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Chapter 1

Introduction

The idea of quantum groups was introduced by Drinfeld and Jimbo ([Dri87], [Dri89],[Jim85]).

It was done on an algebraic level where quantum groups were viewed as Hopf algebras typically

arising as deformations of semisimple Lie algebras. The analytic version of quantum groups

was first described by Woronowicz ([Wor87], [Wor98]) who formulated the notion of compact

quantum group as a generalization of a compact topological group in the non-commutative

realm. Let us start by a brief description of the notion of a compact quantum group (CQG in

short).

Let G be a compact topological group and let us consider the unital algebra C(G) consisting

of continuous complex valued functions on G. Instead of looking at the multiplication in G,

we look at the co-multiplication map ∆ : C(G) → C(G)⊗ C(G)(∼= C(G×G)) which is a C*

algebra homomorphism obtained by dualizing the multiplication map in G. The associativity of

the multiplication map induces a co-associativity condition on the C* algebra homomorphism

∆ and the inversion map in G can be characterised by two density conditions imposed on ∆.

In the spirit of noncommutative geometry, a compact quantum group is pair (A,∆) where A

is a unital C* algebra (possibly noncommutative) along with a co-product ∆ : A → A ⊗ A

satisfying co-associativity and the density conditions we have talked about before. If A is a

commutative C* algebra, then from Gelfand Neimark construction it follows that, there exists a

compact topological group G such that A ∼= C(G) and the co-product ∆ on A arises precisely

by dualizing the multiplication in G.

Groups are often viewed as “symmetry objects”, in a similar way, quantum groups correspond

to some kind of “generalized symmetry” of physical systems and mathematical structures.

Indeed, the idea of a group acting on a space can be extended to the idea of a quantum

group co-acting on a noncommutative space (that is, possibly a noncommutative C*algebra).

The question of defining and finding “all quantum symmetries” arises naturally in this context.
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2 Chapter 1. Introduction

Such an approach was first taken by Manin though purely in an algebraic framework ([Man88],

[Man87]). Study of quantum symmetry in analytic setting, that is, in the framework of compact

quantum groups was first started by Shouzhou Wang. In 1997, Wang introduced the notion

of quantum symmetry in finite spaces ([Wan98]), that is, finite dimensional C* algebras. In

particular, he described the notion of quantum permutations (in the category of compact

quantum groups) of n objects and defined quantum permutation group S+
n as the universal

object in the category of all such quantum permutations. S+
n is indeed the compact quantum

analogue of the standard permutation group Sn on n elements.

After describing quantum automorphisms on a finite space consisting of n points, it was

natural to look into the notions of quantum automorphisms in finite graphs and small metric

spaces. In 2003, the notion of quantum automorphism in a finite directed simple graph

(V,E) was first introduced by Bichon ([Bic03]). It was formulated in terms of simultaneous

quantum permutations of both edge set E and vertex set V which were compatible through

source and target maps of a directed graph. Here by “simple” we mean only the absence of

multiple edges between a fixed pair of vertices (not necessarily a distinct pair), not the absence

of loops (a loop is an edge with a single endpoint vertex). We will maintain this convention

about simple graphs throughout this thesis. Two years later, in [Ban05a] Banica gave a more

general notion of quantum symmetry in a simple graph in terms of its adjacency matrix. Any

quantum permutation of vertex set which commutes with adjacency matrix is a quantum

automorphism of the simple graph in Banica’s sense. As there was absolutely no restriction

on the entries of the adjacency matrix, this construction was generalised easily to produce

quantum automorphisms in the context of weighted simple graphs and small metric spaces

([Ban05b]). For a simple graph (V,E), the categories of quantum automorphisms described

by Bichon and Banica will be denoted as DBan
(V,E) and DBic

(V,E) respectively. It turned out that

DBic
(V,E) is always a full subcategory of DBan

(V,E).

Starting from the existence of quantum symmetry in simple graphs to explicit computations

of quantum automorphism groups, there has been quite a lot of work done in this direction in

recent years. We review some results here. In [BB07b] Banica computed the quantum auto-

morphism groups of vertex-transitive graphs with less than or equal to eleven vertices except

for Petersen graph. Later in [Sch18], Schmidt showed that Petersen graph does not have any

quantum symmetry. In [BBC07b] a new universal quantum group, hyperoctahedral quantum

group H+
n were added to the Wang’s series of universal quantum groups ([Wan98],[Wan95]),

which arose as quantum automorphism groups of hypercubes (n-dimensional analogue of a
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square or a cube). In [BBC07a] Banica and collaborators showed that there is no quantum sym-

metry in circulant graphs where number of vertices is prime and satisfies a certain condition.

Quantum symmetries in circulant and vertex-transitive graphs were also studied by Chassan-

iol in [Cha]. In [Cha16], he described the qauntum automorphism groups of lexicographic

product of two finite regular graphs. In [Ful06], Fulton computed quantum automorphism

groups of undirected trees with some specific classical automorphism groups. Later various

computations for interesting classes of graphs were done by Schmidt in [Sch20c], [Sch20a]. In

[LMR20], Lupini, Mancinska and Roberson showed that almost all graphs have trivial quantum

automorphism group which is quantum analogue of a well-known result in [ER63] proved by

Erdos and Renyi. There was also a contemporary result in [ER63] saying that “almost all trees

have non-trivial symmetry” which was generalised in quantum sense by Junk, Schmidt and

Weber in [JSW20]. There has also been some recent developments in finding perfect quantum

strategies for the graph isomorphism game using quantum symmetry in graphs leading to a

deep connection between quantum information theory and the theory of quantum groups.

For an interested reader, we list some references here, [MR14],[MRV19],[BCE+20][AMR+19],

[LMR20]. Recently, Vaes and Rollier in [RV22] introduced the notion of quantum symmetry

and described quantum automorphism groups of connected locally finite infinite graphs.

It is natural to ask whether Banica and Bichon’s notions of quantum automorphisms can

be generalised in the context of multigraphs. A multigraph or a finite quiver (V,E) consists

of a finite vertex set V and a finte edge set E with source and target maps s : E → V and

t : E → V . Classically an automorphism of a multigraph is pair (fV , fE) where fV and fE are

permutations of vertex set and edge set respectively which are compatible via source and target

maps s and t. In case of simple graphs, the formulations of quantum symmetry were done in

terms of permutation of vertices and adjacency relations between two vertices. Same technique

fails to work for multigraphs as there can be multiple edges between any two vertices.

We have reformulated the notions of quantum symmetry in a simple graph in terms of

“permutations” of edges instead of permutations of vertices which can be easily generalised in

the context of multigraphs.

For a multigraph (V,E), we have constructed three different categories CBan
(V,E), C

sym
(V,E) and

CBic
(V,E) consisting of compact quantum groups co-acting by preserving different levels of quantum

symmetry in (V,E). If (V,E) is simple, then it turns out that CBan
(V,E) = Csym

(V,E) = DBan
(V,E) and

CBic
(V,E) = DBic

(V,E). For a multigraph (V,E), we have the following :

CBic
(V,E) ⊆ Csym

(V,E) ⊆ CBan
(V,E).
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We have shown that the categories CBic
(V,E) and CBan

(V,E) admit universal objects namely QBic
(V,E)

and QBan
(V,E). However that is not the case for Csym

(V,E). It is still unclear whether for an arbitrary

multigraph (V,E), the category Csym
(V,E) admits a universal object or not. The compact quantum

group QBic
(V,E) is the quantum automorphism group of (V,E) which is a quantum analogue of

the classical automorphism group of (V,E). On the other hand, QBan
(V,E) is too large to be called

an “automorphism group of (V,E)” and therefore will be referred to as universal quantum

group associated with (V,E).

We have also described these quantum automorphisms in the context of undirected multi-

graphs. An undirected multigraph (V,E) consists of an edge set E and vertex set V and a map

r : E → {{x, y}|x, y ∈ V } which assigns each edge to an unordered pair of endpoint vertices.

It is natural to ask for which class of multigraphs, the two categories Csym
(V,E) and CBic

(V,E)

coincide. We have provided a necessary and sufficient condition in terms of weighted symmetry

of the underlying simple graph. We have shown that for a uniform multigraph (V,E)(i.e.

either 0 or a fixed number of edges between any two vertices) the categories Csym
(V,E) and CBic

(V,E)

coincide if and only if DBan
(V,E)

and DBic
(V,E)

coincide where (V,E) is the underlying simple

graph of (V,E). For this class of multigraphs, the compact quantum group QBic
(V,E) does

act as a universal object in Csym
(V,E). We have expressed QBic

(V,E) as free wreath product by

quantum permutation groups ([Bic04], [BB07a]) where the co-action corresponding to the

wreath product comes from a permutation of pairs of vertices induced by the weighted symmetry

of the underlying simple graph. This wreath product formula for QBic
(V,E) also emphasizes that

any multigraph which have at least two pairs of vertices with multiple edges among them

possesses genuine quantum symmetry.

In search of members of Csym
(V,E) which are essentially non-Bichon (that is, not a member

of CBic
(V,E)), we have stumbled upon a particular class of automorphisms of a multigraph (V,E),

namely source and target dependent automorphisms of (V,E). Vaguely speaking, an

automorphism of a multigraph (V,E) is source dependent if permutation of an edge depends

on the source of that edge and similar description goes for the target dependent case. We

have constructed a series of compact quantum groups Qs
(V,E), Q

t
(V,E) and Qs,t

(V,E) consisting of

source and target dependent quantum automorphisms of (V,E) which are all non-Bichon

members of CBan
(V,E). Among all these quantum groups, Qs,t

(V,E) turns out to be a member of

Csym
(V,E).

There has been an extensive study of quantum symmetry in graph C* algebras in recent

times (see [PR06], [BS13],[JM18], [SW18],[BEVW22]). Following the line of [SW18] we have

shown that our notions of quantum symmetry in multigraphs in fact lift to the level of graph
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C* algebras. We have also shown that our ideas of quantum symmetry fit the framework

of co-actions on C* correspondences (see [Kat04], [BJ],[KQR15]) coming naturally from

multigraphs.

Apart from mathematical structures, multigraphs are also important in many physical models

such as lattices of atoms with double or triple bonds. We have extended our work of Quantum

symmetry on q-state Potts model ([GAH22]) in the context of multigraphs.

Potts model, or more general vertex and spin models are some of the most popular and

useful models arising primarily in statistical (including quantum statistical) mechanics, but they

have found wide applications in many other areas of physics and even other scientific (including

social sciences) disciplines. Typically, Potts model is considered on infinite lattices or infinite

simple graphs where thermodynamic properties are analysed. However, we have considered the

notion of Potts model on a finite multigraph. As we have mentioned before, physically a

finite multigraph can correspond to molecules consisting of double or triple bonds.

Now we look into the theory of phase transitions. Instead of looking at phase transition as

breaking of continuity or smoothness of suitable thermodynamic properties, we will be consid-

ering the symmetry viewpoint of Landau in [LL69] which says that a change of the group of

symmetry of the underlying physical system signifies a change of phase. For example, gaseous

phase has lot more symmetry than liquid which is constrained to have a fixed volume. Simi-

larly, liquid has more symmetry than solid. There are also several models in condensed matter

physics where there are theoretical and experimental explanations of effect of doping-induced

phase transition in terms of change of the point symmetry group of the underlying crystal struc-

tures (see for example, [PMAO12]). We are proposing an extension of such ideas in the context

of quantum group symmetry seen as generalised group symmetry.

It should be noted that the interplay of quantum groups and operator algebras with the

models (including Potts model) of statistical mechanics goes back to the seminal work of Jones,

[Jon89], (see also [Jon94a]) leading to a theory which connects physical models with subfactor

theory, quantum field theory and so on. Later in [Ban98], Banica showed that spin and vertex

models of Jones do come from quantum groups. Our approach to quantum symmetry in Potts

model is different in a way that we are considering a compact quantum group co-acting on

the set of vertices of the graph commuting with the Hamiltonian of the model instead of an

on-site symmetry coming from the permutation of the set of states or the commutator with the

site-to-site transfer matrices as in [Jon94b].

Now we give a brief overview of the chapters in this thesis.
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In chapter 2, we recollect all the basic concepts we will need in the later chapters to make

this thesis as self-content as possible. In section 2.1 we describe the basic notions related

to simple graphs, multigraphs, adjacency relations and automorphism of graphs. As we have

mentioned earlier, our simple graphs may have loops (an edge with same endpoints) but no

multiple edges between a pair of vertices. We also describe “undirectedness” in graphs in such a

way that will be helpful to us in later chapters. In section 2.2 we provide a very brief discussion

about q-state Potts model. Next two sections are about basic concepts and examples related

to compact quantum groups. In section 2.5, we discuss two different formulations of quantum

symmetry in a simple graph given by Bichon and Banica ([Bic03], [Ban05a]) and prove some

useful results related to them. Along with all the notations introduced in previous sections, in

section 2.7, we introduce some additional notations related to multigraphs which we will be

using extensively throughout this thesis.

In chapter 3 we reformulate previously described notions of quantum symmetry in a simple

graph in terms of “permutations” of edges (instead of vertices) which can be easily generalised

in the context of a multigraph. In section 3.1 we formulate quantum automorphisms in terms

of left and right equivariant bi-unitary co-representations. The next two sections provide

another equivalent description of left and right equivariant co-representations in terms of

implemented co-actions of a bi-unitary (see definition 2.3.6) which helps us see how a

“permutation” of edges preserving the symmetry of the multigraph induces permutations on

the sets of initial and final vertices. With the theorems discussed in previous sections, in section

3.5, we find another additional constraint to capture the complete picture of already known

notions of quantum symmetry in a simple graph. Section 3.6 connects bi-unitarity with our

“inversion” map in an undirected multigraph (see definition 2.1.7). Finally, in section 3.7 we

give our equivalent definitions of quantum symmetry in a simple graph in terms of a bi-unitary

map on a suitable Hilbert space and its induced co-actions on the algebra of operators on that

Hilbert space.

In chapter 4 we define the notions of quantum symmetry in a multigraph. In section

4.1, we see that most of the results derived in chapter 3 hold in case of a multigraph with

verbatim proofs. Using these, in the section 4.2, we define three levels of quantum symmetry

in a finite multigraph. In subsection 4.2.3, the propositions 4.2.7 and 4.2.9 tell us that our

description of quantum symmetry is a correct generalization of already existing notions of

quantum symmetry in simple graphs. In subsection 4.2.4 we look into the condition (5) of

definition 4.2.3 and investigate whether it can be replaced with a nicer one. The next two

sections 4.4 and 4.5 introduce different quantum automorphism groups of a multigraph
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corresponding to different levels of quantum symmetry. In section 4.6 we see that “bi-unitarity”

is closely related to inversion in an undirected multigraph which has been already observed for

simple graphs in chapter 3. From theorem 4.6.11, we see that quantum automorphism of any

directed multigraph can be realised as a quantum automorphism of the “underlying undirected

multigraph” preserving the set of directed edges.

In chapter 5, we dive deep into the structures of objects in Csym
(V,E) and CBic

(V,E). From propo-

sitions 5.2.1 and 5.2.2, it follows that co-actions in both categories Csym
(V,E) and CBic

(V,E) preserve

uniform components of (V,E) (see notation 5.1.2). Hence it suffices to look into the co-

actions on uniform multigraphs. In subsection 5.3.2, proposition 5.3.7 gives us more insight

into the modified notion of “permutation” of edges we have been considering till now. The

rest of the chapter concerns with some interesting structural results about QBic
(V,E). In theorem

5.3.13, we see that for a directed uniform multigraph (V,E), QBic
(V,E) is the free wreath product

by QBic
(V,E)

(see subsection 5.3.4) where the underlying co-action of the wreath product comes

from quantum symmetry of the underlying simple graph (V,E). Theorem 5.3.9 in subsection

5.3.3 provides us with a large class of multigraphs where the categories Csym
(V,E) and CBic

(V,E) coin-

cide making computations possible. However, outside this class, existence of a universal object

in Csym
(V,E) remains unknown.

In chapter 6, we focus on constructing quantum automorphisms of an arbitrary multigraph

(V,E) which are essentially of non-Bichon type, that is, not necessarily a member of CBic
(V,E).

In section 6.1 we consider three special classes of automorphisms namely, source dependent,

target dependent and both source and target dependent automorphisms of a directed

multigraph (V,E). By replacing condition (5) in definition 4.2.3 with the more suitable ones

we construct quantum analogues of the above mentioned automorphisms in section 6.2. In

subsection 6.2.4 we rewrite the above mentioned quantum automorphisms in forms resembling

to their classical counterparts. In the process of that, we see that source dependent quantum

automorphisms can be formulated as a free wreath product where the underlying co-action

is on the set of initial vertices. Similar phenomena happens for the case of target dependent

quantum automorphisms where the underlying co-action of the free wreath product is on the

set of final vertices. In section 6.4 we define notions of source and target dependent quantum

automorphism groups using the results of subsection 6.2.4. They exist as universal objects

in their respective categories of source dependent, target dependent and both source and

target dependent co-actions as we have shown in section 6.3. Section 6.5 is about extension

of these ideas for undirected multigraphs. As there are no inherent differences between source

and target maps for an undirected multigraph, we see that all the quantum groups Qs
(V,E,j),
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Qt
(V,E,j) and Qs,t

(V,E,j) coincide for an undirected multigraph (V,E, j) .

In chapter 7 we compute quantum automorphism groups for a few multigraphs. We have

considered only undirected multigraphs as quantum automorphism of any directed multigraph

do originate from its underlying undirected part (see theorem 4.6.11). However it is worth

mentioning that similar phenomena is not true for source and target dependent quantum

symmetries. In section 7.3, we show that our notions of quantum automorphisms also fit in the

pictures of existing notions of quantum symmetry in various mathematical structures related to

multigraphs.

In chapter 8, we describe the notion of quantum symmetry in a q-state Potts model on

a finite undirected multigraph with a finite state space. The original work done by us in

[GAH22] was in the context of simple graphs and we will do a similar treatment here. We start

by extending the definition of Hamiltonian in the context of a multigraph. We identify the

elements of finite state space with a suitable cyclic group and formulate a notion of co-action

of compact quantum groups on the space of functions on the vertex set of the graph such that

the co-action commutes with the Hamiltonian (that is, it gives a symmetry of the underlying

model). Following the line of [Ban05b] we prove the existence of a universal compact quantum

group which gives symmetry of the Potts model in the above sense, calling it the quantum group

of symmetry of the model. Then we compute this quantum group in a few examples and show

how a slight change of the parameters of the model can result in a rather remarkable change

of quantum symmetry. More interestingly, we give an example where classical symmetry group

remains the same even after the change of the model parameters but quantum symmetry group

changes. This makes a strong case for studying quantum group symmetry in physical models.

Except chapter 2 which contains necessary preliminaries, from chapter 3 to chapter 7 we

refer to [GH23] and for chapter 8 we refer to [GAH22] (see also [GH21] which is a corrected

version).



Chapter 2

Preliminaries

2.1 Graphs

2.1.1 Simple graphs and weighted simple graphs

Definition 2.1.1. A simple graph (V,E) consists of a finite set of vertices V and a finite set

of edges E ⊆ V × V . We define source and target maps s : E → V and t : E → V by

s(i, j) = i and t(i, j) = j where (i, j) ∈ E.

The adjacency matrix W = (Wij)i,j∈V is given by Wij = 1 if (i, j) ∈ E and Wij = 0 otherwise.

Notation 2.1.2. In later sections, we might also write the adjacency matrix as (W i
j )i,j∈V

instead of (Wij)i,j∈V for notational ease and consistency.

Definition 2.1.3. A weighted simple graph (V,E,w) is a simple graph (V,E) with a weight

function w : E → C. In this case, the adjacency matrix W = (Wij)i,j∈V is given by Wij =

w((i, j)) if (i, j) ∈ E and Wij = 0 otherwise.

Definition 2.1.4. A simple graph (V,E) or a weighted simple graph (V,E,w) is said to be

undirected if its adjacency matrix W is a symmetric matrix, that is, Wij = Wji for all i, j ∈ V .

2.1.2 Finite quivers or multigraphs

We recall the notions of finite quivers and morphisms among them. For more details on quivers

and path algebras see [GMVY18].

Definition 2.1.5. A finite quiver or a multigraph (V,E) consists of a finite set of vertices V

and a finite set of edges E with source and target maps s : E → V and t : E → V .

9



10 Chapter 2. Preliminaries

An edge τ ∈ E is called a loop if s(τ) = t(τ). We will denote L ⊆ E to be the set of all

“loops” in (V,E).

The adjacency matrix W = (W i
j )i,j∈V is given by W i

j = |{τ ∈ E|s(τ) = i, t(τ) = j}|. Here

|.| denotes cardinality of a set.

Definition 2.1.6. A doubly directed multigraph (V,E) is a multigraph (V,E) such that its

adjacency matrix W is symmetric, that is, W i
j = W j

i for all i, j ∈ V .

Definition 2.1.7. An undirected multigraph (V,E, j) is a “doubly directed” multigraph (V,E)

with an inversion map j : E → E such that the following hold:

1. j2 = idE .

2. j(τ) = τ for all τ ∈ L, where L is the set of “loops” in (V,E).

3. For all τ ∈ E,

s(j(τ)) = t(τ) and t(j(τ)) = s(τ).

Remark 2.1.8. By fixing an inversion map in a doubly directed graph, we are clubbing two

oppositely directed edges ( loops are excluded as they are inherently oppositely directed) between

two points to produce an undirected edge. The main advantage of our undirectedness is not

losing the sense of source and target of an edge even in an undirected setting which will be

crucial to our construction later.

It should be noted that in case of a simple graph, the notion of doubly directedness and

undirectedness coincide as there can exist at most one inversion map in a “doubly directed”

simple graph, hence making sense of definition 2.1.4.

Definition 2.1.9. For a multigraph (V,E), the underlying simple graph (V,E) is the simple

graph with the same vertex set V and the set of edges E given by,

E := {(i, j) ∈ V × V |W i
j ̸= 0}.

Definition 2.1.10. For a multigraph (V,E), the underlying weighted graph is the underlying

simple graph (V,E) with the weight function w : E → C given by w((i, j)) = W i
j for (i, j) ∈ E

where W is the adjacency matrix of (V,E).

2.1.3 Morphisms of finite quivers or multigraphs

We recall definition 2.3 from [GMVY18]. For more detailed discussion on different automor-

phisms of a multigraph, see also [Gel82].
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Definition 2.1.11. Let (V,E) and (V ′, E′) be two finite quivers with pairs of source and target

maps given by (s, t) and (s′, t′) respectively. A morphism of quivers f : (V,E) → (V ′, E′) is

a pair of maps (fV , fE) where fV : V → V ′ is a map of vertices and fE : E → E′ is a map of

edges satisfying,

fV (s(τ)) = s′(fE(τ)) and fV (t(τ)) = t′(fE(τ)) for all τ ∈ E.

Furthermore if (V,E) and (V ′, E′) are undirected with inversion maps j and j′ then we also

assume that,

fE(j(τ)) = j′(fE(τ)) for all τ ∈ E.

An automorphism of a finite quiver or a multigraph (V,E) is an invertible morphism

from (V,E) to (V,E). The collection of all such automorphisms is said to be the classical

automorphism group of (V,E) and will be denoted as Gaut
(V,E).

2.2 Review of Potts model in statistical mechanics

The fundamental idea of statistical mechanics is to consider an “ensemble” or totality of all

possible states of a physical system in equilibrium and assign a probability distribution, usually

the so-called Boltzmann (or Gibbs) distribution. The probability distribution (or the probability

density) of a state depends on the corresponding energy level (typically given by the Hamiltonian,

say H) and the absolute temperature of the system (T).

Potts model or q-state Potts model was first introduced by Renfrey Potts in 1952 ([Pot52])

as a generalization of already existing Ising model where the state space has q points instead of

only “spin up” and “spin down” symmetry. Though these structures are described on infinite

graphs or infinite lattices (see for instance, [Wu82]), we will look into the “finite” case as that

will be enough for our purpose.

Let us consider (V,E) to be an undirected finite simple graph without loops and Xq be

a finite set {1, 2, .., q}. A q-state Potts model on (V,E) consists of a configuration space ΩP

and a Hamiltonian HP .

Definition 2.2.1. A configuration ω is a function from the vertex set V to the finite set Xq.

The set of all configuration is denoted by ΩP . The Hamiltonian HP is a function from ΩP to

C given by,

HP (ω) = −
∑

(i,j)∈E
Jijδω(i),ω(j) −

∑
i∈V

ξω(i)(i)
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where δx,y is the Kronecker delta symbol (that is, δx,y = 1 if x = y and is 0 otherwise) and

ξ(i) := (ξ1(i), ..., ξq(i)) ∈ Rq is an external (possibly random) field.

Now we briefly recall the notion of Gibbs measure in our context which gives us the

probability of occurence of a configuration ω at an absolute temperature T .

Definition 2.2.2. The partition function Z(β) at an inverse temperature β (that is, β = 1/T )

for a q-state Potts model is given by,

Z(β) =
∑
ω∈ΩP

e−βHP (ω).

The probability of occurence of a configuration ω at an inverse temperature β is given by

P (ω) =
1

Z(β)
e−βHP (ω).

The measure described by P (ω) is the Gibbs measure on the configuration space ΩP at inverse

temperature β.

2.3 Compact quantum group

2.3.1 C* algebras and Hilbert C* modules

Before going to the compact quantum groups, we will briefly recall the notions of C* algebras

and Hilbert C* modules. All algebras and tensor product of algebras are considered to be over

the field of complex numbers unless explicitly mentioned otherwise.

Definition 2.3.1. Let A be an algebra. A norm ∥.∥ on A is called sub-multiplicative if the

following identity holds:

∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A.

An algebra A with a sub-multiplicative norm ∥.∥ is a normed algebra and denoted by (A, ∥.∥).

Moreover, if A has a multiplicative unit 1 such that ∥1∥ = 1, then (A, ∥.∥) is called a unital

normed algebra. A Banach algebra is a normed algebra which is complete with respect to the

metric induced by the norm.

Definition 2.3.2. A Banach * algebra is a triplet (A, ∥.∥, ∗) where ∗ : A → A is an antiho-

momorphism satisfying the following conditions:

1. ∥a∗∥ = ∥a∥ for all a ∈ A.
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2. (λa+ b)∗ = λa∗ + b∗ for all a, b ∈ A and λ ∈ C.

A C* algebra is a Banach * algebra satisfying the C* identity:

∥a∗a∥ = ∥a∥2.

Definition 2.3.3. Let A be a C* algebra. An element x ∈ A is said to be positive if there

exists y ∈ A such that x = y∗y. The set of all positive elements in A is denoted by A+.

A linear functional ϕ : A → C is a continuous C-linear map from A to C.The map ϕ is

said to be positive if ϕ(x) ≥ 0 for all x ∈ A+.

A positive linear functional ϕ on a unital C* algebra A is called a state if ϕ(1) = 1.

The Gelfand-Naimark theorem states that any unital commutative C*-algebra is isometrically

isomorphic to C(X) for some compact Hausdorff space X. On the other hand, any C*-algebra

is isometrically isomorphic to a norm closed * subalgebra of B(H) for some Hilbert space H.

Now we recall the concept of Hilbert C* modules. For detailed discussion see [Lan95].

Definition 2.3.4. Let A be a C* algebra. A pre-Hilbert A-module E is a right A-module

with an A-valued inner product < ., . >A: E×E → A which is C linear in second variable and

satisfy the following conditions:

1. < ξ, ηx >A=< ξ, η >A x for all ξ, η ∈ E and x ∈ A.

2. < ξ, η >∗
A=< η, ξ >A for all ξ, η ∈ E.

3. < ξ, ξ >A≥ 0 for all ξ ∈ E.

4. For any ξ ∈ E, if < ξ, ξ >A= 0, then ξ = 0.

A pre-Hilbert module E is called a Hilbert C* module if it is complete under the norm ∥.∥

where the ∥.∥ is given by ∥ξ∥ = ∥ < ξ, ξ >A ∥1/2.

Let E be a Hilbert A-module where A is a C*algebra. We say that a C-linear map L :

E → E is adjointable if < ξ,L∗(η) >A=< L(ξ), η >A for all ξ, η ∈ E. The set of all

adjointable operators is denoted by LA(E). An adjointable operator L is automatically A-

linear and a bounded map between Banach spaces. With respect to the operator norm, LA(E)

is a C* algebra. Moreover, any L ∈ LA(E) is said to be “unitary” if L is an isometry, that is,

< L(ξ), L(η) >A=< ξ, η >A for all ξ, η ∈ E, and its range is whole of E.

For ξ, η ∈ E, let us define θξ,η ∈ LA(E) by θξ,η(γ) = η < ξ, γ >A for all γ ∈ E. The norm

closure of linear span of the set of operators θξ,η in LA(E) is the set of compact operators
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on E and is denoted by KA(E). We recall the following result from the theory of Hilbert C*

modules.

Lemma 2.3.5. The multiplier algebra of KA(E), M(KA(E)), is isomorphic to LA(E) for any

Hilbert C* module E.

Given a Hilbert space H and a C* algebra A, H ⊗ A is a Hilbert C* module with right

A-module map and A-valued inner product <,>A given by

(ξ ⊗ x).y = ξ ⊗ (xy) and < ξ ⊗ x, η ⊗ y >A=< ξ, η > x∗y

for all ξ, η ∈ E and x, y ∈ A. KA(H ⊗ A) is canonically isomorphic to K(H) ⊗ A where

K(H) is the set of compact operators on H. From lemma 2.3.5 it follows that LA(H ⊗A) ∼=

M(K(H) ⊗ A). we will often identify an element L of LA(H ⊗ A) with a map from H to

H ⊗A which sends a vector ξ to L(ξ ⊗ 1) in H ⊗A. We might also use the same notation in

both cases.

Definition 2.3.6. Let H be a Hilbert space and A be a C* algebra. By B(H), we will denote the

set of all bounded operators on H. For a unitary U ∈ LA(H ⊗A), there is a * homomorphism

AdU : B(H) → LA(H ⊗A) which is given by,

AdU (T ) = U(T ⊗ 1)U∗ where T ∈ B(H).

Let us assume that H is a finite dimensional Hilbert space of dimension n. Again from

lemma 2.3.5 it follows that LA(H ⊗A) ∼= M(K(H)⊗A) ∼= B(H)⊗A where B(H) is the set

of all bounded operators on H. As H is an n dimensional Hilbert space, B(H) can be identified

with Mn(C), the algebra of n× n matrices, by choosing a suitable orthonormal basis of H.

2.3.2 Basic definitions

We give a brief description of compact quantum groups and related concepts. For detailed

discussion on quantum groups, see [CP95], [MVD98], [Tim08], [NT13] and [GB16]. All C*

algebras here will be assumed to be unital and all tensor products will be minimal tensor

product of C* algebras unless explicitly mentioned otherwise.

Definition 2.3.7. A compact quantum group or a CQG (in short) is a pair (A,∆) where A

is a unital C* algebra and ∆ : A → A ⊗ A is a homomorphism of C* algebras satisfying the

following conditions:
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1. (∆⊗ id)∆ = (id⊗∆)∆ (coassociativity).

2. Each of the linear spans ∆(A)(1⊗A) and ∆(A)(A⊗ 1) is norm-dense in A⊗A.

It is known that there exists a unique Haar state on a compact quantum group which is the

non-commutative analogue of Haar measure on a classical compact group.

Definition 2.3.8. The Haar state h on a compact quantum group (A,∆) is the unique state

on A which satisfies the following conditions:

(h⊗ id)∆(a) = h(a)1A and (id⊗ h)∆(a) = h(a)1A

for all a ∈ A.

Definition 2.3.9. A quantum group homomorphism Φ among two compact quantum groups

(A1,∆1) and (A2,∆2) is a C* algebra homomorphism Φ : A1 → A2 satisfying the following

condition:

(Φ⊗ Φ) ◦∆1 = ∆2 ◦ Φ.

Definition 2.3.10. A Woronowicz C* subalgebra of a compact quantum group (A,∆) is a

C* subalgebra A′ such that (A′∆|A′) is a compact quantum group and the inclusion map

i : A′ → A is a homomorphism of compact quantum groups.

Definition 2.3.11. A Woronowicz C* ideal of a compact quantum group (A,∆) is a two sided

C*ideal I such that ∆(I) ⊆ ker(π ⊗ π) where π is the natural quotient map π : A → A/I.

Proposition 2.3.12. The quotient of a compact quantum group (A,∆) by a Woronowicz C*

ideal I has a unique compact quantum group structure such that the quotient map π is a

homomorphism of compact quantum groups. More precisely, the co-product ∆̃ on A/I is given

by,

∆̃(a+ I) = (π ⊗ π)∆(a)

where a ∈ A.

Definition 2.3.13. A compact quantum group (A′,∆′) is said to be quantum subgroup of

another compact quantum group (A,∆) if there exists a Woronowicz C* ideal I such that

(A′,∆′) ∼= (A,∆)/I.

2.3.3 Co-actions and co-representations

Definition 2.3.14. Let H be a finite dimensional Hilbert space and (A,∆) be a compact

quantum group. We consider the Hilbert A-module H⊗A with induced A-valued inner product
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from H. A finite dimensional co-representation of (A,∆) on H is a C-linear map δ : H → H⊗A

such that δ̃ ∈ B(H) ⊗ A given by δ̃(ξ ⊗ a) = δ(ξ)a (ξ ∈ H,a ∈ A) satisfies the following

condition:

(id⊗∆)δ̃ = δ̃(12)δ̃(13)

where δ̃(12) and δ̃(13) are common leg notations defined in section 5 of [MVD98].

Remark 2.3.15. By choosing an orthonormal basis {e1, .., en} of H we can identify H with

Cn and B(H) with Mn(C). For a C-linear map δ : H → H ⊗ A, we define U δ ∈ Mn(A) by

(U δ)ij =< ei ⊗ 1A, δ(ej) >A. It is clear that δ is uniquely determined by the matrix U δ and is

a co-representation if and only if

∆(U δ
ij) =

n∑
k=1

U δ
ik ⊗ U δ

kj .

U δ is said to be the co-representation matrix of δ. Later in this thesis we might also write

the coefficients of a co-representation matrix as (U δ)ij instead of (U δ)ij for notational ease and

convenience.

A co-representation δ is said to be non-degenerate if U δ is invertible in Mn(A) and unitary

if the matrix U δ is unitary in Mn(A), that is, U δU δ∗ = U δ∗U δ = IdMn(A).

Definition 2.3.16. For a finite dimensional co-representation δ of a compact quantum group

(A,∆) the adjoint co-representation δ is defined by the corepresentation matrix U δ, where

U δ
ij = U δ

ij
∗
.

It is known from representation theory of compact quantum groups that for a compact

quantum group (A,∆), there is a dense subalgebra A0 generated by the matrix elements of its

finite dimensional co-representations. This subalgebra A0 with the co-product ∆|A0 is a Hopf

* algebra in its own right and referred to as underlying Hopf* algebra of matrix elements

of (A,∆). It is also worth mentioning that the Haar state h is faithful on A0 and is tracial if

(A,∆) is a compact quantum group of Kac type (see proposition 1.7.9 in [NT13] ).

Now we describe the notion of a co-action of a compact quantum group on a unital C*

algebra.

Definition 2.3.17. Let B be a unital C* algebra. A co-action of a compact quantum group

(A,∆) on B is a C* homomorphism α : B → B ⊗A satisfying the following conditions:

1. (α⊗ id)α = (id⊗∆)α.

2. Linear span of α(B)(1B ⊗A) is norm-dense in B ⊗A.
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A co-action α is said to be faithful if there does not exist a proper Woronowicz C* algebra A′

of (A,∆) such that α is also a co-action of (A′,∆|A′) on B.

For a unital C* algebra B, we consider the category of quantum transformation groups

whose objects are compact quantum groups co-acting on B and morphisms are quantum group

homomorphisms intertwining such co-actions. The universal object in this category, if it exists

(it might not, see [Wan98] for example), is said to be quantum automorphism group of B.

The next proposition is easy to see and will be crucial to our constructions later on.

