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Chapter 1

Introduction and a Brief Review of

Literature

1.1 Introduction

One of the main objectives of statistics is the comparison of random quantities. These

comparisons are mainly based on the comparison of some measures associated to these

random quantities. For example, it is very common to compare two rvs in terms of their

means, medians or variances. In some situations, comparisons based only on two single

measures are not very informative. For instance, let us consider two rvs X and Y with

respective cdfs F (t) = 1−e−t2 and G(t) = 1−e−
2√
π
t
for all t ≥ 0 respectively. Here we have

E[X] = E[Y ] =
√
π/2. If X and Y represent the random lifetimes of two devices, or the

survival lifetimes of patients under two different treatments, then we would say that X has

the same expected survival time than Y , if we just considered the mean values.However, if

we took into account the probability of surviving at a fixed time t ≥ 0, then P [X ≥ t] ≤
P [Y ≥ t] for all t ∈ [0, 2/

√
π] and P [X ≥ t] ≥ P [Y ≥ t], for t ∈ [2/

√
π,∞).

Consequently here sfs provide more concrete information to compare these two rvs. The

necessity of providing more detailed comparisons of two random quantities has motivated

the development of the theory of stochastic orders, which has grown significantly during

the last 50 years. Stochastic order refers to the comparisons of two random quantities in

some stochastic sense. It is an important tool which has been used in many diverse areas

of statistics, mathematics, economics, physics, biology and so on.

One of the most important area where stochastic orders studied extensively is reliability

theory. Reliability is a popular concept that has been studied for decades as a commendable

attribute of a living organism or a mechanical system. After the experience of second world

1
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war with complex military systems, the demand of reliability theory has grown up. An

early application of the reliability theory could be found in the area of machine maintenance

(cf. Barlow and Proschan [12]). Reliability theory describes different aspects of a system,

namely, whether a system is good or bad, how long a system may survive, what the failure

rate of a system is, etc. In reality, we deal with many different complex systems. In most of

the cases, the basic structures of these systems match with those of the well known coherent

systems (to be discussed later). Thus, the reliability study of a coherent system has received

considerable attention from researchers/engineers. Indeed, one may be interested to know

about the useful tools/theories developed so far to study the reliability of a system. Clearly,

this is case-dependent. For example, if we want to know whether a system is good or bad,

then the stochastic orders are useful tools for this; if we want to know how long a system

will survive, then the mean residual life function is one which gives some idea about this.

Thus, it is important to study different reliability tools/theories in order to study system

reliability.

In reliability, stochastic orders are basically used to compare the lifetimes or the remain-

ing lifetimes of two systems; in econometrics, these are used to compare different income

inequalities from various random prospects; in biological sciences, these are used to know

the effectiveness of a particular drug by comparing the lifetimes or residual lifetimes of the

control group of living organisms. Like stochastic orders, stochastic ageing is also another

important concept which has many applications in reliability theory. Different stochastic

ageing properties describe how a system improves or deteriorates with age. Study of differ-

ent closure properties of various ageing classes is one of the important problems in reliability

theory. For example, if the components of a system have some ageing property, then it is

important to study whether the corresponding system has also the same ageing property

or not. Such a study is meaningful because this helps us to find out how the reliability of

a system can be determined from knowledge of the reliabilities of its components.

Now-a-days, the systems which are used in industry, are very costly as well as compli-

cated in nature. The failure of such systems may create a great monetary loss. Thus, the

researchers want to find out new ways by which the system lifetime may be increased. One

of the popular/useful ways to enhance the lifetime of a system is the allocation of redundant

components into the system. Thus, the study of different allocation strategies is one of the

frontier areas of research in reliability theory.

Another area where stochastic orders also applied extensively is actuarial science. One

of the important problems in actuarial science is the study of comparing risks. Risk describe

the potential loss of an individual or a company and defined by a rv X. Very often a decision

makers has to choose an action given some uncertain alternative. For example an investor

who wants to allocate his resources in different investment opportunities, an individual who
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has to decide weather he/she will buy a policy or not. Famous expected utility hypothesis

states that for a rational decision maker there exist a utility function u such that Y will be

more risky than X if and only if E[u(X)] ≤ E[u(Y )]. However very often for every decision

maker it is almost impossible to express the utility function explicitly. Therefore a natural

question arises whether there any criteria available to compare two risk X and Y when

there is only partial knowledge available about the corresponding utility function, say, u

belongs to some prescribed class F of functions. Also there are situations where a group of

decision makers with different utility functions, then a natural question can occur whether

all the members of the group come to the same decision. Each of the above mention cases

lead to the stochastic order relationship s.t.

X ⪯ Y if E[u(X)] ≤ E[u(Y )] for all u ∈ F . (1.1.1)

Clearly for different choices of u will lead to different stochastic orders.

1.2 Review of Literature

A detailed literature survey concerned with the problems studied in this thesis is given in

this section. We divide this section into eleven subsections. The subsection 1.2.1 consists

of notation, nomenclature, acronym and abbreviations. Some important measures, namely,

failure rate, reverse hazard rate and mean residual life are discussed in subsection 1.2.3. In

subsection 1.2.2, we give the definitions of different majorization. In subsection 1.2.3 Some

important reliability measures are discussed. In subsection 1.2.4 different stochastic orders

and their application have been discussed. Different stochastic ageing classes are discussed

in subsection 1.2.5. In subsection 1.2.6 Copula theory is discussed. A brief discussion on

the coherent system and its applications is given in subsection 1.2.7. The different kind of

redundancies and their usefulness are discussed in subsection 1.2.9. In subsection 1.2.10,

we discuss different type of claim amounts. In subsection 1.2.11 different semi-parametric

models have been discussed.

1.2.1 Notation, Nomenclature, Acronym and Abbreviations

Below we give notation, nomenclature, acronyms, and abbreviations that will be used

throughout the thesis.

Notation

X underlying nonnegative rv.
fX(·) probability density function of X.
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FX(·) cumulative cdf of X.
F̄X(·) survival (reliability) function of X.
rX(·) hazard (failure) rate function of X.
r̃X(·) reversed hazard (failure) rate function of X.
µX(·) mean residual life function of X.
Xt (X − t|X > t).
X(t) (t−X|X ≤ t).

X An array of new components.
τ[n] Lifetime of a coherent system having n number of components.

τk:n Lifetime of a k-out-of-n system.
X ∧ Y min{X,Y }.
X ∨ Y max{X,Y }
ϕτ[n](x) state of τ[n](X) at time t.

ϕτk:n(x) state of τk:n(X) at time t.

h[n](·) Reliability function of τ[n].

hk:n(·) Reliability function of τk:n.
h[n](p) h[n] (p1, p2, . . . , pn), 0 < pi < 1, for all i = 1, 2, . . . , n.

hk:n(p) hk:n (p1, p2, . . . , pn), 0 < pi < 1, for all i = 1, 2, . . . , n.
h[n](p) h[n](p) whenever pi = p, for all i = 1, 2, . . . , n.

hk:n(p) hk:n(p) whenever pi = p, for all i = 1, 2, . . . , n.

Acronym and Abbreviations

cdf cumulative distribution function.
sf survival (reliability) function.
pdf probability distribution function.
st usual stochastic.
sp stochastic precedence.
hr hazard rate.
rhr reversed hazard rate.
lr likelihood ratio.
hr↑ up shifted hazard rate.
hr↓ down shifted hazard rate.
rhr↑ up shifted rhr.
lr↑ up shifted likelihood ratio.
lr↓ down shifted likelihood ratio.
disp dispersive.
ILR increasing likelihood ratio.
DLR decreasing likelihood ratio.
IFR increasing failure rate.
DFR decreasing failure rate.
IFRA increasing in failure rate average.
DFRA decreasing in failure rate average.
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NBU new better than used.
DMRL decreasing mean residual life.
IMRL increasing mean residual life.

Nomenclature

F̄X(·) 1− FX(·).
k(t) first derivative of k(t) with respect to t.
k(t) second derivative of k(t) with respect to t.
k(t) third derivative of k(t) with respect to t.

a
sign
= b a and b have the same sign.

a
def.
= b b is defined as a.

X =st Y X and Y have the same distribution.
X =sp Y P (X > Y ) = P (Y > X).

F−1
X (y) inf {x : FX(x) ≥ y}.

R {x : −∞ < x <∞}.
log(x) logarithm of x with base e.
iid independent and identically distributed.
increasing non–decreasing.
decreasing nonincreasing.

We use the convention of a/0 to be equal to ∞ whenever a > 0.

1.2.2 Preliminaries

Given a vector x = (x1, x2, ..., xn) ∈ Rn, denote x(1) ≤ x(2) ≤ ... ≤ x(n) as increasing

arrangement of x1, x2, . . . , xn.

Definition 1.2.1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn be any two

vectors.

(i) The vector x is said to majorize the vector y, i.e., x is larger than y in majorization

order (denoted as x
m
⪰ y) if (cf. [96])

j∑
i=1

x(i) ≤
j∑

i=1

y(i), for all j = 1, 2, . . . , n− 1, and
n∑

i=1

x(i) =
n∑

i=1

y(i).

(ii) The vector x is said to weakly supermajorize the vector y, denoted as x
w
⪰ y if (cf.

[96])

j∑
i=1

x(i) ≤
j∑

i=1

y(i), for all j = 1, 2, . . . , n.
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(iii) The vector x is said to weakly supermajorize the vector y, denoted as x ⪰w y if (cf.

[96])

n∑
i=j

x(i) ≥
n∑

i=j

y(i), for all j = 1, 2, . . . , n− 1.

(iv) The vector x is said to be p-larger than the vector y (denoted as x
p
⪰ y) if (cf. [25])

j∏
i=1

x(i) ≤
j∏

i=1

y(i), for all j = 1, 2, . . . , n.

It can be seen that

x
m
⪰ y ⇒ x

w
⪰ y ⇒ x

p
⪰ y.2

Definition 1.2.2. (cf. [96]) Let A and B be two m × n matrices. Further let aR1 , . . .a
R
m

and bR
1 , . . .b

R
m are the rows of A and B respectively, so that each of these quantities is a

row vectors of length n. Then A is said to

(i) row majorize B (denoted by A >row B) if aRi
m
⪰ bR

i , i = 1, . . . ,m.

(ii) row weak majorize B (denoted by A >w B) if aRi
w
⪰ bR

i , i = 1, . . . ,m.

(iii) chain majorize B (denoted by A ≫ B) if there exists a finite number of n × n T -

transform matrices, T1, T2, . . . , Tk such that B = AT1T2 . . . Tk.

Any T -transform matrix has the form

T = λI + (1− λ)Q

where 0 ≤ λ ≤ 1 and Q is a permutation matrix that just interchanges two coordinates. It

is to be noted that A≫ B ⇒ A >row B ⇒ A >w B.

Lemma 1.2.1. [96] Let I ⊆ R be an open interval and let ζ : In → R be continuously

differentiable. Necessary and sufficient conditions for ζ to be Schur-convex (resp. Schur-

concave) on In are that ζ is symmetric on In, and for all i ̸= j,

(ui − uj)
(
ζ(i)(u)− ζ(j)(u)

)
≥ (resp. ≤) 0 for all u = (u1, u2, ..., un) ∈ In,

where ζ(k)(u) = ∂ζ(u)/∂uk.
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Lemma 1.2.2. [96] Let A ⊆ Rn, and ζ : A → R be a function. Then, for x,y ∈ A,

x
w
⪰ y =⇒ ζ(x) ≥ (resp. ≤) ζ(y)

if and only if ζ is both decreasing (resp. increasing) and Schur-convex (resp. Schur-concave)

on A.

Lemma 1.2.3. [72] Let ζ : (0,∞)n → R be a function. Then,

x
p
⪰ y =⇒ ζ(x) ≥ (resp. ≤) ζ(y)

if and only if the following two conditions hold:

(i) ζ(ev1 , . . . , evn) is Schur-convex (resp. Schur-concave) in (v1, . . . , vn),

(ii) ζ(ev1 , . . . , evn) is decreasing (resp. increasing) in each vi, for i = 1, . . . , n,

where vi = lnxi, for i = 1, . . . , n.

In what follows, we introduce a notation. Let

Un =

{
(x,y) =

(
x1 . . . xn

y1 . . . yn

)
: xi > 0, yi > 0, and

(xi − xj)(yi − yj) ≥ 0,∀ i, j = 1, . . . , n} .

Sn =

{
(x,y) =

(
x1 . . . xn

y1 . . . yn

)
: xi > 0, yi > 0, and

(xi − xj)(yi − yj) ≤ 0, ∀ i, j = 1, . . . , n} .

Notation. Let us denote the following notations:

(i) D = {(x1, x2, ..., xn) : x1 ≥ x2 ≥ ... ≥ xn ≥ 0} .
(ii) D+

n = {(x1, x2, ..., xn) : x1 ≥ x2 ≥ ... ≥ xn > 0} .
(iii) E = {(x1, x2, ..., xn) : 0 ≤ x1 ≤ x2 ≤ ... ≤ xn} .
(iv) E+

n = {(x1, x2, ..., xn) : 0 < x1 ≤ x2 ≤ ... ≤ xn} .

Lemma 1.2.4. [96] Let φ : E → R is continuously differentiable on the interior of E. Then,

for x,y ∈ E,

x
m
⪰ y =⇒ φ(x) ≥ (resp. ≤) φ(y)
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iff φ(k)(z) is increasing (resp. decreasing) in k = 1, . . . , n, where φ(k) = ∂φ(z)/∂zk denotes

the partial derivative of φ with respect to its kth argument.

Lemma 1.2.5. [96] Let φ : S → R be a function, S ⊆ Rn. Then, for x,y ∈ S,

x ⪰w y =⇒ φ(x) ≥ (resp. ≤) φ(y)

iff φ is increasing (resp. decreasing) and Schur-convex (resp. Schur-concave) on S. Simi-

larly,

x
w
⪰ y =⇒ φ(x) ≥ (resp. ≤) φ(y)

iff φ is decreasing (resp. increasing) and Schur-convex (resp. Schur-concave) on S.

Lemma 1.2.6. [57, 96] Let φ : D(E) → R be a continuous function and continuously

differentiable on the interior of D (E). Then

φ(x) ≥ φ(y) whenever x ⪰w y on D (E)

iff φ(k)(z) is a non-negative decreasing (increasing) function in k for all z in the interior of

D (E). Similarly,

φ(x) ≥ φ(y) whenever x
w
⪰ y on D (E)

iff φ(k)(z) is a non-positive decreasing (increasing) function of k for all z in the interior of

D (E).

Lemma 1.2.7. (cf. [96])

(i) For all increasing convex function h, x ⪯w y =⇒ (h(x1), h(x2), ..., h(xn)) ⪯w

(h(y1), h(y2), ..., h(yn))

(ii) For all increasing concave function h, x ⪯w y =⇒ (h(x1), h(x2), ..., h(xn)) ⪯w

(h(y1), h(y2), ..., h(yn))

(iii) For all decreasing convex function h, x ⪯w y =⇒ (h(x1), h(x2), ..., h(xn)) ⪯w

(h(y1), h(y2), ..., h(yn))

(iv) For all decreasing concave function h, x ⪯w y =⇒ (h(x1), h(x2), ..., h(xn)) ⪯w

(h(y1), h(y2), ..., h(yn))

Lemma 1.2.8. [43] For two n-dimensional Archimedean copulas Kφ1 and Kφ2, if ϕ2 ◦ φ1

is superadditive, then Kφ1(u) ≤ Kφ2(u) for all u ∈ [0, 1]n.
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Lemma 1.2.9. ( Chebyshevs inequality) If a1, a2, .., an; b1, b2, ..., bn be all real numbers,then

(i)
(
1
n

∑n
i=1 ai

) (
1
n

∑n
i=1 bi

)
≤
(
1
n

∑n
i=1 aibi

)
if either a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤

... ≤ bn, or a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥ ... ≥ bn;

(ii)
(
1
n

∑n
i=1 ai

) (
1
n

∑n
i=1 bi

)
≥
(
1
n

∑n
i=1 aibi

)
if either a1 ≤ a2 ≤ ... ≤ an and b1 ≥ b2 ≥

... ≥ bn, or a1 ≥ a2 ≥ ... ≥ an and b1 ≤ b2 ≤ ... ≤ bn.

1.2.3 Some Important Measures in the Theory of Reliability

In this subsection we discuss some important measures which are very useful in reliability

theory, namely, hazard rate, rhr, mean residual life and so on.

Definition 1.2.3. Let X be a nonnegative rv. Then the sf of X is given by

F̄X(x) = P (X > x),

• Hazard rate (hr) function

The lifetime of a system is completely characterized by its cdf. A realization of a

lifetime is manifested by failure, death or some other end-event. So, the information on the

probability of failure of an operating item in the next (usually sufficiently small) interval of

time is really important in reliability analysis. The hr function is the one which measures

this probability. The reliability analysts show their keen interest in studying this function.

The hazard rate has variety of names in different fields, e.g. in extreme value theory, it

is called the intensity function (cf. Gumbel [51]); in actuarial work, it is called the force

of mortality. Sometimes it is also called age specific force of mortality and intensity of

mortality (cf. Steffensen [126]). In statistics, its reciprocal for the normal distribution is

called Mills ratio (cf. Barlow et al. [13]); in epidemiology, it is called the age specific failure

rate, whereas in reliability theory we call it failure rate or hazard rate (cf. Barlow and

Proschan [12]). Mathematically, hr function of a rv X is defined as

rX(x) = lim
∆→0+

P (x < X ≤ x+∆|X > x)

∆
,

If X is an absolutely continuous rv then rX(x) can be represented as

rX(x) =

{
fX(x)
F̄X(x)

, if F̄X(x) > 0

∞, if F̄X(x) = 0.

Another important fact about the hazard rate function is that it uniquely determines the
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distribution by the relation

F̄X(x) = exp

−
x∫

0

rX(u)du

 .

The system reliability could be judged by the monotonic behavior of its hr function. For

example, if the hr function is increasing, then the system is usually degrading in some

suitable probabilistic sense. The different monotonic behavior of the hazard rate function

such as increasing, decreasing, bathtub-shaped, reversed bathtub-shaped, roller-coaster,

etc. have been extensively studied in the literature (cf.Lai and Xie [83]). To know more on

the other properties of the hr function, we refer the reader to (Barlow and Proschan [12],

Marshall and Olkin [95], and Finkelstein [46] among others).

• Reversede hazard rate (rhr) function

Like hr function, rhr function has also drawn attention due to its various useful proper-

ties in different areas of mathematics, statistics, economics and other related fields. It was

first introduced by Mises [97] (as mentioned in Marshall and Olkin [95]), and was discussed

briefly by Barlow et al. [13]. The rhr function has been shown to be used in modeling left-

censored data by Andersen et al. [3], Sengupta and Nanda [121], and many other researchers.

Andersen et al. [3] have stated that, in analyzing left-censored data, the rhr function plays

the same role as the hr function plays in the analysis of right-censored data. In forensic

science, it is used for estimating exact time of failure (death in case of human being) of a

system. It can also be used in actuarial science, specially by the insurance companies, to

decide on the premiums to be fixed for a new policy holder. For other applications of rhr

function, one may refer to Sengupta and Nanda [120]. The rhr function of a rv X is defined

as

r̃X(x) = lim
∆→0+

P (x−∆ < X ≤ x|X ≤ x)

∆
.

If X is an absolutely continuous rv then r̃X(x) can be represented as

r̃X(x) =
fX(x)

FX(x)
.

Like hr function, it also uniquely determines the distribution by the relation

FX(x) = exp

−
∞∫
x

r̃X(u)du

 .
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Many different properties of the rhr function are studied by different researchers viz. Block

et al. [19], Chandra and Roy [33], Sengupta and Nanda [121] and the references there in.

• Mean residual life (mrl) function

We have already discussed two important measures in the theory of reliability, namely, hr

and rhr. Mean residual life is also another such important measure. It has huge applications

in many diverse areas of statistics, physics, economics, biomedical science and related fields.

In actuarial science, it is used to fix rates and benefits for life insurance; in biomedical

science, it is used to analyze survivorship study. Demographers use it to study the human

population. It is used to determine the optimal burn-in time which is an important screening

method used in reliability theory. In replacement and repair strategies, although the shape

of the hr function plays an important role, the mrl function is found to be more relevant

than hr function. The hr is the instantaneous hr at any point of time whereas the mrl

summarizes the entire residual life. Thus, the mrl has more intuitive appeal for modelling

and analysis of failure data than the hazard rate. The mrl function of a rv X is defined as

µX(x) =

E[X − x|X > x], for x < x0,

0, otherwise,

where x0 = sup{x : F̄X(x) > 0}. If X is an almost surely positive rv, then µX(0) = E(X).

By the finiteness of E(X) we have that µX(x) < ∞, for all x < ∞. However, it is possible

that limx→∞ µX(x) = ∞. It is worth to mention here that

µX(x) =
1

F̄X(x)

∫ ∞

x
F̄X(u)du, when x0 = ∞.

Similar to the other measures discussed above, mrl function also uniquely determines the

distribution by the relation

F̄X(x) =
E(X)

µX(x)
exp

−
x∫

0

du

µX(u)

 over {x : P (X > x) > 0}.

In literature, many different properties of the mrl function are studied by different re-

searchers, namely, Shaked and Shanthikumar [122], Marshall and Olkin [95], Finkelstein

[46], Barlow and Proschan [12], Lai and Xie [83], and the references there in.
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1.2.4 Stochastic Orders

Suppose we have two different systems, and we want to compare their reliabilities. Then the

key question is − how to decide that one system is more reliable than the other? Stochastic

orders are the effective solution to this problem. This is because once the cdfs of two

lifetime rvs are known, stochastic orders use the complete information available regarding

the underlying rvs through its distribution, whereas the other kind of comparison (say, in

terms of means and/or variances) do not utilize the complete information as available with

the distributions. So it is quite natural that stochastic orders will give better comparison

than what is done in terms of means or variances. In literature many different types of

stochastic orders have been defined. Each stochastic order has its individual importance.

To study in details of these orders we refer the reader to Shaked and Shanthikumar [122],

Kochar [78].

The concept of usual stochastic order was first introduced by Mann and Whitney [92].

This order compares the sfs of two distributions. The definition is given below.

Definition 1.2.4. Let X and Y be two rvs. Then X is said to be smaller than Y in usual

stochastic (st) order, denoted as X ≤st Y , if

F̄X(t) ≤ F̄Y (t) for all t ∈ (−∞,∞).

This can equivalently be written as

F−1
X (u) ≤ F−1

Y (u) for all u ∈ (0, 1).

There are many situations where more stronger concept than stochastic order is needed.

For example as mentioned by Müller and Stoyan [102], suppose a person wants to buy a

car and he/she has to choose between two types cars with different lifetimes X and X and

Y. With the same price if X ≤st Y then he/she will choose the second one. But if someone

wants to buy a used car which is two years old, with remaining lifetimes X ′ and Y ′,then

he/she will decide according to the better remaining lifetimes i.e. X ′ ≤st Y
′ or Y ′ ≤ X ′.

Here

P (X ′ > t) = P (X > t+ 2|X > 2); t ≥ 0.

Now one may ask is the second type still better, i.e. X ′ ≤st Y
′ ? Unfortunately, this is not

the case as shown in example 1.3.1 of Müller and Stoyan [102]. Consequently, more stronger

assumption needed which ensures that usual stochastic order also holds for remaining life-

times. i.e. when [X|X > t] ≤st [Y |Y > t] for all t ?
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i.e.

P (X > s+ t|X > t) ≤ P (Y > s+ t|Y > t) for all s ≥ 0 and all t.

=⇒ F̄Y (t)

F̄X(t)
≤ F̄Y (s+ t)

F̄X(s+ t)
for all s ≥ 0 and all t.

This is a motivation for hr order. Hazard rate order is the one which ensures the above

fact. This order compares the hrs of two distributions. Below we give the definition of the

hr order.

Definition 1.2.5. Let X and Y be two absolutely continuous rvs with respective supports

(lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may be

negative infinity. Then X is said to be smaller than Y in hr order, denoted as X ≤hr Y , if

F̄Y (t)

F̄X(t)
is increasing in t ∈ (−∞,max(uX , uY )). (1.2.1)

This can equivalently be written as

rX(t) ≥ rY (t), where defined. (1.2.2)

Further, we have that X ≤hr Y if, and only if the P-P plot is star-shaped w.r.t. (1, 1), i.e.

FY (F
−1
X (u))− 1

u− 1
is increasing in u. (1.2.3)

rhr order is an another important stochastic order which is developed based on the concept

of rhr function. It can obtained by replacing the sf by the cdf. This order was introduced

by Keilson and Sumita [70]. The definition is given below.

Definition 1.2.6. Let X and Y be two absolutely continuous rvs with respective supports

(lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may be

negative infinity. Then X is said to be smaller than Y in rhr order, denoted as X ≤rhr Y ,

if

FY (t)

FX(t)
is increasing in t ∈ (min(lX , lY ),∞). (1.2.4)

This can equivalently be written as

r̃X(t) ≤ r̃Y (t). (1.2.5)
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Further, we have that X ≤rhr Y if, and only if the P-P plot is star-shaped w.r.t. (0, 0), i.e.

FY (F
−1
X (u))

u
is increasing in u. (1.2.6)

It is to be noted that X ≤hr Y if and only if [X|X > t] ≤st [Y |Y > t] for all real t which

actually compares lifetimes at the time t. Now if someone wants to know [X|X ∈ A] ≤st

[Y |Y ∈ A] for all possible events A then this leads to the introduction of likelihood ratio

order. Ross [117] introduced this useful stochastic order . This order is basically used as a

sufficient condition for the above mentioned orders to hold.

Definition 1.2.7. Let X and Y be two absolutely continuous rvs with respective supports

(lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may be

negative infinity. Then X is said to be smaller than Y in likelihood ratio (lr) order, denoted

as X ≤lr Y , if

fY (t)

fX(t)
is increasing in t ∈ (lX , uX) ∪ (lY , uY ). (1.2.7)

This is equivalent to the fact that

P (X ∈ B)P (Y ∈ A) ≤ P (X ∈ A)P (Y ∈ B)

for all measurable sets A and B such that A ≤ B, where A ≤ B means that for all x ∈ A

and y ∈ B, we have x ≤ y (cf. Müller [102]). Further, we have that X ≤hr Y if, and only

if the P-P plot is convex i.e.

FY (F
−1
X (u)) is convex in u. (1.2.8)

Stochastic orders define till now compares size of the corresponding rvs. In many situation

variability of the rv is of important. Suppose two rvs X and Y with same mean describes

the return of two risky investments. Then to avoid risk any decision maker will choose the

the one having less variability.

Also variability orders are useful for detecting the heterogeneity of a random sample with

limited information. Suppose from the observe lifetimes of a “black box” parallel system

someone want to determine whether the types of composing components are the same

based on the available data (Kochar and Xu [77]). Variability ordering of heterogeneous

and homogeneous systems will lead to the answer of this questions. Thus the variability

ordering are of interest in the field of reliability and risk.
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The two useful variability orders, namely, dispersive order and star order are discussed

below.

Definition 1.2.8. A rv X is said to be smaller than another rv Y in

(a) dispersive order, denoted as X ≤disp Y , if

F−1
X (b)− F−1

X (a) ≤ F−1
Y (b)− F−1

Y (a) for all 0 < a ≤ b < 1.

(b) star order (denoted by X ≤⋆ Y ) if F−1
Y (FX(x))/x is increasing in x ∈ R+.

The dispersive order is used to compare spread among the probability distributions.

This order is sometimes called tail order (Jeon et al. [67], Kochar [75], Shaked and Shan-

thikumar [122]). Star order have been introduced in the literature to compare the skewness

of probability distributions. The star order is also called more IFRA (increasing failure rate

in average) order. If one rv is smaller than another in terms of star order, then this can be

interpreted as the former rv ages faster than the later in the sense of the star ordering. For

more discussion and applications see Barlow and Proschan [12] and Kochar [75].

Many applications of convolution operation are found in different areas of mathematics and

engineering. It is of interest to know whether different stochastic orders are preserved under

convolution. It is well known that the lr order is closed under convolution of independent

rvs if the rvs under consideration have log-concave density functions. Shanthikumar and

Yao [123] have introduced shifted lr order which is preserved under convolution without

log-concavity condition. Later, Lillo et al. [90], and Di and Longobardi [39] have defined

some other shifted stochastic orders. These orders are frequently used to study different

stochastic inequalities. Many properties of these orders are studied by different authors,

viz. Nakai [104], Belzunce et al. [16], Lillo et al. [90], Hu and Zhu [66] and the references

there in. Below we give the formal definitions of shifted stochastic orders (Lillo et al. [90],

Di and Longobardi [39], and Shanthikumar and Yao [123]).

Definition 1.2.9. Let X and Y be two rvs with respective supports (lX , uX) and (lY , uY ),

where uX and uY may be positive infinity, and lX and lY may be negative infinity. Then X

is said to be smaller than Y in

1. up shifted likelihood ratio (lr ↑) order, denoted as X ≤lr↑ Y , if X − x ≤lr Y, for all

x ≥ 0. This can equivalently be written as

fY (t)

fX(t+ x)
is increasing in t ∈ (lX − x, uX − x) ∪ (lY , uY ),
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for all x ≥ 0;([90, 122]).

2. down shifted likelihood ratio (lr ↓) order, denoted as X ≤lr↓ Y , if X ≤lr [Y −x|Y > x],

for all x ≥ 0, or equivalently, if

fY (t+ x)

fX(t)
is increasing in t ≥ 0,

for all x ≥ 0;([90, 122]).

3. up shifted hazard rate (hr ↑) order, denoted as X ≤hr↑ Y , if X − x ≤hr Y, for all

x ≥ 0, which can equivalently be written as

F̄Y (t)

F̄X(t+ x)
is increasing in t ∈ (−∞, uY ),

for all x ≥ 0 ([90]).

4. down shifted hazard rate (hr ↓) order, denoted as X ≤hr↓ Y , if X ≤hr [Y − x|Y > x],

for all x ≥ 0, or equivalently, if

F̄Y (t+ x)

F̄X(t)
is increasing in t ≥ 0,

for all x ≥ 0 ([90]).

5. up shifted rhr (rhr ↑) order, denoted as X ≤rhr↑ Y , if X − x ≤rhr Y, for all x ≥ 0, or

equivalently, if
FY (t)

FX(t+ x)
is increasing in t ∈ (lX ,∞),

for all x ≥ 0 ( [39]).

6. down shifted rhr (rhr ↓) order, denoted as X ≤rhr↑ Y , if X ≤rhr [Y − x|Y > x], for

all x ≥ 0, or equivalently, if

FY (t+ x)

FX(t)
is increasing in t ∈ (lX ,∞),

for all x ≥ 0 ( [39]).

7. up shifted mean residual life (mrl ↑) order, denoted as X ≤mrl↑ Y , if X − x ≤mrl Y,

for all x ≥ 0, or equivalently, if∫∞
t+x F̄Y (u)du∫∞
t F̄X(u)du

is increasing in t ∈ (lX ,∞),
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for all x ≥ 0 (Nanda et al. [106]).

8. down shifted mean residual life (mrl ↓) order, denoted as X ≤mrl↓ Y , if X ≤mrl Y −x,

for all x ≥ 0, or equivalently, if∫∞
t F̄Y (u)du∫∞
t+x F̄X(u)du

is increasing in t ∈ (lX ,∞),

for all x ≥ 0 (Nanda et al. [106]).

9. up shifted mean inactivity time (mit ↑) order, denoted as X ≤mit↑ Y , if X−x ≤mit Y,

for all x ≥ 0, or equivalently, if∫ t+x
0 FY (u)du∫ t
0 FX(u)du

is decreasing in t ∈ (lX ,∞),

for all x ≥ 0 (Nanda et al. [105], Kayid et al. [69]).

10. down shifted mean inactivity time (mit ↓) order, denoted as X ≤mit↓ Y , if X ≤mit

Y − x, for all x ≥ 0, or equivalently, if∫ x
0 FY (u)du∫ t+x

0 FX(u)du
is decreasing in t ∈ (lX ,∞),

for all x ≥ 0 (Nanda et al. [105], Kayid et al. [69]). 2

The following diagram depicts relationship among the stochastic orders (cf. Shaked and

Shanthikumar [122] and Lillo et al. [90]).

X ≤hr↑ Y → X ≤hr Y X ≤icx Y

↑ ↑ ↘ ↗
X ≤lr↑ Y → X ≤lr Y X ≤st Y

↓ ↓ ↗ ↘
X ≤rhr↑ Y → X ≤rhr Y X ≤icv Y

X ≤hr↓ Y → X ≤hr Y X ≤icx Y

↑ ↑ ↘ ↗
X ≤lr↓ Y → X ≤lr Y X ≤st Y

↓ ↗ ↘
X ≤rhr Y X ≤icv Y

The diagram shows that the up (resp. down) shifted likelihood ratio order is the most

strongest order whereas the increasing convex order and the increasing concave order are
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the weakest ones, and other orders lie between these orders. It is to be mentioned here that,

in general, there is no relation between up and down shifted orders.

Clearly shifted stochastic orders are stronger than their respective usual versions of

stochastic orders. Also, these shifted orders can be considered as generalization of their

usual counterparts in some aspects. For instance, unlike lr ordering, shifted lr ordering

preserves the order under convolution (Lillo et al. [90]). If X ≤lr↑ Y , then κX(t1) ≤ κY (t2)

for t1 ≥ t2 ≥ 0, where κX ≡ f/f and κY ≡ g/g (Lillo et al. [90]). Note that if X ≤lr Y , then

κX(t) ≤ κY (t) for all t ≥ 0. It is shown in Di and Longobardi [39] and Lillo et al. [90] that

X ≤hr↑ Y ⇐⇒ rX(t1) ≥ rY (t2) for t1 ≥ t2 ≥ 0. Note that X ≤hr Y implies rX(t) ≥ rY (t)

for all t ≥ 0. Similarly, X ≤rh↑ Y ⇐⇒ r̃X(t1) ≤ r̃Y (t2) for t1 ≥ t2 ≥ 0 (Di and Longobardi

[39]). Note that X ≤rh Y implies r̃X(t) ≤ r̃Y (t) for all t ≥ 0. Also if X ≤rh↑ Y , then

F̄ (t1) ≤ Ḡ(t2) for t1 ≥ t2 ≥ 0. If X ≤mrl↑ Y , then mX(t1) ≤ mY (t2) for t1 ≥ t2 ≥ 0,

where mX(t) =
∫∞
t F̄ (u)du

/
F̄ (t) is the mean residual life (mrl) of X (Nanda et al. [106]).

If X ≤mit↑ Y , mitX(t1) ≥ mitY (t2) for t1 ≥ t2 ≥ 0, where mitX(t) =
∫ t
0 F (u)du

/
F (t) is

known as mit (or reversed mean residual life) of X. Similar results are also shown for down

shifted orders, e.g., if X ≤hr↓ Y , then rX(t1) ≥ rY (t2) for t2 ≥ t1 ≥ 0 (Lillo et al. [90]).

Thus these shifted stochastic orders give us the flexibility that even at different points of

time for the two variables, we can compare their hr, rhr, sf, mrl etc. One such specific

instance is that we can compare the reliability of an used device and a new device using

the shifted stochastic orders. For more discussion on those shifted orders including their

applications and preservation properties, we refer to Aboukalam and Kayid [1], Naqvi et al.

[108], Kayid et al. [69] and references therein.

1.2.5 Stochastic Ageings

Ageing describes how a unit ages with time. There are three types of ageing notions,

namely, no ageing, positive ageing and negative ageing. By no ageing we mean that the age

of a device has no effect on the distribution of the residual lifetime of the component. A

component whose lifetime follows exponential distribution, has no ageing property. Positive

ageing occurs when residual lifetime tends to decrease, in some probabilistic sense, with

increasing age of a unit. Many different kinds of positive ageing classes viz. ILR, IFR,

IFRA, DMRL etc. have been defined and discussed in Bryson and Siddiqui [27], Barlow

and Proschan [12], Launer [84],Deshpande et al. [38],Loh [91], Klefsjö [74] and others. On

the other hand, by negative ageing we mean that the residual lifetime of a component tends

to increase, in some probabilistic sense, with increasing age of a component. The negative

ageing is sometimes called anti-ageing or beneficial ageing. Besides the positive ageing

classes, different negative ageing classes, namely, DLR, DFR, DFRA,IMRL etc. are also

found in the literature. A more extensive discussion on this topic could be found in Lai and
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Xie [83]. The following well known definitions of ageing classes may be obtained in Barlow

and Proschan [12], Franco et al. [47], and Lai and Xie [83].

Definition 1.2.10. Let X be an absolutely continuous rv. Then X is said to have

1. increasing likelihood ratio (ILR) (resp. decreasing likelihood ratio (DLR)) if

fX(t+ x)/fX(t) is decreasing (resp. increasing) in t, for all x ≥ 0.

2. increasing failure rate (IFR) (resp. decreasing failure rate (DFR)) if

rX(t) is increasing (resp. decreasing) in t ≥ 0.

3. increasing failure rate in average (IFRA) (resp. decreasing failure rate in average

(DFRA)) if

1

t

t∫
0

rX(u)du is increasing (resp. decreasing) in t > 0.

The interrelations among different ageing classes of a nonnegative rv, are given in the

following flowcharts (Franco et al. [47], and Lai and Xie [83]).

ILR → IFR → IFRA

↓
DMRL

DLR → DFR → DFRA

↓
IMRL

1.2.6 Copula

Let X = (X1, X2, . . . , Xn) have joint cdf F and joint sf F̄ . The marginal cdf and sf of Xi

are Fi and F̄i, respectively, i = 1, 2, . . . , n. If there exist C, C̄ : [0, 1]n 7→ [0, 1] such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) and F̄ (x1, . . . , xn) = C̄(F̄1(x1), . . . , F̄n(xn)) for all

xi, i ∈ In, then C and C̄ are called the copula and survival copula respectively.

If φ : [0,+∞) 7→ [0, 1] with φ(0) = 1 and limt→+∞ φ(t) = 0, then C(u1, . . . , un) =

φ(φ−1(u1) + . . . + φ−1(un)) = φ(
∑n

i=1 ϕ(ui)) for all ui ∈ (0, 1], i ∈ In is called an
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Archimedean copula with generator φ provided (−1)kφ(k)(t) ≥ 0, k = 0, 1, . . . , n − 2 and

(−1)n−2φ(n−2)(t) is decreasing and convex for all t ≥ 0. Here ϕ = φ−1 is the right contin-

uous inverse of φ so that ϕ(u) = φ−1(u) = sup{t ∈ R : φ(t) > u}. Archimedean copulas is

a very important and widely used class of copulas, mainly because they are relatively easy

to construct and study (we need only to find and study the generators) and a great variety

of important families of copulas belong to this class (Nelsen [112]). For instance, Clayton

family, Gumbel family, Frank family, Ali-Mikhail-Haq family, Gumbel-Hougaard family and

Gumbel-Barnett family are in the families of Archimedean copulas (Nelsen [112]).

Lemma 1.2.10 (Navarro et al. [110]). Let T = ϕ(X1, .., Xn) be the lifetime of a coherent

system based on possibly dependent components with lifetimes X1, .., Xn, having a common

reliability function F̄ (t) = Pr(Xi > t). Then, the system sf can be written as

F̄T (t) = h(F̄ (t)), (1.2.9)

where h only depends on ϕ and on the survival copula of X1, .., Xn.

Example 1.2.1. Consider a system consisting of 3 components such that the system func-

tion if component 1 function and at least one of the components 2 and 3 function. Let X1, X2

and X3 be the lifetimes of the components.The system lifetime is T = min(X1,max(X2, X3)).

Hence the minimal path sets are {1, 2} , {1, 3} The sf of T can be written as

F̄T (t) = Pr
({
X{1,2} > t

}
∪
{
X{1,3} > t

})
= Pr

(
X{1,2} > t

)
+ Pr

(
X{1,3} > t

)
− Pr

(
X{1,2,3} > t

)
= F̄ (t, t, 0) + F̄ (t, 0, t)− F̄ (t, t, t)

= K(F̄ (t), F̄ (t), 1) +K(F̄ (t), 1, F̄ (t))−K(F̄ (t), F̄ (t), F̄ (t))

= h(F̄ (t)),

where

h(u) = K(u, u, 1) +K(u, 1, u)−K(u, u, u),

If K is exchangeable, K(u, u, 1) = K(u, 1, u) and then h(u) = 2K(u, u, 1)−K(u, u, u).

1.2.7 Coherent System

We frequently use the term system, although we do not briefly mention − what a system

is. A system could be a mechanical system or it could be a living organism, for example,
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Radio, Car, TV, Airplane, etc. Roughly, we could think of a system that is formed by

a collection of components, and they are connected in some fashion to create the whole.

The basic principle of a system is that the failure or the survival of a system completely

depends on the failure or the survival of its components. The functioning state of a system

can be characterized in two ways − whether it is fully functioning or partially functioning.

However, we consider only those systems which are either fully functioning or completely

failed at any given point in time. This notion of two-state system was originally proposed

and studied by Birnbaum et al. [18]. To identify the two states of a system, we assign a

binary variable which takes value unity if the system is functioning, and zero if the system

has failed.

Suppose T (X) denote the lifetime of a system X = (X1, X2, . . . , Xn). Further, let

x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ {0, 1}n be the state vector of X, where xi(t) = 1 if the ith

component is working at time t, and xi(t) = 0 if it is not working at time t. Without any

loss of generality, we write x in place of x(t), for mathematical simplicity, when there is no

ambiguity. Suppose that the components are in some specific states. Then the question is −
how to determine the state of the system? The mapping called structure function, denoted

by ξT (x), is the inter-link between the states of the components and that of the system, and

is defined as

ξT (x) =

{
1, if the system is functioning at time t

0, if the system has failed at time t.

The reliability function of T (X), denoted by hT (·), is defined as the probability that it is

working at time t. Thus,

hT (t) = P (T (X) > t) = P (ξT (x) = 1).

If the components are independent then the system reliability can be written as a function

of component reliabilities, and hence

P (T (X) > t) = hT
(
F̄X1(t), F̄X2(t), . . . , F̄Xn(t)

)
.

Design engineers always like to design those type of systems which satisfy two basic require-

ments. Firstly, each of its components should have some importance to run the system.

Secondly, if we replace a failed component by good one, then the system life must increase.

On the basis of these two fundamental considerations, design engineers defined a system,

called coherent system. Before discussing coherent system we give some basic definitions.
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Definition 1.2.11. The ith component of a system having structure function ξ(·) is said

to be irrelevant if ξ(·) is constant in xi, i.e., ξ(1i,x) = ξ(0i,x) for all (·i,x), where (·i,x) =

(x1, x2, . . . , xi−1, ·, xi+1, . . . , xn).

Definition 1.2.12. The ith component of a system having structure function ξ(·) is said

to be relevant if it is not irrelevant.

Definition 1.2.13. A structure function ξ(·) is said to be monotonically increasing if

ξ(x) ≤ ξ(y) whenever x ≤ y, where the latter vector inequality is understood to be ap-

plied component-wise.

Now we are in a position to define a coherent system.

Definition 1.2.14. ([12]) A system is said to be coherent if each of its components is

relevant and its structure function is monotonically increasing.

Let τ[n](X) be the lifetime of a coherent system formed by n independent components

having lifetimes X = (X1, X2, . . . , Xn). Then its structure function ξτ[n](x) is defined as

ξτ[n](x) =

{
1, if the coherent system having lifetime τ[n](X) is functioning

0, if the coherent system having lifetime τ[n](X) has failed,

and its reliability function is given by

P (τ[n](X) > t) = h[n](F̄X1(t), F̄X2(t), . . . , F̄Xn(t))

= h[n](p1, p2, . . . , pn)

= h[n](p),

where pi = F̄Xi(t), i = 1, 2, . . . , n. This h[n](p) is sometimes called distorted function

(Navarro and Spizzichino [111]),Navarro [109]); the corresponding distribution may be called

distorted distribution. We write h[n](p) in place of h[n](p) whenever components are identi-

cally distributed.

Another well known system is k-out-of-n system which is a special type of coherent

system. Many examples of k-out-of-n system are found in reality. An airplane which is

capable of functioning if, and only if, at least two of its three engines function is an example

of a 2-out-of-3 system.

Definition 1.2.15. A system of n components is said to be a k-out-of-n system if and only

if k of the n components function.



1.2. REVIEW OF LITERATURE 23

Let τk:n(X) be the lifetime of a k-out-of-n system formed by n independent components

X = (X1, X2, . . . , Xn). Then its structure function is given by

ξτk:n(x) =


1, if

n∑
i=1

xi ≥ k

0, if
n∑

i=1
xi < k,

and its reliability function is given by

P (τk:n(X) > t) = hk:n(F̄X1(t), F̄X2(t), . . . , F̄Xn(t))

=

n−k∑
j=0

∑
{J :|J |=j}

(∏
i∈J

(1− F̄Xi(t))

)(∏
i/∈J

F̄Xi(t)

)
,

where J is any subset of {1, 2, .., n} with at least k elements. |J | is the cardinality of the

set J . If X1, X2, . . . , Xn are iid rvs then hk:n(·) can be written as

hk:n(p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i

=
n!

