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ABSTRACT

The channel assignment problem, popularly known as CAP, is one of the elementary
and much studied topic in the field of wireless communication. The basic purpose
for studying CAP is to find out solutions such that wireless communication becomes
interference free with using spectrum as less as possible during the communication.
Often the CAP is modeled as an L(k1, . . . , kℓ)-vertex (edge) labeling problem of a
graph, where k1, . . . , kℓ are non-negative integers. In L(k1, . . . , kℓ)-vertex (edge)
labeling problem, labels are assigned to the vertices (edges) of a graph in such a
way that the absolute difference between the labels assigned to any pair of vertices
(edges) located at distance i, 1 ≤ i ≤ ℓ, is ki. One of the objective of L(k1, . . . , kℓ)-
vertex (edge) labeling of a graph G is to find a labeling of the vertices (edges) such
that the span for the corresponding labeling is minimum among all L(k1, . . . , kℓ)-
vertex (edge) labelings of G, where span denotes the difference between maximum
and minimum labels used for a labeling. Regular grid graphs are common choices
for modeling CAP because of their natural resemblance to cellular network for
regular geometric pattern. Consequently, various studies of L(k1, k2, . . . , kℓ)-vertex
(edge) labeling have been done for infinite regular grids such as infinite hexagonal
(T3), square (T4), triangular (T6) and infinite 8-regular grid (T8) grids. In this thesis,
we first derive the exact values of the span of L(1, 2)-edge labeling problem for T3

and T4. Then we improve the lower bound on the span of L(1, 2)-edge labeling
problem for T6. Next by improving the lower bound, we derive the exact value
of the span of L(1, 2)-edge labeling of T8. Next we attempt to derive theoretically
the lower bound on the span of L(k1, k2)-vertex labeling problem for T6 for k1 ≤ k2.
For this problem, the previous results were obtained partially through computer
simulations. We find that our theoretically obtained results exactly coincide with

the known results for the sub interval 0 ≤ k1

k2
≤ 1

3
but provide loose bound for

the other sub interval
1
3
≤ k1

k2
≤ 1. Next we derive improved lower bound on the

span of L(2, 1)-edge labeling problem for T6. Next we study the L(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

)-vertex

labeling problem for T3. The exact value of the span of L(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

)-vertex labeling

problem for T3 has not been determined yet for any even ℓ ≥ 8, rather the value of
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the span was conjectured. We prove this conjecture for ℓ ≥ 8. In all the cases we
analyze the structural properties of the underlined graphs and based on which the
results are obtained theoretically.
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NOTATIONS

Notation Explanation
CAP Channel Assignment Problem
d(u, v) distance between two vertices u and v of a graph
d′(e1, e2) distance between two edges e1 and e2 of a graph
L(G) Line graph of G(V, E)
T3 Infinite hexagonal grid
T4 Infinite square grid
T6 Infinite triangular grid
T8 Infinite octagonal grid
λk1,k2,...,kℓ(G) Span for L(k1, k2, . . . , kℓ)-vertex labeling of the graph G
λ′

k1,k2,...,kℓ
(G) Span for L(k1, k2, . . . , kℓ)-edge labeling of the graph G

σk1,k2,...,kℓ(G) Span for circular L(k1, k2, . . . , kℓ)-vertex labeling of the graph G
σ′

k1,k2,...,kℓ
(G) Span for circular L(k1, k2, . . . , kℓ)-edge labeling of the graph G
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Chapter 1

Introduction

Channel assignment problem (CAP) is one of the fundamental problems in wireless
communication networks. In wireless communication networks, frequency bands
are assigned to the transmitters for data communication. On the receiver’s side,
the receiver captures the signal intended for it and processes it. Therefore, if
more than one proximity transmitters use same frequency band or overlapping
frequency bands concurrently for communication, then interference will definitely
occur and the communication will become noisy. So, frequency bands assigned to
proximity transmitters must be distinct and must have predefined gap between
them if the transmitters wants to communicate at a same time. It is well known
that number of transmitters and receivers engaged in communication are far more
than total number of available frequency bands for a fairly big communication
network as frequency resources are limited. So for CAP, it is a challenging problem
to assign frequency bands to transmitters using available frequency bands such
that the communication becomes interference free. In other word, it can be said
that CAP is an optimization problem where the objective is to find least number of
frequency bands needed for interference free communication. This is also one of
the rudimentary problems in wireless communication.

Various methods have been employed in wireless communication networks such
that number of frequency bands needed for communication can be made as less
as possible for interference free communication. One possible method is to assign
non overlapping frequency bands at proximity transmitters which are engaged in
communication at the same time and to reuse frequency bands at transmitters which
are at far distance apart. This is particularly possible because effect of interference
fades with distance. In practice, the effect of interference is taken into consideration
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up to some n (n > 1) hop distances. As generally interference diminishes with
distance, gap between any pair of frequency bands assigned to the transmitters at
one hop distance is kept at maximum, the corresponding gaps are reduced with
increase of hop distances and the gap is kept at minimum when the transmitters
are at n distance apart. However, in ad hoc network and device to device (D2D)
communication, users, located at near distance, can communicate among them
without the help of any base station. If two devices can sense each other (distance 1
apart in this context), proper parameter settings of multiple input multiple output
(MIMO) antenna can be done so that the required frequency gap between those
transmitting devices may be made shorten. If two transmitting devices can not
sense each other (distance 2 apart in this context), then due to the hidden terminal
problem, the required frequency gap between them may be higher than that of the
required gap when the devices can sense each other. In both the cases, one of the
the objective of CAP can be finding out the least number of frequency bands such
that communication can be made without interference.

The optimization problem stated above has been encountered in several ways.
Some of them use neural network based approach, some use genetic algorithm
where some of them use search method [1, 2, 3]. There also have some other
methods also. Among them, in one approach, CAP has been formulated as a vertex
coloring problem where the vertices of the graph can be thought as transmitters
and colors assigned to the vertices can be viewed as frequency bands assigned to
the corresponding transmitters. Here an edge between two vertices represent that
the corresponding transmitters are interfering to each other. Whereas, in another
approach, CAP has been formulated as an edge coloring problem where each edge
represents the communication link between a pair of users and colors assigned to
the edges can be viewed as frequency bands assigned to the corresponding links.
Therefore determining the minimum color needed to color the vertices/edges is
equivalent to determining minimum frequency spectrum required for interference
free communication. Hale [4] first formulated the CAP as a classical graph coloring
problem. But it is not able to model the scenario when effect of interference persists
beyond one hop distance. So to capture the effect of interference for more than one
hop distance, L(k1, k2, . . . , kℓ)-vertex labeling problem and L(k1, k2, . . . , kℓ)-edge
labeling problem was introduced [5], [6], [7]. Now, it is very natural to model
the cellular network as infinite regular grids for the regular pattern of the cellular
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network. So, investigating L(k1, k2, . . . , kℓ) labeling for different infinite grids is
also an interesting problem. In this thesis we explore and derive several results
for L(k1, k2, . . . , kℓ) labeling for different types of infinite grids. Below we formally
define different versions of L(k1, k2, . . . , kℓ) labeling problems and describe different
types of infinite regular grids.

L(k1, k2, . . . , kℓ)-vertex labeling

For L(k1, k2, . . . , kℓ)-vertex labeling problem, the absolute difference between colors
assigned to two vertices u, v ∈ V at distance i (1 ≤ i ≤ l) is at least ki. Here
distance between any two vertices u and v is the minimum number of edges in
E that connect u and v and it is denoted as d(u, v). For any coloring function f
of the vertices of G that admits L(k1, k2, . . . , kℓ)-vertex labeling for the graph G,
the span is defined as max

u∈V
f (u) − min

v∈V
f (v). Here λk1,k2,...,kℓ(G) is the minimum

span over all such f . The objective of L(k1, k2, . . . , kℓ)-vertex labeling problem is
to find λk1,k2,...,kℓ(G). Therefore finding minimum span for L(k1, k2, . . . , kℓ)-vertex
labeling of a graph G(V, E) is analogically same as determining the least frequency
bandwidth for interference free communication if the transmitters are represented
by the vertices of G, colors of the vertices represent frequency bands assigned to the
transmitters, distance between any two vertices in G represents the hop distance
between them.

L(k1, k2, . . . , kℓ)-edge labeling

Like L(k1, k2, . . . , kℓ)-vertex labeling problem, L(k1, k2, . . . , kℓ)-edge labeling prob-
lem was also introduced in [7]. For L(k1, k2, . . . , kℓ)-edge labeling problem, the
absolute difference between colors assigned to two edges e1, e2 ∈ E at distance i
(1 ≤ i ≤ l) is at least ki. Here distance between any two edges e1 and e2 is repre-
sented as d′(e1, e2) and if d′(e1, e2) = k then least number of edges in E that connect
e1 and e2 is k − 1, where k ≥ 1. For any coloring function f ′ of the edges of G
that admits L(k1, k2, . . . , kℓ)-edge labeling for the graph G, the span is defined as
max
e1∈E

f ′(e1)− min
e2∈E

f ′(e2). Here λ′
k1,k2,...,kℓ

(G) is the least span over all such f ′. The

objective of L(k1, k2, . . . , kℓ)-edge labeling problem is to find λ′
k1,k2,...,kℓ

(G). Here
also, finding minimum span for L(k1, k2, . . . , kℓ)-edge labeling of a graph G(V, E) is
analogically same as determining least frequency bandwidth for interference free
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communication if the communication links formed between the users are repre-
sented by the edges of G, colors of the edges represent frequency bands assigned to
the links, distance between any two edges in G represents the hop distance between
them.

Circular L(k1, k2, . . . , kℓ) labeling

One interesting variant of L(k1, k2, . . . , kℓ) labeling problem is circular L(k1, k2, . . . , kℓ)
labeling problem [8]. Both L(k1, k2, . . . , kℓ)-vertex and edge labeling problems have
their corresponding circular labeling versions. As in this thesis we deal with
edge version of the circular labeling, we define it formally. For ℓ + 1 given in-
tegers n, k1, k2, . . . , kℓ, an n-circular-L(k1, k2, . . . , kℓ)-edge labeling f ′ of the edges
of a graph G assigns integers from the set of {0, 1, . . . , n − 1} to the edges of G
in a manner that | f ′(e1) − f ′(e2)|n ≥ ki if d′(e1, e2) = i (1 ≤ i ≤ l). It is noted
that |x|n = min{x, n − x}. Here d′(e1, e2) is the distance between the two edges e1

and e2. Here the circular span is equal to n. Note that σ′
k1,k2,...,kℓ

(G) is the least n
among all circular L(k1, k2, . . . , kℓ)-edge labeling of G. The objective of n-circular
L(k1, k2, . . . , kℓ)-edge labeling is to find σ′

k1,k2,...,kℓ
(G).

Infinite regular grids

Regular grid graphs are the graphs which are formed by tilling a two dimensional
plane with regular two dimensional geometric patterns. An infinite regular hexago-
nal (T3), square (T4) and triangular (T6) grids are formed by tilling a two dimensional
plane regularly with regular hexagons, squares and equilateral triangles respec-
tively. An infinite 8-regular grid is a regular grid where degree of each vertex is
8. In Figure 1.1, Figure 1.3, Figure 1.4 and Figure 1.5, T3, T4, T6 and T8 have been
shown respectively. In Figure 1.2, brick structure representation of T3 has been
shown. Note that the degrees of T3, T4, T6 and T8 are three, four, six and eight

respectively.
In next section, the motivation behind our study is stated.
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Figure 1.1: A part of infinite Hexagonal
grid T3

Figure 1.2: A part of brick structure pre-
sentation of T3

Figure 1.3: A part of infinite Square grid T4

Figure 1.4: Three representations of infinite Triangular grid T6

Figure 1.5: A part of infinite 8-regular grid grid T8

1.1 Motivation

Several studies have been made for both vertex and edge version of L(k1, k2, . . . , kℓ)
labeling problem for T3, T4, T6 and T8 [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. But in
some of the studies, rather finding an exact value of the minimum span, lower
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and upper bounds were given, in some of the studies the value of minimum span
was conjectured and in some of the studies the values for minimum span were
obtained with the help of computer simulation. In this thesis, we study some of
these problems stated above and give improved results.

Specially, in this thesis, first we derive the exact values of λ′
1,2(T∆) for ∆ = 3 and

∆ = 4. Previously upper and lower bounds were given for these. Then we improve
the lower bound of λ′

1,2(T∆) for ∆ = 6. Next by improving the existing lower bound
of λ′

1,2(T8) we determine the exact value of λ′
1,2(T8). After that, we determine the

lower bounds of λk1,k2(T6) theoretically when k1 ≤ k2 for some sub intervals by
examining the underlined graph structures, where the known results were partially
based on computer simulations. Next we prove that λ′

2,1(T6) = 16 which was posed
as a conjecture. After that we study circular L(2, 1)-edge labeling problem for T6

and derive a labeling function to show the upper bound of σ′
2,1(T6). Note that no

labeling function was known for circular L(2, 1)-edge labeling of T6. Next we study
L(1, 1, . . . , 1︸ ︷︷ ︸

ℓ

)-vertex labeling problem for T3. The exact values of λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) are

known for all odd ℓ and even ℓ < 8 but the corresponding values were conjectured
for all even ℓ ≥ 8. Here we settle the conjecture for even ℓ ≥ 8.

1.2 Literature survey

In this thesis we deal with L(1, 2)-edge labeling for T3, T4, T6, T8, L(k1, k2)-vertex
labeling of T6 when k1 ≤ k2, L(2, 1)-edge labeling and circular L(2, 1)-edge labeling
for T6 and L(1, 1, . . . , 1︸ ︷︷ ︸

ℓ

)-vertex labeling for T3 when ℓ = 8. First of all in the

following paragraph we will present a general literature survey of distance labeling
and then in subsequent paragraphs we will focus on the literature on distance
labeling for infinite regular grid graphs.

Hale [4] dealt with different frequency assignment problems and model it as a
vertex coloring problem. Later the concept of L(k1, k2)-vertex labeling was intro-
duced to incorporate the effect of interference at two hop distance into the formula-
tion [6]. Griggs and yeh [5] posed some fundamental issues regarding L(2, 1)-vertex
labeling problem. For a graph G, they proved that determining λ2,1)(G) is an NP-
complete problem. Further different NP-hardness results for L(2, 1)-vertex labeling
and L(k1, k2)-vertex labeling for k1 > k2 ≥ 1 are studied in [19, 20, 21, 22]. A detailed
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survey for related NP-hard result can be found in [9]. In [5], Griggs and Yeh showed
that for a graph G with maximum degree ∆, λ2,1(G) ≤ ∆2 + 2∆. They also proposed
a conjecture that given a graph G with maximum degree ∆ ≥ 2, λ2,1(G) ≤ ∆2. Later
Chang and Kuo [23], Král’and Skrekovski [24] and Goncalves [25] improved the
upper bound obtained in [5]. Later the conjecture proposed in [5] was settled for
sufficiently big value of ∆ in [26] [27]. Extensive study has been done to determine
bounds of the minimum spans for L(0, 1), L(1, 1), L(2, 1) as well as L(k1, k2)-vertex
labeling for both of k1 ≥ k2 and k1 < k2 for paths, cycles cliques, wheels, product of
some known graph classes, planar and outer planar graph, chordal graph, regular
graph, bipartite graph, kneser graph, intersection graph and graphs with given
maximum degree and those can be found in [2, 28, 9, 5, 29, 30, 31, 32, 33]. Later Cala-
moneri [34] and Soumen [35] studied L(2, 1) labeling and L(p, 1) labeling problem
for oriented planar graphs and oriented graphs respectively. Deng et al. [36] studied
the L(d, 1)-vertex labeling problem for generalised Petersen graphs. Regarding
infinite regular grids, several results for L(k1, k2)-vertex labeling were presented
in [37, 38, 39, 11, 40, 13, 12, 41, 42, 43]. Studies have been made for L(k1, k2, . . . , kℓ)-
vertex labeling for different values of k1, k2, . . . , kℓ when ℓ > 2 and the results can
be found in [10, 44, 45, 46, 47, 48, 49, 50]. Several studies have also been made for
L(k1, k2, . . . , kℓ)-vertex labeling in [51, 52, 53, 54, 55] for different types of graphs for
particular values of k1, k2, . . . , kℓ when ℓ = 3. Duan et al. [56] determined the value
of λ3,2,1(T3) and λ3,2,1(T4). Later Atta and Mahapatra [57] studied the problem for
T4 in more general way and obtained the value of λD,2,1(T4) for all integer D ≥ 4.
Duan et al. [58] gave bounds for λ3,2,1(T6) and Calamoneri [59] further improved
the bound of λ3,2,1(T6) and conjectured the exact value of λ3,2,1(T6). Shao and
Vesel [60] proved the conjecture posed in [59]. Later Das et al. [61] investigated the
problem in a more general way and gave exact value of λ4,2,1(T6) and lower bounds
of λd,2,1(T6) for d ≥ 5. Soumen et al. extended the problem to L(k, k − 1, . . . , 1)-
vertex labeling problem of T6 and gave upper bound λk,k−1,...,1(T6) in [62]. For T8,
Calamoneri [59] studied L(2, 1, 1) and L(3, 2, 1)-vertex labeling of T8. Like distance
vertex labeling, L(k1, k2, . . . , kℓ)-edge labeling of various types of graphs has also
been studied. But the focus for L(k1, k2, . . . , kℓ)-edge labeling is limited for ℓ = 2.
Authors in [7] studied L(k1, k2)-edge labeling problem for complete graphs, trees,
cubes and joins for k1 = 1, 2 and k2 = 1. For L(k1, k2)-edge labeling of T3, T4, T6 and
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T8 when k1 = 1, 2 and k2 = 1, 2 have been studied in [14, 15, 16, 17]. Now we will
present the literature suited for our interest in next paragraphs.

In this thesis, first we study the L(1, 2)-edge labeling problem for T∆ when
∆ = 3, 4, 6. In [7], Georges and Mauro first studied the L(k1, k2)-edge labeling
problem for trees, n-cubes, complete graphs and joins when k1 = 1, 2 and k2 = 1. Later
Chen and Lin [14] investigated the L(k1, k2)-edge labeling problem on K1,3 free
graphs. They also provided the upper bound of λ′

k1,k2
(G) with respect to maximum

degree of the line graph of G. Further Dan and Lin [16] evaluated the upper and
lower bounds for λ′

1,2(T3), λ′
1,2(T4) and λ′

1,2(T6) but there are gaps in between the
lower and upper bounds. In this thesis, we improve λ′

1,2(T∆) for each of ∆ = 3, 4, 6.
Next we study the problem of L(1, 2)-edge labeling problem of infinite 8-regular

grid T8. In [17], it was shown that 25 ≤ λ′
1,2(T8) ≤ 28. In this thesis, we determine

that λ′
1,2(T8) ≥ 28. As it was shown λ′

1,2(T8) ≤ 28 in [17], we conclude that
λ′

1,2(T8) = 28.
Next we study the lower bound of λk1,k2(T6) when k1 ≤ k2. For a graph G, it can

be shown from the scaling lemma in [13], λk1,k2(G) = k2 ∗ λk1

k2
,1
(G) = k2 ∗ λh,1(G),

where h =
k1

k2
. Determining λk1,k2(G) is equivalent to evaluating λh,1(G) and

multiplying it with k2. So, we actually discuss L(h, 1)-vertex labeling for T6 when
0 ≤ h ≤ 1 here. Efforts have been made to determine bounds of λh,1(T∆) when
0 ≤ h ≤ 1 for ∆ = 3, 4, 6. Griggs and Jin [13] determined the values of λh,1(T3) and
λh,1(T4) when 0 ≤ h ≤ 1 but gave lower and upper bounds for λh,1(T6) for different
intervals for 0 ≤ h ≤ 1. But the proposed method in [13] for determining λh,1(T6)

was partly computer assisted. Later, Daniel Král and Petr Skoda [12] gave exact
values of λh,1(T6) for different finer sub intervals for 0 ≤ h ≤ 1. In this case too the
proof techniques depend on partially computer simulation. We study the L(h, 1)-
vertex labeling problem for T6 when 0 ≤ h ≤ 1. In our approach, we theoretically

determine the lower bounds of λh,1(T6) for two sub intervals when 0 ≤ h ≤ 1
2

and

h ≥ 1
2

. We find that our theoretically obtained results exactly coincide with the

known results for the sub interval 0 ≤ h ≤ 1
3

but provide loose bound for the other

sub interval h ≥ 1
3

.
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Next we study L(2, 1)-edge labeling problem and circular L(2, 1)-edge label-
ing problem for T6. Lin and Wu [15] studied L(k1, k2)-edge labeling and circular
L(k1, k2)-edge labeling for T3, T4 and T6 for k1 = 1, 2 and k2 = 1. They obtained
the exact values of λ′

1,1(T3), λ′
2,1(T3), σ′

2,1(T3), λ′
1,1(T6) and gave upper and lower

bounds for λ′
2,1(T4), σ′

2,1(T4) and σ′
2,1(T6). It was conjecture in [15] that λ′

2,1(T6) = 16.
Later Calamoneri [17] improved some of the bounds for λ′

k1,k2
(T∆) for ∆ = 3, 4, 6

when k1 = 1, 2 and k2 = 1, but the conjecture remains unsettled. In our work, we
prove the conjecture.

Next we investigate the L(k1, k2, . . . , kℓ)-vertex labeling problem for T3 for all
even ℓ ≥ 8 and k1 = k2 = · · · , kℓ = 1. Research work of ℓ distance vertex labeling
for T3 have been studied by several authors [63, 64, 65, 18, 66, 67, 68]. Jacko
and Jendrol’ [18] studied the L(k1, k2, . . . , kℓ)-vertex labeling problem for T3 when
k1 = k2 = · · · = kℓ = 1 and determined the value of λ1, 1, . . . , 1︸ ︷︷ ︸

ℓ

(T3) for all odd ℓ

and even ℓ < 8. However, they conjectured the value of λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) for all even

ℓ ≥ 8. In our work, we determine the exact values of λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) for all even

ℓ ≥ 8 and the obtained values coincide with the conjecture values posed in [18].
Thus we settle the conjecture.

1.3 Scope of the thesis

We study the L(1, 2)-edge labeling problem for T∆ when ∆ = 3, 4, 6 in chapter 2.
For λ′

1,2(T∆), upper and lower bounds were given in [14, 15, 16, 17]. In this chapter,
we establish improved bounds for each of T3, T4, T6. The existing best results for
T3, T4 were 7 ≤ λ′

1,2(T3) ≤ 8 [16] and 10 ≤ λ′
1,2(T4) ≤ 11 [16] respectively. Here,

by improving the lower bounds, we determine that λ′
1,2(T3) = 7 and λ′

1,2(T4) = 11.
Given a graph G(V, E), its line graph L(G)(V′, E′) is a graph such that each vertex
of L(G) represents an edge of G and two vertices of L(G) have an edge if and
only if their corresponding edges share a common vertex in G. To obtain the
bounds for T3 and T4, we investigate vertex labeling of L(T3), L(T4) and derive
the values of λ1,2(L(T3)) and λ1,2(L(T4)) because it is known that for any graph
G(V, E), λ′

1,2(G) = λ1,2(L(G)). To prove the results, we identify some sub graphs
of L(T3) and L(T4) and we analyze some structural properties of those sub graphs
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and thus we obtain the improved results. For T6, the existing best results were
16 ≤ λ′

1,2(T6) ≤ 20 [17] respectively. Here too, by improving the lower bounds,
we determine that 18 ≤ λ′

1,2(T6) ≤ 20. However, for T6, we do not consider the
line graphs of T6 for high degrees of L(T6). Here bounds are obtained based on
identifying some sub graphs of T6 and and analysing some structural properties of
those sub graphs.

In next chapter (chapter 3), we study L(1, 2)- edge labeling problem for infinite
8-regular grid T8. This problem was studied in [17] and it was shown that 25 ≤
λ′

1,2(T8) ≤ 28. In this chapter, we prove that λ′
1,2(T8) ≥ 28. As in [17], λ′

1,2(T8) ≤ 28,
so λ′

1,2(T8) = 28. To prove the lower bound of λ′
1,2(T8), we use the structural

properties of T8. More specifically, we first identify a sub graph G′ of T8 where
no two edges can have the same color. After that we consider all edges where a
pair of consecutive colors (c, c ± 1) can be used in G′. Based on this, we identify
the sub graphs in T8 where c and c ± 1 can not be used. Then using the structural
properties of those sub graphs we conclude how many additional colors other the
colors used in G′ must be required to color T8 by using the pigeon hole principle
and accordingly derive the span.

In chapter 4, we study the L(k1, k2)-vertex labeling problem for T6 when k1 ≤ k2.
For a graph G, it follows from the scaling lemma in [13] that λk1,k2(G) = k2 ∗λh,1(G),

where h =
k1

k2
. In [13], bounds of λh,1(T6) were obtained for 0 ≤ h ≤ 1. But some

of the bounds were not tight and moreover, the bounds were obtained partially
based on computer simulation. More specifically, the bounds [13] are obtained by
considering all possible L(h, 1) labeling of three induced sub graphs of T6 having
7, 19 and 37 nodes using computer simulation. Later, by improving these bounds,
exact values of λh,1(T6) were obtained by Král and Skoda [12] for different sub
intervals of 0 ≤ h ≤ 1. But here also, the bounds are obtained through brute force
computer simulations on the induced sub-graphs of T6 having 81, 100, 169 and 225
nodes. Here, we attempt to determine the minimum span of L(h, 1)-vertex labeling
for T6 by examining the underlined graph structures with a theoretical proof for
the bounds. Our result exactly coincides with the results previously obtained when

0 ≤ h ≤ 1
3

. When
1
3
≤ h ≤ 1, however, results obtained in [13, 12] are finer than

ours. In our work, we introduce the notion of color class to represent all the colors
within a specific interval. We also identify a subset of vertices in T6 where colors
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from the same color class can not be used. Later we show that how many color
classes are required to color the vertices of specific sub graph in T6 and in that case
the value of maximum color which must be used in the specific sub graph will
determine the required minimum span.

In chapter 5, we focus on determining the exact values of λ′
2,1(T6). It was known

that 15 ≤ λ′
2,1(T6) ≤ 16 and was conjecture that λ′

2,1(T6) = 16 [15]. Deepthy and
Joseph [69] claimed to have proved the conjecture but their proof is found to be
incorrect and we will discuss it in chapter 5. In our work, we prove the conjecture.
To prove the conjecture, we first identify a sub graph G′ in T6 and examine minimum
how many colors are required to color the edges of the sub graph. Next, we identify
another sub graph G′′ in T6 where G′ is a proper sub graph of G′′. First, for every
color used in G′ we examine that how many times at maximum the color can be
reused in G′′. By doing so, we conclude that at least a new color apart from the
colors used in G′ is needed to color the edges of G′′. Later by analysing the re-
usability condition of the colors including the new color in G′′, we find at least how
many colors are required to color the edges of G′′ and that leads us to settle the
conjecture. Later in this chapter, we work on circular L(2, 1)-edge labeling for T6.
Values of upper and lower bounds for σ′

2,1(T6) are given in [15]. But no labeling
function was given there for the upper bound. Here we give a labeling function for
circular L(2, 1)-edge labeling in T6 and the labeling function proposed by us give
the same upper bound as mentioned in [15].

In chapter 6, we study the L(k1, k2, . . . , kℓ)-vertex labeling problem for T3 for
even ℓ ≥ 8 and k1 = k2 = · · · , kℓ = 1. In [18], Jacko and Jendrol determined the
exact value of λ1, 1, . . . , 1︸ ︷︷ ︸

ℓ

(T3) for all odd ℓ. They also determined the exact value of

λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) for all even ℓ < 8. For all even ℓ ≥ 8, they derived the upper bound

and conjectured the exact value of λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3). In our work, we determine

the exact values of λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) for even ℓ ≥ 8. Our calculated values exactly

coincide with the corresponding conjectured values and hence the conjecture is
settled. In our approach, first we prove the conjecture when ℓ = 8. In this case
we choose any vertex in T3 and consider two sub graphs G′ and G′′ which are
induced by all the vertices at distance four and distance eight apart respectively
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from the chosen vertex. For L(1, 1, . . . , 1︸ ︷︷ ︸
8

)-vertex labeling of T3, it can be shown that

31 distinct colors are required to color the vertices of G′. Next we examine how
many times at maximum the colors of G′ can be reused in G′′ individually and all
together. It is observed that some colors loose the potential of maximum re-usability
if all the colors used in G′ are to be reused in G′′ and thereby we conclude that
new color/s is/are to be introduced in G′′. By further investigating the problem,
least number of new colors required to color the vertices of G′′ are determined
and proceeding in this way, we prove the conjecture for ℓ = 8. Next we prove the
conjecture for all even ℓ > 8. Here also we choose any vertex v ∈ T3. Then we
consider a sub graph (say G′) induced by the vertices which are at distance l

2 from
v. Again we consider an another sub graph (say G′′) induced by the vertices which
are at distance ( ℓ2 + 2⌊ ℓ4⌋ − 1) from v. Here we observe that the colors used in G′

are all distinct for ℓ distance coloring as distance between any pair of vertices in G′

is at most ℓ. So minimum number of colors required to color the vertices of G′ is
λℓ(G′). Next we show that at least ( ℓ4) no of extra colors apart from the colors used
in G′ must be required to color the vertices of G′′. So, λℓ(G′′) ≥ λℓ(G′) + ℓ

4 . From
this and the value of the upper bound of λℓ(T3) derived in literature, we finally
prove the conjecture.

The works presented in the thesis are summarized in the following table 1.1.

1.4 Organization of thesis

We organize the thesis in following manner. In 2nd chapter, description of work for
improving upper and lower bounds of λ′

1,2(T∆) for ∆ = 3, 4, 6 have been presented.
In chapter 3, the proof of λ′

1,2(T8) = 28 have been presented. In chapter 4, a
theoretical approach to find out L(k1, k2)-vertex labeling for T6 when k1 ≤ k2

has been described. In chapter 5, we describe the work regarding L(2, 1)-edge
labeling and circular L(2, 1)-edge labeling for T6. In chapter 6, L(1, 1, . . . , 1︸ ︷︷ ︸

ℓ

)-vertex

labeling of T3 has been studied and the corresponding conjecture in literature for
λ1, 1, . . . , 1︸ ︷︷ ︸

8

(T3) has been proved. In last chapter, concluding remarks as well as

relevant future research scope have been mentioned.
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Table 1.1: Existing results and our results
Existing and our results depicted chapterwise

Chapter Existing results Ours

Ch. 2
7 ≤ λ′

1,2(T3) ≤ 8 [16]. λ′
1,2(T3) = 7.

