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Notations & Abbreviations

N Set of all Natural numbers.

Z+ N ∪ {0}.

Nn {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.

Zn+ {t = (t1, . . . , tn) : ti ∈ Z+, i = 1, . . . , n}.

z (z1, . . . , zn) ∈ Cn.

zk zk11 . . . zknn .

|k| k1 + . . .+ kn.

(T1, . . . , Tn) n-tuple of commuting operators on Hilbert spaces.

Tk T k11 . . . T knn .

Dn {z : |zi| < 1, i = 1, . . . , n}.

Bn {z :
∑n

i=1 |zi|2 < 1}.

E , E∗ Hilbert spaces.

O(Ω, E) The set of all holomorphic functions on Ω ⊆ Cn to E .

O(Bn,B(E , E∗)) The set of all B(E , E∗)-valued holomorphic functions on Bn.

A(Bn) Ball algebra.

H∞(Dn) The set of all bounded analytic functions on Dn.

1





Introduction

The purpose of this thesis is to examine some classical one variable Hilbert function

space theoretic results in the context of several complex variables and commuting tuples

of bounded linear operators on Hilbert spaces. More specifically, we will be interested

in the classical Sarason’s commutant lifting theorem on D, where

D = {z ∈ C : |z| < 1},

the open unit disc in C. A significant part of our discussion in this thesis will revolve

around the commutant lifting theorem in two different contexts, as well as its following

applications of independent importance. Another important object of study will be

Toeplitz operators on the polydisc Dn, n ≥ 1.

It is worth noting that the operator theory, in terms of complexity and known as well

as unknown, is different for commuting tuples of contractions and commuting tuples of

row contractions, just like the theory of analytic functions differs from the open unit ball

to the open unit polydisc. From this perspective, we talk about the commutant lifting

theorem in the context of the open unit ball and the polydisc. As we will see in this

thesis, the latter scenario seems to be more interesting and challenging.

The main contributions of this thesis are:

1. Partially isometric Toeplitz operators on the polydisc: We prove that a Toeplitz

operator Tφ, φ ∈ L∞(Tn), is a partial isometry if and only if there exist inner

functions φ1, φ2 ∈ H∞(Dn) such that φ1 and φ2 depend on different variables

and φ = φ̄1φ2. In particular, for n = 1, along with new proof, this recovers a

classical theorem of Brown and Douglas. We also prove that a partially isometric

Toeplitz operator is hyponormal if and only if the corresponding symbol is an inner

function in H∞(Dn). Moreover, partially isometric Toeplitz operators are always

power partial isometry (following Halmos and Wallen), and hence, up to unitary

equivalence, a partially isometric Toeplitz operator with a symbol in L∞(Tn),
n > 1, is either a shift, or a co-shift, or a direct sum of truncated shifts. Along the

way, we prove that Tφ is a shift whenever φ is inner in H∞(Dn).

2. Commutant lifting and Nevanlinna-Pick interpolation on the polydisc: The funda-

mental theorem on commutant lifting due to Sarason does not carry over to the

3



4 Introduction

setting of the polydisc. This chapter presents two classifications of commutant

lifting in several variables. The first classification links the lifting problem to the

contractivity of certain linear functionals. The second one transforms it into non

negative real numbers. We also solve the Nevanlinna-Pick interpolation problem

for bounded analytic functions on the polydisc. Commutant lifting and interpo-

lation on the polydisc solve two well-known problems in Hilbert function space

theory.

3. Perturbations of analytic functions on the polydisc: In the context of Schur func-

tions on Dn, we solve a perturbation problem.

4. Commutant lifting and Nevanlinna-Pick interpolation on the ball: We prove a

commutant lifting theorem and a Nevanlinna-Pick type interpolation result in the

setting of multipliers from vector-valued Drury-Arveson space to a large class of

vector-valued reproducing kernel Hilbert spaces over the unit ball. The special

case of reproducing kernel Hilbert spaces includes all natural examples of Hilbert

spaces like Hardy space, Bergman space and weighted Bergman spaces over the

unit ball.

Let us now elaborate on the preceding content chapter by chapter.

Chapter 1: Partially isometric Toeplitz operators on the polydisc.

Toeplitz operators are one of the most useful and prevalent objects in matrix theory,

operator theory, operator algebras, and its related fields. For instance, Toeplitz operators

provide some of the most important links between index theory, C∗-algebras, function

theory, and non-commutative geometry. See the monograph by Higson and Roe [62] for

a thorough presentation of these connections, and consult the paper by Axler [14] for a

rapid introduction to Toeplitz operators.

Evidently, a lot of work has been done in the development of one variable Toeplitz

operators, and it is still a subject of very active research, with an ever-increasing list

of connections and applications. But on the other hand, many questions remain to be

settled in the several variables case, and more specifically in the open unit polydisc

case (however, see [42, 43, 56, 72, 99]). The difficulty lies in the obvious fact that the

standard (and classical) single variable tools are either unavailable or not well developed

in the setting of polydisc. Evidently, advances in Toeplitz operators on the polydisc

have frequently resulted in a number of new tools and techniques in operator theory,

operator algebras, and related fields.

Our objective of this chapter is to address the following basic question: Characterize

partially isometric Toeplitz operators on H2(Dn), where H2(Dn) denotes the Hardy

space over the unit polydisc Dn. Recall that a partial isometry [58] is a bounded linear

operator whose restriction to the orthogonal complement of its null space is an isometry.
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Before we answer the above question, we first recall that H2(Dn) is the Hilbert space
of all analytic functions f on Dn such that

∥f∥ :=
(

sup
0≤r<1

∫
Tn

|f(rz1, . . . , rzn)|2dµ(z)
) 1

2
<∞,

where dµ is the normalized Lebesgue measure on the n-torus Tn, and z = (z1, . . . , zn).

We denote by L2(Tn) the Hilbert space L2(Tn, dµ). From the radial limits of square

summable analytic functions point of view [87], one can identify H2(Dn) with the closed

subspace H2(Tn) of L2(Tn). Let L∞(Tn) denote the standard C∗-algebra of C-valued
essentially bounded Lebesgue measurable functions on Tn. The Toeplitz operator Tφ

with symbol φ ∈ L∞(Tn) is defined by

Tφf = PH2(Dn)(φf) (f ∈ H2(Dn)),

where PH2(Dn) denotes the orthogonal projection from L2(Tn) onto H2(Dn). Also recall

that

H∞(Dn) = L∞(Tn) ∩H2(Dn),

where H∞(Dn) denotes the Banach algebra of all bounded analytic functions on Dn. A
function φ ∈ H∞(Dn) is called inner if φ is unimodular on Tn.

The answer to the above question is contained in the following theorem:

Theorem 0.0.1. Let φ be a nonzero function in L∞(Tn). Then Tφ is a partial isometry

if and only if there exist inner functions φ1, φ2 ∈ H∞(Dn) such that φ1 and φ2 depend

on different variables and

Tφ = T ∗
φ1
Tφ2 .

In particular, if n = 1, then the only nonzero Toeplitz operators that are partial

isometries are those of the form Tφ and T ∗
φ, where φ ∈ H∞(D) is an inner function.

This was proved by Brown and Douglas in [27]. Actually, as we will see soon in this case

that Tφ is not only an isometry but a shift.

A key ingredient in the proof of the Brown and Douglas theorem is the classical

Beurling theorem [23]. Recall that the Beurling theorem connects inner functions in

H∞(D) with shift invariant subspaces of H2(D). However, in the present case of higher

dimensions, this approach does not work, as is well known, Beurling type classification

does not hold for shift invariant subspaces of H2(Dn), n > 1. Here, we exploit more

analytic and geometric structures of H2(Dn) and L2(Tn) to achieve the main goal.

Along the way, we prove some basic properties of Toeplitz operators on the polydisc.

Some of these observations are perhaps known (if not readily available in the literature)

to experts, but they are necessary for our purposes here. We also remark that our proof

of

∥Tφ∥ = ∥φ∥∞ (φ ∈ L∞(Tn)), (0.0.1)
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seems to be different even in the case of n = 1, as it avoids the standard techniques of

the spectral radius formula (see Brown and Halmos [26, page 99] and the monographs

[45, 68, 78]).

Moreover, we prove the following result, which connects inner functions with shift

operators, and is also of independent interest: If φ ∈ H∞(Dn) is a nonconstant inner

function, then Mφ is a shift.

Here, and in what follows, Mφ denotes the analytic Toeplitz operator Tφ whenever

φ ∈ H∞(Dn). In this case, Mφ is simply the standard multiplication operator on

H2(Dn), that is, Mφf = φf for all f ∈ H2(Dn).

As a first application to Theorem 0.0.1, we classify partially isometric hyponormal

Toeplitz operators. Recall that a bounded linear operator T on some Hilbert space is

called hyponormal if

T ∗T − TT ∗ ≥ 0.

We prove the following: If Tφ, φ ∈ L∞(Tn), is a partial isometry, then Tφ is hyponormal

if and only if φ is an inner function in H∞(Dn).

Secondly, following the Halmos and Wallen [59] notion of power partial isometries (also

see an Huef, Raeburn and Tolich [63]), we prove that partially isometric Toeplitz op-

erators are always power partial isometry. We further exploit the Halmos and Wallen

models of power partial isometries, and obtain a connection between partially isometric

Toeplitz operators, shifts, co-shifts, and direct sums of truncated shifts.

Finally, collecting all these results together, from an operator theoretic point of view,

we obtain the following refinement of Theorem 0.0.1: Suppose Tφ, φ ∈ L∞(Tn), is

partially isometric. Then, up to unitary equivalence, Tφ is either a shift, or a co-shift,

or a direct sum of truncated shifts.

We stress that the latter possibility is only restricted to the n > 1 case.

Chapter 2: Commutant lifting and Nevanlinna-Pick interpolation on the

polydisc.

Sarason’s commutant lifting theorem [91] is fundamental, with significant applications

to virtually every aspect of Hilbert function space theory. One of them is the Nevanlinna-

Pick interpolation theorem on D, which we will quickly review before moving on to the

lifting theorem. Givenm distinct points Z = {z1, . . . , zm} ⊂ D (interpolation nodes) and

m scalars W = {w1, . . . , wm} ⊂ D (target data), there exists φ ∈ H∞(D) (interpolating
function) such that

∥φ∥∞ := sup
z∈D
|φ(z)| ≤ 1

and

φ(zi) = wi,
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for all i = 1, . . . ,m, if and only if the m×m Pick matrix PZ,W is positive semi-definite,

where

PZ,W :=
(1− wiw̄j
1− ziz̄j

)m
i,j=1

.

This was proved by G. Pick [85] more than a century ago. R. Nevanlinna [77] inde-

pendently solved the same problem at a very similar time. The methods of Pick and

Nevanlinna are different, interesting on their own, and still relevant. For instance, Pick

focused on interpolation on the upper half-plane, whereas the Schur algorithm (see I.

Schur [94, 95]) served as the driving force behind Nevanlinna’s strategy [54, 80].

After four decades of Pick’s paper, D. Sarason [91] provided a solid Hilbert function

space theoretical foundation for Nevanlinna and Pick’s analytic and algebraic methods

for the solution of the interpolation problem. Sarason’s elegant result, known as the

commutant lifting theorem, represents the commutant of model operators in terms of

nicer operators (say Toeplitz operators) without changing the norms. To be more spe-

cific, let us identify the class of functions of interest. We denote the closed unit ball of

H∞(Dn) by
S(Dn) = {φ ∈ H∞(Dn) : ∥φ∥∞ ≤ 1}.

The members of S(Dn) are known as Schur functions. Recall that the analytic Toeplitz

operator Tφ on H2(Tn), φ ∈ H∞(Dn), is defined by

Tφf = φf,

for all f ∈ H2(Tn). In particular, for φ = zi, we get Tzi , the multiplication operator by

coordinate function zi on H2(Tn), i = 1, . . . , n. The following equality describes how

the commutant of {Tzi}ni=1 connects the Banach algebra H∞(Dn) to B(H2(Tn)):

{Tz1 , . . . , Tzn}′ = {Tφ : φ ∈ H∞(Dn)}.

Moreover, we know that (see (0.0.1))

∥Tφ∥ = ∥φ∥∞ (φ ∈ H∞(Dn)).

We now return to the classical case where n = 1. Let Q be a T ∗
z -invariant closed

subspace of H2(T), and let X be a bounded linear operator on Q (in short, X ∈ B(Q)).
Sarason’s commutant lifting theorem states the following: Suppose X commutes with

the model operator PQTz|Q ∈ B(Q), that is

X(PQTz|Q) = (PQTz|Q)X.

Then there exists φ ∈ H∞(D) such that

X = PQTφ|Q,
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and

∥X∥ = ∥φ∥∞.

Here (and in what follows) PQ denotes the orthogonal projection from H2(T) onto Q.
In other words, along with ∥X∥ = ∥Tφ∥, the following diagram commutes:

H2(T)
Tφ

//
OO

iQ

H2(T)

PQ

��

Q
X

// Q

where iQ : Q ↪→ H2(T) denotes the inclusion map. The Nevanlinna-Pick interpola-

tion theorem then easily follows from this applied to zero-based finite-dimensional T ∗
z -

invariant subspaces of H2(T). The most important aspect of Sarason’s lifting theorem,

however, is the lifting of the commutant of model operators to the commutant of Tz

keeping the norms the same.

We remind the reader that Sarason’s commutant lifting theorem has a stellar rep-

utation in its application to the classical operator and function theoretic results like

the Carathéodory-Fejér interpolation problem, Nehari interpolation problem, von Neu-

mann inequality, isometric dilations, and the Ando dilation, just to name a few. The

expanded list easily includes control theory and electrical engineering [51, 61]. When

dealing with several variables, however, each analogue question poses a unique set of

challenges and frequently offers less opportunity for a comprehensive theory (however,

see [8, 20, 21, 39, 44, 55]). In fact, it is known that Sarason’s commutant lifting theorem

does not hold true in general in the setting of Dn. Understanding the obstacle of com-

mutant lifting over Dn is thus one of the most important problems in Hilbert function

space theory.

In this chapter, we solve the commutant lifting problem on H2(Tn), n ≥ 1. That is,

given a closed subspace Q ⊆ H2(Tn) that is invariant under T ∗
zi , i = 1, . . . , n, we classify

contractions X ∈ B(Q) satisfying the condition that

X(PQTzi |Q) = (PQTzi |Q)X (i = 1, . . . , n),

so that the following diagram commutes

H2(Tn)
Tφ

//
OO

iQ

H2(Tn)

PQ

��

Q
X

// Q
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for some φ ∈ S(Dn). Several attempts have been made to solve this problem, but

they appear to be quite abstract and only applicable to a smaller class of operators (or

functions). The most notable one is perhaps the work of Ball, Li, Timotin, and Trent

[20]. The class of functions considered in [20] is the so-called Schur-Agler class functions.

This class is significantly smaller than even the polydisc algebra when n > 2, and it is

the same as the Schur class when n = 2. Even in the n = 2 case, however, the existing

results are abstract. In the context of interpolation for the n = 2 case, we refer the

reader to the seminal papers by Agler [5, 6] (also, see the discussion following Theorem

0.0.5).

Our approach and solution to the commutant lifting problem are both concrete and

function-theoretic. As part of the application, we moreover solve the interpolation prob-

lem for Schur functions on Dn. In the context of Schur functions on Dn, we also solve a

perturbation problem. Like our commutant lifting theorem, all results are concrete and

quantify the complexity of the problem by nonnegative real numbers.

Now we provide a more thorough summary of this chapter’s key contribution. Unless

otherwise specified, we will always assume that n ≥ 1 is a natural number. Given a

Hilbert space H, set
B1(H) = {T ∈ B(H) : ∥T∥ ≤ 1}.

Given a nonempty subset S ⊆ H2(Tn), we define the conjugate space Sconj as

Sconj = {f̄ : f ∈ S}.

Let S ⊆ H2(Tn) be a closed subspace. We say that S is a shift invariant subspace (or

submodule) if

ziS ⊆ S,

for all i = 1, . . . , n. We say that S is a backward shift invariant subspace (or quotient

module) if S⊥ is a shift invariant subspace, or equivalently,

T ∗
ziS ⊆ S,

for all i = 1, . . . , n. Given a backward shift invariant subspace Q ⊆ H2(Tn), we define

the model operator Szi , for each i = 1, . . . , n, by

Szi = PQTzi |Q.

Now we define lifting on backward shift invariant subspaces.

Definition 0.0.2. Let Q ⊆ H2(Tn) be a backward shift invariant subspace, X ∈ B1(Q),
and suppose XSzi = SziX for all i = 1, . . . , n. If there exists φ ∈ S(Dn) such that

X = PQTφ|Q,

then X is said to have a lift, or to be liftable.
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We need to familiarise ourselves with a few more additional concepts. First, we define

the closed subspace of “mixed functions” of L2(Tn) as

Mn = L2(Tn)⊖ (H2(Tn)conj +H2(Tn)).

This space has a significant role to perform in the entire paper. It is crucial to observe

thatMn ∩H2(Tn) = {0}, and
M1 = {0}.

Let Q ⊆ H2(Tn) be a backward shift invariant subspace. Set

MQ = Qconj ∔ (Mn ∔H2
0 (Tn)), (0.0.2)

where

H2
0 (Tn) = H2(Tn)⊖ {1},

the closed subspace of H2(Tn) of functions vanishing at the origin. Note that ∔ signifies

the skew sum of Banach spaces. In what follows, we treat MQ as a subspace of the

classical Banach space L1(Tn), and denote it by (MQ, ∥ · ∥1). In other words

(MQ, ∥ · ∥1) ⊂ (L1(Tn), ∥ · ∥1).

Let X ∈ B(Q), and suppose

ψ = X(PQ1). (0.0.3)

Define a functional XQ : (MQ, ∥ · ∥1) −→ C by

XQf =

∫
Tn

ψf dµ (f ∈MQ).

Recall that dµ is the normalized Lebesgue measure on Tn. Finally, set

M̃Q,X = (Qconj ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)),

and again treat it as a subspace of L1(Tn):

(M̃Q,X , ∥ · ∥1) ⊂ (L1(Tn), ∥ · ∥1).

Now that we have these notations, we can say how the lifting of commutants in higher

dimensions is classified:

Theorem 0.0.3. Let Q ⊆ H2(Tn) be a backward shift invariant subspace and let X ∈
B(Q) be a contraction. Suppose XSzi = SziX for all i = 1, . . . , n. The following

conditions are equivalent:

1. X admits a lift.
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2. XQ : (MQ, ∥ · ∥1) −→ C is a contractive functional, where

XQf =

∫
Tn

ψf dµ (f ∈MQ).

3. distL1(Tn)

(
ψ̄

|ψ∥22
,M̃Q,X

)
≥ 1.

This solves the long-standing commutant lifting problem for H2(Tn), n > 1. We

believe that the technique used to prove our lifting theorem is interesting on its own.

Now we will explain the solution to the interpolation problem, which also resolves the

long-standing question on interpolation with Schur functions as interpolating functions

on Dn, n > 1. We will start by laying the groundwork. Recall that H2(Tn) is a

reproducing kernel Hilbert space corresponding to the Szegö kernel S : Dn × Dn → C
(see the monograph [84] for more details), where

S(z, w) =
n∏
i=1

1

1− ziw̄i
(z, w ∈ Dn).

For each w ∈ Dn, define S(·, w) : Dn → C by (S(·, w))(z) = S(z, w) for all z ∈ Dn. In view

of the standard reproducing kernel property, it follows that {S(·, w) : w ∈ Dn} ⊆ H2(Tn)
is a set of linearly independent functions, and

S(z, w) = ⟨S(·, w), S(·, z)⟩H2(Tn),

for all z, w ∈ Dn. Given a set of distinct points Z = {z1, . . . , zm} ⊂ Dn, we define an

m-dimensional subspace of H2(Tn) as

QZ = span{S(·, zj) : j = 1, . . . ,m}.

It follows that QZ is a backward shift invariant subspace of H2(Tn). Define

MQZ = QconjZ ∔ (Mn ∔H2
0 (Tn)).

In addition, given a set of scalars {wi}mi=1 ⊂ D, define XZ,W ∈ B(QZ) by

X∗
Z,WS(·, zj) = w̄jS(·, zj) (j = 1, . . . ,m).

The fact that XZ,W on QZ is a natural operator and that it meets the crucial condition

that XZ,WSzi = SziXZ,W , i = 1, . . . ,m, is noteworthy.

Here is a summary of our main interpolation results:

Theorem 0.0.4. Let Z = {zi}mi=1 ⊂ Dn be m distinct points, and let W = {wi}mi=1 ⊂ D
be m scalars. The following conditions are equivalent:

1. There exists φ ∈ S(Dn) such that φ(zi) = wi for all i = 1, . . . ,m.
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2. MZ,W : (MQZ , ∥ · ∥1)→ C is a contraction, where

MZ,Wf =

∫
Tn

ψZ,Wf dµ,

for all f ∈MQZ , and

ψZ,W =
m∑
i=1

ciS(·, zi),

and the scalar coefficients {ci}mi=1 are given by


c1

c2
...

cm

 =


S(z1, z1) S(z1, z2) · · · S(z1, zm)
S(z2, z1) S(z2, z2) · · · S(z2, zm)

...
. . .

. . .
...

S(zm, z1) S(zm, z2) · · · S(zm, zm)


−1 

w1

w2

...

wm

 .

3. Let ψ := XZ,W(PQZ1), and suppose

M̃Z,W := (QconjZ ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)).

Then

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃QZ

)
≥ 1.

Note that the matrix in part (2) of the above theorem is the inverse of the Gram

matrix (
S(zi, zj)

)m
i,j=1

,

corresponding to the m Szegö kernel functions {S(·, zi)}mi=1. Also, observe that part (3)

provides a useful quantitative criterion to check interpolation on the polydisc. Indeed,

as we will see, the quantitative criterion yields examples of interpolation on Dn, n ≥ 2.

Notable is the fact that interpolating functions in this case are polynomials.

It is noteworthy that the answer to natural questions, as in Theorems 0.0.3, 0.0.6,

and 0.0.4, has a connection to the set of nonnegative real numbers. This is a common

and classical occurrence. The classical Nehari theorem [79], for example, establishes a

direct link with such a distance function. Another instance is the celebrated Adamyan-

Arov-Krein formulae [2, 3, 4].

We also recover Sarason’s lifting theorem as an application to Theorem 0.0.3, resulting

in yet another proof of the classical lifting theorem:

Theorem 0.0.5. Let Q ⊆ H2(T) be a backward shift invariant subspace, and let X ∈
B1(Q). If

XSz = SzX,

then X is liftable.
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In the proof of the above theorem,MQ (defined as in (0.0.2)) admits a more compact

form, namely

MQ = φ(zH2(T)),

where φ ∈ H∞(D) is an inner function (that is, |φ| = 1 on T a.e.) and Q = (φH2(T))⊥.
Moreover, we employ all the standard one variable types of machinery like the Beurling

theorem, inner-outer factorizations [23, 54], etc. On the one hand, this is to be expected,

given that Sarason uses similar tools for his lifting theorem. This, on the other hand,

explains both the challenges associated with the commutant lifting theorem and the

potential for extensions of relevant function theoretic results on the polydisc.

Chapter 3: Perturbations of analytic functions on the polydisc.

In this chapter, we solve a perturbation problem: Given a nonzero function f ∈
H2(Tn), does there exist g ∈ H2(Tn) such that

f + g ∈ S(Dn)?