(n− k)!(k − 1)!

p∫
0

uk−1(1− u)n−kdu, for p ∈ (0, 1).

The special cases of a k-out-of-n system are n-out-of-n system, known as series system and

1-out-of-n system, called parallel system. These systems are well studied in the literature

by different researchers (cf. Barlow and Proschan [12], and Samaniego [118]).

Let τn:n(X) be the lifetime of a series system formed by n independent components

X = (X1, X2, . . . , Xn). Then its structure function is given by

ξτn:n(x) = min{x1, x2, . . . , xn} =
n∏

i=1

xi,

and its reliability function is given by

P (τn:n(X) > t) = hn:n(F̄X1(t), F̄X2(t), . . . , F̄Xn(t))

=

n∏
i=1

F̄Xi(t).

Let τ1:n(X) be the lifetime of a parallel (1-out-of-n) system formed by n independent com-
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ponents X = (X1, X2, . . . , Xn). Then its structure function is given by

ξτ1:n(x) = max{x1, x2, . . . , xn}

= 1−
n∏

i=1

(1− xi),

and its reliability function is given by

P (τ1:n(X) > t) = h1:n(F̄X1(t), F̄X2(t), . . . , F̄Xn(t))

= 1−
n∏

i=1

(1− F̄Xi(t)).

Definition 1.2.16. ([76],[9]) A multiple-outlier model is a set of independent rvs X1, ..

Xn of which Xi
st
= X, i = 1, ..., n1 and Xi

st
= Y, i = n1 + 1, ..., n where 1 ≤ n1 < n

andXi
st
= X means that cdf of Xi is same as that of X. In other words, the set of inde-

pendent rvs X1, .., Xn is said to constitute a multiple-outlier model if two sets of random

variables (X1, .., Xn1) and (Xn1+1, .., Xn1+n2) (where n1+n2 = n), are homogeneous among

themselves and heterogeneous between themselves.

1.2.8 Order Statistics

Let {X1, X2, . . . , Xn} be a collection of rvs. If we arrange these rvs in an increasing order of

magnitude, then there exists a unique order arrangement within X1, X2, . . . , Xn. Suppose

that X1:n denotes the smallest of X1, X2, . . . , Xn; X2:n denotes the second smallest;. . . and

Xn:n denotes the largest. Then X1:n ≤ X2:n ≤ · · · ≤ Xn:n, and these are collectively called

the order statistics corresponding to the rvs X1, X2, . . . , Xn. The kth smallest, 1 ≤ k ≤ n,

Xk:n is called the kth order statistic. If Xi, i = 1, 2, . . . , n represents the lifetime of the ith

component, then the reliability function of a k-out-of-n system formed by the components

having lifetimes X1, X2, . . . , Xn is the same as that of the (n − k + 1)th order statistic

Xn−k+1:n. Thus, to study a k-out-of-n system it is enough to study Xn−k+1:n, and vice

versa. Different order statistics have different applications, for example, Xn:n is of interest

to study of floods and other extreme meteorological phenomena; X1:n is used in the survival

analysis to measure the minimal survival time of a system; Xn:n − X1:n is a measure of

dispersion, etc. In the literature, order statistics have been extensively studied in the case

when the observations are independent and identically distributed. Due to the complicated

expressions of the distributions in the non-identical case, only limited results are found

in the literature. One may refer to David and Nagaraja [37],Balakrishnan and Rao [7],
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Balakrishnan and Rao [8] for results on the independent and non-identically distributed

rvs. To know more on this topic, one may refer to Arnold et al. [4].

Let X1, X2, . . . , Xn be n independent rvs. Then the cumulative cdf of the kth order

statistic is given by

FXk:n
(t) = 1−

k−1∑
j=0

∑
{J :|J |=j}

(∏
i∈J

FXi(t)

)(∏
i/∈J

F̄Xi(t)

)
.

If X1, X2, . . . , Xn are iid, then the above becomes

FXk:n
(t) =

n∑
i=k

(
n

k

)
F k
X1

(t)F̄n−k
X1

(t)

=
n!

(n− k)!(k − 1)!

FX1
(t)∫

0

uk−1(1− u)n−kdu,

and the corresponding pdf is given by

fXk:n
(t) =

n!

(n− k)!(k − 1)!
F k−1
X1

(t)F̄n−k
X1

(t)fX1(t).

1.2.9 Standby Component

It is an eternal truth that every system must collapse after certain time. For this reason,

reliability engineers show their keen interest to find out different ways by which reliability

of a system could be increased. Allocation of standby (also known as redundant or spare)

component(s) into the system is an effective way to enhance the lifetime of a system. We

may like to provide for each vital component of the system as many standby components

as possible. Standby components are mostly of three types − hot (or active) standby, cold

standby and warm standby. In hot standby, the original component and the redundant

component work together under the same operational environment. In cold standby, the

redundant component has zero hr when it is in inactive state. It starts to function under the

usual environment (in which the system is running) only when the original component fails.

On the other hand, warm standby describes an intermediate scenario. In warm standby,

the redundant component undergoes two operational environments. Initially, it functions

in a milder environment (in which a redundant component has non-zero failure rate which

is less than its actual failure rate), thereafter it switches over to the usual environment after

the original component fails. It might happen that the redundant component fails before

switching over to the usual environment. Warm standby is sometimes called general standby
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because it contains both the hot standby and the cold standby as extreme cases. All the

three types of redundancies are well studied in the literature cf. Barlow and Proschan [12],

Brito et al. [26], Boland et al. [22], Boland et al. [23], Boland and El-Neweihi [21], She and

Pecht [124], Sinha and Misra [125],Misra et al. [99], Misra et al. [100], Misra et al. [101]),

Misra and Misra [98], Li and Hu [88], Valdés and Zequeira [128]) and the references there

in.

Airplane engine is one of the examples of hot standby. Most of the small airplanes have

three engines, and the airplane functions if at least two engines function. Here the third

engine may be considered as the active redundancy of the airplane. Many examples of the

cold standby are found in reality, for example, mobile batteries. Most of the mobiles (which

are made in China) have two batteries − one battery is kept aside with the understanding

that it will be used when the original battery stops to function. Here the battery kept

aside is a cold standby of the system. As an application of warm standby, one may think

of a situation where no non-zero lead time (the time between failure of a component and

reinstate of a standby into the system) is allowed. To be specific, in an operation table

if there is a power failure, non-zero lead time to get the lamp back to work cannot be

allowed. For this, a switching and censoring device is used so that the shadowless lamp on

the table does not get interrupted during operation in progress. As an another example,

one may think of the players who are waiting outside the field while play is going on, with

the understanding that if there is a need, a player from the pool may have to start playing.

In this case the players in the pool cannot sit idle, rather they will keep on warming them

up to get themselves activated as and when necessary.

1.2.10 Claim amounts

An insurance premium is the amount of money an individual or business pays for an insur-

ance policy. Insurance premiums are paid for policies that cover healthcare, auto, home,

and life insurance. Once earned, the premium is income for the insurance company. It also

represents a liability, as the insurer must provide coverage for claims being made against

the policy. Failure to pay the premium on the individual or the business may result in the

cancellation of the policy. In this regard, the smallest and largest claim amounts can have an

important role in insurance analysis since they provide useful information for determining

suitable annual premium. Assume that Ip1 , . . . , Ipn are independent Bernoulli rvs, indepen-

dent of rvs Xis, with E(Ipi) = pi, i = 1, . . . , n. where Xi represent total random claim

that can be made during insurance policy. Associated with each Xi there is a Bernoulli rv

Ipi define as follows: Ipi = 1 if i-th policy holder make claim and Ipi = 0 if claim do not

made by the policy holder. Then XiIpi represent the claim amount of a portfolio of risk. In

actuarial science the vector (X1Ip1 , X2Ip2 , . . . , XnIpn) is called portfolio of risk. Now define
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X∗
n:n = max(X∗

1 , . . . , X
∗
n). In actuarial science, it represents the largest claim amount in a

portfolio of risks (Barmalzan et al. [15], Balakrishnan et al. [10], Zhang et al. [136]). Again∑n
i=1XiIpi represents the aggregate claim amount for this portfolio of risks.

1.2.11 Different semi-parametric models

The Coxs PHR model is a popular and widely used semi-parametric model (Finkelstein

[46]). A rv X is said to follow the PHR model, written as X ∼ PHR(F̄ , λ), if its sf can be

expressed as

F̄X(t) = F̄ λ(t), (1.2.10)

where λ(> 0) is a constant and F̄ (·) is the baseline sf. From (1.2.10) it follows that rX(t) =

λr(t), where r(·) denotes the corresponding baseline hr function. Then the sf of X can be

written as

F̄X(t) = e−λR(t); (1.2.11)

where R(t) =
∫ t
0 r(u)du is the baseline cumulative hazard rate.

A rv X is said to follow the PRH model Gupta and Gupta [54], written as X ∼
PRH(F̄ , λ), if its cdf can be expressed as

FX(t) = F λ(t), (1.2.12)

where λ(> 0) is a constant and F (·) is the baseline cdf. From (1.2.12) it follows that the

rhr function of X is given by r̃X(t) = λr̃(t), where r̃(·) denotes the corresponding baseline

rhr function.

A r.v. X is said to follow the accelerated life (AL) model (also known as the scale

model), if its cdf can be expressed as

FX(t) = F (at), (1.2.13)

where a(> 0) is a scale parameter and F is baseline distribution function. It is an well-known

semi-parametric model and widely used in various applications (Finkelstein [46], Hazra et al.

[61], Kochar and Torrado [79]).

Proportional odds (PO) model introduced by Bennett [17] is another very important

model in reliability theory and survival analysis. Let X be rv with cdf FX(·) and sf F̄X(·)
and hr function rX(·). The odds functions of X is defined by τX(t) = F̄X(t)/FX(t). If the

rv X represents lifetime of a component, then the odds function τX(t) represents the odds

of surviving beyond time t. The rv X is said to satisfy PO model if τX(t) = ατ(t) for all

admissible t, where τ is a baseline odds, i.e. odds function of the baseline variable, and α
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is a proportionality constant known as proportional odds ratio. Then the sfs of X can be

represented as

F̄X(t) =
αF̄ (t)

1− ᾱF̄ (t)
, (1.2.14)

where ᾱ = 1− α, and F̄ (·) is the corresponding baseline sf. That means X is following the

PO model with baseline sf F̄ (·) denoted as X ∼ PO(F̄ , α). For more interpretation and

applications of the of PO model we refer to Collett [34], Kirmani and Gupta [73], Kundu

et al. [81], Ross [117] and the references therein. Also, the model (1.2.14), with 0 < α <∞,

provides us a method of generating more flexible new family of distribution by introducing

the parameter α to an existing family of distributions (Marshall and Olkin [94]). The family

of distributions so obtained is known as Marshall-Olkin family of distributions (Cordeiro

et al. [35], Marshall and Olkin [94]).

Let X be a rv with cdf F and sf F̄ = 1− F , and Λ be a continuous rv with cdf H,pdf

h and hr function rF . A rv X∗ is said to follow multiplicative frailty model with baseline

distribution F and frailty rv Λ if its sf is given by

F̄ ∗(t) =

∫ ∞

0
F̄ λ(t)dH(λ.) (1.2.15)

Here the frailty rv Λ serves as an unobserved random factor that modifies multiplicatively

the underlying hr function rF of an individual such that the individual is supposed to

have hr rF ∗(t) at age t, so that given Λ = λ, the conditional hr function of X∗ will be

rF ∗(t|λ) = λ rF (t), t ≥ 0.

In analogy to the frailty model, to account for unobserved/unexplained heterogeneity

in the rhrs of the experimental units, the resilience model (reversed frailty models) is intro-

duced. A rv X∗ is said to follow resilience model with baseline cdf F and resilience rv Λ if

its cdf is given by

F ∗(t) =

∫ ∞

0
F λ(t)dH(λ). (1.2.16)

1.3 A Brief Discussion on the Main Results of the Thesis

From the discussion given in the previous section, we have seen that stochastic orders

and ageing properties have large applications in reliability theory, operations research, eco-

nomics, actuarial science, biological science, forensic science, queuing theory, inventory, and

related fields. In reliability theory, these are used to study different system reliabilities.

Keeping the importance in mind, the present thesis is devoted to study different stochastic

orderings and ageing properties, and their various applications in system reliability.

The thesis consists of seven chapters of which Chapter 1 is introductory. Here we discuss
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basic definitions, notations and a detailed survey of the literature related to the problems

which are considered in the thesis. A brief discussion on the main results considered in

Chapters 2-7 are presented below.

Chapter 2 : Stochastic comparisons of lifetimes of series and parallel systems

In this chapter, stochastic comparisons of series and parallel systems are discussed.

First, we consider two series systems consisting of heterogeneous and dependent components

with lifetimes following proportional odds models. Joint distribution of X1, X2, .., Xn is

modelled by Archimedean copula. Let X1, X2, .., Xn be the lifetimes of the components of a

series system. It is assumed that Xi ∼ PO(F̄ (x), αi), i = 1, ..., n. Then the sf of the lifetime

of the series system can be written as

F̄X1:n(x) = P (X1:n > x) = φ

(
n∑

i=1

ξ
(
F̄αi(x)

))
= S1(F̄ (x),α, φ) (say), (1.3.1)

where αi is the odds of survival of Xi and φ is the generator of the Archimedean copula

with ξ(u) = φ−1(u), u ∈ (0, 1].

We establish sufficient conditions for usual stochastic ordering for the lifetimes of two

heterogeneous and dependent series systems. With proper conditions on baseline rv and

generator of the Archimedean copula it is established that one system dominates the other

systems in the usual stochastic order under p-majorization of the odds vectors of the two

systems.

Next, we consider the hr ordering of the lifetimes of two series systems. The hr function

corresponding to system (1.3.1), can be written as

rX1:n(x) = r(x)
φ
(∑n

i=1 ϕ
(
F̄αi(x)

))
φ
(∑n

i=1 ϕ
(
F̄αi(x)

)) n∑
i=1

ϕ
(
F̄αi(x)

) F̄αi(x)

1− ᾱiF̄ (x)
. (1.3.2)

We established that with proper conditions on baseline rvs and the generator of Archimedean

copula, hr ordering of two series systems holds under weak super majorization of their cor-

responding odds vectors.

Similarly, in another section, we consider stochastic comparison of lifetimes of parallel

systems consisting of heterogeneous and dependent components with lifetimes following

proportional odds models. The cdf of the lifetime of an n component parallel system, where

the lifetime of ith component follows PO(F̄ (x), αi), i = 1, .., n, can be written as

FXn:n(x) = P (Xn:n ≤ x) = P (Xi < x, i ∈ In) = φ

(
n∑

i=1

ϕ (Fαi(x))

)
. (1.3.3)
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We establish the usual stochastic ordering for the lifetimes of two parallel systems with

heterogeneous and dependent components. With proper conditions on baseline rv and

generator of the Archimedean copula one parallel system dominates the other the other

system in usual stochastic order under weak super majorization of odds vectors of two

systems. Next we consider the rhr function corresponding to system (3.3.1), which can be

written as

r̃Xn:n(x) =
r̃(x)

F̄ (x)

φ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

n∑
i=1

φ (ξi)

φ (ξi)
(1− φ (ξi)) , (1.3.4)

where ξi = ϕ (Fαi(x)).

With proper conditions on baseline distribution and the generator of Archimedean cop-

ula, rhr ordering of two parallel systems holds under weak super majorization of their

corresponding odds vectors. Established results extend the results of Li and Li [86] from

PHR, PRH and AL models to PO model.

Finally, we proposed two potential areas where the established results will be useful,

one in comparing two series systems under random shock, and another in comparing the

two smallest claim amounts in a portfolio of risk.

Chapter 3 : Dispersive and star ordering of sample extremes

In this chapter, we compare the lifetimes of series and parallel systems using two well-

known variability orders, dispersive and star orderings. In many situations, it is important

to investigate whether there is a significant effect on system lifetime as the heterogeneity

among component lifetimes increases. We consider one coherent system with d.n.d. (depen-

dent and non-identically distributed) components and another coherent system with d.i.d

components. In both systems, component lifetimes follow PO models. The joint distribution

of the components lifetimes is modelled by the Archimedean copula.

First we compare the lifetimes of these two series systems in terms of dispersive order.

With proper conditions on generator of the Archimedean copula and odds vectors it is

established that lifetime of a heterogeneous series system is dominated by the lifetime of

a homogeneous series system in terms of dispersive order when the baseline distribution

is decreasing failure rate (DFR). We also established sufficient conditions for star ordering

of these two series systems by properly conditioning the generator of Archimedean copula

and odds vectors. It is observed that dispersive ordering holds for series systems if xr(x) is

decreasing, where r(x) is the hr function of baseline rv.

Similarly, we consider the comparison of parallel systems in terms of dispersive order.

Here also, we consider two parallel systems with dependent components, one heterogeneous

and another homogeneous. In both systems, component lifetimes follow PO models. Under

certain conditions on generator of Archimedean copula and odds vectors, it is established
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that lifetime of heterogeneous parallel systems is dominated by homogeneous parallel sys-

tems in terms of dispersive order. It is observed that dispersive ordering holds when the

baseline distribution has increasing rhr property. We also established sufficient conditions

for star ordering of these two parallel systems under certain conditions on the generator

of the Archimedean copula and odds vectors. It is observed that star ordering holds when

xr̃(x) is increasing, where r̃(x) is the rhr function of the baseline rv. It is worth to mention

that Fang et al. [43] established results for dispersive and star ordering of sample extremes

when baseline follows PHR or PRH models. Li et al. [85] establish same results for AL

random variables. Results in this chapter further extend these results from PHR, PRH and

AL models to PO model. Throughout this chapter we provide counterexamples to validate

the sufficient conditions. Finally some numerical examples are considered.

Chapter 4 : Stochastic comparisons of finite mixture models

In this chapter, we consider stochastic comparisons for finite mixture models. In many

areas of reliability theory, survival analysis, and risk theory, finite mixture models play a

significant role. Therefore, stochastic comparisons of finite mixture models pose significant

problems to address. There are few research works in this direction. Let X = (X1, . . . , Xn)

be a vector of n rvs, where Xi denoting the lifetime of an item in the ith subpopulation

with the cdf, sf and pdf as Fi(·), F̄i(·) and fi(·), respectively. Then the cdf, sf and pdf of

mixture of an item randomly drawn from these subpopulations are given by

Fp(t) =

n∑
i=1

piFi(t), F̄p(t) =

n∑
i=1

piF̄i(t) and fp(t) =

n∑
i=1

pifi(t), (1.3.5)

respectively, where pi (> 0) is the mixing proportion (weighting factor) with
∑n

i=1 pi = 1.

Recently, Hazra and Finkelstein [59] have derived some stochastic comparison results

for two finite mixtures where corresponding rvs follow PHR, PRH or accelerated lifetime

model, using the concept of multivariate chain majorization order.

We compare stochastically two finite mixture models where corresponding rv follow PO

model in terms of weak mejorization of odds ratio and mixing portion. Next we consider

multiple-outlier finite mixtures of n = n1+n2 components where n1 components are drawn

from a particular homogeneous subpopulations and rest n2 components are drawn from

another homogeneous subpopulation. We provide sufficient conditions on the odds ratio

vectors and the mixing proportion vectors under which the lifetime of two finite mixtures

models can be compared with respect to the star order.

Next we generalize some of the results of two-component mixture models in Hazra and

Finkelstein [59] to n(> 2) component mixture model in case of multiple-outlier model and

the results are obtained under weaker condition, namely row majorization order. When

component lifetimes X1, .., Xn follow the PHR model with Xi ∼ PHR(F̄ , λi), i = 1, .., n,
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we established sufficient conditions on the hazard ratio vectors of the components and the

mixing proportion vectors under which the lifetimes of two finite mixture models can be

compared with respect to the hr order. Next we provide sufficient conditions on the base-

line distribution, hazard ratio vectors and the mixing proportion vectors under which the

lifetimes of two finite mixture models can be compared with respect to the star order. Sim-

ilarly when components lifetimes X1, .., Xn follow the PRH model with Xi ∼ PRH(F, λi),

we established sufficient conditions for rhr order and star order. Finally, the results are

illustrated with numerical examples.

Chapter 5 : Some stochastic comparisons results on continuous mixture model

This chapter considered various shifted stochastic orderings of finite mixture models.

Suppose {Fα} be a set of probability distributions, where the index α is governed by the

distribution G. Then cdf F of continuous mixture of Fα is given by [12]

F (x) =

∫ ∞

−∞
Fα(x)dG(α) (1.3.6)

Two important continuous mixture model, frailty and resilience model are considered

in this chapter. It may be noted that component may be subject to different levels of

operating environments (e.g. voltage, stress, temperature) which is not fixed but changes

over time. Component lifetimes and reliability depend on these random environmental

variations. These environmental factors are unobservable and at the same time they are

not ignorable either. In such cases a natural question arises whether the effect of these

unobserved factors throughout lifetime will be dominating or not.

We study the effect of unobserved/unexplained heterogeneity in the hrs of the exper-

imental units through frailty model. Similarly we consider the effect of unobserved or

unexplained heterogeneity in the rhrs of the experimental units through resilience model.

We established sufficient conditions for both up and down shifted likelihood ratio orders of

frailty rv with its baseline rvs based on the condition that the baseline is ILR or DLR. Next

we established up and down hr orders are established when baseline distribution belongs

to IFR or DFR ageing classes. Up and down shifted mean residual life orders are also

established when baseline distribution belongs to IMRL or DMRL ageing classes.

Similarly, we established sufficient conditions for both up and down shifted likelihood

ratio orders of the resilience rv with its baseline rv. These orders are obtained when the

baseline rv belongs to either ILR or DLR ageing class. Next we established up and down

hazard rate orders when the baseline belongs to IRFR or DRFR ageing classes. It is also

established up and down shifted mean inactivity time order when baseline belongs to IMIT

ageing classes. Nanda and Das [107] established various shifted ordering for Marshall-Olkin

extended distribution. In this chapter further investigation of various shifted ordering from



1.3. A BRIEF DISCUSSION ON THE MAIN RESULTS OF THE THESIS 33

Marshall-Olkin extended distribution to frailty and resilience models have done.

Finally, two real data sets are analyzed for illustration purpose. One data set consists

of Survival times in leukaemia (Hand et al. [58]) where the survival times of 43 patients

suffering from chronic granulocytic leukaemia measured in days from the time of diagnosis.

Another data set consists of the fatigue-life failures of ball-bearings (Hand et al. [58]).

Chapter 6 : Stochastic comparisons of coherent systems with active redundancy

This chapter considers various stochastic orderings for coherent systems under active

redundancy allocation. Let X = {X1, . . . , Xn} be a set of rvs denoting the lifetimes of

the original components of a coherent system with common cdf F0. The sf of the coherent

system with dependent and identically distributed (d.i.d) components can be written as

F̄X(t) = h(F̄0(t)), where h is the domination or distorted function. Suppose that for each

of the n original components, m redundant components with lifetimes Y1, . . . , Ym having

the cdfs F1, . . . , Fm, respectively, are allocated in parallel.

Kelkinnama [71] considered that the lifetime distributions of the original and redundant

components follow the PRH or PRH model. In this chapter, we provide sufficient conditions

to optimal selection of redundant components in a coherent system of dependent and identi-

cally distributed components in the sense of some stochastic orders based on the underlying

distribution of the components lifetime. We considered that both original and redundant

component lifetimes follow two important semi-parametric models, namely accelerated-life

and proportional-odds models.

Let Sc denote the lifetime of this coherent system with active redundancy at the com-

ponent level. The sf of Sc can be written as

F̄Sc(t) = hθ

(
1−

m∏
i=0

(1− F̄i(t))

)
. (1.3.7)

where θi is the parameter associated with the dependency structure (copula).

Suppose Sc and S
∗
c are the lifetimes of two coherent systems with active redundancy at

component levels. We establish sufficient conditions under which the lifetime of Sc and S∗
c

can be compared in terms of usual stochastic, hr and rhr orders.

Next we compare the lifetimes of coherent systems with redundancy at the system level.

Let S0 be the lifetime of a coherent system consisting of d.i.d components, each having a

common sf F̄0. Then the sf of S0 is represented by

F̄S0(t) = hθ0(F0(t))

where θ0 is the parameter associated with dependency structure (copula). Let Si be the

lifetime of ith redundant system consisting of d.i.d components, each having a common sf
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F̄i, i− 1, 2..,m. The sf of Si is represented by

F̄Si(t) = hθi(Fi(t)), i = 1, 2, ..,m.

θi is the parameter associated with the dependency structure (copula). Active redundancy

at the system level is allocated by connecting these m redundant systems in parallel with

the original system S0. Then the sf of this system with lifetime, say Ss can be written as

F̄Ss(t) = 1−
m∏
i=0

(1− h(F̄i(t))). (1.3.8)

Let Ss and S∗
s be the lifetimes of two such coherent system with active redundancy

at system levels. Sufficient conditions are established for comparing the lifetime of Sc and

S∗
c under usual stochastic, hr and rhr order. Finally, we consider a real-world data set to

illustrate the results Hand et al. [58]. The data set consists of the tensile strengths (in kg)

of some cables, where each cable is composed of 12 wires.

Chapter 7 : Ordering properties of largest and aggregate claim amounts

In this chapter, we studied different types of stochastic ordering for the largest and

aggregate claim amounts. The problem of comparison of number of claims and aggregate

claim amounts with respect to some well-known stochastic orders are of interest from both

theoretical and practical view points.

Let X1, X2, .., Xn be the random claim amounts that can be made by a policy in an

insurance period. Consider Ip1 , . . . , Ipn are independent Bernoulli rvs representing the oc-

currence of these claims with E(Ipi) = pi, i = 1, . . . , n, where Ipi = 1 if the i-th policyholder

makes the random claim Xi and Ipi = 0 if the policyholder does not make a claim. Then

X∗
n:n = max(X1Ip1 , . . . , XnIpn), represents the largest claim amount in a portfolio. It is

assumed that odds function of each Xi is proportional to that of a baseline rv with pro-

portionality constant (odds ratio) αi > 0, that is Xi ∼ PO(F̄ , αi), i = 1, . . . , n, where F̄

denotes the sf of the baseline rv.

We establish usual stochastic order for largest claim amount of two sets of portfolios.

Usual stochastic ordering holds under the the weak super majorization of odds of claim

vector α = (α1, .., αn) when both the portfolios are having common occurrence probability

vector p = (p1, .., pn). Similarly we establish stochastic ordering under the weak sub ma-

jorization of occurrence probability vector p = (p1, .., pn) when both the portfolio having

common odds of claim vector. It is also established that the usual stochastic ordering results

for the largest claim amount holds when the occurrence probabilities are dependent. Our

results further extend the results of Barmalzan and Najafabadi [14], Balakrishnan et al. [10]

to different choice of semi-parametric models (Ex. PO, PRH).
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Further we establish the rhr order of largest claim amounts for two sets of heterogeneous

portfolios, assuming that the odds ratios are the same but the probabilities of occurrence

of claims are different. We also considered stochastic comparisons on the largest claim

amounts in case of multiple-outlier claims model with respect to the star order.

Next we consider the aggregate claim amount represented by
∑n

i=1 IiXαi . We estab-

lished stochastic ordering of aggregate claim amount of two sets of portfolio under the

majorization of odds of claim vector α = (α1, .., αn) when both the portfolio of risks having

common occurrence probability vector. Established esults extend the results of Torrado

and Navarro [127], Zhang et al. [140, 136] Numerical examples are provided to illustrate the

results.

Chapter 8 : Future research directions

In this chapter, we discuss some possibilities of future research in the section Future

Research Direction followed by a list of relevant references.





Chapter 2

Stochastic comparisons of series &

parallel systems 1

2.1 Introduction

There have been a number of works on stochastic comparisons of system lifetimes where

component lifetimes follow different family of distributions (Khaledi and Kochar [72], Bar-

malzan et al. [15], Ding and Zhang [41], Fang et al. [43], Gupta et al. [53], Hazra et al.

[61], Li and Fang [87], Navarro and Spizzichino [111]). However, most of the works have

considered mutual independence among the concerned rvs. Recently, Fang et al. [43], Li

and Fang [87] and Li and Li [86] have considered stochastic comparison of system lifetimes

with dependent and heterogeneous component lifetimes following the proportional hazard

rate (PHR) model.

Navarro and Spizzichino [111] have derived usual stochastic ordering for lifetimes of

series and parallel systems having component lifetimes sharing a common copula, with the

idea of mean reliability function associated with the common copula. Li and Fang [87]

investigated stochastic order between two samples of dependent rvs following PHR model

and having Archimedean survival copula. Fang et al. [43] derived some stochastic ordering

results for minimum as well as for maximum of samples equipped with Archimedean survival

copulas and following PHR model and proportional reversed hazard rate (PRH) model,

respectively. Li and Li [86] investigated hr order on minimums of sample following PHR

model, and reversed hr order on maximums of sample following PRH model, where both

1One paper based on this chapter has appeared under:

1. Stochastic comparisons of lifetimes of series and parallel systems with dependent and heterogeneous
components. Operations Research Letters, 49(2), 176-183, 2021.

37
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the samples coupled with Archimedean survival copula.

However, there is no work on stochastic comparison of system lifetimes with dependent

and heterogeneous component lifetimes following PO model.

In this chapter, the stochastic comparisons of lifetimes of series and parallel systems

with dependent and heterogeneous components having lifetimes following the PO model.

The joint distribution of component lifetimes is modelled by Archemedian survival copula.

It is shown that the usual stochastic ordering and hr ordering hold for series systems under

certain conditions, whereas for parallel system stochastic ordering and reversed hr ordering

hold.

The organization of the chapter is as follows. In Section 2.2, we investigate stochastic

comparisons between series systems of dependent and heterogeneous components having

lifetimes following the PO model and dependency is modelled by Archimedean survival

copulas. Section 2.3 investigates the same in case of parallel systems. Section 2.4 presents

some potential applications of the proposed results.

2.2 Comparison of series systems

Here, the comparison of lifetimes of two series systems with heterogeneous and dependent

components is considered. It is assumed that the lifetime vectorX = (X1, X2, ..., Xn) is a set

of dependent random variables coupled with Archimedean survival copula with generator

φ and following the PO model with baseline sf F̄ , denoted as X ∼ PO(F̄ ,α, φ), where

α = (α1, α2, ..., αn) ∈ Rn
+ is the proportional odds ratio vector.

Lemma 2.2.1. For any x ∈ [0, 1], S1(x,α, φ) (1.3.1) is increasing in αi, i ∈ In. Further-

more S1 is schur-concave with respect to α.

Proof: For s ∈ In,

∂S1
∂αs

= φ′

(
n∑

i=1

ϕ

(
αix

1− ᾱix

))
ϕ′
(

αsx

1− ᾱsx

)
x(1− x)

(1− ᾱsx)2
.

Since both φ(u) and ϕ(u) are decreasing for all u ≥ 0, ∂S1
∂αs

≥ 0. As a result S1(x,α, φ) is

increasing in αi, i ∈ In for any x ∈ [0, 1].
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For s ̸= t,

(αs − αt)

(
∂S1
∂αs

− ∂S1
∂αt

)
= (αs − αt)φ

′

(
n∑

i=1

ϕ

(
αix

1− ᾱix

))[
ϕ′
(

αsx

1− ᾱsx

)
x(1− x)

(1− ᾱsx)2
− ϕ′

(
αtx

1− ᾱtx

)
x(1− x)

(1− ᾱtx)2

]
sign
= (αs − αt)

(
−φ′

(
n∑

i=1

ϕ (ui)

))[(
−ϕ′ (us)

) 1

(1− ᾱsx)2
−
(
−ϕ′ (ut)

) 1

(1− ᾱtx)2

]
, (2.2.1)

where ui =
αix

1−ᾱix
and

‘sign′
= means equal in sign. Since both φ and ϕ are decreasing, and ϕ′

is increasing, it follows from (2.2.1) that (αs − αt)
(
∂S1
∂αs

− ∂S1
∂αt

)
≤ 0. So from Lemma 1.2.1,

S1 is schur-concave in α = (α1, α2, ..., αn).

Suppose there are two series systems formed out of n statistically dependent and hetero-

geneous components where the component lifetimes follow the PO model. The joint distri-

bution of lifetimes of components is represented by Archimedean copula. Consider two such

series systems with lifetime vectors X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) having

respective proportionality odds ratio vectors α = (α1, α2, ..., αn) and β = (β1, β2, ..., βn),

where α,β ∈ Rn
+.

The following theorem compares the lifetimes of these series systems in the sense of usual

stochastic order.

Theorem 2.2.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2).

If φ1 or φ2 is log-convex and ϕ2 ◦ φ1 is superadditive, then

α
p
⪰ β implies X1:n ≤st Y1:n.

Proof: Write vi = lnαi, i = 1, 2, ..., n. Then as per (1.3.1),

F̄X1:n(x) = φ1

(
n∑

i=1

ϕ1

(
eviF̄ (x)

1− (1− evi)F̄ (x)

))
= S1(F̄ (x), (e

v1 , ev2 , ..., evn), φ1).

Here S1(F̄ (x), (e
v1 , ev2 , ..., evn), φ1) is symmetric with respect to (v1, v2, ..., vn) ∈ Rn. Now,

for s ∈ In,

∂S1
∂vs

= φ
′
1

(
n∑

i=1

ϕ1

(
evix

1− (1− evi)x

))
ϕ

′
1

(
evsx

1− (1− evs)x

)
x(1− x)evs

(1− (1− evs)x)2
,
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so that S1(x, (e
v1 , ev2 , ..., evn), φ1) is increasing in each vi, i = 1, 2, ..., n for any x ∈ [0, 1].

Now, for s ̸= t,

(vs − vt)

(
∂S1
∂vs

− ∂S1
∂vt

)
= (vs − vt)

(
−φ′

1

(
n∑

i=1

ϕ1

(
evix

1− (1− evi)x

)))
×[(

−ϕ′
1

(
evsx

1− (1− evs)x

))
xevs

(1− (1− evs)x)2

−
(
−ϕ′

1

(
evtx

1− (1− evt)x

))
xevt

(1− (1− evt)x)2

]
sign
= (vs − vt)

[(
−φ1(ϕ1(us))

φ
′
1(ϕ1(us))

)
1

1− (1− evs)x
−
(
−φ1(ϕ1(ut))

φ
′
1(ϕ1(ut))

)
1

1− (1− evt)x

]
,

(2.2.2)

where us =
evsx

1−(1−evs )x .

If φ1 is log-convex, from (2.2.2) it follows that (vs−vt)
(
∂S1
∂vs

− ∂S1
∂vt

)
≤ 0. Hence from Lemma

1.2.1, S1(x, (e
v1 , ev2 , ..., evn), φ1) is schur-concave in (v1, v2, ..., vn) if φ1 is log-convex. Then

from Lemma 1.2.3, it follows

α
p
⪰ β implies S1(F̄ (x),α, φ1) ≤ S1(F̄ (x),β, φ1). (2.2.3)

Since ϕ2 ◦ φ1 is superadditive, from Lemma 1.2.8, we have

S1(F̄ (x),β, φ1) ≤ S1(F̄ (x),β, φ2). (2.2.4)

Thus combining (2.2.3) and (2.2.4) it follows that S1(F̄ (x),α, φ1) ≤ S1(F̄ (x),β, φ2), that

is X1:n ≤st Y1:n. Now suppose φ2 is log-convex, then

S1(F̄ (x),α, φ2) ≤ S1(F̄ (x),β, φ2). (2.2.5)

Since ϕ2 ◦ φ1 is superadditive, it follows

S1(F̄ (x),α, φ1) ≤ S1(F̄ (x),α, φ2). (2.2.6)

So combining 2.2.5 and 2.2.6 it follows that X1:n ≤st Y1:n.

Corollary 2.2.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If
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φ is log-convex, then

α
p
⪰ β implies X1:n ≤st Y1:n. 2

The following counterexample shows that one may not get the the ordering result in

Theorem 2.2.1 if the sufficient conditions on the generator functions are dropped.

Counterexample 2.2.1. Consider two series systems, each comprising of three dependent

and heterogeneous components with respective survival functions F̄X1:3(x) = S1(F̄ (x),α, φ1)

and F̄Y1:3(x) = S1(F̄ (x),β, φ2) with F̄ (x) = e−(x)1.5 , x ≥ 0, α = (2, 3, 5.5), β = (2.5, 3.5, 3.8)

so that α
p
⪰ β. First we take φ1(x) = (2/(1+ ex))1/θ, θ = 0.9 and φ2(x) = e1−(1+x)1/η with

η = 0.3 so that ϕ2 ◦ φ1 is not super additive, and φ1 and φ2 are not log-convex. F̄X1:3(x)

and F̄Y1:3(x) are depicted in the Figure 2.1 for some finite range of x. From this figure it is

clear that the stochastic ordering result in Theorem 2.2.1 is not attained.

 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.1

0.2

0.3

0.4  ̅    
    

 ̅        

Figure 2.1: Plots of F̄X1:3(x) and F̄Y1:3(x) when ϕ2 ◦ φ1 is not super additive, and φ1 and
φ2 are not log-convex.

Since p-larger order is weaker than weakly supermajorization order, the following the-

orem shows that one can get the ordering result in Theorem 2.2.1 under weakly superma-

jorization order with fewer condition.

Theorem 2.2.2. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2).

If ϕ2 ◦ φ1 is superadditive, then

α
w
⪰ β implies X1:n ≤st Y1:n.
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Proof: From Lemma 2.2.1 and Lemma 1.2.2, it follows that

α
w
⪰ β implies S1(F̄ (x),α, φ1) ≤ S1(F̄ (x),β, φ1).

Since ϕ2 ◦ φ1 is superadditive, so from Lemma 1.2.8, it follows that, S1(F̄ (x),β, φ1) ≤
S1(F̄ (x),β, φ2). Combining the above results it follows S1(F̄ (x),α, φ1) ≤ S1(F̄ (x),β, φ2).

That is X1:n ≤st Y1:n.

Remark 2.2.1. It is to be noted that super-additive assumption of ϕ2 ◦ φ1 is satisfied

by many members of Archimedean survival copulas. For example, Archimedean survival

copula with generators (i) φ1(t) = e1−(1+t)
1
θ and φ2(t) = θ

log(eθ+t)
, where 0 < θ ≤ 1, (ii)

φ1(t) =
θ

log(eθ+t)
and φ2(t) = log(e + t)−1/θ, where θ > 1 and (iii) φ1(t) = e1−(1+t)

1
θ1 and

φ2(t) = e1−(1+t)
1
θ2 , where θ2 ≥ θ1 ≥ 1, satisfy super-additivity.

Corollary 2.2.2. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ).

Then

α
w
⪰ β implies X1:n ≤st Y1:n.

Lemma 2.2.2. I1(u) =
φ′(

∑n
i=1 ui)

φ(
∑n

i=1 ui)

∑n
i=1

φ(ui)
φ′(ui)

(1− φ (ui)) is increasing in us, s ∈ In and

Schur-convex with respect to u = (u1, ..., un) if φ is log-concave and φ(1−φ)
φ′ is decreasing

and concave.

Proof: Here I1(u) is symmetric in u. For s ∈ In,

∂I1(u)

∂us
=

∂

∂us

(
φ′ (
∑n

i=1 ui)

φ (
∑n

i=1 ui)

) n∑
i=1

φ (ui)

φ′ (ui)
(1− φ (ui))

+
φ′ (
∑n

i=1 ui)

φ (
∑n

i=1 ui)

∂

∂us

(
φ (us)

φ′ (us)
(1− φ (us))

)
.

Since φ is log-concave, ∂
∂us

(
φ′(

∑n
i=1 ui)

φ(
∑n

i=1 ui)

)
≤ 0 As φ(1− φ)/φ′ is decreasing implies

∂

∂us

(
φ (us)

φ′ (us)
(1− φ (us))

)
≤ 0.

Then using the fact that φ is deceasing, it implies ∂I1(u)
∂us

≥ 0. So I1(u) is increasing in us
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for any s ∈ In. For s, t ∈ In with s ̸= t,

∂

∂us

(
φ′ (
∑n

i=1 ui)

φ (
∑n

i=1 ui)

)
=

∂

∂ut

(
φ′ (
∑n

i=1 ui)

φ (
∑n

i=1 ui)

)
.

Then

(us − ut)

(
∂I1(u)

∂us
− ∂I1(u)

∂ut

)
= (us − ut)

φ′ (
∑n

i=1 ui)

φ (
∑n

i=1 ui)

[
∂

∂us

(
φ (us)

φ′ (us)
(1− φ (us))

)
− ∂

∂ut

(
φ (ut)

φ′ (ut)
(1− φ (ut))

)]
≥ 0,

where the inequality follows from the fact that φ(1−φ)
φ′ is concave. So from lemma 1.2.1,

I1(u) is Schur-convex with respect to u. Next theorem established hr ordering of two

series systems formed out of n statistically dependent and heterogeneous components having

lifetimes following PO model.

Theorem 2.2.3. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If

φ is log-concave and φ(1−φ)
φ′ is decreasing and concave (or convex), then

α
w
⪰ β implies X1:n ≤hr Y1:n.

Proof: From (1.3.2), it follows

rX1:n(x) = r(x)
φ′ (∑n

i=1 ϕ
(
F̄αi(x)

))
φ
(∑n

i=1 ϕ
(
F̄αi(x)

)) n∑
i=1

ϕ′
(
F̄αi(x)

) F̄αi(x)

1− ᾱiF̄ (x)

=
r(x)

F (x)

φ′ (∑n
i=1 ϕ

(
F̄αi(x)

))
φ
(∑n

i=1 ϕ
(
F̄αi(x)

)) n∑
i=1

F̄αi(x)

φ′
(
ϕ
(
F̄αi(x)

)) F (x)

1− ᾱiF̄ (x)

=
r(x)

F (x)
I1
(
ϕ
(
F̄α1(x)

)
, . . . , ϕ

(
F̄αn(x)

))
,

where

I1
(
ϕ
(
F̄α1(x)

)
, . . . , ϕ

(
F̄αn(x)

))
=

φ′ (∑n
i=1 ϕ

(
F̄αi(x)

))
φ
(∑n

i=1 ϕ
(
F̄αi(x)

))
×

n∑
i=1

φ
(
ϕ
(
F̄αi(x)

))
φ′
(
ϕ
(
F̄αi(x)

)) (1− φ
(
ϕ
(
F̄αi(x)

)))
.

It is easy to check that ϕ
(
F̄αi(x)

)
is decreasing and convex in αi. From Theorem A.2 (Chap-
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ter 5) of Marshall et al. Marshall et al. [96], α
w
⪰ β implies

(
ϕ
(
F̄α1(x)

)
, . . . , ϕ

(
F̄αn(x)

))
⪰w(

ϕ
(
F̄β1(x)

)
, . . . , ϕ

(
F̄βn(x)

))
. From Lemma 2.2.2, I1(u) is increasing in ui for i ∈ In and

Schur-convex with respect to u whenever φ is log-concave and φ(1−φ)
φ′ is decreasing and

concave. Then from Theorem A.8 (Chapter 3) of Marshall et al. Marshall et al. [96], it

follows that

I1
(
ϕ
(
F̄α1(x)

)
, . . . , ϕ

(
F̄αn(x)

))
≥ I1

(
ϕ
(
F̄β1(x)

)
, . . . , ϕ

(
F̄βn(x)

))
which implies rX1:n(x) ≥ rY1:n(x), that is X1:n ≤hr Y1:n.

Next the theorem will be proved when φ(1−φ)
φ′ is convex. Let zi = ϕ

(
F̄αi(x)

)
. Then the hr

function is given by

rX1:n(x) =
r(x)

F (x)

φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)

n∑
i=1

φ (zi)

φ′ (zi)
(1− φ (zi)) .

Now, for s ∈ In,

rX1:n(x)

∂αs
=

r(x)

F (x)

[
∂

∂zs

(
φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)

)
∂zs
∂αs

n∑
i=1

φ (zi) (1− φ (zi))

φ′ (zi)
+

φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)

∂

∂zs

(
φ (zs) (1− φ (zs))

φ′ (zs)

)
∂zs
∂αs

]
.

Note that zs is decreasing in αs and ∂zs
∂αs

is increasing in αs. Since φ is log-concave and
φ(1−φ)

φ′ is decreasing, it follows
rX1:n

(x)

∂αs
≤ 0. Again

∂

∂zs

(
φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)

)
=

∂

∂zt

(
φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)

)
, for s ̸= t.

For s ̸= t,

(αs − αt)

(
rX1:n

∂αs
− rX1:n

∂αt

)
sign
= (αs − αt)

(
∂zs
∂αs

− ∂zt
∂αt

)
+ (αs − αt)

φ′ (
∑n

i=1 zi)

φ (
∑n

i=1 zi)
×[(

− ∂

∂zs

(
φ (zs) (1− φ (zs))

φ′ (zs)

))(
− ∂zs
∂αs

)
−
(
− ∂

∂zt

(
φ (zt) (1− φ (zt))

φ′ (zt)

))(
− ∂zt
∂αt

)]
≤ 0,

whenever φ(1−φ)
φ′ is convex in addition to the log-concave φ and decreasing φ(1−φ)

φ′ . Thus
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rX1:n(x) is decreasing in αi, i ∈ In and Schur-convex in α = (α1, α2, ..., αn). Then from

Lemma 1.2.2, it follows

α
w
⪰ β implies rX1:n(x) ≥ rX1:n(x).

