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Abstract

The k-circle formation problem asks a group of robots to form disjoint circles. Each circle is

restricted to being centered at one of the pre-fixed points given in the plane, and each circle

should have exactly k distinct robot positions. In this thesis, we investigate the solvability of

the k-circle formation by a swarm of mobile robots in a deterministic manner. The robots are

autonomous, and they execute Look-Compute-Move (LCM) cycle under a fair asynchronous

scheduler. They are anonymous, i.e., they do not have any unique idenitfier, and homogeneous,

i.e., they execute the same deterministic algorithm. The robots are assumed to be oblivious and

silent or may have limited persistent memory.

We begin by investigating the k-circle formation problem in a setting where the robots have

global agreement on the y-axis. In this setting, all the initial configurations and values of k

for which the k-circle formation problem is deterministically unsolvable are characterized. For

the remaining configurations and values of k, a deterministic distributed algorithm is proposed

that solves the k-circle formation problem within finite time. It is shown that if the k-circle

formation problem is deterministically solvable, then the k-EPF problem (a generalized version

of the embedded pattern formation problem) can also be solved deterministically.

We proceed by dropping the assumption of global y-axis agreement, where we assume that

the robots do not have any agreement on the orientations and directions of any of the axes of

a global coordinate system. In this setting, we provide a deterministic solution for the k-circle

formation problem by characterizing all the deterministically unsolvable configurations.

If the robots are opaque, when three robots are collinear, then the terminal robots cannot

see one another. In this setup, we consider two cases, namely, complete knowledge of fixed

points and zero knowledge of fixed points. When the robots have complete knowledge of fixed

points, a distributed algorithm is proposed that solves k-circle formation problem for oblivious

and silent robots in a deterministic manner. For robots with zero knowledge of fixed points,

a deterministic distributed solution is presented by assuming that the robots have one bit of

persistent memory.

In the real world, a robot cannot be dimensionless. We study the k-circle formation problem

for unit disk robots. We propose a deterministic distributed solution under the assumption of

global y-axis agreement. We conclude this thesis by discussing some future research directions

related to the k-circle formation problem.
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1.1 Overview

The study of swarm robotics has received a lot of attention over the last two decades

and primarily focuses on systems of multiple autonomous mobile robots (also known as

robot swarms). A swarm of mobile robots is a multi-robot system consisting of small

and inexpensive mobile robots working together in a cooperative environment to achieve

some specific goal. The collective behavior of social animals like ants, bees, and fish

serves as inspiration for the behavior of these robots. Each of the robots is assumed to be

weak, i.e., equipped with very limited capabilities. The robots cooperate in a distributed

manner to complete a task.

One of the motivations behind this research direction is to avoid the difficulty and

often high cost of designing and deploying a small number of problem-specific robots that

1
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are capable of solving the specific problem. Another common motivation behind building

autonomous multi-robot systems is the need to perform different tasks in adverse situa-

tions where human intervention is not possible. Such a multi-robot system is designed to

work in a decentralized manner so that it can be deployed in adverse and unknown envi-

ronments. Assuming the robots are inexpensive (and hence produced in large quantities),

they can be deployed in harsh and hostile environments. Such a large number of robots

have the potential to find applications in many fields like risky and hazardous scenar-

ios, such as in the fields of search and rescue operations [1–3], military operations [4], fire

fighting [5,6], agriculture [7], etc. The common distributed models assume relatively weak

and simple robots. In particular, these robots are only capable of sensing their immediate

surroundings, performing simple computations on the sensed data, and moving towards

the computed destination. They follow a simple cycle of sensing, computing, moving, and

being inactive. In spite of their limitations, the robots should be able to perform rather

complex tasks. In computational terms, the primary focus is to determine the minimal

robot capabilities that are necessary to perform the required task. The feasibility of solv-

ing different problems depends on each set of assumptions about the capabilities of the

robots. There is a trade-off between the model of computation and the solvability of a

problem.

Suzuki et al. [8] were the first to study multi-robot systems from a computational

point of view. In the research field of distributed computing by mobile entities [9], a large

volume of work has been reported over the last two decades that primarily focuses on the

computational and complexity issues for a distributed system of mobile entities. These

mobile entities are assumed to be deployed in either a discrete domain (mobile agents) or

a continuous domain (mobile robots). The research is still focusing on basic tasks such as

gathering [10–22], flocking [23–27], pattern formation [28–37], scattering [38–42], etc.

1.2 Computational Model

The classical model of distributed computing by mobile robots models each robot as a

point in the Euclidean plane. Each robot has a local coordinate system and sensory

capabilities to determine the positions of other robots. Such a distributed system of
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multiple mobile robots works in a coordinated manner to achieve a specific goal. The

primary goal is to find essential capabilities to solve a given problem. The idea is to

identify the minimal sets of capabilities that are required for designing such mobile robots.

In general, the robots are assumed to be:

• autonomous, i.e., they do not have any centralized controller;

• anonymous, i.e., they have no unique identifier;

• oblivious, i.e., they do not remember anything about past events;

• homogeneous, i.e., they execute the same algorithm.

• silent, i.e., they do not have any direct explicit communication.

However, some of the reported results have considered heterogeneous robots [43, 44].

In such a model, each group of homogeneous robots is represented by a color from a

pre-defined finite set of colors. In the literature, some of the studies [45–47] consider

robots with persistent memories and explicit communication capabilities provided by the

presence of lights.

x-axis

y-axis

r1

r2

r3
r4

r5

r6

(A)

x-axis

y-axis

R1

R2

R3
R4

R5

R6

(B)

Figure 1.1: (A) Blue points represent dimensionless robots. (B) Disks represent fat
robots.

1.2.1 Deployment Space

In general, the mobile robots are assumed to be deployed in either a discrete domain,

i.e., on the nodes of a graph, or a continuous domain, i.e., in the d-dimensional Euclidean
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space. In the discrete domain, the robots are allowed to move along the edges of the

graph. The movements of the robots are instantaneous, i.e., the robots are not visible

on the edges. In the continuous domain, the robots move in the d-dimensional Euclidean

space.

1.2.2 Dimension

In the standard model, the robots are assumed to be dimensionless, i.e., they are rep-

resented by points in the d-dimensional space (Figure 1.1(A)). However, some of the

models have been considered in which the robots are represented by unit disks in the

d-dimensional space (Figure 1.1(B)).
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Figure 1.2: (A) Full-Axis agreement (B) One-Axis agreement.

1.2.3 Agreement

In general, the robots have their own local coordinate system, whose origin is the position

of the robot. They may not have any agreement on the orientations and directions of any

of the axes of a global coordinate system. However, in some of the models, the robots

are assumed to have some agreement on the global coordinate system. Depending on

the type of agreement on the global coordinate system, the following different types of

models are common:
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Figure 1.3: (A) Direction-Only agreement (B) Axes-Only agreement.

1. Full-Compass: The robots have complete agreement on the direction and orien-

tation of both axes of the global coordinate system (Figure 1.2(A)).

2. Half-Compass: The robots agree on the direction and orientation of one of the

axes of the global coordinate system (Figure 1.2(B)).

3. Direction-Only: The robots have agreement on the direction of both axes of

the global coordinate system. However, they do not have any agreement on the

orientation of any of the global axes (Figure 1.3(A)).

4. Axes-Only: The robots have an agreement on the direction of both axes of the

global coordinate system. However, they do not have any agreement on the orien-

tation of any of the global axes. In addition, the robots do not agree on which of

the two axes is the x-axis (Figure 1.3(B)).

X−

Y −

X+

X−

Y +

X+

Y −
Y +

Y +
X+

X+

Y +

Figure 1.4: No-Compass agreement.

5. No-Compass: The robots do not have any agreement on the orientations and

directions of any of the axes of a global co-ordinate system (Figure 1.4).
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Note that the robots may not share a common unit distance [48] or a common origin

even in the full-compass model. Furthermore, the robots may not have any agreement

on a common clockwise or counter-clockwise directions. The robots are said to have a

common chirality, if they agree on a common clockwise direction.

1.2.4 Visibility

The robots are assumed to be equipped with sensors (known as the visibility of a robot)

that allow them to detect the positions of other robots. The visibility of a robot allows for

an implicit way of communicating with other robots. In general, the robots are assumed

to have unlimited visibility, i.e., they can observe the entire domain. However, there are

some restricted visibility models, as described below:

r1

r2r3

r4

ρ

r5

Figure 1.5: Limited visibility of robots.

1. Limited visibility: The robots have a sensing range. They can detect the positions

of other robots up to a fixed radius around them. In Figure 1.5, each robot can see

another robot that lies within ρ distance from its position. The robot r3 is visible

to all the robots, and r4 is only visible to r3. The robot r5 is not visible to any

other robots, namely r1, r2, r3 and r4.

2. Obstructed visibility: In general, the robots are assumed to be transparent,

i.e., their visibility is not blocked by the presence of other robots. Under the ob-

struted visibility model, the robots are assumed to be opaque, i.e., if three robots are

collinear, then the corner robots cannot see one another. In Figure 1.6, the robots

r1, r3 and r4 are collinear. The robot r3 can see both r1 and r4 whereas r1 and r4

cannot see one another.
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r1

r2

r3 r4

Figure 1.6: Obstructed visibility of robots.

1.2.5 Computational Cycle

The state of a robot can be either active or inactive. Each robot operates in Look-

Compute-Move (LCM) cycle. An active robot observes its surroundings, computes a

destination point, and moves towards the computed destination point.

1. Look: The robot takes a snapshot of the domain within its visibility range. The

snapshot is instantly taken in its own local coordinate system.

2. Compute: It computes a destination point based on the snapshot taken in its look

phase. The computed destination point may be its current location.

3. Move: The robot moves towards its destination point in its move phase in a straight

line. A moving robot can be seen anywhere on the line segment between its current

location and destination point at a particular instant of time. If the destination

point is the current location, then the robot makes null movement. The following

types of motion are considered:

(a) Rigid: The robot is guaranteed to reach its destination point.

(b) Non-rigid: The adversary can stop the robot before it reaches its destination

point. However, it is assumed that the distance traveled by a robot is not

infinitesimally small. This is to ensure that if a robot keeps computing the

same destination point, then it will reach its destination point within a finite

time. Suppose d > 0 denotes the distance between the destination point and

the robot. There exists a fixed but unknown δ > 0 such that if d > δ, then

the robot is guaranteed to move at least δ amount towards its destination. If

d < δ, the robot is guaranteed to reach the destination point.
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1.2.6 Scheduler

It is assumed that a scheduler determines the durations of inactivity phases and LCM

cycles for all the robots. The scheduler is assumed to be fair, i.e., each robot is activated

infinitely often. This prevents the scenario where the sheduler always forces one robot

to remain idle. Additionally, it is assumed that each robot completes its LCM cycle

within a finite time. Otherwise, the scheduler can make a robot continue an LCM cycle

indefinitely. The following types of schedulers are commonly used:

r1

r2

r3

Idle Look Compute Move

Figure 1.7: FSYNC scheduler

1. Fully-synchronous (FSYNC): The robots have a common notion of time. All

the robots are activated simultaneously and perform all operations synchronously

(Figure 1.7).

r1

r2

r3

Idle Look Compute Move

Figure 1.8: SSYNC scheduler

2. Semi-synchronous (SSYNC): It is similar to the FSYNC scheduler, with the

only difference that not all the robots are activated in each round (Figure 1.8). In

each round, a subset of robots are activated.

3. Asynchronous (ASYNC): The robots do not have a common notion of time.

They are activated independently, and the duration of each look, compute, move,

and inactivity phase is finite but unbounded (Figure 1.9). During the look phase
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r1

r2

r3

Idle Look Compute Move

Figure 1.9: ASYNC scheduler

of an active robot, some other robot may be in move phase. As a result, it might

start its move phase, considering an outdated perceived snapshot.

1.2.7 Faulty Robots

A robot may become faulty at any arbitrary point of time during an execution. A faulty

robot deviates from its specified behavior; for example, it may stop moving. However,

the robots do not have the capability to detect whether other robots are faulty or not.

The following types of faults are being considered in the model:

1. Transient Fault: A robot becomes faulty due to corruption of its memory for

a temporary point of time. If the robots are assumed to be oblivious, then the

distributed system is self-stabilizing against transient faults.

2. Crash Fault: A robot crashes and stops working forever. It stops moving and

remains in the environment.

3. Byzantine Fault: This type of fault occurs when a robot starts to behave arbi-

trarily. For example, a faulty robot can stop moving, move to arbitrary locations,

or prevent deliberately non-faulty robots from moving.

1.2.8 Multiplicity Detection

If the robots are assumed to be dimensionless, i.e., they are represented by points, then

multiple robots can share the same location. The multiplicity detection capability allows

the robots to identify such a multiplicity point. The following are the different types of

multiplicity detection capability:
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1. Local Weak: A robot determines whether or not its current location is a multi-

plicity point. However, it cannot exactly count the total number of robots in its

current position. In addition, it cannot recognize other multiplicity points aside

from its current location.

2. Global Weak: The robots can identify any multiplicity point in the domain. But,

it is unable to calculate the total number of robots present at a multiplicity location.

3. Local Strong: A robot can count the exact number of robots that are present at

its location. However, a robot is unable to count this for other multiplicity points.

4. Global Strong: The robots know the exact number of robots that are present at

any multiplicity point.

1.2.9 Memory and Communication

In general, the robots are assumed to be oblivious and silent. However, there are some

variants of the model where persistent memory and communication capabilities are pro-

vided by the presence of lights [47]. These lights can assume a finite number of pre-defined

colors. Each color indicates a different state of the robot. The following kinds of light

models are being considered:

1. F-STATE: The robots can remember their state from their previous cycle but do

not have knowledge of the states of other robots. In this model, the robots are

non-oblivious as they have a persistent memory. However, they are silent.

2. F-COMM: The robots cannot remember their own states but can identify the

states of other robots. The robots are not silent as they can explicitly communicate

using lights. However, they are oblivious.

3. F-ALL: The robots can remember their state set in their previous cycle as well as

identify the states of other robots. In this model, the robots are neither oblivious

nor silent.
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1.3 Geometric Problems

The primary focus of the research has been on issues related to solving fundamental

geometric problems. Some of the well-known geoemtric problems are discussed below:

1. Gathering: The gathering problem [10–22] asks all the robots to meet at a single

point not known a priori within finite time. The convergence problem and near

gathering problem are very closely related to the gathering problem. To solve the

convergence problem, the robots need to be as close as possible. A solution to the

near gathering problem requires that all the robots reach and remain inside a disk

of a pre-fixed radius. A variant of the gathering problem known as the gathering on

meeting points has been studied in which the robots need to gather at one of the

pre-fixed meeting points.

2. Pattern Formation: A solution to the pattern formation problem [29–31, 35–37]

asks the robots to position themselves so that they form a given pattern within a

finite time. The initial requirement is that no two robots share the same location,

and the number of points prescribed in the pattern is exactly equal to the number of

robots. To solve the circle formation problem, the robots must position themselves

on a circle whose center is not fixed a priori at distinct locations [28, 34, 49–52].

The task must be completed within a finite time. To solve the line formation

problem [53, 54] the robots need to reach and remain in a straight line. The plane

formation problem [55–57] asks a swarm of robots moving in three-dimensional

Euclidean space to land on a common plane that is not defined a priori.

3. Mutual Visibility: The mutual visibility problem [46, 58–68] is considered under

obstructed visibility model. A swarm of robots must arrange themselves in distinct

positions such that no three robots are collinear.

4. Scattering: To solve the scattering problem [38–42], the robots need to re-position

themselves so that no two robots share the same location.

5. Flocking: Flocking [23–27] is relatively a more complex task compared to the

above discussed geometric problem. The flocking problem requires the formation of



12 Chapter 1. Introduction

a pattern as well as maintaining the pattern while moving together as one flock. A

solution to the flocking problem demands more coordination among the robots.

1.4 Thesis Contributions

In this thesis, we study the k-circle formation problem in the Euclidean plane. The k-

circle formation problem considers m > 0 pre-fixed points (called as fixed points) and n

number of mobile robots in the Euclidean plane. The fixed points are visible to the robots

like landmarks. The k-circle formation problem is a hybrid problem that connects the

partitioning, circle formation and embedded pattern formation problems. A generalized

version of the embedded pattern formation problem is the k-EPF problem, which requires

the robot to reach and remain in a final configuration in which each fixed point contains

exactly k robots.

Problem Definition: For some positive integer k, the k-circle formation problem asks

a group of n autonomous mobile robots to form m disjoint circles. Each such circle is

restricted to being centered at one of the fixed points given in the plane. Each circle must

have k robots in distinct positions. The circles need not be uniform. In general, the

circles can have different radii. However, the circles are assumed to have equal radii in

this thesis, which is a special case for the k-circle formation problem.

The feasibility of the problem is investigated under different sets of assumptions. For a

particular set of assumptions, all the deterministically unsolvable cases are characterized.

For the rest of the cases, a deterministic distributed algorithm that solves the problem

within a finite time is proposed. The correctness of all the proposed deterministic algo-

rithms is discussed. In this thesis, the k-circle formation problem is investigated for the

set of assumptions presented in the Table 1.1. All the problems being addressed in this

thesis are considered under the ASYNC scheduler with non-rigid motion. Also, there is

no assumption of a common chirality in all the results obtained.
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Agreement Visibility Knowledge of Fixed points Dimension Chapter

One-Axis Unlimited Complete Point Chapter 3

No-Axis Unlimited Complete Point Chapter 4

No-Axis Obstructed Complete Point Chapter 5

No-Axis Obstructed Zero Point Chapter 5

One-Axis Unlimited Complete Fat Chapter 6

Table 1.1: Thesis Contributions

1.4.1 k-Circle Formation and k-EPF

In Chapter 3, we consider that the robots have an agreement on the direction and ori-

entation of one of the axes. The robots are assumed to be dimensionless. They have

unlimited visibility, and they are silent and oblivious. The contributions of this work are

as follows:

Result 1: All the initial configurations and values of k for which the problem is deter-

ministically unsolvable are characterized when n = km.

Result 2: A deterministic distributed algorithm is proposed that solves the problem

within finite time when n = km.

Result 3: All the initial configurations and values of k for which the problem is deter-

ministically unsolvable are characterized when n > km. In this case, there will

be n− km surplus robots that will not be assigned to any circle.

Result 4: All the initial configurations and values of k for which the problem is determin-

istically unsolvable are characterized when n < km. In this case, the objective

is to maximize the number of circles containing exactly k robots.

Result 5: It is shown that if the k-circle formation problem is deterministically solvable

than the k-EPF problem is also deterministically solvable.

1.4.2 k-Circle Formation by Disoriented Robots

In Chapter 4, the robots are assumed to be completely disoriented, i.e., they neither

have any agreement on a global coordinate system nor have any agreement on a common
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chirality. The robots are assumed to be dimensionless. They have unlimited visibility,

and they are silent and oblivious. The contributions of this work are as follows:

Result 1: All the initial configurations and values of k for which the problem is deter-

ministically unsolvable in this setting are characterized.

Result 2: A deterministic distributed algorithm is proposed that solves the problem

within finite time.

1.4.3 k-Circle Formation by Opaque Robots

In Chapter 5, we investigate the k-circle formation problem under obstructed visibility

model. The robots are assumed to be opaque, i.e., a robot can not see another robot if

a third robot is positioned on the line segment joining them. They are assumed to be

dimensionless and completely disoriented. Based on the visibility of the fixed points, the

following two different settings are considered:

1. Complete knowledge of fixed points. A robot cannot obstruct the visibility of a

fixed point for other robots. The positions of all the fixed points are known to the

robots. As a consequence, the robots have the knowledge of the total number of

fixed points. The robots are silent and oblivious.

2. Zero knowledge of fixed points. A robot can obstruct the visibility of a fixed point

for other robots. If a robot lies on the line segment joining a fixed point and another

robot, then the other robot can not see the fixed point. The robots do not have the

knowledge of the total number of fixed points. They are assumed to be equipped

with lights which provides persistent memory and communication capabilities.

The contributions of this chapter are as follows:

Result 1: All the initial configurations and values of k for which the k-circle formation

problem is deterministically unsolvable are characterized with the complete

knowledge of the fixed points.
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Result 2: A deterministic distributed algorithm is proposed that solves the k-circle for-

mation problem within finite time with complete knowledge of fixed points.

Result 3: It is shown that the problem is deterministically unsolvable by silent and obliv-

ious robots with the zero knowledge of the fixed points.

Result 4: A deterministic distributed algorithm is proposed considering one bit of persis-

tent memory that solves the k-circle formation problem within finite time with

zero knowledge of fixed points.

1.4.4 Uniform k-Circle Formation by Fat Robots

In Chapter 6, the uniform k-circle formation problem is investigated for a set of fat robots

in the plane. To solve the uniform k-circle formation problem in addition to solving the

k-circle formation problem, all the k robots on a circle must form a regular k-gon. The

robots are represented by transparent unit disks. They are assumed to have an agreement

on the direction and orientation of one of the axes. The robots are silent and oblivious.

The following results are shown:

Result 1: All the initial configurations and values of k for which the uniform k-circle for-

mation problem is deterministically unsolvable are characterized for fat robots.

Result 2: A deterministic distributed algorithm is proposed that solves the uniform k-

circle formation problem within finite time.

1.5 Outline of the Thesis

Chapter 2 presents the literature survey of the existing works relevant to this thesis. The

main contributions of this thesis are presented in Chapter 3 to Chapter 6. A summary of

the results is shown in the following table (Table 1.1). Chapter 7 concludes the thesis by

summarizing the research works done in this thesis and discussing the future directions

of researches that come out of these studies.
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2.1 Overview

A large volume of results have been reported in the literature which focus on the feasi-

bility of a geometric problem under different sets of assumptions, namely agreement on

the global axes, chirality, scheduler, dimension, visibility, etc. Finding minimal sets of

capabilities to solve a given problem is the primary objective. The goal is to identify the

minimal essential capabilities required for robots to perform a task, thereby reducing the

cost of mass production. The most researched problem is the gathering problem, which

can also be referred to as a point formation problem. The pattern formation problem has

also been extensively studied in the literature. In this thesis, we investigate the k-circle

formation problem, which is a special kind of pattern formation problem. In this chapter,

17
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we present a brief literature survey focusing on some fundamental geometric problems

related to the k-circle formation problem.

2.2 Partitioning Problem

The partitioning problem asks the robots to partition themselves into multiple groups,

with specified number of robots in each group. The robots in each group also need to

converge in a small area. Efrima and Peleg [69] studied the partitioning problem in the

Euclidean plane. They presented crash-fault-tolerant partitioning algorithms for various

levels of common orientation and different timing models. Liu et al. [44] investigated the

team assembling problem for heterogeneous robots. The robots need to form multiple

teams, each containing a pre-fixed number of robots of different kinds. The k-circle

formation problem can be viewed as a variant of the partitioning problem [69] and the

team assembling problem [44].

2.3 Gathering in the Continuous Domain

Gathering is a fundamental coordination problem for a swarm of mobile robots. To

solve the gathering problem, the robots need to gather at a point which is not fixed

a priori. The gathering problem has been extensively studied both in the continuous

domain [8, 12–15,17–19,21,22,48,70–81] and discrete domain [16,20,82–91].

2.3.1 Gathering for Two Robots

Suzuki and Yamashita [8] proved that under SSYNC scheduler, the gathering problem for

two robots, also known as the rendezvous problem, is deterministically unsolvable. Izumi

et al. [19] investigated the magnitude of consistency between the local coordinate systems,

which is necessary and sufficient to solve the gathering problem for two oblivious robots

under SSYNC and ASYNC models. They considered two families of unreliable compasses:

the static compass with (possibly incorrect) constant bearings and the dynamic compass,
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whose bearings can change arbitrarily (immediately before a new look-compute-move

cycle starts and after the last cycle ends). The deviation (φ) is measured by the largest

angle formed between the x-axis of a compass and the reference direction of the global

coordinate system. For each of the combinations of robot and compass models, the

condition on deviation φ that allows an algorithm to solve the gathering problem is

established:

1. for SSYNC and ASYNC robots with static compasses φ <
π

2
,

2. for SSYNC robots with dynamic compasses φ <
π

4
, and

3. for ASYNC robots with dynamic compasses φ <
π

6
.

In the first two cases, the above mentioned sufficient conditions are also necessary.

Flocchini et al. [79] proved that with rigid motions, rendezvous is solvable by F -

STATE robots under SSYNC scheduler and by F -COMM robots even under ASYNC

scheduler. Okumara et al. [80] showed that under ASYNC scheduler, rendezvous can

be solved with two light colors in non-rigid movement if robots know the value of the

minimum distance δ. Viglietta [22] gave a complete characterization of the number of

light colors that are necessary to solve the rendezvous problem in different models, ranging

from FSYNC to SSYNC to ASYNC, rigid and non-rigid, with preset or arbitrary initial

configuration. Bramas et al. [48] showed that if the robots disagree on the unit distance

of their coordinate system, it becomes possible to solve rendezvous and agree on a final

common location without additional assumptions.

2.3.2 Gathering for more than Two Robots

Non-faulty Robots: Cohen and Peleg [14] proved the correctness of the gravitational

algorithm for the convergence problem in the fully ASYNC model. Cohen and Peleg [77]

studied the convergence problem, focusing on the ability of robot systems with inaccurate

sensors, movements, and calculations to carry out the task of convergence. Cieliebak et

al. [13] proved that the gathering problem for n > 2 robots under ASYNC scheduler is

solvable for disoriented and oblivious robots starting from arbitrary initial configuration.
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Prencipe [21] proved that in both the ASYNC and SSYNC settings, there does not exist

any deterministic oblivious algorithm that solves the gathering problem within a finite

time for n ≥ 2 disoriented robots if they does not have multiplicity detection capability.

Flochhini et al. [78] studied the gathering problem for robots with limited visibility

under ASYNC scheduler when the robots have full-axis agreement. Di Luna et al. [92]

studied the gathering problem on a circle, in which all robots with limited visibility are

initially in distinct locations on the circle, and their goal is to reach the same point on the

circle within a finite time. Poudel et al. [81] proposed an O(DE) time algorithm for the

gathering problem with limited visibility under ASYNC scheduler with the assumption

of one axis agreement, where DE is the Euclidean distance between the farthest-pair of

robots in the initial configuration.

Czyzowicz et al. [15] were the first to study the gathering problem for fat robots.

The authors solved the gathering problem for at most four robots. Honorat et al. [18]

considered the gathering problem for four fat robots equipped with slim omnidirectional

cameras and provided an algorithm to solve the problem in a fully ASYNC setting. For

n ≥ 5 transparent fat robots, Gan Chaudhuri et al. [11] studied the gathering problem.

Agathangelou et al. [70] considered the gathering problem for opaque fat robots under

ASYNC scheduler. The proposed algorithm works for any number of robots, starting

from any initial configuration, with the assumption of a common chirality. A distributed

algorithm is presented to solve the gathering problem in the three dimensional Euclidean

space for a set of ASYNC robots under obstructed visibility by Bhagat et al. [93].

Bhagat et al. [74] studied the gathering problem by minimizing the maximum distance

traveled by a single robot. They proved that a set of oblivious robots cannot solve the

constrained gathering problem under FSYNC scheduler, even with multiplicity detection

capability. They proposed a distributed algorithm for the constrained gathering problem

for n ≥ 5 robots using two bits of persistent memory. The min-max gathering of oblivi-

ous robots under ASYNC scheduler with non-rigid motion was considered by Bhagat et

al. [72]. Cicerone et al. [12] investigated a variant of the gathering problem, considering

meeting points in the plane. To solve the gathering on meeting points problem, the robots

are required to gather at one of the pre-fixed meeting points. They fully characterized

when the gathering on meeting points can be accomplished. They also studied when
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gathering on meeting points can be accomplished with respect to two objective functions:

minimizing the total traveled distance by all robots and minimizing the maximum trav-

eled distance performed by a single robot. Bhagat et al. [73] considered the gathering

problem in the presence of obstacles. They proposed a distributed algorithm for gather-

ing which works even if the configuration contains multiplicity points in the presence of

non-intersecting transparent convex polygonal obstacles.

Faulty Robots: Cohen and Peleg [14] investigated the convergence problem in the

presence of crash-fault robots. Agmon and Peleg [71] considered the gathering problem

in the presence of both crash-fault and byzantine-fault. They observed that most of

the existing algorithms would fail to operate correctly in a crash-fault setting. They

proposed a single crash-fault-tolerant algorithm for n ≥ 3. They showed that under

SSYNC scheduler, the gathering for n = 3 robots is impossible even if at most one

byzantine-fault robot is present. Next, a byzantine-fault-tolerant algorithm was proposed

under FSYNC scheduler that solves the gathering problem in an n robot system with up

to f faults, where n ≥ 3f + 1. Bouzid et al. [75] studied the gathering for n robots with

f crash-fault robots for any f < n. They provided a wait-free algorithm to gather all the

non-faulty robots, assuming strong multiplicity detection and chirality. Défago et al. [17]

investigated the feasibility of the gathering problem in a deterministic manner in terms

of different synchrony modes and presence of faults (crash or byzantine). A deterministic

gathering algorithm that admits an arbitrary number of crashes and gathers all the correct

robots even if they do not have a common chirality was presented by Bramas et al. [76].

Bhagat et al. [94] investigated the gathering problem for n ≥ 2 robots in the presence

of f crash-fault robots under one axis agreement. They proposed two deterministic

algorithms which solve the gathering problem starting from any initial configuration,

one for unlimited visibility and another for obstructed visibility. Bhagat et al. [10] also

addressed the gathering problem under SSYNC scheduler in the presence of crash-fault

robots. First, a distributed algorithm is proposed which can tolerate at most (bn/2− 1c)

crash faults for n ≥ 7 robots with weak multiplicity detection. Next, a distributed

algorithm was presented with knowledge of δ, which can tolerate at most (n − 6) crash

faults for n ≥ 7 robots. In 3D space, the gathering problem under crash-fault model for

a set of SSYNC opaque robots was studied by Bhagat et al. [93].
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2.4 Gathering in the Discrete Domain

For an odd number of robots, Klasing et al. [20] proved that the gathering is feasible if

and only if the initial configuration is not periodic and provided a gathering algorithm for

any such configurations. For an even number of robots, they established the feasibility

of gathering except for one type of symmetric configurations, and proposed gathering

algorithms for initial configurations that proved to be gatherable. Klasing et al. [91]

studied the influence of symmetries of the configuration on the feasibility of gathering on

a ring under ASYNC scheduler. Izumi et al. [89] proposed a deterministic algorithm for

the gathering problem on rings assuming weak multiplicity. The proposed algorithm is

time optimal, i.e., the time complexity is O(n), where n is the number of nodes. Kamei et

al. [90] proposed a gathering protocol for an even number of robots in a ring that allows

symmetric but not periodic configurations as initial configurations, using only local weak

multiplicity detection. In their proposed protocol, the number of robots k ≥ 8 and the

number of nodes n on a network must be odd and greater than k+3. D’Angelo et al. [86]

studied the gathering of six oblivious robots on anonymous symmetric rings. Bonnet

et al. [84] investigated the gathering on a ring for four ASYNC robots. Das et al. [87]

considered gathering on a ring in the presence of an adversarial mobile entity called the

malicious agent. The gathering problem has also been studied in dynamic rings [85,88].

D’Angelo et al. [16] studied the gathering problem in grid and tree networks. They

provided a full characterization about gatherable configurations for grids and trees. They

showed that on these topologies, the multiplicity detection is not required. Di Stefano [95]

proposed an optimal algorithm in terms of the total number of moves for the gathering

problem in infinite grids. They fully characterized the cases when optimal gathering is

achievable by providing a distributed algorithm. Bhagat et al. [82, 83] considered the

gathering on meeting nodes problem in an infinite grid.

2.5 Arbitrary Pattern Formation

The arbitrary pattern formation (APF ) problem asks the robots to form an arbitrary

pattern P which is given as an input.
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Deterministic Algorithms: Suzuki and Yamashita [8, 96] were the first to study the

APF problem in the Euclidean plane. They completely characterized the class of formable

patterns under FSYNC and SSYNC schedulers for autonomous as well as anonymous

robots when they have an unbounded amount of memory. The symmetricity ρ(C) of

a configuration C is the order of the rotational symmetry of the configuration. The

characterizations are based on the symmetricity of a configuration. They showed that

under SSYNC scheduler, the gathering problem for two oblivious robots is determinis-

tically unsolvable, while it is trivially solvable for non-oblivious robots. The families of

patterns formable by oblivious robots were characterized by Yamashita and Suzuki [37]

under FSYNC and SSYNC schedulers. The results from the papers [8, 37, 96] can be

summarized as follows:

1. a pattern P is formable from an initial configuration I by non-oblivious FSYNC

robots if and only if ρ(I) divides ρ(P );

2. P is formable from I by oblivious FSYNC robots if and only if ρ(I) divides ρ(P );

3. P is formable from I by oblivious SSYNC robots if and only if P is not a point

with two robots and ρ(I) divides ρ(P ).

Fujinaga et al. [36] proved that for an initial configuration I without any multiplicity

point, pattern P is formable from I by oblivious ASYNC robots if and only if P is not

a point of multiplicity 2 and ρ(I) divides ρ(P ). Flochhini et al. [35] showed that the

patterns that can be formed depend heavily on the level of a priori agreement, the robots

have about the orientation and direction of the axes in their local coordinate system.

They showed the following:

1. If the robots are disoriented, then the robots cannot form an arbitrary pattern.

2. If the robots have one axis agreement, then any odd number of robots can form any

arbitrary pattern. However, an even number of robots cannot form certain patterns

in the worst case.

3. If the robots have full axis agreement, then any pattern can be formed by any

number of robots.



24 Chapter 2. Related Works

They also proved that if it is possible to solve the pattern formation problem for n ≥ 3

robots, then the leader election problem is also solvable. The relationship between the

APF and leader election problem was studied by Dieudonné et al. [97] under ASYNC

scheduler. They have proposed an algorithm that solves the APF problem starting from

an initial configuration in which leader election is possible. They proved that for n ≥ 4,

the APF problem and leader election problem are equivalent if the robots have a common

chirality. Bramas and Tixeuil [98] presented an algorithm that deterministically solves the

APF problem for n = 4 robots under ASYNC scheduler. Cicerone et al. [30] investigated

the APF problem without any assumption of a common chirality. They proved that for

a given initial configuration I with any number of robots, the APF problem is solvable

if and only if the leader election is solvable. In infinite grid, Bose et al. [99] studied the

APF problem under a fully ASYNC scheduler. The APF problem was considered in the

regular tesselation graphs (triangular and hexagonal grids) by Cicerone et al. [100]. The

formation of a series of geometric patterns instead of a single pattern was investigated by

Das et al. [101].

Yamauchi et al. [57] first considered pattern formation in three dimensional space.

They presented a necessary and sufficient condition for FSYNC robots to solve the plane

formation problem that does not depend on obliviousness. They assumed that the robots

have a common chirality. Yusaku et al. [55] investigated the plane formation problem

without the assumption of a common chirality for FSYNC robots. Uehara et al. [56]

considered the plane formation problem for SSYNC robots with non-rigid movement.

Yamauchi et al. [102] were the first to study the APF problem under limited visibility.

They showed that even if ρ(I) divides ρ(P ), FSYNC oblivious robots with limited visibility

may not be able to form any arbitrary pattern P . Next, they considered non-oblivious

robots, each of which can record the history of local views and outputs during execution.

They showed that SSYNC robots with rigid moves, and FSYNC robots with non-rigid

moves have the same formation power as robots with unlimited visibility. Bose et al. [45]

provided a full characterization of the initial configurations for which the APF problem

is solvable by opaque robots in the settings where (a) robots have full axis agreement

and (b) robots have one axis agreement. Bose et al. [103] also investigated the APF

problem for fat robots under obstructed visibility. In this setting, the authors completely
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characterized all the initial configurations from which any arbitrary pattern can be formed

in a deterministic distributed manner. In an infinite grid, Lukovszki et al. [104] studied

the pattern formation problem under limited visibility.

Randomized Algorithms: All the works discussed above limit themselves to the solv-

ability of the APF problem in a deterministic manner. Yamauchi et al. [105] proposed

a randomized algorithm for the APF problem. They assumed that the robots have a

common chirality. The proposed algorithm [105] consists of two phases. In the first

phase, given an initial configuration I, if the symmetricity ρ(I) > 1, then the proposed

algorithm translates I into another configuration I ′ such that ρ(I ′) = 1 with probabil-

ity 1. In the second phase, a deterministic algorithm (e.g., [97]) can be used to form

any pattern P starting from I ′ as ρ(I ′) = 1. Bramas and Tixeuil [29] proposed a new

probabilistic algorithm to solve the APF problem without the assumption of a common

chirality. The proposed algorithm consists of two phases: a probabilistic leader election

phase, and a deterministic pattern formation phase. Also, the arbitrary pattern P can

contain multiplicity points (except in the case of gathering, which is a special pattern

defined by a unique point of multiplicity that remains impossible to solve [21]).

Vaidyanathan et al. [106] proposed randomized algorithms considering both oblivi-

ous and light models for the robots. They have proved runtime bounds for solving the

APF problem in terms of the time required to solve the leader election problem. Hector

et al. [107] presented two randomized algorithms for the APF problem under ASYNC

scheduler, one under the classical oblivious model and another under the light model.

Both the proposed algorithms run in O(max{Di, Dp}) time with O(max{Di, Dp}) moves

by each robot, where Di and Dp, respectively, are the diameters of the initial and pattern

configurations. The algorithm for the light model uses O(1) colors. They also proved a

lower bound of Ω(max{Di, Dp}) for time for any APF algorithm if scaling is not allowed

on the target pattern.