Of course, to avoid triviality (that g = −f , for instance), we assume that g ∈ {f}⊥. Set

Ln =Mn ⊕H2
0 (Tn),

and treat it as a subspace of L1(Tn). We present a complete solution to this problem as

follows:

Theorem 0.0.6. Let f ∈ H2(Tn) be a nonzero function. Then there exists g ∈ {f}⊥

such that

f + g ∈ S(Dn),

if and only if

distL1(Tn)

( f̄

∥f∥22
,Ln

)
≥ 1.

We will offer nontrivial examples to demonstrate the aforementioned result.

Chapter 4: Commutant lifting and Nevanlinna-Pick interpolation on the

ball:

In this chapter, we make a contribution to a commutant lifting theorem and a version

of Nevanlinna-Pick interpolation in the setting of the open unit ball Bn, where

Bn = {z = (z1, . . . , zn) ∈ Cn :

n∑
i=1

|zi|2 < 1}.

To be more precise, let m ≥ 1 and let Hm denote the reproducing kernel Hilbert space

corresponding to the kernel km on Bn, where

km(z,w) = (1−
n∑
i=1

ziw̄i)
−m (z,w ∈ Bn).
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Recall that Hm is the Drury-Arveson space (popularly denoted by H2
n), the Hardy

space, the Bergman space and the weighted Bergman space over Bn for m = 1, m = n,

m = n+ 1 and m > n+ 1, respectively.

Our main results, restricted to Hm, m > 1, can now be formulated as follows:

Commutant lifting theorem: Suppose Q1 and Q2 are joint (Mz1 , . . . ,Mzn) co-invariant

subspaces of H2
n(= H1) and Hm, respectively. Let X ∈ B(Q1,Q2) and ∥X∥ ≤ 1. If

X(PQ1Mzi |Q1) = (PQ2Mzi |Q2)X,

for all i = 1, . . . , n, then there exists a holomorphic function φ : Bn → C such that

the multiplication operator Mφ ∈ B(H2
n,Hm), ∥Mφ∥ ≤ 1 (that is, φ is a contractive

multiplier), and

X = PQ2Mφ|Q1 .

Thus, we have the following commutative diagram:

H2
n

Mφ
//

PQ1

��

Hm

PQ2

��

Q1
X

// Q2

Given a closed subspace S of a Hilbert space H we denote by PS the orthogonal projec-

tion of S on H.

Nevanlinna–Pick interpolation theorem: Given distinct p points

{zi}pi=1 ⊆ Bn,

and n points

{wi}pi=1 ⊆ D,

there exists a contractive multiplier φ such that

φ(zi) = wi,

for all i = 1, . . . , p if and only if the matrix[
1

(1−⟨zi,zj⟩)m −
wiw̄j

1−⟨zi,zj⟩

]p
i,j=1

,

is positive semi-definite. Here ⟨z,w⟩, denotes the Euclidean inner product of z and w

in Cn.

We make strong use of the commutant lifting theorem in the setting of Drury-Arveson

space and a refined factorization result concerning multipliers between Drury-Arveson
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space and a large class of analytic reproducing kernel Hilbert space over Bn.

We point out that the above interpolation theorem, in the setting of normalized

complete Pick kernel, is due to Aleman, Hartz, McCarthy and Richter [9]. Their proof

relies on Leech’s theorem (or Toeplitz corona theorem). From this point of view, in this

paper we prove that the interpolation theorem is a consequence of the commutant lifting

theorem. Furthermore, our interpolation result holds for operator-valued multipliers.

Note that there are also free noncommutative versions of interpolation theory (cf.

[17]).





Chapter 1

Partially Isometric Toeplitz

Operators On The Polydisc

1.1 Introduction

Our objective of this chapter is to address the following basic question: Characterize

partially isometric Toeplitz operators on H2(Dn), where H2(Dn) denotes the Hardy

space over the unit polydisc Dn. Recall that a partial isometry [58] is a bounded linear

operator whose restriction to the orthogonal complement of its null space is an isometry.

The answer to the above question is contained in the following theorem:

Theorem 1.1.1. Let φ be a nonzero function in L∞(Tn). Then Tφ is a partial isometry

if and only if there exist inner functions φ1, φ2 ∈ H∞(Dn) such that φ1 and φ2 depend

on different variables and

Tφ = T ∗
φ1
Tφ2 .

In particular, if n = 1, then the only nonzero Toeplitz operators that are partial

isometries are those of the form Tφ and T ∗
φ, where φ ∈ H∞(D) is an inner function.

This was proved by Brown and Douglas in [27]. Actually, as we will see soon in this case

that Tφ is not only an isometry but a shift.

Section 1.3 contains the proof of the above theorem. Along the way to the proof of

Theorem 1.1.1, in Section 1.2 we prove some basic properties of Toeplitz operators on

the polydisc. Some of these observations are perhaps known (if not readily available in

the literature) to experts, but they are necessary for our purposes here. We also remark

that the proof of ∥Tφ∥ = ∥φ∥∞, φ ∈ L∞(Tn), in Proposition 1.2.2 seems to be different

even in the case of n = 1, as it avoids the standard techniques of the spectral radius

formula (see Brown and Halmos [26, page 99] and the monographs [45, 68, 78]).

Moreover, in Section 1.4, we prove the following result, which connects inner functions

with shift operators, and is also of independent interest: If φ ∈ H∞(Dn) is a nonconstant

inner function, then Mφ is a shift.

17
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Here, and in what follows, Mφ denotes the analytic Toeplitz operator Tφ whenever

φ ∈ H∞(Dn). In this case, Mφ is simply the standard multiplication operator on

H2(Dn), that is, Mφf = φf for all f ∈ H2(Dn).

In Section 1.5, as a first application to Theorem 1.1.1, we classify partially isometric

hyponormal Toeplitz operators. Recall that a bounded linear operator T on some Hilbert

space is called hyponormal if T ∗T −TT ∗ ≥ 0. In Corollary 1.5.1, we prove the following:

If Tφ, φ ∈ L∞(Tn), is a partial isometry, then Tφ is hyponormal if and only if φ is an

inner function in H∞(Dn).

Secondly, following the Halmos and Wallen [59] notion of power partial isometries (also

see an Huef, Raeburn and Tolich [63]), in Corollary 1.5.2 we prove that partially isomet-

ric Toeplitz operators are always power partial isometry. In Theorem 1.5.3, we further

exploit the Halmos and Wallen models of power partial isometries, and obtain a connec-

tion between partially isometric Toeplitz operators, shifts, co-shifts, and direct sums of

truncated shifts.

Finally, collecting all these results together, from an operator theoretic point of view,

we obtain the following refinement of Theorem 1.1.1:

Suppose Tφ, φ ∈ L∞(Tn), is partially isometric. Then, up to unitary equivalence, Tφ is

either a shift, or a co-shift, or a direct sum of truncated shifts.

We stress that the latter possibility is only restricted to the n > 1 case.

1.2 Preparatory results

In this section, we develop the necessary tools leading to the proof of Theorem 1.1.1.

In this respect, we again remark that in what follows, we will often identify (via radial

limits) H2(Dn) withH2(Tn) without further explanation. Given φ ∈ L∞(Tn), we denote
by Lφ the Laurent operator on L2(Tn), that is, Lφf = φf for all f ∈ L2(Tn). Note that

∥Lφ∥B(L2(Tn)) = ∥φ∥∞,

where ∥φ∥∞ denotes the essential supremum norm of φ. The Toeplitz operator Tφ with

symbol φ ∈ L∞(Tn) is given by

Tφ = PH2(Dn)Lφ|H2(Dn).

Clearly, Tφ ∈ B(H2(Dn)). Also note that a function f =
∑
k∈Zn

akz
k ∈ L2(Tn) is inH2(Dn)

if and only if ak = 0 whenever at least one of the kj , j = 1, . . . , n, in k = (k1, . . . , kn) is

negative. Recall that µ is the normalized Lebesgue measure on Tn.

We start with several variables analogue of brother Riesz theorem. We denote the

set of zeros of a scalar-valued function f by Z(f).

Lemma 1.2.1. If f ∈ H2(Dn) is nonzero, then µ(Z(f)) = 0.
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Proof. Let m denote the normalized Lebesgue measure on T. Suppose f is a nonzero

function in H2(D2). For w1 and w2 in T a.e., we define the slice functions fw1 and fw2

by fw1(z) = f(w1, z) and fw2(z) = (z, w2) for all z ∈ T. Set

Z = {w2 ∈ T : fw2 ≡ 0}.

Note that Z ⊆ Z(fw1) for all w1 ∈ T. If m(Z) > 0, then the classical brother Riesz the-

orem implies that f is identically zero. Therefore, m(Z) = 0, where m is the normalized

Lebesgue measure on T. Evidently

m(Z(fw2)) =

1 if w2 ∈ Z

0 if w2 ∈ Zc,

and hence w2 7→ m(Z(fw2)) is a measurable function. By the Tonelli and Fubini theorem,

we see that

(m×m)(Z(f)) =
∫
T
m(Z(fz2)) dm(z2)

=

∫
Z
m(Z(fz2)) dm(z2) +

∫
Zc

m(Z(fz2)) dm(z2)

= 0.

The rest of the proof now follows easily by the induction on n.

We refer to Rudin [87, Theorem 3.3.5] for a different proof of the above lemma (even

in the context of functions in the Nevanlinna class). Also, see [101] for the same for

functions in H∞(Dn). However, the present proof is direct and avoids the use of heavy

machinery from function theory.

We now prove that ∥Tφ∥B(H2(Dn)) = ∥φ∥∞. As we have pointed out already in the

introductory section above, this may be known to experts. However, even when n = 1,

the present proof seems to be direct as it avoids the standard techniques of the spectral

radius formula. For instance, see the classic monograph [45, Corollary 7.8] and the recent

monograph [68, Corollary 3.3.2].

Proposition 1.2.2. ∥Tφ∥ = ∥φ∥∞ for all φ ∈ L∞(Tn).

Proof. Let L denote the set of Laurent polynomials in n variables. We compute

∥Tφ∥ = sup{|⟨φf, g⟩| : f, g ∈ H2(Dn), ∥f∥, ∥g∥ ≤ 1}

= sup{|⟨φf, g⟩| : f, g ∈ C[z1, . . . , zn], ∥f∥, ∥g∥ ≤ 1} (by density of polynomials)

= sup{|⟨φf, g⟩| : f, g ∈ L, ∥f∥, ∥g∥ ≤ 1}

= ∥Lφ∥

= ∥φ∥∞.
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Note the third equality follows because any Laurent polynomial can be multiplied by a

monomial to put it into polynomials. This completes the proof of the proposition.

The above elegant proof is due to Professor Greg Knese and replaces our original

proof, which was longer and technical.

Before proceeding to the proof of the main theorem, we conclude this section with a

result concerning unimodular functions in L∞(Tn).

Corollary 1.2.3. Suppose φ is a nonzero function in L∞(Tn). If ∥Tφf∥ = ∥φ∥∞∥f∥
for some nonzero f ∈ H2(Dn), then 1

∥φ∥∞φ is unimodular in L∞(Tn).

Proof. In view of Proposition 1.2.2, without loss of generality we may assume that

∥Tφ∥ = 1. Then ∫
Tn

|φ(z)|2|f(z)|2dµ(z) =
∫
Tn

|f(z)|2dµ(z).

By Lemma 1.2.1, |φ(z)| = 1 for all z ∈ Tn a.e. and the result follows.

In particular, if Tφ, φ ∈ L∞(Tn), is a partial isometry, then φ is unimodular.

1.3 Proof of Theorem 1.1.1

In this section, without explicitly mentioning it in each instance, we always assume that

Tφ, φ ∈ L∞(Tn), is partially isometric. Also, we frequently make use of the identification

H2(Dn) ∼= H2(Tn) without mentioning it (see Section 1.2).

For simplicity we denote by R(T ) the range of a bounded linear operator T . Clearly,

R(Tφ) is a closed subspace of H2(Dn).

Lemma 1.3.1. R(Tφ) is invariant under Mzi, i = 1, . . . , n.

Proof. Note that, since ∥Tφ∥ = 1, we have ∥φ∥∞ = 1. Suppose f ∈ R(Tφ). By Corollary

1.2.3, it follows that φ is unimodular, and hence ∥Lφ̄f∥ = ∥f∥. Since T ∗
φ is an isometry

on R(Tφ), we have

∥f∥ = ∥T ∗
φf∥ ≤ ∥Lφ̄f∥ = ∥φ̄f∥ = ∥f∥.

Therefore, ∥PH2(Dn)(φ̄f)∥ = ∥φ̄f∥, that is, PH2(Dn)(φ̄f) = φ̄f . This implies that

φ̄f ∈ H2(Dn), (1.3.1)

and hence ziφ̄f ∈ H2(Dn) for all i = 1, . . . , n. Then

TφT
∗
φ(zif) = Tφ(φ̄zif) = PH2(Dn)(|φ|2zif) = PH2(Dn)(zif) = zif,

implies that zif ∈ R(Tφ) for all i = 1, . . . , n. This completes the proof.
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In what follows, if i ∈ {1, . . . , n} and ki is a negative integer, then we write zkii = z̄−kii .

Lemma 1.3.2. For each i = 1, . . . , n, the function φ cannot depend on both zi and z̄i

variables at a time.

Proof. We shall prove this by contradiction. Assume without loss of generality that φ

depends on both z1 and z̄1. Then

φ =

∞∑
k=1

z̄k1φ−k ⊕
∞∑
k=0

zk1φk,

and φ−k0 ̸= 0 for some k0 ̸= 0. Here φk ∈ L2(Tn−1), k ∈ Z, is a function of {zi, z̄j :

i, j = 2, . . . , n}. There exist non-negative integers k2, . . . , kn, and l2, . . . , ln such that

the coefficient of z̄k22 · · · z̄knn zl22 · · · zlnn in the expansion of the Fourier series of φ−k0 is

nonzero. Set

Zkl := zk22 · · · z
kn
n zl22 · · · z

ln
n ,

and

f := Tφ(z
k0
1 Zkl)− z1Tφ(z

k0−1
1 Zkl).

Note that f is a nonzero function in H2(Dn), and f does not depend on z1. Since

Tφ(z
k0−1
1 Zkl) ∈ R(Tφ), Lemma 1.3.1 implies that f ∈ R(Tφ). In particular, by (1.3.1),

φ̄f ∈ H2(Dn). On the other hand, since

φ̄f =

∞∑
k=1

zk1 (fφ̄−k)⊕
∞∑
k=0

z̄k1 (fφ̄k),

it follows that fφ̄k = 0 for all k > 0. Since m({z ∈ Tn : f(z) = 0}) = 0, we have φ̄k = 0

for all k > 0. This yields

φ =

∞∑
k=0

z̄k1φ−k,

and hence φ depends on z̄1 and does not depend on z1. This is a contradiction.

We are now ready for the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. Suppose Tφ is a partial isometry. In view of Lemma 1.3.2,

there exists a (possibly empty) subset C of {z1, . . . , zn} such that φ is analytic in zi

for all zi ∈ A := Cc, and co-analytic in zj for all zj ∈ C. Let A = {zi1 , . . . , zip} and

C = {zj1 , . . . , zjq}. Then p+ q = n, and

φ =
∑
k∈Zq

+

z̄kCφA,k,

where φA,k ∈ H2(Dp) is a function of {zi1 , . . . , zip}, z̄kC = z̄k1j1 · · · z̄
kq
jq
, and k = (k1, . . . , kq) ∈

Zq+. Note that

φA,l ∈ R(Tφ) (l ∈ Zq+).
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Indeed, φA,0 = Tφ1 ∈ R(Tφ). Moreover, for each l ∈ Zq+ \ {0}, we have

Tφz
l = PH2(Dn)

( ∑
k∈Zq

+

zl−kC φA,k

)
,

that is

Tφz
l =

∑
l−k≥0

zl−kC φA,k.

Here l − k ≥ 0 means that li − ki ≥ 0 for all i = 1, . . . , q. Thus the claim follows by

induction. By (1.3.1), we have φ̄φA,l ∈ H2(Dn), l ∈ Zq+. Therefore

φ̄φA,l =
∑
k∈Zq

+

zkCφA,kφA,l ∈ H2(Dn) (l ∈ Zq+).

Consequently, φA,kφA,l ∈ H2(Dp) for all k and l, and hence, in particular, we have

φA,lφA,l ∈ H2(Dp) (l ∈ Zq+).

This immediately implies that φA,lφA,l is a constant function, and hence φA,l = αlψl

for some inner function ψl ∈ H∞(Dp) and scalar αl such that |αl| ≤ 1, l ∈ Zq+. Assume

without loss of generality that φA,0 ̸= 0. Now by the fact that φA,0φA,k and φA,kφA,0

are in H2(Dp), we have φA,k = βkψ0, k ∈ Zq+. Therefore

φ =
( ∑
k∈Zq

+

βkz̄
k
C

)
ψ0 = φ̄1φ2,

where φ1 =
∑

k∈Zq
+
β̄kz

k
C and φ2 = ψ0.

We now turn to the converse part. First we have clearly

Tφ1Tφ2 = Tφ2Tφ1 . (1.3.2)

We also claim that

Tφ1T
∗
φ2

= T ∗
φ2
Tφ1 . (1.3.3)

This holds trivially when one of the functions φ1 or φ2 is constant. We continue with the

above notation, and assume that both A and C are nonempty subsets of {z1, . . . , zn}.
First we observe that φ1 and φ2 depends only on {zi1 , . . . , zip} and {zj1 , . . . , zjq}, re-
spectively. Consider a monomial zk ∈ C[z1, . . . , zn]. Suppose k = (k1, . . . , kn), and

write

zk = zkcC z
ka
A ,

where kc = (kj1 , . . . , kjq) ∈ Zq+, and ka ∈ Zp+ is the ordered p tuple made out of

{ki}ni=1 \ {kjt}
q
t=1. Since the analytic function φ2 depends only on zjs ∈ C, s = 1, . . . , p,

it is clear that

φ̄2z
kc
C = φa + φc,
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where φa depends only on {zjs}
p
s=1 (and hence it is an analytic function) and φc ∈

L2(Tq)⊖H2(Dq) is a function of {zjt , z̄jt}
q
t=1. Note that the latter property ensures that

φc(0) = 0. Then, on one hand, we have

T ∗
φ2
Tφ1z

k = PH2(Dn)(φ̄2φ1z
k) = PH2(Dn)

(
(φa + φc)φ1z

ka
A

)
= φaφ1z

ka
A ,

and on the other hand that

Tφ1T
∗
φ2
zk = φ1PH2(Dn)(φ̄2z

k) = φ1PH2(Dn)

(
(φa + φc)z

ka
A

)
= φ1φaz

ka
A .

Consequently, T ∗
φ2
Tφ1z

k = Tφ1T
∗
φ2
zk for all k ∈ Zn+, which proves our claim. Now

suppose that Tφ = T ∗
φ1
Tφ2 , where φ1 and φ2 depends on different variables. Using

(1.3.2) and (1.3.3), we obtain

TφT
∗
φ = T ∗

φ1
Tφ2T

∗
φ2
Tφ1 = (T ∗

φ1
Tφ1)(Tφ2T

∗
φ2
) = PR(Tφ2 )

, (1.3.4)

which implies that Tφ is a partial isometry.

We remark that the commutativity and doubly commutativity of Tφ1 and Tφ2 in

(1.3.2) and (1.3.3) will be useful in the particular applications to Theorem 1.1.1 in the

final section.

1.4 Inner functions and shifts

In this short section, we pause to prove an auxiliary result that is both a necessary

tool for our final refinement of partial isometric Toeplitz operators and a subject of

independent interest with its own applications.

Let φ ∈ H∞(Dn), and suppose the multiplication operator Mφ is an isometry on

H2(Dn). Then
∥φ∥∞ = ∥Mφ∥B(H2(Dn)) = 1,

and hence Corollary 1.2.3 implies that φ is a unimodular function in H∞(Dn), that is,
φ is an inner function. Now we prove that a nonconstant inner function always defines

a shift (and not only isometry). Recall that an operator V ∈ B(H) is said to be a shift

if V is an isometry and V ∗m → 0 as m→∞ in the strong operator topology.

Recall that a closed subspace S ⊆ H2(Dn) is of Beurling type if there exists an inner

function θ ∈ H∞(Dn) such that S = θH2(Dn). It is also known that (cf. [71, Corollary

6.3] and [67]) a closed subspace S ⊆ H2(Dn), n > 1, is of Beurling type if and only

if R∗
iRj = RjR

∗
i for all 1 ≤ i < j ≤ n, where Rp = Mzp |S ∈ B(S) is the restriction

operator and p = 1, . . . , n. Note that

R∗
iRj = PSM

∗
ziMzj |S and RjR

∗
i =MzjPSM

∗
zi |S , (1.4.1)
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for all i, j = 1, . . . , n.

Theorem 1.4.1. If φ ∈ H∞(Dn) is a nonconstant inner function, then Mφ is a shift.

Proof. It is well known (as well as easy to see) that Mφ is an isometry. Following the

classical von Neumann and Wold decomposition for isometries, we only need to prove

that

Hu :=
∞⋂
m=0

φmH2(Dn) = {0}.

Assuming the contrary, suppose that Hu ̸= {0}. We claim that Hu is of Beurling type.

Since the n = 1 case is obvious, we assume that n > 1. As φpH2(Dn) ⊆ φqH2(Dn) for
all p ≥ q, we have

PHu = SOT − lim
m→∞

PφmH2(Dn).

Since φmH2(Dn), m ≥ 1, is a Beurling type invariant subspace, in view of (1.4.1), it

follows that

PHuM
∗
ziMzjh =MzjPHuM

∗
zih,

for all h ∈ Hu. Then (1.4.1) again implies that Hu is of Beurling type. Therefore,

there exists an inner function θ ∈ H∞(Dn) such that Hu = θH2(Dn) (note that the

n = 1 case directly follows from Beurling). Then, for each m ≥ 1, there exists an inner

function ψm ∈ H∞(Dn) such that θ = φmψm (for instance, see (1.5.1)). Since φ is a

nonconstant inner function, by the maximum modulus principle [97, §2, Theorem 6], we

have |φ(z)| < 1 for all z ∈ Dn. For each fixed z0 ∈ Dn, it follows that

|θ(z0)| = |φ(z0)|m|ψm(z0)| ≤ |φ(z0)|m → 0 as m→∞,

and hence θ ≡ 0. This contradiction shows that Hu = {0}.

In fact, the above argument yields something more: Suppose {Sm}m≥1 be a sequence

of Beurling type invariant subspaces of H2(Dn). Then
⋂∞
m=1 Sm is also a Beurling type

invariant subspace. Indeed, we let Hm =
⋂m
i=1 Sm. Then {Hm}m≥1 forms a decreasing

sequence of Beurling type invariant subspaces, and hence

P⋂∞
m=1 Sm

= P⋂∞
m=1 Hm

= SOT − lim
m→∞

PHm .

The rest of the proof is then much as before.

We also wish to point out that Theorem 1.4.1 can be proved by using (analytic) re-

producing kernel Hilbert space techniques. We believe that the algebraic tools described

above might be useful in other settings.
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1.5 Applications and further refinements

We begin with partially isometric Toeplitz operators that are hyponormal. A bounded

linear operator T acting on a Hilbert space is called hyponormal if [T ∗, T ] ≥ 0, where

[T ∗, T ] = T ∗T − TT ∗,

is the self commutator of T .

