
Message Efficient Fault-Tolerant Distributed
Computations

A thesis submitted to Indian Statistical Institute
in partial fulfillment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

Author: Manish Kumar

under the guidance of

Dr. Anisur Rahaman Molla
Indian Statistical Institute Kolkata

Cryptology and Security Research Unit

Indian Statistical Institute

203 Barrackpore Trunk Road

Kolkata, West Bengal

India - 700 108

November 2023

To the well-wishers; here, there and everywhere!

Declaration of Authorship
I, Manish Kumar, a student of Cryptology and Security Research Unit, of the Ph.D.

program of Indian Statistical Institute, Kolkata, hereby declare that the investigations presented in
this thesis are based on my works and, to the best of my knowledge, the materials contained in this
thesis have not previously been published or written by any other person, nor it has been submitted
as a whole or as a part for any degree/diploma or any other academic award anywhere before.

Manish Kumar
Cryptology and Security Research Unit,
Indian Statistical Institute, Kolkata 203 Barrackpore Trunk Road,
Kolkata, West Bengal, India - 700108

Scientists are not stupid but they might be negligent.

Acknowledgements
I would like to take this opportunity to express my heartfelt appreciation to the individuals

who have played a pivotal role in shaping my path to success. This remarkable journey has not
only shaped my character, career, and disposition but has also provided me with invaluable lessons
through a blend of triumphs and challenges. It has encompassed a transformation from attachment
to detachment, from moments of frustration to cultivating patience, and from feeling lost to finding
my way. This expedition has been marked by the thrilling drama and adventures of tackling re-
search problems, essentially a life within a life. Throughout this exploration, the precise trajectory
may linger in uncertainty, but the value of experience, support, and, above all, guidance cannot be
underestimated.

I consider myself incredibly fortunate to have thrived under the mentorship of Dr. Anisur Ra-
haman Molla. I sincerely thank my supervisor, Dr. Molla, for his unwavering support, invaluable
advice, constant encouragement, and unyielding motivation. His passion and teaching approach
has been immensely inspiring, igniting a strong drive within me. His guidance and extensive
knowledge have been instrumental in facilitating my research endeavors and the completion of this
thesis. Having a supervisor who has consistently stood by my side is a true privilege, and I will
forever remain indebted to him for his priceless guidance.

I am profoundly grateful to Dr. Debrup Chakraborty, my esteemed advisor during my master’s
(M.Tech.) dissertation. Under his mentorship, I was inspired to delve into unexplored realms of
knowledge, as he instilled in me a deep sense of curiosity and enthusiasm. With his patience and
uplifting guidance, I wholeheartedly immersed myself in my research pursuits. I would also like
to extend my appreciation to Dr. Sushmita Ruj for her guidance during the coursework and initial
stage of my Ph.D. Her support and insights were instrumental in laying a strong foundation for my
research endeavors.

My Ph.D. thesis would not have been completed without the generous support of my collabo-
rator, for which I owe a deep sense of gratitude to Dr. Sumathi Sivasubramaniam. Her insightful
discussions and cooperation were invaluable to my research. I am also immensely grateful for
the opportunity to collaborate with an exceptional group of individuals throughout my Ph.D. jour-
ney, namely Prof. John Augustine, Dr. Gokarna Sharma, Dr. Sasanka Roy, and Prof. Ajay
Kshemkalyani. Their talent and dedication played a pivotal role in shaping my research. I extend
my heartfelt appreciation to Dr. Subhra Mazumdar, Prabhat Kumar Chand, Dr. Manish Kumar, Dr.
Diptendu Chatterjee, Akanksha Dixit, Nishant Dhanaji Nikam, Serene Rasheed, and Rik Banerjee
for their invaluable contributions and thought-provoking discussions, which significantly enriched
my work. Furthermore, I consider myself fortunate to have had fruitful interactions with Prof.
Gopal Pandurangan and Prof. Costas Busch during conferences, as their insights added tremen-
dous value to my research.

v

Friends play an indispensable role in life, and I consider myself extremely fortunate to have
companions like Joginder, Sandeep, Deepak, Pushpinder, and Indu. Their friendship has added
depth to my research experience, creating indelible memories that I will always cherish. The
laughter, camaraderie, and shared passion for knowledge across diverse research areas have been
a source of joy and growth. Moreover, the friendships I share with Sandeep, Subhra, Bharadwaj,
Debasmita, Mohammad, and Sreyosi have brought contentment not only in my research but also
in my personal life. Their support and presence have been a constant source of strength during
challenging times. I extend my heartfelt appreciation to my friends and seniors at ISI Kolkata
for their invaluable contributions to my journey. Special thanks to Prabhat, Diptendu da, Snehal
di, Susant da, Ajeet sir, Laltu da, Avishek da, Samir da, Nishant, Prabal da, Akanksha, Sunil,
Manabendra, Sanjana di, Debendranath, Sumit, Sayeed, Sarbendu da, Durgesh da, Mallesham da,
Pritam da, Santlaal, Abhilash, Yash, Ambar, Nayana di, Mostaf da, Soumya da, Panchalika, Ajay,
Bhuvan, Debajyoti, Sayak, Aniruddha da, Subhadip da, Suman, Rakesh, Gourav, Anup, Nirupam,
and many others who have generously offered their assistance in various ways at different times.
Their unwavering support and companionship have been invaluable, and I am truly grateful for
every moment we have shared.

I convey my wholehearted love and deep respect for my family, who have always provided
me with a sense of security and shelter in this vast world. Words cannot adequately express my
gratitude towards them; I simply want to acknowledge their unwavering love, selfless sacrifices,
and remarkable patience throughout my academic journey. My parents, elder brother and sister-
in-law, and sister and brother-in-law have consistently exerted a tremendous influence on my life.
I express heartfelt gratitude to my niece, Dhavika, and nephew, Namit, for filling my life with joy
and preserving a lively atmosphere through their innocence. Furthermore, I extend my gratitude
to Brother Braham Prakash, whose presence has served as a steadfast anchor, empowering me to
embrace a life of limitless possibilities and unyielding courage.

Finally, I would like to express my gratitude to those individuals who might have been inad-
vertently omitted but have had an impact on my journey. To every person who has crossed my
path and shown me kindness, I offer my heartfelt thanks and appreciation—“Jis-Jis Se Path Par
Sneh Mila, Har Uss Raahi Ka Dhanywaad” (translated as ”To every traveler who has shown me
affection along the way, I am grateful”).

Date: 17th November 2023 Manish Kumar

vi

Abstract

The thesis focuses on exploring the message complexity of some fundamental problems – leader
election, agreement, and graph realization. Leader Election and Agreement problems are widely
applicable in various domains such as sensor networks, IoT networks, grid computing, peer-to-peer
networks, and cloud computing. Achieving low-cost and scalable leader election and agreement
protocols with probabilistic guarantees is often desirable in large-scale distributed networks. Fur-
thermore, the rise of permissionless distributed systems has made it necessary to design protocols
that can tolerate an arbitrary number of faulty nodes. On the other hand, graph realization problems
deal with constructing graphs that satisfy certain predefined properties (such as a degree sequence)
in the presence of crashes. Despite intensive research, there has yet to be a practical solution
to fault-tolerant problems for large-scale networks. One key reason for this is the large message
complexity of currently known protocols. In this thesis, we focus on two main questions: (1)
How efficiently leader election, agreement, and graph realization can be computed in a distributed
network? (2) What can be the resilience of the network and how does it affect the complexity?

In this thesis, we study four problems to address the above questions: (i) Leader election and
agreement under crash fault (ii) Byzantine agreement (BA) (iii) Distributed graph realization, and
(iv) Leader election in diameter-two networks. We present randomized (Monte Carlo) algorithms
for leader election and agreement problems that achieve sublinear (in n, number of nodes) message
complexity in the implicit version of the two problems when tolerating more than a constant frac-
tion of the faulty nodes. Our algorithms tolerate any number of faulty nodes up to (n− polylog n)

which is compensated by the increased complexity. The message complexity (and also the time
complexity) of our algorithms is optimal (up to a polylog n factor). Further, we study the message
complexity of authenticated Byzantine agreements under an honest majority. We focus on the “im-
plicit” Byzantine agreement problem and show that a sublinear message complexity BA protocol
under honest majority is possible in the standard PKI model when the nodes have access to an
unbiased global coin and hash function. Our algorithm is optimal (up to a polylog n factor) and
works in anonymous networks, where nodes do not know each other. We further study the graph
realization problem in the Congested Clique model of distributed computing under crash faults.
Our main result is a O(f)-round deterministic algorithm for the degree-sequence realization prob-
lem in a n-node Congested Clique, of which f nodes could be faulty (f < n). The algorithm uses
O(n2) messages. Our results are optimal in both the models with or without the knowledge of the
neighbors (a.k.a. KT1 and KT0 model) w.r.t the number of rounds and the messages simultane-
ously. Later, we investigate the leader election problem in diameter-two networks. We present a
O(log n)-round deterministic leader election algorithm which incurs optimal O(n log n) messages
without the knowledge of n.

viii

Contents

1 Introduction 1

1.1 Preliminaries . 5

1.2 Distributed Computing Model and Definitions . 6

1.3 Literature Review . 9

1.4 Our Contribution and Organization of the Thesis 11

1.5 List of Publications . 15

2 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault
17

2.1 Introduction . 18

2.1.1 Our Results and Implications . 20

2.2 Model and Definitions . 21

2.3 Related Work . 22

2.4 Fault-Tolerant Leader Election . 25

2.4.1 Algorithm . 25

2.4.2 Lower Bound on the Message Complexity 31

2.5 Fault-Tolerant Agreement . 39

2.5.1 Algorithm . 39

2.5.2 Lower Bound on the Message Complexity 42

2.6 Conclusion . 45

3 Sublinear Message Bounds for Authenticated Byzantine Agreement 47

3.1 Introduction . 48

3.1.1 Our Main Results . 50

3.1.2 Model and Definitions . 51

3.1.3 Byzantine Agreement vs. Byzantine Broadcast 52

3.2 Related Work . 53

3.3 Authenticated Implicit Byzantine Agreement . 54

ix

3.3.1 Byzantine Leader Election . 61

3.3.2 In the KT1 Model . 62

3.3.3 Removing the Global Coin and Hash Function Assumption 62

3.4 Byzantine Subset Agreement . 62

3.5 Lower Bound on Message Complexity . 63

3.6 Experimental Evaluation . 66

3.7 Conclusion . 68

4 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique 69

4.1 Introduction . 69

4.1.1 Our Contributions . 72

4.1.2 Model and Definitions . 73

4.2 Related Work . 74

4.3 Preliminary: The Sequential Havel-Hakimi Algorithm for Graph Realization 75

4.4 Fault-Tolerant Graph Realization in KT1 . 76

4.4.1 Lower Bound . 82

4.5 Fault-Tolerant Graph Realization in the KT1 NCC Model 84

4.6 Graph Realization with Faults in KT0 . 86

4.6.1 Algorithm . 88

4.6.2 Lower Bound . 94

4.7 Conclusion . 95

5 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks 97

5.1 Introduction . 97

5.1.1 Our Results . 99

5.2 Model and Definition . 100

5.3 Related Work . 101

5.4 Deterministic Leader Election in Diameter-Two Networks 102

5.4.1 Algorithm . 102

5.4.2 Broadcast Tree Formation . 107

x

5.5 Conclusion . 109

6 Conclusion and Future Work 111

xi

xii

List of Figures

3-1 Algorithm 3 evaluate the performance w.r.t the different number of Byzantine
nodes. X-axis shows the number of nodes in the network and Y-axis shows the
number of rounds taken to execute the Algorithm 3. 67

3-2 Algorithm 3 evaluate the performance w.r.t the different number of Byzantine
nodes. X-axis shows the number of nodes in the network and Y-axis shows the
number of messages taken to execute the Algorithm 3. 68

xiii

xiv

List of Tables

2.1 Comparison with the best-known agreement protocols in the same model. Here,
c is any constant and log2 n

n
≤ α ≤ 1. # The algorithm is deterministic. * The

bound holds in expectation. $ A recent brief-announcement paper [35] improved
the message complexity to O(n+ f log f), but missing formal proofs. 24

3.1 Comparison of various models with our result. ϵ is any positive constant. Our
results assume a global coin and hash function while others are not. * indicates the
bound holds in expectation. 54

4.1 Terminology and their definition used throughout the algorithms in the Section 4.4
and Section 4.5. * represent the terminology’s definition for Phase 1. 83

4.2 Terminology and their definition used throughout the algorithm 9. 91

5.1 Best known deterministic leader election results on networks with different diam-
eters. Since ∆ = Ω(

√
n) in diameter-two graphs, log∆ = O(log n), see the

Remark 3 below. So our upper bound does not violate the message lower bound
in [31]. * Attaining O(1) time requires Ω(n1+Ω(1)) messages in cliques, whereas
achieving O(n log n) messages requires Ω(log n) rounds; see [4]. ** Ω(1) is a
trivial lower bound. 99

5.2 Comparison of the current chapter to the state-of-the-art. 101

Chapter 1

Introduction

Leader election and agreement are two essential problems in distributed computing that have been
extensively researched for the past four to five decades since their introduction [100, 101, 116].
These problems have gained significant interest due to their direct application in real-world dis-
tributed systems, which are susceptible to faults. For example, Akamai, a content delivery network,
uses distributed leader election to achieve fault tolerance, and the Paxos agreement protocol em-
ploys leader election for consensus [114, 30]. The importance and widespread application of these
problems are prevalent in various domains such as sensor networks [128], IoT networks [120],
grid computing [8], peer-to-peer networks [99, 121, 124, 125], and cloud computing [135]. In
large-scale distributed networks, it is desirable to achieve low-cost and scalable leader election and
agreement protocols, even with probabilistic guarantees. Moreover, with the rise of permission-
less distributed systems [64], it is also required to design protocols that can tolerate an arbitrary
number of faulty nodes. However, despite intensive research, there is still no practical solution
to fault-tolerant agreement or leader election for large-scale networks. One of the main reasons
for this is the high message complexity of current protocols, which has been a concern in many
systems papers [5, 7, 28, 108, 135]. It is desirable to have simple and lightweight protocols that
can be easily implemented. On the other hand, graph realization problems deal with construct-
ing graphs that satisfy certain predefined properties (such as a degree sequence) in the presence
of crashes. Graph Realization problems have been studied extensively in the literature, mainly in
the sequential setting and recently in distributed fault-free setting [12]. This thesis focuses on the
following fundamental questions in solving fault-tolerant computation problems in synchronous
distributed networks: What is the minimum number of messages required to solve fault-tolerant
leader election, agreement and graph realizations?

The problem of leader election involves a group of nodes within a distributed network choos-
ing a single leader among themselves. The elected leader is the only node permitted to output its
decision as the leader, while all other nodes output their decision as non-leader. In some appli-
cations, the non-leader nodes do not require knowledge of the leader’s identity (e.g. IP address),
making the implicit variant of leader election sufficient [11, 96, 97, 106]. In contrast, the explicit
version necessitates the non-leader nodes’ awareness of the leader node’s identity number (e.g. IP
address). The classical agreement problem has an implicit variant, in which each node starts with
an input value (0 or 1). The objective of the agreement problem is to ensure that a non-empty sub-
set of nodes agrees on the same value (consensus condition) and that the common value is the input

1

2 Introduction

value of some nodes (validity condition). In the explicit version, all nodes must agree on the same
input value. The implicit agreement problem is a generalization of the explicit agreement problem,
first proposed by [14]. For both the problems, leader election and agreement, the message lower
bound for the explicit version is trivially Ω(n).

We are examining the implicit version of the leader election and agreement problems in the
context of crash-fault, i.e., a faulty node does not respond after crashing throughout the execution.
It is worth noting that any solution to the implicit version of these two problems can be effortlessly
extended to solve their explicit versions in O(1) rounds with optimal time and messages (i.e., in
O(1) rounds and O(n) messages). The implicit version of the problems is more flexible because
all nodes need not agree on the leader or be aware of the agreed value. Therefore, it is possible to
achieve agreement (either on a leader or a value) with fewer communications. In particular, one
can expect sublinear message bounds, unlike the case of the explicit version of the problems when
all nodes need to agree, which requires at least n messages.

In the crash-fault setting, a faulty node may fail by crashing and do not respond throughout the
execution. In this setting, our research is closely linked to Gilbert-Kowalski’s [59] state-of-the-art
work, which explores the message complexity of the agreement problem in the same scenario. It
provides an optimalO(n) message complexity algorithm for an explicit agreement that tolerates up
to n/2−1 faulty nodes. Note that the work of Gilbert-Kowalski [59] assumes that nodes are aware
of their neighbors, and if this is not the case (as in our research), the message complexity will be
O(n log n). In contrast, our implicit agreement algorithm can be extended to an explicit agreement
algorithm that has a message complexity ofO(n log n) while tolerating any linear fraction of faulty
nodes. Additionally, our algorithm is more general in that the message complexity (and time
complexity) depends on the number of faulty nodes, allowing for tolerance of more faulty nodes,
up to n−log2 n. Furthermore, our agreement algorithm works in anonymous networks where nodes
are unaware of their neighbors and is scalable, meaning it sends only a constant number of bits over
an edge per round. We also demonstrate an agreement problem’s matching lower bound, which
is optimal up to a polylog n factor. Kutten et al. [97] presented an optimal sublinear randomized
algorithm for the implicit leader election problem in the fault-free setting (i.e., a network with no
faulty nodes) and a tight lower bound on the message complexity (up to a polylog n factor). We
also provide a non-trivial lower bound on the message complexity, which is optimal for more than a
constant fraction of faulty nodes in the network (up to a polylog n factor). Both the problems have
O(log n) round complexity for any constant fraction of faulty nodes, which is almost optimal,
due to the lower bound Ω(log n/ log log n) shown in [37]. Our algorithms are lightweight and
scalable, as they are only based on sampling and send only O(log n) bits through an edge per

3

round. Moreover, our algorithms work in anonymous networks where each node initially does not
know the identity of its neighbors.

The other fault-tolerant setting is the Byzantine agreement problem, which is a well-known and
extensively studied problem in distributed networks [100, 11, 106]. In this problem, every node in
the network is initialized with an input value, and the goal is to achieve the following two condi-
tions: (i) all honest nodes should agree on the same input value, and (ii) if all honest nodes receive
the same input value, they must agree on that value. The Byzantine agreement problem must be
solved in the presence of a constant fraction of Byzantine nodes, which can behave arbitrarily and
deviate from the protocol followed by the honest nodes. Byzantine agreement is an essential build-
ing block for creating secure and resilient distributed systems, and it has found widespread and
continuous application in numerous domains such as wireless networks [81, 103, 134, 129], sen-
sor networks [128], grid computing [8], peer-to-peer networks [124] and cloud computing [135],
cryptocurrencies [26, 44, 3, 80, 109], secure multi-party computation [24], and so on.

King and Saia’s [77] work introduced a Byzantine agreement algorithm that overcomes the
quadratic message complexity barrier in synchronous, complete networks. Their algorithm has
a message complexity of Õ(n1.5). Subsequently, Braud-Santoni et al. [27] improved upon this
result, achieving a message complexity of Õ(n). However, both of these works assume that nodes
know the IDs of other nodes beforehand. This model is commonly referred to as the KT1 model
(knowledge till hop 1) [118]. In contrast, the KT0 model assumes that nodes do not have prior
knowledge of their neighbors [118], which is more relevant to modern distributed networks that are
permissionless. While nodes in the KT0 model can easily learn their neighbors by communicating
with all of them in a single round, this would incur a message complexity of Ω(n2).

Our primary objective is to analyze the message complexity of the Byzantine agreement prob-
lem in theKT0 model, assuming the availability of cryptographic setup and a global coin (generate
the shared random bits), as described in [119]. Specifically, we focus on the implicit version of the
Byzantine agreement, where only a subset of the honest nodes needs to decide on an input value.
Our result introduces the first sublinear message complexity Byzantine agreement algorithm and at
the same time tolerates optimal resilience, i.e., f ⩽ (1/2 − ϵ)n, where n and f are the number of
nodes and number of Byzantine nodes in the network, and ϵ > 0 is a fixed constant. Our algorithm
is straightforward and easy to implement, making it highly desirable for practical applications.

In the crash-fault setting, we explore another problem known as the graph realization problem
in a complete network. In general, graph realization problems deal with constructing graphs that
satisfy certain predefined properties (such as a degree sequence). The area was mostly focused on
realizing graphs with specified degrees [68] while other properties such as connectivity [52, 50, 51],

4 Introduction

flow [62] and eccentricities [23, 102] have also been studied. The degree-sequence realization
problem has been explored widely in the centralized setting. Typically, the problem consists of a
sequence of non-negative numbers D = (d1, d2, . . . , dn), the degree-sequence problem asks if D
is realizable. A degree sequence D is realizable if there is a possibility of constructing a graph of
n nodes with the given degree sequence. These degree sequences are provided to the nodes, one
for each node.

Firstly, we solve the graph realization problem in the KT1 (knowledge till hop 1) model and
provide the matching lower bound. Then we also solve the problem in the KT0 (knowledge till
hop 1) model and achieve results similar to KT1 model. In both settings, we achieve the graph
realization in O(f) rounds and O(n2) messages in which f nodes could be faulty (f < n). The
algorithms are deterministic for the degree-sequence realization problem in a n-node Congested
Clique and the value of the f is unknown. Notice that KT1 model is the stronger model (having
more assumptions) than KT0. Therefore, KT1 model’s lower bound is the trivial lower bound for
the KT0 model while KT0 model algorithm also works in the KT1 model. As a by product, our
approach also solves the information spreading problem where each node knows the value of every
other node.

We also investigate the leader election problem in a non-faulty setting in diameter-two net-
works. The problem of leader election has been extensively studied in the literature in fault-free
settings with a focus on both message and round complexity for various graph structures, including
rings [101, 136], complete graphs [4, 14, 69, 83, 85, 86, 130], and diameter-two networks [31].
Additionally, leader election has been studied in general graphs [54, 60, 97, 106, 117]. Previous
works have primarily focused on providing deterministic solutions, but randomized algorithms
have also been explored, mainly to reduce the message complexity [14, 60, 96, 97] and their refer-
ences. Kutten et al. established the fundamental lower bound for leader election in general graphs
with Ω(m) message complexity and Ω(D) round complexity [96], where m and D are the number
of edges and diameter of the graph, respectively. This bound applies to all graphs with diameters
greater than two, whether the algorithm is deterministic or randomized. For the clique, Kutten et
al. recently established a tight message lower bound of Ω(n log n) for deterministic algorithms un-
der simultaneous wake-up of the nodes [98]. This result was previously shown by Afek and Gafni
in 1991 [4], assuming adversarial wake-up. In 2020, a deterministic algorithm with O(n log n)
message complexity was proposed for diameter-two networks by Chatterjee et al. [31].

Our research is closely related to the work conducted by Chatterjee et al. [31], who inves-
tigated leader election in diameter-two networks, specifically the implicit version. The authors
presented a deterministic algorithm with a message complexity of O(n log n) and a round com-

Preliminaries 5

plexity of O(log n). However, their algorithm required prior knowledge of the network size, n.
In contrast, our algorithm can elect a leader explicitly without prior knowledge of n. Our algo-
rithm has a message complexity of O(n log∆) and completes in O(log∆) rounds, where ∆ is the
maximum degree of the graph. Furthermore, we demonstrate how to utilize the edges used during
the leader election protocol to construct a broadcast tree for diameter-two graphs, with a message
complexity of O(n log∆) and a round complexity of O(log∆). Efficiently computing a broadcast
tree is another fundamental problem in distributed computing, and a broadcast tree can serve as
a subroutine for many distributed algorithms that seek message efficiency. Chatterjee et al. [31]
left open the task of finding a deterministic Õ(n)-message1 and Õ(1)-round broadcast algorithm
in diameter-two networks, which we addressed in this thesis.

The remaining sections of this chapter are structured as follows. We begin in Section 1.1 by
introducing an overview of all the notation and definitions which are used throughout the thesis.
Section 1.2 presents the distributed computing model that serves as the foundation for our analysis.
Section 1.3 provides a brief literature review of the work done in the thesis. In Section 1.4, we
outline the contributions of the thesis and its overall organization. Finally, in Section 1.5, we
present a list of the publications that were used in the development of this thesis. Furthermore,
in each chapter, we provide a detailed explanation of the notation, definitions, and distributed
computation model used. We also specify the source of the material, i.e., references to the relevant
publications or manuscripts that contributed to the thesis.

1.1 Preliminaries

We introduce fundamental notations and definitions that recur frequently in the thesis.

We follow the standard notation for representing graphs as follows: G = (V,E), where V
denotes the set of vertices and E denotes the set of edges. The terms “graph” and “network”,
“node” and “vertex”, and “edge” and “communication link” are used interchangeably. The number
of nodes in the graph is represented by n, which is equivalent to the cardinality of V . Similarly, m
represents the number of edges or the cardinality of E.

In a fault-tolerant set-up, f represents the number of faults. The fault-tolerant leader election
requires electing a leader node from the set of n nodes such that the leader is non-faulty with
probability (1−f/n). We have two types of leader election and agreement – Implicit and Explicit.
In implicit, a subset of non-faulty nodes is aware of the leader and agreement. On the other hand,

1Õ hides the polylog n factor.

6 Introduction

in explicit, all the non-faulty nodes are aware of the decision (leader election or agreement value).
In the leader election, we elect a node as a leader, which is represented by its ID. In agreement,
it is the input value provided to the nodes based on which nodes agree. These input values can
be binary (0 or 1) or arbitrary based on the problem statement. In the case of graph realization
problem, the problem consists of a sequence of non-negative numbers D = (d1, d2, . . . , dn), the
degree-sequence problem asks if D is realizable. A sequence D is said to be realizable if there is
a graph of n nodes whose sequence of degrees matches D.

In this thesis, we frequently employ the Õ notation, which conceals the polylog n factor. Essen-
tially, Õ(f) denotes O(f logc n) for a constant c. Additionally, we commonly use the abbreviated
phrase “w.h.p.” or “with high probability,” signifying a probability of at least 1−1/nϵ for a constant
ϵ, where n corresponds to the number of nodes present in the network.

1.2 Distributed Computing Model and Definitions

We consider the distributed network for a graph G = (V,E) of n nodes. Unless specified other-
wise, throughout the thesis we restrict our attention to undirected graphs in which communication
is bidirectional, and unweighted graphs where all the edges are the same without any further cost.
Our graph is fully connected, i.e., every node is directly connected to all other nodes except Chap-
ter 5, where we consider the graph with diameter-two in which a node is at most two hop away
from any other node. We assume that nodes do not know the value of n. However, a node knows
the value of n simply by its number of ports connected to the other nodes when the network is com-
plete. But in the case of a diameter-two network (Chapter 5), nodes are unaware of the value of n.
Initially, each node has limited knowledge of the neighboring nodes and each node is assigned an
identity number in a deterministic setting (in Chapter 4 and 5). In a randomized setting (in Chap-
ter 2 and 3), nodes select their identity number randomly from a large sample set such that all the
nodes have different identity numbers. Nodes may know the identity number (e.g. IP address) of
the neighboring nodes based on the problem specification. Each node has a unique identity number
of size O(log n) bits. The model is known as clean network model in the sense that the nodes are
unaware of their neighbors’ identity numbers initially, also known as KT0 (knowledge till 0 hop)
model [118]. Except for Chapter 4 (in Section 4.4 and Section 4.5) where we assume additional
communications between the nodes, in which, nodes can directly communicate to other nodes if
they know their identity number (e.g., IP address). We call this KT1 (knowledge till 1 hop) model
and define it as where nodes know the identity number of the other nodes and the port connecting
to the identity numbers.

Distributed Computing Model and Definitions 7

Our focus is on the message-passing model of distributed computing. The model involves
nodes communicating by exchanging messages in rounds, where a node can communicate with
any neighbor by sending a message. The network operates synchronously, with nodes running at
the same speed and messages taking exactly one round to arrive at their intended recipient, i.e., a
message sent in the rth round would be received by (r+1)th round. At the beginning of execution,
all nodes start simultaneously and keep track of the round number. The round complexity of
an algorithm is the number of rounds taken by an algorithm from the start until the termination.
In the case of messages’ size to ensure the scalability, we consider CONGEST communication
model [118], where a node is allowed to send a message of size O(log n) or O(polylog(n)) bits
through an edge per round. This addresses the real-world computer problem and helps to keep
the bandwidth small. The message complexity of an algorithm is the total number of messages
sent by all the nodes throughout the execution of the algorithm. On the other hand, there exists
another distributed computing model where message size (bandwidth restriction) is relaxed. That
model is LOCAL communication model, where nodes are allowed to send a message of arbitrary
size (polynomial in n) through an edge per round. We avoid using the LOCAL model during the
problem-solving phase but show some lower bound results which are even feasible in the presence
of this model.

In the case of fault-tolerant setup, a network is called f -resilient if at most f nodes may be
faulty. We consider two types of fault – crash-fault and Byzantine fault. In the crash-fault (Chap-
ter 2 and 4), we assume that an arbitrary subset of the nodes in the clique of size up to f < n may
fail by crashing. A faulty node may crash in any round during the execution of the algorithm. If a
node crashes in a round, then an arbitrary subset (possibly all) of its messages for that round may
be lost as determined by an adversary and may not be reached the destination. The crashed node
halts (inactive) in the further rounds of the algorithm. If a node does not crash in a round, then all
the messages that it sends in that round are delivered to the destination [11]. On the flip side, a
Byzantine faulty node (Chapter 3) can behave maliciously such that it sends any arbitrary message
or no message in any round to mislead the protocol, e.g., it may send different input values to
different nodes, or it may not send any message to some of the nodes in a particular round.

Both of the aforementioned settings consider two types of adversaries: static (also known as
non-adaptive) and adaptive. In Chapters 2 and 3, we assume a static adversary controls the faulty
nodes, selecting them before the algorithm’s execution begins. Conversely, in Chapter 4, an adap-
tive adversary can determine which nodes become faulty during the algorithm’s execution. Also,
the adversary chooses when and how a node behaves, which is unknown to the nodes. Further,
the adversary is rushing and has full information – the adversary knows the states of all the nodes

8 Introduction

and can view all the messages in a round before sending out its own messages for that round. In
randomized algorithms (in Chapter 2 and Chapter 3), each node has access to an arbitrary number
of private random bits.

Efficiency measurement for a distributed algorithm can involve different parameters, such as
the number of rounds, messages sent, and more. However, this thesis focuses on minimizing the
number of messages while keeping the number of rounds as low as possible. It is worth noting that
local computation performed by a node is considered “free” and does not impact our efficiency
measures. However, we do perform polynomial-cost computations (in terms of time and space) on
nodes locally.

One approach to designing a message-efficient algorithm may be to wait for a specific event
without sending any messages, but this can be time-consuming in terms of the number of rounds.
Therefore, our goal is to construct distributed algorithms that are both message-efficient and have
low round complexity. Throughout this thesis, we present message-efficient algorithms from Chap-
ter 2 to Chapter 5 that are almost round-optimal (within polylog n) in their respective settings.
Specifically, in Chapter 4, we present algorithms that are optimal in terms of both message and
round complexity, with the lower and upper bounds of the algorithm being exactly the same.

Let us formally define the main results’ terminology that are used in the thesis.

Definition 1.1 (Fault-Tolerant Leader Election, Chapter 2). Consider a complete network of n
nodes, in which at most f nodes could be faulty and the remaining (n − f) nodes are non-faulty.
The fault-tolerant leader election requires electing a leader node from the set of n nodes such that
the leader is non-faulty with probability (1− f/n).

Definition 1.2 (Fault-Tolerant Agreement, Chapter 2). Consider a complete network of n nodes,
in which at most f nodes could be faulty and the remaining (n− f) nodes are non-faulty. Suppose
initially each node has an input value in {0, 1}. An implicit agreement holds when the final state is
either {0,⊥} or {1,⊥} and at least one node has a state other than ⊥ (which should be the input
value of some node), where ⊥ denotes the ‘undecided’ state. In other words, all the decided nodes
must agree on the same value which is an initial input value of some node and there must be at
least one decided node in the network.

Definition 1.3 (Implicit Byzantine Agreement, Chapter 3). Suppose initially all the nodes have
an input value (say, provided by an adversary). An implicit Byzantine agreement holds when the
following properties hold: (i) the final state of all the non-Byzantine nodes is either “decided”
or “undecided”; (ii) all the “decided” non-Byzantine nodes must agree on the same value (con-
sistency property); (iii) if all the non-Byzantine nodes have the same input value then they must

Literature Review 9

decide on that value (validity property); (iv) all the non-Byzantine nodes eventually reach to the
final state, where at least one non-Byzantine node must be in the “decided” state (termination).

Definition 1.4 (Distributed Graph Realization with Faults, Chapter 4). Let V = {v1, . . . vn} be
the set of nodes in the network and D = (d1, d2, . . . , dn) be an input degree sequence such that
each di is only known to the corresponding node vi. Let F ⊂ V be an arbitrary subset of faulty
nodes in the network, such that |F | = f ≤ n − 1. Let us define D′ ⊆ D be the modified degree
sequence after losing the degrees of some faulty nodes and G′ be the corresponding overlay graph
over D′. The distributed degree realization with faults problem requires that the non-faulty nodes
in V construct a graph realization of D′ such that in the resulting overlay graph G′, the following
conditions hold:

1. |D′| ≥ n− |F |.

2. D −D′ is the degree sequence corresponding to some nodes that crashed.

3. For any edge e = (u, v) ∈ G′, either u or v (or both) knows of the existence of e.

The required output is an overlay graph G′ if D′ is realizable; otherwise, the output is “unrealiz-
able”.

Definition 1.5 (Implicit Leader Election, Chapter 5). Consider an n-node distributed network. Let
each node maintain a state variable that can be set to a value in {⊥, NONELECTED, ELECTED},
where ⊥ denotes the ‘undecided’ state. Initially, all nodes set their state to ⊥. In the implicit ver-
sion of leader election, it requires that exactly one node has its state variable set to ELECTED
and all other nodes are in state NONELECTED. The unique node whose state is ELECTED
is the leader.

Definition 1.6 (Explicit Leader Election, Chapter 5). Consider an n-node distributed network. Let
each node maintain a state variable that can be set to a value in {⊥, NONELECTED, ELECTED},
where ⊥ denotes the ‘undecided’ state. Initially, all nodes set their state to ⊥. In the explicit ver-
sion of leader election, it requires that exactly one node has its state variable set to ELECTED
and all other nodes are in state NONELECTED. Further, the NONELECTED nodes must
know the identity of the node, whose state is ELECTED, the leader.

1.3 Literature Review

We state the brief literature review of the thesis chapter-wise. Later, we provide a detailed descrip-
tion of the related work in their respective chapter.

10 Introduction

In the first contributory chapter (Chapter 2) we discuss the leader election and agreement
problem in faulty setup. Initially, the leader election was studied by Le Lann [101] in ring net-
works and then by the seminal work of Gallager-Humblet-Spira [54] in general graphs. The
problem is well studied in the complete network itself [4, 69, 83, 85, 86, 130], and reference
therein. Similarly, the agreement is also extensively studied in the class of complete networks
[116, 106, 59, 37, 32, 33, 34, 36]. The most closely related work to ours, in a fault-free setting, is
by Kutten et al. [97] which studied the (implicit) leader election problem in complete networks and
showed sub-linear message bounds using randomization. They also showed an almost matching
lower bound for randomized leader election. Later, Augustine et al. [14] introduced and studied
implicit agreement problem in fault-free settings and showed similar sub-linear bounds for agree-
ment. Our work is inspired by the works of [97, 14, 59], but in the faulty setting. In the crash-fault
setting, Gilbert-Kowalski [59] studied the message complexity of the agreement. They presented
an optimalO(n) message complexity (explicit) agreement protocol which tolerates at most n/2−1
faulty nodes in the KT1 model. The time complexity is O(log n). While their algorithm solves
the implicit agreement in a smaller set of nodes (of size O(log n)) in the course of the explicit
agreement, they did not mention the implicit version of the agreement. Their implicit agreement
solution uses Õ(n1/2) messages (Õ hides a polylog n factor) andO(log n) rounds. In comparison,
our agreement algorithm matches all these bounds while tolerating more faulty nodes. Table 2.1
summarizes the state-of-the-art in the crash-fault setting.