Hence the theorem follows.

Corollary 2.2.3. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ , α1, φ).

Then, X1:n ≤hr Y1:n if α ≥ 1
n

∑n
i=1 αi, φ is log-concave and φ(1−φ)

φ′ is decreasing and concave

(or convex). This follows from the Theorem 6.1.2 and using the fact that (α1, α2, . . . , αn)
w
⪰

(α, α, . . . , α︸ ︷︷ ︸
n terms

), for α ⩾ 1
n

∑n
i=1 αi.

Remark 2.2.2. It is to be noted that Archimedean copulas with generators φ(t) = 2/(1+et)

and φ(t) = (−1 + θ)/(−et + θ) for −1 ≤ θ ≤ 0 are some examples of survival copula such

that φ is log-concave, and φ(1−φ)
φ′ is decreasing and convex.

The following counterexample shows that one may not get the the ordering result in

Theorem 6.1.2 if the sufficient conditions on the generator functions are dropped.

Counterexample 2.2.2. Consider two series systems, each comprising of three dependent

and heterogeneous components with respective hr functions rX1:3(x) and rY1:3(x), with com-

mon baseline sf F̄ (x) = e−(0.5x)2 , x ≥ 0, α = (0.2, 0.4, 0.6), β = (0.35, 0.55, 0.95) so that

α
w
⪰ β. First we take the common generator φ(x) = log(e + x)−1/a, a = 0.1, which is not

log-concave but φ(1−φ)
φ′ is decreasing and convex. Next, consider φ(x) = (2/(1 + ex))1/a,

a = 0.2, which is log-concave but φ(1−φ)
φ′ is neither decreasing nor convex. For both the cases

rX1:3(x) and rY1:3(x) are depicted in Figure 2.2(a) and 2.2(b) respectively for some finite

range of x. From both the figures, it is observed that the hr ordering result in Theorem 6.1.2

is not attained.

2.3 Comparisons of parallel systems

Here, the comparisons of the lifetimes of two parallel systems consisting of dependent and

heterogeneous components having lifetimes following the PO model, with respect to some

stochastic orders, is considered.

Lemma 2.3.1. For any x ∈ [0, 1], S2(x,α, φ)(3.3.1) is decreasing in αi, i ∈ In. Further-

more S2 is Schur-convex with respect to α whenever φ is log-concave.
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Figure 2.2: Plots of rX1:3(x) and rY1:3(x) for (a) φ(x) is not log-concave, (b)
φ(1−φ)

φ′ is neither
decreasing nor convex.

Proof: For s ∈ In,

∂S2
∂αs

= −φ′

(
n∑

i=1

ϕ

(
x

1− ᾱi(1− x)

))
ϕ′
(

x

1− ᾱs(1− x)

)
x(1− x)

(1− ᾱs(1− x))2
.

Since both φ(u) and ϕ(u) are decreasing for all u ≥ 0, ∂S2
∂αs

≤ 0. So S2(x,α, φ) is decreasing

in αi for any x ∈ [0, 1].

Let vi =
x

1−ᾱi(1−x) then for s ̸= t,

(αs − αt)

(
∂S2
∂αs

− ∂S2
∂αt

)
= −(αs − αt)φ

′

(
n∑

i=1

ϕ (vi)

)[
ϕ′ (vs)

x(1− x)

(1− ᾱsx)2
− ϕ′ (vt)

x(1− x)

(1− ᾱtx)2

]
sign
= (αs − αt)

[
−
(
− φ(ϕ(vs))

φ′(ϕ(vs))

)
1

1− ᾱsx
+

(
− φ(ϕ(vt))

φ′(ϕ(vt))

)
1

1− ᾱtx

]
≥ 0,

where the last inequality is derived using the fact that φ is log-concave. So from Lemma

1.2.1, S2 is Schur-convex in α = (α1, α2, ..., αn).

Suppose there are two parallel systems with lifetime vectors X = (X1, X2, ..., Xn) and

Y = (Y1, Y2, ..., Yn), formed out of n dependent and heterogeneous components where the

component lifetimes follow PO model. The following theorem compares the lifetimes of two

such parallel systems in the sense of usual stochastic order.

Theorem 2.3.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2).
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If φ1 or φ2 is log-concave and ϕ1 ◦ φ2 is superadditive, then

α
w
⪰ β implies Xn:n ≤st Yn:n.

Proof: If φ1 is log-concave, then from Lemma 2.3.1 and Lemma 1.2.2, it follows

α
w
⪰ β implies S2(F (x),α, φ1) ≥ S2(F (x),β, φ1). (2.3.1)

Since ϕ1 ◦φ2 is superadditive, so from Lemma 1.2.8 (by replacing φ1 by φ2 and vice versa),

it follows

S2(F (x),β, φ1) ≥ S2(F (x),β, φ2). (2.3.2)

Combining (2.3.1) and (2.3.2), we get S2(F (x),α, φ1) ≥ S2(F (x),β, φ2). That is Xn:n ≤st

Yn:n. Now suppose φ2 is log-concave, then

S2(F (x),α, φ1) ≥ S2(F (x),α, φ2)

≥ S2(F (x),β, φ2),

where the first inequality follows from the fact that ϕ1 ◦ φ2 is superadditive, whereas the

second inequality follows from the fact that α
w
⪰ β. This proves the result.

Corollary 2.3.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If

φ is log-concave, then

α
w
⪰ β implies Xn:n ≤st Yn:n.2

The following counterexample shows that one may not get the the ordering result in

Theorem 2.3.1 if the sufficient conditions on the generator functions are dropped.

Counterexample 2.3.1. Consider two parallel systems, each comprising of three depen-

dent and heterogeneous components with respective distribution functions

FX3:3(x) = S2(F (x),α, φ1) and FY3:3(x) = S2(F (x),β, φ2), where F (x) = 1 − e−x0.5
,

x ≥ 0, α = (0.9, 1.45, 2.15), β = (1.2, 1.95, 2.65) so that α
w
⪰ β. First consider φ1(x) =

θ1/ log(x + eθ1) and φ2(x) = e1−(1+x)1/θ2 with θ1 = 0.9 and θ2 = 8 so that neither φ1

nor φ2 is log-concave but ϕ1 ◦ φ2 is super additive. Next consider φ1(x) = e(1−ex)/θ1 and

φ2(x) = (2/(ex + 1))1/θ2 with θ1 = 0.9 and θ2 = 0.2 so that φ1 is log-concave but ϕ1 ◦ φ2 is

not super additive. For both the cases FX3:3(x) and FY3:3(x) are depicted in Figure 2.3(a)

and 2.3(b) respectively for some finite range of x. From both the figures it is observe that

the stochastic ordering result in Theorem 2.3.1 is not attained.
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Figure 2.3: Plots of FX3:3(x) and FY3:3(x) for (a) neither φ1 nor φ2 is log-concave, (b) ϕ1◦φ2

is not super additive.

Next theorem established the reversed hr order of lifetimes of two parallel systems of

dependent and heterogeneous components.

Theorem 2.3.2. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If

φ is log-concave and φ(1−φ)
φ′ is decreasing and convex, then

α
w
⪰ β implies Xn:n ≤rhr Yn:n.

Proof: From (1.3.4), the rhr function of Xn:n is given by

r̃Xn:n(x) =
r̃(x)

F̄ (x)

φ′ (
∑n

i=1 ϕ (Fαi(x)))

φ (
∑n

i=1 ϕ (Fαi(x)))

n∑
i=1

Fαi(x)

φ′ (ϕ (Fαi(x)))
F̄αi(x)

=
r̃(x)

F̄ (x)

φ′ (
∑n

i=1 ϕ (Fαi(x)))

φ (
∑n

i=1 ϕ (Fαi(x)))

n∑
i=1

φ (ϕ (Fαi(x)))

φ′ (ϕ (Fαi(x)))
(1− φ (ϕ (Fαi(x))))

=
r̃(x)

F̄ (x)

φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

n∑
i=1

φ (ξi)

φ′ (ξi)
(1− φ (ξi)) ,

where ξi = ϕ (Fαi(x)). Now, for s ∈ In,

r̃Xn:n(x)

∂αs
=

r̃(x)

F̄ (x)

[
∂

∂ξs

(
φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

)
∂ξs
∂αs

n∑
i=1

φ (ξi) (1− φ (ξi))

φ′ (ξi)
+

φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

∂

∂ξs

(
φ (ξs) (1− φ (ξs))

φ′ (ξs)

)
∂ξs
∂αs

]
.

Note that ξs is increasing in αs and ∂ξs
∂αs

is decreasing in αs. Since φ is log-concave and
φ(1−φ)

φ′ is decreasing, it follows
r̃Xn:n (x)

∂αs
≥ 0. Again
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∂

∂ξs

(
φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

)
=

∂

∂ξt

(
φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

)
, for s ̸= t.

For s ̸= t,

(αs − αt)

(
r̃Xn:n

∂αs
− r̃Xn:n

∂αt

)
sign
= (αs − αt)

(
∂ξs
∂αs

− ∂ξt
∂αt

)
+ (αs − αt)

(
−
φ′ (
∑n

i=1 ξi)

φ (
∑n

i=1 ξi)

)
×[(

− ∂

∂ξs

(
φ (ξs) (1− φ (ξs))

φ′ (ξs)

))
∂ξs
∂αs

−
(
− ∂

∂ξt

(
φ (ξt) (1− φ (ξt))

φ′ (ξt)

))
∂ξt
∂αt

]
≤ 0,

as φ(1−φ)
φ′ is decreasing and convex. Thus r̃Xn:n(x) is increasing in αi, i ∈ In and schur-

concave in α = (α1, α2, ..., αn). Then from Lemma 1.2.2, it follows

α
w
⪰ β implies r̃Xn:n(x) ≤ r̃Yn:n(x).

Hence the theorem follows. The following counterexample shows that one may not get the

the ordering result in Theorem 2.3.2 if the sufficient conditions on the generator functions

are dropped.

Counterexample 2.3.2. Consider two parallel systems, each comprising of four dependent

and heterogeneous components with respective reversed hr functions r̃X4:4(x) and r̃Y4:4(x),

with common baseline sf F̄ (x) = e−x3
, x ≥ 0, α = (0.2, 0.6, 1.5, 3.5), β = (0.8, 0.9, 4.5, 5.5)

so that α
w
⪰ β. First consider the common generator φ(x) = (1/(ax+1))1/a, a = 0.2, which

is not log-concave but φ(1−φ)
φ′ is decreasing and convex. Next consider φ(x) = (2/(1+ex))1/a,

a = 0.2, which is log-concave but φ(1−φ)
φ′ is neither decreasing nor convex. For both the

cases r̃X4:4(x) and r̃Y4:4(x) are depicted in Figure 2.4(a) and 2.4(b) respectively for some

finite range of x. From both the figures it is observe that the reversed hr ordering result in

Theorem 2.3.2 is not attained.

2.4 Applications

This section highlight some potential applications of the established results. Consider a

series (or a parallel) system of n components having dependent lifetimes. It is quite prac-

tical that the odds functions of all the components (i.e. the odds of surviving beyond a

specified time t) may not be the same for various possible reasons, like the components
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Figure 2.4: Plots of r̃X4:4(x) and r̃Y4:4(x) for (a) φ(x) is not log-concave, (b)
φ(1−φ)

φ′ is neither
decreasing nor convex.

are manufactured by different manufacturing units or they are subjected to different levels

of stress. So let the odds function of ith component is proportional to a baseline odds

function with proportionality constant (odds ratio) αi, i = 1, 2, . . . , n. Now consider an-

other series (or parallel) system of n dependent components having different odds ratios βi,

i = 1, 2, . . . , n. Even if a same system operates in two different levels of environments/stress

(e.g., voltage, temperature, compression and tension), then reliability characteristics (e.g.,

odds function) of a component of the system generally will not be the same in the two

different environments. So it is a subject of interest to compare lifetimes of two such sys-

tems, i.e. under what conditions one system will be more reliable than other. Theorems

2.2.1 and 7.2.1 (resp. Theorem 2.3.1) give the conditions on the corresponding odds ratio

vectors and the generators of the survival copulas under which a series (resp. parallel)

system will have stochastically longer lifetime than that of the other. Similarly Theorem

6.1.2 (resp. Theorem 2.3.2) gives the conditions under which failure rate of a series (resp.

parallel) system will be smaller than that of the other. Next it is shown that using proposed

results one can compare the lifetime of two series systems whose components are subjected

to random shock instantaneously Fang and Balakrishnan [42]. Suppose rv Xi denotes the

lifetime of i-th component of the series system. Define Bernoulli rv Ipi associated with

Xi, where Ipi = 1 if shock does not occur and 0 if shock occurs with pi = P (Ipi = 1),

i = 1, . . . , n. Assume that Ip1 , . . . , Ipn are independent rvs, and also they are independent

of X1, . . . , Xn. Let X
∗
i = XiIpi , i = 1, . . . , n, and denote X∗

1:n = min(X∗
1 , . . . , X

∗
n). Similarly

assume that Iq1 , . . . , Iqn are independent Bernoulli rvs, and also they are independent of

Yi’s with qi = P (Iqi = 1), i = 1, . . . , n. Denote Y ∗
1:n = min(Y ∗

1 , . . . , Y
∗
n ), where Y

∗
i = YiIqi ,

i = 1, . . . , n. Here X∗
1:n represents the lifetime of a series system whose components are

subjected to random shock instantaneously. Similarly Y ∗
1:n represents the the lifetime of an-

other such series system. Now, if X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2), then with the
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help of the Theorems 2.2.1, 7.2.1, 6.1.2, and the associated corollaries 2.2.1, 2.2.2, we can

establish following stochastic comparisons between such smallest order statistics from the

fact that P (X∗
1:n > x) = P (X1 > x, . . . ,Xn > x)P (Ipi = 1, i ∈ In) = P (X1:n > x)

∏n
i pi.

Theorem 2.4.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2).

If φ1 or φ2 is log-convex, ϕ2 ◦ φ1 is superadditive and
∏n

i pi ≤
∏n

i qi, then

α
p
⪰ β implies X∗

1:n ≤st Y
∗
1:n.

Corollary 2.4.1. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If

φ is log-convex and
∏n

i pi ≤
∏n

i qi, Then

α
p
⪰ β implies X∗

1:n ≤st Y
∗
1:n.

Theorem 2.4.2. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ ,β, φ2).

If ϕ2 ◦ φ1 is superadditive and
∏n

i pi ≤
∏n

i qi, then

α
w
⪰ β implies X∗

1:n ≤st Y
∗
1:n.

Corollary 2.4.2. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If∏n
i pi ≤

∏n
i qi, then

α
w
⪰ β implies X∗

1:n ≤st Y
∗
1:n.

Theorem 2.4.3. Suppose the lifetime vectors X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ ,β, φ). If

φ is log-concave and φ(1−φ)
φ′ is decreasing and concave, then

α
w
⪰ β implies X∗

1:n ≤hr Y
∗
1:n.

We will end this section by mentioning an other potential application. In actuarial

science, X∗
1:n corresponds to the smallest claim amount in a portfolio of risks Barmalzan

et al. [15], Li and Li [86], Zhang et al. [136], where Xi’s represent sizes of random claims

of multiple risks covered by a policy that can be made in an insurance period and the

corresponding Ipi ’s indicate the occurrence of these claims. That means Ipi = 1 whenever

the ith policy makes random claim Xi and Ipi = 0 whenever there is no claim. Similarly

suppose Y ∗
1:n represents the smallest claim amount in an another portfolio of risks. The

above theorems can be used in stochastic comparisons between the smallest claim amounts

of two different portfolio of risks.





Chapter 3

Dispersive & star ordering of

sample extremes 1

3.1 Introduction

Stochastic ordering has been widely used to compare the magnitude and variability

of extreme order statistics. However, despite the importance and wide applications of the

variability orders (e.g. dispersive order and star order), there are less research works in this

direction as compared to the magnitude orders (e.g., stochastic order,hr order, rhr order,

and lr order).

Skewed distributions often serve as reasonable models for system lifetimes, auction the-

ory, insurance claim amounts, financial returns etc. and thus it is of interest to compare

skewness of probability distributions (Wu et al. [130]). Recently, there have been a num-

ber of works on dispersive and star ordering of extreme order statistics of random samples

from different family of distributions (Ding et al. [40], Fang et al. [43, 44], Kochar and Xu

[77, 76], Li and Fang [87], Nadeb et al. [103], Zhang et al. [138, 137]). There are some

research works on sample spacings also, like Xu and Li [132] established dispersive and star

ordering for sample spacing from heterogeneous exponential distributions. An extensive lit-

erature review has been done in Balakrishnan and Zhao [11] on the stochastic comparison

1One paper based on this chapter have appeared as under:

1. Dispersive and star ordering of sample extremes from dependent random variables following the
proportional odds model. Communications in Statistics - Theory and Methods, 2022, DOI:
10.1080/03610926.2022.2037643.
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of order statistics corresponding to independent and heterogeneous rvs.

In case of dependent samples Zhao et al. [141] discussed stochastic comparisons of

extreme order statistics from heterogeneous interdependent Weibull samples having a com-

mon Archimedean copula. They derived the results for usual stochastic order, rhr order

and lr order when shape parameters are common but scale parameters are different and

also when scale parameters are common but shape parameters are different. Li and Fang

[87] derived the dispersive order between maximums of two PHR samples having a common

Archimedean copula. For samples following scale model, Li and Li [86] obtained the dis-

persive and the star orders between minimums of one heterogeneous and one homogeneous

samples sharing a common Archimedean copula. Fang et al. [43] investigated the dispersive

order and the star order of extreme order statistics for the samples following PHR model

with Archimedean survival copulas. Fang et al. [44] obtained the dispersive order between

minimums of two scale proportional hazards samples with a common Archimedean survival

copula. With resilience-scaled components, Zhang et al. [137] derived the dispersive and the

star order between parallel systems, one consisting dependent heterogeneous components

and another consisting homogeneous components sharing a common Archimedean survival

copula.

In case of PO model, some authors, e.g. Kundu and Nanda [82], Kundu et al. [81],

Panja et al. [114], Li and Li [89] have investigated stochastic comparison of this family of

distributions and sample extreme in the sense of magnitude orders. To the best of our

knowledge, there is no related study on the variability of extreme order statistics arising

from independent or dependent rvs following the PO model. Motivated by this, in chapter,

is devoted to the dispersive and the star ordering for comparing the minimums and the

maximums of dependent samples following the PO model.

The organization of the rest of the chapter is as follows. In section 3.2, consider the com-

parisons of minimum order statistics from dependent samples following the PO model in

terms of the dispersive order and the star order. Section 3.3 investigates the comparison

of maximum order statistics in terms of dispersive and star orders. In section 3.4, some

examples are provided for illustrative purpose.

3.2 Ordering for sample minimums

This section consider the dispersive ordering of minimums of dependent rvs. We compare

stochastically the minimums of two dependent samples, one formed from heterogeneous

rvs and another from homogeneous rvs. The following theorem consider the comparison

of minimums of two samples, one from n dependent heterogeneous rvs following the PO

model and another from n dependent homogeneous rvs following the PO model, in terms of
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dispersive order. The result holds for the decreasing failure rate (DFR) baseline distribution

F . The distribution function F is said to be DFR if the corresponding hr r(·) is decreasing
and increasing failure rate (IFR) distribution if r(·) is increasing.

Theorem 3.2.1. Suppose X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ , α1, φ). Then X1:n ≤disp Y1:n

if the baseline distribution F is DFR, φ is log-convex, φ
φ′ is concave and α ≥ 1

n

∑n
i=1 αi,

for 0 ≤ α ≤ 1.

Proof: The cdfs of X1:n and Y1:n are F1(x) = 1 − φ
(∑n

i=1 ϕ
(
F̄Xi(x)

))
and G1(x) =

1 − φ
(
nϕ
(
F̄Y1(x)

))
, respectively, where F̄Xi(x) =

αiF̄ (x)
1−ᾱiF̄ (x)

and F̄Y1(x) =
αF̄ (x)

1−ᾱF̄ (x)
, x ∈ R.

The respective pdfs of X1:n and Y1:n are given by

f1(x) = φ′

(
n∑

i=1

ϕ
(
F̄Xi(x)

)) n∑
i=1

φ
(
ϕ
(
F̄Xi(x)

))
φ′
(
ϕ
(
F̄Xi(x)

)) r(x)

1− ᾱiF̄ (x)
, (3.2.1)

and

g1(x) = nφ′ (nϕ (F̄Y1(x)
))

· r(x)

1− ᾱF̄ (x)
·
φ
(
ϕ
(
F̄Y1(x)

))
φ′
(
ϕ
(
F̄Y1(x)

)) ,
Therefore

G−1
1 (x) = F̄−1

(
φ
(
1
nϕ(1− x)

)
α+ ᾱφ

(
1
nϕ(1− x)

)) .
So

G−1
1 (F1(x)) = F̄−1

(
φ
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))
α+ ᾱφ

(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))) = F̄−1(γ(x)), (3.2.2)

where γ(x) =
φ( 1

n

∑n
i=1 ϕ(F̄Xi

(x)))
α+ᾱφ( 1

n

∑n
i=1 ϕ(F̄Xi

(x)))
.

Now,

g1(G
−1
1 (F1(x))) = nφ′

(
nϕ

(
αγ(x)

1− ᾱγ(x)

))
·
r
(
F̄−1(γ(x))

)
1− ᾱγ(x)

·
φ
(
ϕ
(

αγ(x)
1−ᾱγ(x)

))
φ′
(
ϕ
(

αγ(x)
1−ᾱγ(x)

))
= nφ′

(
n∑

i=1

ϕ
(
F̄Xi(x)

))
·

(
α+ ᾱφ

(
1

n

n∑
i=1

ϕ
(
F̄Xi(x)

)))

×
φ
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))
φ′
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)) · r (F̄−1(γ(x))
)

α
. (3.2.3)
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Note that F̄Xi(x) is increasing and concave in αi and 1/(1 − ᾱiF̄ (x)) is decreasing and

convex in αi. Also ϕ
(
F̄Xi(x)

)
is decreasing and convex in αi if φ is log-convex. Now

denote 1
n

∑n
i=1 αi = αavg and η(αi) = ϕ

(
F̄Xi(x)

)
. Then for α ≥ 1

n

∑n
i=1 αi = αavg, from

the convexity and decreasing property of η(αi) = ϕ
(
F̄Xi(x)

)
with respect to αi, implies

1
n

∑n
i=1 η(αi) ≥ η(αavg) ≥ η(α), which gives

1

n

n∑
i=1

ϕ
(
F̄Xi(x)

)
≥ ϕ

(
F̄Y1(x)

)
(3.2.4)

=⇒ α

ᾱ
+ φ

(
1

n

n∑
i=1

ϕ
(
F̄Xi(x)

))
≤ α

ᾱ
+ F̄Y1(x)

=⇒ 1−
α
ᾱ

α
ᾱ + φ

(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)) ≤ 1−
α
ᾱ

α
ᾱ + F̄Y1(x)

=⇒
φ
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))
α+ ᾱφ

(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)) ≤ F̄Y1(x)

α+ ᾱF̄Y1(x)
.

This implies γ(x) ≤ F̄ (x). As a result it implies F̄−1(γ(x)) ≥ x. Now if r(·) is decreasing

then

r(F̄−1(γ(x))) ≤ r(x). (3.2.5)

Now (3.2.4), gives

α+ ᾱφ

(
1

n

n∑
i=1

ϕ
(
F̄Xi(x)

))
≤ α

1− ᾱF̄ (x)
≤ α

1

n

n∑
i=1

1

1− ᾱiF̄ (x)
,

since 1
1−ᾱiF̄ (x)

is decreasing and convex in αi. If
φ
φ′ is concave, then

−
φ
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))
φ′
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)) ≤ − 1

n

n∑
i=1

φ
(
ϕ
(
F̄Xi(x)

))
φ′
(
ϕ
(
F̄Xi(x)

)) .
Thus

(
α+ ᾱφ

(
1

n

n∑
i=1

ϕ
(
F̄Xi(x)

)))(
−
φ
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))
φ′
(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)))

≤ α

n

n∑
i=1

(
−
φ
(
ϕ
(
F̄Xi(x)

))
φ′
(
ϕ
(
F̄Xi(x)

))) 1

n

n∑
i=1

1

1− ᾱiF̄ (x)
. (3.2.6)
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If φ is log-convex, then − φ(x)
φ′(x) is increasing in x, so that − φ(ϕ(F̄Xi

(x)))
φ′(ϕ(F̄Xi

(x)))
is decreasing in αi.

So by Chebyshev’s inequality the following inequality follows

1

n

n∑
i=1

(
−
φ
(
ϕ
(
F̄Xi(x)

))
φ′
(
ϕ
(
F̄Xi(x)

))) · 1
n

n∑
i=1

1

1− ᾱiF̄ (x)
≤ 1

n

n∑
i=1

(
−
φ
(
ϕ
(
F̄Xi(x)

))
φ′
(
ϕ
(
F̄Xi(x)

))) 1

1− ᾱiF̄ (x)
.

(3.2.7)

From (3.2.5), (3.2.6), (3.2.7) and the fact that the common factor φ′ (∑n
i=1 ϕ

(
F̄Xi(x)

))
in

(3.2.1) and (3.2.3) is negative, implies g1(G
−1
1 (F1(x))) ≤ f1(x) for all x ∈ R. Hence the

theorem follows.

Remark 3.2.1. It is to be noted that following generators of the Archimedean copula satisfy

the conditions of the above theorem

(i) φ1(x) = (θ1x+ 1)−1/θ1 , θ1 ∈ (1,∞).

(ii) φ2(x) =
θ2

log(x+eθ2 )
, θ2 ∈ (0,∞).

It may be of interest to know whether as in case of Theorem 3.2.1 it is possible to

establish dispersive ordering for α ≥ 1 when the baseline distribution is IFR or DFR. The

following counterexample shows that with these conditions, Theorem 3.2.1 cannot establish

dispersive ordering even in case of samples from independent rvs.

Counterexample 3.2.1. Consider the minimums of two samples, one having three in-

dependent and heterogeneous rvs, and another having three independent and homogeneous

rvs with respective cdfs F1(x) = 1 −
∏3

i=1

(
αiF̄ (x)

1−ᾱiF̄ (x)

)
and G1(x) = 1 −

(
αF̄ (x)

1−ᾱF̄ (x)

)3
, where

α1 = 7, α2 = 25, α3 = 100, α = (α1 + α2 + α3)/3 = 44, and F̄ (x) = e−(9x)0.9, so that the

baseline distribution is DFR. Therefore

g1(G
−1
1 (F1(x))) =

1

α
3

(
3∏

i=1

F̄Xi(x)

)α+ ᾱ

(
3∏

i=1

F̄Xi(x)

)1/3
 r(F̄−1(γ(x))),

where γ(x) =
(
∏3

i=1 F̄Xi
(x))

1/3

α+ᾱ(
∏3

i=1 F̄Xi
(x))

1/3 ,

and

f1(x) =

(
3∏

i=1

F̄Xi(x)

)
r(x)

(
3∑

i=1

1

1− ᾱiF̄ (x)

)
.
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g1(G
−1
1 (F1(x)))−f1(x) plotted by substituting x = t/(1−t), implies x ∈ [0,∞), and t ∈ [0, 1).

The plot is shown in Figure 3.1(a) it is observed from the plot that g1(G
−1
1 (F1(x))) ≰ f1(x)

and also g1(G
−1
1 (F1(x))) ≱ f1(x).

Next consider α1 = 0.78, α2 = 0.97, α3 = 67, α = (α1 + α2 + α3)/3 = 22.9167, and

F̄ (x) = e−x3
, so that the baseline distribution is IFR. Figure 3.1(b) illustrates the plot

of g1(G
−1
1 (F1(x))) − f1(x) by substituting x = t/(1 − t), so that for x ∈ [0,∞) implies

t ∈ [0, 1). From Figure 3.1(b) it is observed that g1(G
−1
1 (F1(x))) − f1(x) ≰ 0 and also

g1(G
−1
1 (F1(x)))− f1(x) ≱ 0.
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Figure 3.1: Plot of g1(G
−1
1 (F1(x))) − f1(x) for x = t/(1 − t), t ∈ [0, 1] when baseline

distribution is (a) DFR and (b) IFR.

The following theorem compare the minimums of two samples, both from n dependent

homogeneous rvs following the PO model and with different Archimedean copulas.

Theorem 3.2.2. Suppose X ∼ PO(F̄ , α1, φ1) and Y ∼ PO(F̄ , α1, φ2). Then X1:n ≤disp

Y1:n if the baseline distribution is DFR, φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) is increasing in w and

0 ≤ α ≤ 1.

Proof: The cdfs of X1:n and Y1:n are given by G1(x) = 1 − φ1

(
nϕ1

(
F̄X1(x)

))
, and

G2(x) = 1− φ2

(
nϕ2

(
F̄X1(x)

))
, respectively, where F̄X1(x) =

αF̄ (x)
1−ᾱF̄ (x)

, x ∈ R. The respec-

tive pds are given by

g1(x) = nφ′
1

(
nϕ1

(
F̄X1(x)

)) φ1

(
ϕ1
(
F̄X1(x)

))
φ′
1

(
ϕ1
(
F̄X1(x)

)) · r(x)

1− ᾱF̄ (x)
, (3.2.8)

and

g2(x) = nφ′
2

(
nϕ2

(
F̄X1(x)

)) φ2

(
ϕ2
(
F̄X1(x)

))
φ′
2

(
ϕ2
(
F̄X1(x)

)) · r(x)

1− ᾱF̄ (x)
.
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Therefore

G−1
2 (G1(x)) = F̄−1

(
φ2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))
α+ ᾱφ2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))) = F̄−1(η(x)),

where η(x) =
φ2( 1

n
ϕ2(φ1(nϕ1(F̄X1

(x)))))
α+ᾱφ2( 1

n
ϕ2(φ1(nϕ1(F̄X1

(x)))))
.

g2(G
−1
2 (G1(x))) = nφ′

2

(
ϕ2
(
φ1

(
nϕ1

(
F̄X1(x)

))))
×

φ2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))
φ′
2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

)))) r (F̄−1(η(x))
)

α

×
(
α+ ᾱφ2

(
1

n
ϕ2
(
φ1

(
nϕ1

(
F̄X1(x)

)))))
. (3.2.9)

From Lemma 3.9 of Fang et al. [43], for increasing φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) implies

φ2

(
nϕ2

(
F̄X1(x)

))
≥ φ1

(
nϕ1

(
F̄X1(x)

))
, which implies

F̄X1(x) ≥ φ2

(
1

n
ϕ2
(
φ1

(
nϕ1

(
F̄X1(x)

))))
.

Again this gives F̄ (x) ≥ η(x) which implies F̄−1(η(x)) ≥ x. Thus if r(·) is decreasing then

r(F̄−1(η(x))) ≤ r(x). (3.2.10)

Also for ᾱ ≥ 0, φ2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))
≤ F̄X1(x) implies

α+ ᾱφ2

(
1

n
ϕ2
(
φ1

(
nϕ1

(
F̄X1(x)

))))
≤ α

1− ᾱF̄ (x)
. (3.2.11)

Again from Lemma 3.9 of Fang et al. [43] by substituting w = φ1

(
nϕ1

(
F̄X1(x)

))
in increas-

ing φ1(ϕ1(w)/n)
φ2(ϕ2(w)/n) implies

φ′
2

(
ϕ2
(
φ1

(
nϕ1

(
F̄X1(x)

))))
φ2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))
φ′
2

(
1
nϕ2

(
φ1

(
nϕ1

(
F̄X1(x)

))))
≤
φ′
1

(
nϕ1

(
F̄X1(x)

))
φ1

(
ϕ1
(
F̄X1(x)

))
φ′
1

(
ϕ1
(
F̄X1(x)

)) . (3.2.12)

Now using (3.2.10), (3.2.11) and (3.2.12), from (3.2.9) and (3.2.8) implies

g2(G
−1
2 (G1(x))) ≤ g1(x) for all x ∈ R. This completes the proof.

Remark 3.2.2. It is to be noted that Archimedean copula with generators as specified in

(i) and (ii) below satisfy the condition that φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) is increasing in w for
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all n ∈ Z.

(i) φ1(x) =
(
1 + x1/θ1

)−θ1
and φ2(x) = 1

(x1/θ2+1)
where θ1 ∈ (1,∞), θ2 ∈ (1,∞) and

1 < θ1 < θ2 <∞, then for any n ∈ Z,

d

dx
(φ2(ϕ2(x)/n)/φ1(ϕ1(x)/n)) =


(
1 +

(
(x−1/θ1−1)θ1

n

)1/θ1)θ1

x2
(
1 +

(
((1/x)−1)θ2

n

)1/θ2)2 ×

−
x
(
((1/x)−1)θ2

n

)1/θ2
x− 1

+

x

(
1 +

(
((1/x)−1)θ2

n

)1/θ2)( (x−1/θ1−1)θ1

n

)
(x1/θ1−1)

(
1 +

(
(x−1/θ1−1)θ1

n

)1/θ1)


sgn
=

−
x
(
((1/x)−1)θ2

n

)1/θ2
x− 1

+

x

(
1 +

(
((1/x)−1)θ2

n

)1/θ2)( (x−1/θ1−1)θ1

n

)
(x1/θ1−1)

(
1 +

(
(x−1/θ1−1)θ1

n

)1/θ1) .

Since 1 < θ1 < θ2 < ∞, from the last expression it can be easily concluded that the

derivative is non-negative for all x ∈ [0, 1].

(ii) φ1(x) = (θ1x+ 1)−1/θ1 and φ2(x) = [θ2x+ 1]−1/θ2 , for 0 < θ1 < θ2 < ∞, then for

any n ∈ Z,

d

dx
(φ2(ϕ2(x)/n)/φ1(ϕ1(x)/n)) =

(n− 1)
(
x−θ1+n−1

n

) 1
θ1

(
x−θ2+n−1

n

) 1
θ2
(
xθ1 − xθ2

)
x(xθ1 + n− 1)(xθ2 + n− 1)

.

From the above expression it is very clear that for 0 < θ1 < θ2 <∞ it is non-negative

for all x ∈ [0, 1].

The following corollary follows from Theorems 3.2.1 and 3.2.2. This corollary compare

the minimums of two samples, one from from n dependent heterogeneous rvs following the

PO model and another from n dependent homogeneous rvs following the PO model and

with different Archimedean copulas.

Corollary 3.2.1. Suppose X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ , α1, φ2). Then for α ≥
1
n

∑n
i=1 αi, X1:n ≤disp Y1:n if the baseline distribution is DFR, φ1 is log-convex, φ1

φ′
1
is

concave, φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) is increasing in w, and 0 ≤ α ≤ 1.

Proof: Let Z ∼ PO(F̄ , α1, φ1). Then Theorem 3.2.1, gives X1:n ≤disp Z1:n. Again
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Theorem 3.2.2, implies Z1:n ≤disp Y1:n. This yields X1:n ≤disp Y1:n.

Remark 3.2.3. It is to be noted that for any n ∈ Z Archimedean copula with generators

φ1(x) =
(
1 + x1/θ1

)−θ1
and φ2(x) =

1

(x1/θ2+1)
where θ1 ∈ (1,∞), θ2 ∈ (1,∞) and 1 < θ1 <

θ2 <∞ satisfy the condition that φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) is increasing in w for all n ∈ Z.

The following theorem compare the minimums of two samples, one from n dependent

heterogeneous rvs following the PO model and another from n dependent homogeneous rvs

following the PO model, in terms of star order.

Theorem 3.2.3. Suppose X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ , α1, φ). Then for α ≥
1
n

∑n
i=1 αi we have X1:n ≤⋆ Y1:n if xr(x) is decreasing, φ is log-convex, φ

φ′ is concave and

0 ≤ α ≤ 1.

Proof: Using equations (3.2.1), (3.2.2) and (3.2.3), implies

x2
d

dx

(
G−1

1 (F1(x))

x

)
= x

d

dx

(
G−1

1 (F1(x))
)
−G−1

1 (F1(x))

= x
f1(x)

g1
(
G−1

1 (F1(x))
) −G−1

1 (F1(x))

=
αxr(x) 1n

∑n
i=1

φ(ϕ(F̄Xi
(x)))

φ′(ϕ(F̄Xi
(x)))

1
1−ᾱiF̄ (x)

r
(
F̄−1(γ(x))

) (
α+ ᾱφ

(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

))) φ( 1
n

∑n
i=1 ϕ(F̄Xi

(x)))
φ′( 1

n

∑n
i=1 ϕ(F̄Xi

(x)))

− F−1(γ(x))

(3.2.13)

In Theorem 3.2.1, for 0 ≤ α ≤ 1 it is already proved that F̄−1(γ(x)) ≥ x.

Now, if xr(x) is decreasing in x, then xr(x) ≥ F̄−1(γ(x))r
(
F̄−1(γ(x))

)
, that is

xr(x)

r(F̄−1(γ(x)))
≥ F̄−1(γ(x)). (3.2.14)

According to the equations (3.2.6) and (3.2.7) of Theorem (3.2.1), one can conclude that

α
n

∑n
i=1−

(
φ(ϕ(F̄Xi

(x)))
φ′(ϕ(F̄Xi

(x)))

)
1

1−ᾱiF̄ (x)(
α+ ᾱφ

(
1
n

∑n
i=1 ϕ

(
F̄Xi(x)

)))(
− φ( 1

n

∑n
i=1 ϕ(F̄Xi

(x)))
φ′( 1

n

∑n
i=1 ϕ(F̄Xi

(x)))

) ≥ 1. (3.2.15)
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Using (3.2.14) and (3.2.15), (3.2.13) gives

x2
d

dx

(
G−1

1 (F1(x))

x

)
≥ 0.

So,
G−1

1 (F1(x))
x is increasing in x ≥ 0. Hence Xn:n ≤⋆ Yn:n.

Remark 3.2.4. The expression xr(x) is known as the proportional failure rate (also known

as the generalized failure rate) Righter et al. [116]. The concerned rv is said to have the

Decreasing Proportional Failure Rate (DPFR) property if xr(x) is decreasing in x, and in

that case, domain of the rv will be (0,∞).

It is of interest to know whether as in case of Theorem 3.2.3 it is possible to establish star

ordering for α ≥ 1 when xr(x) is decreasing or increasing. The following counterexample

shows that with these conditions, it is not possible establish star ordering even in case of

samples from independent rvs.

Counterexample 3.2.2. Consider maximums of two samples, one having four independent

and heterogeneous rvs, and another having four independent and homogeneous rvs. Consider

α1 = 0.75, α2 = 0.95, α3 = 23, α4 = 43, α = (α1 + α2 + α3 + α4)/4 = 16.925, and

F̄ (x) = (1 + x
13)

−0.9, so that xr(x) is increasing. Therefore

G−1
1 (F1(x)) = F̄−1


(∏4

i=1 F̄Xi(x)
)1/4

α+ ᾱ
(∏4

i=1 F̄Xi(x)
)1/4

 .

G−1
1 (F1(x))/x plotted by substituting x = t/(1− t), so that for x ∈ [0,∞), t ∈ [0, 1). From

the Figure 3.2(a), it is observed that G−1
1 (F1(x))/x is neither increasing nor decreasing.

Next consider α1 = 2, α2 = 33, α3 = 63, α4 = 183, α = (α1+α2+α3+α4)/4 = 281/4, and

F̄ (x) = 1
x2 , x ∈ [1,∞) so that xr(x) is decreasing. G−1

1 (F1(x))/x plotted by substituting

x = 1/t, so that for x ∈ [1,∞), implies t ∈ [0, 1). From the Figure 3.2(b), it is observed

that G−1
1 (F1(x))/x is neither increasing nor decreasing.

The following theorem compares the minimum of two samples, both from n dependent

homogeneous rvs following the PO model and with different Archimedean copulas. The

proof can be done similiar to the theorem Theorem 3.2.3, and hence omitted.

Theorem 3.2.4. Suppose X ∼ PO(F̄ , α1, φ1) and Y ∼ PO(F̄ , α1, φ2). Then X1:n ≤∗ Y1:n

if xr(x) is decreasing, φ2(ϕ2(w)/n)/φ1(ϕ1(w)/n) is increasing in w, and 0 ≤ α ≤ 1.



3.3. ORDERING FOR SAMPLE MAXIMUM 63
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Figure 3.2: Plot of G−1
1 (F1(x))/x for (a) x = t/(1 − t) when xr(x) is increasing and (b)

x = 1/t when xr(x) is decreasing, t ∈ [0, 1]

The following corollary follows from Theorems 3.2.3 and 3.2.4.

Corollary 3.2.2. Suppose X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ , α1, φ2). Then for α ≥
1
n

∑n
i=1 αi, X1:n ≤∗ Y1:n if xr(x) is decreasing, φ1 is log-convex, φ1

φ′
1
is concave, φ2(ϕ2(w)/n)

φ1(ϕ1(w)/n)

is increasing in w and 0 ≤ α ≤ 1.

3.3 Ordering for sample maximum

This section stochastically compare the maximums of two dependent samples, one formed

from heterogeneous rvs and another from homogeneous rvs. The distribution function of

Xi and Y1 are FXi(x) =
F (x)

1−ᾱiF̄ (x)
and FY1(x) =

F (x)
1−ᾱF̄ (x)

, respectively, where ᾱi = 1−αi for

i = 1, 2, . . . , n, and ᾱ = 1− α. The cdfs of Xn:n and Yn:n are given by (3.3.1) and

FYn:n(x) = φ (nϕ (FY1(x))) , (3.3.1)

where ϕ(u) = φ−1(u), u ∈ (0, 1].

The following theorem compare the maximums of two samples, one from n dependent

heterogeneous rvs following the PO model and another from n dependent homogeneous rvs

following the PO model, in terms of dispersive order when the baseline distribution function

is increasing rhr (IRHR). A distribution F is said to be IHRH distribution if the rhr r̃(·) is
increasing. If r̃(·) is decreasing, then F is called decreasing rhr (DRHR) distribution.

Theorem 3.3.1. Suppose X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ , α1, φ). Then for α ≥
1
n

∑n
i=1 αi we have Xn:n ≥disp Yn:n if the baseline distribution is IRHR, φ is log-concave

and φ
φ′ is convex.
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Proof: Equations (??) and (3.3.1),implies the cdfs of Xn:n and Yn:n are

F2(x) = φ

(
n∑

i=1

ϕ (FXi(x))

)

and

G2(x) = φ (nϕ (FY1(x)))

respectively, where FXi(x) =
F (x)

αi+ᾱiF (x) and FY1(x) =
F (x)

α+ᾱF (x) , x ∈ R. The respective pdfs

of Xn:n and Yn:n are given by

f2(x) = φ′

(
n∑

i=1

ϕ (FXi(x))

)
n∑

i=1

φ (ϕ (FXi(x)))

φ′ (ϕ (FXi(x)))

αir̃(x)

αi + ᾱiF (x)
, (3.3.2)

g2(x) = nφ′ (nϕ (FY1(x))) ·
αr̃(x)

α+ ᾱF (x)
· φ (ϕ (FY1(x)))

φ′ (ϕ (FY1(x)))
,

Therefore,

G−1
2 (x) = F−1

(
αφ
(
1
nϕ(x)

)
1− ᾱφ

(
1
nϕ(x)

)) ,
and hence

G−1
2 (F2(x)) = F−1

(
αφ
(
1
n

∑n
i=1 ϕ (FXi(x))

)
1− ᾱφ

(
1
n

∑n
i=1 ϕ (FXi(x))

)) = F−1(β(x)), (3.3.3)

where β(x) =
αφ( 1

n

∑n
i=1 ϕ(FXi

(x)))
1−ᾱφ( 1

n

∑n
i=1 ϕ(FXi

(x)))
.

Now

g2(G
−1
2 (F2(x))) = nφ′

(
nϕ

(
β(x)

α+ ᾱβ(x)

))
·
αr̃
(
F̄−1(β(x))

)
α+ ᾱβ(x)

·
φ
(
ϕ
(

β(x)
α+ᾱβ(x)

))
φ′
(
ϕ
(

β(x)
α+ᾱβ(x)

))
= nφ′

(
n∑

i=1

ϕ (FXi(x))

)
·
φ
(
1
n

∑n
i=1 ϕ (FXi(x))

)
φ′
(
1
n

∑n
i=1 ϕ (FXi(x))

)
×

(
1− ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

))
· r̃
(
F̄−1(β(x))

)
. (3.3.4)

Note that αi/(αi + ᾱiF (x)) is increasing and concave in αi. It can be seen that ϕ (FXi(x))

is increasing and concave in αi if φ is log-concave. First consider ᾱ ≤ 0. Now for α ≥
1
n

∑n
i=1 αi, the concavity and increasing property of ϕ (FXi(x)) with respect to αi, implies
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ϕ (FY1(x)) ≥ 1

n

n∑
i=1

ϕ (FXi(x)) (3.3.5)

=⇒ 1− ᾱFY1(x) ≤ 1− ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

)
(3.3.6)

=⇒ 1− 1

1− ᾱφ
(
1
n

∑n
i=1 ϕ (FXi(x))

) ≥ 1− 1

1− ᾱFY1(x)

=⇒
αφ
(
1
n

∑n
i=1 ϕ (FXi(x))

)
1− ᾱφ

(
1
n

∑n
i=1 ϕ (FXi(x))

) ≥ αFY1(x)

1− ᾱFY1(x)

=⇒ β(x) ≥ F (x).