Proposition 2.3.18. For a finite dimensional unitary co-representation δ of a compact quantum

group (A,∆), the * homomorphism defined in definition 2.3.6, Adδ : B(H) → B(H)⊗A is a

co-action on the algebra B(H).

2.3.4 Examples of compact quantum groups

Now we will be looking into some examples of compact quantum groups which are used in this

thesis.

Compact matrix quantum groups:

The theory of compact matrix quantum groups was first defined and developed by Woronowicz

in [Wor87] and it precceded the formalism of compact quantum groups. All compact quantum

groups constructed in this thesis are in fact compact matrix quantum groups. For detailed

discussion on compact matrix quantum groups, see also [Web17], [Tim08].

Definition 2.3.19. A compact matrix quantum group (A,∆) consists of a C* algebra A

equipped with a C* algebra homomorphism ∆ : A → A ⊗ A such that there is a unitary

matrix U = (uij)i,j=1,..,n ∈ Mn(A) for some n ∈ N satisfying the following conditions:

1. ∆(uij) =
∑n

k=1 uik ⊗ ukj for all i, j = 1, .., n.

2. The matrix U = (u∗ij)i,j=1,..,n is invertible.

3. The elements {uij |i, j = 1, .., n} generate A as a C* algebra.

The matrix of generators U = (uij)i,j=1,..,n is referred to as fundamental co-representation

matrix of (A,∆).

Free unitary and free orthogonal quantum group

We recall the definition of free unitary and free orthogonal quantum groups from [Wan95] and

[DW96] (see also [Wan02]) .
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Definition 2.3.20. Let n ∈ N. The free unitary quantum group Au(n) is the universal

C* algebra generated by the elements of the matrix U = (uij)i,j=1,..,n satisfying the following

relations:

UU∗ = U∗U = In and UU t = U tU = In.

where U = (uij
∗)i,j=1,..,n and U t = (uji)i,j=1,..,n. There exists a co-product ∆U on Au(n)

satisfying

∆U (uij) =
n∑

k=1

uik ⊗ ukj .

The free orthogonal quantum group Ao(n) is the quotient of Au(n) by a C* ideal generated

by the set of relations {uij∗ = uij |i, j = 1, .., n}.

Remark 2.3.21. Au(n) and Ao(n) are both compact quantum groups of Kac type.

Let us consider a Hilbert space H with a chosen orthonormal basis {e1, .., en}. The compact

quantum groups Au(n) and Ao(n) both have canonical co-representations on H given by the

same description:

α(ei) =

n∑
j=1

ej ⊗ uji where i = 1, .., n.

Abelianization of Au(n) and Ao(n) gives function algebras of U(n) and O(n), where U(n)

and O(n) are groups of unitary and orthogonal n× n matrices respectively.

We introduce a notation which we will be using extensively for the rest of this thesis.

Notation 2.3.22. Let X be a finite set. For i ∈ X, let us denote the characteristic function

on i as χi, that is, χi(j) = δi,j for all j ∈ X. The function algebra on X, that is, set of all

functions from X to C, is the C-linear span of the elements {χi|i ∈ X}. This function algebra

will be treated as both an algebra (with multiplication given by, χi.χj = δi,j) and a Hilbert

space (with inner product given by, < χi, χj >= δi,j). We will denote the function algebra by

C(X) when we will treat it as an algebra and L2(X) when we will treat it as a Hilbert space.

Quantum permutation groups

We describe the quantum analogue of permutation group on n elements. The following defini-

tion is due to Wang in [Wan98].

Definition 2.3.23. Let Xn = {1, 2, .., n} be a finite set. The quantum permutation group on

n elements, S+
n is the universal C* algebra generated by the elements of the matrix (xij)i,j=1,..,n

satisfying the following relations:

1. x2ij = xij = xij
∗ for all i, j = 1, .., n.
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2.
∑n

i=1 xij = 1 =
∑n

i=1 xji for all j = 1, .., n.

The co-product ∆n on S+
n is given by ∆n(xij) =

∑n
k=1 xik ⊗ xkj .

Remark 2.3.24. S+
n is a quantum subgroup of Au(n) and hence of Kac type.

The compact quantum group S+
n has a canonical co-action αn on C(Xn) given by,

αn(χi) =

n∑
j=1

χj ⊗ xji where i = 1, .., n.

It also follows that S+
n is the universal object in this category of compact quantum groups

co-acting on the algebra C(Xn). Moreover, abelianization of S+
n gives us C(Sn), where Sn is

the standard permutation group on n elements.

Notation 2.3.25. For any co-action α of a compact quantum group (A,∆) on C(Xn), we can

write

α(χi) =

n∑
j=1

χj ⊗ qji, where i = 1, .., n and (qij)i,j=1,..,n ∈ Mn(A).

As α can also be treated as a unitary co-representation on L2(X) we will refer to the matrix

(qij)i,j=1,..,n as the co-representation matrix of α.

The relations listed in definition 2.3.23 will be referred to as quantum permutation rela-

tions.

2.4 Free products of compact quantum groups

Free products of compact quantum groups were described in [Wan95]. Let (A1,∆1) and

(A2,∆2) be two compact quantum groups. Let us cosider the free product of two C* algebras

A1,A2 with canonical inclusion maps ν1 : A1 → A1 ∗ A2 and ν2 : A2 → A1 ∗ A2. We have

the following results from [Wan95].

Proposition 2.4.1. The following statements are true.

1. There exists a co-product ∆ on A1 ∗ A2 satisfying

∆ ◦ ν1 = (ν1 ⊗ ν1) ◦∆1 and ∆ ◦ ν2 = (ν2 ⊗ ν2) ◦∆2

and making (A1 ∗ A2,∆) a compact quantum group.

2. If (A1,∆1) and (A2,∆2) are compact matrix quantum groups with fundamental co-

representation matrices U = (uij)i,j=1,..,n and V = (vkl)k,l=1,..,m then (A1 ∗ A2,∆) is
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also a compact matrix quantum group with the fundamental co-representation matrix

U ⊕ V where

U ⊕ V =

ν1(U) 0

0 ν2(V )

 (2.4.1)

Here ν1(U) = (ν1(uij))i,j=1,..,n and ν2(V ) = (ν2(vkl))k,l=1,.,m.

3. For any two finite dimensional co-representations α1 : H1 → H1 ⊗ A1 and α2 : H2 →

H2 ⊗ A2 with co-representation matrices U1 and U2, there exists a co-representation

α : H1 ⊕ H2 → (H1 ⊕ H2) ⊗ (A1 ∗ A2) with the co-representation matrix U1 ⊕ U2

described in the same way as in equation 2.4.1.

2.5 Quantum automorphisms of simple and weighted graphs

There are two different existing notions of quantum symmetry in a simple graph, one was intro-

duced by Bichon (see [Bic03]) and the other was introduced by Banica ([Ban05a],[BBC07a]).

We will recall both of them in this section and discuss relations between them. We start with

introducing a notation which is standard in this context:

Notation 2.5.1. Let V be a finite set and α : C(V ) → C(V ) ⊗ A be a co-action of a

compact quantum group (A,∆) with co-representation matrix Q = (qij)i,j∈V . Then we define

α(2) = (id⊗ id⊗m)(id⊗Σ23⊗ id)(α⊗α) where m is the multiplication map in A and Σ23 is

the standard flip map on 2nd and 3rd coordinates of the tensor product. For i, j, k, l ∈ V , we

observe that,

α(2)(χk ⊗ χl) =
∑
i,j∈V

χi ⊗ χj ⊗ qikqjl.

It is easy to check using quantum permutation relations that α(2) is actually a unitary co-

representation of (A,∆) on the Hilbert space L2(V ) ⊗ L2(V ). It follows that the adjoint

co-representation α(2) is also unitary.

2.5.1 Bichon’s notion of quantum symmetry

We recall definition 3.1 given by Bichon in [Bic03].

Definition 2.5.2. A co-action of compact quantum group (A,∆) on a simple graph (V,E)

preserving its quantum symmetry in Bichon’s sense consists of a co-action α : C(V ) → C(V )⊗

A on the algebra C(V ) and a co-action β : C(E) → C(E)⊗A on the algebra C(E) such that

the following diagram commutes:
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C(V )⊗ C(V ) C(V )⊗ C(V )⊗A

C(E) C(E)⊗A

α(2)

m(s∗⊗t∗) m(s∗⊗t∗)⊗idA

β

where m is the multiplication map on the algebra C(E), s∗ : C(V ) → C(E) and t∗ : C(V ) →

C(E) are pullbacks of source and target maps s and t on (V,E).

It follows from theorem 3.2 in [Bic03] that the quantum permutation of edges β is completely

determined by the quantum permutation of the vertices α. In fact, β = α(2)|C(E) where C(E)

is identified as a subalgebra of C(V )⊗C(V ) via the identification χ(k,l) → χk ⊗χl. In light of

this we give the following proposition:

Proposition 2.5.3. Let α : C(V ) → C(V ) ⊗ A be a co-action of the CQG (A,∆). Then α

induces a co-action on (V,E) preserving its quantum symmetry in Bichon’s sense (see definition

2.5.2) iff α(2)(C(E)) ⊆ C(E)⊗A and α(2)|C(E) is a co-action of (A,∆) on the algebra C(E).

Remark 2.5.4. Let us consider the category DBic
(V,E) whose objects are compact quantum groups

co-acting on (V,E) preserving its quantum symmetry in Bichon’s sense and morphisms are

quantum group homomorphisms intertwining such co-actions. From theorem 3.2 in [Bic03], it

follows that the universal object in this category exists and called the quantum automorphism

group of (V,E) in Bichon’s sense. This automorphism group will be denoted as SBic
(V,E) in this

thesis.

2.5.2 Banica’s notion of quantum symmetry

Now we describe Banica’s notion of quantum symmetry on a simple graph ([Ban05a]) and prove

some results related to it.

Definition 2.5.5. Let (V,E) be a simple graph. Then by a co-action α of a compact quantum

group (A,∆) on (V,E) preserving its quantum symmetry in Banica’s sense, we mean a co-

action α on the algebra C(V ) such that the co-representation matrix of α commutes with the

adjacency matrix of (V,E).

Let us consider the category DBan
(V,E) whose objects are compact quantum groups co-acting

on (V,E) and morphisms are quantum group homomorphisms intertwining such co-actions.

The following result is due to Banica in [Ban05a].

Theorem 2.5.6. Let |V | = n and Q = (qij)i,j=1,..,n be the co-representation matrix of the

canonical co-action of S+
n on C(V ). The universal object in DBan

(V,E) exists and is given by

S+
n
/
QW −WQ where W is the adjacency matrix of (V,E). This universal object is called
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the quantum automorphism group of (V,E) in Banica’s sense and will be denoted as SBan
(V,E)

in this thesis.

The above theorem holds true if we consider the matrixW to be any complex number valued

matrix instead of just an adjacency matrix of a simple graph, which covers the case of weighted

graphs and small metric spaces (see [Ban05a],[Ban05b]). If our simple graph is weighted with

a weight function w, we will denote its quantum automorphism group as SBan
(V,E,w).

Let (V,E,w) be a weighted simple graph with adjacency matrix W . Then we observe the

following results:

Lemma 2.5.7. Let α be a co-action of a CQG (A,∆) on C(V ) with co-representation matrix

Q = (qij)i,j∈V . Then the following conditions are equivalent:

1. QW = WQ.

2.
∑

i,j∈V Wijqkiqlj = Wkl1 for all k, l ∈ V .

Proof. Let us assume (1). We have

∑
i,j∈V

Wijqkiqlj =
∑
j∈V

(
∑
i∈V

qkiWij)qlj

=
∑
j∈V

(
∑
i∈V

Wkiqij)qlj

= Wkl(
∑
j∈V

qlj) = Wkl1.

Conversely, let us assume (2). Using antipode on the underlying Hopf * algebra of matrix

elements of CQG (A,∆) we observe that,

∑
i,j∈V

Wijqjlqik = Wkl1 for all k, l ∈ V.

Let us fix i, j ∈ V . Using above expression it follows that,

(QW )ij =
∑
k∈V

qikWkj =
∑
k∈V

(
∑

k′,j′∈V
Wk′j′qj′jqk′k)qik

=
∑
k∈V

∑
j′∈V

Wij′qj′jqik

=
∑
j′∈V

Wij′qj′j = (WQ)ij .
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For proving the next result we will use the technical lemma stated below.

Lemma 2.5.8. Let P be an n × n matrix of positive operators on a Hilbert space H. Let

A ∈ Mn(C). Then P commutes with A if and only if P commutes with AR and AI , where

AR and AI are in Mn(R) such that A = AR + iAI .

Theorem 2.5.9. Let α be a co-action of a CQG (A,∆) on C(V ) with co-representation matrix

Q = (qij)i,j∈V . Let us write W =
∑

c∈CW c where W c
ij = 1 iff Wij = c and W c

ij = 0 otherwise.

For c ∈ C, we consider the linear subspace Kc of L2(V )⊗ L2(V ) defined by

Kc = linear span{χk ⊗ χl|Wkl = c; k, l ∈ V }.

Then the following conditions are equivalent:

1. QW = WQ.

2. α(2)(Kc) ⊆ Kc ⊗A for all c ∈ C.

3. QW c = W cQ for all c ∈ C.

Proof. We proceed through the following claims.

Claim:(1) =⇒ (2).

We will follow the proof of theorem 3.11 in [GAH22]. Using lemma 2.5.8, without loss of

generality, we can assume that the adjacency matrix W is a real valued matrix. Let us define

w : V × V → C by w(i, j) = Wij where i, j ∈ V . Let Image(w) = {s1, s2, .., sr} where

s1 < s2 < .. < sr ∈ R . As the Haar state h is tracial on the algebra generated by the elements

{qij |i, j ∈ V } in A, it follows that,

h(qii′qjj′qii′) = h(qii′qjj′) for all i, j, i′, j′ ∈ V.

Let us choose (k, l) ∈ V × V such that w(k, l) = sr. Using lemma 2.5.7 we observe that,

∑
i,j∈V

(Wkl −Wij)h(qkiqljqki) = h(
∑
i,j∈V

(Wkl −Wij)qkiqlj) = 0.

As h is faithful on the underlying dense Hopf * algebra of matrix elements of (A,∆) and

Wkl −Wij ≥ 0 for all i, j ∈ V , it follows that,

∥qkiqlj∥2 = ∥qkiqljqki∥ = 0 whenever Wij ̸= sr.
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Using antipode κ on the underlying Hopf * algebra of matrix elements of (A,∆) we observe

that,

qikqjl = κ(qljqki) = κ((qkiqlj)
∗) = κ(0) = 0.

Hence we have proved our claim for c = sr. Now we proceed by induction. Let us assume that

for c ≥ st ∈ Image(w)

α(2)(Kc) ⊆ Kc ⊗A

which is equivalent to assuming that, for all i, j, k, l ∈ V ,

qkiqlj = 0 when Wij ≥ st and Wkl ̸= Wij .

We want to prove our assumption for c ≥ st−1. It is enough to show that,

α(2)(Kc) ⊆ Kc ⊗A for c = st−1. (2.5.1)

Let us fix (k, l) ∈ V × V such that Wkl = st−1. Using induction hypothesis, we observe that,

∑
i,j∈V

Wij<Wkl

(Wkl −Wij)h(qkiqljqki) = h(
∑
i,j∈V

Wij<Wkl

(Wkl −Wij)qkiqlj)

= h(
∑
i,j∈V

(Wkl −Wij)qkiqlj) = 0.

Therefore we observe that qkiqlj = 0 when Wij < Wkl. Using induction hypothesis it further

follows that,

qkiqlj = 0 when Wij ̸= st−1.

Hence 2.5.1 follows using similar arguments as in the case of c = sr.

Claim:(2) =⇒ (3).

It is clear from (2) that, qikqjl = 0 for all i, j, k, l ∈ V such that Wkl ̸= Wij .

Let us fix i, j ∈ V and c ∈ C such that W c ̸= 0. We observe that,

(QW c)ij =
∑
k∈V

qikW
c
kj =

∑
k∈V

Wkj=c

qik

=
∑
k,l∈V
Wkj=c

qikqlj
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=
∑
k,l∈V

Wkj=c=Wil

qikqlj

=
∑
k,l∈V
Wil=c

qikqlj

=
∑
l∈V

Wil=c

qlj =
∑
l∈V

W c
ilqlj = (W cQ)ij .

(3) =⇒ (1).

QW = Q(
∑
c∈C

cW c) =
∑
c∈C

cQW c =
∑
c∈C

cW cQ = (
∑
c∈C

cW c)Q = WQ.

Proposition 2.5.10. Let α be a co-action of a CQG (A,∆) on a weighted simple graph

(V,E,w) preserving its quantum symmetry in Banica’s sense. We consider the source and

target degree functions fs, ft ∈ C(V ) which are defined as follows:

fs(k) =
∑
l∈V

Wkl and ft(k) =
∑
l∈V

Wlk for all k ∈ V.

Then the following identities hold:

α(fs) = fs ⊗ 1 and α(ft) = ft ⊗ 1.

Proof. Let us deal with only fs as ft can be dealt in identical manner. Let Q = (qij)i,j∈V be

the co-representation matrix of α. It follows that,

α(fs) = fs ⊗ 1 ⇐⇒
∑
k′∈V

fs(k
′)qkk′ = fs(k) for all k ∈ V

⇐⇒ qkk′ = 0 whenever fs(k) ̸= fs(k
′). (2.5.2)

Let us choose k, k′ ∈ V such that fs(k) ̸= fs(k
′). We observe that,

fs(k
′)qkk′ =

∑
i∈V

fs(i)qkiqkk′

= (
∑
i,j∈V

Wijqki)qkk′

= (
∑
i,j∈V

Wkiqij)qkk′
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=
∑
i∈V

Wkiqkk′ = fs(k)qkk′ .

As fs(k) ̸= fs(k
′), it follows that qkk′ = 0. From observation 2.5.2 the first identity in

proposition 2.5.10 follows.

Now let k, k′ ∈ V be such that ft(k) ̸= ft(k
′). Using similar arguments as in previous case

it follows that ft(k
′)qk′k = ft(k)qk′k, which implies qk′k = 0 as ft(k) ̸= ft(k

′).

We provide Banica’s version of proposition 2.5.3 which is immidiate from theorem 2.5.9.

Proposition 2.5.11. Let (V,E) be a simple graph and α : C(V ) → C(V )⊗A be a co-action

of the CQG (A,∆) on C(V ). Then α preserves the quantum symmetry of (V,E) in Banica’s

sense if and only if α(2)(L2(E)) ⊆ L2(E) ⊗ A where L2(E) is identified as a linear subspace

of L2(V )⊗ L2(V ).

We end this section with a small lemma which will be useful later during computation of

examples.

Lemma 2.5.12. Let (V,E) and (V,E′) be two simple graphs without loops with adjacency

matrices W and W ′ such that the following holds:

W +W ′ = A

where A is a |V | × |V | real valued matrix such that Aij = 1 − δi,j for all i, j ∈ V . Then we

have

SBan
(V,E)

∼= SBan
(V,E′)

.

Proof. Let α : C(V ) → C(V ) ⊗ A be a co-action of a CQG (A,∆) on C(V ) with co-

representation matrix Q. As coefficients of the matrix Q satisfy quantum permutation rela-

tions, it is easy to see that

QW = WQ ⇐⇒ Q(A−W ) = (A−W )Q ⇐⇒ QW ′ = W ′Q.

From the above observation, the lemma follows using universality of SBan
(V,E) and SBan

(V,E′).

2.6 Free wreath product by quantum permutation groups

We recall the construction of free wreath product by quantum permutation groups for-

mulated by Bichon in [Bic04]. If we consider any quantum subgroup of quantum permutation
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group, via same arguments in [Bic04] we can construct free wreath product by subgroups

of quantum permutation groups (see [BB07a]).

Let (B,∆′) be a quantum subgroup of S+
n where S+

n is the quantum permutation group

on n elements. Let (A,∆) be another compact quantum group. We consider A∗n to be n

times free product of the C* algebra A with the canonical inclusion maps νi : A → A∗n where

i = 1, 2, .., n. From proposition 2.4.1 it follows that A∗n has a natural co-product structure

coming from (A,∆) making it a compact quantum group. We observe that there is a natural

co-action α : A∗n → A∗n ⊗ B of the CQG (B,∆′) on the algebra A∗n which is given by,

α(νi(a)) =
n∑

j=1

νj(a)⊗ xji where i = 1, 2, .., n and a ∈ A. (2.6.1)

Here (xij)i,j=1,..,n is the matrix of canonical generators of B satisfying quantum permutation

relations.

Definition 2.6.1. The free wreath product of (A,∆) by (B,∆′) is the quotient of the C*

algebra A∗n ∗ B by a C* ideal generated by the elements:

νi(a)xij − xijνi(a), 1 ≤ i, j ≤ n, a ∈ A.

The free wreath product of (A,∆) by (B,∆′) will be denoted by A ∗w B.

We recall theorem 3.2 from [Bic04] which describes the co-product structure on A ∗w B.

Theorem 2.6.2. There is a natural co-product structure ∆w on A ∗w B making it a compact

quantum group. The co-product ∆w satisfies:

∆w(xij) =

n∑
k=1

xik ⊗ xkj , ∆w(νi(a)) =

n∑
k=1

νi ⊗ νk(∆(a))(xik ⊗ 1).

for all i, j = 1, .., n and a ∈ A.

As an immidiate application of the above construction in the theory of quantum symmetry

in simple graphs we state theorem 4.2 from [Bic04]. (see also theorem 7.1 from [BB07a]) .

Theorem 2.6.3. Let (V,E) be a finite connected simple graph without loops. Let us consider a

simple graph (V n, En) which is the disjoint union of n copies of (V,E). We have the following

isomorphisms:

SBic
(V n,En)

∼= SBic
(V,E) ∗w S+

n ,

SBan
(V n,En)

∼= SBan
(V,E) ∗w S+

n
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where the underlying co-action of S+
n is given in equation 2.6.1.

2.7 Setup and Notations

In this section we introduce some notations and conventions that we will use throughout the

rest of this thesis. Let (V,E) be a directed graph with source and target maps s : E → V and

t : E → V . We further assume that there is no isolated vertex, that is, every vertex is either

an initial or final vertex of some edge.

1. For i, j ∈ V we denote the the subsets Ei, Ej and Ei
j of E by the following descriptions:

Ei
j := {τ ∈ E|s(τ) = i and t(τ) = j};

Ei := {τ ∈ E|s(τ) = i}; Ej := {τ ∈ E|t(τ) = j}.

2. If (V,E, j) is an undirected multigraph (see definition 2.1.7) then we will write j(τ) = τ

for all τ ∈ E. We also define a map J : L2(E) → L2(E) by

J(χτ ) = χτ where τ ∈ E. (2.7.1)

It is clear that τ = τ when τ is a loop in (V,E, j).

3. As we are working generally with “directed” graphs, it is important to differentiate between

initial and final vertex sets. Let us define V s ⊆ V and V t ⊆ V by

V s = s(E) and V t = t(E).

As our graphs do not have any isolated vertex, it is clear that V = V s ∪ V t.

4. There is a natural C(V s)− C(V t) bimodule structure on L2(E) which is given by

χi.χτ = δi,s(τ)χτ and χτ .χj = δt(τ),jχτ (2.7.2)

where i ∈ V s, j ∈ V t and τ ∈ E. The Hilbert space L2(E) can also be treated as a

C(V ) − C(V ) bimodule with the same left and right module multiplication maps given

by equations 2.7.2.

5. For τ ∈ E, let pτ denote the orthogonal projection onto a subspace generated by χτ in

L2(E) . We define two injective algebra maps S : C(V s) → B(L2(E)) and T : C(V t) →
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B(L2(E)) by

S(χv) =
∑
τ∈Ev

pτ and T (χw) =
∑
τ∈Ew

pτ

for all v in V s and w in V t.

6. For i, j ∈ V with Ei
j ̸= ϕ, let pij be the orthogonal projection onto a linear subspace in

L2(E) generated by the elements {χτ |τ ∈ Ei
j}. Let us define the following subalgebras

in B(L2(E)) by

Mij := pijB(L2(E))pij and Dij := pijDpij

where D is the algebra of diagonal operators spanned by the elements {pτ |τ ∈ E}.





Chapter 3

Re-visiting quantum symmetry in

simple graphs

Let us fix a simple graph (V,E) with adjacency matrix W , source and target maps s : E → V

and t : E → V . As an undirected simple graph is nothing but a “doubly directed” simple graph

(see definition 2.1.6), it is enough to deal with the directed case. But we will indeed distinguish

between “undirecteness” and “directedness” when we will be dealing with multigraphs in general.

3.1 Equivalent characterisations of quantum symmetries in a sim-

ple graph

Notation 3.1.1. By a ”bi-unitary” co-representation β of a compact quantum group (A,∆)

we mean that β is a finite dimensional unitary co-representation such that the adjoint co-

representation β is also unitary.

Let us define ξ0 =
∑

τ∈E χτ ∈ L2(E). ξ0 is the multiplicative identity when considered as

an element in the algebra C(E).

3.1.1 Banica’s notion of quantum symmetry

Proposition 3.1.2. Let α : C(V ) → C(V ) ⊗ A be a co-action of a compact quantum group

(A,∆) on C(V ). Then the following conditions are equivalent:

1. α preserves the quantum symmetry of (V,E) in Banica’s sense.

2. There exists a bi-unitary co-representation β : L2(E) → L2(E)⊗A such that,

(a) β(ξ0) = ξ0 ⊗ 1.

31
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(b) α(χi)β(χτ ) = β(χi.χτ ) and β(χτ )α(χi) = β(χτ .χi) for all i ∈ V and τ ∈ E.

Proof. Let us consider a bi-unitary co-representation β : L2(E) → L2(E) ⊗ A with co-

representation matrix U = (uστ )σ,τ∈E .

We observe that,

β(ξ0) = ξ0 ⊗ 1 ⇐⇒
∑
τ∈E

uστ = 1 for all σ ∈ E. (3.1.1)

Let i ∈ V and τ ∈ E. It follows that,

α(χi)β(χτ ) = (
∑
i′∈V

χi′ ⊗ qi
′
i )(

∑
σ∈E

χσ ⊗ uστ )

=
∑
σ∈E

χσ ⊗ q
s(σ)
i uστ

where Q = (qij)i,j∈V is the co-representation matrix of the co-action α. Similarly, we have,

β(χτ )α(χi) =
∑
σ∈E

χσ ⊗ uστ q
t(σ)
i .

Hence we observe that, for all τ ∈ E,

α(χi)β(χσ) = β(χi.χσ) ⇐⇒ q
s(σ)
i uστ = δi,s(τ)u

σ
τ (3.1.2)

and β(χτ )α(χi) = β(χτ .χi) ⇐⇒ uστ q
t(σ)
i = δi,t(τ)u

σ
τ (3.1.3)

for all σ ∈ E.

Claim:(1) =⇒ (2).

Let (qij)i,j∈V be the co-representation matrix of α. From proposition 2.5.11 we have,

α(2)(L2(E)) ⊆ L2(E)⊗A.

By taking β = α(2)|L2(E) it follows that u
σ
τ = q

s(σ)
s(τ)q

t(σ)
t(τ) . As coefficients of the matrix (qij)i,j∈V

satisfy quantum permutation relations, using observations 3.1.1, 3.1.2 and 3.1.3, (2) follows.

Claim:(2) =⇒ (1).
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Let β : L2(E) → L2(E)⊗A be a bi-unitary co-representation satisfying conditions in (2).

Using observations 3.1.1, 3.1.2, 3.1.3, it follows that,

uστ = q
s(σ)
s(τ)u

σ
τ q

t(σ)
t(τ) = q

s(σ)
s(τ) (

∑
τ ′∈E

uστ ′)q
t(σ)
t(τ) = q

s(σ)
s(τ)q

t(σ)
t(τ) . (3.1.4)

Let B be the Woronowicz C* subalgebra in A generated by the elements {qij |i, j ∈ V }. As

quantum permutation group is a quantum group of Kac type, the Haar measure h on A, when

restricted to B, is tracial. Viewing L2(E) as a linear subspace of C(V ) ⊗ C(V ), we observe

that, for (k, l) ∈ E,

∑
i,j∈V
(i,j)/∈E

h(qikq
j
l q

i
k) =

∑
i,j∈V
(i,j)/∈E

h(qikq
j
l )

= h(
∑
i,j∈V

qikq
j
l −

∑
i,j∈V
(i,j)∈E

qikq
j
l )

= h(1−
∑

(i,j)∈E
u
(i,j)
(k,l)) = 0 (from observation 3.1.1).

As h is faithful on the underlying Hopf * algebra of matrix elements of A, it follows that,

∥qikq
j
l ∥

2 = ∥qikq
j
l q

i
k∥ = 0

whenever (i, j) /∈ E and (k, l) ∈ E. Hence it follows that α(2)(L2(E)) ⊆ L2(E)⊗A and using

proposition 2.5.11 our claim is proved.

3.1.2 Bichon’s notion of quantum symmetry

From proposition 2.5.3 and similar arguments used above we give Bichon’s version of proposition

3.1.2.

Proposition 3.1.3. Let α : C(V ) → C(V )⊗A and β : C(E) → C(E)⊗A be two co-actions

of a CQG (A,∆). Then the following conditions are equivalent:

1. (α, β) preserves quantum symmetry of (V,E) in Bichon’s sense.

2. (α, β) respects the bi-module structure of (V,E), that is,

α(χi)β(χτ ) = β(χi.χτ ) and β(χτ )α(χi) = β(χτ .χi)

for all i ∈ V and τ ∈ E.
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Remark 3.1.4. In proposition 3.1.2 and proposition 3.1.3, if β satisfying (2) exists, then it is

unique and is given by α(2)|L2(E).

The above propositions state the importance and effectiveness of the bi-module structure

any simple graph has. The next two theorems give us the formula for capturing “permutation”

of vertices in terms of “permutation” of edges which will be crucial for defining the notion of

quantum symmetry in a multigraph.

3.2 Some useful observations

We will make some observations which we will be using several times through out this chapter.

We will use the following characterization of S(C(V s)) and T (C(V t)) in B(L2(E)) stated

below:

Lemma 3.2.1. Let F ∈ B(L2(E)). Then,

1. F ∈ S(C(V s)) if and only if the following holds:

For τ, τ1, τ2 ∈ E, F (χτ ) = cτχτ for some cτ ∈ C and cτ1 = cτ2 whenever s(τ1) = s(τ2).

2. F ∈ T (C(V t)) if and only if the following holds:

For τ, τ1, τ2 ∈ E, F (χτ ) = cτχτ for some cτ ∈ C and cτ1 = cτ2 whenever t(τ1) = t(τ2).

We will also need the another technical lemma for proceeding further.

Lemma 3.2.2. Let {Ai|i = 1, 2, .., n} be a finite set of operators on a Hilbert space and p , q

be two projections.

1. If
∑n

i=1AiA
∗
i = p, then pAi = Ai.

2. If
∑n

i=1A
∗
iAi = q, then Aiq = Ai.

Proof. To prove (1), we observe that AiA
∗
i ≤ p for all i. It is enough to show that ∥(1−p)Ai∥ =

0 for all i.

∥(1− p)Ai∥2 = ∥(1− p)AiA
∗
i (1− p)∥ ≤ ∥(1− p)p(1− p)∥ = 0.

To prove (2), it is enough to observe that qA∗
i = A∗

i which we get by replacing Ai with A∗
i

in the first identity.
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3.3 Left equivariant co-representations on L2(E)

Seeing L2(E) as a left C(V s) module we formulate an equivalent criterion for left equivariant

bi-unitary co-representations on L2(E).

Theorem 3.3.1. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation of a CQG

(A,∆). Let Adβ be the co-action on B(L2(E)) implemented by the unitary co-representation

β (see definition 2.3.6). Then the following conditions are equivalent:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. There exists a co-action αs : C(V s) → C(V s)⊗A such that,

αs(χi)β(χτ ) = β(χi.χτ )

for all i ∈ V s and τ ∈ E.

Proof. Let U = (uστ )σ,τ∈E be the co-representation matrix of β.

We make some observations first before proving the equivalence. Let us fix k ∈ V s and σ2 ∈ E.

We observe that,

Adβ(S(χk))(χσ2 ⊗ 1) = Adβ(
∑
τ∈Ek

pτ )(χσ2 ⊗ 1)

= β(
∑
τ∈Ek

pτ ⊗ 1)(
∑
τ ′∈E

χτ ′ ⊗ uσ2
τ ′

∗)

= β(
∑
τ∈Ek

χτ ⊗ uσ2
τ

∗)

=
∑
σ1∈E

χσ1 ⊗ (
∑
τ∈Ek

uσ1
τ uσ2

τ
∗).

Applying lemma 3.2.1 we get that, for all k ∈ V s and σ1, σ2 ∈ E,

Adβ(S(C(V s))) ⊆ S(C(V s))⊗A ⇐⇒
∑
τ∈Ek

uσ1
τ uσ2

τ
∗ = 0 if σ1 ̸= σ2

and
∑
τ∈Ek

uσ1
τ uσ1

τ
∗ =

∑
τ∈Ek

uσ2
τ uσ2

τ
∗ if s(σ1) = s(σ2).

(3.3.1)

Let αs : C(V s) → C(V s)⊗A be a co-action on C(V s) with co-representation matrix (qij)i,j∈V s .

Let i ∈ V s and τ ∈ E. As before we observe that,

αs(χi)β(χτ ) = β(χi.χτ ) ⇐⇒ q
s(σ)
i uστ = δi,s(τ)u

σ
τ (3.3.2)
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for all σ ∈ E.

Claim: (1) =⇒ (2).

From our assumption and observation 3.3.1 it follows that,

Adβ(S(χk))(χσ2 ⊗ 1) = χσ2 ⊗ (
∑
τ∈Ek

uσ2
τ uσ2

τ
∗) for all k ∈ V s, σ2 ∈ E. (3.3.3)

For k ∈ V s and σ2 ∈ E, let us define

∑
τ∈Ek

uσ2
τ uσ2

τ
∗ = q

s(σ2)
k . (3.3.4)

From equation 3.3.3 we further observe that,

Adβ(S(χk)) =
∑
σ∈E

pσ ⊗ q
s(σ)
k

=
∑
i∈V s

(
∑
σ∈Ei

pσ)⊗ qik

=
∑
i∈V s

S(χi)⊗ qik.

As C(V s) ∼= S(C(V s)) as algebras and Adβ is already a co-action on S(C(V s)), we define a

quantum permutation αs : C(V s) → C(V s)⊗A by the following expression:

αs(χk) =
∑
i∈V s

χi ⊗ qik for all k ∈ V s.

Let us now fix i ∈ V s and σ, τ ∈ E. From equation 3.3.4 and lemma 3.2.2 it follows that,

q
s(σ)
i uστ = q

s(σ)
i (q

s(σ)
s(τ)u

σ
τ ) = δi,s(τ)u

σ
τ .

Using observation 3.3.2 we conclude that (2) follows.

Claim:(2) =⇒ (1).

Let (qij)i,j∈V s and (uστ )σ,τ∈E be co-representation matrices of αs and β.

Let σ1, σ2 ∈ E and k ∈ V s. As β is unitary, using observation 3.3.2 it follows that,

∑
τ∈Ek

uσ1
τ uσ2

τ
∗ = q

s(σ1)
k (

∑
τ∈E

uσ1
τ uσ2

τ
∗)qs(σ2)

k = δσ1,σ2q
s(σ1)
k q

s(σ2)
k .



3.4. Right equivariant co-representations on L2(E) 37

Hence we get,

∑
τ∈Ek

uσ1
τ uσ2

τ
∗ = 0 if σ1 ̸= σ2

and
∑
τ∈Ek

uσ1
τ uσ1

τ
∗ =

∑
τ∈Ek

uσ2
τ uσ2

τ
∗ if s(σ1) = s(σ2).

Therefore (1) follows from observation 3.3.1.

