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Abstract

The last 2 years have been adversely affected by the COVID-19 pandemic. Doctors

usually detect Covid from CT slices from features such as ground glass, consolida-

tion and pleural effusion. These features usually have complex contours, irregular

shapes and rough boundaries. With increasing number of cases the workload on

the radiologists have increased by leaps and bounds to analyze the lung CT scans

for tracking the disease progression in the patient. Moreover manual analysis of

the CT scans is also prone to human error. So automated segmentation of infected

lung CT slices can help the doctors to diagnose the disease faster. With the ad-

vent of deep learning, various approaches have been built to tackle this problem of

automated biomedical image segmentation. One such architecture is the U-Net by

Ronnenberger et al. [14]. Various other approaches have been proposed which are

all variations of the U-Net to achieve better segmentation performance. However,

the U-Net and its variations suffer from high model complexity, due to which they

easily overfit on limited labelled dataset which is a serious issue in medical image

domain. To cater this problem of data scarcity, research in “few shot segmentation”

has gained significant importance in the recent years. In this work, we have devel-

oped a deep neural network model called Few Shot Conditioner Segmenter Covid

(FSCS-cov), an architecture to tackle the problem of segmenting different COVID-

19 lesions from limited number of COVID-19 infected lung CT slices using few -

shot learning paradigm.

Keywords: Diagnosis using deep learning · COVID-19 · Segmentation · Computed

Tomography · Few shot learning
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Chapter 1

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious illness caused by SARS-CoV-

2 virus. When people are exposed to respiratory droplets and airborne particles

from an infected person, the disease spreads from the infected person to the healthy

one. Fever, coughing, headaches, exhaustion, respiratory problems, a loss of taste

and smell are possible symptoms. Symptoms can arise as soon as one day and may

take up to fourteen days. The RT-PCR test is considered to be the gold standard

for diagnosing the illness till date. The rapid spread of the disease has been a

great issue of concern for the public as well as the healthcare community. The

government has ordered the wearing of face masks or coverings in public places,

which can considerably aid in the transmission of the sickness, in order to stop the

disease’s rapid spread.To diagnose the disease at a fast pace, we need to come up

with automated image segmentation techniques.

In the last decade, deep learning has evolved at a massive scale. With the de-

velopment of deep convolutional neural network(CNN’s) architectures, people have

cracked some of the greatest challenges in computer vision. Researchers have also

come up with various modifications of CNN’s such as RCNN by Girshick et al.[4],

Fast-RCNN by Girshick[3], Faster-RCNN by Ren et al.[13], YOLO by Redmon et

al.[12] to tackle the problem of object detection. However, this problem becomes

even more challenging in the medical domain since the lesions present in medical im-

ages do not have any regular patterns as in natural images but instead have irregular

1
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shapes and complex contours. For example, as shown in 1.1, the lesion corresponding

to ground glass opacity(GGO) has a blurred appearance and low contrast.

Figure 1.1: A radiologist segmented this CT slice into 3 labels:ground glass(Mask
label=1), consolidation(Mask label=2) and pleural effusion(Mask label=3).

1.1 Problem Statement

To solve this problem of image segmentation in medical images, Ronnenberger et al.

[14] have come up with the U-Net architecture. Later Oktay et al.[11] came up with

attention mechanism in U-Net, which became popularly known as Attention U-Net.

Other approaches have also been developed in the recent years which are variations

of the U-Net or Attention U-Net.

One major problem with all the above architectures is that that they have high

model complexity and require lots of annotated data. They usually overfit in limited

data scenarios. However, the availability of labelled data is scarce, especially in the

medical domain.

To solve the above problem of learning from limited data, few shot learning

paradigm has become quite popular in the recent past. It aims to make predictions

on unseen data from very few labelled samples. It is based on the fact that humans

can learn generalized patterns and features of any object even after seeing very

few images of that object for e.g. human beings can easily identify a dog from its

surroundings even after learning how a dog looks like from just one or two images of

it. This learning prototype requires very less annotated data to train a model and
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is also computationally fast.

Figure 1.2: Few shot learning

In Few shot learning, as shown in Fig. 1.2, we divide our training dataset into

support and query sets. If the number of images in the support set is K, then it

is called K-shot learning. While training, the model is trained in episodes. In each

episode, the model learns from the K examples of a class and then the model predicts

on the query input which is a different image from the support set but is from the

same class. Based on this prediction, a loss is calculated and the model is trained

on all the N classes in a similar approach. After training, the model generalizes well

on unseen data.

So, we are trying to model the problem of image segmentation using few shot

learning, i.e.- few shot segmentation. In few shot segmentation tasks, we need to

build a model that outputs infection mask corresponding to the input CT slice of

the infected patient. We are using CT scans since they capture more anatomical

information compared to X-rays. The following section explains all the traditional

and recent architectures used for biomedical few shot segmentation.
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1.2 Related Work

The defacto model for biomedical image segmentation is the U-Net by Ronneberger

et al. [14]. The skip connections introduced in the encoder-decoder framework

helped the model to take into account both the high level feature maps as well as

the low level feature maps. Skip connections introduced at each stage of information

processing helped the model to generalize from the local features as well as the global

features which further leads to better localization of region of interest in the output

segmentation mask.

