Distributed k-Circle Formation by Mobile Robots

Bibhuti Das

Indian Statistical Institute

Indian Statistical Institute

Doctoral Thesis

Distributed k-Circle Formation by Mobile Robots

Author
Bibhuti Das
Supervisor
Professor Krishnendu Mukhopadhyaya

UNITY IN DIVERSITY

A thesis submitted to the Indian Statistical Institute in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science

Advanced Computing \& Microelectronics Unit
Indian Statistical Institute, Kolkata

Dedicated to My Parents and
All My Teachers

Acknowledgements

A few words of appreciation cannot express my gratitude towards all the people who have helped in this journey. I am extremely grateful to my supervisor, Professor Krishnendu Mukhopadhyaya, for his invaluable advice, continuous inspiration, and patience during my PhD journey. I would like to express my deepest gratitude for his immense support and motivation during this long journey. My sincere thanks to my coursework instructors and professors at the ACM Unit. I would like to extend my sincere thanks to the Indian Statistical Institute for providing all the required facilities at every stage of this journey.

I would like to thank Professor Partha Sarathi Mandal for teaching the course on distributed computing at IIT Guwahati. I would like to express my deepest appreciation to Dr. Subhash Bhagat for his collaborative work with me. I am also grateful to Abhinav Chakraborty, my friend, labmate, and collaborator. I would like to express my thanks to Satya Da, Avirup Da, Dibakar Da, Kaustav Da, Subhadeep Da, Sanjana Di, Koustabha, Drimit, and Arun. A special thanks to my dear friends Rathin and Subhojit. I would like to thank Sankar, Sucheta, Sukriti, Surochita, and Debendra.

During this journey, my stay at the RS hostel would not have been so joyful and memorable without my helpful seniors, my dear friends, and my lovely juniors. I would like to mention my seniors: Gopal Da, Satya Da, Pinaki Da, Avisek Da, Biltu Da, Indra Da, Sukrit Da, Tanujit Da, Nadim Da, Sarbendu Da, and Aparajita Di. I cannot thank enough my friends Priyanka, Mainak, Sankar, Anjan, Susanta, Joginder, and Kaushik. I am extremely happy to have juniors Faizan, Gourab, Gourab, Suman, and Meghna.

I am deeply indebted to my father, Malay Kumar Das, and my mother, Lalita Das, for their immense love and support. They have always been my strength in every aspect of my life. A lot of thanks to my elder sisters, Usha and Sudha, for believing in me. I am also thankful to my brother-in-law, Satya Bagchi, for his encouragement during my PhD journey. Lastly, I would like to mention my sweet niece, Archisha.

Bibhecti Das
Bibhuti Das

November, 2023

Abstract

The k-circle formation problem asks a group of robots to form disjoint circles. Each circle is restricted to being centered at one of the pre-fixed points given in the plane, and each circle should have exactly k distinct robot positions. In this thesis, we investigate the solvability of the k-circle formation by a swarm of mobile robots in a deterministic manner. The robots are autonomous, and they execute Look-Compute-Move (LCM) cycle under a fair asynchronous scheduler. They are anonymous, i.e., they do not have any unique idenitfier, and homogeneous, i.e., they execute the same deterministic algorithm. The robots are assumed to be oblivious and silent or may have limited persistent memory.

We begin by investigating the k-circle formation problem in a setting where the robots have global agreement on the y-axis. In this setting, all the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable are characterized. For the remaining configurations and values of k, a deterministic distributed algorithm is proposed that solves the k-circle formation problem within finite time. It is shown that if the k-circle formation problem is deterministically solvable, then the k-EPF problem (a generalized version of the embedded pattern formation problem) can also be solved deterministically.

We proceed by dropping the assumption of global y-axis agreement, where we assume that the robots do not have any agreement on the orientations and directions of any of the axes of a global coordinate system. In this setting, we provide a deterministic solution for the k-circle formation problem by characterizing all the deterministically unsolvable configurations.

If the robots are opaque, when three robots are collinear, then the terminal robots cannot see one another. In this setup, we consider two cases, namely, complete knowledge of fixed points and zero knowledge of fixed points. When the robots have complete knowledge of fixed points, a distributed algorithm is proposed that solves k-circle formation problem for oblivious and silent robots in a deterministic manner. For robots with zero knowledge of fixed points, a deterministic distributed solution is presented by assuming that the robots have one bit of persistent memory.

In the real world, a robot cannot be dimensionless. We study the k-circle formation problem for unit disk robots. We propose a deterministic distributed solution under the assumption of global y-axis agreement. We conclude this thesis by discussing some future research directions related to the k-circle formation problem.

Publications

- Journals

J1 Subhash Bhagat, Bibhuti Das, Abhinav Chakraborty, Krishnendu Mukhopadhyaya: k-Circle Formation and k-epf by Asynchronous Robots. Algorithms 14(2): 62 (2021). Chapter 3 is based on this work.

J2 Bibhuti Das, Abhinav Chakraborty, Subhash Bhagat, Krishnendu Mukhopadhyaya: k-Circle formation by disoriented asynchronous robots. Theoretical Computer Science. 916: 40-61 (2022). Chapter 4 is based on this work.

J3 Bibhuti Das, Krishnendu Mukhopadhyaya: k-Circle Formation by Asynchronous Opaque Robots. (Submitted to the journal Theoretical Computer Science, Manuscript Number: TCS-D-23-00770). Chapter 5 is based on this work.

- Conferences

C1 Bibhuti Das, Krishnendu Mukhopadhyaya: Uniform k-Circle Formation by Fat Robots. SSS 2023: 359-373

Chapter 6 is based on this work.
C2 Bibhuti Das, Krishnendu Mukhopadhyaya: k-Circle Formation by Oblivious Mobile Robots. ICDCN 2022: 238-239

Contents

Acknowledgements v
Abstract vii
Publications ix
Contents ix
List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Overview 1
1.2 Computational Model 2
1.2.1 Deployment Space 3
1.2.2 Dimension 4
1.2.3 Agreement 4
1.2.4 Visibility 6
1.2.5 Computational Cycle 7
1.2.6 Scheduler 8
1.2.7 Faulty Robots 9
1.2.8 Multiplicity Detection 9
1.2.9 Memory and Communication 10
1.3 Geometric Problems 11
1.4 Thesis Contributions 12
1.4.1 k-Circle Formation and k-EPF 13
1.4.2 k-Circle Formation by Disoriented Robots 13
1.4.3 k-Circle Formation by Opaque Robots 14
1.4.4 Uniform k-Circle Formation by Fat Robots 15
1.5 Outline of the Thesis 15
2 Related Works 17
2.1 Overview 17
2.2 Partitioning Problem 18
2.3 Gathering in the Continuous Domain 18
2.3.1 Gathering for Two Robots 18
2.3.2 Gathering for more than Two Robots 19
2.4 Gathering in the Discrete Domain 22
2.5 Arbitrary Pattern Formation 22
2.5.1 Circle Formation 25
2.5.2 Embedded Pattern Formation 26
2.6 Mutual Visibility 27
$3 k$-Circle Formation and k-EPF Problem 31
3.1 Overview of the Problem 31
3.2 Model and Definitions 33
3.2.1 Problem Definition 36
3.3 Impossibility Results 36
3.4 AlgorithmOneAxis 38
3.4.1 AgreementOneAxis 38
3.4.2 TargetFPSelection 41
3.4.3 CandidateRSelection 42
3.4.4 MovetoDestination 42
3.4.5 AlgorithmOneAxis 47
3.5 Correctness of AlgorithmOneAxis 48
$3.6 k$-Circle Formation when $n>k m$ 62
3.6.1 Impossibility Results when $n>k m$ 62
3.6.2 Algorithm for the k-Circle Formation when $n>k m$ 62
$3.7 k$-Circle Formation when $n<k m$ 63
3.7.1 Impossibility Results when $n<k m$ 63
3.7.2 Algorithm for the k-Circle Formation when $n<k m$ 66
$3.8 \quad k$-Circle Formation and k-EPF 67
3.8.1 Algorithm for the k-EPF problem 67
3.9 Conclusion 70
$4 k$-Circle Formation by Disoriented Robots 71
4.1 Overview 71
4.2 Model and Definitions 72
4.2.1 Configuration View 72
4.2.2 Partitioning of the Configurations 75
4.2.3 Additional Notations 76
4.2.4 Global and Local Agreements 77
4.2.5 Problem Definition 79
4.3 Impossibility Result 79
4.4 Algorithm 81
4.4.1 SymmetryBreaking 81
4.4.1.1 Phases during SymmetryBreaking 82
4.4.1.2 Movements during SymmetryBreaking 82
4.4.1.3 Progress during SymmetryBreaking 84
4.4.1.4 Solvability during SymmetryBreaking 86
4.4.2 MovetoLine 89
4.4.2.1 Phases during MovetoLine 89
4.4.2.2 Candidate Robot and its Destination Line 90
4.4.2.3 Conditions during MovetoLine 91
4.4.2.4 Movements during MovetoLine 92
4.4.2.5 Solvability during MovetoLine 93
4.4.2.6 Progress during MovetoLine 94
4.4.3 AlgorithmNoAxis 97
4.4.3.1 Phases during AlgorithmNoAxis 98
4.4.3.2 Actions during AlgorithmNoAxis 99
4.5 Correctness 101
4.5.1 Solvability 102
4.5.2 Progress 104
4.6 Conclusions 106
$5 k$-Circle Formation by Opaque Robots 107
5.1 Overview 107
5.2 The Model 108
5.2.1 Notations and Definitions 109
5.2.1.1 Convex Hull 110
5.2.2 The k-Circle Formation Problem 111
5.2.3 Partitioning of the Configurations 111
5.3 Complete Knowledge of the Fixed Points 111
5.3.1 Impossibility Result 112
5.3.2 Suitable Configurations 112
5.3.3 Algorithm 115
5.3.3.1 Phases during OpaqueAlgorithm1 115
5.3.3.2 Movements during OpaqueAlgorithm1 117
5.3.3.3 Opaque Algorithm1 121
5.3.4 Correctness of OpaqueAlgorithm1 122
5.4 Zero Knowledge of the Fixed Points 130
5.4.1 Impossibility Results 130
5.4.2 Algorithm 131
5.4.2.1 Phase Conditions during OpaqueAlgorithm2 133
5.4.2.2 Phases during OpaqueAlgorithm2 133
5.4.2.3 Movements during OpaqueAlgorithm2 134
5.4.2.4 OpaqueAlgorithm2 140
5.4.3 Correctness of OpaqueAlgorithm2 142
5.5 Conclusions 148
6 Uniform k-Circle Formation by Fat Robots 151
6.1 Overview 151
6.2 Model and Definitions 152
6.2.1 The Uniform k-Circle Formation Problem 153
6.2.2 Radii of the Circles 154
6.3 Impossibility Result 155
6.4 Algorithm 156
6.4.1 DownwardMovement 157
6.4.2 PivotSelection 159
6.4.3 CircleFormation 160
6.4.4 AlgorithmFatRobot 163
6.5 Correctness 164
6.5.1 Solvability 165
6.5.2 Progress 166
6.5.2.1 Progress during DownwardMovement 167
6.5.2.2 Progress during PivotSelection 168
6.5.2.3 Progress during CircleFormation 168
6.6 Conclusion 171
7 Conclusions 173
7.1 Contributions of the Thesis 173
7.2 Future Directions 175

List of Figures

1.1 Punctiform and Fat Robots 3
1.2 Example of full-axis and one-axis agreement 4
1.3 Example of Direction-Only and Axes-Only agreement 5
1.4 Example of No-Compass agreement 5
1.5 Illustration of Limited visibility 6
1.6 Illustration of Obstructed visibility 7
1.7 Illustration of FSYNC scheduler 8
1.8 Illustration of SSYNC scheduler 8
1.9 Illustration of ASYNC scheduler 9
3.1 Partitioning of Configuration under One Axis Agreement 35
3.2 Partitioning of Configuration under One Axis Agreement 36
3.3 Illustration of movements during MovetoDestination 44
3.4 Illustration of movements during MovetoDestination 45
3.5 Illustration of movements during MovetoDestination 45
3.6 Illustration of movements during MovetoDestination 45
3.7 Illustration of movements during MovetoDestination 46
3.8 Illustration of collision avoidance during AlgorithmOneAxis 51
3.9 Progress during MovetoDestination 53
3.10 Progress during MovetoDestination 54
3.11 Progress during MovetoDestination 54
3.12 Progress during MovetoDestination 55
3.13 Progress during MovetoDestination 55
3.14 Progress during MovetoDestination 56
3.15 Examples of Impossibility Results when $n>k m$ 62
3.16 Examples of Impossibility Results when $n<k m$ 64
3.17 Examples of Impossibility Results when $n<k m$ 65
3.18 Examples of Impossibility Results when $n<k m$ 66
4.1 Configuration view of a disoriented robot 73
4.2 Partitioning of configurations for disoriented robots 74
4.3 Example of $\mathcal{L}, \mathcal{L}^{\prime}, \mathcal{Z}$ and \mathcal{L}_{R} 75
4.4 Illustration of y-axis agreement 77
4.5 Illustration of Wedge Division 78
4.6 Illustration of Wedge Division 78
4.7 Diagramatic representation of AlgorithmNoAxis 81
4.8 Illustration of phases during SymmetryBreaking 82
4.9 Phase transitions during SymmetryBreaking 84
4.10 Example showing progress during SymmetryBreaking 85
4.11 Example showing selection of destination lines and candidate robots 90
4.12 Example of movements during MovetoLine 92
4.13 Example of movements during MovetoLine 92
4.14 Phase transitions during MovetoLine 94
4.15 Progress during movement m_{4} 95
4.16 Progress during movement m_{5} and m_{6} 95
4.17 Phase transitions during AlgorithmNoAxis 100
4.18 Illustration of solvability during AlgorithmNoAxis 104
5.1 Illustration of the Visibility of Fixed Points 109
5.2 Representation of Convex Hull of $R(t)$ 110
5.3 Examples of Suitable Configurations 112
5.4 Examples of Partially Suitable Configurations 113
5.5 Diagramatic representation of OpaqueAlgorithm1 114
5.6 Illustration of OpaqueAlgorithm1 115
5.7 Illustration of Movement M_{1} 117
5.8 Illustration of Movement M_{1} 118
5.9 Illustration of Movement M_{21} 119
5.10 Illustration of Movement M_{3} 120
5.11 Phase Transitions during OpaqueAlgorithm1 122
5.12 Illustration of solvability during Movement M_{1} 123
5.13 Illustration of progress during M_{1} 125
5.14 Illustration of progress during Movement M_{1} 125
5.15 Illustration of Progress during M_{21} 127
5.16 Illustration of Progress during M_{3} 128
5.17 Illustration of OpaqueAlgorithm2 131
5.18 Diagramatic representation of OpaqueAlgorithm2 132
5.19 Illustration of OpaqueAlgorithm2 132
5.20 Illustration of Movement \mathcal{M}_{1} and \mathcal{M}_{2} 135
5.21 Illustration of Movement \mathcal{M}_{3} 135
5.22 Illustration of Movement \mathcal{M}_{41} 136
5.23 Illustration of Movement \mathcal{M}_{5} 137
5.24 Illustration of Movement \mathcal{M}_{5} 138
5.25 Phase Transitions during OpaqueAlgorithm2 140
5.26 Phase Transitions during OpaqueAlgorithm2 140
5.27 Phase Transitions during OpaqueAlgorithm2 141
5.28 Illustration of Progress during \mathcal{M}_{2} 144
6.1 Partitioning of Configurations for Fat Robots 153
6.2 Illustration of Computation of the Minimum Radius 154
6.3 Illustration of Impossibility Criterion (Theorem 6.3.1) 155
6.4 Illustration of empty and non-empty paths 156
6.5 Construction of $M_{j}(t)$ and $N_{j}(t)$ 158
6.6 Flowchart for Transformations during CircleFormation 161
6.7 Flowchart for Transformations during CircleFormation 162
6.8 Illustration of $C(t) \notin \mathcal{U}_{4}$ 166

List of Tables

1.1 Thesis Contributions 13
4.1 Phase Transitions during SymmetryBreaking 84
4.2 Phase Transitions during MovetoLine 94
4.3 Transitions during AlgorithmNoAxis 102
5.1 Descriptions of the Phase Conditions 116
5.2 Phase Transitions during OpaqueAlgorithm1 121
5.3 Descriptions of Additional Phase Conditions 133
5.4 Phase Transitions during OpaqueAlgorithm2 139
7.1 Results related to the k-Circle Formation 175

List of Algorithms

3.1 MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$ 43
3.2 AlgorithmOneAxis 47
4.1 AlgorithmNoAxis 99
5.1 OpaqueAlgorithm1 121
5.2 OpaqueAlgorithm2 139
6.1 AlgorithmFatRobot 163

Chapter 1

Introduction

Contents
1.1 Overview 1
1.2 Computational Model 2
1.3 Geometric Problems 11
1.4 Thesis Contributions 12
1.5 Outline of the Thesis 15

1.1 Overview

The study of swarm robotics has received a lot of attention over the last two decades and primarily focuses on systems of multiple autonomous mobile robots (also known as robot swarms). A swarm of mobile robots is a multi-robot system consisting of small and inexpensive mobile robots working together in a cooperative environment to achieve some specific goal. The collective behavior of social animals like ants, bees, and fish serves as inspiration for the behavior of these robots. Each of the robots is assumed to be weak, i.e., equipped with very limited capabilities. The robots cooperate in a distributed manner to complete a task.

One of the motivations behind this research direction is to avoid the difficulty and often high cost of designing and deploying a small number of problem-specific robots that
are capable of solving the specific problem. Another common motivation behind building autonomous multi-robot systems is the need to perform different tasks in adverse situations where human intervention is not possible. Such a multi-robot system is designed to work in a decentralized manner so that it can be deployed in adverse and unknown environments. Assuming the robots are inexpensive (and hence produced in large quantities), they can be deployed in harsh and hostile environments. Such a large number of robots have the potential to find applications in many fields like risky and hazardous scenarios, such as in the fields of search and rescue operations [1-3], military operations [4], fire fighting [5,6], agriculture [7], etc. The common distributed models assume relatively weak and simple robots. In particular, these robots are only capable of sensing their immediate surroundings, performing simple computations on the sensed data, and moving towards the computed destination. They follow a simple cycle of sensing, computing, moving, and being inactive. In spite of their limitations, the robots should be able to perform rather complex tasks. In computational terms, the primary focus is to determine the minimal robot capabilities that are necessary to perform the required task. The feasibility of solving different problems depends on each set of assumptions about the capabilities of the robots. There is a trade-off between the model of computation and the solvability of a problem.

Suzuki et al. [8] were the first to study multi-robot systems from a computational point of view. In the research field of distributed computing by mobile entities [9], a large volume of work has been reported over the last two decades that primarily focuses on the computational and complexity issues for a distributed system of mobile entities. These mobile entities are assumed to be deployed in either a discrete domain (mobile agents) or a continuous domain (mobile robots). The research is still focusing on basic tasks such as gathering [10-22], flocking [23-27], pattern formation [28-37], scattering [38-42], etc.

1.2 Computational Model

The classical model of distributed computing by mobile robots models each robot as a point in the Euclidean plane. Each robot has a local coordinate system and sensory capabilities to determine the positions of other robots. Such a distributed system of
multiple mobile robots works in a coordinated manner to achieve a specific goal. The primary goal is to find essential capabilities to solve a given problem. The idea is to identify the minimal sets of capabilities that are required for designing such mobile robots. In general, the robots are assumed to be:

- autonomous, i.e., they do not have any centralized controller;
- anonymous, i.e., they have no unique identifier;
- oblivious, i.e., they do not remember anything about past events;
- homogeneous, i.e., they execute the same algorithm.
- silent, i.e., they do not have any direct explicit communication.

However, some of the reported results have considered heterogeneous robots [43, 44]. In such a model, each group of homogeneous robots is represented by a color from a pre-defined finite set of colors. In the literature, some of the studies [45-47] consider robots with persistent memories and explicit communication capabilities provided by the presence of lights.

(A)

(B)

Figure 1.1: (A) Blue points represent dimensionless robots. (B) Disks represent fat robots.

1.2.1 Deployment Space

In general, the mobile robots are assumed to be deployed in either a discrete domain, i.e., on the nodes of a graph, or a continuous domain, i.e., in the d-dimensional Euclidean
space. In the discrete domain, the robots are allowed to move along the edges of the graph. The movements of the robots are instantaneous, i.e., the robots are not visible on the edges. In the continuous domain, the robots move in the d-dimensional Euclidean space.

1.2.2 Dimension

In the standard model, the robots are assumed to be dimensionless, i.e., they are represented by points in the d-dimensional space (Figure 1.1(A)). However, some of the models have been considered in which the robots are represented by unit disks in the d-dimensional space (Figure 1.1(B)).

Figure 1.2: (A) Full-Axis agreement (B) One-Axis agreement.

1.2.3 Agreement

In general, the robots have their own local coordinate system, whose origin is the position of the robot. They may not have any agreement on the orientations and directions of any of the axes of a global coordinate system. However, in some of the models, the robots are assumed to have some agreement on the global coordinate system. Depending on the type of agreement on the global coordinate system, the following different types of models are common:

(A)

(B)

Figure 1.3: (A) Direction-Only agreement (B) Axes-Only agreement.

1. Full-Compass: The robots have complete agreement on the direction and orientation of both axes of the global coordinate system (Figure 1.2(A)).
2. Half-Compass: The robots agree on the direction and orientation of one of the axes of the global coordinate system (Figure 1.2(B)).
3. Direction-Only: The robots have agreement on the direction of both axes of the global coordinate system. However, they do not have any agreement on the orientation of any of the global axes (Figure 1.3(A)).
4. Axes-Only: The robots have an agreement on the direction of both axes of the global coordinate system. However, they do not have any agreement on the orientation of any of the global axes. In addition, the robots do not agree on which of the two axes is the x-axis (Figure $1.3(\mathrm{~B})$).

Figure 1.4: No-Compass agreement.
5. No-Compass: The robots do not have any agreement on the orientations and directions of any of the axes of a global co-ordinate system (Figure 1.4).

Note that the robots may not share a common unit distance [48] or a common origin even in the full-compass model. Furthermore, the robots may not have any agreement on a common clockwise or counter-clockwise directions. The robots are said to have a common chirality, if they agree on a common clockwise direction.

1.2.4 Visibility

The robots are assumed to be equipped with sensors (known as the visibility of a robot) that allow them to detect the positions of other robots. The visibility of a robot allows for an implicit way of communicating with other robots. In general, the robots are assumed to have unlimited visibility, i.e., they can observe the entire domain. However, there are some restricted visibility models, as described below:

Figure 1.5: Limited visibility of robots.

1. Limited visibility: The robots have a sensing range. They can detect the positions of other robots up to a fixed radius around them. In Figure 1.5, each robot can see another robot that lies within ρ distance from its position. The robot r_{3} is visible to all the robots, and r_{4} is only visible to r_{3}. The robot r_{5} is not visible to any other robots, namely r_{1}, r_{2}, r_{3} and r_{4}.
2. Obstructed visibility: In general, the robots are assumed to be transparent, i.e., their visibility is not blocked by the presence of other robots. Under the obstruted visibility model, the robots are assumed to be opaque, i.e., if three robots are collinear, then the corner robots cannot see one another. In Figure 1.6, the robots r_{1}, r_{3} and r_{4} are collinear. The robot r_{3} can see both r_{1} and r_{4} whereas r_{1} and r_{4} cannot see one another.

Figure 1.6: Obstructed visibility of robots.

1.2.5 Computational Cycle

The state of a robot can be either active or inactive. Each robot operates in Look-Compute-Move (LCM) cycle. An active robot observes its surroundings, computes a destination point, and moves towards the computed destination point.

1. Look: The robot takes a snapshot of the domain within its visibility range. The snapshot is instantly taken in its own local coordinate system.
2. Compute: It computes a destination point based on the snapshot taken in its look phase. The computed destination point may be its current location.
3. Move: The robot moves towards its destination point in its move phase in a straight line. A moving robot can be seen anywhere on the line segment between its current location and destination point at a particular instant of time. If the destination point is the current location, then the robot makes null movement. The following types of motion are considered:
(a) Rigid: The robot is guaranteed to reach its destination point.
(b) Non-rigid: The adversary can stop the robot before it reaches its destination point. However, it is assumed that the distance traveled by a robot is not infinitesimally small. This is to ensure that if a robot keeps computing the same destination point, then it will reach its destination point within a finite time. Suppose $d>0$ denotes the distance between the destination point and the robot. There exists a fixed but unknown $\delta>0$ such that if $d>\delta$, then the robot is guaranteed to move at least δ amount towards its destination. If $d<\delta$, the robot is guaranteed to reach the destination point.

1.2.6 Scheduler

It is assumed that a scheduler determines the durations of inactivity phases and LCM cycles for all the robots. The scheduler is assumed to be fair, i.e., each robot is activated infinitely often. This prevents the scenario where the sheduler always forces one robot to remain idle. Additionally, it is assumed that each robot completes its LCM cycle within a finite time. Otherwise, the scheduler can make a robot continue an LCM cycle indefinitely. The following types of schedulers are commonly used:

Figure 1.7: FSYNC scheduler

1. Fully-synchronous (FSYNC): The robots have a common notion of time. All the robots are activated simultaneously and perform all operations synchronously (Figure 1.7).

Figure 1.8: SSYNC scheduler
2. Semi-synchronous (SSYNC): It is similar to the FSYNC scheduler, with the only difference that not all the robots are activated in each round (Figure 1.8). In each round, a subset of robots are activated.
3. Asynchronous (ASYNC): The robots do not have a common notion of time. They are activated independently, and the duration of each look, compute, move, and inactivity phase is finite but unbounded (Figure 1.9). During the look phase

Figure 1.9: ASYNC scheduler
of an active robot, some other robot may be in move phase. As a result, it might start its move phase, considering an outdated perceived snapshot.

1.2.7 Faulty Robots

A robot may become faulty at any arbitrary point of time during an execution. A faulty robot deviates from its specified behavior; for example, it may stop moving. However, the robots do not have the capability to detect whether other robots are faulty or not. The following types of faults are being considered in the model:

1. Transient Fault: A robot becomes faulty due to corruption of its memory for a temporary point of time. If the robots are assumed to be oblivious, then the distributed system is self-stabilizing against transient faults.
2. Crash Fault: A robot crashes and stops working forever. It stops moving and remains in the environment.
3. Byzantine Fault: This type of fault occurs when a robot starts to behave arbitrarily. For example, a faulty robot can stop moving, move to arbitrary locations, or prevent deliberately non-faulty robots from moving.

1.2.8 Multiplicity Detection

If the robots are assumed to be dimensionless, i.e., they are represented by points, then multiple robots can share the same location. The multiplicity detection capability allows the robots to identify such a multiplicity point. The following are the different types of multiplicity detection capability:

1. Local Weak: A robot determines whether or not its current location is a multiplicity point. However, it cannot exactly count the total number of robots in its current position. In addition, it cannot recognize other multiplicity points aside from its current location.
2. Global Weak: The robots can identify any multiplicity point in the domain. But, it is unable to calculate the total number of robots present at a multiplicity location.
3. Local Strong: A robot can count the exact number of robots that are present at its location. However, a robot is unable to count this for other multiplicity points.
4. Global Strong: The robots know the exact number of robots that are present at any multiplicity point.

1.2.9 Memory and Communication

In general, the robots are assumed to be oblivious and silent. However, there are some variants of the model where persistent memory and communication capabilities are provided by the presence of lights [47]. These lights can assume a finite number of pre-defined colors. Each color indicates a different state of the robot. The following kinds of light models are being considered:

1. \mathcal{F}-STATE: The robots can remember their state from their previous cycle but do not have knowledge of the states of other robots. In this model, the robots are non-oblivious as they have a persistent memory. However, they are silent.
2. \mathcal{F}-COMM: The robots cannot remember their own states but can identify the states of other robots. The robots are not silent as they can explicitly communicate using lights. However, they are oblivious.
3. \mathcal{F}-ALL: The robots can remember their state set in their previous cycle as well as identify the states of other robots. In this model, the robots are neither oblivious nor silent.

1.3 Geometric Problems

The primary focus of the research has been on issues related to solving fundamental geometric problems. Some of the well-known geoemtric problems are discussed below:

1. Gathering: The gathering problem [10-22] asks all the robots to meet at a single point not known a priori within finite time. The convergence problem and near gathering problem are very closely related to the gathering problem. To solve the convergence problem, the robots need to be as close as possible. A solution to the near gathering problem requires that all the robots reach and remain inside a disk of a pre-fixed radius. A variant of the gathering problem known as the gathering on meeting points has been studied in which the robots need to gather at one of the pre-fixed meeting points.
2. Pattern Formation: A solution to the pattern formation problem [29-31, 35-37] asks the robots to position themselves so that they form a given pattern within a finite time. The initial requirement is that no two robots share the same location, and the number of points prescribed in the pattern is exactly equal to the number of robots. To solve the circle formation problem, the robots must position themselves on a circle whose center is not fixed a priori at distinct locations [28, 34, 49-52]. The task must be completed within a finite time. To solve the line formation problem $[53,54]$ the robots need to reach and remain in a straight line. The plane formation problem [55-57] asks a swarm of robots moving in three-dimensional Euclidean space to land on a common plane that is not defined a priori.
3. Mutual Visibility: The mutual visibility problem [46,58-68] is considered under obstructed visibility model. A swarm of robots must arrange themselves in distinct positions such that no three robots are collinear.
4. Scattering: To solve the scattering problem [38-42], the robots need to re-position themselves so that no two robots share the same location.
5. Flocking: Flocking [23-27] is relatively a more complex task compared to the above discussed geometric problem. The flocking problem requires the formation of
a pattern as well as maintaining the pattern while moving together as one flock. A solution to the flocking problem demands more coordination among the robots.

1.4 Thesis Contributions

In this thesis, we study the k-circle formation problem in the Euclidean plane. The k circle formation problem considers $m>0$ pre-fixed points (called as fixed points) and n number of mobile robots in the Euclidean plane. The fixed points are visible to the robots like landmarks. The k-circle formation problem is a hybrid problem that connects the partitioning, circle formation and embedded pattern formation problems. A generalized version of the embedded pattern formation problem is the k-EPF problem, which requires the robot to reach and remain in a final configuration in which each fixed point contains exactly k robots.

Problem Definition: For some positive integer k, the k-circle formation problem asks a group of n autonomous mobile robots to form m disjoint circles. Each such circle is restricted to being centered at one of the fixed points given in the plane. Each circle must have k robots in distinct positions. The circles need not be uniform. In general, the circles can have different radii. However, the circles are assumed to have equal radii in this thesis, which is a special case for the k-circle formation problem.

The feasibility of the problem is investigated under different sets of assumptions. For a particular set of assumptions, all the deterministically unsolvable cases are characterized. For the rest of the cases, a deterministic distributed algorithm that solves the problem within a finite time is proposed. The correctness of all the proposed deterministic algorithms is discussed. In this thesis, the k-circle formation problem is investigated for the set of assumptions presented in the Table 1.1. All the problems being addressed in this thesis are considered under the ASYNC scheduler with non-rigid motion. Also, there is no assumption of a common chirality in all the results obtained.

Agreement	Visibility	Knowledge of Fixed points	Dimension	Chapter
One-Axis	Unlimited	Complete	Point	Chapter 3
No-Axis	Unlimited	Complete	Point	Chapter 4
No-Axis	Obstructed	Complete	Point	Chapter 5
No-Axis	Obstructed	Zero	Point	Chapter 5
One-Axis	Unlimited	Complete	Fat	Chapter 6

Table 1.1: Thesis Contributions

1.4.1 k-Circle Formation and k-EPF

In Chapter 3, we consider that the robots have an agreement on the direction and orientation of one of the axes. The robots are assumed to be dimensionless. They have unlimited visibility, and they are silent and oblivious. The contributions of this work are as follows:

Result 1: All the initial configurations and values of k for which the problem is deterministically unsolvable are characterized when $n=k m$.

Result 2: A deterministic distributed algorithm is proposed that solves the problem within finite time when $n=k m$.

Result 3: All the initial configurations and values of k for which the problem is deterministically unsolvable are characterized when $n>k m$. In this case, there will be $n-k m$ surplus robots that will not be assigned to any circle.

Result 4: All the initial configurations and values of k for which the problem is deterministically unsolvable are characterized when $n<k m$. In this case, the objective is to maximize the number of circles containing exactly k robots.

Result 5: It is shown that if the k-circle formation problem is deterministically solvable than the k-EPF problem is also deterministically solvable.

1.4.2 k-Circle Formation by Disoriented Robots

In Chapter 4, the robots are assumed to be completely disoriented, i.e., they neither have any agreement on a global coordinate system nor have any agreement on a common
chirality. The robots are assumed to be dimensionless. They have unlimited visibility, and they are silent and oblivious. The contributions of this work are as follows:

Result 1: All the initial configurations and values of k for which the problem is deterministically unsolvable in this setting are characterized.

Result 2: A deterministic distributed algorithm is proposed that solves the problem within finite time.

1.4.3 k-Circle Formation by Opaque Robots

In Chapter 5, we investigate the k-circle formation problem under obstructed visibility model. The robots are assumed to be opaque, i.e., a robot can not see another robot if a third robot is positioned on the line segment joining them. They are assumed to be dimensionless and completely disoriented. Based on the visibility of the fixed points, the following two different settings are considered:

1. Complete knowledge of fixed points. A robot cannot obstruct the visibility of a fixed point for other robots. The positions of all the fixed points are known to the robots. As a consequence, the robots have the knowledge of the total number of fixed points. The robots are silent and oblivious.
2. Zero knowledge of fixed points. A robot can obstruct the visibility of a fixed point for other robots. If a robot lies on the line segment joining a fixed point and another robot, then the other robot can not see the fixed point. The robots do not have the knowledge of the total number of fixed points. They are assumed to be equipped with lights which provides persistent memory and communication capabilities.

The contributions of this chapter are as follows:

Result 1: All the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable are characterized with the complete knowledge of the fixed points.

Result 2: A deterministic distributed algorithm is proposed that solves the k-circle formation problem within finite time with complete knowledge of fixed points.

Result 3: It is shown that the problem is deterministically unsolvable by silent and oblivious robots with the zero knowledge of the fixed points.

Result 4: A deterministic distributed algorithm is proposed considering one bit of persistent memory that solves the k-circle formation problem within finite time with zero knowledge of fixed points.

1.4.4 Uniform k-Circle Formation by Fat Robots

In Chapter 6, the uniform k-circle formation problem is investigated for a set of fat robots in the plane. To solve the uniform k-circle formation problem in addition to solving the k-circle formation problem, all the k robots on a circle must form a regular k-gon. The robots are represented by transparent unit disks. They are assumed to have an agreement on the direction and orientation of one of the axes. The robots are silent and oblivious. The following results are shown:

Result 1: All the initial configurations and values of k for which the uniform k-circle formation problem is deterministically unsolvable are characterized for fat robots.

Result 2: A deterministic distributed algorithm is proposed that solves the uniform k circle formation problem within finite time.

1.5 Outline of the Thesis

Chapter 2 presents the literature survey of the existing works relevant to this thesis. The main contributions of this thesis are presented in Chapter 3 to Chapter 6. A summary of the results is shown in the following table (Table 1.1). Chapter 7 concludes the thesis by summarizing the research works done in this thesis and discussing the future directions of researches that come out of these studies.

Chapter 2

Related Works

Contents
2.1 Overview 17
2.2 Partitioning Problem 18
2.3 Gathering in the Continuous Domain 18
2.4 Gathering in the Discrete Domain 22
2.5 Arbitrary Pattern Formation 22
2.6 Mutual Visibility 27

2.1 Overview

A large volume of results have been reported in the literature which focus on the feasibility of a geometric problem under different sets of assumptions, namely agreement on the global axes, chirality, scheduler, dimension, visibility, etc. Finding minimal sets of capabilities to solve a given problem is the primary objective. The goal is to identify the minimal essential capabilities required for robots to perform a task, thereby reducing the cost of mass production. The most researched problem is the gathering problem, which can also be referred to as a point formation problem. The pattern formation problem has also been extensively studied in the literature. In this thesis, we investigate the k-circle formation problem, which is a special kind of pattern formation problem. In this chapter,
we present a brief literature survey focusing on some fundamental geometric problems related to the k-circle formation problem.

2.2 Partitioning Problem

The partitioning problem asks the robots to partition themselves into multiple groups, with specified number of robots in each group. The robots in each group also need to converge in a small area. Efrima and Peleg [69] studied the partitioning problem in the Euclidean plane. They presented crash-fault-tolerant partitioning algorithms for various levels of common orientation and different timing models. Liu et al. [44] investigated the team assembling problem for heterogeneous robots. The robots need to form multiple teams, each containing a pre-fixed number of robots of different kinds. The k-circle formation problem can be viewed as a variant of the partitioning problem [69] and the team assembling problem [44].

2.3 Gathering in the Continuous Domain

Gathering is a fundamental coordination problem for a swarm of mobile robots. To solve the gathering problem, the robots need to gather at a point which is not fixed a priori. The gathering problem has been extensively studied both in the continuous domain [8, 12-15, 17-19, 21, 22, 48, 70-81] and discrete domain [16, 20, 82-91].

2.3.1 Gathering for Two Robots

Suzuki and Yamashita [8] proved that under SSYNC scheduler, the gathering problem for two robots, also known as the rendezvous problem, is deterministically unsolvable. Izumi et al. [19] investigated the magnitude of consistency between the local coordinate systems, which is necessary and sufficient to solve the gathering problem for two oblivious robots under SSYNC and ASYNC models. They considered two families of unreliable compasses: the static compass with (possibly incorrect) constant bearings and the dynamic compass,
whose bearings can change arbitrarily (immediately before a new look-compute-move cycle starts and after the last cycle ends). The deviation (ϕ) is measured by the largest angle formed between the x -axis of a compass and the reference direction of the global coordinate system. For each of the combinations of robot and compass models, the condition on deviation ϕ that allows an algorithm to solve the gathering problem is established:

1. for SSYNC and ASYNC robots with static compasses $\phi<\frac{\pi}{2}$,
2. for SSYNC robots with dynamic compasses $\phi<\frac{\pi}{4}$, and
3. for ASYNC robots with dynamic compasses $\phi<\frac{\pi}{6}$.

In the first two cases, the above mentioned sufficient conditions are also necessary.
Flocchini et al. [79] proved that with rigid motions, rendezvous is solvable by \mathcal{F} STATE robots under SSYNC scheduler and by \mathcal{F}-COMM robots even under ASYNC scheduler. Okumara et al. [80] showed that under ASYNC scheduler, rendezvous can be solved with two light colors in non-rigid movement if robots know the value of the minimum distance δ. Viglietta [22] gave a complete characterization of the number of light colors that are necessary to solve the rendezvous problem in different models, ranging from FSYNC to SSYNC to ASYNC, rigid and non-rigid, with preset or arbitrary initial configuration. Bramas et al. [48] showed that if the robots disagree on the unit distance of their coordinate system, it becomes possible to solve rendezvous and agree on a final common location without additional assumptions.

2.3.2 Gathering for more than Two Robots

Non-faulty Robots: Cohen and Peleg [14] proved the correctness of the gravitational algorithm for the convergence problem in the fully ASYNC model. Cohen and Peleg [77] studied the convergence problem, focusing on the ability of robot systems with inaccurate sensors, movements, and calculations to carry out the task of convergence. Cieliebak et al. [13] proved that the gathering problem for $n>2$ robots under ASYNC scheduler is solvable for disoriented and oblivious robots starting from arbitrary initial configuration.

Prencipe [21] proved that in both the ASYNC and SSYNC settings, there does not exist any deterministic oblivious algorithm that solves the gathering problem within a finite time for $n \geq 2$ disoriented robots if they does not have multiplicity detection capability.

Flochhini et al. [78] studied the gathering problem for robots with limited visibility under ASYNC scheduler when the robots have full-axis agreement. Di Luna et al. [92] studied the gathering problem on a circle, in which all robots with limited visibility are initially in distinct locations on the circle, and their goal is to reach the same point on the circle within a finite time. Poudel et al. [81] proposed an $O\left(D_{E}\right)$ time algorithm for the gathering problem with limited visibility under ASYNC scheduler with the assumption of one axis agreement, where D_{E} is the Euclidean distance between the farthest-pair of robots in the initial configuration.

Czyzowicz et al. [15] were the first to study the gathering problem for fat robots. The authors solved the gathering problem for at most four robots. Honorat et al. [18] considered the gathering problem for four fat robots equipped with slim omnidirectional cameras and provided an algorithm to solve the problem in a fully ASYNC setting. For $n \geq 5$ transparent fat robots, Gan Chaudhuri et al. [11] studied the gathering problem. Agathangelou et al. [70] considered the gathering problem for opaque fat robots under ASYNC scheduler. The proposed algorithm works for any number of robots, starting from any initial configuration, with the assumption of a common chirality. A distributed algorithm is presented to solve the gathering problem in the three dimensional Euclidean space for a set of ASYNC robots under obstructed visibility by Bhagat et al. [93].

Bhagat et al. [74] studied the gathering problem by minimizing the maximum distance traveled by a single robot. They proved that a set of oblivious robots cannot solve the constrained gathering problem under FSYNC scheduler, even with multiplicity detection capability. They proposed a distributed algorithm for the constrained gathering problem for $n \geq 5$ robots using two bits of persistent memory. The min-max gathering of oblivious robots under ASYNC scheduler with non-rigid motion was considered by Bhagat et al. [72]. Cicerone et al. [12] investigated a variant of the gathering problem, considering meeting points in the plane. To solve the gathering on meeting points problem, the robots are required to gather at one of the pre-fixed meeting points. They fully characterized when the gathering on meeting points can be accomplished. They also studied when
gathering on meeting points can be accomplished with respect to two objective functions: minimizing the total traveled distance by all robots and minimizing the maximum traveled distance performed by a single robot. Bhagat et al. [73] considered the gathering problem in the presence of obstacles. They proposed a distributed algorithm for gathering which works even if the configuration contains multiplicity points in the presence of non-intersecting transparent convex polygonal obstacles.

Faulty Robots: Cohen and Peleg [14] investigated the convergence problem in the presence of crash-fault robots. Agmon and Peleg [71] considered the gathering problem in the presence of both crash-fault and byzantine-fault. They observed that most of the existing algorithms would fail to operate correctly in a crash-fault setting. They proposed a single crash-fault-tolerant algorithm for $n \geq 3$. They showed that under SSYNC scheduler, the gathering for $n=3$ robots is impossible even if at most one byzantine-fault robot is present. Next, a byzantine-fault-tolerant algorithm was proposed under FSYNC scheduler that solves the gathering problem in an n robot system with up to f faults, where $n \geq 3 f+1$. Bouzid et al. [75] studied the gathering for n robots with f crash-fault robots for any $f<n$. They provided a wait-free algorithm to gather all the non-faulty robots, assuming strong multiplicity detection and chirality. Défago et al. [17] investigated the feasibility of the gathering problem in a deterministic manner in terms of different synchrony modes and presence of faults (crash or byzantine). A deterministic gathering algorithm that admits an arbitrary number of crashes and gathers all the correct robots even if they do not have a common chirality was presented by Bramas et al. [76].

Bhagat et al. [94] investigated the gathering problem for $n \geq 2$ robots in the presence of f crash-fault robots under one axis agreement. They proposed two deterministic algorithms which solve the gathering problem starting from any initial configuration, one for unlimited visibility and another for obstructed visibility. Bhagat et al. [10] also addressed the gathering problem under SSYNC scheduler in the presence of crash-fault robots. First, a distributed algorithm is proposed which can tolerate at most ($\lfloor n / 2-1\rfloor$) crash faults for $n \geq 7$ robots with weak multiplicity detection. Next, a distributed algorithm was presented with knowledge of δ, which can tolerate at most $(n-6)$ crash faults for $n \geq 7$ robots. In 3D space, the gathering problem under crash-fault model for a set of SSYNC opaque robots was studied by Bhagat et al. [93].

2.4 Gathering in the Discrete Domain

For an odd number of robots, Klasing et al. [20] proved that the gathering is feasible if and only if the initial configuration is not periodic and provided a gathering algorithm for any such configurations. For an even number of robots, they established the feasibility of gathering except for one type of symmetric configurations, and proposed gathering algorithms for initial configurations that proved to be gatherable. Klasing et al. [91] studied the influence of symmetries of the configuration on the feasibility of gathering on a ring under ASYNC scheduler. Izumi et al. [89] proposed a deterministic algorithm for the gathering problem on rings assuming weak multiplicity. The proposed algorithm is time optimal, i.e., the time complexity is $O(n)$, where n is the number of nodes. Kamei et al. [90] proposed a gathering protocol for an even number of robots in a ring that allows symmetric but not periodic configurations as initial configurations, using only local weak multiplicity detection. In their proposed protocol, the number of robots $k \geq 8$ and the number of nodes n on a network must be odd and greater than $k+3$. D'Angelo et al. [86] studied the gathering of six oblivious robots on anonymous symmetric rings. Bonnet et al. [84] investigated the gathering on a ring for four ASYNC robots. Das et al. [87] considered gathering on a ring in the presence of an adversarial mobile entity called the malicious agent. The gathering problem has also been studied in dynamic rings [85, 88].

D'Angelo et al. [16] studied the gathering problem in grid and tree networks. They provided a full characterization about gatherable configurations for grids and trees. They showed that on these topologies, the multiplicity detection is not required. Di Stefano [95] proposed an optimal algorithm in terms of the total number of moves for the gathering problem in infinite grids. They fully characterized the cases when optimal gathering is achievable by providing a distributed algorithm. Bhagat et al. [82, 83] considered the gathering on meeting nodes problem in an infinite grid.

2.5 Arbitrary Pattern Formation

The arbitrary pattern formation (APF) problem asks the robots to form an arbitrary pattern P which is given as an input.

Deterministic Algorithms: Suzuki and Yamashita [8,96] were the first to study the APF problem in the Euclidean plane. They completely characterized the class of formable patterns under FSYNC and SSYNC schedulers for autonomous as well as anonymous robots when they have an unbounded amount of memory. The symmetricity $\rho(C)$ of a configuration C is the order of the rotational symmetry of the configuration. The characterizations are based on the symmetricity of a configuration. They showed that under SSYNC scheduler, the gathering problem for two oblivious robots is deterministically unsolvable, while it is trivially solvable for non-oblivious robots. The families of patterns formable by oblivious robots were characterized by Yamashita and Suzuki [37] under FSYNC and SSYNC schedulers. The results from the papers $[8,37,96]$ can be summarized as follows:

1. a pattern P is formable from an initial configuration I by non-oblivious FSYNC robots if and only if $\rho(I)$ divides $\rho(P)$;
2. P is formable from I by oblivious FSYNC robots if and only if $\rho(I)$ divides $\rho(P)$;
3. P is formable from I by oblivious SSYNC robots if and only if P is not a point with two robots and $\rho(I)$ divides $\rho(P)$.

Fujinaga et al. [36] proved that for an initial configuration I without any multiplicity point, pattern P is formable from I by oblivious ASYNC robots if and only if P is not a point of multiplicity 2 and $\rho(I)$ divides $\rho(P)$. Flochhini et al. [35] showed that the patterns that can be formed depend heavily on the level of a priori agreement, the robots have about the orientation and direction of the axes in their local coordinate system. They showed the following:

1. If the robots are disoriented, then the robots cannot form an arbitrary pattern.
2. If the robots have one axis agreement, then any odd number of robots can form any arbitrary pattern. However, an even number of robots cannot form certain patterns in the worst case.
3. If the robots have full axis agreement, then any pattern can be formed by any number of robots.

They also proved that if it is possible to solve the pattern formation problem for $n \geq 3$ robots, then the leader election problem is also solvable. The relationship between the $A P F$ and leader election problem was studied by Dieudonné et al. [97] under ASYNC scheduler. They have proposed an algorithm that solves the APF problem starting from an initial configuration in which leader election is possible. They proved that for $n \geq 4$, the $A P F$ problem and leader election problem are equivalent if the robots have a common chirality. Bramas and Tixeuil [98] presented an algorithm that deterministically solves the $A P F$ problem for $n=4$ robots under ASYNC scheduler. Cicerone et al. [30] investigated the APF problem without any assumption of a common chirality. They proved that for a given initial configuration I with any number of robots, the APF problem is solvable if and only if the leader election is solvable. In infinite grid, Bose et al. [99] studied the $A P F$ problem under a fully ASYNC scheduler. The $A P F$ problem was considered in the regular tesselation graphs (triangular and hexagonal grids) by Cicerone et al. [100]. The formation of a series of geometric patterns instead of a single pattern was investigated by Das et al. [101].

Yamauchi et al. [57] first considered pattern formation in three dimensional space. They presented a necessary and sufficient condition for FSYNC robots to solve the plane formation problem that does not depend on obliviousness. They assumed that the robots have a common chirality. Yusaku et al. [55] investigated the plane formation problem without the assumption of a common chirality for FSYNC robots. Uehara et al. [56] considered the plane formation problem for SSYNC robots with non-rigid movement.

Yamauchi et al. [102] were the first to study the APF problem under limited visibility. They showed that even if $\rho(I)$ divides $\rho(P)$, FSYNC oblivious robots with limited visibility may not be able to form any arbitrary pattern P. Next, they considered non-oblivious robots, each of which can record the history of local views and outputs during execution. They showed that SSYNC robots with rigid moves, and FSYNC robots with non-rigid moves have the same formation power as robots with unlimited visibility. Bose et al. [45] provided a full characterization of the initial configurations for which the APF problem is solvable by opaque robots in the settings where (a) robots have full axis agreement and (b) robots have one axis agreement. Bose et al. [103] also investigated the APF problem for fat robots under obstructed visibility. In this setting, the authors completely
characterized all the initial configurations from which any arbitrary pattern can be formed in a deterministic distributed manner. In an infinite grid, Lukovszki et al. [104] studied the pattern formation problem under limited visibility.

