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Abstract
Boolean functions are important in both theoretical computer science and cryptography.
Over the past few decades, significant advancements have been made in this area. The
Walsh transform, a variant of the Fourier transform applied to the function (−1)𝑔, where
𝑔 is a Boolean function, is a vital tool for studying Boolean functions in both fields. The
Walsh/Fourier coefficients of a Boolean function offer insights into its properties, and many
concepts in both areas can be interpreted in terms of these coefficients. Hence, it is reason-
able to assume that analyzing Boolean functions from both perspectives is interconnected,
and results from one area can be applied to the other to obtain new outcomes or improve
established proof techniques. However, surprisingly, the theory of Boolean functions devel-
oped almost parallel in these two fields. One of the objective of this thesis is to investigate
and establish connections between various concepts of Boolean functions used in theoretical
computer science and cryptography. Through our research, we have solved several existing
problems, introduced new ones, and obtained results related to these problems. Further-
more, we have developed new concepts in Boolean function analysis and their applications
that are pertinent in both theoretical computer science and cryptography. In the course
of our research, we have shown a general counterexample to the “Majority is Least Stable”
conjecture, which was previously shown only for 𝑛 = 5. We have also proposed the first-ever
lower bound for the “Fourier min-entropy/influence conjecture” in this thesis. Additionally,
we utilized programming techniques to explore and unveil some intriguing counting results
associated with unate functions and Dedekind numbers.
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1

Notation

R : The real numbers
F2 : The finite field of two elements
F𝑛2 : The 𝑛-dimensional vector space over the finite field F2

𝑓, 𝑔, . . . : Functions from F𝑛2 to F2 will be denoted in the usual font
𝑊𝑓 ,𝑊𝑔, . . . : Denotes the Walsh transform of 𝑓, 𝑔, . . . (Equation 2.6, Page 21)
f , g , . . . : Functions from {0, 1}𝑛 to {0, 1} will be denoted in the ‘mathpzc’ font
𝑊f ,𝑊g , . . . : Denotes the Walsh transform of f , g , . . .
𝜓, 𝜓1, 𝜓2, . . . : Functions from F𝑛2 to R̂︀𝜓,̂︁𝜓1,̂︁𝜓2, . . . : Denotes the Fourier transform of 𝜓, 𝜓1, 𝜓2, . . . (Equation 2.3, Page 20)
f, g, . . . : Functions from {−1, 1}𝑛 to {−1, 1} will be denoted in the ‘mathfrak’

font̂︀f,̂︀g, . . . : Denotes the Fourier transform of f, g, . . .
𝑃 ̂︀𝑓 (𝑘) : Denotes the probability assigned by the Fourier transform of 𝑓 to the

integer 𝑘 (Equation 2.9, Page 22).
[𝑛] : {1, 2, . . . , 𝑛}
2[𝑛] : Denotes the power set of [𝑛]
𝑇 : If 𝑇 ⊆ [𝑛], denotes [𝑛] ∖ 𝑇
𝑋, 𝑌, 𝑍, . . . : Variables are written in upper case
X,Y,Z, . . . : Vectors of variables are written in bold upper case
x,y, z : Vectors are written in bold lower case
(−1)x : Denotes the vector ((−1)𝑥1 , . . . , (−1)𝑥𝑛), where x = (𝑥1, . . . , 𝑥𝑛)

0𝑛,1𝑛 : Denote the all-zero and all-one vectors of length 𝑛 respectively
𝜒𝑇 : For 𝑇 ⊆ [𝑛], denotes the vector in F𝑛2 where the 𝑖-th coordinate of 𝜒𝑇

is 1 if and only if 𝑖 ∈ 𝑇

#𝒮 : Denotes the cardinality of the set 𝒮
𝒞𝛼 : Function from F𝑛2 to {−1, 1}, defined as 𝒞𝛼(x) = (−1)⟨x,𝛼⟩2 , for every

𝛼 ∈ F𝑛2
inf𝑓 (𝑖) : Denotes the influence of the 𝑖𝑡ℎ variable on 𝑓 (Equation 2.17, Page 24)
inf(𝑓) : Denotes the total influence of 𝑓 (Equation 2.18, Page 25)
𝐻(𝑓) : Denotes the Fourier entropy of 𝑓 (Equation 2.10, Page 22)
𝐻∞(𝑓) : Denotes the Fourier min-entropy of 𝑓 (Equation 2.11, Page 23)
E(𝑓) : Denotes the expectation of 𝑓 where the random variable x is chosen

uniformly from F𝑛2
Var(𝑓) : Denotes the variance of 𝑓 , Var(𝑓) = E (𝑓 − E(𝑓))2 = E(𝑓 2)− E(𝑓)2
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Ex∈𝒮(𝑓) : Denotes the expectation of 𝑓 where the random variable x is chosen
uniformly from the set 𝒮

Ex∼Φ(𝑓) : Denotes the expectation of 𝑓 where the random variable x is chosen
uniformly from probability distribution with density Φ

1𝐸 : 0− 1 indicator random variable for event 𝐸
Prx∈F𝑛

2
[𝐸] : Denotes the probability of the event 𝐸 where the random variable x is

chosen uniformly from F𝑛2
log 𝑥 : log2 𝑥

ln𝑥 : log𝑒 𝑥

maj𝑛 : The majority function from F𝑛2 to F2

Maj𝑛 : The majority function from {−1, 1}𝑛 to {−1, 1}



Chapter 1

Introduction

Boolean functions are binary-valued functions of a finite number of binary-valued variables,
which are extensively studied in computer science and mathematics. The investigation of
Boolean functions has resulted in a better comprehension of complexity theory, learning
theory, coding theory, and cryptography. This has been going on for more than 150 years
by various researchers.

Boolean equations are mathematical expressions that use Boolean variables and operators
to represent logical relationships between these variables. These equations are of great
interest in the field of complexity theory. A Boolean equation is consistent if it has a solution;
otherwise, it is inconsistent. A CNF (conjunctive normal form) equation is a specific type
of Boolean equation that has the form Ψ(𝑋) = 1, where Ψ is in CNF. It has been observed
that numerous combinatorial problems can be reduced to the solution of Boolean equations
(see, for reference, [64, 63, 80, 49]). This observation was given a more precise formulation
by Cook, who proved that every decision problem in the class NP (collection of decision
problems that can be solved by a non-deterministic machine in polynomial time) can be
transformed in polynomial time into an equivalent CNF equation. Cook’s theorem provides
a formal link between combinatorial problems and Boolean equations. Cook’s theorem [47]
is often stated and originally proved to show that the Satisfiability (SAT) problem is NP-
complete, which means that it belongs to the collection of decision problems in NP, and
that all other NP problems can be polynomial time reducible to it. This result remains true
even when each clause of the CNF involves at most three literals, which is known as the
3-Satisfiability or 3-SAT problem. The SAT problem is a decision problem that determines
whether a given CNF equation is consistent or not.

The 𝑃 ̸= 𝑁𝑃 hypothesis states that the class of NP-complete problems cannot be solved
efficiently by algorithms. To be considered efficient, an algorithm must run in polynomial
time in relation to the input’s length. However, researchers have sought to determine if it
is possible to efficiently compute approximate solutions to these problems and how accurate
these approximations can be. These results are referred to as inapproximability or hardness
of approximation results and are typically proven under the assumption of 𝑃 ̸= 𝑁𝑃 . The
Max-3Lin(F2) problem is an example of such a problem, which is defined as follows: An
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4 Introduction

input instance consists of a list of linear equations of the form 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 = 𝑏,
where 𝑎1, 𝑎2, 𝑎3, 𝑏 ∈ F2 are constants, and 𝑋1, 𝑋2, 𝑋3 are variables. In this problem, the
objective is to find a set of values, known as an ‘assignment’, that satisfies the maximum
number of linear equations. There exists a trivial approximation algorithm that achieves
a multiplicative approximation guarantee of 2. The algorithm simply assigns a random
value in F2 to each variable and, on average, satisfies half of the equations. While the
optimal assignment may satisfy all (or nearly all) equations, the assignment produced by
the algorithm is within a factor of 2 of the optimal assignment. However, a famous result by
Håstad [87] shows that for 𝜖 > 0, being an arbitrarily small constant, given an instance of
Max-3Lin(F2) that has an assignment satisfying 1 − 𝜖 fraction of the equations, no efficient
algorithm can find an assignment that satisfies 1

2
+𝜖 fraction of the equations unless 𝑃 = 𝑁𝑃 .

These results regarding inapproximability are closely linked with Fourier analysis of Boolean
functions on a Boolean hypercube. Fourier analysis plays an indispensable role in establishing
excellent (and often tight) bounds for the hardness of approximation. Further insights on
these connections can be found in various references [99, 127].

Computational learning theory is a branch of machine learning that uses mathematical
frameworks to measure learning tasks and algorithms. Learning Boolean functions is a
fundamental problem in computational learning theory. One popular learning model for
Boolean functions is the Probably Approximately Correct (PAC) learning model [169]. In
this model, the learner is given a sample of labeled examples drawn from an unknown
distribution, and the goal is to learn a Boolean function that is correct on new, unseen
examples with high probability. A function is said to be PAC-learnable if there exists an
algorithm that can learn the function with high probability, given a sufficiently large sample
of labeled examples. Several algorithms have been developed for learning Boolean functions
within the PAC model. Some of the popular heuristic decision tree learning algorithms
are C4.5 and CART [148, 29]. The positive outcomes of efficient decision tree learning
in computational learning theory heavily rely on membership queries [109], which provide
the learning algorithm with access to the target function, rather than random examples
through an oracle. However, the requirement for membership queries considerably restricts
the potential application of such algorithms, and they are unlikely to challenge the popularity
of top-down decision tree algorithms without novel ideas. Therefore, it is fair to conclude
that, despite their other successes, the models of computational learning theory have not yet
provided significant insights into the apparent empirical success of programs like C4.5 and
CART [96]. Another significant learning outcome in Boolean function analysis is the learning
of constant depth circuits, a class of Boolean functions that can be represented by a fixed-



5

depth circuit. The learning of constant depth circuits [110] involves decomposing the function
into its Fourier coefficients, approximating these coefficients, and constructing a hypothesis
for the function. In conclusion, the learning of Boolean functions is an important issue
in computational learning theory, and the study of this problem has resulted in significant
advancements in learning algorithms and techniques.

Coding theory is a field of mathematics that focuses on developing error-correcting codes
for transmission over noisy channels. The aim is to create codes that can detect and correct
errors that may occur during transmission. When we refer to codes, we mean systematic
methods of transforming data for transmission. Error-correcting codes achieve this by adding
extra information, known as redundancy, to the original message before transmission. This
redundancy provides a way to detect and fix errors when the message is received. Think
of it as sending not only the message but also some additional information that helps to
reconstruct the original message accurately in case it’s damaged along the way. It is possible
to interpret any binary unrestricted code with a length equal to 2𝑛, where 𝑛 is a positive
integer, as a set of Boolean functions. One specific class of codes, known as Reed-Muller codes
[143, 125], is defined using Boolean functions. The Reed-Muller code of order 𝑘 (where 𝑘 is a
value between 0 and 𝑛) is composed of all Boolean functions over F𝑛2 that have an algebraic
degree bounded above by 𝑘 [34]. To clarify, the ‘algebraic degree’ of a Boolean function
over F𝑛2 is a measure of its complexity, specifically, the highest degree monomial present in
the function’s representation as a multilinear polynomial, which is known as the algebraic
normal form. Lower algebraic degree indicates simpler functions, while higher degree implies
more complex functions. Despite their parameters not being very good, except for the first-
order Reed-Muller code, these codes are still used today because of their linearity and other
properties such as local testability, local decodability, and list decodability. These properties
make Reed-Muller codes valuable in the design of probabilistically checkable proofs. The
second-order Reed-Muller code, for instance, includes the Kerdock code [97], which is a
nonlinear code with a minimum distance that is nearly equal to that of the first-order Reed-
Muller code of the same length. Furthermore, the Kerdock code has excellent parameters
that are provably optimal among all unrestricted codes [34].

Property testing is a technique used in computer science to verify if a combinatorial
structure, such as a graph or a Boolean function, satisfies a particular property or is “far”
from satisfying it. In the realm of Boolean functions, various important properties, such
as linearity, monotonicity, dictatorship, and junta testing, have been extensively researched.
These properties have numerous applications in computer science and other related fields.



6 Introduction

Property testing is closely related to the theory of learning Boolean functions. The efficiency
of property testing algorithms in learning properties of Boolean functions can be leveraged to
design efficient algorithms for learning the functions themselves. Moreover, property testing
can also play a crucial role in creating efficient error-correcting codes (locally testable codes).
In cases where the communication channel is highly noisy, the decoder may receive a heavily
distorted message that cannot be accurately decoded. To avoid the expensive decoding
process, it would be useful to have a quick test to determine if the received message is
significantly different from any codeword. If the message is “far” from any codeword, the
decoder can reject it, otherwise, the decoder can proceed with confidence.

In symmetric key cryptography, Boolean functions are used in the design of cryptographic
primitives, such as block ciphers, stream ciphers, and hash functions. Symmetric crypto-
graphic systems are built upon two key principles: confusion and diffusion, which were first
introduced by Shannon [155]. The objective of confusion is to hide any algebraic structure
present in the system, and this is closely related to the “cryptographic complexity" [34] of
the Boolean functions used in the system. On the other hand, diffusion refers to the process
of distributing the impact of even minor modifications made to the input data or key across
all outputs in the system. Numerous attacks have been discovered against known cryptosys-
tems, highlighting the importance of these principles. The attacks on stream ciphers that
have been discovered, resulted in the establishment of criteria that cryptographic Boolean
functions must satisfy in order to effectively resist attacks [120, 159]. Some of these criteria
are primarily related to confusion, while others primarily pertain to diffusion. It is important
to note that in some cases, such as linear attacks, attacks may involve both confusion and
diffusion. However, when focusing specifically on S-boxes, it is it is one criterion or the other
but not both. In particular, the design of cryptographic Boolean functions must take into
account various cryptographic characteristics, such as balancedness, high non-linearity, high
algebraic degree, and correlation immunity. It is required to consider all of these properties
simultaneously. However, achieving optimum values for all these characteristics at the same
time is not possible, and therefore trade-offs must be made. To gain insight into the current
state of the art in Boolean and vectorial functions for cryptography, one can refer to several
books, such as [50, 175, 36].

Therefore, Boolean functions are important in both theoretical computer science, coding
theory and cryptography. Over the past few decades, significant advancements have been
made in this area. The Walsh transform, a variant of the Fourier transform applied to the
function (−1)𝑔, where 𝑔 is a Boolean function, is a vital tool for studying Boolean functions
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in both fields. The Walsh/Fourier coefficients of a Boolean function offer insights into its
properties, and many concepts in both areas can be interpreted in terms of these coefficients.
Hence, it is reasonable to assume that analyzing Boolean functions from both perspectives
is interconnected, and results from one area can be applied to the other to obtain new out-
comes or improve established proof techniques. However, surprisingly, the theory of Boolean
functions developed almost parallel in these two fields. One of the objective of this thesis is
to investigate and establish connections between various concepts of Boolean functions used
in theoretical computer science and cryptography. Through our research, we have solved
several existing problems, introduced new ones, and obtained results related to these prob-
lems. Furthermore, we have developed new concepts in Boolean function analysis and their
applications that are pertinent in both theoretical computer science and cryptography. In
the course of our research, we have shown a general counterexample to the “Majority is Least
Stable” conjecture, which was previously shown only for 𝑛 = 5. We have also proposed the
first-ever lower bound for the “Fourier min-entropy/influence conjecture” in this thesis. Addi-
tionally, we utilized programming techniques to explore and unveil some intriguing counting
results associated with unate functions and Dedekind numbers.

1.1 Thesis Plan

The thesis comprises five papers [18, 22, 19, 21, 20], and each subsequent chapter’s summary
is as follows: Chapter 2 covers the essential background material required for the subsequent
chapters. Chapter 3 presents a concise review of Fourier analysis on Boolean hypercube.

Chapter 4 presents a discussion of our novel technique for demonstrating the separation
between different classes of Boolean functions. The inspiration for this topic came from the
following problem proposed by Celerier et. al. in their work [39]. ‘Monotone’ Boolean func-
tions are applied in various fields, including theoretical computer science and voting theory,
while bent functions originally introduced by Rothaus in 1976 [145], are defined only for an
even number of variables and find widespread use in cryptography due to their desirable
properties. Firstly, their ‘derivatives’ [36] are balanced, which is crucial in preventing differ-
ential attacks on block ciphers. Secondly, the Hamming distance between a bent function
and the set of affine Boolean functions is maximum. This directly relates to the linear attack
[117] on block ciphers. Celerier et al. attempted to define monotone Boolean functions in
terms of their Cayley graphs, analogous to the characterization of bent functions [15]. In
their attempt to characterize monotone Boolean functions, Celerier et. al. derived conditions
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on these functions that imply they are not bent. However, they were unable to provide a
proof and instead conjectured that no even monotone function can be bent for more than two
variables. Carlet et al. later proved this conjecture in [37, 35]. In this thesis, an alternative
and concise proof of the same conjecture is provided, utilizing the “total influence” concept
(see [127]), which is well-defined in the realm of Boolean functions, as a separator parame-
ter between the two classes. Using this technique, several separation results are presented
between classes of Boolean functions studied in coding theory and cryptography and those
studied in combinatorics and complexity theory.

The concept of influence of a variable on a Boolean function was first introduced by
Ben-Or and Linial [12], and since then it has become a key component in the study of
Boolean functions in various contexts. Further, the notion of influence has been extended
to consider the influence of a set of variables on a function, and there are four different
definitions [12, 164, 62, 23, 68] of this extended notion. While these definitions coincide for
a single variable, they differ for multiple variables. Thus, the question arises as to which
definition is the most appropriate for the influence of a set of variables. In Chapter 5, we
present a systematic and comprehensive study of the notion of influence of a set of variables
on a Boolean function. Moreover, we propose a definition of influence based on the auto-
correlation function, which is a useful tool for analyzing certain cryptographic properties
of Boolean functions. We also discuss several occasions where our definition of influence
provides additional insights into the behavior of Boolean functions beyond what can be
deduced from existing notions of influence. One such occasion is when we introduce new
characterizations of resilient and bent functions using the notion of influence. Our results
provide a previously unknown bridge between the notion of influence on the one hand and the
notions of bent and resilient functions on the other hand. Using our definition of influence,
we also provide generalizations of the Poincaré inequality and the edge expansion property
with respect to the influence of a set of variables. Moreover, this new definition simplifies a
few proofs of known results.

Chapter 6 introduces a new approach to construct Boolean functions, which is utilized
to derive the current best lower bound on the universal constant of the “Fourier min-
entropy/influence conjecture” (FMEI) proposed by O’Donnell et. al. in 2011 [131]. The
Fourier representation/expansion of a function, which is a multilinear polynomial, is a well-
known method for expressing any Boolean function in a unique way. “Fourier entropy” and
“total influence” are two measures of the concentration of its Fourier coefficients, which cor-
respond to the monomial coefficients in this representation. In 1996, Friedgut and Kalai
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proposed the “Fourier Entropy/Influence conjecture” (FEI), which states that the ratio of
entropy to influence of a Boolean function is bounded by a universal constant 𝐶. Despite
numerous attempts over the years, it remains an open problem. In 2011, O’Donnell et al.
replaced the Fourier entropy with “Fourier min-entropy” in the FEI conjecture, resulting in
the FMEI conjecture. Although FMEI is a weaker version of FEI, it is also an unsolved
problem for general Boolean functions. Currently, there is no research on the lower bound
of the universal constant for FMEI. In this chapter, we present an explicit function that has
a min-entropy/influence ratio of 128/45 ≈ 2.8444. Moreover, we propose a conjecture re-
garding the upper bounds of the FEI and FMEI constants for symmetric Boolean functions.
It is important to note that O’Donnell et. al. has already demonstrated the validity of the
FEI conjecture for symmetric Boolean functions at a constant value of 12.04 [131], which
consequently proves the validity of the FMEI conjecture. Our experimental findings suggest
that the FEI and FMEI constants are 4 and 2, respectively, but we have not yet been able
to prove it and thus propose it as a conjecture.

In Chapter 7 we discuss the resolution of the conjecture put forward by Benjamini, Kalai,
and Schramm in 1999 [13], known as the “Majority is the least stable” conjecture, regarding
the noise stability of Boolean functions. The noise stability measures the correlation between
a Boolean function and its noisy version, and was first studied in [13] for linear threshold
functions, which are binary functions whose output is based on whether the weighted sum
of their inputs exceeds a certain threshold or not. The majority function is a specific type
of linear threshold function. The conjecture proposed in [13] suggested that the majority
function has the least noise stability among all linear threshold functions. Although a coun-
terexample exists in the literature for 𝑛 = 5 as demonstrated by Jain [89], we were unable to
find any counterexample for arbitrary values of 𝑛. In this chapter, we present a counterex-
ample that demonstrates the conjecture’s falsehood for all odd values of 𝑛 ≥ 5. However,
for 𝑛 = 1 and 3, the conjecture remains true.

Unate functions and monotone functions have been extensively studied in computer sci-
ence from various perspectives. The literature contains several works on counting 𝑛-variable
monotone Boolean functions (MBFs), and the value is known up to 𝑛 = 9 [161, 53, 46, 172,
14, 174, 60, 90, 85]. However, although unateness is a generalization of monotonicity, to the
best of our knowledge, there is no research on counting 𝑛-variable unate Boolean functions
(UBFs) in the literature. Similarly, while counting ‘inequivalent’ MBFs is available in the
literature [163, 138], there is no such research available for UBFs. Additionally, we did not
find any work on counting balanced (inequivalent) MBFs in the literature. In Chapter 8,
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we address these gaps in counting and attempt to fill some of them. In this chapter, we
demonstrate that counting 𝑛-variable unate functions can be reduced to counting 𝑛-variable
monotone functions. We provide counts for 𝑛-variable unate functions up to 𝑛 = 9 and use
an enumeration approach to determine the count of 𝑛-variable balanced monotone functions
up to 𝑛 = 7. Additionally, we establish that counting 𝑛-variable balanced unate functions is
equivalent to counting 𝑛-variable balanced monotone functions, and we calculate the count
of 𝑛-variable balanced unate functions up to 𝑛 = 7. We also enumerate the numbers of
equivalence classes for 𝑛-variable balanced monotone functions, unate functions, and bal-
anced unate functions up to 𝑛 = 6. Furthermore, we provide the corresponding counts of
𝑛-variable non-degenerate functions for each of these sub-classes.



Chapter 2

Preliminaries

The primary objective of this thesis is the analysis of the Boolean functions. The purpose
of this chapter is to introduce the basic definitions and some fundamental tools which we
will use throughout the rest of the thesis. We suggest that readers who are already familiar
with Boolean functions quickly review this chapter to become familiar with the notation.
For those who desire a more thorough introduction to Boolean functions and the analytical
tools used to study them, we recommend the following materials: [127, 36].

2.1 Boolean functions

Before considering Boolean functions, let us first take a moment to establish some basic
facts concerning their domains. The domain of a Boolean function represents the set of
all possible inputs that the function can accept. In the context of Boolean functions, each
input variable can take on either a ‘true’ or ‘false’ value, and the domain encompasses all
possible combinations of these values for a given number of variables. For example, the set
of all possible inputs for a Boolean function with 2 variables is (false, false), (false, true),
(true, false), and (true, true). It is also possible to associate a geometric structure with
the domain of a Boolean function, which is generally called the Boolean hypercube. The
Boolean hypercube, also known as the Boolean 𝑛-cube, is a geometric structure where each
vertex represents the inputs of the Boolean function. Two vertices are connected by an edge
if and only if the corresponding inputs differ in exactly one bit, which means their Hamming
distance is 1.

In our thesis, we adopt a flexible approach towards representing true and false values of
input variables. At times, we use the notation (0, 1) to represent (false,true), which can be
interpreted either as elements of the field F2 or simply as Boolean symbols. Alternatively,
we may use (1,−1) to represent (false,true), which can be thought of as real numbers. Cor-
responding to that there are various representations such as F𝑛2 or {0, 1}𝑛 or {−1, 1}𝑛 of the
Boolean hypercube depending on the context. Despite these differences, all representations
of the hypercube are equivalent. Each of the representations of the Boolean cube offers

11
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unique advantages depending on the context. For instance, the algebraic structure provided
by F𝑛2 is particularly useful for generalizing the theory to encompass any finite abelian group.
In contrast, when working with Boolean functions over {0, 1}𝑛, we can conceptualize inputs
as strings, aligning well with Boolean logic principles. However, there are scenarios where
the need for an algebraic structure is unnecessary, and we prefer to work with arbitrary finite
sets of order 𝑛. In such cases, the {−1, 1}𝑛 representation becomes more appropriate. This
representation allows us to extend results to any general product spaces. Furthermore, as we
will explore in this section, the {−1, 1}𝑛 representation permits us to view Boolean functions
as multilinear polynomials of the input variables. This approach provides a natural means
to assess their degree, complexity, and facilitates the concept of learning these functions.

While we primarily use the representation using F𝑛2 , we also make use of the other rep-
resentations in some chapters. This section serves to discuss Boolean functions in all the
representations that we have used in our thesis.

2.1.1 Boolean functions over F𝑛
2

The term F2 represents a finite field that contains only two elements, which can be operated
on using two operations: addition (represented by ⊕) and multiplication (represented by ×).
The two elements in the field are denoted by the numbers 0 and 1, and the addition operation
is the usual integer addition, but with the result being taken modulo 2. The multiplication
operation is the usual integer multiplication modulo 2. Sometimes, 𝑥𝑦 is used to represent
the product of 𝑥 and 𝑦.

For x = (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛2 , the support of x is denoted by supp(x) which is the set
{𝑖 : 𝑥𝑖 = 1}; the weight of x is denoted by wt(x) and is equal to #supp(x). For 𝑖 ∈ [𝑛], e𝑖
denotes the vector in F𝑛2 whose 𝑖-th coordinate is 1 and all other coordinates are 0.

For x = (𝑥1, . . . , 𝑥2),y = (𝑦1, . . . , 𝑦𝑛) ∈ F𝑛2 , the “inner product mod 2” function ⟨x,y⟩2 of
x and y is defined as follows.

⟨x,y⟩2 = 𝑥1𝑦1 ⊕ · · · ⊕ 𝑥𝑛𝑦𝑛.

For a subspace 𝐸 of F𝑛2 , 𝐸⊥ denotes the subspace {x ∈ F𝑛2 : ⟨x,y⟩2 = 0, for all y ∈ 𝐸}.
For 𝑇 ⊆ [𝑛], 𝜒𝑇 denotes the vector in F𝑛2 where the 𝑖-th coordinate of 𝜒𝑇 is 1 if and only if
𝑖 ∈ 𝑇 .

In this thesis, most of the Boolean functions that we consider are maps from the vector
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space F𝑛2 to F2 So, a Boolean function will look like

𝑓 : F𝑛2 → F2.

Results stated in this representation will be somewhat different from, though equivalent
to, the results stated in the other representations. Any Boolean function 𝑓 : F𝑛2 → F2 can
be uniquely written in the following form.

Definition 1 (Algebraic normal form) The algebraic normal form (ANF) of an 𝑛-variable
Boolean function 𝑓 : F𝑛2 → F2 is the unique canonical expression of the form

𝑓(𝑋1, . . . , 𝑋𝑛) =
⨁︁
u∈F𝑛

2

𝑎uX
u, (2.1)

where 𝑎u ∈ F2 for u ∈ F𝑛2 , X = (𝑋1, . . . , 𝑋𝑛) and for u = (𝑢1, . . . , 𝑢𝑛) ∈ F𝑛2 , Xu =

𝑋𝑢1
1 · · ·𝑋𝑢𝑛

𝑛 . The degree of this polynomial is called the algebraic degree of 𝑓 .

An alternative version of the algebraic normal form, known as the numerical normal
form (NNF), has demonstrated its utility in characterizing various cryptographic criteria, as
evidenced in [36]. The NNF is the representation of functions 𝜓 : F𝑛2 → R, in the quotient ring
R[𝑥1, . . . , 𝑥𝑛]/(𝑥21 − 𝑥1, . . . , 𝑥

2
𝑛 − 𝑥𝑛) (or Z[𝑥1, . . . , 𝑥𝑛]/(𝑥21 − 𝑥1, . . . , 𝑥

2
𝑛 − 𝑥𝑛)). The existence

of this representation for every Boolean function can be straightforwardly deduced from the
existence of the ANF as follows:

𝑓(X) =
⨁︁
u∈F𝑛

2

𝑎uX
u ⇐⇒ (−1)𝑓(X) =

∏︁
u∈F𝑛

2

(−1)𝑎uX
u ⇐⇒ 𝑓(X) =

1

2
(1− 2 · (1− 𝑎uX

u))

The support of a Boolean function is the set of input values for which the function
evaluates to 1. Therefore, the support of a Boolean function 𝑓 , denoted by supp(𝑓), is the
set {x : 𝑓(x) = 1}. Then the weight of 𝑓 , denoted by wt(𝑓) is equal to #supp(𝑓). Note that,
E(𝑓) = wt(𝑓)/2𝑛.

Definition 2 (Balanced Boolean function) Any 𝑛-variable Boolean function 𝑓 is said to be
balanced if wt(𝑓) = 2𝑛−1, i.e., E(𝑓) = 1/2.

Definition 3 ((𝑛, 𝑘) S-box) An (𝑛, 𝑘) S-box, also known as an (𝑛, 𝑘) vectorial Boolean func-
tion, is a mapping G that takes an 𝑛-bit input and produces a 𝑘-bit output.
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An (𝑛, 𝑘) S-box can be expressed as G (X) = (𝑔1(X), . . . , 𝑔𝑘(X)), where 𝑔1, . . . , 𝑔𝑘 are
Boolean functions with 𝑛 variables, referred to as the coordinate functions of the S-box.
Any linear combination of coordinate functions is called a component function of the S-
box. A balanced (𝑛, 𝑘) S-box refers to an S-box whose output distribution is uniformly
distributed, meaning that every value of F𝑘2 occurs an equal number of times, specifically
2𝑛−𝑘 occurrences.

2.1.2 Boolean functions over {0, 1}𝑛

In this context, a Boolean function with 𝑛 variables takes a binary input string of length 𝑛

and produces a single binary output (i.e., a bit). Therefore, in “bit representation” a Boolean
function can be written as:

f : {0, 1}𝑛 → {0, 1},

where {0, 1}𝑛 represents the set of all possible input strings of length 𝑛, and {0, 1}
represents the set of possible output bits.

Given two bits 𝑎, 𝑏 ∈ {0, 1}, let us define the logical binary operators AND(∧) and OR
(∨) and the logical unary operator NOT (¬) in the standard manner, i.e.

𝑎 ∧ 𝑏 =

{︃
1 if a=b=1,
0 otherwise.

𝑎 ∨ 𝑏 =

{︃
1 if a=1 or b=1,
0 otherwise.

¬𝑎 =

{︃
1 if 𝑎 = 0,
0 otherwise.

One common way of expressing a Boolean function f : {0, 1}𝑛 → {0, 1} is by using a
DNF (disjunctive normal form) formula.

Definition 4 (DNF) . A DNF formula over Boolean variables 𝑋1, . . . , 𝑋𝑛 is a logical dis-
junction (i.e., OR) of terms, where each term is a logical conjunction (i.e., AND) of literals.
A literal is either a variable 𝑋𝑖 or its negation i.e. ¬𝑋𝑖.

The complexity of a DNF formula is determined by its size and width. The size of a
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DNF formula is the number of terms it contains, while the width is the maximum number
of literals in any term.

In addition to DNF formulas, there is also a “dual” notion known as CNF (conjunctive
normal form) formulas.

Definition 5 (CNF) . A CNF formula is a logical conjunction (i.e., AND) of clauses, where
each clause is a logical disjunction (i.e., OR) of literals. The size and width of a CNF formula
are defined in the same way as for DNFs.

2.1.3 Boolean functions over {−1, 1}𝑛

One way to represent a Boolean function is by using a map from {−1, 1}𝑛 to {−1, 1}, where
the underlying idea is that a bit 𝑏 ∈ {0, 1} is mapped to (−1)𝑏. Thus, in “± representation”
a Boolean function can be expressed as:

f : {−1, 1}𝑛 → {−1, 1}.

The correspondence between 𝑓 : F𝑛2 → F2 and f : {−1, 1}𝑛 → {−1, 1} is the following:
f ((−1)a) = (−1)𝑓(a), where for a = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛2 , (−1)a = ((−1)𝑎1 , . . . , (−1)𝑎𝑛). In the
literature, the “± representation” is often used for Boolean functions, as it allows them to be
thought of as real numbers, and the Fourier expansion of a Boolean function f : {−1, 1}𝑛 →
{−1, 1} is simply its representation as a real, multilinear polynomial [127]. To illustrate
this concept, let us consider a simple example where 𝑛 = 2, and f is max2, representing the
maximum function for 2 bits:

max2(1, 1) = 1,max2(−1, 1) = 1,max2(1,−1) = 1,max2(−1,−1) = −1.

The max2 function can be represented as a multilinear polynomial in this manner:

max2(𝑥1, 𝑥2) =
1

2
+

1

2
𝑥1 +

1

2
𝑥2 −

1

2
𝑥1𝑥2.

This expression is known as the “Fourier expansion” of max2. For any Boolean function
f : {−1, 1}𝑛 → {−1, 1}, there exists a familiar method to find a polynomial that accurately
captures the 2𝑛 values assigned by f to the points in {−1, 1}𝑛. For each point a = (𝑎1, . . . , 𝑎𝑛)
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in {−1, 1}𝑛, we can define the indicator polynomial Ia(x) as follows:

Ia(x) =
(︂
1 + 𝑎1𝑥1

2

)︂(︂
1 + 𝑎2𝑥2

2

)︂
. . .

(︂
1 + 𝑎𝑛𝑥𝑛

2

)︂
.

This indicator polynomial assumes the value 1 when x = a and the value 0 when x ∈
{−1, 1}𝑛 ∖ a. Consequently, we can represent f as a polynomial by using these indicator
polynomials:

f(x) =
∑︁

a∈{−1,1}𝑛
f(a)Ia(x)

.

Let us highlight two important observations regarding this interpolation procedure. Firstly,
it is applicable not only to Boolean functions with binary outputs but also to more general
cases involving real-valued Boolean functions, where f : {−1, 1}𝑛 → R. Secondly, since we
are primarily interested in inputs x where 𝑥𝑖 = ±1, and in such cases, any factor involving
𝑥2𝑖 can simply be replaced by 1, the indicator polynomials maintain their multilinear form
when expanded and this interpolation method consistently results in a multilinear polyno-
mial. The multilinear polynomial representing the function f can potentially have as many
as 2𝑛 terms, corresponding to subsets 𝑆 ⊆ [𝑛]. We denote the monomial corresponding to
the subset 𝑆 as C𝑆(𝑥1, . . . , 𝑥𝑛) =

∏︀
𝑖∈𝑆 𝑥𝑖. To specify its coefficient, we use the notation̂︀f(𝑆), which represents the coefficient of the monomial C𝑆 in the multilinear representation

of f. This multilinear expression that is f(x) =
∑︀

𝑆⊆[𝑛]
̂︀f(𝑆)C𝑆(x) is referred to as the Fourier

expansion of f and the real number̂︀f(𝑆) is known as the Fourier coefficient of f for the subset
𝑆.

In Chapter 7, we presented our findings on the counterexample to the “Majority is least
stable conjecture.” As the conjecture was originally stated in the “± representation” we
maintained this representation in that chapter. Additionally, in the same chapter, we thor-
oughly examine the Fourier transform of the Boolean function f : {−1, 1}𝑛 → {−1, 1}, which
is necessary for our analysis. This will also clarify the concept of why the aforementioned
multilinear representation of a function is unique.

Now, for the alternative representation using F𝑛2 or {0, 1}𝑛, we can define their Fourier
expansion encoding the input bits 0 and 1 with the real numbers −1 and 1 respectively. As
mentioned earlier, this mapping essentially means that a bit 𝑏 ∈ {0, 1} is mapped to (−1)𝑏.
It is important to note that this encoding might not align perfectly with the perspective of



Fourier transform 17

Boolean logic. For example, consider the function max2 that we discussed earlier, which,
in this encoding, represents logical AND. However, despite this interpretation difference,
it aligns mathematically with the mapping mentioned above. Furthermore, we can extend
the concept of C𝑆(𝑥1, . . . , 𝑥𝑛) to two other representations in the following manner: Define
𝒞𝛼 : F𝑛2 → {−1, 1} as 𝒞𝛼(x) = (−1)⟨x,𝛼⟩2 . This approach allows us to express the Fourier
expansion of any function 𝜓 : F𝑛2 → R as 𝜓(x) =

∑︀
𝑆⊆[𝑛]

̂︀𝜓(𝑆)𝒞𝛼(x). In fact, if we consider
F𝑛2 as the n-dimensional vector space over F2, it becomes meaningful to associate subsets
𝑆 ⊆ [𝑛] with vectors 𝛼 ∈ F𝑛2 . We will discuss the Fourier transform over F𝑛2 in detail in the
next section.

2.2 Fourier transform

It is more convenient to study the Fourier transform of Boolean functions by looking at a
larger class of functions, which map the Boolean hypercube F𝑛2 to the set of real numbers R.

The set of functions from F𝑛2 → R forms a vector space 𝒱 over R since we can add
two functions point wise and can multiply a function by a real scalar. We define the inner
product ⟨𝜓1, 𝜓2⟩ on pairs of function 𝜓1, 𝜓2 : F𝑛2 → R in this vector space by

⟨𝜓1, 𝜓2⟩ =
1

2𝑛

∑︁
x∈F𝑛

2

𝜓1(x)𝜓2(x) = E(𝜓1 · 𝜓2). (2.2)

We also use the notation ‖𝜓‖2 =
√︀

⟨𝜓, 𝜓⟩, and more generally ‖𝜓‖𝑝 = E(|𝜓|𝑝)
1
𝑝 for

function 𝜓 : F𝑛2 → R.

To explain the Fourier transform on the Boolean hypercube, it is essential to first present
the idea of characters for the Boolean hypercube. For every 𝛼 ∈ F𝑛2 , the function 𝒞𝛼 : F𝑛2 →
{−1, 1} defined by 𝒞𝛼(x) = (−1)⟨x,𝛼⟩2 is an example of a character of F𝑛2 .

Lemma 1 E (𝒞𝛼) =

{︃
1 if 𝛼 = 0𝑛,
0 otherwise.

Lemma 2 For x ∈ F𝑛2 , 𝒞𝛼(x) · 𝒞𝛽(x) = 𝒞𝜒supp(𝛼)△supp(𝛽)
, where supp(𝛼)△supp(𝛽) denotes

symmetric difference.

Proof: For x = (𝑥1, . . . , 𝑥2),𝛼 = (𝛼1, . . . , 𝛼𝑛),𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ F𝑛2 ,

𝒞𝛼(x) · 𝒞𝛽(x) = (−1)⟨x,𝛼⟩2 · (−1)⟨x,𝛽⟩2 = (−1)⊕𝑖∈supp(𝛼)△supp(𝛽)𝑥𝑖 = 𝒞𝜒supp(𝛼)△supp(𝛽)
.
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□

As a result of equation 2.2, Lemma 1 and Lemma 2, the next theorem can be immediately
deduced.

Theorem 1 ⟨𝒞𝛼, 𝒞𝛽⟩ =

{︃
1 if 𝛼 = 𝛽,
0 otherwise.

With the necessary background information in place, we can now move on to discussing
the Fourier transform on Boolean hypercube.

Definition 6 (Fourier transform) . Let 𝜓 : F𝑛2 → R. The Fourier transform of 𝜓 is a map̂︀𝜓 : F𝑛2 → R which is defined as follows.

̂︀𝜓(𝛼) = ⟨𝜓, 𝒞𝛼⟩ =
1

2𝑛

∑︁
x∈F𝑛

2

𝜓(x)(−1)⟨x,𝛼⟩2 . (2.3)

Definition 7 (Inverse Fourier transform) . Given ̂︀𝜓, it is possible to recover 𝜓 using the
following inverse formula.

𝜓(x) =
∑︁
𝛼∈F𝑛

2

̂︀𝜓(𝛼)(−1)⟨x,𝛼⟩2 . (2.4)

The above expression is sometimes referred to as the Fourier expansion of 𝜓, and ̂︀𝜓(𝛼)

is known as the Fourier coefficient of 𝜓 at 𝛼.

The vector space 𝒱 has dimension 2𝑛, and functions in it can be considered as vectors in
R𝑛. According to Theorem 1, the 2𝑛 characters 𝒞𝛼 form an orthonormal basis for 𝒱 , meaning
that every function 𝜓 : F𝑛2 → F2 in 𝒱 can be expressed as a unique linear combination of
these characters. The coefficients of this linear combination are the Fourier coefficients, as
shown in equation 2.4.

Given two functions, 𝜓1, 𝜓2 : F𝑛2 → R, we can calculate their inner product by taking
the dot product of their coordinates in the orthonormal basis of characters. This formula is
known as Plancherel’s theorem.

Theorem 2 (Plancherel’s theorem) .[127] For any 𝜓1, 𝜓2 : F𝑛2 → R, ⟨𝜓1, 𝜓2⟩ =
∑︀

𝛼∈F𝑛
2

̂︁𝜓1(𝛼)̂︁𝜓2(𝛼).
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Proof: Replacing 𝜓1 and 𝜓2 in (2.2) we obtain the following equation.

⟨𝜓1, 𝜓2⟩ =
1

2𝑛

∑︁
x∈F𝑛

2

⎛⎝∑︁
𝛼∈F𝑛

2

̂︀𝜓1(𝛼)𝒞𝛼(x)

⎞⎠⎛⎝∑︁
𝛽∈F𝑛

2

̂︀𝜓2(𝛽)𝒞𝛽(x)

⎞⎠ =
∑︁
𝛼∈F𝑛

2
𝛽∈F𝑛

2

̂︀𝜓1(𝛼) ̂︀𝜓2(𝛽)⟨𝒞𝛼, 𝒞𝛽⟩.

Now, By making use of Theorem 1 we arrive at the desired result. □

Parseval’s theorem is a specific instance of Plancherel’s theorem. It states that the Fourier
transform preserves the squared 𝐿2 norm of a function.

Theorem 3 (Parseval’s theorem) .[127] For any 𝜓 : F𝑛2 → R, ‖𝜓‖22 =
∑︀

𝛼∈F𝑛
2

(︁̂︀𝜓(𝛼)
)︁2

.

The Poisson summation formula ([36]) provides a useful relation between a function
𝜓 : F𝑛2 → R and its Fourier transform.

Theorem 4 (Poisson summation formula) .[36] Let 𝐸 be a subspace of F𝑛2 and a,b ∈ F𝑛2 .
Then ∑︁

w∈a+𝐸

(−1)⟨b,w⟩2 ̂︀𝜓(w) =
#𝐸

2𝑛
(−1)⟨a,b⟩2

∑︁
u∈b+𝐸⊥

(−1)⟨a,u⟩2𝜓(u). (2.5)

2.3 Walsh-Hadamard transform

For an 𝑛-variable Boolean function 𝑓 : F𝑛2 → F2, it is often convenient to apply the Fourier
transform to the function (−1)𝑓 rather than 𝑓 directly. The transform obtained from this is
called the Walsh Transform of 𝑓 .