Various models down the line are modifications of the U-Net architecture with

different blocks added to enhance the information learning process. One such

method is the Attention U-Net by Oktay et al. [11] where attention blocks are

introduced at each level to focus on certain feature maps which carry more informa-

tion about the infection. The irrelevant feature maps are suppressed and important

feature maps are highlighted. The attention coefficients are used to re-weight these

feature maps. Variations of these such as applying attention blocks at different lev-

els of the model architecture and then concatenating the feature maps from these

levels with the global feature maps obtained from the final layers of the model and

use this combination to make predictions have also been tried.

Later due to large number of architectures people have also come up with a

framework called nnU-net(‘no new net’) by Isensee et. al [6] which is a frame-

work to decide the different sets of hyperparameters such as loss function, optimizer

etc., configuration of standard U-Net architecture with different variations such as

attention gates, residual connections, dilated convolutions etc. using some heuris-

tics. Different sets, each containing a different combination of hyperparameters are

prepared. Once this is done, different U-Nets are trained, each with a different pa-

rameter set on the same training data. Finally, the ensemble of all these U-Nets,

each with a different network configuration is used to determine the dice score co-

efficient on the training data. Finally, the best configuration is used for prediction

on the test data.
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People have also come up with Inf-Net (Infection Segmentation Deep Network)

by Fan et al. [2] which consists of reverse attention, edge attention modules and

a paralleled partial decoder. The parallel partial decoder aggregates the high level

feature maps and generates a global map, which guides the reverse attention mod-

ules. The reverse attention modules use this global information to accurately label

the infection. Together with the edge attention modules, the edge feature maps are

generated which are then used to model the contours and boundaries.

Similarly, in few shot segmentation people have also come up with SSA-Net

(Spatial self-attention network) by Wang et. al [20] where they have used spatial

convolution blocks inside the feature re-extractor and self-attention learning in the

feature extractor. The self attention module is used in the feature encoder where it

is used to expand the receptive field and extract more contextual information from

the deeper layers of the network. Similarly the spatial convolution module is used

in the bottle neck between the encoder-decoder architecture, where channel wise

convolutions with large kernels are used to extract more spatial information about

the rough boundaries and hazy shapes of the lesions.

Another work in this area is Few-Shot U-Net by Voulodimos et al. [19] where

they used a U-Net with less training data initially. The results on the test set were

evaluated by medical experts. Those images on which the model performed poorly

were corrected and then augmented in the training set. The U-Net is again trained

on this new set and this process is repeated until the model reaches a decent level

of performance.

People have also modelled this problem in terms of contrastive loss such as by

Shorfuzzaman et al.[16] where they have used Siamese neural networks by Koch et

al.[9] and contrastive loss to design the framework. To capture unbiased feature

representations, a fine-tuned pre-trained CNN encder was used.

Attention is an important concept in deep learning. People such as Jetley et

al.[7] have used attention estimators at three distinct levels of VGG(Very Deep

Convolutional Networks for Large Scale Image Recognition) by Simonyan et al.[17].
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This is done in order to capture the lowest, intermediate and highest level feature

maps. Finally, each of these feature maps is concatenated with the global level

feature map obtained from the final convolutional layer of VGG. The attention

coefficients from these three estimators are used for segmentation of input image.

1.3 Organization of Thesis report

The second chapter talks about the models and techniques which we have experi-

mented with. Initially, due to high model complexities and class imbalance in the

dataset, the models could not generalize well. Later we developed an architecture

which is able to generalize on very less labelled dataset. Details of the architecture

have also been explained.

The third chapter talks about the experimental results obtained from our model.

Initially it talks about the dataset and its sample distribution. Later it talks about

two different strategies of preparing the data in order to train the model. This is

followed by qualitative and quantitative analysis of the results obtained from our

proposed model. We have tabulated the results from our model and other existing

models. We have also done multiple ablation studies to understand the behaviour of

our model in different technical settings. We have also documented the qualitative

and quantitative results for these studies. Lastly, we have also tabulated the results

of our experiments performed as part of ablation studies.

Finally, the last chapter talks about further possibilities and scope of future

work.



Chapter 2

Model development

2.1 Models explored

The traditional U-Net by Ronnenberger et al. [14] has millions of trainable parame-

ters due to which it requires large labelled dataset. To solve the problem in limited

data domains, people use different augmentation strategies like random cropping,

rotations and random change in contrast etc. It is observed that when large amount

of data is augmented, then only it performs reasonably well; otherwise it overfits

in limited data scenarios. If the amount of data augmented is less, the model still

overfits because of high model complexity.

Similarly, experiments carried out on Attention U-Net by Oktay et al.[11] led to

the same fate since its complexity is also high. We also observed that the results were

slightly inferior compared to the U-Net which could happen due to the reason that

the feature maps that were given more importance due to attention gates might have

been memorized by the model due to high complexity. It thus failed to generalize

well. Another possibility could be higher number of parameters in Attention U-Net

as compared to U-Net which might have led to overfitting on the limited number of

samples.

Transfer learning has massively become popular in the computer vision domain.

Pre-trained networks such as Resnets by He et al.[5] have been massively used for

computer vision tasks due to their generalization capability. However, there are no

7
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such pre-trained networks in the medical domain. This further puts a limitation

on transfer learning in this field. The limitation of these networks is that they

were trained on real world object dataset which have well defined shapes and struc-

tures. However, these things do not apply in the medical domain as the images deal

with histological structures which are semantically different from real world objects.