Similarly for ᾱ ≥ 0, (3.3.5) implies β(x) ≥ F (x). Thus F−1(β(x)) ≥ x. Now if r̃(·) is

increasing then

r̃(F−1(β(x))) ≥ r̃(x). (3.3.7)

Next consider ᾱ ≥ 0. As φ(x) is decreasing and convex, therefore

φ

(
1

n

n∑
i=1

ϕ (FXi(x))

)
≤ 1

n

n∑
i=1

φ (ϕ (FXi(x)))

=⇒ ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

)
≤ ᾱ

1

n

n∑
i=1

F (x)

αi + ᾱiF (x)
(3.3.8)

=
1

n

n∑
i=1

ᾱi ·
1

n

n∑
i=1

F (x)

αi + ᾱiF (x)

≤ 1

n

n∑
i=1

ᾱiF (x)

αi + ᾱiF (x)

=⇒ 1− ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

)
≥ 1− 1

n

n∑
i=1

ᾱiF (x)

αi + ᾱiF (x)

=
1

n

n∑
i=1

αi

αi + ᾱiF (x)

Now for ᾱ ≤ 0, (3.3.6) implies

1− ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

)
≥ α

α+ ᾱF (x)
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≥ 1

n

n∑
i=1

αi

αi + ᾱiF (x)
, (3.3.9)

where the second inequality holds from the fact that αi
αi+ᾱiF (x) is increasing and concave in

αi.

If φ
φ′ is convex, then

−
φ
(
1
n

∑n
i=1 ϕ (FXi(x))

)
φ′
(
1
n

∑n
i=1 ϕ (FXi(x))

) ≥ − 1

n

n∑
i=1

φ (ϕ (FXi(x)))

φ′ (ϕ (FXi(x)))
.

consequently (
1− ᾱφ

(
1

n

n∑
i=1

ϕ (FXi(x))

))(
−
φ
(
1
n

∑n
i=1 ϕ (FXi(x))

)
φ′
(
1
n

∑n
i=1 ϕ (FXi(x))

))

≥ 1

n

n∑
i=1

(
− φ (ϕ (FXi(x)))

φ′ (ϕ (FXi(x)))

)
1

n

n∑
i=1

αi

αi + ᾱiF (x)
(3.3.10)

If φ is log-concave, then − φ(x)
φ′(x) is decreasing in x, so that − φ(ϕ(FXi

(x)))
φ′(ϕ(FXi

(x)))
is decreasing in αi

and αi
αi+ᾱiF (x) increasing in αi. So by Chebyshev’s inequality from Lemma 1.2.9, it follows

1

n

n∑
i=1

(
− φ (ϕ (FXi(x)))

φ′ (ϕ (FXi(x)))

)
· 1
n

n∑
i=1

αi

αi + ᾱiF (x)
≥ 1

n

n∑
i=1

(
− φ (ϕ (FXi(x)))

φ′ (ϕ (FXi(x)))

)
αi

αi + ᾱiF (x)

(3.3.11)

From (3.3.7), (3.3.10), (3.3.11) and the fact that the common factor φ′ (
∑n

i=1 ϕ (FXi(x)))

in (3.3.2) and (3.3.4) is negative, it implies g2(G
−1
2 (F2(x))) ≥ f2(x) for all x ∈ R. Hence

the theorem follows.

Remark 3.3.1. A rv having support [0,∞) cannot be IRHR, however, a distribution

function with finite support or the support of the form (−∞, b], 0 ≤ b <∞, can be IRHR.

For example, the following distributions are IRHR:

(i) F (x) = e−(−λx)β , λ > 0, β ≤ 1 for x ∈ (−∞, 0].

(ii) F (x) =
(
bq−µ+x(1−q)

b−µ

)q/(1−q)
, q > 1 for x ∈ (−∞, b].

It is to be also noted that Archimedean copula with generator φ(x) = e−θxγ
; for θ > 0, γ ≥

1. satisfies the condition that φ is log-concave and φ
φ′ is convex.

It is of interest to know whether in case of Theorem 3.3.1 one can establish dispersive

ordering when baseline distribution is DRHR. The following counterexample shows that
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with these conditions, dispersive ordering cannot establish even in case of samples from

independent rvs .

Counterexample 3.3.1. Consider maximums of two samples, one having four independent

and heterogeneous rvs, and another having four independent and homogeneous rvs with

respective cdfs F2(x) =
∏r

i=1

(
F (x)

1−ᾱiF̄ (x)

)
and G2(x) =

(
F (x)

1−ᾱF̄ (x)

)4
, where α1 = 0.9, α2 =

0.95, α3 = 27, α4 = 37, α = (α1 + α2 + α3 + α4)/4 = 16.4625, and F (x) = 1− e−(5x)0.5, so

that the baseline distribution is DRHR. Now

f2(x) =

(
4∑

i=1

αir̃(x)

αi + ᾱiF (x)

)
4∏

i=1

(
F (x)

αi + ᾱiF (x)

)
and

g2(G
−1
2 (F2(x))) = 4

(
4∏

i=1

FXi(x)

)(
1− ᾱ

4∏
i=1

(FXi(x))
1/n

)
r̃(F−1(β(x))),

where β(x) =
α(

∏4
i=1 FXi

(x))
1/4

1−ᾱ(
∏4

i=1 FXi
(x))

1/4 .

Now g2(G
−1
2 (F2(x)))− f2(x) plotted by substituting x = t/(1− t), where x ∈ [0,∞), implies

t ∈ [0, 1), as shown in Figure 3.3. It is observed from Figure 3.3 that g2(G
−1
2 (F2(x))) −

f2(x) ≰ 0 and also g2(G
−1
2 (F2(x)))− f2(x) ≰ 0.

 

0.2 0.4 0.6 0.8 1.0

0.005

0.005
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0.015

Figure 3.3: Plot of g2(G
−1
2 (F2(x))) − f2(x) for x = t/(1 − t), t ∈ [0, 1] when baseline

distribution is DRHR.

The following theorem compare the maximums of two samples, both from n dependent

homogeneous rvs following the PO model and with different Archimedean copulas.
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Theorem 3.3.2. Suppose X ∼ PO(F̄ , α1, φ1) and Y ∼ PO(F̄ , α1, φ2). Then Xn:n ≥disp

Yn:n if baseline distribution is IRHR, φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w, and

α ≥ 1.

Proof: The cdfs of Xn:n and Yn:n are

G1(x) = φ1 (nϕ1 (FX1(x)))

and

G2(x) = φ2 (nϕ2 (FX1(x))) ,

respectively, where FX1(x) =
F (x)

α+ᾱF (x) , x ∈ R. Therefore the pdfs of Xn:n and Yn:n are

g1(x) = nφ′
1 (nϕ1 (FX1(x))) ·

αr̃(x)

α+ ᾱF (x)
· φ1 (ϕ1 (FX1(x)))

φ′
1 (ϕ1 (FX1(x)))

, (3.3.12)

and

g2(x) = nφ′
2 (nϕ2 (FX1(x))) ·

αr̃(x)

α+ ᾱF (x)
· φ2 (ϕ2 (FX1(x)))

φ′
2 (ϕ2 (FX1(x)))

,

respectively. Hence

G−1
2 (G1(x)) = F−1

(
αφ2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
1− ᾱφ2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)) = F−1(ζ(x)) (say),

g2(G
−1
2 (G1(x))) = nφ′

2 (ϕ2 (φ1 (nϕ1 (FX1(x))))) ·
φ2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
φ′
2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
×r̃
(
F−1(ζ(x))

)(
1− ᾱφ2

(
1

n
ϕ2 (φ1 (nϕ1 (FX1(x))))

))
. (3.3.13)

From Since φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w, using Lemma 3.9 of Fang et al.

[43], it follows that

φ2 (nϕ2 (FX1(x))) ≤ φ1 (nϕ1 (FX1(x))) ,

=⇒ FX1(x) ≤ φ2

(
1

n
ϕ2 (φ1 (nϕ1 (FX1(x))))

)
.

=⇒ F (x) ≤ ζ(x)

=⇒ F−1(ζ(x)) ≥ x.

Thus if r̃(·) is increasing, then
r̃(F−1(ζ(x))) ≥ r̃(x). (3.3.14)
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Also for ᾱ ≤ 0, φ2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
≥ FX1(x) implies

1− ᾱφ2

(
1

n
ϕ2 (φ1 (nϕ1 (FX1(x))))

)
≥ α

α+ ᾱF̄ (x)
. (3.3.15)

Again from Lemma 3.9 of Fang et al. [43] by substituting

w = φ1 (nϕ1 (FX1(x))) in φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n), gives

φ′
2 (ϕ2 (φ1 (nϕ1 (FX1(x)))))φ2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
φ′
2

(
1
nϕ2 (φ1 (nϕ1 (FX1(x))))

)
≥ φ′

1 (nϕ1 (FX1(x)))φ1 (ϕ1 (FX1(x)))

φ′
1 (ϕ1 (FX1(x)))

. (3.3.16)

Now using (3.3.14), (3.3.15) and (3.3.16), (3.3.13) and (3.3.12) implies g2(G
−1
2 (G1(x))) ≥

g1(x) for all x ∈ R. This completes the proof.

Remark 3.3.2. It is to be noted that Archimedean copula with generators as given in (i)

and (ii) below satisfy the condition that φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w for

all n ∈ Z,

(i) φ1(x) = exp
(
(1−ex)

θ1

)
, θ1 ∈ (0, 1) and φ2(x) = exp

(
1− (1 + x)1/θ2

)
, θ2 ∈ (0,∞).

Therefore, for any n ∈ Z

d

dx
(φ1(ϕ1(x)/n)) =

exp
(
1− (1− θ1log(x))

1/n
)
(1− θ1log(x))

−1+1/n

nx

is non-negative. Which implies that φ1(ϕ1(x)/n) is increasing in x. Again for any

n ∈ Z,

d

dx
(φ2(ϕ2(x)/n)) = − exp

(
1−

(
1 + n− (1− log(x))θ2

n

)1/θ2
)

×

(
1+n−(1−log(x))θ2

n

)−1+ 1
θ2 (1− log(x))−1+θ2

nx
.

Which implies that φ2(ϕ2(x)/n) is decreasing in x. Now it can be easily conclude that

φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w for all n ∈ Z.

(ii) Suppose φ1(x) = eθ1(1−ex) and φ2(x) = eθ2(1−ex), for 0 < θ2 < θ1 < 1. Then for any
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n ∈ Z,

d

dx
(φ1(ϕ1(x)/n)/φ2(ϕ2(x)/n)) =

[((
1− log(x)

θ1

)−1+ 1
n

−
(
1− log(x)

θ2

)−1+ 1
n

)

× exp

((θ1 − θ2))−
((

1− log(x)
θ1

)−1+ 1
n −

(
1− log(x)

θ2

)−1+ 1
n

)
nx


 ,

which is non-negative, since for 0 < θ2 < θ1 < 1, therefore

(
1− log(x)

θ1

)−1+ 1
n

≥
(
1− log(x)

θ2

)−1+ 1
n

. ∀x ∈ [0, 1].

The following corollary follows from Theorems 3.3.1 and 3.3.2. This corollary compares

the minimum of two samples, one from from n dependent heterogeneous rvs following the

PO model and another from n dependent homogeneous rvs following the PO model and

with different Archimedean copulas.

Corollary 3.3.1. Suppose X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ , α1, φ2). Then for α ≥
1
n

∑n
i=1 αi, Xn:n ≥disp Yn:n if the baseline distribution is IRHR, φ1 is log-concave, φ1

φ′
1
is

convex, φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w, and α ≥ 1.

Remark 3.3.3. It is to be noted that Archimedean copula with generators φ1(x) =

eθ1x
γ
, θ1 ∈ (0, 1), γ ∈ (1,∞) and φ2(x) = e(1−(1+x)1/θ2 ), θ2 ∈ (0,∞) satisfied the condi-

tions of the corollary(3.3.1).

The following theorem compares the minimum of two samples, one from n dependent

heterogeneous rvs following the PO model and another from n dependent homogeneous rvs

following the PO model, in terms of star order.

Theorem 3.3.3. Suppose X ∼ PO(F̄ ,α, φ) and Y ∼ PO(F̄ , α1, φ). Then for α ≥
1
n

∑n
i=1 αi, Xn:n ≥∗ Yn:n if xr̃(x) is increasing in x, φ is log-concave, φ

φ′ is convex.

Proof: Equations (3.3.2), (3.3.3) and (3.3.4), implies

x2
d

dx

(
G−1

2 (F2(x))

x

)
= x

d

dx

(
G−1

2 (F2(x))
)
−G−1

2 (F2(x))
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= x
f2(x)

g2
(
G−1

2 (F2(x))
) −G−1

2 (F2(x))

=
xr̃(x) 1n

∑n
i=1

φ(ϕ(FXi
(x)))

φ′(ϕ(FXi
(x)))

αi
αi+ᾱiF (x)

r̃
(
F̄−1(β(x))

) φ( 1
n

∑n
i=1 ϕ(FXi

(x)))
φ′( 1

n

∑n
i=1 ϕ(FXi

(x)))

(
1− ᾱφ

(
1
n

∑n
i=1 ϕ (FXi(x))

)) − F−1(β(x))

(3.3.17)

In Theorem 3.3.1, it’s already proved that

F−1(β(x)) ≥ x. (3.3.18)

Now, if xr̃(x) is increasing in x, then from (3.3.18), xr̃(x) ≤ F−1(β(x))r̃(F−1(β(x))), that

is

xr̃(x)

r̃(F−1(β(x)))
≤ F−1(β(x)). (3.3.19)

According to the equations (3.3.10) and (3.3.11) of Theorem 3.3.2, gives

1
n

∑n
i=1

(
− φ(ϕ(FXi

(x)))
φ′(ϕ(FXi

(x)))

)
αi

αi+ᾱiF (x)(
1− ᾱφ

(
1
n

∑n
i=1 ϕ (FXi(x))

))(
− φ( 1

n

∑n
i=1 ϕ(FXi

(x)))
φ′( 1

n

∑n
i=1 ϕ(FXi

(x)))

) ≤ 1. (3.3.20)

Using (3.3.19) and (3.3.20), (3.3.17) implies

x2
d

dx

(
G−1

2 (F2(x))

x

)
≤ 0. (3.3.21)

So,
G−1

2 (F2(x))
x is decreasing in x ≥ 0. Hence Xn:n ≥⋆ Yn:n. The following counterexample

shows that one cannot establish star ordering as in case of Theorem 3.3.3 when xr̃(x) is

decreasing or increasing even in case of samples from independent rvs.

Counterexample 3.3.2. Consider maximums of two samples, one having four independent

and heterogeneous rvs, and another having four independent and homogeneous rvs. Consider

α1 = 5, α2 = 15, α3 = 25, α4 = 45, α = (α1 + α2 + α3 + α4)/4 = 45/2, and F (x) =

1−(1+x)−0.6, so that xr̃(x) is decreasing. G−1
2 (F2(x))/x plotted by substituting x = t/(1−t),

so that for x ∈ [0,∞), implies t ∈ [0, 1). Therefore
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G−1
2 (F2(x)) = F−1

 α
(∏4

i=1 FXi(x)
)1/4

1− ᾱ
(∏4

i=1 FXi(x)
)1/4

 .

From the Figure 3.4, it is ovserved that G−1
2 (F2(x))/x is neither increasing nor decreas-

ing.

                    0.2 0.4 0.6 0.8 1.0
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1.36

1.38

Figure 3.4: Plot of G−1
2 (F2(x))/x for x = t/(1− t), t ∈ [0, 1]

The following theorem compare the minimums of two samples, both from n dependent

homogeneous rvs following the PO model and with different Archimedean copulas.

Theorem 3.3.4. Suppose X ∼ PO(F̄ , α1, φ1) and Y ∼ PO(F̄ , α1, φ2). Then for α ≥
1
n

∑n
i=1 αi, Xn:n ≥∗ Yn:n if xr̃(x) is increasing in x, φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing

in w, and α ≥ 1.

Proof: The proof can be done using the results of proof of Theorem 3.3.2 in the same

line as of Theorem 3.3.3, and hence omitted.

The following corollary follows from Theorems 3.3.3 and 3.3.4.

Corollary 3.3.2. Suppose X ∼ PO(F̄ ,α, φ1) and Y ∼ PO(F̄ , α1, φ2).Then for α ≥
1
n

∑n
i=1 αi, Xn:n ≥∗ Yn:n if xr̃(x) is increasing in x, φ1 is log-concave,

φ′
1

φ′ is convex,

φ1(ϕ1(w)/n)/φ2(ϕ2(w)/n) is increasing in w, and α ≥ 1.
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Figure 3.5: Plot of g1(G
−1
1 (F1(x))) − f1(x) for x = t/(1 − t), t ∈ [0, 1] when baseline

distribution is DFR.

3.4 Examples

This section demonstrate some of the proposed results numerically. The first example

illustrates the result of Theorem 3.2.1.

Example 3.4.1. Consider the minimums of two samples, one from three dependent and

heterogeneous rvs, and another from three dependent and homogeneous rvs, with respective

cdfs F1(x) = 1 − φ
(∑3

i=1 ϕ
(

αiF̄ (x)
1−ᾱiF̄ (x)

))
and G1(x) = 1 − φ

(
3ϕ
(

αF̄ (x)
1−ᾱF̄ (x)

))
, where α1 =

0.34, α2 = 0.65, α3 = 1.23, α = 0.88 > 0.74 = (α1 + α2 + α3)/3, and F̄ (x) = e−x0.3
, so that

the baseline distribution is DFR. Let us consider φ(x) = a/ log(x+ ea), a ∈ (0,∞) (4.2.19,

Nelsen [112]) which satisfies all the conditions of Theorem 3.2.1. For this example let us

consider a = 5. g1(G
−1
1 (F1(x))) − f1(x) plotted by substituting x = t/(1 − t), so that for

x ∈ [0,∞), implies t ∈ [0, 1). The plot is shown in Figure 3.5 and it is observed from the

plot that g1(G
−1
1 (F1(x))) ≤ f1(x). Thus X1:3 ≤disp Y1:3.

The following example illustrates the result of Theorem 3.2.3.

Example 3.4.2. Consider the minimums of two samples, one from four dependent and

heterogeneous rvs, and another from four dependent and homogeneous rvs. Consider α1 =

0.24, α2 = 0.45, α3 = 0.57, α3 = 0.57, α4 = 1.23, α = 0.73 > (α1+α2+α3+α4)/4 = 0.6225,

and F̄ (x) = 1/
√
x, x ∈ [1,∞) so that xr(x) is constant. Consider φ(x) = a/ log(x+ea), a ∈

(0,∞) which satisfies all the conditions of Theorem 3.2.3. For this example let us consider

a = 7.
(
G−1

1 (F1(x))/x
)′

plotted by substituting x = 1/t, so that for x ∈ [1,∞), implies
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t ∈ (0, 1], as shown in Figure 3.6. From the figure, it is observed that G−1
1 (F1(x))/x is

increasing. Thus X1:4 ≤⋆ Y1:4.

                 0.2 0.4 0.6 0.8 1.0
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Figure 3.6: Plot of
(
G−1

1 (F1(x))/x
)′

for x = 1/t, t ∈ [0, 1]when xr(x) is decreasing.

The following example illustrates the result of Theorem 3.3.3.
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Figure 3.7: Plot of
(
G−1

2 (F2(x))/x
)′
, x ∈ [0, 1]

Example 3.4.3. Consider the maximums of two samples, one from three dependent and

heterogeneous rvs, and another from three dependent and homogeneous rvs. Consider

α1 = 0.5, α2 = 0.8, α3 = 1.7, α = 1.6 > (α1 +α2 +α3)/3 = 1, and F (x) = (ex − 1)/(e− 1),
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x ∈ [0, 1] so that xr̃(x) is decreasing. Let us consider the Archimedean copula with generator

φ(x) = eθx
γ
, θ ∈ (0,∞), γ ∈ [1,∞) which satisfies all the conditions of Theorem 3.3.3.(

G−1
2 (F2(x))/x

)′
plotted in Figure 3.7 for θ = 2, γ = 2.. It is observed from the figure that

G−1
2 (F2(x))/x is decreasing. Thus X3:3 ≥⋆ Y3:3.





Chapter 4

Stochastic comparisons of finite

mixture models 1

4.1 Introduction

Finite mixture models appear naturally in many areas of reliability theory, survival

analysis, and risk theory. In literature, some researchers have studied the properties and

applications of finite mixture model for the random samples drawn from a finite number of

heterogeneous populations. Consider an absolutely continuous rv X having pdf fX(.), cdf

FX(.), sf F̄X(.), hr function rX(.) and rhr function r̃X(.). Formally, these functions describe

a homogeneous, infinite population of items meaning that if we draw an item at random

from a population it’s lifetime will be characterized by these functions.

However, if we have different infinite populations (to be called now subpopulations)

and draw an item with certain probabilities from each subpopulation, this item will be

already described by the corresponding mixed characteristics and the whole population will

be heterogeneous. In practice, populations are finite and, for instance, the user draws items

either from homogeneous or heterogeneous populations.

Now, we briefly discuss some practical situations where the finite mixture models play

a significance role.

• Consider a component having cdf F that should operate in a specific regime or level

of stress, e.g., voltage, temperature, compression and tension. However, the future

regime (stress) is uncertain and its probability is given by a discrete distribution

1One paper based on this chapter has appeared under:

1. On stochastic comparisons of finite mixture models. Stochastic Models, 38(2), 190-213, 2022.

77
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p = (p1, p2, . . . , pn) (Hazra and Finkelstein [59]). Each regime results in a cdf Fαi as

function of the baseline cdf F through a parameter αi(> 0) which defines relationship

with the baseline distribution for regime i, i = 1, . . . , n. Then mixture distribution

gives a modeling of the stress influence on reliability characteristics of the component.

• There is a considerable number of research works on portfolio construction/optimization,

where the stock/asset returns are modeled as a mixture of rvs. Recently, Kocuk and

Cornuéjols [80] have analyzed the stocks in Standard & Poors (S&P) 500 index over

a 30-year time span, and modeled the stock returns as a mixture of normal rvs to

grasp the randomness of the stock returns that have typically heavier left tails which

directly relates to the investment risk. In Kocuk and Cornuéjols [80] one can find

many relevant references in this regard.

• For a coherent system having n i.i.d. components, the sf can be expressed as a finite

mixture of sfs of k-out-of-n systems (Balakrishnan et al. [6], Samaniego [118]). If T

is the lifetime of the coherent system, then P (T > t) =
∑n

k=1 pkP (Xk:n > t), where

Xk:n is kth order statistic from the random sample X1, . . . , Xn, and the probabilities

pk, k = 1, . . . , n, are the elements of the signature vector of the system.

• Usually, there is more than one reason (Amini-Seresht and Zhang [2]) causing the

failures of a component or system. Then, the overall distribution can be modelled as

a finite mixture of the failure distribution of the component for each reason.

Motivated by these facts in this chapter, we consider finite mixtures of rvs are drawn from

one of the very important parental family of distributions, namely, proportional odds (PO),

proportional hazards (PHR) and proportional reversed hazards (PRH).

First it is considered a finite mixture of lifetimes of n different subpopulationsX1, . . . , Xn

where each Xi, i = 1, 2, .., n following the PO model with some baseline sf F̄ and proportion-

ality constant (odds ratio) αi, denoted as Xi ∼ PO(F̄ , αi), i = 1, . . . , n. Let Mn;α,p be a

random variable representing the lifetime of an item randomly selected from the finite mix-

ture of Fα1 , Fα2 , .., Fαn where α = (α1, . . . , αn) is the odds ratio vector, and p = (p1, . . . , pn),

pi (> 0) is the mixture proportion (weight) such as
∑n

i=1 pi = 1. Stochastic comparisons

between two such finite mixture models for the case when both, the mixing proportion

vector p and the odds ratio vector α are different for the two variants under comparison

established. Next finite mixture of rvs following the PHR (PRH) model with some baseline

distribution function F , in case of multiple-outlier model are considered. Then stochastic

comparisons between two such finite mixture models with different mixing proportions are

made.

The rest of the chapter is organized as follows. In Section 4.2, we investigate stochastic com-

parisons between two finite mixtures where corresponding rvs follow the PO model, PHR

model or PRH model. In Section 4.3, we illustrate the theoretical results with numerical
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examples.

4.2 Stochastic comparisons of two finite mixtures

In this section, we compare two finite mixtures having different mixing distributions as

well as with different vectors of mixture proportion in the sense of some stochastic orders.

Throughout this chapter it is assumed that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are

two sets of independent rvs.

4.2.1 Finite mixtures under the PO model

Let Xi ∼ PO(F̄ , αi) and Yi ∼ PO(F̄ , βi) with αi > 0 and βi > 0, for all i = 1, 2, . . . , n.

Suppose Mn;α,p and Mn;β,q are rvs representing the finite mixtures of Xi’s and Yi’s re-

spectively where i = 1, 2, . . . , n, α = (α1, . . . , αn) and β = (β1, . . . , βn) are the odds ratio

vectors, and p = (p1, . . . , pn) and q = (q1, . . . , qn) are the vectors of mixture proportion

(weights) for the two variants under comparison. We establish the conditions under which

one mixture dominates the other in some stochastic sense.

The following theorem provides sufficient conditions on the odds ratio vectors and the mix-

ing proportion vectors under which the finite mixture Mn;α,p is smaller than the another

mixture Mn;β,q with respect to the usual stochastic order.

Theorem 4.2.1. Let Mn;α,p and Mn;β,q be two finite mixtures. Then α1 α2 . . . αn

p1 p2 . . . pn

 >w

 β1 β2 . . . βn

q1 q2 . . . qn

⇒Mn;α,p ≤st Mn;β,q,

provided (α,p) ∈ Sn, (β,p) ∈ Sn and (β, q) ∈ Sn.

Proof: Here F̄Mn;α,p(t) =
∑n

1 piF̄Xi(t), where F̄Xi(t) =
αiF̄ (t)

1−ᾱiF̄ (t)
= F̄αi(t) (say). Note

that F̄αi is increasing and concave in αi. Let ϕ(α,p) = −F̄Mn;α,p(t). We have

∂ϕ(α,p)

∂αi
= −pi

∂F̄αi(t)

∂αi
≤ 0.

Now, for 1 ≤ i < j ≤ n,

∂ϕ(α,p)

∂αi
− ∂ϕ(α,p)

∂αj
= pj

∂F̄αj (t)

∂αj
− pi

∂F̄αi(t)

∂αi

≤ (≥) 0,
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if αi ≤ (resp. ≥) αj and pi ≥ (resp. ≤) pj . Thus we have ∂ϕ(α,p)
∂αk

is non-positive increasing

(resp. decreasing) function in αk, k = 1, 2, . . . , n for α ∈ E+
n (resp. ∈ D+

n ). So from Theorem

1 of Haidari et al. [57] (see also Theorem A.4 of Marshall et al. [96]), we have α
w
≥ β ⇒

ϕ(α,p) ≥ ϕ(β,p), whenever (α,p) ∈ Sn. Thus we have if (α,p) ∈ Sn, then

α
w
≥ β ⇒ F̄Mn;α,p(t) ≤ F̄Mn;β,p

(t). (4.2.1)

Now, let ϕ(β,p) = −F̄Mn;β,p
(t) =

∑n
1 piF̄Yi(t), where F̄Yi(t) = βiF̄ (t)

1−β̄iF̄ (t)
= F̄βi

(say). We

have ∂ϕ(β,p)
∂pi

= −F̄βi
≤ 0. Now, for 1 ≤ i < j ≤ n,

∂ϕ(β,p)

∂pi
− ∂ϕ(β,p)

∂pj
= F̄βj

(t)− F̄βi
(t) ≥ (≤) 0,

if βi ≤ (resp. ≥) βj . So from Theorem 1 of Haidari et al. [57], we have p
w
≥ q ⇒ ϕ(β,p) ≥

ϕ(β,q), whenever (β,p) ∈ Sn. Thus, if (β,p) ∈ Sn, we have

p
w
≥ q ⇒ F̄Mn;β,p

(t) ≤ F̄Mn;β,q
(t). (4.2.2)

Then the theorem follows from combination of (4.2.1) and (4.2.2).

Note: The result in Theorem 4.2.1 will also hold true if the condition (β, p) ∈ Sn is replaced

by (α, q) ∈ Sn with all the other conditions remaining the same.

A counterexample is provided to show that the ordering result in Theorem 4.2.1 does

not holds if one of the sufficient conditions is dropped.

Counterexample 4.2.1. Consider finite mixtures M3;α,p and M3;β,q, where α = (0.55

, 0.85, 2.5), β = (0.15, 2.5, 3.5), p = (0.55, 0.2, 0.25) and q = (0.45, 0.4, 0.15) so that the

condition of row majorization in Theorem 4.2.1 is not satisfied. We take F̄ (x) = exp(−ax)b

with a = 2 and b = 0.7. We depict F̄M3;α,p(x) and F̄M3;β,q
(x) in Figure 4.1 by substituting

x = t/(1− t), so that for x ∈ [0,∞), we have t ∈ [0, 1). From the figure it is observed that

the stochastic ordering result in Theorem 4.2.1 is not attained.

Theorem 4.2.2. Let M2;α,p and M2;β,q be two finite mixtures. Then α1 α2

p1 p2

 >row

 β1 β2

q1 q2

⇒M2;α,p ≤hr M2;β,q,

provided (α1, α2), (β1, β2) ∈ E+
2 (D+

2 ), (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ), p1α

2
1 = p2α

2
2 and q1β

2
1 =
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Figure 4.1: Plot of F̄M3;α,p(x) and F̄M3;β,q
(x) for x = t/(1− t), t ∈ [0, 1].

q2β
2
2 .

Proof: We have the hr function of M2;α,p as

rM2;α,p(t) = r(t)

∑2
i=1 piF̄αi(t)

1
1−ᾱiF̄ (t)∑2

i=1 piF̄αi(t)
. (4.2.3)

Now,

∂rM2;α,p

∂α1
=

r(t)(∑2
i=1 piF̄αi(t)

)2
[(

2∑
i=1

piF̄αi(t)

)
p1

(
F (t)F̄ (t)

(1− ᾱ1F̄ (t))2
1

1− ᾱ1F̄ (t)
−

F̄α1(t)
F̄ (t)

(1− ᾱ1F̄ (t))2

)
−

(
2∑

i=1

piF̄αi(t)
1

1− ᾱiF̄ (t)

)
p1

F (t)F̄ (t)

(1− ᾱ1F̄ (t))2

]

= Aα1,α2p1
F̄ (t)

(1− ᾱ1F̄ (t))2
[(
p1F̄α1(t) + p2F̄α2(t)

) (
Fα1(t)− F̄α1(t)

)
−(

p1F̄α1(t)Fα1(t) + p2F̄α2(t)Fα2(t)
)]

= Aα1,α2

p1F̄ (t)

(1− ᾱ1F̄ (t))2
[
−p1F̄ 2

α1
(t) + p2F̄

2
α2
(t)− 2p2F̄α1(t)F̄α2(t)

]
,

where Aα1,α2 = r(t)

(
∑2

i=1 piF̄αi (t))
2 .

∂rM2;α,p

∂α2
= Aα1,α2

p2F̄ (t)

(1− ᾱ2F̄ (t))2
[
−p2F̄ 2

α2
(t) + p1F̄

2
α1
(t)− 2p1F̄α1(t)F̄α2(t)

]
.
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Then

∂rM2;α,p

∂α1
−
∂rM2;α,p

∂α2

sign
=

(
−p1F̄ 2

α1
(t) + p2F̄

2
α2
(t)
)( p1

(1− ᾱ1F̄ (t))2
+

p2
(1− ᾱ2F̄ (t))2

)
−2p1p2F̄α1F̄α2

(
1

(1− ᾱ1F̄ (t))2
− 1

(1− ᾱ2F̄ (t))2

)
≥ (resp. ≤) 0,

if α1 ≥ (resp. ≤) α2 and p1α
2
1 = p2α

2
2. This inequality follows from the fact that 1

1−ᾱiF̄ (t)

is decreasing in αi. Thus from Theorem A.3 of Marshall et al. [96] and Lemma 3 of Hazra

et al. [60], we have

(α1, α2)
m
≥ (β1, β2) ⇒ rM2;α,p ≥ rM2;β,p

, (4.2.4)

if (α1, α2), (β1, β2) ∈ E+
2 or (α1, α2), (β1, β2) ∈ D+

2 and p1α
2
1 = p2α

2
2. Now

∂rM2;β,p

∂p1
= Aβ1,β2F̄β1(t)

[(
p1F̄β1(t) + p2F̄β2(t)

) 1

1− β̄1F̄ (t)
−(

p1F̄β1(t)
1

1− β̄1F̄ (t)
+ p2F̄β2(t)

1

1− β̄2F̄ (t)

)]
= Aβ1,β2p2F̄β1(t)F̄β2(t)

(β2 − β1)F̄ (t)

(1− β̄1F̄ (t))(1− β̄2F̄ (t))
.

Then

∂rM2;β,p

∂p1
−
∂rM2;β,p

∂p2

sign
= p2(β2 − β1)− p1(β1 − β2)

= −(β1 − β2)(p1 + p2) ≥ (resp. ≤) 0,

for β1 ≤ (resp. ≥) β2. As per our assumption, (p1, p2) ∈ D+
2 when (β1, β2) ∈ E+

2 , and

(p1, p2) ∈ E+
2 when (β1, β2) ∈ D+

2 . Thus again from Theorem A.3 of Marshall et al. [96] and

Lemma 3 of Hazra et al. [60], we have

(p1, p2)
m
≥ (q1, q2) ⇒ rM2;β,p

≥ rM2;β,q
, (4.2.5)

if (p1, p2), (q1, q2) ∈ D+
2 and (β1, β2) ∈ E+

2 or (p1, p2), (q1, q2) ∈ E+
2 and (β1, β2) ∈ D+

2 . Then

the theorem follows from combination of (4.2.4) and (4.2.5).

Next, we establish star ordering result for comparing two finite mixtures in multiple-

outlier model. The star order compares the skewness of probability distributions. The

skewness of the distribution of finite mixture play a key role in many practical scenarios.

In order to compare the skewness of the distributions of the finite mixture, it is natural to
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establish sufficient conditions for some transform orders between them to analyze the effects

of the heterogeneity among mixture proportion and the corresponding parameters on the

skewness of their distributions. With the help of star ordering results, lower bounds can be

established for the coefficient of variation of the finite mixture from a set of multiple-outlier

mixture proportion and corresponding parameters of interest. The star order is also known

as more IFRA (increasing failure rate in average) order. If one rv is smaller than another

in terms of star order, then this can be interpreted as the former rv ages faster than the

later in the sense of the star ordering. The following results show how the changes among

the mixture probabilities of finite mixture and corresponding parameters of interest affects

the skewness of the distribution of the finite mixture model.

We consider finite mixtures of n(= n1 + n2) components where n1 components are

drawn from a particular homogeneous subpopulations and rest n2 components are drawn

from another homogeneous subpopulations. Let Xi ∼ PO(F̄ , αi) such that αi = α1 for

i = 1, 2, . . . , n1 and αi = α2 for i = n1 + 1, . . . , n. Let Mn;αmo,pmo be the random

variable representing the finite mixtures of Xi’s, and pi are the corresponding mixture

proportion such that pi = p1 for i = 1, 2, . . . , n1 and pi = p2 for i = n1 + 1, . . . , n, so

that n1p1 + n2p2 = 1. Here we use the notations αmo = (α1, α1, ..., α1︸ ︷︷ ︸
n1 terms

, α2, α2, ..., α2︸ ︷︷ ︸
n2 terms

) and

pmo = (p1, p1, ..., p1︸ ︷︷ ︸
n1 terms

, p2, p2, ..., p2︸ ︷︷ ︸
n2 terms

). We use the following lemma which we derive from Saun-

ders and Moran [119] to prove the Theorem 4.2.3.

Lemma 4.2.1. [119] Let {Fa, a ∈ R+} be a class of distribution functions, such that Fa is

supported on some interval (c, d) ⊆ (0,∞) and has a density fa which does not vanish on

any subinterval of (c, d). Then Fa ≥⋆ Fb for a ≥ b, if and only if ∂Fa(x)/∂a
xfa(x)

is decreasing in

x.

The following theorem provides sufficient conditions on the odds ratio vector vectors

and the mixing proportion vectors under which the finite mixture Mn;αmo,pmo is greater

than the another mixture Mn;βmo,pmo with respect to the star order. In other words, this

theorem can be used to compare the skewness of the distributions of two finite mixtures.

Theorem 4.2.3. Let Mn;αmo,pmo and Mn;βmo,pmo be two finite mixtures with same mixture

proportion and F (x)/xr(x) is decreasing in x. If α1 ≥ β1 ≥ β2 ≥ α2, p1 ≤ p2 and

αmo
w
⪯ βmo, then Mn;αmo,pmo ≥⋆ Mn;βmo,pmo.

Proof: We have the distribution function ofMn;αmo,pmo as FMn;αmo,pmo (x) = n1p1Fα1(x)+

n2p2Fα2(x), where Fαi(x) = F (x)/(1 − ᾱiF̄ (x)), i = 1, 2. We prove the theorem using the

concept of Lemma 4.2.1. Under the conditions α1 ≥ β1 ≥ β2 ≥ α2 and αmo
w
⪯ βmo, we
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have n1α1 + n2α2 ≥ n1β1 + n2β2.

Case I: n1α1 + n2α2 = n1β1 + n2β2. Without loss of generality we consider n1α1 + n2α2 =

n1β1 + n2β2 = 1. Let α1 = α and β1 = β, where α, β ∈ [1/ (n1 + n2) , 1/n1), and we write

FMn;αmo,pmo (x) = FMα(x), just to indicate that it becomes an expression of α. Now,

∂FMα(x)

∂α
= −F (x)F̄ (x)

 n1p1
(1− ᾱF̄ (x))2

− n1p2(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
 .

Again

fMα(x) = f(x)

 n1p1α

(1− ᾱF̄ (x))2
+

n2p2

(
1−n1α

n2

)
(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
 .

Now

∂FMα(x)/∂α

xfMα(x)
= − F (x)

xr(x)

 n1p1

(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
− n1p2(1− ᾱF̄ (x))2

n1p1α
(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
+ p2(1− n1α)(1− ᾱF̄ (x))2



= − F (x)

xr(x)

n1p1α
(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
+ p2(1− n1α)

(
1− ᾱF̄ (x)

)2
n1p1

(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
− n1p2(1− ᾱF̄ (x))2


−1

= − F (x)

xr(x)

α+
p2(1− ᾱF̄ (x))2

n1p1

(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)2
− n1p2(1− ᾱF̄ (x))2


−1

= − F (x)

xr(x)

α+

(
p2
n1

)p1
(
1−

(
1−

(
1−n1α

n2

))
F̄ (x)

)2
(1− ᾱF̄ (x))2

− p2


−1

−1

(4.2.6)

= − F (x)

xr(x)
∆(x) (say).

where ∆(x) =

α+
(

p2
n1

)(p1
(
1−

(
1−

(
1−n1α

n2

))
F̄ (x)

)2

(1−ᾱF̄ (x))2
− p2

)−1
−1

. For α = α1 ≥ α2 =(
1−n1α

n2

)
, (1− ᾱF̄ (x))2 ≥ (1−

(
1− (1−n1α)

n2

)
F̄ (x))2. So for p1 ≤ p2, from (4.2.6) it follows

that ∆(x) ≤ 0.

Again,

(
1−

(
1− 1−n1α

n2

)
F̄ (x)

)
(1−ᾱF̄ (x))

is increasing in x for α ≥
(
1−n1α

n2

)
, so that from (4.2.6) it follows

that ∆(x) is also increasing in x. So F (x)
xr(x) (−∆(x)) is decreasing in x. Hence

∂FMα (x)/∂α
fMα (x) is
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decreasing in x.

Case II: Suppose n1α1 + n2α2 ≥ n1β1 + n2β2. In this case there must exist some α′
1

such that α1 ≥ α′
1 ≥ β1 such that n1α

′
1 + n2α2 = n1β1 + n2β2. Let us denote α′mo =

(α′
1, α

′
1, ..., α

′
1︸ ︷︷ ︸

n1 terms

, α2, α2, ..., α2︸ ︷︷ ︸
n2 terms

). Then from previous case we have Mn;α′mo,pmo ≥⋆ Mn;βmo,pmo .

Now we need to show that Mn;αmo,pmo ≥⋆ Mn;α′mo,pmo . Let η = α1 − α2, η
′ = α′

1 − α2, and

η⋆ = α1 − η. then η ≥ η′ ≥ 0. According to Lemma 4.2.1, it is sufficient to show that

∂Fη

∂η

xfη(x)
=

F (x)

xr(x)

[
n2p2(1− ᾱ1F̄ (x))

2

α1n1p1(1− η̄∗F̄ (x))2 + n2p2η∗(1− ᾱ1F̄ (x))

]

=
F (x)

xr(x)

[
η∗ +

n1p1α1

n2p2

(
(1− η̄∗F̄ (x))

1− ᾱ1F̄ (x)

)2
]−1

=
F (x)

xr(x)
× Ω(x)

is decreasing in x, where Ω(x) =

[
η∗ + n1p1α1

n2p2

(
(1−η̄∗F̄ (x))
1−ᾱ1F̄ (x)

)2]−1

. Note that d
dx

(
1−η̄∗F̄ (x)
1−ᾱ1F̄ (x)

)
=

(η̄∗−ᾱ1)f(x)
(1−ᾱ1F̄ (x))2

≥ 0 as α1 ≥ η∗. So Ω(x) is non-negative and decreasing in x. Consequently
∂Fη
∂η

xfη(x)

is decreasing in x.

Remark 4.2.1. It is to be noted that the condition F (x)/xr(x) is decreasing in x is

satisfied by many class of distributions. For example, Burr distribution with sf F̄ (x) =

(1 + xα)−β, α > 0, β > 0 satisfies the condition for 0 < α < β < ∞, and Gompertz dis-

tribution with sf F̄ (x) = exp([−β(αx − 1)]/ log(α)), α > 0, β > 0 satisfies the condition for

1 < α <∞ and 0 < β <∞.

Corollary 4.2.1. Under the same setup of Theorem 4.2.3, if α1 ≥ β1 ≥ β2 ≥ α2 and

αmo
w
⪯ βmo, we have Mn;αmo,pmo ≥Lorenz Mn;βmo,pmo.

4.2.2 Finite mixtures under the PHR and the PRH model

Here we establish the hr order between two finite mixtures in multiple-outlier model with

PHR and PRH distributed components under the majorization order between the vectors

of corresponding parameters. Let us consider finite mixtures of n(= n1 + n2) components

where n1 components are drawn from a particular homogeneous subpopulations and rest n2

components are drawn from another homogeneous subpopulations. Let us denote λmo =

(λ1, λ1, ..., λ1︸ ︷︷ ︸
n1 terms

, λ2, λ2, ..., λ2︸ ︷︷ ︸
n2 terms

). First let Xi ∼ PHR(F̄ , λi) and suppose Bn1,n2;λ
mo,pmo be
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the random variable representing the finite mixtures of Xi’s, and pi are the corresponding

mixture proportion, where λi = λ1, pi = p1 for i = 1, . . . , n1, and λi = λ2, pi = p2 for

i = n1+1, . . . , n, and n1p1+n2p2 = 1. The following theorem provides sufficient conditions

on the hazard ratio vectors of the components and the mixing proportion vectors under

which the finite mixture Bn1,n2;λ
mo,pmo is greater than Bn1,n2;µmo,qmo in terms of hr order.

Theorem 4.2.4. Let Bn1,n2;λ
mo,pmo and Bn1,n2;µmo,qmo be two finite mixtures. Then λ1 . . . λ1 λ2 . . . λ2

p1 . . . p1 p2 . . . p2

 >row

 µ1 . . . µ1 µ2 . . . µ2

q1 . . . q1 q2 . . . q2


⇒ Bn1,n2;λ

mo,pmo ≥hr Bn1,n2;µmo,qmo

provided (λ1, λ2), (µ1, µ2) ∈ E+
2 (D+

2 ), (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ) and n1 ≥ (≤) n2.

Proof: The hr function of Bn1,n2;λ
mo,pmo is given by

rBn1,n2;λ
mo,pmo (t) = r(t)

∑n
i=1 piλiF̄

λi(t)∑n
i=1 piF̄

λi(t)
= r(t)

∑n1
i=1 piλiF̄

λi(t) +
∑n

i=n1+1 piλiF̄
λi(t)∑n1

i=1 piF̄
λi(t) +

∑n
i=n1+1 piF̄

λi(t)
.

