks known as Pretext
tasks. Pretext tasks are often created based on the kind of data. The pretext task’s goal is
to draw from the data explainable and transferable representations that may be applied to
the downstream tasks. However, there are very few applications of self-supervised learning
techniques in the field of medical image analysis. Tt should be highlighted that the type of
data used in medical image analysis differ greatly from those used in the study of natural
images. Additionally, it might be difficult to find a big volume of annotated medical data
for end-to-end training of deep neural network. Methods of transfer learning are typically
used to address this issue. However, feature specialisation of the higher layers in medical
image data may cause problems when utilising models that have been pre-trained on
natural image datasets. Additionally, medical professionals are needed for such a delicate
operation, making annotations in medical image or video collections difficult to get [2].
All things considered, this qualifies self-supervised learning as a useful technique for use




in medical image analysis.

One SSL algorithm that outperforms cutting-edge contrastive techniques is BYOL, which
also avoids the usage of negative pairings. The outputs of a network are iteratively boot-
strapped and used as targets for an improved representation. In addition, contrastive
methods are less resilient to image augmentations than BYOL; the fact that it does not
rely on negative pairs may be one of the main factors contributing to this improvement.
In BYOL, direct hootstrapping of the representations has been proposed as an alternative
to earlier techniques based on bootstrapping that employed pseudo-labels, cluster indices,
or a small number of labels. BYOL employs two neural networks—the online and target
networks—that communicate and share knowledge with one another. BYOL trains its on-
line network to predict how further augmentation of the same picture will be represented
by the target network starting from an augmented version of the original image. Although
this goal allows for collapsed solutions, such as those that produce the same vector for
all images, it has been demonstrated that BYOL does not converge to these types of
solutions. The assumption of an optimum predictor, however, may be violated by unex-
pected changes in the target network, in which case BYOL’s loss is not necessarily close
to the conditional variance. The major objective of BYOL’s moving-averaged target net-
work, according to the theory, is to maintain the predictor’s near-optimality over training.

1.3 Motivation

The primary goal of the science of medical image analysis is to process and analyse medi-
cal images from a variety of modalities in order to get relevant information that helps with
accurate diagnosis determinations. Four major tasks derived from the core computer vi-
sion tasks and specifically designed for the medical field make up the heavy burden of the
analysis of medical pictures. These four tasks are segmentation, registration, detection
and localisation, and classification. The methodologies and algorithms used for each of
the aforementioned activities help to comprehend and extract valuable information from
the medical images. Either manually (engineered) or automatically (learned) from the
data, features can be extracted. While statistical machine learning is primarily concerned
with manual feature extraction, deep learning is far more interested in automatic feature
extraction and is hence recommended.CNNs are a prominent option in thegfgld of medi-
cal image analysis and have significantly advanced the many jobs requiring medical image
analysis due to their ability to work with image data in its raw forms and performance
that can be compared to human performance at faster rates. To capture the underlying
distribution in the input data, it is well known that CNNs need to have a vast number
of trainable parameters to be estimated, typically in the millions. As a result, improved
estimate of these characteristics necessitates the use of a sizable quantity of data. Addi-
tionally, human annotation of the input data is required in order to execute supervised
training using the gradient descent algorithm.However, there are significant barriers that
prevent CNNs from progressing despite the impressive success they have had in the field
of medical image processing. It is costly and time-consuming to create a large enough,
high-quality human-annotated medical dataset because medical datasets must also be an-
notated by professional employees, as opposed to natural scene picture data, which may
be done so by less experienced staff. Additionally, the annotation process is vulnerable to
problems safeguarding patient privacy, especially when dealing with a particular condi-
tion. Thus, a significant barrier to machine learning applications in the medical industry




is the lack of labelled data, both in terms of annotation and volume.

In a pretraining-fine-tuning manner, self-supervised learning integrates both supervised
and umu;‘;erv'aetl learning systems. Self-supervised learning, as it is more precisely known,
aims to learn semantically useful features for a specific task by producing supervisory sig-
nals from a pool of unlabeled data without the need for human annotation to be used for
following tasks where the amount of annotated data is constrained. Self-supervised learn-
ing eliminates the necessity for manually labelled data from an unsupervised perspective.
On the other hand, with the self-supervised learning technique, the supervised viewpoint
is represented in model training with labels generated from the data itself. This is one of
the major reasons why self-supervised learning has become a popular option in medical
image analysis. Numerous studies have shown that the self-supervised learning method
is beneficial for a variety of medical image processing tasks [3,4].