Definition 8 (Walsh transform) . The (normalised) Walsh transform of a Boolean function
𝑓 is a map 𝑊𝑓 : F𝑛2 → [−1, 1] which is defined as follows.

𝑊𝑓 (𝛼) =
1

2𝑛

∑︁
x∈F𝑛

2

(−1)𝑓(x)⊕⟨x,𝛼⟩2 = 1− wt (𝑓(X)⊕ ⟨𝛼,X⟩2)
2𝑛−1

. (2.6)

Note that the Walsh Transform measures the cross-correlations between a function and
a set of linear functions. Another way to interpret the Walsh transform is through the use
of Hadamard matrices.

Let 𝐻𝑛 be the Hadamard matrix of order 2𝑛 defined recursively as [111]
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𝐻1 =

[︃
1 1

1 −1

]︃
and 𝐻𝑛 = 𝐻1 ⊗𝐻𝑛−1 for 𝑛 > 1

where ⊗ denotes the Kronecker product of two matrices. If we index the rows and columns
of 𝐻𝑛 by the elements of F𝑛2 , we obtain [𝐻𝑛](u,v) = (−1)⟨u,v⟩2 . Therefore, the (normalised)
Walsh transform can be written as

[(−1)𝑓(0𝑛), . . . , (−1)𝑓(1𝑛)]𝐻𝑛 = 2𝑛 · [𝑊𝑓 (0𝑛), . . . ,𝑊𝑓 (1𝑛)].

Multiplying both sides by 𝐻𝑛, we obtain the inverse Walsh Transform

(−1)𝑓(x) =
∑︁
𝛼∈F𝑛

2

𝑊𝑓 (𝛼)(−1)⟨x,𝛼⟩2 . (2.7)

From Parseval’s theorem, we obtain the following identity.

Theorem 5 (Parseval’s identity). For any 𝑓 : F𝑛2 → F2,∑︁
𝛼∈F𝑛

2

(𝑊𝑓 (𝛼))2 = 1. (2.8)

So the values
{︀
(𝑊𝑓 (𝛼))2

}︀
can be considered to be a probability distribution on F𝑛2 , which

assigns to 𝛼 ∈ F𝑛2 , the probability (𝑊𝑓 (𝛼))2. For 𝑘 ∈ {0, . . . , 𝑛}, let

𝑃 ̂︀𝑓 (𝑘) =
∑︁

{u∈F𝑛
2 :wt(u)=𝑘}

(𝑊𝑓 (u))
2 (2.9)

be the probability assigned by the Fourier transform of 𝑓 to the integer 𝑘.

Definition 9 (Fourier entropy) . The Fourier entropy 𝐻(𝑓) of 𝑓 is defined to be the entropy
of the probability distribution {𝑊 2

𝑓 (𝛼)} and is equal to

𝐻(𝑓) =
∑︁
𝛼∈F𝑛

2

𝑊 2
𝑓 (𝛼)̸=0

𝑊 2
𝑓 (𝛼) log

1

𝑊 2
𝑓 (𝛼)

. (2.10)

Definition 10 (Fourier min-entropy) . The Fourier min-entropy 𝐻∞(𝑓) of 𝑓 is defined to
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be the min-entropy of the probability distribution {𝑊 2
𝑓 (𝛼)} and is equal to

𝐻∞(𝑓) = min
𝛼∈F𝑛

2

𝑊 2
𝑓 (𝛼)̸=0

log
1

𝑊 2
𝑓 (𝛼)

. (2.11)

A commonly used tool in cryptography is the auto-correlation function, which is used to
calculate the correlation between a function and its shifted versions, specifically its dyadic
shifts.

Definition 11 (Auto-correlation) . The (normalised) auto-correlation function of 𝑓 is a map
𝐶𝑓 : F𝑛2 → [−1, 1] defined as follows.

𝐶𝑓 (𝛼) =
1

2𝑛

∑︁
x∈F𝑛

2

(−1)𝑓(x)⊕𝑓(x⊕𝛼)

= 1− wt(𝑓(X)⊕ 𝑓(X⊕𝛼))

2𝑛−1
= 1− 2 Pr

x∈F𝑛
2

[𝑓(x) ̸= 𝑓(x⊕𝛼)]. (2.12)

Note that 𝐶𝑓 (0) = 1.

For a Boolean function 𝑓 , the Wiener-Khintchine formula (see Page 80 of [36]) relates
the Walsh transform to the auto-correlation function.

Theorem 6 (Wiener-Khintchine formula) . For any Boolean function 𝑓 : F𝑛2 → F2,

(𝑊𝑓 (𝛼))2 = ̂︀𝐶𝑓 (𝛼) =
1

2𝑛

∑︁
x∈F𝑛

2

(−1)⟨𝛼,x⟩2𝐶𝑓 (x). (2.13)

Applying the inverse Fourier transform given by (2.4) to ̂︀𝐶𝑓 (𝛼), we obtain

𝐶𝑓 (x) =
∑︁
𝛼∈F𝑛

2

(𝑊𝑓 (𝛼))2 (−1)⟨𝛼,x⟩. (2.14)

Applying (2.5) with 𝜓 = 𝐶𝑓 and a = b = 0𝑛 and then using (2.13), we obtain the
following Lemma (see Proposition 5 of [33]).

Lemma 3 For any Boolean function 𝑓 : F𝑛2 → F2,∑︁
w∈𝐸

(𝑊𝑓 (w))2 =
#𝐸

2𝑛

∑︁
u∈𝐸⊥

𝐶𝑓 (u). (2.15)
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Let X = (𝑋1, . . . , 𝑋𝑛) be a vector of variables and suppose ∅ ≠ 𝑇 = {𝑖1, . . . , 𝑖𝑛−𝑡} ⊆ [𝑛],
where 𝑖1 ≤ · · · ≤ 𝑖𝑛−𝑡. By X𝑇 we denote the vector of variables (𝑋𝑖1 , . . . , 𝑋𝑖𝑛−𝑡). Similarly for
𝛼 ∈ F𝑛2 , 𝛼𝑇 denotes the vector (𝛼𝑖1 , . . . , 𝛼𝑖𝑛−𝑡) ∈ F𝑡2. Moreover, For 𝑇 ⊆ [𝑛] and 𝛼,𝛽 ∈ F𝑛2 ,
𝛼𝑇𝛽𝑇 denotes the vector in F𝑛2 where the 𝑖𝑡ℎ coordinate of 𝛼𝑇𝛽𝑇 is 𝛼𝑖 if 𝑖 ∈ 𝑇 , otherwise 𝛽𝑖.

Suppose 𝑓(X) is an 𝑛-variable Boolean function. For 𝛼 ∈ F𝑛−𝑡2 , by 𝑓X𝑇←𝛼(X𝑇 ) we denote
the Boolean function on 𝑡 variables obtained by setting the variables in X𝑇 to the respective
values in 𝛼. Let 𝑓𝛼 denote 𝑓X𝑇←𝛼(X𝑇 ).

As a result of the second order Poisson summation formula (refer [36] for the general
statement of this result), we obtain the following outcome.

Lemma 4 Let 𝑇 ⊆ [𝑛] with #𝑇 = 𝑡. Then for any 𝛽 ∈ F𝑛2 and 𝑓 : F𝑛2 → F2, we have

∑︁
w≤𝜒𝑇

(𝑊𝑓 (𝛽𝑇w𝑇 ))
2 =

1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(𝑊𝑓𝛼(𝛽𝑇 ))
2 . (2.16)

Remark 1 We have normalised the Walsh transform and the auto-correlation function by
2𝑛 so that the values lie in the range [−1, 1]. The non-normalised versions have also been
used in the literature. We note in particular that [36] uses the non-normalised versions.
When we use results from [36], we normalise them appropriately.

2.4 Influence

Definition 12 (Influence of variable.) Let 𝑓(X) be an 𝑛-variable Boolean function where
X = (𝑋1, . . . , 𝑋𝑛). For 𝑖 ∈ [𝑛], the influence of 𝑋𝑖 on 𝑓 is denoted by inf𝑓 (𝑖) and is defined
to be the probability (over a uniform random choice of x ∈ F𝑛2) that 𝑓(x) is not equal to
𝑓(x⊕ e𝑖), i.e.,

inf𝑓 (𝑖) = Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑓(x⊕ e𝑖)]. (2.17)

Lemma 5 Let 𝑓 : F𝑛2 → F2. For any 𝑖 ∈ [𝑛],

inf𝑓 (𝑖) =
∑︁

{u∈F𝑛
2 :𝑖∈supp(u)}

(𝑊𝑓 (u))
2 .

Proof:
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inf𝑓 (𝑖) = Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑓(x⊕ e𝑖)] = E
[︂
1− (−1)𝑓(x) · (−1)𝑓(x⊕e𝑖)

2

]︂
.

Therefore using 2.7, we get

inf𝑓 (𝑖) =
1

2

⎡⎣1− ∑︁
u∈F𝑛

2

(𝑊𝑓 (u))
2 · (−1)⟨𝑢,e𝑖⟩2

⎤⎦
For every u in F𝑛2 , if its support contains the index 𝑖, then (−1)⟨u,e𝑖⟩2 = −1, otherwise

(−1)⟨u,e𝑖⟩2 = 1. Therefore, using Parseval’s identity, we obtain the desired outcome. □

Definition 13 (Total influence) The total influence inf(𝑓) of 𝑓 : F𝑛2 → F2 is defined as
follows.

inf(𝑓) =
𝑛∑︁
𝑖=1

inf𝑓 (𝑖). (2.18)

Therefore from Lemma 5 we obtain the following connection of total influence to the
Walsh transform (Theorem 2.38 in [127]).

inf(𝑓) =
∑︁
𝛼∈F𝑛

2

wt(𝛼)(𝑊𝑓 (𝛼))2. (2.19)

Definition 14 (Average sensitivity) The sensitivity sens(𝑓,x) of a Boolean function 𝑓 on
input x = (𝑥1, 𝑥2, . . . 𝑥𝑛) ∈ F𝑛2 is defined in the following manner.

sens(𝑓,x) = #{𝑖 ∈ [𝑛] : 𝑓(x) ̸= 𝑓(x⊕ e𝑖)}.

The average sensitivity sens(𝑓) of 𝑓 is given by

sens(𝑓) = E (sens(𝑓,x)) .

By linearity of expectation, average sensitivity equals the total influence.

Lemma 6 [127] For any 𝑓 : F𝑛2 → F2, Inf(𝑓) = sens(𝑓).
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Proof:

inf(𝑓) =
𝑛∑︁
𝑖=1

Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑓(x⊕ e𝑖)]

=
𝑛∑︁
𝑖=1

E
(︀
1𝑓(x)̸=𝑓(x⊕e𝑖)

)︀
= E

(︃
𝑛∑︁
𝑖=1

1𝑓(x) ̸=𝑓(x⊕e𝑖)

)︃
= E (sens(𝑓,x)) = sens(𝑓).

□

Theorem 7 (Poincaré inequality. [127]) For any 𝑓 : F𝑛
2 → F2, inf(𝑓) ≥ 4Var(𝑓), where

Var(𝑓) denotes the variance of 𝑓 .

Proof: Noting that 𝑓 2 = 𝑓 , Var(𝑓) is equal to E(𝑓 2) − E(𝑓)2 = E(𝑓)(1 − E(𝑓)). Now
from (2.6), (𝑊𝑓 (0𝑛))

2 = (1− 2E(𝑓))2 and so 1 − (𝑊𝑓 (0𝑛))
2 = 4E(𝑓)(1 − E(𝑓)) = 4Var(𝑓).

Therefore, using (2.19), we have inf(𝑓) ≥
∑︀

𝛼∈F𝑛
2 ∖0𝑛

(𝑊𝑓 (𝛼))2 = 1 − (𝑊𝑓 (0𝑛))
2 = 4Var(𝑓).

□

For a subset 𝑆 of the hypercube, the edge boundary of 𝑆, is the set of edges of the hy-
percube with one end point in 𝑆 and the other endpoint outside of 𝑆. Consequently, when
considering the definition of total influence, we find that total influence is 𝑛 times the (frac-
tional) size of the edge boundary of supp(𝑓). Moreover, since Var(𝑓) = #supp(𝑓)(1−#supp(𝑓))

22𝑛
, is

linked to the size of the set supp(𝑓). Therefore, the Poincaré Inequality can be viewed as an
edge-isoperimetric inequality.

2.5 Noise stability

In a 2-candidate election, the voting rule 𝑓 maps each voter’s vote x = (𝑥1, . . . , 𝑥𝑛) from
the set F𝑛2 to F2. Each voter’s vote may be recorded incorrectly with a probability of 1− 𝜌,
where 𝜌 is the probability of correct recording. The recorded votes, y = (𝑦1, . . . , 𝑦𝑛), may
differ from the original votes x. The noise stability of 𝑓 refers to the probability that the
outcome of the election, given by 𝑓(x), will remain the same as 𝑓(y) despite the potential
misrecording of the votes.

Definition 15 (𝜌-correlated pair) For x ∈ F𝑛
2 and 𝜌 ∈ [0, 1], define a distribution 𝑁𝜌(x)

over F𝑛2 in the following manner: y = (𝑦1, . . . , 𝑦𝑛) ∼ 𝑁𝜌(x) if for 𝑖 = 1, . . . , 𝑛,
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𝑦𝑖 =

{︃
𝑥𝑖, with probability 𝜌
0/1, with probability 1−𝜌

2
each.

(2.20)

The definition of 𝑁𝜌(x) can be extended to all values of 𝜌 in the range [−1, 1], as follows
[127].

𝑦𝑖 =

{︃
𝑥𝑖, with probability 1

2
+ 𝜌

2

1⊕ 𝑥𝑖, with probability 1
2
− 𝜌

2
.

(2.21)

We say that (x,y) is a 𝜌-correlated pair of random strings.

Remark 2 An equivalent way of defining a 𝜌-correlated pair of random strings is by stating
that for each 𝑖 ∈ [𝑛], the two random bits (𝑥𝑖, 𝑦𝑖) are independent with expected values
E(𝑥𝑖) = E(𝑦𝑖) = 1

2
and E((−1)𝑥𝑖 · (−1)𝑦𝑖) = 𝜌.

Definition 16 (Noise operator) For 𝜓 : F𝑛2 → R, the noise operator with parameter 𝜌 ∈
[−1, 1] on 𝜓, denoted by 𝑇𝜌 : F𝑛2 → R is defined as follows:

𝑇𝜌𝜓(x) = E
y∼𝑁𝜌(x)

(𝜓(y)) . (2.22)

Lemma 7 [127] For 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ F𝑛2 , ̂︂𝑇𝜌𝜓(𝛼) = 𝜌wt(𝛼) ̂︀𝜓(𝛼).

Proof: For any 𝛼 ∈ F𝑛2 , if we apply 𝑇𝜌 on 𝒞𝛼, then we obtain the following:

𝑇𝜌𝒞𝛼(x) = E
y∼𝑁𝜌(x)

(︀
(−1)⟨y,𝛼⟩2

)︀
=
∏︁
𝑖:𝛼𝑖=1

E
y∼𝑁𝜌(x)

((−1)𝑦𝑖) =
∏︁
𝑖:𝛼𝑖=1

(𝜌 · (−1)𝑥𝑖) = 𝜌wt(𝛼)𝒞𝛼(x).

Therefore as a result of (2.4) and the fact that 𝑇𝜌 is a linear operator, the following holds,

𝑇𝜌𝜓 (x) =
∑︁
𝛼∈F𝑛

2

̂︀𝜓(𝛼)𝑇𝜌𝒞𝛼(x) =
∑︁
𝛼∈F𝑛

2

𝜌wt(𝛼) ̂︀𝜓(𝛼)𝒞𝛼(x)

The above equation gives us the Fourier representation of 𝑇𝜌𝜓. Therefore, the Fourier
coefficient of 𝑇𝜌𝜓 at 𝛼 ∈ F𝑛2 i.e. ̂︂𝑇𝜌𝜓(𝛼) is equal to 𝜌wt(𝛼) ̂︀𝜓(𝛼). □

Having established these definitions, the concept of noise stability can now be defined.
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Definition 17 (Noise stability) For 𝜌 ∈ [−1, 1], the noise stability of a function 𝜓 : F𝑛2 → R,
denoted by Stab𝜌(𝜓), is defined as follows.

Stab𝜌(𝜓) = E
x∼F𝑛

2 , y∼𝑁𝜌(x)
[𝜓(x)𝜓(y)] . (2.23)

Taking into consideration Equations (2.23) and (2.22), we can conclude that the noise
stability of 𝜓 can be expressed as Stab𝜌(𝜓) = ⟨𝜓, 𝑇𝜌𝜓⟩. Based on this, Plancherel’s Theorem
and Lemma 7 yield the following conclusion.

Lemma 8 Stab𝜌(𝜓) =
∑︀

𝛼∈F𝑛
2
𝜌wt(𝛼) ·

(︁̂︀𝜓(𝛼)
)︁2

.

In the voting scenario described, when 𝜌 is near 1, indicating a low level of “noise”, it is
often appropriate to investigate the chance that flipping a portion of the votes will result in
a change of the election outcome, thereby evaluating the noise sensitivity of the voting rule.

Definition 18 (Noise sensitivity) For 𝛿 ∈ [0, 1], the noise sensitivity of an 𝑛-variable Boolean
function 𝑓 : F𝑛2 → F2, denoted by NS𝛿(𝑓), is defined as follows.

NS𝛿(𝑓) = Pr
x∼F𝑛

2 , y∼𝑁(1−2𝛿)(x)
[𝑓(x ̸= 𝑓(y))] .

It is easy to show that (see [127] for proof),

Lemma 9 For any 𝛿 ∈ [0, 1] and 𝑓 : F𝑛2 → F2, NS𝛿(𝑓) = 1
2
− 1

2
Stab(1−2𝛿)

(︀
(−1)𝑓

)︀
.

2.6 Some well-known inequalities

Minkowski inequality. For any functions 𝜓1, 𝜓2 : F𝑛2 → R and some real number 𝑝 > 1,
‖𝜓1 + 𝜓2‖𝑝 ≤ ‖𝜓1‖𝑝 + ‖𝜓2‖𝑝.

Hoeffding’s inequality. Let 𝑋1, . . . , 𝑋𝑛 be independent bounded random variables with
𝑋𝑖 ∈ [𝑎, 𝑏] for all 𝑖, where −∞ < 𝑎 ≤ 𝑏 <∞. Then,

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − E(𝑋𝑖))

⃒⃒⃒⃒
⃒ ≥ 𝜖

]︃
≤ exp

(︂
− 2𝑛𝜖2

(𝑏− 𝑎)2

)︂
.



Chapter 3

Fourier Analysis on Boolean Hypercube

The Fourier transform is a fundamental concept in mathematics and computer science that
has numerous applications across a variety of fields. In the study of Boolean functions,
the Fourier/Walsh transform on Boolean hypercube has proven to be a critical tool and
has gained significant importance in the fields of cryptography and theoretical computer
science. Although this chapter covers some of its applications, they are not exhaustive,
and a comprehensive book would be necessary for further study. Two highly recommended
books for studying Boolean functions are [127] and [36]. The first book focuses on Boolean
functions in the context of theoretical computer science, while the second book focuses on
Boolean functions in relation to cryptography and coding theory.

3.1 Property testing

According to Goldreich [70], the concept of property testing in theoretical computer science
was inspired by the work [25] of Blum, Luby, and Rubinfeld. Blum et. al. in [25] showed
that for any function 𝑓 : F𝑛2 → F2, it is possible to differentiate between the case that 𝑓
is linear and the case that it needs to be modified on at least a fraction of 𝜖 > 0 points to
become linear, through a few random inquiries. Rubinfeld and Sudan in [146] introduced
the first general definition of property testing, as follows: Let 𝒫 = ∪𝑛∈N𝒫𝑛, where 𝒫𝑛 is
a collection of 𝑛-variable Boolean functions. A tester for a “property” 𝒫 is a randomized
algorithm 𝒯 , which has query access to any unknown 𝑓 : F𝑛2 → F2 and satisfies the following
two conditions:

1. If 𝑓 ∈ 𝒫 , then 𝒯 accepts 𝑓 with probability at least 2
3
.

2. Given 𝜖 > 0, if 𝑓 is 𝜖-far from 𝒫 that is min𝑔∈𝒫 Prx∈F𝑛
2
[𝑓(x) ̸= 𝑔(x)] ≥ 𝜖, then the

tester rejects with probability at least 2
3
.

If the tester accepts every function in 𝒫 with probability 1, we refer to it as having
one-sided error. This convention was also used by Goldreich, Goldwasser, and Ron in their

27
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work [71], where they demonstrated that many graph properties are testable. They regarded
graphs as Boolean functions applied to pairs of vertices, with the function’s value indicating
the presence of an edge. Under the uniform distribution, a testing algorithm for a graph
property 𝒫 conducts queries in the form of “does an edge exist between vertices 𝑢 and 𝑣”
within an unknown graph 𝐺. Consequently, the distance between two 𝑁 -vertex graphs is
quantified as the fraction (out of 𝑁2) of vertex pairs that are adjacent in one graph but
not in the other. As earlier testing algorithm for property 𝒫 is tasked with determining
whether 𝐺 possesses property 𝒫 or is 𝜖-far from any graph exhibiting property 𝒫 , with some
permissible error probability. Since then, numerous studies have been conducted to classify
testable properties. In this section, we discuss some results in the field of property testing
that are based on Fourier analysis.

Linearity testing. Any function 𝑓 : F𝑛2 → F2 is said to be linear if 𝑓(x⊕y) = 𝑓(x)⊕𝑓(y)
for all x,y ∈ F𝑛2 . It is trivial to show that every linear function is of the form 𝑙𝛼(x) = ⟨𝛼,x⟩2,
where 𝛼 ∈ F𝑛2 .

BLR test. Given query access to 𝑓 : F𝑛2 → F2.

1. Choose two random points x,y ∈ F𝑛2 .

2. Accept if 𝑓(x)⊕ 𝑓(y) = 𝑓(x⊕ y), otherwise reject.

The original analysis by Blum et. al. [25] was combinatorial, but there is also a Fourier
analytic approach presented by Bellare et. al. [11]. The bulk of this analysis lies in prov-
ing that if 𝑓 is 𝜖-far from every linear function, then 𝑓 is accepted with some negligible
probability. We briefly discuss the approach of [11] here.

Bellare et. al. in [11], showed that the probability that 𝑓 is not rejected by the BLR test
is upper bounded by 1

2
+ 1

2
max𝛼∈F𝑛

2
𝑊𝑓 (𝛼). Note that, if 𝑓 is 𝜖-far from every linear function

then for every 𝛼 ∈ F𝑛2 , Prx∈F𝑛
2
[𝑓(x) ̸= 𝑙𝛼(x)] ≥ 𝜖 that is 1

2𝑛

∑︀
x∈F𝑛

2
wt(𝑓(x) ⊕ ⟨𝛼,x⟩2) ≥ 𝜖.

Now from equation 2.6, it means that 𝑊𝑓 (𝛼) ≤ 1 − 2𝜖 for any 𝛼 ∈ F𝑛2 . Therefore from
Bellare et. al.’s result, if 𝑓 is 𝜖-far from every linear function then Prx,y∈F𝑛

2
[𝑓(x) ⊕ 𝑓(y) =

𝑓(x⊕ y)] ≤ 1− 𝜖.

This is a one-sided error test, which always accepts 𝑓 if 𝑓 is linear. The success rate of
the test can be increased by repeating it multiple times. Specifically, by running the test 2

𝜖

times independently, 𝑓 is accepted if it is accepted in all 2
𝜖

trials, otherwise it is rejected. The
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total number of queries required is 6
𝜖
. For 𝑓 that is 𝜖-far from being linear, the acceptance

rate is at most (1 − 𝜖)
2
𝜖 ≤ 1

3
, which satisfies the conditions of the Rubinfeld and Sudan’s

definition of property testing.

Dictator testing. Now, we examine a simpler property referred to as being a dictator.
Specifically, we examine the following properties defined as follows:

𝒟 = {𝑓 : F𝑛2 → F2 : 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖 for some 𝑖 ∈ [𝑛]}.

The complemented-dictatorship property, denoted by 𝒟𝑐, has been defined as follows:

𝒟𝑐 = {𝑓 : F𝑛2 → F2 : 𝑓(𝑥1, . . . , 𝑥𝑛) = 1⊕ 𝑥𝑖 for some 𝑖 ∈ [𝑛]}.

The existence of a tester for dictatorship cannot be automatically inferred from the fact
that 𝒟 is a subset of linear functions and that there is a BLR tester for linearity. This
is because, even if a linear function 𝑙𝛼 is not a dictator (i.e. wt(𝛼) ̸= 1), the probability
that 𝑙𝛼(x) ̸= 𝑔(x) for any 𝑔 ∈ 𝒟 is equal to 1

2
, but the BLR test will still accept it with

a probability of 1. This is different from the principle in learning theory where a learning
algorithm for a class can be applied to any of its subclasses automatically.

However, the BLR test can be utilized as a preliminary step in testing for dictatorship.
This reduces the task of determining whether an unknown linear function is a dictator.
The first testers for dictatorship, presented in [10] and [132], used the following method:
after confirming linearity, the testers randomly choose x and y from {0, 1}𝑛, calculate z =

x ∧ y, and verify if f (z) = f (x) ∧ f (y). The only functions that pass this “AND test” with
probability 1 are dictators (and constant functions). To handle the constant function case,
some changes to the testing algorithms and a more sophisticated analysis of the test are
required. An alternative approach of dictator testing is to use the Arrow’s famous result [4],
which characterizes the property 𝒟∪𝒟𝑐. This characterisation leads to a simpler test known
as the “Not-All-Equal test” [127].

Not-All-Equal test. Given query access to 𝑓 : F𝑛2 → F2.

1. Choose x,y, z ∈ F𝑛2 such that (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are drawn independently and uniformly at
random from {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}.
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2. Accept if (𝑓(x), 𝑓(y), 𝑓(z)) /∈ {(0, 0, 0), (1, 1, 1)}, otherwise reject.

Under the “impartial culture assumption” for 3-candidate elections, where each voter
independently chooses one of the 6 possible rankings uniformly at random, Arrow’s Theorem
was later proved in 2002 using Fourier analysis by Kalai in [93]. In [93] Kalai showed that
the above test accepts 𝑓 with probability 3

4
− 3

4

∑︀𝑛
𝑘=0(−

1
3
)𝑘𝑃 ̂︀𝑓 (𝑘). Therefore, if the “Not-All-

Equal test” accepts 𝑓 with probability 1− 𝜖, then from Kalai’s result, it is possible to show
that 𝑃 ̂︀𝑓 (1) ≥ 1 − 9

2
𝜖 [127]. This means that 𝑓 is 𝑂(𝜖) close to either being a dictator or a

complemented-dictator, as determined by the Friedgut-Kalai-Naor Theorem [67].

However, there are limitations to this testing. It only gives a local tester for the property
of being a dictator or complemented-dictator, and the conclusion about 𝑓 being close to such
a property relies on the non-trivial Friedgut-Kalai-Naor Theorem. To address these issues,
the BLR Test can be added with the “Not-All-Equal test”, as discussed in [127].

𝑘-Junta testing. A function 𝑓 : F𝑛2 → F2 is considered to be a 𝑘-junta if it has at most
𝑘 “influential” variables [23]. Alternatively, 𝑓 is said to be an 𝑘-junta if there is a subset
𝑆 ⊆ [𝑛] with #𝑆 ≤ 𝑘 such that 𝑓 is degenerate on the variables indexed by 𝑆. Parnas, Ron,
and Samorodnitsky [132] were the first to demonstrate a testing algorithm for 1-juntas, that
is for dictators and completed dictators, with only 𝑂(1/𝜖) queries, by generalizing a result
from Bellare, Goldreich, and Sudan [10] on testing long codes. Fischer et al. then proposed
algorithms with 1-sided error for testing 𝑘-juntas, using 𝑂(𝑘4 ln(𝑘+1)/𝜖) queries, and a better
algorithm with 𝑂(𝑘2 ln2(𝑘 + 1)/𝜖) query complexity and a 2-sided error. The best known
junta-testing algorithm with 1-sided error to date, by Blais [23], requires 𝑂(𝑘/𝜖 + 𝑘 log 𝑘)

queries.

The first significant lower bound on the query complexity of junta testing was established
by Fischer et al. [62], who demonstrated that 𝜔(

√
𝑘) queries are necessary to test 𝑘-juntas.

This lower bound was later improved to 𝜔(𝑘) by Chockler and Gutfreund [44].

Therefore, based on the lower bound established by Chockler and Gutfreund, the algo-
rithm proposed by Blais in [23] is nearly optimal in terms of query complexity, with only a
logarithmic factor difference. A brief overview of the algorithm is provided below.

Blais 𝑘-junta testing. The Blais junta testing algorithm is based on a key observation
made by Blum, Hellerstein, and Littlestone in their work [24]. If there exists two inputs
x and y in F𝑛2 such that 𝑓(x) ̸= 𝑓(y), then the set of variables (say 𝑆) where x and y
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differ must contain a influential variable for 𝑓 . Is it possible to utilize a binary search on
the ‘hybrid inputs’, denoted as z, created from x and y in the following manner: 𝑧𝑖 = 𝑥𝑖 if
𝑖 ∈ 𝑇 ⊆ [𝑆], 𝑧𝑖 = 𝑦𝑖 if 𝑖 ∈ 𝑆 ∖ 𝑇 , and 𝑧𝑖 = 𝑥𝑖 = 𝑦𝑖 otherwise. Then the influential variable
can be identified with 𝑂(log |𝑆|) queries.

Blais’s approach involves maintaining a set 𝑆 of variables that may or may not be influ-
ential to the function. Given a randomly generated pair of inputs (x,y) that satisfies the
above criteria over 𝑆, instead of identifying the influential variable, Blais aimed to identify
the part containing the influential variable in a random partition of the set 𝑆 into poly(𝑘)
parts. This can also be done through a binary search in 𝑂(log 𝑘) queries. The algorithm
then removes all variables in that part from 𝑆. If the algorithm identifies 𝑘 + 1 different
parts with influential variables, the function is rejected; otherwise, it is accepted.

It is easy to see that if the input function is a 𝑘-junta, it will contain at most 𝑘 parts with
influential variables, and the Blais algorithm will accept it. Thus, the algorithm has one-
sided error. The soundness of the algorithm is established through the following argument:
if a function that is 𝜖-far from being a 𝑘-junta, it will be 𝜖

2
-far from being a “𝑘-part junta”

(functions whose influential variables are contained within no more than 𝑘 parts with respect
to a random partition of variables) with high probability. To prove the aforementioned
lemma, it is necessary to first understand the concept of an influential set of variables. Blais
employs the concept of “influence over a set of variables 𝑆” (say 𝐼𝑓 (𝑆)), introduced by Fischer
et al. in [62]. Using this notion of influence, Blais established the following characterization
of non-juntas, which forms the core of his main lemma:

Lemma 10 [23] If 𝑓 is 𝜖-far from being an 𝑘-junta, then for any set 𝑆 ⊆ [𝑛] with #𝑆 ≤ 𝑘,
𝐼𝑓 (𝑆) ≥ 𝜖.

However, a more straightforward proof of the above characterisation is presented in Chap-
ter 5.

3.2 The Bonami-Beckner hypercontractive inequality and
some of its applications

This section discusses a significant technique utilized in harmonic analysis, known as the
hypercontractivity of the noise operator. This approach was developed by Bonami [26] and
Beckner [9].
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In Chapter 2 (see Relation 2.22), we discussed the noise operator. As shown in Lemma 7,
the noise operator 𝑇𝜌 dampens the higher-degree Fourier coefficients, and this reduction
effect grows exponentially with the degree of the coefficients. Essentially, the noise operator
has a “smoothing” impact on the function 𝜓. When 𝜌 = 1, the result of 𝑇𝜌𝜓 is identical to
𝜓, but as 𝜌 decreases, the function 𝑇𝜌𝜓 approaches the constant E(𝜓). In fact, when 𝜌 = 0,
𝑇𝜌𝜓 equals E(𝜓). For 𝜌 < 1, only the constant functions 𝜓 satisfy 𝑇𝜌𝜓 = 𝜓.

The operator 𝑇𝜌𝜓 computes an average of functions that possess the same 𝑝-norm as 𝜓.
Therefore, according to the Minkowski inequality, 𝑇𝜌 is a contraction, indicating that for all
𝑝 ≤ 1, ‖𝑇𝜌𝜓‖𝑝 ≤ ‖𝜓‖𝑝. It is worth noting that the 𝑝-norm is monotone non-decreasing in
𝑝, meaning that ‖𝜓‖𝑝 ≤ ‖𝜓‖𝑞 for 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. The Bonami-Beckner Hypercontractive
inequality [26, 9] shows that if we sufficiently smooth the function 𝑓 using 𝑇𝜌, we can reverse
the direction of the second inequality mentioned. In other words, 𝑇𝜌 is not only contractive
but also hypercontractive. Specifically, for 1 ≤ 𝑝 ≤ 𝑞 and 0 ≤ 𝜌 ≤

√︁
𝑝−1
𝑞−1 , the inequality

‖𝑇𝜌𝜓‖𝑞 ≤ ‖𝜓‖𝑝 holds true.

The Bonami-Beckner inequality has several significant applications in the analysis of
Boolean functions. The following are a few examples.

Structures of functions with small total influence. Recall that a Boolean function
on F𝑛2 that depends on at most 𝑘 of its variables is called a 𝑘-junta. If 𝑓 is a 𝑘-junta,
then its influence is at most 𝑘. This is because each variable that 𝑓 does not depend on
has an influence of 0, and every other variable has an influence of at most 1. Friedgut’s
junta theorem [65] partially reverses this observation, as it asserts that a Boolean function
with a small total influence can be accurately approximated by a 𝑘-junta, where 𝑘 is also
small. In the proof of this theorem, the Walsh spectrum of 𝑓 is separated into high-weighted
characters and low-weighted characters. Although the high-weighted characters is easy to
handle (similar to lemma 11), the Bonami-Beckner Hypercontractive inequality is required
to bound the low-weighted characters.

Lower bound of max𝑖 inf𝑓 (𝑖) for balanced functions. The concept of influence of a
variable on a Boolean function was first introduced by Ben-Or and Linial [12] in the context
of a collective coin flipping scheme. In this scheme, each player picks a random bit 𝑥𝑖 and
the value of the coin flip is determined by the function 𝑓(x). To maintain security in the
collective coin flipping scheme, it is crucial to prevent small collusions of dishonest players,
who can observe the bits of honest players, from significantly affecting the output value of
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the function 𝑓 .

There are two extreme cases of functions with regard to influence: the constant function
(where inf𝑓 (𝑖) = 0 for all 𝑖) and the parity function (where inf𝑓 (𝑖) = 1 for all 𝑖). The dictator
function 𝑓(x) = 𝑥𝑖 is another example where only the 𝑖𝑡ℎ variable has influence 1 while all
other influences are 0. Another significant example is the maj𝑛, where each variable has an
influence of 𝜃( 1√

𝑛
).

The Poincaré inequality (see Relation 7) for balanced functions implies that the influence
of a variable on a Boolean function is at least 1. This leads to the natural question of
whether it is possible to find balanced functions where the variable influences are much
smaller, ideally on the order of 𝑂( 1

𝑛
). Let f : {0, 1}𝑛 → {0, 1} be defined as follows.

f (X) =
⋁︀𝑚
𝑗=1

⋀︀(𝑗+1)𝑘
𝑖=(𝑗−1)𝑘+1𝑋𝑖, where 𝑚 = 𝑛

𝑘
. f is known as “tribes DNF formulas”. Since,

Prx∈F𝑛
2
[f (x) = 1] = 1−(1−2−𝑘)𝑚, so f would be balanced or nearly balanced if 𝑚 ≈ (ln 2)2𝑘,

𝑘 is some integer. Hence, 𝑛 ≈ (ln 2)𝑘2𝑘, therefore, 𝑘 ≈ log 𝑛 − log log 𝑛 and 𝑚 ≈ 𝑛
log𝑛

.
Considering the above parameter Ben-Or and Linial [12] showed that each variable in f
has influence 𝜃( log𝑛

𝑛
). Kahn, Kalai, and Linial [92] later proved that this is nearly optimal,

showing that for any balanced or nearly balanced Boolean function, at least one variable has
influence 𝜔( log𝑛

𝑛
). The proof is similar to the one used in Friedgut’s junta theorem [65]. This

observation implies that a set of only 𝑂( 𝑛
log𝑛

) variables can determine the function value for
almost all settings of the other variables with high probability [2]. Hence, these functions are
not suitable for collective coin flipping protocols that are secure against a constant fraction of
dishonest players, as a small group of colluding players can easily manipulate the result [52].
Talagrand [165] provided a slightly stronger result, and Bourgain et. al. [28] extended the
KKL result to 𝑛-variable Boolean functions with real-valued inputs, where each real-valued
variable has uniform measure.

3.3 Learning theory

“Probably Approximately Correct” (PAC) learning, introduced by Valiant in the 1980s [169],
provides a structured framework for computational learning. In the PAC learning model,
which operates under the uniform distribution on F𝑛2 , the central focus is on a concept class
denoted as 𝒞. This concept class serves as a collection of functions, map inputs from F𝑛2 to
F2, possessing specific properties. Learning a concept class means, for any Boolean function
𝑓 within 𝒞, utilizing it as an oracle, trying to seek a hypothesis (any Boolean function but
may not necessarily belong to 𝒞) that effectively predicts 𝑓(y) for future inputs y. A learning
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algorithm is considered PAC-learnable if it can generate a hypothesis, denoted as ℎ, that
is likely to be mostly correct with a high probability, given limited access to a sufficiently
large set of samples. To elaborate on this concept, let us imagine a scenario where we aim to
learn from a concept class 𝒞. In this scenario, we have access to a limited set of samples in
the form of (x, 𝑓(x)) pairs, where 𝑓 is an unknown function belonging to 𝒞. We introduce a
target error parameter 𝜖, which falls within the range of 0 to 1

2
, and a confidence parameter

𝛿 that is greater than 0. For any 𝑓 ∈ 𝒞, we define a learning algorithm as PAC-learnable if
it can find a sample of size 𝑚 such that, with a probability of at least 1− 𝛿, the hypothesis
ℎ it generates satisfies the condition Prx∈F𝑛

2
[𝑓(x) ̸= ℎ(x)] ≤ 𝜖. This means that, with high

confidence, the hypothesis function ℎ is not “far” from the target function 𝑓 . In PAC learning,
there are two primary access models. The first one involves random examples, where the
learning algorithm can draw pairs (x, 𝑓(x)) with x ∈ F𝑛2 chosen uniformly at random. The
second access model is through queries, allowing the algorithm to request the value 𝑓(x) for
any x ∈ F𝑛2 of its choice. These two access models differ in their strength, with the query
model being more powerful than random examples.

Efficient running time is the primary requirement of a learning algorithm. While it is
possible to learn any function 𝑓 with zero error in a time complexity of 𝑂(𝑛 · 2𝑛) [127], this
approach is not efficient. When the concept class 𝒞 includes highly complex functions, which
are those with well-distributed Walsh coefficients, exponential running time is necessary.
However, if 𝒞 comprises relatively “simple” functions, it may be possible to achieve more
efficient learning. To understand what is meant by “simple” functions, it is necessary to
introduce a definition.

Definition 19 (𝜖-concentration on ℱ) [127] Let ℱ ⊆ F𝑛2 . Given an 𝑛-variable Boolean func-
tion 𝑓 , we say that the Walsh spectrum of 𝑓 is 𝜖-concentrated on ℱ if

∑︀
𝛼∈F𝑛

2
𝛼/∈ℱ

𝑊𝑓 (𝛼)2 ≤ 𝜖.

If the size of ℱ is small, a Boolean function can be considered as “simple”. Sup-
pose that a learning algorithm A has random example access to the target function 𝑓 :

F𝑛2 → F2. If A can somehow identify a collection ℱ ⊆ F𝑛2 on which 𝑓 ’s Walsh spec-
trum is 𝜖

2
-concentrated, then a common way of attempting to learn 𝑓 is to estimate all

of 𝑓 ’s Walsh coefficients in ℱ . As the Walsh coefficient at any 𝛼 ∈ F𝑛2 is just an ex-
pectation under the uniform distribution on F𝑛2 (see 2.6), it can be approximated from
uniformly drawn examples (x(1), 𝑓(x(1))), . . . , (x(𝑚), 𝑓(x(𝑚))). For any 𝛼 ∈ F𝑛2 , the em-
pirical average 1

𝑚

∑︀𝑚
𝑖=1(−1)𝑓(x

(𝑖))⊕⟨x(𝑖),𝛼⟩2 will converge to the correct value 𝑊𝑓 (𝛼) as 𝑚
grows. Using Hoeffding’s inequality, it can be shown that obtaining an estimate 𝑊 ′

𝑓 (𝛼)

for 𝑊𝑓 (𝛼) within an error of ±𝜖 can be achieved with probability at least 1 − 𝛿 using
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𝑂( 1
𝜖2
log(1

𝛿
)) examples. Finally, using the estimated coefficients, A forms the real-valued

function 𝜓(X) =
∑︀

𝛼∈ℱ𝑊
′
𝑓 (𝛼)(−1)⟨X,𝛼⟩2 and outputs hypothesis ℎ(X) = 1−sign(𝜓(X))

2
, where

sign(𝑧) = 1 if 𝑧 ≥ 0, and −1 if 𝑧 < 0. Given the assumption that the Walsh spectrum of
the target function 𝑓 is 𝜖

2
-concentrated on the set ℱ , the method described above results in

a reliable approximation of 𝑓 . Specifically, the hypothesis ℎ obtained from the algorithm is
𝜖-close to the target concept 𝑓 or Prx∈F𝑛

2
[𝑓(x) ̸= ℎ(x)] ≤ 𝜖 [127].

The “Low-Degree algorithm”. There are concept classes for which we can choose ℱ
without any algorithmic searching, by simply taking all vectors of small weights. This
approach is effective when all functions in 𝒞 exhibit spectral concentration at small weights.
The “Low-Degree Algorithm”, developed by Linial, Mansour, and Nisan in their pioneering
work on the Fourier approach to computational learning [110], can be used to learn such
concept classes. However, before delving into this algorithm, we need to first define the
weighted version of spectral concentration.

Definition 20 (𝜖-concentration weights up to 𝑘) . Given an 𝑛-variable Boolean function 𝑓 ,
we say that the Walsh spectrum of 𝑓 is 𝜖-concentrated on coefficients of weights up to 𝑘 if∑︀

𝑖≥𝑘 𝑃 ̂︀𝑓 (𝑖) ≤ 𝜖.