3.4 Right equivariant co-representations on L2(E)

Seeing L2(E) as a right C(V t) module we formulate a equivalent criterion for right equivariant

bi-unitary co-representations on L2(E).

Theorem 3.4.1. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation of a CQG

(A,∆). Let us consider the co-action Adβ on B(L2(E)) implemented by unitary co-representation

β. Then the following conditions are equivalent:

1. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

2. There exists a co-action αt : C(V t) → C(V t)⊗A such that,

β(χτ )αt(χj) = β(χτ .χj)

for all j ∈ V t and τ ∈ E.

Proof. The proof is done using similar arguments as in the proof of theorem 3.3.1. Let U =

(uστ )σ,τ∈E be the co-representation matrix of β.

As before we make some observations first before proving the equivalence. Let us fix l ∈ V t

and σ2 ∈ E. We observe that,

Adβ(T (χl))(χσ2 ⊗ 1) = Adβ(
∑
τ∈El

pτ )(χσ2 ⊗ 1)

= β(
∑
τ∈El

pτ ⊗ 1)(
∑
τ ′∈E

χτ ′ ⊗ uσ2
τ ′ )

= β(
∑
τ∈El

χτ ⊗ uσ2
τ )

=
∑
σ1∈E

χσ1 ⊗ (
∑
τ∈El

uσ1
τ

∗uσ2
τ ).
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Applying lemma 3.2.1 we get that, for all l ∈ V t and σ1, σ2 ∈ E,

Adβ(T (C(V t))) ⊆ T (C(V t))⊗A ⇐⇒
∑
τ∈El

uσ1
τ

∗uσ2
τ = 0 if σ1 ̸= σ2 ∈ E

and
∑
τ∈El

uσ1
τ

∗uσ1
τ =

∑
τ∈El

uσ2
τ

∗uσ2
τ if t(σ1) = t(σ2).

(3.4.1)

Let αt : C(V t) → C(V t) ⊗ A be a co-action on C(V t) with co-representation matrix R =

(rij)i,j∈V t . Let j ∈ V t and τ ∈ E. As before we observe that,

β(χτ )αt(χj) = β(χτ .χj) ⇐⇒ uστ r
t(σ)
j = δt(τ),ju

σ
τ (3.4.2)

for all σ ∈ E.

Claim: (1) =⇒ (2).

From our assumption and observation 3.4.1 it follows that,

Adβ(T (χl))(χσ2 ⊗ 1) = χσ2 ⊗ (
∑
τ∈El

uσ2∗
τ uσ2

τ ) for all l ∈ V t, σ2 ∈ E. (3.4.3)

For l ∈ V t and σ2 ∈ E, let us define

∑
τ∈El

uσ2
τ

∗uσ2
τ = r

t(σ2)
l . (3.4.4)

From equation 3.4.3 we further observe that,

Adβ(T (χl)) =
∑
σ∈E

pσ ⊗ r
t(σ)
l

=
∑
j∈V t

(
∑
σ∈Ej

pσ)⊗ rjl

=
∑
j∈V t

T (χj)⊗ rjl .

As C(V t) ∼= T (C(V t)) as algebras and Adβ is already a co-action on T (C(V t)), on V t we

define a quantum permutation αt : C(V t) → C(V t)⊗A by the following expression:

αt(χl) =
∑
j∈V t

χj ⊗ rjl for all l ∈ V t.
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Let us fix j ∈ V t and σ, τ ∈ E. From equation 3.4.4 and lemma 3.2.2 it follows that,

uστ r
t(σ)
j = (uστ r

t(σ)
t(τ))r

t(σ)
j = δt(τ),ju

σ
τ .

Using observation 3.4.2 we conclude that (2) follows.

Claim:(2) =⇒ (1).

Let R = (rij)i,j∈V t and U = (uστ )σ,τ∈E be co-representation matrices of αt and β.

Let σ1, σ2 ∈ E and l ∈ V t. As β is unitary, using observation 3.4.2 it follows that,

∑
τ∈El

uσ1
τ

∗uσ2
τ = r

t(σ1)
l (

∑
τ∈E

uσ1
τ

∗uσ2
τ )r

t(σ2)
l = δσ1,σ2r

t(σ1)
l r

t(σ2)
l .

Hence we get,

∑
τ∈El

uσ1
τ

∗uσ2
τ = 0 if σ1 ̸= σ2

and
∑
τ∈El

uσ1
τ

∗uσ1
τ =

∑
τ∈El

uσ2
τ

∗uσ2
τ if t(σ1) = t(σ2).

Therefore (1) follows from observation 3.4.1.

3.4.1 Induced permutations on V s and V t

It is clear that the co-actions αs and αt satisfying (2) in theorem 3.3.1 and theorem 3.4.1

are essentially unique as they are completely determined by the bi-unitary co-representation β.

Given a bi-unitary co-representation β satisfying (1) in theorem 3.3.1 and theorem 3.4.1, we

will refer αs and αt as induced co-actions on C(V s) and C(V t).

3.5 Induced permutations on V s ∩ V t

3.5.1 Two graphs with isomorphic bimodule structure

It is not enough to only consider C(V s) − L2(E) − C(V t) bimodularity to capture the whole

picture of quantum symmetry of (V,E). There does exist non-isomorphic graphs which have

non-isomorphic quantum automorphism groups but isomorphic C(V s) − L2(E) − C(V t) bi-

module structure. See the graphs in figure 3.1 for example, where the left one does not have

any quantum symmetry (in Banica’s sense) but the right one does have. Continuing our inves-

tigations further, we propose the following result:
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• •
1 2 • •

••

2 4

31

Figure 3.1: Two graphs with isomorphic C(V s)− L2(E)− C(V t) bimodule structure.

3.5.2 Right equivariance of αs and left equivariance of αt

Theorem 3.5.1. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation of a CQG

(A,∆) such that the following conditions hold:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

Furthermore, we also assume that the induced co-actions αs and αt (see subsection 3.4.1) both

preserve C(V s ∩ V t), that is,

αs(C(V s ∩ V t)) ⊆ C(V s ∩ V t)⊗A ⊆ C(V s)⊗A,

αt(C(V s ∩ V t)) ⊆ C(V s ∩ V t)⊗A ⊆ C(V t)⊗A.

Then the following conditions are equivalent:

1. αs|C(V s∩V t) = αt|C(V s∩V t).

2. For all j ∈ V s ∩ V t and τ ∈ E,

β(χτ )αs(χj) = β(χτ .χj).

3. For all i ∈ V s ∩ V t and τ ∈ E,

αt(χi)β(χτ ) = β(χi.χτ ).

Proof. We define EV s , EV t ⊆ E by

EV s = {τ ∈ E| t(τ) ∈ V s ∩ V t},

EV t
= {τ ∈ E| s(τ) ∈ V s ∩ V t}.
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We make some observations first. Let (uστ )σ,τ∈E , (q
l
j)l,j∈V s and (rki )k,i∈V t be co-representation

matrices of β, αs and αt respectively. For τ ∈ E and j ∈ V s ∩ V t we observe that,

β(χτ )αs(j) = (
∑
σ∈E

χσ ⊗ uστ )(
∑

l∈V s∩V t

χl ⊗ qlj)

=
∑

σ∈EV s

χσ ⊗ uστ q
t(σ)
j .

Hence for all j ∈ V s ∩ V t and τ ∈ E,

β(χτ )αs(j) = β(χτ .χj)

if and only if

β(L2(EV s)) ⊆ L2(EV s)⊗A and

uστ q
t(σ)
j = δt(τ),ju

σ
τ whenever σ ∈ EV s . (3.5.1)

Similarly it also follows that, for all i ∈ V s ∩ V t and τ ∈ E,

αt(χi)β(χτ ) = β(χi.χτ )

if and only if

β(L2(EV t
)) ⊆ L2(EV t

)⊗A and

r
s(σ)
i uστ = δi,s(τ)u

σ
τ whenever σ ∈ EV t

. (3.5.2)

Now we proceed to prove our theorem.

Claim:(1) =⇒ (2);(1) =⇒ (3).

As αs|C(V s∩V t) = αt|C(V s∩V t), for i ∈ V s ∩ V t we have,

qki = rki when k ∈ V s ∩ V t and

qki = 0 = rli when k ∈ V s \ V t, l ∈ V t \ V s.

From above expressions, theorem 3.4.1 and theorem 3.3.1 it follows that, for σ, τ ∈ E,

uστ = uστ r
t(σ)
t(τ) = 0 whenever σ /∈ EV s but τ ∈ EV s

and uστ = q
s(σ)
s(τ)u

σ
τ = 0 whenever σ /∈ EV t

but τ ∈ EV t
.
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Hence we have,

β(L2(EV s)) ⊆ L2(EV s)⊗A

and β(L2(EV t
)) ⊆ L2(EV t

)⊗A.

We also observe that for i, j ∈ V s ∩ V t, σ1 ∈ EV s and σ2 ∈ EV t
,

uσ1
τ q

t(σ1)
j = uσ1

τ r
t(σ1)
j = δj,t(τ)u

σ1
τ

and r
s(σ2)
i uσ2

τ = q
s(σ2)
i uσ2

τ = δi,s(τ)u
σ2
τ .

As our choice of i, j, σ1, σ2 was arbitrary, from observations 3.5.1 and 3.5.2, (2) and (3) follow.

Claim:(2) =⇒ (1).

Let i, k ∈ V s ∩ V t and σ ∈ E be such that t(σ) = k. Using equations 3.4.4 and 3.5.1 we

observe that,

rki =
∑
τ∈Ei

uστ
∗uστ =

∑
τ∈Ei

uστ
∗uστ q

k
i = rki q

k
i . (3.5.3)

Hence it follows that,

rki ≤ qki for all i, k ∈ V s ∩ V t. (3.5.4)

As coefficients of both matrices (qki )k,i∈V s∩V t and (rki )k,i∈V s∩V t satisfy quantum permutation

relations it follows that, for i ∈ V s ∩ V t,

1 =
∑

k∈V s∩V t

rki ≤
∑

k∈V s∩V t

qki = 1.

As {rki | k ∈ V s ∩ V t} and {qki | k ∈ V s ∩ V t} both are sets of mutually orthogonal projections,

we have

qki = rki for all i, k ∈ V s ∩ V t.

Therefore (1) follows.

Claim:(3) =⇒ (1)

Let i, k ∈ V s ∩ V t and σ ∈ E be such that s(σ) = k. Using equations 3.3.4 and 3.5.2 we

observe that,

qki =
∑
τ∈Ei

uστu
σ∗
τ = rki (

∑
τ∈Ei

uστu
σ∗
τ ) = rki q

k
i .

hence it follows that,

qki ≤ rki for all i, k ∈ V s ∩ V t.
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Using similar arguments used in the previous case, (1) follows.

3.6 Bi-unitarity and inversion in undirected graphs

Now we move to the case of undirected simple graphs, that is, where the adjacency matrix W

is a symmetric matrix. All the results related to bi-unitarity can be replaced with unitarity alone

becaue of the existence of inversion map in an undirected graph. We observe the following

result which will be useful when we will be dealing with undirected multigraphs.

Theorem 3.6.1. Let (V,E) be an undirected simple graph and β : L2(E) → L2(E)⊗A be a

unitary co-representation of a CQG (A,∆) such that the following conditions hold:

1. Adβ(S(C(V ))) ⊆ S(C(V ))⊗A.

2. β(ξ0) = ξ0 ⊗ 1A where ξ0 =
∑

τ∈E χτ .

Then the following conditions ((1) and (2)) are equivalent:

1. β ◦ J = (J ⊗ idA) ◦ β.

2. (a) β is unitary.

(b) Adβ(T (C(V ))) ⊆ T (C(V ))⊗A.

(c) The induced co-actions αs and αt coincide on C(V ).

The map J : L2(E) → L2(E) is defined by equation 2.7.1.

Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β. We make some observations first.

For τ ∈ E,

β ◦ J(χτ ) =
∑
σ∈E

χσ ⊗ uστ (see notaion 2 in section 2.7)

and (J ⊗ idA) ◦ β(χτ ) =
∑
σ∈E

J(χσ)⊗ uστ
∗

=
∑
σ∈E

χσ ⊗ uστ
∗
.

Hence we have,

β ◦ J = (J ⊗ idA) ◦ β ⇐⇒ uστ = uστ
∗ (3.6.1)

for all σ, τ ∈ E.

Claim:(1) =⇒ (2).
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Let αs be the induced co-action on C(V ) with co-representation matrix (qij)i,j∈V . Since β is

unitary, using 3.6.1, we observe that,

∑
τ∈E

uσ1
τ

∗uσ2
τ =

∑
τ∈E

uσ1
τ uσ2

τ

∗
= δσ1,σ2 = δσ1,σ2

and
∑
τ∈E

uτσ1
uτ∗σ2

=
∑
τ∈E

uτσ1

∗
uτσ2

= δσ1,σ2 = δσ1,σ2 .

Hence β is also unitary. We further observe that, for l ∈ V ,

∑
τ∈El

uσ1
τ

∗uσ2
τ =

∑
τ∈El

uσ1
τ uσ2

τ

∗
= q

s(σ1)
l (

∑
τ∈E

uσ1
τ uσ2

τ

∗
)q

s(σ1)
l

= δσ1,σ2q
s(σ1)
l q

s(σ2)
l

= δσ1,σ2q
t(σ1)
l q

t(σ2)
l .

From observation 3.4.1 and equation 3.4.4 it follows that,

Adβ(T (C(V ))) ⊆ T (C(V ))⊗A and αs = αt.

Claim:(2) =⇒ (1).

Let α = αs = αt. From our hypothesis and theorem 3.1.2 it follows that β = α(2)|L2(E) where

L2(E) is identified as a linear subspace of C(V )⊗ C(V ).

From the definition of α(2), for τ ∈ E we have,

α(2)(χτ ) =
∑
σ∈E

χσ ⊗ q
s(σ)
s(τ)q

t(σ)
t(τ)

and α(2)(χτ ) =
∑
σ∈E

χσ ⊗ q
t(σ)
t(τ)q

s(σ)
s(τ) .

We further observe that,

α(2) ◦ J(χτ ) =
∑
σ∈E

χσ ⊗ q
s(σ)
t(τ) q

t(σ)
s(τ)

=
∑
σ∈E

J(χσ)⊗ q
t(σ)
t(τ)q

s(σ)
s(τ)

= (J ⊗ idA)α(2)(χτ ).

Hence (1) follows.
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3.7 Equivalent definitions of quantum symmetries in a simple

graph

In the light of above discussions we give alternative definitions of quantum symmetry in a simple

graph formulated in terms of bi-unitary maps.

Theorem 3.7.1. Let (V,E) be a simple graph and β : L2(E) → L2(E) ⊗ A be a bi-unitary

co-representation of a CQG (A,∆) on L2(E). The following conditions ((1) and (2)) are

equivalent:

1. The bi-unitary co-representation β satisfies the following properties:

(a) Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

(b) Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

(c) The induced co-actions αs and αt (see remark 3.4.1) both preserve C(V s∩V t) and

agree on C(V s ∩ V t), that is,

αs|C(V s∩V t) = αt|C(V s∩V t).

(d) β fixes the element ξ0 :=
∑

τ∈E χτ ∈ L2(E), that is,

β(ξ0) = ξ0 ⊗ 1A.

2. There exists a co-action α : C(V ) → C(V ) ⊗ A which preserves quantum symmetry of

(V,E) in Banica’s sense and α(2)|L2(E) = β.

Proof. Claim:(1) =⇒ (2).

We define the required co-action α : C(V ) → C(V )⊗A by

α(χk) = αs(χk) if k ∈ V s,

= αt(χk) if k ∈ V t.

The map α is well defined because of (c) of condition (1) and is a co-action as both αs and αt

are co-actions on C(V s) and C(V t) respectively. From theorems 3.3.1, 3.4.1 and proposition

3.1.2 it follows that α preserves quantum symmetry of (V,E) in Banica’s sense. The equation

α(2)|L2(E) = β follows from remark 3.1.4.

Claim: (2) =⇒ (1).
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Let (qij) be the co-representation matrix of α. As α preserves quantum symmetry of (V,E) in

Banica’s sense, we have qikq
j
l = 0 when (i, j) /∈ E and (k, l) ∈ E. For i /∈ V s, k ∈ V s and

(k, l) ∈ E, we observe that,

qik =
∑
j∈V

qikq
j
l = 0 as (k, l) ∈ E and (i, j) /∈ E for all j ∈ V.

Therefore it follows that α(C(V s)) ⊆ C(V s) ⊗ A and by similar arguments, α(C(V t)) ⊆

C(V t)⊗A.

Let us define two co-actions αs : C(V s) → C(V s) ⊗ A and αt : C(V t) → C(V t) ⊗ A by

αs = α|C(V s) and αt = α|C(V t). From proposition 3.1.2 it follows that,

αs(χi)β(χτ ) = β(χi.χτ ) and β(χτ )αt(χj) = β(χτ .χj) (3.7.1)

for all i ∈ V s, j ∈ V t and τ ∈ E. Using theorems 3.3.1 and 3.4.1, we observe that (a) and

(b) of (1) hold. The co-actions αs and αt become induced co-actions of β (see remark 3.4.1)

which preserve and agree on C(V s ∩ V t) by their definitions.

As every co-action on C(E) is also a bi-unitary co-representation on L2(E), using similar

arguments in the above proof we give Bichon’s version of theorem 3.7.1.

Theorem 3.7.2. Let (V,E) be a simple graph and β : C(E) → C(E)⊗A be a co-action of a

CQG (A,∆) on C(E). The following conditions ((1) and (2)) are equivalent:

1. The co-action β satisfies the following properties:

(a) Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

(b) Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

(c) The induced co-actions αs and αt (see remark 3.4.1) preserve C(V s∩V t) and agree

on C(V s ∩ V t), that is,

αs|C(V s∩V t) = αt|C(V s∩V t).

2. There exists a co-action α : C(V ) → C(V ) ⊗ A such that the pair (α, β) preserves

quantum symmetry of (V,E) in Bichon’s sense.



Chapter 4

Quantum symmetry in directed and

undirected multigraphs

4.1 Induced permutations on V s and V t from permutation of

edges

We will be defining notions of quantum symmetry in a directed multigraph first. Let us fix

a directed multigraph (V,E) with source and target maps s : E → V and t : E → V . We

will indeed use the machinery we have developed in the previous chapter for simple graphs.

As we have done for simple graphs in the previous chapter, we will use the same technique to

capture quantum permutations on V s and V t from a bi-unitary co-representation β where Adβ

preserves C(V s) and Adβ preserves C(V t).

Theorem 4.1.1. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation of a CQG

(A,∆). Let Adβ be the co-action on B(L2(E)) implemented by the unitary co-representation

β. Then the following are equivalent:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. There exists a co-action αs : C(V s) → C(V s)⊗A such that,

αs(χi)β(χτ ) = β(χi.χτ )

for all i ∈ V s and τ ∈ E.

Proof. The proof is using similar arguments as in the context of a simple graph (see proof of

theorem 3.3.1).

47
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Theorem 4.1.2. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation of a CQG

(A,∆). Let Adβ be the co-action on B(L2(E)) implemented by β. Then the following are

equivalent:

1. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

2. There exists a co-action αt : C(V t) → C(V t)⊗A such that,

β(χτ )αt(χj) = β(χτ .χj)

for all j ∈ V t and τ ∈ E.

Proof. The proof is using similar arguments as in the context of a simple graph (see proof of

theorem 3.4.1).

Remark 4.1.3. As we have seen in the context of simple graph, the co-actions αs and αt

in theorem 3.3.1 and theorem 3.4.1 are uniquely determined by β. Let (qik)i,k∈V s , (rjl )j,l∈V t

and (uττ ′)τ,τ ′∈E be co-representation matrices of αs, αt and β respectively. Then we have the

following identities:

∑
τ∈Ek

uσ1
τ uσ2∗

τ = δσ1,σ2q
s(σ1)
k ,

∑
τ∈El

uσ1∗
τ uσ2

τ = δσ1,σ2r
t(σ1)
l

for all k ∈ V s, l ∈ V t and σ1, σ2 ∈ E. For a bi-unitary co-representation β satisfying (1) in

theorems 3.3.1 and 3.4.1, the co-actions αs and αt will be referred to as induced co-actions

on C(V s) and C(V t).

Theorem 4.1.4. Let β : L2(E) → L2(E)⊗A be a bi-unitary co-representation such that

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

Furthermore, we also assume that the induced co-actions αs and αt both preserve C(V s ∩V t),

that is,

αs(C(V s ∩ V t)) ⊆ C(V s ∩ V t)⊗A ⊆ C(V s)⊗A,

αt(C(V s ∩ V t)) ⊆ C(V s ∩ V t)⊗A ⊆ C(V t)⊗A.
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Then the following conditions are equivalent:

1. αs|C(V s∩V t) = αt|C(V s∩V t).

2. For all j ∈ V s ∩ V t and τ ∈ E,

β(χτ )αs(χj) = β(χτ .χj).

3. For all i ∈ V s ∩ V t and τ ∈ E,

αt(χi)β(χτ ) = β(χi.χτ ).

Proof. The proof is using same arguments as in the case of simple graph (see proof of theorem

3.5.1).

4.2 Notions of quantum symmetry in a directed multigraph

Now we are in position to define our notions of quantum symmetry in a directed multigraph.

4.2.1 Main definitions

Definition 4.2.1. A compact quantum group (A,∆) is said to co-act on (V,E) preserving

its quantum symmetry in Bichon’s sense if there exists a co-action β : C(E) → C(E) ⊗ A

satisfying the following conditions:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

3. The induced co-actions αs and αt both preserve C(V s ∩ V t) and agree on C(V s ∩ V t),

that is,

αs|C(V s∩V t) = αt|C(V s∩V t).

Definition 4.2.2. a compact quantum group (A,∆) is said to co-act on (V,E) preserving its

quantum symmetry in Banica’s sense if there exists a bi-unitary co-representation β : L2(E) →

L2(E)⊗A satisfying the following conditions:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.
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3. The induced co-actions αs and αt both preserve C(V s ∩ V t) and agree on C(V s ∩ V t),

that is,

αs|C(V s∩V t) = αt|C(V s∩V t).

4. β fixes the element ξ0 :=
∑

τ∈E χτ ∈ L2(E), that is,

β(ξ0) = ξ0 ⊗ 1A.

We will need additional conditions beyond those mentioned in definition 4.2.2 to capture the

classical picture of multigraph automorphisms (see definition 2.1.11). Nevertheless, definition

4.2.2 provides the most general setup related to a multigraph, which we will use for several

constructions in this thesis.

Definition 4.2.3. A compact quantum group (A,∆) is said to co-act on (V,E) by preserving

its quantum symmetry in our sense if there exists a bi-unitary co-representation β : L2(E) →

L2(E)⊗A satisfying the following conditions:

1. Adβ(S(C(V s))) ⊆ S(C(V s))⊗A.

2. Adβ(T (C(V t))) ⊆ T (C(V t))⊗A.

3. The induced co-actions αs and αt both preserve C(V s ∩ V t) and agree on C(V s ∩ V t),

that is,

αs|C(V s∩V t) = αt|C(V s∩V t).

4. β fixes the element ξ0 :=
∑

τ∈E χτ ∈ L2(E), that is,

β(ξ0) = ξ0 ⊗ 1A.

5. For i, j, k, l ∈ V with Ei
j ̸= ϕ and Ek

l ̸= ϕ, let us define (Adβ)
ij
kl : Mij → Mkl ⊗ A

(similarly also (Adβ)
ij
kl) by,

(Adβ)
ij
kl(T ) = (pkl ⊗ 1)Adβ(T )(pkl ⊗ 1); T ∈ Mij .

Then we assume that,

(Adβ)
ij
kl(Dij) ⊆ Dkl ⊗A

and (Adβ)
ij
kl(Dij) ⊆ Dkl ⊗A.
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Remark 4.2.4. Let β be co-action of a compact quantum group (A,∆) on (V,E) preserving

its quantum symmetry in Banica’s sense, Bichon’s sense or ours. From (1), (2) and (3) of our

definitions it follows that the co-actions αs and αt induce a co-action α : C(V ) → C(V )⊗A

by

α(χk) = αs(χk) if k ∈ V s,

= αt(χk) if k ∈ V t.

α is the required “permutation” of vertices derived from “permutation” of edges E and will be

referred as induced permutation on the set of vertices of (V,E).

4.2.2 Left and right equivariance of the induced permutation α

Proposition 4.2.5. Let β be a co-action of a CQG (A,∆) on (V,E) preserving its quantum

symmetry in Banica’s sense, Bichon’s sense or ours. Let α be the induced co-action on C(V ).

Then (α, β) respects C(V s)− L2(E)− C(V t) bi-module structure, that is,

α(χi)β(χσ) = β(χi.χσ)

and β(χσ)α(χj) = β(χσ.χj).

for all i ∈ V s, j ∈ V t and σ ∈ E.

Proof. As α|(C(V s) = αs and α|C(V t) = αt, from theorem 4.1.1 and theorem 4.1.2 the claim

follows. Using similar arguments as in proof of theorem 3.1.2 we deduce the following identities:

q
s(σ)
i uστ = δi,s(τ)u

σ
τ and uστ q

t(σ)
j = δt(τ),ju

σ
τ (4.2.1)

for all σ ∈ E and i ∈ V s, j ∈ V t.

Instead of seeing L2(E) as a C(V s)−C(V t) bimodule, we can also see it as C(V )−C(V )

bimodule by the same right and left module multiplication maps.

Proposition 4.2.6. Let β : L2(E) → L2(E) ⊗ A be a bi-unitary co-representation and α :

C(V ) → C(V )⊗A be a co-action of a CQG (A,∆). Then the following are equivalent:

1. α(χi).β(σ) = β(χi.χσ) and β(χσ).α(χj) = β(χσ.χj) for all i ∈ V s, j ∈ V t, σ ∈ E.

2. α(χi).β(σ) = β(χi.χσ) and β(χσ).α(χi) = β(χσ.χi) for all i ∈ V, σ ∈ E.
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Proof. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices of α and β.

(1) =⇒ (2).

Let σ ∈ E, i ∈ V s and j ∈ V t. As β is bi-unitary, we observe that,

q
s(σ)
i = q

s(σ)
i (

∑
τ∈E

uστu
σ∗
τ )q

s(σ)
i =

∑
τ∈Ei

uστu
σ∗
τ ,

q
t(σ)
j = q

t(σ)
j (

∑
τ∈E

uσ∗τ uστ )q
t(σ)
j =

∑
τ∈Ej

uσ∗τ uστ .

We therefore have,

∑
i∈V s

q
s(σ)
i =

∑
τ∈E

uστu
σ∗
τ = 1 and

∑
j∈V t

q
t(σ)
j =

∑
τ∈E

uσ∗τ uστ = 1

Hence for i /∈ V s and j /∈ V t it follows that,

q
s(σ)
i = 0 and q

t(σ)
j = 0. (4.2.2)

From our assumption and the observation made above, it follows that for all i ∈ V and σ, τ ∈ E,

q
s(σ)
i uστ = δi,s(τ)u

σ
τ when i ∈ V s;

= 0

= δi,s(τ)u
σ
τ when i /∈ V s.

Via similar arguments we can prove the target version of above identites mentioned in equation

4.2.1. Hence (2) holds.

The converse (2) =⇒ (1) is obvious.

4.2.3 Some essential identities

In this subsection, we will prove some identites which we will be using implicitly and explicitly

throughout this thesis. The fact, that these identities are readily available in the context of a

simple graph, asserts that our descriptions of quantum symmetry in a multigraph are in fact

correct generalizations.

Proposition 4.2.7. Let β be a co-action of a CQG (A,∆) on (V,E) preserving its quantum

symmetry in Banica’s sense. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices of

β and induced co-action α on C(V ). For i, j, k, l ∈ V such that Ei
j ̸= ϕ and Ek

l ̸= ϕ, we have

the following:
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1. For any σ ∈ Ei, we have
∑

τ∈Ek uστ = qik.

2. For any σ ∈ Ej , we have
∑

τ∈El
uστ = qjl .

3. For any σ ∈ Ei
j , we have

∑
τ∈Ek

l
uστ = qikq

j
l .

As β : L2(E) → L2(E) ⊗ A is bi-unitary co-representation, by using antipode on the

underlying Hopf * algebra of matrix elements of (A,∆), it follows that the above identities are

true if we consider sum in upper indices instead of lower indices.

Proof. As β co-acts on (V,E) preserving its quantum symmetry, from (4) of definition 4.2.2

we have,

∑
σ∈E

uστ = 1 =
∑
σ∈E

uτσ for all τ ∈ E.

For σ ∈ Ei, using equation 4.2.1 we observe that,

qik = qik(
∑
τ∈E

uστ ) =
∑
τ∈Ek

uστ .

For σ ∈ Ej , using equation 4.2.1 we observe that,

qjl = (
∑
τ∈E

uστ )q
j
l =

∑
τ∈El

uστ .

For σ ∈ Ei
j , using equation 4.2.1 we note that,

qikq
j
l = qik(

∑
τ∈E

uστ )q
j
l =

∑
τ∈Ek

l

uστ .

Remark 4.2.8. If β is a co-action on (V,E) preserving its quantum symmetry in Bichon’s sense

then in (3) of proposition 4.2.7, it follows that qik and qjl commute with each other as uστ ’s are

already projections in A (β is a quantum permutation the edge set E).

Proposition 4.2.9. Let β be a co-action of a CQG (A,∆) on (V,E) preserving its quantum

symmetry in Banica’s sense. The following identity holds:

QW = WQ

where Q = (qij)i,j∈V is the co-representation matrix of the induced co-action on C(V ) and W

is the adjacency matrix of (V,E).
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Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β.

Let us fix i, j ∈ V . If i /∈ V s or j /∈ V t, using equation 4.2.2 it follows that,

(QW )ij = 0 = (WQ)ij .

Hence let us assume i ∈ V s and j ∈ V t. For each k ∈ V with W k
j ̸= 0 we fix an element τk

in Ek
j . In a similar way, for each k ∈ V with W i

k ̸= 0 we fix an element σk in Ei
k. We observe

that,

(QW )ij =
∑
k∈V

qikW
k
j =

∑
k∈V
Wk

j ̸=0

W k
j (

∑
σ∈Ei

uστk)

=
∑
k∈V
Wk

j ̸=0

(
∑
σ∈Ei

τ∈Ek
j

uστ )

=
∑
σ∈Ei

τ∈Ej

uστ

=
∑
k∈V
W i

k ̸=0

(
∑
σ∈Ei

k
τ∈Ej

uστ )

=
∑
k∈V
W i

k ̸=0

W i
k(

∑
τ∈Ej

uσk
τ )

=
∑
k∈V

W i
kq

k
j = (WQ)ij .

Hence our claim is proved.

Corollary 4.2.10. Let β be a co-action of CQG (A,∆) on (V,E) preserving its quantum

symmetry in Banica’s sense, Bichon’s sense or ours. Let i, j, k, l ∈ V be such that |Ei
j | ≠ |Ek

l |.

Then qikq
j
l = 0 where (qij)i,j∈V is the co-representation matrix of the induced co-action on

C(V ).

Proof. It is immidiate form proposition 4.2.9 and theorem 2.5.9.

4.2.4 Complete orthogonality versus restricted orthogonality

We explore the consequences of condition (5) in the definition 4.2.3 which give us some “re-

stricted orthogonality” among the edges once we have fixed two pairs of initial and final vertices.
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We are saying “restricted” as we have considered (Adβ)
ij
kl and (Adβ)

ij
kl instead of Adβ and Adβ.

The next proposition shows that “full orthogonality” essentially leads to an equivalent descrip-

tion of co-action on (V,E) preserving its quantum symmetry in Bichon’s sense.

Proposition 4.2.11. Let β be a co-action of a CQG (A,∆) on a directed multigraph (V,E)

preserving its quantum symmetry in Banica’s sense (see definition 4.2.2). If

Adβ(D) ⊆ D ⊗A,

then β is a co-action on (V,E) which preserves its quantum symmetry in Bichon’s sense. In

particular, β is a quantum permutation on the edge set E.

Proof. We observe that, For T ∈ B(L2(E)), T ∈ D if and only if {χτ |τ ∈ E} is the complete

set of eigenvectors of T .

Let (uστ )σ,τ∈E be the co-representation matrix of β. For τ, σ2 ∈ E, we note that,

Adβ(pτ )(χσ2 ⊗ 1) = β(pτ ⊗ 1)(
∑
τ ′∈E

χτ ′ ⊗ uσ2∗
τ ′ )

= β(χτ ⊗ uσ2∗
τ )

=
∑
σ1∈E

χσ1 ⊗ uσ1
τ uσ2∗

τ .

Using observation mentioned in the beginning we conclude that,

Adβ(D) ⊆ D ⊗A ⇐⇒ uσ1
τ uσ2∗

τ = 0 when σ1 ̸= σ2. (4.2.3)

From (4) of definition 4.2.2 it follows that

∑
σ∈E

uστ = 1 for all τ ∈ E. (4.2.4)

Using observation 4.2.3 and equation 4.2.4, for σ1, τ ∈ E it follows that,

uσ1
τ = uσ1

τ (
∑
σ2∈E

uσ2∗
τ ) = uσ1

τ uσ1∗
τ .

Using spectral calculus for normal operators, it follows that uσ1
τ is a projection. Combining

the fact that uσ1
τ ’s are projections with observation 4.2.3 and equation 4.2.4 we conclude that

the coefficients of the matrix (uσ1
τ )σ1,τ∈E satisfy quantum permutation relations making β a
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co-action on C(E) and therefore a co-action on (V,E) which preserve its quantum symmetry

in Bichon’s sense.

In light of the previous proposition, to capture some sort of orthogonality relations among

edges, we resort to “restricted orthogonality” which serves as a middle ground between Bichon

and Banica’s notions of quantum symmetry. In the next section and the next chapter, we will

see further justifications for our choice of “restricted orthogonality” relations.

Proposition 4.2.12. Let β be a co-action of a CQG (A,∆) on (V,E) which preserves its

quantum symmetry in Banica’s sense. Let i, j, k, l ∈ V be such that Ei
j ̸= ϕ and Ek

l ̸= ϕ.

Then the following are equivalent:

1. (Adβ)
kl
ij (Dkl) ⊆ Dij ⊗A and (Adβ)

kl
ij (Dkl) ⊆ Dij ⊗A.

2. For all σ1 ̸= σ2 ∈ Ei
j and τ ∈ Ek

l ,

uσ1
τ uσ2

τ
∗ = 0 and uσ1

τ
∗uσ2

τ = 0

where (uστ )σ,τ∈E is the co-representation matrix of β.

Proof. We obeserve that, for any T ∈ Mij , T ∈ Dij if and only if {χσ|σ ∈ Ei
j} is a set of

eigenvectors for T .

Let us fix τ ∈ Ek
l and σ2 ∈ Ei

j . We observe that,

(Adβ)
kl
ij (pτ )(χσ2 ⊗ 1) = (pij ⊗ 1)β(pτ ⊗ 1)(

∑
σ∈E

χσ ⊗ uσ2
σ

∗)

= (pij ⊗ 1)β(χτ ⊗ uσ2
τ

∗)

= (pij ⊗ 1)(
∑
σ1∈E

χσ1 ⊗ uσ1
τ uσ2

τ
∗)

=
∑

σ1∈Ei
j

χσ1 ⊗ uσ1
τ uσ2

τ
∗.

Similarly, (Adβ)
kl
ij (pτ )(χσ2 ⊗ 1) =

∑
σ1∈Ei

j

χσ1 ⊗ uσ1
τ

∗uσ2
τ .

From the observation mentioned in the beginning of the proof the equivalence follows.
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4.3 Preservence and permutation of loops

In this section we show that any co-action on (V,E) preserving its quantum symmetry in our

sense actually preserves the space of loops and is in fact is a quantum permutation on them.

Proposition 4.3.1. Let β be a co-action of a CQG (A,∆) on (V,E) which preserves its

quantum symmetry in our sense. Then

β(L2(L)) ⊆ L2(L)⊗A

where L ⊆ E is the set of loops in (V,E). Moreover, β|L2(L) is a quantum permutation on

L.

Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β. It is enough to show that uστ = 0

when σ /∈ L and τ ∈ L.

Let i, j ∈ V be such that Ei
j ̸= ϕ and τ ∈ L. Let s(τ) = t(τ) = k for some k ∈ V . From

(3) of proposition 4.2.7 it follows that,

∑
σ∈Ei

j

uστ = 0 when i ̸= j.

Using proposition 4.2.12 we observe that,

uσ
′∗

τ uσ
′

τ = uσ
′∗

τ

∑
σ∈Ei

j

uστ = 0

where σ′ ∈ Ei
j and i ̸= j. As our choices of i and j were arbitrary, we have,

uσ
′

τ = 0 where σ′ /∈ L, τ ∈ L.

From proposition 5.3.10, it follows that uστ ’s are projections commuting with qik where σ ∈ Ei
i

and τ ∈ Ek
k . Using proposition 4.2.5 and proposition 4.2.12 we further observe that,

uσ1
τ uσ2

τ = uσ1
τ q

s(σ1)
s(τ) q

s(σ2)
s(τ) uσ2

τ

= δs(σ1),s(σ2)u
σ1
τ uσ2

τ

= δσ1,σ2u
σ1
τ .

Hence β|L2(L) is a quantum permutation on L.
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Remark 4.3.2. Proposition 4.3.1 also holds if we assume β to preserve quantum symmetry of

(V,E) in Bichon’s sense.

4.4 Existence of Universal Objects:

4.4.1 The categories CBan
(V,E), CBic

(V,E) and Csym
(V,E):

Definition 4.4.1. Let β and β′ be co-actions of two compact quantum groups (A,∆) and

(A′,∆′) on (V,E) which preserve its quantum symmetry in Banica’s sense. Then Φ : (A,∆) →

(A′,∆′), a quantum group homomorphism, is said to intertwin β and β′ if the following diagram

commutes:

L2(E) L2(E)⊗A′

L2(E)⊗A

β′

β
id⊗Φ

Let us consider the category CBan
(V,E) whose objects are denoted by (A,∆A, βA) where (A,∆A) is

a compact quantum group and βA is a co-action of (A,∆A) on (V,E) preserving its quantum

symmetry in Banica’s sense. Morphisms in this category are quantum group homomorphisms

intertwining two such co-actions.

Similarly, we consider the categories CBic
(V,E) and Csym

(V,E) whose objects are compact quantum

groups co-acting on (V,E) preserving its quantum symmetry in Bichon’s sense and ours re-

spectively. Morphisms in these categories are quantum group homomorphisms intertwining two

similar co-actions.

All the categories CBan
(V,E), Csym

(V,E) and CBic
(V,E) are non-empty as C(Gaut

(V,E)) are in all of them

where Gaut
(V,E) is the group of classical automorphisms of (V,E).

4.4.2 Existence of universal object in CBan
(V,E) and CBic

(V,E)

Before moving to the main theorems, let us start with the following definition.

Definition 4.4.2. For a C* algebra A and a C-linear map β : L2(E) → L2(E) ⊗ A we can

always write,

β(χτ ) =
∑
σ∈E

χσ ⊗ uστ

where Tβ = (uστ )σ,τ∈E ∈ Mm(A) and m = |E|. The matrix Tβ will be referred to as the

transformation matrix of β. We will say that β is bi-unitary if Tβ and Tβ := (uσ∗τ )σ,τ∈E are

both unitary in Mm(A).
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Theorem 4.4.3. For a directed multigraph (V,E),the category CBan
(V,E) admits a universal object.

Proof. Let us consider the category C whose objects are (A, βA) where A is a C* algebra and

βA : L2(E) → L2(E) ⊗ A is a bi-unitary map satisfying conditions mentioned in definition

4.2.2, that is, coefficients of the transformation matrix of βA satisfy the polynomial relations

associated with conditions in definition 4.2.2. It should be noted that at the level of C* algebra,

(1), (2) and (3) of definition 4.2.2 only induce C* homomorphisms αA
s and αA

t on C(V s)

and C(V t) (in similar manner which we have done for a CQG) which preserve and agree on

C(V s ∩ V t). Let m = |E|. By universality of the Wang algebra Au(m), there exists a C*

algebra homomorphism ΦA : Au(m) → A for each object (A, βA) in C. Let us define

I = ∩(A,βA)∈CKer(ΦA).

Let π : Au(m) → Au(m) /I be the quotient map and we write π(uστ ) = uστ where coefficients

of the matrix (uστ )σ,τ∈E are the canonical generators of Au(m). It is clear that Q := Au(m) /I
along with the bi-unitary map βQ : L2(E) → L2(E) ⊗Q is a universal object in the category

C where

βQ(χτ ) =
∑
σ∈E

χσ ⊗ uστ .

We will show that Q is in fact a CQG and therefore also universal in CBan
(V,E).

It suffices to define a co-product on Q such that βQ becomes a bi-unitary co-representation.

For σ, τ ∈ E, let us define Uσ
τ ∈ Q⊗Q by

Uσ
τ := (π ⊗ π)∆m(uστ ) =

∑
τ ′∈E

uστ ′ ⊗ uτ ′τ

where ∆m is the co-product on Au(m). Let us define a linear map β : L2(E) → L2(E)⊗Q⊗Q

by

β(χτ ) =
∑
σ∈E

χσ ⊗ Uσ
τ .

It further follows from routine computation that, (Q⊗Q, β) ∈ C. By universality of Q, there

exists a C* algebra homomorphism ∆Ban : Q → Q⊗Q such that,

∆Ban(uστ ) =
∑
τ ′∈E

uστ ′ ⊗ uτ ′τ .

The map ∆Ban is co-associative as it is such on the set of generators. As ∆Ban ◦ π =

(π⊗π)◦∆m, it follows that ∆m(I) ⊆ Ker(π⊗π) making I a Woronowicz C* ideal in Au(m).
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Therefore Q is a compact quantum group with the co-product ∆Ban. The bi-unitary map βQ

is a co-representation on L2(E) as we clearly have

(id⊗∆Ban) ◦ βQ = (βQ ⊗ id) ◦ βQ.

Therefore (Q,∆Ban, βQ) is universal in CBan
(V,E).

Remark 4.4.4. Let us denote the universal object in CBan
(V,E) by QBan

(V,E) and the respective co-

product by ∆Ban.

Theorem 4.4.5. For a directed multigraph (V,E), the category CBic
(V,E) admits a universal object.

Proof. Let us denote (A,∆A, βA) to be an object of CBic
(V,E) where (A,∆A) is a CQG and

βA : C(E) → C(E) ⊗ A is a co-action on (V,E) in the sense of definition 4.2.1. As any co-

action β : C(E) → C(E)⊗A is also a bi-unitary co-representation on L2(E), by universality of

QBan
(V,E), it follows that there exists a unique quantum group homomorphism ΦA : QBan

(V,E) → A

such that

ΦA(uστ ) = vστ for all σ, τ ∈ E

where (uστ )σ,τ∈E is the matrix of canonical generators of QBan
(V,E) and (vστ )σ,τ∈E is the co-

representation matrix of βA. Let IBic be a C* ideal in QBan
(V,E) generated by the following set

of relations:

uστ = uσ∗τ = uσ2τ for all σ, τ ∈ E.

It is clear that IBic ⊆ Ker(ΦA) for all (A,∆A, βA) ∈ CBic
(V,E). Let us denote Q = QBan

(V,E) /IBic

and πBic : Q
Ban
(V,E) → Q to be the natural quotient map. We write

πBic(u
σ
τ ) = uστ for all σ, τ ∈ E.

If we show that IBic is a Woronowicz C* ideal in QBan
(V,E), then it follows that Q becomes a

CQG with a natural co-action βQ : C(E) → C(E)⊗Q given by,

βQ(χτ ) =
∑
σ∈E

χσ ⊗ uστ where τ ∈ E.

From definition of IBic, it also follows that (Q,∆Q, βQ) ∈ CBic
(V,E) and universal in CBic

(V,E) where

the co-product ∆Q on Q is induced by ∆Ban via the quotient map πBic.

Claim: The ideal IBic is a Woronowicz C* ideal in QBan
(V,E).
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Let ∆Ban be the co-product on QBan
(V,E) and σ, τ ∈ E. We observe that,

(πBic ⊗ πBic)∆Ban(u
σ
τ ) =

∑
τ ′∈E

uστ ′ ⊗ uτ ′τ

=
∑
τ ′∈E

uσ∗τ ′ ⊗ uτ ′∗τ = (πBic ⊗ πBic)∆Ban(u
σ∗
τ );

(πBic ⊗ πBic)∆Ban(u
σ2

τ ) =
∑

τ1,τ2∈E
uστ1 u

σ
τ2 ⊗ uτ1τ uτ2τ

=
∑
τ1∈E

uσ2

τ1 ⊗ uτ1
2

τ

=
∑
τ1∈E

uστ1 ⊗ uτ1τ = (πBic ⊗ πBic)∆Ban(u
σ
τ ).

Here we have used that the elements of the matrix (uστ )σ,τ∈E satisfy quantum permutation

relations. Therefore the claim follows and (Q,∆Q, βQ) is the universal object in CBic
(V,E).

Remark 4.4.6. Let us denote the universal object in CBic
(V,E) by QBic

(V,E) and the respective co-

product by ∆Bic.

4.4.3 Existence of universal object in Csym
(V,E)

We do not know whether Csym
(V,E) admits a universal object or not for an arbitrary multigraph

(V,E). However, it is worth mentioning that Csym
(V,E) is strictly bigger than CBic

(V,E) for a large

class of multigraphs. One of such classes consists of uniform multigraphs where Bichon’s and

Banica’s notions of quantum symmetry differ for the underlying simple graph (see theorem 5.3.9

and example 5 in chapter 7). For such multigraphs, the automorphism group of both source

and target dependent quantum symmetries Qs,t
(V,E) (see definition 6.4.3 in chapter 6) is a

member of Csym
(V,E) but not a member of CBic

(V,E).

4.5 Quantum automorphism groups of a directed multigraph

Definition 4.5.1. Let (V,E) be a directed multigraph. The universal compact quantum

group associated with (V,E) is the compact quantum group (QBan
(V,E),∆Ban) where QBan

(V,E) is

the universal C* algebra generated by elements of the matrix (uστ )σ,τ∈E satisfying the following

relations:
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1. The matrices U := (uστ )σ,τ∈E and U := (uσ∗τ )σ,τ∈E are both unitary, that is,

∑
τ∈E

uσ1
τ uσ2∗

τ = δσ1,σ21 and
∑
τ∈E

uτ∗σ1
uτσ2

= δσ1,σ21;∑
τ∈E

uσ1∗
τ uσ2

τ = δσ1,σ21 and
∑
τ∈E

uτσ1
uτ∗σ2

= δσ1,σ21

for all σ1, σ2 ∈ E.

2.
∑

τ∈E uστ = 1 for all σ ∈ E.

3. Let k ∈ V s. Then for all σ1, σ2 ∈ E,

∑
τ∈Ek

uσ1
τ uσ2∗

τ = 0 if σ1 ̸= σ2;

∑
τ∈Ek

uσ1
τ uσ1∗

τ =
∑
τ∈Ek

uσ2
τ uσ2∗

τ if s(σ1) = s(σ2).

4. Let l ∈ V t. Then for all σ1, σ2 ∈ E,

∑
τ∈El

uσ1∗
τ uσ2

τ = 0 if σ1 ̸= σ2;

∑
τ∈El

uσ1∗
τ uσ1

τ =
∑
τ∈El

uσ2∗
τ uσ2

τ if t(σ1) = t(σ2).

5. Let i ∈ V s \ V t, j ∈ V t \ V s and k ∈ V s ∩ V t. Then for all σ1 ∈ Ei, σ2 ∈ Ej , τ1 ∈ Ek

and τ2 ∈ Ek,

uσ1
τ1 = 0 and uσ2

τ2 = 0.

6. Let i, k ∈ V s ∩ V t. Then for all σ1 ∈ Ei and σ2 ∈ Ei,

∑
τ∈Ek

uσ1
τ uσ1∗

τ =
∑
τ∈Ek

uσ2∗
τ uσ2

τ .

The co-product ∆Ban on QBan
(V,E) is given by,

∆Ban(u
σ
τ ) =

∑
τ ′∈E

uστ ′ ⊗ uτ
′

τ for all σ, τ ∈ E.
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The canonical co-action βBan : L2(E) → L2(E) ⊗ QBan
(V,E) of QBan

(V,E) on (V,E) preserving its

quantum symmetry in Banica’s sense, is given by,

βBan(χτ ) =
∑
σ∈E

χσ ⊗ uστ for all τ ∈ E.

Definition 4.5.2. Let (V,E) be a directed multigraph. The quantum automorphism group

of (V,E) in Bichon’s sense is the compact quantum group (QBic
(V,E),∆Bic) where QBic

(V,E) is the

universal C* algebra generated by the elements of the matrix (uστ )σ,τ∈E satisfying the following

relations:

1. uστ = uστ
∗ = uσ2τ for all σ, τ ∈ E.

2.
∑

τ∈E uστ = 1 =
∑

τ∈E uτσ for all σ ∈ E.

3. Let k ∈ V s and l ∈ V t. Then for all σ1, σ2 ∈ E,

∑
τ∈Ek

uσ1
τ =

∑
τ∈Ek

uσ2
τ if s(σ1) = s(σ2),

∑
τ∈El

uσ1
τ =

∑
τ∈El

uσ2
τ if t(σ1) = t(σ2).

4. Let i ∈ V s \ V t, j ∈ V t \ V s and k ∈ V s ∩ V t. Then for all σ1 ∈ Ei, σ2 ∈ Ej , τ1 ∈ Ek

and τ2 ∈ Ek,

uσ1
τ1 = 0 and uσ2

τ2 = 0.

5. Let i, k ∈ V s ∩ V t. Then for all σ1 ∈ Ei and σ2 ∈ Ei

∑
τ∈Ek

uσ1
τ =

∑
τ∈Ek

uσ2
τ .

The co-product ∆Bic on QBic
(V,E) is given by,

∆Bic(u
σ
τ ) =

∑
τ ′∈E

uστ ′ ⊗ uτ
′

τ for all σ, τ ∈ E.

The canonical co-action βBic : C(E) → C(E) ⊗ QBic
(V,E) of QBic

(V,E) on (V,E) preserving its

quantum symmetry in Bichon’s sense is given by,

βBic(χτ ) =
∑
σ∈E

χσ ⊗ uστ for all τ ∈ E.



64 Chapter 4. Quantum symmetry in directed and undirected multigraphs

Remark 4.5.3. It is clear that the universal commutative CQG in CBic
(V,E) is nothing but C(Gaut

(V,E))

where Gaut
(V,E) is the group of classical automorphisms of a directed multigraph (V,E). Moreover,

using proposition 5.3.10 one can conclude that C(Gaut
(V,E)) is also the universal commutative

CQG in the category Csym
(V,E).

4.6 Quantum Symmetry in undirected multigraphs

4.6.1 Bi-unitarity and inversion in undirected multigraphs

In this section we will be developing notions of quantum symmetry in undirected multigraphs.

Let us consider (V,E, j) to be an undirected multigraph which is a doubly directed multigraph

with a chosen inversion map j (see definition 2.1.7). As our choice of j in a doubly directed

multigraph might not be unique, the equivalence in theorem 3.6.1 fails to hold and becomes a

one way implication.

Theorem 4.6.1. Let (V,E, j) be an undirected multigraph and β : L2(E) → L2(E)⊗A be a

unitary co-representation of a CQG (A,∆) such that the following conditions hold:

1. Adβ(S(C(V ))) ⊆ S(C(V ))⊗A.

2. β ◦ J = (J ⊗ idA) ◦ β.

Then the following statements are true:

1. β is unitary.

2. Adβ(T (C(V ))) ⊆ T (C(V ))⊗A.

3. The induced co-actions αs and αt on C(V ) coming from β and β coincide.

The map J : L2(E) → L2(E) is defined by equation 2.7.1.

Proof. The proof is done using similar arguments as in proof of theorem 3.6.1.

4.6.2 Notions of quantum symmetry in an undirected multigraph

We propose the following definitions.

Definition 4.6.2. A compact quantum group (A,∆) is said to co-act on an undirected multi-

graph (V,E, j) preserving its quantum symmetry in Bichon’s sense if there exists a co-action

β : C(E) → C(E)⊗A such that the following conditions hold:

1. Adβ(S(C(V ))) ⊆ S(C(V ))⊗A.
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2. β ◦ J = (J ⊗ idA) ◦ β.

Definition 4.6.3. A compact quantum group (A,∆) is said to co-act on an undirected multi-

graph (V,E, j) preserving its quantum symmetry in Banica’s sense if there exists a unitary

co-representation β : L2(E) →  L2(E)⊗A such that the following conditions hold:

1. Adβ(S(C(V ))) ⊆ S(C(V ))⊗A.

2. β ◦ J = (J ⊗ idA) ◦ β.

3. β fixes the element ξ0 :=
∑

τ∈E χτ ∈ L2(E), that is,

β(ξ0) = ξ0 ⊗ 1A.

Definition 4.6.4. A compact quantum group (A,∆) is said to co-act on an undirected multi-

graph (V,E, j) preserving its quantum symmetry in our sense if there exists a unitary co-

representation β : L2(E) → L2(E)⊗A such that the following conditions hold:

1. Adβ(S(C(V ))) ⊆ S(C(V ))⊗A.

2. β ◦ J = (J ⊗ idA) ◦ β.

3. β fixes the element ξ0 =
∑

τ∈E χτ ∈ L2(E), that is,

β(ξ0) = ξ0 ⊗ 1.

4. For i, j, k, l ∈ V with Ei
j ̸= ϕ and Ek

l ̸= ϕ, we assume that,

(Adβ)
ij
kl(Dij) ⊆ Dkl ⊗A.

Using observation 3.6.1 which also holds for undirected multigraphs, we propose the follow-

ing lemma.

Lemma 4.6.5. Let β be a co-action of a CQG (A,∆) on (V,E, j) preserving its quantum

symmetry in Banica’s sense, Bichon’s sense or ours. Let (uστ )σ,τ∈E be the co-representation

matrix of β. Then we have

uστ = uστ
∗

for all σ, τ ∈ E.
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We describe different quantum automorphism groups of an undirected multigraph.

Remark 4.6.6. Let CBan
(V,E,j), C

Bic
(V,E,j) and Csym

(V,E,j) be the respective categories of the co-actions

mentioned in definitions 4.6.3, 4.6.2 and 4.6.4. The universal objects in CBan
(V,E,j) and CBic

(V,E,j) exist

and are denoted by QBan
(V,E,j) and QBic

(V,E,j) respectively. Moreover, using lemma 4.6.5 it is easy

to see that these quantum groups are the quantum automorphism groups of the “underlying

doubly directed multigraph” (V,E) quotiented by the C* ideal generated by set of relations

{uστ = uστ
∗|σ, τ ∈ E}.

Definition 4.6.7. For an undirected multigraph (V,E, j), let us define the set of undirected

edges Eu by Eu = {{τ, τ}|τ ∈ E} where {., .} is an unordered pair of two elements.

Proposition 4.6.8. Let (V,E, j) be an undirected multigraph without any loops and β is a

co-action of a CQG (A,∆) on (V,E, j) preserving its quantum symmetry in Bichon’s sense.

Let us identify C(Eu) as a subalgebra of C(E) by,

C(Eu) = linear span {(χτ + χτ )| τ ∈ E} ⊆ C(E)

Then the following holds:

β(C(Eu)) ⊆ C(Eu)⊗A.

Hence β|C(Eu) is a quantum permutation on the elements of Eu.

Proof. Using lemma 4.6.5 we observe that,

β(χτ + χτ ) =
∑
σ∈E

χσ ⊗ (uστ + uστ )

=
∑

{σ,σ}∈Eu

(χσ + χσ)⊗ (uστ + uστ ).

Therefore we have β(C(Eu)) ⊆ C(Eu)⊗A. As C(Eu) is a subalgebra of C(E), β|C(Eu) is a

co-action on C(Eu), a quantum permutation on the elements of Eu.

Remark 4.6.9. The assumption in proposition 4.6.8 that (V,E, j) does not have loops has been

taken only for notational convenience. In proposition 4.3.1, we have shown that β is always

a quantum permutation on the set of loops L whether β is a co-action on (V,E) in Bichon’s

sense or ours. If an undirected multigraph (V,E, j) has loops and β is a co-action on (V,E, j)

preserving its quantum symmetry in Bichon’s sense then β always permutes the elements of L

and Eu \ L (identifying L as a subset of Eu) separately.
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4.6.3 Underlying undirected multigraph of a directed multigraph

Let us consider the two multigraphs in figure 4.1 where the left one is undirected and the right

one is directed. It is clear that any classical automorphism of the directed multigraph in the

right can be realised as an automorphism of the underlying undirected multigraph in the left

preserving the set of directed edges. This statement is true for any multigraph in general and

• • • •1 12 2

Figure 4.1: Gaut
(V,E) for the left one is Z2 × Z2 and for the right one is Z2.

can be observed in the quantum case also as we will see in this subsection. Before stating the

main theorem, we need to properly define the notion of the underlying undirected multigraph

of a directed multigraph.

The underlying undirected multigraph (V, E , j) consists of the same vertex set V with an

edge set E consisting of edges coming from E with all directions removed (in our language, we

make all edges doubly directed and identify them via an inversion map j). More precisely, We

give the following definition.

Definition 4.6.10. Let (V,E) be a directed multigraph. For each edge σ ∈ Ek
l where k ̸= l ∈

V , let us consider a new edge σ from l to k. We define E = {σ, σ|σ ∈ E \ L} ∪ L where L is

the set of loops in (V,E). We say that (V, E , j) is the underlying undirected multigraph of

(V,E) where j : E → E is given by

j(σ) = σ, j(σ) = σ for all σ ∈ E \ L and j|L = idL.

It is clear that E = E ∪ j(E) and L2(E) = L2(E \ L)⊕ J(L2(E \ L))⊕ L2(L) where L is the

set of loops in (V,E).

Theorem 4.6.11. Let (V,E) be a directed multigraph and (V, E , j) be the underlying undirected

multigraph. If β is a co-action of a CQG (A,∆) on (V,E) preserving its quantum symmetry

in our sense, then there exists a co-action βu on (V, E , j) preserving its quantum symmetry in

our sense such that,

βu(L
2(E)) ⊆ L2(E)⊗A. (4.6.1)

Conversely, if βu is a co-action on (V, E , j) preserving its quantum symmetry in our sense and

condition 4.6.1 holds, then β = βu|L2(E) preserves quantum symmetry of (V,E) in our sense.

Proof. Before proving the theorem let us make some observations.
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1. If β is a co-action on (V,E) preserving its quantum symmetry in our sense then from

proposition 4.3.1 it follows that,

β(L2(L)) ⊆ L2(L)⊗A and β|L2(L) = β|L2(L).

2. Let β : L2(E) → L2(E)⊗A a bi-unitary co-representation such that the following hold:

β(L2(L)) ⊆ L2(L)⊗A and β|L2(L) = β|L2(L). (4.6.2)

We can always extend β to βu : L2(E) → L2(E)⊗A by the following formula:

βu(χσ) = β(χσ) if σ ∈ E,

= (J ⊗ id)β(χj(σ)) if σ ∈ j(E). (4.6.3)

If (vστ )σ,τ∈E and (uστ )σ,τ∈E are the co-representation matrices of βu and β respectively,

then it follows that,

vστ = uστ , v
j(σ)
j(τ) = uσ∗τ , vσ1

τ1
= vσ1

τ1 = 0 (4.6.4)

for all σ, τ ∈ E and σ1, τ1 ∈ E \ L.

From observations 4.6.4 and 3.6.1 it is clear that βu is unitary satisfying

βu(L
2(E)) ⊆ L2(E)⊗A and βu ◦ J = (J ⊗ id) ◦ βu. (4.6.5)

3. Conversely, If βu : L2(E) → L2(E)⊗A is a unitary co-representation such that conditions

in 4.6.5 hold, then βu|L2(E) is a bi-unitary co-representation on L2(E) satisfying the

relations in 4.6.2.

Now we proceed to prove the theorem. Let us fix β to be a bi-unitary co-representation on

L2(E) satisfying the relations in 4.6.2 and βu to be the extension of β on L2(E) satisfying

conditions in 4.6.5. Let α : C(V ) → C(V )⊗A be a co-action on C(V ).

Claim 1: The following conditions are equivalent.

1. For all i ∈ V and σ ∈ E ,

α(χi)βu(χσ) = βu(χi.χσ).

.
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2. For all i ∈ V and σ ∈ E,

α(χi)β(σ) = β(χi.χσ) and β(χσ)α(χi) = β(χσ.χi).

(1) =⇒ (2).

Using theorem 4.6.1 and theorem 4.1.2, it follows that,

βu(χσ)α(χi) = βu(χσ.χi)

for all i ∈ V and σ ∈ E . Using the fact that βu|L2(E) = β, (2) follows.

(2) =⇒ (1).

Let (qij)i,j∈V be the co-representation matrix of α. Let k ∈ V ;σ, τ ∈ E and σ1, τ1 ∈ E \ L.

Using identities in 4.2.1 and 4.6.4 we observe that,

q
s(σ)
k vστ = q

s(σ)
k uστ = δk,s(τ)u

σ
τ = δk,s(τ)v

σ
τ ,

q
s(σ1)
k vσ1

τ1
= q

t(σ1)
k uσ1∗

τ1 = δk,t(τ1)u
σ1∗
τ1 = δk,s(τ1)v

σ1
τ1
.

Hence (1) follows.

Claim 2: Let ξ′0 =
∑

τ∈E χτ ∈ L2(E) and ξ0 =
∑

τ∈E χτ ∈ L2(E). Then

βu(ξ
′
0) = ξ′0 ⊗ 1 iff β(ξ0) = ξ0 ⊗ 1.

We observe that,

βu(ξ
′
0) = ξ′0 ⊗ 1 iff

∑
τ∈E

vστ = 1 for all σ ∈ E .

β(ξ0) = ξ0 ⊗ 1 iff
∑
τ∈E

uστ = 1 for all σ ∈ E.

To show claim 2, it is enough to observe that for σ ∈ E ,

∑
τ∈E

vστ =
∑
τ∈E

uστ if σ ∈ E

and
∑
τ∈E

vστ =
∑
τ∈E

uj(σ)τ

∗
if σ ∈ j(E).

Claim 3: The following conditions (1) and (2) are equivalent:

1. (Adβu)
kl
ij (Dkl) ⊆ Dij ⊗A for all i, j, k, l ∈ V such that E i

j and Ek
l are nonempty.
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2. For all i, j, k, l ∈ V such that Ei
j and Ek

l are nonempty we have,

(a) (Adβ)
kl
ij (Dkl) ⊆ Dij ⊗A,

(b) (Adβ)
kl
ij (Dkl) ⊆ Dij ⊗A.

From proposition 4.2.12 it follows that,

(1) holds ⇐⇒ vσ1
τ vσ2∗

τ = 0 ⇐⇒ vσ1∗
τ vσ2

τ = 0

where σ, σ2, τ ∈ E such that σ1 ̸= σ2 and (s(σ1), t(σ1)) = (s(σ2), t(σ2)). As vσ1
τ = uσ1

τ

whenever σ1, σ2, τ ∈ E, (1) =⇒ (2) follows using proposition 4.2.12.

(2) =⇒ (1).

Let us fix σ1 ̸= σ2 ∈ E i
j and τ ∈ Ek

l where i, j, k, l ∈ V . We observe that,

vσ1
τ vσ2∗

τ = uσ1
τ uσ2∗

τ = 0 if σ1, σ2, τ ∈ E

= u
j(σ1)∗
j(τ) u

j(σ2)
j(τ) = 0 if σ1, σ2, τ ∈ j(E).

Hence (1) follows.

From claims 1, 2 and 3 the equivalence mentioned in the theorem 4.6.11 follows.

Remark 4.6.12. Theorem 4.6.11 also holds true in the category CBic
(V,E). However, it does not

hold in the category CBan
(V,E) as any member of CBan

(V,E) might not preserve the set of loops.



Chapter 5

Further investigations into Csym
(V,E)

and

CBic
(V,E)

5.1 Decomposition of multigraphs into uniform multigraphs

Definition 5.1.1. A multigraph (V,E) (directed or undirected with an inversion map j) is said

to be uniform of degree m if |Ek
l | = m for all k, l ∈ V with Ek

l ̸= ϕ.

Notation 5.1.2. Any multigraph (V,E) (directed or undirected with an inversion map j) can

be written as union of uniform multigraphs as follows. For a nonzero integer m we define

Em ⊆ E and Vm ⊆ V by,

Em = {τ ∈ E | cardinality of the set E
s(τ)
t(τ) = m},

Vm = {v ∈ V |v = s(τ) or v = t(τ) for some τ ∈ Em}.

It is clear that, E = ⊔mEm and V = ∪mVm. For each nonzero integer m such that Em ̸= ϕ,

(Vm, Em) is a uniform multigraph of degree m. By V s
m and V t

m, we will mean the sets of initial

and final vertices of the uniform multigraph (Vm, Em). We will write (V,E) = ∪m(Vm, Em).

5.2 Co-actions on uniform components of a multigraph

Proposition 5.2.1. Let β : L2(E) → L2(E) ⊗ A be a co-action of a CQG (A,∆) on (V,E)

preserving its quantum symmetry in our sense. For any m ∈ N with Em ̸= ϕ, it follows that

β(L2(Em)) ⊆ L2(Em)⊗A.

71
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Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β. Let i, j, k, l ∈ V be such that Ei
j

and Ek
l are nonempty and |Ei

j | ≠ |Ek
l |. It is enough to show that

uστ = 0 for all σ ∈ Ei
j , τ ∈ Ek

l . (5.2.1)

Using proposition 4.2.7 and proposition 4.2.12 we observe that,

∥uστ ∥2 = ∥uστ
∗uστ ∥

= ∥uστ
∗(

∑
σ1∈Ei

j

uσ1
τ )∥

= ∥uστ
∗qikq

j
l ∥ = 0 (from corollary (4.2.10)).

Now we prove the converse of the above proposition.

Proposition 5.2.2. Let (V,E) be a multigraph (directed or undirected with an inversion map

j) and (A,∆) be a CQG. For every m ∈ N with Em ̸= ϕ, let us consider βm : L2(Em) →

L2(Em)⊗A to be a bi-unitary co-representation. Let β : L2(E) → L2(E)⊗A be defined by

β(χτ ) = βm(χτ ) where τ ∈ Em.

Then the following conditions are equivalent:

1. β is a co-action on (V,E) preserving its quantum symmetry in our sense.

2. For every m ∈ N with Em ̸= ϕ, βm is a co-action on (Vm, Em) preserving its quantum

symmetry in our sense. Moreover, for all m ̸= n,

αm|C(Vm∩Vn) = αn|C(Vm∩Vn)

where αm and αn are induced quantum permutations on Vm and Vn respectively.

Proof. The proof is done by using theorem 4.1.1, theorem 4.1.2 and proposition 4.2.6 repeatedly.

Throughout the proof, (uστ )σ,τ∈E will be the co-representation matrix of β. As βm = β|L2(Em)

for every m ∈ N such that Em ̸= ϕ, it follows that (uστ )σ,τ∈Em is the co-representation matrix

of βm.

Claim 1: (1) =⇒ (2).

Let α be the induced co-action of β on C(V ) and (qik)i,k∈V be the co-representation matrix of
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α. Let i ∈ V \ Vm and k ∈ Vm. Without loss of generality, we can assume that i ∈ V s
n and

k ∈ V s
m where m ̸= n. Using proposition 4.2.7 and proposition 5.2.1 we observe that,

qik =
∑
σ∈Ei

uστ = 0

where τ ∈ Em and s(τ) = k. Hence it follows that,

α(C(Vm)) ⊆ C(Vm)⊗A.

Let us define αm : C(Vm) → C(Vm)⊗A by αm = α|C(Vm). It is clear that,

αm|C(Vm∩Vn) = αn|C(Vm∩Vn) when m ̸= n.

As (α, β) respects the C(V ) − L2(E) − C(V ) bi-module structure, (αm, βm) respects the

bimodularity C(Vm)−L2(Em)−C(Vm) in (Vm, Em) . Using proposition 4.2.6, theorem 4.1.1

and theorem 4.1.2 it follows that βm satisfies (1), (2) and (3) of definition 4.2.3. To show that

βm satisfies (4) of definition 4.2.3, we observe that

1 =
∑
τ∈E

uστ =
∑
τ∈Em

uστ . where σ ∈ Em.

Similarly, To show βm satisfies (5) of definition 4.2.3, it is easy to check that coefficients of

the co-representation matrix of βm satisfy the identities mentioned in proposition 4.2.12.

Claim : (2) =⇒ (1).

As αm|C(Vm∩Vn) = αn|C(Vm∩Vn) for all m ̸= n ∈ N, there exists a co-action α : C(V ) →

C(V )⊗A such that,

α(χi) = αm(χi) where i ∈ Vm.

Let (qik)i,k∈V be the co-representation matrix of α. As we clearly have α(C(Vm ∩ Vn)) ⊆

C(Vm ∩ Vn)⊗A for all m ̸= n, it follows that,

qki = 0 where i /∈ Vm ∩ Vn and k ∈ Vm ∩ Vn. (5.2.2)

We show that (α, β) respects the C(V )−L2(E)−C(V ) bi-module structure. Let τ ∈ Em and

i ∈ Vn for some nonzero integers m and n such that m ̸= n. We observe that if i ∈ Vm ∩ Vn

then

α(χi)β(χτ ) = αm(χi)βm(χτ ) = βm(χi.χτ ) = β(χi.χτ ).
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and if i ∈ Vn \ Vm, then using equation 5.2.2 we observe that,

α(χi)β(χτ ) = αn(χi)βm(χτ )

= (
∑
k∈Vn

k/∈Vm∩Vn

χk ⊗ qki )(
∑

σ∈Em

χσ ⊗ uστ )

= 0 (as χk.χσ = 0 for all k ∈ Vn \ Vm)

= β(χi.χτ ).

Using similar arguments, it also follows that,

β(χτ )α(χi) = β(χτ .χi) for all i ∈ V, τ ∈ E.

Using proposition 4.2.6, theorem 4.1.1 and theorem 4.1.2 it follows that β saisfies (1), (2) and

(3) of definition 4.2.3. To show that β satisfies (4) of definition 4.2.3 we note that, for σ ∈ E,

1 =
∑
τ∈Em

uστ =
∑
τ∈E

uστ where σ ∈ Em for some m.

Now we show that, β satisfies (5) of definition 4.2.3. Let σ1 ̸= σ2 ∈ Ei
j and τ ∈ Ek

l for some

i, j, k, l ∈ V . If |Ei
j | ̸= |Ek

l |, then from our hypothesis it follows that uσ1
τ = uσ2

τ = 0 and the

identities mentioned in proposition 4.2.12 hold. If |Ei
j | = |Ek

l | = m for some non zero integer

m, identities mentioned in proposition 4.2.12 hold as we are given that βm is a co-action on

(Vm, Em) and (uστ )σ,τ∈Em is the co-representation matrix of βm.

Corollary 5.2.3. It is clear that proposition 5.2.2 also holds true in the category CBic
(V,E). Let

(V,E) = ∪m(Vm, Em). Let us consider the free product of CQGs QBic
(Vm,Em) and I to be a C*

ideal in ∗mQBic
(Vm,Em) generated by the following relations:

m
qij =

n
qij for all i, j ∈ Vm ∩ Vn

= 0 if i ∈ Vm ∩ Vn, j ∈ Vm \ Vn

for all nonzero integers m and n such that Em ̸= ϕ, En ̸= ϕ and m ̸= n. Here (
m
qij)i,j∈Vm ,

(
n
qij)i,j∈Vn are the co-representation matrices of induced co-actions αm and αn respectively.