The second contributory chapter (Chapter 3) discusses the implicit Byzantine agreement. Byzan-
tine agreement was introduced by Lamport, Shostak, and Pease [100, 116]. They presented pro-
tocols and fault tolerance bounds for two settings (both synchronous). Without cryptographic
assumptions (the unauthenticated setting), Byzantine broadcast and agreement can be solved if
f < n/3. Assuming digital signatures (the authenticated setting), Byzantine broadcast can be
solved if f < n and Byzantine agreement can be solved if f < n/2. The initial protocols had ex-
ponential message complexities [100, 116]. Fully polynomial protocols were later shown for both
the authenticated (f < n/2) [40] and the unauthenticated (f < n/3) [55] settings. Both protocols
require f + 1 rounds of communication, which matches the lower bound on round complexity for
deterministic protocols [48]. The previous results in the same direction are summarized in Table
3.1.

The third contributory chapter (Chapter 4) discusses the fault-tolerant graph realization prob-
lem. Fault-tolerant computation becoming more popular with the prevalence of P2P networks that
encourage high decentralization. Often the focus of such research is on maintaining connectiv-
ity [16], recovery, or ensuring that the network can tolerate a certain number of faults [133]. In

Our Contribution and Organization of the Thesis 11

our work, we focus mainly on ensuring that all the (non-faulty) nodes have the same view of the
information in spite of the presence of numerous faults. Graph realization problems have been well
studied in the literature, focusing on problems such as realizing graphs with specified degrees [68]
as well as other properties, like connectivity and flow [62, 52, 50, 51] or eccentricities [23, 102].
Bar-Noy et al. explored the graph realizations in various settings like vertex-weighted, distance set,
and relaxed and approximate graph realizations [19, 18, 20]. Arikati and Maheshwari [9] provide
an efficient technique to realize degree sequences in the PRAM model, and in [12], the authors
explored graph realization from a distributed setting. However, both of these works assumed a
fault-free setting. Here we extend the model to a faulty setting. In [12], Augustine et al. discussed
distributed graph realizations on a path (both implicit and explicit). However, in their work, a node
is only required to learn its neighbors in the final realization, in our work, the nodes are aware of
the entire graph.

The fourth (and last) contributory chapter (Chapter 5) discusses the deterministic leader elec-
tion in diameter-two network. In the deterministic case, it is known that Θ(n log n) is tightly bound
on the message complexity for complete graphs [4, 98]. This tight bound also carries over to the
general case as seen from [4, 84, 86]. In our work, we restrict our model to graphs of diameter-two.
For diameter-two graphs, Chatterjee and colleagues provide a O(log n) round algorithm that uses
O(n log n) messages. However, their algorithm requires knowledge of n, our algorithm provides
an algorithm that requires no prior knowledge of n and runs in O(log n) rounds with O(n log n)
message complexity.

1.4 Our Contribution and Organization of the Thesis

Within this section, we outline the issues that the thesis tackles, present a summary of the outcomes,
and delineate the thesis’s structure. The rest of the chapters of the thesis are organized as follows.

Chapter 2 Fault-Tolerant Leader Election and Agreement Problems: We study a synchronous and
fully-connected distributed network of n nodes in the presence of crash-fault nodes. In that,
we investigate the message complexity of two problems, leader election, and agreement. In
the leader election problem, we have a group of n nodes, and a unique node is elected as a
leader. Depending on the nodes’ knowledge of the leader, there are two popular versions. In
the first version (known as the implicit leader election), the non-leader nodes are not required
to know the leader’s identity; it is enough for them to know that they are not the leader. In the
other version (known as explicit leader election), the non-leader nodes are required to learn

12 Introduction

the leader’s identity. The implicit version of the leader election is the generalized version
of the (explicit) leader election. Similarly, we define the implicit and explicit agreement
problems. In the agreement problem, each node has some input value, and eventually, a non-
empty subset agrees on some given value based on the version of the agreement (implicit or
explicit).

We present randomized (Monte Carlo) algorithms for both problems and also show non-
trivial lower bounds on the message complexity. Our algorithms achieve sublinear message
complexity in the so-called implicit version of the two problems when tolerating more than
a constant fraction of the faulty nodes. These algorithms consider the CONGEST communi-
cation model [118], where a node is allowed to send a message of size O(log n) bits through
an edge per round. The message complexity of an algorithm is the total number of messages
sent by all the nodes throughout the execution of the algorithm. On the other hand, our lower
bounds even hold in the LOCAL communication model, where nodes are allowed to send a
message of arbitrary size through an edge per round.

In comparison to the state-of-art, our results improved and extended the works of Gilbert-
Kowalski [59] (which studied only the agreement problem) in several directions. Specifi-
cally, our algorithms tolerate any number of faulty nodes up to (n−polylog n). The message
complexity (and also the time complexity) of our algorithms is optimal (up to a polylog n

factor). Further, our algorithm works in anonymous networks, where nodes do not know
each other. This chapter is based on the joint work with Anisur Rahaman Molla [92].

Chapter 3 Authenticated Byzantine Agreement Problem: We study the message complexity of au-
thenticated Byzantine agreement (BA) in synchronous, fully-connected distributed networks
under honest majority. We focus on the so-called implicit Byzantine agreement problem
where each node starts with an input value and at the end a non-empty subset of the honest
nodes should agree on a common input value by satisfying the BA properties (i.e., there can
be undecided nodes)2. The Byzantine agreement problem is required to satisfy: (i) the hon-
est nodes must decide on the same input value; and (ii) if all the honest nodes receive the
same input value, then they must decide on that value3.

We show that a sublinear (in n, number of nodes) message complexity BA protocol under
honest majority is possible in the standard PKI model when the nodes have access to an
unbiased global coin and hash function. In particular, we present a randomized Byzantine

2Implicit BA is a generalization of the classical BA problem. Throughout, we write Byzantine agreement or BA to
mean implicit Byzantine agreement.

3Throughout, we interchangeably use the term ‘non-Byzantine’ and ‘honest’, and similarly, ‘Byzantine’ and
‘faulty’.

Our Contribution and Organization of the Thesis 13

agreement algorithm which, with high probability achieves implicit agreement, uses Õ(
√
n)

messages and runs in Õ(1) rounds while tolerating (1/2− ϵ)n Byzantine nodes for any fixed
ϵ > 0, the notation Õ hides a O(polylog n) factor. The algorithm requires a standard crypto-
graphic setup PKI and hash function with a static Byzantine adversary. The algorithm works
in the CONGEST model and each node does not need to know the identity of its neighbors,
i.e., works in the KT0 model. The message complexity (and also the time complexity) of
our algorithm is optimal up to a polylog n factor, as we show a Ω(

√
n) lower bound on the

message complexity. We also perform experimental evaluations and highlight the effective-
ness and efficiency of our algorithm. The experimental results outperform the theoretical
guarantees. We further extend the result to Byzantine subset agreement, where a non-empty
subset of nodes should agree on a common value. We analyze several relevant results which
follow from the construction of the main result.

To the best of our knowledge, this is the first sublinear message complexity result of the
Byzantine agreement. A quadratic message lower bound is known for any deterministic BA
protocol (due to Dolev-Reischuk [JACM 1985]). The existing randomized BA protocols
have at least quadratic message complexity in the honest majority setting. Our result shows
the power of a global coin in achieving significant improvement over the existing results. It
can be viewed as a step towards understanding the message complexity of randomized BA
in distributed networks with PKI and global coin. This chapter is based on the joint work
with Anisur Rahaman Molla. The manuscript is submitted to International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2023).

Chapter 4 Fault-Tolerant Graph Realizations Problem: In this chapter, we study the graph realization
problem in the Congested Clique model of distributed computing under crash faults. We
consider degree-sequence realization, in which each node v is associated with a degree value
d(v), and the resulting degree sequence is realizable if it is possible to construct an overlay
network with the given degrees. Our main result is a O(f)-round deterministic algorithm for
the degree-sequence realization problem in a n-node Congested Clique, of which f nodes
could be faulty (f < n). The algorithm uses O(n2) messages. We complement the result
with lower bounds to show that the algorithm is tight w.r.t the number of rounds and the
messages simultaneously. We also extend our result to the Node Capacitated Clique (NCC)
model, where each node is restricted to sending and receiving at mostO(log n) messages per
round. In the NCC model, our algorithm solves degree-sequence realization inO(nf/ log n)
rounds and O(n2) messages. These algorithms work for KT1 (Knowledge Till 1 hop) model
where nodes know their neighbors’ IDs.

14 Introduction

We further study the graph realization problem in the more robust model that isKT0 (Knowl-
edge Till 0 hop) model, in which each node knows the IDs of all the nodes in the clique, but
does not know which port is connecting to which node-ID. We extend the result toKT0 when
the network is anonymous, i.e., the IDs of the neighboring nodes are unknown. We present
an algorithm that solves the graph realization problem in the KT0 model with matching per-
formance guarantees as in the KT1 model. This chapter is based on the work [91] and the
joint work with Anisur Rahaman Molla and Sumathi Sivasubramaniam [94].

Chapter 5 Deterministic Leader Election Problem in Diameter-Two Networks: We investigate the
leader election problem in diameter-two networks. In 2020, Chatterjee et al. [31] studied the
leader election in diameter-two networks. They presented a O(log n)-round deterministic
implicit leader election algorithm which incurs optimalO(n log n) messages, but a drawback
of their algorithm is that it requires knowledge of n. An important question – whether it
is possible to remove the assumption on the knowledge of n was left open in their paper.
Another interesting open question raised in their paper is whether explicit leader election
can be solved in Õ(n) messages deterministically. In this chapter, we give an affirmative
answer to them. Further, we solve the broadcast problem, another fundamental problem in
distributed computing, deterministically in diameter-two networks with Õ(n) messages and
Õ(1) rounds without the knowledge of n. In fact, we address all the open questions raised
by Chatterjee et al. for the deterministic leader election problem in diameter-two networks.

In our study, we introduce a deterministic algorithm for leader election, specifically designed
as an “explicit” approach. This algorithm operates within O(log∆) rounds and requires
O(n log∆) messages, where n represents the number of nodes, and ∆ denotes the maxi-
mum degree of the network. Importantly, our algorithm achieves these complexities without
relying on prior knowledge of n. The tightness of the message bound is established through
a corresponding lower bound proven by Chatterjee et al. in [31]. Furthermore, we tackle
the “broadcast” problem and demonstrate that it can be deterministically solved in O(log∆)

rounds using O(n log∆) messages. Specifically, we illustrate that a broadcast tree with a
maximum depth of O(log∆) can be computed with the same complexities. This chapter is
based on the joint work with Anisur Rahaman Molla and Sumathi Sivasubramaniam [95].

Chapter 6 Conclusion and Future Work: We summarize the thesis with its main contribution as well
as some interesting problems for future study.

List of Publications 15

1.5 List of Publications

1. Manish Kumar, Anisur Rahaman Molla. On the Message Complexity of Fault-Tolerant Com-
putation: Leader Election and Agreement.

– In IEEE Transactions on Parallel and Distributed Systems (TPDS), pp. 1115-1127, Volume:
34, Issue: 4, 01 April 2023. DOI: 10.1109/TPDS.2023.3239993.

– In the Proceedings of 40th ACM Symposium on Principles of Distributed Computing (PODC),
Pages 259–262 (Brief Announcement – Invited), virtual event (Originally held in Italy), July
26-30, 2021. DOI: 10.1145/3465084.3467949.

– In Proceeding of the 24th International Conference on Distributed Computing and Networking,
(ICDCN), Pages 294–295 (Doctoral Symposium), Kharagpur, India, January 4-7, 2023. DOI:
10.1145/3571306.3571424.

– In Proceeding of the 36th IEEE International Parallel & Distributed Processing Symposium,
(IPDPS), Page 1283 (Poster at PhD Forum), virtual event (Originally held in France), May 30
– June 3, 2022. IPDPS 2022 PhD Forum.

2. Manish Kumar, Anisur Rahaman Molla. Authenticated Implicit Byzantine Agreement with
Sublinear Message Bounds. To be published in the Proceedings of 25th International Con-
ference on Distributed Computing and Networking, ICDCN 2024, 4th - 7th January 2024,
Chennai, India. DOI: 10.1145/3631461.3631548.

3. Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Fault-tolerant
graph realizations in the congested clique. In the Proceedings of 18th International Sym-
posium on Algorithmics of Wireless Networks, ALGOSENSORS 2022, Potsdam, Germany,
September 8-9, 2022, volume 13707 of Lecture Notes in Computer Science, pages 108–122.
Springer, 2022. DOI: 10.1007/978-3-031-22050-08.

4. Manish Kumar. Fault-tolerant graph realizations in the congested clique, revisited. In
the Proceedings of 19th International Conference Distributed Computing and Intelligent
Technology, ICDCIT 2023, pages 84–97, Springer Nature Switzerland Cham, 2023. DOI:
10.1007/978-3-031-24848-16.

5. Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Improved deter-
ministic leader election in diameter-two networks. In the Proceedings of 13th International
Conference on Algorithms and Complexity (CIAC 2023), Larnaca, Cyprus, June 13-16,
2023, Proceedings, volume 13898 of Lecture Notes in Computer Science, page 323-335,
Springer, 2023. DOI: 10.1007/978-3-031-30448-4-23.

https://doi.org/10.1109/TPDS.2023.3239993
https://doi.org/10.1145/3465084.3467949
https://doi.org/10.1145/3571306.3571424
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9835197
https://doi.org/10.1145/3631461.3631548
https://doi.org/10.1007/978-3-031-22050-0_8
https://doi.org/10.1007/978-3-031-24848-1_6
https://doi.org/10.1007/978-3-031-30448-4_23

16 Introduction

Chapter 2

Message Efficient Algorithms for Leader Elec-
tion and Agreement under Crash Fault

This chapter focuses on examining the message complexity of two basic problems – leader elec-
tion and agreement, in a fully-connected distributed network with crash-fault synchronous1. We
provide randomized (Monte Carlo) algorithms for both problems and establish non-trivial lower
bounds on the message complexity. Moreover, our algorithms achieve sublinear message com-
plexity in the “implicit” version of the problems, when tolerating more than a constant fraction of
faulty nodes.

We first present a randomized leader election algorithm that elects a leader with high probabil-
ity in a complete network with n nodes, in which at least ⌈αn⌉ nodes are non-faulty and the re-
maining can be faulty, where α ≥ (log2 n)/n. The time complexity of the algorithm is O(log n/α)
rounds and message complexity is O

(
(n0.5 log2.5 n)/α2.5

)
with high probability. Then we provide

a non-trivial lower bound of Ω (n0.5/α1.5) messages for any leader election algorithm that toler-
ates at most (1 − α)-fraction faulty nodes and succeeds with high probability. This bound holds
regardless of the number of rounds used and applies to both LOCAL and CONGEST models of
distributed networks.

Furthermore, we develop a randomized algorithm, tolerating at most ⌊(1− α)n⌋ faulty nodes,
solves agreement inO(log n/α) rounds and with high probability and uses onlyO

(
(n0.5 log1.5 n)/α1.5

)
messages. And also show a matching lower bound (up to a polylog n factor) of Ω (n0.5/α1.5) mes-
sages for any agreement algorithm that tolerates at most (1−α)-fraction faulty nodes and succeeds
with high probability. This bound also holds regardless of the number of rounds used and applies
to both LOCAL and CONGEST models.

Compared to the state-of-the-art, our research constitutes a significant advancement and broad-
ening of the current literature. Specifically, we have enhanced and expanded the work of Gilbert-
Kowalski [59], which concentrated exclusively on the agreement problem, in several ways. Our
algorithms can withstand any number of faulty nodes up to (n−polylog n), and their message and
time complexity is optimal (with a polylog n factor). Our findings also reveal a surprising fact: the

1This chapter is based on joint work with Anisur Rahaman Molla (which appeared in IEEE Transactions on Parallel
and Distributed Systems 2023) and contains material from [92].

17

18 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

message complexity of leader election and agreement is asymptotically equivalent to that of the
fault-free network [97, 14], with a message complexity of Õ(n1/2) (where Õ conceals a polylog n

factor) even for a constant fraction of faulty nodes. Moreover, our lower bounds align with these
outcomes.

2.1 Introduction

Leader election and agreement are two fundamental problems in distributed computing, which,
along with their variants, have been extensively studied for the last four decades, since their in-
troduction [100, 101, 116]. Over time, the problems gained significant interest due to their direct
applications in real-world distributed systems, which are prone to be faulty. For example, the
content delivery network Akamai [114] uses distributed leader election as a subroutine to achieve
fault-tolerance, Paxos [30] agreement protocol uses leader election for consensus. The importance
and widespread application of the two problems are prevalent in many domains, e.g., sensor net-
works [128], IoT networks [120], grid computing [8], peer-to-peer networks [99, 121, 124, 125]
and cloud computing [135]. Often, in large-scale distributed networks, it is desirable to achieve
low-cost and scalable leader election and agreement protocols, even with probabilistic guarantees.
Furthermore, due to the rise of permissionless distributed systems [64] (where participants can
join the system anonymously with virtual IDs without any control over the numbers), it is also
desirable to design protocols that may tolerate an arbitrary number of faulty nodes. However, de-
spite intensive research, there has still not been a practical solution to the fault-tolerant agreement
or leader election for large-scale networks. One key reason for this is the large message com-
plexity of currently known protocols– a concern which has been raised in many systems papers
[5, 7, 28, 108, 135], and at the same time it is desirable to have simple and lightweight protocols
that can be implemented easily. In this chapter, motivated by the need for a practical fault-tolerant
protocol, we focus on the following fundamental questions in solving fault-tolerant agreement
(also known as consensus) and leader election in synchronous distributed networks: What is the
minimum number of messages required to solve fault-tolerant leader election and agreement?

The leader election problem requires a group of nodes in a distributed network to elect a unique
leader among themselves, such that exactly one node must output its decision as the leader, and
all the other nodes output their decision as non-leader. These non-leader nodes need not be aware
of the identity of the leader. This implicit variant of leader election is quite well-known [11,
96, 97, 106] and is sufficient in many applications. In the explicit version, the non-leader nodes
must know the ID of the leader node. Similarly, in the implicit version of the classical (binary)

Introduction 19

agreement problem, each node starts with an input value (0 or 1) and the agreement problem
requires guaranteeing the following two conditions: (1) A non-empty subset of nodes should agree
(or decide) on the same value (consensus condition) and (2) the common value should be the input
value of some nodes (validity condition). In the explicit version, all the nodes must agree on the
same input value. The implicit agreement, which is a generalization of the (explicit) agreement
problem, was first introduced by [14]. It is trivial that Ω(n) is a message lower bound for the
explicit version of both the problems.

We study the implicit version of leader election and agreement under crash-fault. Note that
any solution of the implicit version of two problems can be easily extended to solve the explicit
versions in O(1) rounds. The flexibility of the implicit version of the two problems lies in the
fact that all the nodes need not be agreed on the leader or do not need to know the agreed value.
Therefore, in principle, the agreement (either on a leader or a value) may be fulfilled with less
communication. In particular, one can expect sublinear message bounds, unlike the case of the
explicit version of the problems when all nodes need to agree, which requires at least n messages.

Our work is closely related to the state-of-art Gilbert-Kowalski [59], which studies the message
complexity of the agreement problem in the same setting. It presents an optimal O(n) message
complexity algorithm for the explicit agreement and tolerates at most n/2 − 1 faulty nodes. Note
that the algorithm in [59] assumes the nodes know their neighbors; if not known (like ours), the
message complexity would be O(n log n). In comparison to this, our implicit agreement algorithm
can be extended to an explicit agreement algorithm that has message complexity O(n log n) when
tolerating any linear fraction faulty nodes. In fact, our algorithm is more general in the sense that
the message complexity (and also the time complexity) depends on the number of faulty nodes,
and thus, tolerating more faulty nodes, up to n − log2 n. Furthermore, our agreement algorithm
works in anonymous networks where nodes do not know their neighbors and is also scalable, i.e.,
sends only a constant number of bits over an edge per round. We also show a matching lower
bound of the agreement problem, which is optimal up to a polylog n factor.

The implicit leader election was studied in the fault-free setting (i.e., a network with no faulty
nodes) by Kutten et al. [97]. They presented an optimal sublinear randomized algorithm and a tight
lower bound on the message complexity (up to a polylog n factor). To the best of our knowledge,
this is the first work that studies the message complexity of (implicit) leader election in the crash-
fault synchronous distributed networks. We further show a non-trivial lower bound on the message
complexity. The message complexity is optimal for more than a constant fraction of faulty nodes in
the network (up to a polylog n factor). TheO(log n) round complexity of both the problem (for any
constant fraction of faulty nodes) is also almost optimal due to the lower bound Ω(log n/ log log n)

20 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

by [37]. Our algorithms work in anonymous networks, where each node (initially) does not know
the identity of its neighbors. Our algorithms are simple, lightweight (based on sampling only), and
scalable (sends only O(log n) bits through an edge per round).

2.1.1 Our Results and Implications

We present sublinear algorithms and lower bounds on the message complexity of implicit agree-
ment and leader election in a fully-connected synchronous network. Recall that the network has at
least αn non-faulty nodes among n nodes2 and the CONGEST communication model. The algo-
rithms tolerate up to (n − log2 n) faulty nodes. The algorithms and the lower bounds depend on
the value of α, which essentially explains that the message complexity increases with the number
of faulty nodes in the network. The main results are:

1. Fault-tolerant leader election: We present a randomized implicit leader algorithm which
elects a leader with high probability inO(log n/α) rounds and incursO

(
(n1/2 log5/2 n)/α5/2

)
messages, such that the elected leader is non-faulty with probability at least α. The mes-
sage complexity is sublinear for α > (log n/n1/5) and then the algorithm tolerates at most
(n − n4/5 log n) faulty nodes. For any constant fraction faulty nodes in the network (i.e.,
when α is any constant), the algorithm is both message and time optimal (up to a polylog n

factor). The algorithm can be extended to achieve explicit leader election in O(log n/α)

rounds and O(n log n/α) messages.

2. Message lower bound for fault-tolerant leader election: We show an unconditional lower
bound of Ω(n1/2/α3/2) messages for any leader election algorithm that succeeds with high
probability and tolerates at most (1− α)-fraction faulty nodes. The lower bound also holds
in the LOCAL model of distributed computing.

3. Fault-tolerant agreement: We present a randomized algorithm that solves (implicit) agree-
ment with high probability in O(log n/α) rounds and incurs O

(
(n1/2 log3/2 n)/α3/2

)
mes-

sages with high probability. The algorithm is message optimal (up to a polylog n factor)
as we show a tight lower bound. The message complexity is sublinear for α > log n/n1/3,
which means, the algorithm tolerates at most (n − n2/3 log n) faulty nodes and achieves
sublinear message bound. The algorithm can be extended to achieve explicit agreement in
O(log n/α) rounds and O(n log n/α) messages.

2We often use the notation αn to mean the integer number ⌈αn⌉ and (1 − α)n to mean the integer number ⌊(1 −
α)n⌋.

Model and Definitions 21

4. Message lower bound for fault-tolerant agreement: We show an unconditional lower
bound of Ω(n1/2/α3/2) on the message complexity for any agreement algorithm that suc-
ceeds with high probability and tolerates at most (1 − α)-fraction faulty nodes. The lower
bound is essentially tight (up to a polylog n factor). The lower bound also holds in the
LOCAL model.

One surprising fact about our results is that for any constant fraction of faulty nodes, the
Õ(n1/2) message complexity (Õ hides a polylog n factor) of leader election and agreement is
asymptotically same as in the fault-free network [97, 14]. The lower bounds are also matched.

Chapter Organization. Section 2.2 presents the model and definitions. Section 2.3 encloses
the prior work in the direction. Section 2.4 contains fault-tolerant leader election algorithm (Sec-
tion 2.4.1) and lower bound on the message complexity (Section 2.4.2). Section 2.5 contains
fault-tolerant agreement algorithm (Section 2.5.1) and lower bound on the message complexity of
agreement (Section 2.5.2). Finally, we conclude in Section 2.6.

2.2 Model and Definitions

The distributed network is fully connected (i.e., complete) n nodes graph. The network is anony-
mous, i.e., a node does not know the identity of its neighbors initially. This model is known asKT0
(knowledge till 0 hop); on the other hand, in the KT1 (knowledge till 1 hop) model, nodes know
their neighbors [118]. A network is called f -resilient if at most f nodes may fail by crashing. We
assume, up to f ≤ (n− log2 n) nodes may fail by crashing. More precisely, at most (1−α)n nodes
can be faulty and the remaining at least αn nodes are non-faulty in the network, where α is a real
constant that lies in the range [log2 n/n, 1]. The algorithm runs in synchronous rounds, and nodes
communicate by exchanging messages in rounds. A faulty node may crash in any round during the
execution of the algorithm. If a node crashes in a round, then an arbitrary subset (possibly all) of
its messages for that round may be lost (as determined by an adversary) and may not be reached
the destination. The crashed node halts (inactive) in the further rounds of the algorithm. If a node
does not crash in a round, then all the messages that it sends in that round are delivered to the
destination [11]. We assume a static adversary controls the faulty nodes, which selects the faulty
nodes before the execution starts3. However, the adversary can adaptively choose when and how a
node crashes. Each node has access to an arbitrary number of private random bits.

3In contrast, an adaptive adversary can determine the nodes to be faulty during the execution of the algorithm.

22 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

We consider CONGEST communication model [118], where a node is allowed to send a mes-
sage of size O(log n) bits through an edge per round. The message complexity of an algorithm
is the total number of messages sent by all the nodes throughout the execution of the algorithm.
Our lower bounds hold in the LOCAL communication model, where nodes are allowed to send a
message of arbitrary size through an edge per round. We assume that nodes know the value of α
and n. Although a node knows the value of n simply by its number of ports connected to the other
nodes since the network is complete.

Let us now formally define the fault-tolerant leader election and agreement problem.

Definition 2.1 (Fault-Tolerant Leader Election). Consider a complete network of n nodes, in which
at most f nodes could be faulty and the remaining (n− f) nodes are non-faulty. The fault-tolerant
leader election requires electing a leader node from the set of n nodes such that the leader is non-
faulty with probability (1−f/n) 4. Every node maintains a state variable that can be set to a value
in {⊥, NONELECTED, ELECTED}, where ⊥ denotes the ‘undecided’ state; initially, the
state is set to⊥. Solving the fault-tolerant leader election problem requires the state of exactly one
node to be ELECTED and all other nodes are NONELECTED. This is the requirement for
implicit leader election.

Definition 2.2 (Fault-Tolerant Agreement). Consider a complete network of n nodes, in which at
most f nodes could be faulty and the remaining (n − f) nodes are non-faulty. Suppose initially
each node has an input value in {0, 1}. An implicit agreement holds when the final state is either
{0,⊥} or {1,⊥} and at least one node has a state other than ⊥ (which should be the input value
of some node), where ⊥ denotes the ‘undecided’ state. In other words, all the decided nodes must
agree on the same value which is an initial input value of some node and there must be at least one
decided node in the network.

2.3 Related Work

Leader election has been extensively studied in various models and settings, starting from its in-
troduction by Le Lann [101] in ring networks and then by the seminal work of Gallager-Humblet-
Spira [54] in general graphs. The problem is well studied in the complete network itself [4, 69, 83,
85, 86, 130], and reference therein. Similarly, the agreement is also extensively studied in the class
of complete networks [116, 106, 59, 37, 32, 33, 34, 36].

4Note that all the faulty nodes may survive and execute the algorithm correctly until the leader is elected, and then
they may crash. Thus, a leader could be faulty with probability f/n if the adversary selects the faulty nodes uniformly
at random in the beginning.

Related Work 23

In case of agreement, Bar-Joseph and Ben-Or [17] showed the upper and lower bound Θ(f/
√
n log n)

on the expected number of rounds in adaptive crash-fault. In the case of non-adaptive (i.e., static)
adversary, Kowalski and Mirek [88] showed the upper and lower bound Θ(

√
n

(n−f) log(n/(n−f))
) on

the expected number of rounds. While these works are devoted to the round complexity, the main
focus of this chapter is on message complexity. Recently, Hajiaghayi et al. [66] presents a crash-
fault consensus algorithm having message complexity Õ(n3/2) in a network where nodes know
their neighbors’ ID and the port connecting to it (a.k.a. KT1 model) under adaptive adversary.

Let us discuss some relevant works that are closely related to ours. In a fault-free setting,
Kutten et al. [97] studied the (implicit) leader election problem in complete networks and showed
sub-linear message bounds using randomization, which breaks the linear lower bound of any deter-
ministic algorithms (if we restrict onO(1) time deterministic algorithm, it requires Ω(n2) messages
in a complete network). In particular, they presented an algorithm that executes in O(1) time and
uses only O(n1/2 log3/2 n) messages to elect a leader in a complete network where all the nodes
are non-faulty. They also showed an almost matching lower bound for randomized leader election.
Later, Augustine et al. [14] introduced and studied implicit agreement problem in fault-free set-
tings and showed similar sub-linear bounds for agreement. Our work is inspired by the works of
[97, 14, 59], but in the faulty setting.

In the crash-fault setting, our work is closely related to the work of Gilbert-Kowalski [59]
which studied the message complexity of the agreement. They presented an optimalO(n) message
complexity (explicit) agreement protocol which tolerates at most n/2− 1 faulty nodes in the KT1
model. The time complexity is O(log n). While their algorithm solves the implicit agreement in a
smaller set of nodes (of sizeO(log n)) in the course of the explicit agreement, they did not mention
the implicit version of the agreement. Their implicit agreement solution uses Õ(n1/2) messages (Õ
hides a polylog n factor) and O(log n) rounds. In comparison, our agreement algorithm matches
all these bounds while tolerating more faulty nodes.

The work [34] presented an (explicit) agreement algorithm tolerating a linear fraction of faulty
nodes. The message complexity and the time complexity of their algorithm are O(n log n) and
O(log n) respectively but in expectation. Recall that our result achieves the same bound with high
probability and with higher resilience. The work [6] presented an agreement algorithm tolerating
an arbitrary number of faults in the asynchronous and adaptive crash fault model, but their algo-
rithm uses at least a quadratic number of messages (in expectation) when the number of faulty
nodes is linear or more. Our agreement algorithm also gives better bounds compared to the de-
terministic algorithms presented in [33, 36, 35], in which the round complexity is O(f) and the
message complexity is Ω̃(n). Table 2.1 presents state-of-the-art in the same setting.

24 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

Comparative Analysis
Paper Message Complexity

(in bits)
Round

Complexity
Number of

Faulty
Nodes

Agreement
Type

Model
Type

Chlebus et. al,
PODC’09 [36] #

O(n log4 n) O(f) f < n Explicit KT1
$

Gilbert-Kowalski,
SODA’10 [59]

O(n) O(log n) f < n/2 Explicit KT1

Chlebus-Kowalski,
SPAA’09 [34]

O(n log n)∗ O(log n)∗ f < n/c Explicit KT0

Our Work O(n log n) O(log n) f <
(1− 1/c)n

Explicit KT0

Our Work O(n log n/α) O(log n/α) f <
(1− α)n

Explicit KT0

Our Work O((n1/2 log3/2 n)/α3/2) O(log n/α) f <
(1− α)n

Implicit KT0

Table 2.1: Comparison with the best-known agreement protocols in the same model. Here, c is
any constant and log2 n

n
≤ α ≤ 1. # The algorithm is deterministic. * The bound

holds in expectation. $ A recent brief-announcement paper [35] improved the message
complexity to O(n+ f log f), but missing formal proofs.

The leader election is a less studied problem in the faulty setting. In the fault-free setting,
Gilbert et al. [60] provided an algorithm that solves implicit leader election in a general network
with O(

√
n log7 n · tmix) messages and in O(tmix log

2 n) rounds, where tmix is the mixing time of
the graph. Kowalski and Mosteiro [90] elect a unique leader using Õ(

√
n · tmix/Φ) messages with

high probability in the congest model, where Φ is the graph conductance.

We study the message complexity of the fault-tolerant leader election problem and show a non-
trivial bound. The message complexity is optimal for any constant fraction of faulty nodes in the
network (up to a polylog n factor). The round complexity is almost optimal due to the lower bound
Ω(log n/ log log n) [37].

In the context of Byzantine failure (where faulty nodes can behave maliciously), many excellent

Fault-Tolerant Leader Election 25

works that studied the message complexity of leader election and agreement, a few of them are
[1, 27, 72, 75, 76, 77, 78, 79].

2.4 Fault-Tolerant Leader Election

In this section, we first present a randomized algorithm that elects a leader with high probability in
a complete n-node network with at least αn non-faulty nodes for a real value of α in [log2 n/n, 1].
Our goal is to minimize the message complexity of the algorithm while keeping the run time as
small as possible. Then we show a non-trivial lower bound on the message complexity of any
leader election algorithm.

2.4.1 Algorithm

The challenging part of designing an efficient algorithm is handling the faulty nodes. A faulty node
may crash in some rounds and its message may not reach all the destination nodes in that round.
Thus, there might be two sets of nodes with different states or views in the network. This may lead
to an incorrect leader election. Let us describe the algorithm below.

Recall that we consider anonymous networks, i.e., nodes do not know each other (or, nodes do
not have IDs), but know the values n and α. Initially, each node randomly picks an integer number
in the range [1, n4] 5 (called its rank, which is also used as the ID of the node). The idea is to
select the smaller committee nodes (called candidate nodes) which are responsible for electing a
leader node among themselves. Among the candidate nodes, the node which proposes itself as a
leader without crashing becomes the leader. A random set of candidate nodes of size Θ(log n/α)

is selected, say, the set is C. For this, each node selects itself with probability O(log n/αn) to
become a candidate node. The reason behind selecting so many candidate nodes is to make sure
that C contains at least one non-faulty node. This selection is done locally at each node, and
hence the candidate nodes do not know each other initially. Since knowing each other is message
expensive, the candidate nodes communicate among themselves via some other nodes. For this,
each candidate node randomly samples Θ(((n log n)/α)1/2) nodes among all the n nodes; call
them as referee nodes and denoted by R. The reason behind sampling so many referee nodes is to
make sure at least one common “non-faulty” referee node between any pair of candidate nodes’
referees. The candidate nodes communicate with each other via the referee nodes. Notice that a

5The range is taken in such a way that all the n ranks are distinct w.h.p. — which can be shown easily using a
standard Chernoff bound [112].

26 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

node may be sampled as a referee node by multiple candidate nodes.

The idea is to make the minimum ID node among the candidate nodes to be the leader. That is
why all the candidate nodes send their rank (which is also their ID) to the other candidate nodes.
However, the minimum ID node may crash during the broadcast and its ID may not reach all the
candidate nodes. Then the algorithm tries to select the second minimum node to be the leader, but it
too may crash, and its ID may not be available to all the candidate nodes. Then the third minimum
node and so on. This continues until it guarantees a node ID is available to all the candidate nodes
so that they can agree on that node as the leader. Note that our algorithm promises that a crashed
node is never elected as a leader (but it may crash after the election).