The “Low-Degree Algorithm” is based on the idea of reducing the learning problem of a
concept class 𝒞 from random examples to the analytical task of showing small weight spectral
concentration for the functions in 𝒞. Specifically, if we can prove that for some 𝑘 ≥ 1, every
function 𝑓 : F𝑛2 → F2 in 𝒞 is 𝜖

2
-concentrated up to weight 𝑘, then we can set ℱ to be the set

of all vectors of weight at most 𝑘, which has size at most 𝑂(𝑛𝑘). We can then approximate
𝒞 well by a real polynomial of low degree using the Walsh coefficients estimation approach
described earlier.

For instance, in [110], Linial, Mansour, and Nisan showed that if a Boolean function 𝑓 is
computable by a bounded depth circuit [83] of depth 𝑑 and size𝑀 , then 𝑓 can be well approx-
imated by a “polynomial threshold function (PTF)” [30], of degree at most 𝑂(log(𝑀/𝜖)𝑑).
This approach thus provides a systematic way to learn concept classes with small-weight
spectral concentration without the need for algorithmic searching.

One way to demonstrate such a concentration result is by proving combinatorially that
a function has small total influence. This can be done using the following lemma.

Lemma 11 For any 𝑓 : F𝑛2 → F𝑛2 and 𝜖 > 0, the Walsh spectrum of 𝑓 is 𝜖-concentrated on
coefficients of weights up to inf(𝑓)

𝜖
.
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Using Lemma 11, we can quickly obtain some learning-theoretic results. For example,
consider the concept class 𝒞 = {𝑓 : F𝑛2 → F2 | 𝑓 is monotone}. We can learn 𝒞 from random

examples with error 𝜖 in time 𝑛𝑂
(︁√

𝑛
𝜖

)︁
, since inf(𝑓) ≤ 𝑂(

√
𝑛) [177]. It might be concerning

that a running time such as 𝑛𝑂(
√
𝑛) does not seem very efficient. However, it is much better

than the trivial running time of 𝑂(𝑛 · 2𝑛).

Another way to establish low-degree spectral concentration is by analyzing noise stability
or sensitivity. For any function 𝑓 : F𝑛2 → F2 and 𝛿 ∈ [0, 1

2
], the Walsh spectrum of 𝑓 is

3NS𝛿(𝑓)-concentrated on degrees up to 1
𝛿
. The noise sensitivity approach was introduced by

Klivans, O’Donnell, and Servedio in [103] as an alternative way to the Low-Degree Algorithm
based on concentration results from Lemma 11.

Using noise sensitivity can be more effective in some scenarios. For example, it tells
us that for 𝛿 > 0 sufficiently small and 𝑛 sufficiently large (as a function of 𝛿), the Walsh
spectrum of the 𝑛-variable “majority” function is 3

√
𝛿-concentrated on degrees up to 1

𝛿
since

NS𝛿(maj𝑛) ≤
√
𝛿 [127]. This is equivalent to saying that it is 𝜖-concentrated on degrees up

to 𝑂( 1
𝜖2
). In contrast, Lemma 11 gives us that the “majority” function is concentrated on

weights up to 𝑂(
√
𝑛
𝜖
) since it is a monotone function.

Goldreich–Levin algorithm. The work by Goldreich and Levin was published in 1989
[72]. Apart from its relevance in cryptography and learning, it also has significant implica-
tions in coding theory and complexity as a local list-decoding algorithm for the Hadamard
code. Despite being initially developed for cryptography to build a “pseudorandom gener-
ator” from a “one-way permutation”, the Goldreich-Levin algorithm found its way into the
field of learning theory due to Kushilevitz and Mansour for learning decision trees [109].
The approach to learning based on estimating Walsh coefficients reduces the problem of
learning an unknown target function 𝑓 : F𝑛2 → F2 to identifying a collection ℱ ∈ F𝑛2 that is
𝜖
2
-concentrated. Similar to estimating the Walsh coefficients, we can also almost accurately

estimate the Fourier probability of a function 𝑓 : F𝑛2 → F𝑛2 at any 𝛼 ∈ F𝑛2 , represented as
(𝑊𝑓 (𝛼))2. By determining whether this value is large or small, we can decide to keep or
discard it, respectively. This iterative process allows us to identify the desired collection ℱ
of candidates. However, due to the large number of candidates (2𝑛), identifying the desired
collection ℱ can be difficult. To overcome this challenge, the Goldreich-Levin algorithm
employs a divide-and-conquer strategy that estimates the partial sum of the Fourier proba-
bilities of 𝑓 . A brief overview of this algorithmic approach will be provided here, but for a
more detailed analysis, refer to [127].



Threshold phenomena 37

Consider a “bucketing system” defined as follows: for 0 ≤ 𝑡 ≤ 𝑛 and 𝑆 ⊆ 𝑇 ⊆ [𝑛]

with #𝑇 = 𝑡, the bucket ℬ𝑡,𝑆 consists of all sets that are of the form 𝑆 ∪ 𝑅, where 𝑅 ⊆
{𝑡 + 1, 𝑡 + 2, . . . , 𝑛}. Note that the number of elements in each bucket ℬ𝑡,𝑆 is 1

2𝑛−𝑡 . The
initial bucket is ℬ0,𝜑, and the algorithm always splits a bucket ℬ𝑡,𝑆 into two buckets: ℬ𝑡+1,𝑆

and ℬ𝑡+1,𝑆∪{𝑡+1}. The final singleton buckets are of the form ℬ𝑛,𝑆 = 𝑆. The partial sum
of Fourier probabilities at ℬ𝑡,𝑆 is defined as

∑︀
𝑈∈ℬ𝑡,𝑆 (𝑊𝑓 (𝜒𝑈))

2, which is precisely equal to∑︀
w≤𝜒𝑇

(𝑊𝑓 (𝛽𝑇w𝑇 ))
2, where 𝛽 = 𝜒𝑆 and by the second order Poisson summation formula

(2.16), this is equal to 1
2𝑛−𝑡

∑︀
𝛼∈F𝑛−𝑡

2
(𝑊𝑓𝛼(𝛽𝑇 ))

2. It is worth noting that if we have an oracle
access to 𝑓𝛼 for any 𝛼 ∈ F𝑛−𝑡2 , then we can estimate (𝑊𝑓𝛼(𝛽𝑇 ))

2 using random examples,
as we did earlier. However, since we only have access to the oracle for 𝑓 , we require query
access, where the values of the coordinates in a query x ∈ F𝑛2 corresponding to 𝑇 are fixed
to some 𝛼 ∈ F𝑛−𝑡2 .

The above algorithm is often described as the Kushilevitz-Mansour algorithm. Unlike
the Low-Degree Algorithm, which requires that the Walsh spectrum of 𝑓 is concentrated on
low-weighted characters, the Kushilevitz-Mansour Algorithm works as long as the spectrum
is concentrated on some small collection of sets. However, a drawback of the Kushilevitz-
Mansour Algorithm is that it requires query access to 𝑓 , instead of just random examples.

Several other computational learning results have also utilized these ideas, and some
examples of these results include [114, 88, 104, 31, 123, 129].

3.4 Threshold phenomena

A “sharp threshold” in graph theory refers to the property of a certain graph property that
exhibits a sudden transition from almost no instances of the property to almost all instances
of the property as the size of the graph increases. Specifically, for the random graph model
𝐺(𝑛, 𝑝), where 𝑛 is the number of vertices and each edge is included with probability 𝑝, Erdős
and Rényi [56] showed that there is a sharp threshold for connectivity. If 𝑝 is slightly less
than log𝑛

𝑛
, then the probability that 𝐺(𝑛, 𝑝) is connected tends to 0 as 𝑛 increases, while if

𝑝 is slightly greater than log𝑛
𝑛

, then the probability tends to 1. In graph theory, a monotone
graph property is a property that only increases as more edges are added to a graph. The
property of connectivity is an example of a monotone graph property. The result in [56]
was later generalized by Friedgut and Kalai [66], who showed that every monotone graph
property has a sharp threshold.
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Let 𝜇𝑝(𝒫𝑛) be the probability that a random graph 𝐺 ∼ 𝐺(𝑛, 𝑝) satisfies a property
𝒫𝑛, and let I𝒫𝑛 denote the characteristic function of 𝒫𝑛. According to the Margulis-Russo
lemma [115, 147], 𝑑(𝜇𝑝(𝑃𝑛))

𝑑𝑝
= inf(I𝒫𝑛). Hence the property has sharp threshold if and only

if the total influence of the characteristic function of 𝒫𝑛 is large. Friedgut and Kalai were
interested in identifying conditions that would lead to a large value of total influence. They
proposed that a function with a significant symmetry is likely to have a spread-out Walsh
spectrum, which would lead to a large total influence. This motivated them to formulate
the Fourier-entropy/Influence conjecture [66], which is a fundamental and enduring open
problem in the analysis of Boolean functions.

Conjecture 1 (Fourier-entropy/Influence conjecture.) There exists a universal con-
stant 𝐶 such that for any integer 𝑛 ≥ 1 and for any 𝑛-variable Boolean function 𝑓 , 𝐻(𝑓) ≤
𝐶 · inf(𝑓).

In complexity theory, threshold phenomena are also observed. For example, if a random
3-SAT formula is selected with 𝑛 variables and 𝑚 = 𝑐𝑛 clauses, then it is highly likely that
the formula is satisfiable if 𝑐 < 4.2, while it is highly likely to be unsatisfiable if 𝑐 > 4.2 [52].
Kalai and Safra [95] have provided an insightful survey of such phenomena, demonstrating
how the analysis of these phenomena relies on influences and Fourier techniques.

3.5 PCP and hardness of approximation

Fourier analysis has significant applications in the design and analysis of Probabilistically
Checkable Proofs (PCP). The PCP theorem [3, 55], which is a well-known result in the field,
states that a language is in NP if and only if it has witnesses that can be probabilistically
verified using a constant number of queries to bits of the witness and 𝑂(log 𝑛) bits of ran-
domness. The PCP theorem has important implications for the complexity of approximating
optimization problems. In particular, it implies that many optimization problems are NP-
hard to approximate within a certain factor, unless P=NP. This is known as the hardness of
approximation result, and it shows that even if we cannot find the exact optimal solution to
a problem efficiently, it may still be computationally difficult to find an approximate solution
that is within a certain factor of the optimal. Håstad’s 3-query PCP [82], which is one of
the most efficient PCPs, uses Fourier analysis as its basis [52]. These PCPs can be used
to demonstrate NP-hardness results for approximations of various optimization problems,
including determining the maximum clique in a graph or the maximum number of satisfied
clauses in a CNF formula.
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The “Unique Games Conjecture” is another significant result in the field of hardness of
approximation, introduced by Khot in 2002 [98]. This conjecture suggests that the computa-
tional complexity of determining the approximate value of a particular type of game, called
a “unique game”, is NP-hard. If this is assumed to be true, it can lead to almost optimal in-
approximability outcomes for problems such as max-cut [100] and vertex cover [101]. Fourier
techniques play a crucial role in the analysis of these results. For example, the “Majority Is
Stablest” theorem [122] is a critical component of the max-cut result [52]. The theorem as-
serts that the “majority” function’s noise stability is the highest among all balanced Boolean
functions with low-influence variables. It should not be mistaken for the “Majority Is Least
Stable Conjecture”, which was proposed by Benjamini, Kalai, and Schramm in 1999 and
specifically relates to the noise stability of majority within the category of “linear thresh-
old functions”. In Chapter 7, we provide evidence against this conjecture by presenting a
counterexample that holds true for all values of 𝑛 ≥ 5.

3.6 Cryptography

In symmetric key (private key) cryptosystems, both the sender and receiver possess the same
key, and the sender uses this key to encrypt the message, while the receiver decrypts the
cipher using the same key. Since an attacker can intercept a portion of the cipher dur-
ing transmission, their objective is to recover the key from the cipher. Boolean functions
and S-boxes with certain cryptographic properties, such as correlation immunity, resiliency,
balancedness, algebraic degree, non-linearity, strict avalanche criteria (SAC), and Propaga-
tion Characteristic (PC), are crucial in the design of secure symmetric key cryptographic
systems. The Walsh/Fourier transform is a commonly used technique to efficiently and ef-
fectively analyze the cryptographic properties of Boolean functions. In this section, we will
provide a brief explanation of why these cryptographic properties are necessary for a secure
cryptographic design. We will also discuss the alternative spectrum characterization of each
property. The content in this section is primarily sourced from [74, 36].

Correlation immunity and Resiliency. In stream ciphers, a popular type of running
key generator involves combining the outputs of 𝑛 binary linear feedback shift registers (LF-
SRs) using a Boolean combining function 𝑓(𝑥1, . . . , 𝑥𝑛), where 𝑥𝑖 represents the output of
the 𝑖𝑡ℎ LFSR. However, Siegenthaler showed that certain combining functions proposed in
the literature are vulnerable to a “ciphertext-only correlation attack” [160]. To address this
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vulnerability, Siegenthaler introduced the concept of 𝑚𝑡ℎ-order correlation immunity as a
measure of a combining function’s resistance to correlation attacks [159]. Specifically, an
𝑛-variable combining function 𝑓 is said to be 𝑚𝑡ℎ-order correlation immune if the random
variable 𝑍 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛) is statistically independent of every set of 𝑚 random vari-
ables chosen from the balanced and independent binary random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛.

Xiao and Massey in [176] introduced a spectral characterization of correlation immune
functions, which states that an 𝑛-variable function 𝑓 is considered to be correlation immune
of order 𝑡 (𝑡-CI) if 𝑊𝑓 (𝛼) = 0 for all 𝛼 ∈ F𝑛2 with 1 ≤ wt(𝛼) ≤ 𝑡. Additionally, 𝑓 is
considered balanced if and only if 𝑊𝑓 (0𝑛) = 0, and a balanced 𝑡-CI function is referred to as
𝑡-resilient. Note that for 𝑡-CI (resp. 𝑡-resilient) functions, the algebraic degree 𝑑 is bounded
by 𝑛−𝑡 (resp. 𝑛−𝑡−1) [159]. Stream ciphers require a balanced function with high algebraic
degree to protect against algebraic attacks [48].

However, it is worth mentioning that in contemporary cryptography, the combiner model
is not commonly used. In this context, resiliency primarily plays a role concerning “guess
and determine” attacks, which are a specific type of cryptographic attack. Additionally,
correlation immunity is related to a particular kind of countermeasure against side-channel
attacks, which are another class of attacks in cryptography.

Non-linearity. The nonlinearity of a Boolean function 𝑓 , which is denoted as nl(𝑓), is a
crucial cryptographic property. This quantity is defined as the minimum Hamming distance
between a Boolean function 𝑓 and the set of all affine functions. When considering an S-box,
the nonlinearity is determined by the minimum nonlinearity value among all non-constant
component functions of that S-box.

For a Boolean function to be suitable for use in stream ciphers, it must possess high
nonlinearity. If a function has low nonlinearity, it is vulnerable to linear approximation
attacks, which involve approximating the combining function by a linear function. Therefore
intuitively the requirements for a Boolean function in stream ciphers can be seen as the
“opposite” of those in learning theory. Additionally, it is worth noting that high non-linearity
is desirable for preventing fast correlation attacks [120, 36]. Matsui [117] introduced the linear
cryptanalysis method for block ciphers, which involves approximating a linear combination
of the coordinate functions of an S-box with a linear function of the input variables. In order
for an S-box to resist linear cryptanalysis, it must have high nonlinearity. Therefore, for
applications in symmetric ciphers, it is necessary to use functions, including both Boolean
functions and S-boxes, that have high nonlinearity.
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It is possible to measure the non-linearity of a Boolean function using its spectrum (see
[111]) as follows: nl(𝑓) = 2𝑛−1−2𝑛−1 ·

⃒⃒
max𝛼∈F𝑛

2
𝑊𝑓 (𝛼)

⃒⃒
. Therefore the maximum nonlinear-

ity achievable by an 𝑛-variable Boolean function is 2𝑛−1−2
𝑛−2
2 , which is reached by functions

called “bent” and exists only when 𝑛 is even [145]. However, bent functions cannot be used
directly in cryptography as they are unbalanced. When 𝑛 is odd, the maximum achievable
nonlinearity of a Boolean function is not known, but functions achieving a nonlinearity of
2𝑛−1 − 2

𝑛−1
2 can be constructed due to [135, 134]. To obtain balanced functions with high

nonlinearity in either odd or even numbers of variables, “plateaued functions” were intro-
duced by Zheng and Zhang in [179, 180], as a generalization of bent functions. Note that,
it can be easily deduced from the definition of the non-linearity of S-boxes that the highest
possible nonlinearity that can be attained by an (𝑛, 𝑘) S-box is 2𝑛−1 − 2

𝑛−2
2 When 𝑘 = 1,

S-boxes with perfect nonlinearity are equivalent to bent functions. These types of S-boxes
can only exist when 𝑛 is even and 𝑘 ≤ 𝑛

2
[126]. On the other hand, if 𝑛 is odd and 𝑘 = 𝑛,

the highest attainable nonlinearity is 2𝑛−1 − 2
𝑛−1
2 . However, for odd 𝑛 and 1 ≤ 𝑘 < 𝑛, the

maximum achievable nonlinearity is still an unsolved problem.

SAC and PC. The concept of SAC was first introduced by Webster and Tavares in their
paper [173]. A Boolean function 𝑓 with 𝑛 variables satisfies SAC (Strict Avalanche Criterion)
if, for any 𝛼 in F𝑛2 such that wt(𝛼) = 1, the function 𝑓(x)⊕𝑓(x⊕𝛼) is balanced. Additionally,
𝑓 satisfies SAC(𝑙) if each subfunction derived from 𝑓(𝑥1, . . . , 𝑥𝑛) by fixing at most 𝑙 input
bits also satisfies SAC. Preneel et. al. [142] introduced the concept of PC (Propagation
Characteristic), which is a more general version of SAC. An 𝑛-variable Boolean function 𝑓

satisfies PC of degree 𝑙 (i.e. PC(𝑙)) if 𝑓(x) ⊕ 𝑓(x ⊕ 𝛼) is balanced for any 𝛼 ∈ F𝑛2 such
that 1 ≤ wt(𝛼) ≤ 𝑙. An (𝑛, 𝑘) S-box G is said to satisfy SAC(𝑙) (resp. PC(𝑙)) if all the
non-constant component functions of G satisfy SAC(𝑙) (resp. PC(𝑙)).

The motivation behind SAC, PC(𝑙), and SAC(𝑙) is the following [74]. By satisfying
SAC, the output of an S-box with an input difference of weight one will have a uniform
distribution, reducing the propagation ratio and thus making the overall propagation ratio
of the differential trail lower. The generalization of SAC is PC(𝑙), where the input difference
weight of any active S-box should be at least 𝑙 to prevent uniform output distributions, which
are highly unlikely for larger values of 𝑙.

Note that from the definition of PC(𝑙) we can say an n-variable function to be satisfying
PC of degree 𝑙 (PC(𝑙)) if 𝐶𝑓 (𝛼) = 0 for all 1 ≤ wt(𝛼) ≤ 𝑙 [141]. Therefore, by Wiener-
Khintchine formula (2.12), it is possible to obtain an alternate spectral characterisation of
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PC(𝑙).

In conclusion, achieving all desired properties simultaneously in cryptographic primitives
is not feasible, and trade-offs between these properties are necessary. The importance of
each property varies depending on the application, and cryptographic primitives should
be designed accordingly. The Walsh transform plays a critical role in designing Boolean
functions for stream ciphers or S-boxes for block ciphers since all of these properties can be
characterized spectrally. This includes the design of non-linear correlation-immune/resilient
functions [32, 43, 149, 153], non-linear resilient S-boxes [178, 133, 91, 77, 75], and nonlinear
S-boxes satisfying higher-order SAC [76].



Chapter 4

Separation results for Boolean function
classes

In this chapter we show (almost) separation between certain important classes of Boolean
functions. What makes this chapter especially interesting is the idea that findings from one
field can be used to prove results in the other, often with greater simplicity and understand-
ing. Discovering these connections between fields, allowing us to apply findings from one
field to prove results in the other, is a valuable aspect of our work.

To illustrate this point, consider the separation between bent and monotone functions.
We present a shorter proof, compared to the one found in [37], by using results from the-
oretical computer science. Our approach revolves around the concept of total influence,
which we use to show that the total influence of functions in one group is less than that of
functions in the other group. Using this same approach, in this chapter we show (almost)
separation of several classes of Boolean functions which have been studied in coding theory
and cryptography from classes which have been studied in combinatorics and complexity
theory.

4.1 Introduction

If the intersection of two classes of Boolean functions is empty, then the classes are disjoint.
For two infinite classes of Boolean functions, we say that they are almost disjoint, if their
intersection is a finite set. Being almost disjoint implies that there is a positive integer 𝑛0

such that for any 𝑛 ≥ 𝑛0, there is no 𝑛-variable Boolean function which belongs to both
classes.

Our goal is to show that several pairs of classes of Boolean functions are almost disjoint.
We use the notion of total influence [110] to show such separation. The technique that we use
is to show that for sufficiently large 𝑛, the total influence of any 𝑛-variable Boolean function
in one of the classes is less than the total influence of any 𝑛-variable Boolean function in the
other class. It turns out that there are some known results on total influence which can be

43



44 Separation results for Boolean function classes

effectively used with this technique.

The specific results that we obtain are the following. The class of Boolean function
consisting of bent functions and functions satisfying SAC and PC is almost disjoint from the
class of monotone functions; the class of functions which can be implemented using constant
depth, polynomial size circuits; and the class of linear threshold functions. Similar separation
results are obtained for the class of plateaued functions.

The separation of bent and monotone functions was conjectured in [39] and proved in [37].
A detailed analysis of the non-linearity of monotone functions has been performed in [35]
a consequence of which is also a proof of the separation of bent and monotone functions.
Our proof which is based on total influence is shorter than both the proofs in [37] and [35].
While [37, 35] had considered cryptographic properties of monotone functions, the classes of
SAC, PC and plateaued functions were not considered in [37]. So, the separation results for
these classes mentioned above are not present in [37].

4.2 Some Boolean function classes

In this chapter, we define the Boolean function classes necessary for our discussion. While
some of these classes have been previously defined (refer to Chapter 3), our definitions here
may differ, but they are still equivalent to the original definitions. We will specifically focus
on describing the Boolean function classes relevant to cryptography in terms of the Walsh
spectrum and auto-correlation function since that would be helpful for us to compute the
total influence of a function belonging to that class.

An 𝑛-variable Boolean function 𝑓 is said to be monotone if the following property holds.
For a,b ∈ F𝑛2 , if a ≤ b (i.e., 𝑎𝑖 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑛), then 𝑓(a) ≤ 𝑓(b). Let M denote the set
of all monotone Boolean functions.

The following Boolean function classes have been studied in the context of coding theory
and cryptography.

• For even 𝑛, an 𝑛-variable Boolean function 𝑓 is said to be bent [145], if 𝑊𝑓 (𝛼) = ± 1
2𝑛/2 ,

for all 𝛼 ∈ F𝑛2 . Let B denote the set of all bent functions.

• An 𝑛-variable Boolean function 𝑓 satisfies the strict avalanche criterion (SAC) [173],
if for all 𝑖 ∈ [𝑛], 𝐶𝑓 (e𝑖) = 0, where e𝑖 represents a vector in F𝑛2 with its 𝑖𝑡ℎ element
being 1 and all other elements being 0. Further, we say that an 𝑛-variable function
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satisfies SAC of order 𝑘, 0 ≤ 𝑘 ≤ 𝑛− 2, (written as SAC(𝑘)) if by fixing any 𝑘 of the 𝑛
variables to arbitrary values in F2, the resulting function satisfies SAC. For 𝑘 ≥ 0, let
S𝑘 denote the set of all Boolean functions satisfying SAC(𝑘), and define S = ∪𝑘≥0S𝑘.

• An 𝑛-variable Boolean function 𝑓 satisfies propagation characteristics [142] of degree
𝑘, 1 ≤ 𝑘 ≤ 𝑛, (written as PC(𝑘)) if 𝐶𝑓 (𝛼) = 0 for all 𝛼 ∈ F𝑛2 such that 1 ≤ wt(𝛼) ≤ 𝑘.
For 𝑘 ≥ 1, let PC𝑘 denote the set of all Boolean functions satisfying PC(𝑘), and define
PC = ∪𝑘≥1PC𝑘. Note that for any 𝑘, PC𝑘 ⊆ PC1. Therefore, PC = PC1 = S0.

• An 𝑛-variable Boolean function 𝑓 is said to be 𝑘-plateaued [180], for 𝑘 ∈ {0, . . . , 𝑛} and
𝑛 ≡ 𝑘 mod 2, if for all 𝛼 ∈ F𝑛2 , 𝑊𝑓 (𝛼) ∈

{︁
0,± 1

2(𝑛−𝑘)/2

}︁
. For 𝑘 ≥ 0, let PL𝑘 be the set

of all 𝑘-plateaued Boolean functions, and define PL = ∪𝑘≥0PL𝑘.

We next define some Boolean functions classes which have been studied in the context of
complexity theory.

• A bounded-depth circuit [83] for 𝑛 variables refers to a type of Boolean circuit that is
constructed using AND and OR gates, and whose inputs consist of variables 𝑥1, . . . , 𝑥𝑛
as well as their negations. Fan-in to the gates is unbounded but depth is bounded by a
constant. Without loss of generality, the circuit is leveled, where gates at level 𝑖 have
all their inputs from level 𝑖 − 1; all gates at the same level have the same type, i.e.,
all gates at a particular level are either AND or OR; and the types of gates alternate
between AND and OR for successive levels. The depth of such a circuit is the number
of levels that it has. The size of a circuit is the number of gates in it. If the size of
a bounded depth circuit is bounded by a polynomial in 𝑛, then it is called an AC0

circuit [110]. The set of all Boolean functions computable by AC0 circuits of depth 𝑑

is denoted by AC0[𝑑].

• A Boolean function 𝑓 is said to be a linear threshold function [45], if there are real
constants 𝑤0, 𝑤1, . . . , 𝑤𝑛 such that for any x = (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛2 ,

𝑓(x) =
1− sign (𝑤0 + 𝑤1 · (−1)𝑥1 + . . .+ 𝑤𝑛 · (−1)𝑥𝑛)

2
,

where sign(𝑧) = 1 if 𝑧 > 0, and −1 if 𝑧 ≤ 0. Let LTF denote the set of all linear
threshold functions. It is worthwhile to mention that it would be possible to translate
the definition of linear threshold functions in terms of ANF [119].
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Some known results. Below we collect together some relevant results on total influence
that will be required for proving separation results. Some of these results were stated in
terms of average sensitivity which is the same as total influence (see Lemma 6).

Fact 1 [27] : For any 𝑛-variable function 𝑓 ∈ AC0[𝑑], inf(𝑓) = 𝑂((log 𝑛)𝑑−1).

Fact 2 [177] : For any non-constant 𝑛-variable monotone Boolean function 𝑓 , inf(𝑓) ≤(︀
𝑛
⌊𝑛/2⌋

)︀
⌈𝑛/2⌉/2𝑛−1. Since

(︀
𝑛
⌊𝑛/2⌋

)︀
⌈𝑛/2⌉/2𝑛−1 = Θ(

√
𝑛), we have inf(𝑓) = 𝑂(

√
𝑛).

Fact 3 [54] : For any 𝑛-variable Boolean function 𝑓 in LTF, inf(𝑓) ≤ 2
√
𝑛.

Fact 4 [68] : For any 𝑛-variable Boolean function 𝑓 in PL𝑘, inf(𝑓) = Ω(𝑛− 𝑘).

4.3 Separation Results

For 𝑛 ∈ N, let 𝒞1
𝑛 and 𝒞2

𝑛, be two subsets of the set of all 𝑛-variable Boolean functions. Define
𝒞1 ≜

⋃︀
𝑛≥1 𝒞1

𝑛 and 𝒞2 ≜
⋃︀
𝑛≥1 𝒞2

𝑛. Then 𝒞1 and 𝒞2 are two classes of Boolean functions.
Suppose there exists a constant 𝑛0, such that for all 𝑛 ≥ 𝑛0, 𝒞1

𝑛

⋂︀
𝒞2
𝑛 = ∅. If 𝑛0 = 1, then

the classes 𝒞1 and 𝒞2 are disjoint. If 𝑛0 > 1, then we say that the classes are 𝑛0-disjoint.
Note that if the classes 𝒞1 and 𝒞2 are 𝑛0-disjoint, then their intersection is finite, i.e., they
are almost disjoint.

Let 𝒞1 and 𝒞2 be two classes of Boolean functions. To show separation between 𝒞1 and
𝒞2 we use the following idea. Suppose it is possible to find a function 𝒫 from the set of all
Boolean functions to the reals and a positive integer 𝑛0 such that for all 𝑛 ≥ 𝑛0 and for
all 𝑓 ∈ 𝒞1

𝑛 and 𝑔 ∈ 𝒞2
𝑛, 𝒫(𝑓) < 𝒫(𝑔). Then, it follows that 𝒞1

𝑛 and 𝒞2
𝑛 are 𝑛0-disjoint. We

use total influence as the function 𝒫 . To do so, we need results on total influence for both
classes. Results on total influence for some of the classes have been provided in Section 4.2.
The following result provides the value of total influence for functions in B ∪ PC ∪ PL.

Proposition 1 If an 𝑛-variable Boolean function 𝑓 is in B ∪ S then inf(𝑓) = 𝑛/2.

Proof: For 𝑓 ∈ B, we have 𝑊𝑓 (𝛼) = ± 1
2𝑛/2 , for all 𝛼 ∈ F𝑛2 . Hence, using (2.19)

inf(𝑓) =
∑︁
𝛼∈F𝑛

2

wt(𝛼)(𝑊𝑓 (𝛼))2 =
𝑛

2
.
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According to the definition of SAC, it is evident that any function satisfying SAC(0)
also satisfies the SAC. Suppose 𝑓 satisfies SAC(𝑘) for some 𝑘 ≥ 1. Then, it follows that 𝑓
satisfies SAC(𝑗) for 0 ≤ 𝑗 ≤ 𝑘− 1 (see [50]). So, in particular, if 𝑓 satisfies SAC(𝑘) for some
𝑘 ≥ 0, then 𝑓 must satisfy SAC. Now, for any Boolean function 𝑔, using (2.12) and (2.17),
we can derive that inf𝑔(𝑖) is equal to 1−𝐶𝑔(𝑒𝑖)

2
. Therefore, from the definition of SAC, we have

inf𝑓 (𝑖) =
1
2

for all 𝑖, and so inf(𝑓) = 𝑛
2
.

□

Theorem 8 The following disjointness results hold for B ∪ S.

1. M is 4-disjoint from B ∪ S.

2. LTF is 16-disjoint from B ∪ S.

3. Let 𝑑 be any positive integer. Then there exists a positive integer n0 (depending on 𝑑)
such that AC0[𝑑] is n0-disjoint from B ∪ S.

Proof: Proof of the first point. For any 𝑛-variable monotone Boolean function 𝑓 , from
Fact 2, we have inf(𝑓) ≤

(︀
𝑛
⌊𝑛/2⌋

)︀
⌈𝑛/2⌉/2𝑛−1. Since, for 𝑛 ≥ 4, we have

(︀
𝑛
⌊𝑛/2⌋

)︀
⌈𝑛/2⌉/2𝑛−1 <

𝑛/2, it follows that for 𝑛 ≥ 4, inf(𝑓) < 𝑛/2. On the other hand, from Proposition 1 for any
𝑛-variable Boolean function in B∪S,the total influence is equal to 𝑛

2
. So, 𝑓 cannot be in B∪S.

Proof of the second point. Let 𝑓 be any 𝑛-variable Boolean function in LTF. From Fact 3,
inf(𝑓) ≤ 2

√
𝑛. Now, for 𝑛 > 16, 2

√
𝑛 < 𝑛

2
. Therefore, using Proposition 1, we obtain the

desired result.

Proof of the third point. Let 𝑓 ∈ AC0[𝑑]. From Fact 1, we have inf(𝑓) = 𝑂((log 𝑛)𝑑−1).
Consequently, there is a constant 𝑐 and a positive integer 𝑛1, such that inf(𝑓) ≤ 𝑐(log 𝑛)𝑑−1.
Since 𝑑 is fixed, there is a positive integer n0 such that 𝑐(log 𝑛)𝑑−1 < 𝑛/2 for all 𝑛 ≥ n0. So,
for 𝑛 ≥ n0, inf(𝑓) < 𝑛/2. From Proposition 1, we have that for 𝑛 ≥ n0, 𝑓 does not belong to
B ∪ S. □

The first point of Theorem 8 provides a shorter proof of the fact that no monotone function
on 𝑛 ≥ 4 variables is bent, a result which was conjectured in [39] and originally proved
in [37]. Note that PC ⊆ S. Therefore, the above disjoint result would also hold for functions
belonging to the class PC. Furthermore, observe that an 𝑛-variable bent function satisfies
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PC(𝑛). So, showing that a Boolean function class 𝒞 is n-disjoint from the class S implies
that 𝒞 is also n-disjoint from B.

The third point of Theorem 8 shows that in general bent functions and also functions
satisfying and strict avalanche criteria cannot be realised using constant depth circuits. It has
been shown in [110] that most of the spectral density of Boolean functions having constant
depth circuits are on low weight Fourier coefficients. So, it is perhaps not surprising that
such functions cannot be bent. We note, however, that there is no result in [110] from which
it directly follows that class of Boolean functions with constant depth circuits is almost
disjoint from either B, or S.

Corollary 3.5 of [73] states that if 𝑓 is a linear threshold function, then 𝑃 ̂︀𝑓 (0)+𝑃 ̂︀𝑓 (1) ≥ 1
2
.

Based on this result and utilizing Parseval’s identity (see 2.8), it can be concluded that
(𝑊𝑓 (𝛼))2 cannot be equal for every 𝛼 ∈ F𝑛2 , indicating that 𝑓 cannot be bent. Corollary 3.5

of [73] is a direct consequence of Theorem 3.3 of [73] whose proof is more involved than the
simple technique of using total influence to separate the two classes that has been used in
the present work.

The notion of linear threshold function has been extended to polynomial threshold func-
tion. An 𝑛-variable Boolean function 𝑓 is said to be a degree 𝑑 polynomial threshold
function (PTF) [30] if there is a polynomial 𝑝 of degree 𝑑, such that 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1
2
(1− sign (𝑝 ((−1)𝑥1 , (−1)𝑥2 , . . . , (−1)𝑥𝑛))) for all (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛2 . It has been shown

in [54] that if 𝑓 is a degree 𝑑 PTF, then inf(𝑓) ≤ 2𝑂(𝑑) · log 𝑛 · 𝑛1−1/(4𝑑+2). Let PTF𝑑 be the
set of all degree 𝑑 PTFs. In a manner similar to Theorem 8 that for 𝑑 = log𝑐 𝑛 with 𝑐 < 1/2,
the class B ∪ S is almost disjoint from PTF𝑑. It has been conjectured in [73] that if 𝑓 is any
𝑛-variable degree 𝑑 PTF, then inf(𝑓) ≤ 𝑑

√
𝑛. If the conjecture is true, it will show that B∪S

is 4𝑑2-disjoint from PTF𝑑.

Theorem 9 Let 𝑘 be a non-negative integer. The following disjointness results hold for PL𝑘.

1. There exists a positive integer n0 such that ℳ and PL𝑘 are n0-disjoint.

2. There exists a positive integer n1 such that LTF and PL𝑘 are n1-disjoint.

3. Let 𝑑 be any positive integer. There exists a positive integer n2 (depending on 𝑑) such
that AC0[𝑑] and PL𝑘 are n2-disjoint.

Proof: Proof of the first point. Choose an 𝜀 ∈ (1/2, 1) and let 𝑛 be a positive integer
satisfying 𝑛−𝑛𝜀 ≥ 𝑘. For any 𝑛-variable function 𝑓 in PL𝑘, from Fact 4, inf(𝑓) = Ω(𝑛−𝑘) =
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Ω(𝑛𝜀). So, there is a constant 𝑐1 and an integer 𝑛1, such that inf(𝑓) ≥ 𝑐1𝑛
𝜀 for all 𝑛 ≥ 𝑛1. Let

𝑔 be any 𝑛-variable function in M. From Fact 2, we have inf(𝑔) = 𝑂(
√
𝑛). This implies that

there is a constant 𝑐2 and an integer 𝑛2, such that inf(𝑔) ≤ 𝑐2𝑛
1/2 for all 𝑛 ≥ 𝑛2. Since 𝜀 > 1/2

and 𝑐1 and 𝑐2 are constants, there is an integer n0 such that 𝑐1𝑛𝜀 > 𝑐2𝑛
1/2 for all 𝑛 ≥ n0.

Note that n0 has to satisfy n0−n𝜀0 ≥ 𝑘. So, for 𝑛 ≥ n0, inf(𝑓) ≥ 𝑐1𝑛
𝜀 > 𝑐2𝑛

1/2 ≥ inf(𝑔) which
implies that 𝑓 cannot be equal to 𝑔. Consequently, 𝑓 cannot be equal to any function in M.

Proof of the second point. The proof is similar to the first point, with the only difference
being that Fact 3 is used for the argument instead of Fact 2.

Proof of the third point. The proof is also similar to the first point, with the difference being
that Fact 1 is used for the argument. □

We have already seen in Chapter 3 that it is possible to measure the non-linearity of
a Boolean function using its spectrum as follows: nl(𝑓) = 2𝑛−1 − 2𝑛−1 ·

⃒⃒
max𝛼∈F𝑛

2
𝑊𝑓 (𝛼)

⃒⃒
.

Therefore, for any function 𝑓 ∈ PL𝑘, nl(𝑓) = 2𝑛−1 − 2
𝑛
2
+ 𝑘

2
−1. When we compare this with

the non-linearity of monotone Boolean functions as provided in [35], we can readily observe
that for even values of 𝑛 > 10, there is a clear separation between the class of monotone
functions and PL1. However, for different values of 𝑘, this technique is unable to produce
similar separation results. Additionally, when 𝑛 is an odd number, we are unable to establish
a clear separation between the class of monotone functions and PL𝑘 for any 𝑘 ≥ 1, based on
the non-linearity results available in [35].

Total influence can be used using to separate a few other classes of Boolean functions.
We briefly mention these.

An 𝑛-variable Boolean function is said to have 𝑐-linearly high entropy [154] for real
constant 𝑐 > 0, if 𝐻(𝑓) ≥ 𝑐𝑛. Let 𝑐-LHE denote the set of all Boolean functions having
𝑐-linearly high entropy. It has been shown in [154] that for 𝑓 ∈ LHE𝑐, with 𝑐 ∈ (0, 1

2
),

𝐻(𝑓) ≤ 1+𝑐
ℎ−1(𝑐2)

· inf(𝑓), where ℎ−1 is the inverse of binary entropy function. Consequently,
using Fact 1, it follows that for any positive integer 𝑑 and 𝑐 ∈ (0, 1

2
), LHE𝑐 and AC0[𝑑] are

almost disjoint.

The notion of random linear threshold function was considered in [40], where the parame-
ters 𝑤0, 𝑤1, . . . , 𝑤𝑛 are drawn independently from either the uniform distribution over [−1, 1],
or from the standard normal distribution. It has been shown [40] that for an 𝑛-variable ran-
dom linear threshold function 𝑓 , inf(𝑓) = Ω(

√
𝑛) with high probability. Combining with
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Fact 1 we see that 𝑓 is not in AC0[𝑑] with high probability, where 𝑑 is any positive integer.

4.4 Conclusion

We have used total influence to separate classes of Boolean functions. In particular, we have
shown separation of certain classes of Boolean functions of interest in coding theory and
cryptography from classes of Boolean functions which have been considered in combinatorics
and complexity theory.



Chapter 5

Influence of a set of variables on a Boolean
function

Up to this point, we have explored the significance of the influence of a single variable in
analyzing Boolean functions. However, the broader concept of the influence of a variable
set on a Boolean function has been defined in four distinct ways in existing literature. In
this chapter, we present a novel definition of variable set influence, which relies on the auto-
correlation function, and develop its basic theory. Among the new results that we obtain are
generalisations of the Poincaré inequality and the edge expansion property of the influence
of a single variable. Further, we obtain new characterisations of resilient and bent functions
using the notion of influence. We show that the previous definition of influence due to Fischer
et al. (2002) and Blais (2009) is half the value of the auto-correlation based influence that
we introduce. Regarding the other prior notions of influence, we make a detailed study of
these and show that each of these definitions do not satisfy one or more desirable properties
that a notion of influence may be expected to satisfy.

5.1 Introduction

As discussed in Chapter 3, the notion of variable influence on a Boolean function was initially
introduced by Ben-Or and Linial in their work [12]. Subsequently, this concept has become
central to the study of Boolean functions in various contexts. See [127] for a very compre-
hensive account of such applications. The notion of influence, however, has not received
much attention in the context of cryptographic applications of Boolean functions. We know
of only two works [69, 18] which studied influence in relation to cryptographic properties.

The notion of influence of a variable on a function has been extended to consider the
influence of a set of variables on a function. We have been able to locate four different
definitions of the influence of a set of variables on a Boolean function. The first definition
appears in the work of Ben-Or and Linial [12] itself in 1989. A different definition due
to Fischer et al. [62] appeared in 2002 and the same definition was considered in 2009 by

51
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Blais [23]. A third definition was given by Gangopadhyay and Stănică [69] in 2014 and a
fourth definition was given by Tal [164] in 2017. All of these definitions coincide with each
other in the case of a single variable, but in the case of more than one variable, in general
the values provided by the four definitions of influence are different.

The motivation of our work is to make a systematic and comprehensive study of the
notion of influence of a set of variables on a Boolean function. To this end, we introduce
a definition of influence based on the auto-correlation function, which is a very useful tool
for analysing certain cryptographic properties of Boolean functions. Two Walsh transform
based characterisations of influence are obtained and some basic intuitive properties are
derived. Several results on the influence of a single variable are generalised. These include
Poincaré inequality and edge expansion property of influence of a variable. In the context of
cryptographic properties, we provide characterisations of resilient and bent functions using
the notion of influence.

The definition of influence given in [62, 23] is shown to be half the value of the notion of
influence that we introduce. We also argue that the definition of influence considered in [69]
does not satisfy a basic desirable property, namely that the influence of a set of variables
can be zero even if the function is not degenerate on these variables.

Next we define a quantity called pseudo-influence, obtain its Walsh transform based
characterisation and derive certain basic properties. We show that the pseudo-influence does
not satisfy some intuitive properties that one would expect a notion of influence to satisfy,
which is why we call it pseudo-influence. From the Walsh transform based characterisation,
it follows that the definition of influence considered by Tal [164] is the notion of pseudo-
influence that we introduce. Our motivation for introducing pseudo-influence and analysing
it is to show that the notion of influence considered in [164] is not satisfactory.

Lastly, we make a systematic study of the Ben-Or and Linial (BL) notion of influence [12].
We show that the BL notion of influence satisfies some desirable properties, but it does
not satisfy sub-additivity. Further, we argue that compared to the auto-correlation based
definition, the BL notion of influence is a more coarse measure.

