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Notations & Abbreviations

Set of all Natural numbers.

Nu {0}.
{k=(k1,...,kn):kieNi=1,...,n}
{t=(t1,...,tn) : ti €Zy,i=1,...,n}.
(z1,...,2n) € C™.

zfl...szb".

ki + ...+ ky.

n-tuple of commuting operators on Hilbert spaces.

TF .. Tk

{z:]z|<1,i=1,...,n}.

{z: 20 Jal” <1}

Hilbert spaces.

The set of all holomorphic functions on @ C C™ to £.

The set of all B(E, &E)-valued holomorphic functions on B™.
Ball algebra.

The set of all bounded analytic functions on D™.






Introduction

The purpose of this thesis is to examine some classical one variable Hilbert function
space theoretic results in the context of several complex variables and commuting tuples
of bounded linear operators on Hilbert spaces. More specifically, we will be interested

in the classical Sarason’s commutant lifting theorem on D, where
D={zeC:|z| <1},

the open unit disc in C. A significant part of our discussion in this thesis will revolve
around the commutant lifting theorem in two different contexts, as well as its following
applications of independent importance. Another important object of study will be

Toeplitz operators on the polydisc D", n > 1.

It is worth noting that the operator theory, in terms of complexity and known as well
as unknown, is different for commuting tuples of contractions and commuting tuples of
row contractions, just like the theory of analytic functions differs from the open unit ball
to the open unit polydisc. From this perspective, we talk about the commutant lifting
theorem in the context of the open unit ball and the polydisc. As we will see in this

thesis, the latter scenario seems to be more interesting and challenging.

The main contributions of this thesis are:

1. Partially isometric Toeplitz operators on the polydisc: We prove that a Toeplitz
operator Ty, ¢ € L*>®(T"), is a partial isometry if and only if there exist inner
functions ¢1, e € H>®(D") such that ¢; and ¢y depend on different variables
and ¢ = Q9. In particular, for n = 1, along with new proof, this recovers a
classical theorem of Brown and Douglas. We also prove that a partially isometric
Toeplitz operator is hyponormal if and only if the corresponding symbol is an inner
function in H°°(D™). Moreover, partially isometric Toeplitz operators are always
power partial isometry (following Halmos and Wallen), and hence, up to unitary
equivalence, a partially isometric Toeplitz operator with a symbol in L% (T"),
n > 1, is either a shift, or a co-shift, or a direct sum of truncated shifts. Along the

way, we prove that T, is a shift whenever ¢ is inner in H>°(D").

2. Commutant lifting and Nevanlinna-Pick interpolation on the polydisc: The funda-

mental theorem on commutant lifting due to Sarason does not carry over to the

3



4 Introduction

setting of the polydisc. This chapter presents two classifications of commutant
lifting in several variables. The first classification links the lifting problem to the
contractivity of certain linear functionals. The second one transforms it into non
negative real numbers. We also solve the Nevanlinna-Pick interpolation problem
for bounded analytic functions on the polydisc. Commutant lifting and interpo-
lation on the polydisc solve two well-known problems in Hilbert function space

theory.

3. Perturbations of analytic functions on the polydisc: In the context of Schur func-

tions on D™, we solve a perturbation problem.

4. Commutant lifting and Nevanlinna-Pick interpolation on the ball: We prove a
commutant lifting theorem and a Nevanlinna-Pick type interpolation result in the
setting of multipliers from vector-valued Drury-Arveson space to a large class of
vector-valued reproducing kernel Hilbert spaces over the unit ball. The special
case of reproducing kernel Hilbert spaces includes all natural examples of Hilbert
spaces like Hardy space, Bergman space and weighted Bergman spaces over the
unit ball.

Let us now elaborate on the preceding content chapter by chapter.

Chapter 1: Partially isometric Toeplitz operators on the polydisc.