Moreover, the areas representing infection in these medical images have complex

shapes and boundaries. Experiments such as using pre-trained resnet50 encoder in

the U-Net architecture have given good results if we use large data augmentation;

otherwise the model overfits. This is probably because the resnet50 encoder has

millions of parameters.

Attention plays an important aspect in deep learning applications since it prior-

itizes certain feature maps and gives less importance to irrelevant or those feature

maps which cater to background information. So, experiments such as cropping the

lung portion of the CT scan based on the available lung mask have been tried. Since

the infections only reside inside the lung area, so the irrelevant background infor-

mation is being cropped off in the pre-processing tasks. However such experiments

have not been fruitful since the background also adds some contextual information

which is important for understanding the contours of the lung and subsequently the

infection related information inside it. Loss of background information proves to be

detrimental in cases where the infection is present on the inner lining of the lung.

The background contains vital spatial information and is also important for under-

standing the neighborhood context of the lung. In cross domain scenarios where one

dataset contains the lung masks and the other dataset doesn’t, building a model to

predict lung masks in the other dataset and then predicting the infection masks

from the cropped images were not successful as the error in predicting lung masks

got added to the error in predicting infection masks.

Model hyperparameter tuning has also been tried, such as the optimizer, weight

initializers, activation functions but still the above models did not perform well due

to high complexity.
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2.2 Proposed architecture

In this section, we explain the details of our model architecture, Few Shot Condi-

tioner Segmenter Covid (FSCS-cov) and the functionalities of each block used in

it.

2.2.1 Architectural design

FSCS-cov consists of three building blocks: a conditioner arm, a segmenter arm

and interaction blocks. Both the conditioner and segmenter arms consist of an

encoder-decoder architecture. The conditioner arm processes the support set which

consist of a CT image and its corresponding ground truth. The segmenter arm

processes the query input which consists of a CT image from the same class as the

support set. The interaction blocks obtain contextual and spatial information from

the conditioner arm and highlight the feature maps of the segmenter arm.

Architectural details of FSCS-cov are as below:

Figure 2.1: Conditioner Segmenter Architecture: E stands for Encoder block, D
stands for Decoder block, B stands for Bottleneck block, I stands for Interaction
block, CL stands for Classifier Block. C stands for Conditioner arm and S stands
for Segmenter arm
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2.2.2 Conditioner Arm

The conditioner arm takes in input from the support set which consists of the support

image Is and its corresponding ground truth Ls and generate feature maps which

are capable of capturing the necessary areas for segmentation in the query input

Iq. It has an encoder-decoder based architecture, where the encoder consists of four

encoder blocks and the decoder consists of four decoder blocks with a bottleneck

block separating the encoders from the decoders.

As shown in Fig. 2.2 , the encoder block consists of a convolutional layer with

stride 1, (5,5)-sized kernels and 16 output feature maps. These are followed by batch

normalization and a ReLU activation function. It is then followed by a max-pooling

layer with (2,2) kernel size and a stride of 2, which is used to decrease the spatial

dimension by half.

Figure 2.2: Encoder Block

Similarly, as shown in Fig. 2.3, the decoder block consists of an unpooling layer

followed by a convolutional layer with stride 1 and (5,5)-sized kernels. These are

followed by batch normalization and a ReLU activation function.

Figure 2.3: Decoder Block

In contrast to the standard U-Net [14] architecture, no skip connections are

present between the encoder and decoder blocks. It is because if we use skip con-



Chapter 2 - Model development 11

nections, the capability of the model to gain contextual information from the support

set and use that to predict the mask of the query input is lost.

2.2.3 Segmenter Arm

The segmenter arm is also made up of an encoder-decoder framework.However, it

differs in two key aspects. The convolutional layers of the encoder and the decoder in

the segmenter consist of 64 output feature maps which is 16 in case of the conditioner.

So the segmenter has a higher complexity when compared to the conditioner arm.

Moreover, the segmenter outputs a segmentation map, which is fed into the classifier

block as shown in Fig 2.4, which is a convolutional layer with kernel size (1,1)

followed by a a softmax layer to predict the infection segmentation in query slice.

Figure 2.4: Classifier Block

As shown in Fig. 2.5, the bottleneck block consists of a convolutional layer with

(5,5)-sized kernels followed by batch normalization and a ReLU activation function.

Figure 2.5: BottleNeck Block

2.2.4 Interaction blocks

The interaction blocks play a major role in the segmentation task. From Fig. 2.6, we

can see that these blocks take the segmentation related contextual information from

the conditioner arm and use it to reweigh the segmentation maps of the segmenter
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arm, which ultimately help in the segmentation of the query image. These blocks

have low complexity so that the computation cost is slightly increased and the

training process carries on smoothly without any hindrance in flow of gradients.

Each interaction block consists of a convolutional layer with (1,1) kernel size and a

sigmoid activation function so that the activation outputs are scaled to (0, 1) and

then followed by element wise multiplication to highlight those feature maps which

contain important contextual information about the infection.