(4.2.7)

For 1 ≤ i ≤ n1,

∂rBn1,n2;λ
mo,pmo

∂λi
=

r(t)n1p1F̄
λ1(t)(

n1p1F̄ λ1(t) + n2p2F̄ λ2(t)
)2 [(n1p1F̄ λ1(t) + n2p2F̄

λ2(t)
)
+

n2p2(λ1 − λ2)F̄
λ2(t) log F̄ (t)

]
,

and for n1 + 1 ≤ j ≤ n,

∂rBn1,n2;λ
mo,pmo

∂λj
=

r(t)n2p2F̄
λ2(t)(

n1p1F̄ λ1(t) + n2p2F̄ λ2(t)
)2 [(n1p1F̄ λ1(t) + n2p2F̄

λ2(t)
)
+

n1p1(λ2 − λ1)F̄
λ1(t) log F̄ (t)

]
.

For 1 ≤ i, j ≤ n1 or n1+1 ≤ i, j ≤ n,
∂rBn;λmo,pmo

∂λi
−

∂rBn;λmo,pmo

∂λj
= 0. Again for 1 ≤ i ≤ n1

and n1 + 1 ≤ j ≤ n,

∂rBn1,n2;λ
mo,pmo

∂λi
−
∂rBn1,n2;λ

mo,pmo

∂λj

sign
=

(
n1p1F̄

λ1(t) + n2p2F̄
λ2(t)

)
×

(
n1p1F̄

λ1(t)− n2p2F̄
λ2(t)

)
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+ 2n1n2p1p2F̄
λ1(t)F̄ λ2(t)(λ1 − λ2) log F̄ (t)

≤ (resp. ≥) 0,

if λ1 ≥ (resp. ≤) λ2, p1 ≤ (resp. ≥) p2 and n1 ≤ (resp. ≥) n2. Thus we have from Theorem

A.3 of Marshall et al. [96] and Lemma 3 of Hazra et al. [60],

λmo
m
≥ µmo ⇒ rBn1,n2;λ

mo,pmo ≤ rBn1,n2;µ
mo,pmo , (4.2.8)

if (λ1, λ2), (µ1, µ2) ∈ E+
2 (D+

2 ), (p1, p2) ∈ D+
2 (E

+
2 ) and n1 ≥ (≤) n2. For 1 ≤ i ≤ n1,

∂rBn1,n2;µ
mo,pmo

∂pi
=

r(t)(
n1p1F̄µ1(t) + n2p2F̄µ2(t)

)2n1n2p2F̄µ1(t)F̄µ2(t)(µ1 − µ2),

and for n1 + 1 ≤ j ≤ n,

∂rBn1,n2;µ
mo,pmo

∂pj
=

r(t)(
n1p1F̄µ1(t) + n2p2F̄µ2(t)

)2n1n2p1F̄µ1(t)F̄µ2(t)(µ2 − µ1).

For 1 ≤ i, j ≤ n1 or n1 + 1 ≤ i, j ≤ n,
∂rBn1,n2;µ

mo,pmo

∂pi
−

∂rBn1,n2;µ
mo,pmo

∂pj
= 0. Again for

1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n,

∂rBn1,n2;µ
mo,pmo

∂pi
−
∂rBn1,n2;µ

mo,pmo

∂pj

sign
= n1n2F̄

µ1+µ2(t)(µ1 − µ2)(p1 + p2)

≤ (resp. ≥) 0,

if µ1 ≤ (resp. ≥) µ2. As per our assumption, p1 ≥ (resp. ≤) p2 when µ1 ≤ (resp. ≥) µ2.

Thus we have from Theorem A.3 of Marshal et al. Marshall et al. [96] and Lemma 3 of

Hazra et al. Hazra et al. [60],

pmo
m
≥ qmo ⇒ rBn1,n2;µ

mo,pmo ≤ rBn1,n2;µ
mo,qmo , (4.2.9)

if (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ), and (µ1, µ2) ∈ E+

2 (D+
2 ). Then we have the desired result by

combining (4.2.8) and (4.2.9).

By taking n1 = n2 = 1 in the above theorem, we get the following corollary.

Corollary 4.2.2. Let B2;λ,p and B2;µ,q be two finite mixtures. Then λ1 λ2

p1 p2

 >row

 µ1 µ2

q1 q2

⇒ B2;λ,p ≥hr B2;µ,q,
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provided (λ1, λ2), (µ1, µ2) ∈ E+
2 (D+

2 ) and (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ).

The corollary follows by taking n1 = n2 = 1 in Theorem 4.2.4. Next we extend the

Theorem 4.2.4 to compare Bn1,n2;λ
mo,pmo and Bn∗

1,n
∗
2;µ

mo,qmo , where n1, n
∗
1 and n2, n

∗
2 may

be different but n1 + n2 = n∗1 + n∗2 = n.

Corollary 4.2.3. Let Bn1,n2;λ
mo,pmo and Bn∗

1,n
∗
2;µ

mo,qmo be two finite mixtures. Then

Bn1,n2;λ
mo,pmo ≥hr Bn∗

1,n
∗
2;µ

mo,qmo ,

provided all the conditions of Theorem 4.2.4 hold along with the condition (n1, n2)
m
⪰

(n∗1, n
∗
2).

Proof: From equation (4.2.7), we have

rBn1,n2;λ
mo,pmo (t) = r(t)

n1p1λ1F̄
λ1(t) + n2p2λ2F̄

λ2(t)

n1p1F̄ λ1(t) + n2p2F̄ λ2(t)
. (4.2.10)

Then

∂rBn1,n2;λ
mo,pmo

∂n1
−
∂rBn1,n2;λ

mo,pmo

∂n2
= r(t)

p1p2F̄
λ1+λ2(t)(λ1 − λ2)(n1 + n2)(

n1p1F̄ λ1(t) + n2p2F̄ λ2(t)
)2

≤ (resp. ≥) 0,

if λ1 ≤ (resp. ≥) λ2. As per our assumption in Theorem 4.2.4, n1 ≥ (resp. ≤) n2 when

λ1 ≤ (resp. ≥) λ2. Thus we have from Lemma 3 of Hazra et al. Hazra et al. [60] (see also

Marshal et al. Marshall et al. [96], pp. 83-84),

(n1, n2)
m
≥ (n∗1, n

∗
2) ⇒ rBn1,n2;λ

mo,pmo ≤ rBn∗
1,n

∗
2;λ

mo,pmo . (4.2.11)

So

Bn1,n2;λ
mo,pmo ≥hr Bn∗

1,n
∗
2;λ

mo,pmo

≥hr Bn∗
1,n

∗
2;µ

mo,qmo ,

where the first inequality follows from the equation (4.2.11) and the second inequality follows

from Theorem 4.2.4. This completes the proof.

The following theorem provides sufficient conditions on the baseline distribution, hazard

ratio vectors and the mixing proportion vectors under which the finite mixtureBn1,n2;λ
mo,pmo

is greater than the another mixture Bn1,n2;µmo,pmo with respect to the star order. In other
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words, this theorem can be used to compare the skewness of the distributions of two finite

mixtures under study.

Theorem 4.2.5. Let Bn1,n2;λ
mo,pmo and Bn1,n2;µmo,pmo be two finite mixtures with same

mixture proportion and log(F̄ (x))/xr(x) is decreasing in x. If λ1 ≥ µ1 ≥ µ2 ≥ λ2, p1 ≤ p2

and λmo
w
⪯ µmo, then Bn1,n2;λ

mo,pmo ≥⋆ Bn1,n2;µmo,pmo.

Proof: We have the cdf of Bn1,n2;αmo,pmo as

FBn1,n2;α
mo,pmo (x) = 1−

[
n1p1F̄

λ1(x) + n2p2F̄
λ2(x)

]
The theorem is proved using the concept of Lemma 4.2.1. Under the conditions λ1 ≥ µ1 ≥
µ2 ≥ λ2 and λmo

w
⪯ µmo, we have n1λ1 + n2λ2 ≥ n1µ1 + n2µ2.

Case I: n1λ1 + n2λ = n1µ1 + n2µ2. Without loss of generality we consider n1λ1 + n2λ2 =

n1µ1 + n2µ2 = 1. Let λ1 = λ and µ1 = µ, where λ, µ ∈ (1/ (n1 + n2) , 1/n1], and we write

FBn1,n2;λ
mo,pmo (x) = FBλ

(x), just to indicate that it becomes an expression of λ. Now,

∂FBλ
(x)

∂λ
= − log(F̄ (x))

[
n1p1F̄

λ(x)− n1p2F̄

(
1−n1λ

n2

)
(x)

]
.

Again

fBλ
(x) = r(x)

[
n1p1λF̄

λ(x) + p2(1− n1λ)F̄

(
1−n1λ

n2

)
(x)

]
.

Now

∂FBλ
(x)/∂λ

xfBλ
(x)

= − log(F̄ (x))

xr(x)

 n1p1λF̄
λ(x)− n1p2F̄

(
1−n1λ

n2

)
(x)

n1p1λF̄ λ(x) + p2(1− n1λ)F̄

(
1−n1λ

n2

)
(x)


= − log(F̄ (x))

xr(x)

[
λ+

(
p2
n1

)(
p1
p2

· F̄ λ− 1−n1λ
n2 (x)− 1

)−1
]−1

= − log(F̄ (x))

xr(x)
×Θ(x) (say).

where Θ(x) =

[
λ+

(
p2
n1

)(
p1
p2

· F̄ λ− 1−n1λ
n2 (x)− 1

)−1
]−1

. Since λ ≥ 1−n1λ
n2

, so for p1 ≤ p2 we

have Θ(x) is non-positive (follows from the first equation) and also increasing in x (follows

from the second equation). Consequently we have
∂FBλ

(x)/∂λ

fBλ
(x) is decreasing in x.

Case II: Suppose n1λ1+n2λ2 ≥ n1µ1+n2µ2. In the same line as of Case II in Theorem

4.2.3, it can be shows that the theorem holds for this case also.
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Remark 4.2.2. It is to be noted that the condition log(F̄ (x))
xr(x) is decreasing in x is satisfied by

many class of distributions. For example, Burr distribution with sf F̄ (x) = (1+ xα)−β, α >

0, β > 0 satisfies the conditions for 0 < α < β < ∞, and log-logistic distributions with sf

F̄ (x) = 1/(1 + (αx)β), α > 0, β > 0 satisfies the condition for 0 < α, β < ∞. The term
log(F̄ (x))
xr(x) can be expanded as

log(F̄ (x))

xr(x)
=

−
∫ x
0 r(u)du

xr(x)
= −

[
x
Λ′(x)

Λ(x)

]−1

,

Hence the condition log(F̄ (x))
xr(x) is decreasing in x equivalent to xΛ′(x)

Λ(x) is decreasing in x, where

Λ(x) is the cumulative hazard function. It is also to be noted that if F is DFR (decreasing

failure rate) distribution, then log(F̄ (x))
xr(x) is decreasing in x. It follows from the fact that,

DFR =⇒ DFRA (decreasing failure rate average), which implies log(F̄ (x))
x is decreasing in

x. Hence as an immediate consequence we can say that the above theorem holds for all DFR

baseline distribution.

Corollary 4.2.4. Under the same setup of Theorem 4.2.5 if λ1 ≥ µ1 ≥ µ2 ≥ λ2, p1 ≤ p2

and λmo
w
⪯ µmo, then Bn1,n2;λ

mo,pmo ≥Lorenz Bn1,n2;µmo,pmo.

Next let Xi ∼ PRH(F, λi) and suppose Jn1,n2;λ
mo,pmo be the random variable repre-

senting the finite mixtures of Xi’s. The following theorem compares Jn1,n2;λ
mo,pmo and

Jn1,n2;µmo,qmo with respect to rhr order. The proof is similar to that of Theorem 4.2.4 and

thus omitted.

Theorem 4.2.6. Let Jn1,n2;λ
mo,pmo and Jn1,n2;µmo,qmo be two finite mixtures. Then λ1 . . . λ1 λ2 . . . λ2

p1 . . . p1 p2 . . . p2

 >row

 µ1 . . . µ1 µ2 . . . µ2

q1 . . . q1 q2 . . . q2


=⇒ Jn1,n2;λ

mo,pmo ≤rhr Jn1,n2;µmo,qmo ,

provided (λ1, λ2), (µ1, µ2) ∈ E+
2 (D+

2 ), (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ) and n1 ≥ (≤) n2.

The following corollary follows from the Theorem 4.2.6 by taking n1 = n2 = 1.

Corollary 4.2.5. Let J2;λ,p and J2;µ,q be two finite mixtures. Then λ1 λ2

p1 p2

 >row

 µ1 µ2

q1 q2

⇒ J2;λ,p ≤rhr J2;µ,q,
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provided (λ1, λ2), (µ1, µ2) ∈ E+
2 (D+

2 ) and (p1, p2), (q1, q2) ∈ D+
2 (E

+
2 ).

Remark 4.2.3. Hazra and Finkelstein [59] have obtained the hr ordering and reversed hr

ordering results for two-component mixture as in corollaries 4.2.2 and 4.2.5 respectively

under the chain majorization. As chain majorization is stronger condition than row ma-

jorization, so Theorems 4.2.4 and 4.2.6 serve as improvement of the previous results in terms

of multiple-outlier model and row majorization.

Next we extend the Theorem 4.2.6 to compare Jn1,n2;λ
mo,pmo and Jn∗

1,n
∗
2;µ

mo,qmo , where

n1, n
∗
1 and n2, n

∗
2 may be different but n1 + n2 = n∗1 + n∗2 = n. The proof is similar to that

of Corollary 4.2.3 and thus omitted.

Corollary 4.2.6. Let Jn1,n2;λ
mo,pmo and Jn∗

1,n
∗
2;µ

mo,qmo be two finite mixtures. Then

Jn1.n2;λ
mo,pmo ≤rhr Jn∗

1,n
∗
2;µ

mo,qmo ,

provided all the conditions of Theorem 4.2.6 hold along with the condition (n1, n2)
m
⪰

(n∗1, n
∗
2).

Theorem 4.2.7. Let Jn1,n2;λ
mo,pmo and Jn1,n2;µmo,pmo be two finite mixtures with same

mixture proportion and log(F (x))
xr̃(x) is increasing in x. If λ1 ≥ µ1 ≥ µ2 ≥ µ2, p1 ≤ p2 and

λmo
w
⪯ µmo, then Jn1,n2;αmo,pmo ≥⋆ Jn1,n2;β

mo,pmo.

Proof: The proof can be done in the same line as of Theorem 4.2.5 using the Lemma

4.2.1.

Remark 4.2.4. The condition log(F (x))
xr̃(x) is increasing in x is satisfied by many class of

distributions. For example Weibull distribution with sf F̄ (x) = exp(−(αx)β), α > 0, β > 0

satisfies the condition for 0 < α < β < 1, and Gompertz distribution with sf F̄ (x) =

exp([−β(αx − 1)]/[log(α)]), α > 0, β > 0 satisfies the condition for 1 < α <∞ and 0 < β <

∞. The term log(F (x))
xr̃(x) can be expanded as

log(F (x))

xr̃(x)
=

∫ x
0 r̃(u)du

xr̃(x)
=

[
x
∆′(x)

∆(x)

]−1

,

so that the condition becomes x∆′(x)
∆(x) is decreasing in x, where ∆(x) is the cumulative rhr

function.

Corollary 4.2.7. Under the same setup of Theorem 4.2.7 if λ1 ≥ µ1 ≥ µ2 ≥ µ2, p1 ≤ p2

and λmo
w
⪯ µmo, then Jn1,n2;αmo,pmo ≥Lorenz Jn1,n2;β

mo,pmo.
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4.3 Examples

Here we demonstrate some of the proposed results numerically. The first example illustrates

the result of Theorem 4.2.1.

Example 4.3.1. Consider two finite mixtures M3;α,p and M3;β,q, where α = (0.2, 0.6, 1.7),

β = (0.5, 0.95, 2.5), p = (0.5, 0.3, 0.2) and q = (0.6, 0.3, 0.1) so that all the conditions of

Theorem 4.2.1 are satisfied. We take F̄ (x) = exp(−ax)b with a = 2 and b = 0.7. We plot

F̄M3;α,p(x) and F̄M3;β,q
(x) by substituting x = t/(1 − t), so that for x ∈ [0,∞), t ∈ [0, 1).

From Figure 4.2 it is observed that F̄M3;α,p(x) ≤ F̄M3;β,q
(x).

    0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

𝐹 𝑀3;𝛼,𝑝
(𝑥) 

𝐹 𝑀3;𝛽,𝑞
(𝑥) 

Figure 4.2: Plot of F̄M3;α,p(x) and F̄M3;β,q
(x) for x = t/(1− t), t ∈ [0, 1].

The following example illustrates the result of Theorem 4.2.2.

Example 4.3.2. Consider two finite mixtures M2;α,p and M2;β,q, where α = (4, 2), β =

(3.5, 2.5), p = (0.2, 0.8) and q = (25/74, 49/74) so that all the conditions of Theorem 4.2.2

are satisfied. We take F̄ (x) = exp(−ax)b with a = 5 and b = 0.5. We plot rM2;α,p(x) and

rM2;β,q
(x) by substituting x = t/(1 − t), so that for x ∈ [0,∞), t ∈ [0, 1). From Figure 4.3

it is observed that rM2;α,p(x) ≥ rM2;β,q
(x).

Next example illustrates Theorem 4.2.3.

Example 4.3.3. Consider two finite mixtures M3,2;αmo,pmo and M3,2;βmo,pmo with p1 =

1/6, p2 = 1/4, α1 = 8, α2 = 2, β1 = 5, β2 = 3, n1 = 3, n2 = 2 and F̄ (x) = 1/(1 +

xa)b with a = 1, b = 4, so that all the conditions of Theorem 4.2.3 are satisfied. Let us
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 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

𝑟𝑀2;𝛼,𝑝
(𝑥) 

𝑟𝑀2;𝛽,𝑞
(𝑥) 

Figure 4.3: Plot of rM2;α,p(x) and rM2;β,q
(x) for x = t/(1− t), t ∈ [0, 1].

denote the respective cdfs of the two mixtures as F1(x) and F2(x) respectively. We plot

the derivative of the function F−1
1 (F2(x)) in Figure 4.4 by applying the transformation x =

t/(1−t), t ∈ [0, 1]. Figure 4.4 indicates that F−1
1 (F2(x)) is increasing in x which implies that

M3,2;αmo,pmo(x) ≥⋆ M3,2;βmo,pmo(x). We also calculate coefficients of variations of the two

mixtures as 1.12515 and 1.09363 respectively. So, cv (M3,2;αmo,pmo) > cv
(
M3,2;βmo,pmo

)
.

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Figure 4.4: Plot of derivative of F−1
1 (F2(x)) for x = t/(1− t), t ∈ [0, 1].

Next example illustrates Theorem 4.2.4.

Example 4.3.4. Consider two finite mixtures B4,2;λmo,pmo and B4,2;µmo,qmo, where λ1 =

0.38, λ2 = 1.74, µ1 = 0.5, µ2 = 1.5 p1 = 0.175, p2 = 0.15, q1 = 0.18, q2 = 0.14,
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n1 = 4, and n2 = 2 so that all the conditions of Theorem 4.2.4 are satisfied. We take

F̄ (x) = exp(−(ax)b) with a = 5, b = 0.8. We plot rB4,2;λmo,pmo (x) and rB4,2;µmo,qmo (x) by

substituting x = t/(1 − t), so that for x ∈ [0,∞), we have t ∈ [0, 1). From Figure 4.5 it is

observed that rB4,2;λmo,pmo (x) ≤ rB4,2;µmo,pmo (x).

  0.2 0.4 0.6 0.8 1.0

1

2

3

4
𝑟𝐵6;𝜆𝑚𝑜,𝑝𝑚𝑜

(𝑥) 

𝑟𝐵6;𝜇𝑚𝑜,𝑞𝑚𝑜
(𝑥) 

Figure 4.5: Plot of rB4,2;λmo,pmo (x) and rB4,2;µmo,qmo (x) for x = t/(1− t), t ∈ [0, 1].

Next example illustrates Theorem 4.2.5.

Example 4.3.5. Consider two finite mixtures B3,2;λmo,pmo and B3,2;µmo,qmo, where p1 =

1/6, p2 = 1/4, λ1 = 9, λ2 = 2, µ1 = 5, µ2 = 3, n1 = 3, n2 = 2 and F̄ (x) = 1/(1 +

(ax)b),with a = 3; b = 5 so that all the conditions of Theorem 4.2.5 are satisfied. Let us

denote the respective cdfs of the two mixtures as G1(x) and G2(x) respectively. We plot

the derivative of the function G−1
1 (G2(x)) in Figure 4.6 by applying the transformation x =

t/(1−t), t ∈ [0, 1]. Figure 4.6 indicates that G−1
1 (G2(x)) is increasing in x which implies that

B3,2;λmo,pmo(x) ≥⋆ B3,2;µmo,qmo(x). We also calculate the coefficients of variations of the

two mixtures as 0.329296 and 0.266123 respectively. So cv(B3,2;λmo,pmo) > cv(B3,2;µmo,qmo).

Example 4.3.6. This example for Theorem 4.2.7.Consider two finite mixtures J3,2;λmo,pmo

and J3,2;µmo,qmo, where p1 = 1/6, p2 = 1/4, λ1 = 12, λ2 = 3, µ1 = 9, µ2 = 6, n1 = 3, n2 =

2 and F̄ (x) = exp(−(ax)b) with a = 0.5, b = 0.9 so that all the conditions of Theorem

4.2.7 are satisfied. Let us denote the respective cdfs of the two mixtures as H1(x) and

H2(x) respectively. We plot the derivative of the function H−1
1 (H2(x)) in Figure 4.7 by
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1.5

Figure 4.6: Plot of derivative of G−1
1 (G2(x)) for x = t/(1− t), t ∈ [0, 1].

applying the transformation x = t/(1− t), t ∈ [0, 1]. Figure 4.7 indicates that H−1
1 (H2(x))

is increasing in x which implies that J3,2;λmo,pmo(x) ≥⋆ J3,2;µmo,qmo(x). We also calculate

the coefficients of variations of the two mixtures as 0.688144 and 0.583667 respectively. So,

cv
(
J3,2;λmo,pmo

)
> cv (J3,2;µmo,qmo).

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Figure 4.7: Plot of derivative of H−1
1 (H2(x)) for x = t/(1− t), t ∈ [0, 1].





Chapter 5

Stochastic comparisons of

continuous mixture models

5.1 Introduction:

Heterogeneity is a very common issue in many areas including reliability, survival analysis,

demography and epidemiology. For instance, in mechanical systems, heterogeneity occurs

due to unit-to-unit variability, changes in operating environments, the diversity of tasks and

workloads during its lifetime. Özekici and Soyer [113] mentioned that a complex device like

an airplane has large number of components where the failure structure of each component

depends on a set of environmental conditions (e.g. the levels of vibration, atmospheric pres-

sure, temperature, etc.) that vary during take-off, cruising and landing. So incorporating

heterogeneity into hazard (failure) rate modeling is a common practice to achieve accuracy

in the estimation. The proportional hazard rate (PHR) model is the most applied model

in the case where factors (covariates) influencing the environment/operating condition are

known and can be quantified. In such case, hazard rate of an individual is considered to

be constant multiplicative to the baseline hazard. However, in many practical situation it

may happen that some factors influencing the operating condition are unknown, and hetero-

geneity occurs in an unpredicted and unexplained manner. Proschan [115] pointed out that

observed decreasing failure rates could be caused by unobserved heterogeneity. A compo-

nent may be subject to different levels of operating environment (e.g. voltage, temperature)

which is not fixed but changes over time. Component lifetimes and reliability depend on

these random environmental variations. Frailty models (Cha and Finkelstein [30], Da and

97
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Ding [36], Hougaard and Hougaard [65], Gupta et al. [52], Gupta and Peng [56], Li and Li

[89], Vaupel et al. [129], Zaki et al. [134] ) provide a way to introduce random effects in

the model by a rv, called frailty rv, to account for unobserved (unexplained) heterogeneity

among experimental units in their hazard (failure) rates. For instance,Vaupel et al. [129]

discussed that in survival analysis, mortality of individuals differ due to large number of

factors beyond age, e.g. the individual’s susceptibility to causes of death, response to treat-

ment and various risk factors. They considered a frailty rv to cope with the unobserved

individual differences in mortality rates while defining the force of mortality of individuals.

Cha et al. [31] considered a frailty rv in the model for mission abort/continuation policy

for heterogeneous systems, to justify heterogeneity which may occur due to various reasons

such as quality of resources used in the production process, operation and maintenance

history, and human errors.

Ageing properties and stochastic comparisons of frailty models, arising from different

choices of frailty/baseline distributions, have been studied in (Gupta and Kirmani [55],

Kayid et al. [69], Misra et al. [99], Xie et al. [131]). On the other hand ageing properties and

stochastic comparison of resilience models have been studied in Gupta and Kirmani [55], Li

and Li [89] considering different baseline distributions and/or resilience distributions. He

and Xie [64] derived comparison results for general weighted frailty models with respect to

some relative stochastic orders. The frailty model is also regarded as mixture (continuous)

distribution of the PHR model with baseline cdf F, and mixing rv Λ (Da and Ding [36]).

Similarly resilience model is regarded as the mixture distribution of the PRH model (Li and

Li [89]).

In this chapter we study the effect of frailty and resilience rvs on the baseline rv (X)

using some shifted stochastic orders based on some ageing properties of X. In Section 5.2,

we study the effect of frailty rv on the baseline rv, with respect to some shifted stochastic

orders, where in Section 5.3, a similar study is carried out in case of resilience model. In

Section 5.4, we illustrate some of our derived results with real-world data.

5.2 Results for frailty model

Here we study the effect of frailty rv on the baseline rv with respect to some shifted stochas-

tic ordering based on some ageing properties of concerned baseline rvs. Throughout this

section, we consider X and X∗ be two rvs having sfs F̄ , F̄ ∗ respectively, with corresponding

pdfs f and f∗. The sf of X∗ is given by the equation (1.2.15). Also consider that X an

absolutely continuous non-negative rv.

In the following theorem we derived that, for a baseline rv X with ILR (resp. DLR)

property, effect of a frailty rv Λ with P (0 < Λ ≤ 1) = 1 (resp. P (Λ ≥ 1) = 1) on X is that,
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X∗ will be greater than (resp. less than) X in the sense of the up shifted likelihood ratio

order.

Theorem 5.2.1.

(i) X∗ ≥lr↑ X if X is ILR, provided 0 < Λ ≤ 1 with probability 1;

(ii) X∗ ≤lr↑ X if X is DLR, provided Λ ≥ 1 with probability 1.

Proof:

(i) We have

f∗(x)

f(x+ t)
=

f(x)

f(x+ t)
×
∫ ∞

0
λF̄ λ−1(x)dH(λ)

= E

[
f(x)ΛF̄Λ−1(x)

f(x+ t)

]
. (5.2.1)

Now X is ILR implies f(x)
f(x+t) is increasing in x for any t > 0. Again λF̄ λ−1(x) will be

increasing in x for any 0 < λ ≤ 1. Now if we consider Λ such that P (0 < Λ ≤ 1) = 1

the result follows immediately.

(ii) Similarly X is DLR implies f(x)
f(x+t) is decreasing in x. Again λF̄ λ−1(x) will be de-

creasing in x for any λ ≥ 1. Now if we consider Λ such that P (Λ ≥ 1) = 1, the result

follows immediately.

Examples 5.2.1 and 5.2.2 illustrate (i) and (ii) of the Theorem 5.2.1 respectively.

Example 5.2.1. Suppose X follows gamma distribution with pdf f(x) = xe−x, x ≥ 0.

Then clearly X is ILR. Consider the frailty rv Λ to be uniformly distributed on [0, 1]. Then

it is easy to check that f∗(x)/f(x+ t) is increasing in x for all t > 0, giving X ≤lr↑ X
∗.

Example 5.2.2. Suppose X follows Weibull distribution with pdf f(x) = 3x2e−x3
, x ≥ 0.

Then clearly X is ILR. Consider the frailty rv Λ to be uniformly distributed on [1, 3]. Then

it is easy to check that f∗(x)/f(x+ t) is decreasing in x for all t > 0, giving X ≥lr↑ X
∗.

The following corollary follows immediately in case Λ is a degenerate rv

Corollary 5.2.1.

(i) X∗ ≥lr↑ X if X is ILR, provided 0 < λ ≤ 1 ;

(ii) X∗ ≤lr↑ X if X is DLR, provided λ ≥ 1 .

Theorem 5.2.2.
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(i) X∗ ≥lr↓ X if X is DLR, provided 0 < Λ ≤ 1 with probability 1;

(ii) X∗ ≤lr↓ X if X is ILR, provided Λ ≥ 1 with probability 1.

Proof:

(i) We have

f∗(x+ t)

f(x)
=

f(x+ t)

f(x)
×
∫ ∞

0
λF̄ λ−1(x+ t)dH(λ)

= E

[
f(x+ t)ΛF̄Λ−1(x+ t)

f(x)

]
. (5.2.2)

Now X is DLR implies f(x+t)
f(x) is increasing in x for any t > 0. Again λF̄ λ−1(x+ t) will

be increasing in x for any 0 < λ ≤ 1. Now if we consider Λ such that P (0 < Λ ≤ 1) = 1

the result follows immediately.

(ii) Similarly X is ILR implies f(x+t)
f(x) is decreasing in x. Again λF̄ λ−1(x + t) will be

decreasing in x for any λ ≥ 1. Now if we consider Λ such that P (Λ ≥ 1) = 1 the result

follows immediately.

Remark 5.2.1. Theorem 5.2.2(i) implies that under the stated assumptions on X and Λ,

κX∗(t) ≥ κX(t′) for t ≥ t′ ≥ 0. Similarly, Theorem 5.2.2(ii) implies that κX∗(t) ≤ κX(t′)

for t′ ≥ t ≥ 0.

The following theorem shows that, for a baseline rv X with IFR (resp. DFR) property,

effect of a frailty rv Λ with P (0 < Λ ≤ 1) = 1 (resp. P (Λ ≥ 1) = 1) on X is that, X∗ will

be greater than (resp. less than) X under up shifted hr order.

Theorem 5.2.3.

(i) X∗ ≥hr↑ X if X is IFR, provided 0 < Λ ≤ 1 with probability 1;

(ii) X∗ ≤hr↑ X if X is DFR, provided Λ ≥ 1 with probability 1.

Proof:

(i) We have

F̄ ∗(x)

F̄ (x+ t)
=

F̄ (x)

F̄ (x+ t)
×
∫ ∞

0
F̄ λ−1(x)dH(λ)

= E

[
F̄ (x)F̄Λ−1(x)

F̄ (x+ t)

]
. (5.2.3)
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Now X is IFR implies F̄ (x)
F̄ (x+t)

is increasing in x for any t > 0. Again F̄ λ−1(x) will be

increasing in x for any 0 < λ ≤ 1. Now if we consider Λ such that P (0 < Λ ≤ 1) = 1

the result follows immediately.

(ii) SimilarlyX is DFR implies F̄ (x)
F̄ (x+t)

is decreasing in x. Again F̄ λ−1(x) will be decreasing

in x for any λ ≥ 1. Now if we consider Λ such that P (Λ ≥ 1) = 1 the result follows

immediately.

Remark 5.2.2. Theorem 5.2.3(i) implies that under the stated assumptions on X and Λ,

rX∗(t) ≤ rX(t′) for t′ ≥ t ≥ 0. Similarly, Theorem 5.2.3(ii) implies that rX∗(t) ≥ rX(t′)

for t ≥ t′ ≥ 0.

Examples 5.2.3 and 5.2.4 (i) and (ii) of the Theorem 5.2.3 respectively.

Example 5.2.3. Let X follows Weibull distribution with sf F̄ (x) = e−x2
, x ≥ 0. Clearly,

X is IFR. Let the frailty rv Λ be uniformly distributed on [0, 1]. Then it follows that

F̄ ∗(x)/F̄ (x+ t) is increasing in x for all t > 0.

Example 5.2.4. Suppose X follows Weibull distribution with sf F̄ (x) = e−x0.5
, x ≥ 0.

Clearly, X is DFR. Let the frailty rv Λ be uniformly distributed on [2, 5]. Then it is easy to

check that F̄ ∗(x)/F̄ (x+ t) is decreasing in x for all t > 0.

Theorem 5.2.4.

(i) X∗ ≥hr↓ X if X is DFR, provided 0 < Λ ≤ 1 with probability 1;

(ii) X∗ ≤hr↓ X if X is IFR, provided Λ ≥ 1 with probability 1.

Proof:

(i) We have

F̄ ∗(x+ t)

F̄ (x)
=

F̄ (x+ t)

F̄ (x)
×
∫ ∞

0
F̄ λ−1(x+ t)dH(λ)

= E

[
F̄ (x+ t)F̄Λ−1(x+ t)

F̄ (x)

]
. (5.2.4)

Now X is DFR implies F̄ (x+t)
F̄ (x)

is increasing in x for any t > 0. Again F̄ λ−1(x+ t) will

be increasing in x for any 0 < λ ≤ 1. Now if we consider Λ such that P (0 < Λ ≤ 1) = 1

the result follows immediately.
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(ii) Similarly X is IFR implies F̄ (x+t)
F̄ (x)

is decreasing in x. Again F̄ λ−1(x + t) will be

decreasing in x for any λ ≥ 1. Now if we consider Λ such that P (Λ ≥ 1) = 1 the result

follows immediately.

Remark 5.2.3. Theorem 5.2.4(i) implies that under the stated assumptions on X and Λ,

rX∗(t) ≤ rX(t′) for t ≥ t′ ≥ 0. Similarly, Theorem 5.2.4(ii) implies that rX∗(t) ≥ rX(t′)

for t′ ≥ t ≥ 0.

Theorem 5.2.5.

(i) X∗ ≥mrl↑ X if X is IMRL, provided 0 < Λ ≤ 1 with probability 1;

(ii) X∗ ≤mrl↑ X if X is DMRL, provided Λ ≥ 1 with probability 1.

Proof:

(i) We have

∫ ∞

x+t
F̄ ∗(u)du/

∫ ∞

x
F̄ (u)du =

∫∞
0

∫∞
x+t F̄

λ(u)dH(λ)∫∞
x F̄ (u)du

= E

[∫ ∞

x+t
F̄Λ(u)du/

∫ ∞

x
F̄ (u)du

]
. (5.2.5)

Now if X is IMRL then
∫∞
x+t F̄ (u)du/

∫∞
x F̄ (u)du increasing in x for any t > 0. That

is we have

F̄ (x+ t)∫∞
x+t F̄ (u)du

≤ F̄ (x)∫∞
x F̄ (u)du

. (5.2.6)

Let us define a function α(λ) = F̄λ(x+t)∫∞
x+t F̄

λ(u)du
. λ > 0.

α′(λ)
sgn
=

∫ ∞

x+t
F̄ λ(u)[log(F̄ (x+ t))− log(F̄ (u))]du

sgn
= ≥ 0. (5.2.7)

Therefore from (5.2.6) and (5.2.7) we have for any 0 < λ ≤ 1 we have

F̄ λ(x+ t)∫∞
x+t F̄

λ(u)du
≤ F̄ (x+ t)∫∞

x+t F̄ (u)du
≤ F̄ (x)∫∞

x F̄ (u)du
. (5.2.8)

Hence from (5.2.8) we can easily conclude that (5.2.5) is increasing in x if P (0 < Λ ≤
1) = 1.
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(ii) Since X is DMRL, hence
∫∞
x+t F̄ (u)du/

∫∞
x F̄ (u)du decreasing in x. This implies

F̄ (x+ t)∫∞
x+t F̄ (u)du

≥ F̄ (x)∫∞
x F̄ (u)du

. (5.2.9)

Therefore from (5.2.9) and (5.2.7) we have for any λ ≥ 1,

F̄ λ(x+ t)∫∞
x+t F̄

λ(u)du
≥ F̄ (x+ t)∫∞

x+t F̄ (u)du
≥ F̄ (x)∫∞

x F̄ (u)du
. (5.2.10)

Hence from (5.2.9) we can easily conclude that (5.2.5) is decreasing in x if P (Λ ≥
1) = 1.

Remark 5.2.4. Theorem 5.2.5(i) implies that under the stated assumptions on X and Λ,

mX∗(t) ≥ mX(t′) for t′ ≥ t ≥ 0. Similarly, Theorem 5.2.5(ii) implies that mX∗(t) ≤ mX(t′)

for t ≥ t′ ≥ 0.

Theorem 5.2.6.

(i) X∗ ≥mrl↓ X if X is DMRL, provided 0 < Λ ≤ 1 with probability 1.

(ii) X∗ ≤mrl↓ X if X is IMRL, provided Λ ≥ 1 with probability 1;

Proof: We have

(i)

∫ ∞

x
F̄ ∗(u)du/

∫ ∞

x+t
F̄ (u)du =

∫∞
0

∫∞
x F̄ λ(u)dH(λ)∫∞
x+t F̄ (u)du

= E

[∫ ∞

x
F̄Λ(u)du/

∫ ∞

x+t
F̄ (u)du

]
. (5.2.11)

Now, if X is DMRL then
∫∞
x+t F̄ (u)du/

∫∞
x F̄ (u)du is decreasing in x. This implies

F̄ (x+ t)∫∞
x+t F̄ (u)du

≥ F̄ (x)∫∞
x F̄ (u)du

. (5.2.12)

Therefore from (5.2.12) and (5.2.15) we have, for any 0 < λ ≤ 1,

F̄ (x+ t)∫∞
x+t F̄ (u)du

≥ F̄ (x)∫∞
x F̄ (u)du

≥ F̄ λ(x)∫∞
x F̄ λ(u)du

. (5.2.13)

Hence from (5.2.12) we can easily conclude that (5.2.11) is increasing in x if P (0 <

Λ ≤ 1).
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(ii) If X is IMRL then
∫∞
x+t F̄ (u)du/

∫∞
x F̄ (u)du increasing in x. This implies

F̄ (x+ t)∫∞
x+t F̄ (u)du

≤ F̄ (x)∫∞
x F̄ (u)du

. (5.2.14)

Let us define a function β(λ) = F̄λ(x)∫∞
x F̄λ(u)du

λ > 0.

β′(λ)
sgn
=

∫ ∞

x
F̄ λ(u)[log(F̄ (x))− log(F̄ (u))]du

sgn
= ≥ 0. (5.2.15)

Therefore from (5.2.14) and (5.2.15) we have, for any λ ≥ 1,

F̄ (x+ t)∫∞
x+t F̄ (u)du

≤ F̄ (x)∫∞
x F̄ (u)du

≤ F̄ λ(x)∫∞
x F̄ λ(u)du

. (5.2.16)

Hence from (5.2.16) we can easily conclude that (5.2.11) is decreasing in x if P (Λ ≥
1) = 1.

Remark 5.2.5. Theorem 5.2.6(i) implies that under the stated assumptions on X and Λ,

mX∗(t) ≥ mX(t′) for t ≥ t′ ≥ 0. Similarly, Theorem 5.2.6(ii) implies that mX∗(t) ≤ mX(t′)

for t′ ≥ t ≥ 0.

5.3 Results for resilience model:

Here we study some shifted stochastic ordering of resilience models based on some ageing

properties of concerned baseline rvs. Let X∗ follow resilience model with baseline distribu-

tion G, and resilience rv Ω having cdf K so that the cdf of X∗ is given by

G∗(x) =

∫ ∞

0
Gω(x)dK(ω). (5.3.1)

Throughout this section, we consider X be a rv with cdf G and X∗ be the rv as defined

above for which the cdf is given by equation (5.3.1). Also consider that X be an absolutely

continuous non-negative rv

Following theorem shows that for a baseline rv X with ILR (resp. DLR) property, effect

of a resilience rv Ω with P (Ω ≥ 1) = 1 (resp. P (0 < Ω ≤ 1) = 1) on X is that, X∗ is greater

than (resp. less than) X in the sense of the up shifted likelihood ratio order.
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Theorem 5.3.1.

(i) X∗ ≥lr↑ X if X is ILR, provided Ω ≥ 1 with probability 1;

(ii) X∗ ≤lr↑ X if X is DLR, provided 0 < Ω ≤ 1 with probability 1.

Proof:

(i) We have

g∗(x)

g(x+ t)
=

g(x)

g(x+ t)
×
∫ ∞

0
ωGω−1(x)dK(ω)

= E

[
g(x)ΩGΩ−1(x)

g(x+ t)

]
. (5.3.2)

Now X is ILR implies g(x)
g(x+t) is increasing in x for any t > 0. Again ωGω−1(x) is

increasing in x for any ω ≥ 1. Now if we consider Ω such that P (Ω ≥ 1) = 1 the result

follows immediately.

(ii) Similarly X is DLR implies g(x)
g(x+t) is decreasing in x for any t > 0. Again ωGω−1(x) is

decreasing in x for any 0 < ω ≤ 1. Now if we consider Ω such that P (0 < Ω ≤ 1) = 1

the result follows immediately.

The following corollary follows immediately in case Ω is a degenerate rv.

Corollary 5.3.1.

(i) X∗ ≥lr↑ X if X is ILR, provided ω ≥ 1 ;

(ii) X∗ ≤lr↑ X if X is DLR, provided 0 < ω ≤ 1 .

Theorem 5.3.2.

(i) X∗ ≥lr↓ X if X is DLR, provided Ω ≥ 1 with probability 1;

(ii) X∗ ≤lr↓ X if X is ILR, provided 0 < Ω ≤ 1 with probability 1.

Proof:

(i) We have

g∗(x+ t)

g(x)
=

g(x+ t)

g(x)
×
∫ ∞

0
ωGω−1(x+ t)dK(ω)

= E

[
g(x+ t)ΩGΩ−1(x+ t)

g(x)

]
. (5.3.3)
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Now X is DLR implies g(x+t)
g(x) is increasing in x for any t > 0. Again ωGω−1(x) is

increasing in x for any ω ≥ 1. Now if we consider Ω such that P (Ω ≥ 1) = 1, the

result follows immediately.

(ii) Similarly X is ILR implies g(x+t)
g(x) is decreasing in x. Again ωGω−1(x) is decreasing in

x for any 0 < ω ≤ 1. Now if we consider Ω such that P (0 < Ω ≤ 1) = 1, the result

follows immediately.

Following theorem shows that, for a baseline rv X with DRFR (resp. IRFR) property,

effect of a resilience rv Ω with P (Ω ≥ 1) = 1 (resp. P (0 < Ω ≤ 1) = 1) on X is that, X∗ is

greater than (resp. less than) X in the sense of the up shifted rhr order.

Theorem 5.3.3.

(i) X∗ ≥rh↑ X if X is DRFR, provided Ω ≥ 1 with probability 1;

(ii) X∗ ≤rh↑ X if X is IRFR, provided 0 < Ω ≤ 1 with probability 1.

Proof:

(i) We have

G∗(x)

G(x+ t)
=

G(x)

G(x+ t)
×
∫ ∞

0
Gω−1(x)dK(ω)

= E

[
G(x)GΩ−1(x)

G(x+ t)

]
. (5.3.4)

Now X is DRFR implies G(x)
G(x+t) is increasing in x for any t > 0. Again Gω−1(x) is

increasing in x for any ω ≥ 1. Now if we consider Ω such that P (Ω ≥ 1) = 1 the result

follows immediately.

(ii) Similarly X is IRFR implies G(x)
G(x+t) is decreasing in x. Again Gω−1(x) is decreasing

in x for any 0 < ω ≤ 1. Now if we consider Ω such that P (0 < Ω ≤ 1) = 1 the result

follows immediately.

Remark 5.3.1. Theorem 5.3.3(i) implies that under the stated assumptions on X and Ω,

r̃X∗(t) ≥ r̃X(t′) for t′ ≥ t ≥ 0. Similarly, Theorem 5.3.3(ii) implies that r̃X∗(t) ≤ r̃X(t′)

for t ≥ t′ ≥ 0.

Example 5.3.1. Let X follows Weibull distribution with cdf G(x) = 1 − e−2x2
, x ≥ 0.

Clearly, X is DRFR. Let Ω to be uniformly distributed on [2, 5]. Then it is easy to check

that G∗(x)/G(x+ t) is increasing in x for all t > 0.
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Theorem 5.3.4.

(i) X∗ ≥rh↓ X if X is IRFR, provided Ω ≥ 1 with probability 1;

(ii) X∗ ≤rh↓ X if X is DRFR, provided 0 < Ω ≤ 1 with probability 1.

Proof:

(i) We have

G∗(x+ t)

G(x)
=

G(x+ t)

G(x)
×
∫ ∞

0
Gω−1(x+ t)dK(ω)

= E

[
G(x+ t)GΩ−1(x+ t)

G(x)

]
. (5.3.5)

Now X is IRFR implies G(x+t)
G(x) is increasing in x for any t > 0. Again Gω−1(x) is

increasing in x for any ω ≥ 1. Now if we consider Ω such that P (Ω ≥ 1) = 1, the

result follows immediately.

(ii) Similarly X is DRFR implies G(x+t)
G(x) is decreasing in x. Again ωGω−1(x) is decreasing

in x for any 0 < ω ≤ 1. Now if we consider Ω such that P (0 < Ω ≤ 1) = 1, the result

follows immediately.

Remark 5.3.2. Theorem 5.3.4(i) implies that under the stated assumptions on X and Ω,

r̃X∗(t) ≥ r̃X(t′) for t ≥ t′ ≥ 0. Similarly, Theorem 5.3.4(ii) implies that r̃X∗(t) ≤ r̃X(t′)

for t′ ≥ t ≥ 0.