Pre-processing: First, each candidate node u sends its own rank, i.e., IDu to its referee nodes,
say Ru. A referee node may receive ranks from multiple candidate nodes. Each referee node w
forwards the list of received ranks to its respective candidate nodes, say Cw. Thus, each candidate
node has the list of some other candidate nodes’ ranks; call the list as rankList6. While a candidate
node knows the rank of another candidate node, this knowledge does not help to know the port (or
the edge) connecting to that node. Now, the candidate nodes communicate via the referee nodes to
agree on a leader from the rankList. This is done by performing the following steps iteratively.

Step 1: Each candidate node u proposes the minimum rank from its rankList as a potential leader.
The proposed rank of u, say, pu is sent to all the candidate nodes via the referee nodes. For this,
each candidate node u sends ⟨IDu, pu⟩ to its referee nodes Ru. For a node u, if pu = IDu i.e., u’s
rank is the minimum in its rankList, then u marks itself as the leader. During the iteration, if a
candidate node receives a higher rank, it updates its rankList by removing all the ranks smaller
than the received rank. A node proposes a rank from its rankList only once and does not propose
the same rank in the later rounds.

Step 2: Then each referee node w sends the maximum proposed rank among the ranks that it
received from its candidate nodes Cw. Let pmax

w denote the maximum received rank by a referee
nodew. The referee node also sends the ID of a node u if u proposed its own rank (as the maximum
rank pmax

w), otherwise, sends a null value. More precisely, each referee node sends ⟨IDu, p
max
w ⟩

if pmax
w is proposed by IDu and pmax

w = IDu, otherwise sends ⟨⊥, pmax
w ⟩, where ⊥ denotes a null

value.

Step 3: Each candidate node u considers the maximum received rank, say, p̃max
u from its referee

nodes, i.e., p̃max
u = max{pmax

w : w ∈ Ru}. If IDu = p̃max
u and u was not marked as the leader,

then u sends ⟨IDu, p̃
max
u ⟩ to its referee nodes Ru in the next round and mark itself as the leader. If

6A candidate may not receive all other candidate nodes’ rank due to faulty candidate nodes in C.

Fault-Tolerant Leader Election 27

IDu = p̃max
u and uwas marked as the leader, then u does not respond in the next round. Otherwise,

if IDu ̸= p̃max
u then u decides the following. If u receives ⟨IDv, p̃

max
u ⟩ from its referee nodes,

i.e., p̃max
u is proposed by some other candidate node v as its own proposed rank, then u sends

⟨IDu, p̃
max
u ⟩ and considers v as the leader until any further updates. The node v might crash in

Step 1. In that case, any non-faulty nodes which do not receive v’s rank may propose some higher
rank in the next iteration. Thus, u might receive some higher rank later and accordingly updates
its rankList (i.e., removes the smaller ranks from the rankListu). If u receives ⟨⊥, p̃max

u ⟩ and
p̃max
u ∈ rankListu then u sends ⟨IDu, p̃

max
u ⟩ in the next round, otherwise (if p̃max

u /∈ rankListu),
u proposes a higher rank than p̃max

u from its rankListu in the next round. Whenever u sends or
proposes a higher rank, it updates its rankListu by removing the smaller ranks from it. If a node
proposes itself as the potential leader successfully (i.e., without crashing) then the other nodes also
agree on that node as the leader.

Step 4: If a candidate node u does not mark itself as the leader and does not propose another node
as the leader in Step 1 and Step 3, and did not receive any updates in the next 4 rounds, then u
sends the next minimum rank from its rankListu to Ru. This case may arise when u proposed a
minimum rank but does not receive the proposal from that particular node, or a node with a higher
rank in the next 4 rounds. Then u will propose the next minimum rank available in its rankList.
Since it might be the case that the rank which u proposed has crashed, which u can confirm after 4
rounds.

The above four steps are performed for O(log n/α) iterations and the algorithm terminates. In
the end, all the non-faulty candidate nodes have the same minimum rank in their rankList, which
they agree to be the leader. Intuitively, there areO(log n/α) candidate nodes and a single node may
crash in each iteration (say, the minimum ID node crashes among the remaining candidate nodes).
Since the set of candidate nodes contains at least one non-faulty node, the algorithm computes
a unique leader after O(log n/α) rounds (each iteration takes at most 4 rounds). Notice that if
a candidate node u has not crashed in Step 1 and proposes its ID as the minimum rank, then u
is going to be the leader since it successfully sends its rank to all the candidate nodes. It might
crash in the next round, i.e., in Step 2 or later, but then all the non-faulty nodes are unaware of u’s
crash and u still be the unique leader in the network. A complete pseudocode is provided in the
Algorithm 1,

Let us now show the few important lemmas that support the correctness of the algorithm. In
particular, Lemma 2.2 shows that the set of candidate nodes contains at least one non-faulty node.
Then lemma 2.3 shows that between any pair of candidate nodes, there is a common non-faulty
referee node. It ensures that a non-faulty candidate node can successfully send messages to other

28 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

Algorithm 1 FAULT-TOLERANT LEADER ELECTION

Require: A complete n node anonymous network where at least ⌈αn⌉ nodes are non-faulty, where α is a
real number in the range [log2 n/n, 1]. α is known to the nodes.

Ensure: Leader election.

1: Each node selects a rank uniformly at random from the range [1, n4]. The rank becomes ID of the node.
2: Each node selects itself as a candidate node (C) with probability 6 log n/(αn).

3: Each candidate node u randomly samples 2((n log n)/α)1/2 neighbors (called the referee nodes of u,
Ru) and sends its rank to the referee nodes.

4: Each referee node w sends all the received ranks to their respective candidate nodes, say Cw, one by
one. This takes at most 12 log n/α rounds.

5: Each candidate node maintains a list of ranks that received from its referee nodes. Each candidate
node updates its rankList by removing all the ranks smaller than the proposed rank. Potential leader
suggested by any node is known as proposed rank.

6: Each candidate node u sends ⟨IDu, pu⟩ to its referees Ru, where IDu is the rank of u and pu is the
proposed rank which is the minimum rank in the current rankList of u and update the rankList of u
(say rankListu). IDv is the rank of a specific candidate node v.

7: Each referee node w maintains pmax
w = max{pu : u ∈ Cw}. Also, Sw ⊆ Cw be the set of nodes which

proposed the rank pmax
w .

8: Each candidate node u maintains p̃max
u = max{pmax

w : w ∈ Ru}. Also, Su ⊆ Ru be the set of nodes
which proposed the rank p̃max

u .
9: for the next 12 log n/α iteration, all nodes in parallel do

10: Each referee node w checks: ▷ nodes are active in every even round.
11: if pmax

w = IDu ∈ Sw then
12: w sends ⟨IDu, p

max
w ⟩ to Cw.

13: else ▷ if there is no proposer in Sw which proposed the rank pmax
w .

14: w sends ⟨⊥, pmax
w ⟩ to Cw. ▷ ⊥ denotes NULL ID.

15: end if
16: Each candidate node u checks: ▷ nodes are active in every odd round.
17: if pu = IDu then ▷ u proposed itself as leader.
18: u send ⟨IDu, pu⟩ to Ru and become the leader.
19: else if IDu = p̃max

u and u is already leader then
20: u does not respond.
21: else if IDu = p̃max

u and u is not the leader then
22: u sends ⟨IDu, p̃

max
u ⟩ to Ru and become the leader.

23: else if p̃max
u = IDv ∈ Su then ▷ some C proposed itself as leader.

24: u sends ⟨IDu, p̃
max
u ⟩ to Ru assuming v as leader till further update and update the rankList.

25: else if p̃max
u ∈ rankList of u then

26: u sends ⟨IDu, p̃
max
u ⟩ to Ru and update the rankList.

27: else if p̃max
u /∈ rankList of u then

28: pu s.t. pu > p̃max
u and sends ⟨IDu, pu⟩ to Ru and update the rankList.

29: end if
30: if u does not know leader and did not get any update till next 4 rounds then
31: u propose the next minimum ID along with its ID to Ru and update the rankList.
32: end if
33: end for
34: All the non-faulty candidate nodes have the same minimum rank in their rankList which they elect as

leader.

Fault-Tolerant Leader Election 29

candidate nodes via the common non-faulty referee node.

Lemma 2.1. Consider an n-node network with at least αn non-faulty nodes, where α is a real
number in the range [log2 n/n, 1]. If each node selects itself with probability 6 log n/(αn) to
become a candidate node then with high probability, i.e., with probability≥ (1−1/n), the number
of selected candidate nodes is |C| = Θ(log n/α).

Proof. Let a random variable X denotes the number of selected candidate nodes. Since each
node selects itself independently with probability 6 log n/αn, the expected value of X is E[X] =

6 log n/α. Thus, by using the Chernoff bound [112], Pr[X ≥ (1+ δ)E[X]] ≤ e−δ2E[x]/3 for δ = 1

we get,

Pr[X ≥ 12 log n/α] ≤ e−6 logn/3α < e−2 logn/α =
1

n2/α
.

Again using the Chernoff bound, Pr[X ≤ (1− δ)E[X]] ≤ e−δ2E[x]/2 for δ = 2/3 we get,

Pr[X ≤ 2 log n/α] ≤ e−24 logn/18α < e− logn/α =
1

n1/α
.

Thus, the size of the candidate set is 2 log n/α ⩽ |C| ⩽ 12 log n/α with high probability for any
value of α ≤ 1. □

Lemma 2.2. The set of candidate nodes C contains at least one non-faulty node with high proba-
bility.

Proof. Since |C| are selected independently and uniformly from n nodes and there are at least αn
non-faulty nodes, the probability that all the nodes in C are faulty is at most (1− (αn)/n)|C|, which
is e−|C|α ≤ e−2 logn = 1/n2. That is, the probability that C has at least one non-faulty node is at
least 1− 1/n2. Thus, with high probability C contains at least one non-faulty node. □

Lemma 2.3. Any pair of candidate nodes have at least one common non-faulty referee node with
high probability.

Proof. First, it follows from Lemma 2.2 that any Ru contains at least one non-faulty node, since
|Ru| > |C|. Let us consider two candidate nodes, namely u and v. We show that there is at least one
common non-faulty referee node for u and v, i.e., Ru∩Rv has at least one non-faulty node with high
probability. Recall that each candidate node samples 2(n log n/α)1/2 referee nodes independently
and uniformly among n nodes. As there are at least ⌈αn⌉ non-faulty nodes, the probability of

sampling any non-faulty node as referee node is: αn
n
.
(2(n logn/α)1/2)

n
. Thus, the probability that the

30 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

candidate node u is not selecting a non-faulty node as the referee node is (1− 2(α log n/n)1/2). It
also holds for v.

Now the candidate node v samples 2(n log n/α)1/2 referee nodes. So, the probability of not
selecting a non-faulty referee node from the sampled nodes of u is:

(
1−

2(n log n/α)1/2

n/α

)2(n logn/α)1/2

≤ e−4 logn =
1

n4

Therefore, the probability of selecting at least one non-faulty referee node from the sampled
nodes of u is at least 1 − 1/n4. Taking the union bound over all the pairs, the claim holds for any
pair of candidate nodes. □

Finally, we show the round and message complexity of our algorithm in the main result of this
section.

Theorem 2.1. Consider a complete network of n nodes with at least ⌈αn⌉ non-faulty nodes and
CONGEST communication model. Then there is a fault-tolerant leader election algorithm which
elects a leader in O(log n/α) rounds and incurs O((n1/2 log5/2 n)/α5/2) messages with high prob-
ability, such that the elected leader is non-faulty with probability at least α, where α is real a
number in [log2 n/n, 1].

Proof. The algorithm runs for O(log n/α) iterations. Each iteration takes at most 4 rounds. There
are some pre-processing steps before the iterations, which take O(log n/α) rounds (since the ref-
eree nodes may need to send O(log n/α) ranks to their candidate nodes in parallel). So the time
complexity of our algorithm is O(log n/α) rounds.

The size of the candidate nodes isO(log n/α). Each candidate node samplesO(((n log n)/α)1/2)
referee nodes and sends rank to them. Each referee node sends O(log n/α) ranks to their respec-
tive candidate nodes. So the message complexity is O((n1/2 log5/2 n)/α5/2) before the iterations
start. In the iteration, the candidate nodes and the referee nodes communicate with each other
for O(log n/α) rounds, incurring O((n1/2 log5/2 n)/α5/2) messages. Therefore, the total message
complexity of the algorithm is O((n1/2 log5/2 n)/α5/2).

Finally, we show the correctness of the algorithm. First, we show that all the non-faulty can-
didate nodes agree on a leader, and then show that the leader is unique. Suppose, a non-faulty
candidate node, say u, does not have any knowledge about the leader. Then u proposes the mini-
mum rank from its rankListu as a potential leader (see, Step 1). If u receives a higher rank from
any other candidate node, say w, then u updates its leader accordingly (see, Step 3). Therefore, all

Fault-Tolerant Leader Election 31

the candidate nodes must agree on a leader when the algorithm terminates. Now we show that the
leader is unique. If not, then assume that there exist two candidate nodes u and v such that u agrees
on a leader ℓ1 and v agrees on a leader ℓ2 at the end of the algorithm. Without loss of generality,
assume that ℓ1 > ℓ2. This means that the rank ℓ1 proposed by u is not reached to v. This implies
that u has crashed during the iteration—which contradicts that u agrees on a leader at the end of
the algorithm. Therefore, a crashed node is never elected as a leader, but it may crash later. Since
at least αn nodes are non-faulty in the network, the probability that the elected leader is non-faulty
is at least α. □

For any constant value of α, our algorithm solves the fault-tolerant leader election problem in
O(log n) rounds andO(n1/2 log5/2 n) messages. Thus, we get the following corollary immediately.

Corollary 2.2. Consider a complete network of n nodes and CONGEST communication model.
There is a leader election algorithm which elects a leader inO(log n) rounds and incursO(n1/2 log5/2 n)

messages with high probability when tolerating at most n − ⌈n/c⌉ faulty nodes for any constant
c ≥ 1. The elected leader is non-faulty with a probability of at least 1/c.

Remark: 1. The above message bounds are in terms of the number of messages. Since the size of
a message can be at most O(log n) bits (recall, it is a CONGEST model), the message complexity
may be increased by a O(log n) factor in terms of bits.

2.4.2 Lower Bound on the Message Complexity

We show a lower bound on the number of messages required to solve fault-tolerant leader election.
In particular, we show that any algorithm, solving leader election with probability at least 2/e+ ϵ,
for any constant ϵ > 0 and tolerates (1−α)n faulty nodes requires sending Ω(n1/2/α3/2) messages.

Our model assumes that all nodes execute the same algorithm and have access to an unbiased
private coin (through which they can generate random bits locally). We assume for now that
nodes are anonymous, i.e., nodes do not have IDs. Later we show by a simple reduction that the
lower bound still holds even if the nodes start with unique IDs, but are not known to other nodes.
The lower bound is unconditional on the running time and holds even in the LOCAL model of
distributed computing7 (which means that it also holds for the CONGEST model).

A brief overview of the proof. The basic proof idea is adapted from the paper [97], where
they showed a message lower bound of Ω(n1/2) by any leader election algorithm in a “non-faulty”

7In LOCAL model, a node can send a message of arbitrary size through an edge per round.

32 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

network. While this Ω(n1/2) bound also holds in a faulty network, we improve the lower bound
by a factor of α3/2 when there are at most (1 − α)n faulty nodes in the network. Thus, our
lower bound proof contains more technical challenges. For the sake of completeness, we include
some results and arguments from [97]. The high-level idea is: if an algorithm does not send
enough messages, i.e., communication among the nodes is less, then the algorithm might be wrong
by electing multiple leaders. Since there might be two or more groups (of nodes) without any
communication among them, and each group has an equal chance to elect a leader (as we assume
that the nodes are anonymous). More precisely, suppose there is an algorithm A which solves
leader election in this faulty network with o(n1/2/α3/2) messages. Then we show a contradiction.
For this, we consider a communication graph, which is essentially formed by the communication
pattern of nodes during a run of A (an edge between two nodes if they exchange messages). Then
we show that there are at least two disjoint components in the communication graph and each
component has an equal probability to elect a leader in it – which leads to a contradiction. Thus,
any algorithm that solves the leader election problem in this faulty network requires sending of
Ω(n1/2/α3/2) messages. In fact, we show the following result.

Theorem 2.3. Consider any algorithm A that solves leader election and sends at most f(n) mes-
sages (of arbitrary size) with high probability on a complete anonymous network of n nodes with
at least ⌈αn⌉ non-faulty nodes. If A solves leader election with probability at least 2/e + ϵ, for
any constant ϵ > 0, then f(n) ∈ Ω(n1/2/α3/2).

Notice that the message lower bound is inversely proportional to the fraction of non-faulty
nodes. This is intuitive, since, when the number of non-faulty nodes decreases (i.e., faulty nodes
increase), there is a need of spending more resources (here it is messages) to mitigate the influence
of the faulty nodes, and hence the message complexity increases. The remainder of the section
concentrates on the proof of Theorem 2.3.

Assume, by contradiction, that there exists an algorithm A which solves the fault-tolerant
leader election problem with probability at least 2/e + ϵ and sends only f(n) ∈ o(n1/2/α3/2)

messages. We show a contradiction. Consider a complete network where for every node, the edges
are randomly connected to the ports. In other words, an adversary chooses the connections of a
node’s (n− 1) ports as a random permutation over {1, 2, . . . , n− 1}.

We adapt the following definitions from [97]. “Consider one (arbitrary but fixed) execution of
the algorithm A. Let us define the communication graph Cr to be a directed graph on the given set
of n nodes, where there is an edge from u to v if and only if u sends a message to v in some round
r′ ≤ r. For any node u, denote the state of u in round r by σr(u). Let Σ be the set of all nodes’
states possible in the algorithm A. We say that node u influence nodes w by round r if there is a

Fault-Tolerant Leader Election 33

directed path from u to w in Cr. A node u is called an initiator if it is not influenced before sending
its first message. That is, if u sends its first message in round r, then u has an outgoing edge in Cr

and is an isolated vertex in C1, . . . , Cr−1. For every initiator u, we define the influence cloud ICru
as the pair ICru = (Cru,Sr

u), where Cru =
〈
u,w1, . . . , wk

〉
is the ordered set of all nodes that are

influenced by u, namely, that are reachable along a directed path in Cr from u ordered by the time
by which they joined the cloud (breaking ties arbitrarily), and Sr

u =
〈
σr(u), σr(w1), . . . , σr(wk)

〉
is their configuration after round r, namely, their current tuple of states. We may sometimes abuse
notation by referring to the ordered node set Cru as the influence cloud of u. Note that a passive
(non-initiator) node v does not send any messages before receiving the first message from some
other node.”

There must be enough initiator nodes, otherwise, if all the initiator nodes crash, the algorithm
may not succeed with high probability. In fact, we show that in a network with at least αn non-
faulty nodes, any leader election algorithm which succeeds with at least a constant probability
requires at least 1/2α initiator nodes.

Lemma 2.4. Any leader election algorithm in this crash-fault model requires at least ⌈1/2α⌉
initiator nodes (α < 1/24) to guarantee at least a constant success probability.

Proof. It must be shown that there is at least one non-faulty initiator node; otherwise, if all the
initiator nodes are faulty, then they may crash at the beginning of the algorithm (in the worst case).
Without loss of generality, assume that the initiator nodes are chosen uniformly at random. Let
E be the event that there is at least one non-faulty initiator node among the ⌈1/2α⌉ nodes when
chosen uniformly at random. Then,

Pr[E] = 1−
(
1− αn

n

)⌈1/2α⌉

= 1−
(
1− α

)⌈1/2α⌉

≥ 1− e−1/2

Thus, the algorithm needs at least ⌈1/2α⌉ initiator nodes so that at least one of them is non-
faulty with probability at least 1− e−1/2, a constant. Hence, the lemma. □

Since we assume that A sends o(n1/2/α3/2) messages – a finite number of messages, there is
some round ρ by which no more messages are sent. Let us assume Cρu1

, Cρu2
, . . . , Cρui

, (i < 1/2α)
are at most 1/2α influence clouds corresponding to the initiator nodes in the end of the algorithm.
Recall that some influence clouds may merge during the execution. Therefore, the size of the
smallest influence cloud, say, Cρu∗ is at most o(n

1/2/α3/2

1/2α
), which is o(n1/2/α1/2).

In general, it is possible that in a given execution, two influence clouds Cru1
and Cru2

intersect

34 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

each other over some common node v, if v happens to be influenced by both u1 and u2. The fol-
lowing lemma shows that the low message complexity of the algorithmA yields a good probability
for the smallest influence cloud Cρu∗ to be disjoint from all other influence clouds.

Let N be the event that there is no intersection between (the nodes of) all the influence clouds
and the smallest influence cloud, i.e.,

(
∪i:i ̸=∗ Cρui

)
∩Cρu∗ = ∅. Let M be the event that the algorithm

A sends no more than f(n) messages.

Lemma 2.5. Assume that Pr[M] ≥
(
1− 1

n

)
. If f(n) ∈ o

(
n1/2/α3/2

)
, then Pr[N ∧M] ≥ 1− 1

n
−

12α3f2(n)
n

+ 12α3f2(n)
n2 ∈ 1− o(1).

Proof. Consider a round r, the smallest influence cloud Cr at round r, and a node v ∈ Cr. Without
loss of generality assume that the smallest influence cloud is unique, otherwise, fix one arbitrarily.
Assuming an event M , there are at most f(n) nodes that have sent or received a message from
any influence clouds and may thus be a part of some other cloud except Cr. Recall that the port
numbering of every node was chosen uniformly at random, and we conditioned it on the occurrence
of the event M . The initiator node of the smallest influence cloud may know the destinations of at
most 2αf(n) of its ports in any round; out of them 2α2f(n) ports are connected to non-faulty nodes
in expectation. Then it is easy to show using Chernoff bound (see Theorem 4.4 in [112]) that at
most 12α2f(n) ports are connected to non-faulty nodes with high probability. Similarly, there are
at least αf(n)/2 non-faulty nodes among the f(n) nodes with high probability (using the Chernoff
bound in Theorem 4.5, [112]). Therefore, to send a message from the smallest influence cloud to
another cloud, v must hit upon one of the ports which connected to a non-faulty node leading to
other clouds. Let H be the event that a message sent by a node v in round r reaches a node u that
is already part of some other (non-singleton) cloud. (Recall that if u is in a singleton cloud due
to not having received or sent any messages yet, it simply becomes a member of v’s cloud and
the smallest influence cloud does not send a message to the singleton cloud of the initiator node,
otherwise, it will not be the smallest influence cloud). Therefore, the number of non-faulty nodes
in the influence clouds except the nodes in the smallest influence cloud is: αf(n)

2
−12α2f(n) which

is α(1−24α)f(n)
2

. In consequence, we have the probability that the smallest influence cloud has to
collude with any of the (1− 2α)/2α (i.e., 1/2α− 1) clouds:

Pr [H|M] ≤ 2

α(1−24α)f(n)
2∑

i=1

12α2f(n) · 1
n
≤ 12α3f 2(n)(1− 24α)

n
<

12α3f 2(n)

n

which is o(1) as f(n) ∈ o(n1/2/α3/2).

Fault-Tolerant Leader Election 35

In the above inequality, the probability 12α2f(n) is the number of non-faulty nodes (w.h.p.) in
the smallest influence cloud and 1/n is the probability of selecting a particular node by another
good node. Further, we have α(1−24α)f(n)

2
non-faulty nodes w.h.p. which can collude with the

smallest influence cloud throughout the execution of the algorithm A. Moreover, a node in the
smallest influence cloud might receive messages from other influence clouds for the collision and
vice versa. Consequently, we have a factor 2 for both ways whether the message is received or sent
by the cloud.

Observe that Pr[N |M] = 1− Pr[H|M]. Since Pr[N ∧M] = Pr[N |M].P [M]. It follows that
Pr[N ∧M] ≥ (1− 12α3f2(n)

n
)(1− 1

n
) ≥ 1− 1

n
− 12α3f2(n)

n
+ 12α3f2(n)

n2 ∈ 1− o(1), as required. □

We adapt the following configuration from [97]. This adaptation is helpful to generate different
configurations which help to show that there exists a cloud configuration that is disjoint from every
other configuration, i.e., has no information about the other configuration’s decision. “We next
consider potential cloud configurations, namely, Z =

〈
σ0, σ1, . . . , σ1/2α

〉
, where σi ∈ Σ or every

i, and more generally, potential cloud configuration sequences Z̄r = Z1, . . . , Zr, where each Zi

is a potential cloud configuration, which may potentially occur as the configuration tuple of some
influence clouds in a round i of some execution of the algorithm A. We study the occurrence
probability of potential cloud configuration sequences.

We say that the potential cloud configurationZ =
〈
σ0, σ1, . . . , σ1/2α

〉
is realized by the initiator

u in round r if the influence cloud ICru = (Cru,Sr
u) has the same node states in Sr

u as those of Z,
or more formally Sr

u =
〈
σr(u), σr(w1), . . . , σr(w1/2α)

〉
such that σr(u) = σ0 and σr(wi) = σi

for every i ∈ [1, 1/2α]. In this case, the influence cloud ICru is referred to as a realization of
the potential cloud configuration Z. (Note that a potential cloud configuration may have many
different realizations.)

More generally, we say that the potential cloud configuration sequence Z̄r = (Z1, . . . , Zr) is
realized by the initiator u if for every round i = 1, ..., r, the influence cloud ICiu is a realization
of the potential cloud configuration Zi. In this case, the sequence of influence clouds of u up to
round r, ¯ICru =

〈
IC1u, . . . , ICru

〉
, is referred to as a realization of Z̄r. (Recall, a potential cloud

configuration sequence may have many different realizations.)

For a potential cloud configuration Z, let Er
u(Z) be the event that Z is realized by the initiator

u in (round r of) the run of algorithm A. For a potential cloud configuration sequence Zr, let
Eu(Z

r) denote the event that Zr is realized by the initiator u in (the first r rounds of) the run of
algorithm A.”

Lemma 2.6. Every initiator node has the same probability to be part of the smallest influence

36 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

cloud.

Proof. Let a1, a2, . . . , a1/2α are the initiator nodes. Let Ei and Ej be the event that the initiator
node ai and aj are part of the smallest influence cloud where i ̸= j. Recall, each node has the
same probability to be an initiator node. Also, each initiator node has the same probability to be
a non-faulty node. Suppose Pr[Ei] < Pr[Ej] without loss of generality. This means that node aj
has a higher probability to be in the smallest influence cloud than node ai. Thus, in this way, it is
possible to estimate the size of the influence clouds in a biased way which essentially contradicts
the uniformity of the initiator nodes. Therefore, Pr[Ei] = Pr[Ej]. □

Moreover, the following Lemma 2.7 and supported text is adapted from [97]. This adaptation
helps us show that there exist equal probability for any initiator to be disjoint from other influence
clouds in faulty setting.

Lemma 2.7. “Restrict attention to executions of algorithm A that satisfy event N , namely, in
which any influence cloud is disjoint from other influence clouds. Then Pr[Eu(Z̄

r)] = Pr[Ev(Z̄
r)]

for every r ∈ [1, ρ], every potential cloud configuration sequence Z̄r, and every two initiators u
and v.

Proof. The proof is by induction on r. Initially, in round 1, all possible influence clouds of the
algorithm A are singletons, i.e., their node sets contain just the initiator. Neither u nor v has
received any messages from other nodes. This means that Pr[σ1(u) = s] = Pr[σ1(v) = s] for all
s ∈ Σ, thus any potential cloud configuration Z1 =

〈
s
〉

has the same probability of occurring for
any initiator, implying the claim.

Assuming that the result holds for round r − 1 ≥ 1, we show that it still holds for round r.
Consider a potential cloud configuration sequence Z̄r = (Z1, . . . , Zr) and two initiators u and v.
We need to show that Z̄r is equally likely to be realized by u and v, conditioned on the eventN . By
the inductive hypothesis, the prefix Z̄r−1 = (Z1, . . . , Zr−1) satisfies the claim. Hence, it suffices
to prove the following. Let pu be the probability of the event Er

u(Z
r) conditioned on the event

N ∧ Er
u(Z̄

r−1). Define the probability pv similarly for v. Then it remains to prove that pu = pv.

To do that we need to show, for any state σj ∈ Zr, that the probability that wu,j the jth node in
ICru is in state σj , conditioned on the event N ∧Eu(Z̄

r−1), is the same as the probability that wv,j ,
the jth node in ICrv is in state σj , conditioned on the event N ∧ Ev(Z̄

r−1).

There are two cases to be considered. The first is that the potential influence cloud Zr−1 has
j or more states. Then by our assumption that events Eu(Z̄

r−1) and Ev(Z̄
r−1) hold, the nodes

wu,j and wv,j were already in u’s and v’s influence clouds, respectively, at the end of the round

Fault-Tolerant Leader Election 37

r − 1. The node wu,j changes its state from its previous state, σ′
j , to σj on round r as the result

of receiving some messages M1, . . . ,Mℓ from neighbors xu1 , ..., x
u
ℓ in u’s influence cloud ICr−1

u ,
respectively. In turn, the node xuj sends a message Mj to wu,j on round r as the result of being
in a certain state σr(xuj) at the beginning of round r (or equivalently, at the end of round r − 1)
and making a certain random choice (with a certain probability qj for sending Mj to wu,j). But if
one assumes that the event Ev(Z̄

r−1) holds, namely, that Z̄r−1 is realized by the initiator v, then
the respective nodes xv1, . . . , x

v
ℓ in v’s influence cloud ICr−1

v will be in the same respective states
(σr(xvj) = σr(x

u
j) for every j) on the end of round r − 1, and therefore will send the messages

M1, . . . ,Mℓ to the node wv,j with the same probabilities qj . Also, on the end of round r − 1, the
node wv,j is in the same state σ′

j as wu,j (assuming event Ev(Z̄
r−1)). It follows that the node wv,j

changes its state to σj on round r with the same probability as the node wu,j .

The second case to be considered is when the potential influence cloud Zr−1 has fewer than
j states. This means (conditioned on the events Eu(Z̄

r−1) and Ev(Z̄
r−1) respectively) that the

nodes wu,j and wv,j were not in the respective influence clouds on the end of the round r − 1.
Rather, they were both passive nodes. By an argument similar to that made for round 1, any pair
of (so far) passive nodes have equal probability of being in any state. Hence, Pr[σr−1(wu,j) =

s] = Pr[σr−1(wv,j) = s] for all s ∈ Σ. As in the former case, the node wu,j changes its state
from its previous state, σ′

j to σj on round r as the result of receiving some messages M1, . . . ,Mℓ

from neighbors xu1 , . . . , x
u
ℓ that are already in u’s influence cloud ICr−1

u , respectively. By a similar
analysis, it follows that the node wv,j changes its state to σj on round r with the same probability
as the node wu,j . □

We now conclude that for any potential cloud configuration Z and any two initiators u and v,
the events Eρ

u(Z) and Eρ
v (Z) are equally likely. More specifically, we say that the potential cloud

configurationZ is equiv-probable for initiators u and v if Pr[Eρ
u(Z)|N] = Pr[Eρ

v (Z)|N]. Although
a potential cloud configuration Z may be the end-cloud of many different potential cloud config-
uration sequences, and each such potential cloud configuration sequence may have many different
realizations, the above lemma implies the following (integrating over all possible choices).”

Corollary 2.4. Restrict attention to executions of algorithm A that satisfy event N , namely, in
which the smallest influence cloud is disjoint from the other influence cloud. Consider two initia-
tors u and v and a potential cloud configuration Z. Then Z is equiv-probable for u and v.

By assumption, the algorithm A succeeds with probability at least 2/e + ϵ, for some fixed
constant ϵ > 0. Let S be the event that A elects exactly one leader. We have

38 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

2

e
+ ϵ ≤ Pr[S] = Pr[S|M ∧N] Pr[M ∧N]

+ Pr[S|not(M ∧N)][not(M ∧N)]

≤ Pr[S|M ∧N] Pr[M ∧N] + [not(M ∧N)].

By Lemma 2.5, we know that Pr[M ∧ N] ∈ 1 − o(1) and Pr[not(M ∧ N)] ∈ o(1), and thus it
follows that

Pr[S|M ∧N] ≥ 2/e+ ϵ− o(1)
1− o(1)

>
2

e
, for sufficiently large n. (2.1)

By Corollary 2.4, each of the initiators has the same probability p of realizing a potential cloud
configuration where some node is a leader. Assuming that events M and N occur, it is immediate
that 0 < p < 1. LetX be the random variable that represents the smallest influence cloud is disjoint
from the other influence clouds. Recall that the algorithmA succeeds whenever an event S occurs.
Its success probability that the smallest influence cloud is disjoint from the other influence cloud,
is given by,

Pr[S|M ∧N] = 2p(1− p) (2.2)

The probability value in Equation 2.2 is maximum when p = 1/2, which yields that Pr[S|M ∧
N] ≤ 1/2. This, however, is a contradiction to Equation 2.1. Thus, our assumption that there is an
algorithm A that solves leader election with probability at least 2/e + ϵ using only o(n1/2/α3/2)

messages is wrong. That is, any algorithm incurs Ω(n1/2/α3/2) messages. This completes the
proof of Theorem 2.3.

Now we argue using a standard technique that the above lower bound holds for any algorithm
which assumes that nodes are equipped with unique IDs. For this, we simply assume that an
adversary provides IDs, chosen uniformly at random from, say, [1, n4]. Let B be an algorithm that
exploits these unique IDs. Notice, however, that the execution of B that exploits the adversarially
generated random IDs is essentially equivalent to the execution of B in the anonymous setting,
in which each node first generates a random number between [1, n4] and then uses that random
number as their IDs. The only difference is that multiple nodes may generate the same random
number, thereby inheriting the same ID, but this is an event whose probability is at most 1/n (this
can be easily shown using Chernoff bound as the range is taken [1, n4]). So when we condition
these random numbers being distinct, the two executions are probabilistically identical, so any

Fault-Tolerant Agreement 39

lower bound on the execution without adversarially generated IDs will extend to the case where
nodes have unique IDs provided by the adversary. A more formal argument can be found in [97].

2.5 Fault-Tolerant Agreement

In this section, we first present a randomized algorithm that solves agreement with high probability
in a complete n-node network with at most (1 − α)n faulty nodes, where α is a real number in
[log2 n/n, 1]. The algorithm takesO(log n/α) rounds and sends no more thanO(n1/2 log3/2 n/α3/2)

messages with high probability. Our algorithm is message optimal (up to a polylog n factor) as we
also show a matching lower bound Ω(n1/2/α3/2) on the message complexity.

Note that a leader election algorithm immediately gives a solution to the agreement problem:
simply by agreeing on the leader’s input value. Hence, our leader election algorithm also solves
agreement, but then the message complexity would be O(n1/2 log5/2 n/α5/2). We design an effi-
cient algorithm which solves agreement using O(n1/2 log3/2 n/α3/2) messages in this faulty net-
work. On the other hand, a lower bound of the leader election problem does not apply to the
agreement as the agreement is an easier problem than the leader election. We show a lower bound
Ω(n1/2/α3/2) on the message complexity of the fault-tolerant agreement problem.

2.5.1 Algorithm

Let us consider the binary agreement problem. Recall that we consider an anonymous network,
i.e., nodes do not know each other but know the values of n and α. Initially, each node receives
a value in {0, 1} given by an adversary. Our goal is to design a message efficient algorithm that
solves agreement implicitly. At the end of the algorithm, a non-empty subset of the nodes must
agree on a single value (between 0 and 1) while preserving the validity condition.

Let bu ∈ {0, 1} denote the input bit of a node u. The basic framework of the algorithm is
similar to the leader election algorithm in Section 2.4.1. First, select a smaller committee of nodes,
called the candidate nodes which agree on a value among themselves. For this, a random set of
candidate nodes of size Θ(log n/α) is selected, say the set is C. Since the candidate nodes do not
know each other, they communicate among themselves via referee nodes. For this, each candidate
node samples O(n1/2 log1/2 n/α1/2) referee nodes from its neighbors. The set of referee nodes of
a candidate node u is denoted by Ru. Recall that a node may be sampled as a referee node by
multiple candidate nodes.