10 ≤ λ′
1,2(T4) ≤ 11 [16]. λ′

1,2(T4) = 11.
16 ≤ λ′

1,2(T6) ≤ 20 [17]. 18 ≤ λ′
1,2(T6) ≤ 20.

Ch. 3 25 ≤ λ′
1,2(T8) ≤ 28 [17]. λ′

1,2(T8) = 28.

Ch. 4

(Through computer simulation [12]) (Theoretically)

λh,1(T6) =



3 + 2h, 0 ≤ h ≤ 1/3
11h, 1/3 ≤ h ≤ 3/8
3 + 3h, 3/8 ≤ h ≤ 2/5
1 + 8h, 2/5 ≤ h ≤ 3/7
4 + h, 3/7 ≤ h ≤ 1/2
9h, 1/2 ≤ h ≤ 4/7
4 + 2h, 4/7 ≤ h ≤ 2/3
8h, 2/3 ≤ h ≤ 5/7
5 + h, 5/7 ≤ h ≤ 3/4
2 + 5h, 3/4 ≤ h ≤ 4/5
1, 4/5 ≤ h ≤ 1

λh,1(T6) =

{
≥ 3 + 2h, 0 ≤ h ≤ 1/2
≥ 4, 1/2 ≤ h ≤ 1

Lower bound coincides with [12]
when 0 ≤ h ≤ 1/3

but provides loose bound
when 1/3 ≤ h ≤ 1.

Ch. 5
15 ≤ λ′

2,1(T6) ≤ 16 [15]. λ′
2,1(T6) = 16.

16 ≤ σ′
2,1(T6) ≤ 18, Shown σ′

2,1(T6) ≤ 18 by
No labeling function giving a labeling function.

to show σ′
2,1(T6) ≤ 18.

Ch. 6

Conjecture for even ℓ ≥ 8 [18]. Proved for ℓ ≥ 8.

λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) + 1 =

[
3
8

(
ℓ+

4
3

)2
]

λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) + 1 =

[
3
8

(
ℓ+

4
3

)2
]

([x] ∈ Z, x ∈ R ([x] ∈ Z, x ∈ R

and x − 1
2
< [x] ≤ x +

1
2

) and x − 1
2
< [x] ≤ x +

1
2

)
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Chapter 2

Improved bounds on L(1, 2)-edge
labeling for T3, T4 and T6

2.1 Introduction

L(h, k)-edge labeling problem for infinite regular grids has been studied by various
authors for specific values of h and k [14, 15, 16, 17]. The exact values of the
minimum spans for L(1, 1), L(2, 1)-edge labeling for T3 and L(1, 1)-edge labeling for
T6 have already been determined in [15]. But the exact values of the minimum spans
for some of the cases for L(h, k)-edge labeling for T3, T4 and T6 when h, k ∈ {1, 2}
have not been determined yet rather upper and lower bounds were determined
for the corresponding cases [16, 17]. In this chapter, we investigate L(1, 2)-edge
labeling problem for T3, T4 and T6. and determined the exact values of the spans for
T3, T4 and improved the lower bounds on the minimum spans for T6. The rest of
the chapter is organized as follows. In section 2.2, we present the basic definitions
and the approach we have taken to obtain the results. In section 2.3, we state and
prove the main results. Concluding remarks has been stated in section 2.4.

2.2 Basic definitions and our approach

Definition 1 For two non-negative integers h and k, an L(h, k)-vertex labeling of a graph
G(V, E) is a function f : V −→ {0, 1, . . . , n}, ∀v ∈ V such that |f(u)− f(v)| ≥ h when
d(u, v) = 1 and |f(u)− f(v)| ≥ k when d(u, v) = 2.

Here d(u, v) is the distance between two vertices u and v and its value is the
minimum number of edges in E that connect u and v.
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Definition 2 λh,k(G) of L(h, k)-vertex labeling of a graph G is the minimum n such that
G admits an L(h, k)-vertex labeling.

Definition 3 For two non-negative integers h and k, an L(h, k)-edge labeling of a graph
G(V, E) is a function f′ : E −→ {0, 1, . . . , n}, ∀e ∈ E such that |f′(e1)− f′(e2)| ≥ h when
d′(e1, e2) = 1 and |f′(e1)− f′(e2)| ≥ k when d′(e1, e2) = 2.

Here distance between any two edges e1 and e2 is denoted as d′(e1, e2) and d′(e1, e2) =

k represents that minimum number of edges in E that connect e1 and e2 is k − 1,
where k ≥ 1.

Definition 4 λ′
h,k(G) of L(h, k)-edge labeling of a graph G is the minimum n such that G

admits an L(h, k)-edge labeling.

Definition 5 Given a graph G(V, E), its line graph L(G)(V′, E′) is a graph such that
each vertex of L(G) represents an edge of G and two vertices of L(G) have an edge if and
only if their corresponding edges share a common vertex in G.

Figs. 2.1, 2.2 and 2.3 show portions of T3, T4 and T6 respectively.

Figure 2.1: Part of T3 Figure 2.2: Part of T4

T6

Figure 2.3: Part of T6
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a) L(T3) b) L(T4)

Figure 2.4: Part of L(T3) and L(T3)

It is well-known that if G is d-regular then L(G) is 2(d − 1)-regular. It is also
well-known that edge labeling of G is equivalent to vertex labeling of L(G). That is,
λ′

h,k(G) = λh,k(L(G)). In our approach, instead of L(1, 2)-edge labeling of T3 and
T4, we use L(1, 2)-vertex labeling of L(T3) and L(T4). In Figure 2.4, L(T3) and L(T4)

are shown. Note that, L(T6) is 10-regular. Because of this high degree, we consider
L(1, 2)-edge labeling of T6 directly. In all the cases, we choose proper sub graphs of
L(T3), L(T4), T6 and analyze the structural properties of the respective sub graphs
to obtain the results. Our results on λ′

1,2(G) for T3, T4 and T6 are summarized in
Table 2.1. In this table, a − b represents that a ≤ λ′

1,2(G) ≤ b. Here, we use coloring
and labeling interchangeably.

Table 2.1: The main results obtained for L(1, 2)-edge labeling for T3, T4 and T6.
λ′

1,2(G)

Known Ours
T3 7-8 [16] 7-7
T4 10-11 [16] 11-11
T6 16-20 [17] 18-20

2.3 Our results

2.3.1 Hexagonal grid

Consider L(T3) and the three co-ordinate axes X, Y and Z as shown in Figure 2.5.
Each vertex is an intersection of two of the three axes. The vertices of L(T3) can be
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4 5 1 2 6 7 3 4 0 1 5 6 2 3 7 0 4 5 1 2
6 3 0 5 2 7 4 1 6 3

2 3 7 0 4 5 1 2 6 7 3 4 0 1 5 6 2 3 7 0
4 1 6 3 0 5 2 7 4 1

5 6 2 3 7 0 4 5 1 2 6 7 3 4 0 1 5 6 2 3
2 7 4 1 6 3 0 5 2 7 4
3 4 0 1 5 6 2 3 7 0 4 5 1 2 6 7 3 4 0 1

5 2 7 4 1 6 3 0 5 2

6 7 3 4 0 1 5 6 2 3 7 0 4 5 1 2 6 7 3 4
3 0 5 2 7 4 1 6 3 0 5

X = 04 5 1 2 6 7 3 4 0 1 5 6 2 3 7 0 4 5 1 2
6 3 0 5 2 7 4 1 6 3

7 0 4 5 1 2 6 7 3 4 0 1 5 6 2 3 7 0 4 5
4 1 6 3 0 5 2 7 4 1 6

5 6 2 3 7 0 4 5 1 2 6 7 3 4 0 1 5 6 2 3
7 4 1 6 3 0 5 2 7 4

0 1 5 6 2 3 7 0 4 5 1 2 6 7 3 4 0 1 5 6
5 2 7 4 1 6 3 0 5 2 7

6 7 3 4 0 1 5 6 2 3 7 0 4 5 1 2 6 7 3 4
0 5 2 7 4 1 6 3 0 5

1 2 6 7 3 4 0 1 5 6 2 3 7 0 4 5 1 2 6 7

Y = 0

Z = 0 Z = 1 Z = 2Z = −1Z = −2Z = −3Z = −4Z = −5Z = −6Z = −7

Y = −1Y = −2 Y = 1Y = −3Y = −4Y = −5Y = −6 Y = 2 Y = 3

X = −1

X = −2

X = −3

X = −4

X = −5

X = 1

X = 2

X = 3

X = 4

X = 5

Z = 3 Z = 4 Z = 5 Z = 5 Z = 6

Y = 4 Y = 5 Y = 6 Y = 7 Y = 8

Figure 2.5: Sub graph GS of L(T3) and its L(1, 2)-vertex labeling

partitioned into three disjoint sets Uxy, Vyz and Wzx as defined bellow:
Uxy = {uxy : uxy is an intersection o f X = x and Y = y},
Vyz = {vyz : vyz is an intersection o f Y = y and Z = z},
Wzx = {wzx : wzx is an intersection o f Z = z and X = x}.

Theorem 2.3.1 λ′
1,2(T3) = 7.

Proof:
The coloring functions of vertices of L(T3) are defined as follows.

f (uxy) =
((

4 × ⌈ x
2⌉+ 2 × ⌊ x

2⌋
)

mod 8 + (5 × y) mod 8
)

mod 8, ∀uxy ∈ Uxy.
g(vyz) = ((2 + 3 × z) mod 8 + (2 × y) mod 8) mod 8, ∀vyz ∈ Vyz.
h(wzx) = ((1 + 5 × z) mod 8 + (2 × x) mod 8) mod 8, ∀wzx ∈ Wzx.

Here we consider that 0 ≤ (x mod y) < y where x ∈ Z and y ∈ Z \ {0}.
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The colors of the vertices of a finite sub graph GS of L(T3) are shown in Figure 2.5.
It can be verified that colors of every pair of vertices satisfy all the L(1, 2)-vertex
labeling constraints. It is also evident that the colors obey a regular modulo pattern
which can be extended up to infinity and there will be no color conflict between
any pair of vertices of L(T3) if the assigned colors satisfy the coloring functions.
The minimum and maximum color used here are 0 and 7 respectively. Hence
λ1,2(L(T3)) ≤ 7. It has been shown in [16] that λ1,2(L(T3)) ≥ 7. Hence λ′

1,2(T3) =

λ1,2(L(T3)) = 7. □

2.3.2 Square grid

Let us consider the induced sub graph GS1 of L(T4) as shown in Fig 2.6 where
all vertices are at mutual distance at most three. Let S1 = {a, b}, S2 = {k, l},
S3 = {c, g}, S4 = { f , j} and S5 = {d, e, h, i}.

a b

c d e f

g h i j

k l

Figure 2.6: A sub graph GS1 of L(T4)

Definition 6 The set of vertices in S5 are termed as central vertices in GS1 .

Definition 7 The set of vertices in S1 ∪ S2 ∪ S3 ∪ S4 are termed as peripheral vertices
in GS1 .

Now we have the following observations in GS1 . Here the color of vertex a is
denoted by f(a).

Observation 1 : If colors of vertices of GS1 are all distinct then λ1,2(GS1) ≥ 11.
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Proof: As GS1 has 12 vertices, if all of them get distinct colors then λ1,2(GS1) ≥ 11.
□

Observation 2 : No color can be used thrice in GS1 . Colors used at the central vertices in
S5 can not be reused in GS1 . Colors used at the peripheral vertices in S1 can be reused only
at the peripheral vertices in S2. Similarly, colors used at the peripheral vertices in S3 can be
reused only at the peripheral vertices in S4.

Proof: No three vertices are mutually distant three apart. Hence no color can be
used thrice in GS1 . For any central vertex in S5 there does not exist any vertex in GS1

which is distance three apart from it. So colors used in the central vertices in S5 can
not be reused in GS1 . For all peripheral vertices in S1 ∪ S2, d(x, y) = 3 only when
x ∈ S1 and y ∈ S2. Hence color used at peripheral vertex in S1 can only be reused
in S2. Similarly, color used at peripheral vertex in S3 can only be reused in S4. □

Observation 3 : If f(x) = f(y) = c where x ∈ S1 and y ∈ S2 then either c ± 1 is to be
used in (S1 ∪ S2) \ {x, y} or it should remain unused in GS1 . Similarly, if f(x) = f(y) = c
where x ∈ S3 and y ∈ S4 then either c ± 1 is to be used in (S3 ∪ S4) \ {x, y} or it should
remain unused in GS1 .

Proof: Note that for all vertices z ∈ V(GS1) \ (S1 ∪ S2), either d(z, x) = 2 or
d(z, y) = 2, where x ∈ S1 and y ∈ S2. Hence c ± 1 can not be used in V(GS1) \ (S1 ∪
S2). So c ± 1 can only be used in (S1 ∪ S2) \ {x, y} or it should remain unused in
GS1 . Similarly, if f(x) = f(y) = c, where x ∈ S3 and y ∈ S4, then c ± 1 can only be
used in (S3 ∪ S4) \ {x, y} or it should remain unused in GS1 . □

Observation 4 : Let f(x) = f(y) = c where x ∈ S1 and y ∈ S2. If |f(x)− f(x′)| ≥
2, where x′ ∈ S1 \ {x}, then one of c ± 1 must remain unused in GS1 . Similarly if
|f(y)− f(y′)| ≥ 2, where y′ ∈ S2 \ {y}, then one of c ± 1 must remain unused in GS1 .
Similar facts hold when x ∈ S3, x′ ∈ S3 \ {x}, y ∈ S4 and y′ ∈ S4 \ {y}.

Proof: Since |f(x)− f(x′)| ≥ 2, f(x′) ̸= c ± 1. Hence from observation 3, one of
c ± 1 must remain unused in GS1 . □

If no color is reused in GS1 , then λ1,2(GS1) ≥ 11 from observation 1. To make
λ1,2(GS1) < 11, at least one color must be reused in GS1 . From observation 2, there
are at most 4 distinct pairs of peripheral vertices in GS1 where a pair can have the
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same color. Now consider the sub graph G1 of L(T4) as shown in Fig. 2.7.a. Note
that G1 consists of 5 sub graphs G′, G′

1, G′
2, G′

3 and G′
4 which all are isomorphic to GS1

having central vertices {d, h, i, e}, {t1, c, d, a}, {b, e, f , t2}, {i, l, t3, j} and {g, t4, k, h}
respectively. Based on the span requirements of coloring G1, we derive the following
theorem.

a(c1) b(c2)

c(c4) d(c7) e(c6) f(c3)

g(c3) h(c8) i(c5) j(c4)

k(c2) l(c1)

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

a b

c d e f

g h i j

k l

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

a. b.

Figure 2.7: A sub graph G1 of L(T4) and assignment of colors to some of its vertices.

Theorem 2.3.2 λ1,2(L(T4)) ≥ λ1,2(G1) ≥ 11.

Proof:

Case 1: When at most one pair of peripheral vertices use the same color in
any sub graph of L(T4) isomorphic to GS1 .
If no color is reused in G′, then λ1,2(G′) ≥ 11 from observation 1. We now
consider the case when exactly one pair reuse a color in G′. Without loss
of generality, consider f(a) = f(l) = c1. From Observation 3, c1 ± 1 can
only be put in {b, k}. Let f(k) = c1 − 1 and f(b) = c1 + 1. We assume that
c1 − 1 is the minimum color. Let us consider f(d) = c1 + n where n ∈ N

and n ≥ 2. From observation 4, x ∈ {c1, c1 + n} can be reused in G′
2 only if

one of x ± 1 remains unused in G′
2. In either case, λ1,2(G′

2) ≥ 11. So x can
not be reused in G′

2. Since f(a) = f(l) = c1, c1 − 1 can only be put in {r2, s2}
as vertex b is already colored and for all other vertices z ∈ V(G′

2) \ {r2, s2},
either d(z, a) = 2 or d(z, l) = 2. Without loss of generality, let f(r2) = c1 − 1.
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In that case, c1 + n ± 1 can only be put in {e, s2}. Without loss of general-
ity, let f(e) = c1 + n − 1 and f(s2) = c1 + n + 1. Since f(a) = f(l) = c1,
f(i) ̸= c1 ± 1 and hence |f(l) − f(i)| ≥ 2. Now if |f(d) − f(c)| ≥ 2, then
from observation 4, one of f(c)± 1, f(d)± 1 and f(i)± 1 remains unused
in G′

4 if f(c) or f(d) or f(i) is reused in G′
4 respectively. In either case, this

implies λ1,2(G′
4) ≥ 11. So |f(d)− f(c)| = 1 and f(c) = c1 + n + 1. There are 5

more vertices {g, h, i, j, f } in G′ which are to be colored with 5 distinct colors.
Hence at least color c1 + n + 6 must be used. Observe that if f( f ) = c1 + n + 2
then |f(e) − f( f )| = 3 and |f(k) − f(h)| ≥ 3 implying λ1,2(G′

3) ≥ 11 from
observation 4. As d(s2, i) = d(s2, j) = 2 and f(s2) = c1 + n + 1, we get
f(i) ̸= c1 + n + 2 and f(j) ̸= c1 + n + 2. Therefore, either f(g) = c1 + n + 2
or f(h) = c1 + n + 2. So, f(p4) ̸= c1 + n + 1 and f(q4) ̸= c1 + n + 1. In
that case, f(p4) and f(q4) must be in {c1 + n, c1 + n − 1} if color c1 + n is
to be reused in G′

4, otherwise, λ1,2(G1) ≥ 11. As c1 can not be reused in
G′

4, either f(r4) = c1 + 1 or f(s4) = c1 + 1. Let f(r4) = c1 + 1. When
n = 2, c1 + n − 1 = c1 + 1 and when n = 3, c1 + n − 1 = c1 + 2. As
d(p4, l) = d(p4, r4) = d(q4, l) = d(q4, r4) = 2, f(p4), f(q4) /∈ {c1 + 1, c1 + 2}.
So, n ≥ 4 and hence c1 + n + 6 ≥ c1 + 10. So at least 12 color are required in
G1 including c1 − 1 and c1 + 10. Hence λ1,2(G2) ≥ 11.

Case 2: There exists at least one sub graph of L(T4) isomorphic to GS1 where
two pairs of peripheral vertices use a color each.
There are two different ways of reusing two colors in G′.
Case 2.1: First consider the case when f(a) = f(l) = c1 and f(c) = f(j) =

c2. From observation 3, c1 ± 1 and c2 ± 1 must be used in {b, k} and {g, f }
respectively. From observation 2, c1 can only be reused in {r2, s2} in G′

2. But
f(r2) ̸= c1 and f(s2) ̸= c1 as |f(b)− c1| = 1 and d(b, r2) = d(b, s2) = 2. Again,
from observation 2, c2 can only be reused in {p2, q2}. But f(p2) ̸= c2 and
f(q2) ̸= c2 as |f( f )− c2| = 1 and d( f , p2) = d( f , q2) = 2. From observation
3, if f(i) is to be reused in G′

2, then |f(i) − c2| = 1. But f(i) ̸= c2 ± 1 as
d(c, i) = 2 and f(c) = c2. If f(d) is to be reused in G′

2, then |f(d)− c1| = 1. But
f(d) ̸= c1 ± 1 as d(d, l) = 2 and f(l) = c1. Therefore, no color can be reused in
G′

2 and hence λ1,2(G1) ≥ 11.
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Case 2.2: Consider the case when f(a) = f(l) = c1 and f(b) = f(k) = c2.
Without loss of generality, assume c2 > c1. From observation 3, c1 ± 1 and
c2 ± 1 must be used in {b, k} and {a, l} respectively. Even if we set c2 = c1 + 1,
at least one of c1 − 1 and c2 + 1 must remain unused in G′. So the 8 vertices
in V(G′) \ ({a, l} ∪ {b, k}) must get 8 distinct colors other than c1 and c2. So,
λ1,2(G′) ≥ 10. Note that λ1,2(G′) = 10 only if c2 = c1 + 1, c1 is minimum color
(c1 − 1 does not exists) or c2 is maximum color (c2 + 1 does not exists). If both
c1 and c2 are non-extreme color, then λ1,2(G′) ≥ 11 and we are done. So, we
consider c1 = 0, c2 = c1 + 1 = 1 and c2 + 1 = 2 as unused in G′. In that case,
f(d) = x ≥ 3 and hence |f(d)− f(a)| ≥ 3. From observation 4, if x is reused
in G′

2, then one of x ± 1 can not be used in G′
2. If only x is reused in G′

2, then
λ1,2(G′

2) ≥ 11. If x and one of {f(i), f(j)} are reused in G′
2, then from Case 2.1

above, λ1,2(G1) ≥ 11. If x and both of {f(i), f(j)} are reused in G′
2, from Case

3 below, we will see that λ1,2(G1) ≥ 11. So, to keep λ1,2(G1) < 11, x should
not be reused in G′

2. In that case, x − 1 must be used at one of {c, g, h, e} in
G′. Now arguing similarly as stated in case 1, we can conclude that x + 7
must be used in G′

1 or G′
2. If x = 3, then x − 1 = 2 must be used in G′ which

is a contradiction, as 2 must remain unused in G′. Hence x ≥ 4 implying
x + 7 = 11. Hence λ1,2(G1) ≥ 11.

Case 3: The exists at least one sub graph of L(T4) isomorphic to GS1 where
three pairs of peripheral vertices use a color each.
Without loss of generality, let us consider f(a) = f(l) = c1, f(b) = f(k) = c2

and f(c) = f(j) = c3. From observation 3, c1 ± 1 and c2 ± 1 must be used
in {b, k} and {a, l} respectively. It can be observed that λ1,2(G′) = 9 only if
|c1 − c2| = 1, |c3 − f(g)| = 1, |c3 − f( f )| = 1 and any one of {c1, c2} is one
extreme color. Without loss of generality consider f(g) = c3 + 1, f( f ) = c3 − 1,
c1 is minimum color and c2 = c1 + 1. From observation 2, c3 can only be
reused in {p2, q2}. But f(p2) ̸= c3 and f(q2) ̸= c3 as f( f ) = c3 − 1 and
d( f , p2) = d( f , q2) = 2. From observation 3, if f(i) is to be reused in G′

2,
then |f(i) − c3| = 1. But f(i) ̸= c3 ± 1 as d(c, i) = 2 and f(c) = c3. From
observation 2, c1 can only be reused in {r2, s2}. But f(r2) ̸= c1 and f(s2) ̸= c1

as f(b) = c2 = c1 + 1 and d(b, r2) = d(b, s2) = 2. Now arguing similarly as
stated in case 2.2 above, we can conclude that c2 + 1 must remain unused in
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G′. So, (c1 − f(d)) ≥ 3. Now from observation 4, if f(d) is reused in G′
2 then

any one of f(d)± 1 must remain unused in G′
2. Thus in G′

2, only f(d) can be
reused by keeping one of f(d)± 1 as unused. Hence λ1,2(G1) ≥ 11. If we
consider λ1,2(G′) = 10, the same result can be obtained by considering the
corresponding G′

i , 1 ≤ i ≤ 4.

Case 4: The exists at least one sub graph of L(T4) isomorphic to GS1 where
all four pairs of peripheral vertices use a color each.
Let us consider f(a) = f(l) = c1, f(b) = f(k) = c2, f(g) = f( f ) = c3 and
f(c) = f(j) = c4. From observation 3, c1 ± 1, c2 ± 1, c3 ± 1 and c4 ± 1 must
be used in {b, k}, {a, l}, {c, j} and {g, f } respectively. It can be observed that
λ1,2(G′) = 9 only if |c1 − c2| = 1, |c3 − c4| = 1, one of {c1, c2} is an extreme
color and one of {c3, c4} is the other extreme color. Without loss of generality,
consider c1 = 0, c4 = 9, c2 = c1 + 1 = 1 and c3 = c4 − 1 = 8. So c2 + 1 = 2 and
c3 − 1 = 7 are two distinct unused colors. Without loss of generality, consider
c8 = c2 + 2, c5 = c8 + 1, c6 = c5 + 1 and c7 = c6 + 1. Since |c3 − c4| = 1 and
d(g, p4) = d(g, q4) = 2, we get f(p4) ̸= c4 and f(q4) ̸= c4. Similarly, f(r4) ̸= c1

and f(s4) ̸= c1. From observation 2, c5 can only be reused at {s4, r4} in G′
4 but

f(s4) ̸= c5 and f(r4) ̸= c5 as d(h, s4) = d(h, r4) = 2 and f(h) = c8 = c5 − 1.
Therefore, only c7 can be reused in {p4, q4}. From observation 4, one of c7 ± 1
must remain unused in G′

4 as (c4 − c7) = 3. Hence λ1,2(G1) ≥ 11. For other
assignment of central vertices and for the case when λ1,2(G′) = 10, we can
obtain the same result by considering the corresponding G′

i , 1 ≤ i ≤ 4. □

2.3.3 Triangular grid

For any vertex u, the set of vertices which are adjacent to u is called N(u). Let us
define N(S) = {∪u∈SN(u) : u ∈ S}. Let v be any vertex in T6. Consider the sub
graph Gv(V, E) of T6 centering v as shown in Figure 2.8, where V = N(v)∪ N(N(v))
and E is set of all the edges which are incident to u where u ∈ N(v). Observe that
in Gv, for any two edges e1 and e2, d(e1, e2) ≤ 3. Now we define the following three
sets of edges S1, S2 and S3:

S1: Edges of Gv incident to v.
S2: Edges of Gv whose both end points incident to e1 and e2 where e1, e2 ∈ S1.
S3: E \ (S1 ∪ S2).
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v

Figure 2.8: A sub graph Gv of T6

Consider the 6-cycle, Hv formed with the edges of S2 in Gv. We say e and e1 as
a pair of opposite edges in Hv iff d(e, e1) = 3. This implies that the same color can
be used at a pair of opposite edges in L(1, 2)-edge labeling. An edge e(v, w) covers
the set of edges E′ if for every e′ ∈ E′, d(e, e′) ≤ 2. This implies that a color used
at e can not be used at any edge e′ ∈ E′ in L(1, 2)-edge labeling. Now we have the
following lemmas.

Lemma 2.3.1 If c be a color used to color an edge e in S1, then c can not be used in E \ e.

Proof: Since e is incident to v, for any other edge e1 ∈ E, d(e, e1) ≤ 2. Hence
f ′(e1) ̸= c for L(1, 2)-edge labeling, where f ′(e1) denotes the color of e1. □

Lemma 2.3.2 If c be a color used to color an edge in S1, then c + 1 and c − 1 both can be
used at most once in Gv.

Proof: Let e be an edge in S1 such that f ′(e) = c. Since e is incident to v, for
any other edge e1 ∈ E, d(e, e1) ≤ 2. Let Se = {e1 : d(e, e1) = 1}. For L(1, 2)-edge
labeling, c + 1 can only be used in an edge e1 in Se. It can be noted that for any two
edges e1, e2 ∈ Se, d(e1, e2) ≤ 2. Hence c + 1 can be used at most once. Proof for c − 1
can be done in similar manner. □

Lemma 2.3.3 If c be a color used to color an edge e in S2, then c can be used at most one
edge in E \ e in Gv.

Proof: Note that c can not be used at any edge in S1. Here c can be used at the
opposite edge e1 of e in S2 or at an edge e2 in S3, which is adjacent to e1. When c is
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used at e and e1, then c can not be used again in Gv as e and e1 together cover all the
edges of Gv. When c is used at e and e2, c can not be used again in Gv as e and e2

together also cover all the edges of Gv. □

Lemma 2.3.4 If c be a color used to color an edge e in S2, then c + 1 and c − 1 both can be
used at most twice in Gv.

Proof: Suppose e1 be an edge colored with c + 1. If e1 is not adjacent to e then
d(e1, e) = 3. From statement of lemma 2.3.3, it follows that there does not exist two
edges along with e in Gv which are mutually distance 3 apart, otherwise c would
have been used for three times. Hence c + 1 can be used at most once.

When e1 is adjacent to e, e2 can be colored with c + 1 if e2 is at distance 3 apart
from both e1 and e. Again from the statement of lemma 2.3.3, it follows that there
does not exist two edges along with e in Gv which are mutually distance 3 apart,
otherwise c would have been used for three times. So, c + 1 can be used at most
twice, one in one of the edges adjacent to e and other in one of the edges which are
at distance 3 apart from e. Proof for c − 1 can be done in similar manner. □

Lemma 2.3.5 If c be a color used to color an edge e in S3, then c can be used at most twice
in E \ e.

Proof: It follows from Figure 2.8 that exactly one end point of e is incident to a
vertex in Hv. Note that for any walk through Hv, every third vertex is distance 2
apart. So edges incident to those vertices are distance 3 apart. Since the order of
Hv is 6, there can be at most 6/2 = 3 vertices which are mutually distance 2 apart.
Hence c can be used thrice. □

Lemma 2.3.6 If c be a color used to color an edge e in S3, then c + 1 and c − 1 both can be
used at most thrice in Gv.

Proof:
We know that c + 1 can be used at an edge adjacent to e. From lemma 2.3.5 it

is clear that c can be used at most thrice. So, c + 1 can also be used at most thrice,
where each such edge is adjacent to one of the three edges colored with c. It can be
proved similarly for c − 1. □

Lemma 2.3.7 i. To color the edges of S1, at least 6 colors are required.

25



ii. To color the edges of S2, at least 3 colors are required.

iii. To color the edges of S3, at least 6 colors are required.

Proof: i. From lemma 2.3.1, every edge of S1 has an unique color. As there are 6
edges in S1, 6 distinct colors are required here.

ii. In S2, there are 3 pairs of opposite edges. Each pair of opposite edges requires
at least one unique color. So at least 3 colors are required.

iii. A color can be used thrice in S3 by lemma 2.3.5. In S3, there are 18 edges. So,
at least 6 colors are required. □

Theorem 2.3.3 For any optimal labeling of Gv, 6 consecutive colors including either the
minimum color or the maximum color must be used in S1.

Proof: It is clear from lemma 2.3.7.i that S1 needs at least 6 colors to color its edges.
From lemma 2.3.2, note that if c be a color used in an edge of S1 then both c + 1 and
c − 1 can be used at most once in Gv. Whereas a color can be used twice in S2 and
thrice in S3. Thus our aim should be to minimize the number of colors which can
be used only once in Gv. This implies that consecutive colors should be used in S1

for optimal coloring. If the minimum color (min) or the maximum color (max) is
used in S1 then further benefit can be achieve as min − 1 or max + 1 does not exist.
Therefore, optimal span can be achieved only when the colors of S1 are consecutive
including either min or max. □

Lemma 2.3.8 If three consecutive colors c, c + 1, c + 2 are used thrice each in S3 then
neither c − 1 nor c + 3 can be used in S3.