2.5.1 Circle Formation

The circle formation problem asks the robots to position themselveson the circumference

of a circle within a finite time; the center of the circle is not known a priori. Défago
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et al. [108] investigated the circle formation problem in a setting where the robots have

no common origin, unit distance, or sense of direction. They proposed a distributed

algorithm by which the robots would eventually form a circle. A new approach for the

circle formation problem based on concentric circles formed by the robots was presented

by Dieudonné et al. [32]. A distributed algorithm was proposed by Défago et al. [50], which

ensured that the robots would deterministically form a non-uniform circle within a finite

number of steps and would converge towards a solution to the uniform circle formation.

Flocchini et al. [34] studied the uniform circle formation problem. They proved that the

problem is solvable for any initial configuration with distinct robot positions. An optimum

distributed algorithm that minimizes the maximum distance traveled by any robot to

solve the circle formation problem was proposed by Bhagat et al. [28]. Datta et al. [49]

proposed a distributed algorithm for the circle formation by a system of transparent fat

robots. For fat robots with limited visibility, the circle formation problem was studied

by Dutta et al. [51]. The uniform circle formation problem was considered for fat robots

with limited visibility by Mondal et al. [52]. Felleti et al. [33] studied the uniform circle

formation for opaque robots with lights.

2.5.2 Embedded Pattern Formation

Given a set of pre-fixed pattern points, the embedded pattern formation problem [31,109]

asks the robots to reach a final configuration in which each pattern point contains exactly

one robot position. The pre-fixed points are assumed to be visible to all the robots, like

landmarks. Fujinaga et al. [109] investigated the embedded pattern formation problem in

a setting where the robots have a common chirality. They have shown that the embedded

pattern formation problem is solvable by oblivious robots through the optimum matching

between the robots and the pattern points under ASYNC scheduler. Later, Cicerone

et al. [31] have studied the embedded pattern formation problem in a setting where the

robots do not have a common chirality. They have fully characterized all the initial

configurations for which the embedded pattern formation is unsolvable.
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2.6 Mutual Visibility

A fundamental problem under obstructed visibility model is the mutual visibility problem:

starting from an initial configuration, the robots must reach a configuration within finite

time and without collision in which they can all see each other (i.e., no three robots

are collinear). The mutual visibility problem is important as it gives a basis for any

subsequent task requiring complete visibility.

Continuous Domain: Di Luna et al. [61] presented the first algorithm for the mutual

visibility problem for oblivious robots under SSYNC scheduler. The proposed algorithm

assumes that the robots have knowledge of the total number of robots and solves the

mutual visibility problem by forming a convex n-gon. Without the knowledge of n, Di

Luna et al. [62] proposed a deterministic algorithm that solves mutual visibility with six

colors in the SSYNC setting and with ten colors in the ASYNC setting. For rigid motions,

Di Luna et al. [46] proved the following:

1. if the robots have knowledge of n, then mutual visibility is solvable with no colors

under SSYNC scheduler;

2. the mutual visibility is always solvable with two colors under SSYNC scheduler;

3. the mutual visibility is always solvable with three colors under ASYNC scheduler.

In case of non-rigid movements, Di Luna et al. [46] proved the following:

1. if the robots know δ and n, then the mutual visibility is solvable with no colors

under SSYNC scheduler;

2. if the robots know δ, the mutual visibility is solvable with two colors under SSYNC

scheduler;

3. the mutual visibility is always solvable with three colors under SSYNC scheduler;

4. if the robots agree on the direction of one coordinate axis, then the mutual visibility

is solvable with three colors under ASYNC scheduler.
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Sharma et al. [65] presented an improved algorithm which requires only two colors and

works for both SSYNC and ASYNC schedulers under both rigid and non-rigid moves.

The proposed algorithm is optimal in terms of persistent memory since any algorithm

for mutual visibility requires at least two colors when n is not known. Bhagat et al. [110]

solved the mutual visibility problem by assuming one bit of persistent memory and the

knowledge of n under ASYNC scheduler. Without the knowledge of n, Bhagat et al. [111]

investigated the mutual visibility problem under SSYNC scheduler using only one bit of

persistent memory.

Sharma et al. [64] studied the runtime bounds for the proposed algorithms by Di

Luna et al. [46] under FSYNC scheduler. They also proposed a new deterministic al-

gorithm that solves the mutual visibility problem in O(n log n) rounds under FSYNC

scheduler. They studied the runtime bounds of these algorithms under FSYNC sched-

uler. Vaidyanathan et al. [68] presented a sublinear time algorithm for complete visibility

under FSYNC scheduler. The proposed algorithm runs in O(log n) time using twelve

light colors. Sharma et al. [112] presented the first algorithm for complete visibility with

O(1) runtime under SSYNC scheduler. Later, Sharma et al. [66,67] proposed algorithms

with runtimes O(log n) and O(1) using 25 and 47 light colors, respectively. Bhagat [113]

presented a deterministic distributed algorithm to solve the mutual visibility problem

for a set of synchronous robots using only one bit of persistent memory. The proposed

algorithm solves the mutual visibility problem in two rounds and ensures collision-free

movements for the robots. Sharma et al. [114] studied the complete visibility problem for

fat robots. They proposed an algorithm for unit disc robots that solves complete visibility

in O(n) time using nine colors under FSYNC scheduler.

Bhagat et al. [60] proposed an optimum algorithm to solve the mutual visibility prob-

lem under ASYNC scheduler. The proposed solution minimizes the maximum distance

travelled by a single robot using seven light colors. Aljohani et al. [59] proposed an al-

gorithm that solves complete visibility tolerating one crash fault robot for n ≥ 3 robots.

They also presented an impossibility result for solving complete visibility if there is a

byzantine fault single robot for n = 3 robots. Poudel et al. [63] provided the first al-

gorithm for complete visibility that tolerates f ≤ n crash-fault robots in the ASYNC

setting under one-axis agreement.
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Discrete Domain: Adhikary et al. [58] first studied the mutual visibility problem in an

infinite grid. They provided an algorithm that solves the problem starting from any initial

configuration using nine colors under ASYNC scheduler. Poudel et al. [115] studied the

mutual visibility problem for fat robots in an infinite grid. In this study, the robots were

not restricted to move along grid lines or to move by one hop, i.e., a robot can directly

move to any visible grid point in one step. They proposed a deterministic algorithm

for n ≥ 4 robots, positioned on the distinct nodes in
√
n ×
√
n sub-grid under SSYNC

scheduler, that solves the mutual visibility in O(
√
n) time.

Sharma et al. [116] primarily focused on minimizing (or providing a trade-off between)

two fundamental performance metrics: (i) time to solve complete visibility and (ii) area

occupied by the solution. They proved that mutual visibility can be optimally solved in

O(max{D,n}) time (where D is the diameter of the initial configuration), and with a

final optimal area of O(n2). The proposed algorithm solves the mutual visibility problem

under ASYNC scheduler through: (i) a deterministic algorithm using 17 colors if leader

election is not required; (ii) a randomized algorithm using 32 colors that terminates in

O(max{D,n}) time with probability at least 1− 1

2max(D,n)
, if leader election is required.

Hector et al. [117] studied the convex hull formation problem where all the robots are

placed on the convex hull (solving the mutual visibility problem). They presented two

randomized algorithms: an O(max{n2, D}) time algorithm using 50 colors that creates

an O(n2) perimeter convex hull and an O(max{n
3

2 , D}) time algorithm using 55 colors

that creates an O(n

3

2 ) perimeter convex hull.
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3.1 Overview of the Problem

In this chapter, we investigate the solvability of the k-circle formation problem under one

axis agreement. Also, the relationship of the k-circle formation problem with the k-EPF

problem (a generalized version of the embedded pattern formation problem) is studied.

The theoretical motivation for studying the k-circle formation problem is twofold. First,
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we believe that the problem is theoretically interesting as it is a hybrid problem in between

the partitioning problem [44, 69] and the circle formation problem [28, 34, 49–52]. Both

the problems individually differs from the k-circle formation problem w.r.t. the following

points:

1. The partitioning problem asks the robots to divide themselves into m groups, each

having k robots. In addition, the robots in each group are asked to converge in a

small area. Unlike the k-circle formation problem, the robots do not need to form

circles containing exactly k robots, centered at one of the pre-fixed points.

2. The circle formation problem asks the robots to place themselves at distinct loca-

tions on a circle (not defined a priori), within finite amount of time. In this problem,

all the robots participate in forming one single circle, whereas, in the k-circle for-

mation problem, the robots need to form m circles each containing exactly k robots

and centered at one of the fixed points.

To the best of our knowledge, we believe that this is the first work that aims at connecting

the two well-known problems in the literature, namely the partitioning problem and the

circle formation problem. Both the partitioning and circle formation problems do not

consider the fixed points as well as symmetries related to the fixed points whereas the

k-circle formation problem must address the symmetries related to the fixed points.

Secondly, if the robots could solve the k-circle formation problem, then all the k robots

which lie on the same circle can gather at their respective center, which is a fixed point,

within finite number of moves. Thus, studying the solvability of the k-circle formation

problem includes investigating the solvability of the k-EPF problem where k robots need

to reach and remain at each fixed point.

In addition, we believe that the k-circle formation problem would have the following

applications in the field of swarm robotics:

1. The set of fixed points can be considered as emergency points, which need to be

surrounded. By solving the k-circle formation problem, a swarm of robots can

divide themselves into groups, containing k robots each and build a perimeter,

surrounding the emergency points.



3.2. Model and Definitions 33

2. The set of fixed points can also be considered as charging stations, with some given

permitted capacity. The robots need to be charged after a certain amount of time

to continue working. By solving the k-circle formation problem, the robots can

reach the charging stations without violating the permitted capacity.

3.2 Model and Definitions

The robots are assumed to be dimensionless, oblivious, anonymous, autonomous, and ho-

mogeneous. They are represented by points in the Euclidean plane. They have unlimited

visibility range and have no explicit way of communication. The movements of robots

are non-rigid. They execute Look-Compute-Move (LCM) cycle when they become active.

We have considered a fair ASYNC scheduler. We assume that they have an agreement

on the y-axis. The following notations are used in the proposed algorithms.

• Configuration: Let R = {r1, r2, . . . , rn} be the set of robots. Let ri(t) denote

the position of the robot ri at time t. R(t) = {r1(t), r2(t), ..., rn(t)} is the set of

robot positions at time t. We are given a set of fixed points denoted by F =

{f1, f2, . . . , fm}. It is assumed that n = km for some positive integer k. Let Fc be

the center of gravity of the set of fixed points F . We assume that the y-axis passes

through Fc and Fc is the origin. Let Fy and Ry(t) denote the set of fixed points and

robot positions, respectively, on the y-axis at time t. SupposeH1 andH2 denote the

two half-planes delimited by the y-axis. Let d(r, f) denote the Euclidean distance

between r and f . The pair C(t) = (R(t), F ) represents the configuration at time t.

In an initial configuration C(0), it is assumed that all the robots are stationary and

are placed at distinct positions. A configuration is said to be balanced at time t if

the number of robots in both the open half-planes delimited by the y-axis is equal.

Otherwise, the configuration is said to be unbalanced.

• Circles and radii of circles: We consider that all the circles formed by the robots

would have the same radius. Let ρ denote the radius of the circles. Also, let C(f, ρ)

denote the circle centered at f ∈ F with radius ρ. We have used the following

notations to formulate the radius ρ of the circles:
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1. ρ1 = minimum distance between two fixed points.

2. ρ2 = minimum distance between a fixed point f ∈ (F \ Fy) and the y-axis.

The radius ρ is defined as ρ =
1

3
min(ρ1, ρ2).

• A fixed point and its respective circle C(fj, ρ) are said to be unsaturated, if C(fj, ρ)

contains less than k robots on it. Let Dj(t) denote the deficit in the number of

robots in order to have exactly k robots on the C(fj, ρ). A fixed point and its

respective circle C(fj, ρ) are said to be saturated, if C(fj, ρ) contains exactly k

robots on it. In case C(fj, ρ) contains more than k robots, then C(fj, ρ) and fj are

called oversaturated.

• Configuration Rank. Let y(si) denote the y-coordinate of a point si. Note that

the robots do not have an agreement on the positive direction of the x-axis. In

case, the robots could have an agreement on the positive direction of the x-axis,

β(si) denotes the x-coordinate of si. Otherwise, β(si) denotes the distance of si

from the y-axis. The pair γ(si) = (β(si), y(si)) is the configuration rank of the

point si. Between the two points si and sj, si is said to have higher configuration

rank than sj, if y(si) > y(sj) or y(si) = y(sj) and β(si) > β(sj). Since the robots

have unlimited visibility, they can compute the configuration rank of each point

si ∈ F ∪R(t).

• Symmetry about the y-axis. If the robots ri and rj for i 6= j, have the same

configuration rank, i.e., γ(ri(t)) = γ(rj(t)), they are said to be symmetric about

the y-axis. Let φ(r) denote the symmetric image of r about the y-axis. If robots ri

and rj are symmetric about the y-axis, then ri = φ(rj) and rj = φ(ri). Similarly,

two fixed points are said to be symmetric about the y-axis, if they have the same

configuration rank. An active robot in its look phase identifies the set R(t) to be

symmetric about the y-axis, if each robot position r ∈ R(t) has a symmetric image

φ(r) ∈ R(t). Similarly, a robot can identify whether the set F is symmetric about

the y-axis or not. An active robot in its look phase identifies the configuration to

be symmetric about the y-axis if both the sets F and R(t) are symmetric about the

y-axis. Since the robots have an agreement on the direction and orientation of the

y-axis, the configuration can not admit translational or rotational symmety.
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• Partitioning of configurations: When the robots have an agreement on the y-

axis, all the configurations can be partitioned into the following disjoint classes-

f1

f2

r1 r2

r3 r4
Fc

y-axis

(A)

f1
f2

r1 r2

r3

r4

Fc

y-axis

(B)

f1f2

r1

r2

r3r4

Fc

y-axis

(C)

Figure 3.1: Black square represents the center of gravity, blue circles represent
robot positions, and red crosses represent fixed points. (A) I1-configuration. (B)

I2-configuration. (C) I3-configuration.

1. I1− All configurations for which the y-axis is not a line of symmetry for F

(Figure 3.1(A)).

2. I2− All configurations for which the y-axis is a line of symmetry for F , but

it is not a line of symmetry for R(t) (Figure 3.1(B)).

3. I3− All configurations for which the y-axis is a line of symmetry for F ∪R(t)

and Ry(t) 6= ∅, i.e., there exists a robot position on the y-axis (Figure 3.1(C)).

4. I4− All configurations for which the y-axis is a line of symmetry for F ∪R(t).

Also, Fy = ∅ and Ry(t) = ∅, i.e., there are no robot positions and fixed points

on the y-axis (Figure 3.2(A)).

5. I5− All configurations for which the y-axis is a line of symmetry for F ∪R(t).

Also, Fy 6= ∅ and Ry(t) = ∅, i.e., there are no robot positions on the y-axis,

but there are fixed points on the y-axis (Figure 3.2(B)).

Note that the classification of the configuration depends only on the y-axis and Fc.

Since the y-axis and Fc are the same for all the robots, they can easily classify a

configuration without conflict.
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Figure 3.2: (A) I4-configuration. (B) I5-configuration.

3.2.1 Problem Definition

We call a configuration C(t) final if the following conditions hold:

1. Every robot ri is on a circle C(fj, ρ) for some fj ∈ F ,

2. C(fi, ρ) ∩ C(fj, ρ) = ∅ for fi 6= fj,

3. Each circle contains exactly k robots at distinct positions.

The k-circle formation problem asks the robots to reach and remain in the final configu-

ration, starting from an initial configuration.

The problem definition requires distinct robot positions in a final configuration. If

a collision occurs among the robots, the result is a matter of assumptions. Under the

assumption that a point of multiplicity will be created, the robots on a multiplicity

point cannot be deterministically separated. Thus, collision avoidance is a fundamental

requirement for solving the k-circle formation problem.

3.3 Impossibility Results

In this section, we characterize the initial configurations for which the k-circle formation

problem cannot be solved deterministically. If k is an odd integer and the initial con-

figuration C(0) ∈ I5, then |F | must be even. For an initial configuration C(0) which is
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symmetric about the y-axis, if both the values of k and |F | are odd, then Ry(0) 6= ∅. As

a result, C(0) can not possibly belong to I5.

Theorem 3.3.1. If the initial configuration C(0) ∈ I5 and k is an odd integer, then the

k-circle formation problem is deterministically unsolvable.

Proof. If possible, let algorithm A solve the k-circle formation problem starting from

the given initial configuration C(0) ∈ I5 when k is odd. Consider the scheduler to be

semi-synchronous with the additional property that whenever a robot r is activated, φ(r)

is also activated. We assume that all the robots move with constant speed (which is the

same for all robots) without transient stops. We also assume that the distance traveled

by r is the same as that by φ(r). First, consider that both r and φ(r) have opposite

notions of positive x-axis direction. As a result, their views would be identical. Since

they run the same algorithm, their destinations and the corresponding paths would be

mirror images. Even with non-rigid motion, if they travel the same distance, their final

positions would be mirror images of each other. Since we started with a symmetric

configuration, no algorithm can break the symmetry under this setup. Let f ∈ Fy. Since

the overall configuration is symmetric, the robot positions on C(f, ρ) must be symmetric

around the y-axis. As k is odd, C(f, ρ) must contain a robot position on the y-axis.

Since the initial configuration did not have any robot position on the y-axis and all the

robots move in pairs, having a robot r moved to the y-axis would mean moving φ(r)

to the same point. As a result, a point of multiplicity will be created, from which it

is deterministically impossible to separate r and φ(r). Hence, the k-circle formation

problem is deterministically unsolvable.

Notice that the unsolvability criterion (Theorem 3.3.1) for the k-circle formation prob-

lem would never be satisfied when k is an even integer. Even for odd values of k and the

symmetric configurations in I3 ∪ I4, the unsolvability criterion (Theorem 3.3.1) for the

k-circle formation problem would never be satisfied.



38 Chapter 3. k-Circle Formation and k-EPF Problem

3.4 AlgorithmOneAxis

In this section, we propose a deterministic distributed algorithm that solves the k-circle

formation problem for the remaining configurations. Each active robot will execute the

proposed algorithm AlgorithmOneAxis(C(t)) unless C(t) is a final configuration. Each

robot will follow the following steps during an execution of AlgorithmOneAxis(C(t)):

1. The robots identify the current configuration. The robots agree upon the positive

direction of the x-axis in some configurations.

2. One or two unsaturated fixed points are selected for the circle formation, referred

to as target fixed points.

3. The robots identify one or two robots for each target fixed point, referred to as

candidate robots.

4. Each candidate robot moves towards the k-circle centered at its target fixed point.

Definition 3.4.1. Let fi be the unsaturated fixed point, which has the highest rank in H1

at time t ≥ 0. Similarly, suppose fj ∈ H2 is the the unsaturated fixed point, which has

the highest rank at time t ≥ 0. We say that there has been more progress in H1 than H2

at time t if one of the following conditions holds:

1. γ(fi) < γ(fj) or

2. γ(fi) = γ(fj) and Di(t) < Dj(t) or

3. γ(fi) = γ(fj) and Di(t) = Dj(t) and d(fi, r1(t)) < d(fj, r2(t)) where r1 and r2 are

candidate robots for fi and fj, respectively.

Otherwise, we say that there has been the same progress in both the half-planes.

3.4.1 AgreementOneAxis

Since the robots have an agreement on the direction and orientation of the y-axis, they

also have an agreement on the orientation of the x-axis without direction. This is the
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subprocedure by which the robots identify the configurations in which they could have an

agreement on the direction of the x-axis. The robots make an agreement on the direction

of the x-axis in such configurations. We have the following cases:

1. C(t) ∈ I1, i.e., F is asymmetric about the y-axis. Let hline1, . . . , hlines denote all

the horizontal lines, each one of which passes through at least one fixed point, listed

according to their increasing y-coordinates. Since the fixed points are asymmetric

about the y-axis, at least one of these lines must contain asymmetric fixed points.

Let hlinev be the topmost among such horizontal lines which contains an asymmetric

fixed point. Consider the fixed point closest to the y-axis and not having a symmetric

image on hlinev. The direction from the y-axis towards the half-plane containing this

fixed point is considered as the positive x-direction. All the robots agree upon this

agreement.

2. C(t) ∈ I2, i.e., F is symmetric about the y-axis, but R(t) is asymmetric about the

y-axis. The robots consider the following cases:

(a) The configuration is unbalanced. The direction from the y-axis, towards the half-

plane containing the maximum number of robots, is considered as the positive

x-direction. All the robots agree upon this agreement.

(b) The configuration is balanced and all the fixed points in one of the half-planes are

either saturated or oversaturated. In this case the robots consider the positive x-

direction towards the half-plane in which all the fixed points are either saturated

or oversaturated.

(c) The configuration is balanced with at least one unsaturated fixed point in both

the half-planes and Ry(t) 6= ∅. The robots do not make an agreement on the

direction of positive x-axis. The robots decide to transform the configuration

into an unbalanced configuration. Let r be the topmost robot on the y-axis.

Define λ = max
f∈F, ri∈R(t)\{r}

d(ri(t), f). Suppose p denotes the point on the y-axis,

which is at 2λ distance above from topmost horizontal line hlines. If the position

of r is below p, then it moves towards p along the y-axis. Otherwise, r is moved

to one of the half-planes to a point at
1

3
ρ from the y-axis. This upward movement
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is required to avoid any collision, which might arise due to the inherent motion

of r in a half-plane for some t′ ≥ t.

(d) The configuration is balanced with at least one unsaturated fixed point in both

the half-planes and Ry(t) = ∅. Consider the following cases:

(i) k is odd and Fy 6= ∅. Note that in this case, the configuration has an even

number of fixed points. The direction from the y-axis towards the half-plane

in which there has been more progress is considered as the positive x-axis di-

rection. It is possible that initially there has been the same progress in both

the half-planes. Since C(0) is asymmetric, there must be one asymmetric

robot position about the y-axis. The positive x-direction is considered to-

wards the half-plane that contains the asymmetric robot position, which has

the highest configuration rank. All the robots agree upon this agreement.

(ii) Otherwise, the robots do not agree upon the direction of positive x-axis

direction. This case includes the configurations in which (i) k is even and

Fy 6= ∅, (ii) k is even and Fy = ∅, and (iii) k is odd and Fy = ∅. Notice

that a configuration in this case might become symmetric with Ry(t) = ∅.

Since the robots are oblivious, they would identify the configuration to be

in I4 or I5, in which they can not make an agreement on the direction of

positive x-axis. This decision of not to agree upon the direction of positive

x-axis direction would ensure that the robots follow the same strategy in

both symmetric and asymmetric cases.

3. C(t) ∈ I3, i.e., F ∪ R(t) is symmetric about the y-axis and Ry(t) 6= ∅. Since R(t)

is symmetric about the y-axis, the configuration is balanced. The robots decide to

transform the configuration into an unbalanced configuration. The robots follow the

same strategy as described in the case of a balanced I2 configuration with at least one

unsaturated fixed point in both the half-planes and Ry(t) 6= ∅ (case 2(c)).

4. C(t) ∈ I4, i.e., F ∪ R(t) is symmetric about the y-axis, and Fy = ∅ and Ry(t) = ∅.

Since R(t) is symmetric about the y-axis, the configuration is balanced. As there are

no robot positions on the y-axis, the configuration cannot be transformed into an

unbalanced configuration. The robots can not have an agreement on the direction of

positive x-axis direction in this case.
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5. C(t) ∈ I5, i.e., F ∪ R(t) is symmetric about the y-axis, and Fy 6= ∅ and Ry(t) = ∅.

In this case, we have a balanced configuration. Since there are no robot positions on

the y-axis, the configuration cannot be transformed into an unbalanced configuration.

Note that k is an even integer in this case. Otherwise, the k-circle formation problem

is unsolvable. The robots can not have an agreement on the direction of positive x-axis

direction in this case.

3.4.2 TargetFPSelection

This is the subprocedure by which the robots select a target fixed point for the k-circle

formation. The robots consider the following cases:

1. Robots have an agreement on the positive direction of the x-axis. Among

the unsaturated fixed points, let fj be the one, which has the highest configuration

rank. The robots select fj as the target fixed point.

2. Robots do not have an agreement on the positive direction of the x-axis.

The robots consider the following cases:

(a) All the fixed points in F \Fy are saturated. Among the unsaturated fixed points

in Fy, let fj be the topmost one. The robots select fj as the target fixed point.

(b) There exists an unsaturated fixed point in F \Fy. If all the fixed points in one

of the half-planes delimited by the y-axis are saturated or oversaturated, then

the robots shall have an agreement on the positive direction of the x-axis. So

assume that unsaturated fixed points are present in both the half-planes. In

this case, the robots select two target fixed points, one from each of the half-

planes. Let fj and fu be the unsaturated fixed points, which have the highest

configuration rank in their respective half-planes. The robots select fj and fu

as the target fixed points. Note that fj and fu may be symmetric images of

each other.
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3.4.3 CandidateRSelection

This is the subprocedure by which the robots select a candidate robot for a target fixed

point. Let fj be the target fixed point. Consider the following cases:

1. There exists a robot position which lies within ρ distance from fj. Let

ri ∈ Rρ be the closest robot from C(fj, ρ). The robots select ri as the candidate

robot for fj. If there are multiple such robots, then the robots select the one which

has the highest configuration rank.

2. There does not exist a robot position which lies within ρ distance from

fj. Let ri be the closest robot from fj, which does not lie on a saturated circle. The

robots select ri as the candidate robot for fj. If there are multiple such robots, then

the robots select the one, which has the highest configuration rank. Note that ri

might lie on an oversaturated circle.

Note that, if fj lies on the y-axis, and C(t) does not have an agreement on the x-axis,

then there may be two robots (say r1 and r2) having the same configuration rank, which

are closest from fj (case 2) or closest from C(fj, ρ) (case 1). In case, the configuration is

asymmetric, let rk be a robot position, which does not have a symmetric image about the

y-axis. If there are multiple such robots, then the robots select the one, which has the

highest configuration rank. The candidate robot is selected, from the half-plane, which

contains rk. Otherwise, both r1 and r2, are selected as the candidate robots. In case, fj

lies in a half-plane and C(t) does not have an agreement on the x-axis, then the candidate

robot is selected from the same half-plane in which it belongs.

3.4.4 MovetoDestination

This is the subprocedure by which a candidate robot ri computes its destination point

q(t) on the circle centered at its target fixed point fj and the movement path P along

which it will move towards its destination point. The pseudocode of this subprocedure is

given in Subprocedure 3.1. Let p(t) denote the intersection point between C(fj, ρ) and

ri(t)fj. During its movement towards the circle centered at its target fixed point fj, a
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Subprocedure 3.1: MovetoDestination(C(t), fj, ri)
Input: C(t), fj , ri
Output: Movement path P and destination point q(t)

1 if d(ri(t), fj) < ρ then
2 Let lji(t) be the line segment from fj to C(fj , ρ), passing through ri;
3 Let q be the intersection point between lji(t) and C(fj , ρ);
4 if q is not a robot position then
5 ri selects P = riq and q(t) = q;
6 ri starts moving towards q along riq;

7 else
8 if there does not exist any robot positions on C(fj , ρ) other than being collinear with ri and fj then
9 Let B1 be the ray starting from ri(t) such that ]lji(t)ri(t)B1 = π

4
;

10 Let q1 be the intersection point between C(fj , ρ) and B1;
11 ri selects P = riq1 and q(t) = q1;
12 ri starts moving towards q1 along riq1;

13 else

14 Let ru be the robot on C(fj , ρ) such that ]ri(t)qri(t)ri(t)ru(t) is smallest;

15 Let B2 be the ray starting from ri(t) such that ]ri(t)qri(t)B2 = 1
2
min(π

2
,]ri(t)qri(t)ri(t)ru(t));

16 Let q2 be the intersection point between C(fj , ρ) and B2;
17 ri selects P = riq2 and q(t) = q2;
18 ri starts moving towards q2 along riq2;

19 end

20 end

21 else

22 Let p(t) be the intersection point between C(fj , ρ) and rifj ;

23 if rifj does not cut any saturated circle then
24 if p(t) is not a robot position then

25 ri selects P = rip(t) and q(t) = p(t);

26 ri starts moving towards p(t) along rip(t);

27 else if there does not exist any robot positions on C(fj , ρ) other than being collinear with ri and fj
then

28 Let ta be one of the tangents from ri to C(fj , ρ);
29 Let ta intersects C(fj , ρ) at q;
30 ri selects P = riq and q(t) = q;
31 ri starts moving towards q along riq;

32 else

33 Let rk be the robot position on C(fj , ρ) such that ]ri(t)rk(t)ri(t)ri(t)fj is the smallest;

34 Let B1 be the ray starting from ri(t) such that ]ri(t)rk(t)ri(t)B1 =
1

2
]ri(t)rk(t)ri(t)ri(t)fj ;

35 Let q1 be the intersection point between C(fj , ρ) and B1;
36 ri selects P = riq1 and q(t) = q1;
37 ri starts moving towards q1 along riq1;

38 end

39 else

40 Let C(fu, ρ) be the first saturated circle which ri cuts while moving along rifj ;

41 Let q be the intersection point between rifj and C(fu, ρ) which is at closest distance from ri;
42 if q is not a robot position then
43 ri selects P = riq and q(t) = q;
44 ri starts moving towards q along riq;

45 else

46 Let rk be the robot on C(fu, ρ) such that ]ri(t)fjri(t)ri(t)rk(t) is the smallest;
47 Let B1 be the ray from ri(t) such that

]ri(t)fjri(t)B1 =
1

2
min(]ri(t)fjri(t)ta,]ri(t)fjri(t)ri(t)rk(t));

48 Let q1 be the intersection point between B1 and C(fu, ρ) which is at closest distance from ri;
49 ri selects P = riq1 and q(t) = q1;
50 ri starts moving towards q1 along riq1;

51 end

52 end

53 end
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candidate robot must avoid collision with the other robots. In order to ensure collision-free

movement, a candidate robot considers the following cases:

ri(t)

fj
p(t)

(A)

q

fj
ri(t)

ta

rv(t)

(B)

Figure 3.3: (A) P = ri(t)p(t) and q(t) = p(t). (B) rv(t) is the robot position on p(t).
q(t) = q and P = ri(t)q, where q is the point of intersection between ta and C(fj , ρ).

1. d(ri(t), fj) > ρ and ri(t)fj does not cut any saturated circle. If p(t) is not

a robot position, then ri selects q(t) = p(t) and P = ri(t)p(t) (Figure 3.3(A)).

Next, consider the case when p(t) is a robot position and there are no other robot

positions on C(fj, ρ) other than those collinear with ri and fj. In this case, ri selects

one of the tangent lines to C(fj, ρ) from its position (say ta) as its movement path.

Let ta intersect C(fj, ρ) at q. In this case q can not be a robot position. Since ri

is a candidate robot, the line segement ri(t)q can not possibly contain any robot

positions other than ri(t). It selects P = ta and q(t) = q (Figure 3.3(B)). Otherwise,

among the robot positions on C(fj, ρ) which are not collinear with ri and fj, let rk

be the robot such that the angle ]ri(t)fjri(t)ri(t)rk(t) is smallest. Let B1 be the

angle bisector such that ]ri(t)fjri(t)B1 =
1

2
]ri(t)fjri(t)ri(t)rk(t). Note that B1

intersects C(fj, ρ) at exactly two points. Between these two points, let q1 be the

closest point from ri. By the choice of rk, q1 can not be a robot position. Also,

since ri is a candidate robot, the line segment ri(t)q1 can not possibly contain any

robot positions other than ri(t). It selects q(t) = q1 and P = ri(t)q1 (Figure 3.4).

2. d(ri(t), fj) > ρ and ri(t)fj cuts some saturated circle. Let C(fu, ρ) be the first

saturated circle, which ri cuts while moving along ri(t)fj. Notice that rifj would

intersect C(fu, ρ) at two points. Consider q to be the intersection point between

C(fu, ρ) and ri(t)fj, which is at the closest distance from ri. Since ri is a candidate

robot, the line segment ri(t)q (excluding point q) can not possibly contain any

robot positions other than ri(t). However, since q is a point on C(fu, ρ), it may be
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q2

fj

ri(t)

rk(t)

rv(t)

B1 q1

Figure 3.4: B1 is the angle bisector of ]ri(t)fjri(t)ri(t)rk(t). It intersects C(fj , ρ) at q1 and

q2. In this case, ri selects P = ri(t)q1 and q(t) = q1.

fjri(t)

fu

q p(t)

Figure 3.5: P = ri(t)q and q(t) = q, where q is the point of intersection between ri(t)fj and
C(fu, ρ).

a robot position. If q is not a robot position, then ri selects q(t) = q and P = ri(t)q

(Figure 3.5). Otherwise, let rk (not collinear with ri and fj) be the robot on C(fu, ρ)

such that angle between ri(t)fj and ri(t)rk(t) is the smallest. Since C(fu, ρ) is

saturated, such a robot position always exists on it. Let B1 be the angle bisector,

such that ]ri(t)fjri(t)B1 =
1

2
min(]ri(t)fjri(t)ta,]ri(t)fjri(t)ri(t)rk(t)). Note that

B1 intersects C(fu, ρ) at exactly two points. Between these two points, let q1 be

the closest point from ri. By the choice of rk, q1 can not be a robot position. Also,

since ri is a candidate robot ri(t)q1 can not possibly contain any robot positions

other than ri(t). Robot ri selects P = ri(t)q1 and q(t) = q1 (Figure 3.6). Note that

the choice of B1 ensures that ri always moves towards C(fj, ρ).

ta

fj
ri(t)

B1

rk(t) fu

q1

rv(t)

q2

Figure 3.6: B1 is the angle bisector of ]ri(t)fjri(t)ta. It intersects C(fu, ρ) at q1 and q2. In

this case, ri selects P = ri(t)q1 and q(t) = q1..
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fj

ri(t)

q

lji(t)

(A)

fj

ri(t)

rv(t)

B1

lji(t)
q1

(B)

fj

ri(t)
ru(t)

rv(t)

B2lji(t)

q2

(C)

Figure 3.7: (A) P = ri(t)q and q(t) = q, where q is the intersection point between lji(t) and

C(fj , ρ). (B) q = rv(t). B1 is the ray starting from ri(t) such that ]ri(t)rv(t)ri(t)B1 = π
4 . P =

ri(t)q1 and q(t) = q1, where q1 is the intersection point between B1 and C(fj , ρ). (C) q = rv(t).

B2 is the ray starting from ri(t) such that ]ri(t)rv(t)ri(t)B2 = 1
2]ri(t)rv(t)ri(t)ri(t)ru(t).

P = ri(t)q2 and q(t) = q2, where q2 is the intersection point between B2 and C(fj , ρ).

3. d(ri(t), fj) < ρ. Let lji(t) be the line segment from fj to C(fj, ρ), passing through

ri. Let q be the intersection point between lji(t) and C(fj, ρ). Since ri is a candidate

robot, the line segment ri(t)q (excluding point q) can not possibly contain any robot

positions other than ri(t). However, since q is a point on C(fj, ρ), it may be a robot

position. If q is not a robot position, then ri selects q(t) = q and P = ri(t)q

(Figure 3.7(A)). Next, consider the case when q is a robot position and C(fj, ρ)

does not contain any robot positions other than being collinear with ri and fj. Let

B1 be the ray starting from ri(t) such that ]ri(t)qri(t)B1 = π
4

(Figure 3.7(B)).

Suppose B1 intersects C(fj, ρ) at q1. The candidate robot ri selects q(t) = q1 and

P = ri(t)q1. Otherwise, let ru (not collinear with ri and fj) be the robot position on

C(fj, ρ) such that ]ri(t)qri(t)ri(t)ru(t) is the smallest. Let B2 be the ray starting

from ri(t) such that ]ri(t)qri(t)B2 =
1

2
min(π

2
,]ri(t)qri(t)ri(t)ru(t)). Suppose q2

is the intersection point between B2 and C(fj, ρ). The candidate robot selects

q(t) = q2 and P = ri(t)q2 (Figure 3.7(C)).

In case there are exactly two candidate robots, which lie in different half-planes, each

of them computes its destination point and movement path by ensuring that during its

movement, it does not cross the y-axis. For example, consider the case when the target

fixed point lies on the y-axis. A candidate robot will consider the tangent line and robot

positions, which lie in its half-plane, while computing its destination point and movement

path.
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3.4.5 AlgorithmOneAxis

AlgorithmOneAxis is the proposed algorithm that solves the k-circle formation prob-

lem with one axis agreement. The pseudocode is given in Algorithm 3.2. Given C(t),

each active robot executes AlgorithmOneAxis(C(t)). During an execution of algorithm

AlgorithmOneAxis(C(t)), if C(t) is not a final configuration, then an active robot (say

rk) executes AgreementOneAxis(C(t)). Next, rk considers the following cases:

ALGORITHM 3.2: AlgorithmOneAxis
Input: C(t) = (R(t), F )

1 Let rk be an active robot at time t;
2 rk executes AgreementOneAxis(C(t));
3 if the robots have an agreement on the positive direction of the x-axis then
4 rk executes TargetFPSelection(C(t));
5 Let fj be the target fixed point;
6 rk executes CandidateRSelection(C(t), fj);
7 Let ri be the candidate robot;
8 if rk = ri then
9 rk executes MovetoDestination(C(t), fj , rk);

10 end

11 else
12 if all the fixed points in F \ Fy are saturated then
13 rk executes TargetFPSelection(C(t));
14 Let fj be the target fixed point;
15 rk executes CandidateRSelection(C(t), fj);
16 if there is a unique candidate robot then
17 Let ri be the candidate robot;
18 if rk = ri then
19 rk executes MovetoDestination(C(t), fj , rk);
20 end

21 else
22 Let ri be the candidate robot such that rk and ri lie in the same half-plane;
23 if rk = ri then
24 rk executes MovetoDestination(C(t), fj , rk);
25 end

26 end

27 else
28 rk executes TargetFPSelection(C(t));
29 Let fj and fb be the target fixed points;
30 rk executes CandidateRSelection(C(t), fj) and CandidateRSelection(C(t), fb);
31 Let ri and ra be the candidate robots of fj and fb, respectively;
32 if rk = ri then
33 rk executes MovetoDestination(C(t), fj , rk);
34 else if rk = ra then
35 rk executes MovetoDestination(C(t), fb, rk);
36 end

37 end

38 end

1. The robots have an agreement on the positive direction of the x-axis. Robot rk

executes TargetFPSelection(C(t)). In this case there is a unique target fixed point.