Then QBic
(V,E) is given by,

QBic
(V,E) = ∗mQBic

(Vm,Em) /I .
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5.3 Co-actions on uniform multigraphs

In the last section we have seen that quantum symmetry of a multigraph is closely tied to

quantum symmetries of its uniform components. In this section we will be investigating more

into co-actions on uniform multigraphs.

5.3.1 New notations and a technical lemma

We introduce the following set of notations.

Notation 5.3.1. Let (V,E) be a uniform multigraph of degree m. For each k, l ∈ V such that

Ek
l ̸= ϕ, let us consider a bijection µkl : {1, ..,m} → Ek

l . This set of bijections {µkl|Ek
l ̸= ϕ}

is said to be a representation of the multigraph (V,E). Once a representation is fixed, any

τ ∈ E can be written as

τ = (k, l)r where s(τ) = k, t(τ) = l and 1 ≤ r ≤ m.

Furthermore, if (V,E) is undirected with an inversion map j : E → E, then we will number

the edges in a way such that,

j((k, l)r) = (l, k)r for all (k, l)r ∈ E.

For proceeding further we will be needing a technical lemma which is given below:

Lemma 5.3.2. Let {Ai|i = 1, 2, .., n} be a set of positive operators on a Hilbert space H such

that AiAj = 0 when i ̸= j. Let T :=
∑n

i=1Ai. For i ∈ {1, 2, .., n}, let pi and PT be range

projections of Ai and T , that is, orthogonal projections onto the closures of ranges of Ai and

T respectively. . Then the following identities are true:

1. pipj = 0 when i ̸= j.

2. Ai = piT = Tpi for all i = 1, 2, .., n.

3.
∑n

i=1 pi = PT .

Proof. To prove (1), we will show that range of pi is orthogonal to range of pj whenever i ̸= j.

For ξ, η ∈ H, we observe that,

< Ai(ξ), Aj(η) >=< AjAi(ξ), η >= 0

whenever i ̸= j. Hence (1) follows.
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We note that,

piAj = pipjAj = 0 and Ajpi = (piAj)
∗ = 0

whenever i ̸= j. Using the relations mentioned above we observe that,

piT = pi(
n∑

j=1

Aj) = piAi = Ai,

Tpi = (
n∑

j=1

Aj)pi = Aipi = (piAi)
∗ = Ai.

Hence (2) is proved.

To prove claim (3), it is enough to show that

Range(T ) = ⊕n
i=1Range(Ai)

where the direct sum is an orthogonal direct sum.

As for any ξ ∈ H, we have Ai(ξ) = T (pi(ξ)), it follows that,

Range(Ai) ⊆ Range(T ) and therefore ⊕n
i=1 Range(Ai) ⊆ Range(T ).

Now we prove the converse part. For any ξ ∈ H we have,

T (ξ) =
n∑

i=1

Ai(ξ).

As < Ai(ξ), Aj(ξ) >= 0 for i ̸= j, it follows that,

Range(T ) ⊆ ⊕n
i=1Range(Ai) = ⊕n

i=1Range(Ai).

Therefore our claim is proved.

5.3.2 Nested quantum permutation relations

Notation 5.3.3. For a compact quantum group (A,∆), let A denote the universal enveloping

Von Neumann algebra of A. It is known that the co-product ∆ extends to ∆ on A as a normal

homomorphism of Von Neumann algebras making (A,∆) a Von Neumann algebraic quantum

group.
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In this subsection, we fix β to be a co-action of a CQG (A,∆) on a uniform multigraph

(V,E) of degree m preserving its quantum symmetry in our sense. We fix a representation of

the multigraph of (V,E) (see notation 5.3.1). Let (u
(i,j)r
(k,l)s)(i,j)r,(k,l)s∈E and (qij)i,j∈V be the

co-representation matrices of β and α respectively where α is the induced co-action on C(V ).

Proposition 5.3.4. Let i, j, k, l be in V such that Ei
j and Ek

l are nonempty. Then there exists

a projection valued valued matrix (p
(i,j)r
(k,l)s)r,s=1,..,m ∈ Mm(C)⊗A such that the following holds:

u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
= p

(i,j)r
(k,l)sq

i
kq

j
l q

i
k.

Here p
(i,j)r
(k,l)s’s are the range projections of u

(i,j)r
(k,l)s satisfying the following quantum permutation

like relations:

1. For r, r′ and s ∈ {1, 2, ..,m}, p
(i,j)r
(k,l)sp

(i,j)r′

(k,l)s = δr,r′p
(i,j)r
(k,l)s.

2. For r, s and s′ ∈ {1, 2, ..,m}, p
(i,j)r
(k,l)sp

(i,j)r
(k,l)s′ = δs,s′p

(i,j)r
(k,l)s.

3.
∑m

s=1 p
(i,j)r
(k,l)s =

∑m
r=1 p

(i,j)r
(k,l)s = P

qikq
j
l q

i
k

where P
qikq

j
l q

i
k

is the range projection of qikq
j
l q

i
k.

Proof. Using proposition (4.2.7) and proposition (4.2.12) we observe that,

m∑
s=1

u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
= (

m∑
s=1

u
(i,j)r
(k,l)s)(

m∑
s=1

u
(i,j)r
(k,l)s)

∗

= qikq
j
l (q

i
kq

j
l )

∗
= qikq

j
l q

i
k.

As u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
’s are positive operators, using (2) of lemma 5.3.2 we conclude that

u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
= p

(i,j)r
(k,l)sq

i
kq

j
l q

i
k

where p
(i,j)r
(k,l)s is range projection of u

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
which is same as the range projection of

u
(i,j)r
(k,l)s. The quantum permutation like relations among p

(i,j)r
(k,l)s’s follow from the “orthogonality

relations” mentioned in (1) and (3) of lemma 5.3.2.

Proposition 5.3.5. Let i, j, k, l be in V such that Ei
j and Ek

l are nonempty. Then there exists

a projection valued valued matrix (p̂
(i,j)r
(k,l)s)r,s=1,..,m ∈ Mm(C)⊗A such that the following holds:

u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s = p̂

(i,j)r
(k,l)sq

j
l q

i
kq

j
l .
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Here p̂
(i,j)r
(k,l)s’s are the range projections of u

(i,j)r∗
(k,l)s satisfying the following quantum permutation

like relations:

1. For r, r′ and s ∈ {1, 2, ..,m}, p̂
(i,j)r
(k,l)sp̂

(i,j)r′

(k,l)s = δr,r′ p̂
(i,j)r
(k,l)s.

2. For r, s and s′ ∈ {1, 2, ..,m}, p̂
(i,j)r
(k,l)sp̂

(i,j)r
(k,l)s′ = δs,s′ p̂

(i,j)r
(k,l)s.

3.
∑m

s=1 p̂
(i,j)r
(k,l)s =

∑m
r=1 p̂

(i,j)r
(k,l)s = P

qjl q
i
kq

j
l

where P
qjl q

i
kq

j
l

is the range projection of qjl q
i
kq

j
l .

Proof. Using proposition 4.2.7 and proposition 4.2.12 we observe that,

m∑
s=1

u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s = (

m∑
s=1

u
(i,j)r
(k,l)s)

∗(
m∑
s=1

u
(i,j)r
(k,l)s)

= (qikq
j
l )

∗
qikq

j
l = qjl q

i
kq

j
l .

The claims follow from lemma 5.3.2 as it did for proposition 5.3.4.

Corollary 5.3.6. Let i, j, k, l, r, s be as in proposition 5.3.4 or proposition 5.3.5. Then we have

the following commutation relations:

1. p
(i,j)r
(k,l)sq

i
kq

j
l q

i
k = qikq

j
l q

i
kp

(i,j)r
(k,l)s.

2. p̂
(i,j)r
(k,l)sq

j
l q

i
kq

j
l = qjl q

i
kq

j
l p̂

(i,j)r
(k,l)s.

3. p
(i,j)r
(k,l)su

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
= u

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
= u

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
p
(i,j)r
(k,l)s.

4. p̂
(i,j)r
(k,l)su

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s = u

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s = u

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)sp̂

(i,j)r
(k,l)s.

Proof. (1) and (3) are immidiate from proposition 5.3.4, (2) and (4) are immidiate from propo-

sition 5.3.5.

Proposition 5.3.7. Let i, j, k, l ∈ V be such that Ei
j and Ek

l are nonempty and r, s ∈

{1, 2, ..,m}. Then we have the following:

u
(i,j)r
(k,l)s = p

(i,j)r
(k,l)sq

i
kq

j
l = qikq

j
l p̂

(i,j)r
(k,l)s

where p
(i,j)r
(k,l)s’s are described in proposition 5.3.4 and p̂

(i,j)r
(k,l)s’s are described in proposition 5.3.5.
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Proof. From proposition 4.2.7, proposition 5.3.4 and corollary 5.3.6 we observe that,

(u
(i,j)r
(k,l)s − p

(i,j)r
(k,l)sq

i
kq

j
l )(u

(i,j)r
(k,l)s − p

(i,j)r
(k,l)sq

i
kq

j
l )

∗

=u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
− u

(i,j)r
(k,l)sq

j
l q

i
kp

(i,j)r
(k,l)s − p

(i,j)r
(k,l)sq

i
kq

j
l u

(i,j)r
(k,l)s

∗
+ p

(i,j)r
(k,l)sq

i
kq

j
l q

i
kp

(i,j)r
(k,l)s

=u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
− u

(i,j)r
(k,l)s(

m∑
r′=1

u
(i,j)r′

(k,l)s

∗
)p

(i,j)r
(k,l)s − p

(i,j)r
(k,l)s(

m∑
r′=1

u
(i,j)r′

(k,l)s )u
(i,j)r
(k,l)s

∗

+ u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
p
(i,j)r
(k,l)s

=u
(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
− u

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
p
(i,j)r
(k,l)s − p

(i,j)r
(k,l)su

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
+ u

(i,j)r
(k,l)su

(i,j)r
(k,l)s

∗
p
(i,j)r
(k,l)s

=0.

We conclude that

u
(i,j)r
(k,l)s − p

(i,j)r
(k,l)sq

i
kq

j
l = 0 and hence u

(i,j)r
(k,l)s = p

(i,j)r
(k,l)sq

i
kq

j
l .

To prove the second equality, again using proposition 4.2.7, proposition 5.3.5 and corollary 5.3.6

we observe that,

(u
(i,j)r
(k,l)s − qikq

j
l p̂

(i,j)r
(k,l)s)

∗(u(i,j)r(k,l)s − qikq
j
l p̂

(i,j)r
(k,l)s)

=u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s − u

(i,j)r∗
(k,l)s qikq

j
l p̂

(i,j)r
(k,l)s − p̂

(i,j)r
(k,l)sq

j
l q

i
ku

(i,j)r
(k,l)s + p̂

(i,j)r
(k,l)sq

j
l q

i
kq

j
l p̂

(i,j)r
(k,l)s

=u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s − u

(i,j)r∗
(k,l)s (

m∑
r′=1

u
(i,j)r′

(k,l)s )p̂
(i,j)r
(k,l)s − p̂

(i,j)r
(k,l)s(

m∑
r′=1

u
(i,j)r′∗
(k,l)s )u

(i,j)r
(k,l)s

+ u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)sp̂

(i,j)r
(k,l)s

=u
(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s − u

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)sp̂

(i,j)r
(k,l)s − p̂

(i,j)r
(k,l)su

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)s + u

(i,j)r∗
(k,l)s u

(i,j)r
(k,l)sp̂

(i,j)r
(k,l)s

=0.

As before we conclude that,

u
(i,j)r
(k,l)s − qikq

j
l p̂

(i,j)r
(k,l)s = 0 and hence u

(i,j)r
(k,l)s = qikq

j
l p̂

(i,j)r
(k,l)s.

Remark 5.3.8. If we consider β to be a co-action on (V,E) preserving its quantum symmetry

in Bichon’s sense, then it follows that u
(i,j)r
(k,l)s = p

(i,j)r
(k,l)s = p̂

(i,j)r
(k,l)s as u

(i,j)r
(k,l)s’s are already projections

commuting with qik and qjl .
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5.3.3 A necessary and sufficient condition for Csym
(V,E) = CBic

(V,E)

In this section, we will see that our defined notions of quantum symmetry in the context of a

multigraph are very closely connected to the quantum symmetry of the underlying weighted

graph. (see definition 2.1.10).

Theorem 5.3.9. Let (V,E) be a uniform multigraph (directed or undirected with an inversion

map) of degree m. It follows that two categories Csym
(V,E) and CBic

(V,E) coincide if and only if the

categories DBan
(V,E)

and DBic
(V,E)

coincide where (V,E) is the underlying simple graph of (V,E)

(see definition 2.1.9).

Proof. Let us assume that Csym
(V,E) = CBic

(V,E). Let α : C(V ) → C(V ) ⊗ A be a co-action of a

CQG (A,∆) such that the co-representation matrix (qij)i,j∈V of α commutes with the adjacency

matrix of (V,E). Let us fix a representation of the multigraph (V,E) (see notation 5.3.1).

We define a bi-unitary co-representation β : L2(E) → L2(E)⊗A by,

β(χ(k,l)s) =
∑

(i,j)r∈E
χ(i,j)r ⊗ δr,sq

i
kq

j
l where (k, l)s ∈ E.

It is easy to see that β is in fact a co-action on (V,E) which preserves its quantum symmetry

in our sense. From our assumption and remark 4.2.8 it follows that qik commutes with qjl for all

(i, j), (k, l) ∈ E making α(2) (see notation 2.5.1) a co-action on C(E). Hence α is a co-action

on (V,E) preserving its quantum symmetry in Bichon’s sense. Therefore the categories DBan
(V,E)

and DBic
(V,E)

coincide.

Conversely, let us assume that DBan
(V,E)

= DBic
(V,E)

. Let us consider β : L2(E) → L2(E)⊗A

to be a co-action of a CQG (A,∆) on (V,E) preserving its quantum symmetry in our sense.

Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices of β and the induced co-action

α on C(V ). From proposition 4.2.9 and our assumption it follows that qik commutes with qjl

whenever Ei
j and Ek

l are nonempty. To show that β preserves quantum symmetry of (V,E) in

Bichon’s sense, it is enough to show that β is in fact a co-action on the algebra C(E), that

is, uστ ’s are projections in A satisfying quantum permutation relations. We proceed through

the following claims.

Claim 1: uττ ′ ’s are projections for all τ, τ ′ ∈ E.

Let i, j, k, l ∈ V be such that Ei
j and Ek

l are nonempty. Let us fix τ ∈ Ei
j and τ ′ ∈ Ek

l .

Using proposition 4.2.7 and proposition 4.2.12 we observe the following relations:

∑
σ∈Ei

j

uστ ′
∗uστ ′ = (

∑
σ∈Ei

j

uστ ′)
∗(

∑
σ∈Ei

j

uστ ′)
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= qjl q
i
kq

j
l = qjl q

i
k (5.3.1)∑

σ∈Ei
j

uστ ′u
σ
τ ′
∗ = (

∑
σ∈Ei

j

uστ ′)(
∑
σ∈Ei

j

uστ ′)
∗

= qikq
j
l q

i
k = qjl q

i
k. (5.3.2)

Using equations 5.3.1 and 5.3.2 it follows that,

uττ ′u
τ
τ ′
∗uττ ′ = uττ ′(

∑
σ∈Ei

j

uστ ′
∗uστ ′)

= uττ ′(q
j
l q

i
k)

= uττ ′(
∑
σ∈Ei

j

uστ ′
∗) = uττ ′u

τ
τ ′
∗;

and similarly uττ ′u
τ
τ ′
∗uττ ′ = (qjl q

i
k)u

τ
τ ′

= (
∑
σ∈Ei

j

uσ∗τ ′ )u
τ
τ ′ = uτ∗τ ′ u

τ
τ ′ .

From the above relations we get

uττ ′u
τ
τ ′
∗ = uττ ′

∗uττ ′ = uττ ′u
τ
τ ′
∗uττ ′ .

Using spectral calculus for normal operators, we conclude that uττ ′ is a projection. Hence claim

1 follows.

Claim 2: Let i, j, k, l ∈ V be such that Ei
j and Ek

l are nonempty. For every σ ∈ Ei
j and

τ ∈ Ek
l , u

σ
τ commutes with qik and qjl .

As uστ ’s are projections (from claim 1) we observe that,

uστ q
i
k = uστ

∗qik = uστ
∗ = uστ = qiku

σ
τ

and qjl u
σ
τ = qjl u

σ
τ
∗ = uστ

∗ = uστ = uστ q
j
l .

Hence claim 2 follows.

Claim 3: Let σ1, σ2 and τ be in E. Then we have the following orthogonality relation:

uσ1
τ uσ2

τ = δσ1,σ2u
σ1
τ .
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Let τ ∈ Ek
l , σ1 ∈ Ei

j and σ2 ∈ Ei′
j′ for some i, j, i′, j′, k, l ∈ V . As uσ1

τ and uσ2
τ are both

projections, using claim 2 we observe that,

uσ1
τ uσ2

τ = qiku
σ1
τ qjl q

i′
k u

σ2
τ qj

′

l

= uσ1
τ qjl q

i
kq

i′
k q

j′

l u
σ1
τ

= uσ1
τ δi,i′δj,j′u

σ2
τ

= δσ1,σ2u
σ1
τ (from proposition 4.2.12).

Hence claim 3 follows.

Using claims 1 and 3 and the fact that
∑

τ∈E uστ = 1 for all σ ∈ E, we conclude that β

preserves the quantum symmetry of (V,E) in Bichon’s sense.

The arguments used in proving converse part of the above theorem can be generalised

beyond uniform multigraphs. Using similar arguments used in proving claim 1 and claim 2 we

also can prove the following proposition.

Proposition 5.3.10. Let β be a co-action of a CQG (A,∆) on a multigraph (V,E) (directed or

undirected with an inversion map) preserving its quantum symmetry in our sense where (V,E)

is not necessarily uniform. Let (uστ )σ,τ∈E and (qij)i,j∈V be co-representation matrices of β and

its induced permutation on the vertex set V . Let i, j, k, l ∈ V be such that Ei
j ̸= ϕ and Ek

l ̸= ϕ.

If qik and qjl commute with each other then for all σ ∈ Ei
j , τ ∈ Ek

l ,

1. uστ ’s are projections.

2. uστ commutes with qik and qjl .

Corollary 5.3.11. Let (V,E) be a multigraph (directed or undirected with an inversion map)

which is not necessarily uniform. Let (V,E,w) be its underlying weighted graph with weight

function w : E → C given by,

w((i, j)) = |Ei
j | where (i, j) ∈ E.

If (V,E,w) does not have any quantum symmetry then

Csym
(V,E) = CBic

(V,E).

Proof. It is immidiate from proposition 5.3.10.
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5.3.4 Complete description of QBic
(V,E) for directed uniform multigraphs

Let us consider our multigraph (V,E) to be a directed uniform multigraph of degree m (see

definition 5.1.1). In this subsection we will use notation 5.3.1 for denoting edges of (V,E). We

will see that QBic
(V,E) turns out to be a free wreath product of the quantum permutation group

S+
m by SBic

(V,E)
, the quantum automorphism group of the simple graph (V,E) in Bichon’s

sense. We introduce the following notations for dealing with free products.

Notation 5.3.12. Let n = |E|. Let us consider n times free product of the quantum permu-

tation group S+
m which is itself a compact quantum group in its own right. We can write the

canonical inclusion maps of the free product S+
m

∗n
as ν(i,j) : S

+
m → S+

m
∗n

where (i, j) ∈ E. Let

(P r
s )r,s=1,..,n be the matrix of canonical generators of S+

m satisfying quantum permutation

relations. We will write,

P (i,j)r
s = ν(i,j)(P

r
s ) where (i, j) ∈ E and r, s = 1, 2, ..,m.

Now we state the main theorem.

Theorem 5.3.13. Let (V,E) be a directed multigraph which is uniform of degree m. There is

a natural co-action of SBic
(V,E)

on the algebra S+
m

∗n
which is given by

α(ν(k,l)(a)) =
∑

(i,j)∈E
ν(i,j)(a)⊗ xikx

j
l , (k, l) ∈ E, a ∈ S+

m. (5.3.3)

where (xij)i,j∈V is the matrix of canonical generators of SBic
(V,E)

. Then it follows that, with

respect to the co-action α,

QBic
(V,E)

∼= S+
m ∗w SBic

(V,E)
.

Proof. As xik and xjl commute with each other for (i, j), (k, l) ∈ E, it is easy to check that α

is a co-action of SBic
(V,E)

on the C* algebra S+
m

∗n
.

Let us start by showing that there is a co-action γ of S+
m ∗w SBic

(V,E)
on the multigraph

(V,E) which preserves its quantum symmetry in Bichon’s sense. Let us define γ : C(E) →

C(E)⊗ (S+
m ∗w SBic

(V,E)
) by,

γ(χ(k,l)s) =
∑

(i,j)∈E
r=1,..,m

χ(i,j)r ⊗ P (i,j)r
s xikx

j
l ; (k, l) ∈ E and s = 1, 2, ..,m. (5.3.4)

It is easy to check that γ preserves quantum symmetry of (V,E) in Bichon’s sense. By the

universality of QBic
(V,E) we have a quantum group homomorphism Φ : QBic

(V,E) → S+
m ∗w SBic

(V,E)
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satisfying

Φ(u
(i,j)r
(k,l)s) = P (i,j)r

s xikx
j
l where (i, j), (k, l) ∈ E and r, s = 1, 2, ..,m

where u
(i,j)r
(k,l)s’s are the canonical generators of QBic

(V,E). Let us denote (qij)i,j∈V to be the co-

representation matrix of the induced co-action of QBic
(V,E) on C(V ).

Now we construct the inverse of Φ to show that it is in fact an isomorphism of compact

quantum groups.

From definition 4.5.2 it follows that u
(i,j)r
(k,l)s’s satisfy quantum permutation relations. For

(i, j) ∈ E and r, s ∈ {1, 2, ..,m} we define,

R(i,j)r
s =

∑
(k,l)∈E

u
(i,j)r
(k,l)s.

Now we proceed through following claims.

Claim 1: Let (i, j) ∈ E. The coefficients of the matrix (R
(i,j)r
s )r,s=1,..,m satisfy quantum

permutation relations.

we observe the following relations:

R(i,j)r
s

2
=R(i,j)r

s = R(i,j)r
s

∗

and
m∑
r=1

R(i,j)r
s =

m∑
r=1

(k,l)∈E

u
(i,j)r
(k,l)s =

∑
(k,l)∈E

qikq
j
l = 1 =

m∑
s=1

(k,l)∈E

u
(i,j)r
(k,l)s =

m∑
s=1

R(i,j)r
s .

Hence claim 1 follows.

Claim 2: For (i, j), (k, l) ∈ E and r, s ∈ {1, 2, ..,m}, we have the following relations:

u
(i,j)r
(k,l)s = R(i,j)r

s qikq
j
l and R(i,j)r

s qikq
j
l = qikq

j
lR

(i,j)r
s .

We observe that,

R(i,j)r
s qikq

j
l = (

∑
(k′,l′)∈E

u
(i,j)r
(k′,l′)s)(

m∑
s′=1

u
(i,j)r
(k,l)s′)

= u
(i,j)r
(k,l)s

= (

m∑
s′=1

u
(i,j)r
(k,l)s′)(

∑
(k′,l′)∈E

u
(i,j)r
(k′,l′)s) = qikq

j
lR

(i,j)r
s .

Hence claim 2 follows.
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Claim 3: Let ∆Bic denote the co-product on QBic
(V,E). The co-product identities in theorem

2.6.2 hold , that is,

∆Bic(q
i
j) =

∑
k∈V

qik ⊗ qkj

and ∆Bic(R
(i,j)r
s ) =

m∑
s′=1

(k,l)∈E

(R
(i,j)r
s′ ⊗R(k,l)s′

s )(qikq
j
l ⊗ 1).

The first identity is immidiate. To prove the second one we observe that,

∆Bic(R
(i,j)r
s ) = ∆Bic(

∑
(k′,l′)∈E

u
(i,j)r
(k′,l′)s)

=
∑

(k′,l′)∈E
(

m∑
s′=1

(k,l)∈E

u
(i,j)r
(k,l)s′ ⊗ u

(k,l)s′

(k′,l′)s)

=
m∑

s′=1
(k,l)∈E

R
(i,j)r
s′ qikq

j
l ⊗ (

∑
(k′,l′)∈E

u
(k,l)s′

(k′,l′)s)

=
m∑

s′=1
(k,l)∈E

R
(i,j)r
s′ qikq

j
l ⊗R(k,l)s′

s .

Hence the second identity in claim 3 follows.

Using claim 1, claim 2, claim 3 and universality of free wreath product we get a surjective

quantum group homomorphism Ψ : S+
m ∗w SBic

(V,E)
→ QBic

(V,E) given by the following relations on

generators:

Ψ(xij) = qij and Ψ(P (i′,j′)r
s ) = R(i′,j′)r

s

where i, j ∈ V ,(i′, j′) ∈ E and r, s = 1, 2, ..,m.

It is clear that Φ and Ψ are inverses of each other as it is such on the set of generators.

Hence theorem 5.3.13 is proved.

5.3.5 Complete description of QBic
(V,E,j) for undirected uniform multigraphs

We want to prove a version of the theorem 5.3.13 for undirected multigraphs. In case of

undirected multigraphs, we will see that it will turn out to be a quotient of free wreath product

due to lemma 4.6.5.
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Proposition 5.3.14. Let (V,E, j) be an undirected multigraph which is uniform of degree m.

Then the quantum automorphism group of (V,E, j) in Bichon’s sense is given by

QBic
(V,E,j) = S+

m ∗w SBic
(V,E) /Iu

where Iu is a C* ideal generated by the following relations:

P (i,j)r
s = P (j,i)r

s where (i, j) ∈ E; r, s = 1, ..,m.

It should be noted that the wreath product is with respect to the co-action 5.3.3.

Proof. Let (V,E) be the doubly directed multigraph associated with the undirected multigraph

(V,E, j). From theorem 5.3.13, it follows that the quantum automorphism group QBic
(V,E) is

given by,

QBic
(V,E) = S+

m ∗w SBic
(V,E)

.

Let us denote (A,∆A, βA) to be an object in CBic
(V,E,j) where (A,∆A) is a CQG co-acting on

(V,E, j) preserving its quantum symmetry in Bichon’s sense via the co-action βA : C(E) →

C(E) ⊗ A. As βA is also a co-action on the underlying doubly directed multigraph (V,E),

by universality of QBic
(V,E) it follows that there exists a unique quantum group homomorphism

ΦA : QBic
(V,E) → A such that

ΦA(P (i,j)r
s xikx

j
l ) = u

(i,j)r
(k,l)s = u

(j,i)r
(l,k)s = ΦA(P (j,i)r

s xjlx
i
k) (5.3.5)

where (u
(i,j)r
(k,l)s)(i,j)r,(k,l)s∈E is the co-representation matrix of βA. Summing over all k, l ∈ V in

equation 5.3.5 we get that,

ΦA(P (i,j)r
s ) = ΦA(P (j,i)r

s ) for all (i, j) ∈ E.

Hence it follows that Iu ⊆ Ker(ΦA) for all (A,∆A, βA) ∈ CBic
(V,E,j). Let us consider the quotient

algebra

Q = S+
m ∗w SBic

(V,E) /Iu ,

πu : S+
m ∗w SBic

(V,E)
→ Q to be the natural quotient map and we write πu(a) = a. To show that

Q is itself a CQG, it is enough to show that Iu is a Woronowicz C* ideal in Q. Let ∆w be the



5.3. Co-actions on uniform multigraphs 87

co-product on S+
m ∗w SBic

(V,E)
. We observe that,

(πu ⊗ πu)∆w(P
(i,j)r
s ) = (πu ⊗ πu)

m∑
s′=1

(k,l)∈E

(P
(i,j)r
s′ ⊗ P (k,l)s′

s )(xikx
j
l ⊗ 1)

=
m∑

s′=1
(k,l)∈E

(P
(i,j)r
s′ ⊗ P

(k,l)s′
s )(xikx

j
l ⊗ 1)

=

m∑
s′=1

(k,l)∈E

(P
(j,i)r
s′ ⊗ P

(l,k)s′
s )(xjlx

i
k ⊗ 1)

= (πu ⊗ πu)∆w(P
(j,i)r
s ).

Therefore ∆w(I
u) ⊆ Ker(πu ⊗ πu) making Iu a Woronowicz C* ideal in S+

m ∗w SBic
(V,E)

. Hence

Q is a CQG with the co-product ∆Q induced via πu. Moreover there is a natural co-action

βQ : C(E) → C(E)⊗Q of the CQG (Q,∆Q) on C(E) which is given by

βQ(χ(k,l)s) =
∑

(i,j)r∈E
χ(i,j)r ⊗ P

(i,j)r
s xikx

j
l for all (k, l)s ∈ E.

It is easy to see that βQ preserves quantum symmetry of the undirected multigraph (V,E, j) in

Bichon’s sense. Therefore we conclude that (Q,∆Q, βQ) is the universal object in CBic
(V,E,j).





Chapter 6

Source and target dependent

co-actions on (V,E)

6.1 Source and target dependent automorphisms

We will look into some special classes of automorphisms in this chapter. It should be noted

that these classes of automorphisms are more interesting for “directed” multigraphs than the

“undirected” ones. Before going to the definitions, let us introduce an extension of notation

5.3.1 which we will use extensively in this chapter.

Notation 6.1.1. Let (V,E) be a (directed or undirected with an inversion map j) multigraph.

Let us write (V,E) = ∪m(Vm, Em) where (Vm, Em)’s are its uniform components (see notation

5.1.2). As each (Vm, Em) is a uniform multigraph on its own, let us fix a representation for each

uniform component (Vm, Em) following the way described in notation 5.3.1. Now any σ ∈ E

can be written as,

σ = (k, l)r where s(σ) = k, t(σ) = l and 1 ≤ r ≤ |Ek
l |.

From now on throughout the whole chapter, we will always be working with a fixed representation

of (V,E).

We introduce another shorthand notation. Let m be a nonzero integer such that Em ̸= ϕ.

For k, l ∈ Vm, we write k → l in Em if there exists σ ∈ Em with s(σ) = k, t(σ) = l.

Proposition 6.1.2. Let (V,E) = ∪m(Vm, Em) be a multigraph (directed or undirected). Let

(fV , fE) be an automorphism of (V,E) in the sense of definition 2.1.11. Let m be a positive

integer such that Em ̸= ϕ. For each k, l ∈ Vm such that k → l in Em, there exists a permutation

Γkl ∈ Sm (classical permutation group on m objects) such that the following identity holds:

89
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fE((k, l)r) = (fV (k), fV (l))Γkl(r) for all 1 ≤ r ≤ m. (6.1.1)

Proof. Let k, l ∈ V be such that Ek
l ̸= ϕ. From definition 2.1.11 it follows that

fE(E
k
l ) ⊆ (E

fV (k)
fV (l) ) and f−1

E (E
fV (k)
fV (l) ) ⊆ Ek

l . (6.1.2)

As fE and f−1
E are one-one maps, from 6.1.2, it follows that for all k, l ∈ V such that

Ek
l ̸= ϕ,

|f(Ek
l )| = |EfV (k)

fV (l) | = |Ek
l |. (6.1.3)

From equation 6.1.3 we observe that, fE(Em) ⊆ Em and fV (Vm) ⊆ Vm for all m such that

Em ̸= ϕ. Hence the pair of maps (fV , fE) restricted to (Vm, Em) is an automorphism of the

uniform multigraph (Vm, Em). Let us choose k, l ∈ Vm such that |Ek
l | = m. We define a map

Γkl : {1, ..,m} → {1, ..,m} by Γkl(r) = s where fE((k, l)r) = (fV (k), fV (l))s. It is easy to

see that Γkl is a bijection and fE has the desired form mentioned in the proposition 6.1.2.

Definition 6.1.3. Let (V,E) be a finite quiver or a directed multigraph. A source dependent

automorphism of (V,E) is an automorphism (fV , fE) of (V,E) where the map fE can be

written in the following form:

fE((k, l)r) = (fV (k), fV (l))
mΓk(r) where (k, l)r ∈ Em. (6.1.4)

Here mΓk ∈ Sm and is a function of the initial vertex k and uniform component the edge lies

in.

An automorphism (fV , fE) of the multigraph (V,E) is said to be target dependent if fE

has the following form

fE((k, l)r) = (fV (k), fV (l))
mΓl(r) where (k, l)r ∈ Em. (6.1.5)

Here mΓl ∈ Sm and is a function of the final vertex l and uniform component the edge lies in.

An automorphism (fV , fE) is said to be both source and target dependent if fE can be

written in both forms given in equations 6.1.4 and 6.1.5.

Let us denote the groups of all source dependent, target dependent and both source

and target dependent automorphisms by Gs
(V,E), G

t
(V,E) and Gs,t

(V,E) respectively. It is clear
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that,

Gs,t
(V,E) = Gs

(V,E) ∩Gt
(V,E).

Remark 6.1.4. Let (fV , fE) be an automorphism of the multigraph (V,E). Then from propo-

sition 6.1.2 it follows that,

1. (fV , fE) is source dependent if for each m such that Em ̸= ϕ, the following identity

holds:

Γkl = Γkl′ for all k, l, l′ ∈ Vm such that k → l and k → l′ in Em.

2. (fV , fE) is target dependent if for each m such that Em ̸= ϕ, the following identity

holds:

Γkl = Γk′l for all k, k′, l ∈ Vm such that k → l and k′ → l in Em.

It should be noted that the classes of automorphisms in defintion 6.1.3 depend heavily on

the representation chosen for the multigraph (V,E), that is, a source or target dependent

automorphism of (V,E) might not remain source or target dependent once the representation

of the multigraph is changed.

6.2 Source and target dependent quantum symmetries

6.2.1 Algebras of twisted digonal operators

Let (V,E) be a directed multigraph and a representation of (V,E) is fixed in the sense of

notation 6.1.1. Let m be a nonzero integer such that Em ̸= ϕ. For i ∈ V s
m, j ∈ V t

m and

r = 1, 2, ..,m, let us define ξmi,r, η
m
j,r ∈ L2(E) by

ξmi,r =
∑

j′∈V t
m

χ(i,j′)r and ηmj,r =
∑
i′∈V s

m

χ(i′,j)r.

In the above expressions we have summed over only those j′’s in V t
m and i′’s in V s

m where both

(i, j′)r and (i′, j)r make sense as edges in Em, that is, both (i′, j)r and (i, j′)r are in Em. We

will be using such shortened notations while expressing sums from now on. Let us define two
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algebras Xs
m, Xt

m ⊆ B(L2(E)) by

Xs
m = linear span {|ξmi,r⟩⟨ξmi,r| |i ∈ V s

m, r = 1, 2, ..,m}

Xt
m = linear span {|ηmj,r⟩⟨ηmj,r| |j ∈ V t

m, r = 1, 2, ..,m}

The subalgebras Xs
m and Xt

m are called algebras of twisted diagonal operators. Here we have

used bra-ket notations which are frequently used in quantum mechanics. We give a brief

description here. Let H be a Hilbert space with inner product <,>H . For ξ, η ∈ H, we define

⟨ξ | η⟩ ∈ C and |ξ⟩⟨η| ∈ B(H) by

⟨ξ | η⟩ =< ξ, η >H ;

|ξ⟩⟨η | µ⟩ =< η, µ >H ξ where µ ∈ H.

We will be using these notations throughout this chapter.

6.2.2 Main definitions

Definition 6.2.1. Let (V,E) be a directed multigraph. Let β be a co-action of a CQG (A,∆)

on (V,E) preserving its quantum symmetry in Banica’s sense (see definition 4.2.2). β is said

to preserve its source dependent quantum symmetry if the following holds:

Adβ(X
s
m) ⊆ Xs

m ⊗A for all m such that Em ̸= ϕ.

β is said to preserve its target dependent quantum symmetry if the following holds:

Adβ(X
t
m) ⊆ Xt

m ⊗A for all m such that Em ̸= ϕ.