Example 5.3.2. Let X follows Weibull distribution with cdf G(x) = 1 − e−x3
, x ≥ 0 so

that X is DRFR. Let Ω be uniformly distributed on [0, 1]. Then it is easy to check that

G∗(x+ t)/G(x) is decreasing in x for all t > 0.

Theorem 5.3.5.

(i) X∗ ≤mit↑ X if X is IMIT, provided Ω ≥ 1 with probability 1;

(ii) X∗ ≥mit↓ X if X is IMIT, provided 0 < Ω ≥ 1 with probability 1.

Proof:

(i) We have

∫ x+t

0
G∗(u)du

/ ∫ x

0
G(u)du =

∫ x+t
0

∫∞
0 Gω(u)dK(ω)du∫ x

0 G(u)du
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= E

[∫ x+t
0 GΩ(u)du∫ x

0 G(u)du

]
. (5.3.6)

Now X is IMIT implies
∫ x+t
0 G(u)du∫ x
0 G(u)du

is decreasing in x for any t > 0. That is, for any

t > 0

G(x+ t)∫ x+t
0 G(u)du

≤ G(x)∫ x
0 G(u)du

. (5.3.7)

Also it is easy to verify that for any ω > 0, Gω(x)∫ x
0 Gω(u)du

is increasing function of ω. So

from (5.3.7) for any 0 < ω ≤ 1

Gω(x+ t)∫ x+t
0 Gω(u)du

≤ G(x+ t)∫ x+t
0 G(u)du

≤ G(x)∫ x
0 G(u)du

. (5.3.8)

Hence from (5.3.8) we can conclude that (5.3.6) is decreasing in x.

(ii). Again we have

∫ x

0
G(u)du

/ ∫ x+t

0
G∗(u)du =

∫ x
0 G(u)du∫ x+t

0

∫∞
0 Gω(u)dH(ω)du

= E

[ ∫ x
0 G(u)du∫ x+t

0 GΩ(u)du

]
. (5.3.9)

As Gω(x)∫ x
0 Gω(u)du

is increasing function of ω for any ω ≥ 1 we have

G(x)∫ x
0 G(u)du

≤ G(x+ t)∫ x+t
0 G(u)du

≤ Gω(x+ t)∫ x+t
0 Gω(u)du

. (5.3.10)

Consequently from (5.3.10) we can conclude that (5.3.9) is decreasing in x.

Remark 5.3.3. Theorem 5.3.5(i) implies that under the stated assumptions on X and Ω,

mitX∗(t) ≥ mitX(t′) for t ≥ t′ ≥ 0. Similarly, Theorem 5.3.5(ii) implies that mitX∗(t) ≤

mitX(t′) for t ≥ t′ ≥ 0.

5.4 Data analysis

Here we illustrate some of our results in two real scenarios considering two data sets, namely

Survival times in leukaemia and Fatigue-life failures (Hand et al. [58]) data. In scenario I,

we illustrate results (Theorems 5.2.2 and 5.2.4) for frailty model. In scenario II, we illustrate
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results for resilience model (Theorems 5.3.1 and 5.3.3).

Scenario I: We consider the data set Survival times in leukaemia (Hand et al. [58])

which contains the survival times of 43 patients suffering from chronic granulocytic leukaemia,

measured in days from the time of diagnosis. From the quantile-quantile (Q-Q) plot (Figure

5.1) and results of Anderson-Darling test (Table 5.1) for the observed samples, it is observed

that Weibull distribution fits well. Estimated values of parameters of the fitted baseline

Weibull (X) with the cdf F (x) = 1 − e(−x/β)k , x ≥ 0, β > 0, k > 0 are presented in Table

5.2.

Table 5.1: Results of Anderson-Darling test
AD-value p-value Critical value(cv)

0.3616 0.8852 2.4978

Table 5.2: Estimated parameters of Weibull distribution
Parameters Estimated value 95% confidence interval

Scale (β) 986.672 [766.52, 1270.06]
Shape (k) 1.24044 [0.973535, 1.58052]
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Figure 5.1: QQ plot of sample data vs Weibull distribution

With shape parameter k > 1, this baseline Weibull distribution is ILR and and so it is

IFR. Next we consider well known Gamma-frailty i.e. Λ ∼ Γ(1/a2, 1/a2) where Λ ≥ 1 with

probability 1. According to Theorem 5.2.2(ii), the effect of considered gamma frailty on X

is that, X∗ ≤lr↓ X, which implies that κX∗(t) ≤ κX(t′) for t′ ≥ t ≥ 0. Similarly, according

to Theorem 5.2.4(ii), X∗ ≤hr↓ X, which implies that r∗X(t) ≥ rX(t′) for t′ ≥ t ≥ 0. Also, we

have X∗ ≥disp X, where ‘disp’ stands for dispersive order (Shaked and Shanthikumar [122]).
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It follows from the fact that for two non-negative rvs X and Y , X ≤hr↓ Y ⇒ X ≤disp Y

(Lillo et al. [90]).

To demonstrate the above mentioned stochastic orders, we proceed as follows. The sf

and pdf of the above frailty model (Gamma-frailty Weibull-baseline) are

F̄ ∗(t) =
(1/a2)−1/a2(a2 + tk

βk )
−1/a2ζ1

(
1
a2
, a2 + tk

βk

)
Γ( 1

a2
)
(
1− ζ2(

1
a2
, 0, a2)

) (5.4.1)

and f∗(t) =

ktk−1

βk (1/a2)−1/a2(a2 + tk

βk )
−1−1/a2ζ1

(
1
a2
, a2 + tk

βk

)
Γ( 1

a2
)
(
1− ζ2(

1
a2
, 0, a2)

) , (5.4.2)

respectively. Let t1, t2, ..., tn be the observations under consideration. We now obtain max-

imum likelihood estimation of the parameter a under the Gamma-frailty Weibull-baseline.

The likelihood function is given by

L(a|t1, t2, .., tn) =

(
( 1
a2
)−1/a2

Γ( 1
a2
)
(
1− ζ2(

1
a2
, 0, a2)

))n

kn
n∏

i=1

(ti)
k−1

n∏
i=1

(a2 +
tki
βk

)−1−1/a2

×
n∏

i=1

ζ1

(
1

a2
, a2 +

tki
βk

)
, (5.4.3)

where ζ1(a, x) =
∫∞
x ta−1e−tdt and ζ2(a, x) =

∫ x
0 ta−1e−tdt

Γ(a) are upper incomplete gamma

functions and regularized lower incomplete gamma functions respectively. Estimated value

of a is obtained as 0.784 with P(Γ ≥ 1) = 1.

We then plotted f∗(x+ t)
/
f(x) taking some finite range of x and t as shown in Figure 5.2,

which is clearly showing that the ratio is decreasing in x, giving X∗ ≤lr↓ X. To demonstrate

that X∗ ≤hr↓ X, we plotted F̄ ∗(x+ t)
/
F̄ (x) in Figure 5.3 showing that it is decreasing in

x.

Scenario II: Here we consider the data set Fatigue-life failures (Hand et al. [58]) on

the fatigue-life failures of ball-bearings. The data give the number of cycles to failure.

From the quantile-quantile (Q-Q) plot (Figure 5.4) and the results of Anderson-Darling

test (Table 5.3) for the observed samples, it is observed that the samples can taken to be

from Weibull distribution. Estimated values of parameters of baseline Weibull with the cdf

G(x) = 1− e(−x/β)k , x ≥ 0, β > 0, k > 0 are given in Table 5.4.

Table 5.3: Results of Anderson-Darling test
AD-value p-value Critical value(cv)

0.1496 0.99 2.503
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Figure 5.2: Plot of f∗(x+ t)
/
f(x)

Figure 5.3: Plot of F̄ ∗(x+ t)
/
F̄ (x)

Table 5.4: Estimated parameters of Weibull distribution
Parameters Estimated value 95% confidence interval

Scale 232.9 [198.758, 272.906]
Shape 3.0721 [2.13732, 4.41572]

With shape parameter k > 1, this baseline Weibull distribution is ILR and also is DRFR.

Next we consider Gamma resilience i.e. Ω ∼ Γ(1/a2, 1/a2) where Ω ≥ 1 with probability

1. According to Theorem 5.3.1(i), the effect of considered gamma resilience on X is that,
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Figure 5.4: QQ plot of sample data vs Weibull distribution

Figure 5.5: Plot of g∗(x)
/
g(x+ t)

X∗ ≤lr↓ X. Similarly, according to Theorem 5.3.3(i), X∗ ≤rh↑ X, which indicates that

r̃∗X(t) ≤ r̃X(t′) for t ≥ t′ ≥ 0.

To demonstrate the above mentioned stochastic orders, we proceed as follows. The cdf

and pdf of the above resilience model (Gamma-resilience Weibull-baseline) are

G∗(t) =
(1/a2)−1/a2(a2 − ln(1− e

( t
β
)k
))−1/a2ζ1

(
1
a2
, a2 − ln(1− e

( t
β
)k
)
)

Γ( 1
a2
)
(
1− ζ2(

1
a2
, 0, a2)

)
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and g∗(t) =

ktk−1

βk (1/a2)−1/a2(a2 − ln(1− e
( t
β
)k
))−1−1/a2ζ1

(
1
a2
, a2 − ln(1− e

( t
β
)k
)
)

Γ( 1
a2
)
(
1− ζ2(

1
a2
, 0, a2)

) ,

respectively. Let t1, t2, ..., tn be the observations under consideration. We now obtain max-

imum likelihood estimate of the parameter a under the Gamma-resilience Weibull-baseline.

The likelihood function is given by

L(a|t1, t2, .., tn) =

(
( 1
a2
)−1/a2

Γ( 1
a2
)
(
1− ζ2(

1
a2
, 0, a2)

))n n∏
i=1

(ti)
k−1

n∏
i=1

(a2 − ln(1− e
(
ti
β
)k
))−1−1/a2

×
n∏

i=1

ζ1

(
1

a2
, a2 − ln(1− e

(
ti
β
)k
)

)
,

where ζ1(a, x) and ζ2(a, x) are defined in previous case. Estimated value of the parameter

a is obtained as 4.0558 with P(Ω ≥ 1) = 1.

Then we plotted g∗(x)
/
g(x+ t) taking some finite range of x and t as shown in Figure

5.5, which is clearly showing that the ratio is increasing in x, giving X∗ ≤lr↑ X. To

demonstrate that X∗ ≤rh↑ X, we plotted G∗(x)
/
G(x + t) in Figure 5.6 showing that it is

increasing in x.

Figure 5.6: Plot of G∗(x)
/
G(x+ t)





Chapter 6

Stochastic comparisons with active

redundancy allocation

Incorporating redundancies (standby components/spares) into a system is an effective way

to enhance system reliability. Among the various types of redundancies, e.g. hot, cold

and warm standby, the commonly used redundancy is active redundancy. In active redun-

dancy, standby components are allocated with the original components in parallel, and start

functioning along with the original components of the system. In practice, while a system

is running, when the replacement of a failed component is not possible or replacement is

time-consuming and will result in a huge cost, in such cases active redundancy allocation

is economical. In general, the matching and non-matching aspects of active redundancy

allocations are considered. In matching allocation standby components are identically dis-

tributed as of the original components, whereas in non-matching, standby and original

components are non-identically distributed. Several researchers studied active redundancy

allocation focusing on how to allocate the standby components into the system at compo-

nent or system levels so that the reliability of the system is improved in some stochastic

sense (see Brito et al. [26], Da and Ding [36], Hazra and Nanda [63], Misra et al. [99], Zhao

et al. [141] and references therein).

It is also to be noted that in all of the aforementioned works, components are assumed

to be statistically independent. However, in many practical scenarios, components of a

system may not be independent but are dependent because of various factors like different

environmental factors (stress, load, voltage, etc.) and system design (Ghoraf [50], Gupta

and Gupta [54], Yang et al. [133]). Hence it is of natural interest to study active redun-

dancy allocations policy when system components are statistically dependent. Gupta and

Gupta [54] first investigated component and system level active redundancy allocations pol-

115
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icy with respect to some stochastic orders for matching spares when system components are

statistically d.i.d. Later on, [135] further investigated in that direction and provided more

conditions for comparing component and system redundancies (considering non-matching

spares). Hazra and Misra [62] considered the comparison of coherent systems with ac-

tive redundancy at the component level versus at the system level for d.i.d. components

and matching spares. However, for statistically dependent components and non-matching

spares, not many works are available may be due to the complexity of structure function.

On allocating active redundancies, it is of interest to know which sets of redundant

components will provide more improved reliability of the system. Here we consider the case

when the original components of a coherent system are d.i.d., and redundant components are

non-identical (non-matching spares). Also, we discuss active redundancy at the component

level as well as redundancy at the system level.

Our aim to investigate the optimal selection of redundant components in coherent

systems based on the underlying distribution of component lifetime. To the best of our

knowledge except Kelkinnama [71] there is no considerable work done in this direction.

Kelkinnama [71] considered that the lifetime distributions of the original and redundant

components follow the PHR or PRH model. In this chapter we provide sufficient conditions

to optimal selection of redundant components in a coherent system based on the underlying

distribution of the components lifetime. We consider that component lifetime follow two

important semi-parametric models namely AL and PO models.

In Section 6.1, we derive stochastic comparison results for coherent systems with redun-

dancy at the component level when components lifetimes follows AL model. In Section ??,

we derive the same for redundancy at the system level when components lifetimes follows

AL model. In Section 6.3, we derive stochastic comparison results for coherent systems

with redundancy at the component level when components lifetimes follows PO model. In

Section 6.4, we derive the same for redundancy at the system level when components life-

times follows PO model. In section, 6.5 we demonstrate some of the derived results with

real data.

6.1 Component redundancy: AL model:

Here we present stochastic comparison results for coherent systems of dependent and iden-

tically distributed components with redundancy at the component level, where original and

redundant components follow AL model. Suppose that each of the n original identically

distributed components of a coherent system is connected with m redundant components in

parallel, where the original and m redundant components follow AL model with a baseline

distribution function F , and corresponding scale parameters a0, a1, · · · , am respectively. Let
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Sc denotes the lifetime for this coherent system with active redundancy at the component

level. The reliability function can be written as

F̄Sc(t) = hθ

1−
m∏
j=0

(F (ajt))

 , (6.1.1)

where, hθ : [0, 1] → [0, 1] is the distorted function. It may be noted that as along with the

structure function of the system, h also depends on the dependence structure (associated

copula) of the components, here θ represents the dependence parameter of the associated

copula. For convenient we denote this system as (F,a, hθ), where a = {a0, a1, · · · , am}.
We also denote the survival, hazard rate and reversed hazard rate function of the baseline

distribution as F̄ (·), r(·) and r̃(·), respectively.

Lemma 6.1.1. The function log(F (at)) is increasing and concave in a if r̃(x) is decreasing

in x.

Proof. Let D(a) = log(F (at)). Then we have

D′(a) = tr̃(at) (6.1.2)

D′′(a) = t2r̃′(at) (6.1.3)

From (6.1.2) and (6.1.3) we can easily conclude that log(F (at)) is increasing and concave

in a if r̃(x) is decreasing in x.

We now derive some results that could help us design more reliable systems by allo-

cating appropriate redundant components from the available spare components. Theorem

6.1.1 provides us the sufficient conditions under which survival (reliability) function of a

coherent system of dependent and identically distributed components with a set of redun-

dant components is larger than that of the same system with another set of redundant

components.

Theorem 6.1.1. Let the coherent system with component level redundancy following the

AL model (F,a, hθ1), has the lifetime Sc and following the AL model (F,a∗, hθ2) has the

lifetime S∗
c . If hθ(u) is increasing (decreasing) in θ and r̃(x) is decreasing in x, then for

θ1 ≤ (≥) θ2,

a
w
⪯ a∗ =⇒ Sc ≤st (≥st) S∗

c .
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Proof. Since r̃(x) is decreasing, using Lemma 1.2.7(ii) and Lemma 6.1.1 we can conclude

that if a
w
⪯ a∗ then

(ln(F (a0t)), ln(F (a1t)), ..., ln(F (amt))) ⪯w (ln(F (a∗0t)), ln(F (a
∗
1t)), ..., ln(F (a

∗
mt)))

which implies

((F (a0t)), (F (a1t)), ..., (F (amt))) ⪯p ((F (a∗0t)), (F (a
∗
1t)), ..., (F (a

∗
mt)))

which implies

1−
m∏
j=0

F (ajt) ≤ 1−
m∏
j=0

F (a∗j t) (6.1.4)

Since hθ(x) is an increasing in x, we have for any θ > 0

hθ

1−
m∏
j=0

F (ajt)

 ≤ hθ

1−
m∏
j=0

F (a∗j t)

 . (6.1.5)

Now for θ1 ≤ θ2, as hθ(x) is an increasing in θ, we have from (6.1.5)

hθ1

1−
m∏
j=0

F (ajt)

 ≤ hθ2

1−
m∏
j=0

F (a∗j t)

 . (6.1.6)

Reverse equality follows in similar way when hθ(x) is decreasing in θ and θ1 ≥ θ2. Hence

the desired result holds.

The following example provides some copulas and coherent structures for which the

distortion functions satisfy the conditions of Theorem 6.1.1.

Example 6.1.1. It is to be noted that the distributions having r̃(x) decreasing in x belong

to the decreasing reversed hazard rate (DRHR) class. Some well-known DRHR distributions

under suitable parameter restrictions are given in Table 6.1. In Table 6.2, we present some

well-known copulas and coherent structures for which the condition (ii) of Theorem 6.1.2 is

satisfied.

Theorem 6.1.2 provides us the sufficient conditions under which hazard rate (failure

rate) function of a coherent system with redundancy at the component level is smaller than

that of another such system.
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Table 6.1: Some distributions having the property that r̃(x) is decreasing in x
Distribution CDF Parameter restriction

Weibull 1− exp(−(αx)β), x > 0, α > 0, β > 0 α > 0, 0 < β < 1.

Generalised Gamma γ(d/p,(x/α)p)
Γ(d/p) , x > 0, α, d, p > 0 α, d, p > 0, d ̸= p.

Generalised Pareto 1−
(
1− kx

σ

)1/k
, 0 < x ≤ σ/k, σ, k > 0, 0 < k < 1, σ > 0.

Table 6.2: Some copulas and coherent structures for which hθ(u) is increasing in θ
Copula Coherent system hθ(u)

(i), (ii) X2:3 (2-out-of-3) Increasing in θ ≥ 1

(iv) X2:4(3-out-of-4) Increasing in 0 < θ ≤ 1

Theorem 6.1.2. Let the coherent system with component level redundancy following the

AL model (F,a, hθ1), has the lifetime Sc and following AL model (F,a∗, hθ2) has the lifetime

S∗
c . If

(i) xr̃(x) is decreasing and concave in x.

(ii)
(1−u)h′

θ(u)

hθ(u)
is decreasing in u and is increasing (decreasing) in θ,

then for θ1 ≤ (≥) θ2,

a
m
⪯ a∗ =⇒ Sc ≥hr S∗

c .

Proof. Let us define

ξ(t) =
hθ2

(
1−

∏m
j=0(F (a

∗
j t)
)

hθ1

(
1−

∏m
j=0(F (ajt)

)
Now differentiating ξ(t) w.r.t. t we have

ξ
′
(t)

sgn
=

h′θ1

(
1−

∏m
j=0 F (ajt)

)
hθ1

(
1−

∏m
j=0 F (ajt)

) m∏
j=0

(F (ajt))
m∑
j=0

aj r̃(ajt)

−
h′θ2

(
1−

∏m
j=0 F (a

∗
j t)
)

hθ2

(
1−

∏m
j=0 F (a

∗
j t)
) m∏

j=0

(F (a∗j t))
m∑
j=0

a∗j r̃(a
∗
j t) (6.1.7)

Since xr̃(x) is decreasing and concave, we have by using Lemma 1.2.7(iv), if a ⪯w a
∗ then

m∑
j=0

aj r̃(ajt) ≥
m∑
j=0

a∗j r̃(a
∗
j t) (6.1.8)
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Again, since
(1−u)h′

θ(u)

hθ(u)
is decreasing in u and r̃(x) is decreasing in x (as xr̃(x) is de-

creasing in x), applying (7.2.2) we have if a
w
⪯ a∗ then

h′θ1

(
1−

∏m
j=0 F (ajt)

)
hθ1

(
1−

∏m
j=0 F (ajt)

) m∏
j=0

(F (ajt)) ≥
h′θ1

(
1−

∏m
j=0 F (a

∗
j t)
)

hθ1

(
1−

∏m
j=0 F (a

∗
j t)
) m∏

j=0

(F (a∗j t)), (6.1.9)

for all t > 0. Now if
(1−u)h′

θ(u)

hθ(u)
is increasing (decreasing) in θ, then for θ1 ≤ θ2 (θ1 ≥ θ2),

using (6.1.9) and (6.1.8), from (6.1.7) it follows that a ⪯m a∗ implies ξ(t) is decreasing in

t, so that Sc ≥hr S∗
c .

Example 6.1.2. It is to be noted that xr̃(x) belongs to the proportional reversed hazard

rate class. The condition xr̃(x) is decreasing and concave, satisfied by some well-known

distribution under suitable parameter restrictions as given in Table 6.3. In Table 6.4, we

present some well-known copulas and coherent structures for which the condition (ii) of

Theorem 6.1.2 is satisfied.

Table 6.3: Some distributions having the property that xr̃(x) is decreasing and concave
Distribution CDF Parameter restriction

Generalised Gamma γ(d/p,(x/α)p)
Γ(d/p) , x > 0, α, d, p > 0 1 < p < d < α

Generalised Pareto 1−
(
1− kx

σ

)1/k
, 0 < x ≤ σ/k, σ, k > 0, 0 < k < 1, σ > 0.

Table 6.4: Some copulas and coherent structures for which (1−u)h′θ(u)/hθ(u) is decreasing
in u and θ

Copula Coherent system
(1−u)h′

θ(u)

hθ(u)

(ii), (iii) X2:4(3-out-of-4) Decreasing in u and θ

(ii), (iii) min(X2:4, X4) Decreasing in u and θ

Theorem 6.1.3 provides us the sufficient conditions under which a coherent system with

redundancy at the component level is better than that of another such system with respect

to reversed hazard rate function.

Theorem 6.1.3. Let the coherent system with component level redundancy following the

AL model (F,a, hθ1), has the lifetime Sc and following AL model (F,a∗, hθ2) has lifetime

S∗
c . If
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(i) xr̃(x) is decreasing and convex in x.

(ii)
(1−u)h′

θ(u)

1−hθ(u)
is increasing in u and increasing (decreasing ) in θ,

then for θ1 ≤ (≥) θ2,

a
w
⪯ a∗ =⇒ Sc ≤rhr S∗

c .

Proof. Let us define

χ(t) =
1− hθ2

(
1−

∏m
j=0(F (a

∗
j t)
)

1− hθ1

(
1−

∏m
j=0(F (ajt)

) .
Now differentiating χ(t) w.r.t. t we have

χ
′
(t) =

h′θ2

(
1−

∏m
j=0(F (a

∗
j t)
)

1− hθ2

(
1−

∏m
j=0(F (a

∗
j t)
) m∏

j=0

(F (a∗j t)
m∑
j=0

a∗j r̃(a
∗
j t)

−
h′θ1

(
1−

∏m
j=0(F (ajt)

)
1− hθ1

(
1−

∏m
j=0(F (ajt)

) m∏
j=0

(F (ajt)
m∑
j=0

aj r̃(ajt) (6.1.10)

Since xr̃(x) is decreasing & convex we have by using Lemma 1.2.7(iii) if a ⪯w a∗ then

m∑
j=0

a∗j r̃(a
∗
j t) ≥

m∑
j=0

aj r̃(ajt) (6.1.11)

Again, since
(1−u)h′

θ(u)

1−hθ(u)
is increasing in u and r̃(x) is decreasing in x, applying (7.2.2)

we have if a
w
⪯ a∗

h′θ2

(
1−

∏m
j=0(F (a

∗
j t)
)

1− hθ2

(
1−

∏m
j=0(F (a

∗
j t)
) m∏

j=0

(F (a∗j t) ≥
h′θ2

(
1−

∏m
j=0(F (ajt)

)
1− hθ2

(
1−

∏m
j=0(F (ajt)

) m∏
j=0

(F (ajt), (6.1.12)

for all t > 0. Now if
(1−u)h′

θ(u)

1−hθ(u)
is increasing (decreasing) in θ, then for θ1 ≤ θ2 (θ1 ≥ θ2),

using (6.4.18) and (6.4.19), from (6.4.17) we have a ⪯w a∗ implies χ(t) is increasing in t,

so that Sc ≤rhr S∗
c .

Example 6.1.3. The condition xr̃(x) is decreasing and convex, satisfied by some well-

known distribution under suitable parameter restrictions as given in Table 6.5. In Table

6.6, we present some well-known copulas and coherent structures for which the condition
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(ii) of Theorem 6.1.3 is satisfied.

Table 6.5: Some distributions having the property that xr̃(x) is decreasing and convex
Distribution CDF Parameter restriction

Weibull 1− exp (−(αx)β), x > 0, α > 0, β > 0. α > 0, 0 < β < 1.

Generalised Gamma γ(d/p,(x/α)p)
Γ(d/p) , x > 0, α, d, p > 0 0 < p < 1; d, α > 0;

Generalised Pareto 1−
(
1− kx

σ

)1/k
, 0 < x ≤ σ/k, σ, k > 0, k > 1, σ > 0.

Table 6.6: Some copulas and coherent structures for which (1 − u)h′θ(u)/(1 − hθ(u)) is
increasing in u and increasing/decreasing in θ

Copula Coherent system
(1−u)h′

θ(u)

1−hθ(u)

(ii) X2:3(3-out-of-4) Increasing in u and increasing in θ ≥ 1

(i) X3:4(3-out-of-4) Increasing in u and decreasing in θ > 0

(i) min(X1,max(X2, X4)) Increasing in u and decreasing in θ > 0

6.2 Systems redundancy:AL model

Here we present the stochastic comparison results for coherent systems of dependent and

identically distributed components with redundancy at the system level, where original and

redundant components follow AL model. Suppose that the original system is connected

with m same structured coherent systems (redundant systems) in parallel, where all the

components of the original and m redundant systems follow AL model with a baseline

distribution function F , and corresponding scale parameters a0, a1, · · · , am respectively.

Let Ss denotes the lifetime for this coherent system with active redundancy at the system

level. The reliability function can be written as

F̄Ss(t) = 1−
m∏
j=0

(
1− hθj (1− F (ajt))

)
, (6.2.1)

where hθ0 and hθj , j = 1, · · · ,m are the distorted functions of the original and jth redun-

dant systems, respectively. Here we consider different parameters θj for the original and

each redundant system, as, the distorted function also depends on the dependence structure

(associated copula) of the components, so for different distributions, the dependence pa-

rameter of the copulas may be different. For convenient we denote this system as (F,a,hθ),

where a = {a0, a1, · · · , am} and hθ = {hθ0 , hθ1 , · · · , hθm}.
The derived results in this section could help us to design more reliable systems by

assigning appropriate system level redundancy from the available options.
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Theorem 6.2.1 provides sufficient conditions under which survival function of a coherent

system of dependent and identically distributed components with a set of redundant systems

is larger than that of the same system with another set of redundant systems. This theorem

also applies if scale parameter of the original component of a system is different from that

of the other system.

Theorem 6.2.1. Let the coherent system with system level redundancy following the AL

model (F,a,hθ), has the lifetime Ss and following AL model (F,a∗,hθ∗) has the lifetime

S∗
s with

(i) r(u) is decreasing in u,

(ii) h′θ(u) is increasing in u and decreasing in θ; hθ(u) is decreasing in θ,

(iii) ∂hθ(u)
∂θ is decreasing in u and increasing in θ.

Then for a, a∗, θ, θ∗ ∈ D+
n ,

a
m
⪯ a∗ and θ

m
⪯ θ∗ =⇒ Ss ≤st S∗

s .

Proof. Let us write

Fa,θ(t) = log(FSs(t)) =

m∑
i=1

log(1− hθi(1− F (ait))) (6.2.2)

Then we have

∂Fa,θ(t)

∂aj
= r(ajt)

((1− F (ajt))h
′
θj
(1− F (ajt))

1− hθj (1− F (ajt))
(6.2.3)

Now

∂Fa,θ(t)

∂ai
−
∂Fa,θ(t)

∂aj

= r(ait)
((1− F (ait))h

′
θi
(1− F (ait))

1− hθi(1− F (ait))
− r(ajt)

((1− F (ajt))h
′
θj
(1− F (ajt))

1− hθj (1− F (ajt))

From condition (i), we have

ai ≥ aj =⇒ r(ait) ≤ r(ajt) (6.2.4)
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Applying (ii), we have

ai ≥ aj =⇒
((1− F (ait))h

′
θi
(1− F (ait))

1− hθi(1− F (ait))
≤

((1− F (ajt))h
′
θi
(1− F (ajt))

1− hθi(1− F (ajt))
(6.2.5)

and

θi ≥ θj =⇒
((1− F (ajt))h

′
θi
(1− F (ajt))

1− hθi(1− F (ajt))
≤

((1− F (ajt))h
′
θj
(1− F (ajt))

1− hθj (1− F (ajt))
(6.2.6)

Now for 1 ≤ i < j ≤ m, using (6.2.4)-(6.2.6) we have if ai ≥ aj and θi ≥ θj ,

∂Fa,θ(t)

∂ai
−
∂Fa,θ(t)

∂aj
≤ 0.

So we can conclude that
∂Fa,θ(t)

∂ak
is increasing in k, k = 1, 2..,m for a, θ ∈ D+

n . Hence from

Lemma 2 of [? ] we have for a, a∗, θ, θ∗ ∈ D+
n ,

a
m
⪯ a∗ =⇒ Fa,θ(t) ≥ Fa∗,θ(t) (6.2.7)

Again,

∂Fa,θ(t)

∂θj
=

−
∂hθj

(1−F (ajt))

∂θj

1− hθj (1− F (ajt))
(6.2.8)

∂Fa,θ(t)

∂θi
−
∂Fa,θ(t)

∂θj
=

−∂hθi
(1−F (ait))

∂θi

1− hθi(1− F (ait))
−

−
∂hθj

(1−F (ajt))

∂θj

1− hθj (1− F (ajt))

From condition (iii), along with the condition hθ(u) is decreasing in θ we have

θi ≥ θj =⇒
−∂hθi

(1−F (ait))

∂θi

1− hθi(1− F (ait))
≤

−
∂hθj

(1−F (ait))

∂θj

1− hθj (1− F (ait))
(6.2.9)

and

ai ≥ aj =⇒
−∂hθi

(1−F (ait))

∂θj

1− hθj (1− F (ait))
≤

−
∂hθj

(1−F (ajt))

∂θj

1− hθj (1− F (ajt))
(6.2.10)
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Now for 1 ≤ i < j ≤ m, we have if ai ≥ aj and θi ≥ θj ,

∂Fa,θ(t)

∂θi
−
∂Fa,θ(t)

∂θj
≤ 0.

Hence from Lemma 2 of [? ] we have for a, a∗, θ, θ∗ ∈ D+
n ,

θ
m
⪯ θ∗ =⇒ Fa,θ(t) ≥ Fa,θ∗(t) (6.2.11)

From (6.2.7) and (6.2.11), we have the desired result.

Example 6.2.1. It is to be noted that distributions having r(x) decreasing in x belong to

the decreasing failure (hazard) rate (DFR) class. Some well-known DFR distributions under

suitable parameter restrictions are given in Table 6.7. In Table 6.8, we present some well-

known copulas and coherent structures for which the condition (i)-(iv) of Theorem 6.2.1 is

satisfied.

Table 6.7: Some distributions having the property that r(x) is decreasing in x
Distribution CDF Parameter restriction

Weibull 1− exp(−(αx)β), x > 0, α > 0, β > 0 α > 0, 0 < β < 1.

Burr 1− (1 + xc)−α, x ≥ 0, α, c > 0, α > 0, 0 < c < 1.

Generalised Gamma γ(d/p,(x/α)p)
Γ(d/p) , x > 0, α, d, p > 0 α > 0, 0 < d, p < 1.

Table 6.8: A copula and a coherent structure for which hθ(u) is decreasing in θ, and h′θ(u)
is increasing in u and decreasing in θ
Copula Coherent system hθ(u) h′θ(u)

(i) max(X1,min(X2, X3, X4)) Decreasing in θ Increasing in u and decreasing in θ

Next, we provide an example to show that under sufficient conditions in Theorem 6.2.1,

the hazard rate ordering would not hold in general.

Example 6.2.2. Consider F̄ (x) = exp(−(αx)k) where α = 3, k = 0.8. It is easy to check

that r(x) is decreasing in x. Next, we consider the following one-parameter copulas

C3(u1, u2, u3, u4, θ) = (u−θ
1 + u−θ

2 + u−θ
3 + u−θ

4 − 3)−1/θ, θ ∈ [−1,∞) \ {0}.

Now consider the following coherent structure with distortion functions underlying the above
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one parameter copula C3(u1, u2, u3, u4, θ)

ϕ1(X) = max(X1,min(X2, X3, X4))

and

hθ(u) = C3[u, 1, 1, 1, θ] + C3[u, u, u, 1, θ]− C3[u, u, u, u, θ]

Here hθ(u) satisfies the condition (ii) and (iii) of Theorem 6.2.1.

Now consider a = {a0, a1, a2, a3} = {1.8, 1.2, 0.8, 0.2}, θ = {θ0, θ1, θ2, θ3} = {10, 7, 6, 4},

a∗ = {1.8, 1.5, 0.5, 0.2}, θ∗ = {10, 9, 7, 1}. Here a
m
⪯ a∗ and θ

m
⪯ θ∗. In Figure 6.1(a), it

is shown that Ss ≤st S∗
s ; however, from Figure 6.1(b) it is evident that hazard rate order is

not satisfied.
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                 𝑟𝑆𝑠∗(𝑡) 

(a) (b) 

 

Figure 6.1: Plots of (a) F̄Ss(x), F̄S∗
s
(x), t = x/(1− x) and (b) rSs(t), rS∗

s
(t)

Theorem 6.2.2 compares two coherent systems of dependent and identically distributed

components with different sets of redundant systems with respect to the reversed hazard

rate order. Here we consider that the systems have the same dependent structures (i.e.

θj = θ,∀j.).

Theorem 6.2.2. Let the coherent system with system level redundancy following the AL

model (F,a, hθ), has the lifetime Ss,a and following AL model (F,a∗, hθ) has the lifetime

S∗
s,a∗. Suppose the following conditions hold.

(i) ur(u) is decreasing and convex in u.

(ii)
uh

′
θ(u)

1−hθ(u)
is increasing and convex in u.
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Then

a ⪯w a∗ =⇒ Ss,a ≤rhr S
∗
s,a∗ .

Proof. We have

r̃S,a(t) =

m∑
j=0

ajr(ajt)
(1− F (ajt))h

′
θ(1− F (ajt))

1− hθ(1− F (ajt))
(6.2.12)

From the conditions (i) and (ii), we can conclude that
∂rS,a(t)

∂aj
is non-positive and increasing

in aj . Now for for 1 ≤ i < j ≤ n, we have

(ai − aj)

(
∂r̃S,a(t)

∂ai
−
∂r̃S,a(t)

∂aj

)
≥ 0. (6.2.13)

So from Theorem A.4 of [95], r̃S,a(t) is Schur-convex in a. Hence r̃S,a(t) is decreasing in

ai, i = 1, 2, ..., n and Schur-convex in a. Thus from Theorem A.8 of [95], we have

a
w
⪯ a∗ =⇒ r̃S,a(t) ≤ r̃S,a∗(t) (6.2.14)

Example 6.2.3. The condition ur̃(u) is decreasing and convex, satisfied by some well-

known distribution under suitable parameter restrictions as given in Table. In Table 6.9,

we present some well-known copulas and coherent structures for which the condition (ii) of

Theorem 6.2.2 is satisfied. Consider F (x) = 1−x−k, x ≥ 1, k > 0. Then it is easy to check

that xr(x) is decreasing and convex in x ≥ 1 for all k > 0.

Table 6.9: Some well-known copulas and coherent structures for which uh′θ(u)/(1− hθ(u))
is increasing and convex in u

Copula Coherent system
uh′

θ(u)

1−hθ(u)

1 X2:3(2-out-of-3) Increasing and convex in u, ∀θ ≥ 0.

1 min(X1,max(X2, X4)) Increasing and convex in u, ∀θ ≥ 0.

4 X3:4(3-out-of-4) Increasing and convex in u, ∀θ ≥ 1.

4 X2:4(2-out-of-4) Increasing and convex in u, ∀θ ≥ 1.
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6.3 Component redundancy under PO model:

Here we present the stochastic comparison results for coherent systems of d.i.d. compo-

nents with redundancy (non-matching) at the component level. Suppose that each of the

n original identically distributed components of a coherent system is connected with m

redundant components in parallel, where the original and redundant components follow the

PO model with a baseline survival function F̄ with corresponding odds ratio parameters as

ρ0 and ρ1, · · · , ρm, respectively. So the survival functions of the original and m redundant

components are given by F̄ρj (t) =
ρj F̄ (t)

1−ρ̄j F̄ (t)
, j = 0, 1, · · · ,m. For this coherent system with

active redundancy at the component level (let us denote the lifetime by Tc), the reliability

function can be written as

F̄Tc(t) = ℓθ

1−
m∏
j=0

(1− F̄ρj (t))

 (6.3.1)

where, ℓθ : [0, 1] → [0, 1] is the distorted function. Here θ indicates the parameter of the

dependence structure (associated copula) of the dependent components. For convenience,

we say that this system is following the PO model (F̄ ,ρ, ℓθ), where ρ = {ρ0, ρ1, · · · , ρm}.

In Theorem 6.3.1, we derive sufficient conditions under which the survival function of

a coherent system of d.i.d. components following the PO model with a set of redundant

components at the component level is larger than the same system with another set of

redundant components. In practice, the quality of manufactured components varies due to

various factors (e.g., human errors, defective resources, instability of production processes,

etc.). Hence the optimal choice of spares will provide improved reliability. Theorem 6.3.1

will be useful in determining the optimal set of redundant components from some available

options concerning the reliability function of the system lifetime. Based on the characteris-

tics of component lifetimes (odds ratios/tilt parameters) and system design (distortion), a

design engineer can choose a set of redundant components that optimize system reliability.

Theorem 6.3.1. Let the system with redundancy at the component level following the PO

model (F̄ ,ρ, ℓθ1), has the lifetime Tc and under PO model PO(F̄ ,ρ∗, ℓθ2) has lifetime T ∗
c .

If ℓθ(u) is increasing (decreasing) in θ, then for θ1 ≥ (≤) θ2,

ρ
w
⪯ ρ∗ =⇒ Tc ≥st T ∗

c .

Proof: Let us consider the function g(ρ) = ln (Fρ(t)) = ln
(

F (t)
1−ρ̄F̄ (t)

)
. Then it is easy

to check that g(ρ) is decreasing and convex in ρ. Therefore from Lemma 1.2.7(iii) we have
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ρ
w
⪯ ρ∗ implies

(g(ρ0), g(ρ1), g(ρ2), ..., g(ρm)) ⪯w (g(ρ∗0), g(ρ
∗
1), g(ρ

∗
2), ..., g(ρ

∗
m))

which implies

((F (ρ0t)), (F (ρ1t)), (F (ρ2t)), ..., (F (ρnt)))
p
⪯ ((F (ρ∗0t)), (F (ρ

∗
1t)), (F (ρ

∗
2t)), ..., (F (ρ

∗
nt)))

which gives 1−
m∏
j=0

(1− F̄ρj (t))

 ≥

1−
m∏
j=0

(1− F̄ρ∗j
(t))

 (6.3.2)

Since ℓθ(u) is an increasing function in u for all θ > 0, using equation (6.3.2) we immediately

have

ℓθ

1−
m∏
j=0

(1− F̄ρj (t))

 ≥ ℓθ

1−
m∏
j=0

(1− F̄ρ∗j
(t))

 (6.3.3)

Now if ℓθ(u) is increasing (decreasing) θ, then for θ1 ≥ (≤)θ2, from (6.3.3) we can easily

conclude that Tc ≥st T ∗
c .

Theorem 6.3.2 compares the hazard (failure) rates of two coherent systems with different

sets of active redundancy at the component level. According to the definition of hazard

rate, this theorem enables us to compare the failure or hazard rate of a system with two

different sets of active redundant components, whether at the start or after a certain time

of successful system operation. Another interpretation is that it allows us to compare the

failure rate of two used systems. Based on the characteristics of component lifetimes (odds

ratios/tilt parameters) and system design, this theorem will be helpful in determining the

optimal set of redundant components from some available options concerning the failure

rate of the system.

Theorem 6.3.2. Let the system with redundancy at the component level following the PO

model (F̄ ,ρ, ℓθ1), has the lifetime Tc and under PO model (F̄ ,ρ∗, ℓθ2) has lifetime T ∗
c . If

(i)
(1−u)ℓ

′
θ(u)

ℓθ(u)
is increasing in u,

(ii)
ℓ
′
θ(u)

ℓθ(u)
increasing (decreasing) in θ,

then for θ1 ≥ (≤) θ2,

ρ
w
⪯ ρ∗ =⇒ Tc ≤hr T ∗

c .
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Proof: Let ϕ(t) =
ℓθ2

(
1−

∏m
j=0(1−F̄ρ∗

j
(t))

)
ℓθ1(1−

∏m
j=0(1−F̄ρj (t)))

. Now differentiating w.r.t. t we have

ϕ′(t)
sgn
= −

m∏
j=0

(1− F̄ρ∗j
(t))

ℓ′θ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
)

ℓθ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
) m∑

j=0

ρ∗jr(t)

1− ρ̄∗j F̄ (t)

+
m∏
j=0

(1− F̄ρj (t))
ℓ′θ1

(
1−

∏m
j=0(1− F̄ρj (t))

)
ℓθ1

(
1−

∏m
j=0(1− F̄ρj (t))

) m∑
j=0

ρjr(t)

1− ρ̄jF̄ (t)
(6.3.4)

Let us now consider the function ξ(ρ) = ρ
1−ρ̄F̄ (t)

. It is easy to check that ξ(ρ) is increasing

and concave in u. Hence we have from Lemma 1.2.7(ii)

ρ ⪯w ρ∗ =⇒ (ξ(ρ0), ξ(ρ1), ξ(ρ2), .., ξ(ρm)) ⪯w (ξ(ρ∗0), ξ(ρ
∗
1), ξ(ρ

∗
2), .., ξ(ρ

∗
m))

=⇒
m∑
j=0

ρ∗jr(t)

1− ρ̄∗j F̄ (t)
≤

m∑
j=0

ρjr(t)

1− ρ̄jF̄ (t)
(6.3.5)

Since
(1−u)ℓ′θ(u)

ℓθ(u)
is increasing in u we have from (6.3.2)

 m∏
j=0

(1− F̄ρ∗j
(t))

 ℓ′θ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
)

ℓθ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
) ≤

 m∏
j=0

(1− F̄ρj (t))

 ℓ′θ2

(
1−

∏m
j=0(1− F̄ρj (t))

)
ℓθ2

(
1−

∏m
j=0(1− F̄ρj (t))

)
(6.3.6)

If
ℓ
′
θ(u)

ℓθ(u)
increasing (decreasing) in θ, then for θ1 ≥ (≤)θ2 from (6.3.6) we can easily

conclude that Tc ≤hr T ∗
c .

Example 6.3.1. Consider any survival function F̄ (x). Next, we consider the following

four-dimensional one-parameter copulas

C1(u1, u2, u3, u4, θ) =
θ

ln(eθ/u1 + eθ/u2 + eθ/u3 − 2eθ)
, θ > 0

Now consider the coherent structure max(X2:3, X4), where X2:3 denotes a 2-out-of-3

system. Then the distortion function of this coherent structure underlying four-dimensional

one-parameter copula C1(u1, u2, u3, u4, θ) can be written as

ℓθ(u) = C1(u, 1, 1, 1, θ) + 3C1(u, u, 1, 1, θ)− 5C1(u, u, u, 1, θ) + 2C1(u, u, u, u, θ).
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Here ℓθ(u) satisfied the conditions (i)− (ii) of Theorem 6.3.2.

Theorem 6.3.3 compares the reversed hazard (failure) rates of two coherent systems with

different sets of active redundancy at the component level. In many situations, it happens

that when a system is running, it is not monitored continuously due to the complexity of the

system, cost of monitoring, etc. Suppose the systems failed at time t or sometimes before

time t. For such cases, the exact failure time of individual components can not be observed,

which sometimes refer as Black Box. Engineers and reliability analysts often need to make

inferences on the inactivity time t−X|(X ≤ t), the time elapsed since the system’s failure.

Now if a system fails at time t or sometimes before time t, the concept of reversed hazard

rate provides us an estimate of the system’s failure rate just before the time t. Based on

the characteristics of component lifetimes and system design, Theorem 6.3.3 will be useful

to compare the reversed hazard rate of a system with different sets of active redundancies.