Let fj be the target fixed point. Next, rk identifies the candidate robot by executing

CandidateRSelection(C(t), fj). Let ri be the candidate robot selected for fj. If

rk = ri, then the robot rk executes MovetoDestination(C(t), fj, ri).
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2. The robots do not have any agreement on the positive direction of the x-axis. Robot

rk considers the following cases:

(a) All the fixed points in F \ Fy are saturated. The robot rk executes sub-

procedure TargetFPSelection(C(t)). In this case the unique target fixed

point lies on the y-axis. Let fj be the target fixed point. Robot rk exe-

cutes CandidateRSelection(C(t), fj). Let ri be the candidate robot. Note

that there may be two candidate robots for fj. In that case, suppose ri is the

candidate robot, that lies in the same half-plane containing rk. If rk = ri, then

it executes MovetoDestination(C(t), fj, ri).

(b) There exists an unsaturated fixed point in F \ Fy. Note that such unsaturated

fixed points are present in both the half-planes. Otherwise the robots would

have an agreement on the positive direction of the x-axis. Robot rk executes

TargetFPSelection(C(t)). In this case there are two target fixed points, one

from each of the half-planes. Let fj and fu be the two target fixed points.

Without loss of generality, assume that rk and fj lie in the same half-plane.

Next, rk executes CandidateRSelection(C(t), fj). Let ri be the candidate

robot selected for fj. If rk = ri, then the robot rk executes sub-procedure

MovetoDestination(C(t), fj, ri).

3.5 Correctness of AlgorithmOneAxis

Lemma 3.5.1. Given a configuration C(t) for some t ≥ 0, if the robots agree upon the

positive direction of the x-axis, by the execution of AgreementOneAxis(C(t)), then the

agreement remains invariant at any arbitrary point of time t′ > t.

Proof. Let the robots agree upon the positive direction of the x-axis, by the execution of

AgreementOneAxis(C(t)). Consider the following cases:

Case 1. C(t) ∈ I1, i.e., F is asymmetric about the y-axis. Since this agreement is w.r.t.

the fixed points, it remains invariant for any t′ > t.

Case 2. C(t) ∈ I2 and C(t) is unbalanced. In this case, the agreement on the direction

of the positive x-axis is based upon robot positions. If the robots move across the y-axis
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from the negative side to the positive side, then the agreement does not change as the

positive side of the y-axis would still contain the maximum number of robots. During

an execution of TargetFPSelection(C(t)), the unsaturated fixed points with a higher

configuration rank are given preference over the unsaturated fixed points with a lower

configuration rank. As a result, the robots move across the y-axis from the positive side

to the negative side, only when all the fixed points on the positive side of the y-axis

are either saturated or oversaturated. Due to this movement, the configuration would

transform into a balanced configuration. Next, case 3 would follow.

Case 3. C(t) ∈ I2 is a balanced configuration and all the fixed points in one of the half-

planes are either saturated or oversaturated. Notice that a candidate robot, selected by

the execution of CandidateRSelection(C(t)), would never lie on a saturated circle. As

a result, once a circle becomes saturated, it would never become unsaturated. Thus, all

the fixed points on the positive side of the y-axis would never become unsaturated. This

implies that at any t′ > t the agreement on the positive direction of the x-axis remains

invariant.

Case 4. C(t) ∈ I2 is a balanced configuration with at least one unsaturated fixed point

in both the half-planes. Also, k is odd and Fy 6= ∅. In this case, the positive x-axis

direction is considered towards the half-plane in which there has been more progress at

time t. During an execution of TargetFPSelection(C(t)), the unsaturated fixed points

with higher configuration rank are given preference over the unsaturated fixed points with

lower configuration rank. As a result, it is guaranteed to have more progress in the positive

side of the y-axis for any t′ > t. Therefore, for any t′ > t the agreement on the positive

direction of the x-axis remains invariant. In case t = 0, it might be possible that both

the half-planes have the same progress. Since C(0) is asymmetric about the y-axis in

this case, there exists at least one robot asymmetric robot position. The positive x-axis

direction is considered towards the half-plane, which contains the asymmetric robot with

the highest configuration rank. For any t′ > t, either C(t′) = C(0) or it is guaranteed

to have more progress in the positive side of the y-axis. Therefore, the agreement on the

positive direction of the x-axis remains invariant.
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Hence, if the robots agree upon the positive direction of the x-axis by the execution

of AgreementOneAxis(C(t)), then at any arbitrary point of time t′ > t the agreement

remains invariant.

Next, we consider the balanced configurations in which the robots make an agreement

on the positive direction of the x-axis at some t′ > 0. Lemma 3.5.1 ensures that the

agreement remains invariant for any t′′ > t′. Note that, at any arbitrary point of time

t ∈ [0, t′), the robots have selected two target fixed points, one from each of the half-planes.

Since the scheduler is assumed to be asynchronous, it is possible to have a candidate robot

on the negative side of the y-axis, selected at some t ∈ [0, t′) and which has not reached

its destination point at t′. We need to ensure that there would not be any collision due

to the inherent motion of such a candidate robot.

Lemma 3.5.2. Let C(t′) for some t′ > 0, be the configuration in which the robots make

an agreement on the positive direction of the x-axis. Let ri be the candidate robot on the

negative side of the y-axis, that was selected for some target fixed point fj at t ∈ [0, t′). If

t′′ is the point of time at which it re-computes its destination point, then it would avoid

collisions with any other candidate robots in the time interval [t′, t′′].

Proof. Let fa be the target fixed point at some t ∈ [t′, t′′]. Since the robots have agreement

on the positive direction of the x-axis, a unique candidate robot would be selected by the

execution of CandidateRSelection(C(t), fa). Let rb be the candidate robot. Note that,

fa ≥ fj i.e., the configuration rank of fj can not be higher than fa. Otherwise, fj would

have been selected as the target fixed point. Consider the following cases:

Case 1. fa = fj. In this case ra = ri. This is because ri is the candidate robot that

was selected for fj at t ∈ [0, t′) and has not reached C(fj, ρ). It would remain as the

closest robot position from fj, that does not lie on a saturated circle. Since ri would be

the unique robot which is in motion within d(fj, ri) distance from fj, there would not be

any collision of robots.

Case 2. So we assume that fj 6= fa. The movement paths of ri and rb would not

intersect. Otherwise, by triangle inequality ri would have been at closer distance from fa.

So ri would have selected as the candidate robot for fa by the execution of subprocedure

CandidateRSelection(C(t), fa). Since the movement paths do not intersect, ri would
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y-axis

ri(t1)

fa

rb(t1) = rb(t2)
fj ri(t2)

Figure 3.8: Robot ri has moved from ri(t1) to ri(t2). It becomes a candidate robot
for fa at time t2.

not collide with rb during the time interval [t′, t′′]. Since the scheduler is assumed to be

asynchronous, it is possible that ri becomes the candidate robot for fa as in Figure 3.8.

As the movement paths do not intersect, ri would continue its movement towards C(fj, ρ)

without collision unless it stops and re-computes its destination point. If it stops it will

executeMovetoDestination(C(t), fa, ri). It computes its movement path towards C(fa, ρ)

that does not intersect with the movement path of rb. As a result, it would continue its

movement towards C(fa, ρ) in subsequent time without any collision with rb.

Hence, ri would avoid collisions with any other candidate robots in the time interval

[t′, t′′].

Theorem 3.3.1 characterizes all the configurations and the values of k for which the

k-circle formation problem is deterministically unsolvable. For some k > 0, if the k-circle

formation problem is deterministically solvable for a given C(0), the robots can identify

it in its look phase. The robots must ensure that such configurations would not transform

into an configuration that would satisfy the unsolvability criterion (Theorem 3.3.1) for

any t > 0 during an execution of AlgorithmOneAxis.

Lemma 3.5.3. Given k > 0 and C(0), if the k-circle formation problem is deterministi-

cally solvable, then at any arbitrary point of time t > 0 the configuration would not satisfy

the unsolvability criterion (Theorem 3.3.1).

Proof. Since the k-circle formation problem is deterministically solvable for every even

value of k, we assume that k is odd. Note that all the initial configurations, in which F

is asymmetric about the y-axis or in which Fy = ∅, would never satisfy the unsolvability
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criterion stated in Theorem 3.3.1. So we only need to consider all the initial configurations

in which F is symmetric about the y-axis and Fy 6= ∅. So, C(0) /∈ I1∪I4. Also, C(0) /∈ I5

(Otherwise, initially it would have been unsolvable). Therefore, C(0) ∈ I2 ∪I3. We have

the following cases:

Case 1. The robots make an agreement on the positive direction of x-axis, which remains

invariant for any t > 0 (Lemma 3.5.1). Since the agreement remains invariant, even if

the configuration becomes symmetric about the y-axis, the configuration will not satisfy

the unsolvability criterion stated in Theorem 3.3.1 for any t > 0.

Case 2. The robots decide to transform C(0) into an unbalanced configuration, in order

to make an agreement on the positive direction of x-axis. This includes the following

configurations:

1. C(0) ∈ I3.

2. C(0) ∈ I2 and it is balanced with at least one unsaturated fixed point in both the

half-planes and Ry(t) 6= ∅..

Let t′ be earliest possible point of time at which it becomes unbalanced. In the time

interval 0 to t′, only the topmost robot on the y-axis would move along the y-axis. As a

result, the configuration would not satisfy the unsolvability criterion (Theorem 3.3.1) for

any t ∈ [0, t′). At t′, the robots make an agreement on the positive direction of x-axis.

Next, the proof follows from case 1.

Therefore, C(0) would not transform into an unsolvable configuration at time t > 0.

Given a configuration C(t), let nk(t) denote the number of unsaturated fixed points.

The robots may select one or two target fixed points. First, consider the case when the

target fixed point is unique. Suppose, fj is the target fixed point and ri its candidate robot

selected by the robots. Let P and q(t) be the movement path and destination point, re-

spectively, computed by ri at time t, by the execution of MovetoDestination(C(t), fj, ri).

Consider a straight line along P towards C(fj, ρ) intersecting the circle C(fj, ρ) first at
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ri(t
′)

fj

p(t′)ri(t)

Figure 3.9: Robot ri has moved from ri(t) to ri(t
′), along P = ri(t)p(t) towards

q(t) = p(t) computed at time t. Robot ri selects P ′ = ri(t′)p(t′) and q(t′) = p(t′) at
time t′. In this case, q(t′) = q(t). Also, q(t) = s(t) and q(t′) = s(t′), i.e., the destination

point lies on C(fj , ρ).

s(t) (The line would always intersect C(fj, ρ)) at time t. Suppose dj(t) denotes the dis-

tance between ri(t) and s(t). Recall that Dj(t) denote the deficit in the number of robots

in order to make fj a saturated fixed point. Let Vj(t) = (nk(t), Dj(t), dj(t)).

We say that there has been significant progress in the time interval t to t′ if Vj(t
′) <

Vj(t), i.e., one of the following conditions holds:

1. nk(t
′) < nk(t), or

2. nk(t
′) = nk(t) and Dj(t

′) < Dj(t), or

3. nk(t
′) = nk(t) and Dj(t

′) = Dj(t) and dj(t
′) + δ ≤ dj(t).

Lemma 3.5.4. Let t′ be an arbitrary point of time before ri reaches its destination

computed at time t. During an execution of AlgorithmOneAxis(C(t)), execution of

MovetoDestination(C(t), fj, ri) ensures that dj(t
′) + δ ≤ dj(t).

Proof. Let P and P ′ be the selected movement paths for ri at time t and t′, respectively.

We have dj(t) = d(ri(t), s(t)) and dj(t
′) = d(ri(t

′), s(t′)). Note that q(t) = s(t) implies

that the destination point lies on C(fj, ρ). Consider the following cases:

Case 1. q(t) = s(t) and p(t) does not contain any robot position. This is the case where

the robot moves straight towards fj, i.e., P = ri(t)fj and the destination point q(t) lies

on C(fj, ρ) (Step 25 of Subprocedure 3.1). At time t′ there would not be any robot on

q(t) and ri would continue along the same path. Since δ is the minimum displacement

in a round, dj(t
′) + δ ≤ dj(t). Recall that p(t) denotes the intersection point between

C(fj, ρ) and rifj. The movements are shown in Figure 3.9.
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q(t′) = p(t′)

p(t)

q(t)

fj

rk

ri(t) ri(t
′)

P

Figure 3.10: Robot ri has moved from ri(t) to ri(t
′), along P towards q(t) computed

at time t. Robot ri selects P ′ = ri(t′)p(t′) and q(t′) = p(t′) at time t′. Also, q(t) = s(t)
and q(t′) = s(t′), i.e., the destination point lies on C(fj , ρ).

p(t) fj

ri(t)

ta

p(t′)

ri(t
′)

q

Figure 3.11: Robot ri has moved from ri(t) to ri(t
′), along P = ri(t)q towards q(t) = q

computed at time t (q is the point of intersection between C(fj , ρ) and ta). Robot ri
selects P ′ = ri(t′)p(t′) and q(t′) = p(t′) at time t′. Also, q(t) = s(t) and q(t′) = s(t′),

i.e., the destination point lies on C(fj , ρ).

Case 2. q(t) = s(t) and p(t) contains a robot position. There are robot positions on

C(fj, ρ), that are not collinear with ri and p(t). By step 36 of Subprocedure 3.1 robot

ri computes the movement path P and destination point q(t). It starts moving towards

q(t) along P . At time t′ > t, let s(t′) be the intersection point between C(fj, ρ) and

ri(t′)fj. Note that, p(t′) is not a robot position. Robot ri selects P ′ = ri(t′)fj and

q(t′) = p(t′). We have d(ri(t
′), q(t)) > d(ri(t

′), q(t′)) and d(ri(t), q(t)) − d(ri(t
′), q(t′)) >

d(ri(t), q(t))− d(ri(t
′), q(t)) ≥ δ. This implies that dj(t

′) + δ ≤ dj(t). The movements are

shown in Figure 3.10.

Case 3. q(t) = s(t) and p(t) contains a robot position. There are no robots on C(fj, ρ),

other than being collinear with ri and fj. By step 30 of Subprocedure 3.1 robot ri

computes the movement path P and destination point q(t). This case is similar to case 2.

The movements are shown in Figure 3.11.



3.5. Correctness of AlgorithmOneAxis 55

fjri(t)

fu

q p(t)ri(t
′)

Figure 3.12: C(fu, ρ) is a saturated circle and q is the point of intersection between
C(fu, ρ) and ri(t)fj , which is at closest distance from ri. Robot ri has moved from

ri(t) to ri(t
′), along P = ri(t)q towards q(t) = q computed at time t. Robot ri selects

P ′ = ri(t′)q and q(t′) on C(fu, ρ) at time t′. In this case, q(t′) = q(t). Also, q(t) 6= s(t)
and q(t′) 6= s(t′), i.e., the destination point does not lie on C(fj , ρ).

ta

fj
ri(t)

B1

rs(t) fu

q2

rv(t)

ri(t
′) 1

2

1.q1, 2.p′

Figure 3.13: Robot ri has moved from ri(t) to ri(t
′), along P = ri(t)q1 towards

q(t) = q1 computed at time t. Robot ri selects P ′ = ri(t)q and q(t′) = p′ (p′ is the point
of intersection between C(fu, ρ) and ri(t′)fj) on C(fu, ρ) at time t′

Case 4. q(t) 6= s(t). In this case q(t) lies on a saturated circle C(fu, ρ) for some fu 6= fj.

Note that, C(fu, ρ) is the first circle, that ri cuts while moving along ri(t)fj. First,

consider the case in which P = ri(t)q and q(t) = q (Step 43 of Subprocedure 3.1),

where q is intersection point between ri(t)fj and C(fu, ρ), which is at closest distance

from ri. Since δ is the minimum displacement in a round, dj(t
′) + δ ≤ dj(t). The

movements are shown in (Figure 3.12). Next, consider the case in which ri computes

its movement path P by step 49 of Subprocedure 3.1. It starts moving towards q(t)

along path P . At time t′ > t, let p′ be the intersection point between C(fu, ρ) and

ri(t′)fj. Note that p′ is not a robot position. Robot ri selects P ′ = ri(t′)fj and q(t′) = p′

(Figure 3.13). We have d(ri(t
′), s(t)) > d(ri(t

′), s(t′)) and d(ri(t), s(t))− d(ri(t
′), s(t′)) >

d(ri(t), s(t))− d(ri(t
′), s(t)) ≥ δ. This implies that dj(t

′) + δ ≤ dj(t).

Case 5. d(ri, fj) < ρ. We have q(t) = s(t). Let q be the intersection point between

C(fj, ρ) and lji(t). First, consider the case when ri selects P = ri(t)q and q(t) = q (Step 5

of Subprocedure 3.1). At time t′, there would not be any robot position on q(t). Robot ri

selects P ′ = ri(t′)q. Since δ is the minimum displacement in a round, dj(t
′) + δ ≤ dj(t).
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fj
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ri(t
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fj

ri(t)

rv(t)

B1
lji(t)

q1

ri(t
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Figure 3.14: (A) Robot ri has moved from ri(t) to ri(t
′) along P = ri(t)q towards

q(t) = q (q is the point of intersection between C(fj , ρ) and lji(t)). It selects P ′ = ri(t′)q

and q(t′) = q. (B) At time t, ri selects P = ri(t)q1 and q(t) = q1. It selects P ′ = ri(t)q3

and q(t′) = q3. (C) At time t, ri selects P = ri(t)q2 and q(t) = q2. It selects ri(t)q4

and q(t′) = q4.

Movements are shown in Figure 3.14(A). Next, consider the case in which ri selects its

movement path P by step 11 or step 17 of Subprocedure 3.1. We have d(ri(t
′), q(t)) >

d(ri(t
′), q(t′)) and d(ri(t), q(t))−d(ri(t

′), q(t′)) > d(ri(t), q(t))−d(ri(t
′), q(t)) ≥ δ. Hence,

dj(t
′) + δ ≤ dj(t). Movements are shown in Figure 3.14(B) and 3.14(C).

Hence, execution of MovetoDestination(C(t)) ensures dj(t
′) + δ ≤ dj(t).

Lemma 3.5.5. Let fj be the target fixed point and ri its candidate robot in the con-

figuration C(t). During an execution of AlgorithmOneAxis(C(t)), the execution of

MovetoDestination(C(t), fj, ri) ensures significant progress.

Proof. Let ri compute movement path P and destination point q(t) by the execution of

MovetoDestination(C(t), fj, ri) at time t. Let t′ > t be an arbitrary point of time at

which ri has completed at least one LCM cycle. We need to show that there has been

significant progress in between the time interval t to t′. We have the following cases:

Case 1. ri(t
′) = q(t) and ri is on the C(fj, ρ). We have the following two sub-cases:

Subcase 1. If C(fj, ρ) has exactly k robots on it, then nk(t
′) = nk(t) − 1, ensuring

significant progress.

Subcase 2. If C(fj, ρ) has less than k robots on it, then Dj(t
′) = Dj(t) − 1, ensuring

significant progress.
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Case 2. ri(t
′) 6= q(t) and ri is not on any oversaturated C(fu, ρ). In this case dj(t

′) + δ ≤

dj(t) by Lemma 3.5.4, which ensures significant progress.

Case 3. ri(t
′) 6= q(t) and ri is on an oversaturated C(fu, ρ). Since at this stage, a

candidate robot for fj will be selected again, CandidateRSelection(C(t′), fj) will select a

robot rk such that d(rk(t
′), fj) ≤ d(ri(t

′), fj). Either rk = ri or rk 6= ri. By Lemma 3.5.4,

significant progress is ensured, in both the cases.

Hence, execution of MovetoDestination(C(t), fj, ri) ensures significant progress.

Lemma 3.5.6. Let fj be a target fixed point and ri its unique selected candidate robot at

time t. Until ri reaches its destination point computed at time t, it remains the candidate

robot for fj.

Proof. Let ri compute its movement path P and destination point q(t) by the execution

of MovetoDestination(C(t), fj, ri). Note that, q(t) is either a point on the circle C(fj, ρ)

or on some saturated circle C(fu, ρ). Let t′ be an arbitrary point of time such that

ri(t
′) 6= q(t). At time t′, fj remains an unsaturated fixed point. As a result, fj remains a

target fixed point at time t′. Lemma 3.5.4 guarantees that ri has moved at least δ amount

closer to C(fj, ρ). Therefore, it remains the candidate robot for fj.

Next, we consider the case when there are two candidate robots for a target fixed point.

Since robots have an agreement on the directions and orientations of the y-axis, there

can be at most two candidate robots at any point of time. Note that, in this case, the

configuration would have a unique target fixed point, that lies on the y-axis.

Lemma 3.5.7. Let fj be the target fixed point and ri and rv are the two selected candidate

robots for fj at time t. Until at least one of them reaches its destination point computed

at time t, no other robot becomes a candidate robot. If one of the candidate robots have

reached its destination point and the other one has not, then the other robot either con-

tinues its inherent motion towards its destination point (computed at time t) without any

collision or gets selected as a candidate robot only when Dj(t) reduces by one.

Proof. Let t′ > t be an arbitrary point of time when at least one of the candidate robots

has completed its LCM cycle. Without loss of generality, assume that ri has completed its



58 Chapter 3. k-Circle Formation and k-EPF Problem

LCM cycle at t′. Let q(t) be the destination point and P be the movement path computed

for ri by MovetoDestination(C(t), fj, ri). Note that q(t) is a point either on the C(fj, ρ)

or on some saturated C(fu, ρ). We have the following cases:

Case 1. q(t) is a point on the circle C(fj, ρ). We have the following subcases:

Subcase 1. ri(t
′) = q(t). Since ri has reached its destination, the first part of the lemma

follows. We have Dj(t
′) = Dj(t) − 1. At t′, if rv has also completed its LCM cycle and

has not reached its destination point, then it becomes the next candidate robot for fj. If

rv is in motion, then being the only robot in motion within the annulus region between

C(fj, ρ) and C(fj, d(fj, rv(t
′))), it continues its motion without any collision. Note that,

in this case, no other robot will be selected for movement until rv reaches its destination.

Subcase 2. ri(t
′) 6= q(t). First consider that |d(fj, ri(t

′)) − ρ| > |d(fj, rv(t
′)) − ρ|,

i.e., robot rv is closer to C(fj, ρ) than ri. At t′, either rv has also completed its LCM

cycle and has not reached its destination point or rv is in motion. In both the cases,

rv remains a candidate robot for fj. The first part of the lemma follows for rv. Robot

ri will be selected as a candidate robot when rv will reach C(fj, ρ). Next consider that

|d(fj, ri(t
′)) − ρ| < |d(fj, rv(t

′)) − ρ|, i.e., robot ri is closer to C(fj, ρ) than rv. Robot

ri will be selected as a candidate robot. At t′, if rv has also completed its LCM cycle,

then it will become the candidate robot when ri will reach C(fj, ρ). If rv is in motion,

then it continues its motion without any collision (As destination point and movement

path computed by ri and rv respectively are separated by the y-axis and there are no

other robots in the half-plane containing rv, which is in motion within the annulus region

between C(fj, ρ) and C(fj, d(fj, rv(t
′)))). We have two possible cases. First, rv will also

reach C(fj, ρ). Second, if it stops before reaching C(fj, ρ), then it will become a candidate

robot only when ri will reach C(fj, ρ).

Case 2. q(t) is a point on some saturated circle C(fu, ρ). Consider the following cases:

Subcase 1. ri(t
′) = q(t). Since ri has reached its destination, the first part of the lemma

follows. At t′, since C(fu, ρ) contains k + 1 robots, the next candidate robot for fj will

be selected from C(fu, ρ). Note that, this robot position would have higher y-coordinate

than q(t). If rv has also completed its LCM cycle and has not reached its destination

point, then it will become a candidate robot for fj only when Dj(t
′′) = Dj(t

′) − 1 for

some t′′ > t′. If rv is in motion, then it continues its motion without any collision (It
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is the only robot, which is in motion within the annulus region between C(fj, ρ) and

C(fj, d(fj, rv(t
′))) and below q(t)).

Subcase 2. ri(t
′) 6= q(t). First consider that |d(fj, ri(t

′)) − ρ| > |d(fj, rv(t
′)) − ρ|, i.e.,

robot rv is closer to C(fj, ρ) than ri. At t′, either rv has also completed its LCM cycle

and has not reached its destination point or rv is in motion. In both cases, rv remains

a candidate robot for fj. The first part of the lemma follows for rv. Robot ri will

be selected as a candidate robot only when Dj(t) reduces by one. Next consider that

|d(fj, ri(t
′))− ρ| < |d(fj, rv(t

′))− ρ|, i.e., robot ri is closer to C(fj, ρ) than rv. Robot ri

will be selected as a candidate robot. At t′, if rv has also completed its LCM cycle and

has not reached its destination point, then it will become a candidate robot only when

Dj(t) reduces by one. If rv is in motion, then it continues its motion without any collision

(As destination point and path computed by ri and rv, respectively, are separated by the

y-axis and there are no other robots in motion within the annulus region between C(fj, ρ)

and C(fj, d(fj, rv(t
′))) and below the point q(t)). We have two possible cases. First, rv

will also reach C(fu, ρ). Second, if it stops before reaching C(fu, ρ), then it will become

a candidate robot only when Dj(t) reduces by one.

Next, we consider the case when there are two target fixed points, one from each half-

plane. Let fj and fa be the target fixed points at time t. Let ri and rb be their respective

candidate robots. We have Vj(t) = (nk(t), Dj(t), dj(t)) and Va(t) = (nk(t), Da(t), da(t)).

Lemma 3.5.8. Let a given configuration C(t) admit two target fixed points during an

execution of AlgorithmOneAxis(C(t)) and t′ > t be an arbitrary point of time when at

least one candidate robot has completed its LCM cycle. For at least one target fixed point

fi ∈ {fj, fa} and its candidate robot, di(t
′) + δ ≤ di(t).

Proof. Each target fixed point is unique in their respective half-planes. Execution of

AlgorithmOneAxis(C(t)) ensures that for each target fixed point, its candidate robot is

selected from its respective half-planes. The circle formation process continues indepen-

dently in both the half-planes. This implies that for each i ∈ {j, a}, Vi(t) is updated only

due to the movement of fi’s candidate robot. Without loss of generality, suppose candi-

date robot ri of the target fixed point fj has completed its LCM cycle. By Lemma 3.5.4,

dj(t
′) + δ ≤ dj(t) is ensured.
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Lemma 3.5.9. Let a given configuration C(t) admit two target fixed points during an

execution of AlgorithmOneAxis(C(t)) and t′ > t be an arbitrary point of time when at

least one candidate robot has completed its LCM cycle. AlgorithmOneAxis(C(t)) ensures

significant progress.

Proof. Lemma 3.5.8 ensures that for at least one target fixed point fi ∈ {fj, fa} and its

candidate robot, di(t
′) + δ ≤ di(t) holds. Without loss of generality, assume that for the

target fixed point fj we have dj(t
′)+δ ≤ dj(t) in the time interval t to t′. By Lemma 3.5.5,

we have Vj(t
′) < Vj(t), i.e., significant progress is ensured.

Theorem 3.5.10. If the initial configuration C(0) ∈ {I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5} and C(0)

does not satisfy the unsolvability criterion stated in Theorem 3.3.1, then the robots would

eventually solve the k-circle formation problem under one axis agreement, by the execution

of AlgorithmOneAxis.

Proof. Lemma 3.5.3 guarantees that for any t > 0, the configuration C(t) would not

satisfy the unsolvability criterion stated in Theorem 3.3.1. We have the following cases:

Case 1. There is a unique target fixed point (say fj) in the configuration. The Lemma 3.5.5

ensures that each time a candidate robot gets activated, significant progress is ensured.

If there is a unique candidate robot for fj, then Lemma 3.5.6 guarantees that until the

candidate robot reaches its destination, it would remain the candidate robot. In case

there are two candidate robots for fj, then Lemma 3.5.7 guarantees that until one of the

candidate robots reaches its destination point, no other robot will become a candidate

robot. As a result, one of the candidate robots will reach its destination point eventually.

If the other candidate robot does not reach its destination point, then it becomes a can-

didate robot for fj when Dj(t) reduces by one. Thus, the circle formation process around

all the fixed points will be completed eventually.

Case 2. There are two target fixed points. Note that the target fixed points lie in dif-

ferent half-planes delimited by the y-axis. Lemma 3.5.9 ensures significant progress.

Lemma 3.5.6 guarantees that until a candidate robot reaches its destination, it remains

the candidate robot. Note that in this case for each of the target fixed points, always a

unique candidate robot gets selected. Thus, the circle formation process around all the

fixed points will be completed eventually.
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Hence, the robots would eventually solve the k-circle formation problem with one axis

agreement.

From Theorem 3.5.10, it follows that the robots would solve the k-circle formation

problem under one axis agreement within finite time. Since we have considered the

scheduler to be ASYNC, the robots do not have any common notion of time. As a result,

the actual time to solve the k-circle formation problem depends upon the scheduling

of the robots. We use the notion of an epoch [118] to discuss the runtime complexity

of our proposed algorithm. An epoch is the time interval in which all the robots in the

configuration have performed their LCM cycles at least once. According to this definition,

the time is divided into global epochs. We also assume that the robots have rigid motion,

i.e., the robot is guaranteed to reach its destination whenever it moves. In such a setting,

we have the following observations:

1. If a candidate robot does not have to pass through a saturated circle in order to

reach the circle centered at its target fixed point, then it would reach the circle

within one epoch.

2. If a candidate robot has to pass through a saturated circle in order to reach the

circle centered at its target fixed point, then it would reach the circle in at most

three epochs. This is because the movement path would intersect the saturated circle

either one or two times.

From the above two observations, it follows that a candidate robot would reach the circle

centered at its target fixed point within 2(m− 1) + 1 = 2m− 1 epochs. This is because, it

might have to pass through (m−1) number of saturated circles. Since AlgorithmOneAxis

is sequential, each target fixed point would need at most k(2m − 1) epochs to become

saturated. Therefore, the k-circle formation problem would be solved within O(m2k)

epochs. This is a loose upper bound on the running time of AlgorithmOneAxis in terms

of epochs.
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3.6 k-Circle Formation when n > km

In this section, we assume that there are n > km robots in the Euclidean plane. As the

definition of the k-circle formation problem requires k distinct robot positions on each

circle, there will be n− km surplus robots.

3.6.1 Impossibility Results when n > km

f1

f2

Fc

r1 r2

r3 r4

y-axis

(A)

y-axis

f1

f2

c

r1 r2f3

r3 r4
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Figure 3.15: Examples of Impossibility Results when n > km. (A) |F | is even, (B)
|F | is odd.

Theorem 3.6.1. Given C(0) ∈ I5, if Ry(0) = ∅ and k is an odd integer, then the k-circle

formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Figure 3.15 shows examples of configurations in which the k-circle formation problem

is unsolvable. For both the configurations, k = 1 and Ry(0) = ∅. In Figure 3.15(A),

|F | = 2 (even) and n = 4 > 2 = km, whereas in Figure 3.15(B), |F | = 3 (odd) and

n = 4 > 3 = km.

3.6.2 Algorithm for the k-Circle Formation when n > km

The definition of a final configuration includes the criterion that each robot is located

on a circle. However, there will be n − km surplus robots present in the configuration.

In this case, we define a configuration to be a final with surplus robots if the following

conditions are satisfied:
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1. C(fi, ρ) ∩ C(fj, ρ) = ∅ for fi 6= fj,

2. Each circle contains exactly k robots at distinct positions.

Define algorithm AlgoSurplus as follows:

1. If the current configuration is not a final with surplus robots, then the robots will

execute AlgorithmOneAxis.

2. Else terminate.

Theorem 3.6.2. If C(0) ∈ {I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5} and C(0) does not satisfy the

unsolvability criterion stated in Theorem 3.6.1, then the robots would eventually solve the

k-circle formation problem under one axis agreement, by the execution of AlgoSurplus.

Proof. The idea of proof is similar to the proof of Theorem 3.5.10.

3.7 k-Circle Formation when n < km

In this section, we assume that there are n < km robots in the Euclidean plane. As the

definition of the k-circle formation problem requires exactly k distinct robot positions on

each circle and n < km, some fixed points will remain unsaturated. The objective is to

maximize the number of saturated circles.

3.7.1 Impossibility Results when n < km

Let m1 =
m− |Fy|

2
. If C(t) ∈ I4, then m1 =

m

2
.

Theorem 3.7.1. Let C(0) ∈ I4 be such that Ry(0) = ∅. If k(p − 1) <
n

2
< kp where

1 ≤ p ≤ m1, and
n

2
− k(p− 1) ≥

⌈
k

2

⌉
, then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.
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Figure 3.16: Examples of Impossibility Results when n < km and C(t) ∈ I4. (A) k
is even, (B) k is odd.

Figure 3.16 shows examples of configurations in which the k-circle formation problem

is unsolvable as the unsolvability criterion stated in Theorem 3.7.1 is satisfied. For both

the configurations, C(t) ∈ I4, |F | = 4 and Ry(0) = ∅. In Figure 3.16(A), k = 2 (even),

p = 2 and k(p− 1) = 2 <
n

2
= 3 < kp = 4. Also,

n

2
− k(p− 1) = 3− 2 = 1 ≥

⌈
k

2

⌉
= 1.

In Figure 3.15(B), k = 3 (odd), p = 2 and k(p − 1) = 3 <
n

2
= 4 < kp = 6. Also,

n

2
− k(p− 1) = 5− 3 = 2 ≥

⌈
k

2

⌉
= 2.

Theorem 3.7.2. Let C(0) ∈ I5 such that Ry(0) = ∅ and k is an even integer. If the

following conditions hold:

1. n > k|Fy|,

2. k(p− 1) <
n− k|Fy|

2
< kp where 1 ≤ p ≤ m1, and

3.
n− k|Fy|

2
− k(p− 1) ≥

⌈
k

2

⌉
,

then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Theorem 3.7.3. Let C(0) ∈ I5 be such that Ry(0) = ∅ and k = 1. If n > 2m1, then the

k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

In the Figure 3.17(A), an example of a configuration C(t) ∈ I5 that satisfies the

unsolvability criterion stated in Theorem 3.7.2. We have k = 2, |Fy| = 2, n = 10 >
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Figure 3.17: Examples of Impossibility Results when n < km and C(t) ∈ I5. (A)
k = 2, (B) k = 1.

k|Fy| = 4, k(p − 1) = 2(2 − 1) = 2 <
n− k|Fy|

2
= 3 < kp = 4 where p = 2. Also,

n− k|Fy|
2

− k(p − 1) = 3 − 2 = 1 ≥
⌈

2

2

⌉
= 1. Figure 3.17(B) shows an example of

a configuration C(t) ∈ I5 in which k = 1 and n = 6 > 2m1 = 2.2 = 4 satisfying the

unsolvability criterion stated in Theorem 3.7.3.

Theorem 3.7.4. Let C(0) ∈ I5 be such that Ry(0) = ∅. If k > 1 is an odd integer such

that one of the following conditions holds:

1. n > 2km1, or

2. n < 2km1 and k(p− 1) <
n

2
< kp where 1 ≤ p ≤ m1, and

n

2
− k(p− 1) ≥

⌈
k

2

⌉
,

then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Figure 3.18(A) shows an example of a configuration C(t) ∈ I5 with n = 10 > 2km1 =

6, that satisfies the unsolvability criterion stated in Theorem 3.7.4. In the Figure 3.18(B),

C(t) ∈ I5 with n = 4 > 2km1 = 12. Also, k(p − 1) = 3.(1 − 1) = 0 <
n

2
= 2 < kp = 3

where p = 1, and
n

2
− k(p − 1) = 3 − 0 = 3 ≥

⌈
k

2

⌉
= 2. Figure 3.18(B) satisfies the

unsolvability criterion stated in Theorem 3.7.4.
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Figure 3.18: Examples of Impossibility Results when n < km, k = 3 and C(t) ∈ I5.
(A) n > 2km1, (B) n < 2km1.

3.7.2 Algorithm for the k-Circle Formation when n < km

Suppose n = kp1 +p2 where p1 ≥ 0 and 0 ≤ p2 ≤ k. In this case, we define a configuration

to be a final with slack robots if the following conditions are satisfied:

1. C(fi, ρ) ∩ C(fj, ρ) = ∅ for fi 6= fj,

2. There are exactly p1 number of saturated circles.

Define algorithm AlgoSlack as follows:

1. If the current configuration is not a final with slack robots, then execute algorithm

AlgorithmOneAxis.