Randomized Algorithms: All the works discussed above limit themselves to the solvability of the $A P F$ problem in a deterministic manner. Yamauchi et al. [105] proposed a randomized algorithm for the $A P F$ problem. They assumed that the robots have a common chirality. The proposed algorithm [105] consists of two phases. In the first phase, given an initial configuration I, if the symmetricity $\rho(I)>1$, then the proposed algorithm translates I into another configuration I^{\prime} such that $\rho\left(I^{\prime}\right)=1$ with probability 1. In the second phase, a deterministic algorithm (e.g., [97]) can be used to form any pattern P starting from I^{\prime} as $\rho\left(I^{\prime}\right)=1$. Bramas and Tixeuil [29] proposed a new probabilistic algorithm to solve the $A P F$ problem without the assumption of a common chirality. The proposed algorithm consists of two phases: a probabilistic leader election phase, and a deterministic pattern formation phase. Also, the arbitrary pattern P can contain multiplicity points (except in the case of gathering, which is a special pattern defined by a unique point of multiplicity that remains impossible to solve [21]).

Vaidyanathan et al. [106] proposed randomized algorithms considering both oblivious and light models for the robots. They have proved runtime bounds for solving the $A P F$ problem in terms of the time required to solve the leader election problem. Hector et al. [107] presented two randomized algorithms for the APF problem under ASYNC scheduler, one under the classical oblivious model and another under the light model. Both the proposed algorithms run in $O\left(\max \left\{D^{i}, D^{p}\right\}\right)$ time with $O\left(\max \left\{D^{i}, D^{p}\right\}\right)$ moves by each robot, where D^{i} and D^{p}, respectively, are the diameters of the initial and pattern configurations. The algorithm for the light model uses $O(1)$ colors. They also proved a lower bound of $\Omega\left(\max \left\{D^{i}, D^{p}\right\}\right)$ for time for any $A P F$ algorithm if scaling is not allowed on the target pattern.

2.5.1 Circle Formation

The circle formation problem asks the robots to position themselveson the circumference of a circle within a finite time; the center of the circle is not known a priori. Défago
et al. [108] investigated the circle formation problem in a setting where the robots have no common origin, unit distance, or sense of direction. They proposed a distributed algorithm by which the robots would eventually form a circle. A new approach for the circle formation problem based on concentric circles formed by the robots was presented by Dieudonné et al. [32]. A distributed algorithm was proposed by Défago et al. [50], which ensured that the robots would deterministically form a non-uniform circle within a finite number of steps and would converge towards a solution to the uniform circle formation. Flocchini et al. [34] studied the uniform circle formation problem. They proved that the problem is solvable for any initial configuration with distinct robot positions. An optimum distributed algorithm that minimizes the maximum distance traveled by any robot to solve the circle formation problem was proposed by Bhagat et al. [28]. Datta et al. [49] proposed a distributed algorithm for the circle formation by a system of transparent fat robots. For fat robots with limited visibility, the circle formation problem was studied by Dutta et al. [51]. The uniform circle formation problem was considered for fat robots with limited visibility by Mondal et al. [52]. Felleti et al. [33] studied the uniform circle formation for opaque robots with lights.

2.5.2 Embedded Pattern Formation

Given a set of pre-fixed pattern points, the embedded pattern formation problem [31,109] asks the robots to reach a final configuration in which each pattern point contains exactly one robot position. The pre-fixed points are assumed to be visible to all the robots, like landmarks. Fujinaga et al. [109] investigated the embedded pattern formation problem in a setting where the robots have a common chirality. They have shown that the embedded pattern formation problem is solvable by oblivious robots through the optimum matching between the robots and the pattern points under ASYNC scheduler. Later, Cicerone et al. [31] have studied the embedded pattern formation problem in a setting where the robots do not have a common chirality. They have fully characterized all the initial configurations for which the embedded pattern formation is unsolvable.

2.6 Mutual Visibility

A fundamental problem under obstructed visibility model is the mutual visibility problem: starting from an initial configuration, the robots must reach a configuration within finite time and without collision in which they can all see each other (i.e., no three robots are collinear). The mutual visibility problem is important as it gives a basis for any subsequent task requiring complete visibility.

Continuous Domain: Di Luna et al. [61] presented the first algorithm for the mutual visibility problem for oblivious robots under SSYNC scheduler. The proposed algorithm assumes that the robots have knowledge of the total number of robots and solves the mutual visibility problem by forming a convex n-gon. Without the knowledge of n, Di Luna et al. [62] proposed a deterministic algorithm that solves mutual visibility with six colors in the SSYNC setting and with ten colors in the ASYNC setting. For rigid motions, Di Luna et al. [46] proved the following:

1. if the robots have knowledge of n, then mutual visibility is solvable with no colors under SSYNC scheduler;
2. the mutual visibility is always solvable with two colors under SSYNC scheduler;
3. the mutual visibility is always solvable with three colors under ASYNC scheduler.

In case of non-rigid movements, Di Luna et al. [46] proved the following:

1. if the robots know δ and n, then the mutual visibility is solvable with no colors under SSYNC scheduler;
2. if the robots know δ, the mutual visibility is solvable with two colors under SSYNC scheduler;
3. the mutual visibility is always solvable with three colors under SSYNC scheduler;
4. if the robots agree on the direction of one coordinate axis, then the mutual visibility is solvable with three colors under ASYNC scheduler.

Sharma et al. [65] presented an improved algorithm which requires only two colors and works for both SSYNC and ASYNC schedulers under both rigid and non-rigid moves. The proposed algorithm is optimal in terms of persistent memory since any algorithm for mutual visibility requires at least two colors when n is not known. Bhagat et al. [110] solved the mutual visibility problem by assuming one bit of persistent memory and the knowledge of n under ASYNC scheduler. Without the knowledge of n, Bhagat et al. [111] investigated the mutual visibility problem under SSYNC scheduler using only one bit of persistent memory.

Sharma et al. [64] studied the runtime bounds for the proposed algorithms by Di Luna et al. [46] under FSYNC scheduler. They also proposed a new deterministic algorithm that solves the mutual visibility problem in $O(n \log n)$ rounds under FSYNC scheduler. They studied the runtime bounds of these algorithms under FSYNC scheduler. Vaidyanathan et al. [68] presented a sublinear time algorithm for complete visibility under FSYNC scheduler. The proposed algorithm runs in $O(\log n)$ time using twelve light colors. Sharma et al. [112] presented the first algorithm for complete visibility with $O(1)$ runtime under SSYNC scheduler. Later, Sharma et al. [66,67] proposed algorithms with runtimes $O(\log n)$ and $O(1)$ using 25 and 47 light colors, respectively. Bhagat [113] presented a deterministic distributed algorithm to solve the mutual visibility problem for a set of synchronous robots using only one bit of persistent memory. The proposed algorithm solves the mutual visibility problem in two rounds and ensures collision-free movements for the robots. Sharma et al. [114] studied the complete visibility problem for fat robots. They proposed an algorithm for unit disc robots that solves complete visibility in $O(n)$ time using nine colors under FSYNC scheduler.

Bhagat et al. [60] proposed an optimum algorithm to solve the mutual visibility problem under ASYNC scheduler. The proposed solution minimizes the maximum distance travelled by a single robot using seven light colors. Aljohani et al. [59] proposed an algorithm that solves complete visibility tolerating one crash fault robot for $n \geq 3$ robots. They also presented an impossibility result for solving complete visibility if there is a byzantine fault single robot for $n=3$ robots. Poudel et al. [63] provided the first algorithm for complete visibility that tolerates $f \leq n$ crash-fault robots in the ASYNC setting under one-axis agreement.

Discrete Domain: Adhikary et al. [58] first studied the mutual visibility problem in an infinite grid. They provided an algorithm that solves the problem starting from any initial configuration using nine colors under ASYNC scheduler. Poudel et al. [115] studied the mutual visibility problem for fat robots in an infinite grid. In this study, the robots were not restricted to move along grid lines or to move by one hop, i.e., a robot can directly move to any visible grid point in one step. They proposed a deterministic algorithm for $n \geq 4$ robots, positioned on the distinct nodes in $\sqrt{n} \times \sqrt{n}$ sub-grid under SSYNC scheduler, that solves the mutual visibility in $O(\sqrt{n})$ time.

Sharma et al. [116] primarily focused on minimizing (or providing a trade-off between) two fundamental performance metrics: (i) time to solve complete visibility and (ii) area occupied by the solution. They proved that mutual visibility can be optimally solved in $O(\max \{D, n\})$ time (where D is the diameter of the initial configuration), and with a final optimal area of $O\left(n^{2}\right)$. The proposed algorithm solves the mutual visibility problem under ASYNC scheduler through: (i) a deterministic algorithm using 17 colors if leader election is not required; (ii) a randomized algorithm using 32 colors that terminates in $O(\max \{D, n\})$ time with probability at least $1-\frac{1}{2^{\max (D, n)}}$, if leader election is required. Hector et al. [117] studied the convex hull formation problem where all the robots are placed on the convex hull (solving the mutual visibility problem). They presented two randomized algorithms: an $O\left(\max \left\{n^{2}, D\right\}\right)$ time algorithm using 50 colors that creates an $O\left(n^{2}\right)$ perimeter convex hull and an $O(\max \{n \overline{2}, D\})$ time algorithm using 55 colors that creates an $O(n \overline{2})$ perimeter convex hull.

Chapter 3

k-Circle Formation and k-EPF Problem

Contents
3.1 Overview of the Problem 31
3.2 Model and Definitions 33
3.3 Impossibility Results 36
3.4 AlgorithmOneAxis 38
3.5 Correctness of AlgorithmOneAxis 48
$3.6 \quad k$-Circle Formation when $n>k m$ 62
$3.7 k$-Circle Formation when $n<k m$ 63
$3.8 k$-Circle Formation and k-EPF 67
3.9 Conclusion 70

3.1 Overview of the Problem

In this chapter, we investigate the solvability of the k-circle formation problem under one axis agreement. Also, the relationship of the k-circle formation problem with the k - $E P F$ problem (a generalized version of the embedded pattern formation problem) is studied. The theoretical motivation for studying the k-circle formation problem is twofold. First,
we believe that the problem is theoretically interesting as it is a hybrid problem in between the partitioning problem [44,69] and the circle formation problem [28, 34, 49-52]. Both the problems individually differs from the k-circle formation problem w.r.t. the following points:

1. The partitioning problem asks the robots to divide themselves into m groups, each having k robots. In addition, the robots in each group are asked to converge in a small area. Unlike the k-circle formation problem, the robots do not need to form circles containing exactly k robots, centered at one of the pre-fixed points.
2. The circle formation problem asks the robots to place themselves at distinct locations on a circle (not defined a priori), within finite amount of time. In this problem, all the robots participate in forming one single circle, whereas, in the k-circle formation problem, the robots need to form m circles each containing exactly k robots and centered at one of the fixed points.

To the best of our knowledge, we believe that this is the first work that aims at connecting the two well-known problems in the literature, namely the partitioning problem and the circle formation problem. Both the partitioning and circle formation problems do not consider the fixed points as well as symmetries related to the fixed points whereas the k-circle formation problem must address the symmetries related to the fixed points.

Secondly, if the robots could solve the k-circle formation problem, then all the k robots which lie on the same circle can gather at their respective center, which is a fixed point, within finite number of moves. Thus, studying the solvability of the k-circle formation problem includes investigating the solvability of the k-EPF problem where k robots need to reach and remain at each fixed point.

In addition, we believe that the k-circle formation problem would have the following applications in the field of swarm robotics:

1. The set of fixed points can be considered as emergency points, which need to be surrounded. By solving the k-circle formation problem, a swarm of robots can divide themselves into groups, containing k robots each and build a perimeter, surrounding the emergency points.
2. The set of fixed points can also be considered as charging stations, with some given permitted capacity. The robots need to be charged after a certain amount of time to continue working. By solving the k-circle formation problem, the robots can reach the charging stations without violating the permitted capacity.

3.2 Model and Definitions

The robots are assumed to be dimensionless, oblivious, anonymous, autonomous, and homogeneous. They are represented by points in the Euclidean plane. They have unlimited visibility range and have no explicit way of communication. The movements of robots are non-rigid. They execute Look-Compute-Move (LCM) cycle when they become active. We have considered a fair ASYNC scheduler. We assume that they have an agreement on the y-axis. The following notations are used in the proposed algorithms.

- Configuration: Let $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ be the set of robots. Let $r_{i}(t)$ denote the position of the robot r_{i} at time $t . R(t)=\left\{r_{1}(t), r_{2}(t), \ldots, r_{n}(t)\right\}$ is the set of robot positions at time t. We are given a set of fixed points denoted by $F=$ $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$. It is assumed that $n=k m$ for some positive integer k. Let F_{c} be the center of gravity of the set of fixed points F. We assume that the y-axis passes through F_{c} and F_{c} is the origin. Let F_{y} and $R_{y}(t)$ denote the set of fixed points and robot positions, respectively, on the y-axis at time t. Suppose \mathcal{H}_{1} and \mathcal{H}_{2} denote the two half-planes delimited by the y-axis. Let $d(r, f)$ denote the Euclidean distance between r and f. The pair $C(t)=(R(t), F)$ represents the configuration at time t. In an initial configuration $C(0)$, it is assumed that all the robots are stationary and are placed at distinct positions. A configuration is said to be balanced at time t if the number of robots in both the open half-planes delimited by the y-axis is equal. Otherwise, the configuration is said to be unbalanced.
- Circles and radii of circles: We consider that all the circles formed by the robots would have the same radius. Let ρ denote the radius of the circles. Also, let $C(f, \rho)$ denote the circle centered at $f \in F$ with radius ρ. We have used the following notations to formulate the radius ρ of the circles:

1. $\rho_{1}=$ minimum distance between two fixed points.
2. $\rho_{2}=$ minimum distance between a fixed point $f \in\left(F \backslash F_{y}\right)$ and the y-axis.

The radius ρ is defined as $\rho=\frac{1}{3} \min \left(\rho_{1}, \rho_{2}\right)$.

- A fixed point and its respective circle $C\left(f_{j}, \rho\right)$ are said to be unsaturated, if $C\left(f_{j}, \rho\right)$ contains less than k robots on it. Let $D_{j}(t)$ denote the deficit in the number of robots in order to have exactly k robots on the $C\left(f_{j}, \rho\right)$. A fixed point and its respective circle $C\left(f_{j}, \rho\right)$ are said to be saturated, if $C\left(f_{j}, \rho\right)$ contains exactly k robots on it. In case $C\left(f_{j}, \rho\right)$ contains more than k robots, then $C\left(f_{j}, \rho\right)$ and f_{j} are called oversaturated.
- Configuration Rank. Let $y\left(s_{i}\right)$ denote the y-coordinate of a point s_{i}. Note that the robots do not have an agreement on the positive direction of the x-axis. In case, the robots could have an agreement on the positive direction of the x-axis, $\beta\left(s_{i}\right)$ denotes the x-coordinate of s_{i}. Otherwise, $\beta\left(s_{i}\right)$ denotes the distance of s_{i} from the y-axis. The pair $\gamma\left(s_{i}\right)=\left(\beta\left(s_{i}\right), y\left(s_{i}\right)\right)$ is the configuration rank of the point s_{i}. Between the two points s_{i} and s_{j}, s_{i} is said to have higher configuration rank than s_{j}, if $y\left(s_{i}\right)>y\left(s_{j}\right)$ or $y\left(s_{i}\right)=y\left(s_{j}\right)$ and $\beta\left(s_{i}\right)>\beta\left(s_{j}\right)$. Since the robots have unlimited visibility, they can compute the configuration rank of each point $s_{i} \in F \cup R(t)$.
- Symmetry about the y-axis. If the robots r_{i} and r_{j} for $i \neq j$, have the same configuration rank, i.e., $\gamma\left(r_{i}(t)\right)=\gamma\left(r_{j}(t)\right)$, they are said to be symmetric about the y-axis. Let $\phi(r)$ denote the symmetric image of r about the y-axis. If robots r_{i} and r_{j} are symmetric about the y-axis, then $r_{i}=\phi\left(r_{j}\right)$ and $r_{j}=\phi\left(r_{i}\right)$. Similarly, two fixed points are said to be symmetric about the y-axis, if they have the same configuration rank. An active robot in its look phase identifies the set $R(t)$ to be symmetric about the y-axis, if each robot position $r \in R(t)$ has a symmetric image $\phi(r) \in R(t)$. Similarly, a robot can identify whether the set F is symmetric about the y-axis or not. An active robot in its look phase identifies the configuration to be symmetric about the y-axis if both the sets F and $R(t)$ are symmetric about the y-axis. Since the robots have an agreement on the direction and orientation of the y-axis, the configuration can not admit translational or rotational symmety.
- Partitioning of configurations: When the robots have an agreement on the y axis, all the configurations can be partitioned into the following disjoint classes-

Figure 3.1: Black square represents the center of gravity, blue circles represent robot positions, and red crosses represent fixed points. (A) \mathcal{I}_{1}-configuration. (B) \mathcal{I}_{2}-configuration. (C) \mathcal{I}_{3}-configuration.

1. $\mathcal{I}_{1}-$ All configurations for which the y-axis is not a line of symmetry for F (Figure 3.1(A)).
2. $\mathcal{I}_{2}-$ All configurations for which the y-axis is a line of symmetry for F, but it is not a line of symmetry for $R(t)$ (Figure 3.1(B)).
3. $\mathcal{I}_{3}-$ All configurations for which the y-axis is a line of symmetry for $F \cup R(t)$ and $R_{y}(t) \neq \emptyset$, i.e., there exists a robot position on the y-axis (Figure 3.1(C)).
4. $\mathcal{I}_{4}-$ All configurations for which the y-axis is a line of symmetry for $F \cup R(t)$. Also, $F_{y}=\emptyset$ and $R_{y}(t)=\emptyset$, i.e., there are no robot positions and fixed points on the y-axis (Figure 3.2(A)).
5. \mathcal{I}_{5} - All configurations for which the y-axis is a line of symmetry for $F \cup R(t)$. Also, $F_{y} \neq \emptyset$ and $R_{y}(t)=\emptyset$, i.e., there are no robot positions on the y-axis, but there are fixed points on the y-axis (Figure 3.2(B)).

Note that the classification of the configuration depends only on the y-axis and F_{c}. Since the y-axis and F_{c} are the same for all the robots, they can easily classify a configuration without conflict.

Figure 3.2: (A) \mathcal{I}_{4}-configuration. (B) \mathcal{I}_{5}-configuration.

3.2.1 Problem Definition

We call a configuration $C(t)$ final if the following conditions hold:

1. Every robot r_{i} is on a circle $C\left(f_{j}, \rho\right)$ for some $f_{j} \in F$,
2. $C\left(f_{i}, \rho\right) \cap C\left(f_{j}, \rho\right)=\emptyset$ for $f_{i} \neq f_{j}$,
3. Each circle contains exactly k robots at distinct positions.

The k-circle formation problem asks the robots to reach and remain in the final configuration, starting from an initial configuration.

The problem definition requires distinct robot positions in a final configuration. If a collision occurs among the robots, the result is a matter of assumptions. Under the assumption that a point of multiplicity will be created, the robots on a multiplicity point cannot be deterministically separated. Thus, collision avoidance is a fundamental requirement for solving the k-circle formation problem.

3.3 Impossibility Results

In this section, we characterize the initial configurations for which the k-circle formation problem cannot be solved deterministically. If k is an odd integer and the initial configuration $C(0) \in \mathcal{I}_{5}$, then $|F|$ must be even. For an initial configuration $C(0)$ which is
symmetric about the y-axis, if both the values of k and $|F|$ are odd, then $R_{y}(0) \neq \emptyset$. As a result, $C(0)$ can not possibly belong to \mathcal{I}_{5}.

Theorem 3.3.1. If the initial configuration $C(0) \in \mathcal{I}_{5}$ and k is an odd integer, then the k-circle formation problem is deterministically unsolvable.

Proof. If possible, let algorithm \mathcal{A} solve the k-circle formation problem starting from the given initial configuration $C(0) \in \mathcal{I}_{5}$ when k is odd. Consider the scheduler to be semi-synchronous with the additional property that whenever a robot r is activated, $\phi(r)$ is also activated. We assume that all the robots move with constant speed (which is the same for all robots) without transient stops. We also assume that the distance traveled by r is the same as that by $\phi(r)$. First, consider that both r and $\phi(r)$ have opposite notions of positive x-axis direction. As a result, their views would be identical. Since they run the same algorithm, their destinations and the corresponding paths would be mirror images. Even with non-rigid motion, if they travel the same distance, their final positions would be mirror images of each other. Since we started with a symmetric configuration, no algorithm can break the symmetry under this setup. Let $f \in F_{y}$. Since the overall configuration is symmetric, the robot positions on $C(f, \rho)$ must be symmetric around the y-axis. As k is odd, $C(f, \rho)$ must contain a robot position on the y-axis. Since the initial configuration did not have any robot position on the y-axis and all the robots move in pairs, having a robot r moved to the y-axis would mean moving $\phi(r)$ to the same point. As a result, a point of multiplicity will be created, from which it is deterministically impossible to separate r and $\phi(r)$. Hence, the k-circle formation problem is deterministically unsolvable.

Notice that the unsolvability criterion (Theorem 3.3.1) for the k-circle formation problem would never be satisfied when k is an even integer. Even for odd values of k and the symmetric configurations in $\mathcal{I}_{3} \cup \mathcal{I}_{4}$, the unsolvability criterion (Theorem 3.3.1) for the k-circle formation problem would never be satisfied.

3.4 AlgorithmOneAxis

In this section, we propose a deterministic distributed algorithm that solves the k-circle formation problem for the remaining configurations. Each active robot will execute the proposed algorithm AlgorithmOneAxis $(C(t))$ unless $C(t)$ is a final configuration. Each robot will follow the following steps during an execution of AlgorithmOneAxis $(C(t))$:

1. The robots identify the current configuration. The robots agree upon the positive direction of the x-axis in some configurations.
2. One or two unsaturated fixed points are selected for the circle formation, referred to as target fixed points.
3. The robots identify one or two robots for each target fixed point, referred to as candidate robots.
4. Each candidate robot moves towards the k-circle centered at its target fixed point.

Definition 3.4.1. Let f_{i} be the unsaturated fixed point, which has the highest rank in \mathcal{H}_{1} at time $t \geq 0$. Similarly, suppose $f_{j} \in \mathcal{H}_{2}$ is the the unsaturated fixed point, which has the highest rank at time $t \geq 0$. We say that there has been more progress in \mathcal{H}_{1} than \mathcal{H}_{2} at time t if one of the following conditions holds:

1. $\gamma\left(f_{i}\right)<\gamma\left(f_{j}\right)$ or
2. $\gamma\left(f_{i}\right)=\gamma\left(f_{j}\right)$ and $D_{i}(t)<D_{j}(t)$ or
3. $\gamma\left(f_{i}\right)=\gamma\left(f_{j}\right)$ and $D_{i}(t)=D_{j}(t)$ and $d\left(f_{i}, r_{1}(t)\right)<d\left(f_{j}, r_{2}(t)\right)$ where r_{1} and r_{2} are candidate robots for f_{i} and f_{j}, respectively.

Otherwise, we say that there has been the same progress in both the half-planes.

3.4.1 AgreementOneAxis

Since the robots have an agreement on the direction and orientation of the y-axis, they also have an agreement on the orientation of the x-axis without direction. This is the
subprocedure by which the robots identify the configurations in which they could have an agreement on the direction of the x-axis. The robots make an agreement on the direction of the x-axis in such configurations. We have the following cases:

1. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{I}_{1}$, i.e., F is asymmetric about the y-axis. Let hline ${ }_{1}, \ldots$, hline $_{s}$ denote all the horizontal lines, each one of which passes through at least one fixed point, listed according to their increasing y-coordinates. Since the fixed points are asymmetric about the y-axis, at least one of these lines must contain asymmetric fixed points. Let hline $_{v}$ be the topmost among such horizontal lines which contains an asymmetric fixed point. Consider the fixed point closest to the y-axis and not having a symmetric image on hline . The direction from the y-axis towards the half-plane containing this fixed point is considered as the positive x-direction. All the robots agree upon this agreement.
2. $\boldsymbol{C}(\boldsymbol{t}) \in \boldsymbol{\mathcal { I }}_{\mathbf{2}}$, i.e., F is symmetric about the y-axis, but $R(t)$ is asymmetric about the y-axis. The robots consider the following cases:
(a) The configuration is unbalanced. The direction from the y-axis, towards the halfplane containing the maximum number of robots, is considered as the positive x-direction. All the robots agree upon this agreement.
(b) The configuration is balanced and all the fixed points in one of the half-planes are either saturated or oversaturated. In this case the robots consider the positive x direction towards the half-plane in which all the fixed points are either saturated or oversaturated.
(c) The configuration is balanced with at least one unsaturated fixed point in both the half-planes and $R_{y}(t) \neq \emptyset$. The robots do not make an agreement on the direction of positive x-axis. The robots decide to transform the configuration into an unbalanced configuration. Let r be the topmost robot on the y-axis. Define $\lambda=\max _{f \in F, r_{i} \in R(t) \backslash\{r\}} d\left(r_{i}(t), f\right)$. Suppose p denotes the point on the y-axis, which is at 2λ distance above from topmost horizontal line hline ${ }_{s}$. If the position of r is below p, then it moves towards p along the y-axis. Otherwise, r is moved to one of the half-planes to a point at $\frac{1}{3} \rho$ from the y-axis. This upward movement
is required to avoid any collision, which might arise due to the inherent motion of r in a half-plane for some $t^{\prime} \geq t$.
(d) The configuration is balanced with at least one unsaturated fixed point in both the half-planes and $R_{y}(t)=\emptyset$. Consider the following cases:
(i) k is odd and $F_{y} \neq \emptyset$. Note that in this case, the configuration has an even number of fixed points. The direction from the y-axis towards the half-plane in which there has been more progress is considered as the positive x-axis direction. It is possible that initially there has been the same progress in both the half-planes. Since $C(0)$ is asymmetric, there must be one asymmetric robot position about the y-axis. The positive x-direction is considered towards the half-plane that contains the asymmetric robot position, which has the highest configuration rank. All the robots agree upon this agreement.
(ii) Otherwise, the robots do not agree upon the direction of positive x-axis direction. This case includes the configurations in which (i) k is even and $F_{y} \neq \emptyset$, (ii) k is even and $F_{y}=\emptyset$, and (iii) k is odd and $F_{y}=\emptyset$. Notice that a configuration in this case might become symmetric with $R_{y}(t)=\emptyset$. Since the robots are oblivious, they would identify the configuration to be in \mathcal{I}_{4} or \mathcal{I}_{5}, in which they can not make an agreement on the direction of positive x-axis. This decision of not to agree upon the direction of positive x-axis direction would ensure that the robots follow the same strategy in both symmetric and asymmetric cases.
3. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{I}_{\mathbf{3}}$, i.e., $F \cup R(t)$ is symmetric about the y-axis and $R_{y}(t) \neq \emptyset$. Since $R(t)$ is symmetric about the y-axis, the configuration is balanced. The robots decide to transform the configuration into an unbalanced configuration. The robots follow the same strategy as described in the case of a balanced \mathcal{I}_{2} configuration with at least one unsaturated fixed point in both the half-planes and $R_{y}(t) \neq \emptyset$ (case 2(c)).
4. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{I}_{4}$, i.e., $F \cup R(t)$ is symmetric about the y-axis, and $F_{y}=\emptyset$ and $R_{y}(t)=\emptyset$. Since $R(t)$ is symmetric about the y-axis, the configuration is balanced. As there are no robot positions on the y-axis, the configuration cannot be transformed into an unbalanced configuration. The robots can not have an agreement on the direction of positive x-axis direction in this case.
5. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{I}_{\mathbf{5}}$, i.e., $F \cup R(t)$ is symmetric about the y-axis, and $F_{y} \neq \emptyset$ and $R_{y}(t)=\emptyset$. In this case, we have a balanced configuration. Since there are no robot positions on the y-axis, the configuration cannot be transformed into an unbalanced configuration. Note that k is an even integer in this case. Otherwise, the k-circle formation problem is unsolvable. The robots can not have an agreement on the direction of positive x-axis direction in this case.

3.4.2 TargetF PSelection

This is the subprocedure by which the robots select a target fixed point for the k-circle formation. The robots consider the following cases:

1. Robots have an agreement on the positive direction of the x-axis. Among the unsaturated fixed points, let f_{j} be the one, which has the highest configuration rank. The robots select f_{j} as the target fixed point.
2. Robots do not have an agreement on the positive direction of the x-axis. The robots consider the following cases:
(a) All the fixed points in $F \backslash F_{y}$ are saturated. Among the unsaturated fixed points in F_{y}, let f_{j} be the topmost one. The robots select f_{j} as the target fixed point.
(b) There exists an unsaturated fixed point in $F \backslash F_{y}$. If all the fixed points in one of the half-planes delimited by the y-axis are saturated or oversaturated, then the robots shall have an agreement on the positive direction of the x-axis. So assume that unsaturated fixed points are present in both the half-planes. In this case, the robots select two target fixed points, one from each of the halfplanes. Let f_{j} and f_{u} be the unsaturated fixed points, which have the highest configuration rank in their respective half-planes. The robots select f_{j} and f_{u} as the target fixed points. Note that f_{j} and f_{u} may be symmetric images of each other.

3.4.3 CandidateRSelection

This is the subprocedure by which the robots select a candidate robot for a target fixed point. Let f_{j} be the target fixed point. Consider the following cases:

1. There exists a robot position which lies within ρ distance from f_{j}. Let $r_{i} \in R_{\rho}$ be the closest robot from $C\left(f_{j}, \rho\right)$. The robots select r_{i} as the candidate robot for f_{j}. If there are multiple such robots, then the robots select the one which has the highest configuration rank.
2. There does not exist a robot position which lies within ρ distance from f_{j}. Let r_{i} be the closest robot from f_{j}, which does not lie on a saturated circle. The robots select r_{i} as the candidate robot for f_{j}. If there are multiple such robots, then the robots select the one, which has the highest configuration rank. Note that r_{i} might lie on an oversaturated circle.

Note that, if f_{j} lies on the y-axis, and $C(t)$ does not have an agreement on the x-axis, then there may be two robots (say r_{1} and r_{2}) having the same configuration rank, which are closest from f_{j} (case 2) or closest from $C\left(f_{j}, \rho\right)$ (case 1). In case, the configuration is asymmetric, let r_{k} be a robot position, which does not have a symmetric image about the y-axis. If there are multiple such robots, then the robots select the one, which has the highest configuration rank. The candidate robot is selected, from the half-plane, which contains r_{k}. Otherwise, both r_{1} and r_{2}, are selected as the candidate robots. In case, f_{j} lies in a half-plane and $C(t)$ does not have an agreement on the x-axis, then the candidate robot is selected from the same half-plane in which it belongs.

3.4.4 MovetoDestination

This is the subprocedure by which a candidate robot r_{i} computes its destination point $q(t)$ on the circle centered at its target fixed point f_{j} and the movement path P along which it will move towards its destination point. The pseudocode of this subprocedure is given in Subprocedure 3.1. Let $p(t)$ denote the intersection point between $C\left(f_{j}, \rho\right)$ and $\overline{r_{i}(t) f_{j}}$. During its movement towards the circle centered at its target fixed point f_{j}, a

```
Subprocedure 3.1: MovetoDestination \(\left(C(t), f_{j}, r_{i}\right)\)
    Input: \(C(t), f_{j}, r_{i}\)
    Output: Movement path \(P\) and destination point \(q(t)\)
    if \(d\left(r_{i}(t), f_{j}\right)<\rho\) then
        Let \(l_{j i}(t)\) be the line segment from \(f_{j}\) to \(C\left(f_{j}, \rho\right)\), passing through \(r_{i}\);
        Let \(q\) be the intersection point between \(l_{j i}(t)\) and \(C\left(f_{j}, \rho\right)\);
        if \(q\) is not a robot position then
            \(r_{i}\) selects \(P=\overline{r_{i} q}\) and \(q(t)=q ;\)
            \(r_{i}\) starts moving towards \(q\) along \(\overline{r_{i} q}\);
        else
            if there does not exist any robot positions on \(C\left(f_{j}, \rho\right)\) other than being collinear with \(r_{i}\) and \(f_{j}\) then
                    Let \(B_{1}\) be the ray starting from \(r_{i}(t)\) such that \(\measuredangle l_{j i}(t) r_{i}(t) B_{1}=\frac{\pi}{4}\);
                            Let \(q_{1}\) be the intersection point between \(C\left(f_{j}, \rho\right)\) and \(B_{1}\);
                            \(r_{i}\) selects \(P=\overline{r_{i} q_{1}}\) and \(q(t)=q_{1}\);
                            \(r_{i}\) starts moving towards \(q_{1}\) along \(\overline{r_{i} q_{1}} ;\)
            else
                Let \(r_{u}\) be the robot on \(C\left(f_{j}, \rho\right)\) such that \(\left\langle\overline{r_{i}(t) q} r_{i}(t) \overline{r_{i}(t) r_{u}(t)}\right.\) is smallest;
                    Let \(B_{2}\) be the ray starting from \(r_{i}(t)\) such that \(\measuredangle \overline{r_{i}(t) q} r_{i}(t) B_{2}=\frac{1}{2} \min \left(\frac{\pi}{2}, \measuredangle \overline{r_{i}(t) q} r_{i}(t) \overline{r_{i}(t) r_{u}(t)}\right)\);
                    Let \(q_{2}\) be the intersection point between \(C\left(f_{j}, \rho\right)\) and \(B_{2}\);
                    \(r_{i}\) selects \(P=\overline{r_{i} q_{2}}\) and \(q(t)=q_{2}\);
                    \(r_{i}\) starts moving towards \(q_{2}\) along \(\overline{r_{i} q_{2}}\);
            end
        end
    else
        Let \(p(t)\) be the intersection point between \(C\left(f_{j}, \rho\right)\) and \(\overline{r_{i} f_{j}}\);
        if \(\overline{r_{i} f_{j}}\) does not cut any saturated circle then
            if \(p(t)\) is not a robot position then
                    \(r_{i}\) selects \(P=\overline{r_{i} p(t)}\) and \(q(t)=p(t)\);
                            \(r_{i}\) starts moving towards \(p(t)\) along \(\overline{r_{i} p(t)}\);
            else if there does not exist any robot positions on \(C\left(f_{j}, \rho\right)\) other than being collinear with \(r_{i}\) and \(f_{j}\)
                    then
                    Let \(t^{a}\) be one of the tangents from \(r_{i}\) to \(C\left(f_{j}, \rho\right)\);
                        Let \(t^{a}\) intersects \(C\left(f_{j}, \rho\right)\) at \(q\);
                            \(r_{i}\) selects \(P=\overline{r_{i} q}\) and \(q(t)=q\);
                    \(r_{i}\) starts moving towards \(q\) along \(\overline{r_{i} q}\);
            else
                Let \(r_{k}\) be the robot position on \(C\left(f_{j}, \rho\right)\) such that \(\angle \overline{r_{i}(t) r_{k}(t)} r_{i}(t) \overline{r_{i}(t) f_{j}}\) is the smallest;
                    Let \(B_{1}\) be the ray starting from \(r_{i}(t)\) such that \(\measuredangle \overline{r_{i}(t) r_{k}(t)} r_{i}(t) B_{1}=\frac{1}{2} \measuredangle \overline{r_{i}(t) r_{k}(t)} r_{i}(t) \overline{r_{i}(t) f_{j}}\);
                    Let \(q_{1}\) be the intersection point between \(C\left(f_{j}, \rho\right)\) and \(B_{1}\);
                    \(r_{i}\) selects \(P=\overline{r_{i} q_{1}}\) and \(q(t)=q_{1}\);
                    \(r_{i}\) starts moving towards \(q_{1}\) along \(\overline{r_{i} q_{1}}\);
            end
        else
            Let \(C\left(f_{u}, \rho\right)\) be the first saturated circle which \(r_{i}\) cuts while moving along \(\overline{r_{i} f_{j}}\);
            Let \(q\) be the intersection point between \(\overline{r_{i} f_{j}}\) and \(C\left(f_{u}, \rho\right)\) which is at closest distance from \(r_{i}\);
            if \(q\) is not a robot position then
                    \(r_{i}\) selects \(P=\overline{r_{i} q}\) and \(q(t)=q\);
                    \(r_{i}\) starts moving towards \(q\) along \(\overline{r_{i} q}\);
            else
                Let \(r_{k}\) be the robot on \(C\left(f_{u}, \rho\right)\) such that \(\overline{\measuredangle r_{i}(t) f_{j}} r_{i}(t) \overline{r_{i}(t) r_{k}(t)}\) is the smallest;
                    Let \(B_{1}\) be the ray from \(r_{i}(t)\) such that
                    \(\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) B_{1}=\frac{1}{2} \min \left(\zeta \overline{r_{i}(t) f_{j}} r_{i}(t) t^{a}, \measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) \overline{r_{i}(t) r_{k}(t)}\right) ;\)
                    Let \(q_{1}\) be the intersection point between \(B_{1}\) and \(C\left(f_{u}, \rho\right)\) which is at closest distance from \(r_{i}\);
                    \(r_{i}\) selects \(P=\overline{r_{i} q_{1}}\) and \(q(t)=q_{1}\);
                    \(r_{i}\) starts moving towards \(q_{1}\) along \(\overline{r_{i} q_{1}} ;\)
            end
        end
    end
```

candidate robot must avoid collision with the other robots. In order to ensure collision-free movement, a candidate robot considers the following cases:

Figure 3.3: (A) $P=\overline{r_{i}(t) p(t)}$ and $q(t)=p(t)$. (B) $r_{v}(t)$ is the robot position on $p(t)$. $q(t)=q$ and $P=\overline{r_{i}(t) q}$, where q is the point of intersection between t^{a} and $C\left(f_{j}, \rho\right)$.

1. $\boldsymbol{d}\left(\boldsymbol{r}_{\boldsymbol{i}}(\boldsymbol{t}), \boldsymbol{f}_{\boldsymbol{j}}\right)>\boldsymbol{\rho}$ and $\overline{r_{i}(t) f_{j}}$ does not cut any saturated circle. If $p(t)$ is not a robot position, then r_{i} selects $q(t)=p(t)$ and $P=\overline{r_{i}(t) p(t)}$ (Figure 3.3(A)). Next, consider the case when $p(t)$ is a robot position and there are no other robot positions on $C\left(f_{j}, \rho\right)$ other than those collinear with r_{i} and f_{j}. In this case, r_{i} selects one of the tangent lines to $C\left(f_{j}, \rho\right)$ from its position (say $\left.t^{a}\right)$ as its movement path. Let t^{a} intersect $C\left(f_{j}, \rho\right)$ at q. In this case q can not be a robot position. Since r_{i} is a candidate robot, the line segement $\overline{r_{i}(t) q}$ can not possibly contain any robot positions other than $r_{i}(t)$. It selects $P=t^{a}$ and $q(t)=q$ (Figure 3.3(B)). Otherwise, among the robot positions on $C\left(f_{j}, \rho\right)$ which are not collinear with r_{i} and f_{j}, let r_{k} be the robot such that the angle $\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) \overline{r_{i}(t) r_{k}(t)}$ is smallest. Let B_{1} be the angle bisector such that $\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) B_{1}=\frac{1}{2} \measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) \overline{r_{i}(t) r_{k}(t)}$. Note that B_{1} intersects $C\left(f_{j}, \rho\right)$ at exactly two points. Between these two points, let q_{1} be the closest point from r_{i}. By the choice of r_{k}, q_{1} can not be a robot position. Also, since r_{i} is a candidate robot, the line segment $\overline{r_{i}(t) q_{1}}$ can not possibly contain any robot positions other than $r_{i}(t)$. It selects $q(t)=q_{1}$ and $P=\overline{r_{i}(t) q_{1}}$ (Figure 3.4).
2. $\boldsymbol{d}\left(\boldsymbol{r}_{\boldsymbol{i}}(\boldsymbol{t}), \boldsymbol{f}_{\boldsymbol{j}}\right)>\boldsymbol{\rho}$ and $\overline{r_{i}(t) f_{j}}$ cuts some saturated circle. Let $C\left(f_{u}, \rho\right)$ be the first saturated circle, which r_{i} cuts while moving along $\overline{r_{i}(t) f_{j}}$. Notice that $\overline{r_{i} f_{j}}$ would intersect $C\left(f_{u}, \rho\right)$ at two points. Consider q to be the intersection point between $C\left(f_{u}, \rho\right)$ and $\overline{r_{i}(t) f_{j}}$, which is at the closest distance from r_{i}. Since r_{i} is a candidate robot, the line segment $\overline{r_{i}(t) q}$ (excluding point q) can not possibly contain any robot positions other than $r_{i}(t)$. However, since q is a point on $C\left(f_{u}, \rho\right)$, it may be

Figure 3.4: B_{1} is the angle bisector of $\measuredangle \overline{r_{i}(t) f_{j}} r_{i}\left(\underline{t)} \overline{r_{i}(t) r_{k}(t)}\right.$. It intersects $C\left(f_{j}, \rho\right)$ at q_{1} and q_{2}. In this case, r_{i} selects $P=\overline{r_{i}(t) q_{1}}$ and $q(t)=q_{1}$.

Figure 3.5: $P=\overline{r_{i}(t) q}$ and $q(t)=q$, where q is the point of intersection between $\overline{r_{i}(t) f_{j}}$ and $C\left(f_{u}, \rho\right)$.
a robot position. If q is not a robot position, then r_{i} selects $q(t)=q$ and $P=\overline{r_{i}(t) q}$ (Figure 3.5). Otherwise, let r_{k} (not collinear with r_{i} and f_{j}) be the robot on $C\left(f_{u}, \rho\right)$ such that angle between $\overline{r_{i}(t) f_{j}}$ and $\overline{r_{i}(t) r_{k}(t)}$ is the smallest. Since $C\left(f_{u}, \rho\right)$ is saturated, such a robot position always exists on it. Let B_{1} be the angle bisector, such that $\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) B_{1}=\frac{1}{2} \min \left(\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) t^{a}, \measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) \overline{r_{i}(t) r_{k}(t)}\right)$. Note that B_{1} intersects $C\left(f_{u}, \rho\right)$ at exactly two points. Between these two points, let q_{1} be the closest point from r_{i}. By the choice of r_{k}, q_{1} can not be a robot position. Also, since r_{i} is a candidate robot $\overline{r_{i}(t) q_{1}}$ can not possibly contain any robot positions other than $r_{i}(t)$. Robot r_{i} selects $P=\overline{r_{i}(t) q_{1}}$ and $q(t)=q_{1}$ (Figure 3.6). Note that the choice of B_{1} ensures that r_{i} always moves towards $C\left(f_{j}, \rho\right)$.

Figure 3.6: B_{1} is the angle bisector of $\measuredangle \overline{r_{i}(t) f_{j}} r_{i}(t) t^{a}$. It intersects $C\left(f_{u}, \rho\right)$ at q_{1} and q_{2}. In this case, r_{i} selects $P=\overline{r_{i}(t) q_{1}}$ and $q(t)=q_{1} .$.

Figure 3.7: (A) $P=\overline{r_{i}(t) q}$ and $q(t)=q$, where q is the intersection point between $l_{j i}(t)$ and $C\left(f_{j}, \rho\right) .(\mathbf{B}) q=r_{v}(t) . B_{1}$ is the ray starting from $r_{i}(t)$ such that $\measuredangle \overline{r_{i}(t) r_{v}(t)} r_{i}(t) B_{1}=\frac{\pi}{4} . P=$ $\overline{r_{i}(t) q_{1}}$ and $q(t)=q_{1}$, where q_{1} is the intersection point between B_{1} and $C\left(f_{j}, \rho\right)$. ($\left.\mathbf{C}\right) q=r_{v}(t)$. B_{2} is the ray starting from $r_{i}(t)$ such that $\measuredangle \overline{r_{i}(t) r_{v}(t)} r_{i}(t) B_{2}=\frac{1}{2} \measuredangle \overline{r_{i}(t) r_{v}(t)} r_{i}(t) \overline{r_{i}(t) r_{u}(t)}$. $P=\overline{r_{i}(t) q_{2}}$ and $q(t)=q_{2}$, where q_{2} is the intersection point between B_{2} and $C\left(f_{j}, \rho\right)$.
3. $\boldsymbol{d}\left(\boldsymbol{r}_{\boldsymbol{i}}(\boldsymbol{t}), \boldsymbol{f}_{\boldsymbol{j}}\right)<\boldsymbol{\rho}$. Let $l_{j i}(t)$ be the line segment from f_{j} to $C\left(f_{j}, \rho\right)$, passing through r_{i}. Let q be the intersection point between $l_{j i}(t)$ and $C\left(f_{j}, \rho\right)$. Since r_{i} is a candidate robot, the line segment $\overline{r_{i}(t) q}$ (excluding point q) can not possibly contain any robot positions other than $r_{i}(t)$. However, since q is a point on $C\left(f_{j}, \rho\right)$, it may be a robot position. If q is not a robot position, then r_{i} selects $q(t)=q$ and $P=\overline{r_{i}(t) q}$ (Figure $3.7(\mathrm{~A})$). Next, consider the case when q is a robot position and $C\left(f_{j}, \rho\right)$ does not contain any robot positions other than being collinear with r_{i} and f_{j}. Let B_{1} be the ray starting from $r_{i}(t)$ such that $\measuredangle \overline{r_{i}(t) q} r_{i}(t) B_{1}=\frac{\pi}{4} \quad$ (Figure $3.7(\mathrm{~B})$). Suppose B_{1} intersects $C\left(f_{j}, \rho\right)$ at q_{1}. The candidate robot r_{i} selects $q(t)=q_{1}$ and $P=\overline{r_{i}(t) q_{1}}$. Otherwise, let r_{u} (not collinear with r_{i} and f_{j}) be the robot position on $C\left(f_{j}, \rho\right)$ such that $\measuredangle \overline{r_{i}(t) q} r_{i}(t) \overline{r_{i}(t) r_{u}(t)}$ is the smallest. Let B_{2} be the ray starting from $r_{i}(t)$ such that $\measuredangle \overline{r_{i}(t) q} r_{i}(t) B_{2}=\frac{1}{2} \min \left(\frac{\pi}{2}, \measuredangle \overline{r_{i}(t) q} r_{i}(t) \overline{r_{i}(t) r_{u}(t)}\right)$. Suppose q_{2} is the intersection point between B_{2} and $C\left(f_{j}, \rho\right)$. The candidate robot selects $q(t)=q_{2}$ and $P=\overline{r_{i}(t) q_{2}}$ (Figure 3.7(C)).

In case there are exactly two candidate robots, which lie in different half-planes, each of them computes its destination point and movement path by ensuring that during its movement, it does not cross the y-axis. For example, consider the case when the target fixed point lies on the y-axis. A candidate robot will consider the tangent line and robot positions, which lie in its half-plane, while computing its destination point and movement path.

3.4.5 AlgorithmOneAxis

AlgorithmOneAxis is the proposed algorithm that solves the k-circle formation problem with one axis agreement. The pseudocode is given in Algorithm 3.2. Given $C(t)$, each active robot executes AlgorithmOneAxis $(C(t))$. During an execution of algorithm AlgorithmOneAxis $(C(t))$, if $C(t)$ is not a final configuration, then an active robot (say r_{k}) executes AgreementOneAxis $(C(t))$. Next, r_{k} considers the following cases:

```
ALGORITHM 3.2: AlgorithmOneAxis
    Input: \(C(t)=(R(t), F)\)
    Let \(r_{k}\) be an active robot at time \(t\);
    \(r_{k}\) executes AgreementOneAxis \((C(t))\);
    if the robots have an agreement on the positive direction of the \(x\)-axis then
        \(r_{k}\) executes TargetFPSelection \((C(t))\);
        Let \(f_{j}\) be the target fixed point;
        \(r_{k}\) executes CandidateRSelection \(\left(C(t), f_{j}\right)\);
        Let \(r_{i}\) be the candidate robot;
        if \(r_{k}=r_{i}\) then
            \(r_{k}\) executes MovetoDestination \(\left(C(t), f_{j}, r_{k}\right)\);
        end
    else
        if all the fixed points in \(F \backslash F_{y}\) are saturated then
            \(r_{k}\) executes TargetFPSelection \((C(t))\);
            Let \(f_{j}\) be the target fixed point;
            \(r_{k}\) executes CandidateRSelection \(\left(C(t), f_{j}\right)\);
            if there is a unique candidate robot then
                Let \(r_{i}\) be the candidate robot;
                if \(r_{k}=r_{i}\) then
                    \(r_{k}\) executes MovetoDestination \(\left(C(t), f_{j}, r_{k}\right)\);
                end
            else
                Let \(r_{i}\) be the candidate robot such that \(r_{k}\) and \(r_{i}\) lie in the same half-plane;
                if \(r_{k}=r_{i}\) then
                    \(r_{k}\) executes MovetoDestination \(\left(C(t), f_{j}, r_{k}\right)\);
                    end
            end
        else
            \(r_{k}\) executes Target \(F P\) Selection \((C(t))\);
            Let \(f_{j}\) and \(f_{b}\) be the target fixed points;
            \(r_{k}\) executes CandidateRSelection \(\left(C(t), f_{j}\right)\) and CandidateRSelection \(\left(C(t), f_{b}\right)\);
            Let \(r_{i}\) and \(r_{a}\) be the candidate robots of \(f_{j}\) and \(f_{b}\), respectively;
            if \(r_{k}=r_{i}\) then
                \(r_{k}\) executes MovetoDestination \(\left(C(t), f_{j}, r_{k}\right)\);
            else if \(r_{k}=r_{a}\) then
                \(r_{k}\) executes MovetoDestination \(\left(C(t), f_{b}, r_{k}\right)\);
            end
        end
    end
```

1. The robots have an agreement on the positive direction of the x-axis. Robot r_{k} executes Target FPSelection $(C(t))$. In this case there is a unique target fixed point. Let f_{j} be the target fixed point. Next, r_{k} identifies the candidate robot by executing CandidateRSelection $\left(C(t), f_{j}\right)$. Let r_{i} be the candidate robot selected for f_{j}. If $r_{k}=r_{i}$, then the robot r_{k} executes MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$.
2. The robots do not have any agreement on the positive direction of the x-axis. Robot r_{k} considers the following cases:
(a) All the fixed points in $F \backslash F_{y}$ are saturated. The robot r_{k} executes subprocedure TargetFPSelection $(C(t))$. In this case the unique target fixed point lies on the y-axis. Let f_{j} be the target fixed point. Robot r_{k} executes CandidateRSelection $\left(C(t), f_{j}\right)$. Let r_{i} be the candidate robot. Note that there may be two candidate robots for f_{j}. In that case, suppose r_{i} is the candidate robot, that lies in the same half-plane containing r_{k}. If $r_{k}=r_{i}$, then it executes MovetoDestination $\left.(C)(t), f_{j}, r_{i}\right)$.
(b) There exists an unsaturated fixed point in $F \backslash F_{y}$. Note that such unsaturated fixed points are present in both the half-planes. Otherwise the robots would have an agreement on the positive direction of the x-axis. Robot r_{k} executes TargetFPSelection $(C(t))$. In this case there are two target fixed points, one from each of the half-planes. Let f_{j} and f_{u} be the two target fixed points. Without loss of generality, assume that r_{k} and f_{j} lie in the same half-plane. Next, r_{k} executes CandidateRSelection $\left(C(t), f_{j}\right)$. Let r_{i} be the candidate robot selected for f_{j}. If $r_{k}=r_{i}$, then the robot r_{k} executes sub-procedure MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$.