β is said to preserve its both source and target dependent quantum symmetries if the following

holds:

Adβ(X
s
m) ⊆ Xs

m ⊗A and Adβ(X
t
m) ⊆ Xt

m ⊗A

for all m such that Em ̸= ϕ.

Let us also define Cs
(V,E), Ct

(V,E) and Cs,t
(V,E) to be categories consisting of CQGs with co-

actions preserving source dependent quantum symmetry, target dependent quantum symmetry

and both source and target dependent quantum symmetry of (V,E) respectively. Morphisms

in these categories are quantum group homomorphisms intertwining similar type co-actions.
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6.2.3 Algebraic characterisations

In this subsection we formulate algebraic characterisations of source and target dependent

quantum symmetries in terms of co-representation matrices.

The source dependent case:

Proposition 6.2.2. Let β be a co-action of a CQG (A,∆) on a directed multigraph (V,E) which

preserves its source dependent quantum symmetry. Let (uστ )σ,τ∈E be the co-representation

matrix of β. Then the following conditions hold:

1. β(L2(Em)) ⊆ L2(Em)⊗A for all m such that Em ̸= ϕ.

2. Let m be a nonzero integer such that Em ̸= ϕ. The for any (k, l)s, (k′, l′)s′ ∈ Em,

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k′,l′)s′∗

(i,j′)r = 0 whenever (k, s) ̸= (k′, s′)

and for all l, l′, l1, l′1 ∈ V t
m such that (k, l)s, (k, l′)s, (k, l1)s, (k, l′1)s ∈ Em,

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k,l′)s∗

(i,j′)r =
∑

j,j′∈V t
m

u
(k,l1)s
(i,j)r u

(k,l′1)s
∗

(i,j′)r . (6.2.1)

Proof. Let us fix a nonzero integer m such that Em ̸= ϕ. Let i ∈ V s
m and r ∈ {1, 2, ..,m}. We

observe that,

Adβ(|ξmi,r⟩⟨ξmi,r|) = |β(ξmi,r)⟩⟨β(ξmi,r)|

=
∑

j,j′∈V t
m

|β(χ(i,j)r)⟩⟨β(χ(i,j′)r)|

=
∑

σ,τ∈E
|χσ⟩⟨χτ | ⊗ (

∑
j,j′∈V t

m

uσ(i,j)ru
τ
(i,j′)r

∗) (6.2.2)

As Adβ(X
s
m) ⊆ Xs

m ⊗A, from equation 6.2.2 we have the following relations:

1. Let σ, τ ∈ E. If both σ and τ are not in Em, then

∑
j,j′∈V t

m

uσ(i,j)ru
τ
(i,j′)r

∗ = 0 (6.2.3)

2. For any (k, l)s and (k′, l′)s′ ∈ Em,

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k′,l′)s′∗

(i,j′)r = 0 whenever (k, s) ̸= (k′, s′). (6.2.4)
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3. For all l, l′, l1, l′1 ∈ V t
m such that (k, l)s, (k, l′)s, (k, l1)s, (k, l′1)s ∈ Em,

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k,l′)s∗

(i,j′)r =
∑

j,j′∈V t
m

u
(k,l1)s
(i,j)r u

(k,l′1)s
∗

(i,j′)r . (6.2.5)

We note that (2) of proposition 6.2.2 follows from equation 6.2.4 and equation 6.2.5. Now to

prove (1) it is enough to show that uσ(i,j)r = 0 whenever σ /∈ Em and (i, j)r ∈ Em.

Putting σ = τ ∈ E \ Em in equation 6.2.3 and using equation 4.2.1 we observe that,

0 =
∑

j,j′∈V t
m

uσ(i,j)ru
σ
(i,j′)r

∗ =
∑

j,j′∈V t
m

uσ(i,j)rq
t(σ)
j q

t(σ)
j′ uσ(i,j′)r

∗

=
∑
j∈V t

m

uσ(i,j)ru
σ
(i,j)r

∗.

As uσ(i,j)ru
σ
(i,j)r

∗’s are positive operators, we conclude that,

uσ(i,j)r = 0.

Hence (1) follows.

The target dependent case:

Proposition 6.2.3. Let β be a co-action of a CQG (A,∆) on a directed multigraph (V,E)

preserving its target dependent quantum symmetry. Let (uστ )σ,τ∈E be the co-representation

matrix of β. Then the following conditions hold:

1. β(L2(Em)) ⊆ L2(Em)⊗A for all m such that Em ̸= ϕ.

2. Let m be a nonzero integer such that Em ̸= ϕ. The for any (k, l)s, (k′, l′)s′ ∈ Em,

∑
i,i′∈V t

m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r = 0 whenever (l, s) ̸= (l′, s′) (6.2.6)

and for all k, k′, k1, k′1 ∈ V s
m such that (k, l)s, (k′, l)s, (k1, l)s, (k′1, l)s ∈ Em,

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i′,j)r =

∑
i,i′∈V s

m

u
(k1,l)s∗

(i,j)r u
(k′1,l)s
(i′,j)r . (6.2.7)
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Proof. The proof is very similar to the proof of proposition 6.2.2. Let us fix a nonzero integer

m such that Em ̸= ϕ. Let j ∈ V t
m and r ∈ {1, 2, ..,m}. We observe that,

Adβ(|η
m
j,r⟩⟨ηmj,r|) = |β(ηmj,r)⟩⟨β(ηmj,r)|

=
∑

i,i′∈V s
m

|β(χ(i,j)r)⟩⟨β(χ(i′,j)r)|

=
∑

σ,τ∈E
|χσ⟩⟨χτ | ⊗ (

∑
i,i′∈V s

m

uσ(i,j)r
∗uτ(i′,j)r). (6.2.8)

As Adβ(X
t
m) ⊆ Xt

m ⊗A, from equation 6.2.8 we have the following relations:

1. Let σ, τ ∈ E. If both σ and τ are not in Em, then

∑
i,i′∈V s

m

uσ(i,j)r
∗uτ(i′,j)r = 0. (6.2.9)

2. For any (k, l)s and (k′, l′)s′ ∈ Em,

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r = 0 whenever (l, s) ̸= (l′, s′). (6.2.10)

3. For all k, k′, k1, k′1 ∈ V s
m such that (k, l)s, (k′, l)s, (k1, l)s, (k′1, l)s ∈ Em,

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i′,j)r =

∑
i,i′∈V s

m

u
(k1,l)s∗

(i,j)r u
(k′1,l)s
(i′,j)r . (6.2.11)

We note that (2) of proposition 6.2.3 follows from equation 6.2.10 and equation 6.2.11. Now

to prove (1) it is enough to show that uσ(i,j)r = 0 whenever σ /∈ Em and (i, j)r ∈ Em.

Putting σ = τ ∈ E \ Em in equation 6.2.9 and equation 4.2.1 we observe that,

0 =
∑

i,i′∈V s
m

uσ(i,j)r
∗uσ(i′,j)r =

∑
i,i′∈V s

m

uσ(i,j)r
∗qs(σ)i q

s(σ)
i′ uσ(i′,j)r

=
∑
i∈V s

m

uσ(i,j)r
∗uσ(i,j)r.

As uσ(i,j)r
∗uσ(i,j)r’s are positive operators, we conclude that,

uσ(i,j)r = 0.

Therefore (1) follows.
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Remark 6.2.4. In proposition 6.2.2, conditions 1 and 2 can be taken as a characterization for

co-actions on (V,E) which preserve its source dependent quantum symmetry. It is easy to check

that any co-action on (V,E) preserving its quantum symmetry in Banica’s sense satisfying 1

and 2 of proposition 6.2.2 also satisfies identites 6.2.3, 6.2.5 and 6.2.4 and hence a co-action

on (V,E) which preserves its source dependent quantum symmetry.

In a similar way it can be argued that the any co-action on (V,E) preserving its quantum

symmetry in Banica’s sense also preserves its target dependent quantum symmetry if it satisfies

conditions 1 and 2 in proposition 6.2.3.

6.2.4 More familiar forms and partial wreath product relations

The algebraic characterisations we got in the previous subsection will be simplified further to

get more familiar forms resembling to the classical picture of source and target dependent

symmetries. We have also been able to recover wreath product relations (similar to described

in subsection 5.3.4) with respect to permutations of V s or V t (depending on whether source

dependent or target dependent quantum symmetry is preserved). Let us start by following

notations and observations.

Notation 6.2.5. We make some observations and introduce two new quantum permutation

matrices which will be crucial for the upcoming results later on.

1. Let β be a co-action of a CQG (A,∆) on (V,E) preserving its source dependent quantum

symmetry and (uστ )σ,τ∈E be the co-representation matrix of β. Let m be a nonzero integer

such that Em ̸= ϕ. By putting l′ = l and l1 = l′1 in equation 6.2.1 we observe that for

all l, l1 ∈ V t
m, ∑

j∈V t
m

u
(k,l)s
(i,j)ru

(k,l)s∗

(i,j)r =
∑
j∈V t

m

u
(k,l1)s
(i,j)r u

(k,l1)s∗

(i,j)r =: mθksir .

Where mθksir is an element in A depending on m-th uniform component, the vertices i, k ∈

V s
m and r, s ∈ {1, 2, ..,m}. As Adβ preserves Xs

m and is a C* algebra homomorphism, it

follows that Adβ is in fact a quantum permutation on the set of operators {|ξmi,r⟩⟨ξmi,r| |i ∈

V s
m; r = 1, ..,m}. Hence the elements of the matrix (

m
θksir )(ks),(ir) satisfy quantum

permutation relations.

2. Now let us consider β to be a co-action of a CQG (A,∆) on (V,E) preserving its target

dependent quantum symmetry. Let us fix an integer m such that Em ̸= ϕ. By similar
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argument used in previous paragraph, for j, l ∈ V t
m and r, s ∈ {1, 2, ..,m} we can define

m
θ̂lsjr :=

∑
i∈V s

m

u
(k,l)s∗

(i,j)r u
(k,l)s
(i,j)r .

As Adβ preserves Xt
m and is a C* algebra homomorphism on Xt

m, it follows that Adβ is a

quantum permutation on the set of operators {|ηmj,r⟩⟨ηmj,r||j ∈ V t
m; r = 1, ..,m}. Therefore

the elements of the matrix (
m
θ̂lsjr)(ls),(jr) satisfy quantum permutation relations.

Before proceeding further, let us make some observations about the elements mθksir ’s and
m
θ̂lsjr’s which will be used for our constructions later.

Remark 6.2.6. Let β be a co-action on a directed multigraph (V,E) which preserves its source

dependent quantum symmetry. Let m be a nonzero integer such that Em ̸= ϕ. We have the

following identities:

1. mθksir q
k
i = mθksir = qki

mθksir for all k, i ∈ V s
m; s, r ∈ {1, ..,m}.

2. Let us choose k, i ∈ V s
m and s ∈ {1, ..,m}. Then it follows that

m∑
r=1

mθksir =
m∑
r=1
j∈V t

m

u
(k,l)s
(i,j)ru

(k,l)s∗

(i,j)r = qki .

In the above computation we have used the fact that uστ = 0 when σ ∈ Em and τ ∈ En

with m ̸= n.

Now let us consider β to be a co-action on (V,E) which preserves its target dependent

quantum symmetry. Let m be a nonzero integer such that Em ̸= ϕ. Then we have the

following identities:

1.
m
θ̂lsjrq

l
j =

m
θ̂lsjr = qlj

m
θ̂lsjr for all l, j ∈ V t

m; s, r ∈ {1, ..,m}.

2. Let us choose l, j ∈ V t
m and s ∈ {1, ..,m}. Then it follows that,

m∑
r=1

m
θ̂lsjr =

m∑
r=1
i∈V s

m

u
(k,l)s∗

(i,j)r u
(k,l)s
(i,j)r = qlj .

Co-actions preserving source dependent quantum symmetry:

Theorem 6.2.7. Let β be a co-action of a CQG (A,∆) on (V,E) which preserves its source

dependent quantum symmetry. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices
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of β and its induced co-action on C(V ). Let m be a nonzero integer such that Em ̸= ϕ. Then

for any (i, j)r, (k, l)s ∈ Em,

u
(k,l)s
(i,j)r = mθksir q

l
j

where mθksir ’s are described in notation 6.2.5.

Proof. Let us define T
(k,l)s
ir =

∑
j∈V t

m
u
(k,l)s
(i,j)r . We observe that,

T
(k,l)s
ir T

(k,l)s∗

ir =
∑

j,j′∈V t
m

u
(k,l)s
(i,j)ru

(k,l)s∗

(i,j′)r

=
∑
j∈V t

m

u
(k,l)s
(i,j)ru

(k,l)s∗

(i,j)r = mθksir .

As mθksir is a projection, it follows that mθksir is the range projection of T
(k,l)s
ir . It further follows

that,

(T
(k,l)s∗

ir T
(k,l)s
ir )2 = T

(k,l)s∗

ir T
(k,l)s
ir T

(k,l)s∗

ir T
(k,l)s
ir

= T
(k,l)s∗

ir
mθksir T

(k,l)s
ir

= T
(k,l)s∗

ir T
(k,l)s
ir .

Hence T
(k,l)s
ir ’s are partial isometries. Let h be the Haar funtional of the CQG (A,∆). We

observe that,

m∑
r=1
j∈V t

m

h(u
(k,l)s
(i,j)r −

mθksir q
l
j)(u

(k,l)s
(i,j)r −

mθksir q
l
j)

∗

=h(

m∑
r=1
j∈V t

m

u
(k,l)s
(i,j)ru

(k,l)s∗

(i,j)r )− h(

m∑
r=1
j∈V t

m

u
(k,l)s
(i,j)rq

l
j
mθksir )− h(

m∑
r=1
j∈V t

m

mθksir q
l
ju

(k,l)s∗

(i,j)r ) + h(
m∑
r=1
j∈V t

m

mθksir q
l
j
mθksir )

=h(qki )− h(

m∑
r=1

(
∑
j∈V t

m

u
(k,l)s
(i,j)r)

mθksir )− h(

m∑
r=1

mθksir (
∑
j∈V t

m

u
(k,l)s∗

(i,j)r )) + h(

m∑
r=1

mθksir (
∑
j∈V t

m

qlj)
mθksir )

=h(qki )− h(
m∑
r=1

T
(k,l)s
ir

mθksir )− h(
m∑
r=1

mθksir T
(k,l)s∗

ir ) + h(
m∑
r=1

mθksir )

=h(qki )− h(

m∑
r=1

mθksir T
(k,l)s
ir )− h(

m∑
r=1

T
(k,l)s∗

ir
mθksir ) + h(qki )

=h(qki )− h(
m∑
r=1

T
(k,l)s
ir )− h(

m∑
r=1

T
(k,l)s∗

ir ) + h(qki )

=h(qki )− h(qki )− h(qki ) + h(qki ) = 0
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As h is a positive linear functional and is faithful on the underlying Hopf* algebra of matrix

elements of the CQG (A,∆), it follows that each of the summand of the above expression is

zero. We conclude that,

(u
(k,l)s
(i,j)r −

mθksir q
l
j)(u

(k,l)s
(i,j)r −

mθksir q
l
j)

∗ = 0 for all (i, j)r, (k, l)s ∈ Em.

Therefore we have,

u
(k,l)s
(i,j)r = mθksir q

l
j for all (i, j)r, (k, l)s ∈ Em.

The form that we have got in proposition 6.2.7 can be improved further to give a form

resembling more to classical case.

Proposition 6.2.8. Let β be a co-action of the CQG (A,∆) on (V,E) which preserves its

source dependent quantum symmetry. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation

matrices of β and its induced permutation on vertices respectively. Let m be a nonzero integer

such that Em ̸= ϕ. Then for (i, j)r, (k, l)s ∈ Em, the following identities hold:

u
(k,l)s
(i,j)r = mγksr qki q

l
j and ∆(mγksr ) =

m∑
s′=1
k′∈V s

m

mγkss′ q
k
k′ ⊗ mγk

′s′
r

where

mγksr :=
∑
i∈V s

m

mθksir .

Proof. The first identity is clear from theorem 6.2.7, definition of mγksr and the fact that,

mθksir q
k
i = mθksir = qki

mθksir for all k, i ∈ V s
m; r, s = 1, ..,m.

As Adβ is a quantum permutation on the set of generators of Xs
m, it follows that,

∆(mθksir ) =

m∑
s′=1
k′∈V s

m

mθksk′s′ ⊗ mθk
′s′

ir for all k, i ∈ V s
m; r, s = 1, ..,m.

From the above identity and definition of mγksr , it follows that,

∆(mγksr ) = ∆(
∑
i∈V s

m

mθksir )
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=
m∑

s′=1
k′∈V s

m

mθksk′s′ ⊗ (
∑
i∈V s

m

mθk
′s′

ir )

=
m∑

s′=1
k′∈V s

m

mγkss′ q
k
k′ ⊗ mγk

′s′
r .

Hence the second identity follows.

Co-actions preserving target depenedent quantum symmetry:

Theorem 6.2.9. Let β be a co-action of a CQG (A,∆) on (V,E) which preserves its target

dependent quantum symmetry. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices

of β and its induced co-action on C(V ). Let m be a nonzero integer such that Em ̸= ϕ. Then

for any (i, j)r, (k, l)s ∈ Em,

u
(k,l)s
(i,j)r = qki

m
θ̂lsjr

where
m
θ̂lsjr’s are described in notation 6.2.5.

Proof. Let us define S
(k,l)s
jr =

∑
i∈V s

m
u
(k,l)s
(i,j)r . We observe that,

S
(k,l)s∗

jr S
(k,l)s
jr =

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k,l)s
(i′,j)r

=
∑
i∈V s

m

u
(k,l)s∗

(i,j)r u
(k,l)s
(i,j)r =

m
θ̂lsjr.

As
m
θ̂lsjr is a projection, it follows that

m
θ̂lsjr is the range projection of S

(k,l)s∗

jr . It further follows

that S
(k,l)s
jr ’s are partial isometries. Let h be the Haar funtional of the CQG (A,∆). We observe

that,

m∑
r=1
i∈V s

m

h(u
(k,l)s
(i,j)r − qki

m
θ̂lsjr)

∗(u(k,l)s(i,j)r − qki
m
θ̂lsjr)

=h(
m∑
r=1
i∈V s

m

u
(k,l)s∗

(i,j)r u
(k,l)s
(i,j)r)− h(

m∑
r=1
i∈V s

m

u
(k,l)s∗

(i,j)r qki
m
θ̂lsjr)− h(

m∑
r=1
i∈V s

m

m
θ̂lsjrq

k
i u

(k,l)s
(i,j)r) + h(

m∑
r=1
i∈V s

m

m
θ̂lsjrq

k
i

m
θ̂lsjr)

=h(qlj)− h(

m∑
r=1

(
∑
i∈V s

m

u
(k,l)s∗

(i,j)r )
m
θ̂lsjr)− h(

m∑
r=1

m
θ̂lsjr(

∑
i∈V s

m

u
(k,l)s
(i,j)r)) + h(

m∑
r=1

m
θ̂lsjr(

∑
i∈V s

m

qki )
m
θ̂lsjr)

=h(qlj)− h(
m∑
r=1

S
(k,l)s∗

jr

m
θ̂lsjr)− h(

m∑
r=1

m
θ̂lsjrS

(k,l)s
jr ) + h(

m∑
r=1

m
θ̂lsjr)
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=h(qlj)− h(
m∑
r=1

m
θ̂lsjrS

(k,l)s∗

jr )− h(
m∑
r=1

S
(k,l)s
jr

m
θ̂lsjr) + h(qlj)

=h(qlj)− h(
m∑
r=1

S
(k,l)s∗

jr )− h(
m∑
r=1

S
(k,l)s
jr ) + h(qlj)

=h(qlj)− h(qlj)− h(qlj) + h(qlj) = 0.

As h is a positive linear functional and is faithful on the underlying Hopf* algebra of matrix

elements of the CQG (A,∆), it follows that each of the summand of the above expression is

zero. We conclude that,

(u
(k,l)s
(i,j)r − qki

m
θ̂lsjr)

∗(u(k,l)s(i,j)r − qki
m
θ̂lsjr) = 0 for all (i, j)r, (k, l)s ∈ Em.

Therefore we have,

u
(k,l)s
(i,j)r = qki

m
θ̂lsjr for all (i, j)r, (k, l)s ∈ Em.

As we have done for co-actions preserving source-dependent quantum symmetry, same can

be argued for the target dependent case.

Proposition 6.2.10. Let β be a co-action of the CQG (A,∆) on (V,E) preserving its target

dependent quantum symmetry. Let (uστ )σ,τ∈E and (qij)i,j∈V be the co-representation matrices

of β and its induced permutation on the vertices. Let m be a nonzero integer such that Em ̸= ϕ.

Then for (i, j)r, (k, l)s ∈ Em, the following identities hold:

u
(k,l)s
(i,j)r = qki q

l
j
mνlsr and ∆(mνlsr ) =

m∑
s′=1
l′∈V t

m

mνlss′q
l
l′ ⊗ mνl

′s′
r

where

mνlsr =
∑
j∈V t

m

m
θ̂lsjr.

Proof. The proof is similar to the proof of proposition 6.2.8. The first identity is clear from

theorem 6.2.9, definition of mνlsr and the fact that,

m
θ̂lsjrq

l
j =

m
θ̂lsjr = qlj

m
θ̂lsjr for all l, j ∈ V t

m; r, s = 1, ..,m.
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As Adβ is a quantum permutation on the set of generators of Xt
m, it follows that,

∆(
m
θ̂lsjr) =

m∑
s′=1
l′∈V t

m

m
θ̂lsl′s′ ⊗

m
θ̂l

′s′
jr for all l, j ∈ V t

m; r, s = 1, ..,m.

From the above identity and the definition of mνlsr , it follows that,

∆(mνlsr ) = ∆(
∑
j∈V t

m

m
θ̂lsjr)

=

m∑
s′=1
l′∈V t

m

m
θ̂lsl′s′ ⊗ (

∑
j∈V t

m

m
θ̂l

′s′
jr )

=
m∑

s′=1
l′∈V t

m

mνlss′q
l
l′ ⊗ mνl

′s′
r

Hence the second identity follows.

Co-actions preserving both source and target dependent quantum symmetries:

Proposition 6.2.11. Let (V,E) = ∪m(Vm, Em). Let β be a co-action of a CQG (A,∆) on

(V,E) preserving its source dependent quantum symmetry. The co-action β also preserves its

target dependent quantum symmetry if and only if for each m such that Em ̸= ϕ, the following

conditions hold:

1. mγksr = mγk
′s

r for all s, r = 1, ..,m and k, k′ ∈ V s
m such that k → l and k′ → l in Em for

some l ∈ Vm.

2. mγksr qlj = qlj
mγksr for all j, l ∈ V t

m and k ∈ V s
m such that k → l in Em.

Proof. Let us assume that β preserves target dependent quantum symmetry of (V,E). Then

from proposition 6.2.8 and proposition 6.2.10 it follows that, for all (i, j)r, (k, l)s ∈ Em,

mγksr qki q
l
j = qki q

l
j
mνlsr .

Summing over i ∈ V s
m and j ∈ V t

m we observe that,

mγksr = mνlsr for all k, l ∈ Vm such that k → l in Em and s, r = 1, ..,m. (6.2.12)

(1) and (2) in proposition 6.2.11 follows from the above observation.
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Now let us assume that β is a co-action on (V,E) preserving its source dependent quantum

symmetry and satisfying (1) and (2) of proposition 6.2.11. It is enough to show that the

coefficients of the co-representation matrix (uστ )σ,τ∈E satisfy the identities 6.2.6 and 6.2.7 in

proposition 6.2.3. Let j ∈ V t
m, r ∈ {1, ..,m} and (k, l)s, (k′, l′)s′ ∈ Em. We observe that,

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r =
∑

i,i′∈V s
m

qljq
k
i
mγksr

mγk
′s′

r qk
′

i′ q
l′
j

= mγksr qlj(
∑

i,i′∈V s
m

qki q
k′
i′ )q

l′
j

mγk
′s′

r

= δl,l′q
l
j
mγksr

mγk
′s′

r

= δl,l′q
l
j
mγksr

mγks
′

r

= δl,l′δs,s′
mγksr qlj . (6.2.13)

From the above relation it is clear that

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r = 0 whenever (l, s) ̸= (l′, s′).

Moreover, as mγksr = mγk1sr for any k, k1 ∈ V s
m and l ∈ V t

m such that k → l and k1 → l in Em,

it further follows from equation 6.2.13 that,

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i′,j)r = mγksr qlj =

mγk1sr qlj =
∑

i,i′∈V s
m

u
(k1,l)s∗

(i,j)r u
(k′1,l)s
(i′,j)r

where (k, l)s, (k′, l)s, (k1, l)s, (k′1, l)s ∈ Em, j ∈ V t
m and r ∈ {1, ..,m}. Hence equation 6.2.7

follows.

In the next proposition we will show that Cs,t
(V,E) is a subcategory Csym

(V,E). It is in fact

a subcategory of Csym
(V,E) which is non-Bichon in the sense that any co-action β on (V,E)

preserving both of its source and target dependent quantum symmetries do not necessarily

need to be a quantum permutation on the edge set E. In later sections, we prove that Cs,t
(V,E)

admits a universal object which is the automorphism group of source and target dependent

quantum symmetries of (V,E) (see definition 6.4.3).

Proposition 6.2.12. Let β be a co-action of a CQG (A,∆) on (V,E) which preserves both of

its source and target dependent quantum symmetries. Then β is a co-action on (V,E) which

preserves its quantum symmetry in our sense (see definition 4.2.3).
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Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β. It is enough to show that the

elements uστ ’s satisfy the relations mentioned in (2) of proposition 4.2.12. As we already have

β(L2(Em)) ⊆ L2(Em)⊗A

for all uniform components (Vm, Em), it is enough to check the relations mentioned in (2) of

proposition 4.2.12 in uniform components. Let us fix nonzero integer m such that Em ̸= ϕ.

From proposition 6.2.8 and proposition 6.2.10 it follows that

u
(k,l)s
(i,j)r = mγksr qki q

l
j = qki q

l
j
mνlsr for all (i, j)r, (k, l)s ∈ Em.

It further follows that,

u
(k,l)s
(i,j)ru

(k,l)s′∗

(i,j)r = (qki q
l
j
mνlsr )(

mνls
′

r qljq
k
i ) = 0 if s ̸= s′;

u
(k,l)s∗

(i,j)r u
(k,l)s′

(i,j)r = (qljq
k
i
mγksr )(mγks

′
r qki q

l
j) = 0 if s ̸= s′.

Hence coefficients of the matrix (uστ )σ,τ∈E satisfy (2) of proposition 4.2.12 making β a co-action

on (V,E) preserving its quantum symmetry in our sense.

Final remark:

The propositions 6.2.8, 6.2.10 and 6.2.11 can be taken as characterisations of co-actions on

(V,E) preserving its source dependent, target dependent and both source and target dependent

quantum symmetries respectively. More precisely, starting with a co-action on (V,E) in Banica’s

sense, if the coefficients of co-representation matrix are one of the prescribed forms mentioned

in those propositions, then we can conclude that the co-action preserves the respective quantum

symmetry.

In proposition 6.2.8, the coefficients of the quantum permutation matrix (mγksr )s,r=1,..,m

commute with qki for all i ∈ V s
m giving us free wreath product relations with respect to induced

permutation on V s
m. Similarly, in proposition 6.2.10 the entries of the quantum permutation

matrix mνlsr commute with qlj for all j ∈ V t
m giving us free wreath product relations with

respect to the induced permutation on V t
m.

6.3 Existence of universal objects

Theorem 6.3.1. For a directed multigraph (V,E), the categories Cs
(V,E), Ct

(V,E) and Cs,t
(V,E)

(see definition 6.2.1) admit universal objects.
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Proof. Let us start by showing that Cs
(V,E) admits a universal object. Let (A,∆A, βA) ∈ Cs

(V,E)

where (A,∆A) is a CQG and βA is co-action of (A,∆A) on (V,E) preserving its source

dependent quantum symmetry. By universality of QBan
(V,E), there exists a unique quantum group

homomorphism ΦA : QBan
(V,E) → A such that

ΦA(uστ ) = vστ for all σ, τ ∈ E

where (uστ )σ,τ∈E is the matrix of canonical generators of QBan
(V,E) and (vστ )σ,τ∈E is the co-

representation matrix of βA.

Let Is be a C* ideal in QBan
(V,E) generated by the following relations:

1. uστ = 0 for all σ ∈ Em, τ ∈ En where m and n are two non zero integers such that

m ̸= n.

2. Let m be a nonzero integer such that Em ̸= ϕ. The for any (k, l)s, (k′, l′)s′ ∈ Em,

i ∈ V s
m and r ∈ {1, ..,m},

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k′,l′)s′∗

(i,j′)r = 0 whenever (k, s) ̸= (k′, s′)

and for all l, l′, l1, l′1 ∈ V t
m such that (k, l)s, (k, l′)s, (k, l1)s, (k, l′1)s ∈ Em, i ∈ V s

m and

r ∈ {1, ..,m},

∑
j,j′∈V t

m

u
(k,l)s
(i,j)ru

(k,l′)s∗

(i,j′)r =
∑

j,j′∈V t
m

u
(k,l1)s
(i,j)r u

(k,l′1)s
∗

(i,j′)r .

From remark 6.2.4 it is clear that Is ⊆ Ker(ΦA) for all (A,∆A, βA) ∈ Cs
(V,E). Let us consider

Qs = QBan
(V,E) /Is and πs : Q

Ban
(V,E) → Qs to be the natural quotient map. We write

πs(u
σ
τ ) = vστ for all σ, τ ∈ E.

If we show that Is is a Woronowicz C* ideal in QBan
(V,E), it will follow that Qs is a CQG with the

co-product ∆Q induced by ∆Ban via the quotient map πs. Moreover, there is also a natural

co-action βQs of the CQG (Qs,∆Qs) on (V,E) which preserves its source dependent quantum

symmetry. The map βQs : L2(E) → L2(E)⊗Qs is given by,

βQs(χτ ) =
∑
σ∈E

χσ ⊗ vστ where τ ∈ E.



106 Chapter 6. Source and target dependent co-actions on (V,E)

Therefore it follows that (Qs,∆Qs , βQs) is universal in Cs
(V,E). To prove that Is is a Woronowicz

C* ideal, we observe the following relations:

1. Let σ ∈ Em and τ ∈ En such that m ̸= n. Then

(πs ⊗ πs)∆Ban(u
σ
τ ) =

∑
τ ′∈E

vστ ′ ⊗ vτ
′

τ = 0

as vτ
′

τ = 0 when τ ′ ∈ Em and vστ ′ = 0 when τ ′ ∈ En.

2. Let m be a nonzero integer such that Em ̸= ϕ. Let (k, l)s, (k′, l′)s′ ∈ Em be such that

(k, s) ̸= (k′, s′). Then we observe that,

(πs ⊗ πs)∆Ban(
∑

j,j′∈V t
m

u
(k,l)s
(i,j)ru

(k′,l′)s′∗

(i,j′)r )

=
∑

(k1,l1)s1,
(k2,l2)s2∈Em

v
(k,l)s
(k1,l1)s1

v
(k′,l′)s′∗

(k2,l2)s2
⊗ (

∑
j,j′∈V t

m

v
(k1,l1)s1
(i,j)r v

(k2,l2)s∗2
(i,j′)r )

=
∑

(k1,l1)s1,
(k1,l2)s1∈Em

v
(k,l)s
(k1,l1)s1

v
(k′,l′)s′∗

(k1,l2)s1
⊗ (

∑
j,j′∈V t

m

v
(k1,l1)s1
(i,j)r v

(k1,l2)s∗1
(i,j′)r )

=
m∑

s1=1
k1∈V s

m

(
∑

l1,l2∈V t
m

v
(k,l)s
(k1,l1)s1

v
(k′,l′)s′∗

(k1,l2)s1
)⊗ mθk1s1ir = 0 as (k, s) ̸= (k′, s′).

The quantity mθk1s1ir in the above expression is independent of l1, l2 ∈ V t
m. Now let us

choose l, l′, l1, l′1 ∈ V t
m such that (k, l)s, (k, l′)s, (k, l1)s, (k, l′1)s ∈ Em, then it follows

that,

(πs ⊗ πs)∆Ban(
∑

j,j′∈V t
m

u
(k,l)s
(i,j)ru

(k,l′)s∗

(i,j′)r )

=
∑

(i1,j1)r1,
(i2,j2)r2∈Em

v
(k,l)s
(i1,j1)r1

v
(k,l′)s∗

(i2,j2)r2
⊗ (

∑
j,j′∈V t

m

v
(i1,j1)r1
(i,j)r v

(i2,j2)r∗2
(i,j′)r )

=
∑

(i1,j1)r1,
(i1,j2)r1∈Em

v
(k,l)s
(i1,j1)r1

v
(k,l′)s∗

(i1,j2)r1
⊗ (

∑
j,j′∈V t

m

v
(i1,j1)r1
(i,j)r v

(i1,j2)r∗1
(i,j′)r )

=
m∑

r1=1
i1∈V s

m

(
∑

j1,j2∈V t
m

v
(k,l)s
(i1,j1)r1

v
(k,l′)s∗

(i1,j2)r1
)⊗ mθi1r1ir

=

m∑
r1=1
i1∈V s

m

mθksi1r1 ⊗
mθi1r1ir .
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As the above expression is independent of l and l′, we observe that,

(πs ⊗ πs)∆Ban(
∑

j,j′∈V t
m

u
(k,l)s
(i,j)ru

(k,l′)s∗

(i,j′)r ) = (πs ⊗ πs)∆Ban(
∑

j,j′∈V t
m

u
(k,l1)s
(i,j)r u

(k,l′1)s
∗

(i,j′)r )

Hence Is is a Woronowicz C*ideal in QBan
(V,E) making QBan

(V,E) /Is universal in Cs
(V,E).

We will use similar arguments to show that Ct
(V,E) also admits a universal object. Let It be

a C* ideal in QBan
(V,E) generated by the following relations,

1. uστ = 0 for all σ ∈ Em, τ ∈ En where m and n are two non zero integers such that

m ̸= n.

2. Let m be a nonzero integer such that Em ̸= ϕ. The for any (k, l)s, (k′, l′)s′ ∈ Em,

j ∈ V t
m and r ∈ {1, ..,m},

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r = 0 whenever (l, s) ̸= (l′, s′)

and for all k, k′, k1, k′1 ∈ V s
m such that (k, l)s, (k′, l)s, (k1, l)s, (k′1, l)s ∈ Em, j ∈ V t

m and

r ∈ {1, ..,m},

∑
i,i′∈V s

m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i,j′)r =

∑
i,i′∈V s

m

u
(k1,l)s∗

(i,j)r u
(k′1,l)s
(i′,j)r .

As in the previous case, it is enough to observe that It is a Woronowicz C* ideal in QBan
(V,E).