Toeplitz operators are one of the most useful and prevalent objects in matrix theory,
operator theory, operator algebras, and its related fields. For instance, Toeplitz operators
provide some of the most important links between index theory, C*-algebras, function
theory, and non-commutative geometry. See the monograph by Higson and Roe [62] for
a thorough presentation of these connections, and consult the paper by Axler [14] for a

rapid introduction to Toeplitz operators.

Evidently, a lot of work has been done in the development of one variable Toeplitz
operators, and it is still a subject of very active research, with an ever-increasing list
of connections and applications. But on the other hand, many questions remain to be
settled in the several variables case, and more specifically in the open unit polydisc
case (however, see [42, 43, 56, 72, 99]). The difficulty lies in the obvious fact that the
standard (and classical) single variable tools are either unavailable or not well developed
in the setting of polydisc. Evidently, advances in Toeplitz operators on the polydisc
have frequently resulted in a number of new tools and techniques in operator theory,

operator algebras, and related fields.

Our objective of this chapter is to address the following basic question: Characterize
partially isometric Toeplitz operators on H?(D"), where H?(D") denotes the Hardy
space over the unit polydisc D™. Recall that a partial isometry [58] is a bounded linear

operator whose restriction to the orthogonal complement of its null space is an isometry.
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Before we answer the above question, we first recall that H?(D") is the Hilbert space

of all analytic functions f on D" such that

1

|fll :== ( sup / \f(rzl,...,rzn)|2du(z))2 < 00,
0<r<1JTn

where dp is the normalized Lebesgue measure on the n-torus T", and z = (z1,..., 2zp).
We denote by L?(T") the Hilbert space L?(T" du). From the radial limits of square
summable analytic functions point of view [87], one can identify H?(D") with the closed
subspace H?(T") of L*(T"). Let L>(T") denote the standard C*-algebra of C-valued
essentially bounded Lebesgue measurable functions on T". The Toeplitz operator T,
with symbol ¢ € L*°(T") is defined by

T,f = Pyzony(of) (f € H*(D™)),

where Pp2pny denotes the orthogonal projection from L?(T™) onto H?(D"). Also recall
that
H>(D") = L*(T") N H*(D"),

where H>°(D™) denotes the Banach algebra of all bounded analytic functions on D™. A

function ¢ € H>*(D") is called inner if ¢ is unimodular on T".

The answer to the above question is contained in the following theorem:

Theorem 0.0.1. Let ¢ be a nonzero function in L>(T™). Then T, is a partial isometry
if and only if there exist inner functions @1, pe € H®(D™) such that p1 and py depend
on different variables and

Ty =T5 Tp,.

In particular, if n = 1, then the only nonzero Toeplitz operators that are partial
isometries are those of the form T, and Tj;, where ¢ € H*(D) is an inner function.
This was proved by Brown and Douglas in [27]. Actually, as we will see soon in this case

that T}, is not only an isometry but a shift.

A key ingredient in the proof of the Brown and Douglas theorem is the classical
Beurling theorem [23]. Recall that the Beurling theorem connects inner functions in
H*°(D) with shift invariant subspaces of H?(ID). However, in the present case of higher
dimensions, this approach does not work, as is well known, Beurling type classification
does not hold for shift invariant subspaces of H2(D"), n > 1. Here, we exploit more

analytic and geometric structures of H2(D") and L?(T") to achieve the main goal.

Along the way, we prove some basic properties of Toeplitz operators on the polydisc.
Some of these observations are perhaps known (if not readily available in the literature)
to experts, but they are necessary for our purposes here. We also remark that our proof
of

1Tl = llellee (@ € LZ(T™)), (0.0.1)
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seems to be different even in the case of n = 1, as it avoids the standard techniques of
the spectral radius formula (see Brown and Halmos [26, page 99] and the monographs
[45, 68, 78]).

Moreover, we prove the following result, which connects inner functions with shift
operators, and is also of independent interest: If ¢ € H*(D") is a nonconstant inner
function, then M, is a shift.