2. Else terminate.

Theorem 3.7.5. If C(0) ∈ {I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5} and C(0) does not satisfy the

unsolvability criteria stated in Theorems 3.7.1, 3.7.3, 3.7.4 and 3.7.4 then the robots

would eventually solve the k-circle formation problem under one axis agreement, by the

execution of AlgoSlack.

Proof. The idea of proof is similar to the proof of Theorem 3.5.10.
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3.8 Relationship between the k-Circle Formation prob-

lem and the k-EPF problem

Given m > 0 fixed points and n = km robots for some positive integer k, the k-EPF

problem asks exactly k robots to reach and remain in each fixed point. Since the definition

of the k-circle formation problem asks for distinct robot positions, we only consider

the initial configurations with distinct robot positions. We want to prove the following

theorem.

Theorem 3.8.1. For a given initial configuration with distinct robot positions and a

positive integer k, if the k-circle formation problem is deterministically solvable then the

k-EPF problem is also deterministically solvable.

In order to prove the above theorem, we modify AlgorithmOneAxis, to solve the

k-EPF problem deterministically within finite time.

3.8.1 Algorithm for the k-EPF problem

Let C(0) be the given initial configuration. Suppose the k-circle formation problem has

been solved in C(t), for some t ≥ 0, with radius ρ, by the execution of AlgorithmOneAxis.

In order to solve the k-EPF problem, the robots must reach the fixed points. The robots

can accomplish this by moving in a straight line towards the fixed point. Since the robots

are oblivious, they do not remember any information about the past events. Therefore,

if any robot stops before reaching the fixed point for some t′ > t, it would not remember

that the k-circle formation problem has already been solved. As a result, it will again

start executing AlgorithmOneAxis. To resolve such a situation, consider the following

definition. A configuration is said to satisfy Property 1, if the following conditions hold:

1. Each robot lies within ρ distance from some fixed point.

2. ∀fi ∈ F , there are at most k robots, which lie within ρ distance from fi.

Given a configuration which satisfies Property 1, let A be an algorithm as follows:
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If there exists a robot ri such that 0 < d(ri, fj) ≤ ρ for some fj ∈ F , then ri moves

along rifj towards fj.

Define algorithm AlgokEPF as follows:

If the current configuration satisfies Property 1, then execute A.

Else the robots execute AlgorithmOneAxis.

During an execution of A, it must be ensured that none of the robots have any inherent

motion, which is not directed towards the fixed point. Since all the robots are stationary

in the initial configuration, if C(0) satisfies Property 1, then none of the robots would

have any inherent motion.

Lemma 3.8.2. During an execution of AlgorithmOneAxis if t > 0 is the earliest possible

point of time at which the configuration C(t) satisfies Property 1, then none of the robots

would have any inherent motion in C(t).

Proof. Since C(t) satisfies Property 1, each robot lies within ρ distance from some fixed

point. Also, notice that there are no oversaturated circles in C(t). Let fj be the target fixed

point which became saturated at time t due to the movement of a candidate robot (say

ri). Notice that if fj lies on the y-axis and the configuration is symmetric, there would be

two such candidate robots. In that case, we assume that both of them reached C(fj, ρ) at

time t. Otherwise, the configuration C(t) can not possibly satisfy Property 1. Suppose ri

became a candidate robot at some time t1 < t by the execution of CandidateRSelection.

Note that in the time interval [t1, t), the distance of ri from fj was greater than ρ.

Otherwise, the choice of t is wrong. If there were two candidate robots for fj, then this is

true for both the candidate robots. Also, at time t1 there were no robot position (say ra)

such that d(fj, ra(t)) < ρ. Otherwise, ra would have been selected as a candidate robot.

Notice that the candidate robot(s) was the only robot which was moving towards C(fj, ρ).

Therefore, all the robots on C(fj, ρ) are static at t. Next, consider a fixed point fl ∈ F

such that fl has higher configuration rank than fj. All the robots within ρ distance from

fl must lie on C(fl, ρ). This is because, during an execution of CandidateRSelection for

a fixed point, a robot within ρ distance from that fixed point is given higher preference
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than any robot at greater than ρ distance from that fixed point. Since C(fl, ρ) is not

oversaturated, all the robots are static at time t. Next, consider a fixed point fb ∈ F

such that fb has lower configuration rank than fj. By the choice of fj and ri, none of

the robots within ρ distance from fb were selected as a candidate robot. Therefore, all

the robots within ρ distance from fb are static at time t. Hence, if the configuration C(t)

satisfies Property 1, then none of the robots have any inherent motion in C(t).

Theorem 3.8.3. If the initial configuration C(0) ∈ {I1∪I2∪I3∪I4∪I5} and C(0) does

not satisfy the unsolvability criterion stated in Theorem 3.3.1, then the robots would even-

tually solve the k-EPF problem under one axis agreement, by the execution of algorithm

AlgokEPF .

Proof. First, consider the case when the configuration does not satisfy Property 1. The

robots would start executing AlgorithmOneAxis. From Theorem 3.5.10, it follows that

the configuration would eventually satisfy Property 1. Next, consider the case when

the configuration satisfies Property 1. From Lemma 3.8.2, it follows that all the robots

would be static in such a configuration. The robots would start executing A. During an

execution of A, each robot moves in a straight line by at least δ distance, towards the

fixed point from which it is at the closest distance. Since ρ is finite and there are finitely

many robots, eventually each of the fixed points will contain exactly k robots.

Hence, the robots would eventually solve the k-EPF problem by the execution of

algorithm AlgokEPF .

The above theorem provides an evidence that a deterministic distributed algorithm

to solve the k-circle formation problem can be modified to solve the k-EPF problem

and proves Theorem 3.8.1. Notice that during an execution of algorithm AlgokEPF ,

the robots are only allowed to create a multiplicity on the fixed points. Therefore, the

existence of a deterministic distributed algorithm which solves the k-EPF problem, with-

out allowing a robot multiplicity point outside the fixed points, is guaranteed by Theo-

rem 3.8.1.
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3.9 Conclusion

This chapter studies the k-circle formation problem by asynchronous, autonomous, anony-

mous and oblivious robots in the Euclidean plane. The problem is investigated in a setting

where the robots have an agreement on the direction and orientation of the y-axis. The

following three main results have been proved:

1. If the initial configuration C(0) is symmetric about the y-axis such that Fy 6= ∅

(there are fixed points on the y-axis) and Ry(0) = ∅ (there are no robot positions on

the the y-axis), then the k-circle formation problem is deterministically unsolvable

for odd values of k. This is the complete set of the initial configurations and values

of k for which the k-circle formation problem is deterministically unsolvable under

this setting.

2. For the rest of the configurations and the values of k, a deterministic distributed

algorithm has been proposed under one axis agreement.

3. All the initial configurations and values of k for which the problem is deterministi-

cally unsolvable are characterized when n > km.

4. All the initial configurations and values of k for which the problem is deterministi-

cally unsolvable are characterized when n < km.

5. It has also been shown that if the k-circle formation problem is deterministically

solvable then the k-EPF problem is also deterministically solvable. This has been

established by modifying AlgorithmOneAxis; the modified algorithm Algokepf

deterministically solves the k-EPF problem.
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4.1 Overview

In this chapter, the k-circle formation problem is studied for completely disoriented

robots. In other words, the robots neither have any agreement on a global coordinate

system nor have any agreement on a common chirality. When the robots have an agree-

ment on one axis, all the robots and fixed points can be ordered with respect to the axis

of agreement. As a result, the presence of rotational symmetries can be managed. In this

new setting, rotational symmetries must be considered in addition to the reflectional sym-

metry. The number of unsolvable cases would also increase significantly in this current

71
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setting. Due to rotational symmetry, there can be multiple numbers of moving robots

at any particular point of time. To solve the problem in this setting, it must be ensured

that the problem remains solvable throughout the execution of the algorithm. The as-

sumption of an asynchronous scheduler adds more challenges in designing a distributed

algorithm in order to solve the k-circle formation problem. In this setting, all the initial

configurations and values of k for which the k-circle formation problem is deterministi-

cally unsolvable are characterized. A deterministic distributed algorithm is proposed that

deterministically solves the k-circle formation problem for the remaining configurations

and values of k.

4.2 Model and Definitions

The robots are autonomous, anonymous, oblivious, homogeneous, and silent. They oper-

ate in Look-Compute-Move cycles under a fair ASYNC scheduler. They are represented

by points in the Euclidean plane. The robots are completely disoriented. While any value

of the radius is acceptable, we take ρ =
1

3
ρ1 as the common radii of the circles. Recall

that ρ1 denotes the minimum distance between any two fixed points.

4.2.1 Configuration View

Given C(t) = (R(t), F ), let S = R(t)∪F and di = d(Fc, si) where si ∈ S. Let Ray(Fc, si)

denote the ray that starts from Fc and passes through si ∈ S. Let S+
i = (s1, s2, . . . , sn)

denote the list, in the order by which the points in S would be encountered if Ray(Fc, si)

is rotated by an angle of 2π in the clockwise direction. If multiple points are encountered

simultaneously by the sweep line, then the point closest to Fc is considered at first. In

case, a robot lies on a fixed point, then the robot position is given preference over the

fixed point. Define a function x : S → {r, f} as follows:

x(sj) =

r if sj is a robot position

f if sj is a fixed point
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Fc

r3

Ray(Fc, r1)

α2

α3

α4

f1

f2

α5

r1

f3

r2

Figure 4.1: Green square represents robot positions on a fixed point. Illustration of config-
uration view of r1.

Let αj denote the angle by which Ray(Fc, si) has been rotated when the jth point in

S+
i is being encountered. Define the clockwise view of si as

V +(si) = (α1, d1, x(s1), α2, d2, x(s2), . . . , αn, dn, x(sn))

Similarly, the counter-clockwise view of si can be defined. For example, consider the

view of r1 in Figure 4.1. S+
1 = (r1, f1, r3, f3, r2, f2) is the list of points encountered while

rotating Ray(Fc, r1) in the clockwise direction, starting from r1.

V +(r1) = (α1 = 0, d(Fc, r1), r, α2, d(Fc, f1), f, α3, d(Fc, r3), r,

α3, d(Fc, f3), f, α4, d(Fc, r2), r, α5, d(Fc, f2), f)

By defining r < f , the configuration views of all the points in S can be lexicographi-

cally ordered. The view of a point p ∈ R(t) ∪ F is given by V (p) = min(V +(p),V −(p))

and the view of a configuation is given by V (C(t)) = ∪p∈R(t)∪FV (p). These defini-

tions are similar to the configuration view defined in Cicerone et al. [12]. Note that,

even though the robots do not have a common chirality, they get the same information

about the configuration by computing V (C(t)). The view of a set (say S) is defined as

V (S) = min
si∈S

(min (V +(si),V −(si))). A robot can determine whether a given configuration

is symmetric or not by the following two results, proved in Cicerone et al. [12].

Lemma 4.2.1. [12] Let C(t) = (R(t), F ) be a given configuration. The configuration
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C(t) admits a line of symmetry if and only if there exists two points p, q ∈ R(t) ∪ F , not

necessarily distinct, such that V +(p) = V −(q).

Lemma 4.2.2. [12] Let C(t) = (R(t), F ) be a given configuration. The configuration

C(t) admits rotational symmetry if and only if there exists two distinct points p, q ∈

R(t) ∪ F , such that V +(p) = V +(q).
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Figure 4.2: (A) C(t) ∈ FASYM , (B)-(C) C(t) ∈ FREFL, (D)-(E) C(t) ∈ FCHIR, (F)-(I) C(t) ∈
FMULT .

Automorphisms and orbits [12]: Given an automorphism φ ∈ Aut(C(t)), the cyclic

subgroup of order k generated by φ is given by {φ0, φ1 = φ, φ2 = φ ◦ φ, . . . , φk−1} where

φ0 is the identity. For example, a reflection φ generates a cyclic subgroup H = {φ0, φ}

of order two. If H is a cyclic subgroup of Aut(C(t)), the orbit of a point p ∈ R(t) ∪ F

is given by Hp = {φ(p) | φ ∈ H}. Note that the orbits Hp, for each p ∈ R(t) ∪ F form
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a partition of R(t) ∪ F . The associated equivalence relation is defined by saying that p

and q are equivalent if and only if their orbits are the same, that is Hp = Hq. Equivalent

robots are indistinguishable by any algorithm.

Symmetry of a Configuration [12]: A function φ : R2 −→ R2 is called an isometry

or distance preserving map if for any p, q ∈ R2, d(φ(p), φ(q)) = d(p, q). Examples of

isometries in the plane are translations, rotations and reflections. An automorphism of

C(t) is an isometry from R2 to R2 that maps R(t) to R(t) and F to F . The set of all au-

tomorphisms of C(t) forms a group with respect to the composition called automorphism

group of C(t) and it is denoted by Aut(C(t)). If |Aut(C(t))| = 1, then C(t) is said to be

asymmetric (Figures 4.2(A), 4.2(C), 4.2(E) and 4.2(I)). If |Aut(C(t))| > 1, then C(t) is

said to be symmetric, i.e., it admits either rotations (Figures 4.2(D), 4.2(F) and 4.2(G))

or reflections (Figures 4.2(B), 4.2(F) and 4.2(H)). Since |F ∪ R(t)| is finite, translations

are not possible.
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Figure 4.3: L = {L1, L2, L3, L4}. L′ = {L1, L3}. Z = {r1, r2, r3, r4, r5, r6, r7, r8}. LR =
{r1, r2, r3, r4}.

4.2.2 Partitioning of the Configurations

All the configurations can be partitioned into the following disjoint classes:

1. FASYM − F is asymmetric (Figure 4.2(A)).



76 Chapter 4. k-Circle Formation by Disoriented Robots

2. FREFL− F has a single line of symmetry (Figure 4.2(B) and 4.2(C)).

3. FCHIR−F admits rotational symmetry without any line of symmetry (Figure 4.2(D)

and 4.2(E)).

4. FMULT − F admits multiple lines of symmetry (Figure 4.2(F), 4.2(G), 4.2(H) and

4.2(I)).

Since the partition of the set of all the configurations depends only on F , the robots

can easily identify the class to which a configuration belongs to without any conflicts.

In Figure 4.2(B), C(t) admits a single line of symmetry whereas C(t) is asymmetric

in Figure 4.2(C). C(t) admits rotational symmetry without any line of symmetry (Fig-

ure 4.2(D)). C(t) is asymmetric (Figure 4.2(E)). C(t) admits multiple lines of symmetry

(Figure 4.2(F)). C(t) admits rotational symmetry without any line of symmetry (Fig-

ure 4.2(G)). C(t) admits a single line of symmetry (Figure 4.2(H)). C(t) is asymmetric

(Figure 4.2(I)).

4.2.3 Additional Notations

Given a configuration C(t), let L denote the set of all the lines of symmetry for F

(Figure 4.3). Define L′ = {Li | Li ∈ L and Li ∩ F 6= ∅} (Figure 4.3). Let hj denote a

half-line starting from Fc and passing along some Li ∈ L. In case |L| > 0, define

Z = {r | r ∈ hj along some Li ∈ L and d(Fc, r) = max
ri∈hj

d(Fc, ri)} (Figure 4.3)

D denotes the radius of the minimum enclosing circle for R(t) \ Z. Define

LR = {r | r ∈ Z and d(Fc, r) = max
ri∈Z

d(Fc, ri)} (Figure 4.3)

.
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Figure 4.4: y-axis agreement. (A) C(t) ∈ FASYM (B) C(t) ∈ FREFL.

4.2.4 Global and Local Agreements

An active robot identifies the class of the current configuration and agrees on the following

agreements accordingly:

1. C(t) ∈ FASYM . Let fj be the farthest fixed point from Fc. In case of a tie,

choose the one having the minimum view. Fc is considered as the origin. The

straight line passing through Fc and fj is considered as the y-axis. The direction

from Fc to fj is considered as the positive y-axis direction (Figure 4.4(A)).

2. C(t) ∈ FREFL. Let L be the line of symmetry for F . The y-axis is assumed

to pass along L. Consider all the symmetric pairs of fixed points, which are not

collinear with Fc. Among all such pairs, choose the pair (say fi and fj), which is

farthest from Fc. In the case of a tie, select the pair(s) closest to the y-axis. In case

there are two such pairs, choose the one having the minimum view. Fc is considered

as the origin. The direction from Fc towards fifj is considered as the positive y-axis

direction (Figure 4.4(B)).

3. C(t) ∈ FCHIR. C(t) admits a rotation φ ∈ Aut(C(t)). C(t) satisfies Lemma 4.2.2

but does not satisfy Lemma 4.2.1. The cyclic subgroup generated by φ of order l

is given by H = {φ0, φ, . . . , φl−1}. Suppose Hf denotes the orbit of a fixed point

f ∈ F such that f has the minimum view. Since C(t) does not admit any lines
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of symmetry, ∀p, q ∈ R(t) ∪ F, not necessarily distinct, V +(p) 6= V −(q). The di-

rection of V (f) is globally considered as the clockwise direction. Let Ti be the

half-line from Fc that passes through an fi ∈ Hf . Each such half-line is consid-

ered as a wedge boundary. Let Vi denote the wedge in between Ti and Ti+1. Let

W1 = {V1, V2, . . . , Vl} for some l > 0 denotes the set of all wedges. Without loss of

generality, assume that Vi is in the clockwise direction from Ti. The direction away

from Fc and along the wedge bisector of Vi is considered as the positive y-axis direc-

tion in Vi ∪ Ti (Figure 4.5). The robots form an agreement on a common chirality.
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Figure 4.6: (A) C(t) ∈ FMULT and L′ 6= ∅ (B) C(t) ∈ FMULT and L′ = ∅.

4. C(t) ∈ FMULT . First, consider the case when L′ 6= ∅ (set of all the lines

of symmetry for F containing fixed points). For each Li ∈ L′, consider the two

half-lines, starting from Fc and along Li. Suppose H = {h1, h2, . . . , hv} denotes
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the set of all such half-lines. Let Bi denote the angle bisector of ]hiFchi+1 where

hi, hi+1 ∈ H. Let Wi denote the wedge between Bi−1 and Bi (Figure 4.6(A)). Next,

consider the case when L′ = ∅. Each half-line along some Li ∈ L is considered as

a wedge boundary (Figure 4.6(B)). Let W2 = {W1,W2, . . . ,Wp} for some p > 0

denote the set of all wedges. The direction away from Fc and along the wedge

bisector is considered as the positive y-axis direction in a wedge Wi ∈ W2. The

robots do not have agreement on a common chirality in this case.

The robots agree upon two different sets of wedges, namely W1 (if C(t) ∈ FCHIR) and

W2 (if C(t) ∈ FMULT ). Note that, there are local y-axes one per each wedge. Since the

definition of wedges is based on the partitioning of the configurations, the robots would

identify a type of wedge without any conflict.

Definition 4.2.3. A point p is said to be a virtual robot position at time t, if ∃ rk ∈ R(t)

such that p and rk are symmetric about a line of symmetry L ∈ L′.

4.2.5 Problem Definition

C(t) is said to be a final configuration if the following conditions hold:

i) Each robot position ri(t) is on a circle C(fj, ρ), for some fj ∈ F ,

ii) ∀fi ∈ F, Di(t) = 0 and |C(fi, ρ) ∩R(t)| = k.

To solve the k-circle formation problem, starting from an initial configuration, the robots

are required to reach and remain in a final configuration. The definition of ρ ensures that

all the circles are disjoint in any final configuration.

4.3 Impossibility Result

All the initial configurations and values of k, for which the k-circle formation problem is

deterministically unsolvable in this setting are characterized.
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Theorem 4.3.1. Let C(0) ∈ FREFL ∪ FMULT be such that there exists a line of

symmetry for R(0) ∪ F (say L), and the following conditions hold:

i) L ∩ F 6= ∅.

ii) L ∩R(0) = ∅.

If k is an odd integer, then the k-circle formation problem is deterministically unsolvable.

Proof. Let A be a deterministic distributed algorithm that solves the k-circle formation

problem, for some odd integer k > 0. Let the symmetric image of r with respect to L is

denoted by φ(r). Consider the following setting:

(i) The scheduler is considered to be SSYNC. In addition, assume that both r and φ(r)

are activated simultaneously.

(ii) All the robots are assumed to move with the same constant speed without any

transient stops. Also, assume that both r and φ(r) would travel the same amount

of distance.

The robots would run the same algorithm. According to Lemma 4.2.1, the robots r and

φ(r) would have the same configuration view. Thus, their computed destination points

and the paths for movement would be symmetric images with respect to L. Since the

initial configuration was symmetric, the robots would not be able to deterministically

break the symmetry under this setting. Let f be a fixed point on L. As the configuration

would remain symmetric, all the distinct k robot positions on C(f, ρ) must be symmetric

about L. Since k is odd, C(f, ρ) must contain a robot position on L. As L∩R(0) = ∅, one

of the robots must reach L. Since all the robots move in pairs, if a robot r moves to L,

then φ(r) would move to the same point. As a result, a point of robot multiplicity will be

created on L. The robots on a multiplicity point can not be separated deterministically.

Hence, the k-circle formation problem is deterministically unsolvable.

Definition 4.3.2. A configuration C(t) for some t ≥ 0 is said to be a solvable configu-

ration, if it does not satisfy the unsolvability criterion stated in Theorem 4.3.1.
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Figure 4.7: AlgorithmNoAxis

In this section, a deterministic distributed algorithm is proposed that solves the k-

circle formation problem for completely disoriented robots. AlgorithmNoAxis would be

discussed in details in subsection 4.4.3. Figure 4.7 shows a diagramatic representation of

AlgorithmNoAxis. An overview of AlgorithmNoAxis is discussed as follows:

1. The robots have a global y-axis agreement. This includes the configura-

tions in FASYM ∪ FREFL. The robots solve the k-circle formation problem by

AlgorithmOneAxis discussed in Chapter 3.

2. The robots do not have a global y-axis agreement. They agree on the set

of wedges W1 or W2. This includes the configurations in FCHIR ∪ FMULT .

In each such wedges, the robots make a local y-axis agreement. To break the

reflectional symmetry about a line L ∈ L, SymmetryBreaking (Subsection 4.4.1) is

executed. The robots execute AlgorithmOneAxis locally in each wedge. However,

the distribution of robot positions among the wedges may not be uniform. In such

a case, the robots move from one wedge to another by the execution of MovetoLine

(Subsection 4.4.2).

4.4.1 SymmetryBreaking

SymmetryBreaking is the procedure by which the robots would break the reflectional

symmetry of a configuration C(t) ∈ FMULT for t ≥ 0.
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Definition 4.4.1. Let hj be a half-line along some L ∈ L. Suppose h+
j denotes the

half-line, that makes an angle
α

p
from hj, measured in the clockwise direction from hj,

where p is the smallest positive integer for which there are no fixed points within
α

p
from hj

(excluding hj). Similarly, assume that h−j denotes such a half-line in the counter-clockwise

direction from hj. Define Region(hj) as the closed region bounded by the half-lines h+
j

and h−j (including h+
j and h−j ) that contains hj. Define Dj1 = d(Fc, ri), where ri is one

of the farthest robot from Fc in Region(hj). Also, define Dj2 = d(Fc, rk), where rk is one

of the second farthest robot from Fc in Region(hj).

4.4.1.1 Phases during SymmetryBreaking

We define the following phases at any arbitrary point of time t ≥ 0:

1. P1 : ∃L ∈ L such that C(t) is symmetric about L, L ∩ R(t) 6= ∅ and ∃r ∈ LR such

that d(Fc, r) < D + 2.

2. P2 : ∃L ∈ L such that C(t) is symmetric about L, L ∩ R(t) 6= ∅ and ∀r ∈ LR such

that d(Fc, r) ≥ D + 2.

3. P3 : ∃ri ∈ Region(hj) for some hj along some L ∈ L such that Dj1 −Dj2 > 2.
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Figure 4.8: Empty circle represents a virtual robot position. (A) phase ¬P1 ∧ P2, (B)-(C)
phase ¬P1 ∧ ¬P2 ∧ P3.

4.4.1.2 Movements during SymmetryBreaking

Different types of movements during any execution of SymmetryBreaking are as follows:
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1. m1 : This movement is executed when the configuration is in phase P1. Suppose

ri ∈ hj such that ri ∈ LR and d(Fc, ri) < D+2. Let p ∈ hj such that d(Fc, p)−D = 2.

Robot ri would be selected as a candidate robot. ri moves along the half-line hj

towards p.

2. m2 : This movement is executed when the configuration is in phase ¬P1 ∧ P2.

Suppose ri ∈ hj such that ri ∈ LR and d(Fc, ri) ≥ D + 2. Robot ri would be

selected as a candidate robot. Let T be the tangent to the circle C(Fc, d(Fc, ri)) at

ri(t). Suppose it intersects h+
j and h−j at the points p1 and p2, respectively. Robot

ri would select its destination point arbitrarily between p1 and p2 (Figure 4.8(A)).

Without loss of generality, assume that p1 is selected as the destination point. rk

moves towards p1 along rk(t)p1.

3. m3 : This movement is executed when the configuration is in phase¬P1 ∧ ¬P2 ∧ P3.

Suppose ri ∈ Region(hj) for some hj along some L ∈ L such that Dj1 −Dj2 > 2.

Let p be the point on ri(t)Fc such that d(Fc, p) − Dj2 = 2. Since ri is the unique

robot position in Region(hj) such that Dj1 −Dj2 > 2, there can not be any robot

positions on ri(t)Fc. There are two cases:

(a) ri(t)Fc does not contain any virtual robot positions. Robot ri would be selected

as a candidate robot. ri selects p as its destination point and it moves along

ri(t)Fc (Figure 4.8(B)).

(b) ri(t)Fc contains a virtual robot position. Let rv be a robot or virtual robot

position in Region(hj) such that ]ri(t)FcFcrv(t)Fc is minimum and which does

not lie on ri(t)Fc. Let B be the ray starting from Fc such that ]ri(t)FcFcB =
1

2
min(]ri(t)FcFcrv(t)Fc,]ri(t)FcFchj). Suppose p3 is the point on B such that

d(Fc, p3) − Dj2 = 2. Robot ri would be selected as a candidate robot. The

candidate robot selects p3 as its destination point and it moves along ri(t)p3

(Figure 4.8(C)).

In Figure 4.8(A), r4 lies on hj and it would arbitrarily select its destination point between

p1 and p2. In Figure 4.8(B), r4 does not lie on hj and it would select p as its destination

point. In Figure 4.8(C), r4 does not lie on hj and p contains a virtual robot position r.
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Let r2 be the robot position in Clear(hj) such that the angle ]Fcr2FcFcr4 is minimum

and ]Fcp3FcFcr4 =
1

2
]Fcr2FcFcr4. It would select p3 as its destination point.

At time t ≥ 0, if the configuration is in phase P1∨P2∨P3, then any active robot will exe-

cute SymmetryBreaking. Execution of Symmetrybreaking is terminated when the con-

figuration is in ¬(P1∨P2∨P3) (Figure 4.9). The detailed description of SymmetryBreaking

is presented in the following table 4.1.

Phases Movements Phases after the Movements
P1 m1 P1 or ¬P1 ∧ P2

¬P1 ∧ P2 m2 ¬P1 ∧ P2 or ¬P1 ∧ ¬P2 ∧ P3

¬P1 ∧ ¬P2 ∧ P3 m3 ¬P1 ∧ ¬P2 ∧ P3 or ¬(P1 ∨ P2 ∨ P3)

Table 4.1: Phase Transitions during SymmetryBreaking

SymmetryBreaking

P1 ¬P1 ∧ P2 ¬P1 ∧ ¬P2 ∧ P3

¬(P1 ∨ P2 ∨ P3)

m1 m2

m3

m3m1 m2

Figure 4.9: Phase transitions during SymmetryBreaking.

4.4.1.3 Progress during SymmetryBreaking

Lemma 4.4.2. If the configuration C(t) is in phase P1 ∨ P2 ∨ P3, then by the execution

of SymmetryBreaking the configuration would eventually be in phase ¬(P1 ∨ P2 ∨ P3).

Proof. Let t′ > t be an arbitrary point of time at which ri has completed at least one

LCM cycle. We have the following cases:

Case 1. C(t) is in P1. Let L ∈ L be such that it is a line of symmetry for C(t) and

L ∩R(t) 6= ∅. Let ri be the farthest robot position on the half-line hj along L. Since the

configuration is in P1, ∃r ∈ LR such that d(Fc, r) < D + 2. Without loss of genrality,

assume that d(Fc, ri) < D + 2. Robot ri performs movement m1, i.e., it moves along
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hj to a point p, such that d(Fc, p) − D = 2. Since ri moves in a straight line towards p

by at least δ amount, it will eventually reach p. Therefore, the configuration will be in

¬P1 ∧ P2 within finite time.

Case 2. C(t) is in ¬P1 ∧ P2. Let ri(t) ∈ hj be such that d(Fc, ri(t)) ≥ D+2. Movement

m2 will be performed by a candidate robot (say ri). Since ri would move by at least δ

amount away from hj, ri(t
′) /∈ hj. Either ri(t

′) = p or ri(t
′) 6= p. At t′, Dj1 − Dj2 > 2

would be satisfied. Since |LR| is finite within finite time the configuration will be in

¬P1 ∧ ¬P2 ∧ P3.

f1

Fc

rj

ri(t)

hj h+
jh−j

p1

r
p′

ri(t
′)

Figure 4.10: ri selects p1 as its destination point at time t. At t′, ri selects p′ as its
destination point.

Case 3. C(t) is in ¬P1 ∧ ¬P2 ∧ P3. Let ri ∈ Region(hj) be a candidate robot. Let p1 be

the destination point computed by ri for performing movement m3. Let d = d(ri(t), p1).

At time t′, let p′ be the point on ri(t′)Fc such that d(Fc, p) − Dj2 = 2. Since ri(t′)Fc

would not contain any virtual robot positions (ensured by the selection of the destination

point), ri would select p′ as its destination point and ri(t′)Fc as the path for movement

(Figure 4.10). Since d′ = d(ri(t
′), p′) < d(ri(t

′), p1), d − d′ > d − d(ri(t
′), p1) ≥ δ. Thus,

ri would eventually reach a point such that Dj1 − Dj2 = 2 in Region(hj). Since |L| is

finite there are only finite number of candidate robots. Therefore, within finite time the

configuration will be in ¬P1 ∧ ¬P2 ∧ ¬P3.

Hence, if C(t) is in phase P1 ∨ P2 ∨ P3, then by the execution of SymmetryBreaking

the configuration would eventually be in phase ¬(P1 ∨ P2 ∨ P3).
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4.4.1.4 Solvability during SymmetryBreaking

In order to satisfy the unsolvability criterion (Theorem 4.3.1), k must be odd. We have

the following observation.

Observation 1. The k-circle formation problem is deterministically solvable for all the

even values of k.

Consider that |F | is odd. If k is even, from observation 1 the k-circle formation problem

is solvable. If k is odd, then the configuration would contain an odd number of robots. As

a result, the configuration can not admit a line of symmetry without any robot positions

on it. In order to satisfy the unsolvability criterion (Theorem 4.3.1), the line of symmetry

should not contain any robot positions.

Observation 2. All the configurations containing an odd number of fixed points are

always solvable.

To satisfy the unsolvability criterion (Theorem 4.3.1), the configuration must have a line

of symmetry containing fixed points.

Observation 3. If L′ = ∅, then the configuration would remain solvable.

Lemma 4.4.3. If C(0) ∈ FMULT and it is in P1 ∨ P2, then during any execution of

SymmetryBreaking, C(t) for some t > 0 would remain solvable.

Proof. Let L ∈ L be such that it is a line of symmetry for C(0) and L ∩ R(0) 6= ∅.

According to Observation 3, C(t) would always remain solvable if L ∈ L\L′. We assume

that L ∈ L′. Suppose hi and hj are the half-lines starting from Fc and passing along

L. Assume that ra ∈ hi and rb ∈ hj are the farthest robots from Fc. Without loss of

generality, assume that either ra ∈ LR or rb ∈ LR. Otherwise, we can always select some

L′ ∈ L \ {L} can be selected. We have the following cases:

Case 1. C(0) is in P1. Movement m1 will be performed by the candidate robots. Since

L∩R(t) 6= ∅ is preserved during movement m1 along L, the configuration would remain

solvable.
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Case 2. C(0) is in ¬P1 ∧ P2. Movement m2 will be performed by the candidate robots.

We must show the following points:

Subcase 1. C(t) will become asymmetric about L. First, consider that either ra ∈ LR
or rb ∈ LR. Without loss of generality, assume that ra ∈ LR. Robot ra would perform

movement m2. Since ra would be the unique robot position in Region(hj) such that

Dj1−Dj2 > 2, C(t) would remain asymmetric about L. Next, consider that ra ∈ LR and

rb ∈ LR. Both ra and rb would perform movement m2. The following two scenarios are

possible:

1. The candidate robots have moved to the same half-plane delimited by L.

2. The candidate robots have moved to different half-planes delimited by L.

In both the above two scenarios, C(t) will become asymmetric about L.

Subcase 2. C(t) will become asymmetric about Lb ∈ L′ \ {L} or symmetric about Lb

with Lb∩R(t) 6= ∅. If k is even, then C(t) would always remain solvable (Observation 1).

We assume that k is odd. If possible, let Lb become a line of symmetry for C(t). Let

r be the symmetric image of ra about Lb. Similarly, rb would also have a symmetric

image about Lb. According to the definition of D, r must be on some Lc ∈ L′ at t = 0.

Otherwise, it cannot be a symmetric image of ra at time t. This is because ra would

have avoided the virtual position of r during its movement. Also, the definition of the

set LR implies that d(Fc, r(0)) = d(Fc, ra(0)). So, ra and r are symmetric images of each

other about Lb in C(0). This is true for all such robot positions which have performed

movement m2 in the time interval [0, t]. The following two scenarios are possible:

1. C(0) is symmetric about Lb. Since C(0) is solvable and Lb ∈ L′, we must have

Lb ∩ R(0) 6= ∅. If C(t) is symmetric about Lb, then we must have ∩R(t) 6= ∅.

Otherwise, from subcase 1 of case 2 C(t) is guaranteed to become asymmetric

about Lb.

2. C(0) is asymmetric about Lb. All the robots which have performed movement m2

would avoid all the virtual robot positions and other robot positions during their

movement. Therefore, C(t) would remain asymmetric about Lb.
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Hence, if C(0) ∈ FMULT be such that it is in P1 ∨ P2, then during any execution

of SymmetryBreaking, C(t) for some t > 0 would remain solvable.

Lemma 4.4.4. If C(0) ∈ FMULT be such that it is in P3, then during any execution

of SymmetryBreaking, C(t) for some t > 0 would remain solvable.

Proof. Let ri be a candidate robot such that ri ∈ Region(hj), where hj is a half-line along

some Li ∈ L and Dj1 − Dj2 > 2. Robot ri would perform movement m3. According

to Observation 3, C(t) would always remain solvable if Li ∈ L \ L′. We assume that

Li ∈ L′. During any execution of SymmetryBreaking, ri would remain the unique robot

in Region(hj) such that Dj1−Dj2 > 2. As a result, C(t) would remain asymmetric about

Li. Let ha be a half-line along some Lb ∈ L′ \ {Li}. Consider the following cases:

Case 1. ∃ rj ∈ Region(ha) such that Da1 −Da2 ≥ 2. Since rj would remain the unique

robot in Region(ha), the configuration would remain asymmetric about Lb.

Case 2. ∀r ∈ Region(ha), Da1 − Da2 < 2. Let hb be a half-line along some Lp ∈ L′

such that Region(hb) and Region(hj) are mirror images about Lb. Consider the following

cases:

Subcase 1. ∀ r ∈ Region(hb), Db1 −Db2 < 2. Since ri would not have any symmetric

image in Region(hb) about Lb, C(t) would remain asymmetric about Lb.

Subcase 2. ∃ r ∈ Region(hb) such that Db1 −Db2 ≥ 2. If ri and r were not symmetric

images of each other about Lb in C(0), then C(t) is guaranteed to be asymmetric about Lb.

This is because each robot would avoid the virtual robot positions during its movement

m3. Next, consider that ri and r were symmetric images of each other in C(0). Since

C(0) was solvable either the initial configuration was asymmetric about Lb or symmetric

about Lb with Lb∩R(0) 6= ∅. First, consider that was asymmetric about Lb. Since all the

candidate robots have performed their movement m3 by avoiding virtual robot positions,

C(t) would remain asymmetric about Lb. Next, consider that C(0) was symmetric about

Lb with Lb ∩ R(0) 6= ∅. Either Lb ∩ R(t) 6= ∅ or C(t) is asymmetric about Lb (follows

from Lemma 4.4.3). C(t) would remain solvable.

Hence, if C(0) ∈ FMULT be such that it is in P3, then during any execution of

SymmetryBreaking, C(t) for some t > 0 would remain solvable.
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4.4.2 MovetoLine

Before we discuss the procedure MovetoLine, we consider the following definitions.

Definition 4.4.5. Consider a wedge Wi with the wedge boundaries Bi and Bi+1. Suppose

Wi+1 be the adjacent wedge of Wi, which is separated by the wedge boundary Bi+1. Simi-

larly, Wi−1 denotes the adjacent wedge of Wi, which is separated by the wedge boundary

Bi. Let M1 be the half-line from Fc, that lies in the adjacent wedge Wi+1, such that it

makes an angle
α

p
from Bi+1, where p is the smallest positive integer, for which there are

no fixed points within angle
α

p
from Bi+1. Similarly, define M2, that lies in the adjacent

wedge Wi−1. Let Area(Wi) denote the open region (excluding M1 and M2 but including

Fc) bounded by the half-lines M1 and M2, that includes Wi.