It’s crucial to have a balanced dataset while building a strong training set. When the
dataset is severely unbalanced, the majority of available classification algorithms typically
do not perform well on minority class cases. Without taking into account the relative
distribution of each class, they strive to maximize total accuracy. Real-world data are
frequently unbalanced, which is one of the major reasons why machine learning algorithms
no longer generalise as well. The imbalance of class is not taken into consideration by
conventional learning techniques.Both the dominant class and the minority class receive
the same amount of attention. Using traditional learning techniques, it is challenging to
create a competent classifier when the imbalance is severe. Missing minority class predic-
tions comes at a larger cost than missing majority class predictions.

Due to the fact that one class is represented by a much higher number of instances than
other classes, medical data sets frequently suffer from class imbalance issues. As a result,
algorithms frequently become overloaded by huge classes and neglect minor classes. The
amount of training datasets may be adjusted through sampling, with under and over-
sampling being two typical methods. It can be seen that self-supervised learning is more
robust to dataset imbalance, hence our motivation for applying SSL to medical image
analysis than the other approaches.

?4 Thesis Outline

The remaining of the thesis is coordinated as follows:

e In Chapter 2, we discuss about the Self-supervised learning algorithms and their
relative performances on a particular dataset.

e In Chapter 3, we discuss how the SSL algorithms outperform supervised algorithms
when the dataset is imbalanced.

o In Chapter 4, we give the details of the architecture and methodology we have used.
e In Chapter 5, we compare the results obtained by us to other methods.

e In Chapter 6, we draw a conclusion to this project .




Chapter 2

Literature Survey

Self-supervised learning has becoming more common since it may save on the expense of
amnotating huge datasets. It has the ability to employ the learnt representations for several
downstream tasks and use self-defined pseudolabels as supervision. To be more precise,
in self-supervised learning for computer vision, natural language processing (NLP), and

other fields, contrastive learning [5] has more recently taken the lead. In this chapter , we
see how different SSL algorithms work .

2.1 Contrastive Learning

If we have a function f that is represented by any deep neural network, it will output the
characteristics of that function as f(x), given an input of x.

Corgmastive Learning states that all positive pairs of x; and x» should have outputs that
are sunilar to each other, and for a negative input z3, f(x1) and f(z5) should both be
different to f(x3).

The positive pair may consist of two augmented views of the same image (for example,
a vertically [lipd version) or two different crops of the same image, while the negatives
may consist of a'crop from a different image, a frame from a different video, a different
augmented view of a different image, etc. To enforce the similarity between positive
pairs and dissimilarity between negai@ge pairs during model training, a loss function is
necessary . The set X of N patches, where X is the set of N — 1 negative samples and
1 positive sample, is used to calculate the loss. The batch’s available patches of both the
same picture and several other images are randomly selected for the N — 1 negatives. The
loss is called InfoNCE loss [6] , defined by |

exp (¢ k*/7)

> B 2.1
Lo+ {1} Ogexp(q,k+/T)+Zk_exp(q-k_/T) &1

Eere, q denotes the network prediction, k-+ is the correct positive patch, and k- denotes
a collection of N-1 negative patches. You should take note that k+, k-, and q are all in
representation space. It is comparable to the log-softmax function, as can be shown.With
the use of this framework, we can demonstrate verifiable assurances about how well the
learned representations perform on the typical classification task, which consists of a
subset of the same set of latent classes |7, 8.




2.2 SimCLR

SimCLR [9] framework has following major components:

e Here, three straightforward augmentations are consecutively used: Random colour
distortions, random cropping, then resizing to the original size, and random Gaus-
sian blur. It has been seen that the combination of random crop and color distortion
is beneficial to get good results.

e For extracting representation vectors from augmented images , a neural network
base encoder f is used . Various choices of the network architecture without any
constraints is allowed in this framework . For simplicity , Resnet is commonly used.

e For mapping the obtained representations to the space where contrastive loss is
applied , a small projection head is used .
e {Z;} be a set containing a positive pair of #; and Z;, the contrastive prediction task

tries to identify ; in {:i:k}k# , when a @; is given , for which a contrastive loss
function is defined.