Here, and in what follows, M, denotes the analytic Toeplitz operator T,, whenever
@ € H>(D"). In this case, M, is simply the standard multiplication operator on
H%(D"), that is, My, f = of for all f € H*(D").

As a first application to Theorem 0.0.1, we classify partially isometric hyponormal
Toeplitz operators. Recall that a bounded linear operator T on some Hilbert space is
called hyponormal if

T —TT* > 0.

We prove the following: If T.,, ¢ € L°°(T"), is a partial isometry, then T, is hyponormal

if and only if ¢ is an inner function in H>°(D").

Secondly, following the Halmos and Wallen [59] notion of power partial isometries (also
see an Huef, Raeburn and Tolich [63]), we prove that partially isometric Toeplitz op-
erators are always power partial isometry. We further exploit the Halmos and Wallen
models of power partial isometries, and obtain a connection between partially isometric

Toeplitz operators, shifts, co-shifts, and direct sums of truncated shifts.

Finally, collecting all these results together, from an operator theoretic point of view,
we obtain the following refinement of Theorem 0.0.1: Suppose T, ¢ € L*>*(T"), is
partially isometric. Then, up to unitary equivalence, T, is either a shift, or a co-shift,

or a direct sum of truncated shifts.

We stress that the latter possibility is only restricted to the n > 1 case.

Chapter 2: Commutant lifting and Nevanlinna-Pick interpolation on the

polydisc.

Sarason’s commutant lifting theorem [91] is fundamental, with significant applications
to virtually every aspect of Hilbert function space theory. One of them is the Nevanlinna-
Pick interpolation theorem on D, which we will quickly review before moving on to the
lifting theorem. Given m distinct points Z = {z1,..., 2z, } C D (interpolation nodes) and
m scalars W = {wi, ..., wn,} C D (target data), there exists ¢ € H>(D) (interpolating

function) such that

[[¢lloo :=sup |o(z)] <1
zeD

and

©(2i) = wi,
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for alli =1,...,m, if and only if the m x m Pick matriz Bz )y is positive semi-definite,
where 1 _
— wW;w;\m
Pow = (T255 ) e
— Zizj /i,j=1

This was proved by G. Pick [85] more than a century ago. R. Nevanlinna [77] inde-
pendently solved the same problem at a very similar time. The methods of Pick and
Nevanlinna are different, interesting on their own, and still relevant. For instance, Pick
focused on interpolation on the upper half-plane, whereas the Schur algorithm (see I.
Schur [94, 95]) served as the driving force behind Nevanlinna’s strategy [54, 80].

After four decades of Pick’s paper, D. Sarason [91] provided a solid Hilbert function
space theoretical foundation for Nevanlinna and Pick’s analytic and algebraic methods
for the solution of the interpolation problem. Sarason’s elegant result, known as the
commutant lifting theorem, represents the commutant of model operators in terms of
nicer operators (say Toeplitz operators) without changing the norms. To be more spe-
cific, let us identify the class of functions of interest. We denote the closed unit ball of
H>(D") by

SD") = {¢ € H=D) : [lplloo < 1}

The members of §(D™) are known as Schur functions. Recall that the analytic Toeplitz
operator T, on H*(T"), ¢ € H>(D"), is defined by

Ttpf = SOfv

for all f € H?(T"). In particular, for ¢ = z;, we get T, the multiplication operator by
coordinate function z; on H?(T"), i = 1,...,n. The following equality describes how
the commutant of {T%,}" ; connects the Banach algebra H>(D") to B(H?*(T")):

{T.,....T. Y ={T,: p € H*D")}.
Moreover, we know that (see (0.0.1))

1Tl = llelle (9 € HX(D)).

We now return to the classical case where n = 1. Let Q be a T)-invariant closed
subspace of H?(T), and let X be a bounded linear operator on Q (in short, X € B(Q)).
Sarason’s commutant lifting theorem states the following: Suppose X commutes with
the model operator PoT.|o € B(Q), that is

X(PQTZ|Q) = (PQTZ|Q)X'
Then there exists ¢ € H*(D) such that

X = PQTSO‘Qv
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and
X1 = llelloo-

Here (and in what follows) Pg denotes the orthogonal projection from H?(T) onto Q.