Proof: Observe that there are exactly 2 sets of three alternating vertices in Hv

where a color can be used thrice at edges incident to any set of alternating vertices.
If c − 1 would have been used in S3 then either it was used at an edge adjacent
to the edges colored with c or at an edge distance 3 apart from the edge colored
with c. Now observe that c and c − 1 are used at two edges of S3 which form a
triangle with one edge of S2. Suppose c, c − 1 be the colors used at those two
edges e, e1 ∈ S3 respectively, where e is incident to u and e1 is incident to w where
uw ∈ S2. Note that c is used thrice in S3. Then c must be reused at an edge incident
to x, and xw ∈ S2. So c and c − 1 are used at two edges at distance 2 apart, which
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violets the condition of L(1, 2)-edge labeling. Hence c − 1 can not be used in Gv.
Similarly it can be shown that c + 3 can also not be used in Gv. This implies that no
4 consecutive colors can be used thrice each in Gv. □

Theorem 2.3.4 λ′
1,2(Gv) ≥ 16.

Proof:
By Theorem 2.3.3, 6 consecutive colors must be used to color the edges of S1.

Recall that, we assume the minimum color is used at S1. Let c1 be the maximum
color used in S1 and c be the minimum color used in S2. Now we consider the
coloring of the edges in S2 ∪ S3. If the edges of S2 have all consecutive colors
c, c + 1, . . . , c + 5 then 6 colors are needed for S2. From Lemma 2.3.3, any color c′,
used in S2 can be reused at most once more in Gv unless c′ = c1 + 1 (Lemma 2.3.2).
Thus we can color at most 6 edges in S3 using those colors. From Lemma 2.3.4, the
color c + 6 can be used at most twice in Gv. Note that color c1 + 1 can be used at
most once in Gv. So far, at most 9 edges in S3 are colored. So at least 9 edges are
left to be colored in S3. So at least 3 more colors are needed for S3, as any color can
be used at most thrice in S3. However, from Lemma 2.3.8, in that case, all of c + 7,
c + 8 and c + 9 can not be used thrice each in S3. Thus at least c + 10 is needed
for Gv. Since c − 6 is used in S1, we get λ′

1,2(Gv) ≥ (c + 10)− (c − 6) = 16. Now,
consider the case when 4 colors are used in S2. Observe that then in any possible
coloring, at least 3 colors can be used at most twice in S3. Therefore, at most 9 edges
of S3 can be colored. Hence here too, we can argue that c + 10 must be used in
Gv. In a similar manner, we can argue that when five colors are used in S2, the
color c + 10 must be used in Gv. Hence in all the cases discussed above, we get
λ′

1,2(Gv) ≥ 16. Now consider the case when only three colors say c, c′, c′′ are used
in S2. Without loss of generality assume c′ − c ≥ 2 and c′′ − c′ ≥ 2. First consider
the cases assuming c1 + 1 = c − 1. Observe that if c + 1 ̸= c′ − 1 and c′ + 1 ̸= c′′ − 1,
then c ± 1, c′ ± 1, c′′ ± 1 can color at most (1 + 5 × 2) = 11 edges of S3. So at least 7
edges are left to be colored in S3 requiring at least 3 more colors. So at least 9 colors
are required for S3 and hence λ′

1,2(Gv) ≥ 17. If c′′ is maximum color, then c′′ + 1
can not be used and in this case too, at least 17 colors are required for Gv and hence
λ′

1,2(Gv) ≥ 16. Now we consider the case when c + 1 = c′ − 1 but c′ + 1 ̸= c′′ − 1.
Here c + 1, c′ + 1, c′′ ± 1 can color at most 8 edges of S3. Thus using c − 1 also we are
able to color at most 9 edges in S3. Therefore at least 9 edges are left to be colored
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in S3 requiring at least 3 more colors. So at least 8 colors are required for S3 and
hence λ′

1,2(Gv) ≥ 16. Similarly we can argue that λ′
1,2(Gv) ≥ 16 when c + 1 ̸= c′ − 1

c′ + 1 = c′′ − 1. If c + 1 = c′ − 1 and c′ + 1 = c′′ − 1, then c, c + 2 and c + 4 are
used in S2. Here c ± 1, c + 3, c + 5 can color at most 7 edges of S3. So at least 11
edges are left to be colored in S3 requiring at least 4 more colors. So at least 8 colors
are required for S3 and hence λ′

1,2(Gv) ≥ 16. Similarly, one can verify that when
c1 + 1 ̸= c − 1 the bound remains the same for all the cases. Thus considering all
cases, λ′

1,2(Gv) ≥ 16. □

We assume that the minimum color is used in S1. The maximum color can be
used at most thrice in S3 and at most twice in S2. In all cases, there exists a vertex
say v′ in Hv such that color of any edge incident to v′ is neither minimum nor
maximum. Now we consider the sub graph Gv′ of T6 centering v′ and isomorphic
to Gv. Let min1 and max1 be the minimum and maximum colors used to color the
edges of S′

1 in Gv′ .

Lemma 2.3.9 If max1 − min1 ≥ 7, i.e., there exists at least two intermediate colors
between min1 and max1 which are not used in S′

1, then λ′
1,2(Gv′) ≥ 18.

Proof:
At least two unused colors c1, c2 are there in S′

1 such that ∀c ∈ {c1, c2}, either
c + 1 or c − 1 is used in S′

1. From lemma 2.3.2, c1, c2, min1 − 1 and max1 + 1 can be
used at most once each in Gv′ . Let x′ be the number of colors required for Gv′ . Let
us first consider that 6 colors are used in S′

2. These colors can be reused at most
once each in S′

3. Consider that all of c1, c2, min1 − 1 and max1 + 1 are also used
once each in S′

3. So at most (6 + 4) = 10 edges of S′
3 have been colored so far. So

at least (18 − 10) = 8 edges are left to be colored in S′
3 requiring at least 3 more

colors. So, x′ ≥ (6( f or S′
1) + 6( f or S′

2) + 7( f or S′
3)) = 19 and hence λ′

1,2(Gv′) ≥ 18.
Now assume 5 colors are used in S′

2. The only possibility is that 4 colors must be
used once each in S′

2 and 1 color should be used two times in S′
2. These 4 colors can

be reused at most once each in S′
3. So at most (4 + 4) = 8 edges of S′

3 have been
colored so far. So at least 4 more colors are required to color the remaining edges of
S′

3. So, x′ ≥ (6 + 5 + 8) = 19 and hence λ′
1,2(Gv′) ≥ 18. If 4 colors are used in S′

2,
similarly we can show that λ′

1,2(Gv′) ≥ 18.
Now consider that 3 colors are used two times each in S′

2. These 3 colors can not
be used anymore in S′

3. So at least (18 − 4) = 14 edges are left to be colored in S′
3,
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requiring at least 5 more colors. At least 4 out of these 5 colors must be used three
times each in S′

3. From Lemma 2.3.8, if 3 consecutive colors are used 3 times each in
S′

3, then at least one color can not be used in S′
3 resulting λ′

1,2(Gv′) ≥ 18. Otherwise,
at most two sets of two consecutive colors can be reused three times each in S′

3. In
that case, at least three colors x, y, z are there such that for all w ∈ {x, y, z} either
w + 1 or w − 1 is in one of S′

1 or S′
2. So each of them can not be used three times

each. So these 5 colors can color at most (3 × 2 + 2 × 3) = 12 edges in S′
3, requiring

at least 1 more color for S′
3. So at least (4 + 6) = 10 colors are required for S′

3 and
hence λ′

1,2(Gv′) ≥ 18. For all other cases we also get λ′
1,2(Gv′) ≥ 18 using similar

argument. □

Theorem 2.3.5 λ′
1,2(T6) ≥ 18.

Proof: Assume that x be a vertex which is not adjacent to edges colored with
maximum and minimum colors used in Gx. Let us consider Gx is not colored and u,
w be two vertices of Hx in Gx. Let us define Sx1 as the set of edges adjacent to x. We
consider the following two cases.

When w ∈ N(u): u and w are connected by an edge e. Let {c1, . . . , c6} and
{c′1, . . . , c′6} be two sequences consisting of consecutive colors are used at the edges
incident to u and w respectively. It is possible to assign consecutive colors at
those edges when e is colored with either c6 = c′1 or c1 = c′6. Now observe two
edges e′ and e′1 of Sx1 are already colored and those are not consecutive. Note
that | f ′(e′)− f ′(e′1)| ≥ 2. If | f ′(e′)− f ′(e′1)| = 2 then f ′(e′) and f ′(e′1) is neither
minimum nor maximum color used in u and w. Then any color of any other edge
in Sx1 is neither consecutive to f ′(e′) nor f ′(e′1). So max − min ≥ 7 where min and
max be the minimum and maximum colors used in Sx1. If | f ′(e′)− f ′(e′1)| > 2, then
also max − min ≥ 7. Hence from lemma 2.3.9, λ′

1,2(Gx) ≥ 18.
When w /∈ N(u): Note that x ∈ {N(u) ∩ N(w)}. Let two sequences {c1, . . . , c6}

and {c′1, . . . , c′6} consisting of consecutive colors are used at the edges incident to u
and w respectively. Let uv and wv are e′ and e′1 respectively. If f ′(e′) and f ′(e′1) are
consecutive then either f ′(e′) = c6, f ′(e′1) = c′1 or f ′(e′) = c1, f ′(e′1) = c′6. Now
observe that for any other edge e in Sx1, | f ′(e)− f ′(e′)| > 2 implying max−min ≥ 7
where min and max be the minimum and maximum colors used inc Sx1. If f ′(e′)
and f ′(e′1) are not consecutive then | f ′(e′) − f ′(e′1)| ≥ 2. If | f ′(e′) − f ′(e′1)| = 2
then the intermediate color must be used at an edge e ∈ Sx1. There are still 4 edges
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remain uncolored. It can be checked that for any coloring of the rest of the graph,
there exists a vertex y ∈ Hx or y ∈ N(z), z ∈ Hx, for which max − min ≥ 7 where
min and max be the minimum and maximum colors used to color the edges incident
to y and they are neither maximum nor minimum color used in Gx. Hence from
lemma 2.3.9, λ′

1,2(Gx) ≥ 18. Hence the proof. □

2.4 Conclusions

Here, we improve lower and upper bounds of the minimum spans of L(1, 2)-
edge labeling for infinite regular hexagonal, square and triangular using structural
properties of those graphs. An interesting problem will be to improve or introduce
new bounds on those graphs for other values of h and k for which the exact values
of the minimum span is not known. One can try this problem for other infinite
grids.
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Chapter 3

Improved lower bound for
L(1, 2)-edge-labeling of Infinite
8-regular grid

3.1 Introduction

L(h, k)-edge labeling problem for infinite regular grids has been studied by various
authors for specific values of h and k [14, 15, 16, 17]. Among them, L(1, 2)-edge
labeling problem for infinite 8-regular grid T8 was studied in [17]. In [17], it was
shown that 25 ≤ λ′

1,2(T8) ≤ 28. Note that there is a gap between lower and upper
bounds. In this chapter, we prove that λ′

1,2(T8) ≥ 28. As in [17], λ′
1,2(T8) ≤ 28, it

is concluded that λ′
1,2(T8) = 28. The rest of the chapter is organized as follows. In

section 3.2, we state some preliminaries of T8 and prove our results. In section 3.3,
concluding remarks have been drawn.

3.2 Preliminaries and results

Fig. 3.1 shows a portion of infinite 8-regular grid T8. Observe that there are four
types of edges in T8. The edges which are along or parallel to the X axis and the
edges which are along or parallel to the Y axis are said to be horizontal edges and
vertical edges respectively. The edges which are at 45◦ to any of a horizontal edge
and the edges which are at 135◦ to any of a horizontal edge are said to be right
slanting edges and left slanting edges respectively. Here the angular distance between
two adjacent edges e1 and e2 represents the smaller of the two angles measured
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X

Y

(0,0)

p q

rst

Figure 3.1: A part of infinite 8-regular grid T8.

in anticlockwise from e1 to e2 and from e2 to e1. In Fig. 3.1, the edges (p, q), (p, r),
(p, s) and (p, t) are a horizontal, a right slanting, a vertical and a slanting edges
respectively. By slanting edges, we mean all the left and right slanting edges and by
non slanting edges, we mean all the horizontal and vertical edges.

v1 v2

v3v4u12

u11

u10 u9 u8 u7

u6

u5

u4u3u1 u2

Figure 3.2: The GS corresponding to the K4 having vertex set S = {v1, v2, v3, v4}.

Consider any K4 (complete graph of 4 vertices) in T8 and let S = V(K4) be
the vertex set of the K4. Let v be a vertex in T8 and Nv be the set of vertices in T8

which are adjacent to v. Let N(S) =
⋃
v∈S

Nv be the set of all vertices in T8 which are

adjacent to at least one vertex in S. Let us define GS as the sub graph of T8 such that
V(GS) = S ∪ N(S) and E(GS) is the set of all edges of T8 which are incident to at
least one vertex in S. Fig. 3.2 shows the the K4 with vertex set S = {v1, v2, v3, v4}
and the corresponding GS. It is evident that any two edges of GS are at distance
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at most 2. Hence no two edges of GS can be given the same color for L(1, 2)-edge
labeling of GS. As |E(GS)| = 26 and d′(e1, e2) ≤ 2, ∀e1, e2 ∈ E(GS), λ′

1,2(GS) ≥ 25
for L(1, 2) edge labeling of GS.

v1 v2

v3v4u12

u11

u10 u9 u8 u7

u6

u5

u4u3u1 u2

w1 w2 w3 w4 w5 w6

w7

w8

w9

w10

w11w12w13w14w15w16

w17

w18

w19

w20

Figure 3.3: A sub graph G of an infinite 8-regular grid T8.

Consider two edges e1, e2 ∈ E(GS) such that d′(e1, e2) = 2. Let the color c be
assigned to e1. Clearly, the colors c± 1 can not be used at e2 for L(1, 2)-edge labeling.
As there exists no pair of edges e1 and e2 such that d′(e1, e2) ≥ 3 in GS, both c ± 1
must be used at the adjacent edges of e1 in GS.

Consider the K4 having vertex set S = {v1, v2, v3, v4} as shown in Fig. 3.3.
Now define S′ = S ∪ N(S) ∪ N(N(S)). Fig. 3.3 shows the graph G such that
V(G) = S′ ∪ N(S′) and E(G) is the set of all edges in T8 which are incident to at
least one vertex in S′. Note that there are total 25 distinct K4s including the K4

having vertex set S in G. Note that here G is built over the GS. Consider a GS and
the corresponding G. Let two consecutive colors c and c + 1 be used in GS. In the
following lemma we identify all the K4s having vertex sets S1, S2, . . . , Sm such that c
and c + 1 can not be used at GS1 , GS2 , . . . , GSm when c and c + 1 are used in GS.
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Lemma 3.2.1 For every pair of consecutive colors c and c + 1 used in two adjacent edges
e1 and e2 in GS, except when e1 and e2 form an angle of 45◦ at their common incident
vertex, there exists at least 4 different K4s having vertex sets S1, S2, S3 and S4 other than S
such that 1) c can not be used at GS1 and GS2 and 2) c + 1 can not be used at GS3 and GS4 .
When e1 and e2 are at angle 45◦, there exists 3 different K4s having vertex sets S1, S2 and
S3 other than S such that either 1) c can not be used at GS1 and GS2 and c + 1 can not be
used at GS3 or 2) c + 1 can not be used at GS1 and GS2 and c can not be used at GS3 .

Proof:
Note that the angular distance between any two adjacent edges in T8 can be

any one of 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦. From symmetry, it is suffice to
consider the cases where the angular distance between two adjacent edges in T8 is
180◦ or 135◦ or 90◦ or 45◦.

• When angular distance between two adjacent edges is 180◦: Observe that two
adjacent horizontal edges or two adjacent vertical edges or two adjacent left
slanting edges or two adjacent right slanting edges can be at 180◦. Clearly the
cases where two horizontal edges and two vertical edges forming 180◦ are
symmetric. Similarly the cases where two left slanting edges and two right
slanting edges forming 180◦ are also symmetric. So we need to consider the
following two cases.

Case 1) When two adjacent horizontal edges e1 = (v1, v2) and e2 = (v2, u6)

form 180◦ (Fig. 3.3). Let f ′(e1) = c and f ′(e2) = c + 1. Note that any edge e
incident to any of the vertices in {u5, u6, u7} is at distance at most two from
e1. As f ′(e1) = c, the color c can not be used at any of those edges for L(1, 2)
edge labeling. Similarly observe that any edge e incident to any of the vertices
in {w8, w9, w10} but not incident to any of the vertices in {u5, u6, u7} is at
distance two from e2. As f ′(e2) = c + 1, the color c can not be used at any
of those edges for L(1, 2) edge labeling. Hence there exists 2 different K4s
having vertex sets S1 = {u5, u6, w8, w9} and S2 = {u6, u7, w9, w10} such that
c can not be used at GS1 and GS2 . With similar argument, it can be shown
that there exists 2 different K4s having vertex sets S3 = {v1, v4, u11, u12} and
S4 = {v1, u9, u10, u11} such that c + 1 can not be used at GS3 and GS4 .
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Case 2) When two adjacent right slanting edges e1 = (v1, v3) and e2 =

(v1, u10) form 180◦ (Fig. 3.3). Let f ′(e1) = c and f ′(e2) = c + 1. In this
case, there exists 3 different K4s having vertex sets S1 = {u10, w15, w16, w17},
S2 = {u9, u10, w14, w15} and S3 = {u10, u11, w17, w18} such that c can not be
used at GS1 , GS2 and GS3 . Similarly, there exists 3 different K4s having vertex
sets S3 = {v3, v4, u2, u3}, S4 = {v3, u3, u4, , u5} and S5 = {v2, v3, u5, u6} such
that c + 1 can not be used at GS3 , GS4 and GS5 .

• When angular distance between two adjacent edges is 135◦: Observe that a
horizontal edge and its adjacent left slanting edge or a horizontal edge and
its adjacent right slanting edge or a vertical edge and its adjacent left slanting
edge or a vertical edge and its adjacent right slanting edge may be at 135◦.
Clearly all the cases are symmetric. So we need to consider the following case
only. Let us consider the horizontal edge e1 = (v1, v2) and the right slanting
edge e2 = (v2, u5). Let f ′(e1) = c and f ′(e2) = c + 1. From similar discussion
stated in the previous case, there exists 3 different K4s having vertex sets
S1 = {v3, u3, u4, u5}, S2 = {u4, u5, w7, w8} and S3 = {u5, u6, w8, w9} such that
c can not be used at GS1 , GS2 and GS3 . Similarly, there exists 2 different K4s
having vertex sets S4 = {v1, v4, u11, u12} and S5 = {v1, u9, u10, u11} such that
c + 1 can not be used at GS4 and GS5 .

• When angular distance between two adjacent edges is 90◦: Observe that a
horizontal edge and its adjacent vertical edge or a vertical edge and its ad-
jacent horizontal edge or a right slanting edge and its adjacent left slanting
edge may be at 90◦. Clearly the first two cases are symmetric. So we need to
consider the following two cases.

Case 1) Consider the horizontal edge e1 = (v1, v2) and the vertical edge
e2 = (v2, v3). Let f ′(e1) = c and f ′(e2) = c + 1. As similar argument
stated in the previous cases, there exists 2 different K4s having vertex sets
S1 = {v3, v4, u2, u3} and S2 = {v3, u3, u4, u5} such that c can not be used
at GS1 and GS2 . Similarly, there exists 2 different K4s having vertex sets
S3 = {v1, v4, u11, u12} and S4 = {v1, u9, u10, u11} such that c + 1 can not be
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used at GS3 and GS4 .

Case 2) Consider the right slanting edge e1 = (v1, v3) and the left slanting
edge e2 = (v1, u12). Let f ′(e1) = c and f ′(e2) = c + 1. As similar argument
stated in the previous cases, there exists 3 different K4s having vertex sets
S1 = {u1, u12, w19, w20}, S2 = {u1, u2, u12, v4} and S3 = {u11, u12, w18, w19}
such that c can not be used at GS1 , GS2 and GS3 . Similarly, there exists 3 dif-
ferent K4s having vertex sets S4 = {v3, v4, u2, u3}, S5 = {v3, u3, u4, u5} and
S6 = {v2, v3, u5, u6} such that c + 1 can not be used at GS4 , GS5 and GS6 .

• When angular distance between two edges is 45◦: Observe that a horizontal
edge and its adjacent left slanting edge or a horizontal edge and its adjacent
right slanting edge or a vertical edge and its adjacent left slanting edge or a
vertical edge and its adjacent right slanting edge may be at 45◦. Clearly all the
cases are symmetric. So we need to consider the following case only. Consider
the horizontal edge e1 = (v1, v2) and the left slanting edge e2 = (v2, v4). Let
f ′(e1) = c and f ′(e2) = c + 1. As similar argument stated in the previous
cases, there exists 2 different K4s having vertex sets S1 = {v4, u1, u2, u12} and
S2 = {v3, v4, u2, u3} such that c can not be used at GS1 and GS2 . Similarly, there
exists a K4s having vertex set S3 = {v1, u9, u10, u11} such that c + 1 can not
be used at GS3 . If f ′(e1) = c + 1 and f ′(e2) = c, then there exists 2 different
K4s having vertex sets S1 = {v4, u1, u2, u12} and S2 = {v3, v4, u2, u3} such that
c + 1 can not be used at GS1 and GS2 . Similarly, there exists a K4s having vertex
set S3 = {v1, u9, u10, u11} such that c can not be used at GS3 . □

Now we state and prove the following Theorems.

Theorem 3.2.1 λ′
1,2(T8) ≥ 26.

Proof: Let us consider the K4 with vertex set S = {v1, v2, v3, v4} and the
corresponding GS as shown in Fig. 3.2. Observe that there are 26 edges in GS. Note
that there are no two edges at more than distance two apart in GS. Hence all the
colors used in GS must be distinct for L(1, 2)-edge labeling. Hence 26 consecutive
colors {0, 1, . . . , 25} are to be used in GS, otherwise λ′

1,2(GS) ≥ 26. In that case,
any two consecutive colors c and c + 1 must be used at two adjacent edges in GS.
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Therefore, from Lemma 3.2.1, there exists at least a K4 having vertex set S1 such that
c can not be used at GS1 . But in GS1 , 26 distinct colors must be used. So if we do
not use c in GS1 , at least a new color which is not used in GS must be used in GS1 .
So at least the color 26 must be introduced in GS1 . Hence λ′

1,2(GS1) ≥ 26 implying
λ′

1,2(T8) ≥ 26. □

Theorem 3.2.2 λ′
1,2(T8) ≥ 27.

Proof:
Consider S = {v1, v2, v3, v4} and the corresponding GS as shown in Fig. 3.3.

Note that λ′
1,2(GS) ≤ 26 only if 1) 26 consecutive colors {0, 1, . . . , 25} or {1, 2, . . . , 26}

are used in GS, or 2) the colors {0, 1, . . . , 26} \ {c′} are used in GS, where 1 ≤ c′ ≤ 25.
The cases of {0, 1, . . . , 25} and {1, 2, . . . , 26} are clearly symmetric. Hence we need
to consider only the following two cases.

Consider the first case. Observe that the set of colors {0, 1, . . . , 25} can be parti-
tioned into 13 disjoint consecutive pairs of colors (0, 1), (2, 3), . . ., (24, 25). Consider
a pair of consecutive colors (c, c + 1), where 0 ≤ c ≤ 24. From Lemma 3.2.1, it
follows that for the pair (c, c + 1), there exists two distinct S1 and S2 other that S
such that either c or c + 1 can not be used in GS1 and GS2 . So for the 13 disjoint pairs
mentioned above, there must be 26 such S1, S2, . . . , S26 other than S. Note that there
are total 25 Sjs including S in G. Therefore, there exists only 24 such Sjs other than
S in G. Hence from pigeon hole (26 pigeons and 24 holes) principle there must be at
least one GSj where two different colors which are used in GS can not be used there
and hence λ′

1,2(GSj) ≥ 27 implying λ′
1,2(T8) ≥ 27.

Now we consider the second case. Consider that the colors {0, 1, . . . , 26} \
{c′} have been used in GS, where 1 ≤ c′ ≤ 25. First let us consider the case
when c′ is even. In that case the set of colors {0, . . . , c′ − 1, c′ + 1, . . . 26} can be
partitioned into 13 disjoint consecutive pairs of colors (0, 1), . . . , (c′ − 2, c′ − 1), (c′ +
1, c′ + 2), . . . , (25, 26). Hence proceeding similarly as above case, from pigeon hole
principle, we get that λ′

1,2(T8) ≥ 27. Now consider the case when c′ is odd. Let us
first consider c′ ̸= 1, 25. Note that the set of colors {0, . . . , c′ − 1, c′ + 1, . . . 26} can be
partitioned into 12 disjoint consecutive pairs of colors (0, 1), . . . , (c′ − 3, c′ − 2), (c′ +
1, c′+ 2), . . . , (24, 25). So there must be 24 K4s having vertex sets S1, S2, . . . , S24 other
than S in G. Now consider the pair of consecutive colors (25, 26). Now, from Lemma
3.2.1, there must exists at least one S25 other than S such that color 26 can not be used
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in GS25 . So we need 25 such S1, S2, . . . , S25 other than S. But there exists only 24 such
distinct Sjs other than S in G. Hence from pigeon hole (25 pigeons and 24 holes)
principle there must be at least one GSj where two different colors used in GS can
not be used there and hence λ′

1,2(GSj) ≥ 27 implying λ′
1,2(T8) ≥ 27. When c′ = 1

the set of colors {0, 2, . . . 26} can be partitioned into 12 disjoint consecutive pairs
of colors (2, 3), . . . , (24, 25). Considering these 12 pairs and the pair of consecutive
colors (25, 26), we get λ′

1,2(T8) ≥ 27 by proceeding similarly as above. When c′ = 25
the set of colors {0, . . . 24, 26} can be partitioned into 12 disjoint consecutive pairs
of colors (1, 2, ), . . . , (23, 24). Considering these 12 pairs and the pair of consecutive
colors (0, 1), we get λ′

1,2(T8) ≥ 27 by proceeding similarly as above. □

Observe that a K3 contains one horizontal, one vertical and one slanting edge.
Note that three consecutive colors c − 1, c, c + 1 can be used at three edges with
or without forming a K3 (complete graph of 3 vertices) in GS, where c being used
at a slanting or non slanting edge. Accordingly, we now have the following two
Lemmas.

cc c c c

c c c c c

c-1

c+1

c-1c

c+1 c+1

c-1c-1 c

c-1 c-1

c-1

c-1

c-1

c-1

c-1

c-1
c+1

c+1 c+1

c+1c+1

c+1c+1c+1

a. b. c. d. e. f. g.

h. i. j. k. l.

c+1

Figure 3.4: The all possible cases where c is used in a slanting edge e and both c ± 1
are used at edges forming 45◦ with e.

Lemma 3.2.2 When three consecutive colors c − 1, c and c + 1 are used at three edges
forming a K3 in GS with c being used at the slanting edge, then there exists a K4 with vertex
set S1 in G such that c can not be used in GS1 . When three consecutive colors c − 1, c and
c + 1 are used at three edges without forming a K3 in GS with c being used at the slanting
edge, then there exists at least 2 different K4s with vertex sets S1 and S2 in G such that c
can not be used at GS1 and GS2 .
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Proof:
Let us consider c − 1, c and c + 1 are used at three edges which are forming a

K3 with c being used at the slanting edge. The different cases where such scenarios
occur are shown in Fig. 3.4 a. to Fig. 3.4 d. Note that all the cases shown in Fig. 3.4 a.
to Fig. 3.4 d. are symmetric. So we consider any one of the cases. Consider the case
where the colors c− 1, c and c+ 1 are used at three edges (v1, v2), (v1, v3) and (v2, v3)

respectively (Fig. 3.3). Now consider the K4 with vertex set S1 = {v2, u6, u7, u8}
and observe that any edge incident to any of the vertices in S1 \ {v2} is at distance
two from (v1, v2). As f ′(v1, v2) = c − 1, c can not be used at those edges for L(1, 2)
edge labeling. As any edge incident to v2 is at distance at most 2 from (v1, v3) and
f ′(v1, v3) = c, the color c can not be used there as well. So c can not be used at GS1 .

Now we consider the case where c − 1, c and c + 1 are used at three edges which
are not forming a K3 with c being used at the slanting edge. Note that the colors
c − 1 and c + 1 can be used at two edges both of which are at 45◦ with the edge
having color c. The different cases where such scenarios arrive are shown in Fig. 3.4
e. to Fig. 3.4 l. Note that the cases shown in Fig. 3.4 e. to Fig. 3.4 h. are symmetric
and the cases shown in Fig. 3.4 i. to Fig. 3.4 l. are also symmetric. So here we need
to consider only two cases.

• Consider the case where the colors c − 1, c and c + 1 are used at three edges
(v1, v4), (v1, v3) and (v2, v3) respectively (Fig. 3.3). In this case, the said three
edges form a structure isomorphic to Fig.3.4 e. to Fig.3.4 h. Here note that there
exists two K4s with vertex sets S1 = {v4, u1, u2, u12} and S2 = {v2, u6, u7, u8}
such that c can not be used in GS1 and GS2 .

• Consider the case where the colors c − 1, c and c + 1 are used at three edges
(v1, v4), (v1, v3) and (v1, v2) respectively (Fig. 3.3). In this case the said three
edges form a structure isomorphic to Fig. 3.4 i. to Fig. 3.4 l. Here also, there
exists two K4s with vertex sets S1 = {v4, u1, u2, u12} and S2 = {v2, u6, u7, u8}
such that c can not in GS1 and GS2 .

Now we consider the case where the edge having color c + 1 (or c − 1) is not
forming 45◦ with the slanting edge having color c and the other edge having color
c − 1 (or c + 1) forming 45◦ with the slanting edge. In that case, from Lemma 3.2.1,
it follows that there exists at least 2 distinct K4s having vertex sets S1 and S2 other
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than S such that c can not be used in GS1 and GS2 . As the other color c − 1 (or c + 1)
is used at an edge forming 45◦ with the slanting edge, there also exists at least
another K4 having vertex set S3 other than S such that c can not be used in GS3 . So
in this case there are at least 3 distinct K4s.