Maximize agreement

Zi - > Zj

4 A
9(-) a()

h; +«— Representation — h;

A A

Figure 2.1: Framework for contrastive learning of visual representations

The contrastive prediction task on pairs of augmented examples produced from the
minilgggch is specified using a minibatch of N examples that was sampled, which cre-
ates data points. Given a positive pair , the other 2(N-1) samples are treated
as negative samples . The cosine similarity between two vectors u and v is given by
sim(u,v) = u' v/||ul||[[v]] .The loss function is therefore defined as follows for a positive
pair of instances (i,j):

4
exp (sim (z;, z;5) /7)

Zi;l kg exp (sim (24, 2x) /7)

f,'J = — log

(2.2)




where Iz € {0,1} is the indicator function evaluating to 1 iff k¥ # i and 7 denotes a
temperature parameter. Finally the loss function is defined by,

1« ,
L= W2:[1_0(2,2 —1,2k) + €(2k, 2k — 1)] (2.3)

This function is minimized. After training, the projection head g is discarded, and the
encoder f and representation it generates are used for subsequent tasks.

2.3 MoCo

Unsupervised visual representation learning utilising methodologies linked to contrastive
loss has produced positive results in several research. These are motivated by a variety
of factors, but they may also be seen as developing dynamic dictionaries. The "keys" in
the dictionary are samples taken from many types of data, including images and patches.
An encoder network represents the tokens (keys). Unsupervised learning teaches encoders
to execute dictionary searches; a "query" that has been encoded should resemble its cor-
responding key and differ from other keys. The dictionary is kept as a queue of data
samples, with the most recent encoded representations being added to the queue and the
older ones being removed. The queue ma.ket possible to have a big dictionary.Because
the dictionary keys we get come from earlier mini-batches, a slowly advancing key encoder
is constructed as a momentum-based moving average of the query encoder to preserve con-
sistency. The method that has been talked about here is MoCo |10]

contrastive loss

A
—> similarity q—]
q A‘-[} Al kg
A queue T
momentum
encoder e
A A
ke ke ke
L.query Yy ,.Key _ Key
‘I; :I:O -111 ‘1)2 e

Figure 2.2: Diagrammatic representation of MoCo Framework

Let q be an encoded query and kg, k1, ke, .... are the keys of a dictionary which makes a
set of encoded sangmles. Let’s assume that g corresponds to a single key (indicated by k.)
in the dictionary. When q is similar to its positive key k. and different to all other keys
(negative keys for q), a function called a contrastive loss has a low value.The loss function
considered here is InfoNCE ,
ex ckyfT
gq = —log =% P(g-ky/T) (2.4)
ks
2iz0exp (q - ki/7)

6




7 is the temperature hyperparameter

The representation of the query is q = f,(27). where a query sample is 2% and an encoder
network is f, , the input can be images or patches and the network encoders can be
similar,partially shared or completely different.

2.3.1 Momentum update

The dictionary may be huge because a queue is being utilised, making it difficult to update
the key encoder via back-propagation (the gradient should propagate to all samples in the
queue). A simple approach would be to ignore this gradient and replicate the key encoder
fr from the query encoder f,. However, this technique performs poorly in experiments;
the key representations’ consistency is reduced by the quickly changing encoder, which is
the most likely cause of this failure. To remedy this problem, a momentum upgrade has
been suested :

Let the parameters of fi be #, and those of f, be ,, we make an update to #, by:

th +— mby + (]_ = m)é?q (25)

Here m € [0, 1) is a momentum coefficient. The only variable changed by back-propagation
is f,. Compared to €y, # evolves more smoothly as a result of the momentum update.
As a consequence, even if the encoders used to create the keys in the queue differ , the
difference among these encoders can be made small. By experiments, it has been seen that
a slowly evolving key encoder is particularly crucial when using a queue, as demonstrated
by the fact that a relatively big momentum (e.g., m = 0.999) performs far better than a
lower number (e.g., m = 0.9).