In other words, along with || X|| = ||T,||, the following diagram commutes:
T,
H?*(T) —————— H*(T)
iQ Pg
Q e Q

where ig : Q — H?(T) denotes the inclusion map. The Nevanlinna-Pick interpola-
tion theorem then easily follows from this applied to zero-based finite-dimensional T -
invariant subspaces of H2(T). The most important aspect of Sarason’s lifting theorem,
however, is the lifting of the commutant of model operators to the commutant of T,

keeping the norms the same.

We remind the reader that Sarason’s commutant lifting theorem has a stellar rep-
utation in its application to the classical operator and function theoretic results like
the Carathéodory-Fejér interpolation problem, Nehari interpolation problem, von Neu-
mann inequality, isometric dilations, and the Ando dilation, just to name a few. The
expanded list easily includes control theory and electrical engineering [51, 61]. When
dealing with several variables, however, each analogue question poses a unique set of
challenges and frequently offers less opportunity for a comprehensive theory (however,
see [8, 20, 21, 39, 44, 55]). In fact, it is known that Sarason’s commutant lifting theorem
does not hold true in general in the setting of D™. Understanding the obstacle of com-
mutant lifting over D" is thus one of the most important problems in Hilbert function

space theory.

In this chapter, we solve the commutant lifting problem on H?(T"), n > 1. That is,
given a closed subspace Q C H?(T") that is invariant under Ty,i=1,...,n, we classify
contractions X € B(Q) satisfying the condition that

X(PT:lo) = (PoTx o)X (i=1,...,n),
so that the following diagram commutes

H?(T™) Te H(T")

1Q P
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for some ¢ € S(D"). Several attempts have been made to solve this problem, but
they appear to be quite abstract and only applicable to a smaller class of operators (or
functions). The most notable one is perhaps the work of Ball, Li, Timotin, and Trent
[20]. The class of functions considered in [20] is the so-called Schur-Agler class functions.
This class is significantly smaller than even the polydisc algebra when n > 2, and it is
the same as the Schur class when n = 2. Even in the n = 2 case, however, the existing
results are abstract. In the context of interpolation for the n = 2 case, we refer the
reader to the seminal papers by Agler [5, 6] (also, see the discussion following Theorem
0.0.5).

Our approach and solution to the commutant lifting problem are both concrete and
function-theoretic. As part of the application, we moreover solve the interpolation prob-
lem for Schur functions on D™. In the context of Schur functions on D™, we also solve a
perturbation problem. Like our commutant lifting theorem, all results are concrete and

quantify the complexity of the problem by nonnegative real numbers.

Now we provide a more thorough summary of this chapter’s key contribution. Unless
otherwise specified, we will always assume that n > 1 is a natural number. Given a
Hilbert space H, set

Bi(H) ={T € B(H) : |T| <1}.

Given a nonempty subset S C H2(T"), we define the conjugate space S as
Seoni — {f: f e S}

Let S C H?(T™) be a closed subspace. We say that S is a shift invariant subspace (or
submodule) if

for all i = 1,...,n. We say that S is a backward shift invariant subspace (or quotient

module) if S+ is a shift invariant subspace, or equivalently,
T;SCS,

for all i = 1,...,n. Given a backward shift invariant subspace @ C H?(T"), we define

the model operator S,,, for each i =1,...,n, by
Sz = PoT%lo.

Now we define lifting on backward shift invariant subspaces.

Definition 0.0.2. Let Q C H%(T") be a backward shift invariant subspace, X € B1(Q),
and suppose X S,. = S,, X for alli=1,...,n. If there exists p € S(D") such that

X = PQT‘P‘Qv

then X is said to have a lift, or to be liftable.
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We need to familiarise ourselves with a few more additional concepts. First, we define

the closed subspace of “mixed functions” of L(T") as

conj

My = L(T") © (H*(T")™ + H*(T")).