Figure 2.6: Interaction Block

2.2.4.1 Attention module as interaction block

Furthermore, it is also observed that if we use attention gates similar to the one

used in Attention U-Nets, the results slightly improve. This is because attention

coefficients also help in re-weighting important feature maps necessary for the seg-

menter arm. The feature maps from the conditioner and segmenter each undergo a

convolutional layer with (5,5) kernel size, batch normalization and ReLU activation.

These intermediate feature maps are then added element-wise; which then undergoes

a layer of ReLU, convoutional layer with (1,1) kernel size and sigmoid activation.

After resampling, the initial feature maps from segmenter are multiplied element

wise with resampled attention weights. The output is the weighted segmenter map.

The architectural details of attention module is as follows:
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Figure 2.7: Attention Module used as Interaction Block

In equational form,

qfs = qis ⊗ α (2.1)

where qfs is the final weighted segmenter feature map, qis is the initial segmenter

feature map, α are the attention coefficients and ⊗ is element wise multiplication

operation.

α = σ(W T
conv1ReLU(qadd)) (2.2)

where qadd is the element wise additive output of intermediate segmenter feature

map and intermediate conditioner feature map, Wconv1 is the weight matrix of the

convolution layer with (1,1) kernel size and σ is the sigmoid activation function.

qadd = qifc ⊕ qifs (2.3)

where qifc is the intermediate feature map of conditioner, qifs is the intermediate

feature map of segmenter and ⊕ is element wise addition operation.
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qifc = ReLU(W T
conv51qic)

qifs = ReLU(W T
conv52qis)

(2.4)

where qic is the input feature map of conditioner, qis is the input feature map of

segmenter andWconv51, Wconv52 are weight matrices of convolutional layers with (5,5)

kernel size.

2.3 Contributions

Most of the model architectures existing in biomedical image segmentation are vari-

ations of the standard U-Net architecture with the number of filters getting doubled

at each level in the encoder path and vice versa in the decoder path. Moreover,

skip connections are also used in almost all of these models. The skip connections

undoubtedly perform better in the standard image segmentation with image and

mask as the input and output of these models.

1. Here, as shown in Fig. 1.2, we parallelly make use of the support set and

query input while training. So, to cater this, we need two input channels which is

the reason why we need two encoder-decoder arms. We refrain from incorporating

skip connections within the conditioner and the segmenter part as if we use skip

connections here in either or both of the arms, this will aid in effective information

flow only within the same arm but will not transfer effective information from one

arm to another. Since the segmenter arm makes the final prediction for the query

input, so relevant information has to flow from the conditioner to the segmenter

side. We can say that the FSCS-cov’s segmenter arm makes predictions given that

its conditioner arm has also seen and processed the support set effectively in the con-

ditioner arm and only transfers relevant and necessary information to the segmenter

arm via interaction blocks. Moreover skip connections lead to increased usage of

memory due to higher number of feature maps being given as input to the further

convolutional operations.
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2. In the interaction blocks, we use spatial convolutions and sigmoid activa-

tion which re-weight the feature maps of the segmenter based on their relevance in

infection segmentation. So, we use information from the conditioner arm to help

the segmenter arm predict the output mask of the query input. If we remove the

conditiner arm completely, it becomes a simple encoder-decoder architecture which

becomes a U-Net if we add skip connections and double the no of filter at each level.

3. Finally, by incorporating attention gates in the interaction block, then the

results are slightly better since the feature maps from the conditioner are used to

re-weight the feature maps from the segmenter, which is used for the segmentation

of the query input.

So, usually for biomedical image segmentation tasks, U-Net and its variations

perform much better. However, in the few shot learning domain, where we need

to generalize from very limited training samples and need to use the support and

query sets parallelly while training, FSCS-cov fits much better than U-Net and its

variations. This is how we came up with architecture and later experimented with

information flow via interaction blocks. Spatial convolution seems good since it

not only keeps the computational complexity low but also does the job of relevant

information transfer from conditioner to segmenter in an efficient way.
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Experimental Results

3.1 Dataset

The COVID-19 CT segmentation dataset can be downloaded from here 1. It con-

sists of 100 axial CT images collected from more than 40 patients. These images

were segmented by a radiologist using 3 labels: ground-glass(mask value=1), con-

solidation(mask value=2) and pleural effusion(mask value=3). All the 100 samples

contain Class 1(Ground glass opacity), class 2(consolidation) is present in 75 of the

samples and class 3 (Pleural effusion) is present in only 25 of the samples. Ground

glass opacity(GGO) is a radiological term which is used to indicate hazy areas with

increased lung opacity through which lung vessels and bronchial structures are still

observable. However, in consolidation, these structures are obscured. It occurs when

the air that fills the lung airways is replaced with a substance. Pleural effusion is due

to the build up of excess fluid between the pleural layers outside the lungs. Gener-

ally the symptoms of Covid start with Ground glass opacity which slowly progresses

to consolidation and if left untreated can lead to Pleural effusion.

3.2 Data pre-processing

We remove those samples which have a very low infection content,ie- those samples

where the number of pixels corresponding to infection occupy a small fraction of the

1COVID-19 CT segmentation dataset: http://medicalsegmentation.com/covid19/

16

http://medicalsegmentation.com/covid19/
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entire mask are removed. The threshold is chosen at 0.5 percent. Normalization is

then performed on the CT slices to scale down the intensities in the range (0,1).