Now suppose Tφ, φ ∈ L∞(Tn), is a partial isometry. If φ ∈ H∞(Dn) is inner, then Tφ
is an isometry and hence is hyponormal. For the converse direction, we note by Theorem

1.1.1 that Tφ = T ∗
φ1
Tφ2 for some inner functions φ1 and φ2 in H∞(Dn) which depends

on different variables. If φ1 is a constant function, then Tφ = Tφ2 =Mφ2 is an isometry,

and hence Tφ is hyponormal. If φ2 is a constant function, then Tφ = T ∗
φ1

=M∗
φ1

is a co-

isometry, and hence Tφ cannot be hyponormal. Suppose both φ1 and φ2 are nonconstant

functions. Now (1.3.2) and (1.3.3) imply that

T ∗
φTφ = T ∗

φ2
Tφ1T

∗
φ1
Tφ2 = (T ∗

φ2
Tφ2)(Tφ1T

∗
φ1
) = Tφ1T

∗
φ1
.

Then, by (1.3.4) we see that [T ∗
φ, Tφ] ≥ 0 implies Tφ2T

∗
φ2
≤ Tφ1T

∗
φ1
. By noting that φ1

and φ2 are analytic functions, we see

Mφ2M
∗
φ2
≤Mφ1M

∗
φ1
,

which, by the Douglas range inclusion theorem, is equivalent to Mφ2 =Mφ1X for some

X ∈ B(H2(Dn)). Observe that

Mφ1MziX =MziMφ1X =MziMφ2 =Mφ2Mzi =Mφ1XMzi , (1.5.1)

implies that MziX = XMzi for all i = 1, . . . , n, and hence X = Mψ for some ψ ∈
H∞(Dn). Hence, we conclude that φ2 = φ1ψ. Since φ1 and φ2 are inner functions,

ψ ∈ H∞(Dn) is inner. Moreover, since φ1 and φ2 are nonconstant functions and depend

on different variables, by comparing the Fourier coefficients, one sees that the equality

φ2 = ψφ1 cannot be solved for ψ ∈ H∞(Dn). We have therefore shown the following

result:

Corollary 1.5.1. Let Tφ, φ ∈ L∞(Tn), be a partial isometry. Then Tφ is hyponormal

if and only if φ is an inner function in H∞(Dn).

Therefore, in view of Theorem 1.4.1, Tφ is hyponormal if and only if (up to unitary

equivalence) Tφ is a shift.

We recall [59, Halmos and Wallen] that a bounded linear operator T acting on some

Hilbert space is called a power partial isometry if Tm is partially isometric for all m ≥ 1.

Clearly, Theorem 1.1.1 and the equalities in (1.3.2) and (1.3.3) imply the following

statement:
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Corollary 1.5.2. Partially isometric Toeplitz operators are power partial isometry.

We also recall from Halmos and Wallen [59] (also see [63]) that every power partial

isometry is a direct sum whose summands are unitary operators, shifts, co-shifts, and

truncated shifts. Recall that a truncated shift S of index p, p ∈ N, on some Hilbert

space H is an operator of the form

S =



0 0 0 · · · 0 0

IH0 0 0 · · · 0 0

0 IH0 0 · · · 0 0
...

...
... · · · 0 0

0 0 0 · · · IH0 0


p×p

,

where H0 is a Hilbert space, and H = H0 ⊕ · · · ⊕ H0︸ ︷︷ ︸
p

.

We prove that, up to unitary equivalence, a partial isometric Tφ is simply direct

sum of truncated shifts, or a shift, or a co-shift (that is, adjoint of a shift). The proof

is essentially contained in Theorem 1.4.1 and the Halmos and Wallen models of power

partial isometries.

Theorem 1.5.3. Up to unitary equivalence, a partially isometric Toeplitz operator is

either a shift, or a co-shift, or a direct sum of truncated shifts.

Proof. Suppose Tφ, φ ∈ L∞(Tn), is a partial isometry. By Theorem 1.1.1, Tφ = T ∗
φ1
Tφ2 ,

where φ1 and φ2 are inner functions in H∞(Dn) and depends on different variables.

Moreover, by Corollary 1.5.2, Tφ is a power partial isometry. If φ1 is a constant function,

then Tφ is a shift, and if φ2 is a constant function, then Tφ is a co-shift. Now let both

φ1 and φ2 are nonconstant functions. Following the construction of Halmos and Wallen

[59, page 660] (also see [63]), we set Em = T ∗m
φ Tmφ and Fm = Tmφ T

∗m
φ for the initial and

final projections of the partial isometry Tmφ , m ≥ 1. By (1.3.2) and (1.3.3) it follows

that Em = Tmφ1
T ∗m
φ1

and Fm = Tmφ2
T ∗m
φ2

, and hence

R(Em) = φm1 H
2(Dn) and R(Fm) = φm2 H

2(Dn),

for all m ≥ 1. Then, by Theorem 1.4.1, we have⋂
m≥0

R(Em) =
⋂
m≥0

φm1 H
2(Dn) = {0},

and similarly
⋂
m≥0
R(Fm) = {0}. Therefore, the unitary part, the shift part, and the

co-shift part of the Halmos and Wallen model of Tφ are trivial (see [59, page 661] or

[63]). Hence in this case, Tφ is a direct sum of truncated shifts.

Clearly, Corollary 1.5.1 immediately follows from the above result as well. Also, note

that the Halmos and Wallen models of power partial isometries played an important
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role in the proof of the above theorem. We refer [63, 25, 52] for a more recent viewpoint

of power partial isometries.

Finally, summarizing our results from an operator theoretic point of view, we conclude

the following: Let Tφ, φ ∈ L∞(Tn), be a partially isometric Toeplitz operator. Then

the following hold:

1. If n = 1, then Tφ is either an isometry, or a coisometry. This is due to Brown and

Douglas. And, in view of Theorem 1.4.1, Tφ is either a shift, or a co-shift.

2. If n > 1, then, up to unitary equivalence, Tφ is either a shift, or a co-shift, or a

direct sum of truncated shifts.





Chapter 2

Commutant Lifting And

Interpolation On The Polydisc

2.1 Introduction

In this chapter, we solve the commutant lifting problem on H2(Tn) and the Nevanlinna-

Pick interpolation problem for bounded analytic functions on Dn. The commutant lifting

problem on Dn refers to the following problem: Given a closed subspace Q ⊆ H2(Tn)
that is invariant under T ∗

zi , i = 1, . . . , n, we classify contractions X ∈ B(Q) satisfying

the condition that

X(PQTzi |Q) = (PQTzi |Q)X (i = 1, . . . , n),

so that the following diagram commutes

H2(Tn)
Tφ

//
OO

iQ

H2(Tn)

PQ

��

Q
X

// Q

for some φ ∈ S(Dn). Recall that

S(Dn) = {φ ∈ H∞(Dn) : ∥φ∥∞ ≤ 1},

and the members of S(Dn) are known as Schur functions. We apply the solution to the

above problem for solution to the Nevanlinna-Pick interpolation problem on Dn.

Let us point out some facts and thoughts regarding the commutant lifting and in-

terpolation problems, as well as the context of our approach. In 1968, Sz.-Nagy and

Foiaş [70] generalized the Sarason lifting theorem to vector-valued Hardy spaces. In

29
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subsequent papers, many researchers presented a variety of alternative proofs of inde-

pendent interest (cf. [12, 46, 90]). However, the dilation theory (pioneered by Halmos

[57] and advanced by Sz.-Nagy [69]) is the primary technique employed in all of these

papers which is powerful enough to negate the heavy use of function theoretic tools.

For different versions of the commutant lifting theorem and its applications, we refer to

Bercovici, Foiaş and Tannenbaum [22], and the monographs by Nikolski [82], Sz.-Nagy

and Foiaş [100], and Foiaş and Frazho [53] (also see Nikolski and Volberg [83] and Seip

[96]).

In several variables, the earlier approach to the lifting theorem also appears to be

dilation theoretic or under the assumption of von Neumann inequality, where dilation

theory and von Neumann inequality for commuting contractions are complex subjects

in and of themselves.

On the other hand, if the solution to the interpolation problem on Dn, n ≥ 1, is sought

in terms of the Pick matrix’s positive semi-definiteness, then the interpolation problem

becomes equivalent to the commutant lifting theorem on finite-dimensional zero-based

subspaces (cf. Proposition 2.9.5). Consequently, in one variable, thanks to Sarason, the

commutant lifting property, the Pick positivity, and the solution to the interpolation

problem appear to be inextricably linked. In higher variables, however, because the

commutant lifting property is rather erratic (cf. Section 2.3), it is perhaps necessary to

disencumber the positivity of the Pick matrix from the interpolation problem. In some

ways, these observations seek a different perspective on the several variables interpolation

problem, one that is not as similar to the classical case of positivity of the Pick matrix

(nor even positivity of a family of Pick matrices as in [1, 31, 44, 60]). As a consequence,

we approach the problem from a completely different angle: more along the function

theoretic path pioneered by Sarason. The difficulty here, of course, is dealing with the

sensitivity of several complex variables as well as the lack of all standard one variable

tools.

Finally, a few words about this chapter’s methodology. We heavily use the duality

of classical Banach spaces, namely

(L1(Tn))∗ ∼= L∞(Tn).

Other common tools used in this chapter include the classical Hahn-Banach theorem,

the geometry of Banach spaces, and the Hilbert function space theory.

The remainder of the chapter is structured as follows. Section 2.2 introduces some

preliminary concepts. Section 2.3 outlines explicit examples of non-liftable maps. Sec-

tion 2.5 presents the first classification of the interpolation on Dn. A quantitative clas-

sification for interpolation is presented in Section 2.6. In the same section, by using the

quantitative classification, we provide examples of interpolation on Dn, n ≥ 2. The com-

mutant lifting theorem on Dn is tested in Section 2.7 with some concrete examples. As

an application to our main commutant lifting theorem, Section 2.8 provides new proof
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for the classical lifting theorem. In Section 2.9 we make some general observations such

as the Carathéodory-Fejér interpolation problem, weak interpolation, and decomposing

a polynomial as a sum of bounded analytic functions. Section 2.10 concludes with some

closing remarks and thoughts on some other known results.

The chapter contains an abundance of examples and counterexamples, as well as

numerous auxiliary results of independent interest in both one and several variables.

2.2 Preliminaries

In this section, we will introduce some necessary Hilbert function space theoretic pre-

liminaries. These include Hardy space, submodules, quotient modules, and a formal

definition of lifting. We begin by looking at the Hardy space. We again remind the

reader that throughout the chapter, n will denote a natural number, and (unless other-

wise stated) we always assume that n ≥ 1.

We denote as usual by L2(Tn) the space of square-integrable functions on Tn. Recall
that Tn is the Šhilov boundary of Dn. The Hardy space H2(Tn) is the closed subspace

of L2(Tn) consisting of those functions whose Fourier coefficients vanish off Zn+. More

specifically, consider f ∈ L2(Tn) with Fourier series representation

f =
∑
k∈Zn

akz
k (z ∈ Tn),

where zk = zk11 · · · zknn for all k = (k1, . . . , kn) ∈ Zn. Then f ∈ H2(Tn) if and only if

ak = 0 whenever at least one of the kj , j = 1, . . . , n, in k = (k1, . . . , kn) is negative.

The usage of radial limits is another neat way to represent the Hardy space (see Rudin

[87]). In other words, we will identify H2(Tn) with H2(Dn), the Hilbert space analytic

functions f ∈ O(Dn) such that

∥f∥2 :=
(

sup
0<r<1

∫
Tn

|f(rz)|2dµ(z)
) 1

2
<∞, (2.2.1)

where dµ denotes the normalized Lebesgue measure on Tn, and rz = (rz1, . . . , rzn). The

identification is canonical, that is, given f ∈ H2(Dn), the radial limit

f̃(z) := lim
r→1−

f(rz),

exists for almost every z ∈ Tn, and f̃ ∈ H2(Tn), and vice-versa. In what follows (and

unless otherwise stated) we will not distinguish between f ∈ O(Dn) satisfying (2.2.1) and

its radial limit representation f̃ ∈ H2(Tn). Therefore, we will not distinguish between

H2(Tn) and H2(Dn) and will use the same notation H2(Tn) for both.
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It is frequently useful to represent H2(Tn) as the Hilbert space of square-summable

analytic functions on Dn, that is

H2(Tn) =

 ∑
k∈Zn

+

akz
k ∈ O(Dn) :

∑
k∈Zn

+

|ak|2 <∞

 .

The Hardy space H2(Tn) is equipped with the tuple of multiplication operators by

coordinate functions {z1, . . . , zn}, which we denote by (Tz1 , . . . , Tzn). Therefore, by

definition, we have

(Tzif)(w) = wif(w),

for all f ∈ H2(Tn), w ∈ Dn, and i = 1, . . . , n. It is easy to see that (Tz1 , . . . , Tzn) is an

n-tuple of commuting isometries, that is

T ∗
ziTzi = IH2(Tn), and TziTzj = TzjTzi ,

for all i, j = 1, . . . , n. We will also need to use the doubly commutativity property

T ∗
ziTzj = TzjT

∗
zi (i ̸= j).

From the analytic function space perspective, recall that H2(Tn) is a reproducing kernel

Hilbert space corresponding to the Szegö kernel S on Dn, where

S(z, w) =
n∏
i=1

1

1− ziw̄i
(z, w ∈ Dn).

For each w ∈ Dn, the kernel function S(·, w) : Dn → C defined by

(S(·, w))(z) = S(z, w) (z ∈ Dn),

generates the joint eigenspace of the backward shifts, that is

n⋂
i=1

ker(Tzi − wiIH2(Tn))
∗ = CS(·, w). (2.2.2)

The above equality essentially follows from the fact that

T ∗
ziS(·, w) = w̄iS(·, w), (2.2.3)

for all w ∈ Dn and i = 1, . . . , n, and∑
k∈{0,1}n

(−1)|k|T kz T ∗k
z = PC,

where PC is the orthogonal projection onto the space of constant functions, and T kz =

T k1z1 · · ·T
kn
zn for all k ∈ {0, 1}n ⊂ Zn+. Moreover, the set of kernel functions {S(·, w) : w ∈
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Dn} forms a total set in H2(Tn) and satisfy the reproducing property

f(w) =
〈
f, S(·, w)

〉
H2(Tn)

, (2.2.4)

for all f ∈ H2(Tn) and w ∈ Dn.

Recall from Section 2.1 that a closed subspaceQ ⊆ H2(Tn) is called a quotient module

if T ∗
ziQ ⊆ Q for all i = 1, . . . , n. A closed subspace S ⊆ H2(Tn) is called a submodule

if ziS ⊆ S for all i = 1, . . . , n. Equivalently, S⊥ ∼= H2(Tn)/S is a quotient module. In

summary, we have the following identifications:

{submodules} ←→ {shift invariant subspaces},

and

{quotient modules} ←→ {backward shift invariant subspaces}.

The classical Laurent operator Lφ with symbol φ ∈ L∞(Tn) is the bounded linear

operator on L2(Tn) defined by

Lφf = φf,

for all f ∈ L2(Tn). The corresponding Toeplitz operator is the compression of Lφ to

H2(Tn), that is
Tφf = PH2(Tn)(φf),

for all f ∈ H2(Tn). As usual, PH2(Tn) denotes the orthogonal projection from L2(Tn)
onto H2(Tn). Recall that (see [41])

∥Tφ∥B(H2(Tn)) = ∥Lφ∥B(L2(Tn)) = ∥φ∥∞, (2.2.5)

for all φ ∈ L∞(Tn). It is useful to point out that the Toeplitz operator with analytic

symbol φ ∈ H∞(Dn) is given by

Tφ = Lφ|H2(Tn).

This follows from the general fact that if S is a submodule of H2(Tn), then φS ⊆ S for

all φ ∈ H∞(Dn). Finally, given a quotient module Q of H2(Tn) and an analytic symbol

φ ∈ H∞(Dn), we define the compression operator Sφ on Q by

Sφ = PQTφ|Q.

In particular, for each i = 1, . . . , n, we have the compression of Tzi on Q as

Szi = PQTzi |Q.

Clearly, SφSzi = SziSφ for all i = 1, . . . , n. From this point of view, we also call that Sφ

a module map. In general:
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Definition 2.2.1. Let Q be a quotient module of H2(Tn). An operator X ∈ B(Q) is

said to be a module map if

XSzi = SziX (i = 1, . . . , n).

Another common name for module maps is truncated Toeplitz operators (even with

L∞(Tn)-symbols). See Sarason [88] and also the classic by Brown and Halmos [26].

We conclude this section with the definition of the central concept of this chapter.

Given a Hilbert space H, recall again that

B1(H) = {T ∈ B(H) : ∥T∥ ≤ 1}.

Definition 2.2.2. Let Q ⊆ H2(Tn) be a quotient module and let X ∈ B1(Q) be a module

map. If there is a φ ∈ S(Dn) such that

X = Sφ,

then we say that X has a lift, or X is liftable, or X admits a lift. We also say that φ is

a lift of X.

In the case of n = 1, Sarason’s result states that contractive module maps are always

liftable. In the following section, we demonstrate that such a statement is no longer true

whenever n > 1.

2.3 Homogeneous quotient modules

The purpose of this section is to outline explicit and basic examples of non-liftable

module maps on quotient modules ofH2(Tn), n > 1. Our quotient modules are as simple

as homogenous quotient modules and the module maps are compressions of homogeneous

polynomials. We begin with a (probably known) classification of inner polynomials on

Dn. A function φ ∈ H∞(Dn) is called inner if φ is unimodular a.e. on Tn (in the sense

of radial limits).

Lemma 2.3.1. Let p be a nonzero polynomial in C[z1, . . . , zn]. Then p is inner if and

only if

p = unimodular constant×monomial.

Proof. We assume n > 1 because the n = 1 case is simpler and follows the same line

of proof as the n > 1 case. By definition, p is inner if and only if |p| = 1 on Tn. The

sufficient part is now trivial. For the reverse direction, assume that p is inner. If p is

a constant multiple of a monomial, then passing to the boundary value, the assertion

will follow immediately. Therefore, assume that p has more than one term. There exists
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N1 ∈ N such that

p =

N1∑
j=0

zj1pj ,

where pj ∈ C[z2, . . . , zn] for all j = 0, 1, . . . , N1, and

pN1 ̸= 0.

Here we are assuming without loss of generality that p has a monomial term with z1 as

a factor (otherwise, we pass to the same but with respect to z2 and so on). Since p is

inner, on Tn, we have

1 = pp̄

= z̄N1
1 (p0p̄N1 ⊕ · · · ).

This implies

p0p̄N1 = 0,

and hence p0 = 0. Continuing exactly in the same way, we obtain that

p = zN1
1 pN1 ,

for some pN1 ∈ C[z2, . . . , zn]. Applying the above recipe to pN1 , we get pN1 = zN2
2 pN2

for some N2 ∈ Z+ and pN2 ∈ C[z3, . . . , , zn]. Hence

p = zN1
1 zN2

2 pN2 .

Therefore, applying this method repeatedly, we finally deduce that p is a unimodular

constant multiple of some monomial.

Now we turn to the construction of the quotient modules of interest. As is well

known and also evident from the definition of the Hardy space, polynomials are dense

in H2(Tn), that is
H2(Tn) = C[z1, . . . , zn]

L2(Tn)
.

Therefore, the standard grading on C[z1, . . . , zn] induces a graded structure on H2(Tn).
We are essentially going to exploit this simple property in our construction of module

maps. For each t ∈ Z+, denote by Ht ⊆ C[z1, . . . , zn] the complex vector space of

homogeneous polynomials of degree t. We have the vector space direct sum

C[z1, . . . , zn] =
⊕
t∈Z+

Ht.
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We consider from now on the finite-dimensional subspace Ht as a closed subspace of

H2(Tn). Also, for each m ∈ N, set

Qm =
m⊕
t=0

Ht.

Since T ∗
ziQm ⊆ Qm for all m ≥ 1, it follows that Qm ⊆ C[z1, . . . , zn] is a finite-

dimensional quotient module of H2(Tn), and degf ≤ m for all f ∈ Qm. Fix m ∈ N and

fix a homogeneous polynomial of degree m as

p =
∑
|k|=m

akz
k ∈ Hm.

Suppose that ∥p∥2 = 1. By the definition of the norm on H2(Tn), we have∑
|k|=m

|ak|2 = 1.

We aim to investigate the lifting of the module map

Sp = PQmTp|Qm .

By Spf = PQm(pf), f ∈ Qm, we have on one hand Sp1 = p, and on the other hand

Spf = 0,

for all f ∈ Qm such that f(0) = 0. Therefore, kerSp = Qm ⊖ C or, equivalently

kerSp =

m⊕
t=1

Ht.

This allows us to conclude that

∥Sp∥ = 1. (2.3.1)

We recall in passing that ∥Tφ∥B(H2(Tn)) = ∥φ∥∞ for all φ ∈ L∞(Tn) (see (2.2.5)).

Theorem 2.3.2. Sp admits a lift if and only if p is a unimodular constant multiple of

a monomial.

Proof. Suppose Sp is liftable. There exists φ ∈ S(Dn) such that Sp = Sφ. Then

Sp = Sφ = PQmTφ|Qm ,

and

∥φ∥∞ ≤ 1.
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Note that 1 ∈ Qm. Since Sp1 = p, it is clear that PQmφ = p, and hence there exists

ψ ∈ Q⊥
m such that

φ = p⊕ ψ ∈ Qm ⊕Q⊥
m.

It is a well known general fact that ∥φ∥2 ≤ ∥φ∥∞. Indeed

∥φ∥2 = ∥Tφ1∥2
≤ ∥Tφ∥B(H2(Tn))∥1∥2
= ∥φ∥∞.

Now that ∥p∥2 = 1, we compute

1 + ∥ψ∥22 = ∥φ∥22
≤ ∥φ∥2∞
≤ 1,

which implies ψ = 0. Therefore

φ = p ∈ Qm.

By using the same computation (or the standard norm equality) as above, we have

1 = ∥p∥2 ≤ ∥p∥∞ = ∥φ∥∞ = 1,

which implies that ∥p∥∞ = 1. This combined with

∥Tp1∥2 = ∥p∥2 = 1,

imply that the Toeplitz operator Tp is norm attaining. Consequently [41, Corollary 2.3],

p is inner (as p ∈ H∞(Dn)). Then by Lemma 2.3.1 we conclude that p is a unimodular

constant multiple of a monomial. The converse is obvious.

The following corollary is now straight. Here we need to assume that n > 1.

Corollary 2.3.3. Suppose n > 1. Let p be a homogeneous polynomial of degree m and

assume that ∥p∥2 = 1. Suppose

p =
∑
|k|=m

akz
k ∈ Hm.

If ak, aλ ̸= 0 for some k,λ ∈ Zn+, then Sp on Qm is not liftable.

The following fact was used to prove the above theorem [41, Corollary 2.3.]: For

φ ∈ H∞(Tn) with ∥φ∥∞ = 1, if the Toeplitz operator Tφ is norm attaining, then the

symbol φ is inner. In this context, it is worth noting that the lift of a commutant is

highly nonunique, and the issue of uniqueness of Sarason’s commutant lifting theorem

is inextricably linked to the norm attaintment property [91, Section 5].
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Now we consider a simple class of quotient modules where all module maps admit

lifting. Our idea is fairly elementary: embed one Hardy space into another Hardy space.

Fix a natural number m such that 1 < m < n. Define

S =

m∑
j=1

zjH
2(Tn).

Then S is a closed subspace and hence a submodule of H2(Tn) [93]. Our interest is in

the corresponding quotient module Q, that is

Q :=
( m∑
j=1

zjH
2(Tn)

)⊥
.