We now consider the case where both the colors c − 1 and c + 1 both are used
at edges not forming 45◦ with the slanting edge with color c. In this case, from
Lemma 3.2.1, there exists at least 4 different K4s having vertex sets S1, S2, S3 and
S4 other than S such that c can not be used in GS1 , GS2 , GS3 and GS4 . So in this case
there are at least 4 distinct K4s. □

Lemma 3.2.3 If three consecutive colors c − 1, c and c + 1 are used at three edges of GS

forming a K3 with c being used at a non slanting edge, then there exists two K4s with vertex
sets S1 and S2 in G such that c can not be used in GS1 and GS2 . If three consecutive colors
c − 1, c and c + 1 are used at three edges of GS without forming a K3 with c being used at a
non slanting edge, then there exists at least 3 K4s with vertex sets S1, S2 and S3 in G such
that c can not be used in GS1 , GS2 and GS2 .

Proof:

• Let us first consider the case where c − 1, c and c + 1 are used at three edges
which are forming a K3 with c being used at the non slanting edge. Consider
the K3 with vertex set {v1, v2, v3} in GS as shown in Fig. 3.3. Suppose the
colors c − 1, c and c + 1 are used at (v1, v2), (v2, v3) and (v1, v3) respectively.
In this case, there exists two K4s with vertex sets S1 = {v1, u9, u10, u11} and
S2 = {v1, v4, u11, u12} such that c can not be used at GS1 and GS2 .

• Now we consider the case where c − 1, c and c + 1 are used at three edges
which are not forming a K3 with c being used at the non slanting edge. In the
previous case, as the two edges with colors c − 1 and c + 1 have a common
vertex other than the end vertices of the edge with color c, we get only two
different K4s. Note that if three edges do not form a K3, there does not exists
a common vertex of the two edges with colors c − 1 and c + 1, other than an
end vertex of the edge with color c. In that case, there exists at least 3 different
K4s having vertex sets S1, S2 and S3 such that c can not be used at GS1 , GS2

and GS3 . □
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We now consider how many K3S can be there in GS such that for each such K3

three consecutive colors can be used. For this, we have the following Observation.

Observation 5 Consider the K4 having vertex set S = {v1, v2, v3, v4} and the sub graph
GS. There can be at most 8 K3s in GS such that in each of the K3, three consecutive colors
can be used.

Proof: Consider the edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4) and e4 =

(v4, v1) of the K4 having vertex set S = {v1, v2, v3, v4} (Fig. 3.2). Observe that there
are total 12 K3s in GS and each K3 has at least one edge in {e1, e2, e3, e4}. Each edge
e ∈ {e1, e2, e3, e4} is a common edge of 4 different K3s. Let a color c be used in an
edge e ∈ {e1, e2, e3, e4}. In order to form a K3 with three consecutive colors with e,
either c + 1 or c − 1 must be used in that K3. So, out of the 4 K3s that include e, at
most two of then can have 3 consecutive colors. As there are 4 edges in {e1, e2, e3, e4},
we can have at most 8 K3s where each of them has 3 consecutive colors. □

Now we state and prove the following Theorem.

Theorem 3.2.3 λ′
1,2(T8) ≥ 28.

Proof:
Consider the graph G, the K4 with vertex set S = {v1, v2, v3, v4} and the sub

graph GS as shown in Fig. 3.3. Note that 26 distinct colors from {0, 1, . . . , 27} must
be used in GS. In other words, there must be 2 colors in {0, 1, . . . , 27} which should
remain unused. Let these two colors be c1 and c2 where c1 < c2. Let us now consider
the 6 colors 0, c1 − 1, c1 + 1, c2 − 1, c2 + 1 and 27.

We first consider the case when all these 6 colors are distinct and denote X =

{0, c1 − 1, c1 + 1, c2 − 1, c2 + 127}. In this case, for each color c ∈ X, only one of
c ± 1 is used and the other is not used in GS. From Lemma 3.2.1, for each c ∈ X,
there exists at least one K4 having vertex set S1 other than S in G such that c can
not be used at GS1 . Moreover, c must be used at a slanting edge in GS in this case.
Considering all 6 colors in X are used in 6 slanting edges, we get at least 6 such
K4s. For each c among the remaining 26 − 6 = 20 colors, both c ± 1 are used in GS.
There are total 26 edges in GS among which 14 are slanting edges and 12 are non-
slanting edges. Therefore, we are yet to consider the colors used in the remaining
14 − 6 = 8 slanting edges. Note that for each such color c, both c ± 1 are used in
GS. Assume these 8 colors, x many colors c′1, c′2, . . . , c′x are there such that for each
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c′i, three consecutive colors c′i − 1, c′i, c′i + 1 can be used in a K3. From Lemma 3.2.2,
for each such color c′i, there exists at least one K4 having vertex set S1 other than
S in G such that c′i can not be used at GS1 . Considering all these x colors, we get
at least x such K4s in G. Now consider the remaining 8 − x colors c′x+1, c′x+2, . . . , c′8
used in slanting edges. Note that for each such c′i, three consecutive colors c′i − 1, c′i
and c′i + 1 can not be used in a K3. From Lemma 3.2.2, for each such c′i, there exists
at least 2 different K4s having vertex sets S1 and S2 other than S in G such that c′i
can not be used at GS1 and GS2 . Considering all these 8 − x colors, we get at least
2(8 − x) K4s in G.

Now consider the 12 non slanting edges in GS. Assume that among them, y
many colors c′′1 , c′′2 , . . . , c′′y are there such that for each c′′i , three consecutive colors
c′′i − 1, c′′i , c′′i + 1 can be used in a K3. Clearly all those y many K3s must be different
from those x many K3 considered for slanting edges. From Observation 5, there
exists at most 8 K3s in GS such that for each of them, three consecutive colors can
be used. As x many K3s have already been considered for slanting edges, y can be
at most 8 − x. From Lemma3.2.3, for each such c′′i , there exists at least 2 different
K4s having vertex sets S1 and S2 other than S such that c′′i can not be used at GS1

and GS2 . Considering all these 8 − x colors, we get at least 2(8 − x) K4s. We are yet
to consider the remaining z = 12 − (8 − x) = 4 + x non slanting edges. For each
such color c′′, the colors c′′ − 1, c′′ and c′′ + 1 can not be used in a K3 in GS. So from
Lemma3.2.3, for each such c′′, there exists at least 3 different K4s having vertex sets
S1, S2 and S3 other than S in G such that c′′ can not be used at GS1 , GS2 and GS3 .
Considering all these 4 + x colors, we get at least 3(4 + x) K4s. In total we get at
least 6 + x + 2(8 − x) + 2(8 − x) + 3(4 + x) = 50 K4s in G. But there are only 24
distinct K4s in G other than S. From pigeon hole principle (50 pigeons and 24 holes),
there exists at least one Si in G such that at least 3 colors which are used in GS can
not be used in GSi and hence λ′

1,2(GSi) ≥ 28 implying λ′
1,2(T8) ≥ 28.

If the colors 0, c1 − 1, c1 + 1, c2 − 1, c2 + 1 and 27 are not distinct, proceeding
similarly, we can show that there are a need of more that 50 K4s in G and hence
from pigeon hole principle (more than 50 pigeons and 24 holes) λ′

1,2(T8) ≥ 28. □
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3.3 Conclusion

It was proved in [17] that 25 ≤ λ′
1,2(T8) ≤ 28 with a gap between the lower and

upper bounds. In this chapter, we filled the gap and proved that λ′
1,2(T8) ≥ 28. This

essentially implies λ′
1,2(T8) = 28.
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Chapter 4

The span of L(k1, k2)-vertex labeling
for T6

In this chapter we study the lower bound of λk1,k2(T6) when k1 ≤ k2. For a graph
G, it can be shown from the scaling lemma in [13], λk1,k2(G) = k2 ∗ λk1

k2
,1
(G) =

k2 ∗ λh,1(G), where h = k1
k2

. Determining λk1,k2(G) is equivalent to evaluating
λh,1(G) and multiplying it with k2.

L(h, 1)-vertex labeling problem when 0 ≤ h ≤ 1 when has been studied by
several researchers [13, 12]. In [12], exact values of λh,1(T6) when 0 ≤ h ≤ 1 have
been determined for different values of h . But the values of λh,1(T6) obtained
here are partly based on computer simulations. In this chapter, we introduce
an approach where we determine the lower bounds of λh,1(T6) theoretically by

exploring underlined graph structure for the intervals when 0 ≤ h ≤ 1
2

and when

h ≥ 1
2

. H Our obtained results are λh,1(T6) ≥ 3 + 2h when 0 ≤ h ≤ 1
2

and

λh,1(T6) ≥ 4 when h ≥ 1
2

. Our result exactly coincides with the result obtained
in [13, 12] (as stated in equations (4.1) and (4.2)) through computer simulations

when 0 ≤ h ≤ 1
3

. When h >
1
3

, results obtained in [13, 12] are finer than ours. In the
rest the chapter, our discussion will based on L(h, 1)-vertex labeling for T6 when
0 ≤ h ≤ 1.

We organize the remaining of the chapter in following manner. The previous
result for λh,1(T6) has been explicitly stated in section 4.1. In, section 4.2, we define
and explain some terms that we use to prove our results. We will state and prove
our main result in section 4.3. Section 4.4 concludes this chapter.
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4.1 Previous results

λh,1(T6) =



= 2h + 3, i f 0 ≤ h ≤ 1/3,
∈ [2h + 3, 11h], i f 1/3 ≤ h ≤ 9/22,
∈ [2h + 3, 9/2], i f 9/22 ≤ h ≤ 3/7,
∈ [9h, 9/2], i f 3/7 ≤ h ≤ 1/2,
∈ [9/2, 16/3], i f 1/2 ≤ h ≤ 2/3,
∈ [16/3, 23/4], i f 2/3 ≤ h ≤ 3/4,
∈ [23/4, 6], i f 3/4 ≤ h ≤ 4/5,
= 6 i f 4/5 ≤ h ≤ 1.

(4.1)

λh,1(T6) =



2h + 3, i f 0 ≤ h ≤ 1/3,
11h, i f 1/3 ≤ h ≤ 3/8,
3h + 3, i f 3/8 ≤ h ≤ 2/5,
8h + 1, i f 2/5 ≤ h ≤ 3/7,
h + 4, i f 3/7 ≤ h ≤ 1/2,
9h, i f 1/2 ≤ h ≤ 4/7,
2h + 4, i f 4/7 ≤ h ≤ 2/3,
8h, i f 2/3 ≤ h ≤ 5/7,
h + 5, i f 5/7 ≤ h ≤ 3/4,
5h + 2, i f 3/4 ≤ h ≤ 4/5,
6 i f 4/5 ≤ h ≤ 1.

(4.2)

The above two sets of equations (4.1) and (4.2) present the results obtained in [13]
and [12] respectively. In [13], authors determined the bounds of λh,1(T6) for 0 ≤
h ≤ 1. But some of the bounds were not tight and moreover, the bounds were
obtained based on computer simulation by considering all possible L(h, 1) labeling
of three induced sub graphs of T6 having 7, 19 and 37 vertices using computer
simulation. Later, Král and Skoda [12] gave exact values of λh,1(T6) for different
sub intervals for 0 ≤ h ≤ 1. But here also, the bounds are obtained through brute
force computer simulations on the induced sub graphs of T6 having 81, 100, 169
and 225 nodes. In following sections, after depicting the key ideas we will present
our theoretically obtained results.

45



4.2 Key ideas

Definition 8 Suppose G(V, E) is a graph. A subset V′ of V is said to constitute a Dn
k , a

distance k clique of size n, if |V′| = n and every pair of vertices in V′ is at distance k from
each other in G, where k ≥ 1 and n ≥ 2 are two integers.

We have shown a graph G and its different Dn
k in Figure. 4.1. In this figure, a dotted

edge between two vertices represents that they are at distance 2 apart from each
other in G.

v1 v2

v3v4

v5

v6 v7 v1 v2 v2v1

v3

v5 v2

v5

v3

v7

a. G(V,E) b. D2
1 = {v1, v2}. c. D3

1 = {v1, v2, v3}. d. D2
2 = {v5, v2}. e. D3

2 = {v3, v5, v7}.

Figure 4.1: A graph G(V, E) and its different Dn
k s.

We introduce the notion of color class to partition the available colors into a set of
disjoint color classes. Let us formally define the color class as follows.

Definition 9 A color class Ck = {i : k ≤ i < k + 1, i ∈ R, k ∈ N}.

Note that the absolute difference between any two colors in a particular color
class is strictly less than 1. Let f be an L(h, 1)-vertex labeling of G where 0 ≤ h ≤ 1.
Now the following facts are immediate for any pair of vertices u and v in G.

• When d(u, v) = 2 then | f (u)− f (v)| ≥ 1, so f (u) and f (v) must belong to
two different color classes.

• When d(u, v) = 1 then | f (u)− f (v)| ≥ h, so f (u) and f (v) may or may not
belong to the same class class.

Let u and v be two vertices in G and f be an L(h, 1)-vertex labeling of G. We say
that u ∼ v if f (u) and f (v) belong to same color class and u ≁ v if f (u) and f (v)
do not belong to same color class.
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Definition 10 Let G(V, E) be a graph and f be a L(h, 1)-vertex labeling of it. Let {v1,
v2, v3} ⊆ V be a D3

1. We term D3
1 as a monochromatic triangle if f (v1), f (v2) and f (v3)

belong to the same color class.

Suppose an L(h, 1)-vertex labeling f of the D2
1 shown in Figure. 4.1.b produces

f (v1) = 0 and f (v2) = h. If h < 1 then the edge (v1, v2) is said to be a monochromatic
edge with color class C0 as 0, h ∈ C0. Similarly, suppose an L(h, 1)-vertex labeling f
of the D3

1 shown in Figure. 4.1.c produces f (v1) = 0, f (v2) = h and f (v3) = 2h. If
h < 1/2 then the triangle D3

1 is said to be a monochromatic triangle with color class
C0 as 0, h, 2h ∈ C0.

x(i0, j0) y1(i0 + 3, j0)

y2(i0 + 2, j0 + 1)

y3(i0 + 1, j0 + 2)

y4(i0, j0 + 3)
y5(i0 − 1, j0 + 3)y6(i0 − 2, j0 + 3)

y7(i0 − 3, j0 + 3)

y8(i0 − 3, j0 + 2)

y9(i0 − 3, j0 + 1)

y10(i0 − 3, j0)

y11(i0 − 2, j0 − 1)

y12(i0 − 1, j0 − 2)

y13(i0, j0 − 3)

y14(i0 + 1, j0 − 3) y15(i0 + 2, j0 − 3)

y16(i0 + 3, j0 − 3)

y17(i0 + 3, j0 − 2)

y18(i0 + 3, j0 − 1)

(i0, j0 + 1)

(i0 + 1, j0 − 1)(i0, j0 − 1)

(i0 − 1, j0)

(i0 − 1, j0 + 1)

(i0 + 1, j0)
I

J

Figure 4.2: Representation of vertices of T6 with co-ordinates.

As we are dealing with L(h, 1)-vertex labeling of T6, we now introduce co-ordinate
system to represent the vertices of T6. For any vertex in T6 it has 6 neighbors at
distance 1 and hence 6 edges incident to v. Angle between any two consecutive
edges in anti-clockwise direction incident to any vertex v in T6 is 60◦. Taking any
vertex v as origin and two consecutive edges in anti-clockwise direction incident
to v as two co-ordinate axes, a co-ordinate system can be constructed in T6. We
follow one such co-ordinate system with axes (I, J) as shown in Figure. 4.2. In this
coordinate system, for any vertex x with co-ordinate (i0, j0), the co-ordinates of
its six neighbors are (i0 + 1, j0), (i0, j0 + 1), (i0 − 1, j0 + 1), (i0 − 1, j0), (i0, j0 − 1) and
(i0 + 1, j0 − 1) as shown in Figure. 4.2. The 18 vertices yi ∈ T6, i ∈ {1, 2, . . . , 18} at
distance 3 from x are also shown in Figure. 4.2. Among them, the 6 vertices y1, y4,
y7, y10, y13 and y16 are termed corner vertices of x. The remaining 12 vertices y2, y3,
y5, y6, y8, y9, y11, y12, y14, y15, y17 and y18 are termed non-corner vertices of x.
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a

b c

d e

f gh i

j

k l

Figure 4.3: A sub graph G3 of T6.

4.3 Our results

For any two vertices x, y ∈ T6 with d(x, y) = 3, either x ∼ y or x ≁ y. In subsec-
tion 4.3.1 we will determine λh,1(T6) when x ≁ y for all x, y ∈ T6 with d(x, y) = 3
and in subsection 4.3.2 we will determine λh,1(T6) when x ∼ y for at least a pair of
vertices x, y ∈ T6 with d(x, y) = 3. Then we will state and prove our main result in
theorem 4.3.2.

4.3.1 Determining λh,1(T6) when x ≁ y for all x, y ∈ T6 with
d(x, y) = 3 .

Figure. 4.3 shows a sub graph G3 of T6 such that ∀x, y ∈ G3, d(x, y) ≤ 3. Such a sub
graph can be constructed as follows: consider any D3

1 in T6 and then G3 is the sub
graph induced by the vertices of the D3

1 and all its neighbors. Figure. 4.3 shows the
G3 constructed from D3

1 = { f , g, j}.

Lemma 4.3.1 In G3, at most 3 vertices can be assigned colors from the same color class
and these three vertices must form a D3

1 when x ≁ y for all x, y ∈ G3 with d(x, y) = 3.

Proof: Two vertices at distance 2 in T6 can not be assigned with the colors from
the same color class. Therefore for two vertices v1, v2 ∈ G3, v1 ∼ v2 only when
d(v1, v2) = 1, as in the case under consideration, x ≁ y for all x, y ∈ T6 with
d(x, y) = 3. Let us consider v1 ∼ v2 and color class of it is Ck. Any vertex in G3

other than the vertices at distance 1 from both of v1 and v2 in G3 are at distance 2 or
3 from either v1 or v2, hence these vertices can not be assigned with the colors from
the color class Ck. Therefore Ck can be used in v1, v2 and the vertex v3 which is at
distance 1 from both of v1 and v2. Thus v1, v2 and v3 form a D3

1. Any vertex other
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than v1, v2 and v3 in G3 is at distance 2 from any one of v1, v2 and v3. Hence except
v1, v2 and v3 any other vertex can not be assigned with the colors from the color
class Ck. Thereby Lemma 4.3.1 is proved. □

Theorem 4.3.1 λh,1(T6) ≥ 4 if x ≁ y for all x, y ∈ T6 with d(x, y) = 3.

Proof: Consider the G3 constructed from { f , g, j} as shown in Figure. 4.3. It is
evident that λh,1(T6) ≥ λh,1(G3) as G3 is a sub graph of T6. From lemma 4.3.1,
at most three vertices can have colors from the same color class and they must
form a D3

1 when x ≁ y for all x, y ∈ T6 with d(x, y) = 3. Note that any D3
1 in G3

must include at least one vertex from { f , g, j}. So at most three disjoint D3
1s can

be constructed in G3. Let M f be a D3
1 which includes f . There are six such D3

1s
are possible. Consider M f as any one of them. Any vertex in G3 other than those
belong to M f is at distance 2 from at least one of the three vertices of M f . Same
thing holds for Mg and Mj as well. Therefore M f , Mg and Mj must get colors from
3 different color classes. Let Ck1 , Ck2 and Ck3 be the color classes of M f , Mg and Mj

respectively, where k1 ̸= k2 ̸= k3. So at most 9 vertices can be colored with three
color classes. The rest three vertices other than the vertices of M f , Mg and Mj can
not form a D3

1. Hence at least two of them are at distance 2 or 3 from each other.
Two vertices x and y with d(x, y) = 2 can not be colored with the same color class.
For the case under consideration, x ≁ y for all x, y ∈ T6 with d(x, y) = 3. So these
two vertices must have colors from two different color classes. Let Ck4 and Ck5 be
the color classes of those two vertices, where k4 ̸= k5. As any vertex other than
M f is at distance 2 from at least one of the three vertices of M f , we get k4 ̸= k1

and k5 ̸= k1. The same argument holds for Mg and Mj as well and hence k4 ̸= k2,
k4 ̸= k3, k5 ̸= k2 and k5 ̸= k3. Therefore at least 5 different color classes are required
to color the vertices of G3. Hence λh,1(T6) ≥ 4. □

It is now evident that λh,1(T6) ≥ 4 if x ≁ y for all x, y ∈ T6 with d(x, y) = 3. So
we will investigate whether λh,1(T6) can be kept below 4 by making x ∼ y for at
least a pair of vertices x, y ∈ T6 with d(x, y) = 3.

4.3.2 Determining λh,1(T6) when x ∼ y for at least a pair of vertices
x, y ∈ T6 with d(x, y) = 3 .

Lemma 4.3.2 For two vertices x and y in T6 where d(x, y) = 3, if x ∼ y then at least C3

must be used to color the vertices of T6.
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p1(i− 1, j+ 2) p2(i+ 1, j+ 2)

p3(i+ 1, j)x(i, j) y(i+ 3, j)I

J

Figure 4.4: A D3
2 which is formed by three

vertices located at a specific relative posi-
tion in T6.

q1(i− 1, j+ 2)

q3

x(i, j)

y(i+ 2, j+ 1)

I

J

q2(i, j+ 3)

(i+ 1, j+ 1)

Figure 4.5: A D3
2 which is formed by three

vertices located at another specific relative
position in T6.

Proof: Let x(i, j) be any vertex in T6 and f (x) ∈ Ck. Now we consider the following
two cases.

When y is a corner vertex of x: Let us consider the corner vertex y(i + 3, j) with
axes (I, J) as shown in Figure. 4.4 and f (y) ∈ Ck. The three vertices p1(i − 1, j + 2),
p2(i + 1, j + 2) and p3(i + 1, j) form a D3

2 as shown in Figure. 4.4. It can be verified
that d(p1, x) = 2, d(p2, y) = d(p3, y) = 2. Therefore three distinct color classes other
than Ck must be required to color the mentioned D3

2. Hence 4 distinct color classes
must be required to color x, y and the D3

2 implying at least C3 must be used here.
For other corner vertices of x, co-ordinates of corresponding D3

2 can be found and
same result can be obtained there also.
When y is a non-corner vertex of x: Let us consider the non-corner vertex y(i +
2, j + 1) with axes (I, J) as shown in Figure. 4.5 and f (y) ∈ Ck. The three vertices
q1(i − 1, j + 2), q2(i, j + 3) and q3(i + 1, j + 1) form a D3

2 as shown in Figure. 4.5. It
can be verified that d(q1, x) = d(q3, x) = 2, d(q2, y) = 2. Therefore three distinct
color classes other than Ck must be required to color the mentioned D3

2. Hence 4
distinct color classes must be required to color x, y and the D3

2 implying at least C3

must be used here. For other non-corner vertices of x, co-ordinates of corresponding
D3

2 can be found and same result can be obtained there also. Hence the proof. □

From Lemma 4.3.2, C3 must be used in a vertex if x ∼ y for a pair of vertices
x and y in T6 with d(x, y) = 3. Therefore, let us consider a vertex u ∈ T6 where
f (u) ∈ C3.
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Figure 4.6: A sub graph G6 of T6.

Lemma 4.3.3 Let us consider a vertex u ∈ T6 with f (u) ∈ C3. If v ≁ u, ∀v ∈ T6 where
d(u, v) = 1, then λh,1(T6) ≥ 4.

Proof: Consider the sub graph G6 of T6 as shown in Figure. 4.6. Assume
f (u) ∈ C3 and f (vi) /∈ C3 for all vertices vi, i ∈ {1, 2, . . . , 6} with d(u, vi) = 1.
Assume f (v1) ∈ Ck1 , f (v3) ∈ Ck2 and f (v5) ∈ Ck3 . As v1, v3, v5 form a D3

2, k1, k2

and k3 are all distinct and none of them are 3. Note that f (w1) /∈ C3 as d(w1, u) = 2
and f (u) ∈ C3. Consider f (w1) ∈ Ck. Note that k /∈ {k1, k2} as w1, v1, v3 form a
D3

2 and f (v1) ∈ Ck1 , f (v3) ∈ Ck2 . Therefore f (w1) ∈ Ck3 . So either f (v2) ∈ Ck1 or
f (v2) ∈ Ck2 , otherwise, λh,1(G6) ≥ 4. When f (v2) ∈ Ck1 , we get f (v6) ∈ Ck3 and
f (v4) ∈ Ck2 . Note that d(w2, u) = d(w2, v2) = d(w2, v4) = d(w2, w1) = 2. Therefore
f (w2) ∈ Ck, where k /∈ {3, k1, k2, k3}. Hence a fifth color class is required for w2.
Hence λh,1(G6) ≥ 4 in this case. When f (v2) ∈ Ck2 , arguing similarly it can be
shown that a fifth color class is required for w4 resulting λh,1(G6) ≥ 4. Hence
λh,1(T6) ≥ 4. □

From Lemma 4.3.3 we can conclude that there must exists a monochromatic
edge with color class C3 to keep λh,1(T6) < 4. So we now consider the case when
for two vertices u, v ∈ T6 with d(u, v) = 1, u ∼ v and f (u) ∈ C3.

Lemma 4.3.4 Let us consider four vertices u,v, w1 and w2 in T6 where d(u, v) = 1,
u ∼ v, f (u) ∈ C3, f (v) ∈ C3, d(w1, u) = d(w1, v) = 1 and d(w2, u) = d(w2, v) = 1.
If neither w1 ≁ u, w1 ≁ v nor w2 ≁ u, w2 ≁ v then λh,1(T6) ≥ 4.

Proof: Consider the sub graph G7 of T6 as shown in Figure. 4.7. Assume f (u) ∈
C3 and f (v) ∈ C3. As d(r3, u) = d(r3, v) = 1 and d(r4, u) = d(r4, v) = 1 we assume
f (r3) /∈ C3 and f (r4) /∈ C3. Note that f (r1) /∈ C3 and f (r2) /∈ C3 as d(r1, v) = 2 and
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Figure 4.7: A sub graph G7 of T6.

d(r2, u) = 2 respectively. Assume f (r1) ∈ Ck1 , f (r2) ∈ Ck2 and f (r3) ∈ Ck3 . As r1,
r2 and r3 form a D3

2, k1, k2 and k3 are all distinct and none of them are 3. Note that
f (r4) /∈ C3 by our assumption. Again, f (r4) /∈ Ck3 as d(r4, r3) = 2 and f (r3) ∈ Ck3 .
So, either f (r4) ∈ Ck1 or f (r4) ∈ Ck2 , otherwise, λh,1(G7) ≥ 4. First consider
f (r4) ∈ Ck1 . In that case f (r5) ∈ Ck2 and f (r6) ∈ Ck3 as r4, r5 and r6 form a D3

2 and
f (r2) ∈ Ck2 . Now f (w1) /∈ C3 as d(w1, u) = 2 and f (u) ∈ C3. Again, f (w1) /∈ Ck1

and f (w1) /∈ Ck2 , as w1, r1, r5 form a D3
2 with f (r1) ∈ Ck1 and f (r5) ∈ Ck2 . Therefore

f (w1) ∈ Ck3 . Observe that f (r7) ∈ Ck2 because f (r7) /∈ C3 as d(r7, v) = 2, f (v) ∈ C3;
f (r7) /∈ Ck1 as d(r7, r4) = 2, f (r4) ∈ Ck1 ; f (r7) /∈ Ck3 as d(r7, r3) = 2, f (r3) ∈ Ck3 .
Note that d(w2, u) = d(w2, r4) = d(w2, r7) = d(w2, w1) = 2. Therefore f (w2) ∈
Ck, where k /∈ {3, k1, k2, k3}. Hence a fifth color class is required for w2. Hence
λh,1(G7) ≥ 4 in this case. When f (r4) ∈ Ck2 , arguing similarly it can be shown that
a fifth color class is required for w4 resulting λh,1(G7) ≥ 4. Hence λh,1(T6) ≥ 4. □

From Lemma 4.3.4 we can conclude that there must exists a monochromatic
triangle with color class C3 to keep λh,1(T6) < 4. Now we have the following
theorem.

Theorem 4.3.2 λh,1(T6) ≥ 3 + 2h when h < 1/2 and λh,1(T6) ≥ 4 when h ≥ 1/2.

Proof: If x ≁ y for all pair of vertices x, y ∈ T6 with d(x, y) = 3, then from
theorem 4.3.1, we get λh,1(T6) ≥ 4. If x ∼ y for at least one pair of vertices x, y ∈ T6

with d(x, y) = 3, from lemma 4.3.2 it follows that C3 must be used in T6 to keep
λh,1(T6; f ) < 4. Lemmas 4.3.3 and 4.3.4 state that there must exit a monochromatic
edge and a monochromatic tringle with color class C3 to keep λh,1(T6) < 4. Hence
λh,1(T6) ≥ 3 + 2h when h < 1/2 and λh,1(T6) ≥ 4 when h ≥ 1/2. □
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4.4 Conclusions

In this work, we derived λh,1(T6) theoretically by exploring the underlined graph
structures without any computer simulation. We introduced the notion of color
class which essentially eliminates the need for enumerations and leads us to arrive
at few cases. Our bound exactly coincides with that of the known bound obtained

through computer simulations when 0 ≤ h ≤ 1
3

. For h >
1
3

, existing bounds
obtained through simulation are finer than ours. Our future research scope includes
identifying appropriate sub graphs and accordingly obtaining tighter bounds by

dividing the intervals into finer sub-intervals, when h >
1
3

.
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Chapter 5

Improved bounds on L(2, 1)-edge
labeling for T6

L(2, 1)-edge labeling and circular L(2, 1)-edge labeling of T6 have been studied
in [15]. They gave the bounds on λ′

2,1(T6) of L(2, 1)-edge labeling and conjectured
that λ′

2,1(T6) = 16. In this chapter we prove this conjecture. Regarding σ′
2,1(T6) of

circular L(2, 1)-edge labeling of T6, authors in [15] proved that 16 ≤ σ′
2,1(T6) ≤ 18

but for the upper bound, they did not give any labeling function for it. In this
chapter, we also give a labeling function for circular L(2, 1)-edge labeling of T6,
where the maximum color used in the labeling function is 17 which shows that
σ′

2,1(T6) ≤ 18.
The rest of the chapter is organized as follows. In section 5.1, we will present

previous results and our improved results in tabular form. In section 5.2, we will
present the proofs of the results we obtained. In section 5.3 concluding remarks will
be stated.