40 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

The idea of the algorithm is: the candidate nodes are biased to agree on 0 if any of them receives
0 as an input bit. For this, any candidate node whose input value is 0 forwards 0 to all the candidate
nodes. If there is at least one candidate node with value 0, then 0 is propagated to all the candidate
nodes eventually, and they agree on 0. If none of the candidate nodes receives 0 as an input (i.e.,
all of them get 1), they do not send any messages and agree on 1 eventually.

Step 0: Each candidate node u does in parallel: if bu = 0 then u sends 0 to its referee nodes Ru

and agrees on 0. If bu = 1 then u sends 1 to Ru, but does not agree on 1. This step is required to
inform the nodes in Ru that they are selected as referee nodes by u.

Then perform the following steps iteratively.

Step 1: If a candidate node u receives 0 from any of its referee nodes, and it has not agreed on 0

before, then u sends 0 to its referee node and agrees on 0. If u has agreed on 0 before, then u does
not send anything.

Step 2: If a referee node w possesses 0 from any of its candidate nodes, and it has not sent 0 earlier,
then w sends 0 to its candidate nodes, say, Cw.

The above two steps (Step 1 and 2) are performed for O(log n/α) iterations, and then the
algorithm terminates. In the end, all the (non-faulty) candidate nodes have the same minimum
value, either 0 or 1. If they do not have 0, they agree on 1. Intuitively, there are O(log n/α)
candidate nodes and a single node may crash in each iteration (say, the single node with value 0

crashes among the remaining candidate nodes) and thus, 0 may propagate slowly. But eventually,
0 reaches to all the candidate nodes as the set of candidate nodes contains at least one non-faulty
node (see Lemma 2.2) and there is a common non-faulty referee node between any pair of candidate
nodes (see Lemma 2.3). On the other hand, if all the candidate nodes possess input value 1, then
the algorithm does not send any messages during the iterations and terminates after O(log n/α)
rounds with all the candidate nodes agreeing on 1. Thus, the algorithm agrees on a unique value
(which must be an input) after O(log n/α) rounds (as each iteration takes at most 2 rounds). A
complete pseudocode is provided in the Algorithm 2.

It is easy to see that the algorithm terminates in O(log n/α) rounds. In Step 0, at most
O(log n/α) candidate nodes send a message to O(((n log n)/α)1/2) referee nodes. Later in the
iteration, a candidate node may send a message to its referee nodes at most once – when it receives
a 0 from another candidate node (via the referee nodes). The same is true for a referee node. A
referee node only sends the received value 0 to its candidate nodes only once. Also, note that all the
messages contain only a single-bit value. Therefore, the total message complexity of the algorithm
is O(n1/2 log3/2 n/α3/2) bits. Thus, we get the following main result of this section.

Fault-Tolerant Agreement 41

Algorithm 2 FAULT-TOLERANT-AGREEMENT

Require: A complete n-node anonymous network with at least ⌈αn⌉ non-faulty nodes, α is known
to the nodes. Each node receives a value in {0, 1} given by an adversary.

Ensure: Implicit Agreement.

1: Each node selects itself as a candidate node (C) with probability 6 log n/(αn).

2: Each candidate node u randomly samples 2((n log n)/α)1/2 neighbours (called referee nodes
of u, denoted by Ru).

3: Each candidate node u sends its input bit bu ∈ {0, 1} to its Ru. If bu = 0, then u agrees on 0.
4: for the next 12 log n/α iteration, all nodes in parallel do
5: Each referee node w checks:
6: if w possess the value 0 and have not send to Cw then ▷ Cw is the set of candidate nodes

for referee node w.
7: w sends 0 to Cw.
8: else
9: w does not send the value.

10: end if
11: Each candidate node u checks:
12: if u receives 0 before reaching at agreement then
13: u sends 0 to Ru and agree on the value 0.
14: else if u receives 0 after reaching at agreement then
15: u ignores 0.
16: end if
17: end for
18: All non-faulty candidate nodes have the same minimum value on which they agree.

Theorem 2.5. Consider a complete n-node network with at least ⌈αn⌉ non-faulty nodes and CON-
GEST communication model. Then there is a randomized algorithm which solves agreement with
high probability in O(log n/α) rounds and incurs O

(
n1/2 log3/2 n/α3/2

)
message bits with high

probability.

For any constant value of α, the algorithm solves the fault-tolerant agreement in O(log n)

rounds and O(n1/2 log3/2 n) messages. Thus, we get the following corollary immediately.

Corollary 2.6. Consider a complete n-node network and CONGEST communication model. There
is a randomized algorithm which solves agreement with high probability in O(log n) rounds and
incursO(n1/2 log3/2 n) message bits with high probability when tolerating at most ⌊n−n/c⌋ faulty
nodes for any constant c ≥ 1.

Implicit to Explicit Agreement. The above result accomplishes sub-linear message bound (when

42 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

α = o(log n/n1/3)) for the implicit agreement. For the explicit agreement, the message lower
bound is Ω(n), since the agreed value needs to reach to all the nodes in the network. The above
implicit agreement algorithm can be easily extended to an explicit agreement using O(n log n/α)
messages in one extra round. At the end of the implicit agreement algorithm, the candidate nodes
which reach an agreement broadcast the agreed value to all the nodes in the network in parallel in
a single round. Then all the nodes agree on the received value. Since the size of such candidate
nodes is at most O(log n/α), the message complexity of this step is O(n log n/α). Hence, the
claim.

2.5.2 Lower Bound on the Message Complexity

We show that any algorithm for implicit agreement with constant success probability requires
Ω(n1/2/α3/2) messages to be sent in order to achieve implicit agreement with probability at least
1− ϵ for a sufficiently small ϵ > 0. Section 2.4.2 shows that leader election requires Ω(n1/2/α3/2)

messages, but our proof is different because, under leader election, all nodes essentially start in
identical configurations. In the implicit agreement problem, however, the nodes start with initial
values and our lower bound argument takes that into account and shows that no algorithm can
exploit those initial values in order to reach agreement with fewer messages. Our approach and
writing style are highly inspired/adapted by the work done in [14]. Informally, we are adapting the
work of [14] to address the specific challenges posed by faulty setting.

We initiate the setup with the formation as discussed in [14] which can be adapted in faulty
setting as well. “Consider a randomized algorithm A to achieve implicit agreement with probabil-
ity 1− ϵ. For the sake of contradiction, let us assume that A sends at most o(n1/2/α3/2) messages
with probability at least 1 − o(1). We will show that A must have an error probability that is at
least a constant, so for the sake of contradiction, assume that the probability with whichA does not
reach implicit agreement is at most o(1). For now, we will assume that the nodes are anonymous,
so A does not have access to unique node identifiers or any other identifying feature pertaining to
individual nodes.

Recall also that the network is anonymous, so a node u, at least at the start of the protocol, will
not know which incident edge leads to some neighbor v. In fact, for the purpose of showing this
lower bound, we assume that for every node, the neighbor sequence (as we enumerate from port 1
to port n− 1) is a uniformly random permutation independent of all other nodes’ permutations.

Given any p ∈ [0, 1], let Cp denote the (random) starting configuration wherein each node is
independently assigned an initial value of 1 with probability p, or 0 with probability 1 − p. Let

Fault-Tolerant Agreement 43

Gp be the (random) directed graph on the n nodes with an edge from u to v if and only if u sent
a message to v and the message was sent before v sent any message to u as A executed from
the starting configuration Cp. We now show that with probability at least 1 − ϵ, Gp is a forest
comprising trees that are directed away from their respective root.”

Lemma 2.8. With probability at least 1 − ϵ′ for some arbitrarily small but constant ϵ′ > 0, the
graph Gp for all p ∈ [0, 1] is a forest in which each tree contains exactly one node (called its root)
with zero in-edges and, furthermore, at least two tree edges are oriented away from the root.

Proof. Recall that the number of messages passed by A is at most o(n1/2/α3/2) with probability at
least 1−o(1). Therefore, with probability at least 1−o(1), we can apply the condition that the num-
ber of nodes that participate in any form of communication (either sending or receiving) is at most
o(n1/2/α3/2). Recall also that each message is sent to a random node. From the Lemma 2.4, in a
similar way, there exist at least 1/2α initiator nodes. Therefore, the smallest tree possess at max
o(n1/2/α3/2)

1/2α
i.e., o(n1/2/α1/2) nodes. Also, a node is non-faulty with at least α probability. Hence,

there exist o(n1/2/α1/2)α i.e., o(n1/2α1/2) good nodes in the smallest tree in expectation. By Cher-
noff bound (see Theorem 4.4 in [112]), we have 7× o(n1/2α1/2) i.e., o(n1/2α1/2) good nodes with
high probability. Recall that in the network there are o(n1/2/α1/2) good nodes in expectation with
high probability. Therefore, the probability that none of those o(n1/2α1/2) messages is targeted
towards either a good node that has sent messages or a good node that has already received some
message is at least (1− o(n1/2α1/2)/n)o(n

1/2/α1/2) ≥ 1− o(1). Removing the conditioning, we get
the probability that at least two components in Gp are rooted and oriented trees is again at least
1− ϵ′ for some fixed ϵ′ > 0. □

Thus, for the rest of the argument, we apply the condition that for all p ∈ [0, 1], Gp is a forest as
described in Lemma 2.8. We say that a tree is a deciding tree if there is at least one deciding node
within that tree. The Lemma 2.9 and Lemma 2.10 with supporting details are highly adapted from
the work done in [14]. Informally, the arguments work for the non-faulty settings’ lower bounds
are also adaptable to the faulty settings.

Lemma 2.9. “For every value of p ∈ [0, 1], the probability that there are at least two deciding
trees is at least a constant.

Proof. SinceA reaches agreement with probability at least 1−ϵ, the probability that no tree decides
is at most ϵ.

For all values of p, the probability that there is at most one deciding tree is at most a suitable
constant c bounded away from 1. Otherwise, there exists a p value for which, with probability at

44 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

least c, exactly one tree decides. Then, quite easily, the root of that deciding tree can be made a
leader. This yields a leader election protocol that succeeds with probability at least c, which will
contradict Theorem 2.3 when c is a sufficiently large constant strictly less than 1− ϵ.

Adding up all these possibilities, we are still left with a probability of at least a constant,
q < 1− ϵ− c with which there must be two or more deciding trees. □

Now we know that there are at least two deciding trees with constant probability, we show that
these trees reach opposing decisions with probability bounded from below by a constant, thereby
leading to a contradiction that A reaches agreement with high probability.

Lemma 2.10. There exists a value p∗ ∈ [0, 1] such that the probability that there are at least two
deciding trees in Gp∗ with opposing decisions is at least a constant.

Proof. We can define the probabilistic valency of p with respect to A, denoted Vp, as the proba-
bility that A will terminate with a decision value 1 under the initial configuration Cp. Thus, the
probabilistic valencies of p = 0 and p = 1 are 0 and 1, respectively. It is easy to see that Vp
is a continuous function of p ∈ [0, 1] as infinitesimally small changes to p can only result in in-
finitesimally small changes to Vp. This is true because infinitesimally small changes to p will only
result in infinitesimally small changes to Cp, and since the algorithm’s behavior is based on the
initial configuration (which does not change much), Vp will also only change infinitesimally. This
continuity in Vp implies that for every x ∈ [0, 1], there is a p such that Vp = x.

We prove this lemma under the condition that there are at least two deciding trees and that
these two trees do not interact with each other. We have seen that enforcing this conditioning
requires a probability of q bounded away from 0. An important implication here is that, despite
this conditioning, the probabilities of the two decision values must be bounded from below by a
constant. For the sake of contradiction, let us suppose (without loss of generality) that the algorithm
decides 1 with probability at most o(1) under this conditioning. Let us fix p such that Vp = 1−q/2.
Then, the probability that it decides 1 without the conditioning will be at most q(o(1))+ (1− q) <
1− q/2, a contradiction.

Now consider two deciding trees T1 and T2. For simplicity, let us assume that the decision
outcome of T1 is (say) 0; this occurs with some constant probability. We now reason that the
probability that the decision outcome of T2 is 1 will be at least a constant. This is true because the
random input values for T2 were all chosen independently of the input values for T1. Thus, the two
trees can decide contradictory values with probability at least a constant. □

Thus, we have shown that when the nodes are anonymous and the number of messages sent
is at most o(n1/2/α3/2), implicit agreement is not reached with probability at least a constant. To

Conclusion 45

generalize to the case where nodes do have IDs, we simply assume that the adversary provides ID’s
chosen uniformly at random from, say, [1, n4]. Let A∗ be an algorithm that exploits these unique
IDs.

Notice, however, that the execution of A∗ that exploits the adversarially generated random
IDs is essentially akin to the execution of A∗ in the anonymous setting in which each node first
generates a random number between [1, n4] and then uses that random number as their IDs. The
only difference is that multiple nodes may generate the same random number, thereby inheriting
the same ID, but this is an event whose probability is at most 1/n, so when we condition on these
random numbers being distinct, the two executions are probabilistically identical, so any lower
bound on the execution without adversarially generated IDs will extend to the case where nodes
have unique IDs provided by the adversary.” Thus,

Theorem 2.7. Suppose A is an algorithm that solves implicit agreement with probability at least
1 − ϵ for some sufficiently small constant ϵ > 0 in a network of n nodes with unique IDs. Then,
with probability at least a constant, the message complexity of A is at least Ω(n1/2/α3/2).

2.6 Conclusion

In this chapter, we studied the role played by randomization in the fault-tolerant distributed net-
work. In particular, we examined how randomization can help to solve agreement and leader
election efficiently in a crash-fault setting. We showed that if a constant fraction of nodes is faulty,
then the message complexity of leader election and agreement is asymptotically the same as in
the fault-free network (complete network). We also showed a non-trivial lower bound of message
complexity of both problems.

The work of this chapter open ups several interesting research problems. There is a gap between
the upper and lower bounds of the message complexity of leader election. Is it possible to narrow
down this gap? The other interesting question raised by our complete graph is to extend the study
of the message complexity of the problem in diameter two graphs and general graphs. Finally, is it
possible to provide more power to the adversary and have similar results, i.e., whether a sublinear
message bound agreement protocol is possible in the presence of Byzantine node failure?

46 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault

Chapter 3

Sublinear Message Bounds for Authenticated
Byzantine Agreement

In this chapter, we examine the message complexity of authenticated Byzantine agreement (BA)
in fully-connected, synchronous distributed networks with an honest majority 1. Our focus is on
the “implicit” version of the Byzantine agreement problem, where each node begins with an input
value, and at the end, a non-empty subset of honest nodes must agree on a common input value
while meeting the BA properties (even if some nodes remain undecided). It is worth noting that
implicit BA is an extension of the classical BA problem.

We first show that a sublinear (in n, number of nodes) message complexity BA protocol under
honest majority is possible in the standard PKI model when the nodes have access to an unbiased
global coin and hash function. We further extend the result to Byzantine subset agreement, where
a non-empty subset of nodes should agree on a common value. We analyze several relevant results
which follow from the construction of the main result.

Further, we present a randomized Byzantine agreement algorithm which, with high probabil-
ity achieves implicit agreement, uses Õ(

√
n) messages and runs in Õ(1) rounds while tolerating

(1/2 − ϵ)n Byzantine nodes for any fixed ϵ > 0, the notation Õ hides a O(polylog n) factor. The
algorithm requires a standard cryptographic setup PKI and hash function with a static Byzantine
adversary. The algorithm works in the CONGEST model and each node does not need to know
the identity of its neighbors, i.e., works in the KT0 model. The message complexity (and also the
time complexity) of our algorithm is optimal up to a polylog n factor, as we show a Ω(

√
n) lower

bound on the message complexity. We also perform experimental evaluations and highlight the
effectiveness and efficiency of our algorithm. The experimental results outperform the theoretical
guarantees.

1This chapter is based on joint work with Anisur Rahaman Molla and contains the material from [93].

47

48 Sublinear Message Bounds for Authenticated Byzantine Agreement

3.1 Introduction

Byzantine agreement is a fundamental and long-studied problem in distributed networks [100, 11,
106]. In this problem, all the nodes are initiated with an input value. The Byzantine agreement
problem is required to satisfy: (i) the honest nodes must decide on the same input value; and
(ii) if all the honest nodes receive the same input value, then they must decide on that value2. This
should be done in the presence of a constant fraction of Byzantine nodes that can arbitrarily deviate
from the protocol executed by the honest nodes. Byzantine agreement provides a critical building
block for creating attack-resistant distributed systems. Its importance can be seen from widespread
and continued application in many domains such as wireless networks [81, 103, 134, 129], sen-
sor networks [128], grid computing [8], peer-to-peer networks [124] and cloud computing [135],
cryptocurrencies [26, 44, 3, 80, 109], secure multi-party computation [24] etc. However, despite
huge research, we lack efficient practical solutions to the Byzantine agreement for large networks.
A main drawback for this is the large message complexity of currently known protocols, as men-
tioned by many systems papers [5, 7, 28, 108, 137]. The best-known Byzantine protocols have (at
least) quadratic message complexity [61, 25, 45, 89], even in the authenticated settings [40, 113].
In a distributed network, nodes communicate with their neighbors by passing messages. Therefore,
communication cost plays an important role to analyze the performance of the algorithms, as also
mentioned in many papers [1, 65, 63, 113].

King and Saia [77] presented the first Byzantine agreement algorithm that breaks the quadratic
message barrier in synchronous, complete networks. The message complexity of their algorithm
is Õ(n1.5). Later, Braud-Santoni et al. [27] improved this to Õ(n) message complexity. Both
works require the nodes to know the IDs of the other nodes a priori. This model is known as KT1
model (knowledge till hop 1) [118]. Another challenging model is KT0, where nodes do not know
their neighbors a priori [118]. Note that in KT0 model, nodes can know their neighbors easily by
communicating to all the neighbors, perhaps in a single round, but that will incur Ω(n2) messages.
The KT0 model is more appropriate to the modern distributed networks which are permissionless,
i.e., nodes can enter and leave the network at will.

In this chapter, our main focus is to study the message complexity of the Byzantine agreement
problem in the KT0 model under the assumption of cryptographic setup and a global coin (as
defined in [119]). In fact, we study the implicit version of the Byzantine agreement, where not all
the honest nodes need to be decided; only a non-empty subset of the honest node must decide on

2Throughout, we interchangeably use the term ‘non-Byzantine’ and ‘honest’, and similarly, ‘Byzantine’ and
‘faulty’.

Introduction 49

an input value. Our main result is a randomized algorithm to solve implicit Byzantine agreement
using sublinear messages (only Õ

√
n) while tolerating f ⩽ (1/2− ϵ)n Byzantine nodes, where n

is the number of nodes in the network, f is the number of Byzantine nodes and ϵ > 0 is a fixed
constant. The implicit algorithm can be easily extended to the explicit Byzantine agreement (where
all the honest nodes must decide) using O(n log n) messages only. The algorithm is simple and
easily implementable, which is highly desired for practical purposes. While the assumptions on the
Public Key Infrastructure (PKI) set up with keyed hash function and the global coin together make
the model a little weaker, they are realistic and implementable 3. Similar assumptions were made
earlier in the literature, e.g., in Algorand, Gilad et al. [58] uses “seed” and PKI setup, where “seed”
is essentially the shared random bits. In their approach, they formed a set of candidate nodes and
reached an agreement with the help of the sortition algorithm (see Section 5 of [58]) using proof-
of-stake (PoS). They further used verifiable random functions (VRFs) [110] for the verification of
the candidate nodes which return hash and proof. In our work, we do not require the assumption
of VRFs. The message complexity of Algorand is Õ(n), albeit for the explicit agreement.

Without PKI setup, hash function and global coin assumptions, we do not know if a sublinear
(or even a linear) message complexity Byzantine agreement algorithm is possible or not. So far,
the best results have quadratic message bound in the KT0 model and sub-quadratic in the KT1
model.

Our result introduces the first sublinear message complexity Byzantine agreement algorithm
and at the same time tolerates optimal resilience, i.e., f ⩽ (1/2 − ϵ)n. We further extend the
implicit agreement to a natural generalized problem, called subset agreement problem. The subset
agreement problem can be useful in real applications. For example, in a large scale distributed
network, it may require that a non-empty subset of the nodes (unknown to each other) want to
agree on a common value. Since, typically, the size of the subset is much smaller than the network
size, the cost of the agreement would be less than the explicit agreement. Thus, subset agreement
may work as a subroutine in many applications. We also argue a lower bound on the message
complexity of the problem. The lower bound shows that the message complexity of our algorithm
is optimal up to a polylog n factor. Finally, we implement our algorithm to evaluate its actual
performance. Our results can be viewed as a step towards understanding the message complexity
of randomized BA in distributed networks under the assumptions of PKI, hash function and global
coin.

Chapter Organization: The rest of the chapter is organized as follows. In the rest of this
section, we state our main result and introduce the model and definition. Section 3.2 is a related

3Throughout, we interchangeably use the term ‘hash function’ and ‘keyed hash function’.

50 Sublinear Message Bounds for Authenticated Byzantine Agreement

work, which introduces the seminal works done in the same direction. Section 2.5 presents the
main implicit Byzantine agreement algorithm and other relevant results. Section 3.4 presents the
Byzantine subset agreement. In Section 3.5, we present the lower bound on the message complex-
ity to support the optimality of our algorithm. Section 3.6 shows the experimental evaluation of
the implicit Byzantine agreement algorithm. Finally, we conclude in Section 3.7.

3.1.1 Our Main Results

We show the following main results.

Theorem 3.1 (Implicit Agreement). Consider a synchronous, fully-connected, anonymous network
of n nodes and CONGEST communication model. Assuming a public-key infrastructure with the
keyed hash function, there exists a randomized algorithm which, with the help of global coin, solves
implicit Byzantine agreement with high probability in O(log2 n) rounds and uses O(n0.5 log3.5 n)

messages while tolerating f ⩽ (1/2− ϵ)n Byzantine nodes under non-adaptive adversary, where
ϵ is any fixed positive constant.

Theorem 3.2 (Explicit Agreement). Consider a synchronous, fully-connected network of n nodes
and CONGEST communication model. Assuming a public-key infrastructure with the keyed hash
function, there exists a randomized algorithm which, with the help of global coin, solves Byzantine
agreement with high probability in O(log2 n) rounds and uses O(n log n) messages while tolerat-
ing f ⩽ (1/2 − ϵ)n Byzantine nodes under non-adaptive adversary, where ϵ is any fixed positive
constant.

Theorem 3.3 (Byzantine Subset Agreement). Consider a complete n-node network G(V,E) and
a subset S ⊆ V of size k. There is a randomized algorithm which, with the help of a global coin
and PKI set up with keyed hash function, solves the Byzantine subset agreement over S with high
probability and finishes in Õ(k) rounds and uses min{Õ(k

√
n), Õ(n)} messages.

Theorem 3.4 (Lower Bound). Consider any algorithm A that has access to an unbiased global
coin and sends at most f(n) messages (of arbitrary size) with high probability on a complete
network of n nodes. If A solves the authenticated Byzantine agreement under honest majority with
constant probability, then f(n) ∈ Ω(

√
n).

Finally, we implement our implicit agreement algorithm and show its effectiveness and effi-
ciency for different sizes of Byzantine nodes. When the Byzantine nodes behave randomly, the
experimental results perform better than the theoretical guarantees.

Introduction 51

3.1.2 Model and Definitions

The network is a synchronous and fully connected graph of n nodes. Initially, nodes do not know
their neighbors, also known as KT0 model [118]. Nodes have access to an unbiased global coin
through which they can generate shared random bits. The network is f ≤ (1/2 − ϵ)n resilient,
i.e., at most (1/2 − ϵ)n nodes (among n nodes) could be faulty, for any constant ϵ > 0. We con-
sider Byzantine fault [100]. A Byzantine faulty node can behave maliciously such that it sends any
arbitrary message or no message in any round to mislead the protocol, e.g., it may send different
input values to different nodes, or it may not send any message to some of the nodes in a particular
round. We assume that a static adversary controls the Byzantine nodes, which selects the faulty
nodes before the execution starts. However, the adversary can adaptively choose when and how a
node behaves maliciously. Further, the adversary is rushing and has full information – the adver-
sary knows the states of all the nodes and can view all the messages in a round before sending out
its own messages for that round. We assume that each node possesses multi-valued input of size
O(log n) provided by the adversary.

We assume the existence of digital signatures, Public Key Infrastructure (PKI) and hash func-
tion. Each node possesses a public-secret key pair (pk, sk). Secret keys are generated randomly,
and correspondingly public keys are generated with the help of a prime order group’s genera-
tor. Therefore, the public keys are not skewed but random. Trusted authority also provides other
cryptographic primitives for each node, and certifies each node’s public keys. Nodes use digital
signatures for the authentication of any information. We abstract away the details of the crypto-
graphic setup; assuming it is a standard framework. Public key (pk) of all the nodes, hash function,
shared random bits (generated through global coin) and n are the common knowledge for all the
nodes.

We consider the CONGEST communication model [118], where a node is allowed to send
a message of size (typically) O(log n) or O(polylog(n)) bits through an edge per round. The
message complexity of an algorithm is the total number of messages sent by all the non-faulty
nodes throughout the execution of the algorithm.

Definition 3.1 (Implicit Byzantine Agreement). Suppose initially all the nodes have an input value
(say, provided by an adversary). An implicit Byzantine agreement holds when the following prop-
erties hold: (i) the final state of all the non-Byzantine nodes is either “decided” or “undecided”;
(ii) all the “decided” non-Byzantine nodes must agree on the same value (consistency property);
(iii) if all the non-Byzantine nodes have the same input value then they must decide on that value
(validity property); (iv) all the non-Byzantine nodes eventually reach to the final state, where at

52 Sublinear Message Bounds for Authenticated Byzantine Agreement

least one non-Byzantine node must be in the “decided” state (termination).

Definition 3.2 (Byzantine Subset Agreement). Suppose initially all the nodes have an input value
(say, provided by an adversary). The Byzantine subset agreement is an agreement by a (specified)
non-empty subset S ⊆ V of nodes such that the fraction of Byzantine nodes in S is preserved,
i.e., fS ⩽ (1/2 − ϵ)|S|, where fS is the number of Byzantine nodes in S. We assume that each
node knows whether it belongs to S or not, but does not know the identities of the other nodes
in the subset. The agreement on S holds when the final state of all the non-faulty nodes in S is
“decided” and the deciding value of all of them follows the properties: (i) all the non-faulty nodes
must decide on the same value (consistency property); (ii) if all the non-faulty nodes of network
have the same initial value then they (the non-faulty nodes in S) must decide on that value (validity
property); (iii) all the non-faulty nodes (of S) eventually decide on a value (termination property).

Definition 3.3 (Keyed Hash Function). Let Kh, X be two non-empty finite sets and H be an n-
bit function such that H : Kh × X → {0, 1}n, where H follows three properties: (i) Preimage
Resistant – Given a hash value h, it should be difficult to find any message m such that h =

H(k,m). (ii) Second Preimage Resistant – Given an input m1, it should be difficult to find a
different input m2 such that H(k,m1) = H(k,m2). (iii) Collision Resistant – It should be difficult
to find two different messages m1 and m2 such that H(k,m1) = H(k,m2).

3.1.3 Byzantine Agreement vs. Byzantine Broadcast

Byzantine Agreement is typically studied in two forms while they are equivalent, i.e., one can be
reduced to the other [100]. In the agreement version, also known as Byzantine Consensus, prior
to the protocol starts, all the nodes receive an input value. Byzantine agreement is achieved if the
following three properties hold.
Consistency: all of non-faulty nodes must decide on the same value.
Validity: if all the non-faulty nodes have the same initial value, then they must decide on that value.
Termination: all the non-faulty nodes eventually decide on a value.

In the Byzantine Broadcast, there is a designated sender (could be Byzantine or honest) who
broadcasts the input values to the nodes. Termination and consistency are the same as in the case
of Byzantine agreement. In the case of validity, all the non-faulty nodes output the same value if
the sender is honest. Also, that value should be the input value of the sender.

Related Work 53

3.2 Related Work

Byzantine agreement and Byzantine broadcast have been studied extensively in various models
and settings in the last four decades, starting from its classic introduction by Lamport, Shostak and
Pease [100, 116]. They presented protocols and fault tolerance bounds for two settings (both syn-
chronous). Without cryptographic assumptions (the unauthenticated setting), Byzantine broadcast
and agreement can be solved if f < n/3. Assuming digital signatures (the authenticated setting),
Byzantine broadcast can be solved if f < n and Byzantine agreement can be solved if f < n/2.
The initial protocols had exponential message complexities [100, 116]. Fully polynomial protocols
were later shown for both the authenticated (f < n/2) [40] and the unauthenticated (f < n/3)

[55] settings. Both protocols require f + 1 rounds of communication, which matches the lower
bound on round complexity for deterministic protocols [48].

Our Byzantine agreement algorithm makes use of a few past results. First, we make use of the
concept of a set of candidate nodes, which is a subset of nodes. The notion of a committee (set
of candidate nodes) is used in, e.g., [14, 59, 92, 97]. Finally, we adapt the Byzantine Agreement
algorithm designed by Dolev et al. [40].

The previous results in the same direction are summarized in Table 3.1. Santoni et al. [27]
achieved the Õ(n) communication complexity against a non-adaptive adversary while resilience
is f < n/(3 + ϵ) and rushing adversary with KT0 model. The work of King-Saia [77] and
Abraham et al. [2] used the shared random value in one or another way. King-Saia reached almost
everywhere to everywhere agreement in communication complexity (communication complexity
of a protocol is the maximum number of bits sent by all the non-Byzantine nodes combined across
all executions) Õ(n1.5) bits with adaptive security while resilience is f < (1/3 − ϵ)n and in the
KT1 model. Abraham et al. showed the quadratic communication complexity in expectation with
an adaptive adversary while using the cryptographic assumptions and tolerated f < n/2 Byzantine
nodes. Dolev-Strong [40] achieved cubic communication complexity with an adaptive adversary
and cryptographic assumptions by tolerating f < n/2 Byzantine nodes. Later, Momose-Ren
[113] improved the communication complexity to quadratic communication. In comparison with
our work, we are using shared random value and non-adaptive adversary with rushing adversary.
Shared random value help us to break the linear communication (message) complexity. In implicit
agreement, we have sublinear communication complexity while in explicit agreement it is linear
with cryptographic assumptions and tolerates f ≤ (1/2− ϵ)n Byzantine nodes.

54 Sublinear Message Bounds for Authenticated Byzantine Agreement

Comparison of the Results
Protocol Agreement

Type
Communication

(in bits)
Adversary Cryptographic

Assump-
tions

Resilience

Santoni et al.
[27]

Implicit Õ(n) Non-
adaptive

No f < n/(3 + ϵ)

King-Saia
[77]

Explicit Õ(n1.5) Adaptive No f ≤ (1/3− ϵ)n

Dolev-Strong
[40]

Explicit Õ(n3) Adaptive Yes f < n/2

Momose-Ren
[113]

Explicit Õ(n2) Adaptive Yes f < n/2

Abraham et
al. [2]

Explicit O(n2)∗ Adaptive Yes f < n/2

This chapter Implicit Õ(n0.5) Non-
adaptive

Yes f ≤ (1/2− ϵ)n

This chapter Explicit Õ(n) Non-
adaptive

Yes f ≤ (1/2− ϵ)n

Table 3.1: Comparison of various models with our result. ϵ is any positive constant. Our results
assume a global coin and hash function while others are not. * indicates the bound holds
in expectation.

3.3 Authenticated Implicit Byzantine Agreement

In this section, we present a randomized Byzantine agreement algorithm in a complete n-node
network that tolerates f ≤ (1/2 − ϵ)n Byzantine nodes under a public-key infrastructure, keyed
hash function and access to a global coin. The algorithm incurs Õ(

√
n) messages, has latency

Õ(1), and has high success probability.

In the algorithm, we run a subroutine BA protocol, which can tolerate f ≤ (1/2−ϵ)nByzantine
nodes and may have a polynomial message (and time) complexity. In fact, we adapt the classical

Authenticated Implicit Byzantine Agreement 55

algorithm presented by Dolev-Strong [40].4 Dolev-Strong designed an algorithm for the Byzantine
broadcast (BB) problem, which can be converted into a Byzantine agreement algorithm with an
initial round to broadcast the input Byzantine nodes under a public-key infrastructure and access to
an unbiased global coin. The communication/bit complexity isO(κn3) [49]. However, using multi-
signature it can be improved to O(κn2 + n3), where κ is a security parameter which is essentially
the maximum size of the messages [113]. While the original Dolev-Strong BB protocol tolerates
f ⩽ n − 1 faults, the converted BA protocol works for the honest majority nodes, i.e., tolerates
f < n/2 Byzantine faults which is optimal for an authenticated BA [2, 46, 73, 100, 111, 113].

Dolev-Strong algorithm is deterministic and has a latency of f + 1 rounds. The general idea
of the BB protocol is to form a signature chain consisting of signatures from distinct nodes. A
signature chain of f + 1 signatures must contain a non-faulty signature from a non-faulty node
which can send the value to all the other nodes. The protocol is designed in such a way that in
f + 1 rounds it forms a signature chain of size f + 1. We adapted the Dolev-Strong BB protocol
for the Byzantine agreement problem and used it in our implicit BA algorithm.

Let us now describe the implicit BA algorithm. The public key (pk) of the nodes is known to all
the nodes (as distributed by the trusted third party), but a node does not know which port or edge is
connecting to which node (having a particular public key). To minimize the message complexity,
a generic idea is to select a set of small-size candidate nodes, which will be responsible for solving
the (implicit) agreement among themselves. Thus, it is important to have the honest majority in
the set of candidate nodes. For this, a random set of nodes, called candidate nodes or committee
nodes, of size O(log n) is selected. Let us denote the candidate nodes set by C. A Byzantine node
may try to claim that it is in C, which needs to be stopped to guarantee the honest majority in C.
To overcome this problem, we take the help of a global coin and a keyed hash function, which
together determine the candidate nodes.

A common random number, say r, is generated with the help of the global coin. The random
number should be large enough to use as the key to the hash function. Note that the random
number is generated after the selection of the Byzantine nodes by the adversary. Every node uses
its respective public key (pk) as the message and r as the key of the hash function, say, H . That
is they compute Hr(pk). For each pki , we represent its hash value Hr(pki) as Hi. Since the hash
values are random (with high probability), the smallest c log n values among the n hash values
are chosen to be the candidate nodes, where c is a suitable constant (to be fixed later). More
precisely, a node i with the hash value Hi is in C if it is in the smallest c log n values of the set
{Hi : i = 1, 2, . . . , n}. Therefore, a node can easily figure out the candidate nodes since it knows

4One can use other suitable BA protocols, e.g., the protocol in [113].

56 Sublinear Message Bounds for Authenticated Byzantine Agreement

the random number r, the hash function, and the public keys of all the nodes. However, the node
does not know the ports connecting to them (as KT0 model).

Although a node knows all the candidate nodes (in fact, their public keys), it does not know the
edges connecting to the candidate nodes, since the network is anonymous, i.e., KT0 model. It can
be known by the candidate nodes by sending a message to all the nodes, but that will cost n log n
messages. Since knowing each other is message expensive in this model, the candidate nodes
communicate among themselves via some other nodes. For this, each candidate node randomly
samples Θ(

√
n log n) nodes among all the n nodes; call them as referee nodes. The reason behind

sampling so many referee nodes is to make sure at least one common “non-faulty” referee node
between any pair of candidate nodes. The candidate nodes communicate with each other via the
referee nodes. Notice that a node may be sampled as a referee node by multiple candidate nodes.
It might happen that a Byzantine referee node may change the value of an honest candidate node
before forwarding it to the candidate nodes. To avoid this, we take advantage of digital signatures.
Each referee node signs the input value before transmitting it to its referee nodes. As a digital
signature helps to detect forging messages, a candidate node considers only the genuine messages
received from the referee nodes.