Theorem 6.3.3. Let the system with redundancy at the component level following the PO

model (F̄ ,ρ, ℓθ1), has the lifetime Tc and under PO model (F̄ ,ρ∗, ℓθ2) has lifetime T ∗
c . If

(i)
(1−u)ℓ

′
θ(u)

1−ℓθ(u)
is increasing in u,

(ii)
ℓ
′
θ(u)

1−ℓθ(u)
increasing (decreasing) in θ,

then for θ1 ≥ (≤)θ2

ρ
w
⪯ ρ∗ =⇒ Tc ≥rhr T ∗

c .

Proof: Let ϕ(t) =
1−ℓθ2

(
1−

∏m
j=0(1−F̄ρ∗

j
(t))

)
1−ℓθ1(1−

∏m
j=0(1−F̄ρj (t)))

. To prove our theorem, it is sufficient to

prove that ϕ(t) is decreasing. Now differentiating w.r.t. t we have

ϕ′(t)
sgn
=

m∏
j=0

(1− F̄ρ∗j
(t))

ℓ′θ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
)

1− ℓθ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
) m∑

j=0

ρ∗jr(t)

1− ρ̄∗j F̄ (t)

−
m∏
j=0

(1− F̄ρj (t))
ℓ′θ1

(
1−

∏m
j=0(1− F̄ρj (t))

)
1− ℓθ1

(
1−

∏m
j=0(1− F̄ρj (t))

) m∑
j=0

ρjr(t)

1− ρ̄jF̄ (t)
(6.3.7)

Since
(1−u)ℓ′θ(u)
1−ℓθ(u)

is increasing in u we have from (6.3.2)

m∏
j=0

(1−F̄ρ∗j
(t))

ℓ′θ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
)

1− ℓθ2

(
1−

∏m
j=0(1− F̄ρ∗j

(t))
) ≤

m∏
j=0

(1−F̄ρj (t))
ℓ′θ2

(
1−

∏m
j=0(1− F̄ρj (t))

)
1− ℓθ2

(
1−

∏m
j=0(1− F̄ρj (t))

)
(6.3.8)
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If
ℓ
′
θ(u)

1−ℓθ(u)
increasing (decreasing) in θ then for θ1 ≥ (≤)θ2 from (6.3.8) we can easily

conclude that Ts ≥rhr T ∗
s .

Example 6.3.2. Consider any survival function F̄ (x). Next, we consider the following

three-dimensional one-parameter copulas (Gumbel family)

C2(u1, u2, u3, θ) = exp(−[(− lnu1)
θ + (− lnu2)

θ + (− lnu3)
θ]1/θ), θ > 0.

Now consider a X2:3 (2-out-of-3) coherent structure. Then the distortion function of this

coherent structure underlying three-dimensional one parameter copula C2(u1, u2, u3, θ) can

be written as ℓθ(u) = 3C2(u, u, 1, θ) − 2C2(u, u, u, θ). Here ℓθ(u) satisfied the conditions

(i)− (ii) of Theorem 6.3.3.

6.4 System redundancy under PO model:

Here we present the stochastic comparison results for coherent systems of d.i.d. components

with redundancy at the system level. Suppose the original system is connected with m

same structured coherent systems (redundant systems) of d.i.d. components in parallel.

Let the identical components of the original and each m redundant systems follow the PO

model with a baseline survival function F̄ , and corresponding odds ratios ρ0 and ρ1, · · · , ρm,

respectively. So for this coherent system with active redundancy at the system level (let us

denote the lifetime by Ts), the reliability function can be written as

F̄Ts(t) = 1−
m∏
j=0

(
1− ℓθj

(
F̄ρj (t)

))
(6.4.1)

where, ℓθ0 and ℓθj , j = 1, · · · ,m are the distorted functions of the original and jth re-

dundant systems, respectively. Here θ0 and θj indicate the parameter of the dependence

structure (associated copula) of the dependent components of the original system, and m

redundant systems, respectively. For convenient we denote this system as (F̄ ,ρ, ℓθ), where

ρ = {ρ0, ρ1, · · · , ρm}, θ = {θ0, θ1, · · · , θm} and ℓθ = {ℓθ0 , ℓθ1 , · · · , ℓθm}.
In Theorems 6.4.1, we derive two sets of sufficient conditions under which the survival

or reliability function of a coherent system of d.i.d. components following the PO model

with a set of system-level redundancies is larger or smaller than the system with another

set of system-level redundancies. These theorems enable us to select the most favourable

system-level redundancies among available options to enhance system reliability.
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Theorem 6.4.1. Let the system with redundancy at the system level following the PO model

(F̄ ,ρ, ℓθ), has the lifetime Ts and under PO model (F̄ ,ρ∗, ℓθ∗) has lifetime T ∗
s . Then for

all reliability functions F̄ with

(i)
(1−u)2ℓ

′
θ(u)

1−ℓθ(u)
is decreasing in u,

(ii)
ℓ
′
θ(u)

1−ℓθ(u)
decreasing in θ,

(iii) ℓθ(u) is increasing θ,

(iv)
∂ℓθ(F̄ρ(t))

∂θ

1−ℓθ(F̄ρ(t))
decreasing in u and θ,

and ρ, ρ∗, θ, θ∗ ∈ E+
n (or D+

n ),

ρ ⪯w ρ∗ and θ ⪯w θ∗ =⇒ Ts ≥st T ∗
s .

Proof: Let us define

FS,ρ,θ(t) =
n∑

j−1

log(1− ℓθj (F̄ρj (t)), (6.4.2)

so that FS,ρ,θ(t) = log(FTs(t)). Now,

∂FS,ρ,θ(t)

∂ρj

sgn
=

(
1− ρjF̄ (t)

1− ρ̄jF̄ (t)

)2

×
−ℓ′θj

(
ρj F̄ (t)

1−ρ̄j F̄ (t)

)
1− ℓθj

(
ρj F̄ (t)

1−ρ̄j F̄ (t)

) (6.4.3)

∂FS,ρ,θ(t)

∂ρi
−
∂FS,ρ,θ(t)

∂ρj

sgn
= −

(
1− F̄ρi(t)

)2 × ℓ′θi
(
F̄ρi(t)

)
1− ℓθi

(
F̄ρi(t)

) + (1− F̄ρj (t)
)2 × ℓ′θj

(
F̄ρj (t)

)
1− ℓθj

(
F̄ρj (t)

) (6.4.4)

Now let us define L(ρ, θ) =
(
1− F̄ρ(t)

)2 × ℓ′θ(F̄ρ(t))
1−ℓθ(F̄ρ(t))

Now let ρ ∈ E+
n . Then for ≤ i < j ≤ n, we have from the fact that F̄ρ(t) is increasing

in ρ and from (i),

ρi ≤ ρj =⇒ F̄ρi(t) ≤ F̄ρj (t) =⇒ L(ρi, θ) ≥ L(ρj , θ). (6.4.5)
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From (ii) for
ℓ
′
θ(u)

1−ℓθ(u)
is decreasing in θ and θ ∈ E+

n we have

θi ≤ θj =⇒ L(ρ, θi) ≥ L(ρ, θj). (6.4.6)

Combining (6.4.5) and (6.4.6) we have for ρ,θ ∈ E+
n , ∂FS(t)

∂ρj
is non-positive and increasing

in ρk, k = 1, · · · ,m. In a similar way, we can show that for ρ,θ ∈ D+
n ,

∂FS(t)
∂ρj

is non-positive

and decreasing in ρk, k = 1, · · · ,m. Hence by Theorem 1 of Haidari et al. [57] for ρ, ρ∗ ∈ E+
n

and θ ∈ E+
n (or ρ, ρ∗ ∈ D+

n and θ ∈ D+
n ) we have

ρ ⪯w ρ∗ =⇒ F̄S,ρ,θ(t) ≥ F̄S,ρ∗,θ(t) (6.4.7)

Now we have

∂FS(t)

∂θj

sgn
= −

∂ℓθj (F̄ρj)

∂θj

1− ℓθj (F̄ρj (t))
(6.4.8)

consequently

∂FS(t)

∂θi
− ∂FS(t)

∂θj

sgn
= −

∂ℓθi (F̄ρi)

∂θi

1− ℓθi(F̄ρi(t))
+

∂ℓθj (F̄ρj)

∂θj

1− ℓθj (F̄ρj (t))
(6.4.9)

Let us define H(ρ, θ) =
∂ℓθ(F̄ρ(t))

∂θ

1−ℓθ(F̄ρ(t))
. By (iv) we have

θi ≤ θj =⇒ H(ρ, θi) ≥ H(ρ, θj), (6.4.10)

and

ρi ≤ ρj =⇒ H(ρi, θ) ≥ H(ρj , θ). (6.4.11)

From (6.4.10) and (6.4.11) we have for θ ∈ E+
n and ρ ∈ E+

n , ∂FS(t)
∂θk

is non-positive

increasing in k. In a similar way, we can show that for θ ∈ D+
n and ρ ∈ D+

n ,
∂FS(t)
∂θk

is

non-positive decreasing in k. Hence by Theorem 1 of Haidari et al. [57] for θ, θ∗ ∈ E+
n and

ρ ∈ E+
n (or θ, θ∗ ∈ D+

n and ρ ∈ D+
n ), we have

θ ⪯w θ∗ =⇒ F̄S,ρ,θ(t) ≥ F̄S,ρ,θ∗(t) (6.4.12)
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Combining (6.4.7) and (6.4.12) we have for ρ, ρ∗, θ, θ∗ ∈ E+
n (or D+

n ) we have

ρ ⪯w ρ∗,θ ⪯w θ∗ =⇒ F̄S,ρ,θ(t) ≥ F̄S,ρ∗,θ∗(t), (6.4.13)

which proves the theorem.

Theorem 6.4.2 provides sufficient conditions on the characteristics of component life-

times (odds ratios) and system design to compare the reversed hazard (failure) rates of

two coherent systems with different sets of system-level active redundancies, when the two

systems have the same dependent structure.

Theorem 6.4.2. Let the system with redundancy at the system level following the PO model

(F̄ ,ρ, ℓθ), has the lifetime Ts,ρ and under PO model (F̄ ,ρ∗, ℓθ) has lifetime Ts,ρ∗. Then for

all reliability functions F̄ with

(i) u(1− u) ℓ′(u)
1−ℓ(u) is decreasing and convex in u,

(ii)
ℓ′θ(u)

1−ℓθ(u)
is increasing in θ,

and ρ, ρ∗, θ ∈ E+
n (or D+

n ),

ρ ⪯w ρ∗ =⇒ Ts,ρ ≤rhr Ts,ρ∗ .

Proof: Consider the function ϕθ(t) =

∏m
j=0

(
1−ℓθj

(
ρ∗j F̄ (t)

1−ρ̄∗
j
F̄ (t)

))
∏m

j=0

(
1−ℓθj

(
ρjF̄ (t)

1−ρ̄j F̄ (t)

)) . We prove that ϕθ(t) is

increasing in t. Differentiating ϕθ(t) w.r.t. t we have

ϕ′θ(t)
sgn
=

m∑
j=0

(
ρ∗j F̄ (t)

1− ρ̄∗j F̄ (t)

)(
1−

ρ∗j F̄ (t)

1− ρ̄∗j F̄ (t)

) ℓ′θj

(
ρ∗j F̄ (t)

1−ρ̄∗j F̄ (t)

)
1− ℓθj

(
F̄

1−ρ̄∗j F̄ (t)

)

−
m∑
j=0

(
ρjF̄ (t)

1− ρ̄jF̄ (t)

)(
1− ρjF̄ (t)

1− ρ̄jF̄ (t)

) ℓ′θj

(
ρj F̄ (t)

1−ρ̄j F̄ (t)

)
1− ℓθj

(
F̄

1−ρ̄j F̄ (t)

)
Let us define

A(ρ, θ) =
m∑
j=1

ρjF̄ (t)

1− ρ̄jF̄ (t)

(
1− ρjF̄ (t)

1− ρ̄jF̄ (t)

) ℓ′θj

(
ρj F̄ (t)

1−ρ̄j F̄ (t)

)
1− ℓθj

(
ρj F̄ (t)

1−ρ̄j F̄ (t)

) (6.4.14)
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Now for k = 1, · · · ,m

B(ρk, θk) =
∂A
∂ρk

=
∂

∂ρk

 ρkF̄ (t)

1− ρ̄kF̄ (t)

(
1− ρkF̄ (t)

1− ρ̄kF̄ (t)

) ℓ′θk

(
ρkF̄ (t)

1−ρ̄kF̄ (t)

)
1− ℓθk

(
ρkF̄ (t)

1−ρ̄kF̄ (t)

)
 (6.4.15)

Hence

∂A
∂ρi

− ∂A
∂ρj

= B(ρi, θi)− B(ρj , θj) (6.4.16)

If u(1−u) ℓ′θ(u)
1−ℓθ(u)

is decreasing and convex in u, then from the fact that ρF̄ (t)
1−ρ̄F̄ (t)

is increasing

and concave in ρ, we have for ρ ∈ E+
n ,

i < j =⇒ ρi ≤ ρj =⇒ B(ρi, θ) ≤ B(ρj , θ) (6.4.17)

Again if
ℓ′θ(u)

1−ℓθ(u)
increasing in θ, then for θ ∈ E+

n we have

i < j =⇒ θi ≤ θj =⇒ B(ρ, θi) ≤ B(ρ, θj) (6.4.18)

From (6.4.17) and (6.4.18) we have for ρ, θ ∈ E+
n ,

i < j =⇒ B(ρi, θi) ≤ B(ρj , θj) (6.4.19)

i.e. ∂A
∂ρk

is non-negative and increasing in k. In a similar way, we can show that for ρ, θ ∈
D+

n ,
∂A
∂ρk

is non-negative decreasing in k. Hence by Theorem 1 of Haidari et al. [57] for

ρ, ρ∗, θ ∈ E+
n (or D+

n ) we have

ρ ⪯w ρ∗ =⇒ A(ρ, θ) ≤ A(ρ∗, θ), (6.4.20)

showing ϕθ(t) is increasing in t. Thus ρ ⪯w ρ∗ =⇒ Ts,ρ ≤rhr Ts,ρ∗ .

6.5 Data Analysis:

We consider the data set “Strength of cables” [58], which gives the tensile strengths (in

kg) of 12 types of wires (Wire #1-Wire #12) that are used to make cables. The data

contains the tensile strengths of a sample of 9 wires for each type of wire. Uniform cables of

high tensile strength are essential for a high-voltage electricity transmission network. Also,
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a reliable, real-time signal transmission network is crucial for an efficient power network.

Failure of critical signal transmission network components, e.g., cables, can result in signal

disruptions that can lead to power outages. Signal transmission redundancy (Miclot, 2011),

redundancy in power circuits (Csanyi, 2019) are common practices to ensure continuous

operation and high availability. Here we have demonstrated how our derived results can be

applied to compare two cable networks with redundancies formed by different wires, taking

into account various reliability concepts such as the reliability function and reversed hazard

rate function.

To choose baseline distribution for strengths of cables, we first consider some well known

distributions:

(i) Exponential with rate parameter µ. The pdf is given by

f(x;µ) =
1

µ
e−x/µ x ≥ 0, µ > 0.

(ii) Weibull with scale parameter σ and shape parameter a. The pdf is given by

f(x;σ, a) = (a/σ)(x/σ)a−1 exp (−(x/σ)a) a > 0, σ > 0, x > 0.

(iii) Pareto with location parameter η and shape parameter θ. The pdf is given by

f(x; η, θ) =
θηθ

xθ+1
, η > 0, θ > 0, x ≥ η.

(iv) Frechet with location parameter a, scale parameter b and shape parameter s. The pdf

is given by

f(x; , b, s) =
s

b

(x
b

)−1−s
exp

{
−
(x
b

)−s
}
, , b > 0, s > 0, x > 0.

(v) Burr with shape parameters α and γ and scale parameter θ. The pdf is given by

f(x;α, γ, θ) =
αγ(x/θ)γ

x[1 + (x/θ)γ ]α+1
, α > 0, γ > 0, θ > 0, x > 0.

Goodness-of-fit test are performed and results are tabulated in Tables 6.10. Among them

Weibull is the best fitted according to AIC and BIC values. Estimated scale and shape

parameters are obtained as σ̂ = 342.3578, â = 57.0885.

Scenario I: In this scenario, we illustrate some theoretical results for the system with re-

dundancy at the component level following the AL model.Let us consider a three-component

cable network system made byWire #3, which follows aX2:3 (2-out-of-3) coherent structure.
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Table 6.10: Goodness-of-fit criteria

Distribution Parameter estimates AIC BIC

Exponential µ̂ = 0.00294784 1476.563 1479.246

Weibull σ̂ = 342.3578, â = 57.0885 720.2729 725.6371

Pareto η̂ = 1047978942, θ̂ = 3090327 1478.564 1483.928

Frechet b̂ = 335.8897, ŝ = 53.2325 731.7465 737.1107

Burr α̂ = 128.6677, γ̂ = 57.43633, θ̂ = 2684.366 722.0600 730.1064

Where components lifetime follows random identical but dependent variables X1, X2, X3

respectively. The distortion of this coherent structure ϕ(X) under any three-dimensional

Archimedean copula C(u1, u2, u3) is given by hθ(u) = 3C[u, u, 1; θ]− 2C[u, u, u; θ]. Next we

consider two different sets of active redundancy (cables), where the first set of two cables

made by Wire #1 and Wire #2, respectively, and the second set of two cables made by Wire

#10 and Wire #12, respectively. Here we reasonably assume that all components follow

the AL model for which the corresponding Al-constants (scale parameters) corresponding

to the baseline distribution function F (x) = 1− e−( x
342.3578

)57.0885 are given in Table 6.11.

Table 6.11: Estimated parameters under F̄ (x) = e−( x
342.3578

)57.0885

wrie Al- constant odds ratio

wrie 1 1.005192 0.8098226
wrie 2 1.006458 0.6562225
wrie 3 1.000894 0.9917941
wrie 4 0.9942 1.932896
wrie 5 0.9887188 1.225557
wrie 6 0.9967861 0.9702483
wrie 7 1.005974 0.5752256
wrie 8 0.9994444 1.528433
wrie 9 1.000404 1.032759
wrie 10 1.002343 1.070463
wrie 11 1.005716 0.51783
wrie 12 1.004117 0.8152945

Our aim is to compare the reliability of the considered system having the first set of

standby components at the component level with the same system having the second set

of standby components at the component level. Let us denote their lifetimes as Sc and

S∗
c , respectively. To capture the dependency among the original and standby components

for component label allocations, we consider three commonly used Archimedean copulas

(i)-(iii).

The estimated parameters, test statistics, and p-values of these three copulas for the
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original and two different sets of allocated standby components are reported in Table 6.12.

We adopt a goodness-of-fit test that uses the rank-based analogue of the Cramér-von Mises

statistic to select the best copula. The technical details for Cramér-von Mises test are taken

from Fermanian [45] and Genest et al. [48] . From both the tables it can be seen that the

Gumbel copula is the best candidate.

Table 6.12: Goodness of fit

Set of Wires Family Parameters estimate (θ̂) Test statistics p-value

Clayton 0.8405 0.1194 0.68
(Wire : 3,1,2) Gumbel 1.6074 0.0761 0.78

Frank 3.1241 0.1024 0.65

Clayton 1.5770 0.0558 0.85
(Wire : 3,10,12) Gumbel 1.8052 0.0524 0.89

Frank 4.5964 0.0566 0.89

It is easy to check that hθ(u) is increasing in θ, and also (1.000894, 1.006458, 1.005192)
w
⪯

(1.000894, 1.004117, 1.002343). Therefore conditions of the Theorem 3.1 are well satisfied,

which gives us Sc ≤st S∗
c . In Figure 6.2, we have plotted the survival functions of the two

systems, denoted as S̄1 and S̄2, respectively, which clearly shows this fact.

v  

____  𝑆𝑆1� (𝑥𝑥)  

-------  𝑆𝑆2���(𝑥𝑥) 

 

Figure 6.2: Plots of S̄1(x) and S̄2(x)

Also,
(1−u)h′

θ(u)

1−hθ(u)
is increasing in both u and θ. Therefore conditions of the Theorem

3.3 are also satisfied. Therefore we have Sc ≤rhr S∗
c . In Figure 6.3, we have plotted the

reversed hazard rate functions of the two systems, denoted as r̃S1 and r̃S2 , respectively,
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which validate this result.

 

_____  𝒓𝒓�𝑺𝑺𝟏𝟏(𝒙𝒙)  

-------- 𝒓𝒓�𝑺𝑺𝟐𝟐(𝒙𝒙)     

Figure 6.3: Plot of (1− S2(x))/(1− S1(x))

Scenario II: In this scenario, we illustrate some theoretical results for the system

with redundancy at the component level following the PO model with real data set. Let

us now consider four-component cable network made by wire #7 having the structure

function ϕ(X) = max(X1,min(X2, X3, X4)) where X1, X2, X3, X4 are d.i.d. The distorted

function of this coherent structure ϕ(X) under any four-dimensional Archimedean copula

C(u1, u2, u3, u4, θ) is given by ℓθ(u) = C(u, 1, 1, 1, θ)+C(u, u, u, 1, θ)−C(u, u, u, u, θ). Next,
we consider two different sets of standby components (cables), the first set of three cables

made by wire #8, wire #9 and wire #10, respectively, and the second set of three cables

made by wire #1, wire #2 and wire #3, respectively. With the fitted baseline Weibull

distribution, we then model the distribution of individual wires as extended Weibull dis-

tributions, incorporating estimated tilt parameters to leverage the flexibility and improve

the fit to the data. This also gives us another realization that the odds function of the

distribution of an individual wire is related to the baseline distribution with a proportion-

ality constant (ρ). Under this consideration of the PO model for the distribution of the

considered wires, the odds ratios (tilt parameters) corresponding to the baseline distribu-

tion function F (x) = 1− e−( x
342.3578

)57.0885 are given in Table 6.11. In Table 6.13, we present

the Cramer-von Mises (CVM) test statistic of goodness-of-fit and corresponding p-values

while fitting the distribution of the individual weirs as Marshall-Olkin extended Weibull

(MOEW) distributions and Weibull distributions, respectively. This table clearly shows the

superiority of MOEW over Weibull in fitting the data.
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Table 6.13: Cramér–von Mises test
Wire # Test statistic p-value Test statistic p-value

(MOEW) (MOEW) (Weibull) (Weibull)

1 0.1154957 0.52 0.1285011 0.47
2 0.08867033 0.65 0.1214296 0.50
3 0.05176394 0.88 0.05168517 0.88
4 0.04806504 0.90 0.1282451 0.47
5 0.180623 0.31 0.1519284 0.38
6 0.07582544 0.73 0.07711442 0.72
7 0.04046622 0.94 0.1283638 0.47
8 0.1089786 0.55 0.195199 0.28
9 0.1063032 0.56 0.1055502 0.57
10 0.1102138 0.55 0.1111536 0.54
11 0.04884404 0.89 0.2151886 0.24
12 0.02378149 0.99 0.036573 0.96

Our intensity is to compare the reliability of the considered system having the first set of

active standby components at the component level with the same system having the second

set of standby components at the component level. Let us denote their lifetimes as Tc and

T ∗
c , respectively.

Active standby components started working immediately after allocating them in paral-

lel to the original components. Lifetimes of spares are independent of original components

while allocated parallel to the original components. After this allocation, our newly allo-

cated system’s lifetime will be governed by both original and standby components. As the

original components of the considered system are dependent, after active standby allocation

in parallel to the original components, the original components coupled with their allocated

spares will be dependent for the system lifetime. To capture the dependency structure for

allocated system lifetime based on the original and standby components, here we consider

three commonly used Archimedean copulas: Clayton, Gumbel and Frank. We adopt a

goodness-of-fit test that uses the rank-based analogue of the Cramér-von Mises statistic

to select the best-fitted copula. We refer interested readers to Genest et al. [49] for more

technical details. Table 6.14 and Table ?? collect the estimated parameters, test statistics,

and p-values of these three copulas for the original and two different sets of three allocated

components. From both the tables, it can be seen that the Clayton copula is the best

candidate.

It is easy to check that ℓθ(u) as given above under the four-dimensional Clayton copula

C(u1, u2, u3, u4, θ) =
(
u−θ
1 + u−θ

2 + u−θ
3 + u−θ

4 − 3
)−1/θ

, θ > 0 is increasing in θ. Also we
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have θ1 = 1.1436 > 0.8651 = θ2 and

(0.5752256, 1.528433, 1.032759, 1.070463)
w
⪯ (0.5752256, 0.8098226, 0.6562225, 0.9917941)

. Therefore conditions of Theorem 6.3.1 are well satisfied, which gives us Tc ≥st T ∗
c . In

Figure 6.4, we have plotted the survival functions of the two systems, which clearly shows

this fact.

Also,
(1−u)ℓ′θ(u)
1−ℓθ(u)

is increasing in both u and θ. Therefore the conditions of Theorem

6.3.3 are also satisfied. Therefore we have Tc ≥rhr T ∗
c . In Figure 6.5, we have plotted

(1 − F̄T ∗
c
(x))/(1 − F̄Tc(x)) showing that this ratio is decreasing, and thus validating this

result.

Table 6.14: Goodness of fit

Set of Wires Family Parameters estimate (θ̂) Test statistics p-value

Clayton 1.1436 0.09638418 0.68
(Wire : 7,8,9,10) Gumbel 1.5056 0.133003 0.58

Frank 2.9624 0.1359992 0.52

Clayton 0.8651 0.08261695 0.79
(Wire : 3,10,12) Gumbel 1.4382 0.09410233 0.63

Frank 2.4498 0.1060551 0.62
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Figure 6.4: Plots of F̄Tc(x) and F̄T ∗
c
(x)
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Figure 6.5: Plot of (1− F̄T ∗
c
(x))/(1− F̄Tc(x))





Chapter 7

Stochastic comparisons of claim

amounts1

7.1 Introduction

An insurance policy is an agreement between the insurer and the insured. Consequently,

there are two thought processes in any insurance policy, namely, one from insurer side and

the other one from insured side. An insured always looks into the plan (that contains the

annual premium amount, total time period, whether it is the individual or the group insur-

ance policy, etc.) and the key benefits (namely, sum insured amount, withdrawal facility,

tax saving facility, etc.) of a policy before having it. On the other hand, the insurer comes

up with a policy whose existence and upgradation (as and when necessary) depend on dif-

ferent key factors, namely, number of claims in a given time frame, size of the portfolio,

aggregate claim amount, largest claim amount, smallest claim amount, etc. Thus, numer-

ous researchers have shown their keen interest in studying useful characteristics of these key

factors.

It is also important for an actuary to be able to compare different portfolios of risks

according to these important information. In this prospect, stochastic comparisons of max-

imum, minimum and aggregate claim amounts arising from two sets of portfolios have great

importance in actuarial science on both theoretical and practical grounds (see,Barmalzan

1One paper based on this chapter has appeared under:

1. Stochastic comparisons of largest claim and aggregate claim amounts. Probability in the Engineering
and Informational Sciences, 2024, DOI: 10.1017/S0269964823000104.
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and Najafabadi [14], Barmalzan et al. [15], Balakrishnan et al. [10], Torrado and Navarro

[127], Zhang et al. [140, 136]).

In this chapter, we investigate stochastic comparisons of the largest claim amounts from

two sets of heterogeneous portfolios in the sense of some stochastic orderings under the setup

of the PO model. We also investigate stochastic comparisons of aggregate claim amounts.

It’s worth noting that our results are not limited to be applied in actuarial science. For

instance, our proposed results can be used to compare the lifetimes of two parallel systems

whose components are subject to random shocks instantaneously. Suppose that the r.v. Xi

denotes the lifetime of the i-th component of a parallel system which may receive a random

shock defined by the Bernoulli r.v. Ipi where Ipi = 1 if the shock does not occur with

pi = P (Ipi = 1) and 0 if the shock occurs. Then X∗
n:n represents the lifetime of a parallel

system whose components are subject to random shocks instantaneously.

The rest of the chapter is organized as follows. Section 7.2 presents some stochastic

comparisons results for largest claim amounts of two sets of independent and also for inter-

dependent portfolios under the setup of the PO model. Section 7.3 presents star ordering

result for two sets of independent multiple-outlier claims. Section 7.4 presents comparisons

results on aggregate claim amounts under two sets of independent portfolios.

7.2 Comparisons of largest claim amounts

In this section, we derive some stochastic comparisons results for largest claim amounts of

two different portfolios of risks. Unless otherwise specified, we assume thatX = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) are two sets of independent r.v.’s.

Assume that Ipi , i = 1, . . . , n, are independent Bernoulli r.v.’s, independent of Xi’s,

with E(Ipi) = pi. Denote multivariate Bernoulli random vector I = (Ip1 , . . . , Ipn). Let

X∗
i = XiIpi , i = 1, . . . , n, and denote X∗

n:n = max(X∗
1 , . . . , X

∗
n). Then X∗

n:n corresponds to

the largest claim amount in a portfolio of risks, where Xi’s represent random claim amount

that can be made by a policy in an insurance period, and Ipi ’s indicate the occurrence of

these claims. Further suppose odds function of each Xi in X is proportional to that of a

baseline r.v. with proportionality constant (odds ratio) αi > 0, i.e. Xi ∼ PO(F̄ , αi), i =

1, . . . , n where F̄ denotes the sf of the baseline r.v. Let us denote X◦
n:n = max(X◦

1 , . . . , X
◦
n),

where X◦
i = XiIqi and Iqi , i = 1, . . . , n, are independent Bernoulli r.v.’s, independent of

Xi’s, with E(Iqi) = qi.

Similarly suppose Yi ∼ PO(F̄ , βi), βi > 0, i = 1, . . . , n. Denote Y ∗
n:n = max(Y ∗

1 , . . . , Y
∗
n ),

where Y ∗
i = YiIpi , and Y

◦
n:n = max(Y ◦

1 , . . . , Y
◦
n ), where Y

◦
i = YiIqi , i = 1, . . . , n.

Theorem 7.2.1 established that more heterogeneity among the odds of claim in terms

of the weakly supermajorization order results in less largest claim amount in the sense of
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the usual stochastic orders when both portfolios having common occurrence of claim p.

Theorem 7.2.1 established that more heterogeneity among the odds of claim in terms of

the weakly supermajorization order results in less largest claim amount in the sense of the

usual stochastic orders when both portfolios having common occurrence of claim p. By the

symbol a
sign
= b we mean that a and b have the same sign.

Theorem 7.2.1. Suppose κ : [0, 1] → R+ be a differentiable and strictly decreasing function.

Let Ipi, i = 1, . . . , n, be independent Bernoulli r.v.’s, independent of Xi’s, with E(Ipi) = pi.

Then, for (κ(p),α) ∈ Un and (κ(p),β) ∈ Un,

α
w
⪰ β =⇒ X∗

n:n ≤st Y
∗
n:n.

Proof: We have FX∗
n:n

(x) =
∏n

i=1(1 − κ−1(ui)F̄Xi(x)), where F̄Xi(x) =
αiF̄ (x)

1−ᾱiF̄ (x)
, and

ui = κ(pi), i = 1, 2, . . . , n. Note that F̄Xi is increasing and concave in αi. Now,

∂FX∗
n:n

(x)

∂αi
=

−κ−1(ui)
∂F̄Xi
∂αi

1− κ−1(ui)F̄Xi(x)
FX∗

n:n
(x)

= −
κ−1(ui)

F̄ (x)F (x)
(1−ᾱiF̄ (x))2

1− κ−1(ui)
αiF̄ (x)

1−ᾱiF̄ (x)

FX∗
n:n

(x)

= − κ−1(ui)F̄ (x)F (x)

(1− ᾱiF̄ (x))2 − κ−1(ui)αi(1− ᾱiF̄ (x))F̄ (x)
FX∗

n:n
(x)

= −g(zi, αi)F̄ (x)F (x)FX∗
n:n

(x) (say),

where zi = κ−1(ui). Again,

∂g

∂αi

sign
= −κ−1(ui)F̄ (x)

[
(2− κ−1(ui))(1− F̄ (x)) + 2(1− κ−1(ui))αiF̄ (x)

]
≤ 0.

So g(zi, αi) is decreasing in αi. Further,

∂g

∂zi

sign
= (1− ᾱiF̄ (x))

2 ≥ 0,

so g(zi, αi) is increasing in zi = κ−1(ui), and so it is decreasing in ui as zi = κ−1(ui) is

decreasing in ui. Without loss of generality we assume that α1 ≥ α2 ≥ · · · ≥ αn so that

(κ(p),α) ∈ Un implies κ(p1) ≥ κ(p2) ≥ · · · ≥ κ(pn). Now for any pair ((i, j)) such that



148 CHAPTER 7. COMPARISONS OF CLAIM AMOUNTS

1 ≤ i < j ≤ n, we have αi ≥ αj and ui ≥ uj . Thus we have

g(zi, αi) ≤ g(zj , αi) ≤ g(zj , αj) =⇒
∂FX∗

n:n
(x)

∂αj
≤
∂FX∗

n:n
(x)

∂αi
≤ 0. (7.2.1)

So from Lemma 1.2.6, we get

α
w
⪰ β =⇒ X∗

n:n ≤st Y
∗
n:n.

The following example demonstrates the Theorem 7.2.1.

Example 7.2.1. Suppose that {X1, X2, X3, X4} and {Y1, Y2, Y3, Y4} are two sets of inde-

pendent non-negative r.v.’s with Xi ∼ PO(F̄ (x), αi) and Yi ∼ PO(F̄ (x), βi), i = 1, 2, 3, 4,

where F̄ (x) = e−(0.5x)2 , x > 0. Further, suppose that {Ip1 , Ip2 , Ip3 , Ip4} is a set of Bernoulli

r.v.’s, independent ofXi’s and Yi’s. Set (α1, α2, α3, α4) = (0.2, 0.6, 1.5, 2.8), (β1, β2, β3, β4) =

(0.5, 0.8, 2.5, 4.8), (p1, p2, p3, p4) = (0.95, 0.65, 0.5, 0.35) and κ(p) = 1/p2, satisfying all the

conditions of Theorem 7.2.1. We consider the transformation x = t/(1− t) so that, for t ∈

[0, 1), we have x ∈ [0,∞). Then denote the cdfs of X∗
n:n and Y ∗

n:n by FX∗
n:n

(t/(1− t)) = ζ1(t)

and FY ∗
n:n

(t/(1 − t)) = ζ2(t), respectively. Figure 7.1 shows that ζ1(t) ≥ ζ2(t), for all t ∈

[0, 1), and hence, X∗
n:n ≤st Y

∗
n:n.
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Figure 7.1: Plots of ζ1(t) and ζ2(t), t ∈ [0, 1]

Next we provide a counterexample to show that the stochastic ordering result in The-

orem 7.2.1 may not hold if we relax the weakly supermajorize condition under a strictly

decreasing function.



7.2. COMPARISONS OF LARGEST CLAIM AMOUNTS 149

Counterexample 7.2.1. In Example 7.2.1, let us take (α1, α2, α3, α4) = (0.2, 0.9, 1.5, 4.5),

(β1, β2, β3, β4) = (0.35, 0.4, 2.9, 3.8) so that α
w

⪰̸ β. In Figure 7.2 we have plotted ζ1(t)−ζ2(t)

for all t ∈ [0, 1), from which it is clear that stochastic ordering result of Theorem 7.2.1 does

not hold.
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Figure 7.2: Plot of ζ1(t)− ζ2(t), t ∈ [0, 1]

Theorem 7.2.2 establishes that largest claim amounts of two portfolios of risks might

be increased in terms of the usual stochastic order with the increased heterogeneity among

the probabilities of occurrence of claims, when both the portfolio of risks having common

odds of claim vector α.

Theorem 7.2.2. Suppose κ : [0, 1] → R+ be a differentiable and strictly increasing concave

function. Let Ipi(Iqi), i = 1, . . . , n, be independent Bernoulli r.v.’s, independent of Xi(Yi)’s,

with E(Ipi) = pi(E(Iqi) = qi). Then, for (κ(p),α) ∈ Un and (κ(q),α) ∈ Un,

(κ(p1), κ(p2), ..., κ(pn)) ⪰w (κ(q1), κ(q2), ..., κ(qn)) =⇒ X∗
n:n ≥st X

◦
n:n.

Proof: Here FX∗
n:n

(x) =
∏n

i=1(1 − κ−1(ui)F̄Xi(x)), where F̄Xi(x) =
αiF̄ (x)

1−ᾱiF̄ (x)
. It is to

be noted that F̄Xi(x) is increasing in αi. Also κ−1 is strictly increasing and convex. Let

ϕ(u) = −FX∗
n:n

(x). We have

∂ϕ(u)

∂ui
=

F̄Xi(x)
dκ−1(ui)

dui

1− κ−1(ui)F̄Xi(x)
FX∗

n:n
(x) ≥ 0

as κ−1(.) is increasing.
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Let ℓ(τi, ui) =
τi

dκ−1(ui)

dui
1−κ−1(ui)τi

, where τi = F̄Xi(x). Then

∂ℓ

∂ui

sign
= τi(1− τiκ

−1(ui))
d2κ−1(ui)

du2i
+ τ2i

(
dκ−1(ui)

dui

)2

≥ 0,

which holds as κ−1(ui) is convex. So, ℓ(τi, ui) is increasing in ui. Further,

∂ℓ

∂τi

sign
= (1− τiκ

−1(ui))
dκ−1(ui)

dui
− τi

dκ−1(ui)

dui
(−κ−1(ui)) =

dκ−1(ui)

dui
≥ 0,

since κ−1(ui) is increasing in ui. Then ℓ(τi, ui) is increasing in τi (i.e., in F̄Xi(x)), so that

it is increasing in αi as F̄Xi(x) is increasing in αi.

Without loss of generality we assume that α1 ≥ α2 ≥ · · · ≥ αn so that (κ(p),α) ∈ Un

implies κ(p1) ≥ κ(p2) ≥ · · · ≥ κ(pn). Now for any pair (i, j) with 1 ≤ i < j ≤ n, we have

αi ≥ αj & ui ≥ uj . Then if κ−1(ui) is increasing and convex in ui we have

ℓ(τi, ui) ≥ ℓ(τj , ui) ≥ ℓ(τj , uj)

i.e.
∂ϕ(u)

∂ui
≥ ∂ϕ(u)

∂uj
≥ 0. (7.2.2)

So from Lemma 1.2.6, we have

(κ(p1), κ(p2), ..., κ(pn)) ⪰w (κ(q1), κ(q2), ..., κ(qn)) =⇒ X∗
n:n ≥st X

◦
n:n.

We illustrate Theorem 7.2.2 with the following example.

Example 7.2.2. Suppose that {X1, X2, X3, X4} is a set of independent non-negative r.v.’s

withXi ∼ PO(F̄ (x), αi), i = 1, 2, 3, 4, where F̄ (x) = e−(x/2)1.5 , x > 0. Setα = (α1, α2, α3, α4)

= (0.9, 1.36, 2.55, 3.5),(p1, p2, p3, p4) = (0.35, 0.5, 0.8, 0.9), (q1, q2, q3, q4) = (0.2, 0.4, 0.65, 0.8)

and κ(p) = p/(1+p), satisfying all the conditions of Theorem 7.2.2. We consider the trans-

formation x = t/(1−t) so that, for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, let

us denote the respective distribution functions of X∗
n:n and X◦

n:n by FX∗
n:n

(t/(1− t)) = ξ1(t)

and FX◦
n:n

(t/(1− t)) = ξ2(t). From Figure 7.3, it is clear that ξ1(t) ≤ ξ2(t), ∀t ∈ [0, 1), and

hence, X∗
n:n ≥st X

◦
n:n.

Next we provide a counterexample to show that the stochastic ordering result in The-

orem 7.2.2 may not hold if we relax the weakly submajorize condition under an increasing
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Figure 7.3: Plots of ξ1(t) and ξ2(t), t ∈ [0, 1]

concave function.

Counterexample 7.2.2. In Example 7.2.2, let us take (p1, p2, p3, p4) = (0.1, 0.2, 0.85, 0.95)

and (q1, q2, q3, q4) = (0.5, 0.55, 0.75, 0.8) so that

(κ(p1), κ(p2), κ(p3), κ(p4)) ⪰̸w (κ(q1), κ(q2), κ(q3), κ(q4))

. In Figure 7.4 we have plotted ξ1(t)− ξ2(t) ∀t ∈ [0, 1), from which it is clear that none of

these distribution functions dominating each other.
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Figure 7.4: Plot of ξ1(t)− ξ2(t), t ∈ [0, 1]

Cai and Wei [29] proposed some multivariate dependence notions based on SAI (stochas-

tic arrangement increasing) notion, including LWSAI (weakly SAI through left tail proba-

bility), to model multivariate dependent risks. Since then it has been applied in finance and
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actuarial science to model dependent stochastic returns and risks (Cai and Wei [29], Zhang

et al. [139, 140]). For a random vector X = (X1, X2, ..., Xn), one of the ways to define or

describe its dependence notion is to characterize the expectations of the transformations of

the random vector (Cai and Wei [28]). For any (i, j) with 1 ≤ i < j ≤ n, denote

Gi,j
lwsai(n) = {g(x) : g(x)− g(πij(x)) is decreasing in xi ≤ xj} ,

where πi,j is the special permutation of transposition defined as πi,j(x) = (x1, ., xj , ., xi, ., xn).

A random vector X = (X1, X2, ..., Xn) or its distribution is said to be the LWSAI (Cai and

Wei [29]), if E[g(X)] ≥ E[g(τi,j(X))] for any g(x) ∈ Gi,j
lwsai(n) and any 1 ≤ i < j ≤ n.

Next, we present a stochastic ordering result when the occurrence probabilities are

interdependent in terms of LWSAI. Let us denote Sk = {χ|χi = 0 or 1, i = 1, 2, . . . , n, χ1+

. . . + χn = k}, k = 0, . . . , n, and Si,j
k (ηi, ηj) = {χ ∈ Sk|χi = ηi, χj = ηj , ηi, ηj ∈ {0, 1}},

for any 1 ≤ i ̸= j ≤ n, k = 1, . . . , n − 1. Then Sk =
⋃

ηi,ηj∈{0,1} S
i,j
k (ηi, ηj). Also denote

p(χ) = P(I = χ) = P (Ip1 = χ1, . . . , Ipn = χn).

Lemma 7.2.1. ( [29];[10]) A multivariate Bernoulli random vector I is LWSAI iff p(χ) ≥

p(πij(χ)) for all χ ∈ Si,j
k (0, 1), 1 ≤ i < j ≤ n, and k = 1, . . . , n− 1.

Theorem 7.2.3. Suppose that I = (Ip1 , . . . , Ipn) is LWSAI. If

α
m
⪰ β such that α1 ≤ α2 ≤ ... ≤ αn and β1 ≤ β2 ≤ ... ≤ βn,

then X∗
n:n ≤st Y

∗
n:n.

Proof: From Theorem 4.1 of Kundu et al. Kundu et al. [81], it follows that α
m
⪰ β =⇒

Xn:n ≤st Yn:n, i.e., FXn:n(t) ≥ FYn:n(t) for all t, where Xn:n = max(X1, X2, ..., Xn). We

desire to show that FX∗
n:n

(t) ≥ FY ∗
n:n

(t), for all t ∈ ℜ+. By the nature of majorization order,

it suffices to prove the result when (αi, αj)
m
⪰ (βi, βj) for some pair 1 ≤ i < j ≤ n, and

αr = βr for all r ̸= i, j. Now, we have

FX∗
n:n

(t) = P(max{Ip1X1, ..., IpnXn} ≤ t)

=

n∑
k=0

∑
χ∈Sk

P(max{Ip1X1, ..., IpnXn} ≤ t|I = χ)p(χ)

= p(0) + p(1)P(max{X1, ..., Xn} ≤ t) +

n−1∑
k=1

∑
χ∈Sk

p(χ)P(max{χ1X1, ..., χnXn} ≤ t)
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= p(0) + p(1)FXn:n(t) +

n−1∑
k=1


∑

χ∈Si,j
k (0,0)

p(χ)

n∏
r ̸=i,j

P(χrXr ≤ t)

+
∑

χ∈Si,j
k (0,1)

p(χ)FXj
(t)

n∏
r ̸=i,j

P(χrXr ≤ t) +
∑

χ∈Si,j
k (0,1)

p(τi,j(χ))FXi
(t)

n∏
r ̸=i,j

P(χrXr ≤ t)

+
∑

χ∈Si,j
k (1,1)

p(χ)FXi(t)FXj (t)

n∏
r ̸=i,j

P(χrXr ≤ t)

 .

Similarly,

FY ∗
n:n

(t) = p(0) + p(1)FYn:n(t) +
n−1∑
k=1


∑

χ∈Si,j
k (0,0)

p(χ)
n∏

r ̸=i,j

P(χrYr ≤ t)

+
∑

χ∈Si,j
k (0,1)

p(χ)FYj (t)

n∏
r ̸=i,j

P(χrYr ≤ t) +
∑

χ∈Si,j
k (0,1)

p(τi,j(χ))FYi(t)

n∏
r ̸=i,j

P(χrYr ≤ t)

+
∑

χ∈Si,j
k (1,1)

p(χ)FYi(t)FYj (t)
n∏

r ̸=i,j

P(χrYr ≤ t)

 .