5.1 Previous results and our results

Lin and Wu [15] gave the following conjecture and the bound 16 ≤ σ′
2,1(T6) ≤ 18.

Conjecture 5.1.1 λ′
2,1(T6) = 16.

First we prove that λ′
2,1(T6) ≥ 16 and as λ′

2,1(T6) ≤ 16 [14], it will immediately
follow that λ′

2,1(T6) = 16. Then we derive a labeling function for the circular L(2, 1)-
edge labeling of T6 such that σ′

2,1(T6) ≤ 18 as no labeling function was given by Lin
and Wu [15].
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Table 5.1: Previous result and our improved result for λ′
2,1(T6).

λ′
2,1(G)

Grid Known Ours
T6 15-16 [15], (16-16) [69]* 16-16
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2 7
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13 11
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14
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1150
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u7 u8

u9
u10

u11 u12

u13 u14 u15

Figure 5.1: L(2, 1)-edge coloring of the sub graph G of T6 with colors {0, 1, . . . , 15}.

In Table 5.1, *the proof of lower bound for λ′
2,1(T6) stated in [69] is found to be

incorrect. They proved λ′
2,1(H′′) ≥ 16 where H′′ is the sub graph of T6 as shown by

the bold edges in Figure 5.1. Now consider the sub graph G of T6 and its labeling as
shown in Figure 5.1. From this labeling it can be concluded that λ′

2,1(G) ≤ 15. Note
that H′′ is a sub graph of G.

5.2 Our results

5.2.1 L(2, 1)-edge labeling

For a vertex v, let N(v) denotes the set of neighbors of v and for a set of vertices S,
let N(S) = ∪

v∈S
N(v). Consider the sub graph G(V, E) of T6 centering the triangle

formed by S = {v5, v6, v9} as shown in Figure 5.2, where V = S ∪ N(S) ∪ N(N(S))
and E is the set of all edges which are incident to u where u ∈ S ∪ N(S). Now, we
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Figure 5.2: A sub graph G of T6

define the set of edges in G into five subsets of edges as following:

S1 = {g, b, l}
S2 = {d, e, n, o, i, j}
S3 = {k, f , a, h, m, c}
S4 = {x1, x2, x3, . . . , x9}
S5 = {y1, y2, y3, . . . , y24}

Our proof approach is as follows. In first few Observations and Lemma (Ob-
servation 6, Observations 7, Observations 8, Observation 9 and Lemma 5.2.1) we
investigate if a color c′ is used in S1 or in S2 or in S3, then how many times at maxi-
mum it can be reused in G and repetition pattern of the colors such that edges of G
can be colored with 15(0, 1, . . . , 14) colors. In Observation 10, we determine the max-
imum number of times a color c′ can be used in G if it is not used in S1 ∪ S2 ∪ S3. In
subsequent Observation and Lemmas (Observation 11, Lemma 5.2.2, Lemma 5.2.3)
we discuss the scenario when a color c′ /∈ {5, 10} is unused in S1 ∪ S2 ∪ S3 and two
consecutive colors c′ and c′ + 1 are used in different types of edges. Based on the
discussion and results of the mentioned Observations and Lemmas, we determine
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the lower bound of λ′
2,1(T6) when a color cu /∈ {5, 10} is unused in S1 ∪ S2 ∪ S3 in

Theorem 5.2.1, Theorem 5.2.2 and Theorem 5.2.3. In Theorem 5.2.4, we determine
the lower bound of λ′

2,1(T6) when a color cu ∈ {5, 10} is unused in S1 ∪ S2 ∪ S3.
In Theorem 5.2.5, we determine the lower bound of λ′

2,1(T6) when all colors in
{0, 1, . . . , 14} are used in S1 ∪ S2 ∪ S3. In all the cases, derived lower bounds of
λ′

2,1(T6) are identical.

Observation 6 Let c′ be any color used at an edge in S1, then c′ can be used in at most
once more in G.

Proof: Without loss of generality assume, c′ is used at the edge g. Now, it is clear
that c′ can only be used at some edges incident to v11 and v12. Since, edges incident
to v11 and v12 are not mutually three distance apart, c′ can only be used at most one
edge. □

Observation 7 Let c′ be any color used at an edge in S2, then c′ can be used in at most
two more times in G.

Proof: As all the edges in S2 are in symmetric position, without loss of generality
we can assume that, c′ is used at the edge d. One can verify that, some edges
incident to v4, v8, v11, v12 only are distant three from d. Note that v4 and v8 are
adjacent to each other. Similarly v11 and v12 are also mutually adjacent. Hence c′

can at most be used twice, one in an edge incident to v4, v8 and the other in an edge
incident to v11, v12. But if c′ is used at x5 then c′ can not be used once more. □

Observation 8 Let c′ be any color used at an edge in S3, then c′ can be used in at most
three more edges in G.

Proof: Observe that, here also all the edges are symmetric, so, without loss of
generality we can assume that c′ is used at the edge k. Some edges adjacent to the
vertices v1, v4, v8, v11, v12 only are three distance apart from k. It is clear that, c′ can
be used at the edges adjacent to alternate vertices in the sequence v1, v4, v8, v11, v12.
Moreover, it can be observed that each edge in S4 where c′ can be used is adjacent
to two vertices in v1, v4, v8, v11, v12. So, if we want to use c′ three more times in G
then c′ must be used at edges adjacent to v1, v8, v12, and the color must be used at
edges in S5 only. □
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From Observations 6, 7 and 8 it is clear that colors used to color the edges in S1,
S2 and S3 can be used at most two, three and four times in G, respectively. Note that,
G has 48 edges in total. We need all distinct color to color the edges in S1 ∪ S2 ∪ S3 as
they are mutually at most two distance apart. So, we need 3, 6 and 6 distinct colors
to color the edges in S1, S2 and S3, respectively. If we can repeat all these color with
their maximum potential then it is possible to color the graph G using 15 colors.
Here we state Observation 9 and give the unique repetition pattern of the colors,
to color G using 15 colors in Lemma 5.2.1. Let H be the sub graph of G induced
by the edges in S1 ∪ S2 ∪ S3. We say two edges e1 = (u1, v1) and e2 = (u2, v2) as a
pair of opposite edges iff d(e1, e2) = 3, d(u1, u2) = 2, d(u1, v2) = 2, d(v1, u2) = 2 and
d(v1, v2) = 2.

Observation 9 If a color c′ used at an edge e1 in T6 and is not used at the opposite edge of
e1 then there exists a sub graph H′ isomorphic to H where c′ can not be used.

Proof: Without loss of generality let us consider the pair of opposite edges
n and x2 (Figure 5.2). Let f′(n) = c′ and f′(x2) ̸= c′. Consider the two triangles
{v3, v6, v7} and {v6, v9, v10}. Clearly, c′ can not be used in any edge incident to
v3, v6 and v9. Therefore c′ can be assigned to either an edge incident to v7 or an
edge incident to v10 but not both. So, c′ can not be used either in the sub-graph
H′ isomorphic to H with S′

1 = {v3, v6, v7} or in the sub-graph H′′ isomorphic to H
with S′′

1 = {v6, v9, v10}. Hence the proof. □

Lemma 5.2.1 If G is colored with 15 colors only then there is the following unique rep-
etition of the colors used in sub-graph H: (a) each color used at the edges in S3 must be
repeated thrice more in the edges of S5, (b) each color used at the edges in S2 must be repeated
twice more, once in its opposite edge in S4 and the other in an edge in S5, (c) each color used
at the edges in S1 must be repeated once more in its opposite edge in S4.

Proof: Observe that, the first condition for G to be colored with 15 colors is
the colors used in S1, S2 and S3 have to be used twice, thrice and four times in G,
respectively. From the proof of Observation 8 it directly follows that if we want to
reuse three times a color c3 that has been used in an edge of S3 then c3 has to be
reused at the edges of S5 only. Now assume that, c2 be a color used in an edge of S2

then c2 can not be reused at two edges in S4 as there does not exists two mutually
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three distant edges in S4 such that c2 can be used. From Observation 9 it follows
that c2 should be reused at the corresponding opposite edge in S4 and another edge
in S5. Observe that, only three edges in S4 remain uncolored now. Again from
Observation 9 we can say that if c1 be a color used in an edge of S1 then c1 has to be
reused at the corresponding opposite edge in S4 only. □

We aim to prove λ′
2,1(T6) = 16. We already know that, λ′

2,1(H) = 14 and
λ′

2,1(T6) ≥ 15 [14]. So, without loss of generality, we can assume that, one color is
unused at H. In Observations 6, 7, 8 we showed the re-usability of the colors used at
S1, S2 and S3, respectively. Now we focus on the color which is not used in H.

Observation 10 Let c′ be any color not used in H, then c′ can be used at most four edges
in G.

Proof: Clearly, c′ is used at edges in S = S4 ∪ S5. All edges in S are incident to
one or two vertices in Q = {v1, v2, v3, v7, v10, v12, v11, v8, v4}. So, c′ can be used at
edges adjacent to alternative vertices in the sequence Q. There are nine vertices in
Q. If we pick every alternate vertices in the sequence starting from v1 then we end
up with a set Q1 of five vertices {v1, v3, v10, v11, v4}. Since, v1 and v4 are adjacent
in G, we can give the color c′ to edges incident to either v1 or v4. So, we have only
four vertices whose adjacent edges can be colored with c′, and note that that no two
edge adjacent to same vertices can be colored with same color. Hence there are at
most four edges which can be colored with the unused color. Similarly, if we pick
alternate vertices in the sequence starting from v2, then we end up with picking a
set Q2 of four vertices {v2, v7, v12, v8}. Again, we similarly argue that, at most in
four edges we can use the unused color in G. □

From Figure 5.2 it is clear that, the sub-graph H consists of five vertical edges,
five horizontal edges and five slanting edges. Let us denote these three types of
edges as Tv, Th and Ts, respectively. Now, we prove some properties of colors used
in these three types of edges.

Observation 11 Let f′(p) = c′ and f′(q) = c′ + 1 where p, q ∈ E(H) and they are
different types of edges. Then there exists a H′ isomorphic to H in T6 where either c′ or
c′ + 1 can not be used.
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Proof: Let us consider p = f , q = a (Figure 5.2). Note that f′( f ) = c′ can not
be used at any edge incident to v2 as d(v2, v6) = 1. Again, c′ can not be used at
any edge incident to v1 or v5 as f′(a) = c′ + 1. Hence c′ can not be used in the sub
graph H′ isomorphic to H centering the triangle S′

1 = {v1, v2, v5}. In general, for
any (p, q) pair in H, such a triangle can be found by considering the two triangles
with common edge p and the two triangles with common edge q. □

Lemma 5.2.2 In the sub graph H, let the unused color c′ /∈ {5, 10}. Then, there must
exist two disjoint pair of different typed edges (p, q) and (r, s) such that consecutive colors
have been used in each pair of edges and p ∈ Th, q ∈ Ts ; r ∈ Ts, s ∈ Tv.

Proof: Since, distance between any two edges in H is at most two, no color can
be repeated. We need three sets of five different colors to color each type of edges
in H. That means we need to divide the set of colors into three sets of equal size
(i.e., five colors in each set) in such a way that we can maximize the number of
sets that contain consecutive colors. We can say that the unused color divides the
color set into two parts. By pigeon hole principle, we can show that either one part
contains more than 10 consecutive colors or both of them contains more than five
consecutive colors as the unused color c′ is neither 5 nor 10. In the former case, all
three types of edges get color from the larger part of the colors as it contains more
than 10 colors. In the later case, at least one type of edges get color from both the
parts. So, in both the cases we get at least two such pairs. □

Lemma 5.2.3 For every (p, q) pair of edges in H where p and q are different types of edges
and consecutive colors are assigned to p and q, at least 2 edges of E(G) \ E(H) cannot be
colored with the colors used in H.

Proof: We prove this Lemma using case analysis and the cases are based on
where the edges p and q are present. Without loss of generality, we assume p ∈ Th

and q ∈ Ts are colored with z and z + 1 respectively. We can have the following
cases:

• p, q ∈ S3 : Without loss of generality, let p = f and q = c. From Lemma 5.2.1
it follows that if z is to be reused for 3 more times then it has to be reused at
edges of S5 incident to v1, v8 and v12, which is not possible since c is adjacent
to v12. Similarly, if z + 1 is to be used for 3 more times then it has to be reused
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at edges of S5 incident to v7, v2 and v4, which is also not possible since f is
adjacent to v7. So, there are two edges in G \ H which remain uncolored with
the colors used in H.

• p ∈ S3, q ∈ S2 : Without loss of generality, let p = h and q = e. From Lemma
5.2.1, if z is to be used for 3 more times then it has to be reused at edges of
S5 incident to v3, v10 and v11. But it is not possible since e is adjacent to v10.
Similarly, if z + 1 is to be used for 2 more times then it has to be reused at
x5 = (v8, v11) of S4 and an edge of S5 incident to v1. It is not possible to use
z + 1 at x5 as z is reused at an edge of S5 adjacent to v11. So, there are two
edges in G \ H which can not be colored with the colors used in H.

• p, q ∈ S2 : Without loss of generality, let p = j and q = d. From Lemma 5.2.1, z
is to be reused at x8 = (v1, v2) which is not possible here as edge d is adjacent
to (v1, v2). Similarly, z + 1 is to be reused at x6 = (v4, v8) which is also not
possible as edge j is adjacent to (v4, v8). Therefore, two edges at G \ H can not
be colored with the colors used in H.

• p ∈ S1, q ∈ S3 : Without loss of generality, let p = g and q = c. From Lemma
5.2.1 it follows that z has to be reused at x4. But here it is not possible as z + 1
used at c.

If x4 is not left uncolored, then a color of H in {h, a, n, d, k, f } can only be used
at that edge. If f′(h) is used at x4, then f′(h) can only be used at an edge of S5

incident to v3 but not at the edges of S5 incident to v10 and v11. So, in that case,
two edges will remain uncolored. If f′(n) is used at x4, then f′(n) can neither
be used at x2 nor be used at an edge of S5 incident to v11. So, in that case too,
two edges will remain uncolored. All other possibilities are symmetric to one
of these two cases.

We now consider the case when the unused color, say u of H is used at x4.
Since u can not be used at v8 and v10, colors of {d, k, f , e} must be reused at
the edges {x6, y12, y11, x5} and the colors of {n, a, h, o} must be reused at the
edges {x2, y3, y4, x3}. If f′(i) and f′(j) are reused at x9 and x8 respectively,
then the edges where colors f′(i)± 1 and f′(j)± 1 can be used are { f , g} and
{g, h} respectively. Therefore, if both f′(i) and f′(j) are reused at x9 and x8

respectively, then f′(g)± 1 = z ± 1 can only be used at {i, j}. Since z + 1 is
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used at c, either f′(i) can not be reused at x9 or f′(j) can not be reused at x8.
Hence the unused color u of H has to be used at x9 or x8. Hence two edges at
G \ H can not be colored with the colors used in H.

□

Now we will look at the difference of colors in the edges incident to same vertex.
Initially we investigate the case when the difference is at least three for every pair.
Then we consider the case when there exists at least a pair of edges with difference
exactly two. We classify the six edges incident to the same vertex as follows. We say
two such edges are at 60◦ if one is the immediate next edge of the other in clockwise
or anticlockwise direction. They are said to be at 120◦ and 180◦ if exactly one and
two edges respectively is/are there in between them. Now we subdivide the second
case into three more cases depending on the angle between them.

Lemma 5.2.4 If |f′(e1)− f′(e2)| ≥ 3 for every pair of adjacent edges e1, e2 ∈ E(T6), then
λ′

2,1(T6) ≥ 16.

Proof: Let us consider the edge g = (v5, v6) and without loss of generality
assume f′(g) = 0. To keep λ′

2,1(T6) below 16, the colors that can be used at the
remaining five incident edges of v5 are 3, 6, 9, 12 and 15. Now the least color that
can be used at any of the five edges incident to v6 is 4. Therefore, the colors that can
be used to the remaining four edges incident to v6 are 7, 10, 13 and 16 respectively.
Hence λ′

2,1(T6) ≥ 16. □

Therefore there exists at least two adjacent edges in T6 having color c1 and c2

with |c1 − c2| = 2 otherwise λ′
2,1(T6) ≥ 16.

Theorem 5.2.1 If two colors c′ and c′ + 2 have been assigned in any two adjacent edges at
an angle 60◦ in T6, then λ′

2,1(T6) ≥ 16.

Proof: Without loss of generality, assume f′(b) = c′ and f′(g) = c′ + 2. Observe
that c′ + 1 must remain unused in H as ∀e1 ∈ E(H) \ {b, g} either d(e1, b) = 1
or d(e1, g) = 1. From Lemma 5.2.2 and Lemma 5.2.3, there are 4 edges in G \
H which can not be colored with colors used in H. To make λ′

2,1(G) below 16,
c′ + 1 is to be used in those 4 edges. Without loss of generality, assume c′ + 1
has been used at the edges incident to v1, v3, v8 and v12 respectively. Note that
f′(g) = c′ + 2 can not be used at x4 as c′ + 1 is used at an edge incident to v12.
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So, f′(x4) ∈ {f′(a), f′(h), f′(n), f′(d), f′( f ), f′(k)}. Consider the case when f′(x4) ∈
{f′(a), f′(h), f′(n)} as the case when f′(x4) ∈ {f′(d), f′( f ), f′(k)} can be proved
similarly. Assume f′(x4) = f′(a). There are four edges of S4 ∪ S5 incident to v10

where f′(a), f′(h), f′(n) and f′(o) can only be used. But f′(a) can not be used
there as f′(x4) = f′(a). To make λ′

2,1(G) below 16, f′(x3) = c′ + 1 and f′(n), f′(h)
and f′(o) are assigned to the other three edges. Similarly, there are four edges of
S4 ∪ S5 incident to v2 where f′(i), f′(c), f′(m) and f′(j) can only be used. Now
observe that f′(b) = c′ can not be used at x1 as c′ + 1 is used at an edge incident
to v3. Again, {f′(n), f′(h), f′(o)} and {f′(i), f′(c), f′(m), f′(j)} can not be used at x1

as they are used at edges incident to v10 and v2 respectively. Hence f′(x1) = f′(a).
Proceeding similarly we can show that f′(x9) = f′(i), f′(x8) = f′(j), f′(x7) = f′(l)
and f′(x5) = f′(e). Now observe that f′(a) and f′(x) are used at two adjacent
vertices for all x ∈ E(H) \ {d}. Therefore one of f′(a)± 1 can not be used in H.
Moreover, none of f′(a)± 1 can be the unused color c′ + 1 as c′ and c′ + 2 are used
at b and g respectively. Hence λ′

2,1(G) ≥ 16. □

Theorem 5.2.2 If two colors c′ and c′ + 2 have been assigned in any two adjacent edges at
an angle 120◦ in T6, then λ′

2,1(T6) ≥ 16.

Proof: Without loss of generality, assume f′(g) = c′ and f′(e) = c′ + 2 (Fig-
ure 5.2). There may be two cases, when c′ + 1 is used in H and when c′ + 1 is not
used in H. First consider the second case. From Lemma 5.2.2, there are 4 edges in
G \ H which can not be colored with the colors used in H. To make λ′

2,1(G) below
16, c′ + 1 is to be used in those 4 edges. Without loss of generality, assume c′ + 1 is
used in edges in G \ H adjacent to vertices v1, v3, v8 and v12 respectively. Note that
f′(x4) ̸= f′(g) = c′ as c′ + 1 is used in an edge adjacent to v12. Therefore f′(x4) ∈
{f′(a), f′(h), f′(n), f′(d), f′( f ), f′(k)}. Let f′(x4) = f′(d). The color of four edges in
S4 ∪ S5 incident to v8 are c′ + 1 and any three of f′(d), f′(e), f′( f ) and f′(k). But f′(e)
can not be used there as f′(e) = c′ + 2; f′(d) can not be used there as f′(x4) = f′(d).
Hence a new color must be introduced here resulting λ′

2,1(T6) ≥ λ′
2,1(G) ≥ 16.

Similar result holds when f′(x4) ∈ {f′( f ), f′(k)}. Now let us consider the case when
f′(x4) ∈ {f′(a), f′(h), f′(n)}. Let us consider f′(x4) = f′(a). Here the colors of four
edges in S4 ∪ S5 incident to v12 are c′ + 1, f′(h), f′(n) and f′(o). Therefore f′(d), f′( f )
and f′(k) must be used at three edges incident to v12. As, f′(e) = c′ + 2 can not be
used at any edge incident to v8 due to usage of c′ + 1 at v8, any one of f′(d), f′( f )
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and f′(k) must be used in x5. But it is not possible as f′(d), f′( f ) and f′(k) are used
in edges adjacent to v12. Hence another color must be introduced here resulting
λ′

2,1(T6) ≥ λ′
2,1(G) ≥ 16. Similar argument holds when f′(x4) ∈ {f′(h), f′(n)}.

Hence the proof for this case.
Now we consider the case when f′(g) = c′, f′(e) = c′ + 2 and c′ + 1 is used in

H. Let us consider a color c′′ ∈ C = {0, 1, . . . , 15} \ {c′, c′ + 1, c′ + 2} is unused
in H. Without loss of generality, say c′′ = c′ + 5. For any other color c′′ in C we
can prove the same result with similar arguments. From Lemma 5.2.2, c′ + 5 must
be used in 4 edges of S4 ∪ S5 in G \ H. Here we assume c′ + 5 is used in 4 edges
adjacent to the vertices v1, v3, v8 and v12 respectively. Since f (g) = c′, c′ ± 1 can
only be used in {c, i, j, m}. Let us consider f′(j) = c′ − 1. The three edges h, f and i
in Th are to be colored. Here we assume exactly two distinct pair of different types
of edges (p, q) and (r, s) are assigned consecutive colors such that p ∈ Th, q ∈ Ts

and r ∈ Th, s ∈ Tv. In that case c′ − 2, c′ − 3 and c′ − 4 must be assigned to edges
in Th in H. Let us consider f′(j) = c′ − 1. Now if f′(m) = c′ + 1, then two edges j
and m at 60◦ have colors c′ − 1 and c′ + 1 and from theorem 5.2.1, λ′

2,1(T6) ≥ 16.
Again f′(i) ̸= c′ + 1 as f′(e) = c′ + 2. Therefore f′(c) = c′ + 1. If f′(b) = c′ + 3
then neither c′ + 4 nor c′ + 6 can be used at the edge a as c′ + 5 is used at an edge
incident to v1. Hence f′(a) = c′ + 3. Similarly we can show that f′(d) = c′ + 4 and
f′(b) = c′ + 6. As c′ + 5 is used at an edge in S4 ∪ S5 incident to v12, at least any
three among f′(a), f′(h), f′(n) and f′(o) must be assigned to the edges of S4 ∪ S5

incident to v10. Note that f′(a) = c′ + 3 and f′(e) = c′ + 2. Therefore f′(a) can
not be assigned to an edge incident to v10. In that case f′(h) and f′(i) can not be
consecutive. So we get f′(h) = c′ − 2, f′( f ) = c′ − 3 and f′(i) = c′ − 4. With similar
argument we can show that f′(o) = c′ − 5, f′(m) = c′ − 6, f′(k) = c′ − 7, f′(n) =

c′ − 8 and f′(l) = c′ − 9. Now consider the edges of S4 ∪ S5 incident to v8. Only
f′(d), f′(e), f′( f ) and f′(k) can be used at edges of S4 ∪ S5 incident to v8. Note that
f′(d) = c′ + 4 can not be used there because c′ + 5 is used at an edge of S5 incident
to v8. Therefore f′(k) = c′ − 7, f′( f ) = c′ − 3 and f′(e) = c′ + 2 must be used at
edges in S4 ∪ S5 incident to v8. Now f′(x5) ̸= f′(k) = c′ − 7 as f′(m) = c′ − 6. If
f′(x5) = f′( f ) = c′ − 3 then two edges j and x5 at 60◦ have colors c′ − 1 and c′ − 3
and from theorem 5.2.1, λ′

2,1(T6) ≥ 16. Hence f′(x5) = f′(e) = c′ + 2. Since either
f′(y11) = c′ + 5 or f′(y12) = c′ + 5 we get either f′(x6) = c′ − 3 or f′(x6) = c′ − 7.
In both cases two edges o and x6 residing at an angle 60◦ have colors (c′ − 5, c′ − 3)
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or (c′ − 5, c′ − 7). Hence from theorem 5.2.1 λ′
2,1(T6) ≥ 16. When more than two

distinct pair of different types of edges are assigned consecutive colors, arguing
similarly, we can prove the same result. Hence the proof. □

Theorem 5.2.3 If two colors c′ and c′ + 2 have been assigned in any two adjacent edges at
an angle 180◦ in T6, then λ′

2,1(T6) ≥ 16.

Proof: Without loss of generality, assume f′(g) = c′ and f′(h) = c′ + 2 (Fig-
ure 5.2). There may be two cases, when c′ + 1 is used in H and when c′ + 1
is not used in H. First assume c′ + 1 is used in H. Let us consider a color
c′′ ∈ C = {0, 1, . . . , 15} \ {c′, c′ + 1, c′ + 2} is unused in H and it is used at the
edges of S4 ∪ S5 in G \ H adjacent to v1, v3, v8 and v12. Without loss of generality,
say c′′ = c′ + 7. For any other color c′′ in C we can prove the same result with
similar arguments. Both the colors c′ ± 1 must be used at edges in H incident to
v9. To make λ′

2,1(G) less than 16, the two colors must be used at two edges at
180◦ incident to v9 otherwise from theorem 5.2.1 or theorem 5.2.2, λ′

2,1(T6) ≥ 16.
So, we assume f′(j) = c′ + 1 and f′(i) = c′ − 1. Similarly, f′( f ) = c′ − 2. The
color c′ − 3 can be used at an edge adjacent to v5. Let us consider f′(n) = c′ − 3.
Therefore, f′(m) = c′ − 4, f′(k) = c′ − 5, f′(o) = c′ − 6 and f′(l) = c′ − 7. Similarly,
it can be shown that f′(d) = c′ + 3, f′(c) = c′ + 4, f′(a) = c′ + 5, f′(e) = c′ + 6 and
f′(b) = c′ + 8. Now observe that f′(c), f′(m), f′(i) = c′ − 1 and f′(j) = c′ + 1 must
be used at the edges at S4 ∪ S5 incident to v2 as the unused color c′′ is not used here.
This implies f′(j) = c′ + 1 and f′(i) = c′ − 1 must be used at two edges in S4 ∪ S5

incident to v2 which are at 180◦, as otherwise from theorem 5.2.1 or theorem 5.2.2,
λ′

2,1(T6) ≥ 16. Hence c′ + 1 and c′ − 1 must be used at x8 and x9. Now notice that
f′(d) = c′ + 3 and the edge d is at 60◦ and 120◦ with x9 and x8 respectively. Hence
at v2, (c′ + 1, c′ + 3) must be used at two edges either at 60◦ or at 120◦ resulting
λ′

2,1(T6) ≥ 16 from theorem 5.2.1 or theorem 5.2.2.
Now consider the case when f′(g) = c′, f′(h) = c′ + 2 and c′ + 1 is not used in

H. Assume c′ + 1 is used at four edges incident to v1, v3, v8 and v12. Note that c′ − 1
must be used at an edge incident to v9 in H. Here we assume exactly two distinct
pair of different types of edges (p, q) and (r, s) are assigned consecutive colors such
that p ∈ Th, q ∈ Ts and r ∈ Th, s ∈ Tv. Consider f′(j) = c′ − 1. So, f′( f ) = c′ − 2
otherwise c′ and c′ − 2 must be at two adjacent edges at an angle 60◦ or 120◦.
Note that either f′(i) = c′ − 3 or f′(i) = c′ + 3. First we assume f′(i) = c′ + 3.
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In that case c′ + 4 can only be used at an edge incident to v6 in H, as otherwise
c′ + 2 and c′ + 4 will be at two edges at an angle 60◦ or 120◦. So, f′(d) = c′ + 4.
Therefore, f′(a) = c′ + 5, f′(c) = c′ + 6, f′(e) = c′ + 7 and f′(b) = c′ + 8. Similarly,
f′(n) = c′ − 3, f′(m) = c′ − 4, f′(k) = c′ − 5, f′(o) = c′ − 6 and f′(l) = c′ − 7. Note
that any three among f′(d), f′(e), f′( f ) and f′(k) must be used at S4 ∪ S5 incident
to v8 as c′ + 1 is used here. But f′( f ) = c′ − 2 and f′(k) = c′ − 5 can not be used
there as f′(j) = c′ − 1 and f′(o) = c′ − 6. Hence one more color must be introduced
here resulting λ′

2,1(T6) ≥ λ′
2,1(G) ≥ 16. Similar argument holds when f′(i) = c′ − 3.

Hence the proof. □

Till now we have considered the case when in H, the unused color cu /∈ {5, 10}.
Now we consider the case when cu ∈ {5, 10} and the case when there is no unused
color in H.

Theorem 5.2.4 If a color cu ∈ {5, 10} is unused at H then λ′
2,1(T6) ≥ 16.

Proof: Without loss of generality let us assume color 5 is unused in H. The set of
colors {0, 1, . . . , 4} must be used in same type of edges and same holds for the sets
{6, 7, . . . , 10} and {11, 12, . . . , 15} otherwise there exists at least two disjoint pair
of edges (p, q) and (r, s) where consecutive colors are used in each pair and there
we can prove λ′

2,1(T6) ≥ 16 using similar argument as depicted in Lemma 5.2.4
and Theorem 5.2.1 or 5.2.2 or 5.2.3. Let us consider p = f , q = a, f′(p) = c′

and f′(q) = c′ + 1. From Observation 11, c′ can not be used in the sub graph H′

isomorphic to H centering S′
1 = {v1, v2, v5}. If c′ ̸= 10, then from Theorem 5.2.1

or 5.2.2 or 5.2.3 λ′
2,1(T6) ≥ 16. If c′ = 10 then f′(q) = c′ + 1 = 11. In that case

the colors {0, 1, . . . , 4} must be used in Tv, {6, 7, . . . , 10} must be used in Th and
{11, 12, . . . , 15} must be used in Ts. From Observation 9, the edges for reusing
f′( f ) = c′ = 10 are y5, y12, y16 and (u3, u4). If f′( f ) = c′ = 10 is used at (u3, u4)

then f′(a) = c′ + 1 = 11 can not be used at its opposite edge y21 and hence from
Observation 9, Lemma 5.2.4 and Theorem 5.2.1 or 5.2.2 or 5.2.3 λ′

2,1(T6) ≥ 16. If
f′( f ) = c′ = 10 is not used at (u3, u4) then either color 5 or a color c′′ ̸= {5, 10}
used in H must be used there. If a color c′′ is used there, then there exists a pair of
opposite edges where c′′ can not be used and again from Observation 9, Lemma 5.2.4
and Theorem 5.2.1 or 5.2.2 or 5.2.3 λ′

2,1(T6) ≥ 16. So, to keep λ′
2,1(T6) below 16,

color 5 must be used at (u3, u4). With exactly same argument we can show that
color 5 must also be used at y5, y12, y16 otherwise λ′

2,1(T6) ≥ 16. Remember that the
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color 4 is used in Tv and it must also be used at its opposite edges. Note that for any
edges e1 ∈ Tv \ {m}, either e1 or its opposite edge is adjacent to an edge e2 where
f (e2) = 5. Hence f′(m) = 4. But y13, the opposite edge of m, can not have color 4 as
color 5 is used at y12. Hence from Observation 9, Lemma 5.2.4 and Theorem 5.2.1 or
5.2.2 or 5.2.3 λ′

2,1(T6) ≥ 16. □

Theorem 5.2.5 If all colors c1 ∈ {0, . . . , 14} are used at H then λ′
2,1(T6) ≥ 16.