Definition 4.4.6. Vi ∈ W1 is said to contain a surplus robot if the following conditions

hold:

(i) There are no unsaturated fixed points in Vi ∪ Ti and

(ii) there exists either an oversaturated fixed point in Vi ∪ Ti or a robot that has not

reached any circle yet in Vi ∪ Ti.

Definition 4.4.7. Wi ∈ W2 is said to contain a surplus robot if the following conditions

hold:

(i) There are no unsaturated fixed points in Area(Wi) and

(ii) there exists either an oversaturated fixed point in Area(Wi) or a robot that has not

reached any circle yet in Area(Wi).

MovetoLine is the procedure by which a surplus robot moves towards a wedge in

which there exists an unsaturated fixed point.

4.4.2.1 Phases during MovetoLine

We define the following phases at any arbitrary point of time t ≥ 0:
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1. P4 : C(t) ∈ FCHIR and ∃ Vi ∈ W1 such that Vi contains a surplus robot.

2. P5 : C(t) ∈ FMULT and ∃ Wi ∈ W2 such that Wi contains a surplus robot.

4.4.2.2 Candidate Robot and its Destination Line
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r5
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f3
r3r4
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M1 M2
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f2

r2

r1

f3r3

r4
B1 B2

W3W1
W2

M1 M2
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Figure 4.11: Selection of destination lines and candidate robots.

We have the following cases at any arbitrary point of time t ≥ 0:

1. C(t) is in phase P4. Let Vi ∈ W1 be such that Vi contains a surplus robot. The

wedge boundary Ti+1 that lies in the clock-wise direction from Vi is selected as the

destination line (Figure 4.11(A)). Let rj be the surplus robot that lies at a closest

distance from Ti+1. In case, there are multiple such robots, choose the one that is

farthest from Fc. Robot rj is selected as the candidate robot (Figure 4.11(A)).

2. C(t) is in phase P5. Let Wi ∈ W2 be such that Wi contains a surplus robot.

Consider the folowing definition:

Definition 4.4.8. The wedge boundary Bi is said to be closer to Wj than Wk if the

number of wedges between Bi and Wj is less than the number of wedges between Bi
and Wk.

We have the following cases:

(a) Both the adjacent wedges ofWi do not contain any unsaturated fixed

points. Without loss of generality, assume that between the two wedge bound-

aries, Bi+1 is the wedge boundary that is closest to a wedge, that contains an

unsaturated fixed point. M1 is selected as the destination line. Let ri be the

surplus robot that lies at the closest distance from M1. If there are multiple

such robots, choose the one that is farthest from Fc. Robot ri is selected as



4.4. Algorithm 91

the candidate robot. Next, consider the case when both Bi and Bi+1 are re-

spectively closest to some wedge, which contains an unsaturated fixed point.

In this case, both M1 and M2 are selected as a destination line. For each

destination line, a candidate robot will be selected, similar to the above case.

In this case, there may be two candidate robots in Wi (Figure 4.11(B)). If a

robot lies at an equal distance from both the destination lines, then the robot

would arbitrarily select its destination line (Figure 4.11(C)).

(b) One of the adjacent wedges ofWi contains an unsaturated fixed point.

Without loss of generality, assume thatWi+1 is the wedge that contains an un-

saturated fixed point. M1 is selected as the destination line. Next, a candidate

robot will be selected for M1 similarly to the above case.

Suppose k = 1. In Figure 4.11(A), r3 and r4 are the surplus robots in V2∪T2. Assume

that V3 lies in the clockwise direction from V2. Wedge boundary T2 is selected as the

destination line. Both r3 and r4 are at equal distance from T2. Since d(c, r4) > d(c, r3),

r4 is selected as the candidate robot. In Figure 4.11(B), r3 and r4 are surplus robots in

Sur(Wi). Without loss of generality, assume that both the adjacent wedges of W2 do

not contain any unsaturated fixed points. In addition, assume that both B1 and B2 are

individually closest to some wedge which contains an unsaturated fixed point. Both M1

and M2 are selected as destination lines. Both r3 and r4 are selected as candidate robots.

In Figure 4.11(C), r3 is the only surplus robot in Sur(Wi). Since it is at equidistant from

both M1 and M2, it selects its destination line arbitrarily.

Let ri be a candidate robot and L its destination line during MovetoLine. Let x ∈ L

be the point such that rix is perpendicular to L.

4.4.2.3 Conditions during MovetoLine

We define the following conditions during MovetoLine:

1. c1 : rix passes through a saturated circle.

2. c2 : rix does not pass through any saturated circle but there exists a robot position

or a virtual robot position on rix (line segment excluding x).
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3. c3 : rix neither passes through any saturated circle nor contains any robot positions

nor any virtual robot positions on rix (line segment excluding x).
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Figure 4.12: Movements (A)-(B)m4, (C) m5
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Figure 4.13: (A)-(B) Movement m6.

4.4.2.4 Movements during MovetoLine

Different types of movements are as follows:

1. m4 : This movement is executed when ri satisfies c1. Let C(fj, ρ) be the first circle

to which ri intersects while moving along rix towards x. Suppose, q is the intersection

point between rix and C(fj, ρ), which is at closest distance from ri. The candidate

robot has the following cases:

(i) There neither exists a virtual robot position on riq nor a robot position on q.

The robot ri moves along riq, towards q (Figure 4.12(A)).

(ii) Otherwise, let y be the closest robot position or the virtual robot position from

q (such that q, y and x are not collinear), which lies on C(fj, ρ). Let z be the
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point on C(fj, ρ) such that ]riqririz =
1

2p
(]riqririy), where p is the smallest

positive integer for which riz does not contain any virtual robot positions. Due

to the choice of y and candidate robot ri, riz possibly can not contain any robot

positions. Robot ri moves along riz towards z (Figure 4.12(B)).

2. m5 : This movement is executed when ri satisfies c2. Let y be the closest robot

position or the virtual robot position from x, which lies on L. In case there are no such

robots, take y = Fc. Let z be the point on xy such that ]rixririz =
1

2p
(]rixririy),

where p is the smallest positive integer for which riz does not contain any robot

positions or any virtual robot positions or does not intersects any saturated circle.

Robot ri moves along riz towards z (Figure 4.12(C)).

3. m6 : This movement is executed when ri satisfies c3. If x is not a robot position,

then ri moves along rix towards x (Figure 4.13(A)). Otherwise, the actions are similar

to the case 2 for the candidate robot ri (Figure 4.13(B)).

In Figure 4.12(A) riq does not contain any robot positions and virtual robot positions,

ri selects q as its destination point and moves along riq. In Figure 4.12(B) riq contains

a virtual robot position rl, ri selects z as its destination point and moves along riz. In

Figure 4.12(C) rix contains a virtual robot position rl, ri selects z as its destination point

and moves along riz. In Figure 4.13(A) rix does not contain any robot positions or virtual

robot positions. Since x is neither a robot position nor a virtual robot position, ri selects

x as its destination point and moves along rix. In Figure 4.13(B) Since x is a robot

position, ri selects z as its destination point and moves along riz.

At time t ≥ 0, if the configuration is in either phase P4 or P5, then any active robot will

execute MovetoLine. Execution of MovetoLine is terminated when the configuration is

neither in P4 nor in P5 (Figure 4.14). The detailed description of MovetoLine is presented

in the following table 4.2.

4.4.2.5 Solvability during MovetoLine

Lemma 4.4.9. If C(0) ∈ FMULT be such that it is in P4 or P5, then during any

execution of MovetoLine, C(t) at t > 0 would remain solvable.



94 Chapter 4. k-Circle Formation by Disoriented Robots

Phases Conditions Movements Phases after the Movements
P4 c1 m4 P4 or ¬P4

P4 c2 m5 P4 or ¬P4

P4 c3 m6 P4 or ¬P4

P5 c1 m4 P5 or ¬P5

P5 c2 m5 P5 or ¬P5

P5 c3 m6 P5 or ¬P5

Table 4.2: Phase Transitions during MovetoLine

MovetoLine

P4 ∧ c1 P4 ∧ c2 P4 ∧ c3 P5 ∧ c3P5 ∧ c2P5 ∧ c1

¬P4 ¬P5

m4 m4m6m5 m6m5

m4 m5 m6 m4 m5 m6

m4

m4 m5

m4

m4 m5

Figure 4.14: Phase transitions by a candidate robot during MovetoLine.

Proof. Let ri be a candidate robot during an execution of MovetoLine. If C(0) is asym-

metric, execution of MovetoLine would be started in a unique wedge. In case, C(0) ad-

mits rotational symmetry, execution of MovetoLine would be started in multiple wedges.

A candidate robot would perform either m4 or m5 during any execution of MovetoLine.

During such movements ri would select its path for movement by ensuring that it does

not contain any robot positions or virtual robot positions. Robot ri would avoid all the

points at which C(t) might become symmetric about some Li ∈ L′. Therefore, C(t)

would remain asymmetric about each Li ∈ L′. Hence, if C(0) ∈ FMULT be such that

it is in P4 or P5, then during any execution of MovetoLine, C(t) at t > 0 would remain

solvable.

4.4.2.6 Progress during MovetoLine

Let C(t) be in phase P4 and Vk ∈ W1 be a wedge that contains a surplus robot. In the

wedge Vk, both the destination line (say L) and the candidate robot (say ri) are unique.

Let qi(t) be its destination point computed at time t. Let Ray(ri(t), qi(t)) denotes the
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ray starting from ri and passing through qi(t). Suppose p1(t) denotes the point at which

Ray(ri(t), qi(t)) intersects L. Define gi(t) = d(ri(t), p1(t)). Let x(t) be the point on L,

such that rix(t) is perpendicular to L. Assume that there are N1(t) number of surplus

robots in Vk. Define Vk(t) = (N1(t), gi(t)).
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Figure 4.15: (A)-(B) Progress during movement m4

In Figure 4.15(A), ri selects q as its destination point at time t. It moves straight

towards q and selects q as its destination point at time t′. In Figure 4.15(B), ri selects

z as its destination point at time t. At time t′, ri selects u as its destination point. In
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Figure 4.16: Progress during movements (A) m5, (B)-(C) m6.

Figure 4.16(A), ri(t)x(t) contains a virtual robot position. ri selects z as its destination

point at time t. At time t′, ri(t′)x(t′) does not contain any robot positions or virtual

robot positions. It selects x(t′) as its destination point. In Figure 4.16(B), ri selects x(t)

as its destination point at time t. It moves straight towards x(t) and selects x(t) as its

destination point at time t′. In Figure 4.16(C), x(t) is a robot position. At time t, ri
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selects z as its destination point. At time t′, x(t′) does not contain any robot positions.

It selects x(t′) as its destination point.

Definition 4.4.10. Let C(t) be in phase P4. During any execution of MovetoLine,

we say that there has been progress in a wedge Vk ∈ W1 in the time interval t to t′ if

Vk(t′) < Vk(t), i.e., Vk(t′) is lexicographically smaller than Vk(t).

Lemma 4.4.11. Let C(t) be in phase P4. Let ri be a candidate robot and t′ > t be an

arbitrary point of time at which ri has completed its at least one LCM cycle. Execution

of MovetoLine ensures that gi(t
′) + δ ≤ gi(t).

Proof. The following cases are to be considered:

Case 1. C(t) satisfies c1. Let C(fj, ρ) be the first circle to which ri intersects while

moving along rix towards x. Suppose, q is the intersection point between rix and C(fj, ρ).

Subcase 1. riq does not contain any virtual robot positions and q does not contain any

robot position. In this case, ri executes case (i) of movement m4 (Figure 4.15(A)). Since

ri moves at least δ distance, gi(t
′) + δ ≤ gi(t).

Subcase 2. Either q is a robot position or riq contains a virtual robot position. The

candidate robot computes a destination point on C(fj, ρ) according to case (ii) of move-

mentm4 (Figure 4.15(B)). At time t′, d(ri(t
′), p1(t′)) < d(ri(t

′), p1(t)) and d(ri(t), p1(t))−

d(ri(t
′), p1(t′)) > d(ri(t), p1(t)) − d(ri(t

′), p1(t)) ≥ δ (Figure 4.15(B)). This implies that

gi(t
′) + δ ≤ gi(t).

Case 2. C(t) satisfies c2. Robot ri executes movement m5(Figure 4.16(A)). This case

is similar to Subcase 2 of Case 1.

Case 3. C(t) satisfies c3. Robot ri executes movement m6. If x(t) is not a robot

position, the case is similar to Subcase 1 of Case 1 (Figure 4.16(B)). In case x(t) is a

robot position, the case is similar to Subcase 2 of Case 1 (Figure 4.16(C)).

Hence, an execution of MovetoLine ensures that gi(t
′) + δ ≤ gi(t).

Lemma 4.4.12. During an execution of MovetoLine in Vk ∈ W1, let t′ > t be an

arbitrary point of time at which a candidate robot ri has completed its at least one LCM

cycle. An execution of MovetoLine ensures progress in Vk in the time interval t to t′.
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Proof. The following cases are to be considered:

Case 1. x(t) = ri(t
′). Then N1(t′) = N1(t)− 1, which implies V2(t′) < V2(t).

Case 2. x(t) 6= ri(t
′). Lemma 4.4.11 ensures that gi(t

′) < gi(t). Thus, V2(t′) < V2(t).

Hence, an execution of MovetoLine ensures progress in Vk in the time interval t to t′.

Next, assume that C(t) is in P5. Let Wk ∈ W2 be a wedge that contains a surplus robot.

Progress in a wedge Wk ∈ W2 can be defined similarly to the Definition 4.4.10. There are

two possible cases: (i) single destination line and (ii) two destination lines. If there is a

single destination line in Wk, then there is a unique candidate robot. Thus, progress in

Wk is ensured by (Lemma 4.4.12). If there are two destination lines, then there are two

candidate robots (say r1 and r2) inWk. In this case, both the candidate robots must have

different destination lines. Otherwise, both of them can not be selected as a candidate

robot. As a result, each of them will continue their movements by ensuring progress in

Wk (Lemma 4.4.12) without any conflict.

Lemma 4.4.13. If C(t) for t ≥ 0 is in P4 or P5, then by the execution of MovetoLine

within finite time the configuration would eventually be neither in P4 nor in P5

Proof. Lemma 4.4.12 guarantees progress in a wedge. Since there is only a finite number

of wedges, the number of wedges containing surplus robots is also finite. Therefore, within

finite time the configuration would eventually be neither in P4 nor in P5 by the execution

of MovetoLine.

4.4.3 AlgorithmNoAxis

Definition 4.4.14. Let Wi and Wj be two wedges that contain a surplus robot. Let ra

and rb be the candidate robots in Wi and Wj, respectively. If there are two candidate

robots in a wedge, then select the one that lies closest to its destination line. If there is

a tie, select the one with the minimum view. If both the candidate robots have the same

view, then select one of them arbitrarily. At time t,Wi is said to have more progress than

Wj during MovetoLine, if Vi(t) is lexicographically smaller than Vj(t).
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Definition 4.4.15. Progress in a wedgeWi ∈W2: First, consider the case when there

exists a unique target fixed point in each of the wedges. Let fi and fj be the target fixed

points in Wi and Wj, respectively, at time t. At time t, Wi is said to have more progress

than Wj, if one of the following holds:

(i) V (fi) < V (fj), or

(ii) V (fi) = V (fj) and Di(t) < Dj(t), or

(iii) V (fi) = V (fj) and Di(t) = Dj(t) and d(fi, r1) < d(fj, r2) where r1 and r2 are the

candidate robots for fi and fj respectively at time t.

Next, consider the case when there are two target fixed points in the same wedge. This

would happen when the wedge is symmetric about the wedge bisector. The two target

fixed points will be separated by the wedge bisector, which is considered to be the y-axis

in that wedge. If there has been the same progress in both the half-planes (Definition

3.4.1) delimited by the wedge bisector, then one of the target fixed points is considered

arbitrarily. Otherwise, the target fixed point from the half-plane, for which there has been

more progress is considered. Next, similar to the case of unique target fixed points, the

robots can identify the wedge in which there has been more progress.

An active robot executes AlgorithmNoAxis unless C(t) is a final configuration. The

pseudo-code for AlgorithmNoAxis is given in Algorithm 4.1.

4.4.3.1 Phases during AlgorithmNoAxis

We define the following additional phases at time t ≥ 0:

1. P6 : C(t) have y-axis agreement.

2. P7 : C(t) ∈ FCHIR and ∃f ∈ F such that f lies on Fc and f is unsaturated.

3. P8 : C(t) ∈ FCHIR and ∃Vi ∈ W1 such that Vi contains an unsaturated fixed

point.

4. P9 : C(t) ∈ FMULT and ∃f ∈ F such that f lies on Fc and f is unsaturated.
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ALGORITHM 4.1: AlgorithmNoAxis
Input: C(t) = (R(t), F )

1 if the robots have y-axis agreement then
2 Execute A1 in C(t);
3 else if the robots have an agreement on a common chirality then
4 if C(t) is in phase P7 then
5 Let f ∈ F such that f is on Fc;
6 Execute A1 in (R(t), {f});
7 else if C(t) is in phase ¬P7 ∧ P4 then
8 Let Vi ∈W1 be a wedge that contains a surplus robot;
9 Execute A3 in the configuration consisting of fixed points and robots in Vi ∪ Ti;

10 else if C(t) is in phase ¬P7 ∧ ¬P4 ∧ P8 then
11 Let Vi ∈W1 contain an unsaturated fixed point;

// If there are multiple such wedges select a wedge that contains the maximum number of

robots

12 Execute A1 in the configuration consisting of fixed points and robots in Vi ∪ Ti;
13 end

14 else
15 if C(t) is in phase P1 ∨ P2 ∨ P3 then
16 Execute A2 in C(t);
17 else if C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ P9 then
18 Let f ∈ F such that f is on Fc;
19 Action A1 is executed in the configuration consisting of R(t) ∪ {f};
20 else if C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ P5 then
21 Let Wi ∈W2 contain a surplus robot;

// If there are multiple such wedges, select the wedge in which maximum progress during

MovetoLine is ensured. If there is a tie select the one that contains the robot with

the minimum view

22 Execute A3 in the configuration consisting of fixed points and robots in Area(Wi);

23 else if C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ P10 then
24 Let Wi ∈W2 be a wedge such that it does not contain any unsaturated fixed points, but

∃ f ∈ Bi−1 ∪ Bi such that it is unsaturated;
// If there are more than one such wedges, then select the wedge in which maximum progress

has been ensured. If there are multiple such wedges, then select the one that contains

the robot with the minimum view

25 Execute A1 in the configuration consisting of R(t) and fixed points in Bi−1 ∪ Bi;
26 else if C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ ¬P10 ∧ P11 then
27 Let Wi ∈W2 contain an unsaturated fixed point;

// If there are multiple such wedges, select the one that contains the maximum number of

robots. In case of a tie, select the one in which maximum progress has been ensured.

If there are multiple such wedges, select the one that contains the robot with minimum

view

28 Execute A1 in the configuration consisting of robots and fixed points in Wi;

29 end

30 end

5. P10 : C(t) ∈ FMULT and ∃Wi ∈ W2 such that it does not contain any unsaturated

fixed points, but ∃ f ∈ Bi−1 ∪ Bi such that it is unsaturated.

6. P11 : C(t) ∈ FMULT and ∃Wi ∈ W2 such that Wi contains an unsaturated fixed

point.

4.4.3.2 Actions during AlgorithmNoAxis

1. A1 : AlgorithmOneAxis

2. A2 : SymmetryBreaking

3. A3 : MovetoLine
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P1 ∨ P2 ∨ P3 ¬(P1 ∨ P2 ∨ P3) ∧ P9 ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ P5
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Figure 4.17: Phase transitions during AlgorithmNoAxis.

An active robot at time t ≥ 0 considers the following cases during an execution of

AlgorithmNoAxis:

1. The robots have y-axis agreement, i.e., C(t) is in phase P6. A1 is executed.

2. The robots have a common chirality. The following cases are to be considered:

(a) C(t) is in phase P7. Action A1 is executed in the configuration consisting

of R(t) ∪ {f}.

(b) C(t) is in phase ¬P7 ∧ P4. Action A3 is executed in the configuration

consisting of robots and fixed points in Vi ∪ Ti.

(c) C(t) is in phase ¬P7 ∧ ¬P4 ∧ P8. Among all the wedges containing a

surplus robot, let Vi ∈ W1 be a wedge that contains the maximum number of

robots. If there are more than one such wedges, then consider all such wedges.

ActionA1 is executed in the configuration consisting of robots and fixed points

in Vi ∪ Ti.

3. The robots neither have one axis agreement nor agree on a common

chirality. The following cases are to be considered:

(a) C(t) is in phase P1 ∨ P2 ∨ P3. Action A2 is executed in C(t).
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(b) C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ P9. Action A1 is executed in the

configuration consisting of R(t) ∪ {f}.

(c) C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ P5. Let Wi ∈ W2 be a wedge

that contains a surplus robot. If there are multiple such wedges, select the

wedge in which maximum progress during MovetoLine is ensured. If there is

a tie select the one that contains the robot with the minimum view. Action

A3 is executed for the configuration consisting of the robot positions, virtual

robot positions and fixed points in Area(Wi).

(d) C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ P10. Let Wi ∈ W2

be a wedge such that it does not contain any unsaturated fixed points, but

∃ f ∈ Bi−1 ∪ Bi such that it is unsaturated. If there are more than one such

wedges, then select the wedge in which maximum progress has been ensured.

If there are multiple such wedges, then select the one that contains the robot

with the minimum view. ActionA1 is executed for the configuration consisting

of R(t) and set of fixed points in Bi−1 ∪ Bi.

(e) C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ ¬P10 ∧ P11. Let Wi ∈

W2 be a wedge that contains the maximum number of robot positions among

all the wedges that contain a unsaturated fixed point. If there are multiple such

wedges, select the wedge(s), in which maximum progress has been ensured. If

there are more than one such wedge, the wedge containing the robot position

with the minimum view is selected. ActionA1 is executed for the configuration

consisting of robot positions and fixed points in Wi.

Figure 4.17 depicts the phase transitions during AlgorithmNoAxis. A summary of

the AlgorithmNoAxis is presented in the following table 4.3.

4.5 Correctness

To prove the correctness of algorithm AlgorithmNoAxis, the following points are shown:

1. Solvability: If the initial configuration is solvable, then during any execution of algo-

rithm AlgorithmNoAxis, the configuration would remain solvable.
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Classes Phases Actions Phases after the Movements

FMULT P1 ∨ P2 ∨ P3 A2 ¬(P1 ∨ P2) ∧ P3 or ¬(P1 ∨ P2 ∨ P3)

FMULT ¬(P1 ∨ P2 ∨ P3) ∧ P9 A1 ¬(P1 ∨P2 ∨P3)∧P9 or ¬(P1 ∨P2 ∨P3)∧¬P9

FMULT ¬(P1 ∨P2 ∨P3)∧¬P9 ∧P5 A3 ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ P5 or ¬(P1 ∨ P2 ∨
P3) ∧ ¬P9 ∧ ¬P5 ∧ P10 or ¬(P1 ∨ P2 ∨ P3) ∧
¬P9 ∧ ¬P5 ∧ ¬P10 ∧ P11

FMULT ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧
¬P5 ∧ P10

A1 ¬(P1 ∨P2 ∨ P3)∧¬P9 ∧¬P5 ∧P10 or ¬(P1 ∨
P2 ∨P3)∧¬P9 ∧¬P5 ∧¬P10 ∧P11 or ¬(P1 ∨
P2 ∨ P3) ∧ ¬P9 ∧ P5

FMULT ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧
¬P5 ∧ ¬P10 ∧ P11

A1 ¬(P1 ∨ P2 ∨ P3)∧¬P9 ∧¬P5 ∧¬P10 ∧ P11 or
¬(P1 ∨P2 ∨P3)∧¬P9 ∧¬P5 ∧¬P10 ∧¬P11 or
¬(P1 ∨P2 ∨P3)∧¬P9 ∧¬P5 ∧P10 or ¬(P1 ∨
P2 ∨ P3) ∧ ¬P9 ∧ P5

FCHIR P7 A1 P7 or ¬P7

FCHIR ¬P7 ∧ P4 A3 ¬P7 ∧ P4 or ¬P7 ∧ ¬P4

FCHIR ¬P7 ∧ ¬P4 ∧ P8 A1 ¬P7∧¬P4∧P8 or ¬P7∧¬P4∧¬P8 or ¬P7∧P4

FASYM ∪ FREFL P6 A1 P6

Table 4.3: Transitions during AlgorithmNoAxis

2. Progress: During any execution of AlgorithmNoAxis, progress must be ensured, which

would guarantee that the robots would solve the k-circle formation problem within

finite time. In Figure 4.17, a phase transition implies progress. We must ensure that

self-loops in a phase also ensures progress.

4.5.1 Solvability

Lemma 4.5.1. If C(0) ∈ FASYM ∪FREFL and solvable, then the configuration C(t)

for t ≥ 0 remains solvable during any execution of AlgorithmNoAxis.

Proof. The robots have y-axis agreement. The proof follows from Theorem 3.5.10.

Lemma 4.5.2. If C(0) ∈ FCHIR and solvable, then the configuration C(t) for t ≥ 0

remains solvable during any execution of AlgorithmNoAxis.

Proof. The robots have common chirality. Since F does not admit any line of symmetry,

the configuration would never admit a line of symmetry. Therefore, the configuration

C(t) for t ≥ 0 remains solvable during any execution of AlgorithmNoAxis.

Lemma 4.5.3. If C(0) ∈ FMULT and solvable, then the configuration C(t) for t ≥ 0

remains solvable during any execution of AlgorithmNoAxis.
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Proof. The following cases are to be considered:

Case 1. A2 is executed. C(t) is in phase P1 ∨P2 ∨P3. From Lemmata 4.4.3 and 4.4.4,

it follows that C(t) would remain solvable.

Case 2. A1 is executed. Consider the following subcases:

Subcase 1. C(0) is asymmetric. Execution of A1 will start in a unique wedge (say

W ). Let the wedges W and W ′ be mirror images about some Li ∈ L′. At time t,

W is guaranteed to have more progress than W ′. As a consequence, C(t) will remain

asymmetric about Li. Since the choice of Li was arbitrary, C(t) would remain asymmetric

about each Li ∈ L′.

Subcase 2. C(0) admits rotational symmetry. Since C(0) is in ¬(P1 ∨ P2 ∨ P3), if C(0)

is symmetric about a line L ∈ L, then L ∈ L \ L′. A1 would be executed in multiple

wedges. Let W be such a wedge. Let W ′ be the mirror image of W about an Li ∈ L′.

The following scenarios are possible:

1. Execution of A1 has not started in W ′. W is guaranteed to have more progress than

W ′. Thus, C(t) would remain asymmetric about Li.

2. Execution of A1 has started in W ′. Both W and W ′ had the same progress in C(0).

Also, both the wedges contain a robot with the minimum view. Let r1 and r2 be the

robots with the minimum view in W and W ′, respectively. Thus, V (r1) = V (r2). If

V +(r1) = V −(r2), then C(0) was symmetric about Li (Lemma 4.2.1). It contradicts

that C(0) was in ¬(P1∨P2∨P3). Therefore, V +(r1) = V +(r2). From Lemma 4.2.2,

it follows that the positive x-direction in both the wedges would be either in a

clockwise or counter-clockwise direction (Figure 4.18). As a result, during the

execution of A1 in both the wedges, the half-plane with more progress in W cannot

be symmetric to the half-plane with more progress in W ′. Thus, C(t) would remain

asymmetric about each Li ∈ L′.

Case 3. A3 is executed. C(t) is in phase ¬(P1∨P2∨P3)∧¬P9∧P5. From Lemma 4.4.9,

it follows that C(t) would remain solvable.

Hence, if C(0) ∈ FMULT and solvable, then the configuration C(t) for t ≥ 0 remains

solvable during any execution of AlgorithmNoAxis.
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W ′
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Figure 4.18: C(t) is asymmetric about Li.

4.5.2 Progress

Theorem 4.5.4. If C(0) ∈ {FASYM ∪ FREFL ∪ FCHIR ∪ FMULT} and it is

solvable, then the robots would eventually solve the k-circle formation problem without

any axis agreement, by the execution of AlgorithmNoAxis.

Proof. If C(t) is not a final configuration for t ≥ 0, then the robots executeAlgorithmNoAxis.

From Lemmata 4.5.1, 4.5.2 and 4.5.3, it follows that C(t) would remain solvable. We have

the following cases:

Case 1. The robots have y-axis agreement. C(t) for t ≥ 0 is in P6 and action A1

is executed. From Theorem 3.5.10, it follows that the robots would eventually solve the

k-circle formation problem.

Case 2. The robots have a common chirality. The following cases are to be con-

sidered:

Subcase 1. C(t) is in phase P7. Action A1 is executed. Let f = Fc. From Theo-

rem 3.5.10, it follows that f would eventually become saturated.

Subcase 2. C(t) is in phase¬P7 ∧ P4. ActionA2 is executed. From the Lemma 4.4.13,

it follows that the configuration would eventually satisfy ¬P7 ∧ ¬P4.

Subcase 3. C(t) is in phase ¬P7 ∧ ¬P4 ∧ P8. Suppose Vi ∪ Ti for some Vi ∈ W1

contains an unsaturated fixed point. Also, suppose Vi∪Ti contains the maximum number

of robots. Action A1 is executed. Theorem 3.5.10 ensures that eventually the robots

would solve the k-circle formation problem in Vi ∪ Ti.
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Since there can be only a finite number of wedges, the robots would solve the k-circle

formation problem eventually.

Case 3. The robots neither have y-axis agreement nor have agreement on a

common chirality. The following subcases are to be considered:

Subcase 1. C(t) is in phase P1 ∨ P2 ∨ P3. ActionA2 is executed in C(t). Lemma 4.4.2

guarantees that eventually C(t) will satisfy ¬(P1 ∨ P2 ∨ P3)

Subcase 2. C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ P9. Action A1 is executed in the

configuration consisting of R(t) ∪ {f}. Theorem 3.5.10 ensures that eventually f will

become saturated.

Subcase 3. C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ P5. Action A3 is executed.

From Lemma 4.4.13, it follows that the configuration would eventually satisfy the condi-

tion ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5.

Subcase 4. C(t) is in phase ¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ P10. Suppose action

A1 is executed for the configuration consisting of R(t) and set of fixed points in Bi−1∪Bi.

Theorem 3.5.10 ensures that eventually all the fixed points in Bi−1 ∪ Bi will become

saturated.

Subcase 5. C(t) is in phase¬(P1 ∨ P2 ∨ P3) ∧ ¬P9 ∧ ¬P5 ∧ ¬P10 ∧ P11. Suppose

actionA1 is executed for the configuration consisting of robot positions and fixed points in

Wi. Theorem 3.5.10 ensures that eventually the robots would solve the k-circle formation

problem in Wi.

Since there can be only a finite number of wedges, the robots would solve the k-circle

formation problem eventually.

Hence, if C(0) ∈ {FASYM ∪ FREFL ∪ FCHIR ∪ FMULT} and it is solvable,

then the robots would eventually solve the k-circle formation problem without any axis

agreement, by the execution of AlgorithmNoAxis.



106 Chapter 4. k-Circle Formation by Disoriented Robots

4.6 Conclusions

This chapter investigates the k-circle formation problem by asynchronous, autonomous,

anonymous and oblivious mobile robots in the Euclidean plane. The problem has been

studied for a set of completely disoriented robots, i.e., they neither have any agreement

on a global coordinate system nor on a common chirality. Since there can be multiple

lines of symmetry, the set of unsolvable cases is larger than the set of unsolvable cases

under one axis agreement. The following two results have been proved:

1. If C(0) admits a line of symmetry (say L) such that L ∩ F 6= ∅ and L ∩ R(0) = ∅,

then the k-circle formation problem is deterministically unsolvable without any axis

agreement.

2. If C(0) ∈ {FASYM ∪FREFL∪FCHIR∪FMULT} and it is solvable, then the

k-circle formation problem is deterministically solvable without any axis agreement.
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5.1 Overview

In this chapter, the k-circle formation problem is investigated under an obstructed visi-

bility model. The robots are assumed to be opaque, i.e., a robot cannot see another robot

if a third robot is placed on the line segment joining them. The robots may not know

the positions of all the robots. As a consequence, some of the robots have to decide their

strategy based on their partial visibility. The proposed distributed algorithms discussed

in the previous chapters (Chapters 3 and 4) would fail to solve the k-circle formation

107
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problem as both the algorithms are based on the assumption that the robots have un-

limited visibility. The primary motivation is to investigate the solvability of the k-circle

formation problem under obstructed visibility model.

The problem has been investigated in two different settings: complete knowledge of

fixed points and zero knowledge of fixed points. If the robots are oblivious and silent,

then to identify the termination condition (the robots have solved the k-circle formation

problem) the robots should have knowledge of the positions of all other robots and fixed

points. If the robots have complete knowledge of the fixed points, then they only need

to solve the mutual visibility problem for robot positions. By solving the mutual visibility

problem for robot positions, they will be able to identify whether the position of a robot

is on a circle or not. If the robots have zero knowledge of the fixed points, then all the

fixed points in addition to robot positions must be visible to the robots so as to identify

that the robots are positioned on a circle. In this case, the robots need to solve both

the k-circle formation problem and the mutual visibility problem. If the robots have zero

knowledge of the fixed points, then the oblivious and silent robots may not be able to solve

the mutual visibility problem. To solve the k-circle formation problem in this setting, the

robots are assumed to be equipped with one bit of persistent memory.

5.2 The Model

The robots are represented by points in the Euclidean plane. They are assumed to be

autonomous, anonymous, and homogeneous. The robots are assumed to be opaque, i.e.,

the view of a robot gets obstructed due to the presence of other robots. However, a fixed

point cannot obstruct the view of a robot. The robots are assumed to be completely

disoriented. They are assumed to be activated under a fair ASYNC scheduler. We have

considered two different settings based upon the visibility of the fixed points:

1. Complete knowledge of fixed points. The fixed points are tower-like structures

which are always visible to the robots. Thus, the positions of the fixed points are

known to the robots. As a consequence, the robots have the knowledge of the total
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Figure 5.1: (A) Complete knowledge of the fixed points, (B) Zero knowledge of the fixed
points.

number of fixed points. For example, in Figure 5.1(A), r4 and r6 cannot see each

other but both of them can see the fixed points f1, f2 and f3.

2. Zero knowledge of fixed points. A robot cannot see a fixed point if another robot

is positioned on the line segment joining them. Thus, the positions of all the fixed

points may be unknown to the robots. As a consequence, the robots do not have the

knowledge of the total number of fixed points. For example, in the Figure 5.1(B),

r5 cannot see the fixed point f3 due to presence of r6 on r5f3. Similarly, r5 cannot

see the fixed point f1 due to presence of r4 on r5f1. V Fr1(t) = {f3}, V Fr2(t) =

{f1, f2, f3}, V Fr3(t) = {f1, f2, f3}, V Fr4(t) = {f1, f2}, V Fr5(t) = {f2}, V Fr6(t) =

{f2, f3}

For the first setting, we have assumed that the robots are oblivious and silent, i.e., they

have no explicit direct communications. For the next setting, we consider the light model

introduced by Peleg [47] where the robots are assumed to be equipped with a externally

visible light that can assume a constant number of pre-defined colors. The color of the

lights are persistent and serves as an explicit direct communication and as an internal

memory. Note that a robot having light with only one color is equivalent to the one with

no light. Therefore, the light model is a generalization of the classical model.

5.2.1 Notations and Definitions

(1) V Rri(t) and V Fri(t) denote the total number of visible robots and fixed points to

the robot ri at time t.
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(2) Fi denotes the ray starting from Fc and passing through fi ∈ F . Suppose F =

{F1,F2, . . . ,Fc} represents the set of all such rays for some c > 0.

(3) Ray(Fc, ri) denotes the ray starting from Fc and passing through ri. When V Frj(t) =

m, then rj selects ρ =
1

3
minfi,fj∈F d(fi, fj). ξ represents the radius of the minimum

enclosing circle for F . Let C = C(Fc, pξ) where p > 0 is smallest positive integer for

which C is the minimum enclosing circle for C(t) centered at Fc.

5.2.1.1 Convex Hull

r1(t)

r2(t)

r3(t)

r4(t)

r7(t)
r6(t)

r8(t) r9(t)

r5(t)

f1

f2

f3

H(t)

IntH(t)

OutH(t)

Figure 5.2: r6(t), r7(t), r8(t), f1, f2 ∈ IntH(t) and f3 ∈ OutH(t).

Given a set of points S ⊂ R2, a convex hull of S is the smallest convex set that contains

S [119]. Let H(t) denote the convex hull of R(t) at time t ≥ 0. Suppose IntH(t) and

OutH(t) represents all the points in interior and exterior of H(t), respectively, at t ≥ 0

(Figure 5.2).

Definition 5.2.1. A robot ri ∈ H(t) identifies itself to be on a boundary of H(t) if

∃rj ∈ R such that j 6= i and one of the open half-planes demarcated by the straight line

passing along rj(t)ri(t) does not contain any other robots. Otherwise, ri identifies itself

to be in IntH(t).