A simple calculation reveals that

Q = C⊗H2(Tn−m),

that is, Q is simply the space of functions on H2(Tn) that does not depend on the

variables {z1, . . . , zm} (again, see [93]). Because Szi = PQTzi |Q, we have

Szi =

0 if i = 1, . . . ,m

Tzi if i = m+ 1, . . . , n.

Suppose X ∈ B(Q). Then, by a routine argument, X is a module map, that is

XPQMzi |Q = PQMzi |QX,

for all i = 1, . . . , n, if and only if there exists φ ∈ H∞(Dn) such that φ does not depend

on the variables {z1, . . . , zm} and
X = Tφ.

This immediately implies the following result: Let X ∈ B1(Q) be a module map. Then

X = Tφ for some φ ∈ S(Dn). In particular, X lifts to Tφ itself.

In Section 2.7, we will show examples of module maps on nonhomogeneous quotient

modules that cannot be lifted.

2.4 Classifications of commutant lifting

Given the examples in the preceding section, it is clear that a module map on a quotient

module of H2(Tn), n ≥ 2, may not admit a lift in general. In this section, we classify

liftable module maps defined on quotient modules of H2(Tn), n ≥ 1. We begin with the

well known duality of classical Banach spaces. Recall that L1(Tn) is a Banach space
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predual of L∞(Tn). More specifically, we have

(L1(Tn))∗ ∼= L∞(Tn),

via the isometrically isomorphic map χ : L∞(Tn)→ (L1(Tn))∗ defined by φ ∈ L∞(Tn) 7→
χφ ∈ (L1(Tn))∗, where for each φ ∈ L∞(Tn), χφ ∈ (L1(Tn))∗ is defined by

χφf =

∫
Tn

φf dµ, (2.4.1)

for all f ∈ L1(Tn). Moreover, we have the isometric property

∥χφ∥ = ∥φ∥∞,

for all φ ∈ L∞(Tn). For a nonempty X ⊆ L2(Tn), we define

Xconj = {f̄ : f ∈ X}.

We also define the subspace of “mixed functions” of L2(Tn) as

Mn = L2(Tn)⊖ (H2(Tn)conj +H2(Tn)).

This is the closed subspace of L2(Tn) generated by monomials that are neither analytic

nor coanalytic. Let In = {1, . . . , n}. Given A ⊆ In, we set

|A| = #A,

the cardinality of A. The following easy-to-see equality explains the terminology of

“mixed functions”:

Mn = span{zkAA z̄kBB : A,B ⊆ In, A ∩B = ∅, A,B ̸= ∅, kA ∈ Z|A|
+ , kB ∈ Z|B|

+ }, (2.4.2)

where for a nonempty subset A = {i1, . . . , im} ⫋ In and kA = (k1, . . . , km) ∈ Z|A|
+ , we

define the monomial

zkAA := zk1i1 · · · z
km
im
.

Note thatMn is self-adjoint, that is

Mconj
n =Mn. (2.4.3)

It is also crucial to observe that if n = 1, thenMn is trivial:

M1 = {0}. (2.4.4)
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Given a quotient module Q ⊆ H2(Tn), as per our convention, we have Qconj := {f̄ : f ∈
Q}, and hence Qconj is a closed subspace of L2(Tn) and

Qconj ⊥ H2
0 (Tn),

where H2
0 (Tn) = H2(Tn) ⊖ {1}. It is easy to check (for instance, by using S(·, 0) ≡ 1)

that

H2
0 (Tn) = {f ∈ H2(Tn) : f(0) = 0},

the closed subspace of H2(Tn) of functions vanishing at the origin. Finally, given a

quotient module Q ⊆ H2(Tn), we set

MQ = Qconj ∔ (Mn ∔H2
0 (Tn)).

The skew sums in the above definition are in fact Hilbert space orthogonal direct sums

in L2(Tn). However, in what follows, we will representMQ as a linear subspace of the

Banach space L1(Tn), and denote it by

(MQ, ∥ · ∥1).

We are now ready for our first lifting theorem.

Theorem 2.4.1. Let Q ⊆ H2(Tn) be a quotient module, let X ∈ B1(Q) be a module

map, and suppose ψ = X(PQ1). Define XQ : (MQ, ∥ · ∥1) −→ C by

XQf =

∫
Tn

ψf dµ,

for all f ∈ MQ. Then X is liftable if and only if XQ is a contractive functional on

(MQ, ∥ · ∥1).

Proof. Let φ ∈ S(Dn) be a lift of X. Then X = Sφ, where, by definition, Sφ = PQTφ|Q.
Since φ ∈ S(Dn) (that is, ∥φ∥∞ ≤ 1), it follows that the functional χφ : L1(Tn) → C
defined by

χφ(f) =

∫
Tn

fφ dµ,

for all f ∈ L1(Tn), is a contraction (see (2.4.1)). In view of the fact that φQ⊥ ⊆ Q⊥ (as

submodules are invariant under H∞(Dn)), we have PQTφPQ = PQTφ, and hence

SφPQ1 = PQTφ|QPQ1

= PQTφ1

= PQφ.

Also, X = Sφ implies ψ = SφPQ1. This combined with SφPQ1 = PQφ yields

ψ = PQφ.
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We now prove that XQ on (MQ, ∥ · ∥1) is a contractive functional. First we consider XQ

on Qconj ⊆MQ. Let h̄ ∈ Qconj . Then h ∈ Q or, equivalently, PQh = h, and we have∫
Tn

φh̄ dµ = ⟨φ, h⟩H2(Tn)

= ⟨φ, PQh⟩H2(Tn)

= ⟨PQφ, h⟩H2(Tn)

= ⟨ψ, h⟩H2(Tn).

Thus we conclude that ∫
Tn

ψh̄ dµ =

∫
Tn

φh̄ dµ,

for all h̄ ∈ Qconj , equivalently

XQ = χφ on Qconj .

Next, we consider XQ onMn. Since

Mn ⊆ L2(Tn)⊖ (H2(Tn) +H2(Tn)conj),

functions inMn do not have an analytic part. Moreover, sinceMn is self-adjoint (see

(2.4.3)), we have

PQMconj
n = PQMn = {0}.

By using the identity ψ = PQφ and following the computation as in the previous case,

for each h ∈Mn, we have ∫
Tn

ψhdµ = ⟨ψ, h̄⟩L2(Tn)

= ⟨PQφ, h̄⟩L2(Tn)

= ⟨φ, PQh̄⟩H2(Tn)

= 0,

as PQh = PQh̄ = 0. This proves that

XQ = χφ = 0 onMn.

Finally, if h ∈ H2
0 (Tn), then h(0) = 0, and hence (as ψ ∈ Q ⊆ H2(Tn))

⟨h̄, ψ⟩L2(Tn) = 0.

Therefore, again ∫
Tn

ψhdµ = ⟨ψ, h̄⟩L2(Tn)

= 0,
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as ψ ∈ Q ⊂ H2(Tn). This implies, again, that

XQ = χφ = 0 on H2
0 (Tn).

Thus we conclude that XQ = χφ on MQ. On the other hand, χφ : L1(Tn) → C
is a contraction. In particular, χφ|MQ is a contraction, which proves our claim that

XQ :MQ → C is contractive.

For the converse direction, assume that XQ : (MQ, ∥ · ∥1)→ C is a contraction. By the

Hahn-Banach theorem, there is a linear functional X̃Q : L1(Tn) −→ C such that

X̃Q|MQ = XQ,

and

∥X̃Q∥ = ∥XQ∥ ≤ 1.

By the duality (L1(Tn))∗ ∼= L∞(Tn), as outlined in (2.4.1), there exists φ ∈ L∞(Tn)
such that

χφ = X̃Q,

and

∥φ∥∞ ≤ 1.

In particular, χφ|MQ = X̃Q|MQ = XQ. Since

χφh =

∫
Tn

φhdµ,

for all h ∈MQ, it follows that ∫
Tn

φhdµ =

∫
Tn

ψhdµ, (2.4.5)

for all h ∈MQ. We consider a typical monomial f fromMn∔H2
0 (Tn). In other words,

we let

f = zk,

for some k ∈ Nn, or let
f = zkAA z̄kBB ,

for some kA ∈ Z|A|
+ and kB ∈ Z|B|

+ , where A,B ⊆ {1, . . . , n}, A ∩ B = ∅, and A,B ̸= ∅
(see the definition of Mn in (2.4.2)). As ψ = X(PQ1) ∈ Q ⊆ Hol(Dn), it follows that

⟨ψ, f̄⟩L2(Tn) = 0 and hence ∫
Tn

ψf dµ = 0.

Consequently, the identity in (2.4.5) yields∫
Tn

φzk dµ = 0,
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for all k ∈ Nn, as well as ∫
Tn

φzkAA z̄kBB dµ = 0,

for all kA ∈ Z|A|
+ and kB ∈ Z|B|

+ , where A,B ⊆ {1, . . . , n}, A ∩ B = ∅, and A,B ̸= ∅.
This implies φ is analytic, and hence φ ∈ S(Dn). To complete the proof, it remains to

show that X = Sφ. Note, by (2.4.5) again, we have that∫
Tn

ψh̄ dµ =

∫
Tn

φh̄ dµ,

for all h̄ ∈ Qconj . Equivalently, for each h̄ ∈ Qconj , we have

⟨φ, h⟩L2(T) = ⟨ψ, h⟩L2(Tn),

and hence

⟨PQφ, h⟩H2(Tn) = ⟨ψ, h⟩H2(Tn),

from which we conclude that

PQφ = ψ.

As before, we write φ ∈ S(Dn) ⊆ H2(Tn) with respect to Q⊕Q⊥ = H2(Tn) as

φ = ψ ⊕ ρ ∈ Q⊕Q⊥.

Since PQφ = PQTφPQ1 = Sφ(PQ1) and PQφ = ψ, we have

ψ = Sφ(PQ1).

This combined with ψ = X(PQ1) yields

Sφ(PQ1) = X(PQ1).

Finally, let us fix k ∈ Zn+ and observe

PQz
k = PQz

k(PQ1)

= Skz (PQ1).

Therefore, SφS
k
z = SkzSφ implies

Sφ(PQz
k) = SφS

k
z (PQ1)

= SkzSφ(PQ1)

= SkzX(PQ1)

= XSkz (PQ1)

= X(PQz
k).
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Then, in view of the fact that Q = span{PQz
k : k ∈ Zn+}, the equality X = Sφ is

immediate. This completes the proof of the theorem.

The proof of the above theorem says more than what it states. In fact, we have the

identity

XQ|Mn∔H2
0 (Tn) ≡ 0,

and hence

kerXQ ⊇Mn ∔H2
0 (Tn).

In other words, Qconj is the supporting space of the functional XQ. Another way to put

it is that there is a contractive extension of XQ|Qconj to the entireMQ that vanishes on

the completely analytic and completely co-analytic parts.

Remark 2.4.1. It is clear from the construction that the subspace (MQ, ∥ · ∥1) is inde-
pendent of X.

Our second lifting theorem is a consequence of the first, and it appears to be in a more

compact form. Given a quotient module Q ⊆ H2(Tn) and a module map X ∈ B(Q), we
define a subspace of L1(Tn) as

M̃Q,X = (Qconj ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)).

Keep in mind, in contrast to Remark 2.4.1, that (M̃Q,X , ∥ · ∥1) is dependent on X.

Theorem 2.4.2. Let Q ⊆ H2(Tn) be a quotient module, let X ∈ B1(Q) be a module

map, and suppose ψ = X(PQ1). Then X is liftable if and only if

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃Q,X

)
≥ 1.

Proof. In view of ψ̄ ∈ Qconj , first we observe that

MQ = Cψ̄ ∔ M̃Q,X .

Suppose X is liftable. By Theorem 2.4.1, we have∣∣∣ ∫
Tn

ψf dµ
∣∣∣ ≤ ∥f∥1 (f ∈MQ). (2.4.6)

Pick g ∈MQ. There exists a scalar c and a function g̃ ∈ M̃Q,X such that

g = cψ̄ + g̃.
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We compute ∫
Tn

ψ(cψ̄ + g̃) dµ = c

∫
Tn

ψψ̄ dµ+

∫
Tn

ψg̃ dµ

= c∥ψ∥22 + ⟨ψ, g̃⟩

= c∥ψ∥22,

as

⟨ψ, g̃⟩ = 0,

which follows from the definition of g̃ and the fact that ψ is analytic. Now (2.4.6) implies∣∣∣ ∫
Tn

ψ(cψ̄ + g̃) dµ
∣∣∣ ≤ ∥cψ̄ + g̃∥1,

and hence

|c|∥ψ∥22 ≤ ∥cψ̄ + g̃∥1,

or equivalently ∥∥∥ ψ̄

∥ψ∥22
+ g̃

∥∥∥
1
≥ 1,

for all g̃ ∈ M̃Q,X , and completes the proof of the forward direction. To prove the reverse

direction, let the above inequality holds for all g̃ ∈ M̃Q,X . Equivalently

∥ψ∥22 ≤ ∥ψ̄ + g̃∥1 (g̃ ∈ M̃Q,X).

Fix f ∈ MQ, and write f = cψ̄ + f̃ for some scalar c and some function f̃ ∈ M̃Q,X .

Following the proof of the forward direction, we have

c∥ψ∥22 =
∫
Tn

ψ(cψ̄ + f̃) dµ

= c

∫
Tn

ψf dµ,

which leads to (2.4.6). Theorem 2.4.1 now completes the proof of the theorem.

Combining Theorem 2.4.1 and Theorem 2.4.2, we have the following:

Theorem 2.4.3. Let Q ⊆ H2(Tn) be a quotient module, and let X ∈ B1(Q) be a module

map. Set

ψ = X(PQ1),

and suppose

MQ = Qconj ∔ (Mn ∔H2
0 (Tn)),

and

M̃Q,X = (Qconj ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)).

Then the following conditions are equivalent:
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1. X is liftable.

2. XQ : (MQ, ∥ · ∥1) −→ C is a contractive functional, where

XQf =

∫
Tn

ψf dµ (f ∈MQ).

3. distL1(Tn)

(
ψ̄

∥ψ∥22
,M̃Q,X

)
≥ 1.

The techniques involved in the association of the existence of commutant lifting with

the distance formula are far-reaching. In the following section, we will apply some of

the concepts introduced here to solve a perturbation problem.

2.5 Interpolation

The goal of this section is to provide a solution to the interpolation problem. As pre-

viously mentioned, Sarason’s commuting lifting theorem recovers the Nevanlinna-Pick

interpolation with an elegant proof. However, Sarason only needed to use his lifting

theorem for some special finite-dimensional quotient modules. These quotient modules

are generated by finitely many kernel functions.

First, we prove that Sarason-type quotient modules (we call them zero-based quotient

modules) in several variables always admit lifting to H∞(Dn)-functions (we call it weak

lifting).

Definition 2.5.1. Let Q ⊆ H2(Dn) be a quotient module, and let X ∈ B(Q). Suppose

XSzi = SziX for all i = 1, . . . , n. We say that X admits a weak lift or X is weakly

liftable if there exists φ ∈ H∞(Dn) such that

X = Sφ.

To put it another way, a weak lifting is a lifting that lacks control over the norm.

Given a set Z ⊆ Dn, define

QZ = span{S(·, w) : w ∈ Z}.

Definition 2.5.2. A quotient module Q ⊆ H2(Tn) is said to be zero-based if there exists

Z ⊆ Dn such that Q = QZ .

For a zero-based quotient module QZ , by using the reproducing property (2.2.4),

we have the following representation of the corresponding submodule (hence the name

zero-based)

Q⊥
Z = {f ∈ H2(Tn) : f(w) = 0 for all w ∈ Z}.
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Since {S(·, w) : w ∈ Z} is a set of linearly independent vectors, a zero-based quotient

module QZ is finite-dimensional if and only if

#Z = dimQZ <∞.

For each j ∈ {1, . . . , n}, denote by πj : Cn −→ C the projection map onto the j-th

coordinate. In particular, z ∈ Cn can be expressed as

z = (π1(z), . . . , πn(z)).

The following easy-to-see lemma will be useful in what follows.

Lemma 2.5.3. Let Z = {zi}mi=1 ⊂ Dn be a set of distinct points, and let X ∈ B(QZ).

Then X is module map if and only if there exists {wi}mi=1 ⊂ C such that

X∗S(·, zj) = wjS(·, zj),

for all j = 1, . . . ,m.

Proof. Let X ∈ B(QZ) and suppose XSzi = SziX for all i = 1, . . . , n. Since X∗S∗
zi =

S∗
ziX

∗, using the fact that QZ is a quotient module, we find

T ∗
zi |QZX

∗ = X∗T ∗
zi |QZ ,

for all i = 1, . . . , n. In view of (2.2.3), we compute

(T ∗
zi |QZX

∗)S(·, zj) = (X∗T ∗
zi |QZ )S(·, zj)

= X∗T ∗
ziS(·, zj)

= πi(zj)X
∗S(·, zj).

Since (T ∗
zi |QZX

∗)S(·, zj) = T ∗
zi(X

∗S(·, zj)), it follows that

T ∗
zi(X

∗S(·, zj)) = πi(zj)(X
∗S(·, zj)),

for all i = 1, . . . , n, and j = 1, . . . ,m. Equivalently

X∗S(·, zj) ∈
n⋂
i=1

ker(Tzi − πi(zj)IH2(Tn))
∗,

for all j = 1, . . . ,m. Now, in view of the joint eigenspace property (2.2.2), the right side

of the above is CS(·, zj), and hence, there exists a scalar wj such that

X∗S(·, zj) = wjS(·, zj),

for all j = 1, . . . ,m. The converse direction is easy and follows again from (2.2.3) and

the definition of QZ .
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The proposition that follows is very crucial and will be used in what follows.

Proposition 2.5.4. Let Q ⊆ H2(Tn) be a quotient module. Let

θQ = PQ1.

If θQ ∈ H∞(Dn), then SθQ = IQ.

Proof. Since θQ = PQ1 ∈ Q∩H∞(Dn), in view of the decomposition H2(Tn) = Q⊕Q⊥,

there exists φ ∈ H∞(Dn) ∩Q⊥ such that

1 = θQ ⊕ φ ∈ Q⊕Q⊥.

Fix f ∈ Q. In particular, since f ∈ H2(Tn), there exists a sequence

{pj}∞j=1 ⊆ C[z1, . . . , zn],

such that

pj −→ f in H2(Tn).

Since φ ∈ H∞(Dn) ∩Q⊥ is a multiplier, the above implies

φpj −→ φf in H2(Tn).

Moreover, φ ∈ Q⊥ implies that

{pjφ}∞j=1 ⊆ Q⊥,

as Q⊥ is a submodule, and hence φf ∈ Q⊥. Equivalently, we have

PQ(φf) = 0.

Finally, since θQ, φ ∈ H∞(Dn), it follows that

f = θQf + φf

= PQ(θQf + φf) (as f ∈ Q)

= PQ(θQf) + 0

= (PQ(PQ1)|Q)f,

which yields SθQf = f , and completes the proof of the proposition.

We are now ready for the weak lifting. It asserts, in essence, that a module map on

a finite-dimensional zero-based quotient module always admits a lift to H∞(Dn).

Corollary 2.5.5. Let Z = {z1, . . . , zm} ⊂ Dn be m distinct points, and let X ∈ B(QZ).

Then

XSzi = SziX,
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for all i = 1, . . . , n, if and only if there exists φ ∈ H∞(Dn) such that

X = Sφ.

Moreover, the function φ is given by

φ = X(PQZ1),

and, in particular

φ ∈ H∞(Dn) ∩QZ .

Proof. The sufficient part is trivial. We prove the necessary part. For simplicity of

notation, we set Q = QZ . Suppose X ∈ B(Q) and suppose that XSzi = SziX for all

i = 1, . . . , n. As in Proposition 2.5.4, set

θQ = PQ1.

As observed earlier, S(·, w) ∈ H∞(Dn) for all w ∈ Dn implies that Q ⊆ H∞(Dn). In

particular, θQ ∈ H∞(Dn). By Proposition 2.5.4, we have

SθQ = IQ.

Since X ∈ B(Q), it follows that

φ := XθQ ∈ H∞(Dn).

Therefore

SφθQ = PQ(φθQ)

= SθQφ

= φ

= XθQ.

The remainder of the proof is based on the standard property of the module map X.

Indeed, we first observe that

Q = span{PQz
kPQ1 : k ∈ Zn+}.
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On the other hand, for k ∈ Zn+, since XSkz = SkzX, we have

X(PQ(z
kθQ)) = X(Skz θQ)

= SkzXθQ

= PQz
kφ

= PQz
kSφθQ

= Sφ(PQ(z
kθQ)).

This completes the proof of the fact that X = Sφ. The final assertion follows from the

definition of θQ.

As already pointed out, the weak lifting does not touch the delicate structure of the

Schur functions on Dn, n > 1.

We will now look at the interpolation problem. Recall once again that

S(z, w) =
m∏
i=1

1

1− ziw̄i
(z, w ∈ Dn),

is the Szegö kernel of Dn, and

S(z, w) =
〈
S(·, w), S(·, z)

〉
H2(Tn)

(z, w ∈ Dn).

Theorem 2.5.6. Let Z = {zi}mi=1 ⊂ Dn be m distinct points, and let {wi}mi=1 ⊂ D be m

scalars. Set

MQZ = QconjZ ∔ (Mn ∔H2
0 (Tn)).

Then there exists φ ∈ S(Dn) such that

φ(zi) = wi,

for all i = 1, . . . ,m, if and only if

MZ,Wf =

∫
Tn

ψZ,Wf dµ (f ∈MQZ ),

defines a contraction MZ,W : (MQZ , ∥ · ∥1)→ C, where

ψZ,W =
m∑
i=1

ciS(·, zi),
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and the scalar coefficients {ci}mi=1 are given by the identity


c1

c2
...

cm

 =


S(z1, z1) S(z1, z2) · · · S(z1, zm)
S(z2, z1) S(z2, z2) · · · S(z2, zm)

...
. . .

. . .
...

S(zm, z1) S(zm, z2) · · · S(zm, zm)


−1 

w1

w2

...

wm

 .

Proof. Consider the module map XZ,W on the quotient module QZ as (see Lemma

2.5.3)

X∗
Z,WS(·, zj) = w̄jS(·, zj),

for all j = 1, . . . ,m. Define

ψZ,W = XZ,W(PQZ1). (2.5.1)

We note the crucial fact that (as QZ ⊂ H∞(Dn), or see Corollary 2.5.5)

ψZ,W ∈ H∞(Dn).

Claim: A function φ ∈ S(Dn) interpolates {zi}mi=1 ⊂ Dn and {wi}mi=1 ⊂ D, that is

φ(zi) = wi,

for all i = 1, . . . ,m, if and only if

Sφ = XZ,W .

Indeed, since S(·, zi) ∈ QZ , it follows that PQZS(·, zi) = S(·, zi) and hence

S∗
φS(·, zi) = PQZT

∗
φS(·, zi)

= φ(zi)S(·, zi),

for all i = 1, . . . ,m. The definition of XZ,W now supports the claim. Of course, φ is a

lift of XZ,W . Then, by Theorem 2.4.1, it follows that φ ∈ S(Dn) interpolates {zi}mi=1

and {wi}mi=1 if and only if

MZ,Wf =

∫
Tn

ψZ,Wf dµ (f ∈MQZ ),

defines a contraction MZ,W : (MQZ , ∥ · ∥1) → C. This proves the first half of the

theorem. Now all that is left to do is calculate the representation of ψZ,W . Corollary

2.5.5 says that

XZ,W = Sφ = SψZ,W .