Thus, we have a small committee of nodes (i.e., C) with the honest majority and the committee
nodes can communicate via the referee nodes. Then we apply the Dolev-Strong BA protocol [40]
in the committee to achieve agreement. Let us now present the adapted Dolev-Strong algorithm to
work for the Byzantine agreement.

Step 0: Each candidate node u does the following in parallel. u signs and sends its input value
to its corresponding referee nodes, say, Ru. Each referee node w sends all the received values to
its respective candidate nodes, say, Cw. Therefore, the candidate nodes have the input values of all
the candidate nodes. Now each candidate node proposes a value for the agreement based on the
priority, along with all the signatures received corresponding to that input value. If there is a value
that is sent by the majority of the nodes (i.e., more than (c log n)/2 nodes), then that value gets the
highest priority. In case of more than one majority, the value proposed by the maximum number
of nodes gets the highest priority. There might be the case, two values are proposed by the same
number of nodes; in that case, the larger input value gets the highest priority. If a candidate node
has the highest priority input value, then it sends the value (after signing) to all the candidate nodes
along with the received signatures for the highest priority value. Otherwise, the candidate node
does not send anything. The reason of getting more than one majority value is that a Byzantine
node may propose different values to different nodes. If no such majority value is received, then
the candidate nodes decide on a default value, say, the minimum in the input value set. By sending

Authenticated Implicit Byzantine Agreement 57

the input value, we mean sending the input value along with all the signatures corresponding to
that input value.

Then, the following two steps are performed iteratively5.

Step 1: If a candidate node u receives a set of at least i legitimate signatures in ith iteration with
the highest priority value than its earlier sent value, then u proposes this new highest priority value
along with all the signatures to its referees nodesRu.

Step 2: If a referee node w receives a set of at least i legitimate signatures in ith iteration (with the
highest priority value) then w forwards this highest priority value to its corresponding candidate
nodes Cw.

The above two steps (i.e., Step 1 and 2) are performed for O(c log n) iterations and then the
algorithm terminates. In the end, all the (non-faulty) candidate nodes have the same value, either
the default value or the value possessed by the majority of nodes (the highest priority value).
Intuitively, there areO(c log n) candidate nodes and a single node may propose the highest priority
value in each iteration (say, the single node with the highest priority value is faulty and send to
only faulty nodes) and thus the highest priority value may propagate slowly. But eventually, the
highest priority value is received by all the candidate nodes as the set of candidate nodes contains
the majority of the non-faulty nodes (see Lemma 3.1) and there is a common non-faulty referee
node between any pair of candidate nodes (see Lemma 3.2). On the other hand, if there is no
highest priority value, then they decide on the default value. Thus, the (honest) candidate nodes
agree on a unique value. A pseudocode is given in Algorithm 3.

Let us now show the above claims formally. We first show that the majority of the nodes in the
candidate set are honest.

Lemma 3.1. The number of Byzantine nodes in the candidate set C is strictly less than 1
2
|C|.

Proof. Let α fraction of the nodes in the network are Byzantine where α = 1/2 − ϵ is a fixed
constant. So α + ϵ = 1/2. The nodes in C are chosen uniformly at random (i.e., with probability
1/n) and the number of Byzantine nodes is at most αn, the probability that a particular node in
C is Byzantine is at most α . Let C contain k nodes, {ui | i = 1, 2, . . . , k}. Let us define random
variables Xis such that Xi = 1 if ui is Byzantine, and 0 otherwise. Further, X =

∑k
i=1Xi is the

total number of Byzantine nodes in C. Then, by linearity of expectation, E[X] ⩽ αk. Then, by
Chernoff bounds [112],

5An iteration is the number of rounds required to send messages from one candidate node to all the candidate nodes
via the referee nodes. Since we consider the CONGEST model, an iteration may take up to O(log n) rounds in our
algorithm.

58 Sublinear Message Bounds for Authenticated Byzantine Agreement

Algorithm 3 AUTHENTICATED-IMPLICIT-BA

Require: A complete n node anonymous network with f ⩽ (1/2 − ϵ)n Byzantine nodes. Each
node receives an input value provided by an (static) adversary, a pair of public-private keys
(pk, sk), keyed hash function and a global coin. ϵ > 0 is a fixed constant.

Ensure: Implicit Agreement.

1: Select c log n nodes as the candidate nodes set (say, C), which have the smallest c log n hash
values generated with the help of public key and random number. The value of the constant c
is 3α/ϵ2, follows from Lemma 3.1.

2: Each candidate node u randomly samples 2
√
n log n nodes as referee nodes (say,Ru).

3: Each candidate node u signs and sends its input value (with signature) toRu.
4: Each referee node w sends all the received values to their respective candidate nodes Cw along

with the legitimate signatures one by one. It takes O(log n) rounds.
5: Each candidate node u sends the input value along with all the received signatures toRu based

on the (highest) priority. ▷ Highest priority is defined in the description, Step 0.
6: for the next (c log n) iterations, the candidate and referee nodes in parallel do
7: Each referee node w checks:
8: if w receives a set of at least i legitimate signatures in the ith iteration then
9: w sends highest priority value to Cw.

10: else
11: w does not send any messages.
12: end if
13: Each candidate node u checks:
14: if u receives a set of at least i legitimate signatures in the ith iteration with a highest priority

value than it sent earlier then
15: u sends highest priority value toRu.
16: else
17: u does not send any messages.
18: end if
19: end for
20: All the (non-faulty) candidate nodes have the same highest priority value on which they agree.

Otherwise, if they do not receive any highest priority value, they agree on a default value, say,
the minimum in the input value set.

Pr(X ⩾ (α + ϵ)k) = Pr(X ⩾ (1 + ϵ/α)E[X]) ⩽ exp
(
−E[X](ϵ/α)2/3

)
⩽ exp

(
−(kϵ2)/(3α)

)
for k = |C| = (3α/ϵ2) log n

Thus, Pr(X < (α + ϵ)|C|) = Pr(X < 1
2
|C|) > 1 − 1/n. In other words, C contains at most

Authenticated Implicit Byzantine Agreement 59

(1/2− δ)|C| Byzantine nodes with high probability, for any fixed δ > 0. □

The candidate nodes communicate with each other via the referee nodes, which are sampled
randomly by the candidate nodes. The number of referee nodes is sampled in such a way that there
must be a common referee node between every pair of candidate nodes (so that the candidate nodes
can communicate) and at the same time keep the message complexity lower. In fact, we need to
guarantee a stronger result. Namely, there must be a non-faulty common referee node for reliable
communication.

Lemma 3.2. Any pair of candidate nodes have at least one common non-faulty referee node with
high probability.

Proof. Let us consider two candidate nodes v and w, and let xi be the ith node selected by v.
Let the random variable Xi be 1 if xi is also chosen by w and 0 otherwise. Since the xis are
chosen independently at random, the Xis are independent. So, Pr[Xi = 1] = 2

√
n logn
n

. Hence, the
expected number of (choice of) referee nodes that v and w haven in common are:

E[X] = E[X1] + E[X2] + · · ·+ E[X(2
√
n logn)](by linearity)

= 2
√
n log n · 2

√
n log n

n
= 4 log n (3.1)

Thus, by using the Chernoff bound [112], Pr[X < (1− δ)E[X]] < e−δ2E[x]/2 for δ = 0.5, we get

Pr[X < (1− 0.5)4 log n] < e−(0.5)2(4 logn)/2 <
1√
n

(3.2)

For that reason at least 2 log n choice of nodes by v are jointly chosen by v and w. As a conse-
quence, the probability that none of these choices is non-faulty:(

1

2
− ϵ
)2 logn

<
1

n
(3.3)

Therefore, the probability of selecting at least one non-faulty referee node from the sampled nodes
of u is at least 1− 1/n.

□

Lemma 3.1 ensures that a committee (i.e., the candidate set) of size O(log n) with honest
majority can be selected. Lemma 3.2 ensures that the committee nodes can communicate with each
other reliably via the referee nodes. Thus, the BA problem on n nodes reduces to a O(log n)-size

60 Sublinear Message Bounds for Authenticated Byzantine Agreement

committee nodes. Then the Dolev-Strong BA protocol ensures that the committee nodes achieve
Byzantine agreement among themselves deterministically. Therefore, the algorithm (Algorithm 3)
correctly solves the implicit Byzantine agreement with high probability (i.e., among the committee
nodes only). The non-faulty nodes which are not selected in the committee may set their state as
“undecided” immediately after the selection of the candidate nodes.

Below, we analyze the message and time complexity of the algorithm.

Lemma 3.3. The message complexity of the authenticated implicit BA algorithm isO(n0.5 log3.5 n).

Proof. In Step 3 and 4 of the algorithm, O(log n) candidate nodes send their input value with
signature to the other candidate nodes via the 2

√
n log n referee nodes. Here the size of each

message is O(κ+ log n) bits, where κ is the security parameter, the size of the signature. So these
two steps uses O(

√
n log n) ·O(log n) ·O(κ+ log n) = O((κ+ log n)

√
n log3 n) bits.

Inside the O(log n) iteration (Step 6): O(log n) candidate nodes may have at most O(log n)
messages to be sent to the referee nodes for O(log n) rounds. The size of each message is O(κ +

log n) bits. So it uses O((κ+ log n)
√
n log7 n) bits. Further, the same number of message bits are

used when the referee nodes forward the messages to the candidate nodes. Thus, a total O((κ +

log n)
√
n log7 n) bits are used inside the iteration.

Hence, the total communication complexity of the algorithm is O((κ + log n)
√
n log7 n) bits.

Since the length of κ is typically to be the maximum size of the messages [113], it is safe to assume
κ is of order O(log n) for large n. Therefore, the total number of bits used is: O(

√
n log9 n).

Thus, the message complexity of the algorithm is O(
√
n log7 n), since the size of each message is

O(log n)6. □

Lemma 3.4. The time complexity of the algorithm is O(log2 n) rounds.

Proof. There are O(log n) candidate nodes, and each may have O(log n) messages to be sent to
its referee nodes in parallel. Thus, it takes O(log2 n) rounds, since it takes one round to send a
constant number of messages of size O(log n) bits. The same time bound holds when the referee
nodes forward the messages to the candidate nodes. Therefore, the overall round complexity is
O(log2 n). □

Thus, we get the following result of the implicit Byzantine agreement with authentication.

Theorem 3.5 (Implicit Agreement). Consider a synchronous, fully-connected network of n nodes
and CONGEST communication model. Assuming a public-key infrastructure with the keyed hash

6Alternatively, the communication complexity is O
(√

n log9 n
)

bits.

Authenticated Implicit Byzantine Agreement 61

function, there exists a randomized algorithm which, with the help of a global coin, solves implicit
Byzantine agreement with high probability in O(log2 n) rounds and uses O(n0.5 log3.5 n) messages
while tolerating f ⩽ (1/2 − ϵ)n Byzantine nodes under non-adaptive adversary, where ϵ is any
fixed positive constant.

Our implicit agreement algorithm can be easily extended to solve explicit agreement (where
all the honest nodes must decide on the same value satisfying the validity condition) in one more
round. After the implicit agreement, the committee nodes send the agreed value (along with the
signature) to all the nodes in the network in the next round. This incurs O(n log n) messages.
Then all the nodes decide on the majority value since the majority of the nodes in the committee
are honest. Thus, the following result of explicit agreement follows immediately.

Theorem 3.6 (Explicit Agreement). Consider a synchronous, fully-connected network of n nodes
and CONGEST communication model. Assuming a public-key infrastructure with the keyed hash
function, there exists a randomized algorithm which, with the help of global coin, solves Byzantine
agreement with high probability in O(log2 n) rounds and uses O(n log n) messages while tolerat-
ing f ⩽ (1/2 − ϵ)n Byzantine nodes under non-adaptive adversary, where ϵ is any fixed positive
constant.

Let us now discuss some relevant follow-up results.

3.3.1 Byzantine Leader Election

A leader can be elected without any communication in this model. Since the public keys are known
to all the nodes, the node nearest to the random number generated through the global coin will be
the leader. In case of a tie, the node with the largest public key will be the leader. The elected
leader is non-faulty with probability at most (1 − f/n), where f is the number of faulty nodes.
The reason is that the Byzantine nodes can act as an honest node and the probability of electing a
Byzantine node as leader is the same as for an honest node. Since there are at most f ⩽ (1/2− ϵ)n
Byzantine nodes, the elected leader is non-faulty with at most constant probability.

We remark that a leader solves the implicit agreement, as the leader can agree on its own input
value. It also solves explicit simply by sending its value to all the nodes. However, the success
probability of the Byzantine agreement is at most constant. A Byzantine agreement protocol with
a high success probability is important for practical solutions (which is presented in the above
section).

62 Sublinear Message Bounds for Authenticated Byzantine Agreement

3.3.2 In the KT1 Model

In the KT1 (Known Till 1) communication model, an implicit Byzantine agreement can be solved
in O(log2 n) rounds using O(log3 n) messages in the same settings. First, select the candidate
nodes of size Θ(log n) as we selected in the KT0 model (see Section 2.5). In the KT1 model, each
node is aware about the IDs’ of its neighbor. Therefore, the candidate nodes know each other and
the port connecting to them. In fact, they form a complete graph of size Θ(log n) where one node
knows the other. Now, we can run the Algorithm 3 on this complete graph of candidate nodes,
which essentially solves implicit Byzantine agreement in O(log2 n) rounds and uses O(log3 n)
messages.

The leader election can be solved in the same way as in Section 3.3.1; there is no need of any
communication.

3.3.3 Removing the Global Coin and Hash Function Assumption

The assumption on accessing a global coin and hash function can be replaced by some other as-
sumption (which might be stronger in some context). Previously, with the help of global coin, a
random set of candidate nodes is selected. Recall that the access of the global coin is given to
the nodes after the adversary selects the Byzantine nodes (and it is a static adversary). Otherwise,
the adversary can know which nodes would be in the candidate set and based on that selects the
Byzantine nodes to be in the candidate set. Suppose there is no access of global coin (or shared
random bits) and hash function. Then we need to make the adversary first selects the Byzantine
nodes, and then the PKI setup is imposed in the network. Since the trusted third party generates
a random pair of public-secret keys (pk, sk), the O(log n) nodes with the smallest public keys can
be taken as the candidate nodes. Thus, the randomness in the candidate nodes set is preserved as
required.

3.4 Byzantine Subset Agreement

Let us suppose we have a subset S of k nodes (among the n nodes in a complete network) that want
to agree on a common value. Assume the majority of the nodes in S are honest. The nodes in S do
not know each other. Then one can solve the Byzantine subset agreement (see Definition 3.2) easily
using the implicit Byzantine agreement algorithm in Section 2.5. The algorithm is simple. All the
k nodes in S act as candidate nodes and run the rest of the implicit agreement algorithm. Since the

Lower Bound on Message Complexity 63

message complexity of the implicit agreement algorithm is dominated by O(|C||R|), where |C| is
the number of candidate nodes and |R| is the number of referee nodes sampled by each candidate
node. Thus, the message complexity of the Byzantine subset agreement algorithm is Õ(k

√
n) and

it finishes in O(k log n) rounds.

However, notice that, when k > Ω(
√
n), the above message bounds are more than Ω(n log n)

which is worse than a simple O(n log n) message complexity algorithm that solves explicit agree-
ment over all the n-nodes (c.f. Theorem 3.6). This is better if k >

√
n log n. Thus, if the size of

S is known, and it is less than O(
√
n), then run the above Byzantine subset agreement algorithm.

Otherwise, if the size is larger thanO(
√
n) then run the explicit algorithm presented in Section 2.5,

Theorem 3.6.

Thus, we get the following theorem when the size of subset S is known.

Theorem 3.7 (Byzantine Subset Agreement). Consider a complete n-node network G(V,E) and
a subset S ⊆ V of size k. There is a randomized algorithm which, with the help of a global coin,
hash function and PKI set up, solves the Byzantine subset agreement over S with high probability
and finishes in Õ(k) rounds and uses min{Õ(k

√
n), Õ(n)} messages.

3.5 Lower Bound on Message Complexity

We argue a lower bound of Ω(
√
n) on the number of messages required by any algorithm that

solves the authenticated Byzantine agreement under honest majority with high probability. Recall
that all the nodes have access to an unbiased global coin. The nodes know the IDs of the other
nodes, but are unaware of the port connecting to the IDs. Also, the communication is authenticated.
Our AUTHENTICATED-IMPLICIT-BA algorithm solves multi-valued agreement in polylogarithmic
rounds and uses Õ(

√
n) messages (see, Theorem 3.5). In a non-Byzantine setting, the multi-

valued agreement can be used to elect a leader by using the IDs of the nodes as the input values.
Thus, any lower bound on the message complexity (and also on the time complexity) of the leader
election problem also applies to the multi-valued agreement. Therefore, the Ω(

√
n) lower bound

shown by [14] for the leader election problem using global coin (in the non-Byzantine setting)
also applies to our multi-valued Byzantine agreement with global coin. Note that the lower bound
holds because of the high success probability requirement of the agreement; otherwise, the leader
election algorithm discussed in Section 3.3.1 solves the agreement with zero message cost, but
with only constant success probability. However, the above argument does not hold for the binary
agreement, where the input values are either 0 or 1. Below, we argue for the binary case.

64 Sublinear Message Bounds for Authenticated Byzantine Agreement

LetA be an algorithm that solves the authenticated Byzantine (binary) agreement with constant
probability (say, more than 1/2) under an honest majority with the access of an unbiased global
coin and uses only o(

√
n) messages. We show a contradiction. Recall that it is a KT0 model; so

nodes do not know which edge connects to which node-ID. To achieve agreement with constant
probability, nodes must communicate with the other nodes; otherwise, if the nodes try to agree
locally without any communication, it is likely that there exist two nodes that agree on two different
values (this can be easily shown probabilistically). On the other hand, if all the nodes try to
communicate, then the message complexity of A would be Ω(n). So, only a few nodes need to
initiate the process. Thus, A must pick these few initiator nodes randomly; otherwise, if picked
deterministically, the Byzantine nodes can take over the initiator nodes. The initiator nodes must
communicate with the nodes in the network to achieve agreement.

The initiator nodes do not know each other. In the KT0 setting, for any two nodes to find
each other with more than 1/2 probability requires Ω(

√
n) messages – follows from the following

lemma.

Lemma 3.5. In theKT0 model, it takes Ω(
√
n) messages for any two nodes to find each other with

more than constant probability.

Proof. Suppose x and y be the two nodes. Both x and y samples f(n) nodes uniformly at random
from all the nodes to find out each other. Let E is the event of having collision in the random
samples. Then, for f(n) <

√
n,

Pr[E] = 1−
(
1− f(n)

n

)f(n)

= 1− e
−(f(n))2

n < 1− 1/e = 0.63 (3.4)

Therefore, x and y cannot find out each other with more than constant probability with o(
√
n)

messages. □

Each initiator node samples some nodes. The initiator and the sampled nodes may exchange
messages with the other nodes in the network throughout the execution of A – all these nodes form
a connected sub-graph. Let us call this sub-graph as communication graph of the initiator node.
Thus, for every initiator node, there is a communication graph. Some of them may merge and
form a single communication graph. However, it is shown in [14] that if the algorithm A sends
only o(

√
n) messages, then there exist two disjoint communication graphs w.h.p. (see, Section 2

of [14]). Since the nodes do not know each other (in KT0), the communication graphs have
similar information. The global coin also gives the same information to all the nodes. Since the
communication graphs are disjoint, no information is exchanged between them. A formal proof of

Lower Bound on Message Complexity 65

this argument can be found in [97, 14].

Let Hu and Hv be the two disjoint communication graphs corresponding to the two initiators u
and v respectively. We show that Hu and Hv agree with opposite decisions, i.e., if Hu decides on
0 then Hv decides on 1 and vice versa.

Lemma 3.6. The nodes of Hu and Hv agree with opposing decisions.

Proof. The nodes in Hu and Hv are random since the network is anonymous and no information
is known before contacting a node. Thus, the same (1/2 − ϵ) fraction of Byzantine nodes (as
in the original graph G) are present in both Hu and Hv in expectation. Now consider an input
distribution I, in which each node in the graph G is given an input value 0 and 1 with probability
1/2. Then in expectation, half of the honest nodes in Hu (and also in Hv) gets 0 and the other half
gets 1. We argue that the two disjoint sets of nodes in Hu and Hv decide on two different input
values under the input distribution I. Recall that the nodes in Hu have the same information as the
nodes in Hv. Further, they run the same algorithm A. The Byzantine adversary (which controls
the Byzantine nodes) knows the algorithm and also the input values of the honest nodes in Hu and
Hv. Since the number of Byzantine nodes in each of the Hu and Hv is almost half of their size,
and 0 − 1 distribution among the honest nodes is almost 50-50, the Byzantine nodes can control
the output of the agreement in the two groups — Hu and Hv. Suppose the Byzantine nodes in Hu

exchange some input bits with honest nodes to agree on 0 in Hu, then the Byzantine nodes in Hv

must exchange opposite bits to agree on 1 in Hv. Thus, Hu and Hv agree with opposing decisions.
□

The above lemma contradicts the assumption that A solves the Byzantine (binary) agreement
with only o(

√
n) messages. The global coin does not help, as it gives the same information to all

the nodes. Thus, we get the following result on the lower bound of the message complexity.

Theorem 3.8. Consider any algorithm A that has access to an unbiased global coin and sends at
most f(n) messages (of arbitrary size) with high probability on a complete network of n nodes. If
A solves the authenticated Byzantine agreement under honest majority with more than 1/2 proba-
bility, then f(n) ∈ Ω(

√
n).

Note that the lower bound holds for the algorithms in the LOCAL model, where there is no
restriction on the size of a message that can be sent through edges per round [118].

66 Sublinear Message Bounds for Authenticated Byzantine Agreement

3.6 Experimental Evaluation

We implement our Authenticated Implicit BA algorithm (Algorithm 3) to evaluate the performance
with respect to different sizes of the Byzantine nodes. We consider the following simulation frame-
work. We consider n nodes and c log n committee nodes, where the constant c is 3α/ϵ2 such that
α = 1/2− ϵ measures the fraction of the Byzantine nodes, see Lemma 3.1. The binary input value
is assigned randomly from the set {0, 1} to each node. The Byzantine nodes are chosen randomly.
Since it is difficult to adapt the Byzantine nodes’ arbitrary behavior in the experiment, we simply
consider the following random strategy of the Byzantine nodes. The Byzantine nodes randomly
(with probability 1/2) decide whether they would send a value or not in a round. If a Byzantine
node decides to send, it decides randomly (with probability 1/2) whether it will send its input value
or the opposite value.

For each simulation, we consider 260 to 270 nodes. Each simulation is run 20 times and takes
the average. The plotting of the graph is shown for the four different sets of Byzantine nodes,
namely,

√
n, n/10, n/4 and 3n/10. We plot the graph for a number of nodes at x-axis (in Figure 3-

1 and Figure 3-2) while rounds and messages at y-axis in Figure 3-1 and Figure 3-2, respectively,
by varying the parameter w.r.t number of Byzantine nodes and a number of nodes.

Summary of the round complexity: Figure 3-1 shows that as the number of Byzantine nodes
increases, the number of rounds increases. This happens due to the increment of the constant
value c. For example, as Byzantine nodes vary from n/4 to 3n/10 then the constant c varies
from 12 to 22.5. Since the number of Byzantine nodes is known, therefore, committee nodes wait
for the delay imposed by the Byzantine nodes. After the delay imposed by the Byzantine nodes,
honest nodes sends all the received input value from Byzantine nodes (if any). Consequently, the
number of rounds is lower than the theoretical guarantees. More specifically, the experimental
round complexity is (1/2 − ϵ) times, i.e., the fraction of Byzantine nodes times lower than the
theoretical complexity. For example, if we consider number of nodes are 260 and Byzantine nodes
are 260/4 then c = 12. In this case, round complexity is c log n·c log n, i.e., 12·60·12·60 = 518400

and the experimental rounds are 129600 (see in Figure 3-1). This show that in the experimental
set-up, the number of rounds improved (lower) by a factor of 4 when fractions of Byzantine nodes
are 1/4.

Summary of the message complexity: Figure 3-2 shows, the number of message increase for the
fixed number of nodes as the number of Byzantine nodes increase. This happens due to the incre-
ment of the constant value c with the number of Byzantine nodes. Further, message complexity
varies by the number of rounds that send the message during the execution of the algorithm. The

Experimental Evaluation 67

Figure 3-1: Algorithm 3 evaluate the performance w.r.t the different number of Byzantine nodes.
X-axis shows the number of nodes in the network and Y-axis shows the number of
rounds taken to execute the Algorithm 3.

number of rounds in which honest nodes send the message decreased to constant since Byzantine
nodes randomly decide whether to send or not to send the message to the honest nodes. Therefore,
honest nodes receive the message from the Byzantine nodes at an early stage of the algorithm. For
that reason, the number of messages are lower by a factor of c log n as compared to the theoretical
guarantees. For example, if we consider the case that we considered for the round analysis, in
which, we considered the number of nodes, n = 260 and Byzantine nodes n/4 then c = 12. In that
case, theoretical messages are 2 ·

√
n log n · c3 · log3 n = 6.2 · 1018. Experimentally, the number

of rounds in which messages were sent is 3. Therefore, the experiment takes 0.05 · 1018 messages
(see in the Figure 3-2). This suggests the number of messages sent in the experimental setup is
improved (lower) by a factor of 120.

The experiments show that for a wide range of parameters, the algorithm results corroborate our
theoretical guarantees. Furthermore, the experimental results perform better than the theoretical
guarantees when the Byzantine nodes behave randomly.

68 Sublinear Message Bounds for Authenticated Byzantine Agreement

Figure 3-2: Algorithm 3 evaluate the performance w.r.t the different number of Byzantine nodes.
X-axis shows the number of nodes in the network and Y-axis shows the number of
messages taken to execute the Algorithm 3.

3.7 Conclusion

We studied one of the fundamental problem in distributed networks, namely Byzantine agreement.
We showed that implicit Byzantine agreement can be solved with sublinear message complexity
in the honest majority setting with the help of cryptographic set up of PKI and hash function,
and access to a global coin. The bound is also optimal up to a polylog n factor. To the best of
our knowledge, this is the first sublinear message bound result on Byzantine agreement. We also
implemented our algorithm to show its efficiency w.r.t different sizes of the Byzantine nodes. We
further analyzed some relevant results which immediately follow from our main result. We also
studied subset agreement, a generalization of the implicit agreement.

A couple of interesting open problems raised by the work are: (i) is it possible to achieve a sub-
linear message complexity Byzantine agreement algorithm without the global coin or hash function
in this setting? (ii) whether a sublinear message bound is possible under adaptive adversary, which
can take over the Byzantine nodes at any time during the execution of the algorithm?

Chapter 4

Tight Bounds on the Fault-Tolerant Graph
Realizations in the Congested Clique

In this chapter, we study the graph realization problem in the Congested Clique model of dis-
tributed computing under crash faults1. We consider degree-sequence realization, in which each
node v is associated with a degree value d(v), and the resulting degree sequence is realizable if it is
possible to construct an overlay network with the given degrees. Our main result is a O(f)-round
deterministic algorithm for the degree-sequence realization problem in a n-node Congested Clique,
of which f nodes could be faulty (f < n). The algorithm uses O(n2) messages. We complement
the result with lower bounds to show that the algorithm is tight w.r.t the number of rounds and the
messages simultaneously. We also extend our result to the Node Capacitated Clique (NCC) model,
where each node is restricted to sending and receiving at-mostO(log n) messages per round. In the
NCC model, our algorithm solves degree-sequence realization in O(nf/ log n) rounds and O(n2)

messages. These algorithms work for KT1 (Knowledge Till 1 hop) model where nodes know their
neighbors’ IDs.

We further study the graph realization problem in the more robust model that is KT0 (Knowl-
edge Till 0 hop) model, in which each node knows the IDs of all the nodes in the clique, but does
not know which port is connecting to which node-ID. We extend the result to KT0 when the net-
work is anonymous, i.e., the IDs of the neighboring nodes are unknown. We present an algorithm
that solves the graph realization problem in the KT0 model with matching performance guarantees
as in the KT1 model.

4.1 Introduction

Graph Realization problems have been studied extensively in the literature, mainly in the sequen-
tial setting. In general, graph realization problems deal with constructing graphs that satisfy certain

1These findings are based on joint work with Anisur Rahaman Molla and Sumathi Sivasubramaniam (which ap-
peared in International Symposium on Algorithmics of Wireless Networks 2022) and contains material from [94].
Further, the findings are based on the work which appeared at International Conference on Distributed Computing and
Intelligent Technology 2023 and contains material from [91].

69

70 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

predefined properties (such as a degree sequence). While the area was mostly focused on realizing
graphs with specified degrees [68], other properties, such as connectivity [52, 50, 51], flow [62]
and eccentricities [23, 102] have also been studied.

The degree-sequence realization problem has been explored widely in the centralized setting.
Typically, the problem consists of the following. Given a sequence of non-negative numbers D =

(d1, d2, . . . , dn), the degree-sequence problem asks if D is realizable. A sequence D is said to be
realizable if there is a graph of n nodes whose sequence of degrees matches D. The first complete
characterization of the problem was established in 1960, when Erdös and Gallai [43] showed that
D is realizable if and only if

∑k
i=1 di ⩽ k(k − 1) +

∑n
i=k+1min(di, k) for every k ∈ [1, n]

following which, the definitive solution was independently found by Havel and Hakimi [68, 67],
a recursive sequential algorithm that takes O(n) time (see Section 4.3 for more detail). Non-
centralized versions of realizing degree sequences have also been studied, albeit to a lesser extent.
Arikati and Maheshwari [9] provide an efficient technique to realize degree sequences in the PRAM
model.

Recently, Augustine et al. [12] studied the graph realization problem in distributed networks.
They approach the graph realization from the perspective of Peer-to-Peer (P2P) overlay construc-
tion. P2P overlay networks are virtual networks built on top of the underlying network, e.g.,
Internet. Given the increasing popularity of P2P networks (in key areas like cryptocurrencies,
blockchain, etc.), research on P2P networks, particularly in the construction of P2P overlays, has
become a crucial part of distributed computing.

In [12], the authors build overlay networks by adapting graph realization algorithms. Briefly,
given a network of n nodes V = {v1, . . . , vn}, where each vi is assigned a degree di, the goal is to
create an overlay graph G(V,E) such that d(vi) = di in G, and for any edge e ∈ E, at least one
of e’s endpoints knows the existence of e (referred to as an implicit realization). Note that, for any
edge it is only required that one endpoint must be aware of its existence, which means that a node
may be aware of only a small part of the realized graph. In the best case, the nodes know only their
neighbors in the final realization. However, in most of the P2P overlay applications, it is crucial to
know the entire overlay graph. Furthermore, the network is assumed to be fault-free.

In this work, we extend the graph realization problem in a faulty setting where node may fail
by crashing. In addition, we consider the graph realization from the approach of learning degrees
so that the nodes may recreate the degree sequence locally, i.e., they know the entire overlay graph.
To be precise, we develop fault-tolerant algorithm which ensures that each node learns the degree
of all the non-crashed nodes (at least) in the network. This allows the nodes to use the sequential
Havel-Hakimi algorithm [68, 67] to build the overlay graphG locally. Note that, since every (non-

Introduction 71

crashed) node learns the degree sequence and creates the realization, all of them know the entire
overlay graph.

Our work is primarily in the Congested Clique (CC) model, a well-studied model in distributed
networks [104]. The Congested Clique model has been explored widely for many fundamental
distributed problems [29, 57, 56, 70, 71, 87, 22, 42, 82, 21]. Distributed networks are faulty by
nature; nodes crash, links fail, nodes may behave maliciously, etc. In the node failure settings,
the two fundamental problems, namely, agreement and leader election has been studied exten-
sively [41, 53, 72, 14, 25, 46, 78, 1, 92, 59]. The main challenge in a faulty setting is to ensure
that no two nodes have a different view of a value, which may lead to an increase in the number
of rounds or messages or both. Thus, in our work, we focus on developing an algorithm that min-
imizes the time complexity and the message complexity simultaneously in the Congested Clique
with faulty nodes.

In order to make our algorithm more suited for the networks with message overhead limitation
(such as peer-to-peer networks), we also extend the algorithm to the Node Capacitated Clique
(NCC) model, introduced by Augustine et al. [13]. In the NCC, nodes are restricted to send and
receive only O(log n) messages per round, making it ideal for more realistic settings (e.g., less or
no overhead at nodes). The authors in [12] restrict their graph realization algorithms primarily to
the NCC model. While our main algorithm considers the CC model, we extend it to the NCC model
also. For both the settings (CC and NCC), our algorithms do not require any prior knowledge of
f— the number of faulty nodes.

As a byproduct, our algorithms solve fault-tolerant reliable broadcast or consensus [122, 33,
36, 35] in a congested clique. Reliable broadcast algorithms ensure that both senders and receivers
agree on a value m sent by a correct process. That is, either all correct processes decide on the
value m being sent or decide the sender is faulty. While this is similar to our problem, in our
case we extend the basic premise to ensure that all nodes agree on the same degree sequence,
which consists of ensuring that the network agrees on at most O(n) values (degrees). This causes
a significant challenge to the broadcast protocols in a faulty setting. To the best of our knowledge,
the best known for consensus protocol in the crash failure setting has O(f) time complexity and
O(n) message complexity [35]. Since there could be O(n) values to be agreed to make sure that
all the non-crashed nodes have the same degree sequence, the best-known reliable broadcast or
consensus protocol would not give better bounds if applies to solve the graph realization problem
in the congested clique.

Chapter Organization: The rest of the chapter is organized as follows. In the rest of the section,
we first present our results, followed by a brief description of the model and a formal defini-

72 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

tion of our problem. In Section 4.2, we discuss various related works in the field. Section 4.3
provides a brief description of the sequential Havel-Hakimi solution for the graph realization prob-
lem. Section 4.4 presents the main result, which is an efficient solution for the fault-tolerant graph
realization problem and also provides matching lower bounds. In Section 4.5, we extend the graph
realization algorithm to the NCC model. Further, we improve the graph realization results with
KT0 model in Section 4.6. And finally, in Section 4.7 we conclude the chapter.

4.1.1 Our Contributions

We present an efficient algorithm and matching lower bounds for the distributed graph realization
problem in the Congested Clique and Node Capacitated Clique model in the presence of node
failures. Specifically, our results are:

1. Findings in KT1 model:

(a) An O(f)-round deterministic algorithm for the graph realization problem in an n-node
Congested Clique with at most f < n node failures. The message complexity of the
algorithm is O(n2), where the size of each message is O(log n) bits.

(b) We show a matching lower bound for both the time and the message bounds– which
demonstrates the simultaneous time and message bounds optimality of our algorithm.

(c) We extend the algorithm for the Congested Clique to the Capacitated Clique, and
present a O(nf/ log n)-round and O(n2)-message complexity algorithm.

2. Findings in KT0 model:

(a) Consider an n-node Congested Clique with KT0 model, in which f < n nodes may
crash arbitrarily at any time. Given an arbitrary n-length degree sequenceD = (d1, d2, . . . , dn)

as an input such that each di is only known to one node in the clique. Then there ex-
ists a deterministic algorithm that solves the fault-tolerant graph realization problem in
O(f) rounds and using O(n2) messages such that f is unknown to the network.

(b) We show a matching lower bound for both the time and the message bounds– which
demonstrates the simultaneous time and message bounds optimality of our algorithm.