3.5 Correctness of AlgorithmOneAxis

Lemma 3.5.1. Given a configuration $C(t)$ for some $t \geq 0$, if the robots agree upon the positive direction of the x-axis, by the execution of AgreementOneAxis $(C(t))$, then the agreement remains invariant at any arbitrary point of time $t^{\prime}>t$.

Proof. Let the robots agree upon the positive direction of the x-axis, by the execution of AgreementOneAxis $(C(t))$. Consider the following cases:

Case 1. $C(t) \in \mathcal{I}_{1}$, i.e., F is asymmetric about the y-axis. Since this agreement is w.r.t. the fixed points, it remains invariant for any $t^{\prime}>t$.

Case 2. $C(t) \in \mathcal{I}_{2}$ and $C(t)$ is unbalanced. In this case, the agreement on the direction of the positive x-axis is based upon robot positions. If the robots move across the y-axis
from the negative side to the positive side, then the agreement does not change as the positive side of the y-axis would still contain the maximum number of robots. During an execution of TargetFPSelection $(C(t))$, the unsaturated fixed points with a higher configuration rank are given preference over the unsaturated fixed points with a lower configuration rank. As a result, the robots move across the y-axis from the positive side to the negative side, only when all the fixed points on the positive side of the y-axis are either saturated or oversaturated. Due to this movement, the configuration would transform into a balanced configuration. Next, case 3 would follow.

Case 3. $C(t) \in \mathcal{I}_{2}$ is a balanced configuration and all the fixed points in one of the halfplanes are either saturated or oversaturated. Notice that a candidate robot, selected by the execution of CandidateRSelection $(C(t))$, would never lie on a saturated circle. As a result, once a circle becomes saturated, it would never become unsaturated. Thus, all the fixed points on the positive side of the y-axis would never become unsaturated. This implies that at any $t^{\prime}>t$ the agreement on the positive direction of the x-axis remains invariant.

Case 4. $C(t) \in \mathcal{I}_{2}$ is a balanced configuration with at least one unsaturated fixed point in both the half-planes. Also, k is odd and $F_{y} \neq \emptyset$. In this case, the positive x-axis direction is considered towards the half-plane in which there has been more progress at time t. During an execution of TargetFPSelection $(C(t))$, the unsaturated fixed points with higher configuration rank are given preference over the unsaturated fixed points with lower configuration rank. As a result, it is guaranteed to have more progress in the positive side of the y-axis for any $t^{\prime}>t$. Therefore, for any $t^{\prime}>t$ the agreement on the positive direction of the x-axis remains invariant. In case $t=0$, it might be possible that both the half-planes have the same progress. Since $C(0)$ is asymmetric about the y-axis in this case, there exists at least one robot asymmetric robot position. The positive x-axis direction is considered towards the half-plane, which contains the asymmetric robot with the highest configuration rank. For any $t^{\prime}>t$, either $C\left(t^{\prime}\right)=C(0)$ or it is guaranteed to have more progress in the positive side of the y-axis. Therefore, the agreement on the positive direction of the x-axis remains invariant.

Hence, if the robots agree upon the positive direction of the x-axis by the execution of AgreementOneAxis $(C(t))$, then at any arbitrary point of time $t^{\prime}>t$ the agreement remains invariant.

Next, we consider the balanced configurations in which the robots make an agreement on the positive direction of the x-axis at some $t^{\prime}>0$. Lemma 3.5.1 ensures that the agreement remains invariant for any $t^{\prime \prime}>t^{\prime}$. Note that, at any arbitrary point of time $t \in\left[0, t^{\prime}\right)$, the robots have selected two target fixed points, one from each of the half-planes. Since the scheduler is assumed to be asynchronous, it is possible to have a candidate robot on the negative side of the y-axis, selected at some $t \in\left[0, t^{\prime}\right)$ and which has not reached its destination point at t^{\prime}. We need to ensure that there would not be any collision due to the inherent motion of such a candidate robot.

Lemma 3.5.2. Let $C\left(t^{\prime}\right)$ for some $t^{\prime}>0$, be the configuration in which the robots make an agreement on the positive direction of the x-axis. Let r_{i} be the candidate robot on the negative side of the y-axis, that was selected for some target fixed point f_{j} at $t \in\left[0, t^{\prime}\right)$. If $t^{\prime \prime}$ is the point of time at which it re-computes its destination point, then it would avoid collisions with any other candidate robots in the time interval $\left[t^{\prime}, t^{\prime \prime}\right]$.

Proof. Let f_{a} be the target fixed point at some $t \in\left[t^{\prime}, t^{\prime \prime}\right]$. Since the robots have agreement on the positive direction of the x-axis, a unique candidate robot would be selected by the execution of CandidateRSelection $\left(C(t), f_{a}\right)$. Let r_{b} be the candidate robot. Note that, $f_{a} \geq f_{j}$ i.e., the configuration rank of f_{j} can not be higher than f_{a}. Otherwise, f_{j} would have been selected as the target fixed point. Consider the following cases:

Case 1. $f_{a}=f_{j}$. In this case $r_{a}=r_{i}$. This is because r_{i} is the candidate robot that was selected for f_{j} at $t \in\left[0, t^{\prime}\right)$ and has not reached $C\left(f_{j}, \rho\right)$. It would remain as the closest robot position from f_{j}, that does not lie on a saturated circle. Since r_{i} would be the unique robot which is in motion within $d\left(f_{j}, r_{i}\right)$ distance from f_{j}, there would not be any collision of robots.

Case 2. So we assume that $f_{j} \neq f_{a}$. The movement paths of r_{i} and r_{b} would not intersect. Otherwise, by triangle inequality r_{i} would have been at closer distance from f_{a}. So r_{i} would have selected as the candidate robot for f_{a} by the execution of subprocedure CandidateRSelection $\left(C(t), f_{a}\right)$. Since the movement paths do not intersect, r_{i} would

Figure 3.8: Robot r_{i} has moved from $r_{i}\left(t_{1}\right)$ to $r_{i}\left(t_{2}\right)$. It becomes a candidate robot for f_{a} at time t_{2}.
not collide with r_{b} during the time interval $\left[t^{\prime}, t^{\prime \prime}\right]$. Since the scheduler is assumed to be asynchronous, it is possible that r_{i} becomes the candidate robot for f_{a} as in Figure 3.8. As the movement paths do not intersect, r_{i} would continue its movement towards $C\left(f_{j}, \rho\right)$ without collision unless it stops and re-computes its destination point. If it stops it will execute MovetoDestination $\left(C(t), f_{a}, r_{i}\right)$. It computes its movement path towards $C\left(f_{a}, \rho\right)$ that does not intersect with the movement path of r_{b}. As a result, it would continue its movement towards $C\left(f_{a}, \rho\right)$ in subsequent time without any collision with r_{b}.

Hence, r_{i} would avoid collisions with any other candidate robots in the time interval $\left[t^{\prime}, t^{\prime \prime}\right]$.

Theorem 3.3.1 characterizes all the configurations and the values of k for which the k-circle formation problem is deterministically unsolvable. For some $k>0$, if the k-circle formation problem is deterministically solvable for a given $C(0)$, the robots can identify it in its look phase. The robots must ensure that such configurations would not transform into an configuration that would satisfy the unsolvability criterion (Theorem 3.3.1) for any $t>0$ during an execution of AlgorithmOneAxis.

Lemma 3.5.3. Given $k>0$ and $C(0)$, if the k-circle formation problem is deterministically solvable, then at any arbitrary point of time $t>0$ the configuration would not satisfy the unsolvability criterion (Theorem 3.3.1).

Proof. Since the k-circle formation problem is deterministically solvable for every even value of k, we assume that k is odd. Note that all the initial configurations, in which F is asymmetric about the y-axis or in which $F_{y}=\emptyset$, would never satisfy the unsolvability
criterion stated in Theorem 3.3.1. So we only need to consider all the initial configurations in which F is symmetric about the y-axis and $F_{y} \neq \emptyset$. So, $C(0) \notin \mathcal{I}_{1} \cup \mathcal{I}_{4}$. Also, $C(0) \notin \mathcal{I}_{5}$ (Otherwise, initially it would have been unsolvable). Therefore, $C(0) \in \mathcal{I}_{2} \cup \mathcal{I}_{3}$. We have the following cases:

Case 1. The robots make an agreement on the positive direction of x-axis, which remains invariant for any $t>0$ (Lemma 3.5.1). Since the agreement remains invariant, even if the configuration becomes symmetric about the y-axis, the configuration will not satisfy the unsolvability criterion stated in Theorem 3.3.1 for any $t>0$.

Case 2. The robots decide to transform $C(0)$ into an unbalanced configuration, in order to make an agreement on the positive direction of x-axis. This includes the following configurations:

1. $C(0) \in \mathcal{I}_{3}$.
2. $C(0) \in \mathcal{I}_{2}$ and it is balanced with at least one unsaturated fixed point in both the half-planes and $R_{y}(t) \neq \emptyset$.

Let t^{\prime} be earliest possible point of time at which it becomes unbalanced. In the time interval 0 to t^{\prime}, only the topmost robot on the y-axis would move along the y-axis. As a result, the configuration would not satisfy the unsolvability criterion (Theorem 3.3.1) for any $t \in\left[0, t^{\prime}\right)$. At t^{\prime}, the robots make an agreement on the positive direction of x-axis. Next, the proof follows from case 1.

Therefore, $C(0)$ would not transform into an unsolvable configuration at time $t>0$.

Given a configuration $C(t)$, let $n_{k}(t)$ denote the number of unsaturated fixed points. The robots may select one or two target fixed points. First, consider the case when the target fixed point is unique. Suppose, f_{j} is the target fixed point and r_{i} its candidate robot selected by the robots. Let P and $q(t)$ be the movement path and destination point, respectively, computed by r_{i} at time t, by the execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$. Consider a straight line along P towards $C\left(f_{j}, \rho\right)$ intersecting the circle $C\left(f_{j}, \rho\right)$ first at

Figure 3.9: Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$, along $P=\overline{r_{i}(t) p(t)}$ towards $q(t)=p(t)$ computed at time t. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) p\left(t^{\prime}\right)}$ and $q\left(t^{\prime}\right)=p\left(t^{\prime}\right)$ at time t^{\prime}. In this case, $q\left(t^{\prime}\right)=q(t)$. Also, $q(t)=s(t)$ and $q\left(t^{\prime}\right)=s\left(t^{\prime}\right)$, i.e., the destination point lies on $C\left(f_{j}, \rho\right)$.
$s(t)$ (The line would always intersect $\left.C\left(f_{j}, \rho\right)\right)$ at time t. Suppose $d_{j}(t)$ denotes the distance between $r_{i}(t)$ and $s(t)$. Recall that $D_{j}(t)$ denote the deficit in the number of robots in order to make f_{j} a saturated fixed point. Let $V_{j}(t)=\left(n_{k}(t), D_{j}(t), d_{j}(t)\right)$.

We say that there has been significant progress in the time interval t to t^{\prime} if $V_{j}\left(t^{\prime}\right)<$ $V_{j}(t)$, i.e., one of the following conditions holds:

1. $n_{k}\left(t^{\prime}\right)<n_{k}(t)$, or
2. $n_{k}\left(t^{\prime}\right)=n_{k}(t)$ and $D_{j}\left(t^{\prime}\right)<D_{j}(t)$, or
3. $n_{k}\left(t^{\prime}\right)=n_{k}(t)$ and $D_{j}\left(t^{\prime}\right)=D_{j}(t)$ and $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$.

Lemma 3.5.4. Let t^{\prime} be an arbitrary point of time before r_{i} reaches its destination computed at time t. During an execution of AlgorithmOneAxis $(C(t))$, execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$ ensures that $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$.

Proof. Let P and P^{\prime} be the selected movement paths for r_{i} at time t and t^{\prime}, respectively. We have $d_{j}(t)=d\left(r_{i}(t), s(t)\right)$ and $d_{j}\left(t^{\prime}\right)=d\left(r_{i}\left(t^{\prime}\right), s\left(t^{\prime}\right)\right)$. Note that $q(t)=s(t)$ implies that the destination point lies on $C\left(f_{j}, \rho\right)$. Consider the following cases:

Case 1. $q(t)=s(t)$ and $p(t)$ does not contain any robot position. This is the case where the robot moves straight towards f_{j}, i.e., $P=\overline{r_{i}(t) f_{j}}$ and the destination point $q(t)$ lies on $C\left(f_{j}, \rho\right)$ (Step 25 of Subprocedure 3.1). At time t^{\prime} there would not be any robot on $q(t)$ and r_{i} would continue along the same path. Since δ is the minimum displacement in a round, $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$. Recall that $p(t)$ denotes the intersection point between $C\left(f_{j}, \rho\right)$ and $\overline{r_{i} f_{j}}$. The movements are shown in Figure 3.9.

Figure 3.10: Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$, along P towards $q(t)$ computed at time t. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) p\left(t^{\prime}\right)}$ and $q\left(t^{\prime}\right)=p\left(t^{\prime}\right)$ at time t^{\prime}. Also, $q(t)=s(t)$ and $q\left(t^{\prime}\right)=s\left(t^{\prime}\right)$, i.e., the destination point lies on $C\left(f_{j}, \rho\right)$.

Figure 3.11: Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$, along $P=\overline{r_{i}(t) q}$ towards $q(t)=q$ computed at time $t\left(q\right.$ is the point of intersection between $C\left(f_{j}, \rho\right)$ and $\left.t^{a}\right)$. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) p\left(t^{\prime}\right)}$ and $q\left(t^{\prime}\right)=p\left(t^{\prime}\right)$ at time t^{\prime}. Also, $q(t)=s(t)$ and $q\left(t^{\prime}\right)=s\left(t^{\prime}\right)$, i.e., the destination point lies on $C\left(f_{j}, \rho\right)$.

Case 2. $q(t)=s(t)$ and $p(t)$ contains a robot position. There are robot positions on $C\left(f_{j}, \rho\right)$, that are not collinear with r_{i} and $p(t)$. By step 36 of Subprocedure 3.1 robot r_{i} computes the movement path P and destination point $q(t)$. It starts moving towards $q(t)$ along P. At time $t^{\prime}>t$, let $s\left(t^{\prime}\right)$ be the intersection point between $C\left(f_{j}, \rho\right)$ and $\overline{r_{i}\left(t^{\prime}\right) f_{j}}$. Note that, $p\left(t^{\prime}\right)$ is not a robot position. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) f_{j}}$ and $q\left(t^{\prime}\right)=p\left(t^{\prime}\right)$. We have $d\left(r_{i}\left(t^{\prime}\right), q(t)\right)>d\left(r_{i}\left(t^{\prime}\right), q\left(t^{\prime}\right)\right)$ and $d\left(r_{i}(t), q(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q\left(t^{\prime}\right)\right)>$ $d\left(r_{i}(t), q(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q(t)\right) \geq \delta$. This implies that $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$. The movements are shown in Figure 3.10.

Case 3. $q(t)=s(t)$ and $p(t)$ contains a robot position. There are no robots on $C\left(f_{j}, \rho\right)$, other than being collinear with r_{i} and f_{j}. By step 30 of Subprocedure 3.1 robot r_{i} computes the movement path P and destination point $q(t)$. This case is similar to case 2 . The movements are shown in Figure 3.11.

Figure 3.12: $C\left(f_{u}, \rho\right)$ is a saturated circle and q is the point of intersection between $C\left(f_{u}, \rho\right)$ and $\overline{r_{i}(t) f_{j}}$, which is at closest distance from r_{i}. Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$, along $P=\overline{r_{i}(t) q}$ towards $q(t)=q$ computed at time t. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) q}$ and $q\left(t^{\prime}\right)$ on $C\left(f_{u}, \rho\right)$ at time t^{\prime}. In this case, $q\left(t^{\prime}\right)=q(t)$. Also, $q(t) \neq s(t)$
and $q\left(t^{\prime}\right) \neq s\left(t^{\prime}\right)$, i.e., the destination point does not lie on $C\left(f_{j}, \rho\right)$.

Figure 3.13: Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$, along $P=\overline{r_{i}(t) q_{1}}$ towards $q(t)=q_{1}$ computed at time t. Robot r_{i} selects $\underline{P^{\prime}=\overline{r_{i}}(t) q}$ and $q\left(t^{\prime}\right)=p^{\prime}$ (p^{\prime} is the point of intersection between $C\left(f_{u}, \rho\right)$ and $\left.\overline{r_{i}\left(t^{\prime}\right) f_{j}}\right)$ on $C\left(f_{u}, \rho\right)$ at time t^{\prime}

Case 4. $q(t) \neq s(t)$. In this case $q(t)$ lies on a saturated circle $C\left(f_{u}, \rho\right)$ for some $f_{u} \neq f_{j}$. Note that, $C\left(f_{u}, \rho\right)$ is the first circle, that r_{i} cuts while moving along $\overline{r_{i}(t) f_{j}}$. First, consider the case in which $P=\overline{r_{i}(t) q}$ and $q(t)=q$ (Step 43 of Subprocedure 3.1), where q is intersection point between $\overline{r_{i}(t) f_{j}}$ and $C\left(f_{u}, \rho\right)$, which is at closest distance from r_{i}. Since δ is the minimum displacement in a round, $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$. The movements are shown in (Figure 3.12). Next, consider the case in which r_{i} computes its movement path P by step 49 of Subprocedure 3.1. It starts moving towards $q(t)$ along path P. At time $t^{\prime}>t$, let p^{\prime} be the intersection point between $C\left(f_{u}, \rho\right)$ and $\overline{r_{i}\left(t^{\prime}\right) f_{j}}$. Note that p^{\prime} is not a robot position. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) f_{j}}$ and $q\left(t^{\prime}\right)=p^{\prime}$ (Figure 3.13). We have $d\left(r_{i}\left(t^{\prime}\right), s(t)\right)>d\left(r_{i}\left(t^{\prime}\right), s\left(t^{\prime}\right)\right)$ and $d\left(r_{i}(t), s(t)\right)-d\left(r_{i}\left(t^{\prime}\right), s\left(t^{\prime}\right)\right)>$ $d\left(r_{i}(t), s(t)\right)-d\left(r_{i}\left(t^{\prime}\right), s(t)\right) \geq \delta$. This implies that $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$.

Case 5. $d\left(r_{i}, f_{j}\right)<\rho$. We have $q(t)=s(t)$. Let q be the intersection point between $C\left(f_{j}, \rho\right)$ and $l_{j i}(t)$. First, consider the case when r_{i} selects $P=\overline{r_{i}(t) q}$ and $q(t)=q$ (Step 5 of Subprocedure 3.1). At time t^{\prime}, there would not be any robot position on $q(t)$. Robot r_{i} selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) q}$. Since δ is the minimum displacement in a round, $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$.

Figure 3.14: (A) Robot r_{i} has moved from $r_{i}(t)$ to $r_{i}\left(t^{\prime}\right)$ along $P=\overline{r_{i}(t) q}$ towards $q(t)=q\left(q\right.$ is the point of intersection between $C\left(f_{j}, \rho\right)$ and $\left.l_{j i}(t)\right)$. It selects $P^{\prime}=\overline{r_{i}\left(t^{\prime}\right) q}$ and $q\left(t^{\prime}\right)=q$. (B)At time t, r_{i} selects $P=\overline{r_{i}(t) q_{1}}$ and $q(t)=q_{1}$. It selects $P^{\prime}=\underline{r_{i}(t) q_{3}}$ and $q\left(t^{\prime}\right)=q_{3}$. (C) At time t, r_{i} selects $P=\overline{r_{i}(t) q_{2}}$ and $q(t)=q_{2}$. It selects $\overline{r_{i}(t) q_{4}}$ and $q\left(t^{\prime}\right)=q_{4}$.

Movements are shown in Figure 3.14(A). Next, consider the case in which r_{i} selects its movement path P by step 11 or step 17 of Subprocedure 3.1. We have $d\left(r_{i}\left(t^{\prime}\right), q(t)\right)>$ $d\left(r_{i}\left(t^{\prime}\right), q\left(t^{\prime}\right)\right)$ and $d\left(r_{i}(t), q(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q\left(t^{\prime}\right)\right)>d\left(r_{i}(t), q(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q(t)\right) \geq \delta$. Hence, $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$. Movements are shown in Figure 3.14(B) and 3.14(C).

Hence, execution of MovetoDestination $(C(t))$ ensures $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$.
Lemma 3.5.5. Let f_{j} be the target fixed point and r_{i} its candidate robot in the configuration $C(t)$. During an execution of AlgorithmOneAxis $(C(t))$, the execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$ ensures significant progress.

Proof. Let r_{i} compute movement path P and destination point $q(t)$ by the execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$ at time t. Let $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. We need to show that there has been significant progress in between the time interval t to t^{\prime}. We have the following cases:

Case 1. $r_{i}\left(t^{\prime}\right)=q(t)$ and r_{i} is on the $C\left(f_{j}, \rho\right)$. We have the following two sub-cases:
Subcase 1. If $C\left(f_{j}, \rho\right)$ has exactly k robots on it, then $n_{k}\left(t^{\prime}\right)=n_{k}(t)-1$, ensuring significant progress.

Subcase 2. If $C\left(f_{j}, \rho\right)$ has less than k robots on it, then $D_{j}\left(t^{\prime}\right)=D_{j}(t)-1$, ensuring significant progress.

Case 2. $r_{i}\left(t^{\prime}\right) \neq q(t)$ and r_{i} is not on any oversaturated $C\left(f_{u}, \rho\right)$. In this case $d_{j}\left(t^{\prime}\right)+\delta \leq$ $d_{j}(t)$ by Lemma 3.5.4, which ensures significant progress.

Case 3. $r_{i}\left(t^{\prime}\right) \neq q(t)$ and r_{i} is on an oversaturated $C\left(f_{u}, \rho\right)$. Since at this stage, a candidate robot for f_{j} will be selected again, CandidateRSelection $\left(C\left(t^{\prime}\right), f_{j}\right)$ will select a robot r_{k} such that $d\left(r_{k}\left(t^{\prime}\right), f_{j}\right) \leq d\left(r_{i}\left(t^{\prime}\right), f_{j}\right)$. Either $r_{k}=r_{i}$ or $r_{k} \neq r_{i}$. By Lemma 3.5.4, significant progress is ensured, in both the cases.

Hence, execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$ ensures significant progress.
Lemma 3.5.6. Let f_{j} be a target fixed point and r_{i} its unique selected candidate robot at time t. Until r_{i} reaches its destination point computed at time t, it remains the candidate robot for f_{j}.

Proof. Let r_{i} compute its movement path P and destination point $q(t)$ by the execution of MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$. Note that, $q(t)$ is either a point on the circle $C\left(f_{j}, \rho\right)$ or on some saturated circle $C\left(f_{u}, \rho\right)$. Let t^{\prime} be an arbitrary point of time such that $r_{i}\left(t^{\prime}\right) \neq q(t)$. At time t^{\prime}, f_{j} remains an unsaturated fixed point. As a result, f_{j} remains a target fixed point at time t^{\prime}. Lemma 3.5.4 guarantees that r_{i} has moved at least δ amount closer to $C\left(f_{j}, \rho\right)$. Therefore, it remains the candidate robot for f_{j}.

Next, we consider the case when there are two candidate robots for a target fixed point. Since robots have an agreement on the directions and orientations of the y-axis, there can be at most two candidate robots at any point of time. Note that, in this case, the configuration would have a unique target fixed point, that lies on the y-axis.

Lemma 3.5.7. Let f_{j} be the target fixed point and r_{i} and r_{v} are the two selected candidate robots for f_{j} at time t. Until at least one of them reaches its destination point computed at time t, no other robot becomes a candidate robot. If one of the candidate robots have reached its destination point and the other one has not, then the other robot either continues its inherent motion towards its destination point (computed at time t) without any collision or gets selected as a candidate robot only when $D_{j}(t)$ reduces by one.

Proof. Let $t^{\prime}>t$ be an arbitrary point of time when at least one of the candidate robots has completed its LCM cycle. Without loss of generality, assume that r_{i} has completed its

LCM cycle at t^{\prime}. Let $q(t)$ be the destination point and P be the movement path computed for r_{i} by MovetoDestination $\left(C(t), f_{j}, r_{i}\right)$. Note that $q(t)$ is a point either on the $C\left(f_{j}, \rho\right)$ or on some saturated $C\left(f_{u}, \rho\right)$. We have the following cases:

Case 1. $q(t)$ is a point on the circle $C\left(f_{j}, \rho\right)$. We have the following subcases:
Subcase 1. $r_{i}\left(t^{\prime}\right)=q(t)$. Since r_{i} has reached its destination, the first part of the lemma follows. We have $D_{j}\left(t^{\prime}\right)=D_{j}(t)-1$. At t^{\prime}, if r_{v} has also completed its LCM cycle and has not reached its destination point, then it becomes the next candidate robot for f_{j}. If r_{v} is in motion, then being the only robot in motion within the annulus region between $C\left(f_{j}, \rho\right)$ and $C\left(f_{j}, d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)\right)$, it continues its motion without any collision. Note that, in this case, no other robot will be selected for movement until r_{v} reaches its destination.

Subcase 2. $r_{i}\left(t^{\prime}\right) \neq q(t)$. First consider that $\left|d\left(f_{j}, r_{i}\left(t^{\prime}\right)\right)-\rho\right|>\left|d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)-\rho\right|$, i.e., robot r_{v} is closer to $C\left(f_{j}, \rho\right)$ than r_{i}. At t^{\prime}, either r_{v} has also completed its LCM cycle and has not reached its destination point or r_{v} is in motion. In both the cases, r_{v} remains a candidate robot for f_{j}. The first part of the lemma follows for r_{v}. Robot r_{i} will be selected as a candidate robot when r_{v} will reach $C\left(f_{j}, \rho\right)$. Next consider that $\left|d\left(f_{j}, r_{i}\left(t^{\prime}\right)\right)-\rho\right|<\left|d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)-\rho\right|$, i.e., robot r_{i} is closer to $C\left(f_{j}, \rho\right)$ than r_{v}. Robot r_{i} will be selected as a candidate robot. At t^{\prime}, if r_{v} has also completed its LCM cycle, then it will become the candidate robot when r_{i} will reach $C\left(f_{j}, \rho\right)$. If r_{v} is in motion, then it continues its motion without any collision (As destination point and movement path computed by r_{i} and r_{v} respectively are separated by the y-axis and there are no other robots in the half-plane containing r_{v}, which is in motion within the annulus region between $C\left(f_{j}, \rho\right)$ and $\left.C\left(f_{j}, d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)\right)\right)$. We have two possible cases. First, r_{v} will also reach $C\left(f_{j}, \rho\right)$. Second, if it stops before reaching $C\left(f_{j}, \rho\right)$, then it will become a candidate robot only when r_{i} will reach $C\left(f_{j}, \rho\right)$.

Case 2. $q(t)$ is a point on some saturated circle $C\left(f_{u}, \rho\right)$. Consider the following cases:
Subcase 1. $r_{i}\left(t^{\prime}\right)=q(t)$. Since r_{i} has reached its destination, the first part of the lemma follows. At t^{\prime}, since $C\left(f_{u}, \rho\right)$ contains $k+1$ robots, the next candidate robot for f_{j} will be selected from $C\left(f_{u}, \rho\right)$. Note that, this robot position would have higher y-coordinate than $q(t)$. If r_{v} has also completed its LCM cycle and has not reached its destination point, then it will become a candidate robot for f_{j} only when $D_{j}\left(t^{\prime \prime}\right)=D_{j}\left(t^{\prime}\right)-1$ for some $t^{\prime \prime}>t^{\prime}$. If r_{v} is in motion, then it continues its motion without any collision (It
is the only robot, which is in motion within the annulus region between $C\left(f_{j}, \rho\right)$ and $C\left(f_{j}, d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)\right)$ and below $\left.q(t)\right)$.

Subcase 2. $r_{i}\left(t^{\prime}\right) \neq q(t)$. First consider that $\left|d\left(f_{j}, r_{i}\left(t^{\prime}\right)\right)-\rho\right|>\left|d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)-\rho\right|$, i.e., robot r_{v} is closer to $C\left(f_{j}, \rho\right)$ than r_{i}. At t^{\prime}, either r_{v} has also completed its LCM cycle and has not reached its destination point or r_{v} is in motion. In both cases, r_{v} remains a candidate robot for f_{j}. The first part of the lemma follows for r_{v}. Robot r_{i} will be selected as a candidate robot only when $D_{j}(t)$ reduces by one. Next consider that $\left|d\left(f_{j}, r_{i}\left(t^{\prime}\right)\right)-\rho\right|<\left|d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)-\rho\right|$, i.e., robot r_{i} is closer to $C\left(f_{j}, \rho\right)$ than r_{v}. Robot r_{i} will be selected as a candidate robot. At t^{\prime}, if r_{v} has also completed its LCM cycle and has not reached its destination point, then it will become a candidate robot only when $D_{j}(t)$ reduces by one. If r_{v} is in motion, then it continues its motion without any collision (As destination point and path computed by r_{i} and r_{v}, respectively, are separated by the y-axis and there are no other robots in motion within the annulus region between $C\left(f_{j}, \rho\right)$ and $C\left(f_{j}, d\left(f_{j}, r_{v}\left(t^{\prime}\right)\right)\right)$ and below the point $\left.q(t)\right)$. We have two possible cases. First, r_{v} will also reach $C\left(f_{u}, \rho\right)$. Second, if it stops before reaching $C\left(f_{u}, \rho\right)$, then it will become a candidate robot only when $D_{j}(t)$ reduces by one.

Next, we consider the case when there are two target fixed points, one from each halfplane. Let f_{j} and f_{a} be the target fixed points at time t. Let r_{i} and r_{b} be their respective candidate robots. We have $V_{j}(t)=\left(n_{k}(t), D_{j}(t), d_{j}(t)\right)$ and $V_{a}(t)=\left(n_{k}(t), D_{a}(t), d_{a}(t)\right)$.

Lemma 3.5.8. Let a given configuration $C(t)$ admit two target fixed points during an execution of AlgorithmOneAxis $(C(t))$ and $t^{\prime}>t$ be an arbitrary point of time when at least one candidate robot has completed its LCM cycle. For at least one target fixed point $f_{i} \in\left\{f_{j}, f_{a}\right\}$ and its candidate robot, $d_{i}\left(t^{\prime}\right)+\delta \leq d_{i}(t)$.

Proof. Each target fixed point is unique in their respective half-planes. Execution of AlgorithmOneAxis $(C(t))$ ensures that for each target fixed point, its candidate robot is selected from its respective half-planes. The circle formation process continues independently in both the half-planes. This implies that for each $i \in\{j, a\}, V_{i}(t)$ is updated only due to the movement of f_{i} 's candidate robot. Without loss of generality, suppose candidate robot r_{i} of the target fixed point f_{j} has completed its LCM cycle. By Lemma 3.5.4, $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$ is ensured.

Lemma 3.5.9. Let a given configuration $C(t)$ admit two target fixed points during an execution of AlgorithmOneAxis $(C(t))$ and $t^{\prime}>t$ be an arbitrary point of time when at least one candidate robot has completed its LCM cycle. AlgorithmOneAxis $(C(t))$ ensures significant progress.

Proof. Lemma 3.5.8 ensures that for at least one target fixed point $f_{i} \in\left\{f_{j}, f_{a}\right\}$ and its candidate robot, $d_{i}\left(t^{\prime}\right)+\delta \leq d_{i}(t)$ holds. Without loss of generality, assume that for the target fixed point f_{j} we have $d_{j}\left(t^{\prime}\right)+\delta \leq d_{j}(t)$ in the time interval t to t^{\prime}. By Lemma 3.5.5, we have $V_{j}\left(t^{\prime}\right)<V_{j}(t)$, i.e., significant progress is ensured.

Theorem 3.5.10. If the initial configuration $C(0) \in\left\{\mathcal{I}_{1} \cup \mathcal{I}_{2} \cup \mathcal{I}_{3} \cup \mathcal{I}_{4} \cup \mathcal{I}_{5}\right\}$ and $C(0)$ does not satisfy the unsolvability criterion stated in Theorem 3.3.1, then the robots would eventually solve the k-circle formation problem under one axis agreement, by the execution of AlgorithmOneAxis.

Proof. Lemma 3.5.3 guarantees that for any $t>0$, the configuration $C(t)$ would not satisfy the unsolvability criterion stated in Theorem 3.3.1. We have the following cases:

Case 1. There is a unique target fixed point (say f_{j}) in the configuration. The Lemma 3.5.5 ensures that each time a candidate robot gets activated, significant progress is ensured. If there is a unique candidate robot for f_{j}, then Lemma 3.5.6 guarantees that until the candidate robot reaches its destination, it would remain the candidate robot. In case there are two candidate robots for f_{j}, then Lemma 3.5.7 guarantees that until one of the candidate robots reaches its destination point, no other robot will become a candidate robot. As a result, one of the candidate robots will reach its destination point eventually. If the other candidate robot does not reach its destination point, then it becomes a candidate robot for f_{j} when $D_{j}(t)$ reduces by one. Thus, the circle formation process around all the fixed points will be completed eventually.

Case 2. There are two target fixed points. Note that the target fixed points lie in different half-planes delimited by the y-axis. Lemma 3.5.9 ensures significant progress. Lemma 3.5.6 guarantees that until a candidate robot reaches its destination, it remains the candidate robot. Note that in this case for each of the target fixed points, always a unique candidate robot gets selected. Thus, the circle formation process around all the fixed points will be completed eventually.

Hence, the robots would eventually solve the k-circle formation problem with one axis agreement.

From Theorem 3.5.10, it follows that the robots would solve the k-circle formation problem under one axis agreement within finite time. Since we have considered the scheduler to be ASYNC, the robots do not have any common notion of time. As a result, the actual time to solve the k-circle formation problem depends upon the scheduling of the robots. We use the notion of an epoch [118] to discuss the runtime complexity of our proposed algorithm. An epoch is the time interval in which all the robots in the configuration have performed their LCM cycles at least once. According to this definition, the time is divided into global epochs. We also assume that the robots have rigid motion, i.e., the robot is guaranteed to reach its destination whenever it moves. In such a setting, we have the following observations:

1. If a candidate robot does not have to pass through a saturated circle in order to reach the circle centered at its target fixed point, then it would reach the circle within one epoch.
2. If a candidate robot has to pass through a saturated circle in order to reach the circle centered at its target fixed point, then it would reach the circle in at most three epochs. This is because the movement path would intersect the saturated circle either one or two times.

From the above two observations, it follows that a candidate robot would reach the circle centered at its target fixed point within $2(m-1)+1=2 m-1$ epochs. This is because, it might have to pass through $(m-1)$ number of saturated circles. Since AlgorithmOneAxis is sequential, each target fixed point would need at most $k(2 m-1)$ epochs to become saturated. Therefore, the k-circle formation problem would be solved within $\mathcal{O}\left(m^{2} k\right)$ epochs. This is a loose upper bound on the running time of AlgorithmOneAxis in terms of epochs.

$3.6 \quad k$-Circle Formation when $n>k m$

In this section, we assume that there are $n>k m$ robots in the Euclidean plane. As the definition of the k-circle formation problem requires k distinct robot positions on each circle, there will be $n-k m$ surplus robots.

3.6.1 Impossibility Results when $n>k m$

(A)

(B)

Figure 3.15: Examples of Impossibility Results when $n>k m$. (A) $|F|$ is even, (B) $|F|$ is odd.

Theorem 3.6.1. Given $C(0) \in \mathcal{I}_{5}$, if $R_{y}(0)=\emptyset$ and k is an odd integer, then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Figure 3.15 shows examples of configurations in which the k-circle formation problem is unsolvable. For both the configurations, $k=1$ and $R_{y}(0)=\emptyset$. In Figure 3.15(A), $|F|=2$ (even) and $n=4>2=k m$, whereas in Figure $3.15(\mathrm{~B}),|F|=3$ (odd) and $n=4>3=k m$.

3.6.2 Algorithm for the k-Circle Formation when $n>k m$

The definition of a final configuration includes the criterion that each robot is located on a circle. However, there will be $n-k m$ surplus robots present in the configuration. In this case, we define a configuration to be a final with surplus robots if the following conditions are satisfied:

1. $C\left(f_{i}, \rho\right) \cap C\left(f_{j}, \rho\right)=\emptyset$ for $f_{i} \neq f_{j}$,
2. Each circle contains exactly k robots at distinct positions.

Define algorithm AlgoSurplus as follows:

1. If the current configuration is not a final with surplus robots, then the robots will execute AlgorithmOneAxis.
2. Else terminate.

Theorem 3.6.2. If $C(0) \in\left\{\mathcal{I}_{1} \cup \mathcal{I}_{2} \cup \mathcal{I}_{3} \cup \mathcal{I}_{4} \cup \mathcal{I}_{5}\right\}$ and $C(0)$ does not satisfy the unsolvability criterion stated in Theorem 3.6.1, then the robots would eventually solve the k-circle formation problem under one axis agreement, by the execution of AlgoSurplus.

Proof. The idea of proof is similar to the proof of Theorem 3.5.10.

$3.7 \quad k$-Circle Formation when $n<k m$

In this section, we assume that there are $n<k m$ robots in the Euclidean plane. As the definition of the k-circle formation problem requires exactly k distinct robot positions on each circle and $n<k m$, some fixed points will remain unsaturated. The objective is to maximize the number of saturated circles.

3.7.1 Impossibility Results when $n<k m$

Let $m_{1}=\frac{m-\left|F_{y}\right|}{2}$. If $C(t) \in \mathcal{I}_{4}$, then $m_{1}=\frac{m}{2}$.
Theorem 3.7.1. Let $C(0) \in \mathcal{I}_{4}$ be such that $R_{y}(0)=\emptyset$. If $k(p-1)<\frac{n}{2}<k p$ where $1 \leq p \leq m_{1}$, and $\frac{n}{2}-k(p-1) \geq\left\lceil\frac{k}{2}\right\rceil$, then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Figure 3.16: Examples of Impossibility Results when $n<k m$ and $C(t) \in \mathcal{I}_{4}$. (A) k is even, (B) k is odd.

Figure 3.16 shows examples of configurations in which the k-circle formation problem is unsolvable as the unsolvability criterion stated in Theorem 3.7.1 is satisfied. For both the configurations, $C(t) \in \mathcal{I}_{4},|F|=4$ and $R_{y}(0)=\emptyset$. In Figure 3.16(A), $k=2$ (even), $p=2$ and $k(p-1)=2<\frac{n}{2}=3<k p=4$. Also, $\frac{n}{2}-k(p-1)=3-2=1 \geq\left\lceil\frac{k}{2}\right\rceil=1$. In Figure 3.15(B), $k=3$ (odd), $p=2$ and $k(p-1)=3<\frac{n}{2}=4<k p=6$. Also, $\frac{n}{2}-k(p-1)=5-3=2 \geq\left\lceil\frac{k}{2}\right\rceil=2$.
Theorem 3.7.2. Let $C(0) \in \mathcal{I}_{5}$ such that $R_{y}(0)=\emptyset$ and k is an even integer. If the following conditions hold:

1. $n>k\left|F_{y}\right|$,
2. $k(p-1)<\frac{n-k\left|F_{y}\right|}{2}<k p$ where $1 \leq p \leq m_{1}$, and
3. $\frac{n-k\left|F_{y}\right|}{2}-k(p-1) \geq\left\lceil\frac{k}{2}\right\rceil$,
then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.
Theorem 3.7.3. Let $C(0) \in \mathcal{I}_{5}$ be such that $R_{y}(0)=\emptyset$ and $k=1$. If $n>2 m_{1}$, then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

In the Figure $3.17(\mathrm{~A})$, an example of a configuration $C(t) \in \mathcal{I}_{5}$ that satisfies the unsolvability criterion stated in Theorem 3.7.2. We have $k=2,\left|F_{y}\right|=2, n=10>$

Figure 3.17: Examples of Impossibility Results when $n<k m$ and $C(t) \in \mathcal{I}_{5}$. (A)

$$
k=2,(\mathrm{~B}) k=1 .
$$

$k\left|F_{y}\right|=4, k(p-1)=2(2-1)=2<\frac{n-k\left|F_{y}\right|}{2}=3<k p=4$ where $p=2$. Also, $\frac{n-k\left|F_{y}\right|}{2}-k(p-1)=3-2=1 \geq\left\lceil\frac{2}{2}\right\rceil=1$. Figure 3.17(B) shows an example of a configuration $C(t) \in \mathcal{I}_{5}$ in which $k=1$ and $n=6>2 m_{1}=2.2=4$ satisfying the unsolvability criterion stated in Theorem 3.7.3.

Theorem 3.7.4. Let $C(0) \in \mathcal{I}_{5}$ be such that $R_{y}(0)=\emptyset$. If $k>1$ is an odd integer such that one of the following conditions holds:

1. $n>2 k m_{1}$, or
2. $n<2 k m_{1}$ and $k(p-1)<\frac{n}{2}<k p$ where $1 \leq p \leq m_{1}$, and $\frac{n}{2}-k(p-1) \geq\left\lceil\frac{k}{2}\right\rceil$,
then the k-circle formation problem is unsolvable.

Proof. The idea of proof is similar to the proof of Theorem 3.3.1.

Figure 3.18(A) shows an example of a configuration $C(t) \in \mathcal{I}_{5}$ with $n=10>2 k m_{1}=$ 6, that satisfies the unsolvability criterion stated in Theorem 3.7.4. In the Figure 3.18(B), $C(t) \in \mathcal{I}_{5}$ with $n=4>2 k m_{1}=12$. Also, $k(p-1)=3 .(1-1)=0<\frac{n}{2}=2<k p=3$ where $p=1$, and $\frac{n}{2}-k(p-1)=3-0=3 \geq\left\lceil\frac{k}{2}\right\rceil=2$. Figure $3.18(\mathrm{~B})$ satisfies the unsolvability criterion stated in Theorem 3.7.4.

Figure 3.18: Examples of Impossibility Results when $n<k m, k=3$ and $C(t) \in \mathcal{I}_{5}$. (A) $n>2 k m_{1}$, (B) $n<2 k m_{1}$.

3.7.2 Algorithm for the k-Circle Formation when $n<k m$

Suppose $n=k p_{1}+p_{2}$ where $p_{1} \geq 0$ and $0 \leq p_{2} \leq k$. In this case, we define a configuration to be a final with slack robots if the following conditions are satisfied:

1. $C\left(f_{i}, \rho\right) \cap C\left(f_{j}, \rho\right)=\emptyset$ for $f_{i} \neq f_{j}$,
2. There are exactly p_{1} number of saturated circles.

Define algorithm AlgoSlack as follows:

1. If the current configuration is not a final with slack robots, then execute algorithm AlgorithmOneAxis.
2. Else terminate.

Theorem 3.7.5. If $C(0) \in\left\{\mathcal{I}_{1} \cup \mathcal{I}_{2} \cup \mathcal{I}_{3} \cup \mathcal{I}_{4} \cup \mathcal{I}_{5}\right\}$ and $C(0)$ does not satisfy the unsolvability criteria stated in Theorems 3.7.1, 3.7.3, 3.7.4 and 3.7.4 then the robots would eventually solve the k-circle formation problem under one axis agreement, by the execution of AlgoSlack.

Proof. The idea of proof is similar to the proof of Theorem 3.5.10.

3.8 Relationship between the k-Circle Formation problem and the k-EPF problem

Given $m>0$ fixed points and $n=k m$ robots for some positive integer k, the k-EPF problem asks exactly k robots to reach and remain in each fixed point. Since the definition of the k-circle formation problem asks for distinct robot positions, we only consider the initial configurations with distinct robot positions. We want to prove the following theorem.

Theorem 3.8.1. For a given initial configuration with distinct robot positions and a positive integer k, if the k-circle formation problem is deterministically solvable then the k-EPF problem is also deterministically solvable.

In order to prove the above theorem, we modify AlgorithmOneAxis, to solve the k - $E P F$ problem deterministically within finite time.

3.8.1 Algorithm for the $k-E P F$ problem

Let $C(0)$ be the given initial configuration. Suppose the k-circle formation problem has been solved in $C(t)$, for some $t \geq 0$, with radius ρ, by the execution of AlgorithmOneAxis. In order to solve the k-EPF problem, the robots must reach the fixed points. The robots can accomplish this by moving in a straight line towards the fixed point. Since the robots are oblivious, they do not remember any information about the past events. Therefore, if any robot stops before reaching the fixed point for some $t^{\prime}>t$, it would not remember that the k-circle formation problem has already been solved. As a result, it will again start executing AlgorithmOneAxis. To resolve such a situation, consider the following definition. A configuration is said to satisfy Property 1, if the following conditions hold:

1. Each robot lies within ρ distance from some fixed point.
2. $\forall f_{i} \in F$, there are at most k robots, which lie within ρ distance from f_{i}.

Given a configuration which satisfies Property 1, let \mathcal{A} be an algorithm as follows:

If there exists a robot r_{i} such that $0<d\left(r_{i}, f_{j}\right) \leq \rho$ for some $f_{j} \in F$, then r_{i} moves along $\overline{r_{i} f_{j}}$ towards f_{j}.

Define algorithm AlgokEPF as follows:

If the current configuration satisfies Property 1 , then execute \mathcal{A}.
Else the robots execute AlgorithmOneAxis.

During an execution of \mathcal{A}, it must be ensured that none of the robots have any inherent motion, which is not directed towards the fixed point. Since all the robots are stationary in the initial configuration, if $C(0)$ satisfies Property 1, then none of the robots would have any inherent motion.

Lemma 3.8.2. During an execution of AlgorithmOneAxis ift >0 is the earliest possible point of time at which the configuration $C(t)$ satisfies Property 1, then none of the robots would have any inherent motion in $C(t)$.

Proof. Since $C(t)$ satisfies Property 1, each robot lies within ρ distance from some fixed point. Also, notice that there are no oversaturated circles in $C(t)$. Let f_{j} be the target fixed point which became saturated at time t due to the movement of a candidate robot (say $\left.r_{i}\right)$. Notice that if f_{j} lies on the y-axis and the configuration is symmetric, there would be two such candidate robots. In that case, we assume that both of them reached $C\left(f_{j}, \rho\right)$ at time t. Otherwise, the configuration $C(t)$ can not possibly satisfy Property 1. Suppose r_{i} became a candidate robot at some time $t_{1}<t$ by the execution of CandidateRSelection. Note that in the time interval $\left[t_{1}, t\right)$, the distance of r_{i} from f_{j} was greater than ρ. Otherwise, the choice of t is wrong. If there were two candidate robots for f_{j}, then this is true for both the candidate robots. Also, at time t_{1} there were no robot position (say r_{a}) such that $d\left(f_{j}, r_{a}(t)\right)<\rho$. Otherwise, r_{a} would have been selected as a candidate robot. Notice that the candidate robot(s) was the only robot which was moving towards $C\left(f_{j}, \rho\right)$. Therefore, all the robots on $C\left(f_{j}, \rho\right)$ are static at t. Next, consider a fixed point $f_{l} \in F$ such that f_{l} has higher configuration rank than f_{j}. All the robots within ρ distance from f_{l} must lie on $C\left(f_{l}, \rho\right)$. This is because, during an execution of CandidateRSelection for a fixed point, a robot within ρ distance from that fixed point is given higher preference
than any robot at greater than ρ distance from that fixed point. Since $C\left(f_{l}, \rho\right)$ is not oversaturated, all the robots are static at time t. Next, consider a fixed point $f_{b} \in F$ such that f_{b} has lower configuration rank than f_{j}. By the choice of f_{j} and r_{i}, none of the robots within ρ distance from f_{b} were selected as a candidate robot. Therefore, all the robots within ρ distance from f_{b} are static at time t. Hence, if the configuration $C(t)$ satisfies Property 1, then none of the robots have any inherent motion in $C(t)$.

Theorem 3.8.3. If the initial configuration $C(0) \in\left\{\mathcal{I}_{1} \cup \mathcal{I}_{2} \cup \mathcal{I}_{3} \cup \mathcal{I}_{4} \cup \mathcal{I}_{5}\right\}$ and $C(0)$ does not satisfy the unsolvability criterion stated in Theorem 3.3.1, then the robots would eventually solve the k-EPF problem under one axis agreement, by the execution of algorithm AlgokEPF.

Proof. First, consider the case when the configuration does not satisfy Property 1. The robots would start executing AlgorithmOneAxis. From Theorem 3.5.10, it follows that the configuration would eventually satisfy Property 1. Next, consider the case when the configuration satisfies Property 1. From Lemma 3.8.2, it follows that all the robots would be static in such a configuration. The robots would start executing \mathcal{A}. During an execution of \mathcal{A}, each robot moves in a straight line by at least δ distance, towards the fixed point from which it is at the closest distance. Since ρ is finite and there are finitely many robots, eventually each of the fixed points will contain exactly k robots.

Hence, the robots would eventually solve the k-EPF problem by the execution of algorithm AlgokEPF.

The above theorem provides an evidence that a deterministic distributed algorithm to solve the k-circle formation problem can be modified to solve the k-EPF problem and proves Theorem 3.8.1. Notice that during an execution of algorithm AlgokEPF, the robots are only allowed to create a multiplicity on the fixed points. Therefore, the existence of a deterministic distributed algorithm which solves the k-EPF problem, without allowing a robot multiplicity point outside the fixed points, is guaranteed by Theorem 3.8.1.