Since ψZ,W ∈ QZ , there exists scalars {ci}mi=1 such that

ψZ,W =

m∑
i=1

ciS(·, zi).
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To compute the coefficients {ci}mi=1 of the preceding expansion, we employ both repro-

ducing kernel Hilbert space methods and conventional linear algebra. Fix j ∈ {1, . . . ,m}.
Then

X∗
Z,WS(·, zj) = S∗

ψZ,W
S(·, zj)

= ψZ,W(zj)S(·, zj),

where, on the other hand, X∗
Z,WS(·, zj) = w̄jS(·, zj). Therefore

wj = ψZ,W(zj),

and hence, by the reproducing property of kernel functions (2.2.4), it follows that

wj = ψZ,W(zj)

=
〈
ψZ,W ,S(·, zj)

〉
H2(Tn)

=
〈 m∑
i=1

ciS(·, zi),S(·, zj)
〉
H2(Tn)

=

m∑
i=1

ciS(zj , zi),

for all j = 1, . . . ,m. In other words, we have
S(z1, z1) S(z1, z2) · · · S(z1, zm)
S(z2, z1) S(z2, z2) · · · S(z2, zm)

...
. . .

. . .
...

S(zm, z1) S(zm, z2) · · · S(zm, zm)



c1

c2
...

cm

 =


w1

w2

...

wm

 ,

equivalently 
c1

c2
...

cm

 =


S(z1, z1) S(z1, z2) · · · S(z1, zm)
S(z2, z1) S(z2, z2) · · · S(z2, zm)

...
. . .

. . .
...

S(zm, z1) S(zm, z2) · · · S(zm, zm)


−1 

w1

w2

...

wm

 .

The above m ×m matrix is nothing but the Gram matrix of the linearly independent

kernel functions {S(·, zi) : i = 1, . . . ,m}. The invertibility of the matrix is now immedi-

ate.

For solutions to the interpolation problem in the setting of bounded harmonic func-

tions and Hp functions, we refer the reader to [47]
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2.6 Quantitative interpolation and examples

This section is a continuation of our investigation into the interpolation problem. To

begin, we will provide a quantitative solution to the interpolation problem on Dn. The

quantitative solution will then be employed to generate examples of interpolation with

interpolating functions in S(Dn), n ≥ 2.

Let Z = {zi}mi=1 ⊂ Dn be m distinct points, and let {wi}mi=1 ⊂ D be m scalars. As

usual, define the m-dimensional zero-based quotient module QZ of H2(Tn) by

QZ = span{S(·, zi) : i = 1, . . . ,m}, (2.6.1)

and XZ,W ∈ B(QZ) by

X∗
Z,WS(·, zj) = w̄jS(·, zj) (j = 1, . . . ,m).

As observed in Lemma 2.5.3, XZ,W is a module map, and hence Corollary 2.5.5 implies

XZ,W = Sψ, (2.6.2)

where

ψ := XZ,W(PQZ1).

Recall that

ψ ∈ QZ ⊂ H∞(Dn).

On the other hand, as observed in the proof of Theorem 2.5.6 (more specifically, the

claim part in the proof of Theorem 2.5.6), there exists a function φ ∈ S(Dn) such that

φ(zi) = wi,

for all i = 1, . . . ,m, if and only if

Sφ = XZ,W .

Equivalently, XZ,W on QZ is a contraction and admits a lift (namely, φ ∈ S(Dn)). Based
on Theorem 2.4.2 and the fact that ψ = XZ,W(PQZ1), this is the same as saying that

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃QZ

)
≥ 1,

where M̃QZ = (QconjZ ⊖{ψ̄})∔(Mn∔H2
0 (Tn)). This results in the quantitative solution

to the interpolation problem:
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Theorem 2.6.1. Let Z = {zi}mi=1 ⊂ Dn be m distinct points, and let {wi}mi=1 ⊂ D be m

scalars. Suppose ψ := XZ,W(PQZ1) and

M̃QZ = (QconjZ ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)).

Then there exists φ ∈ S(Dn) such that

φ(zi) = wi,

for all i = 1, . . . ,m, if and only if

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃QZ

)
≥ 1.

Moreover, in this case, we have

ψ(zi) = wi,

for all i = 1, . . . ,m.

Here is how the proof of the final assertion works: For each i = 1, . . . ,m, in view of

the definition of XZ,W and (2.6.2), we compute

w̄iS(·, zi) = X∗
Z,WS(·, zi)

= S∗
ψS(·, zi)

= PQZT
∗
ψS(·, zi)

= ψ(zi)S(·, zi),

as S(·, zi) ∈ QZ . Therefore, ψ(zi) = wi for all i = 1, . . . ,m, which completes the proof.

The final assertion will play an important role in the discussion that follows.

The rest of this section will be devoted to exploring examples of interpolation. We

need to prove two lemmas. Before doing so, let us standardize some notations. We will

set aside m ≥ 2 as the number of nodes of the given interpolation data. We use bold

letters such as a, v, w, etc. to denote vectors in Cm. For instance

a = (a1, . . . , am) ∈ Cm.

Also, denote by ⟨·, ·⟩Cm the standard inner product on Cm. In particular

∥a∥Cm = (
m∑
i=1

|ai|2)
1
2 .

We write

a⊥ = {v ∈ Cm : ⟨a,v⟩Cm = 0}.



2.6. Quantitative interpolation and examples 55

In view of the above notation, for each a ∈ Cm, we have the orthogonal decomposition

Cm = Ca⊕ a⊥.

We will work in the following general setting: Fix m distinct points Z = {zi}mi=1 ⊂ Dn

and m scalars {wi}mi=1 ⊂ D. The quotient module of interest will be QZ ⊂ H∞(Dn) as
defined in (2.6.1).

Lemma 2.6.2. Let ψ ∈ QZ , and suppose ψ(zi) = wi for all i = 1, . . . ,m. Then there

exits v ∈ w⊥ such that

ψ =
∥ψ∥22
∥w∥2Cm

m∑
i=1

wiS(·, zi) +
m∑
i=1

viS(·, zi).

Proof. Since ψ ∈ QZ , there exists c ∈ Cm such that

ψ =

m∑
i=1

ciS(·, zi).

Moreover, there exist a scalar α ∈ C and a vector v ∈ c⊥ such that c = αw ⊕ v. Then

ψ = α
m∑
i=1

wiS(·, zi) +
m∑
i=1

viS(·, zi).

By assumption, ψ ∈ H∞(Dn) and ψ(zi) = wi for all i = 1, . . . ,m. The above equality

then results in

∥ψ∥22 =
〈
α

m∑
i=1

wiS(·, zi) +
m∑
i=1

viS(·, zi), ψ
〉
H2(Tn)

= α
〈
T ∗
ψ

( m∑
i=1

wiS(·, zi) +
m∑
i=1

viS(·, zi)
)
, 1
〉
H2(Tn)

= α
〈( m∑

i=1

wiψ(zi)S(·, zi) +
m∑
i=1

viψ(zi)S(·, zi)
)
, 1
〉
H2(Tn)

= α
〈( m∑

i=1

|wi|2S(·, zi) +
m∑
i=1

viw̄iS(·, zi)
)
, 1
〉
H2(Tn)

= α∥w∥2Cm +
m∑
i=1

viw̄i

= α∥w∥2Cm ,

as v ⊥ w. We have also used the general property that ⟨S(·, w), 1⟩H2(Tn) = 1 for all

w ∈ Dn. The above identity yields

α =
∥ψ∥22
∥w∥2Cm

,
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which completes the proof of the lemma.

The proof of the following lemma is similar to the proof of the previous one.

Lemma 2.6.3. Let ψ ∈ QZ , and suppose ψ(zi) = wi for all i = 1, . . . ,m. Then

QZ ⊖ {ψ} =
{ m∑
i=1

viS(·, zi) : v ∈ w⊥
}
.

Proof. Given v ∈ Cm, observe that

m∑
i=1

viS(·, zi) ⊥ ψ,

if and only if

0 =
〈 m∑
i=1

viS(·, zi), ψ
〉
H2(Tn)

=
〈
T ∗
ψ

( m∑
i=1

viS(·, zi)
)
, 1
〉
H2(Tn)

=
〈 m∑
i=1

viψ(zi)S(·, zi), 1
〉
H2(Tn)

=
m∑
i=1

viw̄i

= ⟨v,w⟩Cm .

This completes the proof of the lemma.

Now we are ready for examples of interpolation on Dn, n ≥ 2. First, we elaborate on

the construction of the 3-point interpolation problem. Suppose:

1. {b0, b1, b2} is an orthogonal basis for C3, where
b0 = (1, 1, 1)

b1 = (ζ11, ζ12, ζ13)

b2 = (ζ21, ζ22, ζ23).

2. ∥b1∥C3 , ∥b2∥C3 ≥ 1.

3. {z1, z2, z3} ⊂ Dn are three distinct points such that
z1 = (ζ11, ζ21, z̃1)

z2 = (ζ12, ζ22, z̃2)

z3 = (ζ13, ζ23, z̃3),
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for some (arbitrary) z̃1, z̃1, z̃3 ∈ Dn−2.

4. w = (w1, w2, w3) ∈ D3 such that ∥w∥C3 ≤ 1√
3
.

Claim: There exists φ ∈ S(Dn) such that φ(zi) = wi for all i = 1, 2, 3.

Here is how the proof of the claim goes: In view of Theorem 2.6.1, it is enough to prove

that

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃QZ

)
≥ 1,

where ψ = XZ,W(PQZ1) and

M̃QZ = (QconjZ ⊖ {ψ̄})∔ (Mn ∔H2
0 (Tn)).

Recall that XZ,W ∈ B(QZ) is defined by

X∗
Z,WS(·, zi) = w̄iS(·, zi),

for all i = 1, . . . ,m. Also recall the crucial fact that (see Theorem 2.6.1)

ψ(zi) = wi (i = 1, . . . ,m).

Using the conjugation invariance property of L1-norm (that is, ∥f∥L1(Tn) = ∥f̄∥L1(Tn)

for all f ∈ L1(Tn)), we infer that

distL1(Tn)

( ψ̄

∥ψ∥22
,M̃QZ

)
= distL1(Tn)

( ψ

∥ψ∥22
,M̃conj

QZ

)
,

where (recall thatMconj
n =Mn)

M̃conj
QZ

= (QZ ⊖ {ψ})∔ (Mn ∔H2
0 (Tn)

conj
).

It will be convenient (as well as enough) to prove that

distL1(Tn)

( ψ

∥ψ∥22
,M̃conj

QZ

)
≥ 1.

Also, to avoid notational confusion, we use {Z1, . . . , Zn} for the variables of Cn. By the

definition of Szegö kernel, we have
S(·, z1) = 1 + ζ̄11Z1 + ζ̄21Z2 + · · ·

S(·, z2) = 1 + ζ̄12Z1 + ζ̄22Z2 + · · ·

S(·, z3) = 1 + ζ̄13Z1 + ζ̄23Z2 + · · · .

(2.6.3)

We will need to prove the following inequality∥∥∥ ψ

∥ψ∥22
+ f

∥∥∥
L1(Tn)

≥ 1 (f ∈ M̃conj
QZ

).
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Since ψ(zi) = wi for all i = 1, . . . ,m, in view of Lemma 2.6.3, an element f ∈ M̃conj
QZ

admits the following representation

f =
3∑
i=1

viS(·, zi) + f̃ ,

for some v ∈ w⊥ and f̃ ∈Mn∔H2
0 (Tn)

conj
. Therefore, for each f ∈ M̃conj

QZ
, by Lemma

2.6.2, we conclude that

ψ

∥ψ∥22
+ f =

3∑
i=1

wi
∥w∥2C3

S(·, zi) +
3∑
i=1

viS(·, zi) + f̃ ,

for some v ∈ w⊥ and f̃ ∈Mn ∔H2
0 (Tn)

conj
. For each v ∈ w⊥, we set

Fv =
1

∥w∥2C3

w ⊕ v.

It is important to keep in mind that v and f̃ depend on f . By assumption, ∥w∥C3 ≤ 1√
3
,

and hence

∥Fv∥C3 ≥
√
3.

Using the kernel functions’ power series expansion as in (2.6.3), we find

ψ

∥ψ∥22
+ f =

3∑
i=1

wi
∥w∥2C3

S(·, zi) +
3∑
i=1

viS(·, zi) + f̃

=
(
⟨Fv, b0⟩C31 + ⟨Fv, b1⟩C3Z1 + ⟨Fv, b2⟩C3Z2 + · · ·

)
+ f̃ .

There exists i ∈ {0, 1, 2} such that

|⟨Fv, bi⟩C3 | ≥ 1.

If not, suppose |⟨Fv, bi⟩Cm | < 1 for all i = 0, 1, 2. Then∣∣∣〈Fv, ∥bi∥Cm

( 1

∥bi∥C3

bi

)〉∣∣∣ < 1,

implies ∣∣∣〈Fv,
( 1

∥bi∥C3

bi

)〉∣∣∣ < 1

∥bi∥C3

≤ 1,

for all i = 0, 1, 2. Since { 1

∥bi∥C3

bi

}2

i=0
,

is an orthonormal basis for C3, the above inequality contradicts the fact that ∥Fv∥C3 ≥√
3. On the other hand, since f̃ does not have an analytic part and

⟨f̃ , 1⟩L2(Tn) = 0,
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it follows that

〈 ψ

∥ψ∥22
+ f, g

〉
L2(Tn)

=


⟨Fv, b0⟩C3 if g = 1

⟨Fv, b1⟩C3 if g = Z1

⟨Fv, b2⟩C3 if g = Z2.

Therefore ∣∣∣〈 ψ

∥ψ∥22
+ f, g

〉
L2(Tn)

∣∣∣ ≥ 1,

for some g ∈ {1, Z1, Z2}. On the other hand (see the duality (2.4.1))

〈 ψ

∥ψ∥22
+ f, g

〉
L2(Tn)

=


χ1

(
ψ

∥ψ∥22
+ f

)
if g = 1

χZ̄1

(
ψ

∥ψ∥22
+ f

)
if g = Z1

χZ̄2

(
ψ

∥ψ∥22
+ f

)
if g = Z2.

However

∥χḡ∥ = 1,

for all g ∈ {1, Z1, Z2}, and hence∥∥∥ ψ

∥ψ∥22
+ f

∥∥∥
L1(Tn)

≥ 1,

for all f ∈ M̃conj
QZ

. This completes the proof of the claim. Furthermore, in this case, we

can specify an explicit interpolating function. Note that {ei}2i=0 is an orthonormal basis

for C3, where

ei =
1

∥bi∥C3

bi,

for all i = 0, 1, 2. We write

w =
2∑
i=0

αiei,

and set

φ(Z) =
α0

∥b0∥C3

+
α1

∥b1∥C3

Z1 +
α2

∥b2∥C3

Z2,

for all Z = (Z1, . . . , Zn) ∈ Dn. Since ∥w∥2C3 ≤ 1
3 , it follows that

2∑
i=0

|αi|2 ≤
1

3
,

and hence, by the Cauchy-Schwarz inequality, we conclude that

2∑
i=0

|αi| ≤ 1.
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Moreover, since ∥bi∥C3 ≥ 1 for all i = 0, 1, 2, for each Z ∈ Dn, we infer that

|φ(Z)| =
∣∣∣ α0

∥b0∥C3

+
α1

∥b1∥C3

Z1 +
α2

∥b2∥C3

Z2

∣∣∣
≤ |α0|
∥b0∥C3

+
|α1|
∥b1∥C3

|Z1|+
|α2|
∥b2∥C3

|Z2|

≤
2∑
i=0

|αi|

≤ 1,

and consequently, φ ∈ S(Dn). Finally, we compute

φ(zi) =
α0

∥b0∥C3

+
α1

∥b1∥C3

ζ1i +
α2

∥b2∥C3

ζ2i

= α0πi(e0) + α1πi(e1) + α2πi(e2)

= πi(

2∑
j=0

αjej)

= πi(w)

= wi,

for all i = 1, 2, 3. Therefore, φ is a solution to the interpolation problem with data

{zi}3i=1 ⊂ Dn and {wi}3i=1 ⊂ D.

For general m-point interpolation, m ≥ 2, the same proof concept applies, but the

computation would be more laborious. We only report the general result and leave the

other details to the interested readers.

Theorem 2.6.4. Let n ≥ 2, m ≥ 3, and suppose n ≥ m − 1. Let {zi}mi=1 ⊂ Dn be

m distinct points, and let {wi}mi=1 ⊂ D be m scalars. Suppose {bi}m−1
i=0 ⊂ Cm, where

b0 = (1, . . . , 1), and

bj = (ζj1, ζj2, . . . , ζjm),

for all j = 1, . . . ,m− 1. Assume that:

1. {bi}m−1
i=0 is an orthogonal basis for Cm.

2. ∥bi∥Cm ≥ 1 for all i = 1, . . . ,m− 1.

3. zj = (ζ1j , ζ2j , . . . , ζm−1,j , z̃j), where z̃j ∈ Dn−m+1 arbitrary, and j = 1, . . . ,m.

4. ∥w∥Cm ≤ 1√
n
, where w = (w1, . . . , wn).

Then there exists φ ∈ S(Dn) such that

φ(zi) = wi,

for all i = 1, . . . ,m. Furthermore, φ can be chosen as a polynomial.
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Evidently, there is no dearth of examples of data that meet the aforementioned

conditions. The following remark elaborates on this:

Remark 2.6.1. If the number of variables n(≥ 2) and the number of nodes m(≥ 3)

satisfies the condition n ≥ m − 1, and if one restricts the first m − 1 slots of the

coordinates of the interpolation nodes {zi}mi=1 (so that the corresponding columns along

with the constant vector 1 forms a basis of Cm) along with the norm bound on w as

∥w∥Cm ≤ 1

n
,

then one can ensure that interpolation will occur for any choice of {z̃i}mi=1 ⊂ Dn−m+1.

The relationship between the orthogonal set of vectors {bi}m−1
i=1 ⊂ Cm and interpolation

nodes {zi}mi=1 ⊂ Dn can be represented by the formal matrix:



b1 b2 b3 · · · bm−1

z1 ζ11 ζ21 ζ31 · · · ζm−1,1 · · ·
z2 ζ12 ζ22 ζ32 · · · ζm−1,2 · · ·
...

...
...

...
...

...
. . .

zm ζ1m ζ2m ζ3m · · · ζm−1,m · · ·

.

What this means is that there is an abundance of examples of interpolation in hand in

several variables.

We refer the reader to [75] for interpolation from operator algebraic perspective.

2.7 Commutant lifting and examples

This section contains illustrations of commutant lifting on quotient modules of H2(Tn),
n > 1. Our first aim is to validate the examples in Section 2.3 using our commutant

lifting theorem. We begin with a lemma.

Lemma 2.7.1. Let h ∈ H2(Tn). Then ∥h∥1 = ∥h∥2 = 1 if and only if h is inner.

Proof. Suppose ∥h∥1 = ∥h∥2 = 1. In particular, h ∈ H1(Tn) ⊆ L1(Tn). By the

Hahn–Banach theorem, there exists φ ∈ L∞(Tn) such that ∥φ∥∞ = 1 (as ∥h∥1 = 1) and∫
Tn

hφdµ = ∥h∥1 = 1.

In the above, we used the duality (L1(Tn))∗ ∼= L∞(Tn) once more. We claim that φ is

unimodular. Indeed, if

|φ| < 1 on A,
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for some measurable set A ⊆ Tn such that µ(A) > 0, then

1 =
∣∣∣ ∫

Tn

hφdµ
∣∣∣

≤
∣∣∣ ∫

Ac

hφdµ
∣∣∣+ ∣∣∣ ∫

A
hφdµ

∣∣∣
≤

∫
Ac

|h||φ|dµ+

∫
A
|h||φ|dµ

<

∫
Ac

|h|dµ+

∫
A
|h|dµ

= ∥h∥1,

that is, 1 < ∥h∥1, a contradiction. Since h ∈ H2(Dn) ⊆ L2(Tn), we find a scalar c and

a function g ∈ L2(Tn) such that

φ = ch̄⊕ g.

Observe that ⟨h̄, g⟩ = ⟨h, ḡ⟩ = 0. Therefore

1 =

∫
Tn

hφdµ

=

∫
Tn

h(ch̄⊕ g)dµ

= ⟨h, c̄h⊕ ḡ⟩L2(Tn)

= c,

and hence, φ = h̄⊕ g. Then

1 + ∥g∥22 = ∥h∥22 + ∥g∥22
= ∥φ∥22
≤ ∥φ∥2∞
= 1,

implies that g = 0, and hence φ = h̄. Since φ ∈ L∞(Tn), it follows that h ∈ H∞(Dn)
is an inner function. The converse simply follows from the integral representation of

norms on H2(Tn) and H1(Tn) and the fact that |h| = 1 a.e. on Tn.

Now we follow the setting of Corollary 2.3.3: For a fixed m ∈ N, we consider the

homogeneous quotient module

Qm =

m⊕
t=0

Ht,

a homogeneous polynomial p ∈ Qm as

p =
∑
|k|=m

akz
k,
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with ∥p∥2 = 1, and that ak, al ̸= 0 for some k ̸= l in Zn+. We know, by Theorem 2.4.1,

that Sp is liftable if and only if

XQm(f) =

∫
Tn

ψfdµ (f ∈MQm),

defines a contraction on (MQm , ∥ · ∥1), where ψ = Sp(PQm1). Since 1 and p are in Qm,
it follows that ψ = p, and hence

XQm(p̄) =

∫
Tn

p̄ψdµ

=

∫
Tn

|p|2dµ

= 1.

However

∥p̄∥1 = ∥p∥1 < 1.

Indeed, since ak, al ̸= 0, Lemma 2.3.1 ensures that p is not inner. This, together with

the fact that ∥p∥2 = 1 and Lemma 2.7.1 completes the proof of the claim. Therefore,

XQm on (MQm , ∥ · ∥1) is not a contraction, and hence Sp is not liftable. As a result, we

recover Corollary 2.3.3 using Theorem 2.4.1.

The idea used in the preceding example can be extended to provide further nontrivial

examples of module maps that do not admit any lift. The following is an example, and

this time we will use Theorem 2.4.1 directly to prove that such a module map does not

lift. Suppose n > 1. Consider the submodule

S = z1 · · · znH2(Tn).

We will be working on the corresponding quotient module Q = S⊥. Clearly

Q = ker
( n∏
i=1

T ∗
zi

)
.

We observe that

Q = H2
z1(T

n) + · · ·+H2
zn(T

n),

where H2
zi(T

n), i = 1, . . . , n, is the closed subspace of H2(Tn) of functions that are

independent of the zi variable, or equivalently

H2
zi(T

n) = kerT ∗
zi .

Indeed, it is clear that H2
z1(T

n)+ · · ·+H2
zn(T

n) ⊆ Q. Let f ∈ ker(
∏n
i=1 T

∗
zi), and suppose

f =
∑
k∈Zn

+

akz
k.
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Then

0 = T ∗
z1···znf

= PH2(Tn)(
∑
k∈Zn

+

akz̄1 · · · z̄nzk),

implies ∑
k∈Zn

+

akz̄1 · · · z̄nzk ∈ (H2(Tn))⊥.

In other words, if ak ̸= 0 for some k = (k1, . . . , kn) ∈ Zn+, then we must have ki = 0

for some i = 1, . . . , n. Therefore, there exists fi ∈ H2
zi(T

n), i = 1, . . . , n, such that

f = f1 + · · ·+ fn. This proves the claim. Now for each i = 1, . . . , n, set

ζi :=
∏
j ̸=i

zj ,

and pick inner function φi ∈ H2
zi(T

n). Let z0 ∈ Tn and suppose φi(z0) is well defined

and

|φi(z0)| = 1,

for all i = 1, . . . , n. Choose {α1, . . . , αn} ⊂ R≥0 such that αp, αq ̸= 0 for some p ̸= q,

and
n∑
i=1

α2
i = 1.