2.4 Barlow Twins

The goal of SSL is to develop embeddings that are resistant to distortions in the input
sample. However, there is a persistent problem with this strategy, and that is the presence
of trivial constant solutions. This may be prevented by careful implementation details,
which is what this Barlow Twins [11] aims to do. The cross-correlation matrix between the
outputs of two similar networks is readily measured by the suggested objective function.
A sample is supplied to these networks in distorted form. Additionally, it aims to keep the
matrix as near to the identity matrix as feasible in order to prevent collapse. As a result,
embedding vectors of distorted copies of a sample start to resemble one another, reducing
redundancy between the components of these vectors. This technique does not require
big batches, gradient stopping, asymmetry between the network twins like a predictor
network, or a moving average on the weight updates. As a result, it gains from output
vectors with extremely high dimensions.

For every image in a batch X sampled from a dataset, Barlow Twins generates two dis-
torted views. It makes use of a distribution of data augmentations 7 to obtain those .
The two batches of distorted views, Y and YZ, are then sent as inputs to a function.
fo which is generally a deep network that can be trained and generates batches of the
embeddings Z4 and ZZ, respectively. To make notations simpler, it is assumed that Z4
and Z® have a mean output of 0 for the batch. This framework has an unique loss function
defined by ,
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Figure 2.3: Barlow Twins Framework

Lpr = Z (1-— C—;‘-;')Q + /\Z ZCT%' B (2.6)

i i J#F
v ™ ~
invariance term redundancy reduction term

A is a positive constant and C is the cross-correlation matrix computed between the
outputs of the two identical networks along the batch dimension , where the elements of
the matrix is given by |
Db Zhithy
b “bi~b

e \/Zb (Ziﬁ)z\/z:b (ZBEF

where b denotes batch samples and i,j denote the vector dimension of the networks
outputs. C is a square matrix having entries between -1 (perfect anti-correlation) and
1(perfect correlation) anda size equal to the dimensionality of the network’s output.

The embedding becomes mvariant to the applied distortions when the invariance term
attempts to equate the diagonal components of the cross-correlation matrix to 1. In order
to decorrelate the various vector components of the embedding, the redundancy reduc-
tion term of the goal attempts to equate the off-diagonal members of the cross-correlation
matrix to 0. The redundancy between the output units is decreased by this decorrelation.

2.5 BYOL

The objective of BYOL [12] is to learn a representation y, that can be used for downstream
tasks. The online and target networks are the two neural networks that BYOL utilises to
learn. The online network is composed of three stages: an encoder fy, a projector gy, and
a predictor gp. It is specified by a set of weights. The target network utilises a different
set of weights while having the same architecture as the ma]e network. To train the
online network, the target network supplies regression goals, and its parameters £ are an
exponential moving average of the online parameters . An image x sampled uniformly
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from the set of images D, where T and T are two distributions of image augmentations,
BYOL produces two augmented views v and ¢ from = by applying respective image
aumentations ¢ ~ T and t' ~ T’ . A representation yy = fy(v) and a projection z5 = gy(y)
is produced by the online network from the initial augmented view v . Similarly , from
the second augmented view v , the target network gives output y; = f¢(v') and the target
projection zé = ge(y') . Then we get an output gg(zp) predicted by Zé and [, normalized
to G (2p) and g respectively .The architecture between the online and target pipelines is
asymmetrical since this predictor is only applied to the online branch.

2.5.1 BYOL loss function

The mean squared error between the target projections and the normalized predictions
serves as the loss function,

(90 (20) . 2¢)

—_— = 2 . :
Log = ||qa (z0) — zé”z =2-2 m
2

(2.7)

In order to calculate ﬁ;‘& the target network and the online network are each fed with v
and v’ separately, we symmetrize the loss Ly . With regard to just, but not, we conduct
a stochastic optimization step at each training step to reduce £§2’OL = Lge + E;‘& as
shown by the stop-gradient(sg) in Figure 3.4 .