3.9 Conclusion

This chapter studies the k-circle formation problem by asynchronous, autonomous, anonymous and oblivious robots in the Euclidean plane. The problem is investigated in a setting where the robots have an agreement on the direction and orientation of the y-axis. The following three main results have been proved:

1. If the initial configuration $C(0)$ is symmetric about the y-axis such that $F_{y} \neq \emptyset$ (there are fixed points on the y-axis) and $R_{y}(0)=\emptyset$ (there are no robot positions on the the y-axis), then the k-circle formation problem is deterministically unsolvable for odd values of k. This is the complete set of the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable under this setting.
2. For the rest of the configurations and the values of k, a deterministic distributed algorithm has been proposed under one axis agreement.
3. All the initial configurations and values of k for which the problem is deterministically unsolvable are characterized when $n>k m$.
4. All the initial configurations and values of k for which the problem is deterministically unsolvable are characterized when $n<k m$.
5. It has also been shown that if the k-circle formation problem is deterministically solvable then the k-EPF problem is also deterministically solvable. This has been established by modifying AlgorithmOneAxis; the modified algorithm Algokepf deterministically solves the k-EPF problem.

Chapter 4

k-Circle Formation by Disoriented Robots

Contents

4.1 Overview71
4.2 Model and Definitions 72
4.3 Impossibility Result 79
4.4 Algorithm 81
4.5 Correctness 101
4.6 Conclusions 106

4.1 Overview

In this chapter, the k-circle formation problem is studied for completely disoriented robots. In other words, the robots neither have any agreement on a global coordinate system nor have any agreement on a common chirality. When the robots have an agreement on one axis, all the robots and fixed points can be ordered with respect to the axis of agreement. As a result, the presence of rotational symmetries can be managed. In this new setting, rotational symmetries must be considered in addition to the reflectional symmetry. The number of unsolvable cases would also increase significantly in this current
setting. Due to rotational symmetry, there can be multiple numbers of moving robots at any particular point of time. To solve the problem in this setting, it must be ensured that the problem remains solvable throughout the execution of the algorithm. The assumption of an asynchronous scheduler adds more challenges in designing a distributed algorithm in order to solve the k-circle formation problem. In this setting, all the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable are characterized. A deterministic distributed algorithm is proposed that deterministically solves the k-circle formation problem for the remaining configurations and values of k.

4.2 Model and Definitions

The robots are autonomous, anonymous, oblivious, homogeneous, and silent. They operate in Look-Compute-Move cycles under a fair ASYNC scheduler. They are represented by points in the Euclidean plane. The robots are completely disoriented. While any value of the radius is acceptable, we take $\rho=\frac{1}{3} \rho_{1}$ as the common radii of the circles. Recall that ρ_{1} denotes the minimum distance between any two fixed points.

4.2.1 Configuration View

Given $C(t)=(R(t), F)$, let $S=R(t) \cup F$ and $d_{i}=d\left(F_{c}, s_{i}\right)$ where $s_{i} \in S$. Let Ray $\left(F_{c}, s_{i}\right)$ denote the ray that starts from F_{c} and passes through $s_{i} \in S$. Let $S_{i}^{+}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ denote the list, in the order by which the points in S would be encountered if $\operatorname{Ray}\left(F_{c}, s_{i}\right)$ is rotated by an angle of 2π in the clockwise direction. If multiple points are encountered simultaneously by the sweep line, then the point closest to F_{c} is considered at first. In case, a robot lies on a fixed point, then the robot position is given preference over the fixed point. Define a function $x: S \rightarrow\{r, f\}$ as follows:

$$
x\left(s_{j}\right)= \begin{cases}r & \text { if } s_{j} \text { is a robot position } \\ f & \text { if } s_{j} \text { is a fixed point }\end{cases}
$$

Figure 4.1: Green square represents robot positions on a fixed point. Illustration of configuration view of r_{1}.

Let α_{j} denote the angle by which $\operatorname{Ray}\left(F_{c}, s_{i}\right)$ has been rotated when the $j^{\text {th }}$ point in S_{i}^{+}is being encountered. Define the clockwise view of s_{i} as

$$
\mathscr{V}^{+}\left(s_{i}\right)=\left(\alpha_{1}, d_{1}, x\left(s_{1}\right), \alpha_{2}, d_{2}, x\left(s_{2}\right), \ldots, \alpha_{n}, d_{n}, x\left(s_{n}\right)\right)
$$

Similarly, the counter-clockwise view of s_{i} can be defined. For example, consider the view of r_{1} in Figure 4.1. $S_{1}^{+}=\left(r_{1}, f_{1}, r_{3}, f_{3}, r_{2}, f_{2}\right)$ is the list of points encountered while rotating $\operatorname{Ray}\left(F_{c}, r_{1}\right)$ in the clockwise direction, starting from r_{1}.

$$
\begin{array}{r}
\mathscr{V}^{+}\left(r_{1}\right)=\left(\alpha_{1}=0, d\left(F_{c}, r_{1}\right), r, \alpha_{2}, d\left(F_{c}, f_{1}\right), f, \alpha_{3}, d\left(F_{c}, r_{3}\right), r,\right. \\
\left.\alpha_{3}, d\left(F_{c}, f_{3}\right), f, \alpha_{4}, d\left(F_{c}, r_{2}\right), r, \alpha_{5}, d\left(F_{c}, f_{2}\right), f\right)
\end{array}
$$

By defining $r<f$, the configuration views of all the points in S can be lexicographically ordered. The view of a point $p \in R(t) \cup F$ is given by $\mathscr{V}(p)=\min \left(\mathscr{V}^{+}(p), \mathscr{V}^{-}(p)\right)$ and the view of a configuation is given by $\mathscr{V}(C(t))=\cup_{p \in R(t) \cup F} \mathscr{V}(p)$. These definitions are similar to the configuration view defined in Cicerone et al. [12]. Note that, even though the robots do not have a common chirality, they get the same information about the configuration by computing $\mathscr{V}(C(t))$. The view of a set (say S) is defined as $\mathscr{V}(S)=\min _{s_{i} \in S}\left(\min \left(\mathscr{V}^{+}\left(s_{i}\right), \mathscr{V}^{-}\left(s_{i}\right)\right)\right)$. A robot can determine whether a given configuration is symmetric or not by the following two results, proved in Cicerone et al. [12].

Lemma 4.2.1. [12] Let $C(t)=(R(t), F)$ be a given configuration. The configuration
$C(t)$ admits a line of symmetry if and only if there exists two points $p, q \in R(t) \cup F$, not necessarily distinct, such that $\mathscr{V}^{+}(p)=\mathscr{V}^{-}(q)$.

Lemma 4.2.2. [12] Let $C(t)=(R(t), F)$ be a given configuration. The configuration $C(t)$ admits rotational symmetry if and only if there exists two distinct points $p, q \in$ $R(t) \cup F$, such that $\mathscr{V}^{+}(p)=\mathscr{V}^{+}(q)$.

Automorphisms and orbits [12]: Given an automorphism $\phi \in \operatorname{Aut}(C(t))$, the cyclic subgroup of order k generated by ϕ is given by $\left\{\phi^{0}, \phi^{1}=\phi, \phi^{2}=\phi \circ \phi, \ldots, \phi^{k-1}\right\}$ where ϕ^{0} is the identity. For example, a reflection ϕ generates a cyclic subgroup $H=\left\{\phi^{0}, \phi\right\}$ of order two. If H is a cyclic subgroup of $\operatorname{Aut}(C(t))$, the orbit of a point $p \in R(t) \cup F$ is given by $H p=\{\phi(p) \mid \phi \in H\}$. Note that the orbits $H p$, for each $p \in R(t) \cup F$ form
a partition of $R(t) \cup F$. The associated equivalence relation is defined by saying that p and q are equivalent if and only if their orbits are the same, that is $H p=H q$. Equivalent robots are indistinguishable by any algorithm.

Symmetry of a Configuration [12]: A function $\phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is called an isometry or distance preserving map if for any $p, q \in \mathbb{R}^{2}, d(\phi(p), \phi(q))=d(p, q)$. Examples of isometries in the plane are translations, rotations and reflections. An automorphism of $C(t)$ is an isometry from \mathbb{R}^{2} to \mathbb{R}^{2} that maps $R(t)$ to $R(t)$ and F to F. The set of all automorphisms of $C(t)$ forms a group with respect to the composition called automorphism group of $C(t)$ and it is denoted by $\operatorname{Aut}(C(t))$. If $|\operatorname{Aut}(C(t))|=1$, then $C(t)$ is said to be asymmetric (Figures $4.2(\mathrm{~A}), 4.2(\mathrm{C}), 4.2(\mathrm{E})$ and $4.2(\mathrm{I})$). If $|\operatorname{Aut}(C(t))|>1$, then $C(t)$ is said to be symmetric, i.e., it admits either rotations (Figures 4.2(D), 4.2(F) and 4.2(G)) or reflections (Figures 4.2(B), 4.2(F) and 4.2(H)). Since $|F \cup R(t)|$ is finite, translations are not possible.

Figure 4.3: $\mathcal{L}=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\} . \mathcal{L}^{\prime}=\left\{L_{1}, L_{3}\right\} . \mathcal{Z}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{8}\right\} . \mathcal{L}_{R}=$ $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$.

4.2.2 Partitioning of the Configurations

All the configurations can be partitioned into the following disjoint classes:

1. $\mathcal{F} A S Y M-F$ is asymmetric (Figure $4.2(\mathrm{~A})$).
2. $\mathcal{F} R E F L-F$ has a single line of symmetry (Figure $4.2(\mathrm{~B})$ and $4.2(\mathrm{C})$).
3. $\mathcal{F C H I R}-\mathcal{F}$ admits rotational symmetry without any line of symmetry (Figure $4.2(\mathrm{D})$ and 4.2(E)).
4. $\mathcal{F} M U L T-F$ admits multiple lines of symmetry (Figure $4.2(\mathrm{~F}), 4.2(\mathrm{G}), 4.2(\mathrm{H})$ and 4.2(I)).

Since the partition of the set of all the configurations depends only on F, the robots can easily identify the class to which a configuration belongs to without any conflicts. In Figure $4.2(\mathrm{~B}), C(t)$ admits a single line of symmetry whereas $C(t)$ is asymmetric in Figure $4.2(\mathrm{C}) . C(t)$ admits rotational symmetry without any line of symmetry (Figure $4.2(\mathrm{D})) . C(t)$ is asymmetric (Figure $4.2(\mathrm{E})$). $C(t)$ admits multiple lines of symmetry (Figure $4.2(\mathrm{~F})$). $C(t)$ admits rotational symmetry without any line of symmetry (Figure $4.2(\mathrm{G})$). $C(t)$ admits a single line of symmetry (Figure $4.2(\mathrm{H})$). $C(t)$ is asymmetric (Figure 4.2(I)).

4.2.3 Additional Notations

Given a configuration $C(t)$, let \mathcal{L} denote the set of all the lines of symmetry for F (Figure 4.3). Define $\mathcal{L}^{\prime}=\left\{L_{i} \mid L_{i} \in \mathcal{L}\right.$ and $\left.L_{i} \cap F \neq \emptyset\right\}$ (Figure 4.3). Let h_{j} denote a half-line starting from F_{c} and passing along some $L_{i} \in \mathcal{L}$. In case $|\mathcal{L}|>0$, define

$$
\mathcal{Z}=\left\{r \mid r \in h_{j} \text { along some } L_{i} \in \mathcal{L} \text { and } d\left(F_{c}, r\right)=\max _{r_{i} \in h_{j}} d\left(F_{c}, r_{i}\right)\right\} \text { (Figure 4.3) }
$$

\mathcal{D} denotes the radius of the minimum enclosing circle for $R(t) \backslash \mathcal{Z}$. Define

$$
\mathcal{L}_{R}=\left\{r \mid r \in \mathcal{Z} \text { and } d\left(F_{c}, r\right)=\max _{r_{i} \in \mathcal{Z}} d\left(F_{c}, r_{i}\right)\right\} \text { (Figure 4.3) }
$$

Figure 4.4: y-axis agreement. (A) $C(t) \in \mathcal{F} A S Y M(\mathbf{B}) C(t) \in \mathcal{F} R E F L$.

4.2.4 Global and Local Agreements

An active robot identifies the class of the current configuration and agrees on the following agreements accordingly:

1. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{F} \boldsymbol{A} \boldsymbol{S Y} \boldsymbol{M}$. Let f_{j} be the farthest fixed point from F_{c}. In case of a tie, choose the one having the minimum view. F_{c} is considered as the origin. The straight line passing through F_{c} and f_{j} is considered as the y-axis. The direction from F_{c} to f_{j} is considered as the positive y-axis direction (Figure 4.4(A)).
2. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{F} \boldsymbol{R E F} \boldsymbol{L}$. Let L be the line of symmetry for F. The y-axis is assumed to pass along L. Consider all the symmetric pairs of fixed points, which are not collinear with F_{c}. Among all such pairs, choose the pair (say f_{i} and f_{j}), which is farthest from F_{c}. In the case of a tie, select the pair(s) closest to the y-axis. In case there are two such pairs, choose the one having the minimum view. F_{c} is considered as the origin. The direction from F_{c} towards $\overline{f_{i} f_{j}}$ is considered as the positive y-axis direction (Figure 4.4(B)).
3. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{F} \boldsymbol{C H I R}$. $C(t)$ admits a rotation $\phi \in \operatorname{Aut}(C(t))$. $C(t)$ satisfies Lemma 4.2.2 but does not satisfy Lemma 4.2.1. The cyclic subgroup generated by ϕ of order l is given by $H=\left\{\phi^{0}, \phi, \ldots, \phi^{l-1}\right\}$. Suppose $H f$ denotes the orbit of a fixed point $f \in F$ such that f has the minimum view. Since $C(t)$ does not admit any lines

Figure 4.5: $C(t) \in \mathcal{F} C H I R$.
of symmetry, $\forall p, q \in R(t) \cup F$, not necessarily distinct, $\mathscr{V}^{+}(p) \neq \mathscr{V}^{-}(q)$. The direction of $\mathscr{V}(f)$ is globally considered as the clockwise direction. Let T_{i} be the half-line from F_{c} that passes through an $f_{i} \in H f$. Each such half-line is considered as a wedge boundary. Let V_{i} denote the wedge in between T_{i} and T_{i+1}. Let $W_{1}=\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ for some $l>0$ denotes the set of all wedges. Without loss of generality, assume that V_{i} is in the clockwise direction from T_{i}. The direction away from F_{c} and along the wedge bisector of V_{i} is considered as the positive y-axis direction in $V_{i} \cup T_{i}$ (Figure 4.5). The robots form an agreement on a common chirality.

Figure 4.6: (A) $C(t) \in \mathcal{F} M U L T$ and $\mathcal{L}^{\prime} \neq \emptyset(\mathbf{B}) C(t) \in \mathcal{F} M U L T$ and $\mathcal{L}^{\prime}=\emptyset$.
4. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{F} M \boldsymbol{U} \boldsymbol{L T}$. First, consider the case when $\mathcal{L}^{\prime} \neq \emptyset$ (set of all the lines of symmetry for F containing fixed points). For each $L_{i} \in \mathcal{L}^{\prime}$, consider the two half-lines, starting from F_{c} and along L_{i}. Suppose $H=\left\{h_{1}, h_{2}, \ldots, h_{v}\right\}$ denotes
the set of all such half-lines. Let \mathcal{B}_{i} denote the angle bisector of $\measuredangle h_{i} F_{c} h_{i+1}$ where $h_{i}, h_{i+1} \in H$. Let \mathcal{W}_{i} denote the wedge between \mathcal{B}_{i-1} and \mathcal{B}_{i} (Figure 4.6(A)). Next, consider the case when $\mathcal{L}^{\prime}=\emptyset$. Each half-line along some $L_{i} \in \mathcal{L}$ is considered as a wedge boundary (Figure $4.6(\mathrm{~B})$). Let $W_{2}=\left\{\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{p}\right\}$ for some $p>0$ denote the set of all wedges. The direction away from F_{c} and along the wedge bisector is considered as the positive y-axis direction in a wedge $\mathcal{W}_{i} \in W_{2}$. The robots do not have agreement on a common chirality in this case.

The robots agree upon two different sets of wedges, namely W_{1} (if $C(t) \in \mathcal{F} C H I R$) and W_{2} (if $\left.C(t) \in \mathcal{F} M U L T\right)$. Note that, there are local y-axes one per each wedge. Since the definition of wedges is based on the partitioning of the configurations, the robots would identify a type of wedge without any conflict.

Definition 4.2.3. A point p is said to be a virtual robot position at time t, if $\exists r_{k} \in R(t)$ such that p and r_{k} are symmetric about a line of symmetry $L \in \mathcal{L}^{\prime}$.

4.2.5 Problem Definition

$C(t)$ is said to be a final configuration if the following conditions hold:
i) Each robot position $r_{i}(t)$ is on a circle $C\left(f_{j}, \rho\right)$, for some $f_{j} \in F$,
ii) $\forall f_{i} \in F, D_{i}(t)=0$ and $\left|C\left(f_{i}, \rho\right) \cap R(t)\right|=k$.

To solve the k-circle formation problem, starting from an initial configuration, the robots are required to reach and remain in a final configuration. The definition of ρ ensures that all the circles are disjoint in any final configuration.

4.3 Impossibility Result

All the initial configurations and values of k, for which the k-circle formation problem is deterministically unsolvable in this setting are characterized.

Theorem 4.3.1. Let $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ be such that there exists a line of symmetry for $R(0) \cup F$ (say L), and the following conditions hold:
i) $L \cap F \neq \emptyset$.
ii) $L \cap R(0)=\emptyset$.

If k is an odd integer, then the k-circle formation problem is deterministically unsolvable.

Proof. Let \mathcal{A} be a deterministic distributed algorithm that solves the k-circle formation problem, for some odd integer $k>0$. Let the symmetric image of r with respect to L is denoted by $\phi(r)$. Consider the following setting:
(i) The scheduler is considered to be SSYNC. In addition, assume that both r and $\phi(r)$ are activated simultaneously.
(ii) All the robots are assumed to move with the same constant speed without any transient stops. Also, assume that both r and $\phi(r)$ would travel the same amount of distance.

The robots would run the same algorithm. According to Lemma 4.2.1, the robots r and $\phi(r)$ would have the same configuration view. Thus, their computed destination points and the paths for movement would be symmetric images with respect to L. Since the initial configuration was symmetric, the robots would not be able to deterministically break the symmetry under this setting. Let f be a fixed point on L. As the configuration would remain symmetric, all the distinct k robot positions on $C(f, \rho)$ must be symmetric about L. Since k is odd, $C(f, \rho)$ must contain a robot position on L. As $L \cap R(0)=\emptyset$, one of the robots must reach L. Since all the robots move in pairs, if a robot r moves to L, then $\phi(r)$ would move to the same point. As a result, a point of robot multiplicity will be created on L. The robots on a multiplicity point can not be separated deterministically. Hence, the k-circle formation problem is deterministically unsolvable.

Definition 4.3.2. A configuration $C(t)$ for some $t \geq 0$ is said to be a solvable configuration, if it does not satisfy the unsolvability criterion stated in Theorem 4.3.1.

4.4 Algorithm

Figure 4.7: AlgorithmNoAxis

In this section, a deterministic distributed algorithm is proposed that solves the k circle formation problem for completely disoriented robots. AlgorithmNoAxis would be discussed in details in subsection 4.4.3. Figure 4.7 shows a diagramatic representation of AlgorithmNoAxis. An overview of AlgorithmNoAxis is discussed as follows:

1. The robots have a global y-axis agreement. This includes the configurations in $\mathcal{F} A S Y M \cup \mathcal{F} R E F L$. The robots solve the k-circle formation problem by AlgorithmOneAxis discussed in Chapter 3.
2. The robots do not have a global y-axis agreement. They agree on the set of wedges W_{1} or W_{2}. This includes the configurations in $\mathcal{F} C H I R \cup \mathcal{F} M U L T$. In each such wedges, the robots make a local y-axis agreement. To break the reflectional symmetry about a line $L \in \mathcal{L}$, SymmetryBreaking (Subsection 4.4.1) is executed. The robots execute AlgorithmOneAxis locally in each wedge. However, the distribution of robot positions among the wedges may not be uniform. In such a case, the robots move from one wedge to another by the execution of MovetoLine (Subsection 4.4.2).

4.4.1 SymmetryBreaking

SymmetryBreaking is the procedure by which the robots would break the reflectional symmetry of a configuration $C(t) \in \mathcal{F} M U L T$ for $t \geq 0$.

Definition 4.4.1. Let h_{j} be a half-line along some $L \in \mathcal{L}$. Suppose h_{j}^{+}denotes the half-line, that makes an angle $\frac{\alpha}{p}$ from h_{j}, measured in the clockwise direction from h_{j}, where p is the smallest positive integer for which there are no fixed points within $\frac{\alpha}{p}$ from h_{j} (excluding h_{j}). Similarly, assume that h_{j}^{-}denotes such a half-line in the counter-clockwise direction from h_{j}. Define Region $\left(h_{j}\right)$ as the closed region bounded by the half-lines h_{j}^{+} and h_{j}^{-}(including h_{j}^{+}and h_{j}^{-}) that contains h_{j}. Define $D_{j 1}=d\left(F_{c}, r_{i}\right)$, where r_{i} is one of the farthest robot from F_{c} in Region $\left(h_{j}\right)$. Also, define $D_{j 2}=d\left(F_{c}, r_{k}\right)$, where r_{k} is one of the second farthest robot from F_{c} in Region $\left(h_{j}\right)$.

4.4.1.1 Phases during SymmetryBreaking

We define the following phases at any arbitrary point of time $t \geq 0$:

1. $\boldsymbol{P}_{\mathbf{1}}: \exists L \in \mathcal{L}$ such that $C(t)$ is symmetric about $L, L \cap R(t) \neq \emptyset$ and $\exists r \in \mathcal{L}_{R}$ such that $d\left(F_{c}, r\right)<\mathcal{D}+2$.
2. $\boldsymbol{P}_{\mathbf{2}}: \exists L \in \mathcal{L}$ such that $C(t)$ is symmetric about $L, L \cap R(t) \neq \emptyset$ and $\forall r \in \mathcal{L}_{R}$ such that $d\left(F_{c}, r\right) \geq \mathcal{D}+2$.
3. $\boldsymbol{P}_{\mathbf{3}}: \exists r_{i} \in \operatorname{Region}\left(h_{j}\right)$ for some h_{j} along some $L \in \mathcal{L}$ such that $D_{j 1}-D_{j 2}>2$.

Figure 4.8: Empty circle represents a virtual robot position. (A) phase $\neg P_{1} \wedge P_{2}$, (B)-(C) phase $\neg P_{1} \wedge \neg P_{2} \wedge P_{3}$.

4.4.1.2 Movements during SymmetryBreaking

Different types of movements during any execution of SymmetryBreaking are as follows:

1. $\boldsymbol{m}_{\mathbf{1}}$: This movement is executed when the configuration is in phase $\boldsymbol{P}_{\mathbf{1}}$. Suppose $r_{i} \in h_{j}$ such that $r_{i} \in \mathcal{L}_{R}$ and $d\left(F_{c}, r_{i}\right)<\mathcal{D}+2$. Let $p \in h_{j}$ such that $d\left(F_{c}, p\right)-\mathcal{D}=2$. Robot r_{i} would be selected as a candidate robot. r_{i} moves along the half-line h_{j} towards p.
2. $\boldsymbol{m}_{\boldsymbol{2}}$: This movement is executed when the configuration is in phase $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \boldsymbol{P}_{\mathbf{2}}$. Suppose $r_{i} \in h_{j}$ such that $r_{i} \in \mathcal{L}_{R}$ and $d\left(F_{c}, r_{i}\right) \geq \mathcal{D}+2$. Robot r_{i} would be selected as a candidate robot. Let T be the tangent to the circle $C\left(F_{c}, d\left(F_{c}, r_{i}\right)\right)$ at $r_{i}(t)$. Suppose it intersects h_{j}^{+}and h_{j}^{-}at the points p_{1} and p_{2}, respectively. Robot r_{i} would select its destination point arbitrarily between p_{1} and p_{2} (Figure 4.8(A)). Without loss of generality, assume that p_{1} is selected as the destination point. r_{k} moves towards p_{1} along $\overline{r_{k}(t) p_{1}}$.
3. $\boldsymbol{m}_{\mathbf{3}}$: This movement is executed when the configuration is in phase $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \neg \boldsymbol{P}_{\mathbf{2}} \wedge \boldsymbol{P}_{\mathbf{3}}$. Suppose $r_{i} \in \operatorname{Region}\left(h_{j}\right)$ for some h_{j} along some $L \in \mathcal{L}$ such that $D_{j 1}-D_{j 2}>2$. Let p be the point on $\overline{r_{i}(t) F_{c}}$ such that $d\left(F_{c}, p\right)-D_{j 2}=2$. Since r_{i} is the unique robot position in Region $\left(h_{j}\right)$ such that $D_{j 1}-D_{j 2}>2$, there can not be any robot positions on $\overline{r_{i}(t) F_{c}}$. There are two cases:
(a) $\overline{r_{i}(t) F_{c}}$ does not contain any virtual robot positions. Robot r_{i} would be selected as a candidate robot. r_{i} selects p as its destination point and it moves along $\overline{r_{i}(t) F_{c}}$ (Figure 4.8(B)).
(b) $\overline{r_{i}(t) F_{c}}$ contains a virtual robot position. Let r_{v} be a robot or virtual robot position in Region $\left(h_{j}\right)$ such that $\measuredangle \overline{r_{i}(t) F_{c}} F_{c} \overline{r_{v}(t) F_{c}}$ is minimum and which does not lie on $\overline{r_{i}(t) F_{c}}$. Let B be the ray starting from F_{c} such that $\measuredangle \overline{r_{i}(t) F_{c}} F_{c} B=$ $\frac{1}{2} \min \left(\measuredangle \overline{r_{i}(t) F_{c}} F_{c} \overline{r_{v}(t) F_{c}}, \measuredangle \overline{r_{i}(t) F_{c}} F_{c} h_{j}\right)$. Suppose p_{3} is the point on B such that $d\left(F_{c}, p_{3}\right)-D_{j 2}=2$. Robot r_{i} would be selected as a candidate robot. The candidate robot selects p_{3} as its destination point and it moves along $\overline{r_{i}(t) p_{3}}$ (Figure 4.8(C)).

In Figure 4.8(A), r_{4} lies on h_{j} and it would arbitrarily select its destination point between p_{1} and p_{2}. In Figure 4.8(B), r_{4} does not lie on h_{j} and it would select p as its destination point. In Figure 4.8(C), r_{4} does not lie on h_{j} and p contains a virtual robot position r.

Let r_{2} be the robot position in $\operatorname{Clear}\left(h_{j}\right)$ such that the angle $\measuredangle \overline{F_{c} r_{2}} F_{c} \overline{F_{c} r_{4}}$ is minimum and $\measuredangle \overline{F_{c} p_{3}} F_{c} \overline{F_{c} r_{4}}=\frac{1}{2} \measuredangle \overline{F_{c} r_{2}} F_{c} \overline{F_{c} r_{4}}$. It would select p_{3} as its destination point.

At time $t \geq 0$, if the configuration is in phase $P_{1} \vee P_{2} \vee P_{3}$, then any active robot will execute SymmetryBreaking. Execution of Symmetrybreaking is terminated when the configuration is in $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$ (Figure 4.9). The detailed description of SymmetryBreaking is presented in the following table 4.1.

Phases	Movements	Phases after the Movements
P_{1}	m_{1}	P_{1} or $\neg P_{1} \wedge P_{2}$
$\neg P_{1} \wedge P_{2}$	m_{2}	$\neg P_{1} \wedge P_{2}$ or $\neg P_{1} \wedge \neg P_{2} \wedge P_{3}$
$\neg P_{1} \wedge \neg P_{2} \wedge P_{3}$	m_{3}	$\neg P_{1} \wedge \neg P_{2} \wedge P_{3}$ or $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$

Table 4.1: Phase Transitions during SymmetryBreaking

Figure 4.9: Phase transitions during SymmetryBreaking.

4.4.1.3 Progress during SymmetryBreaking

Lemma 4.4.2. If the configuration $C(t)$ is in phase $P_{1} \vee P_{2} \vee P_{3}$, then by the execution of SymmetryBreaking the configuration would eventually be in phase $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$.

Proof. Let $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. We have the following cases:

Case 1. $C(t)$ is in $\boldsymbol{P}_{\mathbf{1}}$. Let $L \in \mathcal{L}$ be such that it is a line of symmetry for $C(t)$ and $L \cap R(t) \neq \emptyset$. Let r_{i} be the farthest robot position on the half-line h_{j} along L. Since the configuration is in $\boldsymbol{P}_{\mathbf{1}}, \exists r \in \mathcal{L}_{R}$ such that $d\left(F_{c}, r\right)<\mathcal{D}+2$. Without loss of genrality, assume that $d\left(F_{c}, r_{i}\right)<\mathcal{D}+2$. Robot r_{i} performs movement $\boldsymbol{m}_{\mathbf{1}}$, i.e., it moves along
h_{j} to a point p, such that $d\left(F_{c}, p\right)-\mathcal{D}=2$. Since r_{i} moves in a straight line towards p by at least δ amount, it will eventually reach p. Therefore, the configuration will be in $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \boldsymbol{P}_{\mathbf{2}}$ within finite time.

Case 2. $C(t)$ is in $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \boldsymbol{P}_{\mathbf{2}}$. Let $r_{i}(t) \in h_{j}$ be such that $d\left(F_{c}, r_{i}(t)\right) \geq \mathcal{D}+2$. Movement $\boldsymbol{m}_{\mathbf{2}}$ will be performed by a candidate robot (say r_{i}). Since r_{i} would move by at least δ amount away from $h_{j}, r_{i}\left(t^{\prime}\right) \notin h_{j}$. Either $r_{i}\left(t^{\prime}\right)=p$ or $r_{i}\left(t^{\prime}\right) \neq p$. At $t^{\prime}, D_{j 1}-D_{j 2}>2$ would be satisfied. Since $\left|\mathcal{L}_{R}\right|$ is finite within finite time the configuration will be in $\neg P_{1} \wedge \neg P_{2} \wedge P_{3}$.

Figure 4.10: r_{i} selects p_{1} as its destination point at time t. At t^{\prime}, r_{i} selects p^{\prime} as its destination point.

Case 3. $C(t)$ is in $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \neg \boldsymbol{P}_{\mathbf{2}} \wedge \boldsymbol{P}_{\mathbf{3}}$. Let $r_{i} \in \operatorname{Region}\left(h_{j}\right)$ be a candidate robot. Let p_{1} be the destination point computed by r_{i} for performing movement $\boldsymbol{m}_{\mathbf{3}}$. Let $d=d\left(r_{i}(t), p_{1}\right)$. At time t^{\prime}, let p^{\prime} be the point on $\overline{r_{i}\left(t^{\prime}\right) F_{c}}$ such that $d\left(F_{c}, p\right)-D_{j 2}=2$. Since $\overline{r_{i}\left(t^{\prime}\right) F_{c}}$ would not contain any virtual robot positions (ensured by the selection of the destination point), r_{i} would select p^{\prime} as its destination point and $\overline{r_{i}\left(t^{\prime}\right) F_{c}}$ as the path for movement (Figure 4.10). Since $d^{\prime}=d\left(r_{i}\left(t^{\prime}\right), p^{\prime}\right)<d\left(r_{i}\left(t^{\prime}\right), p_{1}\right), d-d^{\prime}>d-d\left(r_{i}\left(t^{\prime}\right), p_{1}\right) \geq \delta$. Thus, r_{i} would eventually reach a point such that $D_{j 1}-D_{j 2}=2$ in Region $\left(h_{j}\right)$. Since $|\mathcal{L}|$ is finite there are only finite number of candidate robots. Therefore, within finite time the configuration will be in $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \neg \boldsymbol{P}_{\mathbf{2}} \wedge \neg \boldsymbol{P}_{\mathbf{3}}$.

Hence, if $C(t)$ is in phase $\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}$, then by the execution of SymmetryBreaking the configuration would eventually be in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right)$.

4.4.1.4 Solvability during SymmetryBreaking

In order to satisfy the unsolvability criterion (Theorem 4.3.1), k must be odd. We have the following observation.

Observation 1. The k-circle formation problem is deterministically solvable for all the even values of k.

Consider that $|F|$ is odd. If k is even, from observation 1 the k-circle formation problem is solvable. If k is odd, then the configuration would contain an odd number of robots. As a result, the configuration can not admit a line of symmetry without any robot positions on it. In order to satisfy the unsolvability criterion (Theorem 4.3.1), the line of symmetry should not contain any robot positions.

Observation 2. All the configurations containing an odd number of fixed points are always solvable.

To satisfy the unsolvability criterion (Theorem 4.3.1), the configuration must have a line of symmetry containing fixed points.

Observation 3. If $\mathcal{L}^{\prime}=\emptyset$, then the configuration would remain solvable.

Lemma 4.4.3. If $C(0) \in \mathcal{F} M U L T$ and it is in $\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}}$, then during any execution of SymmetryBreaking, $C(t)$ for some $t>0$ would remain solvable.

Proof. Let $L \in \mathcal{L}$ be such that it is a line of symmetry for $C(0)$ and $L \cap R(0) \neq \emptyset$. According to Observation 3, $C(t)$ would always remain solvable if $L \in \mathcal{L} \backslash \mathcal{L}^{\prime}$. We assume that $L \in \mathcal{L}^{\prime}$. Suppose h_{i} and h_{j} are the half-lines starting from F_{c} and passing along L. Assume that $r_{a} \in h_{i}$ and $r_{b} \in h_{j}$ are the farthest robots from F_{c}. Without loss of generality, assume that either $r_{a} \in \mathcal{L}_{R}$ or $r_{b} \in \mathcal{L}_{R}$. Otherwise, we can always select some $L^{\prime} \in \mathcal{L} \backslash\{L\}$ can be selected. We have the following cases:

Case 1. $C(0)$ is in $\boldsymbol{P}_{\mathbf{1}}$. Movement $\boldsymbol{m}_{\mathbf{1}}$ will be performed by the candidate robots. Since $L \cap R(t) \neq \emptyset$ is preserved during movement $\boldsymbol{m}_{\mathbf{1}}$ along L, the configuration would remain solvable.

Case 2. $C(0)$ is in $\neg \boldsymbol{P}_{\mathbf{1}} \wedge \boldsymbol{P}_{\mathbf{2}}$. Movement $\boldsymbol{m}_{\mathbf{2}}$ will be performed by the candidate robots. We must show the following points:

Subcase 1. $C(t)$ will become asymmetric about L. First, consider that either $r_{a} \in \mathcal{L}_{R}$ or $r_{b} \in \mathcal{L}_{R}$. Without loss of generality, assume that $r_{a} \in \mathcal{L}_{R}$. Robot r_{a} would perform movement \boldsymbol{m}_{2}. Since r_{a} would be the unique robot position in $\operatorname{Region}\left(h_{j}\right)$ such that $\mathcal{D}_{j 1}-\mathcal{D}_{j 2}>2, C(t)$ would remain asymmetric about L. Next, consider that $r_{a} \in \mathcal{L}_{R}$ and $r_{b} \in \mathcal{L}_{R}$. Both r_{a} and r_{b} would perform movement \boldsymbol{m}_{2}. The following two scenarios are possible:

1. The candidate robots have moved to the same half-plane delimited by L.
2. The candidate robots have moved to different half-planes delimited by L.

In both the above two scenarios, $C(t)$ will become asymmetric about L.
Subcase 2. $C(t)$ will become asymmetric about $L_{b} \in \mathcal{L}^{\prime} \backslash\{L\}$ or symmetric about L_{b} with $L_{b} \cap R(t) \neq \emptyset$. If k is even, then $C(t)$ would always remain solvable (Observation 1). We assume that k is odd. If possible, let L_{b} become a line of symmetry for $C(t)$. Let r be the symmetric image of r_{a} about L_{b}. Similarly, r_{b} would also have a symmetric image about L_{b}. According to the definition of \mathcal{D}, r must be on some $L_{c} \in \mathcal{L}^{\prime}$ at $t=0$. Otherwise, it cannot be a symmetric image of r_{a} at time t. This is because r_{a} would have avoided the virtual position of r during its movement. Also, the definition of the set \mathcal{L}_{R} implies that $d\left(F_{c}, r(0)\right)=d\left(F_{c}, r_{a}(0)\right)$. So, r_{a} and r are symmetric images of each other about L_{b} in $C(0)$. This is true for all such robot positions which have performed movement $\boldsymbol{m}_{\mathbf{2}}$ in the time interval $[0, t]$. The following two scenarios are possible:

1. $C(0)$ is symmetric about L_{b}. Since $C(0)$ is solvable and $L_{b} \in \mathcal{L}^{\prime}$, we must have $L_{b} \cap R(0) \neq \emptyset$. If $C(t)$ is symmetric about L_{b}, then we must have $\cap R(t) \neq \emptyset$. Otherwise, from subcase 1 of case $2 C(t)$ is guaranteed to become asymmetric about L_{b}.
2. $C(0)$ is asymmetric about L_{b}. All the robots which have performed movement $\boldsymbol{m}_{\mathbf{2}}$ would avoid all the virtual robot positions and other robot positions during their movement. Therefore, $C(t)$ would remain asymmetric about L_{b}.

Hence, if $C(0) \in \mathcal{F} M U L T$ be such that it is in $\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}}$, then during any execution of SymmetryBreaking, $C(t)$ for some $t>0$ would remain solvable.

Lemma 4.4.4. If $C(0) \in \mathcal{F} M U L T$ be such that it is in $\boldsymbol{P}_{\mathbf{3}}$, then during any execution of SymmetryBreaking, $C(t)$ for some $t>0$ would remain solvable.

Proof. Let r_{i} be a candidate robot such that $r_{i} \in \operatorname{Region}\left(h_{j}\right)$, where h_{j} is a half-line along some $L_{i} \in \mathcal{L}$ and $D_{j 1}-D_{j 2}>2$. Robot r_{i} would perform movement $\boldsymbol{m}_{\mathbf{3}}$. According to Observation 3, $C(t)$ would always remain solvable if $L_{i} \in \mathcal{L} \backslash \mathcal{L}^{\prime}$. We assume that $L_{i} \in \mathcal{L}^{\prime}$. During any execution of SymmetryBreaking, r_{i} would remain the unique robot in Region $\left(h_{j}\right)$ such that $D_{j 1}-D_{j 2}>2$. As a result, $C(t)$ would remain asymmetric about L_{i}. Let h_{a} be a half-line along some $L_{b} \in \mathcal{L}^{\prime} \backslash\left\{L_{i}\right\}$. Consider the following cases:

Case 1. $\exists r_{j} \in \operatorname{Region}\left(h_{a}\right)$ such that $D_{a 1}-D_{a 2} \geq 2$. Since r_{j} would remain the unique robot in Region $\left(h_{a}\right)$, the configuration would remain asymmetric about L_{b}.

Case 2. $\forall r \in \operatorname{Region}\left(h_{a}\right), D_{a 1}-D_{a 2}<2$. Let h_{b} be a half-line along some $L_{p} \in \mathcal{L}^{\prime}$ such that Region $\left(h_{b}\right)$ and Region $\left(h_{j}\right)$ are mirror images about L_{b}. Consider the following cases:

Subcase 1. $\forall r \in \operatorname{Region}\left(h_{b}\right), D_{b 1}-D_{b 2}<2$. Since r_{i} would not have any symmetric image in Region $\left(h_{b}\right)$ about $L_{b}, C(t)$ would remain asymmetric about L_{b}.

Subcase 2. $\exists r \in \operatorname{Region}\left(h_{b}\right)$ such that $D_{b 1}-D_{b 2} \geq 2$. If r_{i} and r were not symmetric images of each other about L_{b} in $C(0)$, then $C(t)$ is guaranteed to be asymmetric about L_{b}. This is because each robot would avoid the virtual robot positions during its movement $\boldsymbol{m}_{\mathbf{3}}$. Next, consider that r_{i} and r were symmetric images of each other in $C(0)$. Since $C(0)$ was solvable either the initial configuration was asymmetric about L_{b} or symmetric about L_{b} with $L_{b} \cap R(0) \neq \emptyset$. First, consider that was asymmetric about L_{b}. Since all the candidate robots have performed their movement $\boldsymbol{m}_{\mathbf{3}}$ by avoiding virtual robot positions, $C(t)$ would remain asymmetric about L_{b}. Next, consider that $C(0)$ was symmetric about L_{b} with $L_{b} \cap R(0) \neq \emptyset$. Either $L_{b} \cap R(t) \neq \emptyset$ or $C(t)$ is asymmetric about L_{b} (follows from Lemma 4.4.3). $C(t)$ would remain solvable.

Hence, if $C(0) \in \mathcal{F} M U L T$ be such that it is in $\boldsymbol{P}_{\mathbf{3}}$, then during any execution of SymmetryBreaking, $C(t)$ for some $t>0$ would remain solvable.

4.4.2 MovetoLine

Before we discuss the procedure MovetoLine, we consider the following definitions.
Definition 4.4.5. Consider a wedge \mathcal{W}_{i} with the wedge boundaries \mathcal{B}_{i} and \mathcal{B}_{i+1}. Suppose \mathcal{W}_{i+1} be the adjacent wedge of \mathcal{W}_{i}, which is separated by the wedge boundary \mathcal{B}_{i+1}. Similarly, \mathcal{W}_{i-1} denotes the adjacent wedge of \mathcal{W}_{i}, which is separated by the wedge boundary \mathcal{B}_{i}. Let M_{1} be the half-line from F_{c}, that lies in the adjacent wedge \mathcal{W}_{i+1}, such that it makes an angle $\frac{\alpha}{p}$ from \mathcal{B}_{i+1}, where p is the smallest positive integer, for which there are no fixed points within angle $\frac{\alpha}{p}$ from \mathcal{B}_{i+1}. Similarly, define M_{2}, that lies in the adjacent wedge \mathcal{W}_{i-1}. Let Area $\left(\mathcal{W}_{i}\right)$ denote the open region (excluding M_{1} and M_{2} but including F_{c}) bounded by the half-lines M_{1} and M_{2}, that includes \mathcal{W}_{i}.

Definition 4.4.6. $V_{i} \in W_{1}$ is said to contain a surplus robot if the following conditions hold:
(i) There are no unsaturated fixed points in $V_{i} \cup T_{i}$ and
(ii) there exists either an oversaturated fixed point in $V_{i} \cup T_{i}$ or a robot that has not reached any circle yet in $V_{i} \cup T_{i}$.

Definition 4.4.7. $\mathcal{W}_{i} \in W_{2}$ is said to contain a surplus robot if the following conditions hold:
(i) There are no unsaturated fixed points in $\operatorname{Area}\left(\mathcal{W}_{i}\right)$ and
(ii) there exists either an oversaturated fixed point in $\operatorname{Area}\left(\mathcal{W}_{i}\right)$ or a robot that has not reached any circle yet in $\operatorname{Area}\left(\mathcal{W}_{i}\right)$.

MovetoLine is the procedure by which a surplus robot moves towards a wedge in which there exists an unsaturated fixed point.

4.4.2.1 Phases during MovetoLine

We define the following phases at any arbitrary point of time $t \geq 0$:

1. $\boldsymbol{P}_{\mathbf{4}}: C(t) \in \mathcal{F} C H I R$ and $\exists V_{i} \in W_{1}$ such that V_{i} contains a surplus robot.
2. $\boldsymbol{P}_{\mathbf{5}}: C(t) \in \mathcal{F} M U L T$ and $\exists \mathcal{W}_{i} \in W_{2}$ such that \mathcal{W}_{i} contains a surplus robot.

4.4.2.2 Candidate Robot and its Destination Line

(A)

(B)

(C)

Figure 4.11: Selection of destination lines and candidate robots.

We have the following cases at any arbitrary point of time $t \geq 0$:

1. $\boldsymbol{C}(\boldsymbol{t})$ is in phase \boldsymbol{P}_{4}. Let $V_{i} \in W_{1}$ be such that V_{i} contains a surplus robot. The wedge boundary T_{i+1} that lies in the clock-wise direction from V_{i} is selected as the destination line (Figure 4.11(A)). Let r_{j} be the surplus robot that lies at a closest distance from T_{i+1}. In case, there are multiple such robots, choose the one that is farthest from F_{c}. Robot r_{j} is selected as the candidate robot (Figure 4.11(A)).
2. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\boldsymbol{P}_{\mathbf{5}}$. Let $\mathcal{W}_{i} \in W_{2}$ be such that \mathcal{W}_{i} contains a surplus robot. Consider the folowing definition:

Definition 4.4.8. The wedge boundary \mathcal{B}_{i} is said to be closer to \mathcal{W}_{j} than \mathcal{W}_{k} if the number of wedges between \mathcal{B}_{i} and \mathcal{W}_{j} is less than the number of wedges between \mathcal{B}_{i} and \mathcal{W}_{k}.

We have the following cases:
(a) Both the adjacent wedges of $\mathcal{W}_{\boldsymbol{i}}$ do not contain any unsaturated fixed points. Without loss of generality, assume that between the two wedge boundaries, \mathcal{B}_{i+1} is the wedge boundary that is closest to a wedge, that contains an unsaturated fixed point. M_{1} is selected as the destination line. Let r_{i} be the surplus robot that lies at the closest distance from M_{1}. If there are multiple such robots, choose the one that is farthest from F_{c}. Robot r_{i} is selected as
the candidate robot. Next, consider the case when both \mathcal{B}_{i} and \mathcal{B}_{i+1} are respectively closest to some wedge, which contains an unsaturated fixed point. In this case, both M_{1} and M_{2} are selected as a destination line. For each destination line, a candidate robot will be selected, similar to the above case. In this case, there may be two candidate robots in \mathcal{W}_{i} (Figure 4.11(B)). If a robot lies at an equal distance from both the destination lines, then the robot would arbitrarily select its destination line (Figure 4.11(C)).
(b) One of the adjacent wedges of \mathcal{W}_{i} contains an unsaturated fixed point. Without loss of generality, assume that \mathcal{W}_{i+1} is the wedge that contains an unsaturated fixed point. M_{1} is selected as the destination line. Next, a candidate robot will be selected for M_{1} similarly to the above case.

Suppose $k=1$. In Figure 4.11(A), r_{3} and r_{4} are the surplus robots in $V_{2} \cup T_{2}$. Assume that V_{3} lies in the clockwise direction from V_{2}. Wedge boundary T_{2} is selected as the destination line. Both r_{3} and r_{4} are at equal distance from T_{2}. Since $d\left(c, r_{4}\right)>d\left(c, r_{3}\right)$, r_{4} is selected as the candidate robot. In Figure 4.11(B), r_{3} and r_{4} are surplus robots in $\operatorname{Sur}\left(\mathcal{W}_{i}\right)$. Without loss of generality, assume that both the adjacent wedges of \mathcal{W}_{2} do not contain any unsaturated fixed points. In addition, assume that both \mathcal{B}_{1} and \mathcal{B}_{2} are individually closest to some wedge which contains an unsaturated fixed point. Both M_{1} and M_{2} are selected as destination lines. Both r_{3} and r_{4} are selected as candidate robots. In Figure $4.11(\mathrm{C}), r_{3}$ is the only surplus robot in $\operatorname{Sur}\left(\mathcal{W}_{i}\right)$. Since it is at equidistant from both M_{1} and M_{2}, it selects its destination line arbitrarily.

Let r_{i} be a candidate robot and L its destination line during MovetoLine. Let $x \in L$ be the point such that $\overline{r_{i} x}$ is perpendicular to L.

4.4.2.3 Conditions during MovetoLine

We define the following conditions during MovetoLine:

1. $\boldsymbol{c}_{\boldsymbol{1}}: \overline{r_{i} x}$ passes through a saturated circle.
2. $\boldsymbol{c}_{\boldsymbol{2}}: \overline{r_{i} x}$ does not pass through any saturated circle but there exists a robot position or a virtual robot position on $\overline{r_{i} x}$ (line segment excluding x).
3. $\boldsymbol{c}_{\mathbf{3}}: \overline{r_{i} x}$ neither passes through any saturated circle nor contains any robot positions nor any virtual robot positions on $\overline{r_{i} x}$ (line segment excluding x).

(A)

(B)

(C)

Figure 4.12: Movements (A)-(B) m_{4}, (C) m_{5}

Figure 4.13: (A)-(B) Movement m_{6}.

4.4.2.4 Movements during MovetoLine

Different types of movements are as follows:

1. $\boldsymbol{m}_{\mathbf{4}}$: This movement is executed when r_{i} satisfies $\boldsymbol{c}_{\mathbf{1}}$. Let $C\left(f_{j}, \rho\right)$ be the first circle to which r_{i} intersects while moving along $\overline{r_{i} x}$ towards x. Suppose, q is the intersection point between $\overline{r_{i} x}$ and $C\left(f_{j}, \rho\right)$, which is at closest distance from r_{i}. The candidate robot has the following cases:
(i) There neither exists a virtual robot position on $\overline{r_{i} q}$ nor a robot position on q. The robot r_{i} moves along $\overline{r_{i} q}$, towards q (Figure 4.12(A)).
(ii) Otherwise, let y be the closest robot position or the virtual robot position from q (such that q, y and x are not collinear), which lies on $C\left(f_{j}, \rho\right)$. Let z be the
point on $C\left(f_{j}, \rho\right)$ such that $\measuredangle \overline{r_{i} q} r_{i} \overline{r_{i} z}=\frac{1}{2^{p}}\left(\measuredangle \overline{r_{i} q} r_{i} \overline{r_{i} y}\right)$, where p is the smallest positive integer for which $\overline{r_{i} z}$ does not contain any virtual robot positions. Due to the choice of y and candidate robot $r_{i}, \overline{r_{i} z}$ possibly can not contain any robot positions. Robot r_{i} moves along $\overline{r_{i} z}$ towards z (Figure 4.12(B)).
2. $\boldsymbol{m}_{\mathbf{5}}$: This movement is executed when r_{i} satisfies $\boldsymbol{c}_{\boldsymbol{2}}$. Let y be the closest robot position or the virtual robot position from x, which lies on L. In case there are no such robots, take $y=F_{c}$. Let z be the point on $\overline{x y}$ such that $\measuredangle \overline{r_{i} x} r_{i} \overline{r_{i} z}=\frac{1}{2^{p}}\left(\measuredangle \overline{r_{i} x} r_{i} \overline{r_{i} y}\right)$, where p is the smallest positive integer for which $\overline{r_{i} z}$ does not contain any robot positions or any virtual robot positions or does not intersects any saturated circle. Robot r_{i} moves along $\overline{r_{i} z}$ towards z (Figure 4.12(C)).
3. $\boldsymbol{m}_{\mathbf{6}}$: This movement is executed when r_{i} satisfies $\boldsymbol{c}_{\mathbf{3}}$. If x is not a robot position, then r_{i} moves along $\overline{r_{i} x}$ towards x (Figure 4.13(A)). Otherwise, the actions are similar to the case 2 for the candidate robot r_{i} (Figure 4.13(B)).