Organization. Section 5.2 describes the previous definitions of influence of a set of vari-
ables. The definition of influence from auto-correlation is introduced in Section 5.3 and its
Walsh transform based characterisations and basic properties are derived. The concept is
further developed in several subsections. The path expansion property of influence is derived
in Section 5.3.1, two probabilistic interpretations of influence are given in Section 5.3.2, the
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relation of influence to juntas and cryptographic properties are described in Section 5.3.3
and 5.3.4 respectively, and a general form of the Fourier entropy/influence conjecture is
mentioned in Section 5.3.5. The notion of pseudo-influence is defined in Section 5.4 and
its properties as well as its relation to influence are studied. Section 5.5 makes a detailed
investigation of the notion of influence introduced by Ben-Or and Linial and its relation to
the auto-correlation based notion of influence. A discussion of the new results in this paper
and their importance is given in Section 5.6. Finally, Section 5.7 concludes the paper.

5.2 Influence

Let us begin by revisiting the explanation of the impact of a single variable on a function,
as discussed in Chapter 2. Suppose 𝑓 : F𝑛2 → F2 is an 𝑛-variable Boolean function with
variables denoted as 𝑋1, 𝑋2, . . . , 𝑋𝑛−1, 𝑋𝑛. For 𝑖 ∈ [𝑛], the influence of 𝑋𝑖 on 𝑓 is denoted
by inf𝑓 (𝑖) and is defined to be the probability (over a uniform random choice of x ∈ F𝑛2 ) that
𝑓(x) is not equal to 𝑓(x⊕ e𝑖), i.e.,

inf𝑓 (𝑖) = Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑓(x⊕ e𝑖)].

The total influence inf(𝑓) of the individual variables is defined to be the sum of the
influences of the individual variables, i.e. inf(𝑓) =

∑︀
𝑖∈[𝑛] inf𝑓 (𝑖).

Let 𝑓 be an 𝑛-variable Boolean function and ∅ ̸= 𝑇 ⊆ [𝑛] with 𝑡 = #𝑇 . The influence
of the set of variables indexed by 𝑇 on 𝑓 has been defined in the literature in four different
ways. These definitions are given below.

Ben-Or and Linial [12]. The definition of influence introduced in [12] is the following.

ℐ𝑓 (𝑇 ) = Pr
𝛼∈F𝑛−𝑡

2

[︀
𝑓X𝑇←𝛼(X𝑇 ) is not constant

]︀
. (5.1)

Fischer et al. [62] and Blais [23]. The same quantity has been defined in two different
ways in Fischer et al. [62] and Blais [23]. In [62], this quantity was called ‘variation’ and
in [23], it was termed ‘influence’. Here we provide the formulation as given in [23]. For
x,y ∈ F𝑛2 , let 𝑍(𝑇,x,y) denote the vector z ∈ F𝑛2 , where 𝑧𝑖 = 𝑦𝑖, if 𝑖 ∈ 𝑇 and 𝑧𝑖 = 𝑥𝑖
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otherwise. The definition of influence given in [23] is the following.

𝐼𝑓 (𝑇 ) = Pr
x,y∈F𝑛

2

[𝑓(x) ̸= 𝑓(𝑍(𝑇,x,y))] . (5.2)

Gangopadhyay and Stănică [69]. The definition of influence introduced in [69] is the
following.

𝒥𝑓 (𝑇 ) = Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑓(x⊕ 𝜒𝑇 )] =
1

2
(1− 𝐶𝑓 (𝜒𝑇 )) . (5.3)

Tal [164]. For 𝛽 ∈ F𝑡2, let 𝑓𝛽 denote the function 𝑓X𝑇←𝛽. Let 𝐷𝑇𝑓 : {0, 1}𝑛−𝑡 → [−1, 1] be
defined as follows. For y ∈ 𝐹 𝑛−𝑡

2 , (𝐷𝑇𝑓)(y) = 1/2𝑡 ×
∑︀

𝛽∈F𝑡
2
(−1)wt(𝛽)+𝑓𝛽(y). The definition

of influence given in [164] is the following.

𝐽𝑓 (𝑇 ) = E
y∈F𝑛−𝑡

2

[︀
(𝐷𝑇𝑓(y))

2]︀ . (5.4)

5.3 Influence from Auto-Correlation

The auto-correlation function is a very useful tool for expressing various properties of Boolean
functions. We refer to [36] for the many uses of the auto-correlation function in the context of
cryptographic properties of Boolean functions. Given an 𝑛-variable Boolean function 𝑓 and
𝛼 ∈ F𝑛2 , the value of the auto-correlation function 𝐶𝑓 at 𝛼, i.e., 𝐶𝑓 (𝛼) is the number of places
𝑓(X) and 𝑓(X⊕𝛼) are equal minus the number of places they are unequal (normalised by
2𝑛). So the auto-correlation function at 𝛼 to some extent captures the effect on 𝑓 of flipping
all the bits in the support of 𝛼. This suggests that the auto-correlation function is an
appropriate mechanism to capture the influence of a set of variables on a Boolean function.
We note that for 𝑖 ∈ [𝑛], inf𝑓 (𝑖) can be written as follows.

inf𝑓 (𝑖) =
1

2
(1− 𝐶𝑓 (e𝑖)) = 1− 1

2
(𝐶𝑓 (0) + 𝐶𝑓 (e𝑖)) . (5.5)

Let 𝑓(𝑋1, . . . , 𝑋𝑛) be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 = {𝑖1, . . . , 𝑖𝑡} ⊆ [𝑛]. We
denote the influence of the set of variables {𝑋𝑖1 , . . . , 𝑋𝑖𝑡} corresponding to 𝑇 = {𝑖1, . . . , 𝑖𝑡}
on the Boolean function 𝑓 by inf𝑓 (𝑇 ). Following the auto-correlation based expression of
the influence of a single variable on a Boolean function given by (5.5), we put forward the
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following definition of inf𝑓 (𝑇 ).

inf𝑓 (𝑇 ) = 1− 1

2#𝑇

(︃∑︁
𝛼≤𝜒𝑇

𝐶𝑓 (𝛼)

)︃
. (5.6)

It is easy to note that for a singleton set 𝑇 = {𝑖}, inf𝑓 (𝑇 ) = inf𝑓 (𝑖). Further, one may note
that inf𝑓 (𝑇 ) = 21−𝑡 ×

∑︀
𝑆⊆𝑇 𝒥𝑓 (𝑆).

Remark 3 We note that inf𝑓 (𝑇 ), ℐ𝑓 (𝑇 ), 𝐽𝑓 (𝑇 ) and 𝒥𝑓 (𝑇 ) (defined in Section 5.2) agree
with each other when #𝑇 = 1. Also, we later show that 𝐼𝑓 (𝑇 ) = inf𝑓 (𝑇 )/2.

It is perhaps not immediately obvious that the definition of influence given by (5.6) is
appropriate. We later show in Theorem 14 that this definition satisfies a set of intuitive
desiderata that any notion of influence may be expected to satisfy.

Let 𝑓 be an 𝑛-variable function and 𝑡 be an integer with 1 ≤ 𝑡 ≤ 𝑛. Then the 𝑡-influence
of 𝑓 is the total influence (scaled by

(︀
𝑛
𝑡

)︀
) obtained by summing the influence of every set of

𝑡 variables on the function 𝑓 , i.e.,

𝑡-inf(𝑓) =

∑︀
{𝑇⊆[𝑛]:#𝑇=𝑡} inf𝑓 (𝑇 )(︀

𝑛
𝑡

)︀ . (5.7)

Note that 1-inf(𝑓) is equal to inf(𝑓)/𝑛, i.e., 1-inf(𝑓) is the sum of the influences of the
individual variables scaled by a factor of 𝑛.

The following result provides a characterisation of influence in terms of the Walsh trans-
form.

Theorem 10 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then

inf𝑓 (𝑇 ) =
∑︁

{u∈F𝑛
2 :supp(u)∩𝑇 ̸=∅}

(𝑊𝑓 (u))
2 . (5.8)

Proof: Let #𝑇 = 𝑡. Let 𝐸 be the subspace {x ∈ F𝑛2 : x ≤ 𝜒𝑇}. Then #𝐸 = 2𝑛−𝑡 and
𝐸⊥ = {y ∈ F𝑛2 : y ≤ 𝜒𝑇}. Using (2.15), we obtain

∑︁
x≤𝜒𝑇

(𝑊𝑓 (x))
2 =

2𝑛−𝑡

2𝑛

∑︁
y≤𝜒𝑇

𝐶𝑓 (y) =
1

2#𝑇

∑︁
y≤𝜒𝑇

𝐶𝑓 (y). (5.9)



56 Influence of a set of variables on a Boolean function

Using (5.9) with (5.6) and (2.8) we have

inf𝑓 (𝑇 ) = 1−
∑︁
x≤𝜒𝑇

(𝑊𝑓 (x))
2 =

∑︁
w∈F𝑛

2

(𝑊𝑓 (w))2 −
∑︁
x≤𝜒𝑇

(𝑊𝑓 (x))
2 =

∑︁
u̸≤𝜒𝑇

(𝑊𝑓 (u))
2 .

The condition u ̸≤ 𝜒𝑇 is equivalent to supp(u) ∩ 𝑇 ̸= ∅. □

It is a well known result (see Page 52 of [127]) that for an 𝑛-variable Boolean function,
the total influence of the individual variables, i.e., inf(𝑓) is the expected value of a random
variable which takes the value 𝑘 with probability 𝑃 ̂︀𝑓 (𝑘) for 𝑘 = 0, . . . , 𝑛. We generalise this
result to the case of 𝑡-inf(𝑓) for 𝑡 ≥ 1.

For positive integers 𝑛, 𝑡 and 𝑘 with, 1 ≤ 𝑡 ≤ 𝑛 and 0 ≤ 𝑘 ≤ 𝑛, fix a subset 𝑆 of [𝑛] with
#𝑆 = 𝑘 and let 𝑁𝑛,𝑡,𝑘 be the number of subsets of [𝑛] of size 𝑡 which contain at least one
element of 𝑆. Then

𝑁𝑛,𝑡,𝑘 =

(︂
𝑛

𝑡

)︂
−
(︂
𝑛− 𝑘

𝑡

)︂
=

min(𝑘,𝑡)∑︁
𝑖=1

(︂
𝑘

𝑖

)︂(︂
𝑛− 𝑘

𝑡− 𝑖

)︂
. (5.10)

It follows that 𝑁𝑛,𝑡,0 = 0, 𝑁𝑛,𝑡,𝑘 =
(︀
𝑛
𝑡

)︀
for 𝑛− 𝑡+1 ≤ 𝑘 ≤ 𝑛, and 𝑁𝑛,1,𝑘 = 𝑘 for 𝑘 = 0, . . . , 𝑛.

Theorem 11 Let 𝑓 be an 𝑛-variable function and 𝑡 ∈ [𝑛]. Then

𝑡-inf(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

𝑁𝑛,𝑡,𝑘 𝑃 ̂︀𝑓 (𝑘) = 1(︀
𝑛
𝑡

)︀E[𝑍], (5.11)

where 𝑍 is the number of 𝑡-element subsets of [𝑛] which have a non-empty intersection with
a set 𝑆 ⊆ [𝑛] chosen with probability (𝑊𝑓 (𝜒𝑆))

2.

Proof: We start with the proof of the first equality in (5.11). Consider u ∈ F𝑛2 with
#supp(u) = 𝑘. For 1 ≤ 𝑖 ≤ min(𝑘, 𝑡), the number of subsets 𝑇 of [𝑛] of cardinality 𝑡 whose
intersection with supp(u) is of size 𝑖 is

(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑡−𝑖

)︀
. Summing over 𝑖 provides the number of

subsets 𝑇 of [𝑛] of cardinality 𝑡 with which supp(u) has a non-empty intersection. From (5.7)
and Theorem 10, we have

𝑡-inf(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

∑︁
{u∈F𝑛

2 :wt(u)=𝑘}

min(𝑘,𝑡)∑︁
𝑖=1

(︂
𝑘

𝑖

)︂(︂
𝑛− 𝑘

𝑡− 𝑖

)︂
(𝑊𝑓 (u))

2

=
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

min(𝑘,𝑡)∑︁
𝑖=1

(︂
𝑘

𝑖

)︂(︂
𝑛− 𝑘

𝑡− 𝑖

)︂ ∑︁
{u∈F𝑛

2 :wt(u)=𝑘}

(𝑊𝑓 (u))
2
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=
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

𝑁𝑛,𝑡,𝑘𝑃 ̂︀𝑓 (𝑘)
=

1(︀
𝑛
𝑡

)︀E[𝑍].
The second equality in (5.11) follows from the observation that if #𝑆 = 𝑘, then 𝑍 =

𝑁𝑛,𝑡,𝑘. □

Poincaré inequality (Theorem 7) states that the total influence of the individual variables,
i.e., inf(𝑓) is bounded below by 4Var(𝑓). We obtain a generalisation of this result as a
corollary of Theorem 11.

Corollary 1 Let 𝑓 be an 𝑛-variable Boolean function and 𝑡 ∈ [𝑛]. Then

𝑡-inf(𝑓) ≥ 4𝑡

𝑛
Var(𝑓). (5.12)

Equality is achieved for 𝑡 = 𝑛.

Proof: Note that for 0 ≤ 𝑘 ≤ 𝑛, 𝑛− 𝑖+ 1 > 0 for 2 ≤ 𝑖 ≤ 𝑘 and so 1− 𝑡/(𝑛− 𝑖+ 1) < 1

for 2 ≤ 𝑖 ≤ 𝑘. Using this, we have(︀
𝑛−𝑘
𝑡

)︀(︀
𝑛
𝑡

)︀ =

(︂
1− 𝑡

𝑛

)︂(︂
1− 𝑡

𝑛− 1

)︂
· · ·
(︂
1− 𝑡

𝑛− 𝑘 + 1

)︂
≤ 1− 𝑡

𝑛
.

It follows that for 𝑘 ∈ [𝑛], 𝑁𝑛,𝑡,𝑘/
(︀
𝑛
𝑡

)︀
≥ 𝑡/𝑛, where equality is achieved for 𝑡 = 𝑛. So

from (5.11),

𝑡-inf(𝑓) ≥ 𝑡

𝑛

𝑛∑︁
𝑘=1

𝑃 ̂︀𝑓 (𝑘) = 𝑡

𝑛
(1− 𝑃 ̂︀𝑓 (0𝑛)) = 4𝑡

𝑛
Var(𝑓).

□

The Fourier/Walsh transform based expression for the total influence given by Theo-
rem 11 is a useful result. Corollary 1 above provides a direct application of Theorem 11.
In Theorem 15, proved later, we use the expression given by Theorem 11 to characterise
the functions which achieve the maximum value of the total influence as resilient functions.
In Theorem 16, also proved later, the expression is used to show that total influence is
monotonic increasing in 𝑡. An additional application of Theorem 11 is given next.

Given an 𝑛-variable Boolean function 𝑓 , we say that the Fourier spectrum of 𝑓 is 𝜖-
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concentrated on coefficients of weights up to 𝑘 if
∑︀

𝑖≥𝑘 𝑃 ̂︀𝑓 (𝑖) ≤ 𝜖. Lemma 11 shows that the
Fourier spectrum of 𝑓 is 𝜖-concentrated on coefficients of weights up to 𝑘, where 𝑘 is the least
positive integer such that 𝑘 ≥ 𝑛 × 1-inf(𝑓)/𝜖 and 1-inf(𝑓) ≤ 𝜖 ≤ 1. The following theorem
generalises this result to arbitrary values of 𝑡.

Theorem 12 For any 𝑛-variable Boolean function, 𝑡 ∈ [𝑛] and 𝜖 ∈ [𝑡-inf(𝑓), 1], the Fourier
spectrum of 𝑓 is 𝜖-concentrated on coefficients of weights up to 𝑘𝑡, where 𝑘𝑡 is the least positive
integer such that

𝑘𝑡 ≥ 𝑡− 1 + (𝑛− 𝑡+ 1)
(︀
1− (1− 𝑥𝑡)

1/𝑡
)︀
, (5.13)

and 𝑥𝑡 = 𝑡-inf(𝑓)
𝜖

.

Proof: The condition given by (5.13) holds if and only if (𝑛− 𝑘𝑡) ≤ (𝑛− 𝑡+ 1)(1− 𝑥𝑡)
𝑡

which holds if and only if

(𝑛− 𝑘𝑡)
𝑡

𝑡!
≤ (𝑛− 𝑡+ 1)𝑡

𝑡!
(1− 𝑥𝑡). (5.14)

Using the inequalities
(︀
𝑛−𝑘𝑡
𝑡

)︀
≤ (𝑛− 𝑘𝑡)

𝑡/𝑡! and (𝑛− 𝑡+ 1)𝑡/𝑡! ≤
(︀
𝑛
𝑡

)︀
, from (5.14) we obtain(︀

𝑛−𝑘𝑡
𝑡

)︀
≤
(︀
𝑛
𝑡

)︀
(1− 𝑥𝑡), which holds if and only if(︂

𝑛

𝑡

)︂
−
(︂
𝑛− 𝑘𝑡
𝑡

)︂
≥

(︂
𝑛

𝑡

)︂
𝑥𝑡 =

(︂
𝑛

𝑡

)︂
𝑡-inf(𝑓)

𝜖
. (5.15)

Let if possible that the Fourier transform of 𝑓 is not 𝜖-concentrated on coefficients of weights
up to 𝑘𝑡. Then for 𝑘𝑡 satisfying (5.15), we have

∑︀𝑛
𝑘=𝑘𝑡

𝑃 ̂︀𝑓 (𝑘) > 𝜖. From (5.11), we have

𝑡-inf(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

𝑁𝑛,𝑡,𝑘 𝑃 ̂︀𝑓 (𝑘)

=
1(︀
𝑛
𝑡

)︀ (︃𝑘𝑡−1∑︁
𝑘=1

𝑁𝑛,𝑡,𝑘 𝑃 ̂︀𝑓 (𝑘) +
𝑛∑︁

𝑘=𝑘𝑡

𝑁𝑛,𝑡,𝑘 𝑃 ̂︀𝑓 (𝑘)
)︃

≥ 1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑘𝑡

(︂(︂
𝑛

𝑡

)︂
−
(︂
𝑛− 𝑘

𝑡

)︂)︂
𝑃 ̂︀𝑓 (𝑘) (using (5.10))

≥ 1(︀
𝑛
𝑡

)︀ (︂(︂𝑛
𝑡

)︂
−
(︂
𝑛− 𝑘𝑡
𝑡

)︂)︂ 𝑛∑︁
𝑘=𝑘𝑡

𝑃 ̂︀𝑓 (𝑘)

>
1(︀
𝑛
𝑡

)︀ (︂(︂𝑛
𝑡

)︂
−
(︂
𝑛− 𝑘𝑡
𝑡

)︂)︂
𝜖 (by assumption)



Influence from Auto-Correlation 59

≥ 𝑡-inf(𝑓) (using (5.15)).

This gives us the desired contradiction. □

An alternative Walsh transform based characterisation of influence is given by the fol-
lowing result.

Theorem 13 Let 𝑓 be an 𝑛-variable function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then

inf𝑓 (𝑇 ) = 1− 1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(𝑊𝑓𝛼(0𝑡))
2 , (5.16)

where 𝑓𝛼 denotes 𝑓X𝑇←𝛼.

Proof: Let #𝑇 = 𝑡. Let 𝐸 = {x ∈ F𝑛2 : x ≤ 𝜒𝑇} and so 𝐸⊥ = {x ∈ F𝑛2 : x ≤ 𝜒𝑇}.
Using (2.15) and (2.16) we have

1

2𝑡

∑︁
u≤𝜒𝑇

𝐶𝑓 (u) =
1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(𝑊𝑓𝛼(0𝑡))
2 .

Using the definition of influence given in (5.6), we obtain the required result. □

Remark 4 Theorems 10 and 13 provide two different Walsh transform based characterisa-
tions of inf𝑓 (𝑇 ). The expression for inf𝑓 (𝑇 ) given by (5.16) can be computed in 𝑂(2𝑛) time,
while the expression given by (5.8) in general will require 𝑂(𝑛2𝑛) time using the fast Fourier
transform algorithm to compute the required values of the Walsh transform.

We obtain the following corollary of Theorem 13.

Corollary 2 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then

inf𝑓 (𝑇 ) =
1

2𝑛−2−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

Var(𝑓𝛼) (5.17)

where 𝑓𝛼 denotes 𝑓X𝑇←𝛼.

Proof: Using (5.16), we have

inf𝑓 (𝑇 ) = 1− 1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(𝑊𝑓𝛼(0𝑡))
2
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=
1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(︀
1− (𝑊𝑓𝛼(0𝑡))

2)︀
=

1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

4E (𝑓𝛼) (1− E (𝑓𝛼))

=
1

2𝑛−2−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

Var(𝑓𝛼). (5.18)

□

One may consider some basic desiderata that any reasonable measure of influence should
satisfy. Since we are considering normalised measures, the value of influence should be
in the set [0, 1] and it should take the value 0 if and only if the function is degenerate
on the set of variables. Further, by expanding a set of variables, the value of influence
should not decrease, i.e. influence should be monotonic non-decreasing. Also, sub-additivity
is a desirable property. The following result shows these properties for inf𝑓 (𝑇 ) and also
characterises the condition under which inf𝑓 (𝑇 ) takes its maximum value 1.

Theorem 14 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇, 𝑆 ⊆ [𝑛]. Then

1. 0 ≤ inf𝑓 (𝑇 ) ≤ 1.

2. inf𝑓 (𝑇 ) = 0 if and only if the function 𝑓 is degenerate on the variables indexed by 𝑇 .

3. inf𝑓 (𝑇 ) = 1 if and only if 𝑓𝛼 is balanced for each 𝛼 ∈ F𝑛−𝑡2 , where 𝑓𝛼 denotes 𝑓X𝑇←𝛼.

4. inf𝑓 (𝑆 ∪ 𝑇 ) ≥ inf𝑓 (𝑆).

5. inf𝑓 (𝑆 ∪ 𝑇 ) = inf𝑓 (𝑆) + inf𝑓 (𝑇 )−
∑︀

u∈𝒰 (𝑊𝑓 (u))
2, where 𝒰 = {u ∈ F𝑛2 : supp(u)∩ 𝑆 ̸=

∅ ≠ supp(u)∩𝑇}. Consequently, inf𝑓 (𝑆 ∪𝑇 ) ≤ inf𝑓 (𝑆)+ inf𝑓 (𝑇 ) (i.e., inf𝑓 (𝑇 ) satisfies
sub-additivity).

Proof: The first point follows from Theorem 10 and Parseval’s theorem. The fourth and
fifth points also follow from Theorem 10. The third point follows from Theorem 13.

Consider the second point. From (5.16), inf𝑓 (𝑇 ) = 0 if and only if
∑︀

𝛼∈F𝑛−𝑡
2

(𝑊𝑓𝛼(0𝑡))
2 =

2𝑛−𝑡. Since (𝑊𝑓𝛼(0𝑡))
2 ≤ 1, it follows that

∑︀
𝛼∈F𝑛−𝑡

2
(𝑊𝑓𝛼(0𝑡))

2 = 2𝑛−𝑡 if and only if
(𝑊𝑓𝛼(0𝑡))

2 = 1 (equivalently, 𝑓𝛼 is constant) for all 𝛼 ∈ F𝑛−𝑡2 . The last condition is equiva-
lent to the statement that 𝑓 is degenerate on the set of variables indexed by 𝑇 . □
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Remark 5 For the Gangopadhyay and Stănică notion of influence 𝒥𝑓 (𝑇 ) (see 5.3) the sec-
ond point of Theorem 14 does not hold. It is possible that 𝑓 is not degenerate on the variables
indexed by 𝑇 , yet 𝒥𝑓 (𝑇 ) = 0. For example, let 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4) = (1 ⊕ 𝑋1)𝑋2(𝑋3 ⊕ 𝑋4)

and 𝑇 = {3, 4}. Then it may be checked that 𝒥𝑓 (𝑇 ) = 0, but 𝑓 is not degenerate on the set
of variables {𝑋3, 𝑋4} as 𝑓(0, 1, 0, 0) = 0 ̸= 𝑓(0, 1, 0, 1).

If a function is not degenerate on the set of variables indexed by 𝑇 , then these variables
have an effect on value of 𝑓 . Any reasonable measure of influence should ensure that if 𝑓 is
not degenerate on a set of variables, then the value of the measure for this set of variables is
positive. Since this condition does not hold for 𝒥𝑓 (𝑇 ), this measure cannot be considered to
be a satisfactory measure of influence of a set of variables.

Theorem 15 Let 𝑓 be an 𝑛-variable Boolean function and 𝑡 be an integer with 1 ≤ 𝑡 ≤ 𝑛.

1. 𝑡-inf(𝑓) takes its maximum value 1 if and only if 𝑓 is (𝑛− 𝑡)-resilient.

2. 𝑡-inf(𝑓) takes its minimum value 0 if and only if 𝑓 is a constant function.

Proof: From (5.11) and recalling that 𝑁𝑛,𝑡,0 = 0 and 𝑁𝑛,𝑡,𝑘 =
(︀
𝑛
𝑡

)︀
for 𝑛− 𝑡+ 1 ≤ 𝑘 ≤ 𝑛,

we have

𝑡-inf(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=1

𝑁𝑛,𝑡,𝑘𝑃 ̂︀𝑓 (𝑘)

=
1(︀
𝑛
𝑡

)︀ (︃𝑛−𝑡∑︁
𝑘=0

(︂(︂
𝑛

𝑡

)︂
−
(︂
𝑛− 𝑘

𝑡

)︂)︂
+

𝑛∑︁
𝑘=𝑛−𝑡+1

(︂
𝑛

𝑡

)︂)︃
𝑃 ̂︀𝑓 (𝑘)

=
1(︀
𝑛
𝑡

)︀ (︃ 𝑛∑︁
𝑘=0

(︂
𝑛

𝑡

)︂
−

𝑛−𝑡∑︁
𝑘=0

(︂
𝑛− 𝑘

𝑡

)︂)︃
𝑃 ̂︀𝑓 (𝑘)

= 1− 1(︀
𝑛
𝑡

)︀ 𝑛−𝑡∑︁
𝑘=0

(︂
𝑛− 𝑘

𝑡

)︂
𝑃 ̂︀𝑓 (𝑘). (5.19)

From (5.19), 𝑡-inf(𝑓) takes its maximum value of 1 if and only if
∑︀𝑛−𝑡

𝑘=0

(︀
𝑛−𝑘
𝑡

)︀
𝑃 ̂︀𝑓 (𝑘) = 0

which holds if and only if 𝑃 ̂︀𝑓 (𝑘) = 0 for 𝑘 = 0, . . . , 𝑛−𝑡, i.e., if and only if 𝑓 is (𝑛−𝑡)-resilient.
This shows the first point.

For the second point, from (5.19), 𝑡-inf(𝑓) = 0 if and only if(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (0) +

(︂
𝑛− 1

𝑡

)︂
𝑃 ̂︀𝑓 (1) + · · ·+

(︂
𝑡

𝑡

)︂
𝑃 ̂︀𝑓 (𝑡) =

(︂
𝑛

𝑡

)︂
. (5.20)
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If 𝑓 is a constant function, then 𝑃 ̂︀𝑓 (0) = 1 and 𝑃 ̂︀𝑓 (𝑘) = 0 for 𝑘 ∈ [𝑛]. So (5.20) holds. On
the other hand, if 𝑓 is not a constant function, then 𝑃 ̂︀𝑓 (0) < 1. In this case,(︂

𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (0) +

(︂
𝑛− 1

𝑡

)︂
𝑃 ̂︀𝑓 (1) + · · ·+

(︂
𝑡

𝑡

)︂
𝑃 ̂︀𝑓 (𝑡)

≤
(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (0) +

(︂
𝑛− 1

𝑡

)︂
(𝑃 ̂︀𝑓 (1) + · · ·+ 𝑃 ̂︀𝑓 (𝑛))

=

(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (0) +

(︂
𝑛− 1

𝑡

)︂
(1− 𝑃 ̂︀𝑓 (0)) <

(︂
𝑛

𝑡

)︂
.

□

The next result shows that as 𝑡 increases, the value of 𝑡-inf(𝑓) is non-decreasing.

Theorem 16 Let 𝑓 be an 𝑛-variable Boolean function. For 𝑡 ∈ [𝑛], 𝑡-inf(𝑓) increases mono-
tonically with 𝑡.

Proof: For 𝑡 ∈ [𝑛−1], the following calculations show that 𝑡-inf(𝑓) is at most (𝑡+1)-inf(𝑓).

𝑡-inf(𝑓) ≤ (𝑡+ 1)-inf(𝑓)

⇐⇒ 1−
𝑛−𝑡∑︁
𝑘=0

(︀
𝑛−𝑘
𝑡

)︀(︀
𝑛
𝑡

)︀ 𝑃 ̂︀𝑓 (𝑘) ≤ 1−
𝑛−𝑡−1∑︁
𝑘=0

(︀
𝑛−𝑘
𝑡+1

)︀(︀
𝑛
𝑡+1

)︀ 𝑃 ̂︀𝑓 (𝑘)

⇐⇒
𝑛−𝑡∑︁
𝑘=0

(︀
𝑛−𝑘
𝑡

)︀(︀
𝑛
𝑡

)︀ 𝑃 ̂︀𝑓 (𝑘) ≥
𝑛−𝑡−1∑︁
𝑘=0

(︀
𝑛−𝑘
𝑡+1

)︀(︀
𝑛
𝑡+1

)︀ 𝑃 ̂︀𝑓 (𝑘)

⇐⇒ 1(︀
𝑛
𝑡

)︀𝑃 ̂︀𝑓 (𝑛− 𝑡) +
𝑛−𝑡−1∑︁
𝑘=0

(︃(︀
𝑛−𝑘
𝑡

)︀(︀
𝑛
𝑡

)︀ −
(︀
𝑛−𝑘
𝑡+1

)︀(︀
𝑛
𝑡+1

)︀ )︃𝑃 ̂︀𝑓 (𝑘) ≥ 0

⇐⇒ 1(︀
𝑛
𝑡

)︀𝑃 ̂︀𝑓 (𝑛− 𝑡) +
𝑛−𝑡−1∑︁
𝑘=0

(︂
(𝑛− 𝑘)!(𝑛− 𝑡− 1)!

𝑛!(𝑛− 𝑘 − 𝑡− 1)!

𝑘

𝑛− 𝑡− 𝑘

)︂
𝑃 ̂︀𝑓 (𝑘) ≥ 0. (5.21)

For 𝑘 in the range 0 to 𝑛− 𝑡− 1, it follows that 𝑘/(𝑛− 𝑡− 𝑘) ≥ 0. So the relation in (5.21)
holds showing that 𝑡-inf(𝑓) ≤ (𝑡+ 1)-inf(𝑓).

□

5.3.1 Geometric Interpretation

Let 𝐻𝑛 be the 𝑛-dimensional hypercube, i.e., 𝐻𝑛 is a graph whose vertex set is F𝑛2 and two
vertices u and v are connected by an edge if v can be obtained from u by flipping one of
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the bits of u, i.e., if wt(u⊕ v) = 1. Let 𝐴 be a subset of the vertices of 𝐻𝑛 and 𝐴 = F𝑛2 ∖𝐴.
Let 𝑒(𝐴,𝐴) be the number of edges between 𝐴 and 𝐴. Suppose 𝑓 is an 𝑛-variable Boolean
function such that supp(𝑓) = 𝐴. It is known that inf(𝑓) = 𝑒(𝐴,𝐴)/2𝑛−1 (see [94] and Page 52
of [127]). This relation is called the edge expansion property of influence. In this section, we
obtain a general form of this relation for 𝑡-inf(𝑓).

Suppose u is a vertex of 𝐻𝑛 and 𝛼 ∈ F𝑛2 with 𝑇 = supp(𝛼) and 𝑡 = #𝑇 . Let v = u⊕𝛼.
Then v is obtained from u by flipping the bits of u which are indexed by 𝑇 . Since these bits
can be flipped in any order, there are a total of 𝑡! paths of length 𝑡 in 𝐻𝑛 between u and v.

Let 𝐴 be a subset of 𝐻𝑛 and 𝑓 be an 𝑛-variable Boolean function such that supp(𝑓) = 𝐴.
For 𝛼 ∈ F𝑛2 , let 𝑛𝛼 be the number of paths between 𝐴 and 𝐴 such that the two ends u and
v of any such path satisfy u⊕v = 𝛼. The following result relates 𝑛𝛼 to the autocorrelation
of 𝑓 at 𝛼.

Proposition 2 𝐶𝑓 (𝛼) = 1− 𝑛𝛼

(wt(𝛼))!2𝑛−2
.

Proof: Let 𝑥𝛼 = #{(u,v) : u ∈ 𝐴, v ∈ 𝐴, u⊕ v = 𝛼}. Then

𝑛𝛼 = (wt(𝛼))!𝑥𝛼. (5.22)

Note that 𝑥𝛼 = #{u ∈ F𝑛2 : 𝑓(u) = 1 and 𝑓(u ⊕ 𝛼) = 0}. Let 𝑔(X) = 𝑓(X) ⊕ 𝑓(X ⊕ 𝛼).
Then

wt(𝑔) = #{u ∈ F𝑛2 : either 𝑓(u) = 1 and 𝑓(u⊕𝛼) = 0, or 𝑓(u) = 0 and 𝑓(u⊕𝛼) = 1}
= 2#{u ∈ F𝑛2 : 𝑓(u) = 1 and 𝑓(u⊕𝛼) = 0}
= 2𝑥𝛼. (5.23)

From the definition of 𝐶𝑓 (𝛼) given in (2.12), it follows that wt(𝑔) = 2𝑛−1(1−𝐶𝑓 (𝛼)) which
combined with (5.22) and (5.23) shows the result. □

Remark 6 Proposition 2 connects auto-correlation to number of paths and consequently
provides a geometric interpretation of the auto-correlation function. Combining Proposition 2
with (2.13), we obtain

(𝑊𝑓 (𝛽))
2 = Δ𝛽 − 1

22𝑛−2

∑︁
𝛼∈F𝑛

2

(−1)⟨𝛼,𝛽⟩
𝑛𝛼

(wt(𝛼))!
,

where Δ𝛽 = 1 if 𝛽 = 0𝑛 and 0 otherwise. This provides a geometric interpretation of
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the Walsh transform. To the best of our knowledge, these geometric interpretations of the
auto-correlation function and the Walsh transform do not appear earlier in the literature.

Now we are ready to state the path expansion property of 𝑡-inf(𝑓).

Theorem 17 Let 𝑓 be an 𝑛-variable Boolean function and 𝑡 ∈ [𝑛]. Then

𝑡-inf(𝑓) = 1− 1

2𝑛+𝑡−2
(︀
𝑛
𝑡

)︀ ∑︁
𝛼∈F𝑛

2

(︂
𝑛− wt(𝛼)

𝑡− wt(𝛼)

)︂(︂
2𝑛−2 − 𝑛𝛼

(wt(𝛼))!

)︂
. (5.24)

Proof: Using Proposition 2 in the definition of inf𝑇 (𝑓) given by (5.6), we have

inf𝑇 (𝑓) = 1− 1

2𝑡

(︃∑︁
𝛼≤𝜒𝑇

𝐶𝑓 (𝛼)

)︃

= 1− 1

2𝑡

𝑡∑︁
𝑘=0

⎛⎝ ∑︁
𝛼≤𝜒𝑇 ,wt(𝛼)=𝑘

𝐶𝑓 (𝛼)

⎞⎠
= 1− 1

2𝑡

𝑡∑︁
𝑘=0

⎛⎝ ∑︁
𝛼≤𝜒𝑇 ,wt(𝛼)=𝑘

(︁
1− 𝑛𝛼

𝑘!2𝑛−2

)︁⎞⎠ . (5.25)

For 𝛼 ∈ F𝑛2 with wt(𝛼) = 𝑘, there are exactly
(︀
𝑛−𝑘
𝑡−𝑘

)︀
subsets 𝑇 of [𝑛] such that 𝛼 ≤ 𝜒𝑇 .

Using this observation, we have

𝑡-inf(𝑓) =
1(︀
𝑛
𝑡

)︀ ∑︁
𝑇⊆[𝑛],#𝑇=𝑡

inf𝑓 (𝑇 )

= 1− 1

2𝑡
(︀
𝑛
𝑡

)︀ 𝑡∑︁
𝑘=0

⎛⎝ ∑︁
{𝛼:wt(𝛼)=𝑘}

(︂
𝑛− 𝑘

𝑡− 𝑘

)︂(︁
1− 𝑛𝛼

𝑘!2𝑛−2

)︁⎞⎠
= 1− 1

2𝑛+𝑡−2
(︀
𝑛
𝑡

)︀ ∑︁
𝛼∈F𝑛

2

(︂
𝑛− wt(𝛼)

𝑡− wt(𝛼)

)︂(︂
2𝑛−2 − 𝑛𝛼

(wt(𝛼))!

)︂
.

□

Putting 𝑡 = 1 in (5.24), we obtain 1-inf(𝑓) =
∑︀

𝑖∈[𝑛] 𝑛e𝑖/(𝑛2
𝑛−1) = 𝑒(𝐴,𝐴)/(𝑛2𝑛−1) which is

the previously mentioned edge expansion property for inf(𝑓) scaled by a factor of 𝑛.
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5.3.2 Probabilistic Interpretation

We have defined the influence of a set of variables using the auto-correlation function. In
this section, we provide two probabilistic interpretations of the influence.

Let 𝑓 be an 𝑛-variable Boolean function and ∅ ̸= 𝑇 ⊆ [𝑛], with #𝑇 = 𝑡. We define the
following probability

𝜇𝑓 (𝑇 ) = Pr
𝛼≤𝜒𝑇 ,u∈F𝑛

2

[𝑓(u) ̸= 𝑓(u⊕𝛼)]. (5.26)

In (5.26), 𝛼 is required to be chosen uniformly at random from the set {x : x ≤ 𝜒𝑇}. This
is achieved by fixing the positions of 𝛼 corresponding to the elements of 𝑇 to be 0, and
choosing the bits of 𝛼 corresponding to the positions in 𝑇 uniformly at random.

The definition of influence given by Fischer et al. [62] and Blais [23] is 𝐼𝑓 (𝑇 ) and is given
by (5.2). This definition is made in terms of the function 𝑍(𝑇,x,y). For x,y ∈ F𝑛2 , both x

and 𝑍(𝑇,x,y) agree on the bits indexed by 𝑇 . In particular, the bits of y indexed by 𝑇 do
not play any role in the probability Prx,y∈F𝑛

2
[𝑓(x) ̸= 𝑓(𝑍(𝑇,x,y))]. So this probability is the

same as the probability of the event arising from choosing 𝛽 uniformly at random from F𝑛−𝑡2 ,
choosing w and z independently and uniformly from F𝑡2 and considering 𝑓𝛽(w) ̸= 𝑓𝛽(z).
This shows that

𝐼𝑓 (𝑇 ) = Pr
𝛽∈F𝑛−𝑡

2 ,w,z∈F𝑡
2

[𝑓𝛽(w) ̸= 𝑓𝛽(z)]. (5.27)

where 𝑓𝛽 denotes 𝑓X𝑇←𝛽.

The following result relates the above two probabilities to influence.

Theorem 18 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then 𝜇𝑓 (𝑇 ) =

𝐼𝑓 (𝑇 ) = inf𝑓 (𝑇 )/2.

Proof: We separately show that 𝜇𝑓 (𝑇 ) = inf𝑓 (𝑇 )/2 and 𝐼𝑓 (𝑇 ) = inf𝑓 (𝑇 )/2. Let 𝑡 = #𝑇 .

𝜇𝑓 (𝑇 ) =
1

2𝑡

∑︁
𝛼≤𝜒𝑇

Pr
u∈F𝑛

2

[𝑓(u) ̸= 𝑓(u⊕𝛼)]

=
1

2𝑡

∑︁
𝛼≤𝜒𝑇

1− 𝐶𝑓 (𝛼)

2
(using (2.12))
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=
1

2

(︃
1− 1

2𝑡

∑︁
𝛼≤𝜒𝑇

𝐶𝑓 (𝛼)

)︃

=
inf𝑓 (𝑇 )

2
. (5.28)

𝐼𝑓 (𝑇 ) =
1

2𝑛−𝑡

∑︁
𝛽∈F𝑛−𝑡

2

Pr
w,z∈F𝑡

2

[𝑓𝛽(w) ̸= 𝑓𝛽(z)]

=
1

2𝑛−𝑡

∑︁
𝛽∈F𝑛−𝑡

2

2× wt(𝑓𝛽)

2𝑡

(︂
1− wt(𝑓𝛽)

2𝑡

)︂

=
1

2𝑛−1−𝑡

∑︁
𝛽∈F𝑛−𝑡

2

E(𝑓𝛽)(1− E(𝑓𝛽))

=
1

2𝑛−1−𝑡

∑︁
𝛽∈F𝑛−𝑡

2

Var(𝑓𝛽)

=
inf𝑓 (𝑇 )

2
(from (5.17)).

□

Using the third point of Theorem 14, a consequence of Theorem 18 is that both the proba-
bilities 𝜇𝑓 (𝑇 ) and 𝐼𝑓 (𝑇 ) are at most 1/2.

Remark 7 From Theorem 18, it follows that 𝐼𝑓 (𝑇 ) = inf𝑓 (𝑇 )/2. Some of the results for
inf𝑇 (𝑓) that we have proved have been obtained for 𝐼𝑓 (𝑇 ) in [62, 23]. In particular, it has
been shown that 𝐼𝑓 (𝑇 ) is equal to half the right hand side of (5.8) using a somewhat long
proof which is different from the one that we given. Since we defined influence using the auto-
correlation function, we were able to use known results on Walsh transform which make our
proof simpler. Further, it has been proved in [62, 23] that 𝐼𝑓 (𝑇 ) ≤ 𝐼𝑓 (𝑆∪𝑇 ) ≤ 𝐼𝑓 (𝑆)+𝐼𝑓 (𝑇 ),
i.e., monotonicity and sub-additivity properties hold for 𝐼𝑓 . These properties for inf𝑓 (𝑇 ) are
covered by Points 4 and 5 of Theorem 14.

5.3.3 Juntas

The total influence of the individual variable, i.e. inf(𝑓), for an 𝑠-junta 𝑓 is known to be at
most 𝑠. The following result generalises this to provide an upper bound on 𝑡-inf(𝑓) for an
𝑠-junta.
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Proposition 3 Let 𝑓 be an 𝑛-variable function which is an 𝑠-junta for some 𝑠 ∈ [𝑛]. For
𝑡 ∈ [𝑛], 𝑡-inf(𝑓) ≤ 1−

(︀
𝑛−𝑠
𝑡

)︀
/
(︀
𝑛
𝑡

)︀
.