3.3 Training Strategy

We conduct 5-fold cross validation to come up with robust results. To achieve this,

we conduct 2 different strategies:

3.3.1 Strategy 1 (3 class approach)

The original dataset contains samples which can contain all the classes,ie- a sample

can contain ground glass opacity, consolidation as well as pleural effusion. We

observe that there are 25 samples containing all ground glass opacity, consolidation

and pleural effusion; 55 samples containing ground glass opacity and consolidation

and only 20 samples containing only ground glass opacity. We denote all those

samples which contain all ground glass opacity, consolidation and pleural effusion

by class A samples. Similarly all those samples which contain ground glass opacity

and consolidation by class B samples and the rest which contain only ground glass

opacity by class C samples. Now these samples are mutually exclusive.

After removal of outlier samples, we prepare 5 folders, each folder having the

same proportion of all the 3 classes(A,B,C) as in the dataset.After we have prepared

these 5 folders, we perform 5-fold cross validation with 20 percent in test set, 20

percent in validation and remaining 60 percent in training sets.
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3.3.1.1 Class wise sample distribution

Class label Presence of radiological

structures

No of samples

Class A Ground glass + consolida-

tion + pleural effusion

25

Class B Ground glass + consolida-

tion

55

Class C Ground glass 20

3.3.2 Strategy 2 (2 class approach)

Due to class imbalance caused by extremely low proportion of pleural effusion, we

follow this approach. Pleural effusion is present in only 25 samples, so we combine

those pixels which indicate pleural effusion with those which indicate consolidation.

We do this because pleural effusion is generally present in those pixels which are

adjacent to consolidation.

Now, we have 80 samples containing both ground glass opacity and consolidation;

20 samples containing only ground glass opacity. We denote these 80 samples which

contain both by class A samples and the rest 20 which contain only ground glass as

class B samples. Now these samples are mutually exclusive.

We perform 5 fold cross validation in a similar way as we did in Strategy 1.

3.3.2.1 Class wise sample distribution

Class label Presence of radiological

structures

No of samples

Class A Ground glass + consolida-

tion

80

Class B Ground glass 20

3.4 Training Configuration

FSCS-cov is trained on Tesla V100 16GB with optimizer as SGD(Stochastic Gradient

Descent)[15], initial learning rate set to 0.01 which undergoes exponential decay
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with increasing number of epochs and the model is trained for 150 epochs. We also

conducted runs with Adam optimizer[8], but we saw that the results were more

consistent and less fluctuating if we use SGD.

3.5 Loss functions

3.5.1 Dice Loss

Dice Loss as a loss function was first developed by Sudre et al.[18]. It comes from

Sørensen–Dice coefficient, which is a measure to check the similarity between two

samples. Dice coefficient is defined as:

DSC =
2|G ∩ S|
|G|+ |S| (3.1)

where G denotes the ground truth and S denotes the predicted set of pixels. It

is a measure of overlap between 2 sets. It ranges from (0,1). A dice coefficient of 0

means that there is no overlap between the ground truth and the predicted mask.

Similarly a dice coefficient of 1 means complete overlap between the ground truth

and predicted mask. Alternatively, the dice coefficient can also be interpreted as:

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(3.2)

Now, the dice loss is defined as follows:

LossDice = 1− 2|G ∩ S|
|G|+ |S| (3.3)

where G denotes the ground truth and S denotes the predicted set of pixels. We see

that as the dice coefficient increases, the dice loss decreases and vice-versa.
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3.5.2 IoU Loss

IoU loss was developed by Zhou et al.[22]. It comes from IoU coefficient, which is a

term used to find the amount of overlap of 2 boxes The greater the area of overlap,

the greater is the IoU. Simply put, IoU is defined as:

IoU =
Area of overlap

Area of union
(3.4)

It is formulated as:

IoU =
|G ∩ S|
|G ∪ S| (3.5)

where G denotes the ground truth and S denotes the predicted mask. It ranges from

(0,1). An IoU score of 1 means complete overlap between the ground truth and the

predicted mask. Similarly an IoU score of 0 means no overlap. Now, the IoU loss is

defined as follows:

LossIoU = 1− |G ∩ S|
|G ∪ S| (3.6)

where G denotes the ground truth and S denotes the predicted set of pixels. We see

that as the IoU coefficient increases, the IoU loss decreases and vice-versa. Alterna-

tively, the IoU can also be interpreted as:

IoU =
TP

TP + FP + FN
(3.7)

We have also experimented with other loss functions such as Binary Cross En-

tropy loss by Zhang et al.[21], Focal Loss by Lin et al.[10] and Lovasz Hinge Loss by

Berman et al. [1]. However the results were not good, possibly because these loss

functions did not converge and also did not correlate with IoU, ie- decrease in Focal

loss or Lovasz Hinge Loss had no effect on IoU.
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3.6 Evaluation metrics

1. Dice Similarity Coefficient (DSC): It is also known as Dice-Sørensen coeffi-

cient 2 . It is almost widely used in segmentation. It is a similarity measure function

and is used to calculate the similarity of two samples. It is also the harmonic mean

of Precision and Recall. It is formulated in Eq. 3.1.