In Figure 4.12(A) $\overline{r_{i} q}$ does not contain any robot positions and virtual robot positions, r_{i} selects q as its destination point and moves along $\overline{r_{i} q}$. In Figure 4.12(B) $\overline{r_{i} q}$ contains a virtual robot position r_{l}, r_{i} selects z as its destination point and moves along $\overline{r_{i} z}$. In Figure 4.12(C) $\overline{r_{i} x}$ contains a virtual robot position r_{l}, r_{i} selects z as its destination point and moves along $\overline{r_{i} z}$. In Figure 4.13(A) $\overline{r_{i} x}$ does not contain any robot positions or virtual robot positions. Since x is neither a robot position nor a virtual robot position, r_{i} selects x as its destination point and moves along $\overline{r_{i} x}$. In Figure 4.13(B) Since x is a robot position, r_{i} selects z as its destination point and moves along $\overline{r_{i} z}$.

At time $t \geq 0$, if the configuration is in either phase P_{4} or P_{5}, then any active robot will execute MovetoLine. Execution of MovetoLine is terminated when the configuration is neither in P_{4} nor in P_{5} (Figure 4.14). The detailed description of MovetoLine is presented in the following table 4.2 .

4.4.2.5 Solvability during MovetoLine

Lemma 4.4.9. If $C(0) \in \mathcal{F} M U L T$ be such that it is in $\boldsymbol{P}_{\mathbf{4}}$ or $\boldsymbol{P}_{\mathbf{5}}$, then during any execution of MovetoLine, $C(t)$ at $t>0$ would remain solvable.

Phases	Conditions	Movements	Phases after the Movements
P_{4}	c_{1}	m_{4}	P_{4} or $\neg P_{4}$
P_{4}	c_{2}	m_{5}	P_{4} or $\neg P_{4}$
P_{4}	c_{3}	m_{6}	P_{4} or $\neg P_{4}$
P_{5}	c_{1}	m_{4}	P_{5} or $\neg P_{5}$
P_{5}	c_{2}	m_{5}	P_{5} or $\neg P_{5}$
P_{5}	c_{3}	m_{6}	P_{5} or $\neg P_{5}$

Table 4.2: Phase Transitions during MovetoLine

Figure 4.14: Phase transitions by a candidate robot during MovetoLine.

Proof. Let r_{i} be a candidate robot during an execution of MovetoLine. If $C(0)$ is asymmetric, execution of MovetoLine would be started in a unique wedge. In case, $C(0)$ admits rotational symmetry, execution of MovetoLine would be started in multiple wedges. A candidate robot would perform either $\boldsymbol{m}_{\mathbf{4}}$ or $\boldsymbol{m}_{\mathbf{5}}$ during any execution of MovetoLine. During such movements r_{i} would select its path for movement by ensuring that it does not contain any robot positions or virtual robot positions. Robot r_{i} would avoid all the points at which $C(t)$ might become symmetric about some $L_{i} \in \mathcal{L}^{\prime}$. Therefore, $C(t)$ would remain asymmetric about each $L_{i} \in \mathcal{L}^{\prime}$. Hence, if $C(0) \in \mathcal{F} M U L T$ be such that it is in $\boldsymbol{P}_{\mathbf{4}}$ or $\boldsymbol{P}_{\mathbf{5}}$, then during any execution of MovetoLine, $C(t)$ at $t>0$ would remain solvable.

4.4.2.6 Progress during MovetoLine

Let $C(t)$ be in phase P_{4} and $V_{k} \in W_{1}$ be a wedge that contains a surplus robot. In the wedge V_{k}, both the destination line (say L) and the candidate robot (say r_{i}) are unique. Let $q_{i}(t)$ be its destination point computed at time t. Let $\operatorname{Ray}\left(r_{i}(t), q_{i}(t)\right)$ denotes the
ray starting from r_{i} and passing through $q_{i}(t)$. Suppose $p_{1}(t)$ denotes the point at which $\operatorname{Ray}\left(r_{i}(t), q_{i}(t)\right)$ intersects L. Define $g_{i}(t)=d\left(r_{i}(t), p_{1}(t)\right)$. Let $x(t)$ be the point on L, such that $\overline{r_{i} x(t)}$ is perpendicular to L. Assume that there are $\mathcal{N}_{1}(t)$ number of surplus robots in V_{k}. Define $\mathcal{V}_{k}(t)=\left(\mathcal{N}_{1}(t), g_{i}(t)\right)$.

Figure 4.15: (A)-(B) Progress during movement m_{4}

In Figure 4.15(A), r_{i} selects q as its destination point at time t. It moves straight towards q and selects q as its destination point at time t^{\prime}. In Figure 4.15(B), r_{i} selects z as its destination point at time t. At time t^{\prime}, r_{i} selects u as its destination point. In

Figure 4.16: Progress during movements (A) m_{5}, (B)-(C) m_{6}.

Figure 4.16(A), $\overline{r_{i}(t) x(t)}$ contains a virtual robot position. r_{i} selects z as its destination point at time t. At time $t^{\prime}, \overline{r_{i}\left(t^{\prime}\right) x\left(t^{\prime}\right)}$ does not contain any robot positions or virtual robot positions. It selects $x\left(t^{\prime}\right)$ as its destination point. In Figure 4.16(B), r_{i} selects $x(t)$ as its destination point at time t. It moves straight towards $x(t)$ and selects $x(t)$ as its destination point at time t^{\prime}. In Figure $4.16(\mathrm{C}), x(t)$ is a robot position. At time t, r_{i}
selects z as its destination point. At time $t^{\prime}, x\left(t^{\prime}\right)$ does not contain any robot positions. It selects $x\left(t^{\prime}\right)$ as its destination point.

Definition 4.4.10. Let $C(t)$ be in phase P_{4}. During any execution of MovetoLine, we say that there has been progress in a wedge $V_{k} \in W_{1}$ in the time interval t to t^{\prime} if $\mathcal{V}_{k}\left(t^{\prime}\right)<\mathcal{V}_{k}(t)$, i.e., $\mathcal{V}_{k}\left(t^{\prime}\right)$ is lexicographically smaller than $\mathcal{V}_{k}(t)$.

Lemma 4.4.11. Let $C(t)$ be in phase P_{4}. Let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed its at least one LCM cycle. Execution of MovetoLine ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. The following cases are to be considered:
Case 1. $\boldsymbol{C}(\boldsymbol{t})$ satisfies $\boldsymbol{c}_{\mathbf{1}}$. Let $C\left(f_{j}, \rho\right)$ be the first circle to which r_{i} intersects while moving along $\overline{r_{i} x}$ towards x. Suppose, q is the intersection point between $\overline{r_{i} x}$ and $C\left(f_{j}, \rho\right)$.

Subcase 1. $\overline{r_{i} q}$ does not contain any virtual robot positions and q does not contain any robot position. In this case, r_{i} executes case (i) of movement $\boldsymbol{m}_{\boldsymbol{4}}$ (Figure 4.15(A)). Since r_{i} moves at least δ distance, $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Subcase 2. Either q is a robot position or $\overline{r_{i} q}$ contains a virtual robot position. The candidate robot computes a destination point on $C\left(f_{j}, \rho\right)$ according to case (ii) of movement $\boldsymbol{m}_{\boldsymbol{4}}$ (Figure $\left.4.15(\mathrm{~B})\right)$. At time $t^{\prime}, d\left(r_{i}\left(t^{\prime}\right), p_{1}\left(t^{\prime}\right)\right)<d\left(r_{i}\left(t^{\prime}\right), p_{1}(t)\right)$ and $d\left(r_{i}(t), p_{1}(t)\right)-$ $d\left(r_{i}\left(t^{\prime}\right), p_{1}\left(t^{\prime}\right)\right)>d\left(r_{i}(t), p_{1}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), p_{1}(t)\right) \geq \delta$ (Figure 4.15(B)). This implies that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Case 2. $\boldsymbol{C}\left(\boldsymbol{t} \boldsymbol{t}\right.$ satisfies $\boldsymbol{c}_{\mathbf{2}}$. Robot r_{i} executes movement $\boldsymbol{m}_{\mathbf{5}}$ (Figure 4.16(A)). This case is similar to Subcase 2 of Case 1 .

Case 3. $\boldsymbol{C}(\boldsymbol{t})$ satisfies $\boldsymbol{c}_{\mathbf{3}}$. Robot r_{i} executes movement $\boldsymbol{m}_{\mathbf{6}}$. If $x(t)$ is not a robot position, the case is similar to Subcase 1 of Case 1 (Figure 4.16(B)). In case $x(t)$ is a robot position, the case is similar to Subcase 2 of Case 1 (Figure 4.16(C)).

Hence, an execution of MovetoLine ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.
Lemma 4.4.12. During an execution of MovetoLine in $V_{k} \in W_{1}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed its at least one LCM cycle. An execution of MovetoLine ensures progress in V_{k} in the time interval t to t^{\prime}.

Proof. The following cases are to be considered:
Case 1. $x(t)=r_{i}\left(t^{\prime}\right)$. Then $\mathcal{N}_{1}\left(t^{\prime}\right)=\mathcal{N}_{1}(t)-1$, which implies $\mathcal{V}_{2}\left(t^{\prime}\right)<\mathcal{V}_{2}(t)$.
Case 2. $x(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 4.4.11 ensures that $g_{i}\left(t^{\prime}\right)<g_{i}(t)$. Thus, $\mathcal{V}_{2}\left(t^{\prime}\right)<\mathcal{V}_{2}(t)$.

Hence, an execution of MovetoLine ensures progress in V_{k} in the time interval t to t^{\prime}.

Next, assume that $C(t)$ is in $\boldsymbol{P}_{\mathbf{5}}$. Let $\mathcal{W}_{k} \in W_{2}$ be a wedge that contains a surplus robot. Progress in a wedge $\mathcal{W}_{k} \in W_{2}$ can be defined similarly to the Definition 4.4.10. There are two possible cases: (i) single destination line and (ii) two destination lines. If there is a single destination line in \mathcal{W}_{k}, then there is a unique candidate robot. Thus, progress in \mathcal{W}_{k} is ensured by (Lemma 4.4.12). If there are two destination lines, then there are two candidate robots (say r_{1} and r_{2}) in \mathcal{W}_{k}. In this case, both the candidate robots must have different destination lines. Otherwise, both of them can not be selected as a candidate robot. As a result, each of them will continue their movements by ensuring progress in \mathcal{W}_{k} (Lemma 4.4.12) without any conflict.

Lemma 4.4.13. If $C(t)$ for $t \geq 0$ is in $\boldsymbol{P}_{\mathbf{4}}$ or $\boldsymbol{P}_{\mathbf{5}}$, then by the execution of MovetoLine within finite time the configuration would eventually be neither in $\boldsymbol{P}_{\mathbf{4}}$ nor in $\boldsymbol{P}_{\mathbf{5}}$

Proof. Lemma 4.4.12 guarantees progress in a wedge. Since there is only a finite number of wedges, the number of wedges containing surplus robots is also finite. Therefore, within finite time the configuration would eventually be neither in $\boldsymbol{P}_{\mathbf{4}}$ nor in $\boldsymbol{P}_{\mathbf{5}}$ by the execution of MovetoLine.

4.4.3 AlgorithmNoAxis

Definition 4.4.14. Let \mathcal{W}_{i} and \mathcal{W}_{j} be two wedges that contain a surplus robot. Let r_{a} and r_{b} be the candidate robots in \mathcal{W}_{i} and \mathcal{W}_{j}, respectively. If there are two candidate robots in a wedge, then select the one that lies closest to its destination line. If there is a tie, select the one with the minimum view. If both the candidate robots have the same view, then select one of them arbitrarily. At time t, \mathcal{W}_{i} is said to have more progress than \mathcal{W}_{j} during MovetoLine, if $\mathcal{V}_{i}(t)$ is lexicographically smaller than $\mathcal{V}_{j}(t)$.

Definition 4.4.15. Progress in a wedge $\mathcal{W}_{i} \in \boldsymbol{W}_{2}$: First, consider the case when there exists a unique target fixed point in each of the wedges. Let f_{i} and f_{j} be the target fixed points in \mathcal{W}_{i} and \mathcal{W}_{j}, respectively, at time t. At time t, \mathcal{W}_{i} is said to have more progress than \mathcal{W}_{j}, if one of the following holds:
(i) $\mathscr{V}\left(f_{i}\right)<\mathscr{V}\left(f_{j}\right)$, or
(ii) $\mathscr{V}\left(f_{i}\right)=\mathscr{V}\left(f_{j}\right)$ and $D_{i}(t)<D_{j}(t)$, or
(iii) $\mathscr{V}\left(f_{i}\right)=\mathscr{V}\left(f_{j}\right)$ and $D_{i}(t)=D_{j}(t)$ and $d\left(f_{i}, r_{1}\right)<d\left(f_{j}, r_{2}\right)$ where r_{1} and r_{2} are the candidate robots for f_{i} and f_{j} respectively at time t.

Next, consider the case when there are two target fixed points in the same wedge. This would happen when the wedge is symmetric about the wedge bisector. The two target fixed points will be separated by the wedge bisector, which is considered to be the y-axis in that wedge. If there has been the same progress in both the half-planes (Definition 3.4.1) delimited by the wedge bisector, then one of the target fixed points is considered arbitrarily. Otherwise, the target fixed point from the half-plane, for which there has been more progress is considered. Next, similar to the case of unique target fixed points, the robots can identify the wedge in which there has been more progress.

An active robot executes AlgorithmNoAxis unless $C(t)$ is a final configuration. The pseudo-code for AlgorithmNoAxis is given in Algorithm 4.1.

4.4.3.1 Phases during AlgorithmNoAxis

We define the following additional phases at time $t \geq 0$:

1. $\boldsymbol{P}_{\mathbf{6}}: C(t)$ have y-axis agreement.
2. $\boldsymbol{P}_{\mathbf{7}}: C(t) \in \mathcal{F} C H I R$ and $\exists f \in F$ such that f lies on F_{c} and f is unsaturated.
3. $\boldsymbol{P}_{\mathbf{8}}: C(t) \in \mathcal{F} C H I R$ and $\exists V_{i} \in W_{1}$ such that V_{i} contains an unsaturated fixed point.
4. $\boldsymbol{P}_{\boldsymbol{9}}: C(t) \in \mathcal{F} M U L T$ and $\exists f \in F$ such that f lies on F_{c} and f is unsaturated.
```
ALGORITHM 4.1: AlgorithmNoAxis
    Input: \(C(t)=(R(t), F)\)
    if the robots have \(y\)-axis agreement then
        Execute \(\boldsymbol{A}_{\mathbf{1}}\) in \(C(t)\);
    else if the robots have an agreement on a common chirality then
        if \(C(t)\) is in phase \(\boldsymbol{P}_{\mathbf{7}}\) then
            Let \(f \in F\) such that \(f\) is on \(F_{c}\);
            Execute \(\boldsymbol{A}_{\mathbf{1}}\) in \((R(t),\{f\})\);
        else if \(C(t)\) is in phase \(\neg \boldsymbol{P}_{\mathbf{7}} \wedge \boldsymbol{P}_{\mathbf{4}}\) then
            Let \(V_{i} \in W_{1}\) be a wedge that contains a surplus robot;
            Execute \(\boldsymbol{A}_{\boldsymbol{3}}\) in the configuration consisting of fixed points and robots in \(V_{i} \cup T_{i}\);
        else if \(C(t)\) is in phase \(\neg \boldsymbol{P}_{\mathbf{7}} \wedge \neg \boldsymbol{P}_{\mathbf{4}} \wedge \boldsymbol{P}_{\mathbf{8}}\) then
            Let \(V_{i} \in W_{1}\) contain an unsaturated fixed point;
            // If there are multiple such wedges select a wedge that contains the maximum number of
                    robots
            Execute \(\boldsymbol{A}_{\mathbf{1}}\) in the configuration consisting of fixed points and robots in \(V_{i} \cup T_{i}\);
        end
    else
        if \(C(t)\) is in phase \(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\) then
            Execute \(\boldsymbol{A}_{2}\) in \(C(t)\);
        else if \(C(t)\) is in phase \(\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \boldsymbol{P}_{\mathbf{9}}\) then
            Let \(f \in F\) such that \(f\) is on \(F_{c}\);
            Action \(\boldsymbol{A}_{\mathbf{1}}\) is executed in the configuration consisting of \(R(t) \cup\{f\}\);
        else if \(C(t)\) is in phase \(\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{9} \wedge \boldsymbol{P}_{\mathbf{5}}\) then
            Let \(\mathcal{W}_{i} \in W_{2}\) contain a surplus robot;
            // If there are multiple such wedges, select the wedge in which maximum progress during
                MovetoLine is ensured. If there is a tie select the one that contains the robot with
                the minimum view
            Execute \(\boldsymbol{A}_{\mathbf{3}}\) in the configuration consisting of fixed points and robots in \(\operatorname{Area}\left(\mathcal{W}_{i}\right)\);
        else if \(C(t)\) is in phase \(\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{\mathbf{9}} \wedge \neg \boldsymbol{P}_{\mathbf{5}} \wedge \boldsymbol{P}_{\mathbf{1}}\) then
            Let \(\mathcal{W}_{i} \in W_{2}\) be a wedge such that it does not contain any unsaturated fixed points, but
                    \(\exists f \in \mathcal{B}_{i-1} \cup \mathcal{B}_{i}\) such that it is unsaturated;
            // If there are more than one such wedges, then select the wedge in which maximum progress
                has been ensured. If there are multiple such wedges, then select the one that contains
                the robot with the minimum view
            Execute \(\boldsymbol{A}_{\boldsymbol{1}}\) in the configuration consisting of \(R(t)\) and fixed points in \(\mathcal{B}_{i-1} \cup \mathcal{B}_{i}\);
        else if \(C(t)\) is in phase \(\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{9} \wedge \neg \boldsymbol{P}_{5} \wedge \neg \boldsymbol{P}_{10} \wedge \boldsymbol{P}_{11}\) then
            Let \(\mathcal{W}_{i} \in W_{2}\) contain an unsaturated fixed point;
            // If there are multiple such wedges, select the one that contains the maximum number of
                robots. In case of a tie, select the one in which maximum progress has been ensured.
                If there are multiple such wedges, select the one that contains the robot with minimum
                view
            Execute \(\boldsymbol{A}_{\boldsymbol{1}}\) in the configuration consisting of robots and fixed points in \(\mathcal{W}_{i}\);
        end
    end
```

5. $\boldsymbol{P}_{\mathbf{1 0}}: C(t) \in \mathcal{F} M U L T$ and $\exists \mathcal{W}_{i} \in W_{2}$ such that it does not contain any unsaturated fixed points, but $\exists f \in \mathcal{B}_{i-1} \cup \mathcal{B}_{i}$ such that it is unsaturated.
6. $\boldsymbol{P}_{\mathbf{1 1}}: C(t) \in \mathcal{F} M U L T$ and $\exists \mathcal{W}_{i} \in W_{2}$ such that \mathcal{W}_{i} contains an unsaturated fixed point.

4.4.3.2 Actions during AlgorithmNoAxis

1. $\boldsymbol{A}_{\mathbf{1}}:$ AlgorithmOneAxis
2. $\boldsymbol{A}_{\mathbf{2}}$: SymmetryBreaking
3. $\boldsymbol{A}_{\mathbf{3}}:$ MovetoLine

Figure 4.17: Phase transitions during AlgorithmNoAxis.

An active robot at time $t \geq 0$ considers the following cases during an execution of AlgorithmNoAxis:

1. The robots have y-axis agreement, i.e., $C(t)$ is in phase $\boldsymbol{P}_{\mathbf{6}} . \boldsymbol{A}_{\mathbf{1}}$ is executed.
2. The robots have a common chirality. The following cases are to be considered:
(a) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\boldsymbol{P}_{\mathbf{7}}$. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed in the configuration consisting of $R(t) \cup\{f\}$.
(b) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg \boldsymbol{P}_{\mathbf{7}} \wedge \boldsymbol{P}_{\mathbf{4}}$. Action $\boldsymbol{A}_{\mathbf{3}}$ is executed in the configuration consisting of robots and fixed points in $V_{i} \cup T_{i}$.
(c) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg \boldsymbol{P}_{\mathbf{7}} \wedge \neg \boldsymbol{P}_{\mathbf{4}} \wedge \boldsymbol{P}_{\mathbf{8}}$. Among all the wedges containing a surplus robot, let $V_{i} \in W_{1}$ be a wedge that contains the maximum number of robots. If there are more than one such wedges, then consider all such wedges. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed in the configuration consisting of robots and fixed points in $V_{i} \cup T_{i}$.
3. The robots neither have one axis agreement nor agree on a common chirality. The following cases are to be considered:
(a) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}$. Action $\boldsymbol{A}_{\mathbf{2}}$ is executed in $C(t)$.
(b) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \boldsymbol{P}_{\mathbf{9}}$. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed in the configuration consisting of $R(t) \cup\{f\}$.
(c) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{\mathbf{9}} \wedge \boldsymbol{P}_{\mathbf{5}}$. Let $\mathcal{W}_{i} \in W_{2}$ be a wedge that contains a surplus robot. If there are multiple such wedges, select the wedge in which maximum progress during MovetoLine is ensured. If there is a tie select the one that contains the robot with the minimum view. Action $\boldsymbol{A}_{\mathbf{3}}$ is executed for the configuration consisting of the robot positions, virtual robot positions and fixed points in $\operatorname{Area}\left(\mathcal{W}_{i}\right)$.
(d) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{\mathbf{9}} \wedge \neg \boldsymbol{P}_{\mathbf{5}} \wedge \boldsymbol{P}_{\mathbf{1 0}}$. Let $\mathcal{W}_{i} \in W_{2}$ be a wedge such that it does not contain any unsaturated fixed points, but $\exists f \in \mathcal{B}_{i-1} \cup \mathcal{B}_{i}$ such that it is unsaturated. If there are more than one such wedges, then select the wedge in which maximum progress has been ensured. If there are multiple such wedges, then select the one that contains the robot with the minimum view. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed for the configuration consisting of $R(t)$ and set of fixed points in $\mathcal{B}_{i-1} \cup \mathcal{B}_{i}$.
(e) $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{\mathbf{9}} \wedge \neg \boldsymbol{P}_{\mathbf{5}} \wedge \neg \boldsymbol{P}_{\mathbf{1 0}} \wedge \boldsymbol{P}_{\mathbf{1 1}}$. Let $\mathcal{W}_{i} \in$ W_{2} be a wedge that contains the maximum number of robot positions among all the wedges that contain a unsaturated fixed point. If there are multiple such wedges, select the wedge(s), in which maximum progress has been ensured. If there are more than one such wedge, the wedge containing the robot position with the minimum view is selected. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed for the configuration consisting of robot positions and fixed points in \mathcal{W}_{i}.

Figure 4.17 depicts the phase transitions during AlgorithmNoAxis. A summary of the AlgorithmNoAxis is presented in the following table 4.3.

4.5 Correctness

To prove the correctness of algorithm AlgorithmNoAxis, the following points are shown:

1. Solvability: If the initial configuration is solvable, then during any execution of algorithm AlgorithmNoAxis, the configuration would remain solvable.

Classes	Phases	Actions	Phases after the Movements
$\mathcal{F} M U L T$	$P_{1} \vee P_{2} \vee P_{3}$	A_{2}	$\neg\left(P_{1} \vee P_{2}\right) \wedge P_{3}$ or $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$
$\mathcal{F} M U L T$	$\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge P_{9}$	A_{1}	$\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge P_{9}$ or $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9}$
$\mathcal{F} M U L T$	$\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge P_{5}$	A_{3}	$\begin{aligned} & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge P_{5} \text { or } \neg\left(P_{1} \vee P_{2} \vee\right. \\ & \left.P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge P_{10} \text { or } \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \\ & \neg P_{9} \wedge \neg P_{5} \wedge \neg P_{10} \wedge P_{11} \end{aligned}$
$\mathcal{F} M U L T$	$\begin{aligned} & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \\ & \neg P_{5} \wedge P_{10} \end{aligned}$	A_{1}	$\begin{aligned} & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge P_{10} \text { or } \neg\left(P_{1} \vee\right. \\ & \left.P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge \neg P_{10} \wedge P_{11} \text { or } \neg\left(P_{1} \vee\right. \\ & \left.P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge P_{5} \end{aligned}$
$\mathcal{F} M U L T$	$\begin{aligned} & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \\ & \neg P_{5} \wedge \neg P_{10} \wedge P_{11} \end{aligned}$	A_{1}	$\begin{aligned} & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge \neg P_{10} \wedge P_{11} \text { or } \\ & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge \neg P_{10} \wedge \neg P_{11} \text { or } \\ & \neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge P_{10} \text { or } \neg\left(P_{1} \vee\right. \\ & \left.P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge P_{5} \end{aligned}$
$\mathcal{F} C H I R$	P_{7}	A_{1}	P_{7} or $\neg P_{7}$
$\mathcal{F C H I R}$	$\neg P_{7} \wedge P_{4}$	A_{3}	$\neg P_{7} \wedge P_{4}$ or $\neg P_{7} \wedge \neg P_{4}$
$\mathcal{F C H I R}$	$\neg P_{7} \wedge \neg P_{4} \wedge P_{8}$	A_{1}	$\neg P_{7} \wedge \neg P_{4} \wedge P_{8}$ or $\neg P_{7} \wedge \neg P_{4} \wedge \neg P_{8}$ or $\neg P_{7} \wedge P_{4}$
$\mathcal{F} A S Y M \cup \mathcal{F} R E F L$	P_{6}	A_{1}	P_{6}

Table 4.3: Transitions during AlgorithmNoAxis
2. Progress: During any execution of AlgorithmNoAxis, progress must be ensured, which would guarantee that the robots would solve the k-circle formation problem within finite time. In Figure 4.17, a phase transition implies progress. We must ensure that self-loops in a phase also ensures progress.

4.5.1 Solvability

Lemma 4.5.1. If $C(0) \in \mathcal{F} A S Y M \cup \mathcal{F} R E F L$ and solvable, then the configuration $C(t)$ for $t \geq 0$ remains solvable during any execution of AlgorithmNoAxis.

Proof. The robots have y-axis agreement. The proof follows from Theorem 3.5.10.

Lemma 4.5.2. If $C(0) \in \mathcal{F} C H I R$ and solvable, then the configuration $C(t)$ for $t \geq 0$ remains solvable during any execution of AlgorithmNoAxis.

Proof. The robots have common chirality. Since F does not admit any line of symmetry, the configuration would never admit a line of symmetry. Therefore, the configuration $C(t)$ for $t \geq 0$ remains solvable during any execution of AlgorithmNoAxis.

Lemma 4.5.3. If $C(0) \in \mathcal{F} M U L T$ and solvable, then the configuration $C(t)$ for $t \geq 0$ remains solvable during any execution of AlgorithmNoAxis.

Proof. The following cases are to be considered:
Case 1. \boldsymbol{A}_{2} is executed. $C(t)$ is in phase $P_{1} \vee P_{2} \vee P_{3}$. From Lemmata 4.4.3 and 4.4.4, it follows that $C(t)$ would remain solvable.

Case 2. \boldsymbol{A}_{1} is executed. Consider the following subcases:
Subcase 1. $C(0)$ is asymmetric. Execution of A_{1} will start in a unique wedge (say $W)$. Let the wedges W and W^{\prime} be mirror images about some $L_{i} \in \mathcal{L}^{\prime}$. At time t, W is guaranteed to have more progress than W^{\prime}. As a consequence, $C(t)$ will remain asymmetric about L_{i}. Since the choice of L_{i} was arbitrary, $C(t)$ would remain asymmetric about each $L_{i} \in \mathcal{L}^{\prime}$.

Subcase 2. $C(0)$ admits rotational symmetry. Since $C(0)$ is in $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$, if $C(0)$ is symmetric about a line $L \in \mathcal{L}$, then $L \in \mathcal{L} \backslash \mathcal{L}^{\prime}$. A_{1} would be executed in multiple wedges. Let W be such a wedge. Let W^{\prime} be the mirror image of W about an $L_{i} \in \mathcal{L}^{\prime}$. The following scenarios are possible:

1. Execution of A_{1} has not started in $W^{\prime} . W$ is guaranteed to have more progress than W^{\prime}. Thus, $C(t)$ would remain asymmetric about L_{i}.
2. Execution of A_{1} has started in W^{\prime}. Both W and W^{\prime} had the same progress in $C(0)$. Also, both the wedges contain a robot with the minimum view. Let r_{1} and r_{2} be the robots with the minimum view in W and W^{\prime}, respectively. Thus, $\mathscr{V}\left(r_{1}\right)=\mathscr{V}\left(r_{2}\right)$. If $\mathscr{V}^{+}\left(r_{1}\right)=\mathscr{V}^{-}\left(r_{2}\right)$, then $C(0)$ was symmetric about L_{i} (Lemma 4.2.1). It contradicts that $C(0)$ was in $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right)$. Therefore, $\mathscr{V}^{+}\left(r_{1}\right)=\mathscr{V}^{+}\left(r_{2}\right)$. From Lemma 4.2.2, it follows that the positive x-direction in both the wedges would be either in a clockwise or counter-clockwise direction (Figure 4.18). As a result, during the execution of A_{1} in both the wedges, the half-plane with more progress in W cannot be symmetric to the half-plane with more progress in W^{\prime}. Thus, $C(t)$ would remain asymmetric about each $L_{i} \in \mathcal{L}^{\prime}$.

Case 3. \boldsymbol{A}_{3} is executed. $C(t)$ is in phase $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge P_{5}$. From Lemma 4.4.9, it follows that $C(t)$ would remain solvable.

Hence, if $C(0) \in \mathcal{F} M U L T$ and solvable, then the configuration $C(t)$ for $t \geq 0$ remains solvable during any execution of AlgorithmNoAxis.

Figure 4.18: $C(t)$ is asymmetric about L_{i}.

4.5.2 Progress

Theorem 4.5.4. If $C(0) \in\{\mathcal{F} A S Y M \cup \mathcal{F} R E F L \cup \mathcal{F} C H I R \cup \mathcal{F} M U L T\}$ and it is solvable, then the robots would eventually solve the k-circle formation problem without any axis agreement, by the execution of AlgorithmNoAxis.

Proof. If $C(t)$ is not a final configuration for $t \geq 0$, then the robots execute AlgorithmNoAxis. From Lemmata 4.5.1, 4.5.2 and 4.5.3, it follows that $C(t)$ would remain solvable. We have the following cases:

Case 1. The robots have y-axis agreement. $C(t)$ for $t \geq 0$ is in $\boldsymbol{P}_{\mathbf{6}}$ and action $\boldsymbol{A}_{\mathbf{1}}$ is executed. From Theorem 3.5.10, it follows that the robots would eventually solve the k-circle formation problem.

Case 2. The robots have a common chirality. The following cases are to be considered:

Subcase 1. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\boldsymbol{P}_{\mathbf{7}}$. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed. Let $f=F_{c}$. From Theorem 3.5.10, it follows that f would eventually become saturated.

Subcase 2. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg \boldsymbol{P}_{\mathbf{7}} \wedge \boldsymbol{P}_{\mathbf{4}}$. Action $\boldsymbol{A}_{\mathbf{2}}$ is executed. From the Lemma 4.4.13, it follows that the configuration would eventually satisfy $\neg \boldsymbol{P}_{\mathbf{7}} \wedge \neg \boldsymbol{P}_{\mathbf{4}}$.

Subcase 3. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg \boldsymbol{P}_{\mathbf{7}} \wedge \neg \boldsymbol{P}_{\mathbf{4}} \wedge \boldsymbol{P}_{\mathbf{8}}$. Suppose $V_{i} \cup T_{i}$ for some $V_{i} \in W_{1}$ contains an unsaturated fixed point. Also, suppose $V_{i} \cup T_{i}$ contains the maximum number of robots. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed. Theorem 3.5.10 ensures that eventually the robots would solve the k-circle formation problem in $V_{i} \cup T_{i}$.

Since there can be only a finite number of wedges, the robots would solve the k-circle formation problem eventually.

Case 3. The robots neither have y-axis agreement nor have agreement on a common chirality. The following subcases are to be considered:

Subcase 1. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}$. Action $\boldsymbol{A}_{\mathbf{2}}$ is executed in $C(t)$. Lemma 4.4.2 guarantees that eventually $C(t)$ will satisfy $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right)$

Subcase 2. $\boldsymbol{C}(\boldsymbol{t})$ is in phase $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \boldsymbol{P}_{\mathbf{9}}$. Action $\boldsymbol{A}_{\mathbf{1}}$ is executed in the configuration consisting of $R(t) \cup\{f\}$. Theorem 3.5.10 ensures that eventually f will become saturated.

Subcase 3. $C(t)$ is in phase $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg \boldsymbol{P}_{9} \wedge P_{5}$. Action \boldsymbol{A}_{3} is executed. From Lemma 4.4.13, it follows that the configuration would eventually satisfy the condition $\neg\left(\boldsymbol{P}_{\mathbf{1}} \vee \boldsymbol{P}_{\mathbf{2}} \vee \boldsymbol{P}_{\mathbf{3}}\right) \wedge \neg \boldsymbol{P}_{\mathbf{9}} \wedge \neg \boldsymbol{P}_{\mathbf{5}}$.

Subcase 4. $C(t)$ is in phase $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge P_{10}$. Suppose action $\boldsymbol{A}_{\mathbf{1}}$ is executed for the configuration consisting of $R(t)$ and set of fixed points in $\mathcal{B}_{i-1} \cup \mathcal{B}_{i}$. Theorem 3.5.10 ensures that eventually all the fixed points in $\mathcal{B}_{i-1} \cup \mathcal{B}_{i}$ will become saturated.

Subcase 5. $C(t)$ is in phase $\neg\left(P_{1} \vee P_{2} \vee P_{3}\right) \wedge \neg P_{9} \wedge \neg P_{5} \wedge \neg P_{10} \wedge P_{11}$. Suppose action $\boldsymbol{A}_{\mathbf{1}}$ is executed for the configuration consisting of robot positions and fixed points in \mathcal{W}_{i}. Theorem 3.5.10 ensures that eventually the robots would solve the k-circle formation problem in \mathcal{W}_{i}.

Since there can be only a finite number of wedges, the robots would solve the k-circle formation problem eventually.

Hence, if $C(0) \in\{\mathcal{F} A S Y M \cup \mathcal{F} R E F L \cup \mathcal{F} C H I R \cup \mathcal{F} M U L T\}$ and it is solvable, then the robots would eventually solve the k-circle formation problem without any axis agreement, by the execution of AlgorithmNoAxis.

4.6 Conclusions

This chapter investigates the k-circle formation problem by asynchronous, autonomous, anonymous and oblivious mobile robots in the Euclidean plane. The problem has been studied for a set of completely disoriented robots, i.e., they neither have any agreement on a global coordinate system nor on a common chirality. Since there can be multiple lines of symmetry, the set of unsolvable cases is larger than the set of unsolvable cases under one axis agreement. The following two results have been proved:

1. If $C(0)$ admits a line of symmetry (say L) such that $L \cap F \neq \emptyset$ and $L \cap R(0)=\emptyset$, then the k-circle formation problem is deterministically unsolvable without any axis agreement.
2. If $C(0) \in\{\mathcal{F} A S Y M \cup \mathcal{F} R E F L \cup \mathcal{F} C H I R \cup \mathcal{F} M U L T\}$ and it is solvable, then the k-circle formation problem is deterministically solvable without any axis agreement.

Chapter 5

k-Circle Formation by Opaque Robots

Contents

5.1 Overview . 107
5.2 The Model . 108
5.3 Complete Knowledge of the Fixed Points 111
5.4 Zero Knowledge of the Fixed Points 130
5.5 Conclusions . 148

5.1 Overview

In this chapter, the k-circle formation problem is investigated under an obstructed visibility model. The robots are assumed to be opaque, i.e., a robot cannot see another robot if a third robot is placed on the line segment joining them. The robots may not know the positions of all the robots. As a consequence, some of the robots have to decide their strategy based on their partial visibility. The proposed distributed algorithms discussed in the previous chapters (Chapters 3 and 4) would fail to solve the k-circle formation
problem as both the algorithms are based on the assumption that the robots have unlimited visibility. The primary motivation is to investigate the solvability of the k-circle formation problem under obstructed visibility model.

The problem has been investigated in two different settings: complete knowledge of fixed points and zero knowledge of fixed points. If the robots are oblivious and silent, then to identify the termination condition (the robots have solved the k-circle formation problem) the robots should have knowledge of the positions of all other robots and fixed points. If the robots have complete knowledge of the fixed points, then they only need to solve the mutual visibility problem for robot positions. By solving the mutual visibility problem for robot positions, they will be able to identify whether the position of a robot is on a circle or not. If the robots have zero knowledge of the fixed points, then all the fixed points in addition to robot positions must be visible to the robots so as to identify that the robots are positioned on a circle. In this case, the robots need to solve both the k-circle formation problem and the mutual visibility problem. If the robots have zero knowledge of the fixed points, then the oblivious and silent robots may not be able to solve the mutual visibility problem. To solve the k-circle formation problem in this setting, the robots are assumed to be equipped with one bit of persistent memory.

5.2 The Model

The robots are represented by points in the Euclidean plane. They are assumed to be autonomous, anonymous, and homogeneous. The robots are assumed to be opaque, i.e., the view of a robot gets obstructed due to the presence of other robots. However, a fixed point cannot obstruct the view of a robot. The robots are assumed to be completely disoriented. They are assumed to be activated under a fair ASYNC scheduler. We have considered two different settings based upon the visibility of the fixed points:

1. Complete knowledge of fixed points. The fixed points are tower-like structures which are always visible to the robots. Thus, the positions of the fixed points are known to the robots. As a consequence, the robots have the knowledge of the total

Figure 5.1: (A) Complete knowledge of the fixed points, (B) Zero knowledge of the fixed points.
number of fixed points. For example, in Figure 5.1(A), r_{4} and r_{6} cannot see each other but both of them can see the fixed points f_{1}, f_{2} and f_{3}.
2. Zero knowledge of fixed points. A robot cannot see a fixed point if another robot is positioned on the line segment joining them. Thus, the positions of all the fixed points may be unknown to the robots. As a consequence, the robots do not have the knowledge of the total number of fixed points. For example, in the Figure 5.1(B), r_{5} cannot see the fixed point f_{3} due to presence of r_{6} on $\overline{r_{5} f_{3}}$. Similarly, r_{5} cannot see the fixed point f_{1} due to presence of r_{4} on $\overline{r_{5} f_{1}} . V F r_{1}(t)=\left\{f_{3}\right\}, V F r_{2}(t)=$ $\left\{f_{1}, f_{2}, f_{3}\right\}, V F r_{3}(t)=\left\{f_{1}, f_{2}, f_{3}\right\}, V F r_{4}(t)=\left\{f_{1}, f_{2}\right\}, V F r_{5}(t)=\left\{f_{2}\right\}, V F r_{6}(t)=$ $\left\{f_{2}, f_{3}\right\}$

For the first setting, we have assumed that the robots are oblivious and silent, i.e., they have no explicit direct communications. For the next setting, we consider the light model introduced by Peleg [47] where the robots are assumed to be equipped with a externally visible light that can assume a constant number of pre-defined colors. The color of the lights are persistent and serves as an explicit direct communication and as an internal memory. Note that a robot having light with only one color is equivalent to the one with no light. Therefore, the light model is a generalization of the classical model.

5.2.1 Notations and Definitions

(1) $V R r_{i}(t)$ and $V F r_{i}(t)$ denote the total number of visible robots and fixed points to the robot r_{i} at time t.
(2) \mathcal{F}_{i} denotes the ray starting from F_{c} and passing through $f_{i} \in F$. Suppose $\mathcal{F}=$ $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{c}\right\}$ represents the set of all such rays for some $c>0$.
(3) $\operatorname{Ray}\left(F_{c}, r_{i}\right)$ denotes the ray starting from F_{c} and passing through r_{i}. When $V F r_{j}(t)=$ m, then r_{j} selects $\rho=\frac{1}{3} \min _{f_{i}, f_{j} \in F} d\left(f_{i}, f_{j}\right) . \xi$ represents the radius of the minimum enclosing circle for F. Let $\mathscr{C}=C\left(F_{c}, p \xi\right)$ where $p>0$ is smallest positive integer for which \mathscr{C} is the minimum enclosing circle for $C(t)$ centered at F_{c}.

5.2.1.1 Convex Hull

Figure 5.2: $r_{6}(t), r_{7}(t), r_{8}(t), f_{1}, f_{2} \in \operatorname{Int} H(t)$ and $f_{3} \in \operatorname{Out} H(t)$.

Given a set of points $S \subset \mathbb{R}^{2}$, a convex hull of S is the smallest convex set that contains S [119]. Let $H(t)$ denote the convex hull of $R(t)$ at time $t \geq 0$. Suppose $\operatorname{Int} H(t)$ and $\operatorname{Out} H(t)$ represents all the points in interior and exterior of $H(t)$, respectively, at $t \geq 0$ (Figure 5.2).

Definition 5.2.1. A robot $r_{i} \in H(t)$ identifies itself to be on a boundary of $H(t)$ if $\exists r_{j} \in R$ such that $j \neq i$ and one of the open half-planes demarcated by the straight line passing along $\overline{r_{j}(t) r_{i}(t)}$ does not contain any other robots. Otherwise, r_{i} identifies itself to be in $\operatorname{Int} H(t)$.

Suppose r_{i} denotes a robot on a boundary of $H(t)$. Suppose r_{j} and r_{k} are the adjacent robots of r_{i}, also positioned on a boundary of $H(t)$. If $\measuredangle r_{j} r_{i} r_{k}<\pi$, then r_{i} identifies itself to be a vertex of $H(t)$. In case $\measuredangle r_{j} r_{i} r_{k}=\pi$, r_{i} identifies itself to be a non-vertex robot.

5.2.2 The k-Circle Formation Problem

At $t \geq 0, C(t)$ is said to be a final configuration, if it satisfies the following conditions:
i) $\forall r_{i} \in R, V R r_{i}(t)=n, V F r_{i}(t)=m$ and $r_{i}(t) \in C\left(f_{j}, \rho\right)$ for some $f_{j} \in F$,
ii) $C\left(f_{i}, \rho\right) \cap C\left(f_{j}, \rho\right)=\emptyset$ for $f_{i} \neq f_{j}$, and
iii) $\left|C\left(f_{i}, \rho\right) \cap R(t)\right|=k, \forall f_{i} \in F$.

To solve the k-circle formation problem, starting from a given initial configuration the robots need to reach and remain in a final configuration.

5.2.3 Partitioning of the Configurations

If $V F r_{i}(t)=m$, a robot r_{i} can easily identify the class of a configuration by observing all the fixed points as discussed in section 4.2.2 of Chapter 4. All the configurations can be partitioned into the following disjoint classes:

1. $\mathcal{F} A S Y M-F$ is asymmetric (Figure $4.2(\mathrm{~A})$).
2. $\mathcal{F} R E F L-F$ has a single line of symmetry (Figure $4.2(\mathrm{~B})$ and $4.2(\mathrm{C})$).
3. $\mathcal{F C H I R}-\mathcal{F}$ admits rotational symmetry without any line of symmetry (Figure $4.2(\mathrm{D})$ and 4.2(E)).
4. $\mathcal{F} M U L T-F$ admits multiple lines of symmetry (Figure $4.2(\mathrm{~F}), 4.2(\mathrm{G}), 4.2(\mathrm{H})$ and 4.2(I)).

5.3 Complete Knowledge of the Fixed Points

In this section, we consider the model where the robots have complete knowledge of the fixed points. We have $\forall t \geq 0, \forall r_{i} \in R, V F r_{i}(t)=m$.

5.3.1 Impossibility Result

Theorem 5.3.1. Let $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ be such that $\exists L \in \mathcal{L}^{\prime}, C(0)$ is symmteric about L, and the following conditions hold:
i) $L \cap F \neq \emptyset$.
ii) $L \cap R(0)=\emptyset$.

If k is an odd integer, then the k-circle formation problem is deterministically unsolvable by opaque disoriented robots.

Proof. The proof follows from Theorem 4.3.1.

Let \mathcal{U}_{1} denote the set of all the configurations which satisfy the conditions stated in Theorem 5.3.1.

5.3.2 Suitable Configurations

Figure 5.3: Examples of Suitable Configurations (A) $C(t) \in \mathcal{F} A S Y M, k=2$ and $m=3 .(\mathbf{B}) C(t) \in$ $\mathcal{F} R E F L, k=4$ and $m=4$.

In this section, we discuss the construction of a suitable configuration. In a suitable configuration each robot (say r_{i}) is chosen for some fixed point (say f_{j}) and the position
of r_{i} on \mathscr{C} is selected by ensuring that r_{i} can directly move towards $C\left(f_{j}, \rho\right)$ along $\overline{r_{i} f_{j}}$. First, we introduce some new notations required for defining a suitable configuration.

1. $\alpha_{m}=\min _{\mathcal{F}_{i}, \mathcal{F}_{j} \in \mathcal{F}, \mathcal{F}_{i} \neq \mathcal{F}_{j}} \measuredangle \mathcal{F}_{i} F_{c} \mathcal{F}_{j}$.
2. β_{i} denotes the number of fixed points on $\mathcal{F}_{i} \in \mathcal{F}$. Suppose $\left\{f_{1}, f_{2}, \ldots f_{\beta_{i}}\right\}$ denotes the set of all the fixed points on \mathcal{F}_{i} such that $d\left(F_{c}, f_{1}\right)>d\left(F_{c}, f_{2}\right) \ldots>d\left(F_{c}, f_{\beta_{i}}\right)$.
3. $\forall \mathcal{F}_{i} \in \mathcal{F}, z_{i 0}$ denotes the the intersection point between \mathscr{C} and $\mathcal{F}_{i} . z_{i\left(\beta_{i} k\right)}$ is defined to be the point on \mathscr{C} such that $\measuredangle \overline{z_{i 0} F_{c}} F_{c} \overline{z_{i}\left(\beta_{i} k\right) F_{c}}=\frac{1}{3} \alpha_{m}$. Note that there are two such $z_{i\left(\beta_{i} k\right)}$ points.
4. Let $\omega_{i 0}$ and $\omega_{i\left(\beta_{i} k\right)}$ denote the intersection points between $C\left(f_{\beta_{i}}, \rho\right)$ and $\overline{F_{c} z_{i 0}}$ and $\overline{F_{c} z_{i\left(\beta_{i}\right)}}$, respectively.

Definition 5.3.2. When $\operatorname{VFr}(t)=m$, by considering only fixed points, the robot r_{i} can compute the configuration view as discussed in section 4.2.1. Let $f_{i} \in \mathcal{F}_{m}$ be a fixed point that has the highest configuration view. \mathcal{F}_{m} is said to be a master ray. Note that there can be multiple master rays.

Figure 5.4: Examples of Partially Suitable Configurations (A) $C(t) \in \mathcal{F} A S Y M, k=2$ and $m=3$. (B) $C(t) \in \mathcal{F} R E F L, k=4$ and $m=4$.

Construction of a suitable configuration. Without loss of generality, assume that \mathcal{F}_{m} is a master ray. Suppose \mathcal{F}_{i} represents the $i^{\text {th }}$ ray encountered in the clockwise direction from \mathcal{F}_{m}. For some $j \in\left\{\beta_{i} k-1, \ldots, 2,1\right\}$, let $\mathscr{L}_{i j}$ denote the set of all the straight lines
such that any $L \in \mathscr{L}_{i j}$ passes through exactly two points from the set $F \cup\left\{\omega_{a b} \mid a \in\right.$ $\{1,2, \ldots, i-1\}$ and $\left.b \in\left\{1,2, \ldots, \beta_{i} k\right\}\right\} \cup\left\{\omega_{a b} \mid a=i\right.$ and $\left.b \in\left\{j+1, \ldots, \beta_{i} k\right\}\right\}$. Let $j=k k_{1}+k_{2}$ where $0 \leq k_{2}<k$ and $1 \leq k_{1}<\beta_{i}$. When $k_{2}=0$, then define $\omega_{i j}$ as the point on $C\left(f_{k_{1}}, \rho\right)$ such that

$$
\measuredangle \overline{f_{k_{1}} z_{i(j+1)}} f_{k_{1}} \overline{f_{k_{1}} \omega_{i j}}=\frac{1}{p} \measuredangle \overline{f_{k_{1}} z_{i(j+1)}} f_{k_{1}} \overline{f_{k_{1}} z_{i 0}}
$$

where p is the smallest positive integer for which none of the lines in $\mathscr{L}_{i j}$ passes through $\omega_{i j}$. Also, define $z_{i j}$ to be the intersection point between $\operatorname{Ray}\left(f_{k_{1}}, \omega_{i j}\right)$ and \mathscr{C}. If $k_{2} \neq 0$, then define $\omega_{i j}$ as the point on $C\left(f_{k_{1}+1}, \rho\right)$ such that

$$
\measuredangle \overline{f_{k_{1}+1} z_{i(j+1)}} f_{k_{1}+1} \overline{f_{k_{1}+1} \omega_{i j}}=\frac{1}{p} \measuredangle \overline{f_{k_{1}+1} z_{i(j+1)}} f_{k_{1}+1} \overline{f_{k_{1}+1} z_{i 0}}
$$

where p is the smallest positive integer for which none of the lines in $\mathscr{L}_{i j}$ passes through $\omega_{i j}$. Also, define $z_{i j}$ to be the intersection point between $\operatorname{Ray}\left(f_{k_{1}+1}, \omega_{i j}\right)$ and \mathscr{C}. Define the following conditions for $C(t)$ at $t \geq 0$:

1. $\boldsymbol{c}_{1}: C(t) \in \mathcal{F} A S Y M \cup \mathcal{F} C H I R$ or $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is odd. Each $r_{i} \in \mathscr{C}$ is located on some $z_{i p}$ in the counter-clockwise direction from $\mathcal{F}_{i} \in \mathcal{F}$ for $p \in\left\{1,2, \ldots, \beta_{i} k\right\}$ (Figures 5.3(A) and 5.4(A)).
2. $\boldsymbol{c}_{2}: C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even. Each $r_{i} \in \mathscr{C}$ is located on some $z_{i p}$ for some $p \in\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$ (Figures 5.3(B) and 5.4(B)).