Let πt : Q
Ban
(V,E) → QBan

(V,E) /It be the natural quotient map and we write πt(u
σ
τ ) = vστ for all

σ, τ ∈ E. Let m be a nonzero integer such that Em ̸= ϕ. Let (k, l)s, (k′, l′)s′ ∈ Em be such

that (l, s) ̸= (l′, s′). Then we observe that,

(πt ⊗ πt)∆Ban(
∑

i,i′∈V s
m

u
(k,l)s∗

(i,j)r u
(k′,l′)s′

(i′,j)r )

=
∑

(k1,l1)s1,
(k2,l2)s2∈Em

v
(k,l)s∗

(k1,l1)s1
v
(k′,l′)s′

(k2,l2)s2
⊗ (

∑
i,i′∈V s

m

v
(k1,l1)s∗1
(i,j)r v

(k2,l2)s2
(i′,j)r )

=
∑

(k1,l1)s1,
(k2,l1)s1∈Em

v
(k,l)s∗

(k1,l1)s1
v
(k′,l′)s′

(k2,l1)s1
⊗ (

∑
i,i′∈V s

m

v
(k1,l1)s∗1
(i,j)r v

(k2,l1)s1
(i′,j)r )

=

m∑
s1=1
l1∈V t

m

(
∑

k1,k2∈V s
m

v
(k,l)s∗

(k1,l1)s1
v
(k′,l′)s′

(k2,l1)s1
)⊗ m

θ̂l1s1jr = 0 as (l, s) ̸= (l′, s′).
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The quantity
m
θ̂l1s1jr is independent of k1 and k2. Now let k, k′, k1, k′1 ∈ V s

m be such that

(k, l)s, (k′, l)s, (k1, l)s, (k′1, l)s ∈ Em. As before, we observe that,

(πt ⊗ πt)∆Ban(
∑

i,i′∈V s
m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i′,j)r)

=
∑

(i1,j1)r1,
(i2,j2)r2∈Em

v
(k,l)s∗

(i1,j1)r1
v
(k′,l)s
(i2,j2)r2

⊗ (
∑

i,i′∈V s
m

v
(i1,j1)r∗1
(i,j)r v

(i2,j2)r2
(i′,j)r )

=
∑

(i1,j1)r1,
(i2,j1)r1∈Em

v
(k,l)s∗

(i1,j1)r1
v
(k′,l)s
(i2,j1)r1

⊗ (
∑

i,i′∈V s
m

v
(i1,j1)r∗1
(i,j)r v

(i2,j1)r1
(i′,j)r )

=

m∑
r1=1
j1∈V t

m

(
∑

i1,i2∈V s
m

v
(k,l)s
(i1,j1)r1

v
(k′,l)s∗

(i2,j1)r1
)⊗ m

θ̂j1r1jr

=
m∑

r1=1
j1∈V t

m

m
θ̂lsj1r1 ⊗

m
θ̂j1r1jr .

As the above expression is independent of k and k′ it follows that for all k, k′, k1, k′1 ∈ V s
m,

(πt ⊗ πt)∆Ban(
∑

i,i′∈V s
m

u
(k,l)s∗

(i,j)r u
(k′,l)s
(i′,j)r) = (πt ⊗ πt)∆Ban(

∑
i,i′∈V s

m

u
(k1,l)s∗

(i,j)r u
(k′1,l)s
(i′,j)r )

Hence It is a Woronowicz C* ideal in QBan
(V,E) making QBan

(V,E) /It universal in Ct
(V,E).

Now for the last part, to show that the category Cs,t
(V,E) admits a universal object, we define

a C* ideal in Is,t in QBan
(V,E) which is generated by the elements of the set Is ∪ It. From

the previous two cases it is clear Is,t is a Woronowicz C* ideal in QBan
(V,E) making QBan

(V,E) /Is,t

universal in Cs,t
(V,E).

Remark 6.3.2. Let us call the universal objects in Cs
(V,E), C

t
(V,E) and Cs,t

(V,E) by Qs
(V,E), Q

t
(V,E)

and Qs,t
(V,E) respectively with respective co-products ∆s,∆t and ∆s,t.

6.4 Automorphism groups of source and target dependent quan-

tum symmetries

The universal objects Qs
(V,E), Q

t
(V,E) and Qs,t

(V,E) are the automorphism groups of source and

target dependent quantum symmetries of (V,E). In light of the final remark mentioned in the

end of subsection 6.2.4 we propose the following set of definitions.

Definition 6.4.1. Let (V,E) = ∪m(Vm, Em) be a directed multigraph where (Vm, Em) is

the uniform component with degree m. The automorphism group of source dependent
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quantum symmetry of (V,E) is the universal C* algebra Qs
(V,E) generated by the elements of

the set

∪m{mγksr |k ∈ V s
m, r, s = 1, ..,m} ∪ {qij |i, j ∈ V }

such that the following conditions hold:

1. The matrix Q = (qij)i,j∈V is a quantum permutation matrix satisfying

QW = WQ

where W is the adjacency matrix of (V,E).

2. For a nonzero m such that Em ̸= ϕ the matrix (mγksr )s,r=1,..,m is a quantum permuta-

tion matrix satisfying

qki (
mγksr ) = mγksr qki for all k, i ∈ V s

m; r, s = 1, ..,m.

The co-product ∆s on Qs
(V,E) is given by

∆s(q
i
j) =

∑
k∈V

qik ⊗ qkj and ∆s(
mγksr ) =

m∑
s′=1
k′∈V s

m

mγkss′ q
k
k′ ⊗ mγk

′s′
r .

The canonical co-action βs of Qs
(V,E) on (V,E) which preserves its source dependent quantum

symmetry is given by,

βs(χ(i,j)r) =
∑

(k,l)s∈Em

χ(k,l)s ⊗ mγksr qki q
l
j where (i, j)r ∈ Em.

Definition 6.4.2. Let (V,E) = ∪m(Vm, Em) be a directed multigraph where (Vm, Em) is

the uniform component with degree m. The automorphism group of target dependent

quantum symmetry of (V,E) is the universal C* algebra Qt
(V,E) generated by the elements of

the set

∪m{mνlsr |l ∈ V t
m, r, s = 1, ..,m} ∪ {qij |i, j ∈ V }

such that the following conditions hold:

1. The matrix Q = (qij)i,j∈V is a quantum permutation matrix satisfying

QW = WQ
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where W is the adjacency matrix of (V,E).

2. For a nonzero integer m such that Em ̸= ϕ the matrix (mνlsr )s,r=1,..,m is a quantum

permutation matrix satisfying

mνlsr q
l
j = qlj

mνlsr for all l, j ∈ V t
m; s, r = 1, ..,m.

The co-product ∆t on Qt
(V,E) is given by,

∆t(q
i
j) =

∑
k∈V

qik ⊗ qkj and ∆t(
mνlsr ) =

m∑
s′=1
l′∈V t

m

mνlss′q
l
l′ ⊗ mνl

′s′
r .

The canonical co-action βt of Qt
(V,E) on (V,E) which preserves its target dependent quan-

tum symmetry is given by,

βt(χ(i,j)r) =
∑

(k,l)s∈Em

χ(k,l)s ⊗ qki q
l
j

mνlsr where (i, j)r ∈ Em.

Definition 6.4.3. Let (V,E) = ∪m(Vm.Em) be a directed multigraph where (Vm, Em) is the

uniform component of degree m. The automorphism group of source and target dependent

quantum symmetries is the universal C* algebra Qs,t
(V,E) generated by the elements of the set

∪m{mγksr |k ∈ V s
m; r, s = 1, ..,m} ∪ {qij |i, j ∈ V }

such that the following conditions hold:

1. The matrix Q = (qij)i,j∈V is a quantum permutation matrix satisfying

QW = WQ

where W is the adjacency matrix of (V,E).

2. For a nonzero m such that Em ̸= ϕ the matrix (mγksr )s,r=1,..,m is a quantum permuta-

tion matrix. Let k1, k2 ∈ V s
m and l ∈ V t

m be such that k1 → l and k2 → l in Em (see

notation 6.1.1). Then we assume that,

mγk1sr = mγk2sr for all s, r = 1, ..,m;

mγk1sr qk1i = qk1i
mγk1sr and mγk1sr qlj = qlj

mγk1sr
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for all i ∈ V s
m, j ∈ V t

m and s, r ∈ {1, ..,m}.

The co-product ∆s,t on Qs,t
(V,E) is given by,

∆s,t(q
i
j) =

∑
k∈V

qik ⊗ qkj and ∆s,t(
mγksr ) =

m∑
s′=1
k′∈V s

m

mγkss′ q
k
k′ ⊗ mγk

′s′
r

The canonical co-action βs,t of Qs,t
(V,E) on (V,E) which preserves both of its source and target

dependent quantum symmetries is given by,

βs,t(χ(i,j)r) =
∑

(k,l)s∈Em

χ(k,l)s ⊗ qki q
l
j

mγksr where (i, j)r ∈ Em.

Remark 6.4.4. It is clear from the definitions themselves that the universal commutative CQG’s

in the categories Cs
(V,E), C

t
(V,E) and Cs,t

(V,E) are C(Gs
(V,E)), C(Gt

(V,E)) and C(Gs,t
(V,E)) respectively.

We also want to mention that despite having wreath product relations with respect to

induced permutations on V s and V t, in general Qs,t
(V,E) is not a quantum subgroup of QBic

(V,E)

as qki and qlj do not need to commute whenever Ek
l and Ei

j are nonempty.

6.5 Source and target dependent quantum symmetries of an

undirected multigraph

We define the notion of source and target dependent quantum symmetries in an undirected

mutigraph in the same way as we did in case of a directed graph. For an undirected multigraph

(V,E, j) all the categories Cs
(V,E,j), C

t
(V,E,j) and Cs,t

(V,E,j) coincide as it should, because there is

no inherent meaning of source and target maps in an undirected multigraph. We will use the

same notation described in section 6.2.1. Let us start with the following proposition.

Proposition 6.5.1. Let (V,E, j) = ∪m(Vm, Em, j) be an undirected multigraph where (Vm, Em, j)’s

are its unifrom components. Let β be a co-action of a CQG (A,∆) on (V,E, j) preserving its

quantum symmetry in Banica’s sense. Then the following conditions are equivalent:

1. Adβ(X
s
m) ⊆ Xs

m ⊗A for each nonzero integer m such that Em ̸= ϕ.

2. Adβ(X
t
m) ⊆ Xt

m ⊗A for each nonzero integer m such that Em ̸= ϕ.

Proof. Let (uστ )σ,τ∈E be the co-representation matrix of β. Let m be a nonzero integer such

that Em ̸= ϕ. Let i ∈ Vm, r ∈ {1, ..,m}, (k, l)s and (k′, l′)s′ ∈ Em. Using lemma 4.6.5 we



112 Chapter 6. Source and target dependent co-actions on (V,E)

observe that,

∑
j,j′∈Vm

u
(k,l)s
(i,j)ru

(k′,l′)s′∗

(i,j′)r =
∑

j,j′∈Vm

u
(l,k)s∗

(j,i)r u
(l′,k′)s′

(j′,i)r .

The equivalence in proposition 6.5.1 follows from remark 6.2.4 and the above observation.

Definition 6.5.2. Let (V,E.j) be an undirected multigraph and β be a co-action of a CQG

(A,∆) on (V,E, j) preserving its quantum symmetry in Banica’s sense. Then β is said to

preserve its source and target dependent quantum symmetries if the following condition holds:

Adβ(X
s
m) ⊆ Xs

m ⊗A

for all nonzero integer m such that Em ̸= ϕ.

Before moving to the main result of this section we recall the defintition of a path in a

multigraph.

Definition 6.5.3. Let (V,E) be a multigraph (directed or undirected with an inversion map j).

Let k, k′ ∈ V . A path from k to k′ is a finite sequence of edges {σ1, σ2, ..., σn} such that

s(σi+1) = t(σi) for all i = 1, .., n− 1;

s(σ1) = k and t(σn) = k′.

Theorem 6.5.4. Let (V,E, j) = ∪m(Vm, Em, j) be an undirected multigraph and β be a

co-action of a CQG (A,∆) on (V,E, j) preserving its source and target dependent quantum

symmetries. Let m be a nonzero integer such that Em ̸= ϕ and (mγksr )s,r=1,..,m be the quantum

permutation matrices defined in proposition 6.2.8. Then we have the following:

mγksr = mγk
′s

r for all s, r = 1, ..,m and k, k′ ∈ Vm

such that there is a path from k to k′ in (Vm, Em, j).

Proof. Let us fix a nonzero integer m such that Em ̸= ϕ. Let k, l ∈ Vm be such that k → l in

Em (see notation 6.1.1). As our multigraph is undirected, we also have l → k in Em. To prove

our theorem, it is enough to show that

mγksr = mγlsr for all s, r = 1, ..,m.
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Let i, j, k, l ∈ Vm be such that i → j and k → l in Em. From lemma 4.6.5 and proposition

6.2.8 we observe that,

mγksr qki q
l
j = (mγlsr q

l
jq

k
i )

∗ = qki q
l
j
mγlsr . (6.5.1)

Using equation 6.5.1 we further observe that,

mγksr =
∑

i,j∈Vm

mγksr qki q
l
j =

∑
i,j∈Vm
i→j

mγksr qki q
l
j

=
∑

i,j∈Vm
i→j

qki q
l
j
mγlsr =

∑
i,j∈Vm

qki q
l
j
mγlsr = mγlsr .

Hence the theorem is proved.

We propose the following definition of automorphism group of source and target dependent

quantum symmetries of an undirected multigraph (V,E, j).

Definition 6.5.5. Let (V,E, j) = ∪m(Vm, Em, j) be an undirected multigraph. The auto-

morphism group of source and target dependent quantum symmetries of (V,E, j) is the

universal C* algebra Qs,t
(V,E,j) generated by the following set of elements

∪m{mγksr |k ∈ Vm; r, s = 1, ..,m} ∪ {qij |i, j ∈ V }

such that the following conditions hold:

1. The matrix Q = (qij)i,j∈V is a quantum permutation matrix satisfying

QW = WQ

where W is the adjacency matrix of (V,E, j).

2. For a nonzero m such that Em ̸= ϕ the matrix (mγksr )s,r=1,..,m is a quantum permuta-

tion matrix. Let us consider k1, k2 ∈ Vm such that there is a path in Em between k1and

k2 (see definition 6.5.3). Then we assume that,

mγk1sr = mγk2sr and mγk1sr qk1i = qk1i
mγk1sr

for all i ∈ Vm and s, r ∈ {1, ..,m}.
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The co-product ∆s,t on Qs,t
(V,E,j) is given by,

∆s,t(q
i
j) =

∑
k∈V

qik ⊗ qkj and ∆s,t(
mγksr ) =

m∑
s′=1
k′∈Vm

mγkss′ q
k
k′ ⊗ mγk

′s′
r .

The canonical co-action βs,t of Qs,t
(V,E,j) on (V,E, j) which preserves both of its source and

target dependent quantum symmetries is given by,

βs,t(χ(i,j)r) =
∑

(k,l)s∈Em

χ(k,l)s ⊗ qki q
l
j

mγksr where (i, j)r ∈ Em.



Chapter 7

Examples and applications

7.1 A summary of what has been done

Before going to examples, we start this chapter with a diagrammatic summary of all different

categories of quantum symmetry preserving co-actions on a directed multigraph (V,E). In figure

7.1, the arrows denote inclusion functors between two categories where the former is always a

”full” subcategory of the latter. For an “undirected” multigraph (V,E, j), (see definition 2.1.7),

the categories Cs
(V,E,j), C

t
(V,E,j) and Cs,t

(V,E,j) coincide (see proposition 6.5.1). We conclude this

CBan
(V,E)

Cs
(V,E) Cs,t

(V,E) Ct
(V,E)

Csym
(V,E)

CBic
(V,E)

Figure 7.1: Inclusions of different categories for a directed multigraph (V,E)

section with a brief summary of similarities and differences of these different categories of

quantum symmetry preserving co-actions in form of a table.

115
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Category

name

Existence of universal object classical variant

of the universal

object (if it ex-

ists)

preservence of

uniform compo-

nents of (V,E)

CBan
(V,E) Yes (theorem 4.4.3) strictly bigger than

Gaut
(V,E)(see exam-

ple 1)

No

Csym
(V,E) Yes for a class of multigraphs

(theorems 5.3.9 and 4.4.5), in

general, not known.

Gaut
(V,E) (definition

2.1.11)

Yes (propositions

5.2.1 and 5.2.2)

CBic
(V,E) Yes (theorem 4.4.5) Gaut

(V,E) Yes (propositions

5.2.1 and 5.2.2)

Cs
(V,E) Yes (theorem 6.3.1) Gs

(V,E) (definition

6.1.3)

Yes (proposition

6.2.2)

Ct
(V,E) Yes (theorem 6.3.1) Gt

(V,E) (definition

6.1.3)

Yes (proposition

6.2.3)

Cs,t
(V,E) Yes (theorem 6.3.1) Gs,t

(V,E) (definition

6.1.3)

Yes (proposition

6.2.2 or 6.2.3)

7.2 Examples and Computations

In this section we compute various quantum automorphism groups for a few selected multi-

graphs.

7.2.1 Example 1:

•a

Figure 7.2: A multigraph with n loops on a single vertex
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Let us consider the multigraph in figure 7.2 where the vertex set has a single element a

and edge set E has n number of loops. The multigraph can be regarded both as a directed

multigraph (V,E) or an undirected multigraph (V,E, j) where the inversion map j = idE . The

universal CQG associated with (V,E), QBan
(V,E) is generated as a universal C* algebra by the

elements of the matrix (uστ )σ,τ∈E satisfying the following relations:

∑
τ∈E

uσ1
τ uσ2∗

τ = δσ1,σ21,
∑
τ∈E

uσ1∗
τ uσ2

τ = δσ1,σ21,∑
τ∈E

uτσ1
uτ∗σ2

= δσ1,σ21,
∑
τ∈E

uτ∗σ1
uτσ2

= δσ1,σ21,

and
∑
τ∈E

uσ1
τ = 1

where σ1, σ2 ∈ E.

The universal C* algebra associated to (V,E, j) is given by

QBan
(V,E,j) = QBan

(V,E)

/
⟨uστ − uσ∗τ |σ, τ ∈ E⟩ .

From theorem 5.3.9, it follows that the category Csym
(V,E) admits universal object which is QBic

(V,E).

Moreover it follows that QBic
(V,E,j) = QBic

(V,E) = S+
4 where S+

n is the quantum permutation

group on n elements. As the vertex set has only one element, it also follows that the automor-

phism groups of source and target dependent quantum symmetries are

Qs
(V,E) = Qt

(V,E) = Qs,t
(V,E) = Qs,t

(V,E,j) = S+
n .

7.2.2 Example 2:

• •a b

Figure 7.3: An undirected multigraph with two vertices and n edges among them.

Let us consider the multigraph (V,E, j) in figure 7.3 where there are n number of “undi-

rected” edges between two vertices. According to definition 2.1.7, the edge set E consists of

2n elements with an inversion map j identifying two oppositely directed edges producing an

undirected edge. Let us fix a representation for (V,E, j) (see definition 6.1.1). Using theorem
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5.3.9 it follows that Csym
(V,E,j) admits universal object which is QBic

(V,E,j). The quantum automor-

phism group of the underlying simple graph SBan
(V,E)

is S+
2 and is generated by the coefficients of

the following matrix:  p 1− p

1− p p


where p is a projection. The quantum automorphism group QBic

(V,E,j) is the universal C* algebra

generated by p and the coefficients of a quantum permutation matrix (u
(i,j)r
(k,l)s)(i,j)r,(k,l)s∈E

satisfying the following identities:

n∑
s=1

u
(a,b)r
(a,b)s = p and

n∑
s=1

u
(a,b)r
(b,a)s = (1− p) for all r ∈ {1, 2, .., n}.

By defining vrs = u
(a,b)r
(a,b)s + u

(a,b)r
(b,a)s we observe that,

1. Coefficients of the matrix (vrs)r,s=1,..,n satisfy quantum permutation relations.

2. u
(a,b)r
(a,b)s = vrsp = pvrs = u

(b,a)r
(b,a)s and u

(a,b)r
(b,a)s = (1 − p)vrs = vrs(1 − p) = u

(b,a)r
(a,b)s for all

r, s = 1, .., n.

Therefore it follows that QBic
(V,E,j) = S+

n ⊗ S+
2 . The automorphism group of source and target

dependent quantum symmetries Qs,t
(V,E,j) is also S+

n ⊗ S+
2 .

7.2.3 Example 3:

• •

•

b c

a

Figure 7.4: An undirected graph of a triangle with n edges between two vertices.

We consider the undirected multigraph (V,E, j) in figure 7.4 where there are n number of

“undirected” edges between the pairs of vertices {a, b}, {b, c} and {c, a}. We fix a representation

of (V,E, j) (see notation 5.3.1). From theorem 5.3.9, it follows that Csym
(V,E,j) admits a universal

object which is QBic
(V,E,j). It is also clear that SBic

(V,E)
= S+

3 where (V,E) is the underlying simple
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graph. Let (u
(i,j)r
(k,l)s)(i,j)r,(k,l)s∈E be the matrix of canonical generators of QBic

(V,E,j). For (i, j) ∈ E

and r, s ∈ {1, 2, .., n}, let us define,

P {i,j}r
s =

∑
(k,l)∈E

u
(i,j)r
(k,l)s

where {i, j} is an unordered pair of two vertices. The quantity P
{i,j}r
s is well defined because

of lemma 4.6.5. It follows that for all (i, j) ∈ E and k, l ∈ V , P
{i,j}r
s commutes with qik and

qjl . Fixing a k ∈ V and (i, j) ∈ E, we observe that P
{i,j}r
s commutes with qi

′
k for all i′ ∈ V

as there are only three points in the vertex set. The quantum automorphism group QBic
(V,E,j) is

generated by the following set of generators:

∪i ̸=j∈V {P {i,j}r
s |r, s = 1, 2, .., n} ∪ {qkl |k, l ∈ V }

such that the following conditions hold:

1. The matrix (qkl )k,l∈V is a quantum permutation matrix.

2. For each i, j ∈ V such that i ̸= j, the matrix (P
{i,j}r
s )r,s=1,2,..,n is a quantum permu-

tation matrix.

3. P
{i,j}r
s commutes with qkl for all k, l ∈ V ; (i, j) ∈ E; r, s = 1, 2, .., n.

It is clear that as an algebra QBic
(V,E,j) is (S

+
n ∗ S+

n ∗ S+
n )⊗ S+

3 . Moreover the co-product ∆Bic

on QBic
(V,E,j) is given by

∆Bic(q
k
l ) =

∑
k′∈V

qkk′ ⊗ qk
′

l and ∆Bic(P
{i,j}r
s ) =

n∑
s′=1

k ̸=l∈V

(P
{i,j}r
s′ ⊗ P {k,l}s′

s )(qikq
j
l ⊗ 1).

The automorphism group of source and target dependent quantum symmetries is Qs,t
(V,E,j) =

S+
n ⊗ S+

3 .

7.2.4 Example 4

•• • •

a b c d

Figure 7.5: Disjoint union of two undirected multigraphs
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Let us consider the undirected multigraph (V,E, j) shown in figure 7.5 where there n number

of “undirected” edges between the pairs of vertices {a, b} and {c, d}. We fix a representation

for (V,E, j) (see notation 5.3.1). Let Q = (qij)i,j∈V be the matrix of canonical generators of

SBan
(V,E)

where (V,E) is the underlying simple graph. From theorem 7.1 of [BB07a] it follows

that the matrix Q is of the form,


pt (1− p)t p(1− t) (1− p)(1− t)

(1− p)t pt (1− p)(1− t) p(1− t)

q(1− t) (1− q)(1− t) qt (1− q)t

(1− q)(1− t) q(1− t) (1− q)t qt

 (7.2.1)

where p, q, t are projections satisfying pt = tp and qt = tq. It is easy to see that qik com-

mutes with qjl for all (i, j), (k, l) ∈ E. Hence we have SBan
(V,E)

∼= SBic
(V,E)

. Furthermore from

theorem 5.3.9, it follows that Csym
(V,E,j) admits a universal object which is QBic

(V,E,j). The quan-

tum automorphism group QBic
(V,E,j) is the universal C* algebra generated by the following set of

projections:

∪(i,j)∈E{P
{i,j}r
s |r, s = 1, 2, .., n} ∪ {p, q, t|pt = tp; qt = tq}

such that the following conditions hold:

1. For all (i, j) ∈ E the matrix (P
{i,j}r
s )r,s=1,2,..,n is a quantum permutation matrix.

2. P
{a,b}r
s commutes with p and t and P

{c,d}r
s commutes with q and t for all r, s = 1, 2, .., n.

The co-product ∆Bic on the set of generators is given by

∆Bic(p) = pt⊗ p+ (1− p)t⊗ (1− p) + p(1− t)⊗ q + (1− p)(1− t)⊗ (1− q),

∆Bic(q) = qt⊗ q + (1− q)t⊗ (1− q) + q(1− t)⊗ p+ (1− q)(1− t)⊗ (1− p),

∆Bic(t) = t⊗ t+ (1− t)⊗ (1− t),

∆Bic(P
{a,b}r
s ) =

n∑
s′=1

(tP
{a,b}r
s′ ⊗ P {a,b}s′

s ) + ((1− t)P
{a,b}r
s′ ⊗ P {c,d}s′

s ),

and ∆Bic(P
{c,d}r
s ) =

n∑
s′=1

(tP
{c,d}r
s′ ⊗ P {c,d}s′

s ) + ((1− t)P
{c,d}r
s′ ⊗ P {a,b}s′

s ).

As (V,E) has two connected components corresponding to two unordered pairs of vertices

{a, b} and {c, d}, from definition 6.5.5 it follows that Qs,t
(V,E,j)

∼= QBic
(V,E,j).
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•

••

•

a c

bd

Figure 7.6: Graph of a square with n edges between two vertices.

7.2.5 Example 5

Let us consider the undirected multigraph (V,E, j) mentioned in figure 7.6 where there are n

number of “undirected” edges between the pairs of vertices {a, c}, {c, b}, {b, d} and {d, a}.

We fix a representation for (V,E, j) (see notation 5.3.1). Let (V,E) be the underlying simple

graph. Using lemma 2.5.12 for underlying simple graphs of the multigraphs mentioned in figure

7.5 and 7.6, it follows that SBan
(V,E)

is generated by the entries of the matrix 7.2.1 where p, q, t

are projections such that pt = tp and qt = tq. As p and q are free, it follows that

qadq
c
b = (1− p)(1− q)(1− t) ̸= (1− q)(1− p)(1− t) = qcbq

a
d .

Therefore SBan
(V,E)

and SBic
(V,E)

are not isomorphic as compact quantum groups. From theorem

5.3.9, it follows that Csym
(V,E,j) is strictly bigger than CBic

(V,E,j). Though we do not know whether the

category Csym
(V,E,j) admits universal object or not, in chapter 6, we have constructed a subcategory

Cs,t
(V,E,j) of C

sym
(V,E,j) which does admit a universal object namely Qs,t

(V,E,j). The compact quantum

group Qs,t
(V,E,j) is a non-Bichon type quantum subgroup of QBan

(V,E,j). The automorphism group

of source and target dependent quantum symmetries Qs,t
(V,E,j) is the universal C* algebra

generated by the following set of elements:

{γrs |r, s = 1, 2, .., n} ∪ {p, q, t|pt = tp; qt = tq}

where γrs , p, q, t all are projections satisfying the following conditions:

1. (γrs)r,s=1,2,..,n is a quantum permutation matrix.

2. γrsp = pγrs , γ
r
sq = qγrs and tγrs = γrs t for all r, s = 1, 2, .., n.
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The co-product ∆s,t is given by

∆s,t(p) = pt⊗ p+ (1− p)t⊗ (1− p) + p(1− t)⊗ q + (1− p)(1− t)⊗ (1− q),

∆s,t(q) = qt⊗ q + (1− q)t⊗ (1− q) + q(1− t)⊗ p+ (1− q)(1− t)⊗ (1− p),

∆s,t(t) = t⊗ t+ (1− t)⊗ (1− t)

and ∆s,t(γ
r
s) =

n∑
s′=1

γrs′ ⊗ γs
′

s .

We finish this section with the following question:

Question:

It is interesting to ask whether Csym
(V,E,j) admits a universal object or not in the context of example

5. If the answer is negative, then it is also worth investigating whether Cs,t
(V,E,j) is the “largest”

subcategory of Csym
(V,E,j) which admits a universal object of non-Bichon type.

7.3 Applications:

7.3.1 Quantum symmetry of Graph C* algebras

In the context of quantum symmetry, it is interesting to study the graph C* algebras as they

are mostly infinite dimensional although the function algebras associated with graphs are not.

In this subsection, we will see that our notions of quantum symmetry in multigraphs lift to the

level of graph C* algebras, We recall the definition of a graph C* algebra associated with a

directed multigraph (V,E). For more details, see [Rae05], [BEVW22], [PR06] and references

within.

Definition 7.3.1. For a finite directed multigraph Γ = (V,E) the graph C* algebra C∗(Γ)

is the universal C*algebra generated by a set of partial isometries {sτ |τ ∈ E} and a set of

mutually orthogonal projections {pi|i ∈ V } satisfying the following relations among them:

1. s∗τsτ = pt(τ) for all τ ∈ E where t : E → V is the target map of Γ.

2.
∑

τ∈Ei sτs
∗
τ = pi for all i ∈ V s where V s is the set of initial vertices in Γ.

We have the following properties of graph C* algebras (subsection 2.1 of [PR06]).

1.
∑

i∈V pi = 1 in C∗(Γ).

2. For any i ∈ V s, {sτs∗τ |τ ∈ Ei} is a set of mutually orthogonal projections and s∗τ1sτ2 = 0

for all τ1 ̸= τ2 ∈ E.
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We will be generalising the main result in [SW18] in our framework of quantum symmetry in

multigraphs using similar arguments.

Theorem 7.3.2. Let Γ = (V,E) be a directed multigraph and β be a co-action of a CQG

(A,∆) on (V,E) preserving its quantum symmetry in Banica’s sense (see definition 4.2.2).

Then β induces a co-action β′ : C∗(Γ) → C∗(Γ)⊗A satisfying,

β′(pi) =
∑
k∈V

pk ⊗ qki

β′(sτ ) =
∑
σ∈E

sσ ⊗ uστ

where (uστ )σ,τ∈E and (qki )k,i∈V are the co-representation matrices of β and its induced co-action

α on C(V ).

Proof. For τ ∈ E, i ∈ V , let us define Sτ , Pv ∈ C∗(Γ)⊗A by

Sτ =
∑
σ∈E

sσ ⊗ uστ ,

Pi =
∑
k∈V

pk ⊗ qki .

For i, j ∈ V , we observe that,

PiPj =
∑
k∈V

pk ⊗ qki q
k
j = δi,j

∑
k∈V

pk ⊗ qki = δi,jPi.

Hence {Pi|i ∈ V } is a set of mutually orthogonal projections in C∗(Γ)⊗A. Using the properties

of C∗(Γ) mentioned in definition 7.3.1 we observe that,

for τ ∈ E, S∗
τSτ =

∑
σ1,σ2∈E

s∗σ1
sσ2 ⊗ uσ1∗

τ uσ2
τ

=
∑
σ∈E

s∗σsσ ⊗ uσ∗τ uστ

=
∑
σ∈E

pt(σ) ⊗ uσ∗τ uστ

=
∑
k∈V t

pk ⊗
∑
σ∈Ek

uσ∗τ uστ

=
∑
k∈V

pk ⊗ qkt(τ) = Pt(τ)

and for i ∈ V s,
∑
τ∈Ei

SτS
∗
τ =

∑
σ1,σ2∈E

sσ1s
∗
σ2

⊗
∑
τ∈Ei

uσ1
τ uσ2∗

τ
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=
∑

σ1,σ2∈E
sσ1s

∗
σ2

⊗ δσ1,σ2q
s(σ1)
i

=
∑
k∈V s

(
∑
σ∈Ek

sσs
∗
σ)⊗ qki

=
∑
k∈V

pk ⊗ qki = Pi.

By universality of C∗(Γ), there exists a C* homomorphism β′ : C∗(Γ) → C∗(Γ)⊗A such that,

β′(sτ ) = Sτ and β′(pi) = Pi

for all τ ∈ E and i ∈ V . It only remains to show that β′ is in fact a co-action of (A,∆) on

C∗(Γ). The co-product identity holds as it is easy to check that on the set of generators of

C∗(Γ). Let us define

S = linear span β′(C∗(Γ))(1⊗A) ⊆ C∗(Γ)⊗A.

To conclude that β′ is a co-action of (A,∆) it is enough to show that S is norm-dense in

C∗(Γ)⊗A. We proceed through following claims:

Claim 1: pi ⊗ 1, sτ ⊗ 1, s∗τ ⊗ 1 ∈ S for all i ∈ V, τ ∈ E.

Let i ∈ V, τ ∈ E. We observe that,

∑
j∈V

β′(pj)(1⊗ qij) =
∑
l∈V

pl ⊗ (
∑
j∈V

qljq
i
j) = pi ⊗

∑
j∈V

qij = pi ⊗ 1,

∑
σ∈E

β′(sσ)(1⊗ uτ∗σ ) =
∑
σ′∈E

sσ′ ⊗ (
∑
σ∈E

uσ
′

σ uτ∗σ ) = sτ ⊗ 1,

∑
σ∈E

β′(s∗σ)(1⊗ uτσ) =
∑
σ′∈E

s∗σ′ ⊗ (
∑
σ∈E

uσ
′∗

σ uτσ) = s∗τ ⊗ 1.

In the above computation we have used the fact that β and β both are unitary co-representations

on L2(E). As all the elements mentioned in the left are in S, claim 1 follows.

Claim 2: If x⊗ 1, y ⊗ 1 ∈ S, then xy ⊗ 1 ∈ S.

Let us assume that,

x⊗ 1 =

n∑
i=1

β′(ei)(1⊗ fi) and y ⊗ 1 =

m∑
j=1

β′(gj)(1⊗ hj)
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where ei, gj ∈ C∗(Γ) and fi, hj ∈ A for all i, j. We observe that,

xy ⊗ 1 =

n∑
i=1

β′(ei)(1⊗ fi)(y ⊗ 1)

=

n∑
i=1

β′(ei)(y ⊗ 1)(1⊗ fi)

=
∑
i,j

β′(ei)β′(gj)(1⊗ gj)(1⊗ fi)

=
∑
i,j

β′(eigj)(1⊗ gjfi) ∈ S.

Hence claim 2 follows.

From claim 1 and claim 2 it is clear that,

C∗(Γ)⊗ 1 ⊆ norm closure of S.

As for any T ∈ S and x ∈ A, T (1⊗ x) is also in S, we conclude that,

C∗(Γ)⊗A ⊆ norm closure of S.

Hence our theorem is proved.

7.3.2 Co-actions on C* correspondences

In a private communication with Jyotishman Bhowmick ([Bho22]), he pointed out that our

framework of quantum symmetry in multigraphs also fits into the framework of co-actions on

C* correspondences. We start with the following definitions. For more details, see [Kat04],

[KQR15], [BJ] and references within.

Definition 7.3.3. Let B be a unital C* algebra. A C* correspondence over B is a pair (X,ϕ)

where X is a right Hilbert B-module and ϕ : B → LB(X) is a C* algebra homomorphism.

Moreover, (X,ϕ) is said to be “non-degenerate” if linear span of ϕ(B)X is norm-dense in X.

Definition 7.3.4. A co-action of a CQG (A,∆) on a C* correspondence (X,ϕ) over a unital

C* algebra B is a pair of maps (β, α) where α : B → B ⊗ A is a co-action of (A,∆) on the

C* algebra B and β : X → X ⊗A is a C-linear map satisfying the following:

1. (β ⊗ id) ◦ β = (id⊗∆) ◦ β.

2. Linear span of β(X)(1⊗A) is norm-dense in X ⊗A.
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3. β(ϕ(b)ξ) = (ϕ⊗ idA)(α(b))β(ξ) for all b ∈ B, ξ ∈ X.

4. < β(ξ), β(η) >B⊗A= α(< ξ, η >B) where <,>B is the B-valued inner product on X

and <,>B⊗A is defined by

< ξ ⊗ a, η ⊗ b >B⊗A=< ξ, η >B ⊗ a∗b

for all ξ ⊗ a, η ⊗ b ∈ X ⊗A.

Remark 7.3.5. In [Kat04], Katsura showed that (3) and (4) in definition 7.3.4 together imply,

β(ξ.b) = β(ξ)α(b) for all ξ ∈ X, b ∈ B.

For a finite directed multigraph (V,E), L2(E) is a right C(V )-module where the right

module structure and C(V )-valued inner product are given by,

χτ .χj = δt(τ),jχτ and < χσ, χτ >C(V )= δσ,τχt(σ)

for all σ, τ ∈ E and j ∈ V .

The pair (L2(E), ϕ) is a C* correspondence over C(V ) where the C* algebra homomorphism

ϕ : C(V ) → LC(V )(L
2(E)) is given by,

ϕ(f)(χσ) = f(s(σ))χσ for all f ∈ C(V ), σ ∈ E.