Suppose ri denotes a robot on a boundary of H(t). Suppose rj and rk are the adjacent

robots of ri, also positioned on a boundary of H(t). If ]rjrirk < π, then ri identifies itself

to be a vertex of H(t). In case ]rjrirk = π, ri identifies itself to be a non-vertex robot.
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5.2.2 The k-Circle Formation Problem

At t ≥ 0, C(t) is said to be a final configuration, if it satisfies the following conditions:

i) ∀ri ∈ R, V Rri(t) = n, V Fri(t) = m and ri(t) ∈ C(fj, ρ) for some fj ∈ F ,

ii) C(fi, ρ) ∩ C(fj, ρ) = ∅ for fi 6= fj, and

iii) |C(fi, ρ) ∩R(t)| = k, ∀fi ∈ F .

To solve the k-circle formation problem, starting from a given initial configuration the

robots need to reach and remain in a final configuration.

5.2.3 Partitioning of the Configurations

If V Fri(t) = m, a robot ri can easily identify the class of a configuration by observing

all the fixed points as discussed in section 4.2.2 of Chapter 4. All the configurations can

be partitioned into the following disjoint classes:

1. FASYM − F is asymmetric (Figure 4.2(A)).

2. FREFL− F has a single line of symmetry (Figure 4.2(B) and 4.2(C)).

3. FCHIR−F admits rotational symmetry without any line of symmetry (Figure 4.2(D)

and 4.2(E)).

4. FMULT − F admits multiple lines of symmetry (Figure 4.2(F), 4.2(G), 4.2(H) and

4.2(I)).

5.3 Complete Knowledge of the Fixed Points

In this section, we consider the model where the robots have complete knowledge of the

fixed points. We have ∀t ≥ 0, ∀ri ∈ R, V Fri(t) = m.
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5.3.1 Impossibility Result

Theorem 5.3.1. Let C(0) ∈ FREFL ∪ FMULT be such that ∃L ∈ L′, C(0) is symm-

teric about L, and the following conditions hold:

i) L ∩ F 6= ∅.

ii) L ∩R(0) = ∅.

If k is an odd integer, then the k-circle formation problem is deterministically unsolvable

by opaque disoriented robots.

Proof. The proof follows from Theorem 4.3.1.

Let U1 denote the set of all the configurations which satisfy the conditions stated in

Theorem 5.3.1.

5.3.2 Suitable Configurations
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Figure 5.3: Examples of Suitable Configurations (A) C(t) ∈ FASYM , k = 2 and m = 3. (B) C(t) ∈
FREFL, k = 4 and m = 4.

In this section, we discuss the construction of a suitable configuration. In a suitable

configuration each robot (say ri) is chosen for some fixed point (say fj) and the position
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of ri on C is selected by ensuring that ri can directly move towards C(fj, ρ) along rifj.

First, we introduce some new notations required for defining a suitable configuration.

1. αm = min
Fi,Fj∈F , Fi 6=Fj

]FiFcFj.

2. βi denotes the number of fixed points on Fi ∈ F . Suppose {f1, f2, . . . fβi} denotes

the set of all the fixed points on Fi such that d(Fc, f1) > d(Fc, f2) . . . > d(Fc, fβi).

3. ∀Fi ∈ F , zi0 denotes the the intersection point between C and Fi. zi(βik) is defined

to be the point on C such that ]zi0FcFczi(βik)Fc = 1
3
αm. Note that there are two

such zi(βik) points.

4. Let ωi0 and ωi(βik) denote the intersection points between C(fβi , ρ) and Fczi0 and

Fczi(βik), respectively.

Definition 5.3.2. When V Fri(t) = m, by considering only fixed points, the robot ri can

compute the configuration view as discussed in section 4.2.1. Let fi ∈ Fm be a fixed point

that has the highest configuration view. Fm is said to be a master ray. Note that there

can be multiple master rays.
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Figure 5.4: Examples of Partially Suitable Configurations (A) C(t) ∈ FASYM , k = 2 and m = 3. (B)
C(t) ∈ FREFL, k = 4 and m = 4.

Construction of a suitable configuration. Without loss of generality, assume that Fm is

a master ray. Suppose Fi represents the ith ray encountered in the clockwise direction

from Fm. For some j ∈ {βik − 1, . . . , 2, 1}, let Lij denote the set of all the straight lines
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such that any L ∈ Lij passes through exactly two points from the set F ∪ {ωab| a ∈

{1, 2, . . . , i − 1} and b ∈ {1, 2, . . . , βik}} ∪ {ωab| a = i and b ∈ {j + 1, . . . , βik}}. Let

j = kk1 + k2 where 0 ≤ k2 < k and 1 ≤ k1 < βi. When k2 = 0, then define ωij as the

point on C(fk1 , ρ) such that

]fk1zi(j+1)fk1fk1ωij =
1

p
]fk1zi(j+1)fk1fk1zi0

where p is the smallest positive integer for which none of the lines in Lij passes through

ωij. Also, define zij to be the intersection point between Ray(fk1 , ωij) and C . If k2 6= 0,

then define ωij as the point on C(fk1+1, ρ) such that

]fk1+1zi(j+1)fk1+1fk1+1ωij =
1

p
]fk1+1zi(j+1)fk1+1fk1+1zi0

where p is the smallest positive integer for which none of the lines in Lij passes through

ωij. Also, define zij to be the intersection point between Ray(fk1+1, ωij) and C . Define

the following conditions for C(t) at t ≥ 0:

1. c1: C(t) ∈ FASYM ∪FCHIR or C(t) ∈ FREFL∪FMULT and k is odd. Each

ri ∈ C is located on some zip in the counter-clockwise direction from Fi ∈ F for

p ∈ {1, 2, . . . , βik} (Figures 5.3(A) and 5.4(A)).

2. c2: C(t) ∈ FREFL ∪ FMULT and k is even. Each ri ∈ C is located on some zip

for some p ∈ {1, 2, . . . , βik
2
}(Figures 5.3(B) and 5.4(B)).

Definition 5.3.3. At t ≥ 0, let C(t) be a given configuration such that all the robots lie

on C . If C(t) satisfies either c1 or c2, then it is said to be a suitable configuration. In

case, there exists a robot that does not lie on C and C(t) satisfies either c1 or c2, then it

is said to be a partially suitable configuration.

Initial configuration Robots position themselves on C

Robots form a suitable configuration

Formation of circlesFinal configuration

Figure 5.5: OpaqueAlgorithm1.
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5.3.3 Algorithm

In this section, we propose a deterministic distributed algorithm that will solve the k-circle

formation problem by oblivious and silent robots. Our proposed distributed algorithm

solves the k-circle formation problem for C(0) /∈ U1. Since the robots have the knowledge

of all the fixed points, ∀ri ∈ R, ∀t ≥ 0, V Fri(t) = m. An overview of our proposed

algorithm, OpaqueAlgorithm1 is as follows:
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Figure 5.6: (A) All the robots move towards C , (B) The robots form a suitable configuration
(C) The robots start forming circles.

1. All the robots position themselves on the circle C (Figure 5.6(A)).

2. The robots re-position themselves on C so that the configuration transforms into a

suitable configuration (Figure 5.6(B)).

3. The robots start forming circles around the fixed points (Figure 5.6(C)).

Figure 5.5 represents a diagramatic representation of OpaqueAlgorithm1. All the phase

conditions during OpaqueAlgorithm1 are defined in Table 5.1.

5.3.3.1 Phases during OpaqueAlgorithm1

We have the following phases during OpaqueAlgorithm1:
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Conditions Descriptions

P1 ∀r ∈ R, V Rr(t) = n

P2 C(t) ∈ FASYM
P3 C(t) ∈ FREFL
P4 C(t) ∈ FCHIR
P5 C(t) ∈ FMULT

P6 C(t) is a suitable configuration

P7 C(t) is a partially suitable configuration

P8 ∃fi ∈ F such that fi is unsaturated

P9 ∀ri ∈ R, ri(t) ∈ C

P10 There exists exactly one robot (say r) such that r /∈ C(fj , ρ),∀fj ∈ F and
d(r, Fc) < ξ

P11 There are atmost two robots (say r1 and r2) such that ri /∈ C(fj , ρ),∀fj ∈ F
and d(ri, Fc) < ξ for ri ∈ {1, 2}

P12 There are atmost κ robots (say κ is the degree of rotational symmetry) such
that ri /∈ C(fj , ρ),∀fj ∈ F and d(ri, Fc) < ξ for ri ∈ {1, 2, . . . , κ}

P13 There are atmost 2κ′ robots (say κ′ is the number of lines of symmetry) such
that ri /∈ C(fj , ρ),∀fj ∈ F and d(ri, Fc) < ξ for ri ∈ {1, 2, . . . , κ′}

Table 5.1: Descriptions of the Phase Conditions

1. Phase1: In this phase, all the robots position themselves on the circle C . If all the

robots lie on C (condition P9), then ∀ri, V Rri(t) = n (condition P1). A configura-

tion C(t) is said to be in Phase1 if it satisfies one of the following conditions:

¬P1 ∧ ¬P9 ∧ ¬P7 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13), or

P1 ∧ ¬P9 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13)

The robots would identify this phase by checking whether there exists a robot that

does not lie on C or not.

2. Phase2: In this phase, all the robots position themselves on the circle C so as to

form a suitable configuration. A configuration C(t) is said to be in Phase2 if it

satisfies one of the following conditions:

P1 ∧ P9 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13), or

P1 ∧ ¬P9 ∧ ¬P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13)

The robots identify this phase by checking whether C(t) is a suitable (condition P6)

or partially suitable (condition P7) configuration.
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3. Phase3: In this phase the robots start forming circles. A configuration C(t) is said

to be in Phase3 if it satisfies one of the following conditions:

P1 ∧ P9 ∧ P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8, or

P1 ∧ ¬P9 ∧ P7 ∧ (¬P10 ∨ ¬P11 ∨ ¬P11 ∨ ¬P13) ∧ P8 or

(¬P1 ∨ P1) ∧ ¬P9 ∧ P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ P8

The robots distinguishes this phase from Phase1 by checking whether the configu-

ration satisfies conditions P6 or P7 and P10 ∨ P11 ∨ P12 ∨ P13.

4. Final: C(t) is said to be in Final phase if it satisfies the following condition:

P1 ∧ ¬P9 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ ¬P8

5.3.3.2 Movements during OpaqueAlgorithm1

We define the following types of movements at any arbitrary point of time t ≥ 0 during

an execution of OpaqueAlgorithm1 :
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Figure 5.7: Movement M1.

1. M1 : This movement is executed when C(t) is in Phase1. By the execution of

movement M 1, the robots will eventually position themselves on C . For some

ri ∈ R, let pi(t) be the intersection point between C and Ray(Fc, ri(t)). Let ri /∈ C

be a robot such that d(ri(t), pi(t)) = min
rj∈R

d(rj(t), pj(t)). Among all such robots,

let ri be a robot which makes the smallest angle with some L ∈ L′ centered at
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Fc. Let d = d(ri(t), pi(t)). First, consider the case when ∀L ∈ L′, mirror image of

ri(t)pi(t) about L is visible to ri. If pi(t) is neither a robot position nor a virtual

robot position (Recall that a point p is said to be a virtual robot position at time

t, if ∃ rk ∈ R(t) such that p and rk are symmetric about a line of symmetry L ∈ L′

as defined in Definition 4.2.3), then ri starts moving towards pi(t) along pi(t)ri(t)

(Figure 5.7(A)). If pi(t) is either a robot position or a virtual robot position or

ri(t) ∈ L for some L ∈ L′, let rk(t) be such that ]Ray(Fc, ri(t))FcRay(Fc, rk(t)) =

min
rj∈R

]Ray(Fc, ri(t))FcRay(Fc, rj(t)). Assume that B denotes the ray that starts

from Fc and satisfies the condition

]Ray(Fc, ri(t))FcB =
1

3d
min(]Ray(Fc, ri(t))FcRay(Fc, rk(t)),

π

4
)

Suppose q denotes the intersection point between B and C . Robot ri moves towards

q along ri(t)q (Figure 5.7(B)). Next, consider the case when ∃L ∈ L′ such that mirror

image of ri(t)pi(t) about L is not visible to ri. Let q1 ∈ ri(t)pi(t) be the point that

lies at the closest distance from ri such that mirror image of q1 is not visible to ri

for some L ∈ L′. Let q2 ∈ ri(t)pi(t) be the point such that q2ri(t) ⊥ L. Robot ri

moves towards q2 along ri(t)q2 (Figure 5.8).
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Figure 5.8: Movement M1.

2. M21 : When C(t) is in Phase2 and C(t) ∈ FASYM or k is odd and C(t) ∈

FREFL ∪ FMULT , movement M21 is executed. By the execution of movement

M 21, the robots will form a suitable configuration. In case k is odd and C(t) ∈

FREFL∪FMULT , there can be more than one master rays. As C(0) /∈ {U1∪U2},
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in such cases, the configuration must be asymmetric or admit a line of symmetry

(say L) such that L ∩ R(t) 6= ∅. A robot r ∈ L moves away from L so that the

configuration becomes asymmetric about L. The destination point of r is com-

puted by avoiding collision with other robots. Next, the configuration becomes

asymmetric. Suppose Fm is the master ray that contains the fixed point with the

minimum configuration view as discussed in section 4.2.1. Let Fi ∈ F be such

that ]FmFcFi = min
Fm 6=Fb

FmFcFb measured in the counter clockwise direction and

∃zip for some p ∈ {1, 2, . . . , βik} such that zip does not contain any robot positions.

Suppose q ∈ {1, 2, . . . , βik} denotes the smallest positive integer for which ziq does

not contain any robot positions. We have the following cases:

(a) C(t) satisfies the phase condition P1 ∧ P9 ∧ ¬P6 ∧ ¬P10. Let rk be such that

]FcrkFcFcziq = min
rj 6=rk

]FcrjFcFcziq measured in the counter clockwise direc-

tion. rk moves along rk(t)ziq towards ziq (Figure 5.9(A)).

(b) C(t) satisfies the phase condition P1 ∧ ¬P9 ∧ ¬P7 ∧ P10. Let rk be the robot

such that d(rk(t), ziq) < ξ and rk lies at the closest distance from ziq. rk moves

along rk(t)ziq towards ziq (Figure 5.9(B)).
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Figure 5.9: Movement M21.

3. M22 : When the configuration C(t) is in Phase2 and C(t) ∈ FREFL ∪ FMULT

and k is even, movement M22 is carried out. Assume that Fm ∈ F is a master

ray. Note that there can be multiple master rays. Let Fi ∈ F be such that

]FiFcFm = min
Fb 6=Fm

FbFcFm (there can be two such rays) and ∃zip for some p ∈
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{1, 2, . . . , βik
2
} such that zip does not contain any robot positions. Suppose q ∈

{1, 2, . . . , βik
2
} denotes the smallest positive integer for which ziq does not contain

any robot positions. There can be two such positions. We have the following cases:

(a) C(t) satisfies P1∧P9∧¬P6∧(¬P11∨¬P13). Let rk be such that ]FcrkFcFcziq =

min
rj 6=rk

]FcrjFcFcziq. rk moves along rk(t)ziq towards ziq.

(b) C(t) satisfies P1 ∧ ¬P9 ∧ ¬P7 ∧ (P11 ∨ P13). Let rk be the robot such that

d(rk(t), ziq) < ξ and rk lies at the closest distance from ziq. rk moves along

rk(t)ziq towards ziq.
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Figure 5.10: Movement M3.

4. M23 : When C(t) is in Phase2 and C(t) ∈ FCHIR, movement M23 is executed.

As there are multiple master rays, movementM23 represents the execution of move-

ment M21 in multiple wedges.

5. M3 : This movement is executed when C(t) is in Phase3. By the execution of

movementM 3, the robots will form a final configuration. Since ∀ri ∈ R, V Fri(t) =

m, the robots can compute the radius ρ without any conflict. Suppose Fm is a

master ray. We have the following cases:

(a) C(t) satisfies P1∧P9∧P6∧(¬P10∨¬P11∨¬P11∨¬P13)∧P8. Let fi ∈ Fm be the

unsaturated fixed point that lies at shortest distance from Fc. Since C(t) sat-

isfies P9, fi ∈ Fm is the 1st fixed point according to distance from Fc. Suppose

r lies on zi(βik). r moves towards ωi(βik) along ωi(βik)zi(βik) (Figure 5.10(A)).
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(b) C(t) satisfies P1 ∧ ¬P9 ∧ P7 ∧ (¬P10 ∨ ¬P11 ∨ ¬P11 ∨ ¬P13) ∧ P8. Let Fj ∈ F

be such that ]FjFcFm = min
Fk∈F

]FkFcFm and it contains an unsaturated fixed

point. Let p be the smallest positive integer for which ωjp does not contain

a robot position. Suppose r lies on zjp. r moves towards ωjp along ωjpzjp

(Figure 5.10(B)).

(c) C(t) satisfies (¬P1 ∨P1)∧¬P9 ∧P7 ∧ (P10 ∨P11 ∨P11 ∨P13)∧P8. Let Fj ∈ F

be such that ]FjFcFm = min
Fk∈F

]FkFcFm and it contains an unsaturated fixed

point. Let p be the smallest positive integer for which ωjp does not contain a

robot position. Let r be the robot that lies at the closest distance from ωjp

such that d(r(t), Fc) < ξ. Also, r does not lie on any saturated circles and

on any ωjb such that b ∈ {1, 2, . . . , p − 1}. r moves towards ωjp along r(t)ωjp

(Figure 5.10(C)).

Phases Movements Transformed Phases

Phase1 M1 Phase1 or Phase2

Phase2 M21 Phase2 or Phase3

Phase2 M22 Phase2 or Phase3

Phase2 M23 Phase2 or Phase3

Phase3 M3 Phase3 or Final

Table 5.2: Phase Transitions during OpaqueAlgorithm1

ALGORITHM 5.1: OpaqueAlgorithm1
Input: C(t) = (R(t), F )

1 if C(t) is in Phase1 then
2 Execute M1;
3 else if C(t) is in Phase2 then
4 if C(t) ∈ FASYM or k is odd and C(t) ∈ FREFL ∪ FMULT then
5 Execute M21;
6 else if k is even and C(t) ∈ FREFL ∪ FMULT then
7 Execute M22;
8 else if C(t) ∈ FCHIR then
9 Execute M23;

10 end

11 else if C(t) is in Phase3 then
12 Execute M3;
13 end

5.3.3.3 OpaqueAlgorithm1

An active robot executes OpaqueAlgorithm1 unless C(t) is a final configuration. During

an execution of OpaqueAlgorithm1 the following cases are to be considered:
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1. C(t) is in Phase1, movement M1 is executed.

2. C(t) is in Phase2. First, consider the case when C(t) ∈ FASYM or C(t) ∈

FREFL ∪ FMULT and k is odd. Movement M21 is executed. When C(t) ∈

FREFL∪FMULT and k is even, movement M22 is executed. Movement M23 is

executed for C(t) ∈ FCHIR.

3. C(t) is in Phase3. Movement M3 is executed.

A summary of the movemnets during an execution of OpaqueAlgorithm1 is presented

in Table 5.2. Figures 5.11(A), 5.11(B) and 5.11(C) represent the phase transitions

of OpaqueAlgorithm1. The pseudocode of OpaqueAlgorithm1 is presented in Algo-

rithm 5.1.
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Figure 5.11: Phase transitions during OpaqueAlgorithm1. (A) C(t) ∈ FASYM or C(t) ∈
FCHIR ∪ FMULT and k is odd, (B) C(t) ∈ FCHIR ∪ FMULT and k is even, (C) C(t) ∈

FCHIR.

5.3.4 Correctness of OpaqueAlgorithm1

We first show that when the initial configuration C(0) is solvable, i.e., C(0) /∈ U1, then

C(t) at any arbitrary point of time t > 0 would remain solvable, i.e., C(t) /∈ U1.

Lemma 5.3.4. If C(0) ∈ FASYM ∪FCHIR, then ∀t ≥ 0, C(t) would remain solvable

during any execution of OpaqueAlgorithm1.
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Proof. As discussed in section 4.2.4, if C(t) ∈ FCHIR, then the robots can make an

agreement on a common chirality. Consider the case when C(t) ∈ FASYM . Let f ∈ F

be the fixed point that has the minimum configuration view. The direction of V (f)

is globally considered to be the clockwise direction. If there is a tie due to symmetric

positions, then such a tie can be broken with respect to chirality. Therefore, during any

execution of OpaqueAlgorithm1, ∀t ≥ 0, C(t) would remain solvable.

If C(0) ∈ FREFL ∪ FMULT , then we only need to consider configurations when k

is odd, |F | is even and L′ 6= ∅ (Observations 1, 2 and 3).

Lemma 5.3.5. If k is odd, C(0) ∈ FREFL ∪ FMULT and C(0) /∈ U1, then during an

execution of OpaqueAlgorithm1, C(t) would remain solvable ∀t ≥ 0.

Proof. Consider the following cases:

Case 1. C(t) would remain solvable during movement M1.

Subcase 1. C(0) is symmetric about an L ∈ L′. It follows from Theorem 5.3.1 that L

must contain a robot position. First, consider that r would move along Fcr. Since Fc lies

on L, r would remain on L. As a consequence, C(t) would remain solvable. If r moves

from L towards one of the half-planes delimited by L, the intersection point between

C and L must already have one robot position. As a consequence, C(t) would remain

solvable.

f1
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f3

Fc

ri(t)

r2(t)
pi(t)

f4

q1
q2

L

rk(t)

r

pk(t)

Figure 5.12: Illustration of solvability during Movement M1.

Subcase 2. C(0) is asymmetric about each L ∈ L′. During movement M1, a robot ri

only moves towards the point pi(t) ∈ C if mirror images of ri(t)pi(t) about each L ∈ L′
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is visible to ri. If ri is able to see a robot position or a virtual robot position on ri(t)pi(t)

other than pi(t) it does not move. This is because ri /∈ C identifies itself to be not

the farthest robot from Fc. In case, ri is able to see a robot position or a virtual robot

position on pi(t), it suitably selects a destination point on C such that the configuration

remain asymmetric (Figure 5.7(B)). If ∃L ∈ L′ such that mirror image of ri(t)pi(t) about

L is not visible to ri, then it selects a point on ri(t)pi(t) by avoiding possible symmetry.

Assume that there exists a robot position rk(t) such that Fcpk(t) and Fcpi(t) are mirror

images about L. If d(Fc, rk(t)) = d(Fc, ri(t)), then the configuration must have a different

asymmetric pair of robots about L. Consider the case when d(Fc, rk(t)) > d(Fc, ri(t)). If

rk is visible to ri, then ri identifies itself to be not the farthest robot from Fc and ri does

not move. If rk is not visible, then by the choice of q2 (as discussed in section 5.3.3.2), rk

and ri would not become symmetric about L. Assume that d(Fc, rk(t)) < d(Fc, ri(t)), and

rk and ri cannot see each other due to presence of a robot position (say r)(Figure 5.12).

If rk decides to move, then by the choice of q′2 for rk (as discussed in section 5.3.3.2), it

is ensured that d(Fc, q
′
2) < d(Fc, ri(t)). As a consequence, rk and ri would not become

symmetric about L.

Case 2. C(t) would remain solvable during movementM21. If C(t) is symmetric about L,

then r moves towards one of half-planes delimited by L. As a result, C(t) would become

asymmetric about L. Next, the robots would form a suitable configuration. During

movement M1, a unique robot (say r1) is selected for moving towards its destination

point. During its motion, r1 is the only robot that would satisfy d(Fc, r1) < ξ. As a

consequence, C(t) would remain asymmetric about each L ∈ L′. From the definition of a

suitable configuration, it follows that C(t) would remain asymmetric about each L ∈ L′.

As a consequence, C(t) would remain solvable.

Case 3. C(t) would remain solvable during movement M3. From the definition of a

suitable configuration, it follows that all the robot positions in a suitable configuration

are asymmetric about each L ∈ L. For each robot on a zij for some Fi ∈ F and

j ∈ {1, 2, . . . , βi} the destination point ωij would remain invariant. From the definition

of ωij, it also follows that a robot position on a ωij for some Fi ∈ F and j ∈ {1, 2, . . . , βi}

would remain asymmetric. As a consequence, C(t) would remain asymmetric about each

L ∈ L. Hence, C(t) would remain solvable.
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Now we proceed to show that the robots will solve the k-circle formation problem

within finite time. First, we will discuss progress during movement M1. Let C(t) be in
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Figure 5.13: Progress during movement M1.

Phase1. Suppose ri denotes a candidate robot and qi(t) represents the destination point

of r at time t. Let N2(t) denote the number of robots which do not lie on C . Also, let

gi(t) = d(ri(t), qi(t)). Define Z1(t) = (N2(t), gi(t)).

Lemma 5.3.6. Let C(t) be in Phase1. Also, let ri be a candidate robot and t′ > t be an

arbitrary point of time at which ri has completed at least one LCM cycle. Execution of

movement M1 ensures that gi(t
′) + δ ≤ gi(t).
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f3

Fc

ri(t)
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L

rk(t)

r

pk(t)

Figure 5.14: Illustration of progress during Movement M1.

Proof. Recall that pi(t) denotes the intersection point between Ray(Fc, ri(t)) and C .

First, consider the case when ∃L ∈ L′ such that mirror image of ri(t)pi(t) about L is

not visible to ri. Let q1 ∈ ri(t)pi(t) be the point that lies at the closest distance from ri
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such that mirror image of q1 is not visible to ri for some L ∈ L′ (say due to the robot

position r2). By movement M1, ri selects a destination point q2 on ri(t)pi(t) as discussed

in section 5.3.3.2 and moves directly towards it (Figure 5.14). By the choice of ri, we

have d(Fc, ri(t)) > d(Fc, r2(t)). Thus, r2 would not move. By movement M1, ri would

reach q2 and r2 would not block a point on the mirror image of ri(t)pi(t). Since there

are only finite number of robot positions, ri would reach a point on ri(t)pi(t) such that

∀L ∈ L′ mirror image of ri(t)pi(t) about L is visible to ri. Next, the following cases are

to be considered:

Case 1. pi(t) is neither a robot position nor a virtual robot position. In this case,

qi(t) = pi(t) and ri moves directly towards pi(t) (Figure 5.13(A)). As ri moves by at least

δ, gi(t
′) + δ ≤ gi(t).

Case 2. pi(t) is either a robot position or a virtual robot position or ri(t) ∈ L for some L ∈

L′. ri computes its destination point according to movement M1 (Figure 5.13(B)). At t′,

d(ri(t
′), qi(t

′)) > d(ri(t
′), qi(t)). As a consequence, we have d(ri(t), qi(t))−d(ri(t

′), qi(t)) >

d(ri(t), qi(t))− d(ri(t
′), qi(t

′)) ≥ δ. Thus, gi(t
′) + δ ≤ gi(t).

Hence, an execution of movement M1 ensures gi(t
′) + δ ≤ gi(t).

Lemma 5.3.7. During an execution of movement M1, let t′ > t be an arbitrary point of

time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movement M1 ensures Z1(t′) < Z1(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). As N2(t′) = N2(t)− 1, Z1(t′) < Z1(t) is ensured.

Case 2. qi(t) 6= ri(t
′). Lemma 5.3.6 ensures that gi(t

′) + δ ≤ gi(t).

Hence, an execution of movement M1 ensures Z1(t′) < Z1(t).

Let C(t) be in Phase2. Suppose ri denotes a candidate robot. Assume that qi(t) repre-

sents the destination point of r at time t. Let N3(t) denote the number of robots which

do not lie on any zij for some Fi ∈ F and j ∈ {1, 2, . . . , βik}. When k is even and

C(t) ∈ FREFL ∪ FMULT , N3(t) denotes the number of robots which do not lie on
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Figure 5.15: Progress during movement M21

any zij for some Fi ∈ F and j ∈ {1, 2, . . . , βik
2
}. Also, let gi(t) = d(ri(t), qi(t)). Define

Z2(t) = (N3(t), gi(t)).

Lemma 5.3.8. Let C(t) be in Phase2. Also, let ri be a candidate robot and t′ > t be an

arbitrary point of time at which ri has completed at least one LCM cycle. Execution of

movement M21 ensures that gi(t
′) + δ ≤ gi(t).

Proof. During movement M21, qi(t
′) = qi(t) and ri moves directly towards qi(t) (Fig-

ure 5.15(A) and 5.15(B)). Since ri moves by at least δ, gi(t
′) + δ ≤ gi(t). Hence, an

execution of movement M21 ensures gi(t
′) + δ ≤ gi(t).

Lemma 5.3.9. During an execution of movement M21, let t′ > t be an arbitrary point

of time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movement M21 ensures Z2(t′) < Z2(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). As N3(t′) = N3(t)− 1, Z2(t′) < Z2(t) is ensured.

Case 2. qi(t) 6= ri(t
′). Lemma 5.3.8 ensures that gi(t

′) + δ ≤ gi(t).

Hence, an execution of movement M21 ensures Z2(t′) < Z2(t).

Lemma 5.3.10. During an execution of movement M22, let t′ > t be an arbitrary point

of time at which at least one candidate robot (say ri) has completed at least one LCM

cycle. An execution of movement M22 ensures Z2(t′) < Z2(t).
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Proof. During movement M22, qi(t
′) = qi(t) and ri moves directly towards qi(t). If

qi(t) = ri(t
′), then N3(t′) = N3(t)− 1. Thus, Z2(t′) < Z2(t) is ensured. Consider the case

when qi(t) 6= ri(t
′). Since ri moves by at least δ, gi(t

′) + δ ≤ gi(t). Hence, an execution

of movement M22 ensures Z2(t′) < Z2(t).

Lemma 5.3.11. During an execution of movement M23, let t′ > t be an arbitrary point

of time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movement M23 ensures Z2(t′) < Z2(t).

Proof. During an execution of movement M23, movement M21 will be executed in mul-

tiple wedges. From Lemma 5.3.9, it follows that Z2(t′) < Z2(t) will be ensured.
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Figure 5.16: Progress during movement M3.

Let C(t) be in Phase3. Suppose ri denotes a candidate robot for the target fixed point

fj ∈ Fk ∈ F and qi(t) represents the destination point of ri at time t. Recall that

Dj(t) = k−|C(fi, ρ)∩R(t)| denote the deficit of number of robots on C(fj, ρ) to become

saturate at time t. Also, recall that nk(t) denotes the number of unsaturated fixed points.

Also, let gi(t) = d(ri(t), qi(t)). Define Vi(t) = (nk(t), Dj(t), gi(t)).

Lemma 5.3.12. Let C(t) be in Phase3. Also, let ri be a candidate robot and t′ > t be

an arbitrary point of time at which ri has completed at least one LCM cycle. Execution

of movement M3 ensures that gi(t
′) + δ ≤ gi(t).

Proof. During movementM3, ri moves directly towards qi(t) (Figures 5.16(A) and 5.16(B)).

Since ri moves by at least δ, gi(t
′) + δ ≤ gi(t). Hence, an execution of movement M3

ensures gi(t
′) + δ ≤ gi(t).
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Lemma 5.3.13. During an execution of movement M3, let t′ > t be an arbitrary point

of time at which at least one candidate robot ri has completed at least one LCM cycle.

An execution of movement M3 ensures Vi(t
′) < Vi(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). If C(fj, ρ) has exactly k robots, then nk(t

′) = nk(t)− 1, ensuring

V2(t′) < V2(t). If C(fj, ρ) has less than k robots on it, then Dj(t
′) = Dj(t)− 1, ensuring

Vi(t
′) < Vi(t).

Case 2. qi(t) 6= ri(t
′). Lemma 5.3.12 ensures that gi(t

′) + δ ≤ gi(t). As a result,

Vi(t
′) < Vi(t) is ensured.

Hence, an execution of movement M3 ensures Vi(t
′) < Vi(t).

Theorem 5.3.14. Let C(0) /∈ U1 be a given initial configuration. Execution of algorithm

OpaqueAlgorithm1 would solve the k-circle formation problem within finite time under

obstructed visibility model.

Proof. Lemmata 5.3.4 and 5.3.5 ensure that ∀t ≥ 0, C(t) would remain solvable. At

t ≥ 0, we have the following cases:

Case 1. C(t) is in Phase1. MovementM1 is executed. Lemma 5.3.7 ensures that within

finite time all the robots will reach C .

Case 2. C(t) is in Phase2. If C(t) ∈ FASYM or k is odd and C(t) ∈ FREFL ∪

FMULT , then by Lemma 5.3.9, formation of a suitable configuration is ensured by

movement M21. If k is even and C(t) ∈ FREFL ∪ FMULT , then movement M22 is

executed. Lemma 5.3.10 ensures that within finite time the robots will form a suitable

configuration. In case C(t) ∈ FCHIR, movement M23 is executed. Lemma 5.3.11

ensures that within finite the robots will form a suitable configuration.

Case 3. C(t) is in Phase3. Lemma 5.3.13 ensures that within finite time the robots will

form a final configuration by the execution of movement M3.

Hence, OpaqueAlgorithm1 would solve the k-circle formation problem within finite

time under obstructed visibility model for C(0) /∈ U1.
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5.4 Zero Knowledge of the Fixed Points

In this section, we consider the setting in which the robots have zero knowledge of the

fixed points. Since ∀ri ∈ R(0), F ri(0) ≤ m, the robots must detect the total number of

fixed points in order to solve the k-circle formation problem.

5.4.1 Impossibility Results

Theorem 5.4.1. If the robots have zero knowledge of fixed points, then the k-circle for-

mation problem is deterministically unsolvable by oblivious and silent robots.

Proof. Let C(0) be an initial configuration in which the k-circle formation problem has

already been solved, i.e., C(0) is itself a final configuration. The robots do not have the

knowledge of the total number of fixed points or the total number of robots. As a conse-

quence, the robots cannot identify a final configuration. Hence, the k-circle formation is

deterministically unsolvable by oblivious and silent robots.

Theorem 5.4.2. If C(0) ∈ U1 and the robots have zero knowledge of fixed points, then the

k-circle formation problem is deterministically unsolvable by robots equipped with finite

color of lights.

Proof. The idea of this proof is similar to the proof of Theorem 4.3.1. We consider the

setting described in the proof of Theorem 4.3.1. Let the symmetric image of r with

respect to L is denoted by φ(r). We assume the following setting:

(i) The scheduler is considered to be SSYNC. In addition, assume that both r and φ(r)

are activated simultaneously.

(ii) All the robots are assumed to move with the same constant speed without any

transient stops. Also, assume that both r and φ(r) would travel the same amount

of distance.

As r and φ(r) run the same algorithm, they would have the same light color. Since the

initial configuration was symmetric, the robots would not be able to deterministically
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break the symmetry in this setting. As a consequence, the k-circle formation problem is

deterministically unsolvable.

Let U2 denote the set of all the configurations satisfying the following conditions:

1. k is odd and C(0) ∈ FREFL ∪ FMULT ,

2. L′ 6= ∅ and number of fixed points on each L ∈ L′ is even.

3. Either C(0) is asymmetric about each L ∈ L′ or C(0) is symmetric about an L ∈ L′

such that R(0) ∩ L 6= ∅.

5.4.2 Algorithm
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Figure 5.17: (A) r6(t), r5(t) ∈ IntH(t) and both the robots would move towards boundary
of H(t), (B) f1 ∈ OutH(t) and the vertex robots r1 and r2 would move outwards to expand

the boundary of H(t), (C) ∀fi ∈ F, fi ∈ IntH(t).

We propose a deterministic distributed algorithm that will solve the k-circle formation

problem for disoriented opaque robots equipped with lights. Our proposed distributed

algorithm solves the k-circle formation problem for C(0) /∈ {U1 ∪ U2}. Let ri(t).light

denote the color of the light of ri. COL represents the set of color of the lights. If

the robots are oblivious and silent, then |COL| = 1. A robot can observe the color

of its own light as well as the color of the other robots visible to it. We assume that

COL = {Blue,Red} and at t = 0, ∀ri ∈ R, ri(0).light = Blue. An overview of our

proposed algorithm OpaqueAlgorithm2 is discussed as follows:
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Initial configuration Robots reach boundary of H(t)

All fixed points are included in IntH(t)

Robots position themselves on C

Robots form a suitable configuration

Formation of circlesFinal configuration

Figure 5.18: OpaqueAlgorithm2.
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Figure 5.19: (A) All the robots r1, r2, r3, r4, r5 and r6 would move towards C , (B)Each robot
identies that all the robots are on C and changes the light colour to red, (C) final configuration.

1. All the robots reach the boundary of the convex hull H(t) (Figure 5.17(A)).

2. If ∃fi /∈ IntH(t), then the robots expand the boundary of H(t) to include all the

fixed points inside H(t) (Figure 5.17(B) and 5.17(C)).

3. All the robots position themselves on the circle C (Figure 5.19(A)).

4. The robots re-position themselves on C so that the configuration transforms into a

suitable configuration (Figure 5.19(B)).

5. The robots start forming circles around the fixed points (Figure 5.19(C)).

Figure 5.18 represents a diagramatic representation of OpaqueAlgorithm2.
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Conditions Descriptions

P14 ∀ri, ri.light = Blue

P15 ∀ri, ri.light = Red

P16 ∀r ∈ R, V Fr(t) = m

P17 ∀ri, ri identifies C

P18 ∃r ∈ R such that r(t) ∈ IntH(t)

P19 ∃f ∈ F such that f ∈ OutH(t)

Table 5.3: Descriptions of Additional Phase Conditions

5.4.2.1 Phase Conditions during OpaqueAlgorithm2

All the phase conditions at any arbitrary point of time t ≥ 0 during an execution of

OpaqueAlgorithm2 are defined in Tables 5.2 and 5.3.