Definition 5.3.3. At $t \geq 0$, let $C(t)$ be a given configuration such that all the robots lie on \mathscr{C}. If $C(t)$ satisfies either $\boldsymbol{c}_{\mathbf{1}}$ or $\boldsymbol{c}_{\mathbf{2}}$, then it is said to be a suitable configuration. In case, there exists a robot that does not lie on \mathscr{C} and $C(t)$ satisfies either $\boldsymbol{c}_{\mathbf{1}}$ or $\boldsymbol{c}_{\mathbf{2}}$, then it is said to be a partially suitable configuration.

Figure 5.5: OpaqueAlgorithm1.

5.3.3 Algorithm

In this section, we propose a deterministic distributed algorithm that will solve the k-circle formation problem by oblivious and silent robots. Our proposed distributed algorithm solves the k-circle formation problem for $C(0) \notin \mathcal{U}_{1}$. Since the robots have the knowledge of all the fixed points, $\forall r_{i} \in R, \forall t \geq 0, V F r_{i}(t)=m$. An overview of our proposed algorithm, OpaqueAlgorithm1 is as follows:

Figure 5.6: (A) All the robots move towards \mathscr{C}, (B) The robots form a suitable configuration (C) The robots start forming circles.

1. All the robots position themselves on the circle \mathscr{C} (Figure 5.6(A)).
2. The robots re-position themselves on \mathscr{C} so that the configuration transforms into a suitable configuration (Figure 5.6(B)).
3. The robots start forming circles around the fixed points (Figure 5.6(C)).

Figure 5.5 represents a diagramatic representation of OpaqueAlgorithm1. All the phase conditions during OpaqueAlgorithm1 are defined in Table 5.1.

5.3.3.1 Phases during OpaqueAlgorithm1

We have the following phases during OpaqueAlgorithm1:

Conditions	Descriptions
P_{1}	$\forall r \in R, V R r(t)=n$
P_{2}	$C(t) \in \mathcal{F A S Y M}$
P_{3}	$C(t) \in \mathcal{F} R E F L$
P_{4}	$C(t) \in \mathcal{F} C H I R$
P_{5}	$C(t) \in \mathcal{F M U L T}$
P_{6}	$C(t)$ is a suitable configuration
P_{7}	$C(t)$ is a partially suitable configuration
P_{8}	$\exists f_{i} \in F$ such that f_{i} is unsaturated
P_{9}	$\forall r_{i} \in R, r_{i}(t) \in \mathscr{C}$
P_{10}	There exists exactly one robot (say $r)$ such that $r \notin C\left(f_{j}, \rho\right), \forall f_{j} \in F$ and $d\left(r, F_{c}\right)<\xi$
P_{11}	There are atmost two robots $\left(\right.$ say r_{1} and $\left.r_{2}\right)$ such that $r_{i} \notin C\left(f_{j}, \rho\right), \forall f_{j} \in F$ and $d\left(r_{i}, F_{c}\right)<\xi$ for $r_{i} \in\{1,2\}$
P_{12}	There are atmost κ robots $($ say κ is the degree of rotational symmetry $)$ such that $r_{i} \notin C\left(f_{j}, \rho\right), \forall f_{j} \in F$ and $d\left(r_{i}, F_{c}\right)<\xi$ for $r_{i} \in\{1,2, \ldots, \kappa\}$
P_{13}	There are atmost $2 \kappa^{\prime}$ robots (say κ^{\prime} is the number of lines of symmetry) such that $r_{i} \notin C\left(f_{j}, \rho\right), \forall f_{j} \in F$ and $d\left(r_{i}, F_{c}\right)<\xi$ for $r_{i} \in\left\{1,2, \ldots, \kappa^{\prime}\right\}$

Table 5.1: Descriptions of the Phase Conditions

1. Phase1: In this phase, all the robots position themselves on the circle \mathscr{C}. If all the robots lie on $\mathscr{C}\left(\right.$ condition $\left.P_{9}\right)$, then $\forall r_{i}, V R r_{i}(t)=n$ (condition P_{1}). A configuration $C(t)$ is said to be in Phase1 if it satisfies one of the following conditions:

$$
\begin{array}{r}
\neg P_{1} \wedge \neg P_{9} \wedge \neg P_{7} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right), \text { or } \\
\quad P_{1} \wedge \neg P_{9} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right)
\end{array}
$$

The robots would identify this phase by checking whether there exists a robot that does not lie on \mathscr{C} or not.
2. Phase2: In this phase, all the robots position themselves on the circle \mathscr{C} so as to form a suitable configuration. A configuration $C(t)$ is said to be in Phase 2 if it satisfies one of the following conditions:

$$
\begin{array}{r}
P_{1} \wedge P_{9} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right), \text { or } \\
P_{1} \wedge \neg P_{9} \wedge \neg P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right)
\end{array}
$$

The robots identify this phase by checking whether $C(t)$ is a suitable (condition P_{6}) or partially suitable (condition P_{7}) configuration.
3. Phase3: In this phase the robots start forming circles. A configuration $C(t)$ is said to be in Phase3 if it satisfies one of the following conditions:

$$
\begin{aligned}
& P_{1} \wedge P_{9} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8}, \text { or } \\
& P_{1} \wedge \neg P_{9} \wedge P_{7} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{11} \vee \neg P_{13}\right) \wedge P_{8} \text { or } \\
& \left(\neg P_{1} \vee P_{1}\right) \wedge \neg P_{9} \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge P_{8}
\end{aligned}
$$

The robots distinguishes this phase from Phase1 by checking whether the configuration satisfies conditions P_{6} or P_{7} and $P_{10} \vee P_{11} \vee P_{12} \vee P_{13}$.
4. Final: $C(t)$ is said to be in Final phase if it satisfies the following condition:

$$
P_{1} \wedge \neg P_{9} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge \neg P_{8}
$$

5.3.3.2 Movements during OpaqueAlgorithm1

We define the following types of movements at any arbitrary point of time $t \geq 0$ during an execution of OpaqueAlgorithm1:

Figure 5.7: Movement \boldsymbol{M}_{1}.

1. $\boldsymbol{M}_{\mathbf{1}}$: This movement is executed when $\boldsymbol{C}(\boldsymbol{t})$ is in Phase1. By the execution of movement \boldsymbol{M}_{1}, the robots will eventually position themselves on \mathscr{C}. For some $r_{i} \in R$, let $p_{i}(t)$ be the intersection point between \mathscr{C} and $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$. Let $r_{i} \notin \mathscr{C}$ be a robot such that $d\left(r_{i}(t), p_{i}(t)\right)=\min _{r_{j} \in R} d\left(r_{j}(t), p_{j}(t)\right)$. Among all such robots, let r_{i} be a robot which makes the smallest angle with some $L \in \mathcal{L}^{\prime}$ centered at
F_{c}. Let $d=d\left(r_{i}(t), p_{i}(t)\right)$. First, consider the case when $\forall L \in \mathcal{L}^{\prime}$, mirror image of $\overline{r_{i}(t) p_{i}(t)}$ about L is visible to r_{i}. If $p_{i}(t)$ is neither a robot position nor a virtual robot position (Recall that a point p is said to be a virtual robot position at time t, if $\exists r_{k} \in R(t)$ such that p and r_{k} are symmetric about a line of symmetry $L \in \mathcal{L}^{\prime}$ as defined in Definition 4.2.3), then r_{i} starts moving towards $p_{i}(t)$ along $\overline{p_{i}(t) r_{i}(t)}$ (Figure 5.7(A)). If $p_{i}(t)$ is either a robot position or a virtual robot position or $r_{i}(t) \in L$ for some $L \in \mathcal{L}^{\prime}$, let $r_{k}(t)$ be such that $\measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{k}(t)\right)=$ $\min _{r_{j} \in R} \measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{j}(t)\right)$. Assume that B denotes the ray that starts from F_{c} and satisfies the condition

$$
\measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} B=\frac{1}{3 d} \min \left(\measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{k}(t)\right), \frac{\pi}{4}\right)
$$

Suppose q denotes the intersection point between B and \mathscr{C}. Robot r_{i} moves towards q along $\overline{r_{i}(t) q}$ (Figure 5.7(B)). Next, consider the case when $\exists L \in \mathcal{L}^{\prime}$ such that mirror image of $\overline{r_{i}(t) p_{i}(t)}$ about L is not visible to r_{i}. Let $q_{1} \in \overline{r_{i}(t) p_{i}(t)}$ be the point that lies at the closest distance from r_{i} such that mirror image of q_{1} is not visible to r_{i} for some $L \in \mathcal{L}^{\prime}$. Let $q_{2} \in \overline{r_{i}(t) p_{i}(t)}$ be the point such that $\overline{q_{2} r_{i}(t)} \perp L$. Robot r_{i} moves towards q_{2} along $\overline{r_{i}(t) q_{2}}$ (Figure 5.8).

Figure 5.8: Movement \boldsymbol{M}_{1}.
2. $\boldsymbol{M}_{\mathbf{2 1}}$: When $\boldsymbol{C}(\boldsymbol{t})$ is in Phase 2 and $C(t) \in \mathcal{F} A S Y M$ or k is odd and $C(t) \in$ $\mathcal{F} R E F L \cup \mathcal{F} M U L T$, movement $\boldsymbol{M}_{\mathbf{2 1}}$ is executed. By the execution of movement \boldsymbol{M}_{21}, the robots will form a suitable configuration. In case k is odd and $C(t) \in$ $\mathcal{F} R E F L \cup \mathcal{F} M U L T$, there can be more than one master rays. As $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$,
in such cases, the configuration must be asymmetric or admit a line of symmetry (say L) such that $L \cap R(t) \neq \emptyset$. A robot $r \in L$ moves away from L so that the configuration becomes asymmetric about L. The destination point of r is computed by avoiding collision with other robots. Next, the configuration becomes asymmetric. Suppose \mathcal{F}_{m} is the master ray that contains the fixed point with the minimum configuration view as discussed in section 4.2.1. Let $\mathcal{F}_{i} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{m} F_{c} \mathcal{F}_{i}=\min _{\mathcal{F}_{m} \neq \mathcal{F}_{b}} \mathcal{F}_{m} F_{c} \mathcal{F}_{b}$ measured in the counter clockwise direction and $\exists z_{i p}$ for some $p \in\left\{1,2, \ldots, \beta_{i} k\right\}$ such that $z_{i p}$ does not contain any robot positions. Suppose $q \in\left\{1,2, \ldots, \beta_{i} k\right\}$ denotes the smallest positive integer for which $z_{i q}$ does not contain any robot positions. We have the following cases:
(a) $\boldsymbol{C}(\boldsymbol{t})$ satisfies the phase condition $P_{1} \wedge P_{9} \wedge \neg P_{6} \wedge \neg P_{10}$. Let r_{k} be such that $\measuredangle \overline{F_{c} r_{k}} F_{c} \overline{F_{c} z_{i q}}=\min _{r_{j} \neq r_{k}} \measuredangle \overline{F_{c} r_{j}} F_{c} \overline{F_{c} z_{i q}}$ measured in the counter clockwise direction. r_{k} moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$ (Figure 5.9(A)).
(b) $\boldsymbol{C}(\boldsymbol{t})$ satisfies the phase condition $P_{1} \wedge \neg P_{9} \wedge \neg P_{7} \wedge P_{10}$. Let r_{k} be the robot such that $d\left(r_{k}(t), z_{i q}\right)<\xi$ and r_{k} lies at the closest distance from $z_{i q}$. r_{k} moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$ (Figure 5.9(B)).

Figure 5.9: Movement M_{21}.
3. $\boldsymbol{M}_{\mathbf{2 2}}$: When the configuration $C(t)$ is in Phase 2 and $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even, movement $\boldsymbol{M}_{\mathbf{2 2}}$ is carried out. Assume that $\mathcal{F}_{m} \in \mathcal{F}$ is a master ray. Note that there can be multiple master rays. Let $\mathcal{F}_{i} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{i} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{b} \neq \mathcal{F}_{m}} \mathcal{F}_{b} F_{c} \mathcal{F}_{m}$ (there can be two such rays) and $\exists z_{i p}$ for some $p \in$
$\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$ such that $z_{i p}$ does not contain any robot positions. Suppose $q \in$ $\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$ denotes the smallest positive integer for which $z_{i q}$ does not contain any robot positions. There can be two such positions. We have the following cases:
(a) $\boldsymbol{C}(\boldsymbol{t})$ satisfies $P_{1} \wedge P_{9} \wedge \neg P_{6} \wedge\left(\neg P_{11} \vee \neg P_{13}\right)$. Let r_{k} be such that $\measuredangle \overline{F_{c} r_{k}} F_{c} \overline{F_{c} z_{i q}}=$ $\min _{r_{j} \neq r_{k}} \measuredangle \overline{F_{c} r_{j}} F_{c} \overline{F_{c} z_{i q}} . r_{k}$ moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$.
(b) $\boldsymbol{C}(\boldsymbol{t})$ satisfies $P_{1} \wedge \neg P_{9} \wedge \neg P_{7} \wedge\left(P_{11} \vee P_{13}\right)$. Let r_{k} be the robot such that $d\left(r_{k}(t), z_{i q}\right)<\xi$ and r_{k} lies at the closest distance from $z_{i q} . r_{k}$ moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$.

Figure 5.10: Movement $\boldsymbol{M}_{\mathbf{3}}$.
4. \boldsymbol{M}_{23} : When $C(t)$ is in Phase 2 and $C(t) \in \mathcal{F} C H I R$, movement \boldsymbol{M}_{23} is executed. As there are multiple master rays, movement $\boldsymbol{M}_{\mathbf{2 3}}$ represents the execution of movement \boldsymbol{M}_{21} in multiple wedges.
5. $\boldsymbol{M}_{\mathbf{3}}$: This movement is executed when $\boldsymbol{C}(\boldsymbol{t})$ is in Phase3. By the execution of movement \boldsymbol{M}_{3}, the robots will form a final configuration. Since $\forall r_{i} \in R, V F r_{i}(t)=$ m, the robots can compute the radius ρ without any conflict. Suppose \mathcal{F}_{m} is a master ray. We have the following cases:
(a) $\boldsymbol{C}(\boldsymbol{t})$ satisfies $P_{1} \wedge P_{9} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{11} \vee \neg P_{13}\right) \wedge P_{8}$. Let $f_{i} \in \mathcal{F}_{m}$ be the unsaturated fixed point that lies at shortest distance from F_{c}. Since $C(t)$ satisfies $P_{9}, f_{i} \in F_{m}$ is the $1^{s t}$ fixed point according to distance from F_{c}. Suppose r lies on $z_{i\left(\beta_{i} k\right)}$. r moves towards $\omega_{i\left(\beta_{i} k\right)}$ along $\overline{\omega_{i\left(\beta_{i} k\right)} z_{i\left(\beta_{i} k\right)}}$ (Figure 5.10(A)).
(b) $\boldsymbol{C}(\boldsymbol{t})$ satisfies $P_{1} \wedge \neg P_{9} \wedge P_{7} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{11} \vee \neg P_{13}\right) \wedge P_{8}$. Let $\mathcal{F}_{j} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{j} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{k} \in \mathcal{F}} \measuredangle \mathcal{F}_{k} F_{c} \mathcal{F}_{m}$ and it contains an unsaturated fixed point. Let p be the smallest positive integer for which $\omega_{j p}$ does not contain a robot position. Suppose r lies on $z_{j p}$. r moves towards $\omega_{j p}$ along $\overline{\omega_{j p} z_{j p}}$ (Figure 5.10(B)).
(c) $\boldsymbol{C}(\boldsymbol{t})$ satisfies $\left(\neg P_{1} \vee P_{1}\right) \wedge \neg P_{9} \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{11} \vee P_{13}\right) \wedge P_{8}$. Let $\mathcal{F}_{j} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{j} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{k} \in \mathcal{F}} \measuredangle \mathcal{F}_{k} F_{c} \mathcal{F}_{m}$ and it contains an unsaturated fixed point. Let p be the smallest positive integer for which $\omega_{j p}$ does not contain a robot position. Let r be the robot that lies at the closest distance from $\omega_{j p}$ such that $d\left(r(t), F_{c}\right)<\xi$. Also, r does not lie on any saturated circles and on any $\omega_{j b}$ such that $b \in\{1,2, \ldots, p-1\}$. r moves towards $\omega_{j p}$ along $\overline{r(t) \omega_{j p}}$ (Figure 5.10(C)).

Phases	Movements	Transformed Phases
Phase 1	M_{1}	Phase 1 or Phase 2
Phase 2	M_{21}	Phase 2 or Phase 3
Phase 2	M_{22}	Phase 2 or Phase 3
Phase 2	M_{23}	Phase 2 or Phase 3
Phase 3	M_{3}	Phase 3 or Final

Table 5.2: Phase Transitions during OpaqueAlgorithm1

```
ALGORITHM 5.1: Opaque Algorithm1
    Input: \(C(t)=(R(t), F)\)
    if \(C(t)\) is in Phase 1 then
        Execute \(M_{1}\);
    else if \(C(t)\) is in Phase 2 then
        if \(C(t) \in \mathcal{F} A S Y M\) or \(k\) is odd and \(C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T\) then
            Execute \(M_{21}\);
            else if \(k\) is even and \(C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T\) then
            Execute \(M_{22}\);
            else if \(C(t) \in \mathcal{F} C H I R\) then
            Execute \(M_{23}\);
            end
    else if \(C(t)\) is in Phase3 then
    Execute \(M_{3}\);
    end
```


5.3.3.3 OpaqueAlgorithm1

An active robot executes Opaque Algorithm1 unless $C(t)$ is a final configuration. During an execution of OpaqueAlgorithm1 the following cases are to be considered:

1. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase 1 , movement $\boldsymbol{M}_{\mathbf{1}}$ is executed.
2. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase2. First, consider the case when $C(t) \in \mathcal{F} A S Y M$ or $C(t) \in$ $\mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is odd. Movement \boldsymbol{M}_{21} is executed. When $C(t) \in$ $\mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even, movement $\boldsymbol{M}_{\mathbf{2 2}}$ is executed. Movement $\boldsymbol{M}_{\mathbf{2 3}}$ is executed for $C(t) \in \mathcal{F} C H I R$.
3. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase3. Movement $\boldsymbol{M}_{\mathbf{3}}$ is executed.

A summary of the movemnets during an execution of OpaqueAlgorithm1 is presented in Table 5.2. Figures $5.11(\mathrm{~A}), 5.11(\mathrm{~B})$ and $5.11(\mathrm{C})$ represent the phase transitions of OpaqueAlgorithm1. The pseudocode of OpaqueAlgorithm1 is presented in Algorithm 5.1.

Figure 5.11: Phase transitions during OpaqueAlgorithm1. (A) $C(t) \in \mathcal{F} A S Y M$ or $C(t) \in$ $\mathcal{F} C H I R \cup \mathcal{F} M U L T$ and k is odd, $(\mathbf{B}) C(t) \in \mathcal{F} C H I R \cup \mathcal{F} M U L T$ and k is even, $(\mathbf{C}) C(t) \in$ $\mathcal{F} C H I R$.

5.3.4 Correctness of OpaqueAlgorithm1

We first show that when the initial configuration $C(0)$ is solvable, i.e., $C(0) \notin \mathcal{U}_{1}$, then $C(t)$ at any arbitrary point of time $t>0$ would remain solvable, i.e., $C(t) \notin \mathcal{U}_{1}$.

Lemma 5.3.4. If $C(0) \in \mathcal{F} A S Y M \cup \mathcal{F} C H I R$, then $\forall t \geq 0, C(t)$ would remain solvable during any execution of OpaqueAlgorithm1.

Proof. As discussed in section 4.2.4, if $C(t) \in \mathcal{F} C H I R$, then the robots can make an agreement on a common chirality. Consider the case when $C(t) \in \mathcal{F} A S Y M$. Let $f \in F$ be the fixed point that has the minimum configuration view. The direction of $\mathscr{V}(f)$ is globally considered to be the clockwise direction. If there is a tie due to symmetric positions, then such a tie can be broken with respect to chirality. Therefore, during any execution of OpaqueAlgorithm1, $\forall t \geq 0, C(t)$ would remain solvable.

If $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$, then we only need to consider configurations when k is odd, $|F|$ is even and $\mathcal{L}^{\prime} \neq \emptyset($ Observations 1, 2 and 3).

Lemma 5.3.5. If k is odd, $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and $C(0) \notin \mathcal{U}_{1}$, then during an execution of OpaqueAlgorithm1, $C(t)$ would remain solvable $\forall t \geq 0$.

Proof. Consider the following cases:
Case 1. $C(t)$ would remain solvable during movement $\boldsymbol{M}_{\mathbf{1}}$.
Subcase 1. $C(0)$ is symmetric about an $L \in \mathcal{L}^{\prime}$. It follows from Theorem 5.3.1 that L must contain a robot position. First, consider that r would move along $\overline{F_{c} r}$. Since F_{c} lies on L, r would remain on L. As a consequence, $C(t)$ would remain solvable. If r moves from L towards one of the half-planes delimited by L, the intersection point between \mathscr{C} and L must already have one robot position. As a consequence, $C(t)$ would remain solvable.

Figure 5.12: Illustration of solvability during Movement \boldsymbol{M}_{1}.

Subcase 2. $C(0)$ is asymmetric about each $L \in \mathcal{L}^{\prime}$. During movement $\boldsymbol{M}_{\mathbf{1}}$, a robot r_{i} only moves towards the point $p_{i}(t) \in \mathscr{C}$ if mirror images of $\overline{r_{i}(t) p_{i}(t)}$ about each $L \in \mathcal{L}^{\prime}$
is visible to r_{i}. If r_{i} is able to see a robot position or a virtual robot position on $\overline{r_{i}(t) p_{i}(t)}$ other than $p_{i}(t)$ it does not move. This is because $r_{i} \notin \mathscr{C}$ identifies itself to be not the farthest robot from F_{c}. In case, r_{i} is able to see a robot position or a virtual robot position on $p_{i}(t)$, it suitably selects a destination point on \mathscr{C} such that the configuration remain asymmetric (Figure $5.7(\mathrm{~B})$). If $\exists L \in \mathcal{L}^{\prime}$ such that mirror image of $\overline{r_{i}(t) p_{i}(t)}$ about L is not visible to r_{i}, then it selects a point on $\overline{r_{i}(t) p_{i}(t)}$ by avoiding possible symmetry. Assume that there exists a robot position $r_{k}(t)$ such that $\overline{F_{c} p_{k}(t)}$ and $\overline{F_{c} p_{i}(t)}$ are mirror images about L. If $d\left(F_{c}, r_{k}(t)\right)=d\left(F_{c}, r_{i}(t)\right)$, then the configuration must have a different asymmetric pair of robots about L. Consider the case when $d\left(F_{c}, r_{k}(t)\right)>d\left(F_{c}, r_{i}(t)\right)$. If r_{k} is visible to r_{i}, then r_{i} identifies itself to be not the farthest robot from F_{c} and r_{i} does not move. If r_{k} is not visible, then by the choice of q_{2} (as discussed in section 5.3.3.2), r_{k} and r_{i} would not become symmetric about L. Assume that $d\left(F_{c}, r_{k}(t)\right)<d\left(F_{c}, r_{i}(t)\right)$, and r_{k} and r_{i} cannot see each other due to presence of a robot position (say r)(Figure 5.12). If r_{k} decides to move, then by the choice of q_{2}^{\prime} for r_{k} (as discussed in section 5.3.3.2), it is ensured that $d\left(F_{c}, q_{2}^{\prime}\right)<d\left(F_{c}, r_{i}(t)\right)$. As a consequence, r_{k} and r_{i} would not become symmetric about L.

Case 2. $C(t)$ would remain solvable during movement $\boldsymbol{M}_{\mathbf{2 1}}$. If $C(t)$ is symmetric about L, then r moves towards one of half-planes delimited by L. As a result, $C(t)$ would become asymmetric about L. Next, the robots would form a suitable configuration. During movement $\boldsymbol{M}_{\mathbf{1}}$, a unique robot (say r_{1}) is selected for moving towards its destination point. During its motion, r_{1} is the only robot that would satisfy $d\left(F_{c}, r_{1}\right)<\xi$. As a consequence, $C(t)$ would remain asymmetric about each $L \in \mathcal{L}^{\prime}$. From the definition of a suitable configuration, it follows that $C(t)$ would remain asymmetric about each $L \in \mathcal{L}^{\prime}$. As a consequence, $C(t)$ would remain solvable.

Case 3. $C(t)$ would remain solvable during movement $\boldsymbol{M}_{\mathbf{3}}$. From the definition of a suitable configuration, it follows that all the robot positions in a suitable configuration are asymmetric about each $L \in \mathcal{L}$. For each robot on a $z_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \beta_{i}\right\}$ the destination point $\omega_{i j}$ would remain invariant. From the definition of $\omega_{i j}$, it also follows that a robot position on a $\omega_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \beta_{i}\right\}$ would remain asymmetric. As a consequence, $C(t)$ would remain asymmetric about each $L \in \mathcal{L}$. Hence, $C(t)$ would remain solvable.

Now we proceed to show that the robots will solve the k-circle formation problem within finite time. First, we will discuss progress during movement $\boldsymbol{M}_{\mathbf{1}}$. Let $C(t)$ be in

Figure 5.13: Progress during movement M_{1}.

Phase1. Suppose r_{i} denotes a candidate robot and $q_{i}(t)$ represents the destination point of r at time t. Let $\mathcal{N}_{2}(t)$ denote the number of robots which do not lie on \mathscr{C}. Also, let $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Define $Z_{1}(t)=\left(\mathcal{N}_{2}(t), g_{i}(t)\right)$.

Lemma 5.3.6. Let $C(t)$ be in Phase1. Also, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{M}_{\mathbf{1}}$ ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Figure 5.14: Illustration of progress during Movement \boldsymbol{M}_{1}.

Proof. Recall that $p_{i}(t)$ denotes the intersection point between $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$ and \mathscr{C}. First, consider the case when $\exists L \in \mathcal{L}^{\prime}$ such that mirror image of $\overline{r_{i}(t) p_{i}(t)}$ about L is not visible to r_{i}. Let $q_{1} \in \overline{r_{i}(t) p_{i}(t)}$ be the point that lies at the closest distance from r_{i}
such that mirror image of q_{1} is not visible to r_{i} for some $L \in \mathcal{L}^{\prime}$ (say due to the robot position r_{2}). By movement $\boldsymbol{M}_{\mathbf{1}}, r_{i}$ selects a destination point q_{2} on $\overline{r_{i}(t) p_{i}(t)}$ as discussed in section 5.3.3.2 and moves directly towards it (Figure 5.14). By the choice of r_{i}, we have $d\left(F_{c}, r_{i}(t)\right)>d\left(F_{c}, r_{2}(t)\right)$. Thus, r_{2} would not move. By movement $\boldsymbol{M}_{\mathbf{1}}, r_{i}$ would reach q_{2} and r_{2} would not block a point on the mirror image of $\overline{r_{i}(t) p_{i}(t)}$. Since there are only finite number of robot positions, r_{i} would reach a point on $\overline{r_{i}(t) p_{i}(t)}$ such that $\forall L \in \mathcal{L}^{\prime}$ mirror image of $\overline{r_{i}(t) p_{i}(t)}$ about L is visible to r_{i}. Next, the following cases are to be considered:

Case 1. $p_{i}(t)$ is neither a robot position nor a virtual robot position. In this case, $q_{i}(t)=p_{i}(t)$ and r_{i} moves directly towards $p_{i}(t)$ (Figure 5.13(A)). As r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Case 2. $p_{i}(t)$ is either a robot position or a virtual robot position or $r_{i}(t) \in L$ for some $L \in$ $\mathcal{L}^{\prime} . r_{i}$ computes its destination point according to movement $\boldsymbol{M}_{\mathbf{1}}$ (Figure 5.13(B)). At t^{\prime}, $d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right)>d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)$. As a consequence, we have $d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)>$ $d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right) \geq \delta$. Thus, $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{M}_{\mathbf{1}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.
Lemma 5.3.7. During an execution of movement $\boldsymbol{M}_{\mathbf{1}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{M}_{\mathbf{1}}$ ensures $Z_{1}\left(t^{\prime}\right)<Z_{1}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. As $\mathcal{N}_{2}\left(t^{\prime}\right)=\mathcal{N}_{2}(t)-1, Z_{1}\left(t^{\prime}\right)<Z_{1}(t)$ is ensured.
Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.3.6 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{M}_{\mathbf{1}}$ ensures $Z_{1}\left(t^{\prime}\right)<Z_{1}(t)$.

Let $\boldsymbol{C}(\boldsymbol{t})$ be in Phase2. Suppose r_{i} denotes a candidate robot. Assume that $q_{i}(t)$ represents the destination point of r at time t. Let $\mathcal{N}_{3}(t)$ denote the number of robots which do not lie on any $z_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \beta_{i} k\right\}$. When k is even and $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T, \mathcal{N}_{3}(t)$ denotes the number of robots which do not lie on

Figure 5.15: Progress during movement M_{21}
any $z_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$. Also, let $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Define $Z_{2}(t)=\left(\mathcal{N}_{3}(t), g_{i}(t)\right)$.

Lemma 5.3.8. Let $C(t)$ be in Phase2. Also, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{M}_{\mathbf{2 1}}$ ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. During movement $\boldsymbol{M}_{\mathbf{2 1}}, q_{i}\left(t^{\prime}\right)=q_{i}(t)$ and r_{i} moves directly towards $q_{i}(t)$ (Figure $5.15(\mathrm{~A})$ and $5.15(\mathrm{~B})$). Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. Hence, an execution of movement $\boldsymbol{M}_{\mathbf{2 1}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Lemma 5.3.9. During an execution of movement $\boldsymbol{M}_{\mathbf{2 1}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{M}_{\mathbf{2 1}}$ ensures $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. As $\mathcal{N}_{3}\left(t^{\prime}\right)=\mathcal{N}_{3}(t)-1, Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$ is ensured.
Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.3.8 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{M}_{\mathbf{2 1}}$ ensures $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$.
Lemma 5.3.10. During an execution of movement $\boldsymbol{M}_{\mathbf{2 2}}$, let $t^{\prime}>t$ be an arbitrary point of time at which at least one candidate robot (say r_{i}) has completed at least one LCM cycle. An execution of movement $\boldsymbol{M}_{\mathbf{2 2}}$ ensures $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$.

Proof. During movement $\boldsymbol{M}_{\mathbf{2 2}}, q_{i}\left(t^{\prime}\right)=q_{i}(t)$ and r_{i} moves directly towards $q_{i}(t)$. If $q_{i}(t)=r_{i}\left(t^{\prime}\right)$, then $\mathcal{N}_{3}\left(t^{\prime}\right)=\mathcal{N}_{3}(t)-1$. Thus, $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$ is ensured. Consider the case when $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. Hence, an execution of movement $\boldsymbol{M}_{\mathbf{2 2}}$ ensures $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$.

Lemma 5.3.11. During an execution of movement $\boldsymbol{M}_{\mathbf{2 3}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{M}_{\mathbf{2 3}}$ ensures $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$.

Proof. During an execution of movement $\boldsymbol{M}_{\mathbf{2 3}}$, movement $\boldsymbol{M}_{\mathbf{2 1}}$ will be executed in multiple wedges. From Lemma 5.3.9, it follows that $Z_{2}\left(t^{\prime}\right)<Z_{2}(t)$ will be ensured.

Figure 5.16: Progress during movement M_{3}.

Let $\boldsymbol{C}(\boldsymbol{t})$ be in Phase3. Suppose r_{i} denotes a candidate robot for the target fixed point $f_{j} \in \mathcal{F}_{k} \in \mathcal{F}$ and $q_{i}(t)$ represents the destination point of r_{i} at time t. Recall that $D_{j}(t)=k-\left|C\left(f_{i}, \rho\right) \cap R(t)\right|$ denote the deficit of number of robots on $C\left(f_{j}, \rho\right)$ to become saturate at time t. Also, recall that $n_{k}(t)$ denotes the number of unsaturated fixed points. Also, let $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Define $V_{i}(t)=\left(n_{k}(t), D_{j}(t), g_{i}(t)\right)$.

Lemma 5.3.12. Let $C(t)$ be in Phase3. Also, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{M}_{\mathbf{3}}$ ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. During movement $\boldsymbol{M}_{\mathbf{3}}, r_{i}$ moves directly towards $q_{i}(t)$ (Figures 5.16(A) and 5.16(B)). Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. Hence, an execution of movement $\boldsymbol{M}_{\mathbf{3}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Lemma 5.3.13. During an execution of movement $\boldsymbol{M}_{\mathbf{3}}$, let $t^{\prime}>t$ be an arbitrary point of time at which at least one candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{M}_{\mathbf{3}}$ ensures $V_{i}\left(t^{\prime}\right)<V_{i}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. If $C\left(f_{j}, \rho\right)$ has exactly k robots, then $n_{k}\left(t^{\prime}\right)=n_{k}(t)-1$, ensuring $V_{2}\left(t^{\prime}\right)<V_{2}(t)$. If $C\left(f_{j}, \rho\right)$ has less than k robots on it, then $D_{j}\left(t^{\prime}\right)=D_{j}(t)-1$, ensuring $V_{i}\left(t^{\prime}\right)<V_{i}(t)$.

Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.3.12 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. As a result, $V_{i}\left(t^{\prime}\right)<V_{i}(t)$ is ensured.

Hence, an execution of movement $\boldsymbol{M}_{\mathbf{3}}$ ensures $V_{i}\left(t^{\prime}\right)<V_{i}(t)$.
Theorem 5.3.14. Let $C(0) \notin \mathcal{U}_{1}$ be a given initial configuration. Execution of algorithm OpaqueAlgorithm1 would solve the k-circle formation problem within finite time under obstructed visibility model.

Proof. Lemmata 5.3.4 and 5.3.5 ensure that $\forall t \geq 0, C(t)$ would remain solvable. At $t \geq 0$, we have the following cases:

Case 1. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase1. Movement $\boldsymbol{M}_{\mathbf{1}}$ is executed. Lemma 5.3.7 ensures that within finite time all the robots will reach \mathscr{C}.

Case 2. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase2. If $C(t) \in \mathcal{F} A S Y M$ or k is odd and $C(t) \in \mathcal{F} R E F L \cup$ $\mathcal{F} M U L T$, then by Lemma 5.3.9, formation of a suitable configuration is ensured by movement $\boldsymbol{M}_{\mathbf{2 1}}$. If k is even and $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$, then movement $\boldsymbol{M}_{\mathbf{2 2}}$ is executed. Lemma 5.3.10 ensures that within finite time the robots will form a suitable configuration. In case $C(t) \in \mathcal{F} C H I R$, movement $\boldsymbol{M}_{\mathbf{2 3}}$ is executed. Lemma 5.3.11 ensures that within finite the robots will form a suitable configuration.

Case 3. $\boldsymbol{C}(\boldsymbol{t})$ is in Phase3. Lemma 5.3.13 ensures that within finite time the robots will form a final configuration by the execution of movement $\boldsymbol{M}_{\mathbf{3}}$.

Hence, OpaqueAlgorithm1 would solve the k-circle formation problem within finite time under obstructed visibility model for $C(0) \notin \mathcal{U}_{1}$.

5.4 Zero Knowledge of the Fixed Points

In this section, we consider the setting in which the robots have zero knowledge of the fixed points. Since $\forall r_{i} \in R(0), F r_{i}(0) \leq m$, the robots must detect the total number of fixed points in order to solve the k-circle formation problem.

5.4.1 Impossibility Results

Theorem 5.4.1. If the robots have zero knowledge of fixed points, then the k-circle formation problem is deterministically unsolvable by oblivious and silent robots.

Proof. Let $C(0)$ be an initial configuration in which the k-circle formation problem has already been solved, i.e., $C(0)$ is itself a final configuration. The robots do not have the knowledge of the total number of fixed points or the total number of robots. As a consequence, the robots cannot identify a final configuration. Hence, the k-circle formation is deterministically unsolvable by oblivious and silent robots.

Theorem 5.4.2. If $C(0) \in \mathcal{U}_{1}$ and the robots have zero knowledge of fixed points, then the k-circle formation problem is deterministically unsolvable by robots equipped with finite color of lights.

Proof. The idea of this proof is similar to the proof of Theorem 4.3.1. We consider the setting described in the proof of Theorem 4.3.1. Let the symmetric image of r with respect to L is denoted by $\phi(r)$. We assume the following setting:
(i) The scheduler is considered to be SSYNC. In addition, assume that both r and $\phi(r)$ are activated simultaneously.
(ii) All the robots are assumed to move with the same constant speed without any transient stops. Also, assume that both r and $\phi(r)$ would travel the same amount of distance.

As r and $\phi(r)$ run the same algorithm, they would have the same light color. Since the initial configuration was symmetric, the robots would not be able to deterministically
break the symmetry in this setting. As a consequence, the k-circle formation problem is deterministically unsolvable.

Let \mathcal{U}_{2} denote the set of all the configurations satisfying the following conditions:

1. k is odd and $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$,
2. $\mathcal{L}^{\prime} \neq \emptyset$ and number of fixed points on each $L \in \mathcal{L}^{\prime}$ is even.
3. Either $C(0)$ is asymmetric about each $L \in \mathcal{L}^{\prime}$ or $C(0)$ is symmetric about an $L \in \mathcal{L}^{\prime}$ such that $R(0) \cap L \neq \emptyset$.

5.4.2 Algorithm

Figure 5.17: (A) $r_{6}(t), r_{5}(t) \in \operatorname{Int} H(t)$ and both the robots would move towards boundary of $H(t),(\mathbf{B}) f_{1} \in O u t H(t)$ and the vertex robots r_{1} and r_{2} would move outwards to expand the boundary of $H(t),(\mathbf{C}) \forall f_{i} \in F, f_{i} \in \operatorname{Int} H(t)$.

We propose a deterministic distributed algorithm that will solve the k-circle formation problem for disoriented opaque robots equipped with lights. Our proposed distributed algorithm solves the k-circle formation problem for $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$. Let $r_{i}(t)$.light denote the color of the light of r_{i}. COL represents the set of color of the lights. If the robots are oblivious and silent, then $|C O L|=1$. A robot can observe the color of its own light as well as the color of the other robots visible to it. We assume that $C O L=\{$ Blue, Red $\}$ and at $t=0, \forall r_{i} \in R, r_{i}(0)$.light $=$ Blue. An overview of our proposed algorithm Opaque Algorithm2 is discussed as follows:

Figure 5.18: OpaqueAlgorithm2.

Figure 5.19: (A) All the robots $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ and r_{6} would move towards $\mathscr{C},(\mathbf{B})$ Each robot identies that all the robots are on \mathscr{C} and changes the light colour to red, (C) final configuration.

1. All the robots reach the boundary of the convex hull $H(t)$ (Figure 5.17(A)).
2. If $\exists f_{i} \notin \operatorname{Int} H(t)$, then the robots expand the boundary of $H(t)$ to include all the fixed points inside $H(t)$ (Figure 5.17(B) and 5.17(C)).
3. All the robots position themselves on the circle \mathscr{C} (Figure 5.19(A)).
4. The robots re-position themselves on \mathscr{C} so that the configuration transforms into a suitable configuration (Figure 5.19(B)).
5. The robots start forming circles around the fixed points (Figure 5.19(C)).

Figure 5.18 represents a diagramatic representation of OpaqueAlgorithm 2 .

Conditions	Descriptions
P_{14}	$\forall r_{i}, r_{i}$. light $=$ Blue
P_{15}	$\forall r_{i}, r_{i}$. light $=$ Red
P_{16}	$\forall r \in R, \operatorname{VFr}(t)=m$
P_{17}	$\forall r_{i}, r_{i}$ identifies \mathscr{C}
P_{18}	$\exists r \in R$ such that $r(t) \in \operatorname{IntH}(t)$
P_{19}	$\exists f \in F$ such that $f \in$ Out $H(t)$

Table 5.3: Descriptions of Additional Phase Conditions

5.4.2.1 Phase Conditions during OpaqueAlgorithm2

All the phase conditions at any arbitrary point of time $t \geq 0$ during an execution of OpaqueAlgorithm2 are defined in Tables 5.2 and 5.3.

5.4.2.2 Phases during OpaqueAlgorithm2

We have the following phases during OpaqueAlgorithm2:

1. PHASE1: A configuration $C(t)$ is said to be in $P H A S E 1$ if it satisfies $P_{14} \wedge P_{18}$. In this phase, all the robots reach the boundary of $H(t)$. The robots identify this phase by checking whether the light color of all the robots is blue or not (condition P_{14}) and whether there exists a robot $r \in \operatorname{Int} H(t)$ or not (condition P_{18}).
2. PHASE2: In this phase, the robots expand the boundary of $H(t)$ to include all the fixed points inside $H(t)$. A configuration $C(t)$ is said to be in PHASE2 if it satisfies $P_{14} \wedge \neg P_{18} \wedge P_{19}$. The robots identify this phase by checking whether the light color of all the robots is blue or not (condition P_{14}) and whether all the robots lie on the bounary of $H(t)$ or not (condition P_{18}). In addition, the robots check whether there exists a fixed point in $\operatorname{Out} H(t)$ or not (condition P_{19}).
3. PHASE3: In this phase, all the robots reach the circle $\mathscr{C} . C(t)$ is said to be in PHASE3 if it satisfies $P_{14} \wedge \neg P_{18} \wedge \neg P_{19} \wedge P_{1} \wedge P_{16} \wedge \neg P_{7} \wedge \neg P_{9}$. A robot can identify this phase by checking whether there exists a robot that does not lie on \mathscr{C} or not (condition P_{9}).
4. PHASE4: A configuration $C(t)$ is said to be in $P H A S E 4$ if it satisfies

$$
\begin{gathered}
P_{15} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(P_{1} \wedge \neg P_{16}\right) \wedge \neg P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(\neg P_{1} \wedge P_{16}\right) \wedge \neg P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(\neg P_{1} \wedge \neg P_{16}\right) \wedge \neg P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}
\end{gathered}
$$

When all the robots lie on \mathscr{C} and $C(t)$ satisfies $P_{15}\left(\forall r_{i}, r_{i}\right.$ light $=$ Red $)$, the robots identify this phase by checking whether the configuration is a suitable or partially suitable configuration or not. However, in order to transform into a suitable configuration, a robot might not lie on \mathscr{C} during its movement. In such a case, the robots identify this phase by identifying the condition $\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right)$.
5. PHASE5 : A configuration $C(t)$ is said to be in $P H A S E 5$ if it satisfies

$$
\begin{array}{r}
P_{15} \wedge P_{1} \wedge P_{16} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge P_{1} \wedge P_{16} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(P_{1} \wedge P_{16}\right) \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(P_{1} \wedge \neg P_{16}\right) \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(\neg P_{1} \wedge P_{16}\right) \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}, \text { or } \\
P_{15} \wedge\left(\neg P_{1} \wedge \neg P_{16}\right) \wedge P_{7} \wedge\left(P_{10} \vee P_{11} \vee P_{12} \vee P_{13}\right) \wedge \neg P_{9} \wedge P_{8}
\end{array}
$$

The robots would identify that the configuration is either suitable or partially suitable. They identify this phase by checking whether there exists an unsaturated fixed point or not (condition P_{8}).
6. FINAL: The FINAL phase is identified by the condition $P_{15} \wedge P_{1} \wedge P_{16} \wedge \neg P_{8}$.

5.4.2.3 Movements during OpaqueAlgorithm2

We define the following movements at any arbitrary point of time $t \geq 0$:

Figure 5.20: (A) Movement $\boldsymbol{\mathcal { M }}_{1}$. (B) Movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$.

1. $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$: This movement is executed when $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE1. Let $r_{i} \in \operatorname{Int} H(t)$ be a robot that lies at the closest distance from the side $\overline{r_{1} r_{2}}$ of $H(t)$. If there are multiple such sides, then r selects one of the sides arbitrarily as its destination line. It may be the case that there are other robots which are also at the closest distance from $\overline{r_{1} r_{2}}$. In such a case, select the one that lies at the closest distance from one of the end points of $\overline{r_{1} r_{2}}$. Note that there may be two such robots. Let $p_{1} \in \overline{r_{1} r_{2}}$ be the point such that $\overline{r_{i} p_{1}} \perp \overline{r_{1} r_{2}}$. Also, let $r_{4} \in \overline{r_{1} r_{2}}$ such that $d\left(r_{4}, p_{1}\right)=\min _{r_{i} \in \bar{r}_{1} r_{2}} d\left(r_{i}, p_{1}\right)$. Assume that $p_{2} \in \overline{r_{1} r_{2}}$ be such that $\measuredangle \overline{r_{i} p_{2}} r_{i} \overline{r_{i} p_{1}}=\frac{1}{3} \overline{r_{i} r_{4}} r \overline{r_{i} p_{1}} . r_{i}$ moves towards p_{2} along $\overline{r p_{2}}$ (Figure 5.20(A)).

Figure 5.21: (A)-(B) Movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$.
2. $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$: This movement is executed when $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE2. Asssume that r_{1}, r_{2} and r_{3} are the vertices of $H(t)$ such that the sides $\overline{r_{1} r_{2}}$ and $\overline{r_{2} r_{3}}$ are adjacent. Let $f_{i} \in \operatorname{Out} H(t)$ be a fixed point that lies at the farthest distance from the side $\overline{r_{1} r_{2}}$.

Similarly, let $f_{j} \in \operatorname{Out} H(t)$ be such a fixed point from the side $\overline{r_{2} r_{3}}$. Let d_{1} represent the distance of f_{i} from $\overline{r_{1} r_{2}}$. Similarly, let d_{2} represent the distance of f_{j} from $\overline{r_{2} r_{3}}$. Without loss of generality, suppose $d_{2} \geq d_{1}$. Suppose the vertically opposite angle of $\measuredangle r_{1} r_{2} r_{3}$ is denoted by ζ. Let B denote the angle bisector of ζ and $p_{1} \in B$ such that $d\left(r_{2}, p_{1}\right)=d_{2} . r_{2}$ moves towards p_{1} along $\overline{r_{2} p_{1}}$ (Figure $5.20(\mathrm{~B})$).
3. $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$: This movement is executed when $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE3. For some $r_{i} \in R$, let $p_{i}(t)$ be the intersection point between \mathscr{C} and $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$. Let $r_{i} \notin \mathscr{C}$ be a robot such that $d\left(r_{i}(t), p_{i}(t)\right)=\min _{r_{j} \in R} d\left(r_{j}(t), p_{j}(t)\right)$. If $p_{i}(t)$ is not a robot position, then r_{i} starts moving towards $p_{i}(t)$ along $\overline{p_{i}(t) r_{i}(t)}$. Otherwise, let $r_{k}(t)$ be such that

$$
\measuredangle R a y\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{k}(t)\right)=\min _{r_{j} \in R} \measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{j}(t)\right)
$$

Suppose B denotes the ray starting from F_{c} such that

$$
\measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} B=\frac{1}{3} \measuredangle \operatorname{Ray}\left(F_{c}, r_{i}(t)\right) F_{c} \operatorname{Ray}\left(F_{c}, r_{k}(t)\right)
$$

Assume that q be the intersection point between B and \mathscr{C}. Robot r_{i} starts moving towards q along $\overline{r_{i}(t) q}$. This movement is similar to the movement $\boldsymbol{M}_{\mathbf{1}}$ during OpaqueAlgorithm1.

Figure 5.22: (A)-(B) Movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$.
4. $\mathcal{M}_{\mathbf{4 1}}$: This movement is executed when $C(t)$ is in $P H A S E 4$ and $C(t) \in \mathcal{F} A S Y M$. The robots will form a suitable configuration by the execution of movement \mathcal{M}_{41}.

Suppose $\mathcal{F}_{m} \in \mathcal{F}$ is the master ray. Let $\mathcal{F}_{i} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{i} F_{c} \mathcal{F}_{m}=$ $\min _{\mathcal{F}_{b} \neq \mathcal{F}_{m}} \mathcal{F}_{b} F_{c} \mathcal{F}_{m}$ measured in the counter clockwise direction and $\exists z_{i p}$ for some $p \in$ $\left\{1,2, \ldots, \beta_{i} k\right\}$ such that $z_{i p}$ does not contain any robot positions. Assume that $q \in\left\{1,2, \ldots, \beta_{i} k\right\}$ be the smallest positive integer for which $z_{i q}$ does not contain any robot positions. Suppose r_{k} denotes the robot such that $\measuredangle \overline{F_{c} r_{k}} F_{c} \overline{F_{c} z_{i q}}=$ $\min _{r_{j} \neq r_{k}} \measuredangle \overline{F_{c} r_{j}} F_{c} \overline{F_{c} z_{i q}}$ measured in the counter clockwise direction and $d\left(F_{c}, r_{k}\right) \leq \xi$ (Figure 5.22(A) and 5.22(B)). r_{k} moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$.
5. \mathcal{M}_{42} : When $C(t)$ is in PHASE4 and k is even and $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$, movement \mathcal{M}_{42} is executed. Suppose $\mathcal{F}_{m} \in \mathcal{F}$ is a master ray. Let $\mathcal{F}_{i} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{i} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{b} \neq \mathcal{F}_{m}} \mathcal{F}_{b} F_{c} \mathcal{F}_{m}$ (there can be two such rays) and $\exists z_{i p}$ for some $p \in\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$ such that $z_{i p}$ does not contain any robot positions. There can be two such robot positions. Let $q \in\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$ be the smallest positive integer for which $z_{i q}$ does not contain any robot positions. Suppose r_{k} denotes the robot such that $\measuredangle \overline{F_{c} r_{k}} F_{c} \overline{F_{c} z_{i q}}=\min _{r_{j} \neq r_{k}} \measuredangle \overline{F_{c} r_{j}} F_{c} \overline{F_{c} z_{i q}}$ measured in the counter clockwise direction and $d\left(F_{c}, r_{k}\right) \leq \xi$ (Figure 5.22(A) and 5.22(B)). r_{k} moves along $\overline{r_{k}(t) z_{i q}}$ towards $z_{i q}$.
6. $\mathcal{M}_{\mathbf{4 3}}$: This movement is executed when $C(t) \in \mathcal{F C H I R}$ is in PHASE4. Since there are multiple master rays, movement $\boldsymbol{M}_{\mathbf{4 3}}$ represents the execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$ in multiple wedges.