2. Intersection Over Union (IoU): It is also known as Jaccard index3. It is a

term used to find the amount of overlap of 2 boxes. The greater the area of overlap,

the greater is the IoU. It is formulated in Eq. 3.5.

3. Hausdorff Distance (HD): It is also called Pompeiu–Hausdorff distance4. It is

used to describe the similarity between segmentation result and the ground truth.

It is defined as follows:

HD = max{max
x∈G

min
y∈S

d(x, y),max
y∈S

min
x∈G

d(x, y)} (3.8)

where G denotes the ground truth and S denotes the predicted mask. The 95th

percentile is taken to avoid the effect of outliers. It measures how far two sets are

from each other. It is zero iff both G and S are the same; otherwise it has a finite

value. The less the Hausdorff distance, the more similar are the ground truth to its

predicted mask.

4. Mean Absolute Error (MAE): It is the average of absolute errors, and it is

defined as:

MAE =
1

W ∗H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)| (3.9)

where G denotes the ground truth and S denotes the predicted mask. It is always

positive; the lesser the MAE, the greater is the similarity between the ground truth

and the predicted mask. A larger value indicates that ground truth is far different

from the predicted mask.

2https://en.wikipedia.org/wiki/S\OT1\orensen\OT1\textendashDice_coefficient
3https://en.wikipedia.org/wiki/Jaccard_index
4https://en.wikipedia.org/wiki/Hausdorff_distance

https://en.wikipedia.org/wiki/S\OT1\o rensen\OT1\textendash Dice_coefficient
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Hausdorff_distance
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5. Sensitivity: It is formulated as:

Sensitivity =
True positives

True Positives + False Negatives
(3.10)

It is the proportion of true positives that are correctly predicted by the model. A

model with high sensitivity will have few false negatives, ie- the ability of a model

to correctly identify positive examples. Its value ranges from (0,1). The sum of

sensitivity(True Positive rate) and False negative rate is 1. In unbalanced datasets,

the more pixels we predict as the true class, the better is the sensitivity.

6. Specificity: It is formulated as:

Specificity =
True Negatives

True Negatives + False Positives
(3.11)

Its value ranges from (0,1). A model with high specificity will accurately identify

the majority of the negative outcomes, but one with low specificity may mistakenly

classify many negative results as positive. It is also known as True Negative Rate

(TNR).

7. Precision: It is formulated as:

Precision =
True Positives

True Positives + False Positives
(3.12)

Its value ranges from (0,1). It checks the number of positive predictions made by the

model. Higher precision means the model is good in detecting positive outcomes.
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3.7 Experiment 1 - Few shot with all 3 classes

3.7.1 Qualitative Analysis

Figure 3.1: (A) sample CT slice , (B) ground truth, and (C) segmentation by
proposed FSCS-cov
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3.7.1.1 Tabulation - Class Wise pixel count in ground truth vs predicted

masks

Class label Avg. pixel Percentage in

Ground truth

Avg. pixel Percentage in

Predicted mask

Class 1 6.96 7.95

Class 2 8.08 7.93

Class 3 1.55 1.338

Background 83.39 82.776

3.7.2 Quantitative Analysis

Figure 3.2: Training vs Validation Curve



Chapter 3 - Experimental Results 25

Figure 3.3: 5 fold Standard deviation - Training

Figure 3.4: 5 fold Standard deviation - Validation
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Figure 3.5: Bar Plot - Dice Loss vs IoU loss in Training and Validation

We see that the model’s validation performance is better if we use Dice Loss instead

of IoU loss. In both training and validation, dice loss is lower in both training and

validation cases if we use the same no of epochs.
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Figure 3.6: Evaluation metrics in test data - DiceLoss vs IoULoss

From the above plot, we see that the model performs better if we use Dice Loss.

This is because dice loss is differentiable where as IoU loss is not differentiable since

the chain rule of this loss function breaks.
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3.8 Experiment 2 - Few shot with 2 classes

3.8.1 Qualitative Analysis

Figure 3.7: (A) sample CT slice , (B) ground truth, and (C) segmentation by
proposed FSCS-cov
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3.8.1.1 Tabulation - Class Wise pixel count in ground truth vs predicted

masks

Class label Avg. pixel Percentage in

Ground truth

Avg. pixel Percentage in

Predicted mask

Class 1 9.1 9.95

Class 2 5.79 5.38

Background 85.1 84.66

Here we observe that if we remove the third class, results are better since the

percentage of pixels covered by the third class in Ground Truth is extremely less

when compared to the other two classes.

3.8.2 Quantitative Analysis

Figure 3.8: Training vs Validation Curve
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Figure 3.9: 5 fold Standard deviation - Training

Figure 3.10: 5 fold Standard deviation - Validation
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3.8.3 Tabulation - Training vs validation loss

Experiment name - Mode Mean Dice Loss after

80 epochs ± Standard

deviation (σ)

Mean IoU Loss after

80 epochs ± Standard

deviation (σ)

FSCS-cov 3 class - Training 0.1422 ± 0.02456 0.2076 ± 0.02843

FSCS-cov 3 class - Validation 0.1865 ± 0.02622 0.2543 ± 0.03082

FSCS-cov 2 class - Training 0.1537 ± 0.01924 0.1872 ± 0.02617

FSCS-cov 2 class - Validation 0.1743 ± 0.02132 0.2217 ± 0.02375

Figure 3.11: Bar Plot - Dice Loss vs IoU loss in Training and Validation

We see that the model’s validation performance is better if we use Dice Loss

instead of IoU loss. In both training and validation, dice loss is lower in both
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training and validation cases if we use the same no of epochs.