More specifically, given a target decay rate of 7 € [0, 1], we update the model as follows
after each training step:

0 « optimizer (6, Vg[l?;m: n) (2.8)
EeTE+(1-1)6 (2.9)

where optimizer and 7 is optimizer and learning rate respectively .

9




2.6 Relative Performances

The top-1 and top-5 accuracies obtained on the ImageNet [13] validation set are given in
the following table after training a linear classifier on ImageNet on top of fixed represen-
tations of a ResNet-50 pretrained with the methods mentioned.

Table 2.1: Relative Performances of SSL algos

Method Top-1 | Top-5
Supervised 76.5
MoCo 71.1 90.1
SIMCLR 69.3 | 89.0
BYOL 74.3 | 916
BARLOW TWINS | 73.2 | 91.0

2.7 Conclusion

While other methods (SimCLR, MoCo) use both positive and negative pairs and the
contrastive loss is then minimized for training, BYOL doesn’t use negative pairs. Also,
addition of a predictor in the online network helps BYOL to avoid collapsed solutions.
These might be the reasons behind BYOL’s improved performance over the other methods
which can be seen by their performance on the ImageNet dataset.

10




Chapter 3

Robustness Test of SSL on Imbalanced
Datasets

Class imbalance is a frequent issue that has been thoroughly researched in classical ma-
chine learning, but there is relatively little systematic study accessible in the context
of deep learning [14]. Because SSL doesn’t require labels for learning, it is a useful
method for learning common visual representations. Although the behaviour of SSL is
not well understood, large unlabelled datasets in the wild frequently contain long-tailed
label distributions. Extensive investigations have shown that commercially available self-
supervised representations are already more resistant to class imbalance than supervised
representations. With SSL, there is a substantially lower performance disparity between
balanced and unbalanced pre-training, across sample sizes, for both in-domain and, espe-
cially, out-of-domain assessment than there is with supervised learning.

Systematically examining the representation quality of SSL methods under class imbal-
ance has revealed that pre-trained SSL representations are .fpeady more resistant to
dataset imbalance than pre-trained representations. By using a linear probe on in-domain
(ID) data and fine-tuning on out-of-domain (OOD) data, the representation quality has
been assessed.

Under several configurations, such as dataset sizes and imbalance ratios, and with both
in-domain and out-of-domain assessments, it has been found that the balance-imbalance
gap for SSL is significantly lower than that for SL (hence superior) (see Figure 3.1 and
Figure 3.2 for more details). Although SSL does not require labels and is therefore more
easily applicable to bigger datasets than SL, this resilience is true even when the number
of samples for the two algorithms is equal.

11
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Figure 3.1: Relative performance gap between self-supervised (MoCo v2) representations
on long-tailed ImageNet with varying numbers of instances (blue for SSL) and supervised
ones (red for SL) n, spanning ID assessment
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ones (red for SL) n, spanning OOD assessment
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3.1 Relative performance gap

ASL(n,r) and ASF(n,r) indicate the accuracy of the generated supervised and self-
supervised representations, respectively when there are n datapoints present in the dataset
and the imbalance ratio is r . When r=1 , the dataset is balanced. By extensive experi-
ments [15], it can be seen that |

ASSL(n 1) — ASSE(n 1)
ASSL(p, 1)

ASE(n 1) — ASE(n,r)

AL (n, r) =
(”. f) ‘431_‘(.”.: 1)

< A% (n,r) =

where A denotes the relative performance gap .

3.2 CIFARI10-LT

The imbalanced version of CIFARIO is called CIFAR10-LT .While the CIFAR10 dataset
has 10 classes with 6000 32*32 images in each class , with the imbalance factor 0.01 , the
classes of CIFAR10-LT now consists with 5000,2997,1796,1077,645,387,232,

139,83,50 samples respectively.