Figure 5.23: (A)-(B) Movement $\boldsymbol{M}_{\mathbf{5}}$.
7. \mathcal{M}_{5} : This movememt is executed when $C(t)$ is in PHASE5. Suppose \mathcal{F}_{m} is a master ray. There can be multiple master rays. We have the following cases:
(a) $C(t)$ satisfies $P_{15} \wedge P_{1} \wedge P_{16} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}$. Let $f_{i} \in \mathcal{F}_{m}$ be the unsaturated fixed point that lies at the closest distance from F_{c}. Since $C(t)$ satisfies $P_{9}, f_{i} \in F_{m}$ is the $1^{s t}$ fixed point according to distance from F_{c}. Suppose r lies on $z_{i\left(\beta_{i} k\right)}$. Since $C(t)$ satisfies $P_{9}, \forall r_{i} \in R, V F r_{i}(t)=m$. As a consequence, r can compute the radius ρ without any conflict. r moves towards $\omega_{i\left(\beta_{i} k\right)}$ along $\overline{\omega_{i\left(\beta_{i} k\right)} z_{i\left(\beta_{i} k\right)}}$ (Figure 5.23(A)).

(A)

(B)

Figure 5.24: (A)-(B) Movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$.
(b) $C(t)$ satisfies $P_{15} \wedge P_{1} \wedge P_{16} \wedge P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge \neg P_{9}$. Let $\mathcal{F}_{j} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{j} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{k} \in \mathcal{F}} \measuredangle \mathcal{F}_{k} F_{c} \mathcal{F}_{m}$ and it contains an unsaturated fixed point. Let p be the smallest positive integer for which $\omega_{j p}$ does not contain a robot position. There can be two such positions. Let r be the robot that lies at the closest distance from $\omega_{j p} . r$ moves towards $\omega_{j p}$ along $\overline{r(t) \omega_{i p}}($ Figures 5.23(B) and 5.24(A)).
(c) $C(t)$ satisfies

$$
\begin{array}{r}
\left.P_{15} \wedge\left(\left(P_{1} \wedge P_{16}\right) \vee\left(P_{1} \wedge \neg P_{16}\right) \vee\left(\neg P_{1} \wedge P_{16}\right) \vee \neg P_{1} \wedge \neg P_{16}\right)\right) \wedge \\
P_{7} \wedge P_{10} \wedge P_{8} \wedge \neg P_{9}
\end{array}
$$

Let $\mathcal{F}_{j} \in \mathcal{F}$ be such that $\measuredangle \mathcal{F}_{j} F_{c} \mathcal{F}_{m}=\min _{\mathcal{F}_{k} \in \mathcal{F}} \measuredangle \mathcal{F}_{k} F_{c} \mathcal{F}_{m}$ and it contains an unsaturated fixed point. Let p be the smallest positive integer for which $\omega_{j p}$ does not contain a robot position. Let r be the robot that lies at the closest
distance from $\omega_{j p}$ such that $d\left(r(t), F_{c}\right)<\xi$. Also, r does not lie on any saturated circles and on any $\omega_{j b}$ such that $b \in\{1,2, \ldots, p-1\}$. r moves towards $\omega_{j p}$ along $\overline{r(t) \omega_{j p}}$ (Figure $5.24(\mathrm{~B})$). When there are multiple master rays, more than one robots would be moving towards their respective destination points in separate wedges. If r stops before reaching $\omega_{i\left(\beta_{i} k\right)}$, it might be the case that $C(t)$ satisfies $\neg P_{16}$. However, in such a case r can still compute ρ without any conflict by considering all the fixed points in its wedge.

Phases	Movements	Phases after the Movements
PHASE1	\mathcal{M}_{1}	PHASE1 or PHASE2 or PHASE3
PHASE2	\mathcal{M}_{2}	PHASE1 or PHASE2 or PHASE3
PHASE3	\mathcal{M}_{3}	PHASE1 or PHASE3 or $P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge$ $\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{9} \wedge P_{8}$
PHASE4	\mathcal{M}_{41}	PHASE4 or PHASE5
PHASE4	\mathcal{M}_{42}	PHASE4 or PHASE5
PHASE4	\mathcal{M}_{43}	PHASE4 or PHASE5
PHASE5	\mathcal{M}_{5}	PHASE5 or FINAL

Table 5.4: Phase Transitions during OpaqueAlgorithm2

```
ALGORITHM 5.2: OpaqueAlgorithm2
    Input: \(C(t)=(R(t), F)\)
    if \(C(t)\) is in PHASE1 then
        Execute \(\mathcal{M}_{1}\);
    else if \(C(t)\) is in PHASE2 then
        Execute \(\mathcal{M}_{2}\);
    else if \(C(t)\) is in PHASE3 then
        Execute \(\mathcal{M}_{3}\);
    else if \(C(t)\) satisfies \(P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}\) then
        if \(r_{k}\).light \(=\) Blue then
            \(r_{k}\) changes the color of its light \(r_{k}\). light \(=\) Red;
        end
    else if \(C(t)\) satisfies \(\neg P_{15} \wedge \neg P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}\) then
        if \(r_{k}\).light \(=\) Blue then
            \(r_{k}\) changes the color of its light \(r_{k} . l i g h t=\) Red;
        end
    else if \(C(t)\) is in PHASE4 then
        if \(C(t) \in \mathcal{F} A S Y M\) then
            Execute \(\mathcal{M}_{41}\);
        else if \(C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T\) and \(k\) is even then
            Execute \(\mathcal{M}_{42}\);
        else if \(C(t) \in \mathcal{F} C H I R\) then
            Execute \(\mathcal{M}_{43}\);
        end
    else if \(C(t)\) is in PHASE5 then
        Execute \(\mathcal{M}_{5}\);
    end
```


Figure 5.25: Phase transitions during OpaqueAlgorithm2 when $C(t) \in \mathcal{F} A S Y M$.

Figure 5.26: Phase transitions during OpaqueAlgorithm2 when $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even.

5.4.2.4 OpaqueAlgorithm 2

At $t \geq 0$, if $C(t)$ is not a final configuration, then an active robot executes algorithm OpaqueAlgorithm2. The following cases are to be considered:

1. $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE1. There exists a robot that lies in $\operatorname{Int} H(t)$. In this phase, the robots execute movement $\mathcal{M}_{\mathbf{1}}$. By performing movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$, all the robots reach the boundary of $H(t)$.

Figure 5.27: Phase transitions during OpaqueAlgorithm2 when $C(0) \in \mathcal{F} C H I R$.
2. $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE2. There exists a fixed point that lies in $\operatorname{Out} H(t)$. In this phase, the robots execute movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$. By performing movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$, all the robots include all the fixed points inside the boundary of $H(t)$.
3. $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE3. There exists a robot that does not lie on \mathscr{C}. All the robots reach the circle \mathscr{C}, by the execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$.
4. $\boldsymbol{C}(\boldsymbol{t})$ satisfies one of the following conditions:

$$
\begin{array}{r}
P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}, \text { or } \\
\neg P_{15} \wedge \neg P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}
\end{array}
$$

If r_{i}. light $=$ Blue , then r_{i} changes the color of its light to r_{i}. light $=$ Red .
5. $\boldsymbol{C}(\boldsymbol{t})$ is in PHASE4. The robots re-position themselves on \mathscr{C} to form a suitable configuration. In case $C(t) \in \mathcal{F} A S Y M$, then movement \mathcal{M}_{41} is executed. When $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even, movement \mathcal{M}_{42} is executed. In case $C(t) \in \mathcal{F} C H I R$, then movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 3}}$ is executed.
6. $\boldsymbol{C}(\boldsymbol{t})$ is in $P H A S E 5$. In this phase, the robots start forming circles around the fixed points. Movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$ is executed.

A summary of the movements during an execution of OpaqueAlgorithm 2 is presented in Table 5.4. Figures 5.25, 5.26 and 5.27 represent the phase transitions during an execution of OpaqueAlgorithm2. The psuedocode of OpaqueAlgorithm2 is given in Algorithm 5.2.

5.4.3 Correctness of OpaqueAlgorithm2

We need to show that if the initial configuration $C(0)$ is solvable, then $C(t)$ would remain solvable $\forall t>0$.

Lemma 5.4.3. If $C(0) \in \mathcal{F} A S Y M \cup \mathcal{F} C H I R$, then the configuration $C(t)$ at $t \geq 0$ remains solvable during any execution of OpaqueAlgorithm2.

Proof. When $C(t) \in \mathcal{F} C H I R$, then the robots can make an agreement on a common chirality, as discussed in section 4.2.4. Consider the case when $C(t) \in \mathcal{F} A S Y M$. Let $f \in F$ be the fixed point that has the minimum configuration view. The direction of $\mathscr{V}(f)$ is globally considered to be the clockwise direction. If there is a tie between robots due to symmetric positions, then such a tie can be broken with respect to chirality. Therefore, during any execution of OpaqueAlgorithm $2, \forall t \geq 0, C(t)$ would remain solvable.

Lemma 5.4.4. Let $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$. If $C(0)$ is solvable, then the configuration $C(t)$ at $t \geq 0$ remains solvable during any execution of OpaqueAlgorithm2.

Proof. By Observation 3, it follows that if $\mathcal{L}^{\prime}=\emptyset$, then $C(t)$ would remain solvable. Assume that $\mathcal{L}^{\prime} \neq \emptyset$. If k is even, then from Observation 1 it follows that $C(t)$ would remain solvable. Also, $C(t)$ would remain solvable when $|F|$ is odd (Observation 2). We need to consider the configurations when k is odd, $|F|$ is even and $\mathcal{L}^{\prime} \neq \emptyset$. Note that such a configuration belongs to the set $\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$ and we have considered that $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$. Hence, during an execution of OpaqueAlgorithm2, if $C(0) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and solvable, then $C(t)$ would remain solvable for $t \geq 0$.

First, we discuss progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$. Assume that $C(t)$ is in PHASE1. Suppose r_{i} denotes a candidate robot and $q_{i}(t)$ represents the destination point of r at
time t. Let $\mathcal{N}_{4}(t)$ denote the number of robots which lie in $\operatorname{Int} H(t)$. Also, let $g_{i}(t)=$ $d\left(r_{i}(t), q_{i}(t)\right)$. Define $Z_{3}(t)=\left(\mathcal{N}_{4}(t), g_{i}(t)\right)$.

Lemma 5.4.5. Let $C(t)$ be in PHASE1. Also, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. Recall that $p_{i}(t)$ denotes the intersection point between $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$ and \mathscr{C}. We have the following cases:

Case 1. $p_{i}(t)$ is not a robot position. In this case, $q_{i}(t)=p_{i}(t)$ and r_{i} moves directly towards $p_{i}(t)$ (Figure 5.13(A)). As r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Case 2. $p_{i}(t)$ is a robot position. r_{i} computes its destination point according to movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ (Figure $\left.5.13(\mathrm{~B})\right)$. At $t^{\prime}, d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right)>d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)$. As a consequence, we have $d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)>d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right) \geq \delta$. Thus, $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.
Lemma 5.4.6. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ ensures $Z_{3}\left(t^{\prime}\right)<Z_{3}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. As $\mathcal{N}_{4}\left(t^{\prime}\right)=\mathcal{N}_{4}(t)-1, Z_{3}\left(t^{\prime}\right)<Z_{3}(t)$ is ensured.
Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.4.5 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ ensures $Z_{3}\left(t^{\prime}\right)<Z_{3}(t)$.

Next, we discuss the progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$. The aim is to include all the fixed points inside $H(t)$. Let $\mathcal{N}_{5}(t)$ denote the number of robots which lie in $\operatorname{Out} H(t)$. Assume that $C(t)$ is in PHASE2. Suppose r_{i} denotes a candidate robot and p_{1} denotes its destination point. Let r_{j} be the robot such that $\overline{r_{i}(t) r_{j}(t)}$ is a side of $H(t)$. Assume that $p(t) \in \overline{r_{j}(t) r_{i}(t)}$ be such that $\overline{f_{j} p(t)} \perp \overline{r_{j}(t) r_{i}(t)}$. Also, let $g(t)=d\left(r_{i}(t), p(t)\right)$. Define $Z_{4}(t)=\left(\mathcal{N}_{5}(t), g(t)\right)$.

Figure 5.28: Progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$
Lemma 5.4.7. Let $C(t)$ be in PHASE2. Also, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$ ensures that $Z_{4}\left(t^{\prime}\right)<Z_{4}(t)$.

Proof. Suppose $r_{j}(t)$ denotes the robot such that such that $\overline{r_{i}(t) r_{j}(t)}$ is a side of $H(t)$. First, consider the case when $\exists f_{k} \in F \cap O u t H(t)$ such that $f_{k} \in F \cap \operatorname{Int} H\left(t^{\prime}\right)$. As $\mathcal{N}_{5}\left(t^{\prime}\right)=\mathcal{N}_{5}(t)-1, Z_{4}\left(t^{\prime}\right)<Z_{4}(t)$ is ensured. Otherwise, r_{i} has moved by at least δ amount not along $\overline{r_{j}(t) r_{i}(t)}$. Also, r_{i} has moved towards $O u t H(t)$. As a consequence, $\measuredangle r_{i}(t) r_{j}(t) r_{i}\left(t^{\prime}\right)=\eta>0$ and $d\left(p_{2}, p(t)\right)>0$. Thus, $g(t)=d\left(f_{j}, p(t)\right)>d\left(f_{j}, p(t)\right)-$ $d\left(p_{2}, p(t)\right)=d\left(f_{j}, p_{2}\right)>d\left(f_{j}, p\left(t^{\prime}\right)\right)=g\left(t^{\prime}\right)$ (Figure 5.28). Hence, movement $\mathcal{M}_{\mathbf{2}}$ ensures $Z_{4}\left(t^{\prime}\right)<Z_{4}(t)$.

Next, we discuss the progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$. The goal is to place all the robots on \mathscr{C}. Let $\mathcal{N}_{6}(t)$ denote the number of robots which do not lie on \mathscr{C}. Assume that $C(t)$ is in PHASE3. Suppose r_{i} denotes a candidate robot and $q_{i}(t)$ denotes its destination point. Let $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Define $Z_{5}(t)=\left(\mathcal{N}_{6}(t), g_{i}(t)\right)$.

Lemma 5.4.8. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. Recall that $p_{i}(t)$ denotes the intersection point between $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$ and \mathscr{C}. We have the following cases:

Case 1. $p_{i}(t)$ is not a robot position. In this case, $q_{i}(t)=p_{i}(t)$ and r_{i} moves directly towards $p_{i}(t)$ (Figure 5.13(A)). As r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Case 2. $p_{i}(t)$ is a robot position. r_{i} computes its destination point according to movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$ (Figure $\left.5.13(\mathrm{~B})\right)$. At $t^{\prime}, d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right)>d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)$. As a consequence, we have $d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)>d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right) \geq \delta$. Thus, $g_{i}\left(t^{\prime}\right)+\delta \leq$ $g_{i}(t)$.

Lemma 5.4.9. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$ ensures $Z_{5}\left(t^{\prime}\right)<Z_{5}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. As $\mathcal{N}_{6}\left(t^{\prime}\right)=\mathcal{N}_{6}(t)-1, Z_{5}\left(t^{\prime}\right)<Z_{5}(t)$ is ensured.
Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.4.8 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$ ensures $Z_{5}\left(t^{\prime}\right)<Z_{5}(t)$.

Next, we discuss the progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$. The aim is to form a suitable configuration. Assume that $C(t)$ is in PHASE4. Let $\mathcal{N}_{7}(t)$ denote the number of robots which do not lie on any $z_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \beta_{i} k\right\}$. When k is even and $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T, \mathcal{N}_{7}(t)$ denotes the number of robots which do not lie on any $z_{i j}$ for some $\mathcal{F}_{i} \in \mathcal{F}$ and $j \in\left\{1,2, \ldots, \frac{\beta_{i} k}{2}\right\}$. Let r_{i} be a candidate robot. $q_{i}(t)$ denotes the destination point of r_{i} at time t. Let $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Define $Z_{6}(t)=\left(\mathcal{N}_{7}(t), g_{i}(t)\right)$.

Lemma 5.4.10. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. Recall that $p_{i}(t)$ denotes the intersection point between $\operatorname{Ray}\left(F_{c}, r_{i}(t)\right)$ and \mathscr{C}. We have the following cases:

Case 1. $p_{i}(t)$ is not a robot position. $q_{i}(t)=p_{i}(t)$ and r_{i} moves directly towards $p_{i}(t)$ (Figure $5.13(\mathrm{~A})$). Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Case 2. $p_{i}(t)$ is a robot position. r_{i} computes its destination point according to movement \boldsymbol{M}_{41} (Figure 5.13(B)). At time $t^{\prime}, d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right)>d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)$. We have $d\left(r_{i}(t), q_{i}(t)\right)-$ $d\left(r_{i}\left(t^{\prime}\right), q_{i}(t)\right)>d\left(r_{i}(t), q_{i}(t)\right)-d\left(r_{i}\left(t^{\prime}\right), q_{i}\left(t^{\prime}\right)\right) \geq \delta$. Thus, $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Lemma 5.4.11. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$ ensures $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. As $\mathcal{N}_{7}\left(t^{\prime}\right)=\mathcal{N}_{7}(t)-1, Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$ is ensured.
Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.4.10 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Hence, an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 1}}$ ensures $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$.
Lemma 5.4.12. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 2}}$, let $t^{\prime}>t$ be an arbitrary point of time at which a candidate robot r_{i} has completed at least one LCM cycle. An execution of movement \mathcal{M}_{42} ensures $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$.

Proof. During movement $\mathcal{M}_{\mathbf{4 2}}, q_{i}\left(t^{\prime}\right)=q_{i}(t)$ and r_{i} moves directly towards $q_{i}(t)$. If $q_{i}(t)=r_{i}\left(t^{\prime}\right)$, then $\mathcal{N}_{7}\left(t^{\prime}\right)=\mathcal{N}_{7}(t)-1$. Thus, $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$ is ensured. Consider the case when $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. Hence, an execution of movement $\mathcal{M}_{\mathbf{4 2}}$ ensures $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$.

Lemma 5.4.13. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 3}}$, let $t^{\prime}>t$ be an arbitrary point of time at which at least one candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 3}}$ ensures $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$.

Proof. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 3}}$, movement $\boldsymbol{\mathcal { M }}_{41}$ will be executed in multiple wedges. From Lemma 5.4.11, it follows that $Z_{6}\left(t^{\prime}\right)<Z_{6}(t)$ will be ensured.

Next, we discuss progress during movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$. The goal is to form a final configuration. Assume that $C(t)$ is in PHASE5. Suppose r_{i} denotes a candidate robot of the target fixed point $f_{j} \in \mathcal{F}_{k} \in \mathcal{F}$. Also, suppose $q_{i}(t)$ represents the destination point of r at time t. We have $g_{i}(t)=d\left(r_{i}(t), q_{i}(t)\right)$. Recall that $V_{i}(t)=\left(n_{k}(t), D_{j}(t), g_{i}(t)\right)$ where $D_{j}(t)=k-\left|C\left(f_{i}, \rho\right) \cap R(t)\right|$ denotes the deficit of number of robots on $C\left(f_{j}, \rho\right)$ to become saturated and $n_{k}(t)$ denotes the number of unsaturated fixed points.

Lemma 5.4.14. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$, let r_{i} be a candidate robot and $t^{\prime}>t$ be an arbitrary point of time at which r_{i} has completed at least one LCM cycle. Execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$ ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Proof. During movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}, r_{i}$ moves directly towards $q_{i}(t)$ (Figure 5.16(A) and 5.16(B)). Since r_{i} moves by at least $\delta, g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. Hence, an execution of movement $\mathcal{M}_{\mathbf{5}}$ ensures $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$.

Lemma 5.4.15. During an execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$, let $t^{\prime}>t$ be an arbitrary point of time at which at least one candidate robot r_{i} has completed at least one LCM cycle. An execution of movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$ ensures $V_{i}\left(t^{\prime}\right)<V_{i}(t)$.

Proof. The following cases are to be considered:
Case 1. $q_{i}(t)=r_{i}\left(t^{\prime}\right)$. If $C\left(f_{j}, \rho\right)$ has exactly k robots, then $n_{k}\left(t^{\prime}\right)=n_{k}(t)-1$ ensuring $V_{2}\left(t^{\prime}\right)<V_{2}(t)$. If $C\left(f_{j}, \rho\right)$ has less than k robots on it, then $D_{j}\left(t^{\prime}\right)=D_{j}(t)-1$ ensuring $V_{i}\left(t^{\prime}\right)<V_{i}(t)$.

Case 2. $q_{i}(t) \neq r_{i}\left(t^{\prime}\right)$. Lemma 5.4.14 ensures that $g_{i}\left(t^{\prime}\right)+\delta \leq g_{i}(t)$. As a result, $V_{i}\left(t^{\prime}\right)<V_{i}(t)$ is ensured.

Theorem 5.4.16. Let $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$ be a given configuration. Execution of algorithm OpaqueAlgorithm 2 would solve the k-circle formation problem within finite time under obstructed visibility model.

Proof. Lemmata 5.4.3 and 5.4.4 ensure that $\forall t \geq 0, C(t) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$. At time $t \geq 0$, we have the following cases:

Case 1. $C(t)$ is in PHASE1. Movement $\boldsymbol{\mathcal { M }}_{\mathbf{1}}$ is executed. Lemma 5.4.6 ensures that within finite time all the robots would reach the boundary of $H(t)$.

Case 2. $C(t)$ is in PHASE2. Movement $\boldsymbol{\mathcal { M }}_{\mathbf{2}}$ is executed. Lemma 5.4.7 guarantees that all the robots would include all the fixed points inside the boundary of $H(t)$.

Case 3. $C(t)$ is in PHASE3. There exists a robot that does not lie on \mathscr{C}. Movement $\boldsymbol{\mathcal { M }}_{\mathbf{3}}$ is executed. Lemma 5.4.9 ensures that within finite time the robots would reach \mathscr{C}.

Case 4. $\boldsymbol{C}(\boldsymbol{t})$ satisfies one of the following conditions:

$$
\begin{array}{r}
P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}, \text { or } \\
\neg P_{15} \wedge \neg P_{14} \wedge P_{1} \wedge P_{16} \wedge \neg P_{6} \wedge\left(\neg P_{10} \vee \neg P_{11} \vee \neg P_{12} \vee \neg P_{13}\right) \wedge P_{8} \wedge P_{9}
\end{array}
$$

Each robot r_{i} changes the color of its light to r_{i}.light $=$ Red. Since the scheduler is assumed to be fair, within finite time all the robots will change its light color.

Case 5. $C(t)$ is in PHASE4. If $C(t) \in \mathcal{F} A S Y M$, then movement \mathcal{M}_{41} is executed. Lemma 5.4.11 ensures that within finite time the robots will form a suitable configuration. If $C(t) \in \mathcal{F} R E F L \cup \mathcal{F} M U L T$ and k is even, movement $\boldsymbol{\mathcal { M }}_{\mathbf{4 2}}$ is executed. Lemma 5.4.12 guarantees that within finite time the robots will form a suitable configuration. When $C(t) \in \mathcal{F} C H I R$, then movement $\boldsymbol{\mathcal { M }}_{43}$ is executed. Lemma 5.4.13 ensures that within finite time the robots will form a suitable configuration.

Case 6. $C(t)$ is in PHASE5. Movement $\boldsymbol{\mathcal { M }}_{\mathbf{5}}$ is executed. Lemma 5.4.15 guarantees that within finite the robots will form a final configuration.

Hence, OpaqueAlgorithm 2 would solve the k-circle formation problem within finite time under obstructed visibility model for $C(0) \notin\left\{\mathcal{U}_{1} \cup \mathcal{U}_{2}\right\}$.

For an initial configuration $C(0) \in \mathcal{U}_{2}$, the robots can solve the mutual visibilty problem by using light colors. Next, they can deterministically solve the k-circle formation problem similar to the idea of OpaqueAlgorithm 2 . The robots can solve the mutual visibility problem using two light colors [65]. However, it must be ensured that when solving the mutual visibilty problem, the configuration does not fall into the set \mathcal{U}_{1}. Designing such an algorithm for the mutual visibilty problem is under investigation.

5.5 Conclusions

In this chapter, we have investigated the k-circle formation problem under obstructed visibility model. The robots have been assumed to be completely disoriented. They operate their LCM cycle under ASYNC scheduler. This chapter studies the k-circle formation problem under two different settings based on the visibility of the fixed points:

1. Complete knowledge of the fixed points: $\forall r_{i} \in R, V R r_{i}(t) \leq n$ but $V F r_{i}(t)=$ m. The robots are oblivious and silent. All the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable are characterized. A deterministic distributed algorithm is proposed that solves the k-circle formation problem within a finite amount of time.
2. Zero knowledge of the fixed points: As a consequence, $\forall r_{i} \in R, V R r_{i}(t) \leq$ n and $\operatorname{VFr}_{i}(t) \leq m$. It has been shown that the problem is deterministically unsolvable by oblivious and silent robots. A deterministic distributed algorithm is proposed that solves the k-circle formation problem within finite time. The proposed algorithm considers one bit of persistent memory.

Chapter 6

Uniform k-Circle Formation by Fat Robots

Contents

6.1 Overview 151
6.2 Model and Definitions 152
6.3 Impossibility Result 155
6.4 Algorithm 156
6.5 Correctness 164
6.6 Conclusion 171

6.1 Overview

In the real world, a robot can not possibly be dimensionless. Czyzowicz et al. [15] studied the gathering problem for unit disk robots in the plane. This chapter aims at investigating the uniform k-circle formation problem in a more realistic model where the robots have a dimensional extent. They are represented by unit disks in the Euclidean plane.

In order to solve the uniform k-circle formation problem, the proposed algorithm must ensure that all the k robots on a circle form a regular k-gon. The assumption on the dimension of a robot introduces additional challenges. A point robot can always pass
through the gap between any two points in the plane. It can compute a path in the plane that lies at an infinitesimal distance apart from another robot. In comparison, a fat robot can not do so due to the dimensional extent. A fat robot would act as a physical barrier for the other robots. If a robot is punctiform, then either a robot lies on a circle or it does not. However, for a fat robot, there are two scenarios (e.g., the unit disk intersects the circle or the center of the unit disk lies on the circle) when a robot can be said to lie on a circle. Also, the robots need to compute a suitable radius for the circles so that k robots can be accommodated without any overlapping. Therefore, the solutions proposed in Chapters 3, 4 and 5 would fail to work for fat robots.

6.2 Model and Definitions

The robots are represented by unit disks in the plane. The radius of a unit disk is considered to be one unit distance by all the robots. We assume that the robots have an agreement on the direction of the y-axis. They are autonomous, anonymous, homogeneous, oblivious and silent. The robots are assumed to be activated under ASYNC scheduler with non-rigid motion.
(1) $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ denotes the set of all the unit disk robots in the plane. $R_{i}(t)$ represents the centre of R_{i} at time $t . R(t)=\left\{R_{1}(t), R_{2}(t), \ldots, R_{n}(t)\right\}$ denotes the set of all the robot centers at time t. $U_{i}(t)$ represents the unit disk centered at $R_{i}(t)$. Two distinct robots are said to be symmetric if their centers have the same configuration rank as defined in section 3.2. $C(t)$ is said to be symmetric if $R(t) \cup F$ is symmetric about the y-axis. The radii of the circles are assumed to be homogeneous. The choice of the value of the radius ρ is arbitrary. However, it must be ensured that k robots can be accommodated on a circle without any overlapping. If $R_{i}(t)$ lies on a circle, then R_{i} is said to lie on that circle.
(2) All the configurations can be partitioned into the following disjoint classes:
(a) $\mathcal{J}_{1}-F$ is asymmetric about the y-axis (Figure 6.1(A)).
(b) $\mathcal{J}_{2}-F$ is symmetric about the y-axis and $F_{y}=\emptyset($ Figure 6.1(B)).

(A)

(B)

(C)

Figure 6.1: Small black circles represent the center of a robot. (A) \mathcal{J}_{1}-configuration. (B) \mathcal{J}_{2}-configuration. (C) \mathcal{J}_{3}-configuration.
(c) $\mathcal{J}_{3}-F$ is symmetric about the y-axis and $F_{y} \neq \emptyset($ Figure 6.1(C)).

Since the partition is based upon fixed points, the robots can easily identify the class of a configuration by observing the fixed points.
(3) Half-planes: Let F_{i} denote the set of fixed points in $\mathcal{H}_{i} \in\left\{\mathcal{H}_{1}, \mathcal{H}_{2}\right\} . \quad C_{i}(t)=$ $\left(R(t), F_{i}\right)$ represents the part of the configuration consisting of $R(t) \cup F_{i}$, where $i \in$ $\{1,2\} . C_{3}(t)=\left(R(t), F_{y}\right)$ denotes the part of the configuration consisting of $R(t) \cup F_{y}$. In \mathcal{H}_{1}, the positive x-axis direction is considered along the perpendicular direction away from the y-axis. Similarly, the positive x-axis direction is the perpendicular direction away from the y-axis in \mathcal{H}_{2}.

6.2.1 The Uniform k-Circle Formation Problem

A configuration $C(t)$ for some $t \geq 0$ is said to be a final configuration, if it satisfies the following conditions:
i) $\forall R_{i} \in R, R_{i}(t) \in C\left(f_{j}, \rho\right)$ for some $f_{j} \in F$,
ii) $\left|C\left(f_{i}, \rho\right) \cap R(t)\right|=k, \forall f_{i} \in F$, and
iii) All the k robots which lie on the same circle form a regular k-gon.

To solve the uniform k-circle formation problem, starting from a given initial configuration the robots need to reach and remain in a final configuration.

Figure 6.2: The minimum radius required to form a circle containing exactly k robots.

6.2.2 Radii of the Circles

Let $\rho>0$ denote the radius of a circle. The minimum radius for a circle for fat robots is achieved when there are no gaps between any two adjacent robots on the circle. When $k=1$, we assume that the radius is one unit. For $k>1$, let $\alpha=\frac{2 \pi}{k}$ and a be the mid-point of the line segment $\overline{R_{1}(t) R_{2}(t)}$ (Figure 6.2).

$$
\text { We have, } \sin \frac{\alpha}{2}=\frac{\overline{R_{2}(t) a}}{\overline{R_{2}(t) f}}=\frac{1}{\rho} \Longrightarrow \rho=\frac{1}{\sin \frac{\alpha}{2}}
$$

The choice of ρ would ensure that all the k robots which lie on the same circle would form a regular k-gon. Let \mathcal{P}_{i} denote the regular k-gon centered at $f_{i} \in F$ with $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ as the set of vertices such that $d\left(\beta_{i}, \beta_{j}\right)=2$, where $i \in\{1,2, \ldots, k\}$ and $j=i+1 \bmod (k)$. We assume that the minimum distance between any two fixed points is greater than or equal to $2(\rho+1)$. This would always ensure that even if two adjacent k-gons are rotated, the formation of disjoint circles without any overlapping of robots would be guaranteed.

Definition 6.2.1. If k is some odd integer and $C(t) \in \mathcal{I}_{3}$, then $C(t)$ is said to be an unsafe configuration. A pivot position is defined for an unsafe configuration. Suppose $f \in F_{y}$ be the topmost fixed point. Let $\rho_{1} \in \mathcal{H}_{1}$ be the point such that $\rho_{1} \in C(f, \eta)$ and $x\left(\rho_{1}\right)-x(f)=\frac{1}{2}$ unit distance. Similarly, let ρ_{2} be such a point in \mathcal{H}_{2}. The points ρ_{1} and ρ_{2} are said to be pivot positions. A robot placed on a pivot position is said to be a pivot robot.

6.3 Impossibility Result

Figure 6.3: An example of a configuration satisfying the impossibility criteria (Theorem 6.3.1).

Theorem 6.3.1. Let $C(0)$ be a given initial configuration. If k is some odd integer and $C(0) \in \mathcal{J}_{3}$, such that the following conditions hold:
i) $R(0)$ is symmetric about the y-axis, and
ii) $R_{y}(0)=\emptyset$,
then the uniform k-circle formation problem is deterministically unsolvable.

Proof. If possible, let algorithm \mathcal{A} solve the uniform k-circle formation problem. Suppose $\phi\left(R_{i}\right)$ denotes the symmetric image of R_{i}. Assume that the robots are activated under a semi-synchronous scheduler. Also, assume that both R_{i} and $\phi\left(R_{i}\right)$ are activated simultaneously. All the robots are assumed to move with the same constant speed without any transient stops. Consider that the distance traveled by R_{i} is the same as that by $\phi\left(R_{i}\right)$. Assume that both R_{i} and $\phi\left(R_{i}\right)$ have opposite notions of positive x-axis direction. They would have identical configuration views. Since the robots are homogeneous, their destinations and the corresponding paths for movements would be mirror images. Since we started with a symmetric configuration, no algorithm can deterministically break the symmetry. Let $f_{i} \in F_{y}$. Since the configuration is symmetric, \mathcal{P}_{i} must be symmetric around the y-axis. As k is odd, \mathcal{P}_{i} must contain a robot position on the y-axis. Since
$R_{y}(0)=\emptyset$, having a robot R_{i} moved to the y-axis would mean moving $\phi\left(R_{i}\right)$ to the same point. However, overlapping of the robots is not allowed. Hence, the uniform k-circle formation problem is deterministically unsolvable.

Let \mathcal{U}_{4} denote the set of all the initial configurations which satisfy the conditions stated in Theorem 6.3.1 (Figure 6.3).

6.4 Algorithm

Theorem 6.3.1 provides a sufficient condition for an initial configuration for which the uniform k-circle formation is deterministially unsolvable. In this section, a deterministic distributed algorithm AlgorithmFatRobot is proposed that solves the uniform k-circle formation problem for an initial configuration $C(0) \notin \mathcal{U}_{4}$. An active robot would execute the proposed algorithm AlgorithmFatRobot unless the current configuration is a final configuration.

(A)

(B)

Figure 6.4: (A) $\mathscr{R}\left(R_{j}(t) q\right)$ is empty. (B) $\mathscr{R}\left(R_{j}(t) q\right)$ is non-empty

Definition 6.4.1. Let p be the destination point computed by R_{j}. Let q be the point such that $p \in \overline{R_{j}(t) q}$ and $d(p, q)=1$. The rectangular strip $A B C D$ (Figures 6.4(A) and $6.4(\mathrm{~B}))$ between $R_{j}(t)$ and q having width of two units is denoted by $\mathscr{R}\left(R_{j}(t) q\right)$. If $\nexists R_{i} \in R$ such that $U_{i}(t)$ intersects $\mathscr{R}\left(R_{j}(t) q\right)$, then $\mathscr{R}\left(R_{j}(t) q\right)$ is said to be empty (Figure 6.4(A)). Otherwise, it is said to be non-empty (Figure 6.4(B)). If $\mathscr{R}\left(R_{j}(t) q\right)$ is empty, then R_{j} is said to have a free path for movement towards p.

During the execution of AlgorithmFatRobot, the robots decide their strategy depending on the class of the initial configuration. An overview of algorithm AlgorithmFatRobot is described below:

1. If $C(0) \in \mathcal{J}_{1}$ or $C(0)$ is an unsafe configuration, then the robots agree on the positive direction of the x-axis. In case, $C(0) \in \mathcal{J}_{1}$ the x-axis agreement is based on fixed points only. If $C(0)$ is an unsafe configuration, then the robots would execute the procedure PivotSelection (Section 6.4.2) by which a pivot robot would be selected and placed on a pivot position. The pivot robot would remain fixed at the pivot position. The pivot position is selected by ensuring that the configuration would remain asymmetric once the pivot position is placed. In this case, the x-axis agreement is based on the pivot position.
2. The robots would execute the CircleFormation (Section 6.4.3) for a unique fixed point (or for two fixed points when the robots do not have a global x-axis agreement). Such a fixed point is said to be a target fixed point. CircleFormation is the procedure by which the robots would accomplish the formation of circles.

During the execution of the AlgorithmFatRobot, the robots would move downwards by the execution of procedure DownwardMovement (Section 6.4.1). Since the robots have a dimensional extent, a robot can start to move towards its destination point only if it has a free path for movement.

6.4.1 DownwardMovement

DownwardMovement is the procedure in AlgorithmFatRobot by which the robots would move downwards. Assume that R_{j} has been selected for downward movement by one unit. R_{j} would move one unit vertically downwards by the execution of the procedure DownwardMovement. However, if the pivot robot falls in its path, then it can not move downwards. In such a case, it would move one unit horizontally. First, some new notations and definitions are introduced.

Suppose $V L_{j}(t)$ denotes the vertical line passing through $R_{j}(t)$. Let $p_{j}(t) \in V L_{j}(t)$ be the point such that $\gamma\left(R_{j}(t)\right)>\gamma\left(p_{j}(t)\right)$ and $d\left(R_{j}(t), p_{j}(t)\right)=2$. Define the set $M_{j}(t)$ as follows:

1. Base case: If $\mathscr{R}\left(R_{j}(t) p_{j}(t)\right)$ is empty, then $M_{j}(t)=\emptyset$. Else, $M_{j}(t)=\left\{R_{a} \mid\right.$ $U_{a}(t)$ intersects $\left.\mathscr{R}\left(R_{j}(t) p_{j}(t)\right)\right\}$.

Figure 6.5: (A) $M_{j}(t)=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}$. As $U_{1}(t)$ intersects $\mathscr{R}\left(R_{j}(t) p_{j}(t)\right), R_{1} \in M_{j}(t)$. Also, $U_{2}(t)$ and $U_{3}(t)$ intersect $\mathscr{R}\left(R_{1}(t) p_{1}(t)\right), R_{2} \in M_{j}(t)$ and $R_{3} \in M_{j}(t)$. $U_{4}(t)$ intersects $\mathscr{R}\left(R_{3}(t) p_{3}(t)\right)$ and $R_{4} \in M_{j}(t)$. (B) $N_{j}(t)=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}$. As $U_{1}(t)$ intersects $\mathscr{R}\left(R_{j}(t) q_{j}(t)\right), R_{1} \in N_{j}(t) . U_{3}(t)$ intersects $\mathscr{R}\left(R_{1}(t) q_{1}(t)\right)$ and $R_{3} \in N_{j}(t)$. Also, $U_{2}(t)$ and $U_{4}(t)$ intersect $\mathscr{R}\left(R_{3}(t) q_{1}(t)\right), R_{2} \in N_{j}(t)$ and $R_{4} \in N_{j}(t)$.

2. Constructor case:

$$
M_{j}(t)=M_{j}(t) \cup\left\{R_{b} \mid U_{b}(t) \text { intersects } \mathscr{R}\left(R_{i}(t) p_{i}(t)\right) \text { for some } R_{i} \in M_{j}(t)\right\} .
$$

The set $M_{j}(t)$ contains all the robots that must be moved downwards before R_{j} can move one unit vertically downwards (Figure 6.5(A)). Let $H L_{j}(t)$ denote the horizontal line passing through $R_{j}(t)$. In case, R_{j} is selected for horizontal movement, let $q_{j}(t) \in H L_{j}(t)$ be the point such that $\gamma\left(R_{j}(t)\right)<\gamma\left(q_{j}(t)\right)$ and $d\left(R_{j}(t), q_{j}(t)\right)=2$. Define the set $N_{j}(t)$ as follows:

1. Base case: If $\mathscr{R}\left(R_{j}(t) q_{j}(t)\right)$ is empty, then $N_{j}(t)=\emptyset$. Else, $N_{j}(t)=\left\{R_{a} \mid\right.$ $U_{a}(t)$ intersects $\left.\mathscr{R}\left(R_{j}(t) q_{j}(t)\right)\right\}$.

2. Constructor case:

$$
N_{j}(t)=N_{j}(t) \cup\left\{R_{b} \mid U_{b}(t) \text { intersects } \mathscr{R}\left(R_{i}(t) q_{i}(t)\right) \text { for some } R_{i} \in N_{j}(t)\right\} .
$$

The set $N_{j}(t)$ contains all the robots that must be moved horizontally so that $\mathscr{R}\left(R_{j}(t) q_{j}(t)\right)$ becomes empty (Figure 6.5(B)). During the execution of DownwardMovement $\left(R_{j}\right)$, the following cases are to be considered:

1. $M_{j}(t)=\emptyset . R_{j}$ would start moving towards $p_{j}(t)$ along $\overline{R_{j}(t) p_{j}(t)}$.
2. $M_{j}(t) \neq \emptyset$. There are two possible cases:
(a) $M_{j}(t)$ contains the pivot robot. If $N_{j}(t)=\emptyset$, then R_{j} moves towards $q_{j}(t)$ along $\overline{R_{j}(t) q_{j}(t)}$. Otherwise, let $R_{a} \in N_{j}(t)$ be such that $d\left(R_{j}(t), R_{a}(t)\right)=$ $\max _{R_{k} \in N_{j}(t)} d\left(R_{j}(t), R_{k}(t)\right)$. R_{a} moves towards $q_{a}(t)$ along $\overline{R_{a}(t) q_{a}(t)}$. There may be multiple such robots which would perform the required movement.
(b) $M_{j}(t)$ does not contain the pivot robot. Let $R_{a} \in M_{j}(t)$ be such that $\gamma\left(R_{a}(t)\right) \leq$ $\min _{R_{k} \in M_{j}(t)} \gamma\left(R_{k}(t)\right) . R_{a}$ moves towards $p_{a}(t)$ along $\overline{R_{a}(t) p_{a}(t)}$. If there are multiple such robots, then all of them would perform the required vertical movement.

6.4.2 PivotSelection

PivotSelection is the procedure in AlgorithmFatRobot by which a robot would be placed at one of the pivot positions. The robots would execute PivotSelection unless one of the pivot position is occupied by a robot. Let R_{a} be the robot that lies at the closest distance from pivot position ρ_{1}. If there are multiple such robots, then select the topmost one. In case there is a tie, select the one closest to the y-axis. Similarly, let R_{b} be the robot that lies at the closest distance from ρ_{2}. The following cases are to be considered:

1. $d\left(R_{a}(t), \rho_{1}\right) \neq d\left(R_{b}(t), \rho_{2}\right)$. Without loss of generality, let $d\left(R_{a}(t), \rho_{1}\right)<d\left(R_{b}(t), \rho_{2}\right)$. The robot R_{a} would start moving towards ρ_{1} along $\overline{R_{a}(t) \rho_{1}}$.
2. $d\left(R_{a}(t), \rho_{1}\right)=d\left(R_{b}(t), \rho_{2}\right)$ and $R_{y}(t)=\emptyset$. Since $C(t) \notin \mathcal{U}_{4}$, it must be asymmetric about the y-axis. Let R_{l} be the topmost asymmetric robot. If there are multiple such robot then select the one which lies at the closest distance from the y-axis. Without loss of generality, assume that $R_{l} \in \mathcal{H}_{1}$. The robot R_{a} would start moving towards ρ_{1} along $\overline{R_{a}(t) \rho_{1}}$.
3. $d\left(R_{a}(t), \rho_{1}\right)=d\left(R_{b}(t), \rho_{2}\right)$ and $R_{y}(t) \neq \emptyset$. There are two possible cases:
(i) $C(t)$ is asymmetric. In this case, the robots will perform the required actions similarly as in case 2 .
(ii) $C(t)$ is symmetric. First, consider the case when $\exists R_{a} \in R_{y}(t)$ that can be moved horizontally half a unit away from the y-axis. If there are multiple
such robots, select the topmost one. R_{a} would move horizontally half a unit away from the y-axis. Next, consider the case when there are no such robots on the y-axis. Let $R_{a} \in R_{y}(t)$ be the robot that has the minimum rank. DownwardMovement $\left(R_{a}\right)$ would be executed.

6.4.3 CircleFormation

CircleFormation is the procedure in AlgorithmFatRobot by which the robots would accomplish the formation of a circle. Let f_{i} be a target fixed point. The following additional notations and terminologies are introduced:

1. $A_{i}(t)=\left\{R_{j} \mid R_{j}(t) \in C\left(f_{a}, \rho\right)\right.$ where $f_{a} \in F$ be such that $\left.\gamma\left(f_{a}\right) \geq \gamma\left(f_{i}\right)\right\}$.
2. $f_{l} \in F$ denotes a fixed point such that $\gamma\left(f_{l}\right) \leq \gamma\left(f_{j}\right), \forall f_{j} \in F$.
3. R_{j} is said to satisfy condition $C 1$ if it is not the pivot robot.
4. R_{j} is said to satisfy condition $C 2$ if $y\left(R_{j}(t)\right) \geq y\left(f_{l}\right)-(\rho+1)$.
5. $B_{i}(t)=\left\{R_{j} \mid R_{j} \notin A_{i}(t)\right.$ and it satisfies $C 1$ and $\left.C 2\right\}$.
6. Let $\beta_{a} \in \mathcal{P}_{i}$ be the empty vertex that has the highest rank in $A_{\text {max }}$. Assume that R_{j} has been selected for moving towards β_{a}. If $\mathscr{R}\left(R_{j}(t), \beta_{a}\right)$ is non-empty, then let $a_{j} \in H L_{j}(t)$ denote the point that lies at the closest distance from R_{j} such that $\mathscr{R}\left(R_{j}(t)=a_{j}, \beta_{a}\right)$ is empty.

Definition 6.4.2. $C\left(f_{i}, \rho\right)$ is said to be a perfect circle, if the following conditions hold:

1. If $R_{j}(t) \in C\left(f_{i}, \rho\right)$, then $R_{j}(t)=\beta_{k}$ for some $\beta_{k} \in \mathcal{P}_{i}$.
2. If $R_{j}(t) \in C\left(f_{i}, \rho\right)$ and $R_{j}(t)=\beta_{k} \in \mathcal{P}_{i}$, then $\exists \beta_{j} \in \mathcal{P}_{i}$ such that $\gamma\left(\beta_{k}\right)<\gamma\left(\beta_{j}\right)$ and β_{j} is not occupied.

If $R_{j} \in C\left(f_{i}, \rho\right)$ be such that one of the above conditions is not satisfied, then it is said to be an imperfect robot. A circle is said to be imperfect if it contains an imperfect robot.

During an execution of CircleFormation $\left(C(t), f_{i}\right)$, an active robot R_{i} considers the following cases:

1. The robots have global x-axis agreement or $f_{i} \notin F_{y}$. The following cases are to be considered:
(a) $\left|B_{i}(t)\right|>1$. Let $R_{j} \in B_{i}(t)$ be the robot that has the maximum rank. The robots would execute DownwardMovement $\left(R_{j}\right)$.
(b) $\left|B_{i}(t)\right|=1$. Let $\beta_{c} \in \mathcal{P}_{i}$ be the empty vertex that has the maximum rank. Let $R_{j} \in B_{i}(t)$. If $\mathscr{R}\left(R_{j}(t) \beta_{c}\right)$ is empty, then R_{j} would start moving towards β_{c}. Otherwise, DownwardMovement $\left(R_{j}\right)$ would be executed.
(c) $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is imperfect. Let $\beta_{c} \in \mathcal{P}_{i}$ be the empty vertex that has the maximum rank. Let $R_{j} \in C\left(f_{i}, \rho\right)$ be such that $\gamma\left(R_{j}(t)\right)<\gamma\left(\beta_{c}\right)$ and $d\left(R_{j}(t), \beta_{c}\right)$ is minimum. If there is a tie, select the one that has the maximum rank. R_{j} would start moving towards β_{c} along $\overline{R_{j}(t) \beta_{c}}$.

Figure 6.6: A flow chart showing the transformations among the various cases during an execution of CircleFormation when the robots have a global x-axis agreement or the target fixed point does not belong to F_{y}.
(d) $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is perfect. Let $\beta_{c} \in \mathcal{P}_{i}$ be the empty vertex that has the maximum rank. Let $R_{j} \in R(t) \backslash A_{i}(t)$ be such that $d\left(R_{j}(t), \beta_{c}\right)$ is minimum. If there is a tie, select the one that has the maximum rank. If $\mathscr{R}\left(R_{j}(t) \beta_{c}\right)$ is empty, then R_{j} would start moving towards β_{c} along $\overline{R_{j}(t) \beta_{c}}$. Else, R_{j} would start moving towards a_{j} along $\overline{R_{j}(t) a_{j}}$.

Figure 6.6 depicts the transformations among the above-mentioned cases.
2. The robots do not have any global x-axis agreement and $f_{i} \in F_{y}$. The following cases are to be considered:
(a) $\left|B_{i}(t)\right|>2$. Let $R_{j} \in B_{i}(t)$ be the robot that has the maximum rank. The robots would execute DownwardMovement $\left(R_{j}\right)$.
(b) $0<\left|B_{i}(t)\right| \leq 2$. Let $\beta_{a} \in \mathcal{H}_{1}$ be the empty vertex of \mathcal{P}_{i} that has the highest rank. Similarly, let β_{b} be such a vertex in \mathcal{H}_{2}. Assume that R_{j} and R_{k} are the robots that are at the closest distance from β_{a} and β_{b}, respectively. If $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ is empty, then R_{j} would start moving towards β_{a}. Otherwise, DownwardMovement $\left(R_{j}\right)$ would be executed. Similarly, if $\mathscr{R}\left(R_{k}(t) \beta_{b}\right)$ is empty, then R_{k} would start moving towards β_{b}. Otherwise, DownwardMovement $\left(R_{k}\right)$ would be executed.