Figure 3.12: Evaluation metrics in test data - DiceLoss vs IoULoss

From the above plot, we see that the model performs better if we use Dice Loss.

This is because dice loss is differentiable where as IoU loss is not differentiable since

the chain rule of this loss function breaks.
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3.9 Tabulation of Results

Model

Name

No of

Train-

ing

samples

Mean

Dice

Score

Mean

IoU

Mean

HD95

Mean

speci-

ficity

MAE Mean

Preci-

sion

Mean

sensitiv-

ity

U-Net

[14]

480 0.6723 0.6112 8.2343 0.8471 0.1142 0.6421 0.7033

Attention

U-Net

[11]

480 0.6438 0.5835 10.3465 0.8093 0.1356 0.6303 0.6522

Inf-Net

[2]

480 0.7236 0.6834 7.0808 0.9143 0.0311 0.6923 0.7532

nnU-net

[6]

480 0.7500 0.6526 7.1841 0.9356 0.0316 0.7471 0.7584

SSA-

Net

[20]

300 0.7540 0.6698 7.0464 0.9412 0.0305 0.7403 0.7625

FSCS-

cov 3

Class(ours)

60 0.7462 0.6732 7.1957 0.9482 0.0295 0.7208 0.7734

FSCS-

cov 2

class(ours)

60 0.7625 0.6903 6.9482 0.9513 0.0257 0.7266 0.8021

Data augmentation has been performed for the first five models. Here we observe

that FSCS-cov’s performance is much better in limited training data when compared

to the other 5 models. Although SSA-Net performs better than FSCS-cov, but it

also uses much more data when compared with FSCS-cov. One of the possible

reasons might be that all the other five models follow the U-Net type architecture

with increasing no of filters as the depth increases in the encoder and vice versa in

the decoder, due to which the model complexity is highly increased. However, in

FSCS-cov, the complexity is relativdly much less since each encoder-decoder has 16
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filters in the Conditioner arm and 64 filters in the Segmenter arm. Since the model

complexity is low, so the generalization capability of FSCS-cov is better compared

to other models.
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3.10 Ablation Studies

3.10.1 Reducing the no of blocks in both encoder and de-

coder from 4 to 3

3.10.1.1 Qualitative Analysis

Figure 3.13: (A) sample CT slice , (B) ground truth, (C) segmentation by FSCS-cov
and (D) segmentation by reducing encoder and decoder blocks in FSCS-cov
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3.10.1.2 Tabulation - Class Wise pixel count in ground truth vs pre-

dicted masks

Class label Avg. pixel

Percentage in

Ground truth

Avg. pixel Per-

centage in Pre-

dicted mask -

FSCS-cov

Avg. pixel

Percentage

in Predicted

mask - reducing

encoder and

decoder blocks

in FSCS-cov

Class 1 6.96 7.95 9.2

Class 2 8.08 7.93 7.76

Class 3 1.55 1.338 1.01

Background 83.39 82.776 82.01

3.10.1.3 Quantitative Analysis

Figure 3.14: Training vs Validation Curve

If we decrease the no of blocks, FSCS-cov takes more time to fit. This happens

because if we reduce the no of encoder-decoder blocks, the model has lesser com-
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plexity with respect to no of trainable parameters. So, the model takes time to fit

the training data. Also, since the model is simplified with respect to computational

complexity, so the performance on unseen data deteriorates.

3.10.2 Increasing the no of blocks in both encoder and de-

coder from 4 to 5

3.10.2.1 Qualitative Analysis

Figure 3.15: (A) sample CT slice , (B) ground truth, (C) segmentation by FSCS-cov
and (D) segmentation by increasing encoder and decoder blocks in FSCS-cov
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3.10.2.2 Tabulation - Class Wise pixel count in ground truth vs pre-

dicted masks

Class label Avg. pixel

Percentage in

Ground truth

Avg. pixel Per-

centage in Pre-

dicted mask -

FSCS-cov

Avg. pixel

Percentage in

Predicted mask

- increasing

encoder and

decoder blocks

in FSCS-cov

Class 1 6.96 7.95 8.84

Class 2 8.08 7.93 7.8

Class 3 1.55 1.338 1.11

Background 83.39 82.776 82.24

3.10.2.3 Quantitative Analysis

Figure 3.16: Training vs Validation Curve

Here FSCS-cov fits quickly and overfits at 100 epochs. If we increase the no of

blocks, the model complexity also increases, so it takes less time to fit the training
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data and overfits later. So, its performance on training data is good but suffers in

test data.
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3.10.3 Introducing Attention blocks in interaction module

As shown in Fig. 3.12, we use this attention module in the interaction blocks. It

is the same attention module used in Attention U-Net. Architectural details have

been discussed in section 2.2.4.1.