Upon using the condition that P(χrXr ≤ t) = P(χrYr ≤ t) for all r ̸= i, j, we have

FX⋆
n:n

(t)− FY ∗
n:n

(t) = p(1)[FXn:n(t)− FYn:n(t)]

n−1∑
k=1


∑

χ∈Si,j
k (0,1)

p(χ)[FXj (t)− FYj (t)]

n∏
r ̸=i,j

P(χrXr ≤ t)

+
∑

χ∈Si,j
k (0,1)

p(τi,j(χ))[FXi(t)− FYi(t)]
n∏

r ̸=i,j

P(χrXr ≤ t)

+
∑

χ∈Si,j
k (1,1)

p(χ)[FXi(t)FXj (t)− FYi(t)FYj (t)]
n∏

r ̸=i,j

P(χrXr ≤ t)


≥

n−1∑
k=1


∑

χ∈Si,j
k (0,1)

p(τi,j(χ))[FXj (t)− FYj (t)]

n∏
r ̸=i,j

P(χrXr ≤ t)

+
∑

χ∈Si,j
k (0,1)

p(τi,j(χ))[FXi(t)− FYi(t)]

n∏
r ̸=i,j

P(χrXr ≤ t)
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+
∑

χ∈Si,j
k (1,1)

p(χ)[FXi(t)FXj (t)− FYi(t)FYj (t)]
n∏

r ̸=i,j

P(χrXr ≤ t)


=

n−1∑
k=1


∑

χ∈Si,j
k (0,1)

(
p(τi,j(χ))[FXi(t) + FXj (t)− FYi(t)− FYj (t)]

n∏
r ̸=i,j

P(χrXr ≤ t)

)
+

∑
χ∈Si,j

k (1,1)

(
p(χ)[FXi(t)FXj (t)− FYi(t)FYj (t)]

n∏
r ̸=i,j

P(χrXr ≤ t)

) ≥ 0,

where the first inequality follows from the fact FXn:n(t) ≥ FYn:n(t), Lemma 7.2.1 and the

fact that FXi(t) =
F (t)

1−ᾱiF̄ (t)
is decreasing in αi. For the last inequality we have the following

explanation. Since FXi(t) is convex in αi, it follows that FXi(t) + FXj (t) ≥ FYi(t) + FYj (t).

Let

ϕ(αi, αj) = FXi(t)FXj (t) =
F 2(t)

(1− ᾱiF̄ (t))(1− ᾱjF̄ (t))
.

Then, for 1 ≤ i < j ≤ n,

∂ϕ

∂αi
− ∂ϕ

∂αj
=

(αi − αj)F̄ (x)

(1− ᾱiF̄ (t))2(1− ᾱjF̄ (t))2
≤ 0.

So, from Lemma 1.2.4, we get that (αi, αj)
m
⪰ (βi, βj) ⇒ ϕ(αi, αj) ≥ ϕ(βi, βj), and thus the

proof is completed.

Remark 7.2.1. Here it is to be noted that in Theorem 3.11 of Balakrishnan et al. Bar-

malzan et al. [15] they derived the similar results under the assumption that the sf F̄ (x;α)

is decreasing and convex in α > 0 which does not satisfy by the PO model. Here our estab-

lished results in Theorem 7.2.3 can be generalised for any semi-parametric model for which

F̄ (x;α) is increasing and concave in α > 0.

We illustrate Theorem 7.2.3 with the following example.

Example 7.2.3. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent non-

negative r.v.’s with Xi ∼ PO(F̄ (x), αi), i = 1, 2, and Yi ∼ PO(F̄ (x), βi), i = 1, 2, where

F̄ (x) = e−(0.08x)0.08 , x > 0. Set (α1, α2) = (0.55, 1.45), (β1, β2) = (0.65, 1.35), p(0, 0) =

P (Ip1 = 0, Ip2 = 0) = 0.14, p(0, 1) = 0.47, p(1, 0) = 0.25, p(1, 1) = 0.14. Then I = {Ip1 , Ip2}
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is LWSAI. We consider the transformation x = t/(1 − t). After this substitution, let us

denote the respective cdfs of X∗
n:n and Y ∗

n:n by FX∗
n:n

(t/(1−t)) = φ1(t) and FY ∗
n:n

(t/(1−t)) =

φ2(t). Figure 7.5 shows that φ1(t) ≥ φ2(t) for all t ∈ [0, 1). Hence X∗
n:n ≤st Y

∗
n:n.
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Figure 7.5: Plots of φ1(t) and φ2(t), t ∈ [0, 1]

Theorems 7.2.4-7.2.6 compare the largest claim amounts of two interdependent hetero-

geneous portfolios of risks where the joint cdfs are modeled using copulas.

Theorem 7.2.4. Let X1, X2, ..., Xn (Y1, Y2, ..., Yn) be non-negative r.v.’s with Xi ∼ PO(F̄ , αi)

(Yi ∼ PO(F̄ , βi)), i = 1, 2, ..., n, and let the associated copula be C . Further, suppose that

{Ip1 , Ip2 , ..., Ipn} is a set of independent Bernoulli r.v.’s, independent of Xi’s (Yi’s). Then

αi ≤ βi,∀i = 1, 2, ..., n =⇒ X∗
n:n ≤st Y

∗
n:n.

Proof: The cdf of X∗
n:n can be obtain as

GX∗
n:n

(t) = P(X∗
1 ≤ t,X∗

2 ≤ t, ...,X∗
n ≤ t)

= P(Ip1X1 ≤ t, ..., IpnXn ≤ t)

=
∑

χ∈{0,1}n
P (Ip1X1 ≤ t, ..., IpnXn ≤ t|I = χ) p(χ)

=
∑

χ∈{0,1}n
p(χ)P (χ1X1 ≤ t, ..., χnXn ≤ t)

=
∑

χ∈{0,1}n
p(χ)C ([FX1)]

χ1 , ..., [FXn ]
χn) .

Since FXi(x) =
F (x)

1−ᾱiF̄ (x)
is decreasing in αi and the copula is component-wise increasing, we

have that GX∗
n:n

(x) is decreasing in αi, for i = 1, 2, . . . , n. Hence, the desired result follows.
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Theorem 7.2.5. Let X1, X2, ..., Xn be non-negative r.v.’s with Xi ∼ PO(F̄ , αi), i =

1, . . . , n, and let the associated copula be C (C
′
). Further, suppose that {Ip1 , Ip2 , ..., Ipn}

is a set of independent Bernoulli r.v.’s, independent of Xi’s. Then

C ′ ≺ C =⇒ X∗
n:n ≤st X

∗′
n:n

where the rvs X∗
n:n and X∗′

n:n represent the largest claim amount with the associated copula

C (C
′
).

Proof: The proof follows from Theorem 7.2.4 and the fact C ′ is less positively lower

orthant dependent (PLOD) than C”.

For the next theorem, proof follows from Theorems 7.2.4 and 7.2.5 and hence, omitted.

Theorem 7.2.6. Let X1, X2, ..., Xn (Y1, Y2, ..., Yn) be non-negative r.v.’s with Xi ∼ PO(F̄ , αi)

(Yi ∼ PO(F̄ , βi)), i = 1, 2, ..., n, and let the associated copula be C (C
′
). Further, suppose

that {Ip1 , Ip2 , ..., Ipn} is a set of independent Bernoulli r.v.’s, independent of Xi’s (Yi’s).

Then

αi ≤ βi,∀i = 1, 2, ..., n, and C ′ ≺ C =⇒ X∗
n:n ≤st Y

∗
n:n.

The following example demonstrates the result given in the above theorem.

Example 7.2.4. Suppose {X1, X2} and {Y1, Y2} are two sets of independent non-negative

r.v.’s with Xi ∼ PO(F̄ (x), αi), i = 1, 2, and Yi ∼ PO(F̄ (x), βi), i = 1, 2, where F̄ (x) =

e−(0.05x)0.5 , x > 0. Set (α1, α2) = (0.5, 1.25), (β1, β2) = (0.75, 1.55), p(0, 0) = 0.89, p(0, 1) =

0.06, p(1, 0) = 0.04, p(1, 1) = 0.01. Here we take C(x1, x2) = e−{(log(x1))θ1+(log(x2))θ1}1/θ1

and C ′(x1, x2) = e−{(log(x1))θ2+(log(x2))θ2}1/θ2

, where θ1 = 2 and θ2 = 5. We consider the

transformation x = t/(1 − t). After this substitution, we denote the cdfs of X∗
n:n and Y ∗

n:n

by FX∗
n:n

(t/(1− t)) = ν1(t) and FY ∗
n:n

(t/(1− t)) = ν2(t), respectively. Figure 7.6 shows that

ν1(t) ≥ ν2(t) for all t ∈ [0, 1). Hence X∗
n:n ≤st Y

∗
n:n.

The following theorem compares the largest claim amounts of two sets of heterogeneous

portfolios of risks in terms of the rhr order. It is assumed that the odds ratios are the same

but the probabilities of occurrences of claims are different.

Theorem 7.2.7. Let X1, . . . , Xn be independent r.v.’s with Xi ∼ PO(F̄ , α), i = 1, . . . , n,

and let Ipi (Iqi), i = 1, . . . , n, be independent Bernoulli r.v.’s, independent of Xi’s. Further,
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Figure 7.6: Plots of ν1(t) and ν2(t), t ∈ [0, 1]

let X∗
i = XiIpi and X◦

i = XiIqi, i = 1, . . . , n. Let κ : [0, 1] → R+ be a differentiable

function. Then

(i) (κ(p1), κ(p2), ..., κ(pn))
w
⪰ (κ(q1), κ(q2), ..., κ(qn)) =⇒ X∗

n:n ≥rh X
◦
n:n,

if κ(x) is strictly decreasing and convex in x;

(ii) (κ(p1), κ(p2), ..., κ(pn)) ⪰w (κ(q1), κ(q2), ..., κ(qn)) =⇒ X∗
n:n ≥rh X

◦
n:n,

if κ(x) is strictly increasing and concave in x.

Proof: We have FX∗
n:n

(t) =
∏n

i=1(1 − κ−1(ui)F̄α(t)), where κ(pi) = ui, i = 1, . . . , n.

Since Xi ∼ PO(F̄ , α) for i = 1, .., n. We have F̄α(x) =
αF̄ (x)

1−ᾱF̄ (x)
.

Now fX∗
n:n

(t) =
∑n

i=1

(
κ−1(ui)fα(t)

1−κ−1(ui)F̄α(t)

)
FX∗

n:n
(t) and therefore

r̃X∗
n:n

(t) =
n∑

i=1

κ−1(ui)fα(t)

1− κ−1(ui)F̄α(t)
.

So, we have

∂r̃X∗
n:n

(t)

∂ui
=

dκ−1(ui)
dui

fα(t)

(1− κ−1(ui)F̄α(t))
+

dκ−1(ui)
dui

κ−1(ui)fα(t)F̄α(t)

(1− κ−1(ui)F̄α(t))2

and

∂r̃X∗
n:n

(t)

∂uj
=

dκ−1(uj)
duj

fα(t)

(1− κ−1(uj)F̄α(t))
+

dκ−1(uj)
duj

κ−1(uj)fα(t)F̄α(t)

(1− κ−1(uj)F̄α(t))2
.

Now, consider the following two cases.

Case-I: Let κ be strictly decreasing and convex. Then κ−1 is strictly decreasing and convex.
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Consequently, r̃X∗
n:n

(t) is decreasing in ui. Further,

(ui − uj)

(
∂r̃X∗

n:n
(t)

∂ui
−
∂r̃X∗

n:n
(t)

∂uj

)
sign
= (ui − uj)

 dκ−1(ui)
dui

1− κ−1(ui)F̄α(t)
−

dκ−1(uj)
duj

1− κ−1(uj)F̄α(t)


+

 κ−1(ui)
dκ−1(ui)

dui

1− κ−1(ui)F̄α(t)
−

κ−1(uj)
dκ−1(uj)

duj

1− κ−1(uj)F̄α(t)

 ≥ 0,

which follows from the fact that κ−1 is decreasing and convex. Consequently, we have

r̃X∗
n:n

(t) is decreasing and Schur-convex in ui. So, from Lemma 1.2.5, the first part of the

theorem follows.

Case II: Let κ be strictly increasing and concave. Then κ−1 is strictly increasing and

convex. Consequently, r̃X∗
n:n

(t) is increasing in ui. Further,

(ui − uj)

(
∂r̃X∗

n:n
(t)

∂ui
−
∂r̃X∗

n:n
(t)

∂uj

)
sign
= (ui − uj)

 dκ−1(ui)
dui

1− κ−1(ui)F̄α(t)
−

dκ−1(uj)
duj

1− κ−1(uj)F̄α(t)


+

 κ−1(ui)
dκ−1(ui)

dui

1− κ−1(ui)F̄α(t)
−

κ−1(uj)
dκ−1(uj)

duj

1− κ−1(uj)F̄α(t)

 ≥ 0,

which follows from the fact that κ−1 is increasing and convex. Consequently, we have

r̃X∗
n:n

(t) is increasing and Schur-convex in ui. So, from Lemma 1.2.5, the second part of the

theorem follows. We illustrate Theorem 7.2.7 with the following example.

Example 7.2.5. Suppose that {X1, X2, X3, X4} is a set of independent non-negative r.v.’s

with Xi ∼ PO(F̄ (x), α), i = 1, 2, 3, 4, where F̄ (x) = e−(0.5x)1.5 , x > 0, and α = 0.75. Fur-

ther, suppose that {Ip1 , Ip2 , Ip3 , Ip4} and {Iq1 , Iq2 , Iq3 , Iq4} are two sets of Bernoulli r.v.’s, in-

dependent of Xi’s, i = 1, 2, 3, 4. Set (p1, p2, p3, p4) = (0.35, 0.65, 0.85, 0.96), (q1, q2, q3, q4) =

(0.15, 0.35, 0.55, 0.82). Let κ(x) = log(1 + x) which is strictly increasing and concave. We

consider the transformation x = t/(1− t). After this substitution, let us denote the respec-

tive reverse hazard functions by r̃X∗
n:n

(t/(1 − t) = r̃1(t) and r̃X◦
n:n

(t/(1 − t)) = r̃2(t). From

Figure 7.7, it is seen that that r̃1(t) ≥ r̃2(t) for all t ∈ [0, 1). Hence X∗
n:n ≥rh X

◦
n:n.

Next, we provide a counterexample to show that the ordering result in Theorem 7.2.7

may not hold if we relax the stated majorization conditions.
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Figure 7.7: Plots of r̃1(t) and r̃2(t), t ∈ [0, 1]

Counterexample 7.2.3. In Example 7.2.5, let us take (p1, p2, p3, p4) = (0.1, 0.2, 0.85, 0.95)

and (q1, q2, q3, q4) = (0.5, 0.65, 0.8, 0.85) so that (κ(p1), κ(p2), κ(p3), κ(p4)) ⪰̸w (κ(q1), κ(q2),

κ(q3), κ(q4)). In Figure 7.8 we have plotted r̃1(t)− r̃2(t) for all t ∈ [0, 1), which shows that

the hr ordering result of Theorem 7.2.7(ii) does not hold in this case.
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Figure 7.8: Plot of r̃1(t)− r̃2(t), t ∈ [0, 1]

7.3 Star order for multiple-outlier claim

Let Xi, i = 1, 2, . . . , r have a common distribution F , and Xj , j = r + 1, r + 2, . . . , n

have a common distribution G, where r = 1, 2, . . . , n − 1. This type of model is known

as outlier model, where F is called the original distribution whereas the G is called the

outlier distribution. For r = 1, 2, . . . , n− 2, it is called multiple-outlier model. In actuarial
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practice, even for a portfolio of risks consisting of similar kind of insureds, it may happen

that some insureds have different (higher/lower) probabilities of occurrence of claims, claim

sizes or odds of claims than the rest. Then this phenomena falls in the multiple-outlier

claims model.

Star order is one of the most important transform order used to compare the skewness

of probability distributions. Since in general the insurance claims follow positively skewed

and heavy-tailed distributions, it is therefore of interest to establish sufficient conditions

for star order between them to analyze the effects of the heterogeneity among occurrence

probabilities and claim severity parameters (e.g. the odds ratio in our considered model)

on the skewness of their distributions.

In Theorem 7.3.1, we derive stochastic comparisons on the largest claim amounts in

case of multiple-outlier claims model with respect to star order.

The following lemma is derived from Saunders and Moran [119] which will be used in

proving Theorem 7.3.1.

Lemma 7.3.1. Let {Gλ|λ ∈ R+} be a class of cdfs such that Gλ is supported on some

interval I ⊆ R+. Then, Gλ ≥⋆ Gλ⋆ for λ ≤ λ⋆ iff
∂Gλ(x)

∂λ
xgλ(x)

is increasing in x, where the

density gλ of Gλ does not vanishes on any subinterval of I.

Theorem 7.3.1. Let Xi ∼ PO(F̄ , α1) (Yi ∼ PO(F̄ , β1)), for i = 1, 2, . . . , n1, and let

Xj ∼ PO(F̄ , α2) (Yj ∼ PO(F̄ , β2)), for j = n1 + 1, n1 + 2, . . . , n1 + n2 (= n). Assume that

Xi’s are independent and that the Yj’s are independent. Further, let Ipi, i = 1, 2, . . . , n1, be

independent Bernoulli r.v.’s such that E[Ipi ] = p1, and let Ipj , j = n1+1, . . . , n, be another

set of independent Bernoulli r.v.’s such that E[Ipj ] = p2. Then, for n1p1 ≥ n2p2, p1 ≥ p2,

α1 ≤ α2 and β1 ≤ β2,

α1

α2
≤ β1
β2

=⇒ X∗
n:n ≥⋆ X

∗
n:n.

Proof: Consider the following two cases.

Case I: Let α1 + α2 = β1 + β2 = c (say). Further, let α1 = α ≤ α2 and β1 = β ≤ β2 so

that α ∈ [0, c/2]. Then the cdf of X∗
n:n is given by

Fn,α(x) =
[
1− p1F̄α(x)

]n1
[
1− p2F̄c−α(x)

]n2 . (7.3.1)

Here F̄α(x) =
αF̄ (x)

1−αF̄ (x)
and F̄c−α(x) =

(c−α)F̄ (x)

1−(c−α)F̄ (x)
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The pdf corresponding to (7.3.1) is

fn,α(x) =
[
1− p1F̄α(x)

]n1−1 [
1− p2F̄c−α(x)

]n2−1
f(x)

×

[
n1p1α(1− p2F̄c−α(x))

(1− ᾱF̄ (x))2
+
n2p2(c− α)(1− p1F̄α(x))

(1− (c− α)F̄ (x))2

]
.

Now,

∂Fn,α(x)

∂α
= F (x)F̄ (x)

[
1− p1F̄α(x)

]n1−1 [
1− p2F̄c−α(x)

]n2−1

×

[
−n1p1(1− p2F̄c−α(x))

(1− ᾱF̄ (x))2
+
n2p2(1− p1F̄α(x))

(1− (c− α)F̄ (x))2

]

Let Λ1(x) =
1−p2F̄c−α(x)
(1−ᾱF̄ (x))2

and Λ2(x) =
1−p1F̄α(x)

(1−(c−α)F̄ (x))2
. Then, by using Lemma 7.3.1, it suffices

to show that

∂Fn,α(x)
∂α

xfn,α(x)
=

F (x)F̄ (x)

xf(x)

[
−n1p1Λ1(x) + n2p2Λ2(x)

n1p1αΛ1(x) + n2p2(c− α)Λ2(x)

]
=

F (x)F̄ (x)

xf(x)
× Λ(x)

is increasing in x ∈ R+, for α ∈ [0, c/2], where

Λ(x) =

[
n1p1αΛ1(x) + n2p2(c− α)Λ2(x)

−n1p1Λ1(x) + n2p2Λ2(x)

]−1

=

[
cn2p2Λ2(x)

n2p2Λ2(x)− n1p1Λ1(x)
− α

]−1

=

[
c

(
1− n1p1

n2p2

Λ1(x)

Λ2(x)

)−1

− α

]−1

.

Further, let

Λ3(x) =
Λ1(x)

Λ2(x)

=

(
1− p2F̄c−α(x)

(1− ᾱF̄ (x))2

)/( 1− p1F̄λ(x)

(1− (c− α)F̄ (x))2

)
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=

(
[1− (c− α)F̄ (x)− p2(c− α)F̄ (x)]

(1− ᾱF̄ (x))

)(
(1− ᾱF̄ (x))(1− (c− α)F̄ (x))2

[1− ᾱF̄ (x)− p1αF̄ (x)]

)

=

(
[F (x) + (1− p2)(c− α)F̄ (x)]

[F (x) + (1− p1)αF̄ (x)

)(
1− (c− α)F̄ (x)

1− ᾱF̄ (x)

)
= ∆1(x)×∆2(x).

where ∆1(x) =
(
[F (x)+(1−p2)(c−α)F̄ (x)]

[F (x)+(1−p1)αF̄ (x)

)
and ∆2(x) =

(
1−(c−α)F̄ (x)

1−ᾱF̄ (x)

)
. It is clear that ∆1(x) ≥

0 and ∆2(x) ≥ 0 ∀x ∈ R+. Now we have

∆′
1(x)

sign
= [1− (1− p2)(c− α)][F (x) + α(1− p1)F̄ (x)]

− [1− α(1− p1)][F (x) + (1− p2)(c− α)F̄ (x)]

sign
= [α(1− p1)− (1− p2)(c− α)](F̄ (x) + F (x))

sign
= [α(1− p1)− (1− p2)(c− α)]

≤ 0,

which holds as α ≤ c− α and p1 ≥ p2. Further,

∆′
2(x)

sign
= (c− α)(1− ᾱF̄ (x))(1− ¯c− αF̄ (x))

sign
= ( ¯c− α)− ᾱ ≤ 0.

Hence ultimately we have Λ′
3(x) ≤ 0. Consequently Λ3(x) is non-negative and decreasing in

x. Now

α ≤ (c− α)

=⇒ 1− (c− α)F̄ (x)

1− ᾱF̄ (x)
≥ 1,

and

(c− α) ≥ α, p1 ≥ p2

=⇒ F (x) + (1− p2)(c− α)F̄ (x) ≥ F (x) + (1− p1)αF̄ (x)

and hence, Λ3(x) ≥ 1.
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Now if n1 ≥ n2 then n1p1 ≥ n2p2. On combining all of these results, we have

n1p1
n2p2

Λ3(x) ≥ 1

=⇒
(
1− n1p1

n2p2
Λ3(x)

)
≤ 0.

Hence
(
1− n1p1

n2p2
Λ3(x)

)
is increasing in x, which implies

[(
1− n1p1

n2p2
Λ3(x)

)−1
− α

]−1

is

increasing in x. So ultimately we have Λ(x) is increasing in x. This completes the proof.

Case II: Let α1+α2 ̸= β1+β2. In this case there exists some κ > 0 such that α1+α2 = κ(β1+

β2). Now, let Zn:n be the largest claim amount from I1Z1, ..., In1Zn1 , In1+1Zn1+1, ..., InZn,

where Z1, ..., Zn1 have the distribution Fκµ1 and Zn1+1, ..., Zn have the distribution Fκµ2 .

Finally, on using the result of Case I and the scale invariant property of the star order, the

desire result follows.

Example 7.3.1. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent non-

negative r.v.’s with Xi ∼ PO(F̄ (x), αi), i = 1, 2, and Yi ∼ PO(F̄ (x), βi), i = 1, 2, where

F̄ (x) = e−x, x > 0. Set (α1, α2) = (0.5, 1.9), (β1, β2) = (0.8, 1.2), (p1, p2) = (1/4, 1/8),

(n1, n2) = (3, 2). Then all the conditions of Theorem 7.3.1 are satisfied. In Figure 7.9, we

have plotted d
dt

(
F−1
X∗

n:n
(t)

F−1
Y ∗
n:n

(t)

)
with respect to t from which it is clear that

F−1
X∗

n:n
(t)

F−1
Y ∗
n:n

(t)
is increasing

for t ∈ (0, 1). Hence X∗
n:n ≥⋆ Y

∗
n:n.

   0.2 0.4 0.6 0.8 1.0

1.02

1.04

1.06

1.08

Figure 7.9: Plots of derivative of
F−1
X∗

n:n
(t)

F−1
Y ∗
n:n

(t)
with respect to t for t ∈ (0, 1)
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7.4 Comparison of aggregate claim amount

The aggregate claim of a portfolio is the sum of all amounts payable during the reference

period. Our next theorem derives sufficient conditions that the aggregate claim amount

increases on reducing the heterogeneity in the sense of majorization among the concerned

parameters of a considered semiparametric family of distributions when they are in ascend-

ing order. Here we assume that occurrence probabilities are arranged according to LWSAI.

Theorem 7.4.1. Suppose that I = (Ip1 , . . . , Ipn) is LWSAI. Let Xαi ∼ F̄ (x;αi) (Xβi
∼

F̄ (x;βi)), i = 1, ..., n, be independent r.v.’s. Suppose that the following conditions hold:

(i) F̄ (x;α) is increasing and concave in α > 0; and

(ii) the sf of Xµ1 +Xµ2 is Schur-concave in (µ1, µ2), µ1, µ2 > 0.

If α
m
⪰ β such that α1 ≤ α2 ≤ ... ≤ αn and β1 ≤ β2 ≤ ... ≤ βn; then

∑n
i=1 IpiXαi ≤st∑n

i=1 IpiXβi
.

Proof: Let A(I, α) =
∑n

i=1 IiXαi and A(I,β) =
∑n

i=1 IiXβi
. We have to prove that

FA(I,α)(t) ≥ FA(I,β)(t) ∀t ∈ ℜ+. By the nature of majorization order, it suffices to prove it

when (αi, αj)
m
⪰ (βi, βj) for some pair 1 ≤ i < j ≤ n, and αr = βr for all r ̸= i, j. The cdf

of A(I,α) is

FA(I,α)(t) = P

(
n∑

i=1

IpiXαi ≤ t

)

=
n∑

k=0

∑
χ∈Sk

P

(
n∑

i=1

IpiXαi ≤ t | I = χ

)
p(χ)

= p(0) + p(1)P

(
n∑

i=1

Xαi ≤ t

)
+

n∑
k=1

∑
χ∈Sk

p(χ)P

(
n∑

i=1

χiXαi ≤ t

)

= p(0) + p(1)P

(
n∑

i=1

Xαi ≤ t

)
+

n−1∑
k=1


∑

χ∈Si,j
k (0,0)

p(χ)P

 n∑
r ̸=i,j

χrXαr ≤ t


+

∑
χ∈Si,j

k (0,1)

p(χ)P

Xαj +

n∑
r ̸=i,j

χrXαr ≤ t


+

∑
χ∈Si,j

k (0,1)

p(τi,j(χ))P

Xαi +
n∑

r ̸=i,j

χrXαr ≤ t
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+
∑

χ∈Si,j
k (1,1)

p(χ)P

Xαi +Xαj +

n∑
r ̸=i,j

χrXαr ≤ t


 .

Similarly,

FA(I,β)(t) = P

(
n∑

i=1

IiXβi
≤ t

)

= p(0) + p(1)P

(
n∑

i=1

Xβi
≤ t

)
+

n−1∑
k=1


∑

χ∈Si,j
k (0,0)

p(χ)P

 n∑
r ̸=i,j

χrXβr ≤ t


+

∑
χ∈Si,j

k (0,1)

p(χ)P

Xβj
+

n∑
r ̸=i,j

χrXβr ≤ t


+

∑
χ∈Si,j

k (0,1)

p(τi,j(χ))P

Xβi
+

n∑
r ̸=i,j

χrXβr ≤ t



+
∑

χ∈Si,j
k (1,1)

p(χ)P

Xβi
+Xβj

+
n∑

r ̸=i,j

χrXβr ≤ t


 .

Under assumption (ii), it holds that

P

(
n∑

i=1

Xαi ≤ t

)
≥ P

(
n∑

i=1

Xβi
≤ t

)
(7.4.1)

and, for any χ ∈ Si,j
k (1, 1), k = 1, ..., n− 1,

P

Xαi +Xαj +

n∑
r ̸=i,j

χrXαi ≤ t

 ≥ P

Xβi
+Xβj

+

n∑
r ̸=i,j

χrXβi
≤ t

 . (7.4.2)

Then combining above two we have

FA(I,α)(t)− FA(I,β)(t)

= p(1)

[
P

(
n∑

i=1

Xαi
≤ t

)
− P

(
n∑

i=1

Xβi
≤ t

)]

+

n−1∑
k=1

 ∑
χ∈Si,j

k (0,1)

p(χ)

P
Xαj +

n∑
r ̸=i,j

χrXαr ≤ t

− P

Xβj +

n∑
r ̸=i,j

χrXαr ≤ t
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+
∑

χ∈Si,j
k (0,1)

p(τi,jχ)

P
Xαi +

n∑
r ̸=i,j

χrXαr
≤ t

− P

Xβi
+

n∑
r ̸=i,j

χrXαr
≤ t


+

∑
χ∈Si,j

k (1,1)

p(χ)

P
Xαi

+Xαj
+

n∑
r ̸=i,j

χrXαi
≤ t

 ≥ P

Xβi
+Xβj

+

n∑
r ̸=i,j

χrXβi
≤ t


≥

n−1∑
k=1

 ∑
χ∈Si,j

k (0,1)

p(χ)

P
Xαj +

n∑
r ̸=i,j

χrXαr ≤ t

− P

Xβj +

n∑
r ̸=i,j

χrXαr ≤ t


+

∑
χ∈Si,j

k (0,1)

p(τi,jχ)

P
Xαi

+

n∑
r ̸=i,j

χrXαr
≤ t

− P

Xβi
+

n∑
r ̸=i,j

χrXαr
≤ t


≥

n−1∑
k=1

 ∑
χ∈Si,j

k (0,1)

p(τi,jχ)

P
Xαj

+

n∑
r ̸=i,j

χrXαr
≤ t

− P

Xβj
+

n∑
r ̸=i,j

χrXαr
≤ t


+

∑
χ∈Si,j

k (0,1)

p(τi,jχ)

P
Xαi +

n∑
r ̸=i,j

χrXαr ≤ t

− P

Xβi +

n∑
r ̸=i,j

χrXαr ≤ t


=

n−1∑
k=1

 ∑
χ∈Si,j

k (0,1)

p(τi,jχ)

∫
· · ·
∫
Rn−2

+

P
Xαi

≤ t−
n∑

r ̸=i,j

χrxαr

+ P

Xαj
≤ t−

n∑
r ̸=i,j

χrxαr


− P

Xβi ≤ t−
n∑

r ̸=i,j

χrxαr

− P

Xβj ≤ t−
n∑

r ̸=i,j

χrxαr

 n∏
r ̸=i,j

gXαr
(xαr )dxαr


=

n−1∑
k=1

 ∑
χ∈Si,j

k (0,1)

p(τi,jχ)

∫
· · ·
∫
Rn−2

+

F̄Xβi

t− n∑
r ̸=i,j

χrxαr

+ F̄Xβj

t− n∑
r ̸=i,j

χrxαr


−F̄Xαi

t− n∑
r ̸=i,j

χrxαr

− F̄Xαj

t− n∑
r ̸=i,j

χrxαr

 n∏
r ̸=i,j

gXαr
(xαr

)dxαr


≥ 0,

where gXαr
(x) is the pdf of Xαr . The first inequality follows from (7.4.1) and (7.4.2), the

second inequality from Lemma 7.2.1, and finally the last inequality is due to the fact that

F̄Xα is concave in α ∈ R+ as per the assumption (i).

Remark 7.4.1. Theorem 7.4.1 hold true for the PO model, i.e. for Xαi ∼ PO(F̄ , αi) (Xβi
∼

PO(F̄ , βi)), i = 1, ..., n, with F̄ (t) = e−λt, λ > 0. This family of distribution is known as

Marshall–Olkin extended exponential (MOEE) distribution. Note that F̄Xα(t) =
αF̄ (t)

1−ᾱF̄ (t)
is

increasing and concave in α. The condition (ii), i.e. the sf of Xµ1 +Xµ2 is Schur-concave

in (µ1, µ2) follows from the Corrollary F.12.a. (p. 235) of Marshall et al. [96] with the fact

that both the sf F̄Xµ(t) =
µe−λt

1−µ̄e−λt and pdf fXµ(t) =
µ·λe−λt

(1−µ̄e−λt)2
are concave in µ.
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It is to be noted that exponentiated Weibull distribution having the cdf F (t;α, β)) =(
1− e−tβ

)α
, α, β > 0 also satisfy both the conditions (i) and (ii) of Theorem 7.4.1 with

respect to the parameter α.

Remark 7.4.2. It is worth to be mention that in Theorem 4.7 of Zhang et al. [136], they

compared aggregate claim amounts of two sets of heterogeneous portfolios under the assump-

tion that the survival function F̄ (x;α) is decreasing and convex in α > 0.

The following example illustrates the result given in Theorem 7.4.1.

Example 7.4.1. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent non-

negative r.v.’s with Xi ∼ PO(F̄ (x), αi), i = 1, 2, and Yi ∼ PO(F̄ (x), βi), i = 1, 2, where

F̄ (x) = e−0.3x, x > 0. Set (α1, α2) = (0.4, 2.6), (β1, β2) = (0.8, 2.2), p(0, 0) = P (Ip1 = 0,

Ip2 = 0) = 0.15, p(0, 1) = 0.46, p(1, 0) = 0.34, p(1, 1) = 0.05. Then I = {Ip1 , Ip2} is LWSAI.

We consider the transformation x = t/(1 − t) so that, for t ∈ [0, 1), we have x ∈ [0,∞).

After this substitution, we denote the cdfs of
∑2

i=1 IpiXαi and
∑2

i=1 IpiXβi
by FA(I,α) and

FA(I,β) respectively. FA(I,α)(t/(1 − t)) = ψ1(t) and FA(I,β)(t/(1 − t)) = ψ2(t), respectively.

From Figure 7.10, it is clear that ψ1(t) ≥ ψ2(t) for all t ∈ [0, 1). Hence
∑2

i=1 IpiXαi ≤st∑2
i=1 IpiXβi

.

 

----- 𝜓𝜓1(𝑡𝑡) 

____ 𝜓𝜓2(𝑡𝑡) 

Figure 7.10: Plots of ψ1(t) and ψ2(t), t ∈ [0, 1]





Chapter 8

Future Research Direction

In this chapter we discuss some specific research problems, which can be taken up as

future research work.

(i) Stochastic orders are very useful tool to compare the lifetimes of two systems. Many

different kinds of stochastic orders have been developed in the literature, for example,

likelihood ratio order, hazard rate order, usual stochastic order, etc. (cf. Shaked and

Shanthikumar [122]). Blyth [20] proposed a new stochastic order called stochastic

precedence order (or probabilistic order). Many applications of this order are found

in reliability theory (cf. Singh and Misra [125], Boland et al. [24]). But the detailed

properties of this order are not studied yet. Thus, our aim is to study this order in

detail.

(ii) Order statistics play an important role in reliability theory. Some comparison results

of smallest and largest order statistics from exponential distribution, gamma distri-

bution and Weibull distribution are studied in the literature (cf. Balakrishnan and

Balakrishnan and Zhao [11], and the references there in). We want to study the prop-

erties of k-th order statistic so that results related to the smallest and the largest order

statistics will come as particular cases. In addition to this, our goal is to study the

order statistics from some other distributions, namely, generalized gamma distribu-

tion, power generalized Weibull distribution, etc. Order statistics from scale model,

proportional hazards model, proportional reversed hazards model are also another

prime interest of our research.

(iii) The concept of sequential order statistics is a generalized concept of order statistics
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(cf. Kamps [68]).Bairamov and Arnold [5] studied various stochastic orderings and

ageing properties of residual life lengths of live components in a k-out-of-n system.

We want to study the same problem under the sequential order statistics framework.

(iv) Design engineers always try to find out different strategies to allocate the standby

component(s) into the system so that the system reliability becomes optimum. Cha

et al. [32] proposed a new technique to handle the general standby (or warm standby)

based on the concept of accelerated life model and virtual age model. We want to

study different strategies to allocate the redundant component(s) into the system (for

example, series system, parallel system and k-out-of-n system) under the different

environmental set up, for example, perfect switching, imperfect switching, random

warm-up period case.

(v) Multivariate hazard rate function is well studied in the literature (cf. Marshall [93]).

A similar kind of study for multivariate reversed hazard rate function may be taken

up as a future research project.

(vi) In the field of reliability and survival analysis, mean residual life (MRL) is a very

well known and central concept. It plays an important role in reliability theory and

survival analysis. To model parametric and/or nonparametric lifetime data, the life-

time distributions having decreasing, increasing or bathtub-shaped MRL are used.

We want to model different lifetime distributions through MRL function and study

their properties.

(vii) It must be mentioned here that the dependent structure of systems are more practical

in nature, and where ever, in the above problems, dependency makes sense, we also

shall study the same for the dependent components.
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[25] Bon, J.-L. and E. Pãltãnea (1999). Ordering properties of convolutions of exponential

random variables. Lifetime Data Analysis 5 (2), 185–192.

[26] Brito, G., R. I. Zequeira, and J. E. Valdés (2011). On the hazard rate and reversed haz-

ard rate orderings in two-component series systems with active redundancies. Statistics

& Probability Letters 81 (2), 201–206.

[27] Bryson, M. C. and M. Siddiqui (1969). Some criteria for aging. Journal of the American

Statistical Association 64 (328), 1472–1483.

[28] Cai, J. and W. Wei (2014). Some new notions of dependence with applications in

optimal allocation problems. Insurance: Mathematics and Economics 55, 200–209.

[29] Cai, J. and W. Wei (2015). Notions of multivariate dependence and their applications

in optimal portfolio selections with dependent risks. Journal of Multivariate Analysis 138,

156–169.

[30] Cha, J. H. and M. Finkelstein (2014). Some notes on unobserved parameters (frailties)

in reliability modeling. Reliability Engineering & System Safety 123, 99–103.

[31] Cha, J. H., M. Finkelstein, and G. Levitin (2018). Optimal mission abort policy

for partially repairable heterogeneous systems. European Journal of Operational Re-

search 271 (3), 818–825.



174 BIBLIOGRAPHY

[32] Cha, J. H., J. Mi, and W. Y. Yun (2008). Modelling a general standby system and

evaluation of its performance. Applied Stochastic Models in Business and Industry 24 (2),

159–169.

[33] Chandra, N. K. and D. Roy (2001). Some results on reversed hazard rate. Probability

in the Engineering and informational Sciences 15 (1), 95–102.

[34] Collett, D. (2015). Modelling survival data in medical research. CRC press.

[35] Cordeiro, G. M., A. J. Lemonte, and E. M. Ortega (2014). The marshall-olkin family

of distributions: Mathematical properties and new models. Journal of Statistical Theory

and Practice 8 (2), 343–366.

[36] Da, G. and W. Ding (2015). Component level versus system level k-out-of-n assembly

systems. IEEE Transactions on Reliability 65 (1), 425–433.

[37] David, H. A. and H. N. Nagaraja (2004). Order statistics. John Wiley & Sons.

[38] Deshpande, J. V., S. C. Kochar, and H. Singh (1986). Aspects of positive ageing.

Journal of Applied Probability 23 (3), 748–758.

[39] Di, C. A. and M. Longobardi (2001). The up reversed hazard rate stochastic order.

Scientiae Mathematicae Japonicae 54 (3), 575–581.

[40] Ding, W., J. Yang, and X. Ling (2017). On the skewness of extreme order statistics

from heterogeneous samples. Communications in Statistics - Theory and Methods 46 (5),

2315–2331.

[41] Ding, W. and Y. Zhang (2018). Relative ageing of series and parallel systems: Effects

of dependence and heterogeneity among components. Operations Research Letters 46 (2),

219–224.

[42] Fang, L. and N. Balakrishnan (2016). Ordering results for the smallest and largest

order statistics from independent heterogeneous exponential–weibull random variables.

Statistics 50 (6), 1195–1205.

[43] Fang, R., C. Li, and X. Li (2016). Stochastic comparisons on sample extremes of

dependent and heterogenous observations. Statistics 50 (4), 930–955.



BIBLIOGRAPHY 175

[44] Fang, R., C. Li, and X. Li (2018). Ordering results on extremes of scaled random

variables with dependence and proportional hazards. Statistics 52 (2), 458–478.

[45] Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of multivariate

analysis 95 (1), 119–152.

[46] Finkelstein, M. (2008). Failure rate modelling for reliability and risk. Springer Science

& Business Media.

[47] Franco, M., M. C. Ruiz, and J. M. Ruiz (2003). A note on closure of the ilr and dlr

classes under formation of coherent systems. Statistical Papers 44 (2), 279–288.

[48] Genest, C., B. Rémillard, and D. Beaudoin (2009a). Goodness-of-fit tests for copulas:

A review and a power study. Insurance: Mathematics and economics 44 (2), 199–213.

[49] Genest, C., B. Rémillard, and D. Beaudoin (2009b). Goodness-of-fit tests for copulas:

A review and a power study. Insurance: Mathematics and economics 44 (2), 199–213.

[50] Ghoraf, N. (2007). r-consecutive-k-out-of-n: F systems with dependent components.

International Journal of Reliability, Quality and Safety Engineering 14 (04), 399–410.

[51] Gumbel, E. (1958). Statistics of extremes columbia university. New York .

[52] Gupta, N., I. D. Dhariyal, and N. Misra (2011). Reliability under random operat-

ing environment: frailty models. Journal of Combinatorics, Information & System Sci-

ences 36 (1-4), 117.

[53] Gupta, N., L. K. Patra, and S. Kumar (2015). Stochastic comparisons in systems with

frèchet distributed components. Operations Research Letters 43 (6), 612–615.

[54] Gupta, R. C. and R. D. Gupta (2007). Proportional reversed hazard rate model and

its applications. Journal of Statistical Planning and Inference 137 (11), 3525–3536.

[55] Gupta, R. C. and S. Kirmani (2006). Stochastic comparisons in frailty models. Journal

of Statistical Planning and Inference 136 (10), 3647–3658.

[56] Gupta, R. C. and C. Peng (2014). Proportional odds frailty model and stochastic

comparisons. Annals of the Institute of Statistical Mathematics 66 (5), 897–912.



176 BIBLIOGRAPHY

[57] Haidari, A., A. T. P. Najafabadi, and N. Balakrishnan (2019). Comparisons between

parallel systems with exponentiated generalized gamma components. Communications

in Statistics-Theory and Methods 48 (6), 1316–1332.

[58] Hand, D. J., F. Daly, K. McConway, D. Lunn, and E. Ostrowski (1993). A handbook

of small data sets. cRc Press.

[59] Hazra, N. K. and M. Finkelstein (2018). On stochastic comparisons of finite mixtures

for some semiparametric families of distributions. Test 27 (4), 988–1006.

[60] Hazra, N. K., M. Finkelstein, and J. H. Cha (2017). On optimal grouping and stochastic

comparisons for heterogeneous items. Journal of Multivariate Analysis 160, 146–156.

[61] Hazra, N. K., M. R. Kuiti, M. Finkelstein, and A. K. Nanda (2017). On stochastic

comparisons of maximum order statistics from the location-scale family of distributions.

Journal of Multivariate Analysis 160, 31–41.

[62] Hazra, N. K. and N. Misra (2020). On relative ageing of coherent systems with depen-

dent identically distributed components. Advances in Applied Probability 52 (1), 348–376.

[63] Hazra, N. K. and A. K. Nanda (2014). Component redundancy versus system redun-

dancy in different stochastic orderings. IEEE Transactions on Reliability 63 (2), 567–582.

[64] He, X. and H. Xie (2020). Relative stochastic orders of weighted frailty models. Statis-

tics 54 (5), 989–1004.

[65] Hougaard, P. and P. Hougaard (2000). Analysis of multivariate survival data, Volume

564. Springer.

[66] Hu, T. and Z. Zhu (2001). An analytic proof of the preservation of the up-shifted like-

lihood ratio order under convolutions. Stochastic processes and their applications 95 (1),

55–61.

[67] Jeon, J., S. Kochar, and C. G. Park (2006). Dispersive ordering—some applications

and examples. Statistical Papers 47 (2), 227–247.

[68] Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical

Planning and Inference 48 (1), 1–23.



BIBLIOGRAPHY 177

[69] Kayid, M., S. Izadkhah, and M. J. Zuo (2017). Some results on the relative ordering

of two frailty models. Statistical Papers 58 (2), 287–301.

[70] Keilson, J. and U. Sumita (1982). Uniform stochastic ordering and related inequalities.

Canadian Journal of Statistics 10 (3), 181–198.

[71] Kelkinnama, M. (2021). Stochastic comparisons between coherent systems with active

redundancies under proportional hazards and reversed hazards models. International

Journal of Reliability, Quality and Safety Engineering 28 (01), 2150007.

[72] Khaledi, B.-E. and S. Kochar (2002). Dispersive ordering among linear combinations of

uniform random variables. Journal of Statistical Planning and Inference 100 (1), 13–21.

[73] Kirmani, S. and R. C. Gupta (2001). On the proportional odds model in survival

analysis. Annals of the Institute of Statistical Mathematics 53 (2), 203–216.
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