Figure 6.7: A flow chart showing the transformations among the various cases during an execution of CircleFormation when the robots do not have any global x-axis agreement and the target fixed point belongs to F_{y}.
(c) $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is imperfect. Let $\beta_{a} \in \mathcal{H}_{1}$ be the empty vertex of \mathcal{P}_{i} that has the highest rank. Similarly, let β_{b} be such a vertex in \mathcal{H}_{2}. Let $R_{j} \in C\left(f_{i}, \rho\right)$ be such that $\gamma\left(R_{j}(t)\right)<\gamma\left(\beta_{a}\right)$ and $d\left(R_{j}(t), \beta_{a}\right)$ is minimum. If there is a tie, select the one that has the maximum rank. Let R_{k} be such an robot for the vertex β_{b}. R_{j} would start moving towards β_{a} along $\overline{R_{j}(t) \beta_{a}}$. Similarly, R_{k} would start moving towards β_{b} along $\overline{R_{k}(t) \beta_{b}}$.
(d) $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is perfect. Let $\beta_{a} \in \mathcal{H}_{1}$ be the empty vertex of \mathcal{P}_{i} that has the highest rank. Similarly, let β_{b} be such a vertex in \mathcal{H}_{2}. Let $R_{j} \in R(t) \backslash A_{i}(t)$ such that $d\left(R_{j}(t), \beta_{a}\right)$ is minimum. If there is a tie, select the one that has the maximum rank. Assume that R_{k} be such a robot for β_{b}.

If $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ is empty, then R_{j} would start moving towards β_{a} along $\overline{R_{j}(t) \beta_{a}}$. Otherwise, R_{j} would start moving towards a_{j} along $\overline{R_{j}(t) a_{j}}$. Similarly, R_{k} would select its destination point and start moving towards it.

If $R_{j}=R_{k}$ for any of the above cases, then R_{j} would select the target fixed point that lies at the closest distance from it. If there is a tie, it would select one of the target fixed point arbitrarily. Figure 6.7 depicts the transformations among the above mentioned cases.

6.4.4 AlgorithmFatRobot

AlgorithmFatRobot is the proposed deterministic distributed algorithm that solves the uniform k-circle formation problem within finite time. The pseudocode of algorithm AlgorithmFatRobot is presented in Algorithm 6.1. During an execution of algorithm AlgorithmFatRobot, the robots would form a circle centered at a target fixed point by the procedure CircleFormation. Let R_{j} be an active robot at time $t \geq 0$. If $C(t)$ is identified to be a non-final configuration, then AlgorithmFatRobot $(C(t))$ would be executed. Consider the following cases:

```
ALGORITHM 6.1: AlgorithmFatRobot
    Input: \(C(t)=(R(t), F)\)
    if \(C(t) \in \mathcal{J}_{1}\) then
        Let \(f_{j}\) be the target fixed point;
        Execute CircleFormation \(\left(C(t), f_{j}\right)\);
    else if \(C(t) \in \mathcal{J}_{2}\) then
        Let \(f_{j} \in C_{1}(t)\) and \(f_{b} \in C_{2}(t)\) be the target fixed points;
        Execute CircleFormation \(\left(C_{1}(t), f_{j}\right)\) and CircleFormation \(\left(C_{2}(t), f_{j}\right)\);
    else if \(C(t) \in \mathcal{J}_{3}\) then
        if \(k\) is even and \(C(t)\) is not an unsafe configuration then
            if \(\exists f \in F_{y}\) such that \(f\) is unsaturated then
                Let \(f_{j}\) be the target fixed point;
                    Execute CircleFormation \(\left(C_{3}(t), f_{j}\right)\);
            else if \(\exists f \in F_{y}\) such that \(f\) is unsaturated then
                Let \(f_{j} \in C_{1}(t)\) and \(f_{b} \in C_{2}(t)\) be the target fixed points;
                Execute CircleFormation \(\left(C_{1}(t), f_{j}\right)\) and CircleFormation \(\left(C_{2}(t), f_{j}\right)\);
            end
        else if \(C(t)\) is an unsafe configuration then
            Execute PivotSelection \((C(t))\);
        end
    end
```

1. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{J}_{1}$. Since F is asymmetric, the fixed points can be ordered. Let f be the topmost asymmetric fixed point. In case there are multiple such fixed points, select
the one that has the minimum rank. The direction from the y-axis towards f is considered to be the positive x-axis direction. This is a global agreement. Let $f_{i} \in C(t)$ be the unsaturated fixed point that has the maximum rank. The robots would select f_{i} as the target fixed point. The robots would execute CircleFormation $\left(C(t), f_{i}\right)$.
2. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{J}_{2}$. Let $f_{a} \in C_{1}(t)$ be the unsaturated fixed point that has the maximum rank. The robots would select f_{i} as the target fixed point in $C_{1}(t)$. Similarly, the robots would select a unique target fixed point (say f_{b}) in $C_{2}(t)$. The robots would execute CircleFormation $\left(C_{1}(t), f_{a}\right)$ and CircleFormation $\left(C_{2}(t), f_{b}\right)$.
3. $\boldsymbol{C}(\boldsymbol{t}) \in \mathcal{J}_{3}$. In this case, $F_{y} \neq \emptyset$. The following cases are to be considered:
(a) k is even and $C(t)$ is not an unsafe configuration. Consider the following cases:
(i) $\exists f \in F_{y}$ such that f is unsaturated. Let $f_{j} \in F_{y}$ be the topmost unsaturated fixed point. f_{j} is selected as the target fixed point. They would execute CircleFormation $\left(C_{3}(t), f_{j}\right)$.
(ii) $\forall f \in F_{y}, f$ is saturated. Let $f_{a} \in C_{1}(t)$ be the unsaturated fixed point that has the maximum rank. f_{a} is selected as the target fixed point in $C_{1}(t)$. Since the fixed points in $C_{1}(t)$ are orderable, f_{a} is unique. Similarly, the robots would select a unique target fixed point (say f_{b}) in $C_{2}(t)$. The robots would execute CircleFormation $\left(C_{1}(t), f_{a}\right)$ and CircleFormation $\left(C_{2}(t), f_{b}\right)$.
(b) $C(t)$ is an unsafe configuration. If none of the pivot positions have been occupied, then the robots would execute PivotSelection $(C(t))$. Next, consider the case when one of the pivot positions has been occupied. The direction from the y-axis towards the pivot robot is considered as the positive x-axis direction. This is a global agreement. Next, the algorithm proceeds similarly to case 1.

6.5 Correctness

The following points are shown to prove the correctness of AlgorithmFatRobot:

1. Solvability: At any arbitrary point of time $t>0, C(t) \notin \mathcal{U}_{4}$.
2. Progress: The uniform k-circle formation is solved within finite time.

6.5.1 Solvability

Lemma 6.5.1. If $C(0) \in \mathcal{J}_{1} \cup \mathcal{J}_{2}$ and $C(0) \notin \mathcal{U}_{4}$, then at any arbitrary point of time $t \geq 0$ during an execution of AlgorithmFatRobot, $C(t) \notin \mathcal{U}_{4}$.

Proof. The following cases are to be considered:
Case 1. $C(0) \in \mathcal{J}_{1}$. Since F is asymmetric in $C(0)$, it would always remain asymmetric. Thus, $C(t) \notin \mathcal{U}_{4}$.

Case 2. $C(0) \in \mathcal{J}_{2} . F_{y}=\emptyset$. Since $F_{y} \neq \emptyset$ for each configuration in $\mathcal{U}_{4}, C(t) \notin \mathcal{U}_{4}$.

Hence, if $C(0) \in \mathcal{J}_{1} \cup \mathcal{J}_{2}$ and $C(0) \notin \mathcal{U}_{4}$, then at any arbitrary point of time $t \geq 0$ during an execution of AlgorithmFatRobot, $C(t) \notin \mathcal{U}_{4}$.

Lemma 6.5.2. If $C(0) \in \mathcal{J}_{3}$ and $C(0) \notin \mathcal{U}_{4}$, then at any arbitrary point of time $t>0$ during an execution of AlgorithmFatRobot, $C(t) \notin \mathcal{U}_{4}$.

Proof. If k is even and $C(t)$ is not an unsafe configuration, then $C(t) \notin \mathcal{U}_{4}, \forall t \geq 0$. Assume that $C(t)$ is an unsafe configuration. PivotSelection $(C(0))$ is executed. Let t_{1} be the point of time at which the pivot robot (say R_{j}) is placed at one of the pivot positions (say ρ_{1}). The pivot robot R_{j} would remain static $\forall t \geq t_{1}$. All the robots can uniquely identify the pivot robot. First, all the fixed points belonging to the half-plane containing the pivot robot would be selected for circle formation. This is because an unsaturated fixed point that has the highest rank is selected as a target fixed point. This would ensure that R_{j} remain asymmetric about the y-axis. Therefore, $C(t) \notin \mathcal{U}_{4}$ for $t \geq t_{1}$. Next, we need to show that $C(t) \notin \mathcal{U}_{4}$ for $t \in\left[0, t_{1}\right]$. The following cases are to be considered:

Case 1. A robot moves horizontally one unit away from the y-axis. Let R_{a} be such a robot. There are two possible subcases:

Subcase 1. $R_{a}(0) \in R_{y}(0)$. First, consider that $R_{a}(0)=R_{a}(t)$. Since $R_{a}(t) \in R_{y}(t)$, $R_{y}(t) \neq \emptyset$. Therefore, $C(t) \notin \mathcal{U}_{4}$. Next, consider that $R_{a}(0) \neq R_{a}(t)$. Since R_{a} has moved
to one of the half-planes, the configuration has become asymmetric about the y-axis. Therefore, $C(t) \notin \mathcal{U}_{4}$.

Figure 6.8: Since $d\left(R_{b}(0), \rho_{2}\right)<d\left(R_{a}(0), \rho_{1}\right), R_{b}$ would get selected for moving towards the pivot position ρ_{2}.

Subcase 2. $R_{a}(0) \notin R_{y}(0)$. It has been selected for horizontal movement to create space for some robot that lies on the y-axis. Thus, $R_{y}(t) \neq \emptyset$ during R_{a} 's horizontal movement. Therefore, $C(t) \notin \mathcal{U}_{4}$.

Case 2. A robot moves towards one of the pivot positions. Without loss of generality, assume that $R_{a} \in \mathcal{H}_{1}$ has been selected for moving towards ρ_{1}. If possible, let $R_{a}(t)$ become symmetric with $R_{b}(t)$ (Figure 6.8). In the time interval $[0, t], R_{a}$ is the only robot that has been selected for movement. Thus, $R_{b}(0)=R_{b}(t)$. This contradicts $d\left(R_{a}(0), \rho_{1}\right)=\min _{\rho_{i} \in\left\{\rho_{1}, \rho_{2}\right\}, R_{j} \in R(t)} d\left(R_{j}(0), \rho_{i}\right)$. Therefore, $C(t) \notin \mathcal{U}_{4}$.

Hence, if $C(0) \in \mathcal{J}_{3}$ and $C(0) \notin \mathcal{U}_{4}$, then at any arbitrary point of time $t>0$ during an execution of AlgorithmFatRobot, $C(t) \notin \mathcal{U}_{4}$.

6.5.2 Progress

During an execution of AlgorithmFatRobot, a robot will move by the following procedures: (i) PivotSelection, (ii) DownwardMovement, (iii) CircleFormation.

6.5.2.1 Progress during DownwardMovement

Progress of first kind: For some $R_{j} \in C(t)$, consider an execution of procedure DownwardMovement $\left(R_{j}\right)$. Define $k_{1}(t)=d\left(R_{j}(t), p_{j}(t)\right)$ and $k_{2}(t)=d\left(R_{j}(t), q_{j}(t)\right)$. In case $\left|M_{j}(t)\right|>0$, let $R_{a} \in M_{j}(t)$ be a robot that has the minimum rank. Define $d_{1}(t)=d\left(R_{a}(t), p_{a}(t)\right)$. If $\left|M_{j}(t)\right|=0$, then assume that $d_{1}(t)=0$. Similarly, if $\left|N_{j}(t)\right|>0$ then assume that $R_{b} \in N_{j}(t)$ be a robot that lies at the farthest distance from $R_{j}(t)$. Define $d_{2}(t)=d\left(R_{b}(t), s_{4}\right)$. If $\left|N_{j}(t)\right|=0$, then assume that $d_{2}(t)=0$. Define $Z_{7}(t)=\left(k_{1}(t),\left|M_{j}(t)\right|, d_{1}(t)\right)$ and $Z_{8}(t)=\left(k_{2}(t),\left|N_{j}(t)\right|, d_{2}(t)\right)$. In the time interval t to $t^{\prime}, Z_{i}\left(t^{\prime}\right)<Z_{i}(t)$ where $i \in\{7,8\}$ if $Z_{i}\left(t^{\prime}\right)$ is lexicographically smaller than $Z_{i}(t)$. During an execution of DownwardMovement, the configuration is said to have progress of first kind in the time interval t to t^{\prime} if either $Z_{7}\left(t^{\prime}\right)<Z_{7}(t)$ or $Z_{8}\left(t^{\prime}\right)<Z_{8}(t)$.

Lemma 6.5.3. During the execution of DownwardMovement $\left(R_{j}\right)$ for some $R_{j} \in C(t)$, let $t^{\prime}>t$ be the point of time at which each robot has completed at least one LCM cycle. Progress of first kind is ensured in the time interval to to t^{\prime}.

Proof. The following cases are to be considered:
Case 1. R_{j} can move vertically one unit downwards. Since it would move by at least δ amount, $k_{1}\left(t^{\prime}\right)+\delta \leq k_{1}(t)$. Thus, $Z_{7}\left(t^{\prime}\right)<Z_{7}(t)$.

Case 2. R_{j} can not be moved vertically one unit downwards and $M_{j}(t)$ does not contain the pivot robot. Let $R_{a} \in M_{j}(t)$ be a robot that has the minimum rank. It would start moving towards $p_{j}(t)$. If $R_{j}\left(t^{\prime}\right)=p_{j}(t)$, then $\left|M_{j}\left(t^{\prime}\right)\right|=\left|M_{j}(t)\right|-1$. Otherwise, since it would move by at least δ amount, $d_{1}\left(t^{\prime}\right)+\delta \leq d_{1}(t)$. Thus, $Z_{7}\left(t^{\prime}\right)<Z_{7}(t)$.

Case 3. R_{j} can not be moved vertically one unit downwards and $M_{j}(t)$ contains the pivot robot. There are two possible subcases:

Subcase 1. $N_{j}(t)=\emptyset$. Since it would move by at least δ amount, $k_{2}\left(t^{\prime}\right)+\delta \leq k_{2}(t)$. Thus, $Z_{8}\left(t^{\prime}\right)<Z_{8}(t)$.

Subcase 2. $N_{j}(t) \neq \emptyset$. Let $R_{b} \in N_{j}(t)$ be a robot that lies at the farthest distance from R_{j}. It would start moving towards $q_{b}(t)$. If $R_{b}\left(t^{\prime}\right)=q_{b}(t)$, then $\left|N_{j}\left(t^{\prime}\right)\right|=\left|N_{j}(t)\right|-1$. Otherwise, since it would move by at least δ amount, $d_{2}\left(t^{\prime}\right)+\delta \leq d_{2}(t)$. Thus, $Z_{8}\left(t^{\prime}\right)<$ $Z_{8}(t)$.

Hence, during the execution of DownwardMovement $\left(R_{j}\right)$ for some $R_{j} \in C(t)$ progress of first kind is ensured in the time interval t to t^{\prime}.

6.5.2.2 Progress during PivotSelection

Lemma 6.5.4. Let $C(t) \in \mathcal{J}_{3}$ with odd values of k. The pivot robot would be placed within finite time by the execution of PivotSelection $(C(t))$.

Proof. Let $t^{\prime}>t$ be an arbitrary point of time at which each robot has completed at least one LCM cycle during an execution of PivotSelection. The following cases are to be considered:

Case 1. R_{j} moves towards the pivot position ρ_{1}. Since R_{j} is guaranteed to move by at least δ amount towards $\rho_{1}, d\left(R_{j}\left(t^{\prime}\right), \rho_{1}\right)+\delta \leq d\left(R_{j}(t), \rho_{1}\right)$. As $d\left(R_{j}(t), \rho_{1}\right)$ is finite, R_{j} would eventually reach the pivot position.

Case 2. $R_{j} \in R_{y}(t)$ moves horizontally half unit away from the y-axis. Such a movement is performed when a unique robot can not be selected for moving towards one of the pivot positions. Since R_{j} would move by at least δ amount, the configuration is guaranteed to become asymmteric at t^{\prime}. Next, a unique robot can be selected for moving towards one of the pivot positions.

Case 3. R_{j} executes DownwardMovement $\left(R_{j}\right)$. Such a movement is performed when $\nexists R_{a} \in R_{y}(t)$ that can be moved horizontally half unit away from the y-axis. From Lemma 6.5.3, it follows that progress of first kind is ensured. Thus, within finite time $M_{j}(t)$ would become empty. Next, $R_{a} \in R_{y}(t)$ can be moved horizontally half unit away from the y-axis.

Hence, by the execution of PivotSelection $(C(t))$, the pivot robot would be placed within finite time.

6.5.2.3 Progress during CircleFormation

Progress of second kind: Suppose R_{j} has been selected for movement towards a vertex $\beta_{k} \in \mathcal{P}_{i}$ during an execution CircleFormation $\left(C(t), f_{i}\right)$. For the configurations without
any global x-axis agreement, there might be two such moving robots. In that case, both the robots would move towards different vertices of \mathcal{P}_{i}. First, consider the case when there is only one such robot. Recall that $D_{i}(t)=k-\left|C\left(f_{i}, \rho\right) \cap R(t)\right|$ and $n_{k}(t)$ denotes the number of unsaturated fixed points. Let

$$
E_{j}(t)= \begin{cases}d\left(R_{j}(t), \beta_{k}\right) & \mathscr{R}\left(R_{j}(t) \beta_{k}\right) \text { is empty } \\ d\left(R_{j}(t), a_{j}\right) & \mathscr{R}\left(R_{j}(t) \beta_{k}\right) \text { is non-empty }\end{cases}
$$

Let $V_{j}(t)=\left(n(t), n_{i}(t), E_{j}(t)\right)$. Next, consider the case when there are two such moving robots. Let R_{a} be the other robot that starts moving towards a vertex $\beta_{b} \in \mathcal{P}_{i}$. Similarly, define $E_{a}(t)$ and $V_{a}(t)=\left(n_{k}(t), D_{i}(t), E_{a}(t)\right)$. In the time interval t to $t^{\prime}, V_{i}\left(t^{\prime}\right)<V_{i}(t)$, where $i \in\{j, a\}$ if $V_{i}\left(t^{\prime}\right)$ is lexicographically smaller than $V_{i}(t)$. During an execution of AlgorithmFatRobot, the configuration is said to have progress of second kind in the time interval t to t^{\prime}, if either $V_{j}\left(t^{\prime}\right)<V_{j}(t)$ or $V_{a}\left(t^{\prime}\right)<V_{a}(t)$.

Lemma 6.5.5. Let $C(t)$ be a given configuration. During the execution of the procedure CircleFormation, let $t^{\prime}>t$ be an arbitrary point of time at which all the robots have completed at least one LCM cycle. Either progress of first kind or progress of second kind is ensured in the time interval between t and t^{\prime}.

Proof. Let f_{i} be the target fixed point. First, consider the case when the robots have a global x-axis agreement or $f_{i} \notin F_{y}$. Consider the following cases:

Case 1. $\left|B_{i}(t)\right|>1$. Let $R_{j} \in B_{i}(t)$ be the robot that has the highest rank. The procedure DownwardMovement $\left(R_{j}\right)$ would be executed. Lemma 6.5.3 ensures progress of first kind. Since $\left|B_{i}(t)\right| \leq n,\left|B_{i}(t)\right|=1$ would be satisfied within finite time. If $\exists R_{a} \in R(t)$ such that $R_{a} \in M_{j}(t) \cap A_{i}(t)$ or $R_{a} \in N_{j}(t) \cap A_{i}(t)$, then $\left|B_{i}(t)\right|$ would increase by the execution of DownwardMovement. Since $\left|B_{i}(t)\right| \leq n$, Lemma 6.5.3 ensures that $\left|B_{i}(t)\right|=1$ would be satisfied within finite time.

Case 2. $\left|B_{i}(t)\right|=1$. Let $R_{j} \in B_{i}(t)$. Suppose β_{a} be the empty vertex of \mathcal{P}_{i} that has the highest rank. There are two possible subcases:

Subcase 1. $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ is empty. R_{j} would start moving towards β_{a} along $\overline{R_{j}(t) \beta_{a}}$. If $\beta_{a}=R_{j}\left(t^{\prime}\right)$, then $D_{j}\left(t^{\prime}\right)=D_{j}(t)-1$. The configuration would satisfy $\left|B_{i}(t)\right|=0$ and
$C\left(f_{i}, \rho\right)$ is perfect. Else, either $R_{j}\left(t^{\prime}\right) \in C\left(f_{i}, \rho\right)$ or $R_{j}\left(t^{\prime}\right) \in B_{i}(t)$. If $R_{j}\left(t^{\prime}\right) \in C\left(f_{i}, \rho\right)$, then $C\left(t^{\prime}\right)$ would satisfy $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is imperfect. Otherwise, $C\left(t^{\prime}\right)$ would still satisfy $\left|B_{i}(t)\right|=1$. However, R_{j} has moved by at least δ amount, $d\left(R_{j}\left(t^{\prime}\right), \beta_{a}\right)+\delta \leq$ $d\left(R_{j}(t), \beta_{a}\right)$ is satisfied. Thus, progress of second kind is ensured.

Subcase 2. $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ is not empty. Procedure DownwardMovement $\left(R_{j}\right)$ is executed. Lemma 6.5.3 ensures progress of first kind. If $M_{j}(t) \neq \emptyset$, then $\left|B_{i}(t)\right|>1$ would be satisfied. In case $M_{j}(t)=\emptyset$, then either $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ would become empty or, $\left|B_{i}(t)\right|=0$ would be satisfied.

Case 3. $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is imperfect. Suppose β_{a} be the empty vertex of \mathcal{P}_{i} that has the highest rank. Let R_{j} be the robot that starts moving towards β_{a}. Since δ is the minimum distance traveled by a robot, $d\left(R_{j}\left(t^{\prime}\right), \beta_{a}\right)+\delta \leq d\left(R_{j}(t), \beta_{a}\right)$. Thus, progress of second kind is ensured.

Case 4. $\left|B_{i}(t)\right|=0$ and $C\left(f_{i}, \rho\right)$ is perfect. Suppose β_{a} be the empty vertex of \mathcal{P}_{i} that has the highest rank. Let $R_{j} \in R(t) \backslash A_{i}(t)$ be the robot that lies at the closest distance from β_{a}. If there is a tie, the robot that has the maximum rank is selected. If $\mathscr{R}\left(R_{j}(t) \beta_{a}\right)$ is non-empty, then R_{j} would start moving towards a_{j}. Else, it would start moving towards β_{a}. In both the cases, progress of second kind is ensured.

Next, consider the case when the robots do not have any global x-axis agreement. In such a case, there may be two moving robots in the plane. Such robots would be delimited by the y-axis. Additionally, their destinations would also lie in their respective half-planes. From the above cases (Case 1, 2, 3 and 4), it follows that either progress of first kind or progress of second kind is ensured for both the moving robots. Hence, during an execution of CircleFormation either progress of first kind or progress of second kind is ensured in the time interval $\left[t, t^{\prime}\right]$.

Lemma 6.5.6. Let $C(0)$ be a given initial configuration. During the execution of algorithm AlgorithmFatRobot collision-free movement is ensured by the robots.

Proof. During the execution of the AlgorithmFatRobot, the robots would move sequentially. A robot would start moving towards its destination point only if a free path exists. Thus, during its movement, it would avoid any collisions with other robots. In case the
robots do not have any global x-axis agreement, there may be two moving robots in the plane. However, they would lie in different half-planes delimited by the y-axis, avoiding any possible collisions. Therefore, during the execution of the AlgorithmFatRobot, collision-free movement is ensured.

Theorem 6.5.7. If $C(0) \notin \mathcal{U}_{4}$, then the uniform k-circle formation problem is deterministically solvable by the execution of AlgorithmFatRobot.

Proof. During an execution of AlgorithmFatRobot, Lemma 6.5.1 and Lemma 6.5.2 ensure that $C(t) \notin \mathcal{U}_{4}$ at any arbitrary point of time $t>0$. Collision-free movement is guaranteed by Lemma 6.5.6. If $C(0) \in \mathcal{J}_{3}$ and $C(0)$ is an unsafe configuration, then Lemma 6.5.4 ensures that the pivot robot would be placed within finite time by the execution of PivotSelection. Lemma 6.5.5 ensures that within finite time the configuration $C(t)$ for some $t \geq 0$ would satisfy the condition $\left|B_{i}(t)\right|=1$. If the robots do not have a global x-axis agreement, then Lemma 6.5.5 ensures that within finite time the configuration $C(t)$ for some $t \geq 0$ would satisfy the condition $0<\left|B_{i}(t)\right| \leq 2$. Since $|F|$ is finite, Lemma 6.5.5 guarantees that the robots would accomplish the formation of circles by the procedure CircleFormation. Hence, the robots would deterministically solve the uniform k-circle formation problem by the execution of AlgorithmFatRobot.

6.6 Conclusion

In this chapter, the uniform k-circle formation problem is studied for ASYNC fat robots. The robots have an agreement on the direction and orientation of the y-axis. The following results have been proved:

Result 1: If $C(0) \in \mathcal{U}_{4}$, then the uniform k-circle formation problem is deterministically unsolvable.

Result 2: If $C(0) \notin \mathcal{U}_{4}$, then the uniform k-circle formation problem is deterministically solvable.

Chapter 7

Conclusions

7.1 Contributions of the Thesis

This thesis is primarily focused on the theoretical aspects of solving the k-circle formation problem by a swarm of mobile robots. The k-circle formation problem is a hybrid problem that connects the well studied problems: the partitioning problem, the circle formation problem and embedded pattern formation problem. Our aim is to identify different sets of computational assumptions under which the k-circle formation problem is solvable. All the studied problems have been considered under an ASYNC scheduler with non-rigid motion.

In Chapter 3, the k-circle formation problem has been investigated under one axis agreement. First, we have assumed that $n=k m$. All the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable have been characterized. A deterministic distributed algorithm is proposed that solves the k-circle formation problem within finite time. Next, the solvability of the problem is discussed for the cases when $n \neq k m$. Finally, it has been shown that if the k-circle formation problem is deterministically solvable then the $k-E P F$ problem is also deterministically solvable.

Chapter 4 addresses the relaxation of the assumption of one axis agreement among the robots. In this chapter, the k-circle formation problem is considered for completely disoriented robots. When the robots have one axis agreement, all the robots and fixed
points can be ordered with respect to the axis of agreement. Thus, the presence of rotational symmetries can be handled successfully. In this current setting, rotational symmetries must be considered in addition to reflectional symmetries. All the initial configurations and values of k for which the k-circle formation problem is deterministically unsolvable have been characterized. As a consequence, the set of unsolvable cases is larger compared to the set of unsolvable cases under one axis agreement. A deterministic distributed algorithm is proposed that solves the k-circle formation problem within finite time for disoriented robots.

The assumption of unlimited visibility for the robots has a significant influence on the results presented in Chapter 3 and Chapter 4. Chapter 5 investigates the k-circle formation problem under obstructed visibility model. Based upon the visibility of fixed points, the k-circle formation problem under obstructed visibility is studied for two different settings, namely (a) complete knowledge of the fixed points and (b) zero knowledge of the fixed points. In case where the robots have complete knowledge of the fixed points, a deterministic distributed algorithm is proposed that solves the k-circle formation problem for oblivious and silent robots. In the setting where the robots do not have any knowledge of the fixed points, a deterministic distributed algorithm is proposed that solves the k-circle formation problem for robots equipped with lights.

While point robots are easy to handle, in a more realistic model, the robots would have dimensions. In Chapter 6 , the uniform k-circle formation is investigated for robots with dimensional extent under one axis agreement. The robots have unlimited visibility. All the initial configurations and values of k for which the uniform k-circle formation problem is deterministically unsolvable have been characterized. A deterministic distributed algorithm is proposed that solves the uniform k-circle formation problem within finite time.

A summary of the contributions of this thesis is presented in Table 7.1.

Agreement	Visibility	Knowledge of Fixed points	Dimension	Light Color	Status
One-Axis	Unlimited	Complete	Point	1	Solved-Chapter 3
No-Axis	Unlimited	Complete	Point	1	Solved-Chapter 4
No-Axis	Obstructed	Complete	Point	1	Solved-Chapter 5
No-Axis	Obstructed	Zero	Point	1	Solved-Chapter 5
One-Axis	Unlimited	Complete	Fat	1	Solved-Chapter 6
No-Axis	Unlimited	Complete	Fat	1	Unsolved
No-Axis	Obstructed	Complete or Zero	Fat	1	Unsolved

Table 7.1: Results related to the k-Circle Formation

7.2 Future Directions

The k-circle formation problem has a wide range of potential extensions for future research. For example, a solution for the k-circle formation problem where the circles may have different radii can be investigated. The following are some of the potential future research directions:

1. Partial Knowledge of Fixed Points under Obstructed Visibility: As a future direction the problem can be considered in a setting where the robots have the partial knowledge of the fixed points. For example, one may consider the case where the robots have the knowledge of the total number of fixed points but have no knowledge of the positions of them.
2. Limited Visibility: The k-circle formation problem can be considered under limited visibility. Depending on the visibility of the fixed points different settings can be considered, namely (a) the fixed points are only visible when they lie within the visibility range of a robot, (b) the robots have the knowledge of the positions of all the fixed points.
3. Fat Robots: The k-circle formation problem for fat robots has been investigated under the one axis agreement. However, the necessity of one axis agreement has not been discussed. The problem can be considered in the future for completely disoriented fat robots. Also, it has been assumed that the robots have unlimited
visibility. Another direction of future work would be to consider the k-circle formation problem for fat robots under restricted visibility models, namely obstructed visibility and limited visibility.
4. Objective Functions: The problem can also be considered with different objective functions, namely, minimizing the total distance traveled by all robots or the maximum distance traveled by an individual robot.
5. Randomization: Some of the symmetric configurations have remain deterministically unsolvable. In future, a randomized solution for the k-circle formation problem can be investigated.
6. Fault-tolerant algorithms: Since the robots may become faulty, one of the future directions would be to consider fault-tolerant algorithms, namely crash-faulttolerant and byzantine-fault-tolerant.

Bibliography

[1] Edison Pignaton de Freitas, Maik Basso, Antonio Arlis Santos da Silva, Marcos Rodrigues Vizzotto, and Mateus Schein Cavalheiro Corrêa. A distributed task allocation protocol for cooperative multi-uav search and rescue systems. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pages 909-917. IEEE, 2021.
[2] Truong Duy Dinh, Rustam Pirmagomedov, Van Dai Pham, Aram A Ahmed, Ruslan Kirichek, Ruslan Glushakov, and Andrei Vladyko. Unmanned aerial systemassisted wilderness search and rescue mission. International Journal of Distributed Sensor Networks, 15(6):1550147719850719, 2019.
[3] Daniel P Stormont. Autonomous rescue robot swarms for first responders. In CIHSPS 2005. Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, 2005., pages 151-157. IEEE, 2005.
[4] Marc Steinberg. Intelligent autonomy for unmanned naval systems. In Unmanned Systems Technology VIII, volume 6230, pages 359-370. SPIE, 2006.
[5] Moulay A Akhloufi, Nicolás A Castro, and Andy Couturier. Uavs for wildland fires. In Autonomous systems: Sensors, vehicles, security, and the Internet of Everything, volume 10643, pages 134-147. SPIE, 2018.
[6] Khaled A Ghamry, Mohamed A Kamel, and Youmin Zhang. Multiple uavs in forest fire fighting mission using particle swarm optimization. In 2017 International conference on unmanned aircraft systems (ICUAS), pages 1404-1409. IEEE, 2017.
[7] Ayan Dutta, Swapnoneel Roy, O Patrick Kreidl, and Ladislau Bölöni. Multi-robot information gathering for precision agriculture: Current state, scope, and challenges. IEEE Access, 9:161416-161430, 2021.
[8] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28(4):1347-1363, 1999.
[9] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science. Springer, 2019.
[10] Subhash Bhagat and Krishnendu Mukhopadyaya. Fault-tolerant gathering of semisynchronous robots. In Proceedings of the 18th International Conference on Distributed Computing and Networking, pages 1-10, 2017.
[11] Sruti Gan Chaudhuri and Krishnendu Mukhopadhyaya. Leader election and gathering for asynchronous fat robots without common chirality. Journal of Discrete Algorithms, 33:171-192, 2015.
[12] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distributed Computing, 31(1):1-50, Feb 2018.
[13] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829-879, 2012.
[14] Reuven Cohen and David Peleg. Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing, 34(6):15161528, 2005.
[15] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile robots in the plane. Theoretical Computer Science, 410(6-7):481-499, 2009.
[16] Gianlorenzo d'Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of robots on anonymous grids and trees without multiplicity detection. Theoretical Computer Science, 610:158-168, 2016.
[17] Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin-Parvédy. Fault-tolerant and self-stabilizing mobile robots gathering. In International Symposium on Distributed Computing, pages 46-60. Springer, 2006.
[18] Anthony Honorat, Maria Potop-Butucaru, and Sébastien Tixeuil. Gathering fat mobile robots with slim omnidirectional cameras. Theoretical Computer Science, 557:1-27, 2014.
[19] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago, Koichi Wada, and Masafumi Yamashita. The gathering problem for two oblivious robots with unreliable compasses. SIAM Journal on Computing, 41(1):2646, 2012.
[20] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science, 390(1):27-39, 2008.
[21] Giuseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science, 384(2-3):222-231, 2007.
[22] Giovanni Viglietta. Rendezvous of two robots with visible bits. In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pages 291-306. Springer, 2014.
[23] Davide Canepa, Xavier Defago, Taisuke Izumi, and Maria Potop-Butucaru. Flocking with oblivious robots. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 94-108. Springer, 2016.
[24] Davide Canepa and Maria Gradinariu Potop-Butucaru. Stabilizing flocking via leader election in robot networks. In Symposium on Self-Stabilizing Systems, pages 52-66. Springer, 2007.
[25] Vincenzo Gervasi and Giuseppe Prencipe. Coordination without communication: The case of the flocking problem. Discrete Applied Mathematics, 144(3):324-344, 2004.
[26] Samia Souissi, Yan Yang, and Xavier Défago. Fault-tolerant flocking in a k-bounded asynchronous system. In International Conference On Principles Of Distributed Systems, pages 145-163. Springer, 2008.
[27] Yan Yang, Samia Souissi, Xavier Défago, and Makoto Takizawa. Fault-tolerant flocking for a group of autonomous mobile robots. Journal of systems and Software, 84(1):29-36, 2011.
[28] Subhash Bhagat and Krishnendu Mukhopadhyaya. Optimum circle formation by autonomous robots. In Advanced Computing and Systems for Security, pages 153165. Springer, 2018.
[29] Quentin Bramas and Sébastien Tixeuil. Brief announcement: Probabilistic asynchronous arbitrary pattern formation. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages 443-445, 2016.
[30] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distributed Computing, 32(2):91-132, 2019.
[31] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Embedded pattern formation by asynchronous robots without chirality. Distributed Computing, 32(4):291-315, 2019.
[32] Yoann Dieudonné, Ouiddad Labbani-Igbida, and Franck Petit. Circle formation of weak mobile robots. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 3(4):1-20, 2008.
[33] Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for swarms of opaque robots with lights. In Stabilization, Safety, and Security of Distributed Systems, pages 317-332. Springer International Publishing, 2018.
[34] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed computing by mobile robots: uniform circle formation. Distributed Computing, 30(6):413-457, 2017.
[35] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1):412-447, 2008.
[36] Nao Fujinaga, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Asynchronous pattern formation by anonymous oblivious mobile robots. In International Symposium on Distributed Computing, pages 312-325. Springer, 2012.
[37] Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theoretical Computer Science, 411(26):2433-2453, 2010.
[38] John Augustine and William K Moses Jr. Dispersion of mobile robots: A study of memory-time trade-offs. In Proceedings of the 19th International Conference on Distributed Computing and Networking, pages 1-10, 2018.
[39] Lali Barriere, Paola Flocchini, Eduardo Mesa-Barrameda, and Nicola Santoro. Uniform scattering of autonomous mobile robots in a grid. International Journal of Foundations of Computer Science, 22(03):679-697, 2011.
[40] Reuven Cohen and David Peleg. Local spreading algorithms for autonomous robot systems. Theoretical Computer Science, 399(1-2):71-82, 2008.
[41] Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Fast dispersion of mobile robots on arbitrary graphs. In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pages 23-40. Springer, 2019.
[42] Pavan Poudel and Gokarna Sharma. Time-optimal uniform scattering in a grid. In Proceedings of the 20th International Conference on Distributed Computing and Networking, pages 228-237, 2019.
[43] Subhash Bhagat, Paola Flocchini, Krishnendu Mukhopadyaya, and Nicola Santoro. Weak robots performing conflicting tasks without knowing who is in their team. In Proceedings of the 21st International Conference on Distributed Computing and Networking, pages 1-6, 2020.
[44] Zhiqiang Liu, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Team assembling problem for asynchronous heterogeneous mobile robots. Theoretical Computer Science, 721:27-41, 2018.
[45] Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary pattern formation by asynchronous opaque robots with lights. Theoretical Computer Science, 849:138-158, 2021.
[46] Giuseppe Antonio Di Luna, Paola Flocchini, S Gan Chaudhuri, Federico Poloni, Nicola Santoro, and Giovanni Viglietta. Mutual visibility by luminous robots without collisions. Information and Computation, 254:392-418, 2017.
[47] David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and challenges. In International Workshop on Distributed Computing, pages 1-12. Springer, 2005.
[48] Quentin Bramas, Anissa Lamani, and Sébastien Tixeuil. The agreement power of disagreement. In International Symposium on Stabilizing, Safety, and Security of Distributed Systems, pages 273-288. Springer, 2021.
[49] Suparno Datta, Ayan Dutta, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Circle formation by asynchronous transparent fat robots. In Distributed Computing and Internet Technology, 9th International Conference, ICDCIT 2013, Bhubaneswar, India, February 5-8, 2013. Proceedings, pages 195-207, 2013.
[50] Xavier Défago and Samia Souissi. Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theoretical Computer Science, 396(1-3):97-112, 2008.
[51] Ayan Dutta, Sruti Gan Chaudhuri, Suparno Datta, and Krishnendu Mukhopadhyaya. Circle formation by asynchronous fat robots with limited visibility. In In proc. 8th International Conference on Distributed Computing and Internet Technology (ICDCIT-2012), pages 83-93, 2012.
[52] Moumita Mondal and Sruti Gan Chaudhuri. Uniform circle formation by swarm robots under limited visibility. In International Conference on Distributed Computing and Internet Technology, pages 420-428. Springer, 2020.
[53] Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Circle formation by asynchronous opaque robots on infinite grid. Computer Science, 22(1), 2021.
[54] Arijit Sil and Sruti Gan Chaudhuri. Formation of straight line by swarm robots. In Computational Intelligence and Machine Learning: Proceedings of the 7th International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2019), pages 99-111. Springer, 2021.
[55] Yusaku Tomita, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Plane formation by synchronous mobile robots without chirality. In 21st International Conference on Principles of Distributed Systems, 2018.
[56] Taichi Uehara, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Plane formation by semi-synchronous robots in the three dimensional euclidean space. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 383-398. Springer, 2016.
[57] Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. Plane formation by synchronous mobile robots in the three-dimensional euclidean space. Journal of the ACM (JACM), 64(3):1-43, 2017.
[58] Ranendu Adhikary, Kaustav Bose, Manash Kumar Kundu, and Buddhadeb Sau. Mutual visibility on grid by asynchronous luminous robots. Theoretical Computer Science, 2022.
[59] Aisha Aljohani and Gokarna Sharma. Complete visibility for mobile robots with lights tolerating faults. International Journal of Networking and Computing, 8(1):32-52, 2018.
[60] Subhash Bhagat and Krishnendu Mukhopadhyaya. Optimum algorithm for mutual visibility among asynchronous robots with lights. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 341-355. Springer, 2017.
[61] Giuseppe Antonio Di Luna, Paola Flocchini, Federico Poloni, Nicola Santoro, and Giovanni Viglietta. The mutual visibility problem for oblivious robots. In $C C C G$, 2014.
[62] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and Giovanni Viglietta. Robots with lights: Overcoming obstructed visibility without colliding. In Symposium on Self-Stabilizing Systems, pages 150-164. Springer, 2014.
[63] Pavan Poudel, Aisha Aljohani, and Gokarna Sharma. Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement. Theoretical Computer Science, 850:116-134, 2021.
[64] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Bounds on mutual visibility algorithms. In $C C C G$, pages 268-274, 2015.
[65] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Mutual visibility with an optimal number of colors. In International Symposium on Algorithms and Experiments for Wireless Sensor Networks, pages 196-210. Springer, 2015.
[66] Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L Trahan. Constanttime complete visibility for asynchronous robots with lights. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 265-281. Springer, 2017.
[67] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L Trahan, Costas Busch, and Suresh Rai. O ($\log \mathrm{n}$)-time complete visibility for asynchronous robots with lights. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 513-522. IEEE, 2017.
[68] Ramachandran Vaidyanathan, Costas Busch, Jerry L Trahan, Gokarna Sharma, and Suresh Rai. Logarithmic-time complete visibility for robots with lights. In 2015 IEEE International Parallel and Distributed Processing Symposium, pages 375-384. IEEE, 2015.
[69] Asaf Efrima and David Peleg. Distributed algorithms for partitioning a swarm of autonomous mobile robots. Theoretical Computer Science, 410(14):1355-1368, 2009.
[70] Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronicolas. A distributed algorithm for gathering many fat mobile robots in the plane. In Proceedings
of the 2013 ACM symposium on Principles of distributed computing, pages 250-259, 2013.
[71] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing, 36(1):56-82, 2006.
[72] Subhash Bhagat and Anisur Rahaman Molla. Min-max gathering of oblivious robots. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 420-422, 2021.
[73] Subhash Bhagat and Krishnendu Mukhopadhyaya. Gathering asynchronous robots in the presence of obstacles. In International Workshop on Algorithms and Computation, pages 279-291. Springer, 2017.
[74] Subhash Bhagat and Krishnendu Mukhopadhyaya. Optimum gathering of asynchronous robots. In Conference on Algorithms and Discrete Applied Mathematics, pages 37-49. Springer, 2017.
[75] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of mobile robots tolerating multiple crash faults. In 2013 IEEE 33rd International Conference on Distributed Computing Systems, pages 337-346. IEEE, 2013.
[76] Quentin Bramas and Sébastien Tixeuil. Wait-free gathering without chirality. In International Colloquium on Structural Information and Communication Complexity, pages 313-327. Springer, 2015.
[77] Reuven Cohen and David Peleg. Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM Journal on Computing, 38(1):276-302, 2008.
[78] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 337(1-3):147-168, 2005.
[79] Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita. Rendezvous with constant memory. Theoretical Computer Science, 621:57-72, 2016.
[80] Takashi Okumura, Koichi Wada, and Yoshiaki Katayama. Brief announcement: Optimal asynchronous rendezvous for mobile robots with lights. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 484-488. Springer, 2017.
[81] Pavan Poudel and Gokarna Sharma. Universally optimal gathering under limited visibility. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 323-340. Springer, 2017.
[82] Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das, and Krishnendu Mukhopadhyaya. Gathering over meeting nodes in infinite grid. Fundamenta Informaticae, 187(1):1-30, 2022.
[83] Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das, and Krishnendu Mukhopadhyaya. Optimal gathering over weber meeting nodes in infinite grid. International Journal of Foundations of Computer Science, pages 1-25, 2022.
[84] François Bonnet, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous gathering in rings with 4 robots. In International Conference on Ad-Hoc Networks and Wireless, pages 311-324. Springer, 2016.
[85] Marjorie Bournat, Swan Dubois, and Franck Petit. Gracefully degrading gathering in dynamic rings. In International Symposium on Stabilizing, Safety, and Security of Distributed Systems, pages 349-364. Springer, 2018.
[86] Gianlorenzo D'Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gathering six oblivious robots on anonymous symmetric rings. Journal of Discrete Algorithms, 26:16-27, 2014.
[87] Shantanu Das, Riccardo Focardi, Flaminia L Luccio, Euripides Markou, and Marco Squarcina. Gathering of robots in a ring with mobile faults. Theoretical Computer Science, 764:42-60, 2019.
[88] Giuseppe Antonio Di Luna, Paola Flocchini, Linda Pagli, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Gathering in dynamic rings. theoretical computer science, 811:79-98, 2020.
[89] Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. Mobile robots gathering algorithm with local weak multiplicity in rings. In International Colloquium on Structural Information and Communication Complexity, pages 101-113. Springer, 2010.
[90] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil. Gathering an even number of robots in an odd ring without global multiplicity detection. In International Symposium on Mathematical Foundations of Computer Science, pages 542-553. Springer, 2012.
[91] Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries: Gathering of asynchronous oblivious robots on a ring. In International Conference On Principles Of Distributed Systems, pages 446-462. Springer, 2008.
[92] Giuseppe A Di Luna, Ryuhei Uehara, Giovanni Viglietta, and Yukiko Yamauchi. Gathering on a circle with limited visibility by anonymous oblivious robots. In 34th International Symposium on Distributed Computing, page 1, 2020.
[93] Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadyaya. Gathering of opaque robots in 3d space. In Proceedings of the 19th International Conference on Distributed Computing and Networking, pages 1-10, 2018.
[94] Subhash Bhagat, S Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Faulttolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. Journal of Discrete Algorithms, 36:50-62, 2016.
[95] Gabriele Di Stefano and Alfredo Navarra. Gathering of oblivious robots on infinite grids with minimum traveled distance. Information and Computation, 254:377-391, 2017.
[96] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots-formation and agreement problems. In Proc. 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO'96), pages 313-330, 1994.
[97] Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern formation problem. In Nancy A. Lynch and Alexander A. Shvartsman,
editors, Distributed Computing, pages 267-281, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[98] Quentin Bramas and Sébastien Tixeuil. Arbitrary pattern formation with four robots. In International Symposium on Stabilizing, Safety, and Security of Distributed Systems, pages 333-348. Springer, 2018.
[99] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary pattern formation on infinite grid by asynchronous oblivious robots. Theoretical Computer Science, 815:213-227, 2020.
[100] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. Arbitrary pattern formation on infinite regular tessellation graphs. Theoretical Computer Science, 942:1-20, 2023.
[101] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming sequences of geometric patterns with oblivious mobile robots. Distributed Computing, 28(2):131-145, 2015.
[102] Yukiko Yamauchi and Masafumi Yamashita. Pattern formation by mobile robots with limited visibility. In International Colloquium on Structural Information and Communication Complexity, pages 201-212. Springer, 2013.
[103] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary pattern formation by opaque fat robots with lights. In Conference on Algorithms and Discrete Applied Mathematics, pages 347-359. Springer, 2020.
[104] Tamás Lukovszki and Friedhelm Meyer auf der Heide. Fast collisionless pattern formation by anonymous, position-aware robots. In International Conference on Principles of Distributed Systems, pages 248-262. Springer, 2014.
[105] Yukiko Yamauchi and Masafumi Yamashita. Randomized pattern formation algorithm for asynchronous oblivious mobile robots. In International Symposium on Distributed Computing, pages 137-151. Springer, 2014.
[106] Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry Trahan. On fast pattern formation by autonomous robots. Information and Computation, 285:104699, 2022.
[107] Rory Hector, Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L Trahan. Optimal arbitrary pattern formation on a grid by asynchronous autonomous robots. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 1151-1161. IEEE, 2022.
[108] Xavier Défago and Akihiko Konagaya. Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In Proceedings of the second ACM international workshop on Principles of mobile computing, pages 97-104, 2002.
[109] Nao Fujinaga, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita. Pattern formation through optimum matching by oblivious corda robots. In International Conference On Principles Of Distributed Systems, pages 1-15. Springer, 2010.
[110] Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Mutual visibility for asynchronous robots. In International Colloquium on Structural Information and Communication Complexity, pages 336-339. Springer, 2019.
[111] Subhash Bhagat and Krishnendu Mukhopadhyaya. Mutual visibility by robots with persistent memory. In International Workshop on Frontiers in Algorithmics, pages 144-155. Springer, 2019.
[112] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L Trahan, Costas Busch, and Suresh Rai. Complete visibility for robots with lights in o (1) time. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 327-345. Springer, 2016.
[113] Subhash Bhagat. Optimum algorithm for the mutual visibility problem. In International Workshop on Algorithms and Computation, pages 31-42. Springer, 2020.
[114] Gokarna Sharma, Rusul Alsaedi, Costas Busch, and Supratik Mukhopadhyay. The complete visibility problem for fat robots with lights. In Proceedings of the 19th International Conference on Distributed Computing and Networking, pages 1-4, 2018.
[115] Pavan Poudel, Gokarna Sharma, and Aisha Aljohani. Sublinear-time mutual visibility for fat oblivious robots. In Proceedings of the 20th International Conference on Distributed Computing and Networking, pages 238-247, 2019.
[116] Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L Trahan. Optimal randomized complete visibility on a grid for asynchronous robots with lights. International Journal of Networking and Computing, 11(1):50-77, 2021.
[117] Rory Hector, Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry L Trahan. Optimal convex hull formation on a grid by asynchronous robots with lights. IEEE Transactions on Parallel and Distributed Systems, 2022.
[118] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer auf der Heide, et al. A new approach for analyzing convergence algorithms for mobile robots. In International Colloquium on Automata, Languages, and Programming, pages 650-661. Springer, 2011.
[119] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational geometry. In Computational geometry, pages 1-17. Springer, 1997.