Introduction 73

4.1.2 Model and Definitions

We consider the message-passing model of distributed computing. The underlying network is a
Congested Clique (CC) [87, 104]. A Congested Clique consists of n nodes which are identified
by unique IDs from {u1, u2, . . . , un}. Communication among the nodes happens in synchronous
rounds, where in each round a node can communicate with any of the other n − 1 neighbors by
sending a message of size O(log n) bits. This was first introduced in [118]. Nodes know the ID of
the other nodes and the port connecting to the IDs. This assumption is known as the KT1 model
[118]. On the other hand, in KT0 model (knowledge till 0 hop), a node does not know the IDs of
its neighbors initially.

We assume that an arbitrary subset of the nodes in the clique of size up to f < n may fail by
crashing. A faulty node may crash in any round during the execution of the algorithm. If a node
crashes in a round, then an arbitrary subset (possibly all) of its messages for that round may be lost
(as determined by an adversary) and may not have reached the destination (i.e., neighbors). The
crashed node halts (inactive) in the further rounds of the algorithm. If a node does not crash in a
round, then all the messages that it sends in that round are delivered to the destination.

We consider an adaptive adversary controls the faulty nodes, which selects the faulty nodes at
any time during the execution of the algorithm. Also, the adversary chooses when and how a node
crashes, which is unknown to the nodes.

The time complexity of an algorithm is the number of rounds from the start until the termination
of the algorithm. The message complexity of an algorithm is the total number of messages sent by
all the nodes throughout the execution of the algorithm.

In the interest of being useful in the Peer-to-Peer context, we also consider the Node Capac-
itated Clique (NCC) [13] model. NCC limits each node to send or receive a bounded number of
messages, which, interestingly, makes NCC quite distinct from CC. In this model, any node, say,
u can send or receive O(log n) messages, each of size O(log n) bits.

We will now formally define the distributed graph realization problem (with and without faults).
We say that an overlay graph G = (V,E) is constructed if, for every e = (u, v) ∈ E, at least one
of the endpoints is aware of the ID of the other and also aware that e ∈ E. We say that the overlay
graph is explicit if, for every edge e ∈ E in the graph both endpoints know each other’s ID and are
aware of that e ∈ E.

Definition 4.1 (Distributed Graph Realization [12]). Let V = {v1, . . . , vn} be the set of nodes in
the network. LetD = (d1, d2, . . . , dn) be an input degree sequence such that each di is only known

74 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

to the corresponding node vi. The distributed degree realization problem requires that the nodes
in V construct a graph realization of D such that in the resulting overlay graph G, the following
conditions hold:

1. The degree sequence of G is precisely D.

2. The degree of vi is di, ∀i ∈ {1, . . . , n}.

Thus, in the case of the distributed graph realization problem, a solution should output the graph
G if D is a realizable degree sequence; otherwise, the output is “unrealizable”.

Definition 4.2 (Distributed Graph Realization with Faults). Let V = {v1, . . . vn} be the set of
nodes in the network and D = (d1, d2, . . . , dn) be an input degree sequence such that each di is
only known to the corresponding node vi. Let F ⊂ V be an arbitrary subset of faulty nodes in the
network, such that |F | = f ≤ n− 1. Let us define D′ ⊆ D be the modified degree sequence after
losing the degrees of some faulty nodes and G′ be the corresponding overlay graph over D′. The
distributed degree realization with faults problem requires that the non-faulty nodes in V construct
a graph realization ofD′ such that in the resulting overlay graphG′, the following conditions hold:

1. |D′| ≥ n− |F |.

2. D −D′ is the degree sequence corresponding to some nodes that crashed.

3. For any edge e = (u, v) ∈ G′, either u or v (or both) knows of the existence of e.

The required output is an overlay graph G′ if D′ is realizable; otherwise, the output is “unrealiz-
able”.

4.2 Related Work

Fault-tolerant computation has always been a popular area of research in distributed computation,
only becoming more popular with the prevalence of P2P networks that encourage for high decen-
tralization. Often the focus of such research is on maintaining connectivity [16], recovery, or on
ensuring that the network can tolerate a certain number of faults [133]. We refer interested readers
to [127] for more information on models and techniques for designing such systems. In our work,
we focus mainly on ensuring that all the (non-faulty) nodes have the same view of the information
in-spite of the presence of numerous faults.

Preliminary: The Sequential Havel-Hakimi Algorithm for Graph Realization 75

In lieu of this, our goal in this work is to solve the distributed degree sequence problem, which
is a graph realization problem. Graph realization problems have been well studied in the litera-
ture, focusing on problems such as realizing graphs with specified degrees [68] as well as other
properties, like connectivity and flow [62, 52, 50, 51] or eccentricities [23, 102]. Bar-Noy et al.
explored the graph realizations in various settings like vertex-weighted, distance set, and relaxed
and approximate graph realizations [19, 18, 20]. Arikati and Maheshwari [9] provide an efficient
technique to realize degree sequences in the PRAM model, and in [12], the authors explored graph
realization from a distributed setting. However, both of these works assumed a fault-free setting.
Here we extend the model to a faulty setting. In [12], Augustine et al. discussed distributed graph
realizations on a path (both implicit and explicit). However, in their work, a node is only required
to learn its neighbors in the final realization, in our work, the nodes are aware of the entire graph.

In the area of P2P overlays, there is a great deal of existing literature. In particular, a large
amount of research exists to create overlays that provide structure and stability. This is best cap-
tured by overlays such as Chord [131], CAN [121], and Skip Graphs [10]. Overlays have also been
specifically designed to tolerate faults [47, 15]. For a more detailed survey on P2P overlays and
their properties, we refer interested readers to the following excellent surveys [107, 105].

Our network is modeled using the Congested Clique model. The congested clique model,
first introduced by Lokter et al., [104] has been well studied, in both the faulty and non-faulty
settings [115, 38]. Problems such as agreement and leader election have also been well studied
in this model [1, 14, 59, 90]. To the best of our knowledge, this is the first time graph realization
problems have been studied in the faulty setting of Congested Clique.

While the results for the Congested Clique are interested in and of itself, in order to make our
work more applicable to P2P settings, we also explore how to solve the graph realization problem
in the NCC [13]. In the NCC, unlike the CC, a node is allowed to send/receive at most O(log n)
messages in a round, this makes gathering information in a faulty-setting slightly more challenging.

4.3 Preliminary: The Sequential Havel-Hakimi Algorithm for
Graph Realization

We will now briefly introduce the sequential Graph Realization problems that inspired our dis-
tributed version of the same. Graph realization problems are fairly simple in characterization. The
basic premise is as follows: given a particular degree sequence D = (d1, d2 . . . dn), can we create
a graph G whose degree sequence is precisely D? The most well known characterization is given

76 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

independently by Havel [68] and Hakimi [67], which can be stated concisely as follows.

Theorem 4.1 (Based on [68] and [67]). A non-increasing sequence D = (d1, d2, ..., dn) is graphic
(i.e., graph is realizable) if and only if the sequenceD′ = (d′2, ..., d

′
n) is graphic, where d′j = dj−1,

for j ∈ [2, d1 + 1], and d′j = dj , for j ∈ [d1 + 2, n]

This characterization directly implies a O
(∑n

i=1 di
)

time (in terms of number of edges) se-
quential algorithm, known as the Havel-Hakimi algorithm, for constructing a realizing graph
G = (V,E) where V = {v1, ...vn} and d(vi) = di, or deciding that no such graph exists. The
algorithm works as follows. Initialize G = (V,E) to be an empty graph on V . For i = 1 to n, in
step i do the following:

1. Sort the remaining degree sequence in non-increasing order (di ≥ di−1 ≥ . . . dn).

2. Remove di from D, and set dj = dj − 1 for all j ∈ [i+ 1, di + i+ 1].

3. Set the neighborhood of the node vi to be {vi+1, vi+2, ...vi+1+di}.

If, at any step, D contains a negative entry, the sequence is not realizable.

4.4 Fault-Tolerant Graph Realization in KT1

In this section, we present an efficient solution for graph realization with faults. Recall that we are
given a n-node Congested Clique, in which at most f < n nodes may crash arbitrarily at any time.
Also, a vector of degree sequence (d1, d2, . . . , dn) is given as an input such that each di is only
known to one node in the clique. Our goal is to construct an overlay graph of size at least n − f
if realizable; otherwise output is unrealizable. We present an algorithm that guarantees, despite
f < n faulty nodes, that (i) all the (non-crashed) nodes learn and recreate a degree sequence whose
size is at least n− f , and (ii) this degree sequence is the same for all the nodes as a requirement of
the graph realization (see Definition 4.2). This allows the non-crashed nodes to locally realize the
overlay graph with the help of Havel-and-Hakimi’s algorithm, described in Section 4.3. We note
that the algorithm does not require any knowledge of f . Our algorithm crucially uses only a few
number of nodes to be involved in propagating the information about crashed nodes to the other
nodes in the network – which helps to minimize the message complexity and round complexity of
the algorithm.

Fault-Tolerant Graph Realization in KT1 77

At a high level, the algorithm runs in two phases. In the first phase, which consists of only two
rounds, each node sends the message containing its ID and input-degree twice (in two consecutive
rounds). Based on the frequency of the received message, i.e., zero or one or two times, the receiver
node considers the sender node’s status as faulty or non-faulty. Then each node locally creates an
initial faulty list and a degree sequence (known only to itself). In the second phase, through sharing
the information about faulty nodes present in the faulty list, the nodes rectify the degree sequence
and create a final degree sequence D′, which is guaranteed to be the same for all the non-crashed
nodes. The non-crashed nodes then realize the overlay graph using D′ as the degree sequence via
the Havel-and-Hakimi algorithm.

Let us recall a few basic assumptions. For simplicity, we assume the KT1 version of the
Congested Clique model, in which all the nodes know the IDs of the nodes in the clique and
the corresponding link or port connecting to the IDs. Thus, in the KT1 version, a node can sort
all the nodes in the clique according to their distinct IDs. W.l.o.g, let us assume the IDs are
U = {u1, . . . un} in the sorted order, i.e., ui < uj for i < j. A node knows its position in the
sorted order. Notice that a node ui can track whether it has received any messages from a node uj .
However, the algorithm also works in the KT0 version of the Congested Clique model where only
the IDs are known, but the corresponding links are unknown (i.e., a node does not know which
neighbor has which ID).

We will now explain the algorithm in detail, whose terminologies and definitions are summa-
rized in Table 4.1. A complete pseudocode is given in Algorithm 4. The first phase (which we call
the initialization phase) consists of two rounds. In both rounds, every node broadcasts its input
degree value to reach all the nodes in the clique. After the two rounds, each node ui creates a
faulty-list Fui

and a degree sequence D′
ui

as follows. Fui
consists of n cells corresponding to all

the nodes uj ∈ U (in the sorted order). For any uj (j ̸= i), if ui hears from uj in both the rounds,
ui includes uj’s degree value d(uj) in its final degree sequenceD′

ui
(and correspondingly uj’s entry

in the faulty-list is empty, i.e., Fui
(uj) = null). If ui hears from uj only in the first round (i.e., uj

crashed during the initialization phase), then uj is included as a faulty-node in its corresponding
entry. If ui did not hear from uj in both the rounds (i.e., uj crashed in the first round itself), then
uj is additionally marked as a smite-node in ui’s faulty-list. At the end of the algorithm, we show
that D′

ui
= D′

uj
for all i, j, which represents the final non-faulty-list D′.

In the second phase, nodes update their faulty-list locally. Nodes are divided into two groups
based on the two states – active state and listening state. A node in the active state transmits
messages, whereas a node in the listening state only receives messages. Nodes may update their
faulty-list according to the information received from the active nodes. Initially, all the nodes start

78 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

in the listening state. A node ui in listening state continues to be in that state as long as there is
another active node in the network. Let uj be the ID of the last active node (if there is none, let
j = 1). A node ui changes its status from listening state to active state if and only if ui has not
received any message from the last 3(i− j) rounds where j is the index of last heard node, i.e., uj .
Then ui becomes active in the (3(i− j) + r)th round; r is the round when ui heard from uj .

After the initialization phase (i.e., from the 3rd round), the node with the minimum ID (or
minimum index) becomes the active node, say the node u1 (if present). If Fu1 is non-empty, then
u1 sends the ⟨ID, d(ID)⟩ from the first non-empty cell in Fu1 twice (in two consecutive rounds).
If there is no d(ID) then u1 sends only ID. This situation may arise when an ID crashed such
that u1 does not receive d(ID) in the initialization phase (in the first two rounds). u1 continues
sending ⟨ID, d(ID)⟩ from its Fu1 one by one from minimum ID to maximum ID and for each
message ⟨ID, d(ID)⟩ it sends twice in consecutive rounds. When u1 finishes sending all the non-
null entries in Fu1 , it switches to the exit state (which we will explain shortly). If at any point
in time, u1 crashed then u2 will become the next active node after 3(2 − 1) = 3 rounds. The
exit state for any node uj consists of two tasks, (i) move all the Fuj

(if any) into D′
uj

. (ii) Send
out “all-okay” message to all other nodes and exit the algorithm. Sending or receiving “all-okay”
message conveys that all the known faulty-nodes have been addressed. All other nodes who hear
the message (those who are in the listening state) “all-okay” also enter the exit state. Let us now
discuss the update process of nodes in active and listening states in detail. Suppose ui is a node
which is currently in its active state and Fui

is non-empty. Then ui sends the first non-null entry,
say s, twice in consecutive rounds. If s was a smite-node then ui permanently removes s from the
Fui

. If s was a faulty-node, then ui moves d(s) to D′
ui

. If Fui
is empty, then ui enters the exit state.

If instead the node uj happened to be in its listening state, then let i be the index of the last
node heard by the node uj . If uj has not heard from any node during the last 3(j − i) rounds, then
uj sets its state to active. Since each node needs to send the message twice, we maintain a gap of
one extra round (total three) to prevent two or more nodes from being active at the same time. But
if uj is currently receiving messages from an active node ui then it does the following. Let s be the
ID it heard from ui. uj now updates its faulty-list Fuj

based on how many times uj heard about s
from the active node ui.

If uj heard about s twice, and swas a smite-node then uj permanently removes s from its faulty-
list Fuj

. However, if s was a faulty-node then uj moves s to D′
uj

(if not in D′
uj

) and permanently
removes Fuj

(s) (if any). Notice that uj might have received s earlier two times, in that case Fuj
(s)

will be null and there will be a corresponding entry in the D′
uj

. If uj heard about s only once,
then if s had been a smite-node (or respectively a faulty-node) then Fuj

(s) is marked as a smite-

Fault-Tolerant Graph Realization in KT1 79

node (respectively faulty-node). All non-null entries in Fuj
below s’s index are included in D′

uj
if

the entries correspond to faulty-nodes, otherwise they are set to null.

Throughout the algorithm, inclusion of the degree in D′ is permanent. Therefore, the corre-
sponding node entries in faulty-list remain null. At last, all the non-faulty nodes have the same
view of non-faulty-list i.e, D′. Therefore, the graph can be realized locally by the Havel-Hakimi’s
algorithm (see Section 4.3).

We will now show the correctness of the algorithm using the following lemmas and then ana-
lyze the time and the message complexity. Lemma 4.1, Lemma 4.2 and Lemma 4.3 show that the
final degree sequence D′ of all the non-crashed nodes are the same. Thus, the algorithm correctly
solves the distributed graph realization with faults in the Congested Clique. Finally, Lemma 4.4
analyzes the time complexity and Lemma 4.5 analyzes the message complexity of the algorithm.

Algorithm 4 FAULT-TOLERANT-GRAPH-REALIZATION

Require: A Congested Clique of n nodes U = {u1, u2, . . . , un}. Each node ui is given a degree
value d(ui) as an input.

Ensure: A corresponding graph realization that satisfies the conditions for distributed graph real-
ization with faults.

1: For the first two rounds, each node ui broadcasts ⟨ui, d(ui)⟩ to all the nodes. Each node creates
the faulty-list Fui

and the degree sequence D′
ui

.
2: Nodes are either in active, listening, or exit state. If u1 is non-faulty, then u1 becomes the first

active node.
Nodes in Active State.

3: while Fui
is non empty do

4: ui sends the ⟨ID, d(ID)⟩ (send d(ID) degree is available otherwise indicate smite if it is
a smite node) from minimum ID to maximum ID in Fui

twice – in two consecutive rounds.
5: if sent ID is a smite-node then
6: Remove ID from the list Fui

.
7: else if sent ID is faulty-node then
8: Move the degree with ID to D′

ui
.

9: end if
10: end while
11: Switch to exit state.

Nodes in Listening State follows the Algorithm 5
Nodes in Exit State

12: Remaining faulty nodes in the faulty-list are moved to D′.
13: Send out an “all-okay” message to all and exit the algorithm.
14: All the non-crashed nodes have the same view of D′. Therefore, graph can be realized by all

the non-crashed nodes using the Havel-Hakimi’s algorithm.

80 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

Algorithm 5 NODES IN LISTENING STATE FOR THE ALGORITHM 4
1: if nodes receives the message “all-okay” from any node then
2: Switch to exit state.
3: end if
4: For any listening node uj , let i be the index of the last node ui heard by the node uj . (starts

with i = 1).
5: if uj has not heard from any node in the last 3(j − i) rounds. then
6: uj switches to active state.
7: end if
8: if Node uj heard from a node ui then

Let s be the ID heard from ui. uj updates its list according to whether it heard s twice or once.
Heard Twice:

9: if s is a smite-node then
10: Remove s from the faulty-list permanently. All non-null entries before s’s index are

moved appropriately.
11: end if
12: if s is a faulty-node then
13: Move s’s degree to D′

uj
. All non-null entries below s’s index are moved appropriately.

14: end if
15: end if

Heard Once:
16: if s is a smite-node then
17: Set Fuj

(s) as smite node.
18: end if
19: if s is a faulty-node then
20: Set Fuj

(s) as faulty-node.
21: end if

The view of a node s at u is the classification of s as a smite-node or faulty-node at u. We will
now show that for any node s, the view of s is same across all the nodes at the end of the protocol.

Lemma 4.1. Let s be an ID for which there are conflicting views at the beginning of the second
phase. Then at the end of the protocol, i.e., when all nodes have reached the exit state, all nodes
are guaranteed to have the same view of s.

Proof. We prove this in cases. Suppose s is sent by some node. We look at the possible scenarios
for both the heard-twice and the heard-once.

Heard Twice: For the trivial case when a good node successfully broadcasts s twice to all nodes,
the statement follows immediately. For the other case when a faulty node successfully broadcasts
s in the first round, but crashes in the second round, there is a possibility that some nodes may have

Fault-Tolerant Graph Realization in KT1 81

heard about s twice, but the others may have not. In this case, all the nodes are still guaranteed to
have heard s at least once (in the first round of transmission) and thus would have the same view,
as they would have all updated their views simultaneously.

Heard Once: Let us consider the two cases.
Case 1: Node crashed sending s during the second round. This scenario is equivalent to the second
scenario in the heard-twice case, and thus follows the same logic.
Case 2: Node crashed sending s during the first round. In this case, let ui and uj be two nodes that
survived until the end, then there must exist a round in which ui (or respectively uj) informed each
other about their view of s. Then, based on the received values, they updated their views to match.
□

Lemma 4.2. Let s be an ID that was successfully transmitted twice by an active node ui during
the second phase of the algorithm. Then for any pair of nodes uj, uk (j, k ≥ i), all the (non-null)
entries below s are the same in their faulty-list. That is, for any non-null entry, Fuj

(p) = Fuk
(q)

for all p, q < s.

Proof. Suppose not. Let there be a node r (r < s) such that for two nodes uj , uk, Fuj
(r) reads as

smite-node while Fuk
(r) reads as faulty-node. If r had crashed during the second round of phase

1, this immediately contradicts our claim, as all nodes can only have r as either null or faulty-
node. In case it crashed during the first round, consider the following. Since r’s cell in ui is null
(otherwise r′s value would have been transmitted first by ui), ui must have heard r successfully
twice at a previous round of either phase. Which implies that all other nodes would have heard
about r at least once, hence would share the same view of r. □

Lemma 4.3. If a node ui decides to exclude an entry from its faulty-list then all other nodes uj
(j ̸= i) will also eventually exclude that entry. Conversely, if ui moves an entry from its fault-list
to Dui

, then eventually all other nodes uj will also move that entry to their Duj
.

Proof. If a node s is excluded from ui’s faulty-list then ui must have heard s as a smite-node twice,
which indicates that all other nodes must have received s at least once (as a smite-node). So all the
nodes exclude s from their faulty-list. The same logic applies in case of moving an entry toDui

. □

Lemma 4.4. The time complexity of the Algorithm 4 is O(f) rounds.

Proof. The first phase takes exactly two rounds. For the finalization of D′, any non-faulty node
would require at most f messages in O(f) rounds. In case of faults, there can be at most f node-
crashes, which can introduce a delay of at most f rounds. During phase 2, a node may take at most

82 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

O(f) rounds to inform the network of the entries in its fault-list (including delay due to faults).
Therefore, round complexity is O(f). □

Lemma 4.5. The message complexity of the Algorithm 4 is O(n2), where each message is at most
O(log n) bits in size.

Proof. The first phase of the algorithm uses O(n2) messages, since all the nodes broadcast in two
rounds. In the second phase, each faulty node’s ID is broadcast only twice by a single (non-faulty)
node. Since there are at most f faulty nodes, O(nf) messages incur. Therefore, total message
complexity is O(n2), since f < n. Since both the value of degree and the ID can be encapsulated
using O(log n) bits, messages are at most O(log n) bits in length. □

Thus, we get the following main result of fault-tolerant graph realization.

Theorem 4.2. Consider an n-node Congested Clique, where f < n nodes may crash arbitrarily
at any time. Given an n-length graphic sequence D = (d1, d2, . . . , dn) as an input such that each
di is only known to one node in the clique, there exists an algorithm which solves the fault-tolerant
graph realization problem in O(f) rounds and using O(n2) messages.

Remark: 2 (Extension to KT0 Model). The same message and round complexity is achievable in
the KT0 model, in which each node knows the IDs of all the nodes in the clique, but does not know
which port is connecting to which node-ID. Algorithm 4 can be easily modified to work in thisKT0
model. During the first two rounds (i.e., in the initialization phase), each node keeps track of the
links or ports through which it receives the messages. If it receives a message ⟨uj, d(uj)⟩ through
some port, that port must be connecting to node-ID uj . At the same time, a node can identify the
faulty nodes’ ID from which it did not receive any messages. If not received in the first round itself,
the ID is considered as a smite node. Once we have the initial faulty-list and the degree sequence,
then we run the second phase of the Algorithm 4.

4.4.1 Lower Bound

In the graph realization with faults problem, the nodes are required to learn the degrees assigned
to the other nodes in the network and recreate a degree sequence which must be the same for all
the nodes. If two nodes have a different view of the final degree sequence D′, then their output
would be different. It essentially reduces to a consensus problem where all the nodes agree on the
degrees in D′. In the consensus problem, all nodes start with some input value and the nodes are
required to agree on a common value (among all the input values to the nodes). In the presence of

Fault-Tolerant Graph Realization in KT1 83

Terminology at a Glance for a node u
Terminology Definition

Smite-node* Node v ̸= u is classified as smite-node if u did not receive v’s degree in
the first two rounds.

Smite-node (Phase 2) Node v ̸= u is classified as smite-node if u receives a message from any
node (even once) which classifies v as a smite-node.

Faulty-node Node v ̸= u is classified as a faulty-node if u receives v’s degree only
once.

Faulty-list (Fu) List of known faulty IDs (and their corresponding degrees if present) at
u.

Listening State A node is in the listening state if it is waiting for its turn (to send entries
from its faulty-list) or to receive an “all-okay” message.

Active State A node is in the active state if it is transmitting the entries from its
faulty-list.

“all-okay” Reception of “all-okay” at u acts as a signal for u to terminate the algo-
rithm.

Degree Sequence
(D′

u)
D′

u keeps track of all the degrees heard from other nodes in the network.
At termination, it contains the final degree sequence used for graph re-
alization at u.

Table 4.1: Terminology and their definition used throughout the algorithms in the Section 4.4 and
Section 4.5. * represent the terminology’s definition for Phase 1.

faulty nodes, all non-faulty nodes must agree on a common value. Therefore, any t-round solution
of the graph realization with faults problem can be used to solve the consensus problem in O(t)
rounds. Now, a lower bound of f + 1 on the number of rounds required for reaching consensus in
the presence of f crash failures is a well-known result (see Chapter 5: Fault-Tolerant Consensus
of Attiya-Welch’s book [11]). Thus, this f + 1 lower bound on the round complexity also applies
to the graph realization with faults problem. Hence, we get the following result.

Theorem 4.3. Any algorithm that solves the distributed graph realization with faults in an n-node
Congested Clique with f crash failures requires Ω(f) rounds in some admissible execution.

We now argue that graph realization with faults, where nodes construct the entire overlay graph,

84 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

requires Ω(n2) messages in the Congest model [118]. Consider a graph realization algorithm A
that constructs the entire overlay graph in a n-node Congested Clique. The algorithm A must
correctly output the overlay graph for any inputs.

First consider the fault-free case, i.e., no faulty nodes in the Congested Clique. Since every
node constructs the entire overlay graph, the n degree-values (for all the nodes) need to be propa-
gated to all the nodes. The size of a degree can be O(log n) bits. In the Congest model, the size of
each message is O(log n) bits. Hence, a node can send at most a constant number of degree-values
in one message packet. Now, it requires n − 1 messages to send one degree-value from a node to
all the nodes. Thus, it requires at least n(n − 1) = O(n2) messages to propagate n degree-values
to all the nodes.

Consider the faulty case. The following situation may occur in some execution of A. A faulty
node may crash in a round by sending O(n) messages in that round. Further, any message of a
crashed node that has not reached to all the nodes may need to be rectified to make it consistent
throughout the network. This requires that the message may need to be propagated to all the nodes.
Hence, we require at least O(n2) messages in the worst case. Thus, we get the following result.

Theorem 4.4. In the Congest model, any graph realization algorithm, in which nodes construct
the entire overlay graph, in a n-node network (with or without faults) requires Ω(n2) messages in
some admissible execution.

4.5 Fault-Tolerant Graph Realization in the KT1 NCC Model

In this section, we extend the above fault-tolerant algorithm to the Node Capacitated Clique (a.k.a.
NCC) model. To the best of our knowledge, distributed versions of graph realizations problem
(without faults) were first studied by the authors in [12]. In the original work, the authors attempted
to solve the distributed degree sequence problem in two versions of the NCC model introduced by
the authors in [13], namely the NCC0 and the NCC1. In this section, we present how we may
extend our ideas for solving the graph realizations with faults problem in the Congested Clique to
NCC1.

Briefly, the NCC1 is exactly like the KT1 version of the Congested Clique (CC) model with
one clear difference, which is a constraint on the number of messages a node is allowed to send/receive
in a round. In theNCC1, a node is allowed to send or receive at mostO(log n) messages in a round,
unlike the CC model, in which we do not have a bound on the number of messages. When a node
receives more than O(log n) messages, it chooses to drop the excess. Note that the model imme-

Fault-Tolerant Graph Realization in the KT1 NCC Model 85

diately implies a n/ log n lower bound in terms of time complexity for our version of the graph
realization, as each node needs to learn n− 1 degrees in a clique. Our solution takes O(nf/ log n)
rounds in the NCC1 model, but it is optimal in the number of messages.

We will now present how we modify Algorithm 4 for theNCC1. The key idea is to change how
each node sends its degree to every other node in the network. We leverage the idea of parallelism
and cyclic permutation so that each node can in one round (i) inform O(log n) other nodes and (ii)
receive the degree (or faulty IDs as the case may be) from at most O(log n) other nodes.

The steps above gives us the following straightforward idea, divide the nodes into n/ log n

groups g1, g2 . . . , g n
logn

such that each group has no more than O(log n) nodes. This allows all
nodes in a group gi to send their degree to all nodes in the group gj while satisfying the message
constraints present in NCC1.

By taking advantage of the parallelism present in the setting (and working with different per-
mutations in each round) we can guarantee that all nodes learn the degrees in the network in
O(n/ log n) rounds. This gives the idea of global broadcast (Algorithm 6).

Algorithm 6 GLOBAL-BROADCAST

1: for r = 0 to n/ log n− 1 do
2: for j ∈ [1, n

logn
] in parallel do

3: dest = (r + j) (mod)
n
log n

4: Nodes in group gj send their degrees to all the nodes in group gdest.
5: end for
6: end for

Clearly, the procedure in Algorithm 6 ensures that n nodes may send n messages each over a
period of n/ log n rounds. We may use global broadcast to guarantee that up to n non-faulty nodes
may send their degrees to the network in n/ log n rounds, but no node receives more than O(log n)
degrees. We use a similar approach when it comes to sending out “all-okay”, the difference being
we need to ensure that no two nodes send “all-okay” to the same group at once.

Algorithm 7 ensures that all nodes may receive “all-okay” while making sure that two active
nodes are not sending the “all-okay” message to the same group of nodes at the same time. We
can now modify Algorithm 4 for the NCC. It follows the same steps, the key difference is in the
fact that when an active node is sending entries from its faulty-list, it requires O(n/ log n) rounds
to inform all the nodes in the network. Since there can be f entries in the worst case scenario, this
means that it can takeO(nf/ log n) rounds to ensure that all nodes have the same degree sequence.

86 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

The process for local update of entries in the faulty-list remains the same as in Algorithm 4

Algorithm 7 GLOBAL-UPDATE

1: Global Update: This protocol is executed at ui when it receives an all-okay message.
2: for j = i to n/ log n do
3: ui sends all-okay to all nodes in gj .
4: end for
5: for j = 1 to j = i− 1 do
6: ui sends “all-okay” to all nodes in gj .
7: end for

Now we argue that the Algorithm 8 (below) has the same guarantees for the view of D′ as in
Algorithm 4. In fact, we show that the final degree sequence D′ of all the non-crashed nodes are
the same (using the similar arguments as in Lemma 4.1, Lemma 4.2, and Lemma 4.3).

Lemma 4.6. Algorithm 8 guarantees that all nodes have the same view of the degree sequence D′

at the end of the algorithm.

Proof. Suppose not. Then there exists a node s for which nodes ui and uj have different views. If
both the nodes survived until the end, there must exist a round where either ui or uj would have
informed the other of s’s status, thus ensuring that they both have the same view of s. Also, the
arguments of Lemma 4.2, Lemma 4.3 are still applicable in the NCC case, ensuring that no degree
is excluded from some nodes of the network, while being included in the final degree sequence of
the other nodes. Hence, the D′, created at the end of the Algorithm 8, is the same across all nodes.
□

Note that a key difference in Algorithm 8 to the one designed for the Congested Clique model
is that a single loop to inform all nodes of a fault takesO(n/ log n) rounds. Since there are f faults,
we have the following theorem:

Theorem 4.5. Algorithm 8 solves graph realization with faults in the Node Capacitated Clique
model in O(nf/ log n) rounds and uses O(n2) messages.

4.6 Graph Realization with Faults in KT0

This section focus on the graph realization problem in the KT0 model. Recall that we are given
an n-node Congested Clique anonymous network, i.e., nodes do not know each other’s communi-
cation link with respect to their IDs, in which at most f < n nodes may crash arbitrarily at any

Graph Realization with Faults in KT0 87

Algorithm 8 GRAPH-REALIZATION-WITH-FAULTS-IN-NCC
Require: A Congested Clique of n nodes U = {u1, u2, . . . , un}. Each node ui is given a degree value

d(ui) as an input.
Ensure: A corresponding graph realization that satisfies the conditions for distributed graph realization

with faults.
1: Using the global broadcast procedure in Algorithm 6, each node ui broadcasts ⟨ui, d(ui)⟩ to all the

nodes.
2: Each node creates the faulty-list Fui and the degree sequence D′

ui
.

3: Nodes are either in active, listening, or exit state. If u1 is non-faulty, then u1 becomes the first active
node.
Nodes in Active State.

4: if ui is an active node then
5: if Fui is non empty then
6: The following for loop is repeated twice.
7: for j ∈ [1, n

logn] in parallel do
8: ui sends the ⟨ID, d(ID)⟩ (send d(ID) if available otherwise it is a smite node) from mini-

mum ID to maximum ID in Fui to gj . If the list becomes empty, then switch to exit state.
9: end for

10: if sent ID is a smite-node then
11: Remove ID from its faulty-list.
12: else if sent ID is faulty-node then
13: Remove ID from faulty-list. Move ID and ID’s degree to D′.
14: end if
15: else
16: Enter exit state.
17: end if
18: end if

Nodes in Listening State
19: if received the message all-okay from any node then
20: Switch to exit state.
21: end if
22: For any listening node uj , let i be the index of the last node heard by the node uj .
23: if uj has not heard from any node during the last 3(j − i) n

logn rounds. then
24: Node switches to active state.
25: else
26: Execute the exactly same steps as “Nodes in Active State” and “Nodes in Listening State” (stated in

Algorithm 5) executed in Algorithm 4.
27: end if

Nodes in the Exit State
28: Nodes that are marked as a faulty-node in the faulty-list are moved to the final degree sequence D′.
29: Send out an all-okay message to the nodes in the network in groups of size O(log n) (see Algorithm 7

for the exact detail) and exit the protocol.
30: All the non-faulty nodes have the same view of non-faulty-list. Therefore, graph is realized locally by

the Havel-Hakimi algorithm.

88 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

time. A degree-sequence (d1, d2, . . . , dn) is also given to all the nodes in such a way that each di
is known to only one node. In this section, we present an algorithm that guarantees that (i) all the
non-crashed nodes learn and recreate a list whose size is at least n− f , and (ii) this list is the same
for all the nodes. This allows the non-crashed nodes to locally realize the overlay graph with the
help of Havel-and-Hakimi’s algorithm, described in Section 4.3. Our algorithm does not require
any knowledge of the number of faulty nodes and IDs of neighboring nodes in the CONGEST
model. We use only a few numbers of nodes to propagate the information about the crashed nodes
to the other nodes in the network which help to minimize round and message complexity.

4.6.1 Algorithm

The challenging part of designing an efficient algorithm is handling the faulty nodes. A faulty
node may crash in some rounds and its message may not reach all the destination nodes in that
round. Thus, there might be two sets of nodes with different degree-sequence. This may lead to an
incorrect graph realization whose realization is not the same throughout the network. One of the
simple ways to solve this problem is as follows: every node ui sends its ID-degree pair ⟨ui, d(ui)⟩
and whatever new degree-ID pair received as a message from other nodes to all the other nodes.
Since there are n nodes, therefore, each node sends nmessages to the n nodes. In this way, we have
message complexity O(n3), and round complexity O(n) when f is unknown to the network. Our
main aim is to get the optimal round complexity, i.e., O(f) by keeping the message complexity as
small as possible.

The idea is to run the algorithm in three phases, the initialization phase, the performance phase,
and the finalization phase. In the initialization phase which consists of only two rounds, in which,
each node sends the message as its ID-degree pair twice to other nodes based on the received
frequency of messages which can be one or two. The receiver node maintains three lists, faulty-
list, final-list, and non-faulty-list. In the performance phase, by sharing the degree of the faulty-list
and final-list nodes update the non-faulty-list, and at last non-faulty-list becomes the same across
the network (for all non-crashed nodes). In the finalization phase, the network realizes the overlay
network based on the received degree-sequence by Havel-and-Havkimi’s algorithm.

We will now explain the algorithm in detail, whose terminologies and definitions are summa-
rized in Table 4.2, and the complete pseudocode is given in the Algorithm 9.