Proposition 7.3.6. Let β be a co-action of a CQG (A,∆) on a finite directed multigraph

(V,E) preserving its quantum symmetry in Banica’s sense (see definition 4.2.2). Let α be the

induced co-action on C(V ). Then (β, α) is a co-action on the C* correspondence (L2(E), ϕ)

in the sense of definition 7.3.4.

Proof. As β : L2(E) → L2(E)⊗A is a bi-unitary co-representation on the Hilbert space L2(E)

it is easy to see that β satisfies (1) and (2) of definition 7.3.4. (3) of definition 7.3.4 follows

from propositions 4.2.5, 4.2.6 and the following observation:

ϕ(χi).χτ = δi,s(τ)χτ = χi.χτ for all τ ∈ E, i ∈ V.



7.3. Applications: 127

To show that β satisfies (4), for τ1, τ2 ∈ E, we observe that

< β(χτ1), β(χτ2) >C(V )⊗A =<
∑
σ1∈E

χσ1 ⊗ uσ1
τ1 ,

∑
σ2∈E

χσ2 ⊗ uσ2
τ2 >C(V )⊗A

=
∑

σ1,σ2∈E
< χσ1 , χσ2 >C(V ) ⊗ uσ1∗

τ1 uσ2
τ2

=
∑
σ∈E

χt(σ) ⊗ uσ∗τ1 u
σ
τ2

=
∑
j∈V t

χj ⊗ (
∑
σ∈Ej

uσ∗τ1 u
σ
τ2).

Using remark 4.1.3 and antipode on the underlying Hopf * algebra of matrix elements of (A,∆)

we get,

< β(χτ1), β(χτ2) >C(V )⊗A =
∑
j∈V t

χj ⊗ δτ1,τ2q
j
t(τ1)

= δτ1,τ2(
∑
j∈V

χj ⊗ qjt(τ1)) = α(< χτ1 , χτ2 >C(V ))

As {χτ |τ ∈ E} linearly spans L2(E), our proposition is proved.

Remark 7.3.7. In [BJ] we see another approach to quantum symmetry in simple graphs where

one considers a restricted category of CQGs co-acting equivariantly on the C* correspondence

coming naturally from a simple graph. It is interesting to compare this approach to our ap-

proaches of quantum symmetry and see whether the idea can be extended into the realm of

multigraphs.

7.3.3 Quantum symmetry on Potts Model

Potts model is one of the fundamental models in statistical mechanics. We have given already

a brief description in section 2.2 of chapter 2. In [GAH22] we have been able to define a notion

of quantum symmetry in q-state Potts model where the underlying graphs are simple graphs

without loops. Using the machinery developed there we have shown that in some toy models,

how slight fluctuations of Hamiltonian can lead to drastic changes in quantum symmetry making

a possible case of phase transition in the system. In chapter 8 we have extended our treatment

in the context of multigraphs.





Chapter 8

Quantum symmetry in q-state Potts

model

In this chapter we will be describing the notion of quantum symmetry in a q-state Potts model

and demonstrate the importance of quantum symmetry in the theory of phase transitions in

some simple physical models through examples. Though the original work done by us in [GAH22]

were concerned with only undirected simple graphs, similar computations can be carried out in

the context of undirected multigraphs as we will see in this chapter. Physically, a multigraph

can correspond to lattices of atoms with double or triple bonds. We will see later through

examples that slight change in energy in one of the bonds can effect the quantum symmetry

in the system drastically. We will also be using a simpler version of Potts model for simpler

mathematical treatment.

8.1 Hamiltonian on an undirected multigraph

Let (V,E, j) be an undirected multigraph with no loops. A q-state Potts model (q ∈ N and

q ≥ 2) on (V,E, j) consists of a set of configurations ΩP and a Hamiltonian HP : ΩP → C

defined as follows:

Definition 8.1.1. A configuration ω for a q-state Potts Model on (V,E, j) is a function from

V to a finite set Xq consisting of q number of elements. The Hamiltonian HP is defined to be:

HP (ω) :=
∑
τ∈E

Jτδω(s(τ)),ω(t(τ)) for all ω ∈ ΩP (8.1.1)

where Jτ ∈ C and Jτ = Jτ for all τ ∈ E. The expression δω(k),ω(l) is equal to 1 if ω(k) = ω(l)

and is 0 otherwise.

129
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A word of caution

One should not confuse the linear map J : L2(E) → L2(E) coming from the inversion map

in an undirected multigraph with the set of parameters {Jτ |τ ∈ E} of the Hamiltonian in

definition 8.1.1 as they are completely unrelated. There will not be any notational confusion as

the linear map J : L2(E) → L2(E) itself will not be used in this chapter explicitly anywhere.

We end this section with the following remark.

Remark 8.1.2. For any k, l ∈ V let us define Ak
l =

∑
τ∈Ek

l
Jτ if Ek

l ̸= ϕ and Ak
l = 0

otherwise. From equation 8.1.1 for any configuration ω ∈ ΩP we have,

HP (ω) =
∑
τ∈E

Jτδω(s(τ)),ω(t(τ)) =
∑
k,l∈V
Ek

l ̸=ϕ

∑
τ∈Ek

l

Jτδω(k),ω(l) =
∑
k,l∈V

Ak
l δω(k),ω(l). (8.1.2)

The matrix (Ak
l )k,l∈V is a symmetric matrix as Jτ = Jτ for all τ ∈ E.

Now we discuss the notion of quantum symmetry in Potts model.

8.2 Hamiltonian as a bilinear form

Let (V,E, j) be an undirected multigraph without loops with a specified Hamiltonian HP . Let

us consider α to be a co-action of a compact quantum group (A,∆) on C(V ). We want

to describe what it means for α to preserve the Hamiltonian HP . Such a co-action can be

described to preserve the quantum symmetry of the q-state Potts model on (V,E, j). For our

purpose, it is convenient to see a configuration ω as an element of C(V )⊗ C∗(Zq) such that,

ω(k) = χgk for some gk ∈ Zq.

Let τ : C∗(Zq) → C be a linear functional defined by τ(f) = f(e), where e is the identity

of the cyclic group Zq. Let us define a bilinear form <,>HP
on C(V )⊗ C∗(Zq) by

< f, h >HP
=

∑
k,l∈V

Ak
l τ(f(k)

∗ ∗ h(l))

where f and h are arbitrary elements in C(V )⊗C∗(Zq) and f(k)∗(g) = f(k)(g−1). We observe

that,
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< f, h >HP
=

∑
k,l∈V

Ak
l τ(f(k)

∗ ∗ h(l))

=
∑
k,l∈V

Ak
l τ

(
(
∑
g1∈Zq

f(k)(g1)χ
∗
g1) ∗ (

∑
g2∈Zq

h(l)(g2)χg2)
)

=
∑
k,l∈V

g1,g2∈Zq

Ak
l f(k)(g1)h(l)(g2)τ

(
χg−1

1 g2

)

=
∑
k,l∈V
g∈Zq

Ak
l f(k)(g)h(l)(g) (as τ(χg) = 1 iff g = e)

Let ω ∈ ΩP . We observe that,

< ω,ω >HP
=

∑
k,l∈V
g∈Zq

Ak
l ω(k)(g)ω(l)(g)

=
∑
k,l∈V

Ak
l (

∑
g∈Zq

ω(k)(g)ω(l)(g))

=
∑
k,l∈V

Ak
l δgk,gl (as ω(k)(g) = χgk)

= HP (ω). (8.2.1)

<,>HP
induces an A valued bilinear form <,>HP⊗A on C(V )⊗ C∗(Zq)⊗A given by

< f ⊗ a, h⊗ b >HP⊗A :=< f, h >HP
a∗b.

Let us define α′ : C(V )⊗ C∗(Zq) → C(V )⊗ C∗(Zq)⊗A given by,

α′ = (id⊗ σ23)(α⊗ id)

where σ23 is the standard flip between 2nd and 3rd coordinates. It is easy to see that α′ is a

co-action on the algebra C(V )⊗ C∗(Zq).
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8.3 Notion of quantum symmetry in Potts model

8.3.1 Co-action preserving the Hamiltonian

Definition 8.3.1. Let (V,E, j) be an undirected multigraph without loops and there is a

specified Hamiltonian HP on it. Let α be a co-action of a CQG (A,∆) on C(V ). The co-

action α is said to preserve HP if the following holds:

< ω,ω >HP
=< α′(ω), α′(ω) >HP⊗A for all ω ∈ ΩP (8.3.1)

where <,>HP
and α′ are defined in section 8.2.

8.3.2 Algebraic characterisations

We introduce some notations for our convenience.

Notation 8.3.2. Let α be a co-action of a CQG (A,∆) on C(V ) with co-representation matrix

(qkl )k,l∈V . For β, γ ∈ V , we define,

Sβγ :=
∑
k,l∈V

Ak
l q

k
βq

l
γ .

Let f ∈ C(V ) be defined by,

f(β) =
∑
l∈V

Aβ
l =

∑
k∈V

Ak
β for all β ∈ V.

By evaluating right hand side of equation (8.3.1) we get,

< α′(ω), α′(ω) >HP⊗A =<
∑
k∈V

α′(χk ⊗ ω(k)),
∑
l∈V

α′(χl ⊗ ω(l)) >HP⊗A

=
∑

k′,l′,k,l∈V
< χk′ ⊗ ω(k), χl′ ⊗ ω(l) >HP

qk
′

k ql
′
l

=
∑

k′,l′,k,l∈V
g∈Zq

Ak′
l′ ω(k)(g)ω(l)(g)q

k′
k ql

′
l

=
∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Skl. (8.3.2)
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Remark 8.3.3. From equations 8.2.1 and 8.3.2 it follows that α preserves the Hamiltonian of

q-state Potts model on (V,E, j) iff the following holds:

∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Ak
l 1 =

∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Skl for all ω ∈ ΩP . (8.3.3)

8.4 Some useful observations

Let us fix an undirected multigraph (V,E, j) without loops and Hamiltonian HP on (V,E, j).

Let us make some observations which will be crucial in the next section for proving the main

theorem of this chapter.

Proposition 8.4.1. Let α be a co-action of a CQG (A,∆) on C(V ). If the co-representation

matrix Q corresponding to α commutes with the matrix (Ak
l )k,l∈V , then α preserves the Hamil-

tonian HP in the sense of definition 8.3.1.

Proof. Let k, l ∈ V . We observe that,

Skl =
∑

k′,l′∈V
Ak′

l′ q
k′
k ql

′
l =

∑
k′∈V

qk
′

k (
∑
l′∈V

Ak′
l′ q

l′
l )

=
∑
k′∈V

∑
l′∈V

Al′
l q

k′
k qk

′
l′

=
∑
k′∈V

Ak
l q

k′
k = Ak

l 1.

Hence from equation 8.3.3, the result follows.

Proposition 8.4.2. Let α be the co-action of a CQG (A,∆) on C(V ) and h be the Haar

functional on (A,∆). If h(Sβγ) = Aβ
γ for all β, γ ∈ V , then the co-representation matrix Q of

α commutes with the matrix A = (Ak
l )k,l∈V .

Proof. Let β, γ ∈ V . Then we observe that,

∆(Sβγ) = ∆(
∑
k,l∈V

Ak
l q

k
βq

l
γ)

=
∑
k,l∈V

Ak
l ∆(qkβ)∆(qlγ)

=
∑
k,l∈V

Ak
l (

∑
k′∈V

qkk′ ⊗ qk
′

β )(
∑
l′∈V

qll′ ⊗ ql
′
γ )

=
∑

k,l,k′,l′∈V
Ak

l (q
k
k′q

l
l′ ⊗ qk

′
β ql

′
γ ). (8.4.1)
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As h is the Haar functional, we have,

(h⊗ id)∆(a) = h(a)1 for all a ∈ A. (8.4.2)

From equation (8.4.1) we get,

(h⊗ id)∆(Sβγ) =
∑

k,l,k′,l′∈V
Ak

l h(q
k
k′q

l
l′)q

k′
β ql

′
γ

=
∑

k′,l′∈V
(h(

∑
k,l∈V

Ak
l q

k
k′q

l
l′))q

k′
β ql

′
γ

=
∑

k′,l′∈V
qk

′
β ql

′
γh(Sk′l′)

=
∑

k′,l′∈V
qk

′
β ql

′
γA

k′
l′ = Sβγ .

As h is the Haar funtional on (A,∆), from our hypothesis it follows that

Sβγ = Aβ
γ1 for all β, γ ∈ V. (8.4.3)

Finally we observe,

(QA)ij =
∑
k∈V

qikA
k
j =

∑
k∈V

qik(
∑

k′,l∈V
Ak′

l q
k′
k qlj) (from (8.4.3))

=
∑
k,l∈V

Ai
lq

i
kq

l
j

=
∑
l∈V

Ai
lq

l
j = (AQ)ij .

Hence we get that Q and A commutes.

From proposition (8.4.1) and proposition (8.4.2), we get the following result:

Theorem 8.4.3. Let (A,∆) be a compact quantum group co-acting on C(V ). The co-

representation matrix Q commutes with the matrix (Ak
l )k,l∈V if and only if Sβγ = Aβ

γ1 for

all β, γ ∈ V .

8.5 Preservence of Hamiltionian and weighted symmetry

Let α be a quantum permutation of the vertex set V . We have seen in proposition 8.4.1 that

if the co-representation matrix Q commutes with (Ak
l )k,l∈V then α preserves the Hamiltonian
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Hp on (V,E, j). It turns out that the converse is also true. To show that, we will need the

following lemma.

Lemma 8.5.1. Let α be a co-action of a CQG (A,∆) on C(V ). If α preserves the Hamiltonian

HP on (V,E, j), then α(f) = f ⊗ 1 where f is described in notation 8.3.2.

Proof. To show that α(f) = f ⊗ 1, it is enough to show

∑
k∈V

f(k)qβk = f(β)1 (8.5.1)

for all β ∈ V .

Let us fix β in V and g0 ∈ Zq such that g0 ̸= e. We define ω : V → C∗(Zq) by ω(β) = χg0

and ω(k) = χe for k ̸= β. For ω, we evaluate right hand side of equation (8.3.3) as follows:

∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Skl =
∑
k∈V
g∈Zq

ω(k)(g)ω(β)(g)Skβ +
∑
l∈V
g∈Zq

ω(β)(g)ω(l)(g)Sβl

+
∑
k,l ̸=β
g∈Zq

ω(k)(g)ω(l)(g)Skl

=
∑
k,l ̸=β

Skl

=
∑
k,l ̸=β

∑
k′,l′∈V

Ak′
l′ q

k′
k ql

′
l

=
∑

k′,l′∈V
Ak′

l′ (1− qk
′

β )(1− ql
′
β )

=
∑

k′,l′∈V
Ak′

l′ (1− qk
′

β − ql
′
β )

=
∑
k′∈V

f(k′)− 2
∑
l′∈V

f(l′)ql
′
β .

For ω, evaluating left hand side of equation (8.3.3) we get,

∑
k,l∈V
g∈Zq

Ak
l ω(k)(g)ω(l)(g) =

∑
k∈V
g∈Zq

Ak
βω(k)(g)ω(β)(g) +

∑
l∈V
g∈Zq

Aβ
l ω(β)(g)ω(l)(g)

+
∑
k,l ̸=β
g∈Zq

Ak
l ω(k)(g)ω(l)(g)

=
∑
k,l ̸=β

Ak
l

=
∑
l ̸=β

(f(l)−Aβ
l )
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=
∑
l∈V

f(l)− 2f(β).

By our hypothesis and remark (8.3.3) we know that equation (8.3.3) holds. Hence, we conclude

that equation (8.5.1) is true and our proposition is proved.

Now we are in a position to prove the main result of this chapter.

Theorem 8.5.2. Let α be a co-action of a CQG (A,∆) on C(V ). If α preserves the Hamiltonian

HP on (V,E, j), then the co-representation matrix Q of α commutes with the matrix A =

(Ak
l )k,l∈V .

Proof. We fix β, γ ∈ V such that β ̸= γ and g0 ∈ Zq which is not e. We define a configuration

ω : V → C∗(Zq) by

ω(β) = χg0 ,

ω(γ) = χg0 ,

ω(k) = χe for k ̸= β, γ.

.

Evaluating right hand side of equation (8.3.3) for ω and using lemma 8.5.1 we get,

∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Skl =
∑
l ̸=β,γ
g∈Zq

ω(β)(g)ω(l)(g)Sβl +
∑
l ̸=β,γ
g∈Zq

ω(γ)(g)ω(l)(g)Sγl

+
∑
k ̸=β,γ
g∈Zq

ω(k)(g)ω(β)(g)Skβ +
∑
k ̸=β,γ
g∈Zq

ω(k)(g)ω(γ)(g)Skγ

+
∑
k ̸=β,γ
l ̸=β,γ
g∈Zq

ω(k)(g)ω(l)(g)Skl + Sβγ + Sγβ

=
∑
k ̸=β,γ
l ̸=β,γ

Skl + Sβγ + Sγβ

=
∑

k′,l′∈V
Ak′

l′ (
∑
k ̸=β,γ
l ̸=β,γ

qk
′

k ql
′
l ) + Sβγ + Sγβ

=
∑

k′,l′∈V
Ak′

l′ (1− qk
′

β − qk
′

γ )(1− ql
′
β − ql

′
γ ) + Sβγ + Sγβ

=
∑

k′,l′∈V
Ak′

l′ (1− qk
′

β − qk
′

γ − ql
′
β + qk

′
γ ql

′
β − ql

′
γ + qk

′
β ql

′
γ )

+ Sβγ + Sγβ
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=
∑
k′∈V

f(k′)− f(β)1− f(γ)1− f(β)1 + Sγβ − f(γ)1

+ Sβγ + Sβγ + Sγβ

=
∑
k′∈V

f(k′)− 2f(β)1− 2f(γ)1 + 2Sβγ + 2Sγβ. (8.5.2)

By evaluating left hand side of equation (8.3.3) for ω we get,

∑
k,l∈V
g∈Zq

ω(k)(g)ω(l)(g)Ak
l =

∑
l ̸=β,γ
g∈Zq

ω(β)(g)ω(l)(g)Aβ
l +

∑
l ̸=β,γ
g∈Zq

ω(γ)(g)ω(l)(g)Aγ
l

+
∑
k ̸=β,γ
g∈Zq

ω(k)(g)ω(β)(g)Ak
β +

∑
k ̸=β,γ
g∈Zq

ω(k)(g)ω(γ)(g)Ak
γ

+
∑
k ̸=β,γ
l ̸=β,γ
g∈Zq

ω(k)(g)ω(l)(g)Ak
l +Aβ

γ +Aγ
β

=
∑
k ̸=β,γ
l ̸=β,γ

Ak
l +Aβ

γ +Aγ
β

=
∑
k ̸=β,γ

(f(k)−Ak
β −Ak

γ) +Aβ
γ +Aγ

β

=
∑
k ̸=β,γ

f(k)−
∑
k ̸=β,γ

Ak
β −

∑
k ̸=β,γ

Ak
γ +Aβ

γ +Aγ
β

=
∑
k∈V

f(k)− f(β)− f(γ)− f(β) +Aγ
β − f(γ) +Aβ

γ

+Aβ
γ +Aγ

β

=
∑
k∈V

f(k)− 2f(β)− 2f(γ) + 2Aβ
γ + 2Aγ

β. (8.5.3)

From our hypothesis and remark (8.3.3) we know that equation (8.3.3) holds. Hence, from

equations (8.5.2) and (8.5.3) we get,

Sβγ + Sγβ = (Aβ
γ +Aγ

β)1

which implies h(Sβγ) = Aβ
γ .

as h is tracial on the algebra generated by the coefficients of the matrix (qkl )k,l∈V inside A.

Since our choice of β, γ was arbitrary, from proposition 8.4.2 the theorem follows.
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Theorem 8.5.3. There exists a unique universal object in the category of compact quantum

groups co-acting on (V,E, j) preserving the Hamiltonian of q-state Potts model.

Proof. From lemma (8.4.1) and theorem (8.5.2), it follows that a compact quantum group

(A,∆) co-acts on (V,E, j) via preserving the Hamiltonian iff the co-representation matrix Q

of the co-action α : C(V ) → C(V ) ⊗ A commutes with the matrix (Ak
l )k,l∈V . Hence, from

theorem (2.5.6) our claim follows.

Let us call this unique universal object Quantum symmetry group of Potts model on

(V,E, j).

8.6 Phase transition in some simple models

In this section, we look at some simple examples of Potts models where a slight fluctuation

in the Hamiltonian can destroy the quantum symmetry present in system and turn it into a

classical one or the opposite. This abrupt change in symmetry can indicate towards a phase

transition in the system.

8.6.1 Example 1

We start with the graph of a cube as shown in figure (8.1). Let the set of vertices be V =

{1, 2, 3, 4, 1′, 2′, 3′, 4′} and the edges E are as shown in the picture. To specify a Hamiltonian

on (V,E) it is enough to specify the matrix (Ak
l )k,l∈V (see remark 8.1.2).

Let λ ∈ C. We consider the Hamiltonian Hλ given by,

Hλ(ω) =
∑
k,l∈V

Ak
l δω(k),ω(l) ∀ ω ∈ ΩP (8.6.1)

where the matrix (Ak
l )k,l∈V is given by,

Ak
l = 1 if (k, l) ̸= (4, 4′), (4′, 4),

A4
4′ = A4′

4 = λ.

Remark 8.6.1. When λ = 1, The quantum symmetry group of Potts Model is the quantum

automoprhism group of the graph (V,E) in Banica’s sense which is a non-classical compact

quantum group. See for instance ([BBC07b], [BBC07a]).
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1 2

34

1′ 2′

3′4′

λ

1

Figure 8.1: The graph of a cube with a specified Hamiltonian on it.

Lemma 8.6.2. When λ is not 1, the quantum symmetry group of Potts model on (V,E)

becomes commutative.

Proof. Let λ be a complex number which is not 1. Let α be a co-action of a compact quan-

tum group (A,∆) on C(V ) preserving the Hamiltonian Hλ. From theorem 8.5.2, the co-

representation matrix Q of α commutes with (Ak
l )k,l∈V .

From proposition 2.5.10 it follows that qk4 = q4l = qk4′ = q4
′

l = 0 when k ̸= 4, 4′ and l ̸= 4, 4′.

Hence it follows that

q44′ = q4
′

4 and q44 = q4
′

4′

Using QA = AQ, we get the following commutation relations:

q44 =(AQ)14 = (QA)14 = q11 + q13

0 =(AQ)24 = (QA)24 = q21 + q23

q4
′

4 =(AQ)1
′

4 = (QA)1
′

4 = q1
′

1 + q1
′

3

0 =(AQ)2
′

4 = (QA)2
′

4 = q2
′

1 + q2
′

3

q4
′

4′ =(AQ)1
′

4′ = (QA)1
′

4′ = q1
′

1′ + q1
′

3′

0 =(AQ)2
′

4′ = (QA)2
′

4′ = q2
′

1′ + q2
′

3′

(8.6.2)
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From equations (8.6.2) we note that q21 + q23 = 0, which implies q21 = 0 and q23 = 0. Similarly

q2
′

1 = q2
′

3 = q21′ = q23′ = q2
′

1′ = q2
′

3′ = 0. The co-representation matrix Q becomes,



q11 0 q13 0 q11′ 0 q13′ 0

0 q22 0 0 0 q22′ 0 0

q31 0 q33 0 q31′ 0 q33′ 0

0 0 0 q44 0 0 0 q44′

q1
′

1 0 q1
′

3 0 q1
′

1′ 0 q1
′

3′ 0

0 q2
′

2 0 0 0 q2
′

2′ 0 0

q3
′

1 0 q3
′

3 0 q3
′

1′ 0 q3
′

3′ 0

0 0 0 q4
′

4 0 0 0 q4
′

4′


By equating 1st row of (AQ) and (QA) we get,

q1
′

1 = (AQ)11 = (QA)11 = q11′

q22 = (AQ)12 = (QA)12 = q11 + q13 = q44

q1
′

3 = (AQ)13 = (QA)13 = q13′

q1
′

1′ = (AQ)11′ = (QA)11′ = q11

q22′ = (AQ)12′ = (QA)12′ = q11′ + q13′ = q44′

q1
′

3′ = (AQ)13′ = (QA)13′ = q13

(8.6.3)

Finally, from 8.6.3 and 8.6.2 we observe that,

qi
′
j = qij′ and qi

′
j′ = qij for all i, j ∈ {1, 2, 3, 4}. (8.6.4)

These are enough relations to conclude that the entries of Q commute with each other. Hence

the quantum symmetry group of Potts model on (V,E) is commutative.

8.6.2 Example 2

We observe a phenomena similar to that we observed in example 1 but in the context of

multigraphs. Let us consider the multigraph (V,E, j) given in figure 8.2. The vertex set V

consists of 5 elements and edge set E has 10 directed edges where oppositely directed edges

are identified via the inversion map j to produce an undirected edge. Let us denote the edges

emitting from 1 by {σ2, σ′
2, σ3, σ4, σ5} where σ2 and σ′

2 are edges from 1 to 2 and σ3, σ4, σ5 are

edges from 1 to 3, 4 and 5 respectively. Let us consider λ2, λ
′
2 ∈ C. We consider a Hamiltonian
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•

•

•• •

2

3 4 5

1

λ2 λ′
2

Figure 8.2: The multigraph in example 2 with the corresponding Hamiltonian.

HP on (V,E, j) by

HP (ω) :=
∑
τ∈E

Jτδω(s(τ)),ω(t(τ)) for all ω ∈ ΩP

where Jσ2 = λ2 = Jσ2 , Jσ′
2
= λ′

2 = J
σ′
2
and Jτ = 1 otherwise. Using theorem 8.5.2 it is easy

to see that when λ2 +λ′
2 = 1, the quantum symmetry group of Potts model on (V,E, j) is S+

4

which signifies that the system has quantum symmetry. Any slight fluctuation in the parameters

λ1 and λ2 such that λ1 + λ2 ̸= 1, the quantum symmetry group for Potts model becomes S+
3

and the system loses its quantum symmetry completely.

8.6.3 Example 3

We look at an example of Potts model where slight fluctuation of Hamiltonian changes the

quantum symmetry of the system but does not affect its classical symmetry.

We consider the graph (V,E) shown in figure (8.3). The vertex set V = {1, 2, 3, ..., 8} has

8 elements and the edge set is as shown in the figure. To specify a Hamiltonian on (V,E)

we simply specify the matrix (Ak
l )k,l∈V . Let us consider λ1, λ2 ∈ C such that |λ1| ≤ 1 and

|λ2| ≤ 1. We consider the following Hamiltonian HP on (V,E) given by

HP (ω) =
∑
k,l∈V

Ak
l δω(k),ω(l) ∀ ω ∈ ΩP

where (Ak
l )k,l∈V is a symmetric matrix and A1

7 = A1
8 = A2

5 = A2
6 = A7

8 = λ1, A
5
6 = λ2

and Ak
l = 1 otherwise. The underlying simple graph (V,E) (that is, when λ1 = λ2 = 1) does

not have any quantum symmetry (see section (4.4) of [Sch20b]). In light of theorem 2.5.9, we

observe that,
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Figure 8.3: The graph in example 3 with the corresponding Hamiltonian.

Remark 8.6.3. When λ1 ̸= 0 and λ1 = λ2, the quantum symmetry group of Potts model on

(V,E) is C(Z2)⊗ C(Z2).

Lemma 8.6.4. When λ1 = 0 and λ1 ̸= λ2, the quantum symmetry group of Potts model on

(V,E) becomes C(Z2) ∗ C(Z2).

Proof. Let (A,∆) be the quantum symmetry group for Potts model on (V,E) co-acting on

C(V ) via α preserving the Hamiltonian HP . As before, from theorem 8.5.2 it follows that the

co-representation matrix Q of α commutes with the matrix A = (Ak
l )k,l∈V .

From proposition (2.5.10) it follows that,

q3l = q4l = 0 for l ̸= 3, 4,

q1l = q2l = 0 for l ∈ {3, 4, 5, 6},

q7l = q8l = 0 for l ∈ {3, 4, 5, 6}.

(8.6.5)

We observe that,

q34 = (AQ)74 = (QA)74 = q78

q34 = (AQ)54 = (QA)54 = q56

0 = (AQ)13 = (QA)13 = q17

0 = (AQ)14 = (QA)14 = q18

0 = (AQ)23 = (QA)23 = q27

0 = (AQ)24 = (QA)24 = q28.

(8.6.6)
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In light of equations (8.6.5) and (8.6.6), the co-representation matrix Q becomes,



1− p p 0 0 0 0 0 0

p 1− p 0 0 0 0 0 0

0 0 1− q q 0 0 0 0

0 0 q 1− q 0 0 0 0

0 0 0 0 1− q q 0 0

0 0 0 0 q 1− q 0 0

0 0 0 0 0 0 1− q q

0 0 0 0 0 0 q 1− q


where two projections p and q are free. Hence we conclude that the quantum symmetry group

of Potts model on (V,E) is C(Z2) ∗ C(Z2).

Remark 8.6.5. For λ1 = 0 and λ1 ̸= λ2, the quantum symmetry group for Potts model is

C(Z2) ∗ C(Z2) which is indeed a non-classical comapct quantum group. On the other hand,

the classical symmetry group for Potts model is C(Z2) ⊗ C(Z2), which is same as the case

when λ1 ̸= 0 and λ1 = λ2. Hence we observe that slight changing the parameters λ1 and λ2 in

certain manner keeps the classical symmetry same but affects quantum symmetry drastically.

We end this thesis with the following question:

Question

For an arbitrary directed multigraph (V,E), does the category Csym
(V,E) always admit a universal

object? If the answer is negative, then are the categories Cs,t
(V,E)’s, for different representations

of (V,E), the largest subcategories of non-Bichon type in Csym
(V,E) where universal objects exist

and are algebraically describable?
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Saarländische Universitäts-und Landesbibliothek, 2020.

[Sch20c] Simon Schmidt. Quantum automorphisms of folded cube graphs. Université de
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Hopf algebras to multiplicative unitaries and beyond. doi:10.4171/043.

[Wan95] Shuzhou Wang. Free products of compact quantum groups. Communications in

Mathematical Physics, 167(3):671–692, 1995.

[Wan98] Shuzhou Wang. Quantum symmetry groups of finite spaces. Communications in

Mathematical Physics, 195(1):195–211, 1998. doi:10.1007/s002200050385.

[Wan02] Shuzhou Wang. Structure and isomorphism classification of compact quantum

groups Au(Q) and Bu(Q). Journal of Operator Theory, 48(3, suppl.):573–583,

2002.

[Web17] Moritz Weber. Introduction to compact (matrix) quantum groups and Banica-

Speicher (easy) quantum groups. Indian Academy of Sciences. Proceedings. Math-

ematical Sciences, 127(5):881–933, 2017. doi:10.1007/s12044-017-0362-3.

[Wor87] S. L. Woronowicz. Compact matrix pseudogroups. Communications in Mathemat-

ical Physics, 111(4):613–665, 1987.

[Wor98] S. L. Woronowicz. Compact quantum groups. In Symétries quantiques (Les

Houches, 1995), pages 845–884. North-Holland, Amsterdam, 1998.

[Wu82] F. Y. Wu. The Potts model. Reviews of Modern Physics, 54(1):235–268, 1982.

doi:10.1103/RevModPhys.54.235.

https://doi.org/10.4153/CMB-2017-075-4
https://doi.org/10.4171/043
https://doi.org/10.1007/s002200050385
https://doi.org/10.1007/s12044-017-0362-3
https://doi.org/10.1103/RevModPhys.54.235

	Acknowledgements
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.1.1 Simple graphs and weighted simple graphs
	2.1.2 Finite quivers or multigraphs
	2.1.3 Morphisms of finite quivers or multigraphs

	2.2 Review of Potts model in statistical mechanics
	2.3 Compact quantum group
	2.3.1 C* algebras and Hilbert C* modules
	2.3.2 Basic definitions
	2.3.3 Co-actions and co-representations
	2.3.4 Examples of compact quantum groups

	2.4 Free products of compact quantum groups
	2.5 Quantum automorphisms of simple and weighted graphs
	2.5.1 Bichon's notion of quantum symmetry
	2.5.2 Banica's notion of quantum symmetry

	2.6 Free wreath product by quantum permutation groups
	2.7 Setup and Notations

	3 Re-visiting quantum symmetry in simple graphs 
	3.1 Equivalent characterisations of quantum symmetries in a simple graph
	3.1.1 Banica's notion of quantum symmetry
	3.1.2 Bichon's notion of quantum symmetry

	3.2 Some useful observations
	3.3 Left equivariant co-representations on L2(E)
	3.4 Right equivariant co-representations on L2(E)
	3.4.1 Induced permutations on Vs and Vt

	3.5 Induced permutations on VsVt
	3.5.1 Two graphs with isomorphic bimodule structure
	3.5.2 Right equivariance of s and left equivariance of t

	3.6 Bi-unitarity and inversion in undirected graphs
	3.7 Equivalent definitions of quantum symmetries in a simple graph

	4 Quantum symmetry in directed and undirected multigraphs 
	4.1 Induced permutations on Vs and Vt from permutation of edges
	4.2 Notions of quantum symmetry in a directed multigraph
	4.2.1 Main definitions
	4.2.2 Left and right equivariance of the induced permutation 
	4.2.3 Some essential identities
	4.2.4 Complete orthogonality versus restricted orthogonality

	4.3 Preservence and permutation of loops
	4.4 Existence of Universal Objects:
	4.4.1 The categories CBan(V,E),CBic(V,E) and Csym(V,E):
	4.4.2 Existence of universal object in CBan(V,E) and CBic(V,E)
	4.4.3 Existence of universal object in Csym(V,E)

	4.5 Quantum automorphism groups of a directed multigraph
	4.6 Quantum Symmetry in undirected multigraphs
	4.6.1 Bi-unitarity and inversion in undirected multigraphs
	4.6.2 Notions of quantum symmetry in an undirected multigraph
	4.6.3 Underlying undirected multigraph of a directed multigraph


	5 Further investigations into Csym(V,E) and CBic(V,E)
	5.1 Decomposition of multigraphs into uniform multigraphs
	5.2  Co-actions on uniform components of a multigraph
	5.3 Co-actions on uniform multigraphs
	5.3.1 New notations and a technical lemma
	5.3.2 Nested quantum permutation relations
	5.3.3 A necessary and sufficient condition for Csym(V,E)= CBic(V,E)
	5.3.4 Complete description of QBic(V,E) for directed uniform multigraphs
	5.3.5 Complete description of QBic(V,E,j) for undirected uniform multigraphs


	6 Source and target dependent co-actions on (V,E)
	6.1 Source and target dependent automorphisms
	6.2 Source and target dependent quantum symmetries
	6.2.1 Algebras of twisted digonal operators
	6.2.2 Main definitions
	6.2.3 Algebraic characterisations
	6.2.4 More familiar forms and partial wreath product relations

	6.3 Existence of universal objects
	6.4 Automorphism groups of source and target dependent quantum symmetries
	6.5 Source and target dependent quantum symmetries of an undirected multigraph

	7 Examples and applications
	7.1 A summary of what has been done
	7.2  Examples and Computations
	7.2.1 Example 1:
	7.2.2 Example 2:
	7.2.3 Example 3:
	7.2.4 Example 4
	7.2.5 Example 5

	7.3 Applications:
	7.3.1 Quantum symmetry of Graph C* algebras
	7.3.2 Co-actions on C* correspondences
	7.3.3 Quantum symmetry on Potts Model


	8 Quantum symmetry in q-state Potts model
	8.1 Hamiltonian on an undirected multigraph
	8.2 Hamiltonian as a bilinear form
	8.3 Notion of quantum symmetry in Potts model
	8.3.1 Co-action preserving the Hamiltonian
	8.3.2 Algebraic characterisations

	8.4 Some useful observations
	8.5 Preservence of Hamiltionian and weighted symmetry
	8.6 Phase transition in some simple models
	8.6.1 Example 1
	8.6.2 Example 2
	8.6.3 Example 3


	Bibliography