This space has a significant role to perform in the entire paper. It is crucial to observe
that M, N H?(T") = {0}, and
My ={0}.

Let Q C H?(T") be a backward shift invariant subspace. Set
Mg = Q" | (M,, + HX(T™)), (0.0.2)

where

HG(T") = H*(T") & {1},

the closed subspace of H?(T™) of functions vanishing at the origin. Note that 4 signifies
the skew sum of Banach spaces. In what follows, we treat Mg as a subspace of the

classical Banach space L!(T"), and denote it by (Mo, || - ||1). In other words
(Mo, [l [l1) < (LHT™), |- ).

Let X € B(Q), and suppose
¥ = X(Pol). (0.0.3)

Define a functional Xg : (Mo, |- [[1) — C by

Xof = - Ofdp (f € Mo).
Recall that du is the normalized Lebesgue measure on T". Finally, set
Mo x = (Q°" & {9}) + (M, + HF (T")),
and again treat it as a subspace of L!(T"):
(Mo,x, I -1l) € (LT, |- 1)

Now that we have these notations, we can say how the lifting of commutants in higher

dimensions is classified:

Theorem 0.0.3. Let Q C H%(T") be a backward shift invariant subspace and let X €
B(Q) be a contraction. Suppose XS, = S, X for alli = 1,...,n. The following

conditions are equivalent:

1. X admits a lift.
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2. Xg: (Mag,| - |li) — C is a contractive functional, where

Xof = [ wfdu  (feMo).

3. d?;StLl(Tn) (ﬁ,/ﬂgg{) Z 1.

This solves the long-standing commutant lifting problem for H?(T"), n > 1. We

believe that the technique used to prove our lifting theorem is interesting on its own.

Now we will explain the solution to the interpolation problem, which also resolves the
long-standing question on interpolation with Schur functions as interpolating functions
on D", n > 1. We will start by laying the groundwork. Recall that H?(T") is a
reproducing kernel Hilbert space corresponding to the Szego kernel S : D* x D® — C

(see the monograph [84] for more details), where

S(zw) = [[———  (z,weD").

Pl 1 — z;w;

For each w € D", define S(-,w) : D™ — C by (S(-,w))(z) = S(z,w) for all z € D"™. In view
of the standard reproducing kernel property, it follows that {S(-,w) : w € D"} C H?(T")

is a set of linearly independent functions, and

S(Z7 w) = <S(7 ’UJ), S(" Z)>H2(T”)7

for all z,w € D". Given a set of distinct points Z = {z1,...,2,} C D", we define an

m-dimensional subspace of H2(T") as
Qz =span{S(-,zj) : j=1,...,m}.
It follows that Qz is a backward shift invariant subspace of H?(T"). Define
Mg, = QF" + (M, + H§(T™)).
In addition, given a set of scalars {w;}{*, C D, define Xz yy € B(Qz) by
XzwS(,2) =w;S(,2z)  (G=1,...,m).

The fact that Xz )y on Qz is a natural operator and that it meets the crucial condition
that Xz S, =S5, Xzw,i=1,...,m, is noteworthy.
Here is a summary of our main interpolation results:

Theorem 0.0.4. Let Z = {z;}7*, C D" be m distinct points, and let W = {w;}[*, C D

be m scalars. The following conditions are equivalent:

1. There exists ¢ € S(D™) such that ¢(z;) = w; for alli=1,...,m.
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2. Mzyw: (Mo, -|l1) = C is a contraction, where

Mzwf :/]I‘ Yzwfdu,

forall f € Mg, and

wz,W Z ¢S z

and the scalar coefficients {c¢;}", are given by

-1

c1 S(z1,21)  S(z1,22) -+ S(z1,2m) w1
e S(z9,21)  S(z2,22) -+ S(z2,2m) wo
Cm S(zZm,21) S(zm,22) - S(zm,2m) Wi