3.10.3.1 Qualitative Analysis

Figure 3.17: (A) sample CT slice , (B) ground truth, (C) segmentation by FSCS-
cov and (D) segmentation by introducing attention blocks in interaction module of
FSCS-cov
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3.10.3.2 Tabulation - Class Wise pixel count in ground truth vs pre-

dicted masks

Class label Avg. pixel

Percentage in

Ground truth

Avg. pixel Per-

centage in Pre-

dicted mask -

FSCS-cov

Avg. pixel Per-

centage in Pre-

dicted mask - in-

troducing atten-

tion blocks in

interaction mod-

ule of FSCS-cov

Class 1 6.96 7.95 7.77

Class 2 8.08 7.93 7.951

Class 3 1.55 1.338 1.38

Background 83.39 82.776 82.9

3.10.3.3 Quantitative Analysis

Figure 3.18: Training vs Validation Curve

By using attention blocks, we observe that the results get slightly better. This

happens because the purpose of the interaction block is to highlight the feature
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maps of the segmenter arm based on the feedback received from the segmentation

maps of the conditioner arm. The use of attention is to give more weightage to

relevant feature maps. So, if we use attention gates directly in the interaction

blocks itself, the task of re-weighting feature maps of the segmenter based on the

feedback received from the conditioner is done better when compared with spatial

convolution.
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3.10.4 Increasing the number of training samples

No of samples in training set is increased to 70 percent and in the validation set is

reduced to 10 percent. The test set contains 20 percent samples as before.

3.10.4.1 Qualitative Analysis

Figure 3.19: (A) sample CT slice , (B) ground truth, (C) segmentation by FSCS-cov
and (D) segmentation by increasing training samples
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3.10.4.2 Tabulation - Class Wise pixel count in ground truth vs pre-

dicted masks

Class label Avg. pixel

Percentage in

Ground truth

Avg. pixel Per-

centage in Pre-

dicted mask -

FSCS-cov

Avg. pixel Per-

centage in Pre-

dicted mask - in-

creasing training

samples

Class 1 6.96 7.95 7.83

Class 2 8.08 7.93 7.927

Class 3 1.55 1.338 1.374

Background 83.39 82.776 82.86

3.10.4.3 Quantitative study

Figure 3.20: Training vs Validation Curve

Results are slightly better due to more number of training samples. This shows that

if the model sees more training data, then it learns more about the data distribution.

So, it generalizes better on test data.



Chapter 3 - Experimental Results 45

3.10.5 Tabulation - Training vs validation loss

Experiment name - Mode Mean Dice Loss ± Standard de-

viation (σ)

Reducing blocks - Training 0.1648 ± 0.02249

Reducing blocks - Validation 0.1851 ± 0.02863

Increasing blocks - Training 0.1139 ± 0.02574

Increasing blocks - Validation 0.1647 ± 0.02364

Attention blocks - Training 0.1356 ± 0.02857

Attention blocks - Validation 0.1798 ± 0.02359

Increasing Training samples -

Training

0.1182 ± 0.02212

Increasing Training samples - Val-

idation

0.1478 ± 0.02056



Chapter 3 - Experimental Results 46

3.11 Tabulation of Results - Ablation studies

Ablation

Experi-

ment

Mean

Dice

Score

Mean

IoU

Mean

HD95

Mean

Speci-

ficity

MAE Mean

Preci-

sion

Mean

Sensi-

tivity

FSCS-

cov 3

Class(ours)

0.7462 0.6732 7.1957 0.9482 0.0295 0.7208 0.7734

FSCS-

cov 2

class(ours)

0.7625 0.6903 6.9482 0.9513 0.0257 0.7266 0.8021

Decreasing

blocks

0.7225 0.6514 7.6784 0.9421 0.0314 0.715 0.7343

Increasing

blocks

0.7355 0.6559 7.4235 0.9452 0.0312 0.7016 0.7611

Attention

in inter-

action

module

0.7654 0.6982 7.0112 0.9501 0.0255 0.7367 0.7922

Increasing

training

samples

0.7489 0.6812 7.1915 0.9496 0.0285 0.7211 0.7821

The results clearly show that if we either increase or decrease the no of blocks in

the encoder or decoder, then the model either becomes too complex or too simpli-

fied which decreases the dice score. However, if we use attention, then only relevant

information flows from Conditioner to Segmenter due to which the dice score in-

creases. Similarly if we increase the no of training samples, the dice score increases

because the model understands the underlying data distribution better.
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Discussion

The FSCS-cov architecture is inspired from the standard U-Net[14] with interaction

blocks connecting the Conditioner and Segmenter. The spatial convolution in the

interaction blocks helps transfer relevant information from the conditioner to the

segmenter. We conducted two different types of experiments, one with all the three

classes present and another with two classes by merging imbalanced class into the

other. The results obtained from two classes are better since the infection propor-

tion is easily detectable because of higher proportion. We also conducted different

ablation studies and saw that the results improved if we used attention gates in the

interaction blocks or increase the number of training samples. If we either reduce or

increase the number of blocks in the encoder-decoder architecture, then the results

deteriorate. Thus, using this query-support approach and this architecture, we can

make predictions using very few labelled samples, which is a major drawback for

U-Net and its variations.

4.1 Future Scope

Future improvements can be performed by modifying the interaction blocks which

connect the two arms. Furthermore experiments can also be performed with bottle-

neck block since it is the medium of information flow from the encoder to decoder.

Along with this, semi-supervised learning can also be applied to aid FSCS-cov come
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with better results in limited data domain scenarios.
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