Proof: Let 𝑇 ⊆ [𝑛] with #𝑇 = 𝑡. Since 𝑓 is an 𝑠-junta, there is a subset 𝑆 ⊆ [𝑛], with
#𝑆 ≤ 𝑠 such that 𝑓 is degenerate on the variables indexed by 𝑆. So inf𝑓 (𝑇 ) = 0 if 𝑇 is
a subset of 𝑆. This means that for

(︀
𝑛−𝑠
𝑡

)︀
possible subsets 𝑇 , inf𝑓 (𝑇 ) = 0. For the other(︀

𝑛
𝑡

)︀
−
(︀
𝑛−𝑠
𝑡

)︀
possible subsets 𝑇 , inf𝑓 (𝑇 ) ≤ 1. The result now follows from the definition of

𝑡-inf(𝑓) given in (5.7). □

For 𝑡 = 1, the upper bound on 1-inf(𝑓) given by Proposition 3 is 𝑠/𝑛 which is a scaled version
of the bound inf(𝑓) ≤ 𝑠. Note that the upper bound on 𝑡-inf(𝑓) increases as 𝑡 increases and
reaches 1 for 𝑡 > 𝑛− 𝑠.

An 𝑛-variable Boolean function 𝑓 is said to be 𝜖-far from being a 𝑠-junta if for every
𝑛-variable 𝑠-junta 𝑔, Prx∈F𝑛

2
[𝑓(x) ̸= 𝑔(x)] ≥ 𝜖. It was proved in [23] that if 𝑓 is 𝜖-far from

being an 𝑠-junta, then for any set 𝑆 ⊆ [𝑛] with #𝑆 ≤ 𝑠, 𝐼𝑓 (𝑆) ≥ 𝜖. The following result
provides an equivalent statement for inf𝑓 (𝑆). The reason for stating the result in the present
work is that our proof is simpler than that in [23].

Proposition 4 If an 𝑛-variable Boolean function 𝑓 is 𝜖-far from being an 𝑠-junta, then for
any set 𝑆 ⊆ [𝑛] with #𝑆 ≤ 𝑠, inf𝑓 (𝑆) ≥ 2𝜖.

Proof: Among all the 𝑠-juntas on the variables indexed by 𝑆, let 𝑔 be the closest 𝑠-junta
to 𝑓 . For 𝛼 ∈ F𝑠2, let 𝑓𝛼 = 𝑓X𝑆←𝛼(X𝑆) and 𝑔𝛼 = 𝑔X𝑆←𝛼(X𝑆) be functions on (𝑛 − 𝑠)-
variables. Since 𝑔 is a junta on 𝑆, it is degenerate on all variables indexed by 𝑆. So 𝑔𝛼 is
a constant function for all 𝛼 ∈ F𝑠2. Since among all the juntas on the variables indexed by
𝑆, 𝑔 is the closest 𝑠-junta to 𝑓 , it follows that for each 𝛼 ∈ F𝑠2, 𝑔𝛼 is either the constant
function 0 or the constant function 1 according as wt(𝑓𝛼) ≤ 2𝑛−𝑠−1 (i.e. E(𝑓𝛼) ≤ 1/2) or
wt(𝑓𝛼) > 2𝑛−𝑠−1 (i.e. E(𝑓𝛼) > 1/2) respectively. So

Pr
x∈F𝑛

2

[𝑓(x) ̸= 𝑔(x)] =

∑︀
𝛼∈F𝑠

2
wt(𝑓𝛼 ⊕ 𝑔𝛼)

2𝑛

=
1

2𝑠

∑︁
𝛼∈F𝑠

2

min (E(𝑓𝛼), 1− E(𝑓𝛼)) . (5.29)

Since 𝑓 is 𝜖-far from being an 𝑠-junta, it follows that 𝜖 ≤ Prx∈F𝑛
2
[𝑓(x) ̸= 𝑔(x)]. Using

Var(𝑓𝛼) = E(𝑓𝛼)(1−E(𝑓𝛼)), it is easy to check that min (E(𝑓𝛼), 1− E(𝑓𝛼)) ≤ 2Var(𝑓𝛼). The
result now follows by taking 𝑇 = 𝑆 in (5.17) and combining with (5.29). □
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5.3.4 Cryptographic Properties

An 𝑛-variable Boolean function 𝑓 is 𝛿-close to an 𝑠-junta if there is an 𝑠-junta 𝑔 such that
Prx∈F𝑛

2
[𝑓(x) ̸= 𝑔(x)] ≤ 𝛿. From the point of view of cryptographic design, it is undesirable

for 𝑓 to be 𝛿-close to an 𝑠-junta for 𝛿 close to 0 and 𝑠 smaller than 𝑛. Since otherwise, 𝑔
is a good approximation of 𝑓 and a cryptanalyst may replace 𝑓 by 𝑔 which may help in
attacking a cipher which uses 𝑓 as a building block. For example, in linear cryptanalysis
the goal is to obtain 𝑔 to be a linear function on a few variables such that it is a good
approximation of 𝑓 . To defend against such attacks, one usually requires 𝑓 to not have
any good linear approximation on a small number of variables. In particular, an 𝑚-resilient
function cannot be approximated with probability different from 1/2 by any linear function
on 𝑚 or smaller number of variables. A characterisation of resilient functions in terms of
influence is given by Theorem 15 which shows that an 𝑛-variable function is 𝑚-resilient if
and only if (𝑛−𝑚)-inf(𝑓) takes its maximum value of 1.

The next result provides a characterisation of bent functions in terms of influence.

Theorem 19 Let 𝑓 be an 𝑛-variable Boolean function. Then 𝑓 is bent if and only if for any
non-empty 𝑇 ⊆ [𝑛], inf𝑓 (𝑇 ) = 1− 2#𝑇 .

Proof: First suppose that 𝑓 is bent. So 𝑊𝑓 (𝛼) = ±2−𝑛/2 for all 𝛼 ∈ F𝑛2 . From (2.14), it
follows that 𝐶𝑓 (x) = 0 for all 0𝑛 ̸= x ∈ F𝑛2 . Consequently, from (5.6) we have that for any
non-empty 𝑇 ⊆ [𝑛], inf𝑓 (𝑇 ) = 1− 2#𝑇 .

Next we prove the converse. From (5.6), it follows that inf𝑓 (𝑇 ) = 1− 2#𝑇 if and only if∑︁
0𝑛 ̸=𝛼≤𝜒𝑇

𝐶𝑓 (𝛼) = 0. (5.30)

For 0 ≤ 𝑖 ≤ 2𝑛 − 1, let bin𝑛(𝑖) denote the 𝑛-bit binary representation of 𝑖. Let M be the
(2𝑛 − 1) × (2𝑛 − 1) matrix whose rows and columns are indexed by the integers in [2𝑛 − 1]

such that the (𝑖, 𝑗)-th entry of M is 1 if bin𝑛(𝑗) ≤ bin𝑛(𝑖) and otherwise the entry is 0. It
is easy to verify that M is a lower triangular matrix whose diagonal elements are all 1. In
particular, M is invertible.

Let C = [𝐶𝑓 (bin𝑛(𝑖))]𝑖∈[2𝑛−1] be the vector of auto-correlations of 𝑓 at all the non-zero
points in F𝑛2 . The set of relations of the form (5.30) for all non-empty 𝑇 ⊆ [𝑛] can be
expressed as MC⊤ = 0⊤. Since M is invertible, it follows that C = 0, i.e. 𝐶𝑓 (𝛼) = 0 for
all non-zero 𝛼 ∈ F𝑛2 . From (2.13), it now follows that 𝑊𝑓 (𝛽) = ±2−𝑛/2 for all 𝛽 ∈ F𝑛2 which
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shows that 𝑓 is bent. □

For functions satisfying propagation characteristics, somewhat less can be said. From (5.6),
it follows that if 𝑓 satisfies PC(𝑘) then for any subset ∅ ̸= 𝑇 ⊆ [𝑛] with #𝑇 = 𝑡 ≤ 𝑘,
inf𝑓 (𝑇 ) = 1− 2−𝑡 and so 𝑡-inf(𝑓) = 1− 2−𝑡.

5.3.5 The Fourier Entropy/Influence Conjecture

The Fourier entropy 𝐻(𝑓) of 𝑓 is defined to be the entropy of the probability distribution
{𝑊 2

𝑓 (𝛼)} and is equal to

𝐻(𝑓) = −
∑︁
𝛼∈F𝑛

2

𝑊 2
𝑓 (𝛼) log𝑊 2

𝑓 (𝛼), (5.31)

where log denotes log2 and the expressions 0 log 0 and 0 log 1
0

are to be interpreted as 0. For
𝑡 ∈ [𝑛], let

𝜌𝑡(𝑓) =
𝐻(𝑓)/𝑛

𝑡-inf(𝑓)
. (5.32)

The Fourier entropy/influence conjecture [66] states that there is a universal constant 𝐶, such
that for all Boolean functions 𝑓 , 𝜌1(𝑓) ≤ 𝐶. A general form of this conjecture is that there
is a universal constant 𝐶𝑡, such that for all Boolean functions 𝑓 and 𝑡 ∈ [1, 𝑛], 𝜌𝑡(𝑓) ≤ 𝐶𝑡.
Since 𝑡-inf(𝑓) increases monotonically with 𝑡, it follows that 𝜌𝑡(𝑓) decreases monotonically
with 𝑡. So if the FEI conjecture holds, then the conjecture on 𝜌𝑡(𝑓) also holds for 𝑡 ≥ 1. The
converse, i.e if the conjecture holds for some 𝜌𝑡 with 𝑡 > 1 then it also holds for 𝜌1, need not
be true.

Remark 8 A weaker variant of the FEI conjecture replaces 𝐻(𝑓) by the min-entropy of
the distribution 𝑃 ̂︀𝑓 (𝜔). In a similar vein, one may consider the conjecture on 𝜌𝑡(𝑓) to be a
weaker variant of the FEI conjecture.

5.4 Pseudo-Influence

In this section, we define a quantity based on the auto-correlation function which we call
the pseudo-influence of a Boolean function. The main reason for considering this notion is
that it turns out to be the same as the notion of influence 𝐽𝑓 (𝑇 ) introduced in [164]. We
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make a thorough study of the basic properties of pseudo-influence. A consequence of this
study is that pseudo-influence does not satisfy some of the basic desiderata that a notion of
influence may be expected to satisfy, which is why we call it pseudo-influence. This shows
that even though the quantity was termed ‘influence’ in [164], it is not a satisfactory notion
of influence.

Suppose 𝑓(X) is an 𝑛-variable Boolean function where X = (𝑋1, . . . , 𝑋𝑛) and ∅ ̸= 𝑇 =

{𝑖1, . . . , 𝑖𝑡} ⊆ [𝑛]. We define pseudo-influence PI𝑓 (𝑇 ) of the set of variables {𝑋𝑖1 , . . . , 𝑋𝑖𝑡}
indexed by 𝑇 on 𝑓 in the following manner.

PI𝑓 (𝑇 ) =
1

2#𝑇

(︃∑︁
𝛼≤𝜒𝑇

(−1)wt(𝛼)𝐶𝑓 (𝛼)

)︃
. (5.33)

For a singleton set 𝑇 = {𝑖}, PI𝑓 (𝑇 ) = inf𝑓 (𝑇 ) = inf𝑓 (𝑖).

Let 𝑓 be an 𝑛-variable function and 𝑡 be an integer with 1 ≤ 𝑡 ≤ 𝑛. Then the 𝑡-
pseudo-influence of 𝑓 is the total pseudo-influence (scaled by

(︀
𝑛
𝑡

)︀
) obtained by summing the

pseudo-influence of every set of 𝑡 variables on the function 𝑓 , i.e.,

𝑡-PI(𝑓) =

∑︀
{𝑇⊆[𝑛]:#𝑇=𝑡} PI𝑓 (𝑇 )(︀

𝑛
𝑡

)︀ . (5.34)

The characterisation of pseudo-influence in terms of the Walsh transform is given by the
following result.

Theorem 20 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then

PI𝑓 (𝑇 ) =
∑︁
u≥𝜒𝑇

(𝑊𝑓 (u))
2 . (5.35)

Consequently, for an integer 𝑡 with 1 ≤ 𝑡 ≤ 𝑛,

𝑡-PI(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑡

(︂
𝑘

𝑡

)︂
𝑃 ̂︀𝑓 (𝑘) (5.36)

Proof: Let #𝑇 = 𝑡. Let 𝐸 = {𝛽 ∈ F𝑛2 : 𝛽 ≤ 𝜒𝑇}. Then #𝐸 = 2𝑛−𝑡 and 𝐸⊥ = {𝛼 ∈
F𝑛2 : 𝛼 ≤ 𝜒𝑇}. From (5.33) and putting a = 1𝑛, b = 0𝑛 and 𝜓 = 𝐶𝑓 in (2.5) we obtain the
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following:

PI𝑓 (𝑇 ) =
1

2𝑡

∑︁
𝛼≤𝜒𝑇

(−1)wt(𝛼)𝐶𝑓 (𝛼) =
1

2𝑡

∑︁
𝛼≤𝜒𝑇

(−1)⟨1𝑛,𝛼⟩𝐶𝑓 (𝛼) =
∑︁

𝛽∈1𝑛+𝐸

̂︁𝐶𝑓 (𝛽) = ∑︁
𝛽≥𝜒𝑇

̂︁𝐶𝑓 (𝛽).
The result now follows from (2.13).

The expression for 𝑡-PI(𝑓) can be seen as follows.

𝑡-PI(𝑓) =
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑡

∑︁
{u:wt(u)=𝑘}

(︂
𝑘

𝑡

)︂
(𝑊𝑓 (u))

2

=
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑡

(︂
𝑘

𝑡

)︂ ∑︁
{u:wt(u)=𝑘}

(𝑊𝑓 (u))
2

=
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑡

(︂
𝑘

𝑡

)︂
𝑃 ̂︀𝑓 (𝑘)

=
1(︀
𝑛
𝑡

)︀ 𝑛∑︁
𝑘=𝑡

(︂
𝑘

𝑡

)︂
𝑃 ̂︀𝑓 (𝑘). (5.37)

□

The following result states the basic properties of the pseudo-influence.

Theorem 21 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ 𝑆 ⊆ [𝑛]. Then

1. 0 ≤ PI𝑓 (𝑇 ) ≤ 1.

2. If the function 𝑓 is degenerate on the variables indexed by 𝑇 , then PI𝑓 (𝑇 ) = 0.

3. PI𝑓 (𝑆) ≤ PI𝑓 (𝑇 ).

Proof: The first point follows from Theorem 20 and Parseval’s theorem. The third point
also follows from Theorem 10.

Consider the second point. Suppose 𝜋 is any permutation of [𝑛] and define 𝑔(X) to be
the function 𝑓(𝑋𝜋(1), . . . , 𝑋𝜋(𝑛)). Then 𝑓 is degenerate on the variables indexed by a set
𝑈 = {𝑖1, . . . , 𝑖𝑡} if and only if 𝑔 is degenerate on the variables indexed by the set 𝑉 =

{𝜋(𝑖1), . . . , 𝜋(𝑖𝑡)}. Also, inf𝑓 (𝑈) = inf𝑔(𝑉 ). In view of this, we consider the set 𝑇 to be
{1, . . . , 𝑡}.

For 𝛼 ∈ F𝑡2 and Y = (𝑋𝑡+1, . . . , 𝑋𝑛), let 𝑓𝛼(Y) = 𝑓(𝛼,Y). The function 𝑓 is degenerate
on the variables indexed by 𝑇 if and only if 𝑓𝛼(Y) = 𝑓𝛽(Y) for any 𝛼,𝛽 ∈ F𝑡2. We show
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that the latter condition is equivalent to 𝑓(X) = 𝑓(X ⊕ 𝛾) for any 𝛾 ≤ 𝜒𝑇 . Note that by
the choice of 𝑇 , we have that for 𝛾 ≤ 𝜒𝑇 , 𝛾 = (𝛿,0) for some 𝛿 ∈ F𝑡2. So it is sufficient to
show that 𝑓(𝛼,Y) = 𝑓((𝛼,Y)⊕ (𝛿,0)) for all 𝛼 ∈ F𝑡2. The latter condition is equivalent to
𝑓𝛼(Y) = 𝑓𝛼⊕𝛿(Y) = 𝑓𝛽(Y) where 𝛽 = 𝛼⊕𝛿. This completes the proof that 𝑓 is degenerate
on the variables indexed by 𝑇 if and only if 𝑓(X) = 𝑓(X⊕ 𝛾) for all 𝛾 ≤ 𝜒𝑇 .

The condition 𝑓(X) = 𝑓(X⊕𝛾) for all 𝛾 ≤ 𝜒𝑇 is equivalent to 𝐶𝑓 (𝛾) = 1 for all 𝛾 ≤ 𝜒𝑇 .
So 𝑓 is degenerate on the set of variables indexed by 𝑇 if and only if 𝐶𝑓 (𝛾) = 1 for all
𝛾 ≤ 𝜒𝑇 . Using this in the definition of pseudo-influence given by (5.33), we obtain the the
second point. □

Theorem 21 states that if 𝑓 is degenerate on the variables indexed by 𝑇 , then PI𝑓 (𝑇 ) = 0.
The converse, however, is not true. Suppose 𝑓 is an 𝑛-variable function such that 𝑊𝑓 (1𝑛) = 0

and let 𝑇 = [𝑛]. Then from (5.35), PI𝑓 (𝑇 ) = 0. This example can be generalised. Suppose
𝑔 is an 𝑛-variable, 𝑚-resilient function and let 𝑓(X) = ⟨1,X⟩ ⊕ 𝑔(X). Using (2.6), we
have 𝑊𝑓 (𝛼) = 𝑊𝑔(1 ⊕ 𝛼) for all 𝛼 ∈ F𝑛2 . Since, 𝑔 is 𝑚-resilient, 𝑊𝑔(𝜔) = 0 for all 𝜔 with
wt(𝜔) ≤ 𝑚. So 𝑊𝑓 (𝛼) = 0 for all 𝛼 with wt(𝛼) ≥ 𝑛−𝑚. Consequently, for any ∅ ≠ 𝑇 ⊆ [𝑛],
with #𝑇 ≥ 𝑛−𝑚, it follows that PI𝑓 (𝑇 ) = 0. There are known examples of non-degenerate
resilient functions. See for example [150].

Remark 9 By the above discussion, PI𝑓 (𝑇 ) can be zero even if 𝑓 is non-degenerate on the
variables indexed by 𝑇 . Further, the third point of Theorem 21 shows that PI𝑓 (𝑇 ) is non-
increasing with 𝑇 . As a consequence, sub-additivity does not hold for PI𝑓 (𝑇 ). So PI𝑓 (𝑇 )

violates some of the basic desiderata that one may expect a notion of influence to fulfill.

For u ∈ F𝑛2 and ∅ ≠ 𝑇 ⊆ [𝑛], u ≥ 𝜒𝑇 is equivalent to supp(u) ⊇ 𝑇 which in particular
implies that supp(𝑢) ∩ 𝑇 ̸= ∅. So from (5.8) and (5.35), we have the following result which
states that influence is always at least as large as the pseudo-influence.

Proposition 5 Let 𝑓 be an 𝑛-variable Boolean function and ∅ ≠ 𝑇 ⊆ [𝑛]. Then inf𝑓 (𝑇 ) ≥
PI𝑓 (𝑇 ). Consequently, 𝑡-inf(𝑓) ≥ 𝑡-PI(𝑓) for 1 ≤ 𝑡 ≤ 𝑛.

Theorem 22 Let 𝑓(X) be an 𝑛-variable Boolean function where X = (𝑋1, . . . , 𝑋𝑛) and 𝑡 be
an integer with 1 ≤ 𝑡 ≤ 𝑛.

1. 𝑡-PI(𝑓) takes its maximum value of 1 if and only if 𝑓 is of the form 𝑓(X) = ⟨1,X⟩.

2. 𝑡-PI(𝑓) takes its minimum value of 0 if and only if 𝑓 is of the form 𝑓(X) = ⟨1,X⟩ ⊕
𝑔(X), where 𝑔(X) is (𝑛− 𝑡)-resilient.
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Proof: From (5.36), 𝑡-PI(𝑓) takes its maximum value of 1 if and only if

𝑛∑︁
𝑘=𝑡

(︂
𝑘

𝑡

)︂
𝑃 ̂︀𝑓 (𝑘) =

(︂
𝑛

𝑡

)︂
. (5.38)

If 𝑓(X) = ⟨1,X⟩, then 𝑃 ̂︀𝑓 (𝑛) = 1 and 𝑃 ̂︀𝑓 (𝑘) = 0 for 0 ≤ 𝑘 ≤ 𝑛 − 1. On the other hand, if
𝑓(X) ̸= ⟨1,X⟩, then 𝑃 ̂︀𝑓 (𝑛) < 1 and we have(︂

𝑡

𝑡

)︂
𝑃 ̂︀𝑓 (𝑡) +

(︂
𝑡+ 1

𝑡

)︂
𝑃 ̂︀𝑓 (𝑡+ 1) + · · ·+

(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (𝑛)

≤
(︂
𝑛− 1

𝑡

)︂
(𝑃 ̂︀𝑓 (0) + · · ·+ 𝑃 ̂︀𝑓 (𝑛− 1)) +

(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (𝑛)

=

(︂
𝑛− 1

𝑡

)︂
(1− 𝑃 ̂︀𝑓 (𝑛)) +

(︂
𝑛

𝑡

)︂
𝑃 ̂︀𝑓 (𝑛) <

(︂
𝑛

𝑡

)︂
.

This completes the proof of the first point.

For the second point, from (5.36), one may note that the values 𝑃 ̂︀𝑓 (0), . . . , 𝑃 ̂︀𝑓 (𝑡− 1) do
not affect the expression for 𝑡-PI(𝑓). So 𝑡-PI(𝑓) = 0 if and only if 𝑃 ̂︀𝑓 (𝑡) = · · · = 𝑃 ̂︀𝑓 (𝑛) = 0.
The latter condition holds if and only if 𝑓 is of the stated form. □

Using the second point of Theorem 22, it is possible to obtain examples of non-degenerate
functions 𝑓 such that 𝑡-PI(𝑓) is 0.

Remark 10 The quantity 𝐽𝑓 (𝑇 ) (see (5.4)) was put forward by Tal [164] as a measure of
influence of the set of variables indexed by 𝑇 on the function 𝑓 . It was shown in [164] that
𝐽𝑓 (𝑇 ) is equal to the right hand side of (5.35). So it follows that 𝐽𝑓 (𝑇 ) = PI𝑓 (𝑇 ). This is
somewhat surprising since the definition of 𝐽𝑓 (𝑇 ) given in (5.4) and that of PI𝑓 (𝑇 ) given
in (5.33) are very different. It is perhaps only through the characterisations of both these
quantities in terms of the Walsh transform that they can be seen to be equal. The quantity∑︀
{𝑇 :#𝑇=𝑡} 𝐽𝑓 (𝑇 ) was considered in [164] and the expression (5.36) was also obtained in [164].

Since 𝐽𝑓 (𝑇 ) = PI𝑓 (𝑇 ), from Remark 9 it follows that 𝐽𝑓 (𝑇 ) is not a satisfactory notion of
influence.

For an 𝑛-variable Boolean function 𝑓 , define 𝐿1,𝑡 =
∑︀

u=𝑡 |𝑊𝑓 (u)| and𝑊≥𝑡(𝑓) =
∑︀

𝑖≥𝑡 𝑃 ̂︀𝑓 (𝑖).
Lemma 31 of [164] showed that if for all 𝑡, 𝑡-PI(𝑓) ≤ 𝐶 · ℓ𝑡 for some constant 𝐶, then
𝑊≥𝑘(𝑓) ≤ 𝐶 · 𝑒 · ℓ · 𝑒−(𝑘−1)/(𝑒ℓ) for all 𝑘. Lemma 34 of [164] showed that 𝐿1,𝑡(𝑓) ≤ 2𝑡 · 𝑡-PI(𝑓).
Since Proposition 5 shows that 𝑡-inf(𝑓) ≥ 𝑡-PI(𝑓) for 1 ≤ 𝑡 ≤ 𝑛, we obtain simple extensions
of the Lemmas 31 and 34 of [164] by replacing 𝑡-PI(𝑓) with 𝑡-inf(𝑓) in the above statements.
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Lemma 29 of [164] provides a converse of Lemma 31. This converse does not necessarily hold
if 𝑡-PI(𝑓) is replaced with 𝑡-inf(𝑓). Lemmas 29 and 31 of [164] relate spectral tail bounds
to bounds on pseudo-influence. We note that a spectral concentration result for 𝑡-inf(𝑓) is
given by Theorem 12.

5.5 Ben-Or and Linial Definition of Influence

The first notion of influence of a set of variables on a Boolean function was proposed by
Ben-Or and Linial in [12]. In this section, we introduce this notion, prove some of its basic
properties and show its relationship with the notion of influence defined in Section 5.3.

For an 𝑛-variable function 𝑓 and ∅ ≠ 𝑇 ⊆ [𝑛], with 𝑡 = #𝑇 , the notion of influence
introduced in [12] is ℐ𝑓 (𝑇 ) and is given by (5.1). For 𝑡 ∈ [𝑛], we define

𝑡-ℐ(𝑓) =

∑︀
{𝑇⊆[𝑛]:#𝑇=𝑡} ℐ𝑓 (𝑇 )(︀

𝑛
𝑡

)︀ . (5.39)

The following result provides an alternative description of ℐ𝑓 (𝑇 ).

Proposition 6 For an 𝑛-variable function 𝑓 and ∅ ≠ 𝑇 ⊆ [𝑛], with 𝑡 = #𝑇 ,

ℐ𝑓 (𝑇 ) = 1−
#
{︀
𝛼 ∈ F𝑛−𝑡2 : (𝑊𝑓𝛼(0𝑡))

2 = 1
}︀

2𝑛−𝑡
(5.40)

=
#
{︀
𝛼 ∈ F𝑛−𝑡2 : (𝑊𝑓𝛼(0𝑡))

2 ̸= 1
}︀

2𝑛−𝑡
, (5.41)

where 𝑓𝛼 denotes 𝑓X𝑇←𝛼.

Proof: From (5.1), it clearly follows that

ℐ𝑓 (𝑇 ) = 1− #{𝛼 ∈ F𝑛−𝑡2 : 𝑓𝛼 is constant}
2𝑛−𝑡

= 1− #{𝛼 ∈ F𝑛−𝑡2 : wt(𝑓𝛼) = 0, or 2𝑡}
2𝑛−𝑡

= 1− #{𝛼 ∈ F𝑛−𝑡2 : 𝑊𝑓𝛼(0𝑡) = ±1}
2𝑛−𝑡

.

This shows (5.40), and (5.41) follows directly from (5.40). □

Some basic properties of ℐ𝑓 (𝑇 ) are as follows.
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Theorem 23 Let 𝑓 be an 𝑛-variable function and ∅ ≠ 𝑇 ⊆ 𝑆 ⊆ [𝑛]. Let #𝑇 = 𝑡.

1. 0 ≤ ℐ𝑓 (𝑇 ) ≤ 1.

2. ℐ𝑓 (𝑇 ) = 0 if and only if 𝑓 is degenerate on the variables indexed by 𝑇 .

3. ℐ𝑓 (𝑇 ) = 1 if and only if 𝑓𝛼 is a non-constant function for every 𝛼 ∈ F𝑛−𝑡2 , where 𝑓𝛼
denotes 𝑓X𝑇←𝛼. In particular, if 𝑇 = [𝑛], then ℐ𝑓 (𝑇 ) = 1.

4. ℐ𝑓 (𝑇 ) ≤ ℐ𝑓 (𝑆).

Proof: The first point is obvious.

For the second point, using (5.40) note that ℐ𝑓 (𝑇 ) = 0 if and only if for every 𝛼 ∈ F𝑛−𝑡2 ,
𝑊𝑓𝛼(0𝑡) = ±1, i.e., if and only if wt(𝑓𝛼) = 0, or 2𝑡, i.e., if and only if 𝑓𝛼 is constant. The
latter condition holds if and only if the variables indexed by 𝑇 have no effect on the value
of 𝑓 , i.e., if and only if 𝑓 is degenerate on the variables indexed by 𝑇 .

To see the third point, note that ℐ𝑓 (𝑇 ) = 1 if and only if for every 𝛼 ∈ F𝑛−𝑡2 , (𝑊𝑓𝛼(0𝑡))
2 ̸=

1, which holds if and only if 𝑓𝛼 is a non-constant function.

Let #𝑆 = 𝑠. For the fourth point, it is sufficient to consider 𝑠 = 𝑡+1, since otherwise, we
may define a sequence of sets 𝑇 ⊂ 𝑆1 ⊂ 𝑆2 ⊂ · · · ⊂ 𝑆, with #𝑇 + 1 = #𝑆1, #𝑆1 + 1 = #𝑆2,
. . . , and argue ℐ𝑓 (𝑇 ) ≤ ℐ𝑓 (𝑆1) ≤ · · · ≤ ℐ𝑓 (𝑆). Further, without loss of generality, we
assume 𝑇 = {𝑛 − 𝑡 + 1, . . . , 𝑛} and 𝑆 = {𝑛 − 𝑡, . . . , 𝑛} as otherwise, we may apply an
appropriate permutation on the variables to ensure this condition. Then 𝑇 = {1, . . . , 𝑛− 𝑡}
and 𝑆 = {1, . . . , 𝑛− 𝑡− 1}.

Let 𝒯 = {𝛼 ∈ F𝑛−𝑡2 : 𝑓𝛼 is constant} and 𝒮 = {𝛽 ∈ F𝑛−𝑡−12 : 𝑓𝛽 is constant}, where 𝑓𝛽 is
a shorthand for 𝑓X𝑆←𝛽. Note that if 𝛽 ∈ 𝒮, then (𝛽, 0), (𝛽, 1) ∈ 𝒯 . So #𝒯 ≥ 2#𝒮 which
implies

#𝒯
2𝑛−𝑡

≥ 2#𝒮
2𝑛−𝑡

≥ #𝒮
2𝑛−𝑡−1

.

Consequently,

ℐ𝑓 (𝑇 ) = 1− #𝒯
2𝑛−𝑡

≤ 1− #𝒮
2𝑛−𝑡−1

= ℐ𝑓 (𝑆).

□
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Remark 11 We note that the sub-additivity property does not hold for ℐ𝑓 (𝑇 ). As an exam-
ple, consider a 6-variable function 𝑓 which maps 06 to 1 and all other elements of F6

2 to 0;
let 𝑆 = {4, 5, 6} and 𝑇 = {2, 3, 6}. Then ℐ𝑓 (𝑆 ∪ 𝑇 ) = 1/2 > 1/8 + 1/8 = ℐ𝑓 (𝑆) + ℐ𝑓 (𝑇 ).

Next, we show that the Ben-Or and Linial notion of influence is always at least as much
as the notion of influence defined in (5.6).

Theorem 24 Let 𝑓 be an 𝑛-variable function and ∅ ̸= 𝑇 ⊆ [𝑛]. Then inf𝑓 (𝑇 ) ≤ ℐ𝑓 (𝑇 ).
Further, equality holds if and only if (𝑊𝑓𝛼(0𝑡))

2 = 0 or 1 for each 𝛼 ∈ F𝑛−𝑡2 , where 𝑓𝛼

denotes 𝑓X𝑇←𝛼.

Proof: We rewrite (5.16) in the following form.

inf𝑓 (𝑇 ) =
1

2𝑛−𝑡

∑︁
𝛼∈F𝑛−𝑡

2

(︀
1− (𝑊𝑓𝛼(0𝑡))

2)︀ . (5.42)

Consider the expressions for inf𝑓 (𝑇 ) and ℐ𝑓 (𝑇 ) given by (5.42) and (5.41) respectively. Both
the expressions are sums over 𝛼 ∈ F𝑛−𝑡2 . Suppose 𝛼 is such that (𝑊𝑓𝛼(0𝑡))

2 = 1. The
contribution of such an 𝛼 to both (5.42) and (5.41) is 0. Next suppose (𝑊𝑓𝛼(0𝑡))

2 ̸= 1; the
contribution of such an 𝛼 to (5.41) is 1 and the contribution to (5.42) is at most 1, and the
value 1 is achieved if and only if 𝑊𝑓𝛼(0𝑡) = 0. □

One may compare the properties of ℐ𝑓 (𝑇 ) given by Theorem 23 to the desiderata that a
notion of influence may be expected to satisfy (see the discussion before Theorem 14). The
measure ℐ𝑓 (𝑇 ) satisfies some of the desiderata, namely, it is between 0 and 1; takes the value
0 if and only if 𝑓 is degenerate on the variables indexed by 𝑇 ; and it is monotone increasing
with the size of 𝑇 . On the other hand, as noted above, it does not satisfy the sub-additivity
property.

Compared to inf𝑓 (𝑇 ), the value of ℐ𝑓 (𝑇 ) rises quite sharply. To see this, it is useful to
view the following expressions for the two quantities.

2𝑛−𝑡 × inf𝑓 (𝑇 ) =
∑︁

𝛼∈F𝑛−𝑡
2

(︀
1− (𝑊𝑓𝛼(0𝑡))

2)︀ , (5.43)

2𝑛−𝑡 × ℐ𝑓 (𝑇 ) = #
{︀
𝛼 ∈ F𝑛−𝑡2 : (𝑊𝑓𝛼(0𝑡))

2 ̸= 1
}︀
. (5.44)

Suppose 𝛼 ∈ F𝑛−𝑡2 is such that 𝑓𝛼 is a non-constant function, so that (𝑊𝑓𝛼(0𝑡))
2 ̸= 1. Then

such an 𝛼 contributes 1 to (5.44), while it contributes a value which is at most 1 to (5.43).
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More generally, 𝛼 contributes either 0 or 1 to (5.44) according as 𝑓𝛼 is constant or non-
constant; on the other hand, the contribution of 𝛼 to (5.43) is more granular. Consequently,
the value of ℐ𝑓 (𝑇 ) rises more sharply than the value of inf𝑓 (𝑇 ). In particular, if 𝑓 and 𝑔 are
two distinct functions such that for all 𝛼, both 𝑓𝛼 and 𝑔𝛼 are non-constant functions, then
both ℐ𝑓 (𝑇 ) and ℐ𝑔(𝑇 ) will be necessarily be equal to 1, whereas the values of inf𝑓 (𝑇 ) and
inf𝑔(𝑇 ) are neither necessarily 1 nor necessarily equal. In other words, the discerning power
of ℐ𝑓 (𝑇 ) as a measure of influence is less than that of inf𝑓 (𝑇 ), i.e., ℐ𝑓 (𝑇 ) is a more coarse
measure of influence. So while both inf𝑓 (𝑇 ) and ℐ𝑓 (𝑇 ) share some intuitive basic properties
expected of a definition of influence, the facts that ℐ𝑓 (𝑇 ) does not satisfy sub-additivity
and has less discerning power make it a less satisfactory measure of influence compared to
inf𝑓 (𝑇 ).

Theorem 24 shows that inf𝑓 (𝑇 ) ≤ ℐ𝑓 (𝑇 ). The difference between ℐ𝑓 (𝑇 ) and inf𝑓 (𝑇 ) can
be quite large. For example, if we take 𝑓(X) = 𝑋1 · · ·𝑋𝑛 (i.e., the Boolean AND function),
then ℐ𝑓 ([𝑛]) = 1 while inf𝑓 ([𝑛]) = 1 − (1 − 1/2𝑛−1)2. In other words, the influence of the
set of all variables as measured by ℐ𝑓 is 1, while the influence as measured by inf𝑓 is close
to 0. The influence of [𝑛] on the degenerate 𝑛-variable constant all-zero function is 0 as
measured by both ℐ𝑓 and inf𝑓 . The AND function differs from the all-zero function by a
single bit and so one would expect the influence of [𝑛] to remain close to 0. This is indeed
the case for inf𝑓 , while for ℐ𝑓 the value jumps to 1. The example of the AND function can
be generalised to a balanced function in the following manner. Let 1 ≤ 𝑡 < 𝑛 and define
𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑋1 · · ·𝑋𝑡⊕𝑋𝑡+1 ⊕ · · · ⊕𝑋𝑛. It is easy to verify that 𝑓 is balanced. Let
𝑇 = {1, . . . , 𝑡}. One may check that ℐ𝑓 (𝑇 ) = 1 and inf𝑓 (𝑇 ) = 1 − (1 − 1/2𝑡−1)2. As in the
case of the AND function, it can be argued that one would expect the influence of 𝑇 to be
close to 0 rather than being equal to 1.

The following result characterises the minimum and maximum values of 𝑡-ℐ(𝑓).

Theorem 25 Let 𝑓 be an 𝑛-variable Boolean function and 𝑡 be an integer with 1 ≤ 𝑡 ≤ 𝑛.

1. 𝑡-ℐ(𝑓) takes its maximum value of 1 if and only if for every subset 𝑇 of [𝑛] of size 𝑡,
and for every 𝛼 ∈ F𝑛−𝑡2 , the function 𝑓X𝑇←𝛼

(X𝑇 ) is non-constant.

2. 𝑡-ℐ(𝑓) takes its minimum value of 0 if and only if 𝑓 is a constant function.

Proof: The proof of the first point follows from the third point of Theorem 23.

For the second point, we note that if 𝑓 is a constant function, then from (5.1), ℐ𝑓 (𝑇 ) = 0

for every subset 𝑇 of [𝑛] and so 𝑡-ℐ(𝑓). On the other hand, if 𝑡-ℐ(𝑓) = 0, then from
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Theorem 24, it follows that 𝑡-inf(𝑓) = 0 and so from the second point of Theorem 15 we
have that 𝑓 is a constant function. □

Remark 12 Upper bounds on ℐ𝑓 (𝑇 ) for 𝑇 with bounded size have been proved in [2]. Since
inf𝑓 (𝑇 ) ≤ ℐ𝑓 (𝑇 ), it follows that these upper bounds also hold for inf𝑓 (𝑇 ).

5.6 Discussion

We have introduced a new definition of influence of a set of variables on a Boolean function
which is based on the auto-correlation function. Using the new definition, we have proved a
number of results. In this section, we highlight the new insights into Boolean functions that
are obtained from the new results which follow from the new definition.

As proved in Section 5.3.2, the quantity 𝐼𝑓 (𝑇 ) defined in [62, 23] is half the value of the
influence (namely, inf𝑓 (𝑇 )) that we have defined. Some results for 𝐼𝑓 (𝑇 ) have been obtained
earlier. Remark 7 mentions the results which were previously obtained in [62, 23]. The
quantity 𝐼𝑓 (𝑇 ) was used in [62, 23] as a tool for junta testing. The crucial result for such
testing is Proposition 4. We have provided a new and simpler proof of this proposition. Apart
from Proposition 4 and the results mentioned in Remark 7, all other results in Section 5.3
and its various subsections appear for the first time in this paper. We highlight interesting
aspects of some of the new results, particularly those aspects which arise due to the auto-
correlation function based definition.

Theorem 17 connects total influence to the path expansion property of a set of vertices 𝐴
of the hypercube. This result provides a geometric interpretation of the notion of influence
which generalises the well known connection of the total influence of a single variable to
the edge expansion property of 𝐴. The geometric interpretation of total influence in terms
of path expansion is obtained through the connection of the auto-correlation function to
path expansion and the new definition of influence using the auto-correlation function. The
Fourier/Walsh transform and the auto-correlation function are well studied tools in the
theory of Boolean functions. In Proposition 2 and Remark 6 we have explained the new
geometric insight into these tools that our results provide.

The notion of influence has been studied for a long time, but has been restricted mostly
to issues in theoretical computer science. On the other hand, the notions of bent functions
and resilient functions have also been studied for a long time in the coding theory and
cryptography literature. Our results provide a previously unknown bridge between the notion
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of influence on the one hand, and the notions of bent and resilient functions on the other
hand. The first point of Theorem 15 provides a characterisation of resilient functions in
terms of total influence. Theorem 19 provides a characterisation of bent functions in terms
of influence. Theorem 15 is itself based on the characterisation of total influence in terms
of Fourier/Walsh transform, while the proof of Theorem 19 uses the auto-correlation based
definition of influence. These new results provide interesting new insights into the connection
between aspects of Boolean functions studied in theoretical computer science and in coding
theory and cryptography.

Remark 10 and the discussion following it mention the results on pseudo-influence which
were previously obtained in [164]. The other results in Section 5.4 are new to this work.
In particular, the inadequacy of pseudo-influence as a notion of influence is obtained as a
consequence of Theorem 14, and the characterisation of the conditions under which the total
pseudo-influence achieves its minimum and maximum values are given in Theorem 22.

All results in Section 5.5 on the BL definition of influence are new to this paper. These
results establish the basic properties of this notion of influence. We provide a detailed com-
parison of the BL definition of influence and the auto-correlation function based definition of
influence which highlight why the BL definition is less satisfactory than the auto-correlation
function based definition as a measure of influence.

5.7 Conclusion

We introduced a definition of influence of a set of variables on a Boolean function using
the auto-correlation function. The basic theory around the notion of influence has been
carefully developed and several well known results on the influence of a single variable have
been generalised. New characterisations of resilient and bent functions in terms of influence
have been obtained. A previously introduced [62, 23] measure of influence of a set of variables
is shown to be half the value of the influence that we introduce. We also defined a notion of
pseudo-influence, argued that it is not a satisfactory measure of influence and showed that
pseudo-influence is equal to a measure of influence previously defined in [164]. Finally, we
studied in details the definition of influence given by Ben-Or and Linial [12] and brought out
its relation to the auto-correlation based notion of influence.



Chapter 6

A lower bound on the constant in the Fourier
min-entropy/influence conjecture

In mathematical research, determining bounds for constants in inequalities holds intrinsic
mathematical value and is pivotal for advancing our understanding of problems. These
bounds offer crucial insights into the structure of mathematical objects, guiding further
investigations. One well-known example in mathematics where finding the exact value of
the constant is of significant interest is the Berry-Esseen theorem [57, 16]. This theorem is
fundamental in probability theory and statistics, estimating errors between the distribution
of a sum of random variables and the normal distribution. Esseen showed that the value of
the constant cannot be less than 0.4097 [79]. Mathematicians have long been interested in
improving the upper bounds for the constants involved in this theorem to reduce the gap
factor between the upper and lower bounds. Over time, there has been a gradual reduction in
the upper bound of the Berry-Essen constant for the independent and identically distributed
(iid) scenario. It started at the original value of 7.59 as calculated by Esseen in 1942 [57],
and through subsequent research, it was significantly reduced to 0.7882 by van Beek in 1972
[170], further down to 0.7655 by Shiganov in 1986 [158], and continued to decrease with
contributions from Shevtsova in 2007 (0.7056) [156] and 2008 (0.7005) [106], Tyurin in 2009
(0.5894) [167], and Korolev and Shevtsova in 2010 (0.5129) [107]. Another reduction was
achieved by Tyurin in 2010 [168], bringing bound of the Berry-Essen constant to 0.4785. The
best known bound by 2012, according to Shevtsova’s work in 2011 [157], puts the constant
at less than 0.4748 [1]. Likewise, researchers have actively explored scenarios involving
independent but non-identically distributed variables. While Essen’s lower bound for the iid
case from 1956 remains applicable here, the upper bound varies from the iid case. In this
scenario also, the upper bounds for the Berry-Essen constant have significantly decreased
over time. The original estimate of 7.59 by Esseen in 1942 [57] has been lowered to 0.9051
by Zolotarev (1967) [181], 0.7975 by van Beek (1972) [170], 0.7915 by Shiganov (1986) [158],
and further reduced to 0.6379 and 0.5606 by Tyurin in 2009 and 2010 respectively [167, 168].
As of 2011, the best estimate stands at 0.5600, obtained by Shevtsova [157].