Proof: In this case there exists a pair of different types of edges in H where
(c′, c′ + 1) are used. From Observation 11, there exists a H′ isomorphic to H where
c′ or c′ + 1 can not be used. Hence either from Theorem 5.2.4 or from Lemma 5.2.4
and Theorem 5.2.1 or 5.2.2 or 5.2.3, it follows that λ′

2,1(T6) ≥ 16. □

5.2.2 Circular L(2, 1)-edge labeling

Lemma 5.2.5 σ′
2,1(T6) ≤ 18

Proof: In this grid there are three types of edges- horizontal, vertical and slanted.
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Figure 5.3: An assignment of colors of the edges of T6 satisfying circular L(2, 1)-edge
labeling.

In order to prove the Lemma, we now consider the labeling shown in Figure 5.3.
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Assuming left bottom corner point as origin, the labeling functions corresponding
to horizontal, vertical and slanted edges can be stated as:

f′((x, y), (x + 1, y)) = (7x + y) mod 5 + 12

f′((x, y), (x, y + 1)) = (3y − x + 2) mod 5 + 6

f′((x − 1, y + 1), (x, y)) = (x + 4y − 1) mod 5

. Observe that, different types of edges get different colors in the coloring. Horizon-
tal edges get color 12, 13, 14, 15, 16; vertical edges get 6, 7, 8, 9, 10 and slanted edges
get 0, 1, 2, 3, 4. By the pattern it is clear that, two adjacent edges of same type do not
get two consecutive colors. By the definition of n-circular L(2, 1)-edge labeling 0
and n are two consecutive colors. In our coloring there are many places where two
adjacent edges get 0 and 16. So, the color 16 can not be the circular span of the grid.
That’s why we introduce a new color 17, which is used at edges as a replacement
for 16 such that 0 and 16 become two non-consecutive colors. Two such 16 colored
edges are shown in Figure 5.3 whose colors can be replaced by 17. Putting 17 at any
one such edge is sufficient. The main goal behind introducing a new color 17 was
to make 0 and 16 non-consecutive. As the colors 5 and 11 are unused in the graph,
we can conclude that no two adjacent edges of different types get two consecutive
colors. Now we have to show that no two edges at distance two get the same color.
For the same type of edges it can be easily followed from the pattern of repetition.
In case of different type of edges, observe that, distant two edges of two different
types get color with difference at least two. Hence this labeling can be extended to
infinite grid. □

5.3 Conclusions

Here we prove the conjecture λ′
2,1(T6) = 16 given by Lin and Wu [14]. We prove that

λ′
2,1(T6) ≥ 16 and as λ′

2,1(T6) ≤ 16 [14], it immediately follows that λ′
2,1(T6) = 16.

We also show that σ′
2,1(T6) ≤ 18 by giving a labeling function. Determining the

value of σ′
2,1(T6) is an open problem and can be done as a future work.
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Chapter 6

Proving a conjecture on
L(1, 1, . . . , 1)-vertex labeling for T3

Studies of L(k1, k2, . . . , kℓ)-vertex labeling for T3 for ℓ > 2 have been made by sev-
eral authors [64, 65, 18, 50]. Let λℓ(T3) is the minimum number of colors required
for L(1, 1, . . . , 1︸ ︷︷ ︸

ℓ

)-vertex labeling for T3. For all odd ℓ > 2 and all even ℓ < 8, exact

values of λℓ(T3) have been determined in [18]. For even ℓ ≥ 8, values of λℓ(T3)

was conjectured in [18]. For even ℓ ≥ 8, the conjecture is stated as follows.

Conjecture 1. λℓ(T3) =

[
3
8

(
ℓ+

4
3

)2
]

(6.1)

Here [x] is an integer, x ∈ R and x − 1
2
< [x] ≤ x +

1
2

. Here color starts from 1
and λℓ represents the highest color used.

In this chapter we prove the conjecture for every even ℓ ≥ 8. First we study
the problem when ℓ = 8. In first subsection (section 6.1) we prove the conjecture
when ℓ = 8. In the next subsection (section 6.2) we prove the conjecture for all even
ℓ ≥ 10. We deal the cases of ℓ = 8 and even ℓ ≥ 10 separately as some of the results
that hold for even ℓ ≥ 10 does not hold for ℓ = 8, as mentioned in the proof of
Theorem 6.2.2. In subsection 6.3, concluding remarks have been stated.

6.1 Determining λℓ(T3) when ℓ = 8

In [18], it was shown that when ℓ = 4m where m is a positive integer,
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λℓ(T3) ≤
3
8

(
ℓ+

4
3

)2

+
1
3

. (6.2)

Equation (6.2) implies that λ8(T3) ≤ 33. Moreover, using a computer routine
that explores all possible colorings of a sub-graph of T3 with 109 vertices, authors
in [18] found that 33 colors are required for the sub-graph for the 8 distance label-
ing L(1, 1, . . . , 1︸ ︷︷ ︸

8

). In our approach, we prove that λ1, 1, . . . , 1︸ ︷︷ ︸
8

(T3) ≥ 32. Note that

λ1, 1, . . . , 1︸ ︷︷ ︸
ℓ

(T3) represents the minimum span, i.e., the difference between the maxi-

mum color and the minimum color used in the optimal labeling. Hence by defini-
tion, λℓ(T3) = λ1, 1, . . . , 1︸ ︷︷ ︸

ℓ

(T3) + 1 and λ8(T3) = λ1, 1, . . . , 1︸ ︷︷ ︸
8

(T3) + 1 ≥ (32 + 1)=33.

So, minimum number of colors obtained through our approach exactly coincides
with the value obtained from the conjecture stated in equation (6.1) as well as
with the upper bound stated in equation (6.2). In this section, we prove that
λ1, 1, . . . , 1︸ ︷︷ ︸

8

(T3) ≥ 32 which implies λ8(T3) ≥ 33. Since λ8(T3) ≤ 33 [18], we

conclude λ8(T3) = 33, which exactly coincides with the value obtained from the
conjecture stated in equation (6.1).

The rest of the section is organized as follows. In subsection 6.1.1, we state some
preliminary ideas which will be used to establish our results. In subsection 6.1.2,
we will discuss about the obtained result when ℓ = 8.

6.1.1 Preliminaries

Infinite hexagonal grid T3 is alternatively termed as Infinite honeycomb grid.
Sometimes T3 is alternatively represented as infinite brick structure grid. In brick
structure representation of T3, coordinates of the vertices can be represented more
conveniently than that of T3. For this reason, now onwards we use brick structure
representation of T3. In Figure 6.1, a part of brick structure representation of T3

along with the coordinates of the corresponding vertices are shown.
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Figure 6.1: Brick structure representation of T3 and coordinates of its vertices.

Definition 11 A vertex with co-ordinates (i, j) in brick structure representation of T3 is
said to be a right vertex or xr if it is connected to the vertex with co-ordinates (i + 1, j) by
an edge. A vertex with co-ordinates (i, j) in brick structure representation of T3 is said to be
a left vertex or xl if it is connected to the vertex with co-ordinates (i − 1, j) by an edge.

A right vertex xr(i, j) is adjacent to the vertices having co-ordinates (i + 1, j),
(i, j + 1) and (i, j − 1) but not adjacent to the vertex with co-ordinates (i − 1, j). A
left vertex xl is adjacent to the vertices having co-ordinates (i − 1, j), (i, j + 1) and
(i, j − 1) but not adjacent to the vertex with co-ordinates (i + 1, j).

In Figure 6.1, the vertex with coordinates (1, 2) is a left vertex and the vertex
with coordinates (2, 2) is a right vertex.

Definition 12 A maximum distance 2p clique D2p
x (p ∈ N) centring at vertex x in T3 is

the maximum cardinality vertex induced sub-graph of T3 where for each pair of vertices u
and v in D2p

x , d(u, v) ≤ 2p and for every vertex w in D2p
x , d(w, x) ≤ p. Here d(u, v), the

distance between vertices u and v, denotes the minimum number of edges that connect u
and v.

In Figure 6.2 different D2p
x in T3 are shown.

Note that for any right vertex xr and left vertex xl, D2p
xr and D2p

xl are isomorphic.
So any property that holds for D2p

xr also holds for D2p
xl . Therefore, we will state and

prove our results for D2p
xr and these also hold for D2p

xl .
Consider a right vertex xr(0, 0) and the sub-graph D16

xr centering xr as shown
in Figure 6.3. Note that there are k j = 3j vertices which are at distance j from xr,
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where 1 ≤ j ≤ 8. In Figure 6.3, the k j = 3j vertices are denoted as vj
1, vj

2, . . . , vj
kj

where 1 ≤ j ≤ 8. We now define Fj =
⋃

1≤i≤kj

{vj
i} where 1 ≤ j ≤ 8. For 5 ≤ q ≤ 8,

we define the following sets of vertices, where kq = 3q.

Vq
i−j =

{
{vq

l : i ≤ l ≤ j} when i ≤ j
Vq

i−kq
∪ Vq

1−j when i > j

x xr xl xr xr

a. D0
x b. D2

xr
c. D2

xl
d. D4

xr
e. D8

xr

Figure 6.2: Different D2p
x .

6.1.2 Results

In the following discussion, we will first investigate that at most how many times
and where the colors of D8

xr can be reused in V′ where V′ = V(D16
xr ) \ V(D8

xr) =

F5 ∪ F6 ∪ F7 ∪ F8. Then we will state that how many times a new color may be
used in V′ if a new color (a color not used in D8

xr) is required to be introduced at all.
Finally, we will state and prove our main theorem by finding the least number of
new color/s which are necessary for the coloring of the vertices of V′.

As |V(D8
xr)| = 1 + |F1|+ |F2|+ |F3|+ |F4| = 31, we need 31 distinct colors to

color the vertices of D8
xr and hence λ1, 1, . . . , 1︸ ︷︷ ︸

8

(D8
xr) ≥ 30. In Figure 6.3, we denote

the k j = 3j colors of the vertices in Fj as cj
1, cj

2, . . . , cj
kj

, where 1 ≤ j ≤ 4. It is evident
that color c assigned at xr can not be reused at all at V′ due to the reuse distance.
In subsequent Observations we will state and prove at most how many times the
colors cj

1, cj
2, . . . , cj

kj
can be repeated in V′.
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Figure 6.3: All the vertices v with 1 ≤ d(v, xr) ≤ 8 and colors of the all vertices u
with d(u, xr) ≤ 4 (Color is mentioned within brackets beside the corresponding
vertex).
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Observation 12 Each color c1
i with i ∈ {1, 2, 3} can be reused at most thrice at V′. For

maximum re-usability, each color c1
i must be reused thrice at F8.

Proof: There are three vertices at F1 where the colors c1
i with i ∈ {1, . . . , 3} are used.

We will first consider the color c1
1 used at vertex v1

1. Observe that c1
1 can be reused at

R = V8
5−17 = R1 ∪ R2 ∪ R3 where R1 = V8

5−8, R2 = V8
9−12 and R3 = V8

13−17 are three
disjoint subsets of vertices. Note that every pair of vertices in R1 are at distance at
most 8, and the same is true for R2 and R3. Hence c1

1 can be reused at most thrice
in V′, once at R1, once at R2 and once at R3. Note that v1

1 and v1
3 are symmetric

with respect to xr where c1
1 and c1

3 are used respectively. Hence result obtained
regarding how many times the color c1

1 can be reused at V′ also holds for c1
3. So we

are remaining to consider the color c1
2 used at vertex v1

2. For c1
2, the corresponding

sets R, R1, R2 and R3 can easily be obtained as R = V8
13−1, R1 = V8

13−16, R2 = V8
17−21

and R3 = V8
22−1 respectively. Hence c1

2 can also be reused at most thrice in V′.
It is evident that each c1

i with i ∈ {1, 2, 3} can only be reused at F8. Hence for
maximum re-usability, each color c1

i must be reused thrice at F8.

Observation 13 Each color c2
i with i ∈ {1, . . . , 6} can be reused at most twice at V′. For

maximum re-usability, each color c2
i must be reused twice at F7 ∪ F8.

Proof: There are six vertices at F2 where the colors c2
i with i ∈ {1, . . . , 6} are

used. Observe that the vertices v2
1 and v2

4 are symmetric with respect to xr where
c2

1 and c2
4 are used respectively. Similar fact holds for c2

2 and c2
3; c2

5 and c2
6. Hence

results obtained regarding how many times the colors c2
1, c2

2 and c2
5 can be reused in

V′ also hold for c2
4, c2

3 and c2
6 respectively. Therefore we need to consider the colors

c2
1, c2

2 and c2
5 only.

• We will first consider the color c2
1. It can be reused at R = V7

8−15 ∪ V8
9−17.

Observe that R = R1 ∪R2 where R1 = V7
8−11 ∪V8

9−12 and R2 = V7
12−15 ∪V8

13−17

are two vertex disjoint subsets. Note that there does not exist any pair of
vertices at R1 at distance 9 or more. Same fact holds for R2. Hence c2

1 can be
reused at most twice in V′, once at R1 and once at R2. It is evident that each c2

i
with i ∈ {1, . . . , 6} can only be reused at F7 ∪ F8. Hence c2

1 must be reused
twice in F7 ∪ F8 to attain its maximum re-usability. Similar result holds for c2

4

also.

For the colors c2
2 and c2

5 the sets R, R1 and R2 are stated below.
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• c2
2: R = V7

12−19 ∪ V8
13−21 = R1 ∪ R2; R1 = V7

12−15 ∪ V8
13−17; R2 = V7

16−19 ∪
V8

18−21.

• c2
5: R = V7

1−8 ∪ V8
1−9 = R1 ∪ R2; R1 = V7

1−4 ∪ V8
1−4; R2 = V7

5−8 ∪ V8
5−9.

□

Observation 14 Each color c3
i with i ∈ {1, . . . , 9} can be reused at most thrice at V′. For

maximum re-usability, each c3
i with i ∈ {2, 5, 8} must be reused at least twice in F7 ∪ F8

and each c3
i with i ∈ {1, . . . , 9} \ {2, 5, 8} must be reused at least once in F7 ∪ F8.

Proof: Note that the pair of colors c3
1 and c3

6 are assigned to the vertices v3
1 and v3

6

which are symmetric with respect to xr. Similar fact holds for c3
2 and c3

5; c3
3 and c3

4;
c3

9 and c3
7. Hence results obtained regarding how many times the colors c3

1, c3
2, c3

3

and c3
9 can be reused in V′ also hold for c3

6, c3
5, c3

4 and c3
7 respectively. Therefore, we

need to consider the colors c3
1, c3

2, c3
3, c3

9 only. We will consider the case for the color
c3

8 separately.

• First consider the color c3
1. It can be reused at R = V6

7−13 ∪ V7
8−15 ∪ V8

5−18 =

R1 ∪ R2 ∪ R3 where R1 = V7
8−8 ∪ V8

5−9, R2 = V6
7−10 ∪ V7

9−12 ∪ V8
10−13 and

R3 = V6
11−13 ∪ V7

13−15 ∪ V8
14−18 are three disjoint subsets of vertices. Observe

that every pair of vertices belonging to the same subset are at distance at most
8. Hence c3

1 can be reused at most thrice, once at R1 ⊂ F7 ∪F8, once at R2 and
once at R3. To reuse c3

1 thrice in V′, it must be reused at least once at F7 ∪ F8.
Similar result holds for c3

6 also.

For each of the colors c3
2, c3

3, c3
9 and c3

8 the set R and its corresponding partitions
R1, R2, R3 are as stated below.

• c3
2: R = V6

10−13 ∪ V7
12−15 ∪ V8

9−21 = R1 ∪ R2 ∪ R3; R1 = V8
9−12; R2 = V6

10−13 ∪
V7

12−15 ∪ V8
13−16; R3 = V8

17−21; To reuse c3
2 thrice, it must be used once at

R1 ⊂ F8 ⊂ F7 ∪ F8 , once at R2 and once at R3 ⊂ F8 ⊂ F7 ∪ F8. Hence to
reuse c3

2 thrice, it must be used at least twice in F7 ∪ F8. Similar result holds
for c3

5 also.

• c3
3: R = V6

10−16 ∪ V7
12−19 ∪ V8

12−1 = R1 ∪ R2 ∪ R3; R1 = V6
10−12 ∪ V7

12−14 ∪
V8

12−16; R2 = V6
13−16 ∪ V7

15−18 ∪ V8
17−20; R3 = V7

19−19 ∪ V8
21−1; To reuse c3

3 thrice,
it must be used once at R1, once at R2 and once at R3 ⊂ F7 ∪ F8. Hence to
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reuse c3
3 thrice, it must be used at least once at F7 ∪ F8. Similar result holds

for c3
4 also.

• c3
9: R = V6

4−10 ∪ V7
5−12 ∪ V8

4−17 = R1 ∪ R2 ∪ R3; R1 = V6
4−6 ∪ V7

5−7 ∪ V8
4−8;

R2 = V6
7−10 ∪ V7

8−11 ∪ V8
9−12; R3 = V7

12−12 ∪ V8
13−17; To reuse c3

9 thrice, it must
be used once at R1, once at R2 and once at R3 ⊂ F7 ∪ F8. Hence to reuse c3

9

thrice, it must be used at least once at F7 ∪ F8. Similar result holds for c3
7 also.

• c3
8: at R = V6

4−7 ∪ V7
5−8 ∪ V8

1−13 = R1 ∪ R2 ∪ R3; R1 = V8
1−4; R2 = V6

4−7 ∪
V7

5−8 ∪ V8
5−9; R3 = V8

10−13; To reuse c3
8 thrice, it must be used once at R1 ⊂

F8 ⊂ F7 ∪ F8, once at R2 and once at R3 ⊂ F8 ⊂ F7 ∪ F8. Hence to reuse c3
8

thrice, it must be used at least twice in F7 ∪ F8.

□

Observation 15 Each color c4
i with i ∈ {1, . . . , 12} can be reused at most thrice in V′.

For maximum re-usability, each c4
i with i ∈ {1, . . . , 12} must be reused at least twice in

F7 ∪ F8.

Proof: Note that the colors c4
1 and c4

7 are used at v4
1 and v4

7 respectively which
are symmetric with respect to xr. Similar fact also hold for c4

2 and c4
6; c4

3 and c4
5; c4

8

and c4
12; c4

9 and c4
11. Hence result obtained regarding how many times the colors

c4
1, c4

2, c4
3, c4

8 and c4
9 can be reused in V′ are same for the colors c4

7, c4
6, c4

5, c4
12 and c4

11

respectively. Therefore we need to consider the colors c4
1, c4

2, c4
3, c4

8 and c4
9 only. We

will consider the remaining two colors c4
4 and c4

10 separately.

• We first consider the color c4
1. It can be reused at R = V5

6−11 ∪ V6
7−13 ∪ V7

7−16 ∪
V8

8−18 = R1 ∪ R2 ∪ R3 where R1 = V5
6−8 ∪ V6

7−9 ∪ V7
7−10 ∪ V8

8−11, R2 = V5
9−11 ∪

V6
10−13 ∪ V7

11−14 ∪ V8
12−16 and R3 = V7

15−16 ∪ V8
17−18 are three disjoint subsets.

Observe that every pair of vertices belonging to the same subset are at distance
at most 8. Hence c4

1 can be reused at most thrice, once at R1, once at R2 and
once at R3.

Observe that c4
1 can be reused twice in F5 ∪ F6 only when c4

1 is used once
at u ∈ V5

6−8 ∪ V6
7−9 ⊂ R1 and once at v ∈ V5

9−11 ∪ V6
10−13 ⊂ R2 such that

d(u, v) ≥ 9. Note that for any such (u, v) pair, there does not exist any w ∈ R3

such that d(u, w) ≥ 9 and d(v, w) ≥ 9. That is, in that case, c4
1 can not be
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reused once more in R3. This implies that for maximum re-usability, c4
1 can

be reused at most once in F5 ∪ F6. Hence c4
1 must be used at least twice in

F7 ∪ F8 to attain its maximum re-usability. Similar result holds for c4
7 also.

For each of the colors c4
2, c4

3, c4
4, c4

8, c4
9 and c4

10 the set R and its corresponding
partitions R1, R2, R3 are stated below.

• c4
2: R = V5

9−11 ∪ V6
10−13 ∪ V7

8−19 ∪ V8
9−21 = R1 ∪ R2 ∪ R3;

R1 = V7
8−11 ∪ V8

9−12; R2 = V5
9−11 ∪ V6

10−13 ∪ V7
12−15 ∪ V8

13−17; R3 = V7
16−19 ∪

V8
18−21;

To reuse c4
2 thrice, it must be reused once at R1 ⊂ F7 ∪F8, once at R2 and once

at R3 ⊂ F7 ∪F8 and hence it must be reused at least twice in F7 ∪F8. Similar
result holds for c4

6 also.

• c4
3: R = V5

9−14 ∪ V6
10−16 ∪ V7

11−20 ∪ V8
12−22 = R1 ∪ R2 ∪ R3;

R1 = V5
9−11 ∪ V6

10−13 ∪ V7
11−14 ∪ V8

12−16; R2 = V7
15−16 ∪ V8

17−18; R3 = V5
12−14 ∪

V6
14−16 ∪ V7

17−20 ∪ V8
19−22;

Observe that c4
3 can be reused twice in F5 ∪ F6 only when c4

3 is used once
at u ∈ V5

9−11 ∪ V6
10−13 ⊂ R1 and once at v ∈ V5

12−14 ∪ V6
14−16 ⊂ R3 such that

d(u, v) ≥ 9. Note that for any such (u, v) pair, there does not exist any w ∈ R2

such that d(u, w) ≥ 9 and d(v, w) ≥ 9. That is, in that case, c4
3 can not be

reused once more in R2. This implies that for maximum re-usability, c4
1 can

be reused at most once in F5 ∪ F6. Hence c4
3 must be used at least twice in

F7 ∪ F8 to attain its maximum re-usability. Similar result holds for c4
5 also.

• c4
4: R = V5

11−14 ∪ V6
13−16 ∪ V7

12−1 ∪ V8
13−1 = R1 ∪ R2 ∪ R3.

R1 = V7
12−15 ∪ V8

13−17; R2 = V5
11−14 ∪ V6

13−16 ∪ V7
16−18 ∪ V8

18−20; R3 = V7
19−1 ∪

V8
21−1;

To reuse c4
4 thrice, it must be reused once at R1 ⊂ F7 ∪F8, once at R2 and once

at R3 ⊂ F7 ∪ F8 and hence it must be reused at least twice at F7 ∪ F8.

• c4
8: R = V5

1−4 ∪ V6
1−4 ∪ V7

19−8 ∪ V8
21−9 = R1 ∪ R2 ∪ R3;

R1 = V7
19−1 ∪ V8

21−1; R2 = V5
1−4 ∪ V6

1−4 ∪ V7
2−4 ∪ V8

2−4; R3 = V7
5−8 ∪ V8

5−9;
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To reuse c4
8 thrice, it must be reused once at R1 ⊂ F7 ∪ F8, once at R3 ⊂

F7 ∪ F8 and once at R2 and hence it must be reused at least twice at F7 ∪ F8.
Similar result holds for c4

12 also.

• c4
9: R = V5

1−6 ∪ V6
1−7 ∪ V7

21−9 ∪ V8
24−10 = R1 ∪ R2 ∪ R3;

R1 = V5
1−3 ∪ V6

1−3 ∪ V7
21−4 ∪ V8

24−3; R2 = V7
5−5 ∪ V8

4−5; R3 = V5
4−6 ∪ V6

4−7 ∪
V7

6−9 ∪ V8
6−10;

Observe that c4
9 can be reused twice in F5 ∪ F6 only when c4

9 is used once at
u ∈ V5

1−3 ∪ V6
1−3 ⊂ R1 and once at v ∈ V5

4−6 ∪ V6
4−7 ⊂ R3 such that d(u, v) ≥ 9.

Note that for any such (u, v) pair, there does not exist any w ∈ R2 such that
d(u, w) ≥ 9 and d(v, w) ≥ 9. That is, in that case, c4

9 can not be reused once
more in R2. This implies that for maximum re-usability, c4

9 can be reused at
most once in F5 ∪F6. Hence c4

9 must be used at least twice in F7 ∪F8 to attain
its maximum re-usability. Similar result holds for c4

11 also.

• c4
10: R = V5

4−6 ∪ V6
4−7 ∪ V7

1−12 ∪ V8
1−13 = R1 ∪ R2 ∪ R3;

R1 = V7
1−4 ∪ V8

1−4; R2 = V5
4−6 ∪ V6

4−7 ∪ V7
5−8 ∪ V8

5−9; R3 = V7
9−12 ∪ V8

10−13;

To reuse c4
10 thrice, it must be reused once at R1 ⊂ F7 ∪ F8, once at R2 and

once at R3 ⊂ F7 ∪ F8 and hence it must be reused at least twice at F7 ∪ F8.

□

We will now see whether the colors used in D8
xr are sufficient to color the vertices

of V′ or new color/s is/are to be introduced to color them. Note that if new color/s
is/are necessary then the required number of new color/s will depend on the
number of vertices of V′ which can not be colored with the colors used in D8

xr

and how many times at maximum a new color can be used in V′. In following
Observation, we will first state how many times at maximum a new color can be
used in V′ and then based on this result, in Theorem 6.1.1, we will finally state the
minimum number of colors required to color the vertices of D16

xr .

Observation 16 A new color cn can be used at most five times in V′.

Proof: A new color cn can be used at V′ = F5 ∪ F6 ∪ F7 ∪ F8 = V8
1−24 ∪

V7
1−21 ∪ V6

1−18 ∪ V5
1−15. Observe that V′ can be partitioned into six disjoint sub-

sets R1 = V8
21−1 ∪ V7

19−1 ∪ V6
16−1 ∪ V5

14−1, R2 = V8
17−20 ∪ V7

15−18 ∪ V6
13−15 ∪ V5

11−13,

78



R3 = V8
12−16 ∪ V7

11−14 ∪ V6
9−12 ∪ V5

8−10, R4 = V8
7−11 ∪ V7

7−10 ∪ V6
5−8 ∪ V5

5−7, R5 =

V8
2−6 ∪ V7

2−5 ∪ V6
2−4 ∪ V5

2−4 and R6 = V7
6−6 where every pair of vertices in a sub-

set is at most distance 8 apart. If cn is not used at v7
6, the only vertex in R6, then

cn can be used at most five times in V′. In other words, to use cn six times in
V′, cn must be used at v7

6. If cn is used at v7
6 then the set of vertices where cn

can be reused is R′ = V8
11−2 ∪ V7

11−1 ∪ V6
9−1 ∪ V5

9−15. Now observe that R′ can
be partitioned into four disjoint subsets R′

1 = V8
11−15 ∪ V7

11−13 ∪ V6
9−12 ∪ V5

9−10,
R′

2 = V8
16−19 ∪ V7

14−18 ∪ V6
13−15 ∪ V5

11−13, R′
3 = V8

20−24 ∪ V7
19−21 ∪ V6

16−1 ∪ V5
14−15 and

R′
4 = V8

1−2 ∪V7
1−1 where every pair of vertices in a subset is at most distance 8 apart.

This implies that cn can be used at most five times in V′ regardless of whether cn is
used or not used at v7

6. □

Now we state and prove the following theorem.

Theorem 6.1.1 λ1, 1, . . . , 1︸ ︷︷ ︸
8

(T3) ≥ 32.

Proof: As |V(D8
xr)| = 31 and |V(D16

xr )| = 109, (109 − 31) = 78 vertices are
to be colored with the colors from cj

1, cj
2, . . . , cj

kj
, where 1 ≤ j ≤ 4 and k j = 3j

(Note that color c of xr can not be reused in D16
xr as any vertex in D16

xr is at distance
at most 8 from xr). From Observation 12, Observation 13, Observation 14 and
Observation 15, using these colors we can color at most ( 9(3 × 3)︸ ︷︷ ︸

c1
i ,i∈{1,2,3}

+ 12(6 × 2)︸ ︷︷ ︸
c2

i ,i∈{1,2,...,6}
+ 27(9 × 3)︸ ︷︷ ︸

c3
i ,i∈{1,2,...,9}

+ 36(12 × 3)︸ ︷︷ ︸
c4

i ,i∈{1,2,...,12}

) = 84 vertices in V′ if each of them are reused with

their maximum potential of re-usability.
As discussed in Observation 12, all c1

i , i ∈ {1, 2, 3} must be reused thrice in F8

to attain their maximum re-usability in V′; Hence all c1
i s, i ∈ {1, 2, 3} together must

occupy 9 vertices in F8 here. As discussed in Observations 13, all c2
i , i ∈ {1, 2, . . . , 6}

must be reused twice in F7 ∪ F8 to attain their maximum re-usability; Hence all
c2

i s, i ∈ {1, 2, . . . , 6} together must occupy 12 vertices in F8 ∪ F7 here. As discussed
in Observations 14, each of c3

2, c3
5 and c3

8 must be used at least twice in F7 ∪ F8 to
attain their maximum re-usability and each of c3

i , i ∈ {1, 2, . . . , 9} \ {2, 5, 8} must
be reused at least once in F7 ∪ F8 to attain their maximum re-usability. So, all
c3

i s, i ∈ {1, 2, . . . , 9} together must occupy at least 12 vertices in F7 ∪ F8 here. As
discussed in Observations 15, all c4

i , i ∈ {1, 2, . . . , 12} must be reused at least twice in
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F7 ∪ F8 to attain their maximum re-usability. So, all c4
i s, i ∈ {1, 2, . . . , 12} together

must occupy at least 24 vertices in F7 ∪ F8 here. Therefore, to satisfy the maximum
re-usability of each color used in D8

xr , total positions required at F7 ∪ F8 is at least
9 + 12 + 12 + 24 = 57. However, total positions available at F7 ∪F8 is 21 + 24 = 45
only. Since two or more colors can not be given at the same vertex, these colors
together must loose the potential of maximum re-usability by at least 57 − 45 = 12
in V′. Hence they together can color maximum (84 − 12) = 72 vertices in V′. Since
V′ has 78 vertices, new color/s must be needed to color at least (78 − 72) = 6
vertices of V′. From observation 16, a new color can color at most five vertices in V′.
So at least two new colors are required to color these six vertices. Since 31 distinct
colors are required for D8

xr , at least (31 + 2) = 33 colors are required for D16
xr . Hence

λ1, 1, . . . , 1︸ ︷︷ ︸
8

(D16
xr ) ≥ 32.