3.3 Experiment on CIFAR10-LT

Using this imbalanced dataset for pre-training with SimCLR framework for 200 epochs us-
ing Adam optimizer and learning rate 0.001, we achieved 83% accuracy in the downstream
classification using linear evaluation on CIFAR10. In linear evaluation , a linear classi-
fier was trained on the features obtained by passing the images through the pre-trained
encoder .The resulting confusion matrix was ,

0
1 800
2
3 600
T
24
L]
8> 400
200

0 oo~ o

o0 1 2 3 4 5 6 7 8 9
Predicted label

Figure 3.3: Confusion Matrix
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3.4 Analysis

The classes which are rare in the imbalanced dataset contain only few datapoints, so it
becomes hard to learn proper features and hence it also becomes hard to classify those
classes.Seeking assistance from the characteristics learnt by the frequent classes is one
method to solve this issue. However, because classification tasks are supervised, the
model learns features that are primarily effective for categorising the common classes
and also tends to disregard characteristics that can transfer to the rare classes and other
downstream tasks. Jamal et al. urge the model to learn properties that may be transferred
from frequent classes to rare classes as a result of this. The models in SSL, on the other
hand, are able to acquire deeper features that capture the fundamental structures of
the inputs, characteristics that are helpful for identifying the frequent classes, as well as
features that are transferable to rare classes.

3.5 Conclusion

We can conclude that, when the dataset is imbalanced, SSL indeed achieves good results
compared to SL(Resnet18 achieves 93.02% accuracy on CIFARI10) as we can see from
our experiment of SimCLR on CIFARI(O-LT . The most probable reason for it being the
nature of supervised learning to learn features from frequent classes and not from rare
classes while SSL learns richer features from frequent data that are transferable to rare
data.
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Chapter 4

Methodology : BYOLMed2D

In this chapter, we discuss the architecture and loss functions used in our project. In the
first section 4.1, we describe the architecture use as the backbone encoder in our proposed
algorithm. In Sec. 4.2, we describe the model configuration used in pre-training stage
of the proposed self-supervised learning framework. Finally, in Sec. 4.3, we give a brief
description of the downstream task in our work.

4.1 Architecture

4.1.1 Residual Networks

Deep residual networks [16],[17] are the only ones we use for our research because of their
excellent performance and simplicity. There have been reports of practical challenges while
training neural networks to carry out tasks when the input/output sequences’ temporal
dependencies cover extensive time periods [18]. ResNet is a type of model that employs
2D convolution . Resnet18 is a 18 layers deep network . Let’s assume that the underlying
mapping G(z) of a residual block can be fitted by a few stacked layers , with the inputs to
the first of these layers being x. It is similar to hypothesizing that multiple nonlinear layers
can asymptotically approach the residual functions, i.e., G(x)—x, if one believes that many
nonlinear layers can asymptotic@ly approximate the complex functions . Therefore, we
allow these layers to approach a residual function F(x) := G(x) — « rather than expecting
stacked layers to roughly approximate #H(x). Thus, the original function is thus F(z) +z.
Dimensions of x and F should be same.

In Resnet 18 we have 18 residual blocks stacked on each other. In every block , the input is

X
identity

(a) Residual Block used in ResNet architecture
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(a) ResNet18 Architecture

passed through a convolution or weight layer . The output of this is then batch normalized
to be fed to the RELU [19] activation function and then again through a weight layer .
After the last block , there is a fully connected layer. No. of parameters present in
Resnet18 is 11.14 million.

4.2 Pre-training

In order to extract crucial characteristics from training data and discover significant pat-
terns, network depth is crucial for solving complicated image analysis issues utilising deep
learning. However, because of the gradients, adding more neural layers can be compu-
tationally expensive and difficult. Resnet solves this problem well and that’s why BY-
OLMed2D method uses Resnet18 as the backbone. In the pre-training part, we consider
only 16 frames from each video. The average number of frames in each video in the MR-
Net dataset is approximately 30. We randomly choose 16 frames from each video. This
allows the model to discard any temporal bias in the features. Furthermore, the change in
features over consecutive frames in medical videos are low. Thus, the variation in features
in these type of data are harder to learn, than fast changing features, in self-supervised
learning. interleaving more than 1 frames between two sampled frames, on an average,
we intend to change the slow changing features to fast changing ones. This makes the
slow varying features in the data more contributing. Consequently, this helps in learning
a more generalizable feature pool from the data without any ground truth annotations.