Initialization Phase: This phase consists of two rounds. For the first two rounds, each node ui
broadcasts a message which contains its ID along with its degree, i.e., ⟨ui, d(ui)⟩ to all the nodes.
Each node ui maintains three lists in sorted order (ascending, based on ID), faulty-list (Fui

), final-

Graph Realization with Faults in KT0 89

list (Lui
) and non-faulty-list (D′

ui
) based on the frequency of received messages. Faulty-list (Fui

)
maintains the messages (ID and corresponding degree) which were received once, i.e., a list of
those nodes which have surely crashed during the initialization phase. On the other hand, final-list
(Lui

) maintains the messages (ID and corresponding degree) which were received twice, i.e., a list
of those nodes which have not crashed according to ui. Notice that as ui knows the corresponding
link of the received messages included in the final-list, therefore, ui can communicate to those
particular nodes (if required). Final-list is final in the sense that no new message will be included
in the final-list throughout the execution of the algorithm. Non-faulty-list (D′

ui
) possesses the

messages (ID-degree pair) which were received twice, the degree of the list will be used for the
graph realization problem, at last, by using Havel-Hakimi’s algorithm. This non-faulty-list will
be updated by only including more messages. Each node ui keeps its message in Lui

and D′
ui

since it has not crashed for the first two rounds. Notice that no message will be removed from
the non-faulty-list during the execution of the algorithm. Only faulty-list perform the operation
include/remove during the execution of the algorithm. Each ui performs sorting operations in all
the three lists, after an update, in their respective list w.r.t. ID in ascending order.

Algorithm 9 FAULT-TOLERANT GRAPH REALIZATION IN KT0: CODE FOR A NODE ui.

Require: A complete n nodes U = {u1, u2, . . . , un} anonymous network with unique ID. Each
node ui possess a degree of d(ui) of size O(log n).

Ensure: A corresponding graph realization that satisfies the condition of distributed graph real-
ization with faults.
INITIALIZATION PHASE:

1: For the first two rounds, each node ui broadcasts a message which contains its ID along with
its degree, i.e., ⟨ui, d(ui)⟩ to all the nodes.

2: Based on the frequency (once or twice) of received messages, each node ui maintains the
faulty-list Fui

, final-list Lui
and non-faulty-list D′

ui
with received IDs and the corresponding

degrees d(ID). If ui received the message once, then moves the message into Fui
otherwise

moves into Lui
and D′

ui
. ▷ Message contains ⟨ID, d(ID)⟩

3: Each node ui keeps its message in Lui
and D′

ui
.

4: For a message s, sID is the ID of the message s. min(Lui
)ID and min(Lui

)d(ID) is the mini-
mum ID and corresponding degree in the list Lui

, respectively. Fui
, Lui

and D′
ui

remain sorted
whenever an include/remove operation takes place (in the sorted order w.r.t. their ID).
PERFORMANCE PHASE:

5: Perform performance-phase (ui).
FINALIZATION PHASE:

6: Every non-crashed node ui’s non-faulty-list D′
ui

have the same view of the degree sequence
D′. Therefore, graph realized by all the non-crashed nodes remain same by using the Havel-
Hakimi’s algorithm.

90 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

Algorithm 10 PERFORMANCE-PHASE (ui)
1: while Lui ̸= ϕ do

ACTIVE STATE:
2: if min(Lui)

ID = ui, or ∃uj such that min(Luj)
ID = ui then

3: if Fui = ϕ then
4: ui sends Fui = ϕ to all other nodes.
5: if ui receives some message, say s, after sending Fui = ϕ then
6: ui includes the unique s (w.r.t. their ID) into Fui .
7: end if
8: end if
9: while Fui ̸= ϕ do

10: ui broadcasts the message ⟨min(Fui)
ui ,min(Fui)

d(ui)⟩ twice to all other nodes. ui removes
the sent message from Fui and moves the message into D′

ui
.

11: if ui receives the message s from uj such that sID < min(Fui)
ID then

12: ui includes those messages in the Fui .
13: end if
14: end while
15: ui sends the “agreed” message to all other nodes and moves to finalization phase.
16: end if

STANDBY STATE:
17: if min(Lui)

ID = uj and ui did not receive any message in last round then
18: ui sends min(Lui)

ID to uj and removes the uj from Lui .
19: end if
20: if ui received the message from uj such that Fuj = ϕ and Fui ̸= ϕ then
21: ui sends all messages from Fui to uj , one-by-one, till receives the messages from uj . ▷ ui does

not remove any ID from Fui

22: end if
23: if ui received the message from uj , say s, such that sID > min(Fui)

ID then
24: ui sends all messages whose sID > min(Fui)

ID to uj , one-by-one, till receives the messages
from uj . ▷ ui does not remove any ID from Fui

25: end if
26: if ui receives the message from uj such that uj > min(Lui)

ID then
27: ui removes all such min(Lui)

ID, iteratively.
28: end if
29: if ui receives the message from uj once, say s, and s /∈ Fui then
30: ui includes s into Fui .
31: end if
32: if ui receives the message from uj twice, say s, and s ∈ Fui then
33: ui removes s from Fui .
34: if s /∈ D′

ui
then

35: ui includes s in D′
ui

.
36: end if
37: end if
38: if ui receives the message “agreed” from any node uj then
39: ui sends the message “agreed” to all other nodes and moves to finalization phase.
40: end if
41: end while

Graph Realization with Faults in KT0 91

Terminology at a Glance for a node ui
Terminology Definition

Faulty-list (Fui
) List of known faulty IDs (and their corresponding degrees) at ui.

Final-list (Lui
) List of IDs (and their corresponding degrees) that sent their mes-

sages in the first two rounds at ui and have not crashed as per ui.

Non-faulty-list (Dui
) List of IDs (and their corresponding degrees) which were re-

ceived/sent twice from/to ui. In finalization phase, contains the
final degree-sequence used for graph realization at ui.

Standby State A node is in the Standby state if it is waiting for its turn (to
broadcast entries from its faulty-list) or to receive an “agreed”
message.

Active State A node is in the active state if it is broadcasting from its faulty-
list.

“agreed” Node ui received “agreed” message then ui becomes agree for
the finalization phase. ui broadcasts the “agreed” message and
moves to the finalization phase.

Table 4.2: Terminology and their definition used throughout the algorithm 9.

Performance Phase: In this phase, nodes send/receive the messages based on the received
messages and the status of the Fu, Lu, and D′

u. We study the algorithm from the perspective of
some node ui. We consider two states of the node ui: (i) active state and (ii) standby state. In the
case of an active state, node ui which possesses the minimum ID among the non-crashed nodes
broadcast the message to all other nodes. While in the case of standby state, non-crashed node
ui sends the messages to a particular node based on the condition that arises. This is done by
performing the following steps iteratively.
Active State: Node ui reaches in active state if ui has received the message from some node uj
whose minimum ID’s entry in the Luj

is ui or Lui
has the minimum ID as ui then ui checks its

Fui
. There can be two conditions with Fui

either Fui
is empty or not. In case, if Fui

is empty then
ui asks all other nodes to send messages from their respective faulty-list (if any). If Fui

is empty
(did not receive the message in the next round) then ui sends the message “agreed” to all other
nodes and moves to the finalization phase. On the other hand, if ui received some messages from
this call then ui includes those messages in the Fui

. On the assumption, If node ui has not moved

92 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

to the finalization phase then there might have arisen a second condition, i.e., Fui
is non-empty.

In that event, ui sends the message from Fui
twice and asks whether they have any message in

their faulty-list whose ID is less than what they just received. If other nodes have such messages
in their respective faulty-list then they send all these messages one by one to ui. ui includes all
these coming messages into Fui

and sends twice to all other nodes. In between, all other nodes
send their appropriate messages from faulty-list (messages whose IDs are less than what they just
received, only once to ui) only if they are receiving the messages from ui. In case, ui is not sending
the message in some rounds which signifies that ui has crashed, therefore, there is no need to send
the message to ui. If Fui

becomes empty at last and ui has not crashed then ui sends the “agreed”
message to all other nodes and moves to the finalization phase.
Standby State: In this state, node ui communicates to the particular node, say uj . For a node
ui when the minimum ID of Lui

is uj and ui did not receive any message in the previous round
then ui asks uj for initiation and removes the uj from Lui

. There is a possibility that uj has not
crashed since it sent the message twice in the initialization phase. In case, Fui

̸= ϕ and ui receives
the messages such that Fuj

= ϕ then ui sends all messages from (Fui
) to uj , one-by-one, till

receives the message from uj . Also, if ui received the message from uj whose ID is greater than
the minimum of Fui

’s ID or then ui sends all those messages whose ID is greater than (Fui
) to uj ,

one-by-one, till receives the message from uj . So that uj can convey those messages (which were
not received by all the nodes) to all other nodes. Notice that ui does not remove any of these IDs
from Fui

since there might be the case that uj crashes without conveying the message. Therefore,
ui removes only those messages from Fui

which are received twice by the ui. On the other hand,
if ui receives the message from uj where uj is greater than the minimum of Lui

then ui removes
all such messages from Lui

, iteratively. Since those nodes have already crashed (otherwise uj has
not been active to send the message) and there is no need to communicate with them in coming
rounds (in case, uj crashed). Supposing ui receives the message from uj once, say s, and s /∈ Fui

then ui includes s into Fui
. In case, if ui receives the message from uj twice and s ∈ Fui

then ui
removes s from Fui

. If s /∈ D′
ui

and received twice then ui includes s inD′
ui

. Node ui moves to the
finalization phase of the algorithm if ui has received the “agreed” message from any node uj . In
that situation, ui sends the message “agreed” to all the nodes and moves to the finalization phase
of the algorithm. The “agreed” message conveys the information to other nodes that there does not
exist any node which possesses a non-empty faulty-list or a different view of non-faulty-list.

Finalization Phase: In this phase, each non-crashed node ui’s non-faulty-listD′
ui

has the same
view of degree sequence (D′) throughout the network. Therefore, the graph realized by all the
non-crashed nodes remains the same by using the Havel-Hakimi’s algorithm 1.1.

Graph Realization with Faults in KT0 93

The above three phases are performed till the nodes receive the message “agreed” and the
algorithm terminates. In the end, all the non-faulty nodes have the same degree sequence in their
non-faulty-list, which they realize by Havel-Hakimi’s algorithm.

We will now show the correctness of the algorithm with the help of Lemma 4.7 that the final
degree sequence D′ of all the non-crashed nodes is the same. Thus, the algorithm correctly solves
the distributed graph realization with faults in the Congested Clique in theKT0 model. Further, we
analyze the time and the message complexity by using Lemma 4.8, Lemma 4.9 and Lemma 4.10.

Lemma 4.7. If there exist some non-faulty nodes ui and uj such thatD′
ui
−D′

uj
̸= ϕ at some point,

then in the finalization phase of the algorithm there exist D′
ui
−D′

uj
= ϕ.

Proof. Let us suppose at some point there exists some message s such that D′
ui
− D′

uj
= s. This

implies that the sender of s crashed in the second round such that ui received the message twice but
not uj . Now, if non-faulty node uj (or some node which has s in faulty-list) becomes the minimum
ID in its Luj

or some other node’s final-list (becomes active node 2) then uj will eventually send
the s to all other nodes twice. Therefore, s will be part ofD′ across the network. Similarly, if some
node ui (or some node which does not possess s in faulty-list) becomes active node then ui might
send higher ID message to uj or send Fui

= ϕ to uj and asks about faulty value. In that case, uj
sends the s and ui broadcasts the s to all other nodes. Therefore, s becomes the part of D′ across
the network. Hence, the lemma. □

Lemma 4.8. In a non-faulty setup 3, round complexity is O(1) and message complexity is O(n2).

Proof. In the initialization phase, all the nodes send their respective ID and corresponding degree
twice successfully. Therefore, the faulty-list across the network remains empty. In the performance
phase, the node with minimum ID, say ui, asks all the nodes about the status of their faulty-list
and waits for a round. In parallel, other nodes are also asking ui to be active. Further, after waiting
for a round ui broadcasts the “agreed” message and reaches in the finalization phase. In the very
next round, other nodes also reach finalization phase. In this scenario, the algorithm is executed in
constant rounds and each round takes O(n2) a message. Hence, the lemma. □

Lemma 4.9. All the faulty-nodes f cost O(nf) messages and O(f) rounds extra as compared to
non-faulty setup.

Proof. A faulty node ui may not follow the protocol during the crash. It may deviate in, mainly,
two phases: (i) initialization phase or (ii) performance phase. In the initialization phase, node

2Node which is in active state (standby state) considered as active node (standby node).
3A non-faulty setup is the model in which all the nodes are non-faulty.

94 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

ui may crash during the broadcasts of the message. If it crashed in the first round or second
round then some nodes possess node ui in their faulty-list. During the performance phase, some
non-faulty nodes broadcast this value twice from its faulty-list. Therefore, this faulty-node may
cause 2 extra rounds as compared to non-faulty setup (Lemma 4.8). Further, if a faulty node
crash in performance phase during the broadcasts of the message then there might be some nodes
that do not receive the message twice which would be broadcasted by some non-faulty node again.
Therefore, this faulty-node may also cause 2 extra rounds as compared to non-faulty setup (Lemma
4.8). From the above discussion, we can see that one faulty node can cause an extra cost of O(1)
rounds and O(n) messages (due to broadcast). Therefore, the overall extra messages and rounds
cost of the algorithm for f faulty nodes are O(nf) and O(f), respectively. □

Lemma 4.10. The time and message complexity of the Algorithm 9 is O(f) and O(n2), respec-
tively.

Proof. From the Lemma 4.8, in non-faulty setup, we have the round complexity O(1) and message
complexity O(n2). On the other hand, from the Lemma 4.9, we have the extra cost compared
to non-faulty setup is O(f) rounds and O(nf) message. Therefore, we can conclude the round
complexity is O(1) + O(f) = O(f) and message complexity is O(n2) + O(nf) = O(n2), as
f < n. □

Thus, we get the following main result of fault-tolerant graph realization.

Theorem 4.6. Consider an n-node Congested Clique with KT0 model, in which f < n nodes may
crash arbitrarily at any time. Given an arbitrary n-length degree sequenceD = (d1, d2, . . . , dn) as
an input such that each di is only known to one node in the clique. Then there exists a deterministic
algorithm that solves the fault-tolerant graph realization problem inO(f) rounds and usingO(n2)

messages such that f is unknown to the network.

4.6.2 Lower Bound

Recall that our network is anonymous, i.e., a node does not know the IDs of its neighbors initially.
This model is known as KT0; on the other hand, in the KT1 model, nodes know their neighbors.
Thus, KT0 model is a weaker model than KT1 model, i.e, KT1 model has some extra information
regarding the neighbors’ IDs as compared to KT0. Therefore, the algorithm which can solve the
graph realization problem in a Congested Clique in KT0 model will also solve the problem in KT1
model with matching complexity. By using the same line of argument, in the case of lower bound

Conclusion 95

KT1’s lower bound (shown in [94]) is the trivial lower bound for KT0 model. Therefore, we also
have the following results in KT0 model.

Theorem 4.7. Any algorithm that solves the distributed graph realization with f crash failures in
an n-node Congested Clique requires Ω(f) rounds in some admissible execution.

Theorem 4.8. In the CONGEST model, any algorithm that solves the distributed graph realization
problem of n node network (with or without faults) requires Ω(n2) messages in some admissible
execution.

Notice that Algorithm 9 is, simultaneously, tight with respect to the time complexity and mes-
sage complexity.

4.7 Conclusion

In this chapter, we studied the round and message complexity of the graph realization problem
in the Congested Clique with faults in the KT1 as well as KT0 model and provided an efficient
algorithm for realizing overlays for a given degree sequence. Our algorithms are simultaneously
optimal in both the round and the message complexity. Further, we also show how the algorithm
may be adapted in the KT1 model, to a setting in which nodes are allowed to send (and receive) a
limited number of messages per round.

Given the relevance of graph realization techniques in overlay construction and the presence
of faulty nodes in peer-to-peer networks, we believe there can be several gripping questions to
explore in the future. Such as:

(1) Does the message and round complexity O(n2) and O(f), respectively, hold for the omis-
sion failure4? Also, what would be the nontrivial lower bound for the omission failure?

(2) It would be entrancing to define and analyze the graph realization problem in the presence
of Byzantine faults. Since a Byzantine node can behave arbitrarily like sending the wrong message,
sending a message to some nodes, or not sending the message in some rounds. Therefore, the graph
realization problem needs to be defined carefully.

(3) Our work and existing work on distributed graph realization consider a clique network [12].
It would be interesting to study the problem in general networks.

4A faulty node crashes or omits to send messages that it supposed to send (send omission) or omits to receive
messages that it supposed to receive (receive omission).

96 Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique

Chapter 5

Optimal Algorithm for Deterministic Leader
Election in Diameter-Two Networks

In this chapter, we focus on the leader election problem in diameter-two networks 1. Chatterjee et
al. [31] recently studied the leader election in diameter-two networks. They presented a O(log n)-
round deterministic implicit leader election algorithm which incurs optimal O(n log n) messages,
but a drawback of their algorithm is that it requires knowledge of n. An important question –
whether it is possible to remove the assumption on the knowledge of n was left open in their pa-
per. Another interesting open question raised in their paper is whether explicit leader election can
be solved in Õ(n) messages deterministically. In this chapter, we give an affirmative answer to
them. Further, we solve the broadcast problem, another fundamental problem in distributed com-
puting, deterministically in diameter-two networks with Õ(n) messages and Õ(1) rounds without
the knowledge of n. In fact, we address all the open questions raised by Chatterjee et al. for the
deterministic leader election problem in diameter-two networks.

First, we present a deterministic explicit leader election algorithm which takesO(log∆) rounds
and O(n log∆) messages, where n in the number of nodes and ∆ is the maximum degree of the
network. The algorithm works without the knowledge of n. The message bound is tight due to the
matching lower bound, showed Chatterjee et al. [31].

Then we show that broadcast can be solved deterministically inO(log∆) rounds usingO(n log∆)

messages. More precisely, a broadcast tree can be computed with the same complexities and the
depth of the tree is O(log∆). This also does not require the knowledge of n.

5.1 Introduction

In the four decades since its inception, leader election has remained a well-explored and funda-
mental problem in distributed networks [100, 101, 116]. The basic premise of leader election is
simple: given a group of n nodes, a unique node is elected as a leader (where n denotes the number

1These findings are based on joint work with Anisur Rahaman Molla and Sumathi Sivasubramaniam (which ap-
peared in International Conference on Algorithms and Complexity 2023) and contains material from [95].

97

98 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

of nodes in the network). Depending on the nodes’ knowledge of the leader, there are two popular
versions. In the first version (known as the implicit leader election), the non-leader nodes are not
required to know the leader’s identity; it is enough for them to know that they are not the leader.
The implicit leader election is quite well studied in literature [11, 92, 96, 97, 106]. In the other
version (known as explicit leader election), the non-leader nodes are required to learn the leader’s
identity. The implicit version of the leader election is the generalized version of the (explicit) leader
election. Clearly, there is a lower bound of Ω(n) for message complexity in the explicit version of
the problem. In this chapter, we study the explicit version of the problem. In particular, we show
an improvement on the existing deterministic solution for the implicit leader election algorithm
presented in [31] and provide an algorithm for turning the implicit leader election explicit without
any additional overhead on messages.

Leader election has been studied extensively with respect to both message and round complex-
ity in various graph structures like rings [101, 136], complete graphs [4, 14, 69, 83, 85, 86, 130],
diameter-two networks [31] etc., as well as in general graphs [54, 60, 97, 106, 117] 2. Earlier works
were primarily focused on providing deterministic solutions. However, eventually, randomized al-
gorithms were explored to reduce mainly the message complexity (see [14, 60, 96, 97] and the
references therein). Kutten et al. gave the fundamental lower bound for leader election in general
graphs with Ω(m) message complexity and Ω(D) round complexity [96], where m is the number
of edges and D is the diameter of the graph. This bound is applicable for all graphs with diameters
greater than two, whether the algorithm is deterministic or randomized. For the clique, recently a
tight message lower bound of Ω(n log n) is established by Kutten et al. [98] for the deterministic
algorithms under simultaneous wake-up of the nodes. The same lower bound was shown earlier
by Afek and Gafni (1991) [4], but assumes adversarial wake-up. Table 5.1 presents an overview of
the results (deterministic). Recently, diameter-two networks were explored, and the message com-
plexity was settled by providing a deterministic algorithm with O(n log n) message complexity
[31].

Our work is closely related to the work by Chatterjee et al. [31]. In their work, the authors stud-
ied leader election (the implicit version) in diameter-two networks. They presented a deterministic
algorithm with O(n log n) message complexity and O(log n) round complexity. Crucially, their
algorithm requires prior knowledge of the size of the network, n. In comparison to this, our al-
gorithm elects a leader explicitly without prior knowledge of n. Our algorithm uses O(n log∆)

messages and finishes in O(log∆) rounds, where ∆ is the maximum degree of the graph (see,
Table 5.2). In addition to this, we show how to leverage the edges used during the leader election

2We interchangeably use the word “graph” and “network” throughout the chapter.

Introduction 99

protocol to create a broadcast tree for the diameter-two graphs with a message and round complex-
ity of O(n log∆) and O(log∆), respectively. Computing a broadcast tree efficiently is another
fundamental problem in distributed computing. A broadcast tree can be used as a subroutine to
many distributed algorithms which look for message efficiency. Finding a deterministic Õ(n)-
message and Õ(1)-round broadcast algorithm in diameter-two networks was also left open in [31].
We have addressed it.

DETERMINISTIC (EXPLICIT) LEADER ELECTION RESULTS

Paper Message
Complexity

Round Complexity Graph of Diameter

Afek-Gafni [4] O(n log n) O(log n) * D = 1

Kutten et al. [98] Ω(n log n) Ω(1) D = 1

This chapter O(n log∆) O(log∆) D = 2

Chatterjee et al. [31] Ω(n log n) Ω(1) ** D = 2

Kutten et al. [96] O(m log n) O(D log n) D ≥ 3

Kutten et al. [96] Ω(m) Ω(D) D ≥ 3

Table 5.1: Best known deterministic leader election results on networks with different diameters.
Since ∆ = Ω(

√
n) in diameter-two graphs, log∆ = O(log n), see the Remark 3 below.

So our upper bound does not violate the message lower bound in [31]. * Attaining O(1)
time requires Ω(n1+Ω(1)) messages in cliques, whereas achieving O(n log n) messages
requires Ω(log n) rounds; see [4]. ** Ω(1) is a trivial lower bound.

Chapter Organization: In the rest of this section 5.1, we state our results. In Section 5.2, we
present our model and definitions. We briefly introduce various related works in Section 5.3. We
present our algorithms for deterministic leader election and broadcast tree formation in Section 5.4.
We conclude the chapter in Section 5.5.

5.1.1 Our Results

Our work focuses on the deterministic leader election in diameter-two networks without the knowl-
edge of the number of nodes. Apart from this, by leveraging the leader election protocol, we show

100 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

that broadcast can be solved deterministically, matching the complexity of the leader election al-
gorithm. Specifically, we have the following results.

1. We present a deterministic explicit leader election algorithm which takes O(log∆) rounds
and O(n log∆) messages, where n in the number of nodes and ∆ is the maximum degree of
the network. The algorithm works without the knowledge of n. The message bound is tight
due to the matching lower bound, showed by Chatterjee et al. in [31].

2. We show that broadcast can be solved deterministically inO(log∆) rounds usingO(n log∆)

messages. More precisely, we show that a broadcast tree, of depth at most O(log∆) can be
computed with the same complexities.

5.2 Model and Definition

Our model is similar to the one in [31]. We consider the distributed network to be an undirected
graphG = (V,E) of n nodes and diameterD = 2. Each node has a unique ID of sizeO(log n) bits.
The model is a clean network model in the sense that the nodes are unaware of their neighbors’ IDs
initially, also known as KT0 model [118]. The network is synchronous. The nodes communicate
via passing messages in a synchronous round. We limit each message to be of size at mostO(log n)
bits as in the CONGEST communication model in distributed networks [118]. In each round,
nodes may send messages, receive messages and perform some local computation. The round
complexity of an algorithm is the total number of rounds of communication taken by the algorithm
before termination. The message complexity is the total number of messages exchanged in the
network throughout the execution of the algorithm. Throughout this chapter, we assume that all
nodes are awake initially and simultaneously start executing the algorithm.

We will now formally define the implicit and explicit versions of leader election in our model.

Definition 5.1 (Implicit Leader Election). Consider an n-node distributed network. Let each
node maintain a state variable that can be set to a value in {⊥, NONELECTED, ELECTED},
where ⊥ denotes the ‘undecided’ state. Initially, all nodes set their state to ⊥. In the implicit ver-
sion of leader election, it requires that exactly one node has its state variable set to ELECTED
and all other nodes are in state NONELECTED. The unique node whose state is ELECTED
is the leader.

Definition 5.2 (Explicit Leader Election). Consider an n-node distributed network. Let each
node maintain a state variable that can be set to a value in {⊥, NONELECTED, ELECTED},

Related Work 101

DETERMINISTIC LEADER ELECTION IN DIAMETER-TWO GRAPHS

Paper Message
Complexity

Round
Complexity

Type Knowledge of n

Chatterjee et al.
[31]

O(n log n) O(log n) Implicit YES

This chapter O(n log∆) O(log∆) Explicit NO

Table 5.2: Comparison of the current chapter to the state-of-the-art.

where ⊥ denotes the ‘undecided’ state. Initially, all nodes set their state to ⊥. In the explicit ver-
sion of leader election, it requires that exactly one node has its state variable set to ELECTED
and all other nodes are in state NONELECTED. Further, the NONELECTED nodes must
know the identity of the node, whose state is ELECTED, the leader.

5.3 Related Work

In 1977, the leader election problem was introduced by Le Lann in the ring network [101]. Since
then the problem has been studied extensively in different settings. The leader election problem has
been explored in both implicit and explicit versions over the years [74, 106, 117, 97, 60, 90] for a
variety of models and settings, and for various graph topologies such as cliques, cycles, mesh, etc.,
(see [74, 92, 72, 79, 117, 126, 132, 123] and the references therein for more details). In general,
the implicit leader election suffices for most networks.

Both deterministic and randomized solutions exist for leader election. For the randomized case,
for complete graphs, Kutten et al. [97] showed that Θ̃(

√
n) is a tight message complexity bound

for randomized (implicit) leader election. For any graph with a diameter greater than 2, the authors
in [97] showed that Ω(D) is a lower bound for the number of rounds for leader election using
a randomized algorithm (they also showed a lower bound for the message complexity, Ω(m)).
Recently, Chatterjee et al., [31] showed a lower bound of Ω(n) for the message complexity of
randomized leader election in diameter-two graphs.

In the deterministic case, it is known that Θ(n log n) is tightly bound on the message com-
plexity for complete graphs [4, 98]. This tight bound also carries over to the general case as seen
from [4, 84, 86]. In our work, we restrict our model to graphs of diameter-two. For diameter-two
graphs, Chatterjee and colleagues provide a O(log n) round algorithm that uses O(n log n) mes-

102 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

sages. However, their algorithm requires knowledge of n, our algorithm provides an algorithm that
requires no prior knowledge of n and runs inO(log n) rounds withO(n log n) message complexity.

5.4 Deterministic Leader Election in Diameter-Two Networks

We present a deterministic (explicit) leader election algorithm for diameter-two networks with n
nodes in which the value of n is unknown to nodes in the network. In this section, we answer
several questions raised in [31]. Specifically, we address the following: (i) Can explicit leader
election be performed in Õ(n) messages in diameter-two graphs deterministically? (ii) Given the
leader election algorithm, can broadcast can be solved deterministically in diameter-two graphs
with Õ(n) message complexity and O(polylog n) rounds if n is known, and crucially (iii) “Re-
moving the assumption of the knowledge of n (or showing that it is not possible) for deterministic,
implicit leader election algorithms with Õ(n) message complexity and running in Õ(1) rounds is
open as well.” In this section, we solve the explicit leader election with Õ(n) message complexity,
along with that our algorithm solves the explicit leader election without the knowledge of n; thus
addressing the questions (i) and (iii). We further present a solution for the question (ii) that too
without the knowledge of n.

5.4.1 Algorithm

Our algorithm is inspired from the work done by Chatterjee et al. [31]. They presented an algo-
rithm for implicit leader election that ran in O(log n) rounds with O(n log n) message complexity
(with the knowledge of n). Our Algorithm 11, achieves somewhat better result without the knowl-
edge of n and also elects the leader explicitly. We assign the highest priority to the degree unlike
the ID (as in [31]) and based on that calculate the bound on the highest degree of the neighbouring
nodes. This technique eventually helps in termination of the algorithm without knowing n. Rest
of the results are the follow-up after electing the leader. We also use the Lemmas and Algorithm’s
steps from [31] for sake of compilation.

As mentioned earlier (in Section 5.2), each node has a unique ID. For any node v ∈ V , let us
denote the degree of v by dv and the ID of v by IDv. The priority Pv, of node v, is a combination
of the degree and ID of the node v such that Pv = ⟨dv, IDv⟩. The leader is elected based on the
priority, which is decided by the degree of the node. In the case of a tie, the higher ID gets the
higher priority. Essentially, the node with the highest priority becomes the leader.

Our algorithm runs in two phases of O(log dv) rounds each. In the first O(log dv) rounds, we

Deterministic Leader Election in Diameter-Two Networks 103

eliminate as many invalid candidates as possible. In the second phase, all candidates except the
actual leader are also eliminated, culminating in the election of a unique leader.

Detailed description of the algorithm:

Initially, every node is a “candidate” and has an “active” status. Each node v numbers its neighbors
from 1 to dv arbitrarily, denoted by wv,1, wv,2, . . . , wv,dv . For the first i = 1 to log dv rounds, if v
is active, then node v sends a message containing Pv to its neighbors wv,2i−1 , · · · , wv,min{dv ,2i−1}

. If v encounters a priority higher than its own from its neighbors (either because a neighbor
has a higher priority or has heard of a node with higher priority) then v becomes “inactive” and
“non-candidate”. That is, v does not send any further messages to its neighbors containing v’s
priority. Although, v may send a higher priority message based on the received message’s priority
(explained later). Let Lv denotes the ID of the current highest priority node known to v. At the
beginning of the execution, Lv is simply Pv. If at the end of the first log dv rounds, Lv = Pv then v
declares itself leader temporarily. Further, v waits for log dv rounds. If at the end of log dv rounds
v is still the candidate node (v has not heard from a node about the higher priority) then v becomes
the leader.

There are two major phases to the algorithm. For the first log dv rounds, we eliminate as many
invalid candidates (the node which has encountered higher priority node) as possible, as follows.
Nv contains the ID of the neighbor that informed v about the current highest priority. As mentioned
before, Lv contains the current highest priority known to v. Let χv denote the (possibly empty)
set of v’s neighbors from whom v has received messages in a round during this phase, and P(χv)

be the set of Ps sent to v by the members of χv such that Pu be the highest P in P(χv). If Pu is
higher than that of Lv then v stores the highest priority seen so far in Lv. Further, v informs Nv

about Lv = Pu, i.e., the highest P it has seen so far. This particular step exploits the neighborhood
intersection property to ensure that information about higher priority nodes is disseminated quickly.
Then v updates Nv. Finally, v tells every member of χv about Lv, i.e., the highest P it has seen
so far. If Lv ̸= Pv then v becomes “inactive” and “non-candidate”. Notice that an “inactive” and
“non-candidate” node v only disseminates the information of higher priorities it hears, to Nv.

At the end of the first log dv rounds, we begin the final phase of the election. If v is still the
candidate node then v waits for log(dv) rounds. Furthermore, if v does not receive any higher
priority message then v declares itself as the leader and informs its neighbors. Then each neighbor
of v, say u, informs their neighbors about the election of v via a set of Ψu nodes. On the other
hand, if there exists a node whose priority is higher than the priority of v then v gets to know about
the leader and informs all the nodes to whom v has communicated (so far) about the leader’s ID

104 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

(that is the set Ψv) and exits. Hence, All the nodes elect the same leader whose priority is the
highest. Our claim is that given certain properties of the degree (see Lemma 5.1) we can guarantee
that the second phase of waiting for log∆ rounds eliminates all but a unique candidate, which then
becomes the leader.

Now, we would discuss some important lemmas and the correctness of the algorithm. Finally,
we conclude the result in Theorem 5.1.

Lemma 5.1. Let v be a node whose degree, dv, is the highest among its neighbors and ∆ is the
maximum degree of the graph. There does not exist any diameter-two graph with n nodes (n > 4)
such that ∆ > d2v.

Proof. For a node v, all nodes are at most 2 hop distance away from v, since the diameter of the
graph is 2. Node v has degree dv and its neighbors have degree at most dv, by assumption. This
gives an upper bound on n, that is, n ≤ dv(dv − 1) + 1, because each of the dv neighbors can have
at most other dv − 1 neighbors (excluding v) each, and by the distance assumption, there are no
other nodes in the graph. Also, ∆ can be at most n−1. Therefore, ∆ < n < d2v+1. Consequently,
d2v > ∆. Hence, the lemma. □

Remark: 3. It is clear that there does not exist any diameter-two network whose nodes are neither
connected to v nor its neighbor. Therefore, d2v ≥ n. This implies dv ≥

√
n. Hence, ∆ ≥

√
n.

Lemma 5.2. Algorithm 11 solves the leader election inO(log∆) rounds, where ∆ is the maximum
degree of the graph.

Proof. A candidate node v becomes the leader if its priority is the highest among its neighbors
(Line 22). From Lemma 5.1, we know that ∆ < d2v. Therefore, the node v with degree dv waits
for log dv rounds, in that time, the node with degree ∆ informs about its priority to v (if any) and v
becomes inactive. Otherwise, v considers dv as ∆ and informs all its neighbors about its election.
v’s neighbor further conveys the message to all other nodes in log∆ rounds. Therefore, the round
complexity of the algorithm is O(log∆). □

For the message complexity analysis, we adapt a couple of results from [31], since our al-
gorithm (Algorithm 11) uses a similar approach to keep a node active. In particular, we use the
Lemma 11 and Lemma 12 from [31], which used ID of the nodes to take a decision on the “active”
or “inactive” nodes whereas our algorithm uses priority (which depends on degree and ID). Hence,
the results also apply to our algorithm. The following two lemmas are adapted from Lemma 11
and Lemma 12 in [31].

Deterministic Leader Election in Diameter-Two Networks 105

Algorithm 11 DETERMINISTIC-LEADER-ELECTION: CODE FOR A NODE v

Require: A two-diameter connected anonymous network. Each node possesses a unique ID.
Ensure: Leader Election.

1: v becomes a “candidate” and “active”.
2: Let Pv = ⟨dv, IDv⟩ be the priority of v. Priority is determined by degree, the node with the

higher degree (dv) has higher priority. The node’s ID is used to break any ties.
3: Lv ←− Pv ▷ Lv is the current highest priority known to v.
4: Nv ←− Pv ▷ Nv is the neighbor which informed about Lv.
5: v creates an arbitrary assignment of its neighbors based on its degree (from 1 to dv) which are

called wv,1, wv,2, · · · , wv,dv respectively.
6: for rounds i = 1 to log dv do
7: if v is active then
8: v sends a “probe” message containing its priority P to its neighbors
wv,2i−1 , · · · , wv,min{dv ,2i−1}.

9: end if
10: Let χv be the possibly empty subset of v′s neighbors from which v received messages in

this round.
11: Let Ψv =

⋃i
1 χv.

12: Let P(χv) be the set of Ps sent to v by the members of χv.
13: Let Pu be the highest P in P(χv).
14: if Pu > Lv then
15: Lv ←− Pu

16: v tells Nv about Lv = Pu, i.e., the highest P it has seen so far.
17: Nv ←− x. ▷ v remembers neighbor who told v about Lv.
18: v becomes “inactive” and “non-candidate”.
19: end if
20: v tells every member of χv about Lv, i.e., the highest P it has seen so far.
21: end for
22: if Lv = Pv then
23: v waits for log(dv) rounds. If at the end of log(dv) rounds, Lv = Pv then v declares itself

as a leader and informs all the neighbors as well as exits the protocol.
24: end if
25: if v knows about the leader and v is not the leader then
26: Let Φv be the set of neighbors of v to whom v sent the messages before knowing about the

leader.
27: Let Ψv = Ψv

⋃
Φv.