5.4.2.2 Phases during OpaqueAlgorithm2

We have the following phases during OpaqueAlgorithm2:

1. PHASE1: A configuration C(t) is said to be in PHASE1 if it satisfies P14 ∧ P18.

In this phase, all the robots reach the boundary of H(t). The robots identify this

phase by checking whether the light color of all the robots is blue or not (condition

P14) and whether there exists a robot r ∈ IntH(t) or not (condition P18).

2. PHASE2: In this phase, the robots expand the boundary of H(t) to include all

the fixed points inside H(t). A configuration C(t) is said to be in PHASE2 if it

satisfies P14 ∧ ¬P18 ∧ P19. The robots identify this phase by checking whether the

light color of all the robots is blue or not (condition P14) and whether all the robots

lie on the bounary of H(t) or not (condition P18). In addition, the robots check

whether there exists a fixed point in OutH(t) or not (condition P19).

3. PHASE3: In this phase, all the robots reach the circle C . C(t) is said to be in

PHASE3 if it satisfies P14 ∧ ¬P18 ∧ ¬P19 ∧ P1 ∧ P16 ∧ ¬P7 ∧ ¬P9. A robot can

identify this phase by checking whether there exists a robot that does not lie on C

or not (condition P9).
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4. PHASE4 : A configuration C(t) is said to be in PHASE4 if it satisfies

P15 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P9 ∧ P8, or

P15 ∧ (P1 ∧ ¬P16) ∧ ¬P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (¬P1 ∧ P16) ∧ ¬P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (¬P1 ∧ ¬P16) ∧ ¬P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8

When all the robots lie on C and C(t) satisfies P15 ( ∀ri, ri.light = Red), the

robots identify this phase by checking whether the configuration is a suitable or

partially suitable configuration or not. However, in order to transform into a suitable

configuration, a robot might not lie on C during its movement. In such a case, the

robots identify this phase by identifying the condition (P10 ∨ P11 ∨ P12 ∨ P13).

5. PHASE5 : A configuration C(t) is said to be in PHASE5 if it satisfies

P15 ∧ P1 ∧ P16 ∧ P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P9 ∧ P8, or

P15 ∧ P1 ∧ P16 ∧ P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (P1 ∧ P16) ∧ P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (P1 ∧ ¬P16) ∧ P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (¬P1 ∧ P16) ∧ P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8, or

P15 ∧ (¬P1 ∧ ¬P16) ∧ P7 ∧ (P10 ∨ P11 ∨ P12 ∨ P13) ∧ ¬P9 ∧ P8

The robots would identify that the configuration is either suitable or partially suit-

able. They identify this phase by checking whether there exists an unsaturated fixed

point or not (condition P8).

6. FINAL : The FINAL phase is identified by the condition P15 ∧ P1 ∧ P16 ∧ ¬P8.

5.4.2.3 Movements during OpaqueAlgorithm2

We define the following movements at any arbitrary point of time t ≥ 0:
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Figure 5.20: (A) MovementM1. (B) MovementM2.

1. M1 : This movement is executed when C(t) is in PHASE1. Let ri ∈ IntH(t)

be a robot that lies at the closest distance from the side r1r2 of H(t). If there are

multiple such sides, then r selects one of the sides arbitrarily as its destination line.

It may be the case that there are other robots which are also at the closest distance

from r1r2. In such a case, select the one that lies at the closest distance from one of

the end points of r1r2. Note that there may be two such robots. Let p1 ∈ r1r2 be the

point such that rip1 ⊥ r1r2. Also, let r4 ∈ r1r2 such that d(r4, p1) = min
ri∈r1r2

d(ri, p1).

Assume that p2 ∈ r1r2 be such that ]rip2ririp1 = 1
3
rir4rrip1. ri moves towards p2

along rp2 (Figure 5.20(A)).
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Figure 5.21: (A)-(B) MovementM3.

2. M2 : This movement is executed when C(t) is in PHASE2. Asssume that r1, r2

and r3 are the vertices of H(t) such that the sides r1r2 and r2r3 are adjacent. Let

fi ∈ OutH(t) be a fixed point that lies at the farthest distance from the side r1r2.
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Similarly, let fj ∈ OutH(t) be such a fixed point from the side r2r3. Let d1 represent

the distance of fi from r1r2. Similarly, let d2 represent the distance of fj from r2r3.

Without loss of generality, suppose d2 ≥ d1. Suppose the vertically opposite angle

of ]r1r2r3 is denoted by ζ. Let B denote the angle bisector of ζ and p1 ∈ B such

that d(r2, p1) = d2. r2 moves towards p1 along r2p1 (Figure 5.20(B)).

3. M3 : This movement is executed when C(t) is in PHASE3. For some ri ∈ R, let

pi(t) be the intersection point between C and Ray(Fc, ri(t)). Let ri /∈ C be a robot

such that d(ri(t), pi(t)) = min
rj∈R

d(rj(t), pj(t)). If pi(t) is not a robot position, then ri

starts moving towards pi(t) along pi(t)ri(t). Otherwise, let rk(t) be such that

]Ray(Fc, ri(t))FcRay(Fc, rk(t)) = min
rj∈R

]Ray(Fc, ri(t))FcRay(Fc, rj(t))

Suppose B denotes the ray starting from Fc such that

]Ray(Fc, ri(t))FcB =
1

3
]Ray(Fc, ri(t))FcRay(Fc, rk(t))

Assume that q be the intersection point between B and C . Robot ri starts moving

towards q along ri(t)q. This movement is similar to the movement M1 during

OpaqueAlgorithm1.
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Figure 5.22: (A)-(B) MovementM41.

4. M41 : This movement is executed when C(t) is in PHASE4 and C(t) ∈ FASYM .

The robots will form a suitable configuration by the execution of movementM41.
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Suppose Fm ∈ F is the master ray. Let Fi ∈ F be such that ]FiFcFm =

min
Fb 6=Fm

FbFcFm measured in the counter clockwise direction and ∃zip for some p ∈

{1, 2, . . . , βik} such that zip does not contain any robot positions. Assume that

q ∈ {1, 2, . . . , βik} be the smallest positive integer for which ziq does not con-

tain any robot positions. Suppose rk denotes the robot such that ]FcrkFcFcziq =

min
rj 6=rk

]FcrjFcFcziq measured in the counter clockwise direction and d(Fc, rk) ≤ ξ

(Figure 5.22(A) and 5.22(B)). rk moves along rk(t)ziq towards ziq.

5. M42 : When C(t) is in PHASE4 and k is even and C(t) ∈ FREFL ∪ FMULT ,

movementM42 is executed. Suppose Fm ∈ F is a master ray. Let Fi ∈ F be such

that ]FiFcFm = min
Fb 6=Fm

FbFcFm (there can be two such rays) and ∃zip for some

p ∈ {1, 2, . . . , βik
2
} such that zip does not contain any robot positions. There can

be two such robot positions. Let q ∈ {1, 2, . . . , βik
2
} be the smallest positive integer

for which ziq does not contain any robot positions. Suppose rk denotes the robot

such that ]FcrkFcFcziq = min
rj 6=rk

]FcrjFcFcziq measured in the counter clockwise

direction and d(Fc, rk) ≤ ξ (Figure 5.22(A) and 5.22(B)). rk moves along rk(t)ziq

towards ziq.

6. M43 : This movement is executed when C(t) ∈ FCHIR is in PHASE4. Since

there are multiple master rays, movementM43 represents the execution of move-

mentM41 in multiple wedges.
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Figure 5.23: (A)-(B) MovementM5.
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7. M5 : This movememt is executed when C(t) is in PHASE5. Suppose Fm is a

master ray. There can be multiple master rays. We have the following cases:

(a) C(t) satisfies P15 ∧ P1 ∧ P16 ∧ P6 ∧ (¬P10 ∨¬P11 ∨¬P12 ∨¬P13)∧ P8 ∧ P9. Let

fi ∈ Fm be the unsaturated fixed point that lies at the closest distance from Fc.

Since C(t) satisfies P9, fi ∈ Fm is the 1st fixed point according to distance from

Fc. Suppose r lies on zi(βik). Since C(t) satisfies P9, ∀ri ∈ R, V Fri(t) = m.

As a consequence, r can compute the radius ρ without any conflict. r moves

towards ωi(βik) along ωi(βik)zi(βik) (Figure 5.23(A)).
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Figure 5.24: (A)-(B) MovementM5.

(b) C(t) satisfies P15 ∧ P1 ∧ P16 ∧ P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ ¬P9.

Let Fj ∈ F be such that ]FjFcFm = min
Fk∈F

]FkFcFm and it contains an

unsaturated fixed point. Let p be the smallest positive integer for which ωjp

does not contain a robot position. There can be two such positions. Let r be

the robot that lies at the closest distance from ωjp. r moves towards ωjp along

r(t)ωip (Figures 5.23(B) and 5.24(A)).

(c) C(t) satisfies

P15 ∧ ((P1 ∧ P16) ∨ (P1 ∧ ¬P16) ∨ (¬P1 ∧ P16) ∨ ¬P1 ∧ ¬P16))∧

P7 ∧ P10 ∧ P8 ∧ ¬P9

Let Fj ∈ F be such that ]FjFcFm = min
Fk∈F

]FkFcFm and it contains an

unsaturated fixed point. Let p be the smallest positive integer for which ωjp

does not contain a robot position. Let r be the robot that lies at the closest
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distance from ωjp such that d(r(t), Fc) < ξ. Also, r does not lie on any saturated

circles and on any ωjb such that b ∈ {1, 2, . . . , p − 1}. r moves towards ωjp

along r(t)ωjp (Figure 5.24(B)). When there are multiple master rays, more

than one robots would be moving towards their respective destination points

in separate wedges. If r stops before reaching ωi(βik), it might be the case that

C(t) satisfies ¬P16. However, in such a case r can still compute ρ without any

conflict by considering all the fixed points in its wedge.

Phases Movements Phases after the Movements

PHASE1 M1 PHASE1 or PHASE2 or PHASE3

PHASE2 M2 PHASE1 or PHASE2 or PHASE3

PHASE3 M3 PHASE1 or PHASE3 or P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧
(¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P9 ∧ P8

PHASE4 M41 PHASE4 or PHASE5

PHASE4 M42 PHASE4 or PHASE5

PHASE4 M43 PHASE4 or PHASE5

PHASE5 M5 PHASE5 or FINAL

Table 5.4: Phase Transitions during OpaqueAlgorithm2

ALGORITHM 5.2: OpaqueAlgorithm2
Input: C(t) = (R(t), F )

1 if C(t) is in PHASE1 then
2 Execute M1;
3 else if C(t) is in PHASE2 then
4 Execute M2;
5 else if C(t) is in PHASE3 then
6 Execute M3;
7 else if C(t) satisfies P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9 then
8 if rk.light = Blue then
9 rk changes the color of its light rk.light = Red;

10 end

11 else if C(t) satisfies ¬P15 ∧ ¬P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9 then
12 if rk.light = Blue then
13 rk changes the color of its light rk.light = Red;
14 end

15 else if C(t) is in PHASE4 then
16 if C(t) ∈ FASYM then
17 Execute M41;
18 else if C(t) ∈ FREFL ∪ FMULT and k is even then
19 Execute M42;
20 else if C(t) ∈ FCHIR then
21 Execute M43;
22 end

23 else if C(t) is in PHASE5 then
24 Execute M5;
25 end
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Figure 5.25: Phase transitions during OpaqueAlgorithm2 when C(t) ∈ FASYM .
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Figure 5.26: Phase transitions during OpaqueAlgorithm2 when C(0) ∈ FREFL∪FMULT
and k is even.

5.4.2.4 OpaqueAlgorithm2

At t ≥ 0, if C(t) is not a final configuration, then an active robot executes algorithm

OpaqueAlgorithm2. The following cases are to be considered:

1. C(t) is in PHASE1. There exists a robot that lies in IntH(t). In this phase, the

robots execute movementM1. By performing movementM1, all the robots reach

the boundary of H(t).
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Figure 5.27: Phase transitions during OpaqueAlgorithm2 when C(0) ∈ FCHIR.

2. C(t) is in PHASE2. There exists a fixed point that lies in OutH(t). In this phase,

the robots execute movement M2. By performing movement M2, all the robots

include all the fixed points inside the boundary of H(t).

3. C(t) is in PHASE3. There exists a robot that does not lie on C . All the robots

reach the circle C , by the execution of movementM3.

4. C(t) satisfies one of the following conditions:

P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9, or

¬P15 ∧ ¬P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9

If ri.light = Blue, then ri changes the color of its light to ri.light = Red.

5. C(t) is in PHASE4. The robots re-position themselves on C to form a suitable

configuration. In case C(t) ∈ FASYM , then movement M41 is executed. When

C(t) ∈ FREFL ∪ FMULT and k is even, movement M42 is executed. In case

C(t) ∈ FCHIR, then movementM43 is executed.

6. C(t) is in PHASE5. In this phase, the robots start forming circles around the

fixed points. MovementM5 is executed.
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A summary of the movements during an execution of OpaqueAlgorithm2 is presented in

Table 5.4. Figures 5.25, 5.26 and 5.27 represent the phase transitions during an execution

of OpaqueAlgorithm2. The psuedocode of OpaqueAlgorithm2 is given in Algorithm 5.2.

5.4.3 Correctness of OpaqueAlgorithm2

We need to show that if the initial configuration C(0) is solvable, then C(t) would remain

solvable ∀t > 0 .

Lemma 5.4.3. If C(0) ∈ FASYM ∪ FCHIR, then the configuration C(t) at t ≥ 0

remains solvable during any execution of OpaqueAlgorithm2.

Proof. When C(t) ∈ FCHIR, then the robots can make an agreement on a common

chirality, as discussed in section 4.2.4. Consider the case when C(t) ∈ FASYM . Let

f ∈ F be the fixed point that has the minimum configuration view. The direction of V (f)

is globally considered to be the clockwise direction. If there is a tie between robots due to

symmetric positions, then such a tie can be broken with respect to chirality. Therefore,

during any execution of OpaqueAlgorithm2, ∀t ≥ 0, C(t) would remain solvable.

Lemma 5.4.4. Let C(0) ∈ FREFL ∪ FMULT and C(0) /∈ {U1 ∪ U2}. If C(0) is

solvable, then the configuration C(t) at t ≥ 0 remains solvable during any execution of

OpaqueAlgorithm2.

Proof. By Observation 3, it follows that if L′ = ∅, then C(t) would remain solvable.

Assume that L′ 6= ∅. If k is even, then from Observation 1 it follows that C(t) would

remain solvable. Also, C(t) would remain solvable when |F | is odd (Observation 2). We

need to consider the configurations when k is odd, |F | is even and L′ 6= ∅. Note that such

a configuration belongs to the set {U1∪U2} and we have considered that C(0) /∈ {U1∪U2}.

Hence, during an execution of OpaqueAlgorithm2, if C(0) ∈ FREFL ∪ FMULT and

solvable, then C(t) would remain solvable for t ≥ 0.

First, we discuss progress during movementM1. Assume that C(t) is in PHASE1.

Suppose ri denotes a candidate robot and qi(t) represents the destination point of r at
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time t. Let N4(t) denote the number of robots which lie in IntH(t). Also, let gi(t) =

d(ri(t), qi(t)). Define Z3(t) = (N4(t), gi(t)).

Lemma 5.4.5. Let C(t) be in PHASE1. Also, let ri be a candidate robot and t′ > t be

an arbitrary point of time at which ri has completed at least one LCM cycle. Execution

of movementM1 ensures that gi(t
′) + δ ≤ gi(t).

Proof. Recall that pi(t) denotes the intersection point between Ray(Fc, ri(t)) and C . We

have the following cases:

Case 1. pi(t) is not a robot position. In this case, qi(t) = pi(t) and ri moves directly

towards pi(t) (Figure 5.13(A)). As ri moves by at least δ, gi(t
′) + δ ≤ gi(t).

Case 2. pi(t) is a robot position. ri computes its destination point according to movement

M1 (Figure 5.13(B)). At t′, d(ri(t
′), qi(t

′)) > d(ri(t
′), qi(t)). As a consequence, we have

d(ri(t), qi(t))−d(ri(t
′), qi(t)) > d(ri(t), qi(t))−d(ri(t

′), qi(t
′)) ≥ δ. Thus, gi(t

′)+δ ≤ gi(t).

Hence, an execution of movementM1 ensures gi(t
′) + δ ≤ gi(t).

Lemma 5.4.6. During an execution of movementM1, let t′ > t be an arbitrary point of

time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movementM1 ensures Z3(t′) < Z3(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). As N4(t′) = N4(t)− 1, Z3(t′) < Z3(t) is ensured.

Case 2. qi(t) 6= ri(t
′). Lemma 5.4.5 ensures that gi(t

′) + δ ≤ gi(t).

Hence, an execution of movementM1 ensures Z3(t′) < Z3(t).

Next, we discuss the progress during movementM2. The aim is to include all the fixed

points inside H(t). Let N5(t) denote the number of robots which lie in OutH(t). Assume

that C(t) is in PHASE2. Suppose ri denotes a candidate robot and p1 denotes its

destination point. Let rj be the robot such that ri(t)rj(t) is a side of H(t). Assume that

p(t) ∈ rj(t)ri(t) be such that fjp(t) ⊥ rj(t)ri(t). Also, let g(t) = d(ri(t), p(t)). Define

Z4(t) = (N5(t), g(t)).
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Figure 5.28: Progress during movementM2

Lemma 5.4.7. Let C(t) be in PHASE2. Also, let ri be a candidate robot and t′ > t be

an arbitrary point of time at which ri has completed at least one LCM cycle. Execution

of movement M2 ensures that Z4(t′) < Z4(t).

Proof. Suppose rj(t) denotes the robot such that such that ri(t)rj(t) is a side of H(t).

First, consider the case when ∃fk ∈ F ∩ OutH(t) such that fk ∈ F ∩ IntH(t′). As

N5(t′) = N5(t) − 1, Z4(t′) < Z4(t) is ensured. Otherwise, ri has moved by at least δ

amount not along rj(t)ri(t). Also, ri has moved towards OutH(t). As a consequence,

]ri(t)rj(t)ri(t′) = η > 0 and d(p2, p(t)) > 0. Thus, g(t) = d(fj, p(t)) > d(fj, p(t)) −

d(p2, p(t)) = d(fj, p2) > d(fj, p(t
′)) = g(t′) (Figure 5.28). Hence, movementM2 ensures

Z4(t′) < Z4(t).

Next, we discuss the progress during movementM3. The goal is to place all the robots

on C . Let N6(t) denote the number of robots which do not lie on C . Assume that C(t)

is in PHASE3. Suppose ri denotes a candidate robot and qi(t) denotes its destination

point. Let gi(t) = d(ri(t), qi(t)). Define Z5(t) = (N6(t), gi(t)).

Lemma 5.4.8. During an execution of movementM3, let t′ > t be an arbitrary point of

time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movementM3 ensures gi(t
′) + δ ≤ gi(t).

Proof. Recall that pi(t) denotes the intersection point between Ray(Fc, ri(t)) and C . We

have the following cases:

Case 1. pi(t) is not a robot position. In this case, qi(t) = pi(t) and ri moves directly

towards pi(t) (Figure 5.13(A)). As ri moves by at least δ, gi(t
′) + δ ≤ gi(t).
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Case 2. pi(t) is a robot position. ri computes its destination point according to movement

M3 (Figure 5.13(B)). At t′, d(ri(t
′), qi(t

′)) > d(ri(t
′), qi(t)). As a consequence, we have

d(ri(t), qi(t)) − d(ri(t
′), qi(t)) > d(ri(t), qi(t)) − d(ri(t

′), qi(t
′)) ≥ δ. Thus, gi(t

′) + δ ≤

gi(t).

Lemma 5.4.9. During an execution of movementM3, let t′ > t be an arbitrary point of

time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movementM3 ensures Z5(t′) < Z5(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). As N6(t′) = N6(t)− 1, Z5(t′) < Z5(t) is ensured.

Case 2. qi(t) 6= ri(t
′). Lemma 5.4.8 ensures that gi(t

′) + δ ≤ gi(t).

Hence, an execution of movementM3 ensures Z5(t′) < Z5(t).

Next, we discuss the progress during movement M41. The aim is to form a suitable

configuration. Assume that C(t) is in PHASE4. Let N7(t) denote the number of robots

which do not lie on any zij for some Fi ∈ F and j ∈ {1, 2, . . . , βik}. When k is even and

C(t) ∈ FREFL∪FMULT , N7(t) denotes the number of robots which do not lie on any

zij for some Fi ∈ F and j ∈ {1, 2, . . . , βik
2
}. Let ri be a candidate robot. qi(t) denotes the

destination point of ri at time t. Let gi(t) = d(ri(t), qi(t)). Define Z6(t) = (N7(t), gi(t)).

Lemma 5.4.10. During an execution of movementM41, let t′ > t be an arbitrary point

of time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movementM41 ensures gi(t
′) + δ ≤ gi(t).

Proof. Recall that pi(t) denotes the intersection point between Ray(Fc, ri(t)) and C . We

have the following cases:

Case 1. pi(t) is not a robot position. qi(t) = pi(t) and ri moves directly towards pi(t)

(Figure 5.13(A)). Since ri moves by at least δ, gi(t
′) + δ ≤ gi(t).

Case 2. pi(t) is a robot position. ri computes its destination point according to movement

M41 (Figure 5.13(B)). At time t′, d(ri(t
′), qi(t

′)) > d(ri(t
′), qi(t)). We have d(ri(t), qi(t))−

d(ri(t
′), qi(t)) > d(ri(t), qi(t))− d(ri(t

′), qi(t
′)) ≥ δ. Thus, gi(t

′) + δ ≤ gi(t).
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Lemma 5.4.11. During an execution of movementM41, let t′ > t be an arbitrary point

of time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movement M41 ensures Z6(t′) < Z6(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). As N7(t′) = N7(t)− 1, Z6(t′) < Z6(t) is ensured.

Case 2. qi(t) 6= ri(t
′). Lemma 5.4.10 ensures that gi(t

′) + δ ≤ gi(t).

Hence, an execution of movementM41 ensures Z6(t′) < Z6(t).

Lemma 5.4.12. During an execution of movementM42, let t′ > t be an arbitrary point

of time at which a candidate robot ri has completed at least one LCM cycle. An execution

of movement M42 ensures Z6(t′) < Z6(t).

Proof. During movement M42, qi(t
′) = qi(t) and ri moves directly towards qi(t). If

qi(t) = ri(t
′), then N7(t′) = N7(t)− 1. Thus, Z6(t′) < Z6(t) is ensured. Consider the case

when qi(t) 6= ri(t
′). Since ri moves by at least δ, gi(t

′) + δ ≤ gi(t). Hence, an execution

of movementM42 ensures Z6(t′) < Z6(t).

Lemma 5.4.13. During an execution of movementM43, let t′ > t be an arbitrary point

of time at which at least one candidate robot ri has completed at least one LCM cycle.

An execution of movement M43 ensures Z6(t′) < Z6(t).

Proof. During an execution of movement M43, movement M41 will be executed in

multiple wedges. From Lemma 5.4.11, it follows that Z6(t′) < Z6(t) will be ensured.

Next, we discuss progress during movementM5. The goal is to form a final configuration.

Assume that C(t) is in PHASE5. Suppose ri denotes a candidate robot of the target

fixed point fj ∈ Fk ∈ F . Also, suppose qi(t) represents the destination point of r

at time t. We have gi(t) = d(ri(t), qi(t)). Recall that Vi(t) = (nk(t), Dj(t), gi(t)) where

Dj(t) = k−|C(fi, ρ)∩R(t)| denotes the deficit of number of robots on C(fj, ρ) to become

saturated and nk(t) denotes the number of unsaturated fixed points.
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Lemma 5.4.14. During an execution of movement M5, let ri be a candidate robot and

t′ > t be an arbitrary point of time at which ri has completed at least one LCM cycle.

Execution of movement M5 ensures that gi(t
′) + δ ≤ gi(t).

Proof. During movementM5, ri moves directly towards qi(t) (Figure 5.16(A) and 5.16(B)).

Since ri moves by at least δ, gi(t
′) + δ ≤ gi(t). Hence, an execution of movement M5

ensures gi(t
′) + δ ≤ gi(t).

Lemma 5.4.15. During an execution of movement M5, let t′ > t be an arbitrary point

of time at which at least one candidate robot ri has completed at least one LCM cycle.

An execution of movement M5 ensures Vi(t
′) < Vi(t).

Proof. The following cases are to be considered:

Case 1. qi(t) = ri(t
′). If C(fj, ρ) has exactly k robots, then nk(t

′) = nk(t) − 1 ensuring

V2(t′) < V2(t). If C(fj, ρ) has less than k robots on it, then Dj(t
′) = Dj(t) − 1 ensuring

Vi(t
′) < Vi(t).

Case 2. qi(t) 6= ri(t
′). Lemma 5.4.14 ensures that gi(t

′) + δ ≤ gi(t). As a result,

Vi(t
′) < Vi(t) is ensured.

Theorem 5.4.16. Let C(0) /∈ {U1∪U2} be a given configuration. Execution of algorithm

OpaqueAlgorithm2 would solve the k-circle formation problem within finite time under

obstructed visibility model.

Proof. Lemmata 5.4.3 and 5.4.4 ensure that ∀t ≥ 0, C(t) /∈ {U1 ∪U2}. At time t ≥ 0, we

have the following cases:

Case 1. C(t) is in PHASE1. Movement M1 is executed. Lemma 5.4.6 ensures that

within finite time all the robots would reach the boundary of H(t).

Case 2. C(t) is in PHASE2. MovementM2 is executed. Lemma 5.4.7 guarantees that

all the robots would include all the fixed points inside the boundary of H(t).

Case 3. C(t) is in PHASE3. There exists a robot that does not lie on C . Movement

M3 is executed. Lemma 5.4.9 ensures that within finite time the robots would reach C .
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Case 4. C(t) satisfies one of the following conditions:

P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9, or

¬P15 ∧ ¬P14 ∧ P1 ∧ P16 ∧ ¬P6 ∧ (¬P10 ∨ ¬P11 ∨ ¬P12 ∨ ¬P13) ∧ P8 ∧ P9

Each robot ri changes the color of its light to ri.light = Red. Since the scheduler is

assumed to be fair, within finite time all the robots will change its light color.

Case 5. C(t) is in PHASE4. If C(t) ∈ FASYM , then movement M41 is executed.

Lemma 5.4.11 ensures that within finite time the robots will form a suitable configuration.

If C(t) ∈ FREFL∪FMULT and k is even, movementM42 is executed. Lemma 5.4.12

guarantees that within finite time the robots will form a suitable configuration. When

C(t) ∈ FCHIR, then movement M43 is executed. Lemma 5.4.13 ensures that within

finite time the robots will form a suitable configuration.

Case 6. C(t) is in PHASE5. Movement M5 is executed. Lemma 5.4.15 guarantees

that within finite the robots will form a final configuration.

Hence, OpaqueAlgorithm2 would solve the k-circle formation problem within finite

time under obstructed visibility model for C(0) /∈ {U1 ∪ U2}.

For an initial configuration C(0) ∈ U2, the robots can solve the mutual visibilty prob-

lem by using light colors. Next, they can deterministically solve the k-circle formation

problem similar to the idea of OpaqueAlgorithm2. The robots can solve the mutual visi-

bility problem using two light colors [65]. However, it must be ensured that when solving

the mutual visibilty problem, the configuration does not fall into the set U1. Designing

such an algorithm for the mutual visibilty problem is under investigation.

5.5 Conclusions

In this chapter, we have investigated the k-circle formation problem under obstructed

visibility model. The robots have been assumed to be completely disoriented. They

operate their LCM cycle under ASYNC scheduler. This chapter studies the k-circle

formation problem under two different settings based on the visibility of the fixed points:
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1. Complete knowledge of the fixed points: ∀ri ∈ R, V Rri(t) ≤ n but V Fri(t) =

m. The robots are oblivious and silent. All the initial configurations and values

of k for which the k-circle formation problem is deterministically unsolvable are

characterized. A deterministic distributed algorithm is proposed that solves the

k-circle formation problem within a finite amount of time.

2. Zero knowledge of the fixed points: As a consequence, ∀ri ∈ R, V Rri(t) ≤

n and V Fri(t) ≤ m. It has been shown that the problem is deterministically

unsolvable by oblivious and silent robots. A deterministic distributed algorithm

is proposed that solves the k-circle formation problem within finite time. The

proposed algorithm considers one bit of persistent memory.
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6.1 Overview

In the real world, a robot can not possibly be dimensionless. Czyzowicz et al. [15] studied

the gathering problem for unit disk robots in the plane. This chapter aims at investigating

the uniform k-circle formation problem in a more realistic model where the robots have

a dimensional extent. They are represented by unit disks in the Euclidean plane.

In order to solve the uniform k-circle formation problem, the proposed algorithm

must ensure that all the k robots on a circle form a regular k-gon. The assumption on

the dimension of a robot introduces additional challenges. A point robot can always pass

151
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through the gap between any two points in the plane. It can compute a path in the plane

that lies at an infinitesimal distance apart from another robot. In comparison, a fat robot

can not do so due to the dimensional extent. A fat robot would act as a physical barrier

for the other robots. If a robot is punctiform, then either a robot lies on a circle or it

does not. However, for a fat robot, there are two scenarios (e.g., the unit disk intersects

the circle or the center of the unit disk lies on the circle) when a robot can be said to lie

on a circle. Also, the robots need to compute a suitable radius for the circles so that k

robots can be accommodated without any overlapping. Therefore, the solutions proposed

in Chapters 3, 4 and 5 would fail to work for fat robots.

6.2 Model and Definitions

The robots are represented by unit disks in the plane. The radius of a unit disk is

considered to be one unit distance by all the robots. We assume that the robots have

an agreement on the direction of the y-axis. They are autonomous, anonymous, homo-

geneous, oblivious and silent. The robots are assumed to be activated under ASYNC

scheduler with non-rigid motion.

(1) R = {R1, R2, . . . , Rn} denotes the set of all the unit disk robots in the plane. Ri(t)

represents the centre of Ri at time t. R(t) = {R1(t), R2(t), . . . , Rn(t)} denotes the set

of all the robot centers at time t. Ui(t) represents the unit disk centered at Ri(t). Two

distinct robots are said to be symmetric if their centers have the same configuration

rank as defined in section 3.2. C(t) is said to be symmetric if R(t) ∪ F is symmetric

about the y-axis. The radii of the circles are assumed to be homogeneous. The choice

of the value of the radius ρ is arbitrary. However, it must be ensured that k robots

can be accommodated on a circle without any overlapping. If Ri(t) lies on a circle,

then Ri is said to lie on that circle.

(2) All the configurations can be partitioned into the following disjoint classes:

(a) J1− F is asymmetric about the y-axis (Figure 6.1(A)).

(b) J2− F is symmetric about the y-axis and Fy = ∅ (Figure 6.1(B)).
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Figure 6.1: Small black circles represent the center of a robot. (A) J1-configuration. (B)
J2-configuration. (C) J3-configuration.

(c) J3− F is symmetric about the y-axis and Fy 6= ∅ (Figure 6.1(C)).

Since the partition is based upon fixed points, the robots can easily identify the class

of a configuration by observing the fixed points.

(3) Half-planes: Let Fi denote the set of fixed points in Hi ∈ {H1,H2}. Ci(t) =

(R(t), Fi) represents the part of the configuration consisting of R(t) ∪ Fi, where i ∈

{1, 2}. C3(t) = (R(t), Fy) denotes the part of the configuration consisting of R(t)∪Fy.

In H1, the positive x-axis direction is considered along the perpendicular direction

away from the y-axis. Similarly, the positive x-axis direction is the perpendicular

direction away from the y-axis in H2.

6.2.1 The Uniform k-Circle Formation Problem

A configuration C(t) for some t ≥ 0 is said to be a final configuration, if it satisfies the

following conditions:

i) ∀Ri ∈ R, Ri(t) ∈ C(fj, ρ) for some fj ∈ F ,

ii) |C(fi, ρ) ∩R(t)| = k, ∀fi ∈ F , and

iii) All the k robots which lie on the same circle form a regular k-gon.

To solve the uniform k-circle formation problem, starting from a given initial configura-

tion the robots need to reach and remain in a final configuration.
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Figure 6.2: The minimum radius required to form a circle containing exactly k robots.

6.2.2 Radii of the Circles

Let ρ > 0 denote the radius of a circle. The minimum radius for a circle for fat robots is

achieved when there are no gaps between any two adjacent robots on the circle. When

k = 1, we assume that the radius is one unit. For k > 1, let α =
2π

k
and a be the

mid-point of the line segment R1(t)R2(t) (Figure 6.2).

We have, sin
α

2
=
R2(t)a

R2(t)f
=

1

ρ
=⇒ ρ =

1

sin
α

2

.

The choice of ρ would ensure that all the k robots which lie on the same circle

would form a regular k-gon. Let Pi denote the regular k-gon centered at fi ∈ F with

{β1, β2, . . . , βk} as the set of vertices such that d(βi, βj) = 2, where i ∈ {1, 2, . . . , k} and

j = i + 1 mod(k). We assume that the minimum distance between any two fixed points

is greater than or equal to 2(ρ+ 1). This would always ensure that even if two adjacent

k-gons are rotated, the formation of disjoint circles without any overlapping of robots

would be guaranteed.

Definition 6.2.1. If k is some odd integer and C(t) ∈ I3, then C(t) is said to be an

unsafe configuration. A pivot position is defined for an unsafe configuration. Suppose

f ∈ Fy be the topmost fixed point. Let ρ1 ∈ H1 be the point such that ρ1 ∈ C(f, η) and

x(ρ1) − x(f) =
1

2
unit distance. Similarly, let ρ2 be such a point in H2. The points ρ1

and ρ2 are said to be pivot positions. A robot placed on a pivot position is said to be a

pivot robot.
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6.3 Impossibility Result
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Figure 6.3: An example of a configuration satisfying the impossibility criteria (Theo-
rem 6.3.1).

Theorem 6.3.1. Let C(0) be a given initial configuration. If k is some odd integer and

C(0) ∈ J3, such that the following conditions hold:

i) R(0) is symmetric about the y-axis, and

ii) Ry(0) = ∅,

then the uniform k-circle formation problem is deterministically unsolvable.

Proof. If possible, let algorithm A solve the uniform k-circle formation problem. Suppose

φ(Ri) denotes the symmetric image of Ri. Assume that the robots are activated under

a semi-synchronous scheduler. Also, assume that both Ri and φ(Ri) are activated simul-

taneously. All the robots are assumed to move with the same constant speed without

any transient stops. Consider that the distance traveled by Ri is the same as that by

φ(Ri). Assume that both Ri and φ(Ri) have opposite notions of positive x-axis direction.

They would have identical configuration views. Since the robots are homogeneous, their

destinations and the corresponding paths for movements would be mirror images. Since

we started with a symmetric configuration, no algorithm can deterministically break the

symmetry. Let fi ∈ Fy. Since the configuration is symmetric, Pi must be symmetric

around the y-axis. As k is odd, Pi must contain a robot position on the y-axis. Since
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Ry(0) = ∅, having a robot Ri moved to the y-axis would mean moving φ(Ri) to the same

point. However, overlapping of the robots is not allowed. Hence, the uniform k-circle

formation problem is deterministically unsolvable.

Let U4 denote the set of all the initial configurations which satisfy the conditions stated

in Theorem 6.3.1 (Figure 6.3).

6.4 Algorithm

Theorem 6.3.1 provides a sufficient condition for an initial configuration for which the

uniform k-circle formation is deterministially unsolvable. In this section, a deterministic

distributed algorithm AlgorithmFatRobot is proposed that solves the uniform k-circle

formation problem for an initial configuration C(0) /∈ U4. An active robot would execute

the proposed algorithm AlgorithmFatRobot unless the current configuration is a final

configuration.
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Figure 6.4: (A) R(Rj(t)q) is empty. (B) R(Rj(t)q) is non-empty

Definition 6.4.1. Let p be the destination point computed by Rj. Let q be the point

such that p ∈ Rj(t)q and d(p, q) = 1. The rectangular strip ABCD (Figures 6.4(A)

and 6.4(B)) between Rj(t) and q having width of two units is denoted by R(Rj(t)q).

If @Ri ∈ R such that Ui(t) intersects R(Rj(t)q), then R(Rj(t)q) is said to be empty

(Figure 6.4(A)). Otherwise, it is said to be non-empty (Figure 6.4(B)). If R(Rj(t)q) is

empty, then Rj is said to have a free path for movement towards p.

During the execution of AlgorithmFatRobot, the robots decide their strategy depend-

ing on the class of the initial configuration. An overview of algorithm AlgorithmFatRobot

is described below:
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1. If C(0) ∈ J1 or C(0) is an unsafe configuration, then the robots agree on the positive

direction of the x-axis. In case, C(0) ∈ J1 the x-axis agreement is based on fixed points

only. If C(0) is an unsafe configuration, then the robots would execute the procedure

PivotSelection (Section 6.4.2) by which a pivot robot would be selected and placed on

a pivot position. The pivot robot would remain fixed at the pivot position. The pivot

position is selected by ensuring that the configuration would remain asymmetric once

the pivot position is placed. In this case, the x-axis agreement is based on the pivot

position.

2. The robots would execute the CircleFormation (Section 6.4.3) for a unique fixed point

(or for two fixed points when the robots do not have a global x-axis agreement). Such

a fixed point is said to be a target fixed point. CircleFormation is the procedure by

which the robots would accomplish the formation of circles.