The preceding set of assumptions ensures that

n∑
i=1

αi > 1.

Finally, define φ ∈ S(Dn) by

φ =
n∑
i=1

αiβ̄iζiφi,

where βi = (ζiφi)(z0) for all i = 1, . . . , n. We claim that φ is not inner. Indeed, since

φ(z0) =
n∑
i=1

αiβ̄iβi,

and |βi| = 1, it follows that

φ(z0) =
n∑
i=1

αi > 1.

Therefore, there exists r ∈ (0, 1) such that (note that φ is well defined at z0)

|φ(rz0)| > 1,

and hence, by the maximum modulus theorem, we conclude that ∥φ∥∞ > 1, which
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completes the proof of the claim. Next, we claim that Sφ is a contraction. Fix f ∈ Q.
For each i ∈ {1, . . . , n}, we have

Q⊖H2
zi(T

n) = (kerT ∗
zi)

⊥ ∩Q = {zig ∈ Q : g ∈ H2(Tn)},

and hence there exist fi ∈ H2
zi(T

n) and gi ∈ H2(Tn) such that

f = fi ⊕ zigi ∈ H2
zi(T

n)⊕ (Q⊖H2
zi(T

n)).

Then

Sζiφi
f = Sζiφi

(fi + zigi)

= Sζiφi
fi + PQ(ζiφizigi)

= Sζiφi
fi + PQ(z1 · · · znφigi)

= Sζiφi
fi,

as z1 · · · znφigi ∈ S, and hence

Sζiφi
f = Sζiφi

PH2
zi
(Tn)f.

Observe moreover that ζiφiH
2
zi(T

n) ⊆ H2
zi(T

n). In view of H2
zi(T

n) ⊆ Q, we conclude

that Sζiφi
PH2

zi
(Tn)f = ζiφiPH2

zi
(Tn)f , which yields

Sζiφi
f = ζiφiPH2

zi
(Tn)f.

Therefore, for i ̸= j, we have

⟨Sζiφi
f, Sζjφj

f⟩ = ⟨ζiφiPH2
zi
(Tn)f, ζjφjPH2

zj
(Tn)f⟩

= ⟨T ∗
ζj
ζiφiPH2

zi
(Tn)f, φjPH2

zj
(Tn)f⟩

= ⟨T ∗
zizjφiPH2

zi
(Tn)f, φjPH2

zj
(Tn)f⟩

= 0,

as zjφiPH2
zi
(Tn)f ∈ kerT ∗

zi . So we find

Sζiφi
f ⊥ Sζjφj

f (i ̸= j). (2.7.1)
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This allows us to compute the norm of Sφf as follows (note that |βi| = 1 and Sζiφi
is a

contraction for all i = 1, . . . , n):

∥Sφf∥2 = ∥
n∑
i=1

αiβ̄iSζiφi
f∥2

=

n∑
i=1

α2
i ∥Sζiφi

f∥2

≤
n∑
i=1

α2
i ∥f∥2

= ∥f∥2.

This means that Sφ is a contraction. Our final claim is that Sφ is incapable of admitting

any lift, which, in view of Theorem 2.4.1, is equivalent to the assertion that XQ :

(MQ, ∥ · ∥1)→ C is not a contraction, where

XQf =

∫
Tn

ψfdµ (f ∈MQ),

and

ψ = Sφ(PQ1).

Indeed, since 1, φ ∈ Q, it follows that

ψ = φ.

On the other hand, since φ̄ ∈ MQ (recall that MQ = Qconj ∔ (Mn ∔ H2
0 (Tn))), we

observe that

XQφ̄ =

∫
Tn

φφ̄dµ

= ∥φ∥2H2(Tn)

= 1.

Finally, applying (2.7.1) to f = 1 ∈ Q, we obtain that

∥φ∥2H2(Tn) = 1.

This also follows from the equalities following (2.7.1) corresponding to the choice f = 1

along with the fact that ζiφi is inner for all i = 1, . . . , n. Since φ is not an inner function,

by Lemma 2.7.1, we conclude that

∥φ̄∥1 = ∥φ∥1 < 1,

and hence XQ : (MQ, ∥ · ∥1)→ C is not a contraction. This proves the following result:
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Proposition 2.7.2. Let {α1, . . . , αn} ⊂ R≥0, suppose αp, αq ̸= 0 for some p ̸= q, and

n∑
i=1

α2
i = 1.

Let z0 ∈ Tn, and let φi be an inner function independent of the variable zi, and suppose

φi(z0) is well defined and

|φi(z0)| = 1,

for all i = 1, . . . , n. Define φ ∈ S(Dn) by

φ =

n∑
i=1

αiβ̄iζiφi,

where βi = (ζiφi)(z0) and ζi :=
∏
j ̸=i zj for all i = 1, . . . , n. Then Sφ on Q =

ker(
∏n
i=1 T

∗
zi) does not admit any lift.

2.8 Recovering Sarason’s lifting theorem

In this section, we explain how to recover Sarason’s commutant lifting theorem from

Theorem 2.4.1. We will employ several tools (just like Sarason) that are commonly used

and are valid only in one variable function theory. We start with the Beurling theorem

[23]. Let Q ⫋ H2(T) be a closed subspace. Then Q is a quotient module if and only if

there exists an inner function θ ∈ H∞(D) such that Q = Qθ, where

Qθ := H2(T)⊖ θH2(T).

Observe that θH2(T) is a closed subspace (as Tθ is an isometry on H2(T)) and

Qθ ∼= H2(T)/θH2(T).

Therefore, quotient modules of H2(T) are inner function based - a typical one variable

phenomenon (see Rudin [87] for counterexamples in several variables). In the following,

we prove a key result.

Lemma 2.8.1. Let θ ∈ H∞(D) be an inner function. Then

Qconjθ ⊕ zH2(T) = θ(zH2(T)).

Proof. Let g ∈ Qθ. Then ḡ ∈ Qconjθ , and hence, for each m ≥ 0, we have

⟨θḡ, z̄m⟩L2(T) = ⟨θ̄g, zm⟩L2(T)

= ⟨g, θzm⟩H2(T)

= 0,
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as θzm ∈ Q⊥
θ . This implies θQconjθ ⊆ zH2(T) and hence Qconjθ ⊆ θ̄(zH2(T)). Also, for

all h ∈ H2(T), since
zh = θ(θzh) = θ(zθh),

it follows that zH2(T) ⊆ θ(zH2(T)). Therefore

Qconjθ ⊕ zH2(T) ⊆ θ(zH2(T)).

For the reverse inclusion, first we observe that for f ∈ Qθ and m ≥ 1, since

⟨θzf, zm⟩L2(T) = ⟨zf, zθzm−1⟩H2(T)

= ⟨f, θzm−1⟩H2(T)

= 0,

it follows that θ̄zQθ ⊥ zH2(T), and hence θ̄zQθ ⊆ H2(T)conj . On the other hand, we

know

H2(T)conj = Qconjθ ⊕ (θH2(T))conj .

In view of this, for each f ∈ Qθ and g ∈ H2(T), we further compute

⟨θzf, θḡ⟩L2(T) = ⟨zf, ḡ⟩L2(T)

= ⟨f, z̄ḡ⟩L2(T)

= 0,

which implies that θzQθ ⊥ (θH2(T))conj . As a result, θ̄zQθ ⊆ Qconjθ . Finally

zH2(T) = zQθ ⊕ zθH2(T),

yields

θzH2(T) = θzQθ + zH2(T)

⫅ Qconjθ + zH2(T),

and completes the proof of the lemma.

We are now almost ready to prove Sarason’s commutant lifting theorem. Just one

more result is required with regard to representations of polynomials as the sum of

H∞(D)-functions. Since this result holds true in several variables and is of independent

interest, we prove it in the later part of this chapter (see Proposition 2.9.7).

Theorem 2.8.2. Contractive module maps on quotient modules of H2(T) are liftable.

Proof. Since we are dealing with one variable quotient module, we fix a quotient module

Qθ of H2(T) corresponding to an inner function θ ∈ H∞(D). Since M1 = {0} and
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H2
0 (T) = zH2(T), it follows that

MQθ
= Qconjθ ⊕ zH2(T),

and hence Lemma 2.8.1 yields a compact form ofMQθ
as

MQθ
= θ(zH2(T)).

Let X ∈ B1(Q) and suppose ψ = X(PQθ
1). In view of the above and Theorem 2.4.1, it

is enough to prove that XQθ
: (MQθ

, ∥ · ∥1)→ C is a contraction, where

XQθ
(θ̄f) =

∫
T
ψθ̄f dµ,

for all f ∈ zH2(T). To this end, fix f ∈ zH2(T). Then f ∈ H2(T) and f(0) = 0. There

exists a sequence of polynomials {pm}m≥0 ⊆ C[z] such that

pm(0) = 0,

for all m ≥ 0, and

pm −→ f in H2(T).

Using the contractive containment H2(T) ↪→ H1(T), we see that

pm → f in H1(T).

It also follows that

θ̄pm → θ̄f, (2.8.1)

in both L2(T) and L1(T). Then∫
T
ψθ̄pmdµ→

∫
T
ψθ̄fdµ,

and

∥θ̄pm∥1 → ∥θ̄f∥1,

and hence it is enough to prove that∣∣∣ ∫
T
ψθ̄p dµ

∣∣∣ ≤ ∥θ̄p∥1,
for all p ∈ C[z] such that p(0) = 0. Fix such a polynomial p. Consider the inner-outer

factorization of p as

p = ηh,
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where η is an inner function, h is outer, and η(0) = 0. Since p ∈ H∞(D), it follows that
h ∈ H∞(D). Using the fact that

√
h ∈ H∞(D) ⊆ H2(T), we rewrite p as

p = (η
√
h)
√
h.

It is easy to see that

∥p∥1 = ∥
√
h∥22.

Moreover, we have a sequence of polynomials {qt}t≥0 ⊆ C[z] such that

qt −→
√
h in H2(T).

As η
√
h ∈ H∞(D), we have

⟨ψ, θqtη
√
h⟩ −→ ⟨ψ, θ

√
hη
√
h⟩,

and then, rewriting
√
hη
√
h = p, we conclude that

⟨ψ, θqtη
√
h⟩ −→ ⟨ψ, θp̄⟩ =

∫
T
ψθ̄pdµ,

as t→∞. Since (η
√
h)(0) = 0, Lemma 2.8.1 implies

θη
√
h ∈ Qθ ⊕ zH2(T),

and consequently

h̃ := PH2(T)(θη
√
h) ∈ Qθ.

Then, recalling ψ = X(PQθ
1), we compute

⟨ψ, θqtη
√
h⟩ = ⟨ψqt, θη

√
h⟩

= ⟨PH2(T)ψqt, PH2(T)θη
√
h⟩

= ⟨PH2(T)ψqt, h̃⟩

= ⟨PQθ
ψqt, h̃⟩.

We also observe, for a general polynomial r ∈ C[z], that

XPQθ
r = Xr(Sz)PQθ

1

= r(Sz)XPQθ
1

= r(Sz)ψ,

that is, XPQθ
r = PQθ

rψ. It is important to note that (by virtue of Proposition 2.9.7)

PQθ
r ∈ H∞(D).
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Since {qt}t≥0 ⊆ C[z], we conclude

⟨ψ, θqtη
√
h⟩ = ⟨XPQθ

qt, h̃⟩,

and hence ∣∣∣⟨XPQθ
qt, h̃⟩

∣∣∣ −→ ∣∣∣ ∫
T
ψθ̄pdµ

∣∣∣,
as t→∞. But, ∥X∥ ≤ 1, and ∥h̃∥ ≤ ∥

√
h∥, and hence∣∣∣⟨XPQθ

qt, h̃⟩
∣∣∣ ≤ ∥qt∥2∥√h∥2.

As t→∞, we have (note that θ is an inner function)

∥qt∥2∥
√
h∥2 → ∥

√
h∥22 = ∥p∥1 = ∥θ̄p∥1,

and hence ∣∣∣ ∫
T
ψθ̄pdµ

∣∣∣ ≤ ∥θ̄p∥1,
which completes the proof of the theorem.

Sarason’s proof of the above theorem used similar one-variable tools.

2.9 Other results

In this section, we present a variety of results with varying flavors. First, we present

a solution to the Carathéodory-Fejér interpolation problem on Dn. Then we discuss

the interpolation problem from the standpoint of Pick matrix positivity. The lifting

theorem for the Bergman space over Dn is then compared, followed by decompositions

of polynomials in light of Beurling-type quotient modules of H2(Tn).

2.9.1 Carathéodory-Fejér interpolation

We use the notations that were introduced in Section 2.3. Recall that for t ∈ Z+,

Ht ⊆ C[z1, . . . , zn] is the complex vector space of homogeneous polynomials of degree t.

Moreover, for each m ∈ N, define the finite-dimensional homogeneous quotient module

Qm of H2(Tn) by

Qm :=

m⊕
t=0

Ht.

Fix a natural number m. Given p ∈ C[z1, . . . , zn], it follows that p ∈ Qm if and only if

degp ≤ m. In the context of S(Dn), the Carathéodory-Fejér interpolation problem asks

the following: Given a polynomial p ∈ Qm, when does there exist a function f ∈ Q⊥
m

such that

p⊕ f ∈ S(Dn)?
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Here and in what follows, p ⊕ f is in the sense of the direct sum Qm ⊕ Q⊥
m. This

formulation of the Carathéodory-Fejér interpolation problem is more appropriate for

the case of n > 1, see [21, page 670].

The following is an interpretation of the Carathéodory-Fejér problem in terms of

commutant lifting.

Proposition 2.9.1. Let p ∈ Qm. There exists f ∈ Q⊥
m such that p⊕ f ∈ S(Dn) if and

only if Sp is a contraction and admits a lift.

Proof. Suppose there exists a function f ∈ Q⊥
m such that

φ := p⊕ f ∈ S(Dn).

For each q ∈ Qm, we have

Sφq = PQmTφq

= PQm(p⊕ f)q

= PQm(pq) + PQm(fq).

But, Q⊥
m is a submodule and q is a polynomial. This implies fq ∈ Q⊥

m, and consequently

Sφq = PQm(pq).

On the other hand, q ∈ Qm and

p ∈ Qm ⊆ C[z1, . . . , zn]

yield

PQm(pq) = PQmTp|Qmq

= Spq,

which proves that Sφ = Sp. The contractivity of Sp also follows from the same of Sφ

(recall that ∥φ∥∞ ≤ 1).

For the reverse direction, suppose Sp ∈ B1(Qm) admits a lift. Then there exists φ ∈
S(Dn) such that Sp = Sφ. Using 1 ∈ Qm, it follows that

p = Sp1

= Sφ1

= PQmφ,

and hence there exists f ∈ Q⊥
m such that φ = p ⊕ f . This completes the proof of the

proposition.
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We are now ready for the solution to the Carathéodory-Fejér interpolation problem.

We will apply our commutant lifting theorem to the above. In view of Theorem 2.4.1,

we set

MQm = Qconjm ∔ (Mn ∔H2
0 (Tn)).

Recall that

Mn = L2(Tn)⊖ (H2(Tn)conj ∔H2(Tn)).

Corollary 2.9.2. Given p ∈ Qm, there exists f ∈ Q⊥
m such that p ⊕ f ∈ S(Dn) if and

only if CZ,W : (MQm , ∥ · ∥1)→ C is a contraction, where

CZ,W(g) =

∫
Tn

pg dµ (g ∈MQm).

Proof. By Theorem 2.4.1 and the preceding proposition, the assertion is equivalent to

the contractivity of the functional χQm on (MQm , ∥ · ∥1), where

χQmg =

∫
Tn

ψg dµ (g ∈MQm),

and ψ = Sp(PQm1). However, 1 ∈ Qm implies PQm(1) = 1, and p ∈ Qm implies

Sp(1) = p. Then

χQm = CZ,W onMQm ,

completes the proof of the corollary.

We refer the reader to Eschmeier, Patton and Putinar [49], and Woerdeman [102]

for the Carathéodory interpolation problem in the context of Agler-Herglotz class func-

tions and Agler-Herglotz-Nevanlinna formula on the polydisc. Also see the paper by

Kalyuzhnyi-Verbovetzkii [64].

2.9.2 Weak interpolation

Given Z = {zi}mi=1 ⊂ Dn andW = {wi}mi=1 ⊂ D, we define the m×m Pick matrix PZ,W

as

PZ,W =
(
(1− wiw̄j)S(zi, zj)

)m
i,j=1

.

Recall that a matrix (aij)m×m is positive semi-definite (in short (aij)m×m ≥ 0) if

m∑
i,j=1

ᾱiαjaij ≥ 0,

for all scalars {αi}mi=1 ⊆ C.

Definition 2.9.3. A set of distinct points Z = {zi}mi=1 ⊂ Dn is said to be a Pick set if,

for W = {wi}mi=1 ⊂ D satisfying

PZ,W ≥ 0,
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there exists φ ∈ S(Dn) such that φ(zi) = wi for all i = 1, . . . ,m.

This definition is in view of the classical Pick positivity and the Nevanlinna-Pick

interpolation on D. We need another definition along the lines of Sarason’s commutant

lifting theorem:

Definition 2.9.4. A quotient module Q ⊆ H2(Tn) satisfies the commutant lifting prop-

erty if every contraction on Q admits lifting.

In other words, for a module map X ∈ B1(Q), there exists φ ∈ S(Dn) such that

X = Sφ. Now we use Sarason’s trick to prove the Nevanlinna-Pick interpolation but

in the setting of S(Dn) for any n ≥ 1. The proof is standard and follows in Sarason’s

footsteps.

Proposition 2.9.5. Let Z = {zj}mj=1 ⊂ Dn be a set of m distinct points. Then Z is a

Pick set if and only if QZ satisfies the commutant lifting property, where

QZ = span{S(·, zi) : i = 1, . . . ,m}.

Proof. We begin with a simple observation. Given W = {wi}mi=1 ⊂ D, we define X ∈
B(QZ) by (note that QZ is a finite-dimensional Hilbert space)

XS(·, zi) = w̄iS(·, zi) (i = 1, . . . ,m).

By Lemma 2.5.3, it follows that X∗ is a module map. Moreover, we have

〈
(IQZ −X

∗X)
( m∑
j=1

αjS(·, zj)
)
,
( m∑
i=1

αiS(·, zi)
)〉

=

m∑
i,j=1

αjᾱi(1− wiw̄j)S(zi, zj),

for all scalars {αi}mi=1 ⊂ C. It follows that X is a contraction if and only if

PZ,W ≥ 0.

Now suppose that Z is a Pick set, and suppose Y ∈ B1(QZ) is a module map. We

claim that Y has a lift. If we define X := Y ∗, then we are precisely in the setting of

the above discussion. The contractivity of X (as ∥Y ∗∥ ≤ 1) then implies that the Pick

matrix is positive, that is, PZ,W ≥ 0. There exists φ ∈ S(Dn) such that φ(zi) = wi for

all i = 1, . . . ,m. Then

Y ∗S(·, zj) = T ∗
φS(·, zj) (j = 1, . . . ,m),

and we conclude that Y ∗ = T ∗
φ|QZ , or equivalently, Y = Sφ.

To show the converse, assume that QZ satisfies the commutant lifting property. Suppose

W = {wi}mi=1 ⊂ D, and let PZ,W ≥ 0. Then X, as defined at the beginning of the proof,

is a contraction, and hence X = Sφ for some φ ∈ S(Dn). It is now routine to check that

φ(zi) = wi for all i = 1, . . . ,m.



2.9. Other results 75

In the case of n = 1, the classical Nevanlinna Pick interpolation theorem now follows

directly from Sarason’s lifting theorem. The above formulation also works verbatim the

same way as for multiplier spaces for general reproducing kernel Hilbert spaces over

domains in Cn (including the open unit ball in Cn).

In view of the above proposition, we conclude that the solution to the interpolation

problem in terms of Pick positivity is simply equivalent to the commutant lifting problem

for quotient modules of the form QZ for finite subsets Z ⊆ Dn. Again, this is true for

general multiplier spaces.

2.9.3 Bergman space and lifting

Although all of the observations in this subsection hold true for weighted Bergman spaces

(even for a large class of reproducing kernel Hilbert spaces) over Dn along with verbatim

proofs, we will stick to the Bergman space only. Denote by A2(Dn) the Bergman space

over Dn. Recall that an analytic function f on Dn is in A2(Dn) if and only if

∥f∥A2(Dn) :=
(∫

Dn

|f(z)|2 dσ(z)
) 1

2
<∞,

where dσ(z) denotes the normalized volume measure on Dn. We know that A2(Dn) is a
reproducing kernel Hilbert space corresponding to the Bergman kernel

K(z, w) =

n∏
i=1

1

(1− ziw̄i)2
(z, w ∈ Dn).

Recall that the multiplier space of A2(Dn) is again H∞(Dn), which for simplicity of

notation (or, to avoid confusion), we denote byM(A2(Dn)). In other words

M(A2(Dn)) = H∞(Dn).

For each φ ∈M(A2(Dn)), the map f ∈ A2(Dn) 7→ φf ∈ A2(Dn) defines a multiplication

operator on A2(Dn), which we denote by Mφ.

Let Q ⊆ A2(Dn) be a quotient module (that is, Q is closed and M∗
ziQ ⊆ Q for all

i = 1, . . . , n). For each φ ∈ H∞(Dn), set

Bφ = PQMφ|Q.

Suppose X ∈ B1(Q) is a module map, that is, XBzi = BziX for all i = 1, . . . , n. We say

that X is liftable or X has a lift if there exists φ ∈ H∞(Dn) =M(A2(Dn)) such that

X = Bφ,

and

∥Bφ∥B(A2(Dn)) ≤ 1. (2.9.1)
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We are interested in the commutant lifting for finite-dimensional zero-based quotient

modules of A2(Dn). For a set of distinct points Z = {zi}mi=1 ⊂ Dn, we define (following

Section 2.5) the m-dimensional zero-based quotient module BZ ⊆ A2(Dn) as

BZ = span{K(·, zi) : i = 1, . . . ,m} ⊆ A2(Dn).

At the same time, keep in mind that QZ is also a zero-based quotient module of H2(Tn)
(again, see the preceding subsection or Section 2.5), where

QZ = span{S(·, zi) : i = 1, . . . ,m} ⊆ H2(Tn).

Note that module maps on QZ are parameterized by m scalars. To be more precise, let

X ∈ B(QZ). Then X is a module map if and only if there exists {wi}mi=1 ⊂ C such that

X∗S(·, zi) = wiS(·, zi),

for all i = 1, . . . ,m. This was observed in Lemma 2.5.3. The same conclusion and proof

apply to BZ . Therefore, a module map X ∈ B(QZ) is associated with {wi}mi=1 ⊆ C,
which further defines a module map X̃ ∈ B(BZ) as

X̃∗K(·, zi) = wiK(·, zi),

for all i = 1, . . . ,m. Consequently, we have the bijective correspondence

X ∈ B(QZ)←→ X̃ ∈ B(BZ).

In the case of n = 1, the problem of commutant lifting for quotient module BZ
of A2(D) was studied in the thesis of Sultanic [98]. While she was focused on finite-

dimensional quotient modules of A2(D), but the zero-based quotient modules played the

most crucial role. Here we aim at proving the following proposition:

Proposition 2.9.6. Let Z = {zi}mi=1 ⊂ Dn be a set of distinct points, and let X ∈
B1(QZ) be a module map. Then X on QZ is liftable if and only if X̃ on BZ is liftable.