3. Let v :== Xz w(Po,1), and suppose
Mz = (QF" & {4}) + (M, + H3(T")).

Then

dZStLl Tn ( Q’MQZ> =

112

Note that the matrix in part (2) of the above theorem is the inverse of the Gram

matrix
m

(S(Ziazj)). o
ij=1

corresponding to the m Szegd kernel functions {S(-, z;)}~,. Also, observe that part (3)
provides a useful quantitative criterion to check interpolation on the polydisc. Indeed,
as we will see, the quantitative criterion yields examples of interpolation on D", n > 2.

Notable is the fact that interpolating functions in this case are polynomials.

It is noteworthy that the answer to natural questions, as in Theorems 0.0.3, 0.0.6,
and 0.0.4, has a connection to the set of nonnegative real numbers. This is a common
and classical occurrence. The classical Nehari theorem [79], for example, establishes a
direct link with such a distance function. Another instance is the celebrated Adamyan-

Arov-Krein formulae [2, 3, 4].

We also recover Sarason’s lifting theorem as an application to Theorem 0.0.3, resulting

in yet another proof of the classical lifting theorem:

Theorem 0.0.5. Let Q C H?(T) be a backward shift invariant subspace, and let X €

Bi(Q). If
XS, = S. X,

then X is liftable.
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In the proof of the above theorem, Mg (defined as in (0.0.2)) admits a more compact
form, namely

Mg = @(ZHQ(T)%

where ¢ € H*°(D) is an inner function (that is, [p| = 1 on T a.e.) and Q = (pH?(T))" .
Moreover, we employ all the standard one variable types of machinery like the Beurling
theorem, inner-outer factorizations [23, 54|, etc. On the one hand, this is to be expected,
given that Sarason uses similar tools for his lifting theorem. This, on the other hand,
explains both the challenges associated with the commutant lifting theorem and the

potential for extensions of relevant function theoretic results on the polydisc.
Chapter 3: Perturbations of analytic functions on the polydisc.

In this chapter, we solve a perturbation problem: Given a nonzero function f €
H?(T"), does there exist g € H?(T™) such that

f+geSD")?
Of course, to avoid triviality (that g = —f, for instance), we assume that g € {f}+. Set
L, =M, ® HT"),

and treat it as a subspace of L!(T™). We present a complete solution to this problem as

follows:

Theorem 0.0.6. Let f € H%(T") be a nonzero function. Then there exists g € {f}*
such that
f+ge8D"),
if and only if ~
: f
d'LStLl Tn (7,571) > 1.
NI

We will offer nontrivial examples to demonstrate the aforementioned result.

Chapter 4: Commutant lifting and Nevanlinna-Pick interpolation on the
ball:

In this chapter, we make a contribution to a commutant lifting theorem and a version

of Nevanlinna-Pick interpolation in the setting of the open unit ball B", where
n
B" ={z=(21,...,22) €C": > _|z|* < 1}.
i=1

To be more precise, let m > 1 and let H,,, denote the reproducing kernel Hilbert space

corresponding to the kernel k,,, on B", where

n

km(z,w) = (1= zm)™™  (z,w €B").
=1
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Recall that H,, is the Drury-Arveson space (popularly denoted by H2), the Hardy
space, the Bergman space and the weighted Bergman space over B” for m =1, m = n,

m =n+ 1 and m > n + 1, respectively.
Our main results, restricted to H,,, m > 1, can now be formulated as follows:

Commutant lifting theorem: Suppose Q1 and Qy are joint (M,,,..., M, ) co-invariant
subspaces of H2(= H1) and H,,, respectively. Let X € B(Qj, Q2) and || X|| < 1. If

X(P91M27;|Q1) = (PQ2MZ¢|QQ)X7

for all ¢ = 1,...,n, then there exists a holomorphic function ¢ : B" — C such that
the multiplication operator M, € B(H2, ), |[My| < 1 (that is, ¢ is a contractive

multiplier), and
X = PQzM90|Q1'

Thus, we have the following commutative diagram:

M
H? L Hom

PQ1 PQ2

A——F &

Given a closed subspace S of a Hilbert space H we denote by Ps the orthogonal projec-
tion of S on H.