In the context of the Analysis of Boolean functions, one long-standing open problem is
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to prove the Fourier entropy/influence (FEI) conjecture, presented in Chapter 3. Naturally,
this problem can be approached as an attempt to establish the bounds for the FEI constant.
It’s worth noting that determining the upper limit of the FEI constant essentially resolves
the conjecture itself. Despite years of research, the FEI Conjecture remains unresolved to
this day. Another potential research avenue involves exploring the lower bound of the FEI
constant. There are two reasons for attempting to determine the lower bound of the FEI con-
stant: firstly, if the conjecture is proven in the future, much like the Berry-Esseen constant,
approaching to the precise value of the FEI constant from any direction will become of signif-
icant mathematical interest. Secondly, while pursuing this lower bound, there is a possibility
that specific constructions might shed new light on the properties examined in potential
counterexamples to the conjecture. There are works available in the literature attempting
to find the lower bound of the constant in the Fourier entropy/influence (FEI) conjecture.
Hence, it is evident that the pursuit of a lower bound on the constant in the Fourier min-
entropy/influence conjecture, a specialized case of the FEI conjecture, possesses a similar
inherent mathematical value. Furthermore, it promises to enhance our understanding of the
structure of Boolean functions.

In this chapter we first describe a new construction of Boolean functions. A specific in-
stance of our construction provides a 30-variable Boolean function having min-entropy/influence
ratio to be 128/45 ≈ 2.8444 which is presently the highest known value of this ratio that is
achieved by any Boolean function. Correspondingly, 128/45 is also presently the best known
lower bound on the universal constant of the Fourier min-entropy/influence conjecture.

6.1 Introduction

A longstanding open problem in the field of analysis of Boolean functions is the Fourier
Entropy/Influence (FEI) conjecture made by Friedgut and Kalai in 1996 [66]. The FEI
conjecture states that there is a universal constant 𝐶 such that 𝐻(𝑓) ≤ 𝐶 · inf(𝑓) for any
Boolean function 𝑓 , where𝐻(𝑓) and inf(𝑓) denote the Fourier entropy and the total influence
of 𝑓 respectively. For an explanation of the motivation behind the FEI conjecture, please
refer Chapter 3.

The conjecture was verified for various families of Boolean functions (e.g., symmetric
functions [131], read-once formulas [130, 42], decision trees of constant average depth [171],
read-𝑘 decision trees for constant 𝑘 [171], functions with exponentially small influence or
with linear entropy [154], random linear threshold functions [41], cryptographic Boolean
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functions [68], random functions [51]), but is still open for the class of all Boolean functions.

There has also been research in obtaining lower bounds on the constant 𝐶 in the FEI
conjecture. To show that 𝐶 is at least some value 𝛿 it is sufficient to show the existence of
a Boolean function whose entropy/influence ratio is 𝛿. The first lower bound of 4.615 was
obtained by O’Donnell et al. in [131]. Later O’Donnell and Tan [130] provided a recursive
construction of Boolean functions which showed how to construct a function for which the
value of the entropy/influence ratio is at least 6.278944 [86]. The presently best known lower
bound on 𝐶 is 6.454784. This bound was shown by Hod [86] using an extensive asymptotic
analysis.

The Fourier min-entropy/influence (FMEI) conjecture was put forward by O’Donnell et
al. in 2011 [131]. The FMEI conjecture states that there is a universal constant 𝐷 such
that 𝐻∞(𝑓) ≤ 𝐷 · inf(𝑓) for any Boolean function 𝑓 , where 𝐻∞(𝑓) is the Fourier min-
entropy of 𝑓 . The FMEI conjecture is weaker than the FEI conjecture in the sense that
settling the FEI conjecture will also settle the FMEI conjecture, but the converse is not true.
It was observed in [41, 131] that as a consequence of the Kahn-Kalai-Linial theorem [92]
the FMEI conjecture holds for monotone functions and linear threshold functions. The
FMEI conjecture for “regular” read-𝑘 DNFs was established by Shalev [154]. More recently,
Arunachalam et al. [5] have shown that the FMEI holds for read-𝑘 DNF for constant 𝑘.

To the best of our knowledge, till date there has been no work on obtaining lower bounds
on the universal constant of the FMEI conjecture. Since the FMEI conjecture is weaker than
the FEI conjecture, any upper bound on the universal constant of the FEI conjecture is also
an upper bound on the universal constant of the FMEI conjecture. This, however, does not
hold for lower bounds, i.e. a lower bound on the universal constant of the FEI conjecture is
not necessarily a lower bound on the universal conjecture of the FMEI conjecture.

6.1.1 Our results

The purpose of this work is to obtain a lower bound on the universal constant 𝐷 of the
FMEI conjecture. As in the case of the FEI conjecture, to show that 𝐷 is at least 𝛿, it is
sufficient to show the existence of a Boolean function for which the min-entropy/influence
ratio is 𝛿. An exhaustive search over all 𝑛-variable Boolean functions, with 1 ≤ 𝑛 ≤ 5,
shows that the maximum value of min-entropy/influence ratio that is achieved by functions
of at most 5 variables is 16/7 ≈ 2.285714. Since an exhaustive search becomes infeasible for
𝑛 ≥ 6, it is required to obtain some method of constructing Boolean functions for which the
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min-entropy/influence ratio is greater than 16/7.

We first considered the recursive construction of O’Donnell and Tan [130], since this con-
struction proved to be useful for showing a lower bound on the constant of the FEI conjecture.
To analyse this construction in the context of the FMEI conjecture, we derived an expression
for the min-entropy of the functions obtained using this construction. Since the construction
is recursive, one needs an initial function to start the recursion. We performed an exhaus-
tive search over all possible 5-variable initial functions. This yielded a 25-variable function
having min-entropy/influence ratio equal to 512/225 ≈ 2.275556. This unfortunately is not
useful since 512/225 is less than 16/7, the maximum value of min-entropy/influence ratio
that is obtained by exhaustive search over all 5-variable functions. The 25-variable function
is obtained in the first step of the O’Donnell-Tan recursion. Considering further steps of the
recursion does not result in a higher value of the min-entropy/influence ratio. We identified
an alternative recursive construction of Boolean functions which provides a lower bound on
the constant of the FEI conjecture which is equal to that obtained from the O’Donnell-
Tan construction. This alternative construction, however, does not improve upon the lower
bound on the constant of the FMEI conjecture that is obtained from the O’Donnell-Tan
construction. Further, we did not find any way to apply the asymptotic constructions given
by Hod [86] in the context of the FEI conjecture for obtaining lower bounds on the constant
in the FMEI conjecture.

Our main result is a new construction of Boolean functions. In simple terms, the con-
struction takes an 𝑛-variable function 𝑔 and constructs an (𝑛 + 1)-variable palindromic
function 𝑔0. An 𝑛(𝑛 + 1)-variable function 𝐺0 is then constructed by taking the ‘disjoint
composition’ (see 6.2) of 𝑔0 and 𝑔. Under certain conditions on 𝑔, the min-entropy/influence
ratio of 𝐺0 is greater than that of 𝑔. By searching over all appropriate 5-variable functions
𝑔, we obtain a 30-variable function 𝐺0 having min-entropy/influence ratio to be equal to
128/45 ≈ 2.844444. In fact, we obtain a total of 384 such functions 𝐺0. The value 128/45 is
presently the highest achieved value of min-entropy/influence ratio and correspondingly is
presently the best known lower bound on 𝐷.

In the final section, we provide a brief description of some experiments that we have
carried out for symmetric and rotation-symmetric Boolean functions. Based on these exper-
iments, we put forward a new conjecture on entropy/influence and the min-entropy/influence
ratios of symmetric Boolean functions.
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6.2 Background

We have already presented the FEI conjecture in Chapter 3. Here, we begin by stating the
FMEI conjecture, which establishes a connection between min-entropy and influence.

The Fourier Min-entropy/influence (FMEI) conjecture [131]. There exists a uni-
versal constant 𝐷 such that for any integer 𝑛 ≥ 1 and for any 𝑛-variable Boolean function
𝑓 , 𝐻∞(𝑓) ≤ 𝐷 · inf(𝑓).

Composition. For positive integers 𝑛 and 𝑘, an (𝑛, 𝑘) vectorial Boolean function (also
called an S-box) is a map G : F𝑛2 → F𝑘2. The function G can be written as G (X) =

(𝑔1(X), . . . , 𝑔𝑘(X)), where 𝑔1, . . . , 𝑔𝑘 are 𝑛-variable Boolean functions. Given a 𝑘-variable
Boolean function 𝑓 and an (𝑛, 𝑘) vectorial Boolean function G , their composition is the 𝑛-
variable Boolean function (𝑓 ∘ G )(X) = 𝑓(𝑔1(X), . . . , 𝑔𝑘(X)). The Walsh transform of 𝑓 ∘ G

is given by the following result.

Theorem 26 [78] Let G be an (𝑛, 𝑘) vectorial Boolean function and 𝑓 be a 𝑘-variable
Boolean function. Then for any u ∈ F𝑛2 ,

𝑊𝑓∘G (u) =
∑︀

v∈F𝑘
2
𝑊𝑓 (v)𝑊(𝑙v∘G )(u), (6.1)

where (𝑙v ∘ G )(X) = ⟨v,G (X)⟩.

Let 𝑘 and 𝑙 be positive integers and 𝑛 = 𝑘𝑙. For x ∈ F𝑛2 and 1 ≤ 𝑖 ≤ 𝑘, by x(𝑖) we
denote the vector (𝑥(𝑖−1)𝑙+1, . . . , 𝑥𝑖𝑙) ∈ F𝑙2. By a slight abuse of notation, we will write X =

(X(1), . . . ,X(𝑘)). Let 𝑓 and 𝑔 be Boolean functions on 𝑘 and 𝑙 variables respectively and 𝑛 =

𝑘𝑙. Let G be the (𝑛, 𝑘) vectorial Boolean function given by G (X) = (𝑔(X(1)), . . . , 𝑔(X(𝑘))).
The disjoint composition of 𝑓 and 𝑔, which we will denote as 𝑓 ◇ 𝑔, is the 𝑛-variable Boolean
function 𝑓 ∘ G , i.e.

(𝑓 ◇ 𝑔)(X) = (𝑓 ∘ G )(X) = 𝑓(𝑔(X(1)), . . . , 𝑔(X(𝑘))). (6.2)

The following result provides the entropy and influence of 𝑓 ◇ 𝑔.

Theorem 27 (simplified form of Proposition 2 in [130]) Let 𝑓 and 𝑔 be two Boolean
functions. Then,
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1. inf(𝑓 ◇ 𝑔) = inf(𝑔) · inf(𝑓).

2. If 𝑔 is balanced, then 𝐻(𝑓 ◇ 𝑔) = 𝐻(𝑓) +𝐻(𝑔) · inf(𝑓).

O’Donnell-Tan recursive construction. The following recursive construction of Boolean
functions was introduced by O’Donnell and Tan [130]. Let 𝑔 be an 𝑙-variable Boolean func-
tion. Using 𝑔, a sequence of Boolean functions 𝑓𝑚, 𝑚 ≥ 0, is defined in the following manner.

𝑓0 = 𝑔,

𝑓𝑚 = 𝑔 ◇ 𝑓𝑚−1 if 𝑚 ≥ 1.

}︃
(6.3)

It is easy to see that for 𝑚 ≥ 0, 𝑓𝑚 is a map from F𝑙𝑚+1

2 → F2. For the recursion defined
in (6.3), in the case where the initial function 𝑔 is balanced, the following was proved in [130].

𝐻(𝑓𝑚)

inf(𝑓𝑚)
=

𝐻(𝑔)

inf(𝑔)
+

𝐻(𝑔)

inf(𝑔)(inf(𝑔)− 1)
− 𝐻(𝑔)

inf(𝑔)𝑚+1(inf(𝑔)− 1)
. (6.4)

Consequently, lim𝑚→∞𝐻(𝑓𝑚)/inf(𝑓𝑚) = 𝐻(𝑔)/(inf(𝑔) − 1). So for any Boolean function 𝑔,
𝐻(𝑔)/(inf(𝑔)− 1) is a lower bound on the constant in the FEI conjecture.

6.3 Min-Entropy of disjoint composition

We wish to compute the min-entropy of disjoint composition. We start with the following
result which is somewhat more general than what we need.

Theorem 28 Let 𝑘 and 𝑙 be positive integers and 𝑛 = 𝑘𝑙. Let G be an (𝑛, 𝑘) vectorial
Boolean function such that G (X) = (𝑔1(X

(1)), . . . , 𝑔𝑘(X
(𝑘))), where 𝑔1, . . . , 𝑔𝑘 are 𝑙-variable

balanced Boolean functions. Then for any 𝑘-variable Boolean function 𝑓 ,

𝑊𝑓∘G (u) =

{︃
𝑊𝑓 (0𝑘) if u = 0𝑛,
𝑊𝑓 (wu)

∏︀
𝑖∈supp(wu)

𝑊𝑔𝑖

(︀
u(𝑖)
)︀

otherwise.
(6.5)

In (6.5), for u ∈ F𝑛2 written as u = (u(1), . . . ,u(𝑘)), by wu we denote the vector in F𝑘2 whose
𝑖-th position, 1 ≤ 𝑖 ≤ 𝑘, is 1 if and only if u(𝑖) ̸= 0𝑙, i.e. wu encodes whether the -bit blocks
of u are zero or not.

Proof: The proof follows from an application of Theorem 26.
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Note that for v = (𝑣1, . . . , 𝑣𝑘) ∈ F𝑘2, (𝑙v ∘ G )(X) = 𝑣1 · 𝑔1(X(1)) ⊕ · · · ⊕ 𝑣𝑘 · 𝑔𝑘(X(𝑘)). So
for u = (u(1), . . . ,u(𝑘)) ∈ F𝑛2 ,

𝑊(𝑙v∘G )(u) =
1

2𝑛

∑︁
x∈F𝑛

2

(−1)(𝑙v∘G )(x)⊕⟨u,x⟩

=
1

2𝑛

∑︁
x(1),...,x(𝑘)∈F𝑙

2

(−1)𝑣1·𝑔1(x
(1))⊕⟨u(1),x(1)⟩⊕···⊕𝑣𝑘·𝑔𝑘(x(𝑘))⊕⟨u(𝑘),x(𝑘)⟩

=
∏︁
𝑖∈[𝑘]

1

2𝑙

∑︁
x(𝑖)∈F𝑙

2

(−1)𝑣𝑖·𝑔𝑖(x
(𝑖))⊕⟨u(𝑖),x(𝑖)⟩.

For 𝑖 ∈ [𝑘], let 𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
= 1

2𝑙

∑︀
x(𝑖)∈F𝑙

2
(−1)𝑣𝑖·𝑔𝑖(x

(𝑖))⊕⟨u(𝑖),x(𝑖)⟩. Using (6.1) we have,

𝑊𝑓∘G (u) =
∑︁
v∈F𝑘

2

𝑊𝑓 (v)𝑊(𝑙v∘G )(u) =
∑︁
v∈F𝑘

2

𝑊𝑓 (v)
∏︁
𝑖∈[𝑘]

𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
. (6.6)

Let us now consider 𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
. Note that 𝐵𝑖

(︀
0,u(𝑖)

)︀
is equal to 1 or 0 according as u(𝑖)

is equal to 0𝑙 or not. Further, 𝐵𝑖

(︀
1,u(𝑖)

)︀
= 𝑊𝑔𝑖

(︀
u(𝑖)
)︀
. Since it is given that 𝑔𝑖 is balanced,

so 𝐵𝑖 (1,0𝑙) = 0.

For u ∈ F𝑛2 , the 𝑖-th bit of wu is 1 if and only if the 𝑖-th block of u is non-zero. For
v ∈ F𝑘

2 such that v ̸= wu, there is a 𝑗 ∈ [𝑘] such that either 𝑣𝑗 = 0 and u(𝑗) ̸= 0𝑙, or 𝑣𝑗 = 1

and u(𝑗) = 0𝑙; in either case, 𝐵𝑗

(︀
𝑣𝑗,u

(𝑗)
)︀
= 0 and so

∏︀
𝑖∈[𝑘]𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
= 0. On the other

hand, for v = wu, if 𝑣𝑖 = 0 then u(𝑖) = 0𝑙 which implies 𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
= 1; and if 𝑣𝑖 = 1 then

u(𝑖) ̸= 0𝑙 which implies 𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
= 𝑊𝑔𝑖

(︀
u(𝑖)
)︀
; so

∏︀
𝑖∈[𝑘]𝐵𝑖

(︀
𝑣𝑖,u

(𝑖)
)︀
=
∏︀

𝑖∈supp(v)𝑊𝑔𝑖

(︀
u(𝑖)
)︀
.

From this, we get the required result. □

Suppose in Theorem 28, the 𝑔𝑖’s are all equal, i.e. 𝑔1 = · · · = 𝑔𝑘 = 𝑔. Then 𝑓 ∘ G = 𝑓 ◇ 𝑔
and Theorem 28 provides the Walsh transform of disjoint composition in the case where 𝑔
is balanced. In this case, the min-entropy is given by the following result.

Theorem 29 Let 𝑘 and 𝑙 be positive integers, 𝑓 be a 𝑘-variable Boolean function, and 𝑔

be an 𝑙-variable balanced Boolean function. For 0 ≤ 𝑖 ≤ 𝑘, let 𝑎𝑖 = max{w:wt(w)=𝑖}𝑊
2
𝑓 (w).

Then
𝐻∞(𝑓 ◇ 𝑔) = min

𝑖∈{0,...,𝑘},𝑎𝑖>0
(− log(𝑎𝑖) + 𝑖 ·𝐻∞(𝑔)).

Proof: Let 𝑛 = 𝑘𝑙 and G be the (𝑛, 𝑘) vectorial Boolean function G (X) = (𝑔(X(1)), . . . , 𝑔(X(𝑘))).
Then 𝑓 ◇ 𝑔 = 𝑓 ∘ G and we can apply Theorem 28 to obtain the Walsh transform of 𝑓 ◇ 𝑔.
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We have from Theorem 28, 𝑊𝑓◇𝑔(0𝑛) = 𝑊𝑓 (0𝑘), and for 0𝑛 ̸= u ∈ F𝑛2 ,

𝑊𝑓◇𝑔(u) = 𝑊𝑓 (wu)
∏︁

𝑗∈supp(wu)

𝑊𝑔

(︀
u(𝑗)
)︀
.

From (2.11), to obtain the min-entropy of 𝑓 ◇ 𝑔, it is required to obtain maxu∈F𝑛
2
(𝑊𝑓◇𝑔(u))

2.
Let 𝛼𝑖 = argmaxwt(w)=𝑖𝑊

2
𝑓 (w) for 𝑖 ∈ [𝑘] and let 𝛽 = argmaxv𝑊

2
𝑔 (v) (breaking ties

arbitrarily in both cases). Note that 𝑎𝑖 = 𝑊 2
𝑓 (𝛼𝑖) and 𝐻∞(𝑔) = − log𝑊 2

𝑔 (𝛽). For wt(wu) =

𝑖, the maximum value of
∏︀

𝑗∈supp(wu)
𝑊 2
𝑔

(︀
u(𝑗)
)︀

is
(︀
𝑊 2
𝑔 (𝛽)

)︀𝑖. So max0𝑛 ̸=u∈F𝑛
2
(𝑊𝑓◇𝑔(u))

2 is
equal to max𝑖∈[𝑘]𝑊

2
𝑓 (𝛼𝑖)

(︀
𝑊 2
𝑔 (𝛽)

)︀𝑖
= max𝑖∈[𝑘] 𝑎𝑖

(︀
𝑊 2
𝑔 (𝛽)

)︀𝑖. The result now follows by taking
logarithms. □

6.4 Recursive constructions

We wish to obtain a Boolean function 𝑓 such that 𝐻∞(𝑓)/inf(𝑓) is as high as possible. One
way to obtain 𝑓 is to perform an exhaustive search. Since the number of 𝑛-variable Boolean
functions is 22𝑛 , it is difficult to carry out the search for 𝑛 > 5. For 𝑛 = 5, we have performed
an exhaustive search. This resulted in 3840 5-variable Boolean functions for which the min-
entropy/influence ratio is 16/7. All the 3840 functions turned out to be unbalanced. For the
purpose of illustration, we provide one of the 3840 functions that were obtained.

Example 1 Let ℎ be the following 5-variable Boolean function.

ℎ(𝑋5, 𝑋4, 𝑋3, 𝑋2, 𝑋1) = 𝑋4𝑋3 ⊕𝑋5𝑋2 ⊕𝑋5𝑋4𝑋1 ⊕𝑋5𝑋4𝑋2 ⊕𝑋5𝑋4𝑋3. (6.7)

For ℎ defined in (6.7), 𝐻∞(ℎ) = 4, inf(ℎ) = 7/4 and so 𝐻∞(ℎ)/inf(ℎ) = 16/7.

The question now is whether it is possible to obtain a function whose min-entropy/influence
ratio is greater than 16/7? In this section, we describe the approaches based on recursive
constructions which did not provide such a function. In the next section, we describe a
method which yields a function whose min-entropy/influence ratio is greater than that of ℎ.

6.4.1 O’Donnell and Tan’s Construction

We first consider the recursive construction of Boolean functions arising from the O’Donnell-
Tan construction since this construction proved to be useful for the entropy/influence ratio.
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Using Theorem 29, we obtain the following result on the min-entropy of the O’Donnell-Tan
recursive construction where the initial function satisfies the condition that there is a vector
of weight 1 for which the corresponding Walsh transform value is the maximum.

Theorem 30 Let 𝑔 be an 𝑙-variable balanced Boolean function for which there is a 𝛽 ∈ F𝑙2
with wt(𝛽) = 1 such that 𝑊 2

𝑔 (𝛽) = maxv𝑊
2
𝑔 (v). For 𝑚 ≥ 0, let 𝑓𝑚 be the Boolean function

constructed using (6.3) with 𝑓0 = 𝑔. Then for 𝑚 ≥ 0,

𝐻∞(𝑓𝑚) = (𝑚+ 1) ·𝐻∞(𝑔). (6.8)

Consequently,
𝐻∞(𝑓𝑚)

inf(𝑓𝑚)
=

(︂
𝐻∞(𝑔)

inf(𝑔)

)︂(︂
𝑚+ 1

inf(𝑔)𝑚

)︂
. (6.9)

Proof: Note that 𝐻∞(𝑔) = − log(𝑊 2
𝑔 (𝛽)). Further, since 𝑔 is balanced, using Theo-

rem 28, it follows that 𝑓𝑚 is balanced for all 𝑚 ≥ 1.

We prove (6.8) by induction on 𝑚. For 𝑚 = 0, this follows from the given condition on 𝑔.
Suppose (6.8) holds for some 𝑚 ≥ 0. From Theorem 29 and the fact that 𝑓𝑚+1 is balanced,
𝐻∞(𝑓𝑚+1) = 𝐻∞(𝑔◇𝑓𝑚) = min𝑖∈[𝑙],𝑎𝑖>0(− log(𝑎𝑖)+𝑖·𝐻∞(𝑓𝑚)), where 𝑎𝑖 = maxwt(w)=𝑖𝑊

2
𝑔 (w)

for 𝑖 = 1, . . . , 𝑙. For any 𝑖 ∈ [𝑙], we have − log(𝑎𝑖) + 𝑖 ·𝐻∞(𝑓𝑚) ≥ − log(𝑊 2
𝑔 (𝛽)) +𝐻∞(𝑓𝑚) =

𝐻∞(𝑔) + 𝐻∞(𝑓𝑚) and since 𝛽 has weight 1, equality is attained for 𝑖 = 1. So using the
induction hypothesis, 𝐻∞(𝑓𝑚+1) = min𝑖∈[𝑙],𝑎𝑖>0(− log(𝑎𝑖)+𝑖 ·𝐻∞(𝑓𝑚)) = 𝐻∞(𝑔)+𝐻∞(𝑓𝑚) =

(𝑚+ 2)𝐻∞(𝑔).

The proof of (6.9) follows from (6.8) and Theorem 27. □

To use Theorem 30 as an amplifier of min-entropy/influence ratio it is required to obtain
𝑚 ≥ 1 such that 𝐻∞(𝑓𝑚)/inf(𝑓𝑚) > 𝐻∞(𝑔)/inf(𝑔) which holds if and only if inf(𝑔) <

(𝑚 + 1)1/𝑚. For 𝑚 = 1, this condition becomes inf(𝑔) < 2 and for higher values of 𝑚, the
upper bound on inf(𝑔) is lower. Comparing (6.4) with (6.9), we see that unlike the case
of the entropy/influence ratio, increasing 𝑚 does not necessarily lead to a higher value of
the min-entropy/influence ratio. In particular, the nice asymptotic analyses [130, 86] which
has been done for the entropy/influence ratio is not applicable to the min-entropy/influence
ratio.

To apply Theorem 30, we need an appropriate initial function 𝑔. We performed an
exhaustive search over all possible 5-variable Boolean functions which satisfy the conditions
of Theorem 30. For 𝑚 = 1, we obtained 384 functions such that taking 𝑓0 to be any of
these functions leads to a 25-variable Boolean function 𝑓1 with 𝐻∞(𝑓1)/inf(𝑓1) = 512/225 ≈
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2.275556. Let ℱ5 denote the set of these 384 functions. As an example, we provide one
element of ℱ5.

Example 2 Let 𝑔 be the following 5-variable Boolean function.

𝑔(𝑋5, 𝑋4, 𝑋3, 𝑋2, 𝑋1)

= 𝑋3𝑋2𝑋1 ⊕𝑋4 ⊕𝑋4𝑋1 ⊕𝑋4𝑋2 ⊕𝑋4𝑋2𝑋1 ⊕𝑋4𝑋3𝑋1 ⊕𝑋4𝑋3𝑋2

⊕𝑋5 ⊕𝑋5𝑋1 ⊕𝑋5𝑋2𝑋1 ⊕𝑋5𝑋3 ⊕𝑋5𝑋3𝑋1 ⊕𝑋5𝑋3𝑋2 ⊕𝑋5𝑋4

⊕𝑋5𝑋4𝑋1 ⊕𝑋5𝑋4𝑋2 ⊕𝑋5𝑋4𝑋3. (6.10)

The function 𝑔 defined in (6.10) is in ℱ5. For 𝑔, 𝐻∞(𝑔) = 4, inf(𝑔) = 15/8. Taking 𝑓0 = 𝑔

and 𝑓1 = 𝑓0 ◇ 𝑓0, from Theorem 30 we have 𝐻∞(𝑓1)/inf(𝑓1) = 32/15× 2/(15/8) = 512/225.

We note the following points.

1. The 25-variable function 𝑓1 obtained using the above method is not useful. The 5-
variable function ℎ given in (6.7) obtained using exhaustive search has a higher value
of the min-entropy/influence ratio.

2. In our search over all 5-variable Boolean functions, considering 𝑚 > 1 did not provide
a result better than that obtained for 𝑚 = 1.

3. In Theorem 30, the condition wt(𝛽) = 1 is required to obtain the expression for 𝑓𝑚
given by (6.8). Considering wt(𝛽) > 1, on the other hand, does not seem to lead to a
higher value of the min-entropy/influence ratio.

6.4.2 A different recursion

Let 𝑔 be an 𝑙-variable Boolean function. We define a sequence {𝑔𝑚}𝑚≥0 of Boolean functions
as follows.

𝑔0 = 𝑔,

𝑔𝑚 = 𝑔𝑚−1 ◇ 𝑔𝑚−1 if 𝑚 ≥ 1.

}︃
(6.11)

For 𝑚 ≥ 0, 𝑔𝑚 is a map from F𝑙2
𝑚

2 to F2. If we start (6.3) and (6.11) with the same initial
function 𝑔, then we obtain 𝑓1 = 𝑔1, but for 𝑚 > 1, the two sequences are different. More
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generally, the sequence defined using (6.11) is not a sub-sequence of the sequence defined
using (6.3).

Suppose 𝑔 is a balanced function. Using Theorem 27, it is possible to show that 𝐻(𝑔𝑚) =

𝐻(𝑔)(1+inf(𝑔0))(1+inf(𝑔1)) . . . (1+inf(𝑔𝑚−1)) and inf(𝑔𝑚) = inf(𝑔)inf(𝑔0)inf(𝑔1) . . . inf(𝑔𝑚−1) =

inf(𝑔)2
𝑚 . From this it is possible to show that 𝐻(𝑔𝑚)/inf(𝑔𝑚) = (𝐻(𝑔)/(inf(𝑔) − 1)) · (1 −

1/inf(𝑔)𝑚). So as 𝑚→ ∞, 𝐻(𝑔𝑚)/inf(𝑔𝑚) goes to 𝐻(𝑔)/(inf(𝑔)− 1) which is the same limit
as that obtained from the O’Donnell-Tan recursion. So the recursion given by (6.11) provides
a different way of achieving the same limit for the entropy/influence ratio as that obtained
using the O’Donnell-Tan recursion.

Suppose 𝑔 is such that 𝑊 2
𝑔 (v) is maximum for some v of weight 1. Let {𝑔𝑚}𝑚≥0 be the

sequence defined in (6.11) with 𝑔0 = 𝑔. Then in a manner similar to the proof of Theo-
rem 30 it can be shown that 𝐻∞(𝑔𝑚) = 2𝑚 ·𝐻∞(𝑔). So 𝐻∞(𝑔𝑚)/inf(𝑔𝑚) = (𝐻(𝑔)/inf(𝑔)) ·
(2𝑚/inf(𝑔)2

𝑚−1). For 𝑚 = 1, this is the same as the O’Donnell-Tan construction and for
𝑚 > 1, it does not lead to any improvement over the O’Donnell-Tan construction. So for
the min-entropy/influence ratio, the new recursion does not provide anything better than
the O’Donnell-tan construction.

6.5 Construction from palindromic functions

An 𝑛-variable Boolean function 𝑔 can be represented by a bit string of length 2𝑛 in the
following manner: for 𝑖 ∈ {0, . . . , 2𝑛 − 1}, the 𝑖-th bit of the string is 𝑔(𝛼), where 𝛼 is
the 𝑛-bit binary representation of 𝑖. We will denote the bit string representing 𝑔 also by 𝑔.
The reverse of the bit string representation of 𝑔 is 𝑔𝑟, and 𝑔𝑟 is given by 𝑔𝑟(𝑋𝑛, . . . , 𝑋1) =

𝑔(1⊕𝑋𝑛, . . . , 1⊕𝑋1). The following simple result relates the Walsh transforms of 𝑔 and 𝑔𝑟.

Proposition 7 Let 𝑔 be an 𝑛-variable Boolean function and 𝑔𝑟 be another 𝑛-variable Boolean
function defined as 𝑔𝑟(𝑋𝑛, . . . , 𝑋1) = 𝑔(1 ⊕ 𝑋𝑛, . . . , 1 ⊕ 𝑋1). Then for 𝛼 ∈ F𝑛2 , 𝑊𝑔𝑟(𝛼) =

(−1)wt(𝛼)𝑊𝑔(𝛼).

Given an 𝑛-variable Boolean function 𝑔, we may construct an (𝑛 + 1)-variable Boolean
𝑓 function in the following manner. Concatenate the bit string representing 𝑔 and 𝑔𝑟 to
obtain a bit string of length 2𝑛+1. This string represents the desired (𝑛+1)-variable Boolean
function 𝑓 . The bit string representing 𝑓 is a palindrome and we call 𝑓 to be a palindromic
function. The following construction is a little more general than the method just described.
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For 𝑏 ∈ F2, let

𝑔𝑏(𝑋𝑛+1, 𝑋𝑛, . . . , 𝑋1)

= (1⊕𝑋𝑛+1)𝑔(𝑋𝑛, . . . , 𝑋1)⊕𝑋𝑛+1(𝑏+ 𝑔(1⊕𝑋𝑛, . . . , 1⊕𝑋1)). (6.12)

If 𝑏 = 0, then 𝑓0 is the concatenation of 𝑔 and 𝑔𝑟 as described above, and if 𝑏 = 1, then 𝑓1

is the concatenation of 𝑔 and the complement of 𝑔𝑟. The following result shows the relation
between the relevant properties of 𝑔 and 𝑔𝑏.

Proposition 8 Let 𝑔 be an 𝑛-variable Boolean function and 𝑏 ∈ F2. Let 𝑔𝑏 be the (𝑛 + 1)-
variable Boolean function constructed from 𝑔 and 𝑏 using (6.12). Then the following holds.

1. For 𝛽 ∈ F𝑛+1
2 , where 𝛽 = (𝑎,𝛼), with 𝑎 ∈ F2 and 𝛼 ∈ F𝑛2 ,

𝑊𝑔𝑏(𝛽) =

(︂
(1 + (−1)𝑏+wt(𝛽))

2

)︂
𝑊𝑔(𝛼). (6.13)

2. 𝐻∞(𝑔𝑏) = 𝐻∞(𝑔).

3. inf(𝑔𝑏) = inf(𝑔) + 𝜖𝑏(𝑔), where 𝜖𝑏(𝑔) =
∑︁
𝛼∈F𝑛

2
wt(𝛼)̸≡𝑏 mod 2

𝑊 2
𝑔 (𝛼).

Proof: By definition

𝑊𝑔𝑏(𝛽) =
1

2𝑛+1

∑︁
x∈F𝑛+1

2

(−1)𝑔𝑏(x)⊕⟨𝛽,x⟩. (6.14)

We simplify the exponent in the sum.

𝑔𝑏(𝑥𝑛+1, 𝑥𝑛, . . . , 𝑥1)⊕ ⟨(𝑎,𝛼), (𝑥𝑛+1, 𝑥𝑛, . . . , 𝑥1)⟩
= (1⊕ 𝑥𝑛+1)𝑔(𝑥𝑛, . . . , 𝑥1)⊕ 𝑥𝑛+1(𝑏⊕ 𝑔(1⊕ 𝑥𝑛, . . . , 1⊕ 𝑥1))⊕ ⟨(𝑎,𝛼), (𝑥𝑛+1, 𝑥𝑛, . . . , 𝑥1)⟩

=

{︃
𝑔(𝑥𝑛, . . . , 𝑥1)⊕ ⟨𝛼, (𝑥𝑛, . . . , 𝑥1)⟩ if 𝑥𝑛+1 = 0,

𝑏⊕ 𝑔(1⊕ 𝑥𝑛, . . . , 1⊕ 𝑥1)⊕ 𝑎⊕ ⟨𝛼, (𝑥𝑛, . . . , 𝑥1)⟩ if 𝑥𝑛+1 = 1.
(6.15)

Writing x = (𝑥𝑛+1,y), where 𝑥𝑛+1 ∈ F2 and y ∈ F𝑛2 , we simplify (6.14) using (6.15) as
follows.

𝑊𝑔𝑏(𝛽) =
1

2𝑛+1

⎛⎝∑︁
y∈F𝑛

2

(−1)𝑔(y)⊕⟨𝛼,y⟩ + (−1)𝑎⊕𝑏
∑︁
y∈F𝑛

2

(−1)𝑔(1𝑛⊕y)⊕⟨𝛼,y⟩

⎞⎠
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=
1

2

(︀
𝑊𝑔(𝛼) + (−1)𝑎⊕𝑏𝑊𝑔𝑟(𝛼)

)︀
=

1

2

(︀
𝑊𝑔(𝛼) + (−1)𝑎⊕𝑏(−1)wt(𝛼)𝑊𝑔(𝛼)

)︀
(using Proposition 7)

=
1

2

(︀
𝑊𝑔(𝛼) + (−1)𝑏(−1)wt(𝑎,𝛼)𝑊𝑔(𝛼)

)︀
.

This proves the first point. The second point follows directly from the first.

For the third point, we use (2.19) to compute the influence of 𝑔𝑏 from its Walsh transform.

inf(𝑔𝑏) =
∑︁

𝑎∈F2,𝛼∈F𝑛
2

wt(𝑎,𝛼)𝑊 2
𝑔𝑏
(𝑎,𝛼)

=
∑︁

𝑎∈F2,𝛼∈F𝑛
2

wt(𝑎,𝛼)

(︂
(1 + (−1)𝑏+wt(𝑎,𝛼))

2

)︂2

𝑊 2
𝑔 (𝛼)

=
∑︁
𝛼∈F𝑛

2

wt(𝛼)

(︂
(1 + (−1)𝑏+wt(𝛼))

2

)︂2

𝑊 2
𝑔 (𝛼)

+
∑︁
𝛼∈F𝑛

2

(1 + wt(𝛼))

(︂
(1− (−1)𝑏+wt(𝛼))

2

)︂2

𝑊 2
𝑔 (𝛼)

=
∑︁

𝛼∈F𝑛
2 ,wt(𝛼)≡𝑏 mod 2

wt(𝛼)𝑊 2
𝑔 (𝛼)

+
∑︁

𝛼∈F𝑛
2 ,wt(𝛼) ̸≡𝑏 mod 2

(1 + wt(𝛼))𝑊 2
𝑔 (𝛼)

= inf(𝑔) + 𝜖𝑏(𝑔).

□

We note the following two points.

1. The Walsh transform of 𝑔𝑏 is banded, i.e. it is zero for all vectors of weights congruent
to 1− 𝑏 modulo two.

2. From Parseval’s theorem it follows that 0 ≤ 𝜖𝑏(𝑔) ≤ 1.

We recall two well known classes of Boolean function. See [36] for an extensive discussion
on the various properties of these classes. Let 𝑓 be an 𝑛-variable Boolean function.

• 𝑓 is said to be 𝑡-resilient, 0 ≤ 𝑡 < 𝑛, if 𝑊𝑓 (𝛼) = 0 for all 𝛼 with wt(𝛼) ≤ 𝑡.

• 𝑓 is said to be plateaued, if 𝑊𝑓 (𝛼) takes the values 0,±𝑐, for some 𝑐.
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From (2.19), it follows that if 𝑓 is 𝑡-resilient, then inf(𝑓) ≥ 𝑡+ 1.

Next we present the main result of the chapter.

Theorem 31 Let 𝑔 be a balanced 𝑛-variable Boolean function, 𝑏 ∈ F2 and 𝑔𝑏 be constructed
from 𝑔 and 𝑏 as in (6.12). Let 𝐺𝑏 = 𝑔𝑏 ◇ 𝑔. Then

𝐻∞(𝐺𝑏)

inf(𝐺𝑏)
=

min𝑖∈{0,...,𝑘},𝑎𝑖>0(− log(𝑎𝑖) + 𝑖𝐻∞(𝑔))

inf(𝑔)(inf(𝑔) + 𝜖𝑏(𝑔))
, (6.16)

where 𝑎𝑖 = max{w:wt(w)=𝑖}𝑊
2
𝑔𝑏
(w), 𝑖 = 0, . . . , 𝑘.

Further, suppose that there is a 𝑡 ≥ 0 such that 𝑡 ≡ 𝑏 mod 2 and 𝑔 is a plateaued 𝑡-resilient
function, which is not (𝑡+ 1)-resilient. Then

𝐻∞(𝐺𝑏)

inf(𝐺𝑏)
=

𝐻∞(𝑔)

inf(𝑔)

(︂
𝑡+ 3

inf(𝑔) + 𝜖𝑏(𝑔)

)︂
. (6.17)

Proof: Proposition 8 provides the expression for inf(𝑔𝑏) and Theorem 27 provides the
expression for inf(𝐺𝑏). The expression for 𝐻∞(𝐺𝑏) is obtained from Theorem 29. This
shows (6.16).

Now suppose 𝑔 is a 𝑡-resilient plateaued function such that 𝑡 ≡ 𝑏 mod 2. Since 𝑔 is
plateaued, from (6.13), it follows that 𝑔𝑏 is also plateaued and for 𝑎𝑖 > 0, − log(𝑎𝑖) = 𝐻∞(𝑔).
From the conditions 𝑔 is 𝑡-resilient and 𝑡 ≡ 𝑏 mod 2, it follows that 𝑔𝑏 is (𝑡+ 1)-resilient. To
see this, suppose 𝛽 ∈ F𝑛+1

2 with wt(𝛽) ≤ 𝑡 + 1. If wt(𝛽) = 𝑡 + 1, then since 𝑡 ≡ 𝑏 mod 2,
we have 1 + (−1)𝑏+wt(𝛽) = 0 and so 𝑊𝑔𝑏(𝛽) = 0; on the other hand, if wt(𝛽) < 𝑡 + 1, then
writing 𝛽 = (𝑎,𝛼) with 𝑎 ∈ F2 and 𝛼 ∈ F𝑛2 , and using the fact that 𝑔 is 𝑡-resilient, it follows
that wt(𝛼) ≤ 𝑡 and so 𝑊𝑔(𝛼) = 0 which implies that 𝑊𝑔𝑏(𝛽) = 0. Further, since 𝑔 is not
(𝑡+ 1)-resilient, it follows that 𝑔𝑏 is not (𝑡+ 2)-resilient. Since 𝑔𝑏 is (𝑡+ 1)-resilient, but not
(𝑡+ 2)-resilient, it follows that the minimum value of 𝑖 such that 𝑎𝑖 > 0 is 𝑡+ 2. Now using
the fact that for 𝑎𝑖 > 0, − log(𝑎𝑖) = 𝐻∞(𝑔), we have min𝑖∈{0,...,𝑘},𝑎𝑖>0(− log(𝑎𝑖) + 𝑖𝐻∞(𝑔)) ≥
𝐻∞(𝑔) + (𝑡+ 2)𝐻∞(𝑔) = (𝑡+ 3)𝐻∞(𝑔). This shows (6.17). □

6.5.1 Construction of a 30-variable Boolean function

By construction, if 𝑔 is an 𝑛-variable Boolean function, then the function 𝐺𝑏 in Theo-
rem 31 is an 𝑛(𝑛 + 1)-variable Boolean function. To use Theorem 31 as an amplifier of
min-entropy/influence ratio, it is required to have 𝐻∞(𝐺𝑏)/inf(𝐺𝑏) > 𝐻∞(𝑔)/inf(𝑔). If 𝑔 is a
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plateaued 𝑡-resilient function, then the last condition holds if and only if 𝑡+3 ≥ inf(𝑔)+𝜖𝑏(𝑔).
Note, however, that inf(𝑔) ≥ 𝑡 + 1 and so the condition 𝑡 + 3 ≥ inf(𝑔) + 𝜖𝑏(𝑔) offers only a
limited scope for amplification of the min-entropy/influence ratio.

If 𝑔 is balanced, but not 1-resilient, i.e. 𝑡 = 0, then the amplification factor in Theorem 31
is 3/(inf(𝑔) + 𝜖𝑏(𝑔)). We compare this condition with the amplification factor for 𝑚 = 1

arising from the O’Donnell-Tan construction. From Theorem 30, the amplification factor in
the O’Donnell-Tan construction is 2/inf(𝑔). So if we use the same 𝑔 in both Theorems 30
and 31, then the amplification provided by Theorem 31 is greater if and only if inf(𝑔) > 2𝜖𝑏(𝑔).
The last condition holds for all 𝑔 ∈ ℱ5 (for the definition of ℱ5 see the discussion before
Example 2). So if we take any of the functions in ℱ5 as the initial function and apply
Theorem 31, we will obtain a function whose min-entropy/influence ratio is greater than
what can be obtained by starting with the same initial function and using one step of the
O’Donnell-Tan construction.