The randomly sampled frames are passed through Resnet18. However, the each sample
in the MRNet dataset is 3D in nature, that is, each sample is in the form Frames x
3 x Height x Width. To extract the encoded representations, we reshape the data oh-
tained from the dataloader in the form BatchSize x 16 x 3 x Height x Width to the
shape (BatehSize x 16) x 3 x Height x Width before passing through ResNet18. While
! denote the set of weights for the online network , £ is the exponential moving aver-
age(EMA) of the online parameters # and work as the parameters for the target network.
After obtaining the encoded representations from the ResNet18 encoder, it is reshaped to
BatchSize x 16 x 3 x Height x Width. Then the feature of those frames are maxpooled
over the frames to obtain a single feature vector of shape BatchSize x 3x Height x Width.
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To feed the representations to the projector, we take a global average pooling of the rep-
resentations obtained after maxpooling over the frames. This feature vector is then given
as input to the projector and predictor in BYOL framework. The loss function used was
stated in the Sec. 2.5.1.

.| [ibatch sz x 1)

2z
C— N | R - 9% E“>qu{z‘3}

EMA
gy sl g 0 N
batehsizax 16x3 h size x 3x 43 g
o haight xwidth | ervanes height x wigth | oy

l:l Repr . Projector Predictor

il
1
batch size x 16 /

x 3 x helght x
width

eostapeq. | |ibatch size x 161
I nn?uu
wit

Dataiadar view

Figure 4.3: Dataflow of BYOLMed2D framework

4.2.1 Maxpooling over frames

A pooling layer’s main goal is t ther features from maps produced by convolving a
filter over an image. Formally, gpurpose is to gradually shrink the representation’s
spatial dimension in order to minimise the number of parameters and computations re-
quired by the network. Max pooling is the most typical type of pooling. It is preferred
over AvgPool because, while individual qualities in MaxPool are highlighted regardless of
location, average features are highlighted in AvgPool.

The purpose of using maxpooling in our framework is to extract the most contributing
feature over all the randomly selected frames, which is invariant under transformations.
As the two views or augmented versions, v and v’ of the MR video z are differently
augmented, it is intuitive that the latent feature vectors encoded by the backbone will
be mapped to different locations in the latent space. The purpose of BYOL is to bring
the two differently augmented MR clip closer to each other in the latent space. By ex-
tracting the features which have maximum response over each unit spatial dimension in
the encoded representations, we enforce the model to learn the temporally varying repre-
sentations which are invariant under transformations. This allows us to incorporate the
capability of learning temporally varying information in addition to the spatial informa-
tion in the model. Consequently, this allows the model to learn generalized anatomy-aware
representations from the MR videos.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 4.4: Example of maxpooling over frames
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4.3 Downstream

In the downstream task, the objective is to classify MRNet [20] videos for detecting ACL
tear injury. Hence, the downstream task is a binary classification task. But the number
of samples with occurence of ACL tear is far less than the number of samples which do
not have ACL tear injury. To deal with the imbalance in the data, we use oversampling
technique [21] to balance the dataset. By randomly selecting samples with occurrence
of ACL tear, we make the number of positive samples equal to the number of samples
not containing ACL tear injury. Here also 16 frames from each video were used. For the
optimization of the binary cross entropy loss, we used a batch size of 1. The binary cross
entropy loss was optimized with Adam optimizer for 30 epochs, with an initial LR 0.0001
and multistep LR decay of 0.1 at 18th and 24th epoch.

4.3.1 Loss function for downstream task

A Sigmoid layer and the BCELoss are combined into a single class in this loss. By
integrating the operations into one layer, we are able to take use of the log-sum-exp
method for numerical stability, making this version more stable numerically than one
that uses a simple Sigmoid followed by a BCELoss. The unreduced loss can be described

as:
ﬁ y) = —[y.log(o(z) + (1 — y).log(1 — o(z))] (4.1)

where
1

T 1+ exp(—z)

a(x)

is the sigmoid function.

Figure 4.5: Sigmoid

4.4 Conclusion
In the methodology , we have used a framework that is similar to BYOL as BYOL gives

better result than the other self-supervised learning algorithms when performed on a
particular dataset as seen earlier .
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Chapter 5

Experiments and Results

In this chapter we talk about the dataset(s) used for pretraining and downstream task |
the augmentations used by the model , results obtained by the model and its comparisons
to other methods which also detect ACL tear injury.