Nevanlinna—Pick interpolation theorem: Given distinct p points
{zi}_, CB",

and n points
{wi}le g ]D)>

there exists a contractive multiplier ¢ such that
p(zi) = wi,

for all t = 1,...,p if and only if the matrix

p

[ 1 L wiwy
(1_<zi7zj>)m 1_<zi7zj>

ij=1"
is positive semi-definite. Here (z,w), denotes the Euclidean inner product of z and w
in C™.

We make strong use of the commutant lifting theorem in the setting of Drury-Arveson

space and a refined factorization result concerning multipliers between Drury-Arveson
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space and a large class of analytic reproducing kernel Hilbert space over B™.

We point out that the above interpolation theorem, in the setting of normalized
complete Pick kernel, is due to Aleman, Hartz, McCarthy and Richter [9]. Their proof
relies on Leech’s theorem (or Toeplitz corona theorem). From this point of view, in this
paper we prove that the interpolation theorem is a consequence of the commutant lifting

theorem. Furthermore, our interpolation result holds for operator-valued multipliers.

Note that there are also free noncommutative versions of interpolation theory (cf.

[17]).






Chapter 1

Partially Isometric Toeplitz
Operators On The Polydisc

1.1 Introduction

Our objective of this chapter is to address the following basic question: Characterize
partially isometric Toeplitz operators on H?(D"), where H?(D") denotes the Hardy
space over the unit polydisc D”. Recall that a partial isometry [58] is a bounded linear

operator whose restriction to the orthogonal complement of its null space is an isometry.

The answer to the above question is contained in the following theorem:

Theorem 1.1.1. Let ¢ be a nonzero function in L>(T"). Then T, is a partial isometry
if and only if there exist inner functions ¢, p2 € H®(D™) such that p1 and @y depend
on different variables and

Ty, =T, Tp,.

In particular, if n = 1, then the only nonzero Toeplitz operators that are partial
isometries are those of the form T, and T, where ¢ € H°°(D) is an inner function.
This was proved by Brown and Douglas in [27]. Actually, as we will see soon in this case

that T}, is not only an isometry but a shift.

Section 1.3 contains the proof of the above theorem. Along the way to the proof of
Theorem 1.1.1, in Section 1.2 we prove some basic properties of Toeplitz operators on
the polydisc. Some of these observations are perhaps known (if not readily available in
the literature) to experts, but they are necessary for our purposes here. We also remark
that the proof of |T,|| = ||¢]lec, ¢ € L*°(T™), in Proposition 1.2.2 seems to be different
even in the case of n = 1, as it avoids the standard techniques of the spectral radius

formula (see Brown and Halmos [26, page 99] and the monographs [45, 68, 78]).

Moreover, in Section 1.4, we prove the following result, which connects inner functions
with shift operators, and is also of independent interest: If ¢ € H*(D") is a nonconstant

inner function, then M, is a shift.

17
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Here, and in what follows, M, denotes the analytic Toeplitz operator T, whenever
¢ € H>®(D"). In this case, M, is simply the standard multiplication operator on
H?(D"), that is, My, f = ¢f for all f € H*(D").

In Section 1.5, as a first application to Theorem 1.1.1, we classify partially isometric
hyponormal Toeplitz operators. Recall that a bounded linear operator T" on some Hilbert
space is called hyponormal if T*7T —TT* > 0. In Corollary 1.5.1, we prove the following:
If T,, ¢ € L>(T"), is a partial isometry, then T}, is hyponormal if and only if ¢ is an

inner function in H*°(D").