As for any left vertex xl, D16
xr and D16

xl
are isomorphic, so λ1, 1, . . . , 1︸ ︷︷ ︸

8

(T3)(D16
xl
) ≥

32. As D16
xr and D16

xl
are sub graphs of T3, we conclude that λ1, 1, . . . , 1︸ ︷︷ ︸

8

(T3) ≥ 32.

Hence the proof. □

In the following section we will derive the proof of the conjecture for all even
ℓ > 8.

6.2 Deriving the span of l distance coloring T3 for even
ℓ > 8

In this section first we discuss some preliminaries and then we prove the conjecture
for even ℓ > 8.

6.2.1 Preliminaries

As discussed in [18], T3 is a bipartite graph, where there exists two disjoint sets
V0, V1 such that V0 ∪ V1 = V(T3) and for each edge (u, v) ∈ E(T3), u ∈ V0, v ∈
V1 or otherwise. For any vertex v(i, j) ∈ T3, τ(v) is defined as τ(v) = ((i + j)
mod 2) [18]. For a vertex v(i, j) ∈ T3, if τ(v) = 0, then we consider v ∈ V0

otherwise v ∈ V1 [18]. Here we assume the coordinates of the origin is (0, 0) and it
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belongs to V0. Assuming i1 ≤ i2, for two vertices v1(i1, j1), v2(i2, j2) ∈ T3, d(v1, v2)

can be defined as follows.

d(v1, v2) =

{
|i1 − i2|+ |j1 − j2| i f |i1 − i2| ≤ |j1 − j2|,
2|i1 − i2|+ τ(v1)− τ(v2), i f |ii − i2| > |j1 − j2|.

(6.3)

Equation (6.3) can be proved similarly as that of Lemma 3.2 in [18].
Note that there are 3k vertices which are at distance k from x where k ∈ Z+ [18].

In the following definitions we assume the coordinates of x as (i, j). In the proofs,
for the sake of simplicity, we will assume the coordinates of x as (0, 0).

Let Fx,k = {v ∈ V(T3) : d(x, v) = k} be the set of those 3k vertices. We
denote these 3k vertices as v1

x,k, v2
x,k, . . . , v3k

x,k. Note that the coordinates of the
vertex v1

x,k is (i, j + k). The vertices v2
x,k, . . . , v3k

x,k are labeled anti-clockwise start-
ing from v1

x,k in T3. Therefore the coordinates of these vertices should be as

follows: v1
x,k(i, j + k), v2

x,k(i + 1, j + k − 1), . . . , v⌈
k
2 ⌉+1

x,k (i + ⌈ k
2⌉, j + ⌊ k

2⌋) . . . , vk+1
x,k (i +

⌈ k
2⌉, j − ⌊ k

2⌋), . . . , vk+⌈ k
2 ⌉+1

x,k (i, j − k) , . . . , v2k+1
x,k (i − ⌊ k

2⌋, j − ⌈ k
2⌉), . . . , v2k+⌈ k

2 ⌉+1
x,k (i −

⌊ k
2⌋, j + ⌈ k

2⌉), . . . , v3k
x,k(i − 1, j + k − 1). When k = 7, the vertices of Fx,7 are shown

in Figure 6.4.
Observe that for k = 1, the number of vertices in Fx,k are 3. For k = 2, 3, . . ., the

number of vertices of Fx,k are 6, 9, . . .. Therefore for k ≥ 2, these 3k vertices of Fx,k

can be partitioned into 6 disjoint sets G1
x,k, G2

x,k, . . ., G6
x,k. The vertices belong to the

sets G1
x,k, G2

x,k, . . . , G6
x,k are mentioned below. The coordinates of the corresponding

vertices are also mentioned there.
G1

x,k = {vm
x,k(i + m − 1, j + k − m + 1) : 1 ≤ m ≤ ⌈ k

2⌉}
G2

x,k = {vm+⌈ k
2 ⌉

x,k (i + ⌈ k
2⌉, j + ⌊ k

2⌋ − 2m + 2) : 1 ≤ m ≤ ⌊ k
2⌋},

G3
x,k = {vm+k

x,k (i + ⌈ k
2⌉ − m + 1, j − ⌊ k

2⌋ − m + 1) : 1 ≤ m ≤ ⌈ k
2⌉},

G4
x,k = {vm+k+⌈ k

2 ⌉
x,k (i − m + 1, j − k + m − 1) : 1 ≤ m ≤ ⌊ k

2⌋},

G5
x,k = {vm+2k

x,k (i − ⌊ k
2⌋, j − ⌈ k

2
⌉+ 2m − 2) : 1 ≤ m ≤ ⌈ k

2⌉},

G6
x,k = {vm+2k+⌈ k

2 ⌉
x,k (i − ⌊ k

2⌋+ m − 1, j + ⌈ k
2⌉+ m − 1) : 1 ≤ m ≤ ⌊ k

2⌋}.
For illustration, Figure 6.4 shows the 3k vertices for k = 7 and the corresponding

Gr
x,k where r = 1, 2, . . . , 6.
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Definition 13 A vertex v(p, q) ∈ Fx,k, k ≥ 2, k ∈ Z+ is said to be a corner vertex with
respect to x(i, j) in Fx,k if one of the following six conditions holds.

1. p = i, q = j + k.
2. p = i + ⌈ k

2⌉, q = j + ⌊ k
2⌋ .

3. p = i + ⌈ k
2⌉, q = j − ⌊ k

2⌋.
4. p = i, q = j − k.
5. p = i − ⌊ k

2⌋, q = j − ⌈ k
2⌉.

6. p = i − ⌊ k
2⌋, q = j + ⌈ k

2⌉ .

The set of vertices in Fx,k, k ≥ 2, k ∈ Z+ which are not corner vertices of Fx,k

are said to be non corner vertices of Fx,k.

Note that there are six corner vertices in Fx,k, k ≥ 2 and they are v1
x,k, v⌈

k
2 ⌉+1

x,k ,

vk+1
x,k , vk+⌈ k

2 ⌉+1
x,k , v2k+1

x,k and v2k+⌈ k
2 ⌉+1

x,k . For simplicity, we denote the six corner vertices

v1
x,k, v⌈

k
2 ⌉+1

x,k , vk+1
x,k , vk+⌈ k

2 ⌉+1
x,k , v2k+1

x,k and v2k+⌈ k
2 ⌉+1

x,k of Fx,k as vc1
x,k vc2

x,k, vc3
x,k, vc4

x,k, vc5
x,k and

vc6
x,k respectively. The set of six corner vertices of Fx,k are denoted as F c

x,k. From
Definition 13, we get the coordinates of those six corner vertices. For an example,
if we consider Fx,7 (k = 7) and coordinates of x is (0, 0), the coordinates of the
corresponding six corner vertices v1

x,7, v5
x,7, v8

x,7, v12
x,7, v15

x,7 and v19
x,7 are (0, 7), (4, 3),

(4,−3), (0,−7), (−3,−4) and (−3, 4) respectively. The set of non corner vertices of
Fx,k is denoted as Fnc

x,k.
Here, we are going to find the minimum number of colors required for 2p

distance coloring of T3. To determine that, it is required to discuss the reusability
of a color of D2p

x in T3. In the context of reusability of a color of D2p
x , the following

definition is given.

Definition 14 For a vertex v ∈ V(D2p
x ) and a set S ⊆ V(T3) \ V(D2p

x ), RS
v = {u :

d(u, v) ≥ 2p + 1, u ∈ S} denotes the subset of vertices of S where f (v) can be reused in
2p distance coloring.

For example, consider Figure. 6.4 and the vertex v = vc1
x,7 in F c

x,6. Using equa-
tion (6.3), it can be shown that the set of vertices in Fx,7 where f (v) can be reused is
G3

x,7 ∪ G4
x,7 ∪ {vc5

x,7} for 12 distance coloring. Therefore RFx,7
v = G3

x,7 ∪ G4
x,7 ∪ {vc5

x,7}.
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x

vc1
x,k(v

1
x,k)

G1
x,k = {vm

x,k : 1 ≤m ≤ dk
2
e}

vc2
x,k(v

dk
2
e+1

x,k )

vc3
x,k(v

k+1
x,k )

vc4
x,k(v

k+dk
2
e+1

x,k )

vc5
x,k(v

2k+1
x,k )

vc6
x,k(v

2k+dk
2
e+1

x,k )

G2
x,k = {vm+dk

2
e

x,k : 1 ≤m ≤ bk
2
c}

G3
x,k = {vm+k

x,k : 1 ≤m ≤ dk
2
e}

G4
x,k = {vm+k+dk

2
e

x,k : 1 ≤m ≤ bk
2
c}

{vm+2k
x,k : 1 ≤m ≤ dk

2
e}

G6
x,k = {vm+2k+dk

2
e

x,k : 1 ≤m ≤ bk
2
c}

G5
x,k =

Figure 6.4: The vertices (Marked as ×) at distance k = 7 from x.

6.2.2 Results

In the following Observations and Theorems, we calculate the distance between
two vertices by using equation (6.3). But in most of the cases the corresponding cal-
culations have not been shown here for better readability. For the sake of simplicity
we will assume the coordinates of x is (0, 0). Below we state Observations 17 and
18 whose proofs are trivial and hence we omit them.

Observation 17 The number of vertices in D2p
x is |D2p

x | = 1 + 3p(p+1)
2 .

Observation 18 1 + 3p(p+1)
2 + ⌊ p

2 ⌋ =
[

3
8

(
2p +

4
3

)2
]

.
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Our proof technique is based on examining the reusability of the colors of

the vertices of D2p
x in

2⌊ p
2 ⌋−1⋃

q=1

Fx,p+q and then by checking the minimum number

of vertices in
2⌊ p

2 ⌋−1⋃
q=1

Fx,p+q which can not be colored by the colors used in D2p
x .

Therefore some colors which are not used in D2p
x must be used in

2⌊ p
2 ⌋−1⋃

q=1

Fx,p+q. The

minimum number of such extra colors which are not used in D2p
x can be determined

by evaluating maximum number of times a color can be used in
2⌊ p

2 ⌋−1⋃
q=1

Fx,p+q. To

do so, in Observation 19, we show how many times at maximum the color of a
corner vertex in F c

x,p−q can be reused in Fx,p+q+1, where q = 0, 1, . . . , p − 2.

Observation 19 For any vertex v ∈ F c
x,p−q, f (v) can be reused at most twice in Fx,p+q+1,

where q = 0, 1, . . . , p − 2.

Proof: Consider the vertex v = vc1
x,p−q in F c

x,p−q. Let k = p + q + 1. Using
equation (6.3), it can be shown that the set of vertices in Fx,k where f (v) can be
reused is given by RFx,k

v = G3
x,k ∪ G4

x,k ∪ {vc5
x,k}. Let RFx,k

v = X ∪ Y where X = G3
x,k

and Y = G4
x,k ∪ vc5

x,k. Observe that ∄u1, u2 ∈ X such that d(u1, u2) ≥ 2p + 1 and
∄w1, w2 ∈ Y such that d(w1, w2) ≥ 2p + 1. Hence f (v) can be reused at most twice
in X ∪ Y, once at a vertex u in X and once at a vertex v in Y, provided there exists
u ∈ X and v ∈ Y such that d(u, v) ≥ 2p + 1. Similarly we can prove that for any
other corner vertex w ∈ F c

x,p−q, f (w) can be reused at most twice in Fx,k. This
completes the proof of Observation 19. □

In Observation 20, we will show how many times at maximum the color of a
non corner vertex in Fnc

x,p−q can be reused in Fx,p+q+1, where q = 0, 1, . . . , p − 3.

Observation 20 For any vertex v ∈ Fnc
x,p−q, f (v) can be reused at most once in Fx,p+q+1,

where q = 0, 1, . . . , p − 3.

Proof: Let us consider any non corner vertex v ∈ G6
x,p−q. Let k = p + q + 1.

Using equation (6.3), we can show that the set of vertices in Fx,k where f (v) can be
reused is given by RFx,k

v = G3
x,k ∪ {vc4

x,k}. It can now be observed that ∄ u1, u2 ∈ RFx,k
v

84



such that d(u1, u2) ≥ 2p + 1. That is, f (v) can be reused only once in Fx,k. For
other non corner vertices in G1

x,p−q, G2
x,p−q, G3

x,p−q, G4
x,p−q, G5

x,p−q the same result can
be proved considering G4

x,k ∪ {vc5
x,k}, G5

x,k ∪ {vc6
x,k}, G6

x,k ∪ {vc1
x,k}, G1

x,k ∪ {vc2
x,k}, G2

x,k ∪
{vc3

x,k}, respectively. This completes the proof of Observation 20. □

Now we will check the reusability of the colors of D2p
x in Fx,p+1. In Theorem 6.2.1,

we will show that reusing the colors of D2p
x in Fx,p+1, all the vertices of Fx,p+1 can

not be colored and a new color which is not used in D2p
x is to be used in Fx,p+1.

Before going to Theorem 6.2.1, we formally state the notion of new color.
Consider two sets of vertices V1 and V2, where the colors used in V1 are reused

to color the vertices of V2. Suppose there exists at least one vertex in V2 which can
not be colored by any of the colors used in V1. In such case, we say that a new color
which is not used in V1 must be introduced to color the vertices of V2.

Theorem 6.2.1 At least a new color which is not used in D2p
x must be introduced to color

the vertices of Fx,p+1 for 2p distance coloring.

Proof: Note that f (v1) ̸= f (v2) where v1 ∈ Fx,p+1, v2 ∈ Fx,q and q = 0, 1, . . . p−
1 for 2p distance coloring. So, colors of vertices of Fx,p can only be reused at the
vertices of Fx,p+1. Note that |Fx,p| = 3p and |Fx,p+1| = 3(p + 1).

So colors of some vertices of Fx,p must be reused more than once in Fx,p+1.
From Observation 19, we get that only the colors of the six corner vertices

vc1
x,p, vc2

x,p, . . ., vc6
x,p of Fx,p can be reused twice in Fx,p+1. The only possibility

to reuse f (vc1
x,p) twice in Fx,p+1 is to use f (vc1

x,p) in vc3
x,p+1 and vc5

x,p+1. That is,
f (vc3

x,p+1) = f (vc1
x,p) and f (vc5

x,p+1) = f (vc1
x,p). Similarly, if f (vc2

x,p), f (vc3
x,p), . . . , f (vc6

x,p)

are to be reused twice in Fx,p+1, then f (vc4
x,p+1) = f (vc6

x,p+1) = f (vc2
x,p); f (vc5

x,p+1) =

f (vc1
x,p+1) = f (vc3

x,p); f (vc6
x,p+1) = f (vc2

x,p+1) = f (vc4
x,p); f (vc1

x,p+1) = f (vc3
x,p+1) =

f (vc5
x,p); and f (vc2

x,p+1) = f (vc4
x,p+1) = f (vc6

x,p).
From Observation 20, we get that the color of any non corner vertex of Fx,p can

be reused at most once in Fx,p+1. So if the vertices of Fx,p+1 are to be colored only
with the colors used in Fx,p, the colors of at least three corner vertices of Fx,p must
be reused twice each in Fx,p+1.

Note that any two of f (vc1
x,p), f (vc3

x,p) and f (vc5
x,p) can not be reused twice each

simultaneously in Fx,p+1 as in that case they must be reused in a common vertex in
Fx,p+1 which is not possible. Similarly, any two of f (vc2

x,p), f (vc4
x,p) and f (vc6

x,p) can
not be reused twice each simultaneously in Fx,p+1 as in that case too they must be
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reused in a common vertex in Fx,p+1 which is also not possible. So the colors of at
most two corner vertices of Fx,p, one from {vc1

x,p, vc3
x,p, vc5

x,p} and one from {vc2
x,p, vc4

x,p,
vc6

x,p} can be reused twice each in Fx,p+1. In other words, at least one vertex remains
uncolored in Fx,p+1. Hence at least a new color which is not used in V(D2p

x ) must
be introduced in Fx,p+1. □

Now we will check the reusability of the colors of the vertices of D2p
x in those

vertices which are at distance p + 1, p + 2 and p + 3 from x. In Theorem 6.2.2, we
will show that reusing the colors of D2p

x ∪ Fx,p+1 in Fx,p+2 ∪ Fx,p+3, all the vertices
of Fx,p+2 ∪ Fx,p+3 can not be colored and a second new color which is not used
in D2p

x ∪ Fx,p+1 must be required to color the vertices of Fx,p+2 ∪ Fx,p+3. To prove
the Theorem 6.2.2, we will consider vertices defined in Definition 15 and their
reusability. In Lemma 6.2.1 and Lemma 6.2.2, we will give results of the reusability
of such vertices and with the help of the results of these two Lemmas, we will prove
Theorem 6.2.2. Now we formally state Definition 15.

Definition 15 We define S2r
x,k as the set of non corner vertices in Fnc

x,k which are at distance
k from x and at distance 2r from a corner vertex in F c

x,k. That is, S2r
x,k = {v : v ∈

Fnc
x,k ∩ (G1

x,k ∪ G3
x,k ∪ G5

x,k), ∃u ∈ F c
x,k, d(v, u) = 2r, 1 ≤ r ≤ ⌈ k

2⌉ − 1} ∪ {v : v ∈
Fnc

x,k ∩ (G2
x,k ∪ G4

x,k ∪ G6
x,k), ∃u ∈ F c

x,k, d(v, u) = 2r, 1 ≤ r ≤ ⌊ k
2⌋ − 1}, where k ≥ 5.

For k = 4, the conjecture has already been proved in 6.1, so we consider k ≥ 5.

As an example, for k = 7, from Fig. 6.4, we get that S2
x,k = { v3k

x,k, v2
x,k, v⌈

k
2 ⌉

x,k ,

v⌈
k
2 ⌉+2

x,k , vk
x,k, vk+2

x,k , vk+⌈ k
2 ⌉

x,k , vk+⌈ k
2 ⌉+2

x,k , v2k
x,k, v2k+2

x,k , v2k+⌈ k
2 ⌉

x,k , v2k+⌈ k
2 ⌉+2

x,k }.
Observe that a vertex v ∈ S2r

x,k with respect to a corner vertex in F c
x,k is also in

S2( k
2−r)

x,k with respect to another corner vertex in F c
x,k if k is even and r ∈ {1, 2, . . . , k

2 −
1}. When k is odd, a vertex v ∈ S2r

x,k with respect to a corner vertex in F c
x,k is also

in S2(⌈ k
2 ⌉−r)

x,k , r ∈ {1, 2, . . . , ⌈ k
2⌉ − 1} with respect to another corner vertex in F c

x,k

when v ∈ G1
x,k ∪ G3

x,k ∪ G5
x,k. When v ∈ G2

x,k ∪ G4
x,k∪ G6

x,k then f (v) ∈ S2(⌊ k
2 ⌋−r)

x,k and
r ∈ {1, 2, . . . , ⌊ k

2⌋ − 1}. Here we consider x is a right vertex. For x to be a left vertex,
corresponding fact can be concluded. For example, consider the Fig. 6.4 where
k = 7. Now v2

x,k ∈ S2
x,k with respect to the corner vertex vc1

x,k (here r = 1). Again

v2
x,k ∈ S2(⌈ k

2 ⌉−r)
x,k = S6

x,k with respect to the corner vertex vc2
x,k. Note that v2

x,k ∈ G1
x,k.

Now consider the vertex v3k
x,k ∈ S2

x,k. It is in S2
x,k with respect to vc1

x,k ( here r = 1).
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Again v3k
x,k ∈ S2(⌊ k

2 ⌋−r)
x,k = S4

x,k with respect to the corner vertex vc6
x,k. Note that here

v3k
x,k ∈ G6

x,k.
So, a vertex v ∈ S2r

x,k with respect to a corner vertex in F c
x,k is also in S2r′

x,k where
r′ = k

2 − r for even k and r′ = ⌊ k
2⌋ − r or r′ = ⌈ k

2⌉ − r for odd k.
Now we have the following Lemma when r ∈ {1, 2, . . . , ⌊ k

4⌋}.

Lemma 6.2.1 For any v ∈ S2r
x,p−q, if f (v) is reused once in Fp+q+1 then f (v) can be

reused at most once more in Fx,p+q+2r+1, where q = 0, 1, . . . , p− 4 and r = 1, 2, . . . , ⌊ p−q
4 ⌋.

Proof: Let us consider the vertex v ∈ S2r
x,p−q. For the sake of simplicity of

argument, here we consider the vertex v ∈ G6
x,p−q and it is at distance 2r from

vc1
x,p−q. We consider the coordinates of the vertex x as (0, 0). So the coordinates of

the vertex v are (−r, (p − q)− r) = (i1, j1). Here first we are going to determine
in which set of vertices in Fx,p+1 ∪ Fx,p+2 ∪ · · · ∪ Fx,p+q+2r+1, f (v) can be reused.
For this purpose, first we will consider Fx,p+q+2r+1. Note that Fx,p+q+2r+1 =

G1
x,p+q+2r+1 ∪ G2

x,p+q+2r+1 ∪ · · · ∪ G6
x,p+q+2r+1. Now we will check the reusability

of f (v) in G1
x,p+q+2r+1 ∪ G2

x,p+q+2r+1 ∪ · · · ∪ G6
x,p+q+2r+1.

Consider a vertex u ∈ G1
x,p+q+2r+1. The coordinates of the vertex u is (m1 −

1, (p + q + 2r + 1) − m1 + 1) = (i2, j2) where 1 ≤ m1 ≤ ⌈ p+q+2r+1
2 ⌉. Observe

that i1 < i2. Therefore i1 − i2 = (−r) − (m1 − 1) = −(m1 + r − 1). Note that
m1 + r − 1 ≥ 1 as m1 ≥ 1 and r ≥ 1. So, |i1 − i2| = m1 − 1 + r. Observe that
j1 − j2 = ((p − q) − r) − ((p + q + 2r + 1) − m1 + 1) = m1 − 2q − 3r − 2. Now
m1 − 2q − 3r − 2 ≤ 0 or m1 − 2q − 3r − 2 > 0. So we have the following two cases.

• Case 1: j1 − j2 = m1 − 2q − 3r − 2 ≤ 0: In this case |j1 − j2| = −(j1 − j2) =
(2q + 3r + 2 − m1). One of the following two cases may happen.

– When |i1 − i2| ≤ |j1 − j2|: From equation (6.3), d(v, u) = |i1 − i2|+ |j1 −
j2|.
d(v, u) = |i1 − i2|+ |j1 − j2|
⇒ d(v, u) = (m1 − 1 + r) + (2q + 3r + 2 − m1) = 2q + 4r + 1
⇒ d(v, u) = 2q + 4r + 1 ≤ 2q + 4⌊ p−q

4 ⌋+ 1 as r ≤ ⌊ p−q
4 ⌋

⇒ d(v, u) ≤ 2q + 4⌊ p−q
4 ⌋+ 1 ≤ 2q + 4 (p−q)

4 + 1 = p + q + 1
⇒ d(v, u) ≤ p + q + 1 < 2p + 1 as q < p
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– When |i1 − i2| > |j1 − j2|: From equation (6.3), d(v, u) = 2|i1 − i2| +
τ(v)− τ(u).

d(v, u) = 2|i1 − i2|+ τ(v)− τ(u)
⇒ d(v, u) = 2(m1 − 1 + r) + τ(v)− τ(u) as |i1 − i2| = (m1 − 1 + r)
⇒ d(v, u) ≤ 2(⌈ p+q+2r+1

2 ⌉ − 1 + r) + τ(v)− τ(u) as m1 ≤ ⌈ p+q+2r+1
2 ⌉

There are the following two sub cases.

1. When p + q + 2r + 1 is even:

⇒ d(v, u) ≤ 2( p+q+2r+1
2 − 1 + r) + τ(v)− τ(u)

⇒ d(v, u) ≤ (p + q + 2r + 1 − 2 + 2r) + 1 as τ(v)− τ(u) ≤ 1
⇒ d(v, u) ≤ p + q + 4r
⇒ d(v, u) ≤ p + q + 4(⌈ p−q

4 ⌉) as r ≤ ⌈ p−q
4 ⌉

⇒ d(v, u) ≤ p + q + 4 (p−q)
4 < 2p

2. When p + q + 2r + 1 is odd:

p + q is even and p − q is also even
τ(v) = (i1 + j1) mod 2 = (p − q − 2r) mod 2 = 0
τ(u) = (i2 + j2) mod 2 = (p + q + 2r + 1) mod 2 = 1
d(v, u) = 2|i1 − i2|+ τ(v)− τ(u)
⇒ d(v, u) = 2(m1 − 1 + r) − τ(u) + τ(v) = 2(m1 − 1 + r) − 1 =

2m1 + 2r − 3
⇒ d(v, u) = 2( p+q+2r+1

2 + 1
2) + 2r − 3 = p + q + 4r − 1

⇒ d(v, u) ≤ p + q + 4(⌊ p−q
4 ⌋)− 1

⇒ d(v, u) ≤ p + q + 4( p−q
4 )− 1 = 2p − 1 < 2p

• Case 2. When j1 − j2 = m1 − 2q − 3r − 2 > 0: same result can be concluded.

So, f (v) can not be used at any vertex u ∈ G1
x,p+q+2r+1.

Now we will consider a vertex u ∈ G2
x,p+q+2r+1. The coordinates of u is

(⌈ p+q+2r+1
2 ⌉, ⌊ p+q+2r+1

2 ⌋ − 2m1 + 2) = (i2, j2) where 1 ≤ m1 ≤ ⌊ p+q+2r+1
2 ⌋. Pro-

ceeding similar algebraic methods, we can show that for vertices u ∈ G2
x,p+q+2r+1

with p+q+1
2 ≤ m1 ≤ ⌊ p+q+2r+1

2 ⌋, f (v) can be reused at a vertex in G2
x,p+q+2r+1.
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With similar algebraic argument, it can be shown that f (v) can be reused in
G3

x,p+q+2r+1 ∪ G4
x,p+q+2r+1. In G5

x,p+q+2r+1, the only vertex where f (v) can be reused
is vc5

x,p+q+2r+1. Note that f (v) can not be reused in G6
x,p+q+2r+1.

With the similar methods using equation (6.3), we can show that in Fx,p+q+2r,

f (v) can be reused in {vm1+⌈ p+q+2r
2 ⌉

x,p+q+2r : p+q+3
2 ≤ m1 ≤ ⌊ p+q+2r

2 ⌋} ∪ G3
x,p+q+2r ∪

{vm2+p+q+2r+⌈ p+q+2r
2 ⌉

x,p+q+2r : 1 ≤ m2 ≤ ⌊ p+q+2r
2 ⌋ − ⌈ p+q+3

2 ⌉ + 1}. In Fx,p+q+2r−1, f (v)

can be reused in {vm1+⌈ p+q+2r−1
2 ⌉

x,p+q+2r−1 : p+q+1
2 ≤ m1 ≤ ⌊ p+q+2r−1

2 ⌋} ∪ G3
x,p+q+2r−1 ∪

{vm2+p+q+2r−1+⌈ p+q+2r−1
2 ⌉

x,p+q+2r−1 : 1 ≤ m2 ≤ ⌊ p+q+2r−1
2 ⌋ − ⌈ p+q+1

2 ⌉+ 1} and so on. Note
that in Fx,p+q+1, f (v) can be reused in G3

x,p+q+1 ∪ {vc4
x,p+q+1} provided the vertex is

at least at distance 2p + 1 from v.
It has been assumed that f (v) is used in Fx,p+q+1. Therefore, f (v) must be reused

in G3
x,p+q+1 ∪ {vc4

x,p+q+1}. Using similar algebraic process using equation (6.3), it
can be shown that f (v) can be reused at most once again at u1 ∈ G4

x,p+q+2r+1 ∪
{vc5

x,p+q+2r+1} \ {vc4
x,p+q+2r+1}.

The statement of Lemma 6.2.1 can be proved similarly for any other vertex
v ∈ S2r

x,p−q where q = 0, 1, . . . , p − 4 and r = 1, 2, . . . , ⌊ p−q
4 ⌋. This completes the

proof of Lemma 6.2.1. □

Before going to next Lemma, we will now state the notion that the colors used
in V1 lose their reusability in V2 by na times. Let V1 = {v1, v2, . . . , vp}. Suppose that
individually f (v1), f (v2), . . . , f (vp) can be reused at most n1, n2, . . . , np times in V2

respectively. If altogether the colors of V1 are reused at most nb times in V2 then we
say that the colors of V1 lose their reusability by at least (n1 + n2 + · · ·+ np)− nb =

na times.

Lemma 6.2.2 If the colors used in Fx,p, Fx,p−1 and Fx,p−2 is reused in
3⋃

q=1

Fx,p+q,

3⋃
q=2

Fx,p+q and Fx,p+3 respectively then colors of at least 6 vertices of F c
x,p−2 ∪ S2

x,p lose

their reusability in Fx,p+3 by at least 6.

Proof: We consider the reusability of the colors of
p⋃

r=0
Fx,r in

3⋃
q=1

Fx,p+q. Note

that the colors used in
p−3⋃
r=0

Fx,r can not be reused in
3⋃

q=1

Fx,p+q as d(u1, u2) < 2p + 1
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∀u1 ∈
p−3⋃
r=0

Fx,r and ∀u2 ∈
3⋃

q=1

Fx,p+q. Again note that the colors used in Fx,p, Fx,p−1

and Fx,p−2 can be reused in
3⋃

q=1

Fx,p+q,
3⋃

q=2
Fx,p+q and Fx,p+3 respectively.