During the execution of the AlgorithmFatRobot, the robots would move downwards by

the execution of procedure DownwardMovement (Section 6.4.1). Since the robots have

a dimensional extent, a robot can start to move towards its destination point only if it

has a free path for movement.

6.4.1 DownwardMovement

DownwardMovement is the procedure in AlgorithmFatRobot by which the robots would

move downwards. Assume that Rj has been selected for downward movement by one

unit. Rj would move one unit vertically downwards by the execution of the procedure

DownwardMovement. However, if the pivot robot falls in its path, then it can not

move downwards. In such a case, it would move one unit horizontally. First, some new

notations and definitions are introduced.

Suppose V Lj(t) denotes the vertical line passing through Rj(t). Let pj(t) ∈ V Lj(t) be

the point such that γ(Rj(t)) > γ(pj(t)) and d(Rj(t), pj(t)) = 2. Define the set Mj(t) as

follows:

1. Base case: If R(Rj(t)pj(t)) is empty, then Mj(t) = ∅. Else, Mj(t) = {Ra |

Ua(t) intersects R(Rj(t)pj(t))}.
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Figure 6.5: (A) Mj(t) = {R1, R2, R3, R4}. As U1(t) intersects R(Rj(t)pj(t)), R1 ∈ Mj(t).
Also, U2(t) and U3(t) intersect R(R1(t)p1(t)), R2 ∈ Mj(t) and R3 ∈ Mj(t). U4(t) inter-
sects R(R3(t)p3(t)) and R4 ∈ Mj(t). (B) Nj(t) = {R1, R2, R3, R4}. As U1(t) intersects
R(Rj(t)qj(t)), R1 ∈ Nj(t). U3(t) intersects R(R1(t)q1(t)) and R3 ∈ Nj(t). Also, U2(t) and

U4(t) intersect R(R3(t)q1(t)), R2 ∈ Nj(t) and R4 ∈ Nj(t).

2. Constructor case:

Mj(t) = Mj(t) ∪ {Rb | Ub(t) intersects R(Ri(t)pi(t)) for some Ri ∈Mj(t)}.

The set Mj(t) contains all the robots that must be moved downwards before Rj can move

one unit vertically downwards (Figure 6.5(A)). Let HLj(t) denote the horizontal line

passing through Rj(t). In case, Rj is selected for horizontal movement, let qj(t) ∈ HLj(t)

be the point such that γ(Rj(t)) < γ(qj(t)) and d(Rj(t), qj(t)) = 2. Define the set Nj(t)

as follows:

1. Base case: If R(Rj(t)qj(t)) is empty, then Nj(t) = ∅. Else, Nj(t) = {Ra |

Ua(t) intersects R(Rj(t)qj(t))}.

2. Constructor case:

Nj(t) = Nj(t) ∪ {Rb | Ub(t) intersects R(Ri(t)qi(t)) for some Ri ∈ Nj(t)}.

The setNj(t) contains all the robots that must be moved horizontally so that R(Rj(t)qj(t))

becomes empty (Figure 6.5(B)). During the execution of DownwardMovement(Rj), the

following cases are to be considered:

1. Mj(t) = ∅. Rj would start moving towards pj(t) along Rj(t)pj(t).
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2. Mj(t) 6= ∅. There are two possible cases:

(a) Mj(t) contains the pivot robot. If Nj(t) = ∅, then Rj moves towards qj(t)

along Rj(t)qj(t). Otherwise, let Ra ∈ Nj(t) be such that d(Rj(t), Ra(t)) =

max
Rk∈Nj(t)

d(Rj(t), Rk(t)). Ra moves towards qa(t) along Ra(t)qa(t). There may

be multiple such robots which would perform the required movement.

(b) Mj(t) does not contain the pivot robot. LetRa ∈Mj(t) be such that γ(Ra(t)) ≤

min
Rk∈Mj(t)

γ(Rk(t)). Ra moves towards pa(t) along Ra(t)pa(t). If there are multi-

ple such robots, then all of them would perform the required vertical movement.

6.4.2 PivotSelection

PivotSelection is the procedure in AlgorithmFatRobot by which a robot would be placed

at one of the pivot positions. The robots would execute PivotSelection unless one of the

pivot position is occupied by a robot. Let Ra be the robot that lies at the closest distance

from pivot position ρ1. If there are multiple such robots, then select the topmost one. In

case there is a tie, select the one closest to the y-axis. Similarly, let Rb be the robot that

lies at the closest distance from ρ2. The following cases are to be considered:

1. d(Ra(t), ρ1) 6= d(Rb(t), ρ2). Without loss of generality, let d(Ra(t), ρ1) < d(Rb(t), ρ2).

The robot Ra would start moving towards ρ1 along Ra(t)ρ1.

2. d(Ra(t), ρ1) = d(Rb(t), ρ2) and Ry(t) = ∅. Since C(t) /∈ U4, it must be asymmetric

about the y-axis. Let Rl be the topmost asymmetric robot. If there are multiple

such robot then select the one which lies at the closest distance from the y-axis.

Without loss of generality, assume that Rl ∈ H1. The robot Ra would start moving

towards ρ1 along Ra(t)ρ1.

3. d(Ra(t), ρ1) = d(Rb(t), ρ2) and Ry(t) 6= ∅. There are two possible cases:

(i) C(t) is asymmetric. In this case, the robots will perform the required actions

similarly as in case 2.

(ii) C(t) is symmetric. First, consider the case when ∃Ra ∈ Ry(t) that can be

moved horizontally half a unit away from the y-axis. If there are multiple
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such robots, select the topmost one. Ra would move horizontally half a unit

away from the y-axis. Next, consider the case when there are no such robots

on the y-axis. Let Ra ∈ Ry(t) be the robot that has the minimum rank.

DownwardMovement(Ra) would be executed.

6.4.3 CircleFormation

CircleFormation is the procedure in AlgorithmFatRobot by which the robots would

accomplish the formation of a circle. Let fi be a target fixed point. The following

additional notations and terminologies are introduced:

1. Ai(t) = {Rj | Rj(t) ∈ C(fa, ρ) where fa ∈ F be such that γ(fa) ≥ γ(fi)}.

2. fl ∈ F denotes a fixed point such that γ(fl) ≤ γ(fj), ∀fj ∈ F .

3. Rj is said to satisfy condition C1 if it is not the pivot robot.

4. Rj is said to satisfy condition C2 if y(Rj(t)) ≥ y(fl)− (ρ+ 1).

5. Bi(t) = {Rj | Rj /∈ Ai(t) and it satisfies C1 and C2}.

6. Let βa ∈ Pi be the empty vertex that has the highest rank in Amax. Assume that

Rj has been selected for moving towards βa. If R(Rj(t), βa) is non-empty, then let

aj ∈ HLj(t) denote the point that lies at the closest distance from Rj such that

R(Rj(t) = aj, βa) is empty.

Definition 6.4.2. C(fi, ρ) is said to be a perfect circle, if the following conditions hold:

1. If Rj(t) ∈ C(fi, ρ), then Rj(t) = βk for some βk ∈ Pi.

2. If Rj(t) ∈ C(fi, ρ) and Rj(t) = βk ∈ Pi, then @ βj ∈ Pi such that γ(βk) < γ(βj) and

βj is not occupied.

If Rj ∈ C(fi, ρ) be such that one of the above conditions is not satisfied, then it is said to

be an imperfect robot. A circle is said to be imperfect if it contains an imperfect robot.
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During an execution of CircleFormation(C(t), fi), an active robot Ri considers the

following cases:

1. The robots have global x-axis agreement or fi /∈ Fy. The following cases are to be

considered:

(a) |Bi(t)| > 1. Let Rj ∈ Bi(t) be the robot that has the maximum rank. The

robots would execute DownwardMovement(Rj).

(b) |Bi(t)| = 1. Let βc ∈ Pi be the empty vertex that has the maximum rank. Let

Rj ∈ Bi(t). If R(Rj(t)βc) is empty, then Rj would start moving towards βc.

Otherwise, DownwardMovement(Rj) would be executed.

(c) |Bi(t)| = 0 and C(fi, ρ) is imperfect. Let βc ∈ Pi be the empty vertex that

has the maximum rank. Let Rj ∈ C(fi, ρ) be such that γ(Rj(t)) < γ(βc) and

d(Rj(t), βc) is minimum. If there is a tie, select the one that has the maximum

rank. Rj would start moving towards βc along Rj(t)βc.

|Bi(t)| = 0 and C(fi, ρ) is perfect and unsaturated

|Bi(t)| = 0 and C(fi, ρ) is imperfect

|Bi(t)| = 0 and C(fi, ρ) is perfect and saturated

|Bi(t)| > 1 |Bi(t)| = 1

Figure 6.6: A flow chart showing the transformations among the various cases during an
execution of CircleFormation when the robots have a global x-axis agreement or the target

fixed point does not belong to Fy.

(d) |Bi(t)| = 0 and C(fi, ρ) is perfect. Let βc ∈ Pi be the empty vertex that has the

maximum rank. Let Rj ∈ R(t) \ Ai(t) be such that d(Rj(t), βc) is minimum.

If there is a tie, select the one that has the maximum rank. If R(Rj(t)βc) is

empty, then Rj would start moving towards βc along Rj(t)βc. Else, Rj would

start moving towards aj along Rj(t)aj.

Figure 6.6 depicts the transformations among the above-mentioned cases.
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2. The robots do not have any global x-axis agreement and fi ∈ Fy. The following

cases are to be considered:

(a) |Bi(t)| > 2. Let Rj ∈ Bi(t) be the robot that has the maximum rank. The

robots would execute DownwardMovement(Rj).

(b) 0 < |Bi(t)| ≤ 2. Let βa ∈ H1 be the empty vertex of Pi that has the

highest rank. Similarly, let βb be such a vertex in H2. Assume that Rj

and Rk are the robots that are at the closest distance from βa and βb, re-

spectively. If R(Rj(t)βa) is empty, then Rj would start moving towards

βa. Otherwise, DownwardMovement(Rj) would be executed. Similarly, if

R(Rk(t)βb) is empty, then Rk would start moving towards βb. Otherwise,

DownwardMovement(Rk) would be executed.

|Bi(t)| = 0 and C(fi, ρ) is perfect and unsaturated

|Bi(t)| = 0 and C(fi, ρ) is imperfect

|Bi(t)| = 0 and C(fi, ρ) is perfect and saturated

|Bi(t)| > 2 |Bi(t)| ≤ 2

Figure 6.7: A flow chart showing the transformations among the various cases during an
execution of CircleFormation when the robots do not have any global x-axis agreement and

the target fixed point belongs to Fy.

(c) |Bi(t)| = 0 and C(fi, ρ) is imperfect. Let βa ∈ H1 be the empty vertex of

Pi that has the highest rank. Similarly, let βb be such a vertex in H2. Let

Rj ∈ C(fi, ρ) be such that γ(Rj(t)) < γ(βa) and d(Rj(t), βa) is minimum. If

there is a tie, select the one that has the maximum rank. Let Rk be such

an robot for the vertex βb. Rj would start moving towards βa along Rj(t)βa.

Similarly, Rk would start moving towards βb along Rk(t)βb.

(d) |Bi(t)| = 0 and C(fi, ρ) is perfect. Let βa ∈ H1 be the empty vertex of Pi
that has the highest rank. Similarly, let βb be such a vertex in H2. Let

Rj ∈ R(t) \ Ai(t) such that d(Rj(t), βa) is minimum. If there is a tie, select

the one that has the maximum rank. Assume that Rk be such a robot for βb.
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If R(Rj(t)βa) is empty, then Rj would start moving towards βa along Rj(t)βa.

Otherwise, Rj would start moving towards aj along Rj(t)aj. Similarly, Rk

would select its destination point and start moving towards it.

If Rj = Rk for any of the above cases, then Rj would select the target fixed point

that lies at the closest distance from it. If there is a tie, it would select one of

the target fixed point arbitrarily. Figure 6.7 depicts the transformations among the

above mentioned cases.

6.4.4 AlgorithmFatRobot

AlgorithmFatRobot is the proposed deterministic distributed algorithm that solves the

uniform k-circle formation problem within finite time. The pseudocode of algorithm

AlgorithmFatRobot is presented in Algorithm 6.1. During an execution of algorithm

AlgorithmFatRobot, the robots would form a circle centered at a target fixed point by

the procedure CircleFormation. Let Rj be an active robot at time t ≥ 0. If C(t)

is identified to be a non-final configuration, then AlgorithmFatRobot(C(t)) would be

executed. Consider the following cases:

ALGORITHM 6.1: AlgorithmFatRobot
Input: C(t) = (R(t), F )

1 if C(t) ∈ J1 then
2 Let fj be the target fixed point;
3 Execute CircleFormation(C(t), fj);

4 else if C(t) ∈ J2 then
5 Let fj ∈ C1(t) and fb ∈ C2(t) be the target fixed points;
6 Execute CircleFormation(C1(t), fj) and CircleFormation(C2(t), fj);

7 else if C(t) ∈ J3 then
8 if k is even and C(t) is not an unsafe configuration then
9 if ∃f ∈ Fy such that f is unsaturated then

10 Let fj be the target fixed point;
11 Execute CircleFormation(C3(t), fj);

12 else if ∃f ∈ Fy such that f is unsaturated then
13 Let fj ∈ C1(t) and fb ∈ C2(t) be the target fixed points;
14 Execute CircleFormation(C1(t), fj) and CircleFormation(C2(t), fj);

15 end

16 else if C(t) is an unsafe configuration then
17 Execute PivotSelection(C(t));
18 end

19 end

1. C(t) ∈ J1. Since F is asymmetric, the fixed points can be ordered. Let f be the

topmost asymmetric fixed point. In case there are multiple such fixed points, select
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the one that has the minimum rank. The direction from the y-axis towards f is con-

sidered to be the positive x-axis direction. This is a global agreement. Let fi ∈ C(t)

be the unsaturated fixed point that has the maximum rank. The robots would select

fi as the target fixed point. The robots would execute CircleFormation(C(t), fi).

2. C(t) ∈ J2. Let fa ∈ C1(t) be the unsaturated fixed point that has the maximum

rank. The robots would select fi as the target fixed point in C1(t). Similarly, the

robots would select a unique target fixed point (say fb) in C2(t). The robots would

execute CircleFormation(C1(t), fa) and CircleFormation(C2(t), fb).

3. C(t) ∈ J3. In this case, Fy 6= ∅. The following cases are to be considered:

(a) k is even and C(t) is not an unsafe configuration. Consider the following cases:

(i) ∃f ∈ Fy such that f is unsaturated. Let fj ∈ Fy be the topmost unsat-

urated fixed point. fj is selected as the target fixed point. They would

execute CircleFormation(C3(t), fj).

(ii) ∀f ∈ Fy, f is saturated. Let fa ∈ C1(t) be the unsaturated fixed point

that has the maximum rank. fa is selected as the target fixed point

in C1(t). Since the fixed points in C1(t) are orderable, fa is unique.

Similarly, the robots would select a unique target fixed point (say fb)

in C2(t). The robots would execute CircleFormation(C1(t), fa) and

CircleFormation(C2(t), fb).

(b) C(t) is an unsafe configuration. If none of the pivot positions have been occu-

pied, then the robots would execute PivotSelection(C(t)). Next, consider the

case when one of the pivot positions has been occupied. The direction from the

y-axis towards the pivot robot is considered as the positive x-axis direction.

This is a global agreement. Next, the algorithm proceeds similarly to case 1.

6.5 Correctness

The following points are shown to prove the correctness of AlgorithmFatRobot:

1. Solvability: At any arbitrary point of time t > 0, C(t) /∈ U4.
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2. Progress: The uniform k-circle formation is solved within finite time.

6.5.1 Solvability

Lemma 6.5.1. If C(0) ∈ J1 ∪ J2 and C(0) /∈ U4, then at any arbitrary point of time

t ≥ 0 during an execution of AlgorithmFatRobot, C(t) /∈ U4.

Proof. The following cases are to be considered:

Case 1. C(0) ∈ J1. Since F is asymmetric in C(0), it would always remain asymmetric.

Thus, C(t) /∈ U4.

Case 2. C(0) ∈ J2. Fy = ∅. Since Fy 6= ∅ for each configuration in U4, C(t) /∈ U4.

Hence, if C(0) ∈ J1 ∪ J2 and C(0) /∈ U4, then at any arbitrary point of time t ≥ 0

during an execution of AlgorithmFatRobot, C(t) /∈ U4.

Lemma 6.5.2. If C(0) ∈ J3 and C(0) /∈ U4, then at any arbitrary point of time t > 0

during an execution of AlgorithmFatRobot, C(t) /∈ U4.

Proof. If k is even and C(t) is not an unsafe configuration, then C(t) /∈ U4, ∀t ≥ 0.

Assume that C(t) is an unsafe configuration. PivotSelection(C(0)) is executed. Let t1

be the point of time at which the pivot robot (say Rj) is placed at one of the pivot positions

(say ρ1). The pivot robot Rj would remain static ∀t ≥ t1. All the robots can uniquely

identify the pivot robot. First, all the fixed points belonging to the half-plane containing

the pivot robot would be selected for circle formation. This is because an unsaturated

fixed point that has the highest rank is selected as a target fixed point. This would ensure

that Rj remain asymmetric about the y-axis. Therefore, C(t) /∈ U4 for t ≥ t1. Next, we

need to show that C(t) /∈ U4 for t ∈ [0, t1]. The following cases are to be considered:

Case 1. A robot moves horizontally one unit away from the y-axis. Let Ra be such a

robot. There are two possible subcases:

Subcase 1. Ra(0) ∈ Ry(0). First, consider that Ra(0) = Ra(t). Since Ra(t) ∈ Ry(t),

Ry(t) 6= ∅. Therefore, C(t) /∈ U4. Next, consider that Ra(0) 6= Ra(t). Since Ra has moved
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to one of the half-planes, the configuration has become asymmetric about the y-axis.

Therefore, C(t) /∈ U4.

ρ1ρ2

Ra(t)

Ra(0)

Rb(t)

y-axis

H1H2

Figure 6.8: Since d(Rb(0), ρ2) < d(Ra(0), ρ1), Rb would get selected for moving towards the
pivot position ρ2.

Subcase 2. Ra(0) /∈ Ry(0). It has been selected for horizontal movement to create space

for some robot that lies on the y-axis. Thus, Ry(t) 6= ∅ during Ra’s horizontal movement.

Therefore, C(t) /∈ U4.

Case 2. A robot moves towards one of the pivot positions. Without loss of generality,

assume that Ra ∈ H1 has been selected for moving towards ρ1. If possible, let Ra(t)

become symmetric with Rb(t) (Figure 6.8). In the time interval [0, t], Ra is the only

robot that has been selected for movement. Thus, Rb(0) = Rb(t). This contradicts

d(Ra(0), ρ1) = minρi∈{ρ1, ρ2}, Rj∈R(t) d(Rj(0), ρi). Therefore, C(t) /∈ U4.

Hence, if C(0) ∈ J3 and C(0) /∈ U4, then at any arbitrary point of time t > 0 during

an execution of AlgorithmFatRobot, C(t) /∈ U4.

6.5.2 Progress

During an execution of AlgorithmFatRobot, a robot will move by the following proce-

dures: (i) PivotSelection, (ii) DownwardMovement, (iii) CircleFormation.
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6.5.2.1 Progress during DownwardMovement

Progress of first kind: For some Rj ∈ C(t), consider an execution of procedure

DownwardMovement(Rj). Define k1(t) = d(Rj(t), pj(t)) and k2(t) = d(Rj(t), qj(t)).

In case |Mj(t)| > 0, let Ra ∈ Mj(t) be a robot that has the minimum rank. De-

fine d1(t) = d(Ra(t), pa(t)). If |Mj(t)| = 0, then assume that d1(t) = 0. Similarly, if

|Nj(t)| > 0 then assume that Rb ∈ Nj(t) be a robot that lies at the farthest distance from

Rj(t). Define d2(t) = d(Rb(t), s4). If |Nj(t)| = 0, then assume that d2(t) = 0. Define

Z7(t) = (k1(t), |Mj(t)|, d1(t)) and Z8(t) = (k2(t), |Nj(t)|, d2(t)). In the time interval t to

t′, Zi(t
′) < Zi(t) where i ∈ {7, 8} if Zi(t

′) is lexicographically smaller than Zi(t). During

an execution of DownwardMovement, the configuration is said to have progress of first

kind in the time interval t to t′ if either Z7(t′) < Z7(t) or Z8(t′) < Z8(t).

Lemma 6.5.3. During the execution of DownwardMovement(Rj) for some Rj ∈ C(t),

let t′ > t be the point of time at which each robot has completed at least one LCM cycle.

Progress of first kind is ensured in the time interval t to t′.

Proof. The following cases are to be considered:

Case 1. Rj can move vertically one unit downwards. Since it would move by at least δ

amount, k1(t′) + δ ≤ k1(t). Thus, Z7(t′) < Z7(t).

Case 2. Rj can not be moved vertically one unit downwards and Mj(t) does not contain

the pivot robot. Let Ra ∈ Mj(t) be a robot that has the minimum rank. It would start

moving towards pj(t). If Rj(t
′) = pj(t), then |Mj(t

′)| = |Mj(t)| − 1. Otherwise, since it

would move by at least δ amount, d1(t′) + δ ≤ d1(t). Thus, Z7(t′) < Z7(t).

Case 3. Rj can not be moved vertically one unit downwards and Mj(t) contains the pivot

robot. There are two possible subcases:

Subcase 1. Nj(t) = ∅. Since it would move by at least δ amount, k2(t′) + δ ≤ k2(t).

Thus, Z8(t′) < Z8(t).

Subcase 2. Nj(t) 6= ∅. Let Rb ∈ Nj(t) be a robot that lies at the farthest distance from

Rj. It would start moving towards qb(t). If Rb(t
′) = qb(t), then |Nj(t

′)| = |Nj(t)| − 1.

Otherwise, since it would move by at least δ amount, d2(t′) + δ ≤ d2(t). Thus, Z8(t′) <

Z8(t).
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Hence, during the execution of DownwardMovement(Rj) for some Rj ∈ C(t) progress

of first kind is ensured in the time interval t to t′.

6.5.2.2 Progress during PivotSelection

Lemma 6.5.4. Let C(t) ∈ J3 with odd values of k. The pivot robot would be placed

within finite time by the execution of PivotSelection(C(t)).

Proof. Let t′ > t be an arbitrary point of time at which each robot has completed at

least one LCM cycle during an execution of PivotSelection. The following cases are to

be considered:

Case 1. Rj moves towards the pivot position ρ1. Since Rj is guaranteed to move by at

least δ amount towards ρ1, d(Rj(t
′), ρ1) + δ ≤ d(Rj(t), ρ1). As d(Rj(t), ρ1) is finite, Rj

would eventually reach the pivot position.

Case 2. Rj ∈ Ry(t) moves horizontally half unit away from the y-axis. Such a movement

is performed when a unique robot can not be selected for moving towards one of the pivot

positions. Since Rj would move by at least δ amount, the configuration is guaranteed to

become asymmteric at t′. Next, a unique robot can be selected for moving towards one

of the pivot positions.

Case 3. Rj executes DownwardMovement(Rj). Such a movement is performed when

@Ra ∈ Ry(t) that can be moved horizontally half unit away from the y-axis. From

Lemma 6.5.3, it follows that progress of first kind is ensured. Thus, within finite time

Mj(t) would become empty. Next, Ra ∈ Ry(t) can be moved horizontally half unit away

from the y-axis.

Hence, by the execution of PivotSelection(C(t)), the pivot robot would be placed

within finite time.

6.5.2.3 Progress during CircleFormation

Progress of second kind: Suppose Rj has been selected for movement towards a vertex

βk ∈ Pi during an execution CircleFormation(C(t), fi). For the configurations without
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any global x-axis agreement, there might be two such moving robots. In that case, both

the robots would move towards different vertices of Pi. First, consider the case when

there is only one such robot. Recall that Di(t) = k − |C(fi, ρ) ∩ R(t)| and nk(t) denotes

the number of unsaturated fixed points. Let

Ej(t) =

d(Rj(t), βk) R(Rj(t)βk) is empty

d(Rj(t), aj) R(Rj(t)βk) is non-empty

Let Vj(t) = (n(t), ni(t), Ej(t)). Next, consider the case when there are two such moving

robots. Let Ra be the other robot that starts moving towards a vertex βb ∈ Pi. Similarly,

define Ea(t) and Va(t) = (nk(t), Di(t), Ea(t)). In the time interval t to t′, Vi(t
′) < Vi(t),

where i ∈ {j, a} if Vi(t
′) is lexicographically smaller than Vi(t). During an execution of

AlgorithmFatRobot, the configuration is said to have progress of second kind in the time

interval t to t′, if either Vj(t
′) < Vj(t) or Va(t

′) < Va(t).

Lemma 6.5.5. Let C(t) be a given configuration. During the execution of the procedure

CircleFormation, let t′ > t be an arbitrary point of time at which all the robots have

completed at least one LCM cycle. Either progress of first kind or progress of second kind

is ensured in the time interval between t and t′.

Proof. Let fi be the target fixed point. First, consider the case when the robots have a

global x-axis agreement or fi /∈ Fy. Consider the following cases:

Case 1. |Bi(t)| > 1. Let Rj ∈ Bi(t) be the robot that has the highest rank. The

procedure DownwardMovement(Rj) would be executed. Lemma 6.5.3 ensures progress

of first kind. Since |Bi(t)| ≤ n, |Bi(t)| = 1 would be satisfied within finite time. If

∃Ra ∈ R(t) such that Ra ∈ Mj(t) ∩ Ai(t) or Ra ∈ Nj(t) ∩ Ai(t), then |Bi(t)| would

increase by the execution of DownwardMovement. Since |Bi(t)| ≤ n, Lemma 6.5.3

ensures that |Bi(t)| = 1 would be satisfied within finite time.

Case 2. |Bi(t)| = 1. Let Rj ∈ Bi(t). Suppose βa be the empty vertex of Pi that has the

highest rank. There are two possible subcases:

Subcase 1. R(Rj(t)βa) is empty. Rj would start moving towards βa along Rj(t)βa. If

βa = Rj(t
′), then Dj(t

′) = Dj(t) − 1. The configuration would satisfy |Bi(t)| = 0 and
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C(fi, ρ) is perfect. Else, either Rj(t
′) ∈ C(fi, ρ) or Rj(t

′) ∈ Bi(t). If Rj(t
′) ∈ C(fi, ρ),

then C(t′) would satisfy |Bi(t)| = 0 and C(fi, ρ) is imperfect. Otherwise, C(t′) would

still satisfy |Bi(t)| = 1. However, Rj has moved by at least δ amount, d(Rj(t
′), βa) + δ ≤

d(Rj(t), βa) is satisfied. Thus, progress of second kind is ensured.

Subcase 2. R(Rj(t)βa) is not empty. Procedure DownwardMovement(Rj) is executed.

Lemma 6.5.3 ensures progress of first kind. If Mj(t) 6= ∅, then |Bi(t)| > 1 would be

satisfied. In case Mj(t) = ∅, then either R(Rj(t)βa) would become empty or, |Bi(t)| = 0

would be satisfied.

Case 3. |Bi(t)| = 0 and C(fi, ρ) is imperfect. Suppose βa be the empty vertex of Pi that

has the highest rank. Let Rj be the robot that starts moving towards βa. Since δ is the

minimum distance traveled by a robot, d(Rj(t
′), βa) + δ ≤ d(Rj(t), βa). Thus, progress of

second kind is ensured.

Case 4. |Bi(t)| = 0 and C(fi, ρ) is perfect. Suppose βa be the empty vertex of Pi that has

the highest rank. Let Rj ∈ R(t) \Ai(t) be the robot that lies at the closest distance from

βa. If there is a tie, the robot that has the maximum rank is selected. If R(Rj(t)βa) is

non-empty, then Rj would start moving towards aj. Else, it would start moving towards

βa. In both the cases, progress of second kind is ensured.

Next, consider the case when the robots do not have any global x-axis agreement. In such

a case, there may be two moving robots in the plane. Such robots would be delimited by

the y-axis. Additionally, their destinations would also lie in their respective half-planes.

From the above cases (Case 1, 2, 3 and 4), it follows that either progress of first kind or

progress of second kind is ensured for both the moving robots. Hence, during an execution

of CircleFormation either progress of first kind or progress of second kind is ensured in

the time interval [t, t′].

Lemma 6.5.6. Let C(0) be a given initial configuration. During the execution of algo-

rithm AlgorithmFatRobot collision-free movement is ensured by the robots.

Proof. During the execution of the AlgorithmFatRobot, the robots would move sequen-

tially. A robot would start moving towards its destination point only if a free path exists.

Thus, during its movement, it would avoid any collisions with other robots. In case the
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robots do not have any global x-axis agreement, there may be two moving robots in the

plane. However, they would lie in different half-planes delimited by the y-axis, avoid-

ing any possible collisions. Therefore, during the execution of the AlgorithmFatRobot,

collision-free movement is ensured.

Theorem 6.5.7. If C(0) /∈ U4, then the uniform k-circle formation problem is determin-

istically solvable by the execution of AlgorithmFatRobot.

Proof. During an execution of AlgorithmFatRobot, Lemma 6.5.1 and Lemma 6.5.2 ensure

that C(t) /∈ U4 at any arbitrary point of time t > 0. Collision-free movement is guaranteed

by Lemma 6.5.6. If C(0) ∈ J3 and C(0) is an unsafe configuration, then Lemma 6.5.4

ensures that the pivot robot would be placed within finite time by the execution of

PivotSelection. Lemma 6.5.5 ensures that within finite time the configuration C(t) for

some t ≥ 0 would satisfy the condition |Bi(t)| = 1. If the robots do not have a global

x-axis agreement, then Lemma 6.5.5 ensures that within finite time the configuration

C(t) for some t ≥ 0 would satisfy the condition 0 < |Bi(t)| ≤ 2. Since |F | is finite,

Lemma 6.5.5 guarantees that the robots would accomplish the formation of circles by

the procedure CircleFormation. Hence, the robots would deterministically solve the

uniform k-circle formation problem by the execution of AlgorithmFatRobot.

6.6 Conclusion

In this chapter, the uniform k-circle formation problem is studied for ASYNC fat robots.

The robots have an agreement on the direction and orientation of the y-axis. The following

results have been proved:

Result 1: If C(0) ∈ U4, then the uniform k-circle formation problem is deterministically

unsolvable.

Result 2: If C(0) /∈ U4, then the uniform k-circle formation problem is deterministically

solvable.





Chapter 7

Conclusions

7.1 Contributions of the Thesis

This thesis is primarily focused on the theoretical aspects of solving the k-circle formation

problem by a swarm of mobile robots. The k-circle formation problem is a hybrid problem

that connects the well studied problems: the partitioning problem, the circle formation

problem and embedded pattern formation problem. Our aim is to identify different sets of

computational assumptions under which the k-circle formation problem is solvable. All

the studied problems have been considered under an ASYNC scheduler with non-rigid

motion.

In Chapter 3, the k-circle formation problem has been investigated under one axis

agreement. First, we have assumed that n = km. All the initial configurations and values

of k for which the k-circle formation problem is deterministically unsolvable have been

characterized. A deterministic distributed algorithm is proposed that solves the k-circle

formation problem within finite time. Next, the solvability of the problem is discussed for

the cases when n 6= km. Finally, it has been shown that if the k-circle formation problem

is deterministically solvable then the k-EPF problem is also deterministically solvable.

Chapter 4 addresses the relaxation of the assumption of one axis agreement among

the robots. In this chapter, the k-circle formation problem is considered for completely

disoriented robots. When the robots have one axis agreement, all the robots and fixed

173
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points can be ordered with respect to the axis of agreement. Thus, the presence of

rotational symmetries can be handled successfully. In this current setting, rotational

symmetries must be considered in addition to reflectional symmetries. All the initial

configurations and values of k for which the k-circle formation problem is deterministically

unsolvable have been characterized. As a consequence, the set of unsolvable cases is

larger compared to the set of unsolvable cases under one axis agreement. A deterministic

distributed algorithm is proposed that solves the k-circle formation problem within finite

time for disoriented robots.

The assumption of unlimited visibility for the robots has a significant influence on the

results presented in Chapter 3 and Chapter 4. Chapter 5 investigates the k-circle forma-

tion problem under obstructed visibility model. Based upon the visibility of fixed points,

the k-circle formation problem under obstructed visibility is studied for two different set-

tings, namely (a) complete knowledge of the fixed points and (b) zero knowledge of the

fixed points. In case where the robots have complete knowledge of the fixed points, a de-

terministic distributed algorithm is proposed that solves the k-circle formation problem

for oblivious and silent robots. In the setting where the robots do not have any knowl-

edge of the fixed points, a deterministic distributed algorithm is proposed that solves the

k-circle formation problem for robots equipped with lights.

While point robots are easy to handle, in a more realistic model, the robots would have

dimensions. In Chapter 6, the uniform k-circle formation is investigated for robots with

dimensional extent under one axis agreement. The robots have unlimited visibility. All

the initial configurations and values of k for which the uniform k-circle formation prob-

lem is deterministically unsolvable have been characterized. A deterministic distributed

algorithm is proposed that solves the uniform k-circle formation problem within finite

time.

A summary of the contributions of this thesis is presented in Table 7.1.
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Agreement Visibility Knowledge

of Fixed

points

Dimension Light

Color

Status

One-Axis Unlimited Complete Point 1 Solved-Chapter 3

No-Axis Unlimited Complete Point 1 Solved-Chapter 4

No-Axis Obstructed Complete Point 1 Solved-Chapter 5

No-Axis Obstructed Zero Point 1 Solved-Chapter 5

One-Axis Unlimited Complete Fat 1 Solved-Chapter 6

No-Axis Unlimited Complete Fat 1 Unsolved

No-Axis Obstructed Complete
or Zero

Fat 1 Unsolved

Table 7.1: Results related to the k-Circle Formation

7.2 Future Directions

The k-circle formation problem has a wide range of potential extensions for future re-

search. For example, a solution for the k-circle formation problem where the circles may

have different radii can be investigated. The following are some of the potential future

research directions:

1. Partial Knowledge of Fixed Points under Obstructed Visibility: As a

future direction the problem can be considered in a setting where the robots have

the partial knowledge of the fixed points. For example, one may consider the case

where the robots have the knowledge of the total number of fixed points but have

no knowledge of the positions of them.

2. Limited Visibility: The k-circle formation problem can be considered under lim-

ited visibility. Depending on the visibility of the fixed points different settings can

be considered, namely (a) the fixed points are only visible when they lie within the

visibility range of a robot, (b) the robots have the knowledge of the positions of all

the fixed points.

3. Fat Robots: The k-circle formation problem for fat robots has been investigated

under the one axis agreement. However, the necessity of one axis agreement has

not been discussed. The problem can be considered in the future for completely

disoriented fat robots. Also, it has been assumed that the robots have unlimited
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visibility. Another direction of future work would be to consider the k-circle for-

mation problem for fat robots under restricted visibility models, namely obstructed

visibility and limited visibility.

4. Objective Functions: The problem can also be considered with different objec-

tive functions, namely, minimizing the total distance traveled by all robots or the

maximum distance traveled by an individual robot.

5. Randomization: Some of the symmetric configurations have remain deterministi-

cally unsolvable. In future, a randomized solution for the k-circle formation problem

can be investigated.

6. Fault-tolerant algorithms: Since the robots may become faulty, one of the fu-

ture directions would be to consider fault-tolerant algorithms, namely crash-fault-

tolerant and byzantine-fault-tolerant.
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tion protocol for cooperative multi-uav search and rescue systems. In 2021 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), pages 909–917. IEEE,

2021.

[2] Truong Duy Dinh, Rustam Pirmagomedov, Van Dai Pham, Aram A Ahmed, Rus-

lan Kirichek, Ruslan Glushakov, and Andrei Vladyko. Unmanned aerial system–

assisted wilderness search and rescue mission. International Journal of Distributed

Sensor Networks, 15(6):1550147719850719, 2019.

[3] Daniel P Stormont. Autonomous rescue robot swarms for first responders. In

CIHSPS 2005. Proceedings of the 2005 IEEE International Conference on Com-

putational Intelligence for Homeland Security and Personal Safety, 2005., pages

151–157. IEEE, 2005.

[4] Marc Steinberg. Intelligent autonomy for unmanned naval systems. In Unmanned

Systems Technology VIII, volume 6230, pages 359–370. SPIE, 2006.

[5] Moulay A Akhloufi, Nicolás A Castro, and Andy Couturier. Uavs for wildland fires.

In Autonomous systems: Sensors, vehicles, security, and the Internet of Everything,

volume 10643, pages 134–147. SPIE, 2018.

[6] Khaled A Ghamry, Mohamed A Kamel, and Youmin Zhang. Multiple uavs in

forest fire fighting mission using particle swarm optimization. In 2017 International

conference on unmanned aircraft systems (ICUAS), pages 1404–1409. IEEE, 2017.

177



178 BIBLIOGRAPHY

[7] Ayan Dutta, Swapnoneel Roy, O Patrick Kreidl, and Ladislau Bölöni. Multi-robot
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disagreement. In International Symposium on Stabilizing, Safety, and Security of

Distributed Systems, pages 273–288. Springer, 2021.

[49] Suparno Datta, Ayan Dutta, Sruti Gan Chaudhuri, and Krishnendu Mukhopad-

hyaya. Circle formation by asynchronous transparent fat robots. In Distributed

Computing and Internet Technology, 9th International Conference, ICDCIT 2013,

Bhubaneswar, India, February 5-8, 2013. Proceedings, pages 195–207, 2013.
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