Proof. We start by stating a general (and well known) fact: Let φ ∈M(A2(Dn)). Then
the operator norm (or multiplier norm) of Mφ on A2(Dn) is given by

∥Mφ∥B(A2(Dn)) = ∥φ∥∞.
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Indeed, for f ∈ A2(Dn), we have

∥φf∥A2(Dn) =
(∫

Dn

|φf |2dσ
) 1

2

≤
(∫

Dn

∥φ∥2∞|f |2dσ
) 1

2

≤ ∥φ∥∞
(∫

Dn

|f |2dσ
) 1

2
,

that is, ∥Mφ∥B(A2(Dn)) ≤ ∥φ∥∞. On the other hand, for each w ∈ Dn,

φ(w) =
1

∥K(·, w)∥2
⟨K(·, w), φ(w)K(·, w)⟩

=
1

∥K(·, w)∥2
⟨K(·, w), T ∗

φK(·, w)⟩

=
〈
Tφ

( K(·, w)
∥K(·, w)∥

)
,
K(·, w)
∥K(·, w)∥

〉
,

implies that |φ(w)| ≤ ∥Mφ∥B(A2(Dn)), and completes the proof of the claim. Now,

suppose that X̃ on BZ is liftable, that is X̃ = Bφ for some φ ∈ M(A2(Dn)) = H∞(Dn)
with ∥Mφ∥B(A2(Dn)) ≤ 1. In view of the above observation, we have φ ∈ S(Dn). Suppose
{wi}mi=1 ⊂ C be the scalars corresponding to X̃, that is

X̃∗K(·, zi) = wiK(·, zi),

for all i = 1, . . . ,m. This and the equality X̃ = Bφ imply that

φ(zi) = w̄i (i = 1, . . . ,m),

and hence X∗ = S∗
φ. Therefore, X = Sφ, and hence φ is a lift of X. Proof of the reverse

direction is similar.

In other words, the lifting problem on zero-based quotient modules of A2(Dn) is

equivalent to the lifting problem on zero-based quotient modules of H2(Tn). In the case

n = 1, for a module map X̃ ∈ B1(BZ), if ∥X∥B(QZ) ≤ 1, then X̃ can be lifted (thanks

to Sarason). On the other hand, if X ∈ B1(QZ) is a module map, then automatically

X̃ ∈ B1(BZ), and hence X has a lift.

2.9.4 Decompositions of polynomials

In this subsection, we decompose polynomials with respect to Beurling-type quotient

modules of H2(Tn). This result has already been used (n = 1 case) to recover Sarason’s

commutant lifting theorem (see Theorem 2.8.2).
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A quotient module Q ⊆ H2(Tn) is said to be of Beurling type if there exists an inner

function φ ∈ S(Dn) such that

Q = (φH2(Tn))⊥.

Recall that all one variable quotient modules are of Beurling type [23].

Proposition 2.9.7. Let φ ∈ S(Dn) be an inner function, and let p ∈ C[z1, . . . , zn].
Write

p = f ⊕ g ∈ φH2(Tn)⊕ (φH2(Tn))⊥.

Then f, g ∈ H∞(Dn).

Proof. It is enough to prove that f ∈ H∞(Dn). It is also enough to consider p as a

monomial. Fix k ∈ Zn+, and suppose

zk = f ⊕ g ∈ φH2(Tn)⊕ (φH2(Tn))⊥.

Let λ ∈ Zn+, and suppose li > ki for some i = 1, . . . , n. Since T ∗λ
z (zk) = 0, it follows

that

T ∗λ
z f = −T ∗λ

z g.

Since g is in the quotient module (φH2(Tn))⊥, we conclude that

T ∗λ
z f ∈ (φH2(Tn))⊥.

Now there exists f1 ∈ H2(Tn) such that f = φf1. Consequently

T ∗λ
z f = T ∗λ

z φf1 ∈ (φH2(Tn))⊥,

and hence

⟨T ∗λ
z φf1, φh⟩ = 0,

for all h ∈ H2(Tn). Then, T ∗
φT

∗λ
z = T ∗λ

z T ∗
φ and T ∗

φTφ = I yield

⟨T ∗λ
z f1, h⟩ = ⟨T ∗λ

z φf1, φh⟩

= 0,

for all h ∈ H2(Tn) and l ∈ Zn+ such that li > ki for some i = 1, . . . , n. Therefore

f1 ∈
⋂

|l|=|k|+1

kerT ∗l
z .

and hence

f1 ∈ span{zt : t ∈ Zn+, |t| ≤ |k|+ 1}.

We conclude that

f ∈ span{ztφ : t ∈ Zn+, |t| ≤ |k|+ 1} ⊆ H∞(Dn).
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This completes the proof of the proposition.

A similar question could be posed for other classes of functions. What about the

decomposition of a rational function with respect to a Beurling decomposition, for ex-

ample?

2.10 Concluding remarks

We start off by commenting on the commutant lifting theorem. Let us recall Ball,

Li, Timotin, and Trent’s commutant lifting theorem [20, Theorem 5.1], which is only

relevant for n = 2 case in our context.

Theorem 2.10.1. Let Q ⊆ H2(T2) be a quotient module, and let X ∈ B1(Q) be a module

map. Then X admits a lift if and only if there exist positive operators G1, G2 ∈ B(Q)
such that G1 − Sz2G1S

∗
z2 ≥ 0 and G2 − Sz1G2S

∗
z1 ≥ 0, and

I −XX∗ = G1 +G2.

The proof is based on Agler’s transfer function realization formula for functions in

S(D2) (which we will comment on more about below). In contrast to the preceding

theorem, however, our commutant lifting theorem appears to be more explicit. For

instance, Theorem 2.4.1 has been validated for the examples constructed in Corollary

2.3.3 (see Section 2.7).

Now we turn to the interpolation problem. We already mentioned in Section 2.1 that

the traditional approach to solving the interpolation problem in terms of the positivity

of the Pick matrix (or family of Pick matrices) in higher variables produces only limited

results. There is, however, likely to be one notable exception: interpolation on D2, which

Agler [5, 6] pioneered in his seminal papers in the late ’80s (also see [8, Theorem 1.3]):

Theorem 2.10.2. Let {(αi, βi)}mi=1 be a set of distinct points in D2 and let {wi}mi=1 ⊂ D.
There exists φ ∈ S(D2) such that

φ(αi, βi) = wi,

for all i = 1, . . . ,m, if and only if there exist positive semi-definite m × m matrices

Γ = (Γij) and ∆ = (∆ij) such that

(1− w̄iwj) = (1− ᾱiαj)Γij + (1− β̄iβj)∆ij ,

for all i, j = 1, . . . ,m.

This is clearly an analogue of the solution to the classical Nevanlinna–Pick interpo-

lation problem (also see Cole and Wermer [32, 33, 34]). In a slightly different context,
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see Kosiński [65] for three-point interpolation problem (also, see Cotlar and Sadosky

[35, 36, 37]). Whereas the above result appears to be abstract (particularly the ex-

istence of positive semi-definite matrices), the approach is useful in a variety of other

problems. Indeed, based on the Ando dilation and the von Neumann inequality for pairs

of commuting contractions [11], Agler derived a realization formula for Schur functions

in terms of colligation matrices, which leads to the above solution to the interpolation

problem. His realization formula has proven very useful in operator theory and function

theory on Dn, n ≥ 2. Whereas we believe Theorem 2.5.6 is more concrete and provides

a new perspective on the interpolation problem in general, we are unsure how to relate

it to Theorem 2.10.2. We are also unclear about using Theorem 2.10.2 to validate the

examples of interpolation in Theorem 2.6.4 for the specific case of n = 2.

Finally, we remark that, unlike the present case of scalar functions, the earlier lifting

theorem and the solutions to the interpolation problem work equally well for the operator

or vector-valued functions [8, 20, 18]. The powerful n-variables von Neumann inequality

(which is automatic in the case of n = 2 but not so when n > 2), like the Sz.-Nagy

and Foiaş [70] effective dilation theoretic approach appears to be a key factor. However,

as previously stated, we followed a function theoretic route pioneered by Sarason in

his work [91]. The results reported here, we think, will be also helpful in building

related theories like isometric dilations for commuting contractions, several variables

von Neumann inequality, Nehari problem on Dn, etc., similar to Sarason’s classic result.



Chapter 3

Perturbations Of Analytic

Functions On The Polydisc

3.1 Introduction

Our aim in this chapter is to present a classification of H2(Tn)-functions that can be

perturbed by H2(Tn)-functions so that the resultant functions are in S(Dn). Our per-

turbation result is of independent interest and not directly related to the commutant

lifting theorem. However, the technique involved here is motivated by the one used in

the proof of the lifting theorem in the preceding chapter.

Our interest is in the following question: Given a nonzero function f ∈ H2(Tn), does
there exist g ∈ H2(Tn) such that

f + g ∈ S(Dn)?

Of course, to avoid triviality (that g = −f , for instance), we assume that g ∈ {f}⊥. Set

Ln =Mn ⊕H2
0 (Tn),

and treat it as a subspace of L1(Tn).

To answer this, we first formalize some notations. Throughout the sequel, we denote

Ln =Mn ⊕H2
0 (Tn).

Recall that H2
0 (Tn) = H2(Tn) ⊖ {1} is the closed subspace of H2(Tn) of functions

vanishing at the origin. Recall also that

Mn = L2(Tn)⊖ (H2(Tn)conj +H2(Tn)),

81
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the closed subspace of L2(Tn) generated by all the trigonometric monomials that are

neither analytic nor co-analytic. In particular, we have the crucial property that

⟨f, 1⟩L2(Tn) = 0 (f ∈ Ln).

Finally, we recall a basic fact from Banach space theory: Let x be a vector in a Banach

space B. Then

∥x∥B = sup{|x∗(x)| : x∗ ∈ B∗, ∥x∗∥ ≤ 1}.

Now we are ready for the perturbation theorem.

Theorem 3.1.1. Let f ∈ H2(Tn) be a nonzero function. There exists g ∈ {f}⊥ such

that f + g ∈ S(Dn) if and only if

distL1(Tn)

( f̄

∥f∥22
,Ln

)
≥ 1.

Proof. We start by recalling the definition of distance function (in the present case):

distL1(Tn)

( f̄

∥f∥22
,Ln

)
= inf

{∥∥∥ f̄

∥f∥22
+ h

∥∥∥
1
: h ∈ Ln

}
.

Suppose g ∈ {f}⊥ be such that ψ := f + g ∈ S(Dn). It is enough to prove that

∥∥∥ f̄

∥f∥22
+ h

∥∥∥
1
≥ 1 (h ∈ Ln).

Fix h ∈ Ln. Since ψ ∈ S(Dn) and S(Dn) is a subset of the closed unit ball of L∞(Tn),
we have ψ ∈ L∞(Tn) and ∥ψ∥∞ ≤ 1. By the duality (see (2.4.1))

(L1(Tn))∗ ∼= L∞(Tn),

it follows that χψ ∈ (L1(Tn))∗ and

∥ψ∥∞ = ∥χψ∥ ≤ 1,

where

χψg =

∫
Tn

ψg dµ,

for all g ∈ L1(Tn). In particular, for

g =
f̄

∥f∥22
+ h ∈ L1(Tn),
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we compute ∫
Tn

ψ
( f̄

∥f∥22
+ h

)
dµ =

〈
f + g,

f

∥f∥22
+ h̄

〉
L2(Tn)

= 1 +
〈
g,

f

∥f∥22
+ h̄

〉
L2(Tn)

= 1.

The last but one equality follows from the fact that (note that h̄ has no analytic part)

⟨f, h̄⟩L2(Tn) = 0,

and the last equality is due to the fact that g ∈ {f}⊥ and

⟨g, h̄⟩L2(Tn) = 0,

similar reason as in the preceding equality. We also have used the fact that f is analytic

and ⟨h, 1⟩L2(Tn) = 0. Therefore, χψ ∈ (L1(Tn))∗ with ∥χψ∥ ≤ 1 and

∣∣∣χψ( f̄

∥f∥22
+ h

)∣∣∣ = 1.

The norm identity for Banach spaces stated preceding the statement of this theorem

immediately implies that ∥∥∥ f̄

∥f∥22
+ h

∥∥∥
1
≥ 1.

For the reverse direction, suppose the above inequality holds for all h ∈ Ln. Equivalently

∥λf̄ + h∥1 ≥ |λ|∥f∥22,

for all h ∈ Ln and λ ∈ C. Define S a subspace of L1(Tn) as

S := span{f̄ ,Ln},

and then define a linear functional ζf : S → C by

ζf (λf̄ + h) =

∫
Tn

(λf̄ + h)f dµ,

for all h ∈ Ln and λ ∈ C. As in the proof of the forward direction, we have∫
Tn

fh dµ = ⟨h, f̄⟩L2(Tn)

= 0,
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for all h ∈ Ln. Moreover, since ∫
Tn

ff̄ dµ = ∥f∥22,

it follows that

|ζf (λf̄ + h)| = |λ|∥f∥22
≤ ∥λf̄ + h∥1,

for all h ∈ Ln and λ ∈ C. This ensures that ζf is a contractive functional on S; hence,
by the Hahn-Banach theorem, there exists ζ ∈ (L∞(Tn))∗ such that ∥ζ∥ ≤ 1 and

ζ|S = ζf .

Again, by the duality (2.4.1), there exists φ ∈ L∞(Tn) such that ∥φ∥∞ ≤ 1 and

χφ|S = ζ|S = ζf .

Therefore ∫
Tn

(λf̄ + h)f dµ =

∫
Tn

(λf̄ + h)φdµ, (3.1.1)

for all h ∈ Ln and λ ∈ C. We now claim that φ is analytic (which would clearly imply

that φ ∈ H∞(Dn)). As in the proof of Theorem 2.4.1, we consider a typical monomial

F from Ln =Mn ∔H2
0 (Tn). Therefore

F = zk,

for some k ∈ Nn, or
F = zkAA z̄kBB ,

for some kA ∈ Z|A|
+ and kB ∈ Z|B|

+ , where A,B ⊆ {1, . . . , n}, A ∩ B = ∅, and A,B ̸= ∅
(see the representation ofMn in (2.4.2)). We compute

0 = ⟨f, F̄ ⟩L2(Tn)

=

∫
Tn

fF dµ

=

∫
Tn

φF dµ

= ⟨φ, F̄ ⟩L2(Tn),

which proves the claim. Since ∥φ∥∞ ≤ 1, we conclude that φ ∈ S(Dn). Using the

containment H∞(Dn) ⊆ H2(Dn), first we conclude φ ∈ H2(Dn), and then write

φ = cf ⊕ g,
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for some scalar c and function g ∈ H2(Dn) such that g ∈ {f}⊥. It remains to show that

c = 1. Observe, if h = 0, and

λ =
1

∥f∥22
,

then (3.1.1) along with the fact that ⟨g, f⟩ = 0 yields

1 =

∫
Tn

f
f̄

∥f∥22
dµ

=

∫
Tn

φ
f̄

∥f∥22
dµ

=
〈
φ,

f

∥f∥22

〉
H2(Tn)

=
〈
cf ⊕ g, f

∥f∥22

〉
H2(Tn)

= c.

This completes the proof of the theorem.

We know, in particular, thatM1 = {0} (see (2.4.4)). Moreover, as observed earlier,

that H2
0 (T) = zH2(T). Therefore

L1 = zH2(T),

and as a result, the preceding theorem is simplified as follows:

Corollary 3.1.2. Given f ̸= 0 in H2(T), there exists g ∈ {f}⊥ such that

f + g ∈ S(D),

if and only if

distL1(T)

( f̄

∥f∥22
, zH2(T)

)
≥ 1.

The following example illustrates the above theorem.

Example 3.1.3. Fix a real number 0 < c < 1, and pick b ∈ (c2, c). Also fix a multiindex

k0 ∈ Zn+, k0 ̸= (0, . . . , 0), and set

Λ := Zn+ \ {k0}.

Finally, choose a sequence {ak}k∈Λ ⊆ R+ such that

1.
∑
k∈Λ

ak diverges, and

2.

√∑
k∈Λ

a2k + b2 = c.
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Set

f =
∑
k∈Λ

akz
k + bzk0 .

We want to show that f can be perturbed to become a Schur function. To this end, we

first observe that f(0, . . . , 0) = a0 and

f(1, . . . , 1) = b+
∑
k∈Λ

ak,

and hence (by continuity)

f(L) = (a0,∞),

where L is the line joining (0, . . . , 0) and (1, . . . , 1). We conclude, in particular, that

f /∈ H∞(Dn).

Moreover

∥f∥2 = c,

by construction of f . We now consider the functional χzk0 ∈ (L1(Tn))∗ (see the duality

(2.4.1)). Clearly

∥χzk0∥ = 1.

Given arbitrary functions g ∈Mn and h ∈ H2
0 (Tn), we compute

χzk0

( f̄
c2

+ g + h
)
=

∫
Tn

zk0
( f̄
c2

+ g + h
)
dµ

=
〈 f̄
c2

+ g + h, z̄k0
〉
L2(Tn)

=
〈 f̄
c2
, z̄k0

〉
L2(Tn)

=
b

c2
.

Since b > c2, it follows that

χzk0

( f̄
c2

+ g + h
)
≥ 1,

and consequently, the norm identity that was mentioned preceding the statement of The-

orem 2.5.6 infers that ∥∥∥ f̄
c2

+ g + h
∥∥∥
1
≥ 1.

Given that Ln =Mn ∔H2
0 (Tn), the above is equivalent to saying that

distL1(Tn)

( f̄

∥f∥22
,Ln

)
≥ 1,

and hence, by Theorem 3.1.1, we conclude that f ⊕ g ∈ S(Dn) for some g ∈ {f}⊥.
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It may appear to be a coincidence that the distance recipe in Theorem 3.1.1 as well as

in Theorem 2.4.2 (and the quantitative interpolation theorem in Section 2.6) is similar

to the well known Nehari theorem [79] for Hankel operators. Recall that the Hankel

operator with symbol φ ∈ L∞(T) is defined by

Hφ = PH2
−(T)Lφ|H2(T),

where H2
−(T) = L2(T)⊖H2(T). The Nehari theorem states:

∥Hφ∥ = dist(φ,H∞(D)) = ∥φ∥∞.

Furthermore, it is well known that the Nehari problem is related to the Nevanlinna-Pick

interpolation problem for rational functions. See also the well known Adamyan, Arov,

and Krein theorem, also known as the AAK step-by-step extension [81, Chapter 2].

Another important formula is due to Adamyan, Arov and Krein [4]:

∥Hφ∥ess = dist(φ,C(T) +H∞(D)),

for all φ ∈ L∞(T), where C(T) denotes the space of all continuous functions on T.
Hankel operators in several variables [86] are also complex objects. We refer the reader

to Coifman, Rochberg, andWeiss [30] for some progress to the theory of Hankel operators

(also see [50]).





Chapter 4

Commutant Lifting And

Nevanlinna-Pick Interpolation On

The Unit Ball

4.1 Introduction

In this chapter we make a contribution to a commutant lifting theorem and a version of

Nevanlinna-Pick interpolation in several variables. To be more precise, let m ≥ 1 and

let Hm denotes the reproducing kernel Hilbert space corresponding to the kernel km on

Bn, where

km(z, w) = (1−
n∑
i=1

ziw̄i)
−m (z, w ∈ Bn),

and Bn = {z = (z1, . . . , zn) ∈ Cn :
n∑
i=1

|zi|2 < 1}.

Our main result, restricted to Hm, m > 1, can now be formulated as follows:

Commutant lifting theorem (Theorem 4.3.4): SupposeQ1 andQ2 are joint (Mz1 , . . . ,Mzn)

co-invariant subspaces of H2
n(= H1) and Hm, respectively. Let X ∈ B(Q1,Q2) and

∥X∥ ≤ 1. If

X(PQ1Mzi |Q1) = (PQ2Mzi |Q2)X,

for all i = 1, . . . , n, then there exists a holomorphic function φ : Bn → C such that

the multiplication operator Mφ ∈ B(H2
n,Hm), ∥Mφ∥ ≤ 1 (that is, φ is a contractive

multiplier), and

X = PQ2Mφ|Q1 .

The chapter is organized as follows. Section 4.2 discusses some useful and known

facts about reproducing kernel Hilbert spaces. Section 4.3 presents the commutant lifting

theorem. Section 4.4 is devoted to factorizations of multipliers. The factorization results

89
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obtained here may be of independent interest. Section 4.5 provides the interpolation

theorem.

4.2 Preliminaries

The Drury-Arveson space over the unit ball Bn in Cn will be denoted by H2
n. Recall

that H2
n is a reproducing kernel Hilbert space corresponding to the kernel function

k1(z,w) = (1−
n∑
i=1

ziw̄i)
−1 (z, w ∈ Bn).

Let k : Bn×Bn → C be a kernel such that k is analytic in the first variables {z1, . . . , zn}.
We say that k is regular if there exists a kernel k̃ : Bn×Bn → C, analytic in {z1, . . . , zn},
such that

k(z, w) = k1(z, w)k̃(z, w) (z, w ∈ Bn).

If k is a regular kernel, then Hk, the reproducing kernel Hilbert space corresponding to

the kernel k, will be referred as a regular reproducing kernel Hilbert space.

In the case of a regular reproducing kernel Hilbert space Hk, it follows [66] that Mzi ,

the multiplication operator by the coordinate function zi, is bounded. Note that

(Mzif)(w) = wif(w),

for all f ∈ Hk, w ∈ Bn and i = 1, . . . , n. Moreover, it also follows that the commuting

tuple (Mz1 , . . . ,Mzn) on Hk is a row contraction, that is

n∑
i=1

MziM
∗
zi ≤ IHk

.

If E is a Hilbert space, then we also say that Hk ⊗ E is a regular reproducing kernel

Hilbert space. Note that the kernel function of Hk ⊗ E is given by

Bn × Bn ∋ (z,w) 7→ k(z,w)IE .

The E-valued Drury-Arveson space, denoted by H2
n(E), is the reproducing kernel Hilbert

space corresponding to the B(E)-valued kernel function

Bn × Bn ∋ (z,w) 7→ k1(z,w)IE .

To simplify the notation, we often identify H2
n(E) with H2

n ⊗ E via the unitary map

defined by zkη 7→ zk ⊗ η for all k ∈ Zn+ and η ∈ E . This also enable us to identify

(Mz1 , . . . ,Mzn) on H
2
n(E) with (Mz1 ⊗ IE , . . . ,Mzn ⊗ IE) on H2

n ⊗ E .
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Typical examples of regular reproducing kernel Hilbert spaces arise from weighted

Bergman spaces over Bn. More specifically, let λ > 1, and let

kλ(z,w) = (1−
n∑
i=1

ziw̄i)
−λ (z,w ∈ Bn). (4.2.1)

Then Hkλ is a regular reproducing kernel Hilbert space. Note that Hkλ is the Hardy

space, Bergman space and weighted Bergman space for λ = n, n+ 1 and n+ 1 + α for

any α > 0, respectively.

Suppose H and E∗ are Hilbert spaces and (T1, . . . , Tn) is a commuting tuple of

bounded linear operators on H. We say that (T1, . . . , Tn) on H dilates to (Mz1 ⊗
IE∗ , . . . ,Mzn ⊗ IE∗) on H2

n ⊗ E∗ if there exists an isometry Π : H → H2
n ⊗ E∗ such

that

ΠT ∗
i = (Mzi ⊗ IE∗)∗Π,

for all i = 1, . . . , n (cf. [92]). We often say that Π : H → H2
n ⊗ E∗ is a dilation of

(T1, . . . , Tn).