As a concrete example, we consider the 5-variable function 𝑔 given in Example 2. Using
this 𝑔 and taking 𝑏 = 0, from (6.12), we obtain a 6-variable function 𝑔0. The function
𝐺0 = 𝑔0 ◇ 𝑔 is a 30-variable function. From Theorem 31, we have 𝐻∞(𝐺0)/inf(𝐺0) =

128/45 ≈ 2.8444. Starting with any of the 384 functions in ℱ5 and applying Theorem 31,
we obtain a corresponding 30-variable function for which the min-entropy/influence ratio
is also 128/45. This gives us a set of 384 30-variable functions each of which has min-
entropy/influence ratio to be 128/45. Note that 128/45 is greater than 16/7, which is
the maximum min-entropy/influence ratio that is achieved by any 5-variable function (see
Example 1 and the discussion preceeding it). Presently, 128/45 is the highest known value
of min-entropy/influence ratio that has been achieved. Correspondingly, 128/45 is also the
best known lower bound on the universal constant of the min-entropy/influence conjecture.

6.6 Some further search results

A Boolean function 𝑓 is said to be symmetric if it is invariant under any permutation of its
input. The number of 𝑛-variable symmetric Boolean functions is 2𝑛+1. O’Donnell et al. [131]
established the FEI conjecture for symmetric Boolean functions which also settles the FMEI
conjecture for this class of functions. Their proof showed that the entropy/influence ratio
of any symmetric Boolean function is at most 12.04. We used exhaustive search to find the
actual value of the ratio for symmetric functions on 𝑛 variables with 𝑛 ≤ 16.
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For 𝑛 ≥ 2, let 𝐴𝑛(𝑋1, . . . , 𝑋𝑛) = 𝑋1 · · ·𝑋𝑛 (in terms of Boolean algebra 𝐴𝑛 is the AND
function). It is easy to show (see [86]) that𝐻(𝐴𝑛)/inf(𝐴𝑛) < 4. Our search for 𝑛 ≤ 16 showed
that if 𝑓 is an 𝑛-variable symmetric Boolean function, then 𝐻(𝑓)/inf(𝑓) ≤ 𝐻(𝐴𝑛)/inf(𝐴𝑛).
This suggests that the ratio 12.04 that was achieved in the proof of [131] is perhaps not the
minimum possible value of the entropy/influence ratio for symmetric functions.

A Boolean function 𝑓 is said to be bent [145] if all the Walsh transform values of 𝑓 are
equal. Such functions can exist only if 𝑛 is even. If 𝑓 is bent, then 𝐻(𝑓) = 𝐻∞(𝑓) = 𝑛.
Further, inf(𝑓) = 𝑛/2 (see [18]). So for a bent function 𝑓 , 𝐻(𝑓)/inf(𝑓) = 𝐻∞(𝑓)/inf(𝑓) = 2.
Symmetric functions can be bent and the class of symmetric bent functions have been char-
acterised [152, 113]. Our search showed that if 𝑛 is even, then for any 𝑛-variable symmetric
Boolean function 𝑓 , 𝐻∞(𝑓)/inf(𝑓) ≤ 2 and equality is achieved if and only if 𝑓 is bent;
on the other hand, if 𝑛 is odd, then for any 𝑛-variable symmetric Boolean function 𝑓 ,
𝐻∞(𝑓)/inf(𝑓) < 2.

Based on our observations, we put forth the following conjecture.

Conjecture 2 Let 𝑓 be an 𝑛-variable symmetric Boolean function. Then

1. 𝐻(𝑓)/inf(𝑓) ≤ 𝐻(𝐴𝑛)/inf(𝐴𝑛) and equality is achieved if and only if 𝑓 equals 𝐴𝑛.

2. If 𝑛 is even, then 𝐻∞(𝑓)/inf(𝑓) ≤ 2 and equality is achieved if and only if 𝑓 is bent; if
𝑛 is odd, then 𝐻∞(𝑓)/inf(𝑓) < 2

A closed form expression for the Walsh transform of symmetric Boolean function in terms of
binomial coefficients is known [38]. We could not, however, find a way to use this expression
to settle the above conjecture. We also tried to apply the techniques from [131] used for
showing that the FEI conjecture holds for symmetric Boolean functions to settle Conjecture 2
but were not successful. The main problem is that the various inequalities used in the proof
of [131] do not seem to be sufficiently sharp to establish the bounds stated in the above
conjecture. As mentioned above, Conjecture 2 has been verified for 1 ≤ 𝑛 ≤ 16. It is
possible to experimentally verify the conjecture for additional values of 𝑛, but this is unlikely
to provide any insight into how to settle the conjecture.

A Boolean function is said to be rotation symmetric if it is invariant under a cyclic shift
of its input. It is not known whether the FEI (or the FMEI) conjecture holds for rotation
symmetric Boolean functions. See [162] for the number of rotation symmetric Boolean
functions on 𝑛 variables. We could perform an exhaustive search on rotation symmetric
Boolean functions for 𝑛 ≤ 7. For 𝑛 = 6 and 𝑛 = 7, the maximum values of 𝐻(𝑓)/inf(𝑓) are
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3.739764 and 3.804357 respectively; and the maximum values of 𝐻∞(𝑓)/inf(𝑓) are 2.168978
and 2.227449 respectively, where the maximums are over all 𝑛-variable rotation symmetric
Boolean function. Compared to symmetric Boolean functions, we see that the maximum
value of the entropy/influence ratio remains below 4, but the maximum value of the min-
entropy/influence ratio is greater than 2. Since we could not run the experiment for higher
values of 𝑛, we are unable to put forward any conjecture for rotation symmetric Boolean
functions.

6.7 Concluding remarks

Our work has opened the interesting topic of obtaining lower bounds on the universal con-
stant of the FMEI conjecture. We have provided one method of constructing Boolean
functions which provides the presently best known lower bound. A future challenge is to
obtain other construction methods which yield functions with a higher value of the min-
entropy/influence ratio. It is also interesting to look for sufficiently sharp techniques to
settle Conjecture 2. A final open problem resulting from our work is to settle the FEI
conjecture for rotation symmetric Boolean functions.



Chapter 7

“Majority is Least stable” conjecture

In this chapter, we present an example which proves that the “majority is least stable”
conjecture holds true for 𝑛 = 1 and 3, while being false for all odd 𝑛 ≥ 5. The statement
of the conjecture was taken verbatim from the book [128] (Page 133), where it is stated
for Boolean functions f : {−1, 1}𝑛 → {−1, 1}. To ensure consistency, we have decided to
maintain the same definition of a Boolean function in this chapter. So, a Boolean function
in this chapter will look like f : {−1, 1}𝑛 → {−1, 1}. Additionally, in order to facilitate
understanding, we provide definitions of the Fourier transform, 𝜌-noisy distribution, noise
stability, and influence over the domain {−1, 1}𝑛, which are equivalent to the definitions
provided in Chapter 2 for the domain F𝑛2 . To maintain clarity and avoid confusion, we use
the notations for each of these concepts in the same way as we did in Chapter 2, even though
their representations differ.

7.1 Introduction

We start by defining the linear threshold function and majority function for the input values
in the {−1, 1}𝑛.

A Boolean function f : {−1, 1}𝑛 → {−1, 1} is said to be a linear threshold function
if there are real constants 𝑤0, 𝑤1, . . . , 𝑤𝑛 such that for any x = (𝑥1, . . . , 𝑥𝑛) ∈ {−1, 1}𝑛,
f(x) = sgn(𝑤0 + 𝑤1𝑥1 + · · ·+ 𝑤𝑛𝑥𝑛), where sign(𝑧) = 1 if 𝑧 ≥ 0, and −1 if 𝑧 < 0.

For odd 𝑛, the majority function Maj𝑛 : {−1, 1}𝑛 → {−1, 1} is the following.

Maj𝑛(𝑥1, . . . , 𝑥𝑛) = sign(𝑥1 + 𝑥2 + . . .+ 𝑥𝑛).

For x ∈ {−1, 1}𝑛 and 𝜌 ∈ [0, 1], the distribution 𝑁𝜌(x) over {−1, 1}𝑛 is defined in the
following manner (see Page 53 of [127]): y = (𝑦1, . . . , 𝑦𝑛) ∼ 𝑁𝜌(x) if for 𝑖 = 1, . . . , 𝑛,

𝑦𝑖 =

{︃
𝑥𝑖, with probability 𝜌
±1, with probability (1− 𝜌)/2 each.

97
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The noise stability of a function f : {−1, 1}𝑛 → R, denoted by Stab𝜌(f), is defined as
follows.

Stab𝜌(f) = E
x∼{−1,1}𝑛, y∼𝑁𝜌(x)

[f(x)f(y)] . (7.1)

Benjamini, Kalai and Schramm in 1999 (see [13, 61]) put forward the following conjecture.

Conjecture 3 (“Majority is Least Stable”) : Let 𝑛 be odd and f : {−1, 1}𝑛 → {−1, 1} be a
linear threshold function. Then for all 𝜌 ∈ [0, 1], Stab𝜌(f) ≥ Stab𝜌(Maj𝑛).

Counterexamples to this conjecture have been found for 𝑛 = 5 by Noam Berger and
Vishesh Jain (see [139, 127, 89]), and for every odd 𝑛 by Daniel Kane and Steven Heilman, as
well as independently by Sivakanth Gopi (private communication). These counterexamples,
however, have never been made public. To the best of our knowledge, the only public
counterexample to the conjecture was published by Jain [89] for the case of 𝑛 = 5.

In this chapter, we show that Conjecture 3 is true for 𝑛 = 1 and 3 and false for odd
𝑛 ≥ 5. To show that the conjecture is false for odd 𝑛 ≥ 5, we define a sequence of Boolean
functions g𝑛 and show that Stab𝜌(g𝑛) < Stab𝜌(Maj𝑛). To show that the conjecture is true for
𝑛 = 3, we employed a search over all monotone 3-variable Boolean functions f and obtained
the expressions for Stab𝜌(f). It turns out that each of these expressions is greater than or
equal to Stab𝜌(Maj𝑛) for all 𝜌 ∈ [0, 1].

7.2 Preliminaries

For 𝑆 ⊆ [𝑛], the characters of {−1, 1}𝑛, C𝑆 : {−1, 1}𝑛 → {−1, 1} are defined as: C𝑆(𝑥1, . . . , 𝑥𝑛) =∏︀
𝑖∈𝑆 𝑥𝑖. Just as in the case of Theorem 1, it is also possible to show that {C𝑆}𝑆⊆[𝑛] is a

collection of orthonormal characters.

Then the Fourier transform of f : {−1, 1}𝑛 → {−1, 1}, which is a map ̂︀f : 2[𝑛] → [−1, 1]

can be defined as follows. For 𝑆 ⊆ [𝑛],

̂︀f(𝑆) =
1

2𝑛

∑︁
x∈{−1,1}𝑛

f(x)C𝑆(x). (7.2)

For f : {−1, 1}𝑛 → {−1, 1} and 𝑘 ∈ [𝑛], let 𝑊 (𝑘)[f] =
∑︀

𝑆⊆[𝑛],|𝑆|=𝑘
̂︀f2(𝑆) and 𝑊≤𝑘[f] =
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∑︀𝑘
𝑖=0𝑊

(𝑖)[f]. We say that f is balanced if #{x : f(x) = 1} = #{x : f(x) = −1}. It follows
that f is balanced if and only if ̂︀f(∅) = 0.

The Fourier expression of Stab𝜌(f) is the following (see Page 56 of [127]). Note that this
expression is essentially equivalent to the one presented in Lemma 8.

Stab𝜌(f) =
𝑛∑︁
𝑘=0

𝜌𝑘 ·𝑊 (𝑘)[f]. (7.3)

As we have previously observed (see 2.17), the influence of a variable 𝑖 on a Boolean
function is determined by calculating the probability that flipping the value of variable 𝑖 will
result in a change in the function’s value. Suppose, for any x ∈ {−1, 1}𝑛, x⊕𝑖 denotes the
vector (𝑥1, . . . , 𝑥𝑖−1,−𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛). Then the notion of influence of a variable 𝑖 ∈ [𝑛] over
a Boolean function f : {−1, 1}𝑛 → {−1, 1}, inf f(𝑖) will be defined as follows (see Page 46
of [127]).

inf f(𝑖) = Pr
x∈{−1,1}𝑛

[f(x) ̸= f(x⊕i)].

It is easy to see that Maj𝑛 is balanced and so 𝑊 (0)[Maj𝑛] = 0. It is known that (see
Page 62 of [127])

𝑊 (1)[Maj𝑛] =

[︃(︀𝑛−1
𝑛−1
2

)︀
2𝑛−1

]︃2
· 𝑛. (7.4)

It was observed in [89] that if f is a balanced linear threshold function, then showing
𝑊 (1)[f] < 𝑊 (1)[Maj𝑛] would disprove Conjecture 3. For the sake of completeness, we state a
more general form of this observation as a lemma and provide a proof.

Lemma 12 Let 𝑛 be odd and f : {−1, 1}𝑛 → {−1, 1} be a Boolean function such that
𝑊 (0)[f] = 0 and 𝑊 (1)[f] < 𝑊 (1)[Maj𝑛]. Then there exists a 𝛿 > 0 such that Stab𝜌(f) <

Stab𝜌(Maj𝑛) for all 0 < 𝜌 < 𝛿. Consequently, the function f is a counter-example to Conjec-
ture 3.

Proof: For 𝑘 ≥ 0, let 𝑎𝑘 = 𝑊 (𝑘)[f] − 𝑊 (𝑘)[Maj𝑛]. Since by assumption, 𝑊 (0)[f] = 0,
𝑊 (1)[f] < 𝑊 (1)[Maj𝑛], and noting that Maj𝑛 is balanced, it follows that 𝑎0 = 0 and −1 ≤
𝑎1 < 0. On the other hand, for 𝑘 ≥ 2, we have −1 ≤ 𝑎𝑘 < 1.

Now, Stab𝜌(f) − Stab𝜌(Maj𝑛) =
∑︀𝑛

𝑘=1 𝜌
𝑘 · 𝑎𝑘. Therefore, Stab𝜌(f) − Stab𝜌(Maj𝑛) < 0 if

and only if 𝜌(𝑎2 + 𝜌𝑎3 + . . . + 𝜌𝑛−2𝑎𝑛) < −𝑎1. Since 𝑎𝑘 < 1 for 𝑘 = 2, . . . , 𝑛, it follows
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that 𝜌(𝑎2 + 𝜌𝑎3 + . . . + 𝜌𝑛−2𝑎𝑛) is upper bounded by 𝜌(1 + 𝜌 + . . . + 𝜌𝑛−2) whose limiting
value is 0 as 𝜌 → 0. Therefore, there must exist some 𝛿 > 0 such that for all 0 < 𝜌 < 𝛿,
𝜌(𝑎2+ 𝜌𝑎3+ . . .+ 𝜌

𝑛−2𝑎𝑛) < −𝑎1. Consequently, Stab𝜌(f) < Stab𝜌(Maj𝑛) for all 0 < 𝜌 < 𝛿. □

A function f(𝑋1, . . . , 𝑋𝑛) is monotone increasing in X1, if and only if f(−1,Y) ≤ f(1,Y),
for all possible values of Y = (𝑋2, . . . , 𝑋𝑛) taken from {−1, 1}𝑛−1. Likewise, it is monotone
decreasing in 𝑋1 if and only if f(1,Y) ≤ f(−1,Y). f is said to be unate or locally monotone
if it is monotone increasing or decreasing in each variable.

From [73] (see Lemma 2.2 and the comment following it), it follows that if f is a unate
function, then for all 𝑖 ∈ [𝑛], inf f(𝑖) = |̂︀f({𝑖})|. Since a linear threshold function is unate, we
have the following result which has been used in the proof of Theorem 4.1 of [73].

Theorem 32 (Gotsman and Linial [73]) If f : {−1, 1}𝑛 → {−1, 1} is a linear threshold
function, then

∑︀𝑛
𝑖=1 (inf f(𝑖))

2 = 𝑊 (1)[f].

7.3 Settling Conjecture 3

We state and prove some results from which the main theorem follows.

Lemma 13 Let 𝑛 ≥ 1, 𝑤0 be an integer and 𝑤1 and 𝑤2 be non-zero integers. Let 𝑇 be
a subset of [𝑛] of cardinality 𝑡 ≤ 𝑛/2. Consider the following linear threshold function:
f(𝑥1, . . . , 𝑥𝑛) = sign

(︀
𝑤0 + 𝑤1 ·

∑︀
𝑢∈𝑇 𝑥𝑢 + 𝑤2 ·

∑︀
𝑣∈𝑇 𝑥𝑣

)︀
. Then

𝑊 (0)[f] =
1

22𝑛
·

⎡⎣ ∑︁
(𝑖,𝑗)∈𝒮0

(︂
𝑡

𝑖

)︂(︂
𝑛− 𝑡

𝑗

)︂⎤⎦2

, (7.5)

𝑊 (1)[f] =
𝑡

22𝑛−2
·

⎡⎣ ∑︁
(𝑖,𝑗)∈𝒮1

(︂
𝑡− 1

𝑖

)︂(︂
𝑛− 𝑡

𝑗

)︂⎤⎦2

+
𝑛− 𝑡

22𝑛−2
·

⎡⎣ ∑︁
(𝑖,𝑗)∈𝒮2

(︂
𝑡

𝑖

)︂(︂
𝑛− 𝑡− 1

𝑗

)︂⎤⎦2

,(7.6)
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where 𝒮0, 𝒮1 and 𝒮2 are defined as follows.

𝒮0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 𝑡, 0 ≤ 𝑗 ≤ 𝑛− 𝑡

and − 𝑤0 ≤ 𝑤1(2𝑖− 𝑡) + 𝑤2(2𝑗 − (𝑛− 𝑡)) ≤ 𝑤0} if 𝑤0 ≥ 0,

{(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 𝑡, 0 ≤ 𝑗 ≤ 𝑛− 𝑡

and 𝑤0 < 𝑤1(2𝑖− 𝑡) + 𝑤2(2𝑗 − (𝑛− 𝑡)) < −𝑤0} if 𝑤0 < 0;

𝒮1 = {(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 𝑡− 1, 0 ≤ 𝑗 ≤ 𝑛− 𝑡

and − |𝑤1| ≤ 𝑤0 + 𝑤1(2𝑖− (𝑡− 1)) + 𝑤2(2𝑗 − (𝑛− 𝑡)) < |𝑤1|};
𝒮2 = {(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 𝑡, 0 ≤ 𝑗 ≤ 𝑛− 𝑡− 1

and − |𝑤2| ≤ 𝑤0 + 𝑤1(2𝑖− 𝑡) + 𝑤2(2𝑗 − (𝑛− 𝑡− 1)) < |𝑤2|}.

Proof: We start with the proof of (7.5). For x ∈ {−1, 1}𝑛, let 𝐴(x) = 𝑤1 ·
∑︀

𝑢∈𝑇 𝑥𝑢 +

𝑤2 ·
∑︀

𝑣∈𝑇 𝑥𝑣 so that f(x) = sgn(𝑤0 + 𝐴(x)). Let 𝑁 (resp. 𝑀) be the number of x’s such
that 𝑤0 + 𝐴(x) ≥ 0 (resp. 𝑤0 + 𝐴(x) < 0). Then ̂︀f(∅) = (𝑁 −𝑀)/2𝑛. There are two cases
to consider.

First consider the case 𝑤0 ≥ 0. Let 𝑁1 (resp. 𝑁2) be the number of x’s such that
𝐴(x) > 𝑤0 (resp. −𝑤0 ≤ 𝐴(x) ≤ 𝑤0). So, 𝑁 = 𝑁1 +𝑁2. Since 𝐴(−x) = −𝐴(x), it follows
that 𝑁1 = 𝑀 and so ̂︀f(∅) = 𝑁2/2

𝑛. Therefore to obtain 𝑊 (0)[f] = ̂︀f2(∅) it is sufficient to
obtain 𝑁2. For x ∈ {−1, 1}𝑛, let 𝑖 = #{𝑢 ∈ 𝑇 : 𝑥𝑢 = 1} and 𝑗 = #{𝑣 ∈ 𝑇 : 𝑥𝑣 = 1}. Then
𝐴(x) = 𝑤1(2𝑖− 𝑡)+𝑤2(2𝑗− (𝑛− 𝑡)). For 0 ≤ 𝑖 ≤ 𝑡 and 0 ≤ 𝑗 ≤ 𝑛− 𝑡, the pair (𝑖, 𝑗) is in 𝒮0

if and only if −𝑤0 ≤ 𝐴(x) ≤ 𝑤0. So, the number of x’s for which −𝑤0 ≤ 𝐴(x) ≤ 𝑤0 holds
is
∑︀

(𝑖,𝑗)∈𝒮0

(︀
𝑡
𝑖

)︀(︀
𝑛−𝑡
𝑗

)︀
which is the value of 𝑁2.

Next consider the case 𝑤0 < 0. Let 𝑀1 (resp. 𝑀2) be the number of x’s such that 𝐴(x) ≤
𝑤0 (resp. 𝑤0 < 𝐴(x) < −𝑤0). So, 𝑀 = 𝑀1 +𝑀2. Again since 𝐴(−x) = −𝐴(x), it follows
that 𝑀1 = 𝑁 and so ̂︀f(∅) = −𝑀2/2

𝑛. Therefore to obtain 𝑊 (0)[f] = ̂︀f2(∅) it is sufficient to
obtain 𝑀2. A similar argument as above shows that 𝑀2 is equal to

∑︀
(𝑖,𝑗)∈𝒮0

(︀
𝑡
𝑖

)︀(︀
𝑛−𝑡
𝑗

)︀
.

Now we turn to the proof of (7.6). Fix some 𝑠 ∈ 𝑇 and some 𝑟 ∈ 𝑇 . Due to symmetry,
for any 𝑖 ∈ 𝑇 , we have inf f(𝑖) = inf f(𝑠) and for any 𝑗 ∈ 𝑇 , we have inf f(𝑗) = inf f(𝑟) and so
from Theorem 32,

𝑊 (1)[f] = 𝑡 · (inf f(𝑠))2 + (𝑛− 𝑡) · (inf f(𝑟))2 . (7.7)

Let𝑁𝑠 (resp. 𝑁𝑟) be the number of x ∈ {−1, 1} such that f(x) ̸= f(x⊕𝑠) (resp. f(x) ̸= f(x⊕𝑟)).
Then inf f(𝑠) = 𝑁𝑠/2

𝑛−1 and inf f(𝑟) = 𝑁𝑟/2
𝑛−1.

For x ∈ {−1, 1}𝑛, let 𝐵(x) = 𝑤0+𝑤1

∑︀
𝑢∈𝑇∖{𝑠} 𝑥𝑢+𝑤2

∑︀
𝑣∈𝑇 𝑥𝑣. From the definition of f,

𝑁𝑠 is the number of x’s such that either (𝑤1𝑥𝑠+𝐵(x) ≥ 0 and −𝑤1𝑥𝑠+𝐵(x) < 0) or (𝑤1𝑥𝑠+
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𝐵(x) < 0 and −𝑤1𝑥𝑠 + 𝐵(x) ≥ 0) holds. The two conditions are equivalent to −𝑤1𝑥𝑠 ≤
𝐵(x) < 𝑤1𝑥𝑠 and 𝑤1𝑥𝑠 ≤ 𝐵(x) < −𝑤1𝑥𝑠 respectively. For the first condition, we must
have 𝑤1𝑥𝑠 > 0 as otherwise we obtain |𝑤1𝑥𝑠| ≤ 𝐵(x) < −|𝑤1𝑥𝑠| which is a contradiction;
similarly, for the second condition, we must have 𝑤1𝑥𝑠 < 0. Noting that 𝑥𝑠 ∈ {−1, 1}, both
conditions boil down to −|𝑤1| ≤ 𝐵(x) < |𝑤1|, and consequently, 𝑁𝑠 is the number of x’s
such that −|𝑤1| ≤ 𝐵(x) < |𝑤1| holds.

For x ∈ {−1, 1}𝑛, let 𝑖 = #{𝑢 ∈ 𝑇 ∖ {𝑠} : 𝑥𝑢 = 1} and 𝑗 = #{𝑣 ∈ 𝑇 : 𝑥𝑣 = 1}. Then
𝐵(x) = 𝑤0 + 𝑤1(2𝑖− (𝑡− 1)) + 𝑤2(2𝑗 − (𝑛− 𝑡)). For 0 ≤ 𝑖 ≤ 𝑡− 1 and 0 ≤ 𝑗 ≤ 𝑛− 𝑡, the
pair (𝑖, 𝑗) is in 𝒮1 if and only if −|𝑤1| ≤ 𝐵(x) < |𝑤1| holds. So, the number of x’s for which
−|𝑤1| ≤ 𝐵(x) < |𝑤1| holds is

∑︀
(𝑖,𝑗)∈𝒮1

(︀
𝑡−1
𝑖

)︀(︀
𝑛−𝑡
𝑗

)︀
which is the value of 𝑁𝑠.

A similar argument shows that 𝑁𝑟 is equal to
∑︀

(𝑖,𝑗)∈𝒮2

(︀
𝑡
𝑖

)︀(︀
𝑛−𝑡−1
𝑗

)︀
. Using the values of

𝑁𝑠 and 𝑁𝑟 to obtain inf f(𝑠) and inf f(𝑟) respectively and substituting these in (7.7) gives the
expression for 𝑊 (1)[f] stated in (7.6). □

For odd 𝑛 ≥ 3, we define a sequence of functions g𝑛 : {−1, 1}𝑛 → {−1, 1} where

g𝑛(𝑥1, . . . , 𝑥𝑛) = sign(2 · (𝑥1 + . . .+ 𝑥𝑛−3) + 𝑥𝑛−2 + 𝑥𝑛−1 + 𝑥𝑛). (7.8)

In [89], the function g5 has been shown to be a counter-example to Conjecture 3.

Lemma 14 For g𝑛 defined in (7.8), we have

𝑊 (0)[g𝑛] = 0,

𝑊 (1)[g𝑛] =

⎧⎪⎨⎪⎩
3 ·
[︀

2
2𝑛−1

]︀2
, if 𝑛 = 3

(𝑛− 3) ·
[︂
(𝑛−4
𝑛−5
2
)·8

2𝑛−1

]︂2
+ 3 ·

[︂
(𝑛−3
𝑛−3
2
)·2

2𝑛−1

]︂2
, for odd 𝑛 ≥ 5.

(7.9)

Proof: For 𝑛 = 3, it is clear that g3 = Maj3. Therefore, from the fact that the Maj3 is
balanced and (7.4) we obtain the desired result. Now let us assume that 𝑛 > 3. We use
Lemma 13. For g𝑛, we have 𝑤0 = 0, 𝑤1 = 1 and 𝑤2 = 2. Also, 𝑇 = {𝑛− 2, 𝑛− 1, 𝑛} so that
𝑡 = 3. With these values, the sets 𝒮0, 𝒮1 and 𝒮2 defined in Lemma 13 are the following.

𝒮0 = {(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 3, 0 ≤ 𝑗 ≤ 𝑛− 3 and (2𝑖− 3) + 2(2𝑗 − (𝑛− 3)) = 0},
𝒮1 = {(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 𝑛− 3 and − 1 ≤ (2𝑖− 2) + 2(2𝑗 − (𝑛− 3)) < 1},
𝒮2 = {(𝑖, 𝑗) : 0 ≤ 𝑖 ≤ 3, 0 ≤ 𝑗 ≤ 𝑛− 4 and − 2 ≤ (2𝑖− 3) + 2(2𝑗 − (𝑛− 4)) < 2}.

Since (2𝑖 − 3) + 2(2𝑗 − (𝑛 − 3)) is odd, it cannot be zero and so 𝒮0 is empty showing that
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𝑊 (0)[g𝑛] = 0.

Since (2𝑖− 2) + 2(2𝑗 − (𝑛− 3)) is even it cannot be equal to −1 and so the only possible
value it can take is 0. From this, we obtain 𝒮1 to be {(1, (𝑛− 3)/2)}.

Similarly, since (2𝑖 − 3) + 2(2𝑗 − (𝑛 − 4)) is odd, the only possible values in the set
{−2,−1, 0, 1} that it can take are −1 and 1. Corresponding to these two values, we obtain
𝑗 = (𝑛−3− 𝑖)/2 and 𝑗 = (𝑛−2− 𝑖)/2 respectively. Since 𝑛 is odd, in the first case 𝑖 must be
even, while in the second case 𝑖 must be odd. So, 𝒮2 = {(0, (𝑛−3)/2), (2, (𝑛−5)/2), (1, (𝑛−
3)/2), (3, (𝑛− 5)/2)}.

Substituting the values of 𝑤0, 𝑤1, 𝑤2, 𝑡 as well as 𝒮1 and 𝒮2 in (7.6), we obtain

𝑊 (1)[g𝑛] =
3

22𝑛−2
·
[︂(︂

2

1

)︂(︂
𝑛− 3
𝑛−3
2

)︂]︂2
+
𝑛− 3

22𝑛−2
·
[︂(︂
𝑛− 4
𝑛−3
2

)︂
+ 3

(︂
𝑛− 4
𝑛−5
2

)︂
+ 3

(︂
𝑛− 4
𝑛−3
2

)︂
+

(︂
𝑛− 4
𝑛−5
2

)︂]︂2

Noting that (𝑛− 3)/2+ (𝑛− 5)/2 = 𝑛− 4 leads to the expression for 𝑊 (1)[g𝑛] given in (7.9).
□

Lemma 15 Let g𝑛 be defined as in (7.8). For odd 𝑛 ≥ 5, 𝑊 (1)[g𝑛] < 𝑊 (1)[Maj𝑛].

Proof: The expression for 𝑊 (1)[Maj𝑛] is given by (7.4) and the expression for 𝑊 (1)[g𝑛] is
given by (7.9). Therefore

𝑊 (1)[g𝑛]

𝑊 (1)[Maj𝑛]
=

[︃(︀𝑛−4
𝑛−5
2

)︀
· 8(︀

𝑛−1
𝑛−1
2

)︀ ]︃2(︂𝑛− 3

𝑛

)︂
+

[︃(︀𝑛−3
𝑛−3
2

)︀
· 2(︀

𝑛−1
𝑛−1
2

)︀ ]︃2(︂ 3

𝑛

)︂
=

[︂
𝑛− 1

𝑛− 2

]︂2(︂
4𝑛− 9

4𝑛

)︂
.

(7.10)

From (7.10), it follows that 𝑊 (1)[g𝑛] < 𝑊 (1)[Maj𝑛] if and only if (𝑛− 3)2 > 0 i.e. 𝑛 ≥ 5. □

Lemma 16 Conjecture 3 is true for 𝑛 = 1 and 𝑛 = 3.

Proof: For 𝑛 = 1, the only linear threshold function (ltf) is the majority function and so
Conjecture 3 is trivially true.

Using (7.3), for 𝑛 = 3, it is easy to check that Stab𝜌(Maj3) = 0.75𝜌+ 0.25𝜌3. We need to
compare this expression with Stab𝜌(f) where f is an ltf. We used an exhaustive search. There
is no easy way to determine whether a given function is an ltf. Since an ltf is unate, if we
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search over all 3-variable unate functions the search will cover all ltfs. From the definition
of noise stability given in (7.1), it follows that negating some of the inputs of an ltf does not
affect the noise stability. Since by negating inputs an ltf can be converted to a monotone
function, it suffices to search over all 3-variable monotone functions. Let f be a 3-variable
monotone function. We obtained the values of 𝑊 (𝑘)[f], for 𝑘 = 0, 1, 2, 3 and using (7.3)
obtained the expression for Stab𝜌(f). From the search, the possible expressions for Stab𝜌(f)

were obtained to be the following: 1, 𝜌, 0.75𝜌+0.25𝜌3, 0.0625+0.6875𝜌+0.1875𝜌2+0.0625𝜌3,
0.25 + 0.5𝜌+ 0.25𝜌2, 0.5625 + 0.1875𝜌+ 0.1875𝜌2 + 0.0625𝜌3. For each of these expressions,
it is easy to verify that Stab𝜌(f) ≥ Stab𝜌(Maj3) for all 𝜌 ∈ [0, 1]. □

Based on Lemmas 12, 15 and 16, we obtain the main result of the paper, of which the
case 𝑛 = 5 was reported in [89].

Theorem 33 Conjecture 3 is true for 𝑛 = 1 and 𝑛 = 3. For odd 𝑛 ≥ 5, Conjecture 3 is
false.

For 𝑛 ≥ 5, there are other functions which provide counterexamples to Conjecture 3. For
odd 𝑛, suppose h𝑛 is obtained from g𝑛 by negating some of the input variables. This does
not affect the noise stability, i.e. Stab𝜌(h𝑛) = Stab𝜌(g𝑛). So for odd 𝑛 ≥ 5, the function h𝑛

is also a counterexample to Conjecture 3.

7.4 Limiting Value of 𝑊≤1[𝑔𝑛]

It is known (see Page 62 of [127]) that 𝑊≤1[Maj𝑛] is a decreasing sequence which is lower
bounded by 2/𝜋. In the context being discussed, there exists another reasonable conjecture
that is referenced in both [13] and on Page 115 of [127], which is as follows.

Conjecture 4 If f : {−1, 1}𝑛 → {−1, 1} is a linear threshold function, then 𝑊≤1[f] ≥ 2
𝜋
.

We have shown that for odd 𝑛 ≥ 5, the function g𝑛 defined by (7.8) satisfies 𝑊 (1)[g𝑛] <

𝑊 (1)[Maj𝑛]. This brings up the question of whether the sequence g𝑛 also provides a counter-
example to the Conjecture 4. In this section, we show that this is not the case.

From Lemma 14, 𝑊 (0)[g𝑛] = 0 and so, 𝑊≤1[g𝑛] = 𝑊 (1)[g𝑛]. This shows that it is sufficient
to consider 𝑊 (1)[g𝑛]. We show that 𝑊 (1)[g𝑛] is a decreasing sequence which is lower bounded
by 2/𝜋. The expression for 𝑊 (1)[g𝑛] given by (7.9) involves binomial coefficients. We use
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the following bounds on factorial function (see Page 54 of [59]).

√
2𝜋𝑚 · 𝑚

𝑚

𝑒𝑚
exp

(︂
1

12𝑚+ 1

)︂
≤ 𝑚! ≤

√
2𝜋𝑚 · 𝑚

𝑚

𝑒𝑚
exp

(︂
1

12𝑚

)︂
. (7.11)

Let 𝑝 = 𝑘
𝑚

and 𝑞 = 1− 𝑝. Using (7.11), the following bounds on
(︀
𝑚
𝑘

)︀
can be obtained.

(︀
𝑚
𝑘

)︀
≥ 1√

2𝜋𝑚𝑝𝑞
(𝑝𝑝𝑞𝑞)−𝑚 exp

(︁
1

12𝑚+1
− 1

12𝑘
− 1

12(𝑚−𝑘)

)︁
,(︀

𝑚
𝑘

)︀
≤ 1√

2𝜋𝑚𝑝𝑞
(𝑝𝑝𝑞𝑞)−𝑚 exp

(︁
1

12𝑚
− 1

12𝑘+1
− 1

12(𝑚−𝑘)+1

)︁
.

⎫⎬⎭ (7.12)

Lemma 17 For g𝑛 defined in (7.8), 𝑊 (1)[g𝑛] is a decreasing sequence and lim𝑛→∞𝑊
(1)[g𝑛] =

2
𝜋
. Consequently, for all odd 𝑛, 𝑊 (1)[g𝑛] ≥ 2/𝜋.

Proof: Let 𝑎𝑛 = 𝑊 (1)[g𝑛] and 𝑏𝑛 = 𝑊 (1)[Maj𝑛]. We wish to show that 𝑎𝑛 is a decreasing
sequence. To do this, we compare 𝑎𝑛+2/𝑏𝑛 to 𝑎𝑛/𝑏𝑛. The expression for 𝑎𝑛/𝑏𝑛 is given
by (7.10). Using (7.4) and (7.9), we obtain 𝑎𝑛+2/𝑏𝑛 = (4𝑛− 1)/(4𝑛). We have 𝑎𝑛 > 𝑎𝑛+2 if
and only if 𝑎𝑛/𝑏𝑛 > 𝑎𝑛+2/𝑏𝑛. Using the expressions for 𝑎𝑛/𝑏𝑛 and 𝑎𝑛+2/𝑏𝑛, the last condition
is equivalent to [︂

𝑛− 1

𝑛− 2

]︂2(︂
4𝑛− 9

4𝑛

)︂
>

4𝑛− 1

4𝑛

which holds if and only if 𝑛 ≥ 3. So 𝑎𝑛 is a decreasing sequence for all odd 𝑛 ≥ 3.

Let 𝐴𝑛 = (𝑛 − 3) ·
[︂
(𝑛−4
𝑛−5
2
)·8

2𝑛−1

]︂2
, 𝐵𝑛 = 3 ·

[︂
(𝑛−3
𝑛−3
2
)·2

2𝑛−1

]︂2
and so 𝑎𝑛 = 𝐴𝑛 + 𝐵𝑛. We show that

𝐴𝑛 tends to 2/𝜋 and 𝐵𝑛 tends to 0 and so 𝑎𝑛 tends to 2/𝜋 as 𝑛 goes to infinity.

First consider 𝐴𝑛. Letting 𝑚 = 𝑛− 4, 𝑘 = 𝑛−5
2

, 𝑝 = 𝑘/𝑚 and 𝑞 = 1− 𝑝, from (7.12) and
using some routine simplifications we obtain the following bounds on 𝐴𝑛.

𝐴𝑛 ≥ 2

𝜋

[︂
𝑛− 4

𝑛− 3

]︂(𝑛−3) [︂
𝑛− 5

𝑛− 4

]︂−(𝑛−4)
exp

(︂
2

12𝑛− 47
− 2

6𝑛− 30
− 2

6𝑛− 18

)︂
,

𝐴𝑛 ≤ 2

𝜋

[︂
𝑛− 4

𝑛− 3

]︂(𝑛−3) [︂
𝑛− 5

𝑛− 4

]︂−(𝑛−4)
exp

(︂
2

12𝑛− 48
− 2

6𝑛− 29
− 2

6𝑛− 17

)︂
.

Since lim𝑥→∞(1− 1
𝑥
)𝑥 = 1

𝑒
and lim𝑥→∞(1− 1

𝑥
)−𝑥 = 𝑒, it follows that lim𝑛→∞𝐴𝑛 = 2/𝜋.

Now, consider 𝐵𝑛. Letting 𝑚 = 𝑛 − 3, 𝑘 = 𝑛−3
2

and 𝑝 = 𝑞 = 1
2
, from (7.12) and using
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some routine simplifications we obtain the following bounds on 𝐵𝑛.

𝐵𝑛 ≥ 3

2𝜋

(︂
1

𝑛− 3

)︂
exp

(︂
2

12𝑛− 35
− 2

6𝑛− 18
− 2

6𝑛− 18

)︂
,

𝐵𝑛 ≤ 3

2𝜋

(︂
1

𝑛− 3

)︂
exp

(︂
2

12𝑛− 36
− 2

6𝑛− 17
− 2

6𝑛− 17

)︂
.

It follows that lim𝑛→∞𝐵𝑛 = 0. □



Chapter 8

Counting unate and balanced monotone
Boolean functions

We show that the problem of counting the number of 𝑛-variable unate functions reduces
to the problem of counting the number of 𝑛-variable monotone functions. Using recently
obtained results on 𝑛-variable monotone functions, we obtain counts of 𝑛-variable unate
functions up to 𝑛 = 9. We use an enumeration strategy to obtain the number of 𝑛-variable
balanced monotone functions up to 𝑛 = 7. We show that the problem of counting the
number of 𝑛-variable balanced unate functions reduces to the problem of counting the number
of 𝑛-variable balanced monotone functions, and consequently, we obtain the number of 𝑛-
variable balanced unate functions up to 𝑛 = 7. Using enumeration, we obtain the numbers of
equivalence classes of 𝑛-variable balanced monotone functions, unate functions and balanced
unate functions up to 𝑛 = 6. Further, for each of the considered sub-class of 𝑛-variable
monotone and unate functions, we also obtain the corresponding numbers of 𝑛-variable non-
degenerate functions.

8.1 Introduction

In this chapter, it is required to compare two Boolean functions by examining their output
strings. To facilitate this comparison, it is preferable to represent the Boolean functions
using bit representation. It is worth mentioning that in the field of circuit theory or switching
theory, unate functions are frequently studied, and the standard representation for Boolean
functions in this area is the bit representation. Hence, we have chosen to adopt the same
representation in this chapter. Therefore, for a positive integer 𝑛, we will consider an 𝑛-
variable Boolean function f is a map f : {0, 1}𝑛 → {0, 1}.

For a positive integer 𝑛, an 𝑛-variable Boolean function f is a map f : {0, 1}𝑛 → {0, 1}.
A Boolean function f is said to be monotone increasing (resp. decreasing) in the 𝑖-th variable
if

f (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖+1, . . . , 𝑥𝑛) ≤ f (𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖+1, . . . , 𝑥𝑛)

107
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(resp. f (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖+1, . . . , 𝑥𝑛) ≥ f (𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖+1, . . . , 𝑥𝑛))

for all possible 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛 ∈ {0, 1}. The function f is said to be locally mono-
tone or unate, if for each 𝑖 ∈ {1, . . . , 𝑛}, it is either monotone increasing or monotone
decreasing in the 𝑖-th variable. The function f is said to be monotone increasing (or, simply
monotone) if for each 𝑖 ∈ {1, . . . , 𝑛}, it is monotone increasing in the 𝑖-th variable.

Unate functions have been studied in the literature from various viewpoints such as
switching theory [105, 118, 166, 116, 17, 140], combinatorial aspects [166, 58, 84], and com-
plexity theoretic aspects [7, 182, 121, 84]. Monotone functions have been studied much more
extensively than unate functions and have many applications so much so that it is difficult
to mention a few representative works.

A Boolean function is degenerate on some variable if its output does not depend on the
variable, and it is said to be non-degenerate if it is not degenerate on any variable. Two
Boolean functions on the same number of variables are said to be equivalent if one can be
obtained from the other by a permutation of variables. The notion of equivalence partitions
the set of Boolean functions into equivalence classes.

The number of 𝑛-variable monotone Boolean functions is called the 𝑛-th Dedekind number
𝐷(𝑛) after Dedekind who posed the problem in 1897. Till date, the 𝑛-th Dedekind numbers
has been obtained only up to 𝑛 = 9 (see [161, 53, 46, 172, 14, 174, 60, 90, 85]). A closed
form summation formula for 𝐷(𝑛) was given in [102], though it was pointed out in [108] that
using the formula to compute 𝐷(𝑛) has the same complexity as direct enumeration of all
𝑛-variable monotone Boolean functions. Dedekind numbers form the entry A000372 of [161].
The number of 𝑛-variable non-degenerate Boolean functions can be obtained as the inverse
binomial transform of the Dedekind numbers and are hence also known up to 𝑛 = 9. These
numbers form the entry A006126 of [161]. The numbers of 𝑛-variable inequivalent monotone
Boolean functions are known up to 𝑛 = 9 (see [163, 136, 137]) and form the entry A003182
of [161].