28: v informs Ψv about the leader’s ID and exit.
29: end if
30: All the nodes elect the same leader whose priority is the highest.

106 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

Lemma 5.3 ([31]). “At the end of the round i, there are at most n
2i

“active” nodes.”

Proof. “Consider a node v that is active at the end of round i. This implies that the if-clause of
Line 14 of Algorithm 11 has not so far been satisfied for v, which in turn implies that Pv > Pwv,j

for 1 ≤ j ≤ 2i− 1, therefore none of wv,1, wv,2, . . . , wv,2i−1 is active after round i. Thus, for every
active node at the end of round i, there are at least 2i−1 inactive nodes. We call this set of inactive
nodes, together with v itself, the “kingdom” of v after round i i.e.,

KINGDOMi(v)
def
= {v} ∪ wv,1, wv,2, . . . , wv,2i−1 and |KINGDOMi(v)| = 2i.

If we can show that these kingdoms are disjoint for two different active nodes, then we are done.
Proof by contradiction. Suppose not. Suppose there are two active nodes u and v such that

u ̸= v and KINGDOMi(u) ∩KINGDOMi(v) = ϕ

(after some round i, 1 ≤ i ≤ log n). Let x be such that x ∈ KINGDOMi(u)∩KINGDOMi(v).
Since an active node obviously cannot belong to the kingdom of another active node, this x equals
neither u nor v, and therefore,

x ∈
{
wv,1, wv,2, . . . , wv,2i−1

}
∩
{
wu,1, wu,2, . . . , wu,2i−1

}
,

that is, both u and v have sent their respective probe-messages to x. Then it is straightforward to
see that x would not allow u and v to be active at the same time. Case-by-case analysis can be
found in [31].” □

Lemma 5.4 ([31]). In round i, Algorithm 11 transmits at most 3n messages in the for loop (from
Line 6 to Line 21).

Proof. In round i, each active node sends exactly 2i − 1 probe messages, and each probe-message
generates at most two responses (corresponding to Lines16 and 20 of Algorithm 11). Thus, in
round i, each active node contributes to, directly or indirectly, at most 3 · (2i − 1) messages. The
result immediately follows from Lemma 5.3. □

Lemma 5.5. The message complexity of the Algorithm 11 is O(n log∆).

Proof. Each round transmits at most 3n messages (Lemma 5.4) and the execution of the Algo-
rithm 11 (from Line 6 to Line 21) takes place in O(log∆) rounds (Lemma 5.2). Further, the
leader informs about its election via Ψ edges which are O(n log∆). Therefore, the total number of
messages transmitted throughout the execution are: 3n ·O(log∆) +O(n log∆) = O(n log∆). □

Deterministic Leader Election in Diameter-Two Networks 107

Correctness of the Algorithm: In this, we show that all the nodes agree on a leader and the leader
is unique. First, we show that all the nodes agree on a leader. If a node v is still a candidate
node at the end of the first phase, then it must have both i) explored all its neighbors and ii) never
encountered a priority higher than its own. Thus, it can declare itself a leader after waiting for
log dv rounds. Note that a waiting period of log dv is enough because from Lemma 5.1 we know
that ∆ < d2v. This guarantees that the highest degree is made leader.

Now, we show that the known leader is unique. If not, then suppose there exist two nodes u
and v such that u agrees on a leader l1 and v agrees on a leader l2. From algorithm 11, l1 should
have the highest priority in its neighbors and similarly, l2 should have the highest priority in its
neighbors. Since it is a diameter two graph, therefore, there should be at least one node common
among l1 and l2. Therefore, both nodes can not have the highest priority among their neighbors,
which is a contradiction. Therefore, we can say all the nodes agree on the unique leader.

From the above discussion, we conclude the following result.

Theorem 5.1. There exists a deterministic (explicit) leader election algorithm for n-node anony-
mous networks with diameter two that sends O(n log∆) messages and terminates in O(log∆)

rounds, where ∆ is the maximum degree of the network.

Remark: 4. The implicit deterministic leader election algorithm presented in [31] can be con-
verted to an explicit leader election algorithm in the same way as done in Algorithm 11.

5.4.2 Broadcast Tree Formation

In Algorithm 11, the nodes agree on the leader explicitly. In this section, we exploit the edges used
during the leader election algorithm (Algorithm 11) and create a broadcast tree of height O(log∆)

(Algorithm 12). This also allows to reduce the message complexity. The process is simple. The
leader, say ℓ, initiates the flooding process by broadcasting its ID to its neighbors, forming the root
of the tree T . All of its neighbors become a part of T . At any point in the algorithm, the leaves of
T do the following. Let v be a leaf in T in some round. In that round, v sends its own ID to the
nodes in Ψv (used in Algorithm 11). Non-tree nodes which receive an ID v earlier become a part
of T with v as its parent. If a non-tree node receives multiple messages, then it chooses the higher
ID as its parent. The algorithm ends when all nodes have become a part of T. Note that since only
the leaves send out messages in each round and each node (except the root node, i.e., leader node)
possesses only one parent, we avoid the creation of cycles.

Let us now show some important lemmas which support the correctness of the algorithm. In
particular, Lemma 5.7 shows Algorithm 12 forms a tree of heightO(log∆). The round complexity

108 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

and message complexity of the Algorithm 12 is shown by Lemma 5.6 and Lemma 5.8, respectively.
Finally, we conclude with the message and round complexity as well as the height of the tree in
Theorem 5.2.

Algorithm 12 BROADCAST-TREE-FORMATION

Require: A diameter-2 connected network graph G in which each node possess unique ID.
Ensure: Tree Structure T .

1: First run Algorithm 11 to elect the leader ℓ. Each node also keeps track of its Ψv (created
during the course of the algorithm).

2: ℓ becomes root of T . ℓ then broadcasts its ID as an invitation to all its neighbors. And its
neighbors become its children in T .

3: while there are nodes outside of T do ▷ Takes O(log∆) rounds.
4: Each node v ∈ T broadcasts its ID to the nodes in Ψv.
5: if node u /∈ T receives IDs from nodes in tree T then
6: u accept invitation based on the highest priority node, say v, and becomes v’s child in
T .

7: end if
8: end while

Lemma 5.6. In O(log∆) rounds, all nodes are guaranteed to be part of the tree T .

Proof. This is guaranteed from the use of leader election algorithm. Consider the graph G′ con-
structed as follows. Let ℓ’s neighbors be its neighbors in G. For every other node v ̸= ℓ its
neighbors are ψv. Clearly, from Algorithm 11, G′ is connected (as every node learns of ℓ) and of
diameter O(log∆). Let level i denote all nodes that are at most i hops away from ℓ in G′. We
claim that in i rounds, all nodes in level i would become a part of the tree T . By using induction,
this is clearly true for i = 1. Assuming it is true for i, nodes of i+1 would become part of the tree
next as they are in the Ψv of at least one node in level i and thus would get an invitation. And since
the number of levels can be at most O(log∆), all nodes become part of T in O(log∆) rounds.

□

Lemma 5.7. Algorithm 12 forms a tree of height O(log∆).

Proof. Since in each iteration of the while loop, the height of the tree is extended by at most 1 (that
is, by attaching children to the leaves of T). And since the algorithm ensures that all nodes have
become a part of T in O(log∆) iterations of the while loop, the height of T can not be more than
O(log∆). Notice that since each node accepts only one invite, there can be no creation of a cycle.

Conclusion 109

□

Remark: 5. The diameter of the graph created by Algorithm 12 is O(log∆).

Lemma 5.8. Algorithm 12 takes O(n log∆) messages.

Proof. In Algorithm 11, for every node v communication takes place via Ψv edges in O(n log∆)

messages (Theorem 5.1). In Algorithm 12 (from Line 2 to Line 8) communication also takes
place via same edges (Ψv) for two times. Therefore, message complexity remains unchanged to
O(n log∆). □

Thus, from the above discussion, we conclude the following result.

Theorem 5.2. There exists an algorithm that solves the broadcast problem inO(n log∆) messages
and O(log∆) rounds which generate a tree of height O(log∆).

5.5 Conclusion

We studied the leader election problem in diameter-two networks. We settled all the questions
raised by Chatterjee et al. [31] w.r.t. deterministic setting. Various open problems come to light
due to our work. These are as follows:

1. We presented an O(log∆)-round and O(n log∆)-message complexity algorithm for the ex-
plicit leader election. An interesting question is to reduce the round complexity to O(1)

while keeping the message complexity O(n log n)?

2. Tree formed by broadcast has height O(log∆). An interesting question rises whether this
is optimal when the message and round complexity remain unchanged or constant height is
possible.

3. Is it possible to have a randomized algorithm (with high probability) with message complex-
ity O(n log n) and constant round complexity without the knowledge of n?

4. Agreement is a weaker problem as compared to leader election, in which, each node has an
input value and reaches on agreement w.r.t. one given input value. It would be interesting to
see whether message complexity Ω(n log n) is a tight bound w.r.t. agreement problem.

110 Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks

Chapter 6

Conclusion and Future Work

In this thesis, we developed fast algorithms for various fundamental distributed network problems
including leader election, agreement, and graph realization problems in different settings. We
studied the optimal round and message complexity algorithm and addressed some open questions
raised in the other researchers’ work. In some cases, our work also supported the theoretical
analysis with experimental evaluation to highlight the effectiveness and efficiency of the work.

We presented the randomized (Monte Carlo) algorithms for the leader election and agreement
problems in a crash-fault setting and also showed non-trivial lower bounds on the message com-
plexity. Our algorithms achieved sublinear message complexity in the so-called implicit version of
the two problems when tolerating more than a constant fraction of the faulty nodes. Specifically,
our algorithms even work up to the polylog n number of non-faulty nodes. The message complex-
ity (and also the time complexity) of our algorithms is optimal (up to a polylog n factor). Further,
our algorithm works in anonymous networks, where nodes do not know each other. These are the
first sub-linear results for both the leader election and the agreement problem in the crash-fault
distributed networks. Then we studied the Byzantine agreement (BA) problem and focused on the
implicit BA and provided a sublinear algorithm with matching lower bound up to polylog n factor
in the presence of global coin and cryptographic assumptions. This is the first sublinear message
complexity result of BA. A quadratic message lower bound is known for any deterministic BA
protocol due to Dolev-Reischuk [39]. The existing randomized BA protocols had at least quadratic
message complexity in the honest majority setting. Our results showed the power of a global coin
in achieving significant improvement over the existing results. It can be viewed as a step towards
understanding the message complexity of randomized BA in distributed networks with PKI and
global coin.

Further, we discussed the graph realization problem in the Congested Clique with faults and
provided efficient algorithms for realizing overlays for a given degree sequence. For that, we
provided two models, namely, KT1 and KT0 based on the knowledge of the neighborhood. Our
algorithms (in both the models) are simultaneously optimal in both the round and the message
complexity. Towards the hindmost chapter of the thesis, we studied the leader election problem in
diameter-two networks and settled all the questions raised by Chatterjee et al. [31] with respect to
a deterministic setting. We affirmatively answered the question left open in their paper – whether

111

112 Conclusion and Future Work

it is possible to remove the assumption on the knowledge of n. Another one is whether explicit
leader election can be solved in Õ(n) messages deterministically.

The thesis emphasizes the usefulness of the leader election and fault-tolerant computation. We
are hopeful that the discussed methods and techniques would be helpful for future research works.
Further, we believe that the work discussed in the thesis would open up some interesting research
problems. We discussed several open problems raised by work at the end of each chapter. We like
to highlight here some of them.

Recall that the thesis successfully achieved a sublinear message complexity algorithm for
leader election and agreement in the static graph, specifically addressing the crash-fault and Byzan-
tine scenarios in Chapter 2 and 3, respectively. Extensive research has recently been conducted on
the static graph and general graph without any faults. In light of this, it becomes intriguing to
explore the extension of the discussed problem by relaxing certain conditions. Is it possible, for
example, to achieve a sublinear message complexity Byzantine agreement algorithm in this setting
without utilizing a global coin or hash function? Additionally, another compelling question arises:
Can a sublinear message bound be achieved when facing an adaptive adversary which can take
control of Byzantine nodes at any point during the algorithm’s execution? Furthermore, it is worth
mentioning other problems of broader significance that involve more robust graph settings, such as
dynamic graphs and general graphs in adversarial scenarios. These areas offer promising avenues
for further exploration and investigation.

In the graph realization problem, we discussed the crash-fault setting. Some intriguing prob-
lems involve extending and defining the problem for both omission failure and Byzantine settings,
with or without prior knowledge of the neighbors. These variations present interesting challenges
and opportunities for exploration and analysis. These problems can be studied with respect to
their round and message complexity, as well as towards the lower bounds. Finally, one can extend
the diameter-two networks to the general setting of the networks and study the networks more
extensively for the leader election problem.

In the long run, these ideas may be useful for a better understanding of the distributed net-
work algorithm. Specifically, to break the symmetry and to deal with faulty networks robustly.
Eventually, it would be helpful to handle failures of specific parts or nodes without impairing the
performance or availability of the entire system. The set-up would be helpful to deal with practical
problems like cluster computing1 which can be used in big data processing. As the amount of data
being generated grows exponentially, cluster computing can be used to process and analyze this
data more efficiently. Another contribution may be in the emerging fields like artificial intelligence

1Cluster computing involves multiple interconnected computers to work together as a single system.

113

and machine learning which require large amounts of computing power to train models and process
data, cluster computing can be used to speed up these processes and improve accuracy. Similarly,
in the field of cryptocurrency, Bitcoin miners can use grid computing2 to connect their computing
resources with other miners worldwide to increase the chances of earning rewards.

2Grid computing uses geographically distributed resources to work together as a single system.

114 Conclusion and Future Work

Bibliography

[1] Ittai Abraham, Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine
Shi. Communication complexity of byzantine agreement, revisited. In Symposium on Prin-
ciples of Distributed Computing (PODC), pages 317–326, 2019.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected O(1) rounds, expected o(n2) communication, and opti-
mal resilience. In Financial Cryptography and Data Security (FC), pages 320–334, 2019.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:
A blockchain protocol based on reconfigurable byzantine consensus. In Conference on
Principles of Distributed Systems, (OPODIS), pages 25:1–25:19, 2017.

[4] Yehuda Afek and Eli Gafni. Time and message bounds for election in synchronous and
asynchronous complete networks. SIAM Journal on Computing (SICOMP), 20(2):376–394,
1991.

[5] Adnan Agbaria and Roy Friedman. Overcoming byzantine failures using checkpointing.
University of Illinois at Urbana-Champaign Coordinated Science Laboratory technical re-
port no. UILU-ENG- 03-2228 (CRHC-03-14), 2003.

[6] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia. Communication-efficient ran-
domized consensus. Distributed Computing (DC), 31(6):489–501, 2018.

[7] Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lane, Danny Dolev, Cristina Nita-
Rotaru, Josh Olsen, and David John Zage. Scaling byzantine fault-tolerant replication to
wide area networks. In International Conference on Dependable Systems and Networks
(DSN), pages 105–114, 2006.

[8] David P. Anderson and John Kubiatowicz. The worldwide computer. Scientific American,
286(3):28–35, 2002.

[9] Srinivasa R. Arikati and Anil Maheshwari. Realizing degree sequences in parallel. SIAM
Journal on Discrete Mathematics (SIDMA), 9(2):317–338, 1996.

[10] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms (TALg),
3(4):37–es, 2007.

115

116 BIBLIOGRAPHY

[11] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience, 2004.

[12] John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam,
and Suman Sourav. Distributed graph realizations. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 33(6):1321–1337, 2022.

[13] John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler,
Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 69–79, 2019.

[14] John Augustine, Anisur Rahaman Molla, and Gopal Pandurangan. Sublinear message
bounds for randomized agreement. In Symposium on Principles of Distributed Computing
(PODC), pages 315–324, 2018.

[15] John Augustine and Sumathi Sivasubramaniam. Spartan: A Framework For Sparse Robust
Addressable Networks. In International Parallel and Distributed Processing Symposium
(IPDPS), pages 1060–1069, 2018.

[16] Amitabha Bagchi, Ankur Bhargava, Amitabh Chaudhary, David Eppstein, and Christian
Scheideler. The effect of faults on network expansion. Theory of Computing Systems (TCS),
39(6):903–928, 2006.

[17] Ziv Bar-Joseph and Michael Ben-Or. A tight lower bound for randomized synchronous
consensus. In Symposium on Principles of Distributed Computing (PODC), page 193–199,
1998.

[18] Amotz Bar-Noy, Toni Böhnlein, David Peleg, Mor Perry, and Dror Rawitz. Relaxed and
approximate graph realizations. In International Workshop on Combinatorial Algorithms
(IWOCA), pages 3–19, 2021.

[19] Amotz Bar-Noy, Toni Böhnlein, David Peleg, and Dror Rawitz. On vertex-weighted graph
realizations. In International Conference on Algorithms and Complexity (CIAC), pages 90–
102, 2021.

[20] Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Graph realization of dis-
tance sets. In International Symposium on Mathematical Foundations of Computer Science,
MFCS, pages 13:1–13:14, 2022.

BIBLIOGRAPHY 117

[21] Leonid Barenboim and Victor Khazanov. Distributed symmetry-breaking algorithms for
congested cliques. In International Computer Science Symposium in Russia, pages 41–52,
2018.

[22] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The impact of locality
on the detection of cycles in the broadcast congested clique model. In Latin American
Symposium (LATIN), pages 134–145, 2018.

[23] Mehdi Behzad and James E Simpson. Eccentric sequences and eccentric sets in graphs.
Discrete Mathematics, 16(3):187–193, 1976.

[24] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Symposium on
Theory of Computing (STOC), pages 1–10, 1988.

[25] Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-
information model in o(log n) rounds. In Symposium on Theory of Computing (STOC),
pages 179–186, 2006.

[26] Bitcoin. Bitcoin website https://bitcoin.org/.

[27] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast byzantine agreement. In
Symposium on Principles of Distributed Computing (PODC), pages 57–64, 2013.

[28] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recov-
ery. Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[29] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approx-
imate shortest paths in the congested clique. Distributed Computing (DC), 34(6):463–487,
2021.

[30] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In PODC2007, pages 398–407. ACM, 2007.

[31] Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson. The complexity of leader
election in diameter-two networks. Distributed Comput., 33(2):189–205, 2020.

[32] Bogdan S. Chlebus and Dariusz R. Kowalski. Gossiping to reach consensus. In Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 220–229, 2002.

118 BIBLIOGRAPHY

[33] Bogdan S. Chlebus and Dariusz R. Kowalski. Robust gossiping with an application to
consensus. Journal of Computer and System Sciences (JCSS), pages 1262–1281, 2006.

[34] Bogdan S. Chlebus and Dariusz R. Kowalski. Locally scalable randomized consensus for
synchronous crash failures. In Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 290–299, 2009.

[35] Bogdan S. Chlebus, Dariusz R. Kowalski, and Jan Olkowski. Brief announcement: Deter-
ministic consensus and checkpointing with crashes: Time and communication efficiency. In
Symposium on Principles of Distributed Computing (PODC), pages 106–108, 2022.

[36] Bogdan S. Chlebus, Dariusz R. Kowalski, and Michal Strojnowski. Fast scalable determin-
istic consensus for crash failures. In Symposium on Principles of Distributed Computing
(PODC), pages 111–120, 2009.

[37] Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time consensus pro-
tocols in realistic failure models. Journal of the ACM (JACM), pages 591–614, 1989.

[38] Danny Dolev, Christoph Lenzen, and Shir Peled. “tri, tri again”: Finding triangles and small
subgraphs in a distributed setting. In International Symposium on Distributed Computing,
pages 195–209. Springer, 2012.

[39] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agree-
ment. Journal of the ACM (JACM), 32(1):191–204, 1985.

[40] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[41] Danny Dolev and Raymond Strong. Requirements for agreement in a distributed system. In
International Symposium on Distributed Data Bases, pages 115–129, 1982.

[42] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Symposium on Principles of distributed computing (PODC), pages 367–376,
2014.

[43] Paul Erdös and Tibor Gallai. Graphs with prescribed degrees of vertices [hungarian].
Matematikai Lapok, 11:264–274, 1960.

[44] Ethereum. Ethereum website https://ethereum.org/.

BIBLIOGRAPHY 119

[45] Paul Feldman and Silvio Micali. Byzantine agreement in constant expected time (and trust-
ing no one). In IEEE Symposium on Foundations of Computer Science (FOCS), pages
267–276, 1985.

[46] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing (SICOMP), 26(4):873–933, 1997.

[47] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable networks.
In Symposium on Discrete Algorithms (SODA), pages 94–103, 2002.

[48] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters (IPL), 14(4):183–186, 1982.

[49] Matthias Fitzi. Generalized communication and security models in byzantine agreement.
PhD Dissertation, 2002.

[50] András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal
on Discrete Mathematics (SIDMA), 5:25–43, 1992.

[51] András Frank. Connectivity augmentation problems in network design. In Mathematical
Programming: State of the Art, pages 34–63. Univ. Michigan, 1994.

[52] Howard Frank and Wushow Chou. Connectivity considerations in the design of survivable
networks. IEEE Transactions on Circuit Theory (TCT), CT-17:486–490, 1970.

[53] Zvi Galil, Alain J. Mayer, and Moti Yung. Resolving message complexity of byzantine
agreement and beyond. In Symposium on Foundations of Computer Science (FOCS), pages
724–733, 1995.

[54] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 5(1):66–77, 1983.

[55] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for n > 3t proces-
sors in t + 1 rounds. SIAM Journal on Computing (SICOMP), 27(1):247–290, 1998.

[56] Mohsen Ghaffari and Krzysztof Nowicki. Congested Clique Algorithms for the Minimum
Cut Problem. In Symposium on Principles of Distributed Computing (PODC), pages 357–
366, 2018.

120 BIBLIOGRAPHY

[57] Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Sympo-
sium on Principles of Distributed Computing (PODC), pages 19–28, 2016.

[58] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. In Symposium on Operating
Systems Principles (SOSP), pages 51–68, 2017.

[59] Seth Gilbert and Dariusz R. Kowalski. Distributed agreement with optimal communication
complexity. In Symposium on Discrete Algorithms (SODA), pages 965–977, 2010.

[60] Seth Gilbert, Peter Robinson, and Suman Sourav. Leader election in well-connected graphs.
In Symposium on Principles of Distributed Computing (PODC), pages 227–236, 2018.

[61] Shafi Goldwasser, Elan Pavlov, and Vinod Vaikuntanathan. Fault-tolerant distributed com-
puting in full-information networks. In Symposium on Foundations of Computer Science
(FOCS), pages 15–26, 2006.

[62] Ralph E. Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics (JSTOR), 9, 1961.

[63] Jim Gray. The cost of messages. In Symposium on Principles of Distributed Computing
(PODC), pages 1–7, 1988.

[64] Diksha Gupta, Jared Saia, and Maxwell Young. Resource burning for permissionless sys-
tems. In International Colloquium on Structural Information and Communication Complex-
ity (SIROCCO), pages 19–44, 2020.

[65] Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agree-
ment. Mathematical Systems Theory, 26(1):41–102, 1993. Conference version in Sympo-
sium on Principles of Distributed Computing (PODC) 1991.

[66] Mohammad Taghi Hajiaghayi, Dariusz R. Kowalski, and Jan Olkowski. Improved com-
munication complexity of fault-tolerant consensus. In Symposium on Theory of Computing
(STOC), pages 488–501, 2022.

[67] Seifollah Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a
linear graph - i. Journal of the Society for Industrial and Applied Mathematics (JSTOR),
10(3):496–506, 1962.

[68] Václav Havel. A remark on the existence of finite graphs. Časopis pro pěstovánı́ matem-
atiky, 80:477–480, 1955.

BIBLIOGRAPHY 121

[69] Pierre A. Humblet. Electing a leader in a clique in o(n log n) messages. In IEEE Conference
on Decision and Control (CDC), pages 1139–1140, 1984.

[70] Tomasz Jurdzinski and Krzysztof Nowicki. Connectivity and minimum cut approxima-
tion in the broadcast congested clique. In International Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO), Revised Selected Papers, pages 331–344,
2018.

[71] Tomasz Jurdziński and Krzysztof Nowicki. MST in o(1) rounds of congested clique. In
Symposium on Discrete Algorithms (SODA), pages 2620–2632, 2018.

[72] Bruce Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast asyn-
chronous byzantine agreement and leader election with full information. In Symposium on
Discrete Algorithms (SODA), pages 1038–1047, 2008.

[73] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. Journal of Computer and System Sciences (JCSS), 75(2):91–112, 2009.

[74] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Effi-
cient distributed approximation algorithms via probabilistic tree embeddings. Distributed
Computing (DC), 25(3):189–205, 2012.

[75] Valerie King and Jared Saia. From almost everywhere to everywhere: Byzantine agreement
with õ(n3/2) bits. In International Symposium on Distributed Computing (DISC), pages
464–478, 2009.

[76] Valerie King and Jared Saia. Scalable byzantine computation. SIGACT News, 41(3):89–104,
2010.

[77] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: Scalable byzantine agreement
with an adaptive adversary. Journal of the ACM (JACM), 58(4):18:1–18:24, 2011.

[78] Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. Journal of
the ACM (JACM), 63(2):13:1–13:21, 2016.

[79] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In
Symposium on Discrete Algorithms (SODA), pages 990–999, 2006.

[80] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via

122 BIBLIOGRAPHY

collective signing. In USENIX Security Symposium (USENIX Security), pages 279–296,
2016.

[81] Jiejun Kong. Anonymous and untraceable communications in mobile wireless networks.
University of California, Los Angeles, 2004.

[82] Christian Konrad. Mis in the congested clique model in log log∆ rounds. arXiv preprint
arXiv:1802.07647, 2018.

[83] Ephraim Korach, Shay Kutten, and Shlomo Moran. A modular technique for the design
of efficient distributed leader finding algorithms. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 12(1):84–101, 1990.

[84] Ephraim Korach, Shlomo Moran, and Shmuel Zaks. Tight lower and upper bounds for some
distributed algorithms for a complete network of processors. In Symposium on Principles of
Distributed Computing (PODC), pages 199–207, 1984.

[85] Ephraim Korach, Shlomo Moran, and Shmuel Zaks. The optimality of distributive con-
structions of minimum weight and degree restricted spanning trees in a complete network
of processors. SIAM Journal on Computing (SICOMP), 16(2):231–236, 1987.

[86] Ephraim Korach, Shlomo Moran, and Shmuel Zaks. Optimal lower bounds for some dis-
tributed algorithms for a complete network of processors. Theory of Computing Systems
(TCS), 64(1):125–132, 1989.

[87] Janne H. Korhonen and Jukka Suomela. Towards a complexity theory for the congested
clique. In Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 163–
172, 2018.

[88] Dariusz R. Kowalski and Jaroslaw Mirek. On the complexity of fault-tolerant consensus.
In Networked Systems International Conference (NETYS), Revised Selected Papers, pages
19–31, 2019.

[89] Dariusz R. Kowalski and Achour Mostéfaoui. Synchronous byzantine agreement with
nearly a cubic number of communication bits. In Symposium on Principles of Distributed
Computing (PODC), pages 84–91, 2013.

[90] Dariusz R. Kowalski and Miguel A. Mosteiro. Time and communication complexity of
leader election in anonymous networks. In IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 449–460, 2021.

BIBLIOGRAPHY 123

[91] Manish Kumar. Fault-tolerant graph realizations in the congested clique, revisited. In Inter-
national Conference on Distributed Computing and Intelligent Technology (ICDCIT), pages
84–97, 2023.

[92] Manish Kumar and Anisur Rahaman Molla. On the message complexity of fault-tolerant
computation: Leader election and agreement. IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), 34(4):1115–1127, 2023.

[93] Manish Kumar and Anisur Rahaman Molla. Sublinear message bounds of authenticated
implicit byzantine agreement. In International Conference on Distributed Computing and
Networking – to be published (ICDCN), 2024.

[94] Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Fault-tolerant
graph realizations in the congested clique. In International Symposium on Algorithms and
Experiments for Wireless Sensor Networks (ALGOSENSORS), pages 108–122, 2022.

[95] Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Improved deter-
ministic leader election in diameter-two networks. In International Conference on Algo-
rithms and Complexity (CIAC), pages 323–335, 2023.

[96] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. Journal of the ACM (JACM), 62(1):7:1–7:27,
2015.

[97] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan.
Sublinear bounds for randomized leader election. Theoretical computer science (TCS),
561:134–143, 2015.

[98] Shay Kutten, Peter Robinson, Ming Ming Tan, and Xianbin Zhu. Improved tradeoffs for
leader election. In Symposium on Principles of Distributed Computing (PODC), pages 355–
365, 2023.

[99] Shay Kutten and Dmitry Zinenko. Low communication self-stabilization through random-
ization. In International Symposium on Distributed Computing (DISC), pages 465–479,
2010.

[100] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

124 BIBLIOGRAPHY

[101] Gérard Le Lann. Distributed systems - towards a formal approach. In International Feder-
ation for Information Processing (IFIP), pages 155–160, 1977.

[102] Linda Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica,
6(4):287–293, 1975.

[103] Na Li, Nan Zhang, Sajal K Das, and Bhavani Thuraisingham. Privacy preservation in wire-
less sensor networks: A state-of-the-art survey. Ad Hoc Networks, 7(8):1501–1514, 2009.

[104] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight span-
ning tree construction in o(log log n) communication rounds. SIAM Journal on Comput-
ing (SICOMP), 35(1):120–131, 2005.

[105] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ritu Sharma, and Sharon Lim. A survey and
comparison of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,
7(2):72–93, 2005.

[106] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[107] Apostolos Malatras. State-of-the-art survey on P2P overlay networks in pervasive comput-
ing environments. International Journal of Network and Computer Applications (IJNCA),
55:1–23, 2015.

[108] Dahlia Malkhi and Michael K. Reiter. Unreliable intrusion detection in distributed compu-
tations. In Computer Security Foundations Workshop (CSFW), pages 116–125, 1997.

[109] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341,
2016.

[110] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In
Symposium on Foundations of Computer Science (FOCS), pages 120–130, 1999.

[111] Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consensus with an
honest majority. https://dspace.mit.edu/handle/1721.1/107927, 2017.

[112] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms
and probabilistic analysis. 2004.

[113] Atsuki Momose and Ling Ren. Optimal communication complexity of byzantine consensus
under honest majority. Journal of Environmental Sciences (China) English Ed, 2020.

https://dspace.mit.edu/handle/1721.1/107927

BIBLIOGRAPHY 125

[114] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: a platform for
high-performance internet applications. ACM SIGOPS Operating Systems Review, 44(3):2–
19, 2010.

[115] Boaz Patt-Shamir and Marat Teplitsky. The round complexity of distributed sorting. In
Symposium on Principles of Distributed Computing (PODC), pages 249–256, 2011.

[116] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[117] David Peleg. Time-optimal leader election in general networks. Journal of Parallel and
Distributed Computing (JPDC), 8(1):96–99, 1990.

[118] David Peleg. Distributed computing: A locality-sensitive approach. 2000.

[119] Michael O. Rabin. Randomized byzantine generals. In Symposium on Foundations of Com-
puter Science (FOCS), pages 403–409, 1983.

[120] Mohsin Ur Rahman. Leader election in the internet of things: Challenges and opportunities.
CoRR, abs/1911.00759, 2019.

[121] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker. A
scalable content-addressable network. In Special Interest Group on Data Communication
(SIGCOMM), pages 161–172, 2001.

[122] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Ap-
proach. Springer, 2018.

[123] Mohammed Refai, Ahmad Abdel-Aziz Sharieh, and Fahad Alshammari. Leader election
algorithm in 2d torus networks with the presence of one link failure. International Arab
Journal of Information Technology (IAJIT), 7(2):105–114, 2010.

[124] Sean C. Rhea, Patrick R. Eaton, Dennis Geels, Hakim Weatherspoon, Ben Y. Zhao, and
John Kubiatowicz. Pond: The oceanstore prototype. In USENIX Conference on File and
Storage Technologies (FAST), 2003.

[125] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In International Conference on Distributed
Systems Platforms (IFIP), pages 329–350, 2001.

126 BIBLIOGRAPHY

[126] Nicola Santoro. Design and analysis of distributed algorithms. Wiley series on parallel and
distributed computing. Wiley, 2007.

[127] Christian Scheideler. Models and techniques for communication in dynamic networks. In
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 27–49,
2002.

[128] Elaine Shi and Adrian Perrig. Designing secure sensor networks. IEEE Wireless Communi-
cations, 11(6):38–43, 2004.

[129] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini. Se-
curity, privacy and trust in internet of things: The road ahead. Computer networks, 76:146–
164, 2015.

[130] Gurdip Singh. Efficient distributed algorithms for leader election in complete networks. In
IEEE International Conference on Distributed Computing Systems (ICDCS), pages 472–
479, 1991.

[131] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON), 11(1):17–32, 2003.

[132] Gerard Tel. Introduction to distributed algorithms. Cambridge University Press, 1994.

[133] Eli Upfal. Tolerating linear number of faults in networks of bounded degree. In Symposium
on Principles of Distributed Computing (PODC), pages 83–89, 1992.

[134] Rolf H Weber. Internet of things–new security and privacy challenges. Computer law &
security review (CLSR), 26(1):23–30, 2010.

[135] Alex Wright. Contemporary approaches to fault tolerance. Communications of the ACM,
52(7):13–15, 2009.

[136] Assaf Yifrach and Yishay Mansour. Fair leader election for rational agents in asynchronous
rings and networks. In Symposium on Principles of Distributed Computing (PODC), pages
217–226, 2018.

[137] Hiroyuki Yoshino, Naohiro Hayashibara, Tomoya Enokido, and Makoto Takizawa. Byzan-
tine agreement protocol using hierarchical groups. In International Conference on Parallel
and Distributed Systems (ICPADS), pages 64–70, 2005.

	Introduction
	Preliminaries
	Distributed Computing Model and Definitions
	Literature Review
	Our Contribution and Organization of the Thesis
	List of Publications

	 Message Efficient Algorithms for Leader Election and Agreement under Crash Fault
	Introduction
	Our Results and Implications

	Model and Definitions
	Related Work
	Fault-Tolerant Leader Election
	Algorithm
	Lower Bound on the Message Complexity

	Fault-Tolerant Agreement
	Algorithm
	Lower Bound on the Message Complexity

	Conclusion

	Sublinear Message Bounds for Authenticated Byzantine Agreement
	Introduction
	Our Main Results
	Model and Definitions
	Byzantine Agreement vs. Byzantine Broadcast

	Related Work
	Authenticated Implicit Byzantine Agreement
	Byzantine Leader Election
	In the KT1 Model
	Removing the Global Coin and Hash Function Assumption

	Byzantine Subset Agreement
	Lower Bound on Message Complexity
	Experimental Evaluation
	Conclusion

	Tight Bounds on the Fault-Tolerant Graph Realizations in the Congested Clique
	Introduction
	Our Contributions
	Model and Definitions

	Related Work
	Preliminary: The Sequential Havel-Hakimi Algorithm for Graph Realization
	Fault-Tolerant Graph Realization in KT1
	Lower Bound

	Fault-Tolerant Graph Realization in the KT1 NCC Model
	Graph Realization with Faults in KT0
	Algorithm
	Lower Bound

	Conclusion

	Optimal Algorithm for Deterministic Leader Election in Diameter-Two Networks
	Introduction
	Our Results

	Model and Definition
	Related Work
	Deterministic Leader Election in Diameter-Two Networks
	Algorithm
	Broadcast Tree Formation

	Conclusion

	Conclusion and Future Work