5.1 Dataset

We utilise the MRNet dataset [20] as our reference dataset in the downstream task. There
are 1370 knee MR video clips altogether in the MR Net collection. The training set consists
of 1130 MR video clips, whereas the tuning or validation set consists of 120 MR video
clips. Only 208 videos out of the 1,130 training examples—include an ACL injury. The
dataset we are utilising for this investigation is obviously quite imbalanced. Hence we
have the chance to investigate how self-supervised learning methods perform on datasets
with imbalance.

5.2 Augmentations

The collection of augmentations used by BYOL during self-supervised training is listed
below:

e Random cropping: gn area uniformly sampled between 8% and 100% of the original
picture and an aspect ratio logarithmically sampled between 3/4 and g3 are used
to choose a random patch of the image. Using bicubic interpolation, this patch is
then scaled to the desired size of 224 x 224.

e optional left-right flip

e Color jittering: A uniformly random offset that is applied to all the pixels of the
same picture shifts the brightness, contrast, saturation, and hue of the image. For
every patch, a different random sequence for these shifts is chosen.

e color dropping: an optional conversion to grayscale.

. g&ussian blurring: for a 224x224 image, a square Gaussian kernel of size 23x23 is
used, with a standard deviation uniformly sampled over [0.1, 2.0]
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e solarization: an optional color transformation aor pixels with values in [0, 1].

The augmentations from the sets 7 and 7" are combinations of the aforementioned image
augmentations performed with varying probabilities in the sequence given above.

Table 5.1: Agmentations with probabilities

Parameter T|T
Ra.nnm crop probability 1.0 ] 1.0
ip probability 0.5 0.5
Color jittering probability 0.8 0.8

Brightness adjustment max intensity | 0.4 | 0.4
Contrast adjustment max intensity | 0.4 | 0.4
Saturation adjustment max intensity | 0.2 | 0.2

Hue adjustment max intensity 0.1]0.1
Color dropping probability 02|02
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0]0.2

Original Brightness Contrast Gaussian
Blur

Figure 5.1: Image augmentations
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5.3 Result

The results obtained by this model were 73.3% accuracy and 0.801 AUC score for ACL
tear detection on saggital plane.

5.3.1 Comparison with other results

There are some other methods which detect ACL tear injury like MRNet(supervised)
[22] achieving 86.7% accuracy and 0.915 AUC score , SSLM [23] achieving 80% accuracy
and 0.893 AUC score , SIMCLR using JIGSAW PUZZLE |9] achieving 62.5% accuracy
and 0.691 AUC score (this result was collected from the SSLM paper) , MoCo v2 using
JIGSAW PUZZLE |24] achieving 45.8% accuracy and 0.389 AUC score , S.Manna et. al
[25] achieving 76.62% accuracy and 0.848 AUC score ..

Table 5.2: Comparison to other methods(The result of SimCLR using JIGSAW PUZZLE
was collected from the SSLM paper)

Method Accuracy | AUC score
MRNet(supervised) [22] 86.7% 0.915
SSLM [23] 80% 0.893
SIMCLR using JIGSAW PUZZLE™* |9] | 62.5% 0.691
MoCo v2 using JIGSAW PUZZLE [24] | 45.8% 0.389
S.Manna et. al |25] 76.62% 0.848
BYOLMed2D 73.3% 0.801

5.4 Conclusion
Comparing with other methods , we can see that our method achieves average result as

while our method performs better than few methods, there are few which give better
result than BYOLMed2D as well.
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Chapter 6

Conclusion

This study aims to investigate self-supervised learning algorithms’ potential in medical
image analysis .Although BYOLMed2D achieves good results still it continues to rely
on pre-existing augmentation sets that are unique to vision-related applications. It is
essential to generate equally appropriate augmentations for each of the other modalities
(such as audio, video, text, etc.) in order to generalise BYOLMed2D to them. Such
augmentations could need alot of knowledge and work to design. To extend the method to
other modalities, it would be crucial to automate the search for these augmentations. We
look to improve the accuracy in downstream classification task(ACL tear injury detection)
by experimenting with different hyperparameters .
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