A basic property of Boolean functions is balancedness. A Boolean function is said to be
balanced if it takes the values 0 and 1 equal number of times. The number of 𝑛-variable
balanced Boolean functions is

(︀
2𝑛

2𝑛−1

)︀
.

The focus of the present work is on counting unate and monotone Boolean functions
under various restrictions. For 𝑛 ≤ 5, it is possible to enumerate all 𝑛-variable Boolean
functions. Consequently, the problem of counting various sub-classes of 𝑛-variable Boolean
functions becomes a reasonably simple problem. Non-triviality of counting Boolean functions
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arises for 𝑛 ≥ 6.

We show that the problem of counting unate functions reduces to the problem of counting
monotone functions. Since the numbers of 𝑛-variable monotone functions are known up to
𝑛 = 9, these values immediately provide the numbers of 𝑛-variable unate functions up to
𝑛 = 9. The problem of counting balanced monotone functions has not been considered in
the literature. We use an enumeration strategy to count the number of balanced monotone
functions up to 𝑛 = 7. We show that the problem of counting balanced unate functions
reduces to the problem of counting balanced monotone functions. Consequently, we obtain
the numbers of 𝑛-variable balanced unate functions up to 𝑛 = 7. We further extend these re-
sults to obtain the numbers of non-degenerate balanced monotone functions, non-degenerate
unate functions, and non-degenerate balanced unate functions.

We describe a simple filtering technique for counting the number of equivalence classes
of 𝑛-variable functions possessing a given property. Using this technique, we compute the
number of equivalence classes of 𝑛-variable balanced monotone functions. Unlike the sit-
uation for counting functions, the problem of counting the number of equivalence classes
of unate functions does not reduce to the problem of counting the number of equivalence
classes of monotone functions. So to count equivalence classes of unate functions, we used
a method to generate all 𝑛-variable unate functions and applied our filtering technique to
obtain the number of equivalence classes of 𝑛-variable unate functions. This allowed us to
obtain the numbers of equivalence classes of 𝑛-variable unate and balanced unate functions
up to 𝑛 = 6. We further extend these results to obtain the numbers of equivalence classes
of 𝑛-variable non-degenerate monotone functions up to 𝑛 = 9. Moreover, we obtain the
numbers of equivalence classes of 𝑛-variable balanced monotone functions, non-degenerate
balanced monotone functions, non-degenerate unate functions and non-degenerate balanced
unate functions up to 𝑛 = 6.

To summarise, the new results that we obtain for monotone and unate functions are the
following.

Monotone:

1. Numbers of 𝑛-variable balanced monotone functions and 𝑛-variable non-degenerate
balanced monotone functions up to 𝑛 = 7.

2. Numbers of equivalence classes of 𝑛-variable non-degenerate monotone functions
up to 𝑛 = 9.

3. Numbers of equivalence classes of 𝑛-variable balanced monotone functions, and
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𝑛-variable non-degenerate balanced monotone functions up to 𝑛 = 6.

Unate:

1. Numbers of 𝑛-variable unate functions and 𝑛-variable non-degenerate unate func-
tions up to 𝑛 = 9.

2. Numbers of 𝑛-variable balanced unate functions and 𝑛-variable non-degenerate
balanced unate functions up to 𝑛 = 7.

3. Numbers of equivalence classes of 𝑛-variable unate functions, 𝑛-variable non-
degenerate unate functions, 𝑛-variable balanced unate functions, and 𝑛-variable
non-degenerate balanced unate functions up to 𝑛 = 6.

Related counts: The number of NPN-equivalence classes1 of unate Boolean functions has
been studied (see [8] and 𝐴003183 in [161]). A proper subclass of unate functions is the
class of unate cascade functions which have been studied in [151, 112, 124]. Entry 𝐴005612
in [161] provides counts of unate cascade functions.

Outline of the chapter: In Section 8.2 we describe the preliminaries and prove the math-
ematical results required to obtain the various counts. In Section 8.3 we address the problem
of counting various sub-classes of monotone and unate functions and in Section 8.4 we take
up the problem of counting equivalence classes of monotone and unate functions possess-
ing a combination of several basic properties. Finally, Section 8.5 provides the concluding
remarks.

8.2 Mathematical Results

We fix some terminology and notation. The cardinality of a finite set 𝑆 will be denoted as
#𝑆. For 𝑥, 𝑦 ∈ {0, 1}, 𝑥𝑦 and 𝑥⊕ 𝑦 denote the AND and XOR operations respectively, and
𝑥 denotes the complement (or negation) of 𝑥.

Elements of {0, 1}𝑛, 𝑛 ≥ 2, are 𝑛-bit strings (or vectors) and will be denoted using bold
font. Given 𝑛 ≥ 2 and 1 ≤ 𝑖 ≤ 𝑛, by e𝑖 we will denote the 𝑛-bit string whose 𝑖-th bit is 1
and is 0 elsewhere.

1Two Boolean functions are said to be NPN equivalent, if one can be obtained from the other by some
combination of the following operations: a permutation of the variables, negation of a subset of the variables,
and negation of the output. We say that two functions are NPN inequivalent if they are not NPN equivalent.
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Let f be an 𝑛-variable Boolean function. The weight wt(f ) of f is the size of its support,
i.e. wt(f ) = #{x : f (x) = 1}. An 𝑛-variable Boolean function f can be uniquely represented
by a binary string of length 2𝑛 in the following manner: for 0 ≤ 𝑖 < 2𝑛, the 𝑖-th bit of the
string is the value of f on the 𝑛-bit binary representation of 𝑖. We will use the same notation
f to denote the string representation of f . So f0 · · · f2𝑛−1 is the bit string of length 2𝑛 which
represents f .

By f , we will denote the negation of f , i.e. f (x) = 1 if and only if f (x) = 0. Let f 𝑟 be a
Boolean function defined as f 𝑟(𝑥1, . . . , 𝑥𝑛) = f (𝑥1, . . . , 𝑥𝑛). The bit string representation of
f 𝑟 is the reverse of the bit string representation of f .

Let g and h be two 𝑛-variable Boolean functions having string representations g0 · · · g2𝑛−1
and h0 · · · h2𝑛−1. We write g ≤ h if g𝑖 ≤ h𝑖 for 𝑖 = 0, . . . , 2𝑛 − 1. From g and h , it is
possible to construct an (𝑛 + 1)-variable function f whose string representation is obtained
by concatenating the string representations of g and h . We denote this construction as
f = g ||h . For (𝑥1, . . . , 𝑥𝑛+1) ∈ {0, 1}𝑛+1, we have

f (𝑥1, . . . , 𝑥𝑛+1) = 𝑥1g(𝑥2, . . . , 𝑥𝑛+1)⊕ 𝑥1h(𝑥2, . . . , 𝑥𝑛+1). (8.1)

An 𝑛-variable Boolean function f is said to be non-degenerate on the 𝑖-th variable,
1 ≤ 𝑖 ≤ 𝑛, if there is an 𝛼 ∈ {0, 1}𝑛 such that f (𝛼) ̸= f (𝛼⊕ e𝑖). The function f is said to
be non-degenerate, if it is non-degenerate on all the 𝑛 variables.

By a property 𝒫 of the set of all Boolean functions, we will mean a subset of the set of
all Boolean functions. For example, the property 𝒫 could be the property of being balanced,
being monotone, being unate, being non-degenerate, or a combination of these properties,
where a combination of properties is given by the intersection of the corresponding subsets
of Boolean functions. For 𝑛 ≥ 0, let P𝑛 denote the number of 𝑛-variable Boolean functions
possessing the property 𝒫 , and let nd-P𝑛 denote the number of 𝑛-variable non-degenerate
Boolean functions possessing the property 𝒫 . Since an 𝑛-variable function can be non-
degenerate on 𝑖 variables for some 𝑖 ∈ {0, . . . , 𝑛} and the 𝑖 variables can be chosen from
the 𝑛 variables in

(︀
𝑛
𝑖

)︀
ways, we obtain the following result which shows that the sequence

{P𝑛}𝑛≥0 is given by the binomial transform of the sequence {nd-P𝑛}𝑛≥0.

Proposition 9 For any property 𝒫 of Boolean functions,

P𝑛 =
𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
nd-P𝑖. (8.2)
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Consequently,

nd-P𝑛 =
𝑛∑︁
𝑖=0

(−1)𝑛−𝑖
(︂
𝑛

𝑖

)︂
P𝑖. (8.3)

Remark 13 We assume that for 𝑛 = 0, there are two 𝑛-variable, non-degenerate, monotone
(and hence unate), and unbalanced Boolean functions whose string representations are 0 and
1.

For 𝑛 ≥ 0, let A𝑛 = 22
𝑛 be the number of all 𝑛-variable Boolean functions, and let

B𝑛 =
(︀

2𝑛

2𝑛−1

)︀
be the number of 𝑛-variable balanced Boolean functions. Let nd-A𝑛 be the

number of all non-degenerate 𝑛-variable Boolean functions, and nd-B𝑛 be the number of all
non-degenerate 𝑛-variable balanced Boolean functions. Using Proposition 9, we obtain

nd-A𝑛 =
𝑛∑︁
𝑖=0

(−1)𝑛−𝑖
(︂
𝑛

𝑖

)︂
· 22𝑖 and nd-B𝑛 =

𝑛∑︁
𝑖=0

(−1)𝑛−𝑖
(︂
𝑛

𝑖

)︂
·
(︂

2𝑖

2𝑖−1

)︂
.

For 𝑛 ≥ 0, by M𝑛,BM𝑛,U𝑛 and BU𝑛, we will denote the numbers of 𝑛-variable monotone,
balanced-monotone, unate, and balanced-unate functions respectively, and by nd-M𝑛, nd-BM𝑛, nd-U𝑛
and nd-BU𝑛 we will denote the corresponding numbers of non-degenerate functions. The re-
lations between the number of 𝑛-variable functions possessing one of these properties and
the number of non-degenerate 𝑛-variable functions possessing the corresponding property
are obtained from Proposition 9. Note that M𝑛 is the 𝑛-th Dedekind number 𝐷(𝑛).

The following result relates the numbers of monotone and unate Boolean functions.

Proposition 10 For 𝑛 ≥ 0, the following holds.

nd-U𝑛 = 2𝑛 · nd-M𝑛, (8.4)

nd-BU𝑛 = 2𝑛 · nd-BM𝑛, (8.5)

U𝑛 ≤ 2𝑛 ·M𝑛, (8.6)

BU𝑛 ≤ 2𝑛 · BM𝑛, . (8.7)

Proof: First we consider (8.4) and (8.5). We prove (8.4), the proof of (8.5) being similar.

Let f be an 𝑛-variable monotone Boolean function. Then it is easy to see that for any
𝛼 ∈ {0, 1}𝑛, the 𝑛-variable function f𝛼 is unate, where f𝛼 is defined as f𝛼(x) = f (x⊕𝛼) for
all x ∈ {0, 1}𝑛. The proof of (8.4) follows from the following claim.
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Claim: If f is monotone, then the 2𝑛 possible functions f𝛼 corresponding to the 2𝑛 possible
𝛼’s are distinct if and only if f is non-degenerate.

Proof of the claim: Suppose f is degenerate on the 𝑖-th variable. Then f and fe𝑖 are equal.
This proves one side of the claim. So suppose that f is non-degenerate. We have to show that
for 𝛼 ̸= 𝛽, f𝛼 and f𝛽 are distinct functions. Let if possible f𝛼 and f𝛽 be equal. Note that since
f is non-degenerate, both f𝛼 and f𝛽 are also non-degenerate. Since 𝛼 = (𝛼1, . . . , 𝛼𝑛) and
𝛽 = (𝛽1, . . . , 𝛽𝑛) are distinct, there is a 𝑗 in {1, . . . , 𝑛} such that 𝛼𝑗 ̸= 𝛽𝑗. Suppose without
loss of generality that 𝛼𝑗 = 0 and 𝛽𝑗 = 1. Since f is monotone, it is monotone increasing in all
variables and hence in the 𝑗-th variable. Further, since 𝛼𝑗 = 0, f𝛼 is monotone increasing in
the 𝑗-th variable and since 𝛽𝑗 = 1, f𝛽 is monotone decreasing in the 𝑗-th variable. From f𝛼 is
monotone increasing in the 𝑗-th variable we have that for all y = (𝑦1, . . . , 𝑦𝑛) ∈ {0, 1}𝑛 with
𝑦𝑗 = 0, f𝛼(y) ≤ f𝛼(y⊕e𝑗). Further, since f𝛼 is non-degenerate, and hence non-degenerate on
the 𝑗-th variable, equality cannot hold everywhere, i.e. there is a z = (𝑧1, . . . , 𝑧𝑛) ∈ {0, 1}𝑛

with 𝑧𝑗 = 0, such that f𝛼(z) = 0 and f𝛼(z ⊕ e𝑗) = 1. Since f𝛼 and f𝛽 are assumed to be
equal, it follows that f𝛽(z) = 0 and f𝛽(z ⊕ e𝑗) = 1, which contradicts the fact that f𝛽 is
monotone decreasing in the 𝑗-th variable. This proves the claim.

Next we consider (8.6) and (8.7). We provide the proof of (8.6), the proof of (8.7) being
similar. The relation given by (8.6) can be obtained from (8.4) and Proposition 9 using the
following calculation.

U𝑛 =
𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
nd-U𝑖 =

𝑛∑︁
𝑖=0

(︂(︂
𝑛

𝑖

)︂
· 2𝑖 · nd-M𝑖

)︂
≤ 2𝑛 ·

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
nd-M𝑖 = 2𝑛 ·M𝑛.

□

We record two known facts about monotone functions.

Proposition 11 [6] Let g and h be 𝑛-variable Boolean functions and f = g ||h. Then f is a
monotone function if and only if g and h are both monotone functions and g ≤ h.

Proposition 12 (A003183 of [161]) If f is a monotone function then 𝑓 𝑟 is also a monotone
function.

Next we present some results on unate and monotone functions which will be useful in our
enumeration strategy. The first result is the analogue of Proposition 11 for unate functions.

Proposition 13 Let g and h be 𝑛-variable functions and f = g ||h. Then f is a unate
function if and only if g and h are both unate functions satisfying the following two conditions.
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1. For each variable, g and h are either both monotone increasing, or both monotone
decreasing.

2. Either g ≤ h or h ≤ g .

Proof: First consider the proof of the “if” part. Suppose g and h are unate functions
satisfying the stated condition. We have to show that for each variable, f is either monotone
increasing, or monotone decreasing. Consider the variable 𝑥1. If g ≤ h , then from (8.1), f is
monotone increasing on 𝑥1, while if g ≥ h , then again from (8.1), f is monotone decreasing
on 𝑥1. Now consider any variable 𝑥𝑖, with 𝑖 ≥ 2. If g and h are both monotone increasing on
𝑥𝑖, then f is also monotone increasing on 𝑥𝑖, while if g and h are both monotone decreasing
on 𝑥𝑖, then f is also monotone decreasing on 𝑥𝑖. Since for each variable, f is either monotone
increasing, or monotone decreasing, it follows that f is a unate function.

For the converse, suppose that f is a unate functions. Then for each variable 𝑥𝑖, 𝑖 ≥ 1,
f is either monotone increasing or monotone decreasing. From (8.1), it follows that for each
variable 𝑥𝑖, 𝑖 ≥ 2, g and h are either both monotone increasing, or both monotone decreasing.
So in particular, g and h are unate. If f is monotone increasing for 𝑥1, then g ≤ h and if f
is monotone decreasing for 𝑥1, then g ≥ h . □

Proposition 14 If f is a unate function then f is also a unate function.

Proof: The proof is by induction on the number of variables 𝑛. The base case is 𝑛 = 1

and is trivial. Suppose the result holds for some 𝑛 ≥ 1. Suppose that f is an (𝑛 + 1)-
variable unate function. Then f can be written as f = g ||h , where g and h are 𝑛-variable
unate functions satisfying the conditions in Proposition 13. Then f = g ||h . By induction
hypothesis, g and h are 𝑛-variable unate functions and the conditions in Proposition 13 hold
for g and h . So f is a unate function. □

For 0 ≤ 𝑤 ≤ 2𝑛, let M𝑛,𝑤 (resp. U𝑛,𝑤) be the number of 𝑛-variable monotone (resp.
unate) Boolean functions of weight 𝑤.

Proposition 15 For any 𝑛 ≥ 1 and weight 𝑤 ∈ [0, 2𝑛], M𝑛,𝑤 = M𝑛,2𝑛−𝑤.

Proof: Proposition 12 sets up a one-one correspondence between 𝑛-variable monotone
functions having weight 𝑤 and 𝑛-variable monotone functions having weight 2𝑛 − 𝑤. This
shows that M𝑛,𝑤 = M𝑛,2𝑛−𝑤. □

Proposition 16 For any 𝑛 ≥ 1 and weight 𝑤 ∈ [0, 2𝑛], U𝑛,𝑤 = U𝑛,2𝑛−𝑤.
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Proof: Proposition 14 sets up a one-one correspondence between 𝑛-variable unate func-
tions having weight 𝑤 and 𝑛-variable unate functions having weight 2𝑛−𝑤. This shows that
U𝑛,𝑤 = U𝑛,2𝑛−𝑤. □

8.2.1 Equivalence

Two Boolean functions are equivalent if they have the same number of variables and one can
be obtained from the other by a permutation of variables. Let 𝒫 be a property of Boolean
functions. The set 𝒫 is partitioned into equivalence classes by the notion of equivalence. For
𝑛 ≥ 0, let [𝑃 ]𝑛 denote the number of equivalence classes of 𝑛-variable functions possessing
the property 𝒫 . Also, let nd-[𝑃 ]𝑛 denote the number of equivalence classes of non-degenerate
𝑛-variable functions possessing the property 𝒫 .

Remark 14 We assume that for 𝑛 = 0, there are two equivalence classes of 𝑛-variable,
non-degenerate, monotone (and hence unate), and unbalanced Boolean functions given by [0]

and [1].

We have the following analogue of Proposition 9.

Proposition 17 Let 𝒫 be a property of Boolean functions which is closed under permutation
of variables (i.e. if f is in 𝒫 and g is obtained from f by applying a permutation to the
variables, then g is also in 𝒫). Then

[𝑃 ]𝑛 =
𝑛∑︁
𝑖=0

nd-[𝑃 ]𝑖. (8.8)

Consequently, nd-[𝑃 ]𝑛 = [𝑃 ]𝑛 − [𝑃 ]𝑛−1.

For 𝑛 ≥ 0, let [𝐴]𝑛 denote the number of equivalence classes of 𝑛-variable Boolean func-
tions and [𝐵]𝑛 denote the number of equivalence classes of 𝑛-variable balanced Boolean
functions. The values of [𝐴]𝑛 and [𝐵]𝑛 can be obtained using Polya’s theory (see for exam-
ple [144]). Let nd-[𝐴]𝑛 denote the number of equivalence classes of 𝑛-variable non-degenerate
Boolean functions and nd-[𝐵]𝑛 denote the number of equivalence classes of 𝑛-variable non-
degenerate balanced Boolean functions. Using Proposition 17, nd-[𝐴]𝑛 = [𝐴]𝑛 − [𝐴]𝑛−1 and
nd-[𝐵]𝑛 = [𝐵]𝑛 − [𝐵]𝑛−1.

For 𝑛 ≥ 0, by [𝑀 ]𝑛, [𝐵𝑀 ]𝑛, [𝑈 ]𝑛 and [𝐵𝑈 ]𝑛 we will denote the numbers of equivalence
classes of 𝑛-variable monotone, balanced-monotone, unate, and balanced-unate functions
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respectively and by nd-[𝑀 ]𝑛, nd-[𝐵𝑀 ]𝑛, nd-[𝑈 ]𝑛 and nd-[𝐵𝑈 ]𝑛 we will denote the corre-
sponding numbers of equivalence classes of non-degenerate functions. The following result
is the analogue of Proposition 10.

Proposition 18 For 𝑛 ≥ 0, the following holds.

nd-[𝑈 ]𝑛 ≤ 2𝑛 · nd-[𝑀 ]𝑛, (8.9)

nd-[𝐵𝑈 ]𝑛 ≤ 2𝑛 · nd-[𝐵𝑀 ]𝑛, (8.10)

[𝑈 ]𝑛 ≤ 2𝑛 · [𝑀 ]𝑛, (8.11)

[𝐵𝑈 ]𝑛 ≤ 2𝑛 · [𝐵𝑀 ]𝑛, (8.12)

The relations given by (8.11) and (8.12) are analogues of (8.6) and (8.7) respectively.
However, unlike (8.4) and (8.5), we do not have equalities in (8.9) and (8.10). The rea-
son is that two distinct input translations of a non-degenerate monotone function can
lead to two unate functions which are equivalent. An example is the following. Suppose
f (𝑋1, 𝑋2) = 𝑋1𝑋2, i.e. f is the AND function. Let g(𝑋1, 𝑋2) = f (1⊕𝑋1, 𝑋2) = (1⊕𝑋1)𝑋2

and h(𝑋1, 𝑋2) = f (𝑋1, 1 ⊕ 𝑋2) = 𝑋1(1 ⊕ 𝑋2). Then g(𝑋1, 𝑋2) = h(𝑋2, 𝑋1), i.e. g and h
are distinct, but equivalent unate functions obtained by distinct input translations from the
monotone function f .

8.3 Counting Functions

In this section, we consider the problem of counting various sub-classes of monotone and
unate Boolean functions.

8.3.1 Monotone Functions

Note that M𝑛 is the 𝑛-th Dedekind number. For 0 ≤ 𝑛 ≤ 9, the values of M𝑛 are
known [161], with the value of M9 being obtained recently and independently by two groups
of researchers [85, 90]. The values of M𝑛 form entry A000372 of [161]. The numbers of
non-degenerate 𝑛-variable monotone functions, nd-M𝑛, form entry A006126 of [161].

We used enumeration to obtain the number BM𝑛 of 𝑛-variable balanced monotone func-
tions. For 𝑛 ≤ 6, we enumerated all monotone functions and counted only the balanced
functions. Our strategy for enumerating monotone functions is based on Proposition 11.
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The approach is the following. First generate all 1-variable monotone functions and store
these. For 𝑛 ≥ 2, to generate all 𝑛-variable monotone functions, we consider each pair (g , h)
of (𝑛 − 1)-variable monotone functions and check whether the pair satisfies the condition
of Proposition 11. If it does, then f = g ||h is stored. To generate all 𝑛-variable monotone
functions, this approach requires considering (M𝑛−1)

2 pairs. The enumeration and filtering
out unbalanced functions allows us to obtain the values of BM𝑛, for 𝑛 = 1, . . . , 6.

Remark 15 To obtain a faster method, one may consider generating only non-degenerate
functions using Proposition 11. This, however, does not work. It is indeed true that if g
and h are distinct non-degenerate functions, f = g ||h is also non-degenerate. On the other
hand, it is possible that one of g or h is degenerate, but f is non-degenerate. For example,
take g to be the 2-variable constant function whose string representation is 0000, and h to be
the 2-variable AND function whose string representation is given by 0001. Then the string
representation of the 3-variable function f = g ||h is 00000001 which is the AND of the three
variables and hence non-degenerate. So the set of all non-degenerate 𝑛-variable monotone
functions cannot be obtained by concatenating only non-degenerate (𝑛−1)-variable monotone
functions.

To obtain BM7 we used a faster method. After enumerating all 6-variable monotone
functions, we divided these functions into groups where all functions in the same group have
the same weight. Our modified strategy is to take an 𝑛-variable monotone functions g and
h , where g has weight 𝑤 and h has weight 2𝑛 − 𝑤 and check whether g ≤ h . If the check
passes, then we generate the (𝑛 + 1)-variable balanced monotone function f = g ||h . Recall
that for 0 ≤ 𝑤 ≤ 2𝑛, there are M𝑛,𝑤 𝑛-variable monotone functions having weight 𝑤. The
number of pairs needed to be considered by the modified method is

2𝑛∑︁
𝑤=0

M𝑛,𝑤M𝑛,2𝑛−𝑤 =
2𝑛∑︁
𝑤=0

(M𝑛,𝑤)
2 ,

where the equality follows from Proposition 15. Substituting 𝑛 = 6 and using the values
of M6,𝑤 obtained through enumeration, we find that the modified strategy for generating 7-
variable balanced monotone functions requires considering

∑︀64
𝑤=0 (M6,𝑤)

2 ≈ 240 pairs, while
the previous strategy would have required considering (M6)

2 ≈ 245 pairs.

Remark 16 Note that the above procedure to generate balanced monotone functions can be
applied only once. It uses the set of all 𝑛-variable monotone functions to generate the set
of all (𝑛+ 1)-variable balanced monotone functions. Since this does not provide all (𝑛+ 1)-
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𝑛 BM𝑛 nd-BM𝑛

0 0 0
1 1 1
2 2 0
3 4 1
4 24 16
5 621 526
6 492288 488866
7 81203064840 81199631130

Table 8.1: Numbers of 𝑛-variable balanced monotone and non-degenerate balanced monotone
functions for 0 ≤ 𝑛 ≤ 7.

𝑛 U𝑛 nd-U𝑛

0 2 2
1 4 2
2 14 8
3 104 72
4 2170 1824
5 230540 220608
6 499596550 498243968
7 309075799150640 309072306743552
8 14369391928071394429416818 14369391925598802012151296
9 146629927766168786368451678290041110762316052 146629927766168786239127150948525247729660416

Table 8.2: Numbers of 𝑛-variable unate and non-degenerate unate functions for 0 ≤ 𝑛 ≤ 9.

variable monotone functions, it cannot be applied to generate the set of all (𝑛 + 2)-variable
balanced monotone functions.

Having obtained BM𝑛, for 𝑛 = 1, . . . , 7, we use Proposition 9 to obtain the values of
nd-BM𝑛, i.e. the number of 𝑛-variable non-degenerate balanced monotone functions. The
obtained values of BM𝑛 and nd-BM𝑛 are given in Table 8.1.

8.3.2 Unate Functions

The problem of counting unate functions reduces to the problem of counting monotone
functions in the following manner. Suppose we wish to obtain the number U𝑛 of 𝑛-variable
unate functions. Using Proposition 9, this reduces to the problem of obtaining nd-U𝑖, for
0 ≤ 𝑖 ≤ 𝑛. From (8.4), this reduces to the problem of obtaining nd-M𝑖 for 0 ≤ 𝑖 ≤ 𝑛.
Using another application of Proposition 9 reduces the problem of obtaining nd-M𝑖 to that
of obtaining M𝑗 for 0 ≤ 𝑗 ≤ 𝑖. So to obtain U𝑛, it is sufficient to know M𝑖 for 0 ≤ 𝑖 ≤ 𝑛.
Since the values of M𝑖 are known for 0 ≤ 𝑖 ≤ 9, we can obtain the values of U𝑛 for 0 ≤ 𝑛 ≤ 9.
From these values, using Proposition 9, we obtain the values of nd-U𝑛 for 0 ≤ 𝑛 ≤ 9. The
values of U𝑛 and nd-U𝑛 are shown in Table 8.2.
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𝑛 BU𝑛 nd-BU𝑛

0 0 0
1 2 2
2 4 0
3 14 8
4 296 256
5 18202 16832
6 31392428 31287424
7 10393772159334 10393552784640

Table 8.3: Numbers of 𝑛-variable balanced unate and non-degenerate balanced unate func-
tions for 0 ≤ 𝑛 ≤ 7.

In a similar manner, using Proposition 9 and (8.5), the problem of counting balanced
unate functions can be reduced to the problem of counting balanced monotone functions.
Since we have obtained the values of BM𝑖 for 0 ≤ 𝑖 ≤ 7, we obtain the values of BU𝑛 for
0 ≤ 𝑛 ≤ 7. Using Proposition 9, this gives us the values of nd-BU𝑛 for 0 ≤ 𝑛 ≤ 7. The
values of BU𝑛 and nd-BU𝑛 are shown in Table 8.3.

8.4 Counting Equivalence Classes of Functions

In this section, we present the results on numbers of equivalence classes of various subsets
of monotone and unate functions.

8.4.1 Filtering Procedure

The basic problem of enumerating equivalence classes is the following. Let 𝒮 be a subset of
the set of all 𝑛-variable Boolean functions. Given 𝒮, we wish to generate a set 𝒯 ⊆ 𝒮 of
functions such that no two functions in 𝒯 are equivalent, and each function in 𝒮 is equivalent
to some function in 𝒯 . The technique for such filtering is the following.

Given a permutation 𝜋 of {1, . . . , 𝑛}, we define a permutation 𝜋⋆ of {0, . . . , 2𝑛 − 1} as
follows. For 𝑖 ∈ {0, . . . , 2𝑛 − 1}, let (𝑖1, . . . , 𝑖𝑛) be the 𝑛-bit binary representation of 𝑖.
Then 𝜋⋆(𝑖) = 𝑗, where the 𝑛-bit binary representation of 𝑗 is (𝑗𝜋(1), . . . , 𝑗𝜋(𝑛)). Given an
𝑛-variable function f , let f 𝜋 denote the function such that for all (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛,
f 𝜋(𝑥1, . . . , 𝑥𝑛) = f (𝑥𝜋(1), . . . , 𝑥𝜋(𝑛)). Suppose f0 · · · f2𝑛−1 is the bit string representation of f .
Then the bit string representation of f 𝜋 is f𝜋⋆(0) · · · f𝜋⋆(2𝑛−1).

Note that for each permutation 𝜋, the permutation 𝜋⋆ can be pre-computed and stored
as an array say 𝑃 [0, . . . , 2𝑛 − 1]. Suppose the bit string representation of f is stored as an
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𝑛 nd-[𝑀 ]𝑛
0 2
1 1
2 2
3 5
4 20
5 180
6 16143
7 489996795
8 1392195548399980210
9 789204635842035039135545297410259322

Table 8.4: Numbers of equivalence classes of 𝑛-variable non-degenerate monotone functions
for 0 ≤ 𝑛 ≤ 9.

array 𝐴[0, . . . , 2𝑛 − 1]. Then the bit string representation of f 𝜋 is obtained as the array
𝐵[0, . . . , 2𝑛− 1], where 𝐵[𝑖] = 𝐴[𝑃 [𝑖]], for 𝑖 = 0, . . . , 2𝑛− 1. So obtaining f 𝜋 becomes simply
a matter of array reindexing.

Consider the set of functions 𝒮 to be filtered is given as a list of string representations
of the functions. We incrementally generate 𝒯 as follows. The first function in 𝒮 is moved
to 𝒯 . We iterate over the other functions in 𝒮. For a function f in 𝒮, we generate f 𝜋 for
all permutations 𝜋 of {1, . . . , 𝑛} using the technique described above. For each such f 𝜋, we
check whether it is present in 𝒯 . If none of the f 𝜋’s are present in 𝒯 , then we append f to
𝒯 . At the end of the procedure, 𝒯 is the desired set of functions.

The check for the presence of f 𝜋 in 𝒯 involves a search in 𝒯 . This is done using binary
search. To apply binary search on a list, it is required that the list be sorted. To ensure this,
we initially ensure that 𝒮 is sorted (either by generating it in a sorted manner, or by sorting
it after generation). This ensures that at any point of time, 𝒯 is also a sorted list, so that
binary search can be applied.

8.4.2 Monotone

For 𝑛 ≥ 0, the numbers [𝑀 ]𝑛 of equivalence classes of 𝑛-variable monotone functions form
entry A003182 of [161]. Using Proposition 17, it is possible to find the numbers nd-[𝑀 ]𝑛 of
equivalence classes of 𝑛-variable monotone functions. These values are shown in Table 8.4.

For 0 ≤ 𝑛 ≤ 6, the numbers [𝐵𝑀 ]𝑛 of equivalence classes of 𝑛-variable balanced monotone
functions are obtained by applying the filtering procedure described in Section 8.4.1 to
the strategy for generating balanced monotone functions described in Section 8.3.1. Next
applying Proposition 17, we obtained the numbers nd-[𝐵𝑀 ]𝑛 of equivalence classes of 𝑛-
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𝑛 [𝐵𝑀 ]𝑛 nd-[𝐵𝑀 ]𝑛
0 0 0
1 1 1
2 1 0
3 2 1
4 4 2
5 16 12
6 951 935

Table 8.5: Numbers of equivalence classes of 𝑛-variable balanced monotone and non-
degenerate balanced monotone functions for 0 ≤ 𝑛 ≤ 6.

variable non-degenerate balanced monotone functions. The values of [𝐵𝑀 ]𝑛 and nd-[𝐵𝑀 ]𝑛

are shown in Table 8.5.

We briefly consider the computation required to obtain [𝐵𝑀 ]7. From Table 8.1, BM7 =

81203064840 ≈ 236.24. For each 7-variable balanced monotone function f , it is required to
consider 7! = 5040 ≈ 212.29 functions f 𝜋 for the 7! permutations 𝜋 of {1, . . . , 7}. So a total
of about 248.53 functions would have to be considered. For each of these functions a binary
search is required on the partially generated set of functions 𝒯 and requires performing about
log2#𝒯 comparisons. So the total number of comparisons required is somewhat above 250.
This amount of computation is not presently feasible on the computing resources available
to us.

8.4.3 Unate

In the case of counting functions, the problems of counting unate and balanced unate func-
tions reduce to the problems of counting monotone and balanced monotone functions re-
spectively. In the case of counting equivalence classes of functions, such reduction is no
longer possible (using the results that we could prove). The reason is that unlike (8.4)
which expresses the number of non-degenerate unate functions in terms of the number of
non-degenerate monotone function, the relation (8.9) only provides an upper bound on the
number of equivalence classes of non-degenerate unate functions in terms of the number of
equivalence classes of non-degenerate monotone functions.

In view of the above, for counting equivalence classes of unate functions, we resorted
to the technique of enumerating unate functions and then using the technique described in
Section 8.4.1 to obtain the number of equivalence classes.

The technique of generating all unate functions is based on Proposition 13. Along with
the string representation of a unate function, we also need to record whether the function
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𝑛 [𝑈 ]𝑛 nd-[𝑈 ]𝑛
0 2 2
1 4 2
2 10 6
3 34 24
4 200 166
5 3466 3266
6 829774 826308

Table 8.6: Numbers of equivalence classes of 𝑛-variable unate and non-degenerate unate
functions for 0 ≤ 𝑛 ≤ 6.

is increasing or decreasing in each of its variables. This is recorded as the signature of the
function. The special cases of the two constant functions cause some complications in the
definition of the signature.

For an 𝑛-variable unate function f , we define its signature, denoted sig(f ), to be an
element of {0, 1}𝑛 ∪ {z, o} in the following manner. If f is the constant function 1, then
sig(f ) = o, if f is the constant function 0, then sig(f ) = z; otherwise sig(f ) is an 𝑛-bit
string 𝛼, where for 𝑖 = 1, . . . , 𝑛, 𝛼𝑖 = 1 if f is monotone increasing in the variable 𝑥𝑖,
and 𝛼𝑖 = 0 if f is monotone decreasing in the variable 𝑥𝑖. The signature sig(f ) encodes
whether f is monotone increasing or monotone decreasing on each variable. The function f
is both monotone increasing and monotone decreasing in all the variables if and only if it is
a constant function. The signatures of the constant functions are defined appropriately.

For enumeration, the bit string representation of the functions are used. A unate function
and its signature are stored as a pair. Consider the following recursive algorithm to generate
all 𝑛-variable unate functions and their signatures for 𝑛 ≥ 1. At the base step, i.e. for 𝑛 = 1,
store the four pairs of 1-variable unate functions and their signatures as (00, z), (01, 1), (10, 0)
and (11, o). Suppose that for some 𝑛 ≥ 1, we have already generated all 𝑛-variable unate
functions and their signatures. The generation of all (𝑛 + 1)-variable unate functions and
their signatures are done as follows. For any two function-signature pairs (g , sig(g)) and
(h , sig(h)), where g and h are 𝑛-variable unate functions (which are not necessarily distinct),
perform the following checks:

1. Whether at least one of sig(g) or sig(h) is equal to either z or o (i.e. whether at least
one of g or h is a constant function).

2. sig(g) = sig(h) = 𝛼, and either g ≤ h or h ≤ g holds.
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If either of the checks pass, then generate f = g ||h , and determine sig(f ) as follows.

sig(f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z if sig(g) = sig(h) = z,

o if sig(g) = sig(h) = o,

1𝑛+1 if sig(g) = z, sig(h) = o,

0𝑛+1 if sig(g) = o, sig(h) = z,

1||𝛼 if sig(g) = z, sig(h) = 𝛼 ∈ {0, 1}𝑛,
0||𝛼 if sig(g) = o, sig(h) = 𝛼 ∈ {0, 1}𝑛

1||𝛼 if sig(g) = 𝛼 ∈ {0, 1}𝑛, sig(h) = o,

0||𝛼 if sig(g) = 𝛼 ∈ {0, 1}𝑛, sig(h) = z,

1||𝛼 if 𝑔 ≤ ℎ, sig(g) = sig(h) = 𝛼 ∈ {0, 1}𝑛,
0||𝛼 if 𝑔 ≥ ℎ, sig(g) = sig(h) = 𝛼 ∈ {0, 1}𝑛.

(8.13)

Store (f , sig(f )). Proposition 13 assures us that this recursive procedure generates all (𝑛+1)-
variable unate functions and their signatures.

To generate all (𝑛 + 1)-variable unate functions, the above method requires considering
all pairs of 𝑛-variable unate functions, i.e. a total of (𝑈(𝑛))2 options. Applying the fitering
strategy of Section 8.4.1 we obtain the value of [𝑈 ]𝑛. Next using Proposition 17 we obtain
the value of nd-[𝑈 ]𝑛. We could perform this computation for 𝑛 ≤ 6. The obtained values of
[𝑈 ]𝑛 and nd-[𝑈 ]𝑛 are shown in Table 8.6. To generate all 7-variable unate functions using
this option requires considering (𝑈(6))2 ≈ 257.8 pairs of functions. This is not feasible on the
computing facility available to us.

To obtain the set of 𝑛-variable balanced unate functions, after generating the set of all
𝑛-variable unate functions, we remove the ones that are unbalanced. Then to the resulting
set, we apply the technique of Section 8.4.1 to obtain the number [𝐵𝑈 ]𝑛 of equivalence
classes of 𝑛-variable balanced unate functions. Subsequently, we apply Proposition 17 to
obtain the number nd-[𝐵𝑈 ]𝑛 of equivalence classes of 𝑛-variable non-degenerate balanced
unate functions. The values of [𝐵𝑈 ]𝑛 and nd-[𝐵𝑈 ]𝑛 are shown in Table 8.7

8.5 Concluding Remarks

We have obtained the numbers of 𝑛-variable unate and monotone functions possessing a
combination of some basic properties. Also, we have obtained the numbers of equivalence
classes of 𝑛-variable unate and monotone functions also possessing a combination of those
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𝑛 [𝐵𝑈 ]𝑛 nd-[𝐵𝑈 ]𝑛
0 0 0
1 2 2
2 2 0
3 6 4
4 24 18
5 254 230
6 50172 49918

Table 8.7: Numbers of equivalence classes of 𝑛-variable balanced unate and non-degenerate
balanced unate functions for 0 ≤ 𝑛 ≤ 6.

same properties. Our work raises a number of questions that may be pursued in the future.
One such question is whether the techniques for counting monotone functions from the recent
works [90, 85] can be applied to the problem of counting balanced monotone functions.
Another similar question is whether the techniques for counting the number of equivalence
classes of monotone functions from [136, 137] can be applied to the problem of counting
the number of equivalence classes of balanced monotone functions. A third question is
whether the techniques for counting the number of equivalence classes of monotone functions
from [136, 137] can be applied to the problem of counting the number of equivalence classes
of unate functions. Positive answers to these questions will allow extending the results that
we could obtain up to 𝑛 = 6 or 𝑛 = 7 to 𝑛 = 9.



Chapter 9

Conclusion and future works

In this thesis, we investigated various aspects of Boolean functions and their properties,
with a focus on the concept of influence. We began by utilizing total influence to distinguish
classes of Boolean functions commonly studied in coding theory and cryptography from those
in combinatorics and complexity theory.

We then introduced a novel definition of influence based on the auto-correlation function
and developed a comprehensive theory around this notion. We generalized well-known results
on the influence of a single variable and also obtained new characterizations of resilient and
bent functions in terms of influence. Additionally, we highlighted the relationship between
our introduced measure of influence and a previously proposed measure.

Furthermore, our research delved into obtaining lower bounds on the universal constant
of the FMEI conjecture. We presented several construction methods for Boolean functions
that provide the current best-known lower bound. Additionally, we provided a comprehensive
exposition of a counterexample to the Majority is Least Stable conjecture.

Lastly, we explored unate and monotone Boolean functions, their interrelationships, and
their enumeration. We found that counting unate functions can be reduced to counting
monotone functions, extending our calculations to 𝑛 = 9. Additionally, we determined
counts for balanced monotone functions and unate functions up to 𝑛 = 7. We also ana-
lyzed equivalence classes for various function types up to 𝑛 = 6, offering insights into their
structural diversity.

Future wroks: Based on the findings and open questions raised in this thesis, several
promising directions for future research emerge.

1. Generalization of the edge-isoperimetric inequality: The Poincaré inequality can be
viewed as an edge-isoperimetric inequality for the Boolean cube [128]. In the literature,
other stronger edge-isoperimetric inequalities have been proposed by Harper [81], Khan
et al. [92], and Talagrand [165]. Similar to the generalization of the Poincaré inequality
(see Corollary 1), it would be worthwhile to explore generalizations for these other
edge-isoperimetric inequalities.

125
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2. Resolving open problems: Throughout this thesis, several open problems have been
identified, such as settling the FEI conjecture for rotation symmetric Boolean func-
tions and obtaining better lower bounds on the constant of the FMEI conjecture.
Future research can focus on finding innovative techniques and approaches to address
these problems, potentially leading to breakthroughs in understanding the structure
of Boolean functions. A potential research direction could involve introducing a new
method that shows promise in solving the more general Majority is Least Stable conjec-
ture. This conjecture states that the 𝜌-correlated noise stability of any LTF is at least
(2/𝜋) arcsin(𝜌) [127]. It is important to note that such an inequality is not implied by
the example presented in Chapter 7. In fact, the result in the last section of Chapter 7
suggests that.

3. Finally our work in the last chapter prompts important questions for future research.
Can recent counting techniques for monotone functions [90, 85] be applied to balanced
monotone functions? Is it possible to adapt methods of counting equivalence classes
of monotone functions to count equivalence classes of balanced monotone functions
and unate functions? Answering these questions could extend our findings to 𝑛 = 9,
enriching our understanding of these Boolean function classes.

In conclusion, this thesis aspires to contribute to the field of Boolean functions by ex-
panding our knowledge, offering fresh perspectives, and identifying open problems for further
exploration. We hope that our research will inspire and guide future investigations, leading
to incremental progress and advancements in this intriguing area of study.
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