First consider that the colors of 2 corner vertices of F c
x,p are reused twice each

simultaneously in Fx,p+1. From the proof of Lemma 6.2.1, the color of each vertex
of S2

x,p may be reused once more in Fx,p+3 even after using once in Fx,p+1. Again

observe that color of any vertex of
2⋃

q=0
Fnc

x,p−q \ S2
x,p can not be reused any more in

3⋃
r=1

Fx,p+r when colors of vertices of Fnc
x,p, Fnc

x,p−1 and Fnc
x,p−2 are reused in Fx,p+1,

3⋃
q=2

Fx,p+q and Fx,p+3 respectively.

From Lemma 6.2.1, if f (v) (v ∈ S2
x,p), is reused once in u1 ∈ Fx,p+1 then it can

be reused once more in u2 ∈ Fx,p+3. If u1 ∈ F c
x,p+1 then u2 ∈ F c

x,p+3 ∪ S2
x,p+3 and

if u1 ∈ S2
x,p+1 then u2 ∈ F c

x,p+3 (It can be proved by equation (6.3)). From the
discussion of Theorem 6.2.1, 4 vertices of F c

x,p+1 are already colored by the colors of
2 corner vertices of F c

x,p as we consider colors of 2 corner vertices of F c
x,p is reused

twice each simultaneously in Fx,p+1. Hence in the remaining 2 corner vertices
of F c

x,p+1, colors of at most 2 vertices of S2
x,p may be reused. Colors of these two

vertices may be reused once each in two vertices in S2
x,p+3. But the colors of the at

least 10 remaining vertices of S2
x,p must be reused once each in S2

x,p+1 and once each
in F c

x,p+3. But there are only 6 vertices in F c
x,p+3. So colors of at least (10 − 6) = 4

vertices of S2
x,p can not be reused each in Fx,p+3. In this case, 2 vertices of S2

x,p+3

and 6 vertices of F c
x,p+3 may be colored by the colors of the vertices of S2

x,p. Hence
the remaining 10 vertices of S2

x,p+3 are yet to be considered.
Note that, if the color of a corner vertex of F c

x,p−2 is to be reused in two vertices
u1, u2 ∈ Fx,p+3, then there are two possible cases to consider. a. color of a corner
vertex of F c

x,p−2 is reused at u1 ∈ S4
x,p+3 and in that case u2 ∈ F c

x,p+3 and b.
color of a corner vertex of F c

x,p−2 is not reused at u1 ∈ S4
x,p+3 and in that case

u1 ∈ F c
x,p+3 ∪ S2

x,p+3 and u2 ∈ F c
x,p+3 ∪ S2

x,p+3. But the only possibility that remains
here is to use the color of a vertex of F c

x,p−2 in S2
x,p+3 as the vertices of F c

x,p+3 have
already been colored by the colors of the vertices of S2

x,p. Since there are at most 10
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vertices left in S2
x,p+3 for coloring, only colors of at most 5 vertices of F c

x,p−2 can be
reused twice each in Fx,p+3 and in that case color of a vertex of F c

x,p−2 can not be
reused in Fx,p+3. So, color of a corner vertex in F c

x,p−2 lose the reusability in Fx,p+3

by 2 and colors of 4 vertices in S2
x,p lose all together the reusability by 4 in Fx,p+3.

Proceeding similarly, in all other cases, when the color of a corner vertex in F c
x,p

has been used two times in Fx,p+1 or color of no corner vertex in F c
x,p has been used

two times in Fx,p+1, it can be shown that colors of 6 vertices of F c
x,p−2 ∪ S2

x,p lose
their reusability in Fx,p+3 by at least 6. This completes the proof of Lemma 6.2.2. □

Now we will prove the following Theorem.

Theorem 6.2.2 A second new color which is not used in V(D2p
x ) ∪ Fx,p+1 must be re-

quired to color the vertices of Fx,p+2 ∪ Fx,p+3 for 2p distance coloring.

Proof: Here we consider the reuse of the colors of Fx,p, Fx,p−1 and Fx,p−2 in
3⋃

q=1

Fx,p+q,
3⋃

q=2
Fx,p+q and Fx,p+3 respectively.

From the discussion of Theorem 6.2.1, colors of at most 2 corner vertices of
F c

x,p can be reused twice each simultaneously in Fx,p+1. From Observation 20, the
color of a non corner vertex in Fx,p can be reused at most once in Fx,p+1. Note
that there are 3 more vertices in Fx,p+1 than that of in Fx,p and colors of at most 2
corner vertices may be reused twice each in Fx,p+1. So, there exists at least a vertex
u ∈ Fx,p+1 where a color which is not used in D2p

x must be used. Since there are 3
more vertices in Fx,p+1 than that of in Fx,p and colors of 2 corner vertices are reused
twice each in Fx,p+1, if color of any non corner vertex in Fx,p is not reused in Fx,p+1,
then there must exist another vertex other than u which can not be colored with the
colors used in V(D2p

x ). In that case there exists at least two vertices in Fx,p+1 where
the colors used in D2p

x can not be used.
Note that there are various ways of reusing the colors used in Fx,p into Fx,p+1.

Among them, the only way where the new color is used exactly once in Fx,p+1 is
when the colors of two corner vertices of Fx,p are reused twice each in Fx,p+1 and
the colors of the other vertices of Fx,p are reused once each in Fx,p+1. Note that the
new color can be used at a corner vertex or at a non corner vertex in Fx,p+1. First
assume it is used at a corner vertex in Fx,p+1 and without loss of generality consider
it is used at vc1

x,p+1. Then by equation (6.3), for p ≥ 5, it can be shown that the new

color can be reused again in (G3
x,p+1 ∪ G4

x,p+1 ∪ {vc5
x,p+1}) ∪ ({vp+2

x,p+2} ∪ G3
x,p+2 ∪
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G4
x,p+2 ∪ {vc5

x,p+2, v2(p+2)+2
x,p+2 })∪ ({vp+3

x,p+3} ∪ G3
x,p+3 ∪ G4

x,p+3 ∪ {vc5
x,p+3, v2(p+3)+2

x,p+3 }) =
X ∪ Y, where X = G3

x,p+1 ∪ ({vp+2
x,p+2} ∪ G3

x,p+2) ∪ ({vp+3
x,p+3} ∪ G3

x,p+3) and Y =

(G4
x,p+1 ∪{vc5

x,p+1 ∪G4
x,p+2 ∪{vc5

x,p+2, v2(p+2)+2
x,p+2 })∪ (G4

x,p+3 ∪{vc5
x,p+3, v2(p+3)+2

x,p+3 }) are
two disjoint sets of vertices. It can be shown by equation (6.3) that the new color
can be reused again at most once in X and at most once in Y. Similarly if the new
color is used in a non corner vertex in Fx,p+1, then with similar argument stated in
Lemma 6.2.1, it can be shown that the new color can be reused again at most 2 times

in
3⋃

q=1

Fx,p+q. So a new color can be used at most 3 times in
3⋃

q=1

Fx,p+q provided it

has been used once in Fx,p+1. Note that this result does not hold for p = 4 as the

new color can be reused more that 3 times in
3⋃

q=1

Fx,p+q even if it has been used

once in Fx,p+1.

Since our proof is based on the number of vertices of
3⋃

q=1

Fx,p+q which can not be

colored by the colors used in V(D2p
x ), we can assume that color of each non corner

vertex of Fx,p is reused once in Fx,p+1, colors of 2 corner vertices of Fx,p are reused
twice each in Fx,p+1 and colors of each of the remaining 4 corner vertices of Fx,p are
used only once each in Fx,p+1. If any of them is not reused in Fx,p+1, it may color

one more vertex in
3⋃

q=2
Fx,p+q, but at the same time one more vertex in Fx,p+1 must

be colored with a new color. As we are counting uncolored vertices in
3⋃

q=1

Fx,p+q,

there is no benefit of not reusing any of them in Fx,p+1.
From the proof of Lemma 6.2.1, the color of each vertex of S2

x,p may be reused
once more in Fx,p+3 even after using once in Fx,p+1. Again observe that color of

any vertex of
2⋃

q=0
Fnc

x,p−q \ S2
x,p can not be reused any more in

3⋃
r=1

Fx,p+r when colors

of vertices of Fnc
x,p, Fnc

x,p−1 and Fnc
x,p−2 are reused in Fx,p+1,

3⋃
q=2

Fx,p+q and Fx,p+3

respectively.
Note that F c

x,p has 6 vertices. Let S be the subset of vertices of F c
x,p such that for

every v ∈ S, f (v) has not been reused twice in Fx,p+1. Since as per our assumption,
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colors of 2 corner vertices have already been reused twice each in Fx,p+1, there are
(6− 2) = 4 vertices in S, each of which may be reused once more in Fx,p+2 ∪Fx,p+3.
Note that there are 3(p + 2) + 3(p + 3) = 6p + 15 many vertices in Fx,p+2 ∪ Fx,p+3

which may be colored by the colors used in Fx,p−1 ∪ Fx,p−2 ∪ S2
x,p ∪ S.

Observe that the colors of the (3(p − 1)− 6) + (3(p − 2)− 6) = 6p − 21 many
non corner vertices in Fx,p−1 ∪ Fx,p−2 may be reused at most once each in Fx,p+2 ∪
Fx,p+3. So, using the colors of them together, we can color at most 6p − 21 vertices
of Fx,p+2 ∪Fx,p+3. From Lemma 6.2.2, colors of 6 vertices of F c

x,p−2 ∪ S2
x,p lose their

reusability in Fx,p+3 by at least 6.
Again the colors of 6 corner vertices of F c

x,p−1 can be reused at most twice
each in Fx,p+2 ∪ Fx,p+3. So their colors can be reused together to color at most
12 vertices in Fx,p+2 ∪ Fx,p+3. Therefore all together using the colors used in
Fx,p−1 ∪ Fx,p−2 ∪ S2

x,p, at most (3(p − 1) − 6) × 1 + 6 × 2 + (3(p − 2) − 6) × 1 +

6 × 2 + 12 × 1 − 6 = 6p + 9 vertices in Fx,p+2 ∪ Fx,p+3 can be colored. Now there
are (6p + 15)− (6p + 9) = 6 more vertices of Fx,p+2 ∪ Fx,p+3 which are yet to be
colored. These 6 vertices may be colored by the colors used in the 4 vertices of S.

Since the colors of two corner vertices of F c
x,p have already been reused in the

4 corner vertices of Fx,p+1, there are only 2 remaining corner vertices in Fx,p+1

where colors of S may be reused. If f (v) (v ∈ S) is reused in a corner vertex of
F c

x,p+1 then f (v) may be reused once again in F c
x,p+3 ∪ S2

x,p+3 or F c
x,p+2 ∪ S2

x,p+2.
But the vertices of F c

x,p+3 ∪ S2
x,p+3 have already been colored. So here we consider

the reusability of f (v) in F c
x,p+2 ∪ S2

x,p+2. If f (v) is reused in a non corner vertex in
Fx,p+1 then it may only be reused in a corner vertex of Fx,p+2. But if the colors of
the six vertices of F c

x,p−1 are to be reused twice each in Fx,p+2, then each of them
have to be reused once in a corner vertex of F c

x,p+2. So using the colors of the 6
corner vertices of F c

x,p−1, 6 corner vertices of F c
x,p+2 have been colored. So the only

possibility remaining here is to reuse f (v) in a corner vertex of F c
x,p+1. But as per

above discussion, there may be at most 2 corner vertices remaining in Fx,p+1 where
f (v) can be reused. So, at most 2 of the 4 vertices of S can be reused once each in
Fx,p+2. Therefore at least 6 − 2 = 4 vertices in Fp+2 ∪ Fp+3 can not be colored by
the colors used in D2p

x . Note that the new color used in Fx,p+1 can be reused at most
twice more in Fx,p+1 ∪ Fx,p+2 ∪ Fx,p+3. Hence to color the remaining (4 − 2) = 2
vertices in Fx,p+2 ∪Fx,p+3, a second new color must be used. It completes the proof
of the Theorem 6.2.2. □
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From the discussion of Theorem 6.2.2, it is observed that the vertices of F c
x,p+1∪

S2
x,p+1 ∪ F c

x,p+3 ∪ S2
x,p+3 have been colored by the colors of the vertices of F c

x,p−2 ∪
S2

x,p ∪F c
x,p.

Let us consider colors used in Fx,p, Fx,p−1 and Fx,p−2 have been reused in
3⋃

q=1

Fx,p+q,
3⋃

q=2
Fx,p+q and Fx,p+3 respectively with their maximum reusability. Then

the vertices of F c
x,p+1, S2

x,p+1, F c
x,p+3 and S2

x,p+3 have been colored as the way
discussed in Lemma 6.2.2 and Theorem 6.2.2. Vertices of F c

x,p+1 ∪ S2
x,p+1 have been

colored by the colors of the vertices of F c
x,p ∪ S2

x,p. Vertices of F c
x,p+3 ∪ S2

x,p+3 have
been colored with the colors of the vertices F c

x,p ∪ S2
x,p ∪ F c

x,p−2. Now consider the
coloring of the vertices of Fx,p+5. From Lemma 6.2.1, note that the colors used in
S4

x,p and S2
x,p−2, if reused once each in Fx,p+1 and in Fx,p+3 respectively, then can

be reused again in Fx,p+5. As the colors of the vertices of S4
x,p can not be reused in

F c
x,p+1 ∪S2

x,p+1, they are to be reused once in S4
x,p+1 and once in F c

x,p+5. As there are
12 vertices in S4

x,p and only 6 vertices are there in F c
x,p+5, colors of at least 6 vertices

of S4
x,p can not reused in F c

x,p+5. The colors of the vertices of S2
x,p−2 may be reused

at most once more in Fx,p+5 if they are used in Fx,p+3. But their colors can not be
used in F c

x,p+3 ∪ S2
x,p+3. In that case if the color of such a vertex, if is to be reused

once in Fx,p+3 and once in Fx,p+5, then it must be reused once in S4
x,p+3 and once in

S2
x,p+5 (it can be proved using equation (6.3)). Considering this, if color of a vertex

of F c
x,p−4 is to be reused twice in Fx,p+5, then it must be reused twice in S4

x,p+5. So
reusing the colors of 6 vertices of F c

x,p−4 twice each in Fx,p+5, all the 12 vertices of
S4

x,p+5 have been colored. Proceeding similarly, it can be shown that for the coloring
of the vertices of Fx,p+1 ∪ Fx,p+2 ∪ · · · ∪ Fx,h for each of h = 3, 5, . . . , 2r + 1 and

r ≤ ⌊ p
2 ⌋ − 1, the vertices of F c

x,p+3
⋃{

(3−1)/2⋃
h′=1

S2h′
x,p+3}, F c

x,p+5
⋃{

(5−1)/2⋃
h′=1

S2h′
x,p+5}, · · · ,

F c
x,p+h

⋃{
(h−1)/2⋃

h′=1

S2h′
x,p+h} have been colored. Proceeding similarly, it can be shown

also that colors of some vertices of D2p
x lose the reusability by at least 6 vertices

in Fx,p+1 ∪ Fx,p+2 ∪ · · · ∪ Fx,h for each of h = 3, 5, . . . , 2r + 1 and r ≤ ⌊ p
2 ⌋ − 1.

This discussion will be used to prove the next Theorem. In next Theorem, we will
prove that ⌊ p

2 ⌋ th new color must be used to color the vertices of Fx,p+2⌊ p
2 ⌋−1 for 2p

distance coloring.
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From the discussion of the proof of Lemma 6.2.1 it follows that for a vertex
v ∈ S2

x,p, if f (v) is reused once in Fx,p+1, then it can be reused at most once
more in Fx,p+3 and it can not be reused in Fx,p+2 any more. In other words, f (v)
can be reused at most once more in Fx,p+2 ∪ Fx,p+3 in this case. Now if f (v)
is not reused in Fx,p+1, then it can be shown using similar argument stated in
Lemma 6.2.1 that f (v) can be reused at most twice in Fx,p+2 ∪Fx,p+3. So regardless
of whether f (v) is reused in Fx,p+1 or not, f (v) can reused at most twice in Fx,p+1 ∪
Fx,p+2 ∪ Fx,p+3. Similar result holds in all possible cases of reusing of the colors
of Fx,p−h ∪ Fx,p−h+1 ∪ · · · ∪ Fx,p in Fx,p+1 ∪ Fx,p+2 ∪ · · · ∪ Fx,p+h+1. So minimum
number of colors required remain unchanged no matter f (v), where v ∈ Fx,p−h,
has been used in Fx,p+h+1 or not. So for the sake of simplicity we assumed that f (v)
where v ∈ Fx,p−h has been used in Fx,p+h+1 with its maximum possible reusabilty
in order to find the minimum number of colors required globally.

Theorem 6.2.3 ⌊ p
2 ⌋-th new color must be used to color the vertices of Fx,p+2⌊ p

2 ⌋−1 for 2p
distance coloring.

Proof: From Theorem 6.2.1, we get that a color which is not used in D2p
x must be

required to color the vertices of Fx,p+1. Again from Theorem 6.2.2, another color is
required to color the vertices of Fx,p+2 ∪ Fx,p+3.

Next we will show that if r many colors which are not used in D2p
x are to be

required to color the vertices of
2r−1⋃
q=1

Fx,p+q then an r + 1 th color which is not used

in
2r−1⋃
q=1

Fx,p+q will be required to color the vertices of Fx,p+2r ∪Fx,p+2r+1. After that

we will justify why r many colors which are not used in D2p
x are to be required

to color the vertices of
2r−1⋃
q=1

Fx,p+q. At the end we will conclude the result of our

theorem. We assume that the colors of the vertices in S2r
x,p, S2(r−1)

x,p−2 , . . . , S2(r−(r−1))
x,p−2(r−1)

are used once each in Fx,p+1, Fx,p+3, . . . , Fx,p+2(r−1)+1 respectively.
As similar discussion stated in Observation 20 and Lemma 6.2.1, we get that the

colors used in the vertices S2r
x,p ∪S2(r−1)

x,p−2 ∪ · · · ∪ S2(r−(r−1))
x,p−2(r−1) can be reused once more

each in Fx,p+2r+1, where r ≤ ⌊ p
4 ⌋. When r > ⌊ p

4 ⌋ and r ≤ ⌈ p
2 ⌉ − 1 or r ≤ ⌊ p

2 ⌋ − 1
(depending on whether p is even or odd), there exists r′ < ⌊ p

4 ⌋ such that the chosen
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vertex v ∈ Fx,p is at distance 2r from one corner vertex in F c
x,p and is at distance

2r′ from another corner vertex in F c
x,p. Therefore it is evident that v ∈ S2r

x,p as
well as v ∈ S2r′

x,p. As per our assumption, f (v) is reused once in Fx,p+1. Then
from Lemma 6.2.1, f (v) can be reused once again in Fx,p+2r′+1. As v ∈ S2r

x,p, from
Lemma 6.2.1, it follows that f (v) may be reused once more in Fx,p+2r+1. As r′ < r,
so p + 2r′ + 1 < p + 2r + 1. Since we are assuming the reusing of colors in the
lower layer around x before the higher layer around x, each f (v) is reused once in
Fx,p and may be reused again in Fx,p+2r′+1. Depending on whether f (v) is used in
Fx,p+2r′+1, f (v) can be reused at most once again in Fx,p+2r+1.

Let S1 = S2r
x,p ∪ S2(r−1)

x,p−2 ∪ · · · ∪ S2(r−(r−1))
x,p−2(r−1). Now from Observation 19 and Obser-

vation 20, we get that the colors of the vertices in Fx,p−2r can be reused in Fx,p+2r+1

where r ≤ ⌊ p
2 ⌋ − 1.

Observe that 3(p − 2r)− 6 and 6 many non corner and corner vertices are there
in Fx,p−2r respectively. From Observation 19 and Observation 20, the color of a
corner and a non corner vertex of Fx,p−2r can be reused twice and once in Fx,p+2r+1

respectively. Since each S2(r−k)
x,p−2k, 0 ≤ k ≤ r − 1, contains 12 vertices (for p − 2k ≥ 4),

there are total 12r vertices, all of which may be reused in Fx,p+2r+1.
As the coloring of the vertices of lower layer around x have been done before

the coloring of the vertices of higher layer around x, the coloring of the vertices

of
2r−1⋃
q=1

Fx,p+q have been done. From the discussion of the paragraph after Theo-

rem 6.2.2, note that the vertices of F c
x,p+3

⋃{
(3−1)/2⋃

h′=1

S2h′
x,p+3}, F c

x,p+5
⋃{

(5−1)/2⋃
h′=1

S2h′
x,p+5},

· · · , F c
x,p+2r−1

⋃{
(2r−1−1)/2⋃

h′=1

S2h′
x,p+2r−1} have been colored. Due to that, if the colors

of all the corner vertices of Fx,p−2r are to be reused twice each in Fx,p+2r+1 and

colors of all of the vertices of S2(r−k)
x,p−2k, 0 ≤ k ≤ r − 1, are to be reused once each

in Fx,p+2k+1 and once each in Fx,p+2r+1 then as similar discussion stated in The-
orem 6.2.2 and using equation (6.3), at least 12 of them must be reused in corner
vertices of Fx,p+2r+1. But there are only 6 corner vertices in Fx,p+2r+1. So colors of
at least 6 of them can not be reused once each in Fx,p+2r+1. Therefore, all of them
together may be reused in 12r + 6 × 2 − 6 = 12r + 6 vertices in Fx,p+2r+1. As there
are (3(p − 2r)− 6) many non corner vertices in Fx,p−2r, the colors of the vertices
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of Fx,p−2r ∪ S1 can be reused in (3(p − 2r)− 6)× 1 + 12r + 6 = 3p + 6r vertices of
Fx,p+2r+1. But there are 3(p + 2r + 1) = 3p + 6r + 3 vertices in Fx,p+2r+1. So, at
least 3 vertices in Fx,p+2r+1 are to be colored.

Now consider the reusing of the colors of the vertices in Fx,p−2r+1 ∪ S2(r−1)
x,p−1 ∪

S2(r−2)
x,p−3 ∪ · · · ∪S2((r−1)−(r−2))

x,p−1−2(r−2) . The colors used in the vertices of Fx,p−2r+1 ∪S2(r−1)
x,p−1 ∪

S2(r−2)
x,p−3 ∪ · · · ∪ S2((r−1)−(r−2))

x,p−1−2(r−2) can be reused in Fx,p+2r ∪Fx,p+2r+1 where r ≤ ⌊ p
2 ⌋ −

1. Let S2 = S2(r−1)
x,p−1 ∪ S2(r−2)

x,p−3 ∪ · · · ∪ S2((r−1)−(r−2))
x,p−1−2(r−2) . Observe that there are 3(p −

2r + 1)− 6 and 6 non corner and corner vertices in Fx,p−2r+1 respectively. From
Observations 19 and Observation 20, color of a corner and a non corner vertex of
Fx,p−2r+1 can be reused twice and once in Fx,p+2r ∪ Fx,p+2r+1 respectively. Here

also we assume that colors of all the vertices of S2(r−1−k)
x,p−1−2k, 0 ≤ k ≤ r − 2, have

been reused in Fx,p+2k+2. As discussed in the previous case, color of a vertex

in S2(r−1−k)
x,p−1−2k, 0 ≤ k ≤ r − 2, if reused in Fx,p+2k+2 may be reused once more in

Fx,p+2r ∪ Fx,p+2r+1. Since each S2(r−1−k)
x,p−1−2k, 0 ≤ k ≤ r − 2, contains 12 vertices

(p − 1 − 2k ≥ 4), there are total 12(r − 1) vertices in S2 and colors of all of which
may be reused in Fx,p+2r ∪ Fx,p+2r+1. So the colors of the vertices of Fx,p−2r+1 ∪ S2

together can be reused in (3(p − 2r + 1)− 6)× 1 + 6 × 2 + 12(r − 1) = 3p + 6r − 3
vertices of Fx,p+2r+1 ∪ Fx,p+2r.

Therefore using the colors of the vertices of (Fx,p−2r ∪ Fx,p−2r+1) ∪ S1 ∪ S2

together, we can color at most (3p + 6r) + (3p + 6r − 3) = 6p + 12r − 3 vertices of
Fx,p+2r ∪Fx,p+2r+1. But there are 3(p + 2r) + 3(p + 2r + 1) = 6p + 12r + 3 vertices
in Fx,p+2r ∪ Fx,p+2r+1. So (6p + 12r + 3)− (6p + 12r − 3) = 6 vertices are to be
colored.

As discussed in the next paragraph after the proof of Theorem 6.2.2, colors
of some vertices of D2p

x lose the reusability by least 6 in Fx,p+1 ∪ Fx,p+2 ∪ · · · ∪
Fx,p+2r−1 when r ≤ ⌊ p

2 ⌋ − 1. Hence their colors may be reused in Fx,p+2r ∪
Fx,p+2r+1 and in that case, if they are to be reused in Fx,p+2r+1, they must be
reused in F c

x,p+2r+1 ∪ S2
x,p+2r+1 ∪ S4

x,p+2r+1 ∪ · · · ∪ S2r
x,p+2r+1 (This can be shown by

equation (6.3)). Note that the vertices of F c
x,p+2r+1 ∪ S2

x,p+2r+1 ∪ S4
x,p+2r+1 ∪ · · · ∪

S2r
x,p+2r+1 have already been colored by the colors of the vertices of Fx,p−2r ∪ S1. So

these 6 colors can not be reused in Fx,p+2r+1. So they must be reused in Fx,p+2r.
If they are to be reused in Fx,p+2r, then those 6 colors must be reused in F c

x,p+2r ∪
S2

x,p+2r ∪ S4
x,p+2r ∪ · · · ∪ S2r

x,p+2r (This can be shown by equation (6.3)). Again, from
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similar discussion in the proof of Theorem 6.2.2 and its next paragraph, if all the col-
ors used in Fx,p−2r+1 ∪ Fx,p−2r ∪ S1 ∪ S2 are to be reused in Fp+2r ∪ Fp+2r+1, then
at most 3 vertices remain uncolored in F c

x,p+2r ∪ S2
x,p+2r ∪ S4

x,p+2r ∪ · · · ∪ S2r
x,p+2r. So

out of the 6 colors, at most 3 can be reused in Fx,p+2r and hence at least (6 − 3) = 3
vertices in Fp+2r ∪ Fp+2r+1 are to be colored.

Note that the r th new color used twice in Fx,p+2r−2 ∪ Fp+2r−1 can be reused at
most twice more in Fx,p+2r ∪ Fp+2r+1. Hence to color the remaining (3 − 2) = 1
vertices in Fx,p+2r ∪ Fp+2r+1 the r + 1 th new color must be used.

Now observe that from Theorem 6.2.1, the first new color is required to color
the vertices of Fx,p+1. From Theorem 6.2.2, the 2nd new color is required to color

the vertices of
3⋃

q=2
Fx,p+q. Therefore from similar discussion stated above, 3-rd new

color is required to color the vertices of
5⋃

q=4

Fx,p+q. Proceeding similarly, the rth

new color is required to color the vertices of
2r−1⋃

q=2r−2
Fx,p+q. Thus we justify why r

many new colors are required to color the vertices of
2r−1⋃
q=1

Fx,p+q.

In our discussion, we considered r ≤ ⌊ p
2 ⌋ − 1. If r = ⌊ p

2 ⌋, then the vertices of
S2r

x,p coincides with the corner vertices of F c
x,p. Therefore the iteration terminates

when r = ⌊ p
2 ⌋ − 1. Hence total number of new colors required, other than the colors

used in D2p
x , is 1 + (⌊ p

2 ⌋ − 1) = ⌊ p
2 ⌋. □

Theorem 6.2.4 λℓ(T3) =

[
3
8

(
ℓ+

4
3

)2
]

where [x] is an integer, x ∈ R and x − 1
2
<

[x] ≤ x +
1
2

for even ℓ ≥ 10.

Proof Note that all colors used in D2p
x must be distinct. Now from Theorem 6.2.3

and Observations 17 and 18, we get that λ2p(T3) ≥ |D2p
x |+ ⌊ p

2 ⌋ =
[

3
8

(
2p +

4
3

)2
]

.

It has been shown in [18] that λ2p(T3) ≤
[

3
8

(
2p +

4
3

)2
]

. This completes the proof

of Theorem 6.2.4. □
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6.3 Conclusion

Jacko and Jendrol [18], determined the exact value of λℓ(T3) for any odd ℓ and for

even ℓ ≥ 8, it was conjectured that λℓ(T3) =

[
3
8

(
ℓ+

4
3

)2
]

, where [x] is an integer,

x ∈ R and x − 1
2
< [x] ≤ x +

1
2

. In this chapter, we prove the conjecture for any
even ℓ ≥ 8.
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Chapter 7

Conclusions and future directions

In this thesis we have studied some of the L(k1, k2, . . . , kℓ) labeling problems for
infinite hexagonal, square, triangular and 8-regular grids when ℓ ≥ 2. The problems
have practical relevance because some special cases of the channel assignment
problem can be modelled theoretically as L(k1, k2, . . . , kℓ) labeling of infinite regular
grids. In this thesis, we have analyzed the underlined graph structure and obtained
some new results as well as improved some existing results. We have derived
exact values of λ′

1,2(T3), λ′
1,2(T4), λ′

2,1(T6) and λ′
1,2(T8). Besides it, we have also

improved the lower bounds of λ′
1,2(T6). We have derived a labeling function for

circular L(2, 1)-edge labeling of T6 for which no such labeling function was known.
For vertex labeling, we have theoretically determined the lower bounds of λk1,k2(T6)

when k1 ≤ k2 for some sub intervals, whereas, the corresponding values were
determined previously by partial computer simulation. We have also determined
the values of λ1, 1, . . . , 1︸ ︷︷ ︸

8

(T3) which is the settlement of a conjecture posed by Jacko

and jendrol. The methods we have adopted here to solve the various problems
stated above may be extended for solving the general cases.

We have improved the lower bounds of λ′
1,2(T6). But yet there is gap between

them. So, attempts may be taken to improve the bounds. The upper and lower
bounds of σ′

2,1(T6) are also not identical. So, scope of future research exists here
also. We have theoretically determined the lower bounds of λk1,k2(T6) when k1 ≤ k2

but in some sub intervals of
1
3
≤ k1

k2
≤ 1, finer results are present (though obtained

through computer assistance). So, we can extend our method to obtain the finer
results theoretically for those intervals.
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