If H = Hk is a regular reproducing kernel Hilbert space, then by [Theorem 6.1, [66]],

it follows that (Mz1 ⊗ IE , . . . ,Mzn ⊗ IE) on Hk ⊗E dilates to (Mz1 ⊗ IE∗ , . . . ,Mzn ⊗ IE∗)
on H2

n ⊗ E∗ for some Hilbert space E∗. More specifically:

Theorem 4.2.1. Let E be a Hilbert space. If Hk is a regular reproducing kernel Hilbert

space, then there exist a Hilbert space E∗ and an isometry

Πk : Hk ⊗ E → H2
n ⊗ E∗,

such that

Πk(Mzi ⊗ IE)∗ = (Mzi ⊗ IE∗)∗Πk,

for all i = 1, . . . , n.

Since (Mz1 ⊗ IE , . . . ,Mzn ⊗ IE) on Hk ⊗ E is a pure row contraction [66], the above

result also directly follows from Muller-Vasilescu [76] and Arveson [13].

In what follows, given a Hilbert space H and a closed subspace Q of H, we will denote
by iQ the inclusion map

iQ : Q ↪→ H.

Note that iQ is an isometry and

iQi
∗
Q = PQ.

We now recall the commutant lifting theorem in the setting of the Drury-Arveson

space (see [10] or Theorem 5.1, page 118, [19]). A closed subspace Q of a regular

reproducing kernel Hilbert space Hk ⊗ E is said to be shift co-invariant if

(Mzi ⊗ IE)∗Q ⊆ Q (i = 1, . . . , n).
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Theorem 4.2.2. Let E1 and E2 be Hilbert spaces. Suppose Q1 and Q2 are shift co-

invariant subspaces of H2
n(E1) and H2

n(E2), respectively, X ∈ B(Q1,Q2) and let ∥X∥ ≤ 1.

If

X(PQ1Mzi |Q1) = (PQ2Mzi |Q2)X,

for all i = 1, . . . , n, then there exists a multiplier Φ ∈ M(H2
n(E1), H2

n(E2)) such that

∥MΦ∥ ≤ 1 and PQ2MΦ|Q1 = X.

Recall also that, given regular reproducing kernel Hilbert spacesHk1⊗E1 andHk2⊗E2,
a function Φ : Bn → B(E1, E2) is called a multiplier from Hk1 ⊗ E1 to Hk2 ⊗ E2 if

Φ(Hk1 ⊗ E1) ⊆ Hk2 ⊗ E2.

The multiplier space M(Hk1 ⊗ E1,Hk2 ⊗ E2) is the set of all multipliers from Hk1 ⊗ E1
to Hk2 ⊗E2. In what follows,M1(H

2
n⊗E1,Hk⊗E2) will denote the closed ball of radius

one:

M1(H
2
n ⊗ E1,Hk ⊗ E2) = {Φ ∈M(H2

n ⊗ E1,Hk ⊗ E2) : ∥MΦ∥ ≤ 1}.

We have the following useful characterization of multipliers (cf. Proposition 4.2, [92]):

Let Hk be a regular reproducing kernel Hilbert space, and let X ∈ B(H2
n⊗E1,Hk⊗E2).

Then

X(Mzi ⊗ IE1) = (Mzi ⊗ IE2)X,

if and only if X =MΦ for some Φ ∈M(H2
n ⊗ E1,Hk ⊗ E2).

4.3 Commutant lifting theorem

We begin with a general result concerning intertwiner of bounded linear operators.

Lemma 4.3.1. Suppose Π : H → K and Π̂ : Ĥ → K̂ are isometries, V ∈ B(K),
V̂ ∈ B(K̂), T = Π∗VΠ and T̂ = Π̂∗V̂ Π̂. Moreover, let X ∈ B(H, Ĥ) satisfies

XT = T̂X.

If we define

Q = ΠH and Q̂ = Π̂Ĥ,

and

X̃ = Π̂XΠ∗|Q,

then X̃ ∈ B(Q, Q̂) and
X̃(PQV |Q) = (PQ̂V̂ |Q̂)X̃.

Proof. Notice that PQ = ΠΠ∗ and PQ̂ = Π̂Π̂∗. Hence

X̃ = (Π̂Π̂∗)Π̂XΠ∗|Q = PQ̂(Π̂XΠ∗)|Q,
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and in particular

(Π̂XΠ∗)Q ⊆ Q̂,

which shows that X̃ ∈ B(Q, Q̂). Moreover

X̃(PQV |Q) = Π̂XΠ∗PQV |Q = Π̂XΠ∗V |Q = Π̂XTΠ∗|Q
= Π̂T̂XΠ∗|Q = Π̂Π̂∗V̂ Π̂(Π̂∗Π̂)XΠ∗|Q
= PQ̂V̂ |Q̂Π̂XΠ∗|Q = (PQ̂V̂ |Q̂)X̃.

Now we are ready to prove a variation, in terms of dilations, of Theorem 4.2.2.

Theorem 4.3.2. Let H and Ĥ be Hilbert spaces. Suppose T = (T1, . . . , Tn) and T̂ =

(T̂1, . . . , T̂n) are commuting tuples on H and Ĥ, respectively, X ∈ B(H, Ĥ), ∥X∥ ≤ 1,

and

XTi = T̂iX,

for all i = 1, . . . , n. If Π : H → H2
n ⊗ E and Π̂ : Ĥ → H2

n ⊗ Ê are dilations of T and T̂ ,

respectively, then there exists a multiplier Φ ∈M1(H
2
n ⊗ E , H2

n ⊗ Ê) such that

X = Π̂∗MΦΠ.

Proof. Let

Q = ΠH and Q̂ = Π̂Ĥ.

If

X̃ = Π̂XΠ∗|Q,

then by Lemma 4.3.1, it follows that X̃ ∈ B(Q, Q̂) and

X̃(PQ(Mzi ⊗ IE)|Q) = (PQ̂(Mzi ⊗ IÊ)|Q̂)X̃,

for all i = 1, . . . , n. It then follows from the commutant lifting theorem, Theorem 4.2.2,

that

X̃ = PQ̂MΦ|Q,

for some Φ ∈M(H2
n ⊗ E , H2

n ⊗ Ê) and ∥MΦ∥ ≤ 1. Then

Π̂XΠ∗|Q = PQ̂MΦ|Q.

It then follows from

Q = ran Π = ran ΠΠ∗,

that

(Π̂XΠ∗)(ΠΠ∗) = PQ̂MΦ(ΠΠ
∗).

Thus

Π̂X = PQ̂MΦΠ = (Π̂Π̂∗)MΦΠ,
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and hence X = Π̂∗MΦΠ.

Now let Q be a shift co-invariant subspace of Hk ⊗E . An isometry Π : Q → H2
n⊗E∗

is said to be a dilation of Q if

Π(PQ(Mzi ⊗ IE)|Q)∗ = (Mzi ⊗ IE∗)∗Π,

for all i = 1, . . . , n, that is (PQMz1 |Q, . . . , PQMzn |Q) onQ dilates to (Mz1⊗IE∗ , . . . ,Mzn⊗
IE∗) on H

2
n ⊗ E∗ via the isometry Π.

Lemma 4.3.3. Let Hk be a regular reproducing kernel Hilbert space, and let E and E∗ be

a Hilbert spaces. Suppose Q is a shift co-invariant subspace of Hk ⊗E. If Π : Hk ⊗E →
H2
n ⊗ E∗ is a dilation of Hk ⊗ E, then ΠQ : Q → H2

n ⊗ E∗, defined by

ΠQ = Π ◦ iQ,

is a dilation Q.

Proof. We first observe that

Π∗
QΠQ = i∗QΠ

∗ΠiQ = IQ.

Now we compute

ΠQ(PQ(Mzi ⊗ IE)|Q)∗ = ΠiQPQ(Mzi ⊗ IE)∗|Q = Π(Mzi ⊗ IE)∗|Q
= (Mzi ⊗ IE∗)∗Π|Q = (Mzi ⊗ IE∗)∗(ΠiQ)i∗Q|Q
= (Mzi ⊗ IE∗)∗ΠQi

∗
Q|Q.

Now

i∗Q|Q = IQ,

and so

ΠQ(PQ(Mzi ⊗ IE)|Q)∗ = (Mzi ⊗ IE∗)∗ΠQ,

for all i = 1, . . . , n.

We are now ready to present and prove the commutant lifting theorem.

Theorem 4.3.4. Let Hk be a regular reproducing kernel Hilbert space, E1 and E2 be

Hilbert spaces, and let Q1 and Q2 be shift co-invariant subspaces of H2
n⊗E1 and Hk⊗E2,

respectively. Let X ∈ B(Q1,Q2), and suppose that ∥X∥ ≤ 1 and

X(PQ1(Mzi ⊗ IE1)|Q1) = (PQ2(Mzi ⊗ IE2)|Q2)X,

for all i = 1, . . . , n. Then there exists a multiplier Φ ∈M1(H
2
n ⊗ E1,Hk ⊗ E2) such that

X = PQ2MΦ|Q1 .
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Proof. Observe that the inclusion map iQ1 : Q1 ↪→ H2
n ⊗ E1 is a dilation of Q1. Let

Πk : Hk ⊗ E2 → H2
n ⊗ Ê be a dilation of Hk (see Theorem 4.2.1), that is, Πk is an

isometry and

Πk(Mzi ⊗ IE2)∗ = (Mzi ⊗ IÊ)
∗Πk, (4.3.1)

for all i = 1, . . . , n and some Hilbert space Ê . Set

ΠQ2 = ΠkiQ2 .

By Lemma 4.3.3, it follows that ΠQ2 : Q2 → H2
n ⊗ Ê is a dilation of Q2. Then Theorem

4.3.2 yields

X = Π∗
Q2
MΦ1iQ1 ,

for some multiplier Φ1 ∈M(H2
n ⊗ E1, H2

n ⊗ Ê). Hence

X = i∗Q2
(Π∗

kMΦ1)iQ1 .

Since

MΦ1(Mzi ⊗ IE1) = (Mzi ⊗ IÊ)MΦ1 ,

we have, using also the adjoint of (4.3.1),

Π∗
kMΦ1(Mzi ⊗ IE1) = Π∗

k(Mzi ⊗ IÊ)MΦ1 = (Mzi ⊗ IE2)Π∗
kMΦ1 ,

for all i = 1, . . . , n, that is, Π∗
kMΦ1 : H2

n ⊗ E1 → Hk ⊗ E2 intertwines the shifts. Conse-

quently

Π∗
kMΦ1 =MΦ,

for some multiplier Φ ∈M(H2
n ⊗ E1,Hk ⊗ E2). Hence

X = i∗Q2
MΦiQ1 ,

and thus

iQ2X = PQ2MΦiQ1 .

Hence, we have

X = PQ2MΦ|Q1 .

Finally

∥MΦ∥ ≤ ∥MΦ1∥ ≤ 1.
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A simpler way of presenting the above theorem, from Hilbert module point of view,

is to say that the following diagram commutes:

H2
n ⊗ Ê

H2
n ⊗ E1

PQ1

��

MΦ

//

MΦ1

22

Hk ⊗ E2
PQ2

��

Πk

99

Q1
X

// Q2

ΠQ2

FF

4.4 Factorizations

Let k be a regular reproducing kernel on Bn. Then there exists a positive definite kernel

k̃ : Bn × Bn → C such that

k(z,w) = k1(z,w)k̃(z,w) (z,w ∈ Bn).

Let Hk̃ be the reproducing kernel Hilbert space corresponding to the kernel k̃. Suppose

w ∈ Bn and ev(w) : Hk̃ → C is the evaluation map, that is

ev(w)(f) = f(w) (f ∈ Hk̃).

Then

k̃(z,w) = ev(z)ev(w)∗ (z,w ∈ Bn),

and so

k(z,w) = k1(z,w)
(
ev(z)ev(w)∗

)
(z,w ∈ Bn). (4.4.1)

From Corollary 4.2 in [66] it follows that the map

(πF )(z) := F (z, z),

for all F ∈ H2
n ⊗ Hk̃ and z ∈ Bn, defines a coisometry from H2

n ⊗ Hk̃ = Hk1 ⊗ Hk̃ to

Hk = Hk1k̃. If we view H2
n⊗Hk̃ as a reproducing kernel Hilbert space of functions with

values in Hk̃, then the map π is actually the multiplier Mev; indeed, if we compute the

action on reproducing kernels, we have

Mev(f ⊗ g)(w) = f(w)⊗ ev(w)(g) = f(w)⊗ g(w) = π(f ⊗ g)(w).

This formula may be extended by tensorizing with IE , where E is a Hilbert space. If

we define Ψk : Hk̃ ⊗ E → E by Ψk := ev ⊗ IE , then Ψk is obviously also a coisometric

multiplier. Taking into account (4.4.1), we obtain the following theorem (see also [29,

Theorem 4.1] and [66, Theorem 6.2]):
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Theorem 4.4.1. Let k : Bn × Bn → C be a regular kernel, and let

k(z,w) = k1(z,w)k̃(z,w) (z,w ∈ Bn),

for some kernel k̃ on Bn. Suppose Hk̃ is the reproducing kernel Hilbert space correspond-

ing to the kernel k̃. If E is a Hilbert space, then there exists a co-isometric multiplier

Ψk ∈M(H2
n ⊗ (Hk̃ ⊗ E),Hk ⊗ E) such that

k(z,w)IE =
Ψk(z)Ψk(w)∗

1− ⟨z,w⟩
(z,w ∈ Bn).

It is worth noting that except the explicit identification of the state space Hk̃ and

the fact that Ψk ∈ M(H2
n ⊗ (Hk̃ ⊗ E),Hk ⊗ E), Theorem 4.4.1 essentially follows from

the Kolmogorov decomposition of a positive definite kernel.

It is instructive to consider, in particular, the familiar case: weighted Bergman spaces

over Bn. Let m > 1 be an integer and let

km(z,w) = (1−
n∑
i=1

ziw̄i)
−m (z,w ∈ Bn).

Then

k̃m(z,w) = km−1(z,w),

and hence Ψkm(w)∗ : E → Hkm−1 ⊗ E is given by

Ψkm(w)∗η = km−1(·,w)⊗ η,

for all z,w ∈ Bn and η ∈ E . Note also that

⟨Ψkm(w)(f ⊗ η), ζ⟩ = f(w)⟨η, ζ⟩,

for all f ∈ Hkm−1 , η, ζ ∈ E and w ∈ Bn.

For this particular case, the representation of Ψkm has been computed explicitly in [24,

Section 4] and [16].

Now suppose E1 and E2 are Hilbert spaces, and k is a regular kernel on Bn. Let

Θ : Bn → B(E1, E2) be an analytic function. From [84, Theorem 6.28] it follows that

Θ ∈M1(H
2
n ⊗ E1,Hk ⊗ E2) if and only if

k(z,w)− k1(z,w)Θ(z)Θ(w)∗

is a positive definite kernel. By virtue of Theorem 4.4.1, this is equivalent to positive

definiteness of the kernel

(z,w) 7→ k1(z,w)(Ψk(z)Ψk(w)∗ −Θ(z)Θ(w)∗).
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We may then apply [7, Theorem 8.57((i)⇒ (ii))] to obtain the following theorem.

Theorem 4.4.2. Let E1 and E2 be Hilbert spaces, and let Θ : Bn → B(E1, E2) be an an-

alytic function. In the setting of Theorem 4.4.1, the following conditions are equivalent:

(i) Θ ∈M1(H
2
n ⊗ E1,Hk ⊗ E2),

(ii) there exists Θ̃ ∈M1(H
2
n ⊗ E1, H2

n ⊗ (Hk̃ ⊗ E2)) such that

MΘ =MΨk
MΘ̃.

More specifically, the multiplier Ψk makes the following diagram commutative:

H2
n ⊗ (Hk̃ ⊗ E2)

MΨk

��

H2
n ⊗ E1

M
Θ̃

77

MΘ // Hk ⊗ E2

The above factorization theorem, in the scalar-valued multiplier case, is due to Ale-

man, Hartz, McCarthy and Richter (see Proposition 4.10 in [9]). The proof relies solely

on Leech’s theorem. One should also compare Theorems 4.4.1 and 4.4.2 with Lemma

4.1 and Theorem 4.2 in [24] and Theorem 2.1 in [16].

4.5 Nevanlinna-Pick interpolation

We now turn to the interpolation problem. Let E1 and E2 be Hilbert spaces. We denote

by B1(E1, E2) the open unit ball of B(E1, E2), that is

B1(E1, E2) = {A ∈ B(E1, E2) : ∥A∥ < 1}.

We aim to solve the following version of Pick-type interpolation problem: Suppose

{zi}mi=1 ⊆ Bn, {Wi}mi=1 ⊆ B1(E1, E2) and m ≥ 1. Find necessary and sufficient conditions

(on {zi}mi=1 and {Wi}mi=1) for the existence of a multiplier Φ ∈ M1(H
2
n ⊗ E1,Hk ⊗ E2)

such that

Φ(zi) =Wi, (4.5.1)

for all i = 1, . . . ,m.

Given such data {zi}mi=1 ⊆ Bn, {Wi}mi=1 ⊆ B1(E1, E2), set

Q1 = {
m∑
i=1

k1(·, zi)ζi : ζi ∈ E1},

and

Q2 = {
m∑
i=1

k(·, zi)ηi : ηi ∈ E2}.
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ObviouslyQ1 andQ2 are shift co-invariant subspaces ofH
2
n⊗E1 andHk⊗E2, respectively.

Define X : Q2 → Q1 by

Xk(·, zi)η = k1(·, zi)(W ∗
i η),

for all i = 1, . . . ,m and η ∈ E2. Then

X(Mzi ⊗ IE2)∗|Q2 = (Mzi ⊗ IE1)∗|Q1X,

for all i = 1, . . . , n. Then, by Theorem 4.3.4, X is a contraction if and only if there

exists Φ ∈M1(H
2
n ⊗ E1,Hk ⊗ E2) such that

PQ2MΦ|Q1 = X∗.

In particular

k1(·, zi)(W ∗
i η) = X(k(·, zi)η)

=M∗
Φ(k(·, zi)η)

= k1(·, zi)(Φ(zi)∗η),

for all η ∈ E2 and i = 1, . . . ,m, and so Φ satisfies (4.5.1). Conversely, if Φ satisfies

(4.5.1), then it is easy to see that X defines a contraction from Q2 to Q1.

Now X is a contraction if and only if

0 ≤ ⟨(I −X∗X)
m∑
i=1

k(·, zi)ηi,
m∑
i=1

k(·, zi)ηi⟩

⇒
∑

1≤i,j≤m
⟨k(zi, zj)ηj , ηi⟩ −

∑
1≤i,j≤m

⟨Wik1(zi, zj)W
∗
j ηj , ηi⟩ ≥ 0

⇒
∑

1≤i,j≤m
⟨
(
k(zi, zj)IE2 −

WiW
∗
j

1− ⟨zi, zj⟩

)
ηj , ηi⟩ ≥ 0,

for all η1, . . . , ηm ∈ E2, where the last equality follows from Theorem 4.4.1.

On the other hand, Theorem 4.4.2 says that Φ ∈ M1(H
2
n ⊗ E1,Hk ⊗ E2) if and only if

there exists Φ̃ ∈M1(H
2
n ⊗ E1, H2

n ⊗ (Hk̃ ⊗ E2)) such that

Φ(z) = Ψk(z)Φ̃(z),

for all z ∈ Bn. Summarizing, we have established the following interpolation theorem:

Theorem 4.5.1. Let E1 and E2 be Hilbert spaces, k be a regular kernel on Bn, and let

k(z,w) = k1(z,w)k̃(z,w) (z,w ∈ Bn),

for some kernel k̃ on Bn. Suppose {zi}mi=1 ⊆ Bn and {Wi}mi=1 ⊆ B1(E1, E2). Then the

following conditions are equivalent:
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(i) There exists a multiplier Φ ∈M1(H
2
n ⊗E1,Hk ⊗E2) such that Φ(zi) =Wi for all

i = 1, . . . ,m.

(ii)
∑

1≤i,j≤m
⟨
(
k(zi, zj)IE2 −

WiW
∗
j

1− ⟨zi, zj⟩

)
ηj , ηi⟩ for all η1, . . . , ηm ∈ E2.

(iii) There exists a multiplier Φ̃ ∈M1(H
2
n ⊗ E1, H2

n ⊗ (Hk̃ ⊗ E2)) such that

Ψk(zi)Φ̃(zi) =Wi (i = 1, . . . , n).

As we pointed out before, in the case of scalar-valued multipliers (that is, E1 = E2 =
C), the equivalence of (i) and (ii) in Theorem 4.5.1 is due to Aleman, Hartz, McCarthy

and Richter (see Proposition 4.4 in [9]). Moreover, if n = 1 and k̃(z, w) = (1− zw̄)−m,
m ∈ N (that is, weighted Bergman space over D with an integer weight), then the

equivalence of (i) and (ii) in Theorem 4.5.1 was proved by Ball and Bolotnikov [16].

Note that, the positivity condition in part (ii) of Theorem 4.5.1 does not hold in

general:

Example: Consider the regular kernel k as the Bergman kernel on D, that is

k(z, w) =
1

(1− zw̄)2
(z, w ∈ D).

Here

k(z, w) = k̃(z, w) = Ψk(z)Ψ
∗
k(w) =

1

(1− zw̄)
(z, w ∈ D).

Then, for a given pair of points {w1, w2} ⊆ D, condition (ii) in Theorem 4.5.1 holds for

some pair {z1, z2} ⊆ D if and only if[
1

1−|z1|2 − |w1|2 1
1−z1z̄2 − w1w̄2

1
1−z2z̄1 − w2w̄1

1
1−|z2|2 − |w2|2

]
⋄

[
1

1−|z1|2
1

1−z1z̄2
1

1−z2z̄1
1

1−|z2|2

]
≥ 0,

where ‘⋄’ denotes the Schur product of matrices. However, if z1 = w2 = 0 and z2 ̸= 0,

then it is easy to see that the positivity condition fails to hold for any w1 ∈ D such that

1− |w1|2

1− |z2|2
< 1.
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1–19.

[5] J. Agler, On the representation of certain holomorphic functions defined on a poly-

disk, in Topics in Operator Theory: Ernst D. Hellinger Memorial Volume (L. de

Branges, I. Gohberg, and J. Rovnyak, Eds.), Operator Theory and Applications,

Vol. 48, pp. 47–66, Birkhäuser-Verlag, Basel, 1990.
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[22] H. Bercovici, C. Foiaş and A. Tannenbaum, A spectral commutant lifting theorem,

Trans. Amer. Math. Soc. 325 (1991), 741–763.

[23] A. Beurling, On two problems concerning linear transformations in Hilbert space,

Acta Math., 81 (1949), 239-255.

[24] M. Bhattacharjee, B. K. Das, J. Sarkar, Hypercontractions and factorizations of

multipliers in one and several variables, Journal of Operator Theory, 88 (2022),

479-510.

[25] L. Bracci and L. Picasso, Representations of semigroups of partial isometries, Bull.

Lond. Math. Soc. 39 (2007), 792–802.

[26] A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew.

Math. 213 (1963–64), 89–102.

[27] A. Brown and R. Douglas, Partially isometric Toeplitz operators, Proc. Amer. Math.

Soc. (1965), 681–682.



Bibliography 103

[28] J. Bourgain, New Banach space properties of the disc algebra and H∞, Acta Math.

152 (1984), 1–48.
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