Secondly, following the Halmos and Wallen [59] notion of power partial isometries (also
see an Huef, Raeburn and Tolich [63]), in Corollary 1.5.2 we prove that partially isomet-
ric Toeplitz operators are always power partial isometry. In Theorem 1.5.3, we further
exploit the Halmos and Wallen models of power partial isometries, and obtain a connec-
tion between partially isometric Toeplitz operators, shifts, co-shifts, and direct sums of

truncated shifts.

Finally, collecting all these results together, from an operator theoretic point of view,

we obtain the following refinement of Theorem 1.1.1:

Suppose T, p € L>(T™), is partially isometric. Then, up to unitary equivalence, T, is

either a shift, or a co-shift, or a direct sum of truncated shifts.

We stress that the latter possibility is only restricted to the n > 1 case.

1.2 Preparatory results

In this section, we develop the necessary tools leading to the proof of Theorem 1.1.1.
In this respect, we again remark that in what follows, we will often identify (via radial
limits) H?(D") with H?(T") without further explanation. Given ¢ € L>(T"), we denote
by L, the Laurent operator on L*(T™), that is, L,f = ¢f for all f € L?(T™). Note that

I LollB(z2(Try) = oo

where ||¢||oc denotes the essential supremum norm of ¢. The Toeplitz operator T;, with

symbol ¢ € L>=(T") is given by

TQO - PHQ(]D)'”)LCP|H2(]D)")'

Clearly, T, € B(H?(D")). Also note that a function f = > az® € L?(T")isin H*(D")
kezm
if and only if a;, = 0 whenever at least one of the kj, j=1,...,n,in k= (ki,...,ky,) is

negative. Recall that p is the normalized Lebesgue measure on T".

We start with several variables analogue of brother Riesz theorem. We denote the

set of zeros of a scalar-valued function f by Z(f).

Lemma 1.2.1. If f € H*(D") is nonzero, then u(Z(f)) = 0.
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Proof. Let m denote the normalized Lebesgue measure on T. Suppose f is a nonzero
function in H?(D?). For w; and ws in T a.e., we define the slice functions f,, and f,
by fu,(z) = f(w1, z) and fu,(z) = (z,we) for all z € T. Set

Z={wy €T: fu, =0}.

Note that Z C Z(f,,) for all wy € T. If m(Z) > 0, then the classical brother Riesz the-
orem implies that f is identically zero. Therefore, m(Z) = 0, where m is the normalized

Lebesgue measure on T. Evidently

1 ifwy ez
0 if wy € Z°,

m(Z(fu,)) =

and hence wa — m(Z( fu,)) is a measurable function. By the Tonelli and Fubini theorem,

we see that
(m x m)(Z(])) = /T M(Z(f-y)) dm(z2)
- / M(Z(f-y)) dim(z2) + / M(Z(f-,)) dim(z2)
Z

c

=0.

The rest of the proof now follows easily by the induction on n. O

We refer to Rudin [87, Theorem 3.3.5] for a different proof of the above lemma (even
in the context of functions in the Nevanlinna class). Also, see [101] for the same for
functions in H>°(D"). However, the present proof is direct and avoids the use of heavy

machinery from function theory.

We now prove that [|7,[|gm2mn)) = [|¢llcc- As we have pointed out already in the
introductory section above, this may be known to experts. However, even when n = 1,
the present proof seems to be direct as it avoids the standard techniques of the spectral
radius formula. For instance, see the classic monograph [45, Corollary 7.8] and the recent

monograph [68, Corollary 3.3.2].

Proposition 1.2.2. ||T,|| = ||¢|« for all ¢ € L>=(T").

Proof. Let L denote the set of Laurent polynomials in n variables. We compute

IT,|| = sup{|(f,9)| : f,g € H*D"),[If]l, gl <1}
= sup{[(¢f. 9)| : f,9 € Clz1,....2a)s [ fIl,lgll <1}  (by density of polynomials)
=sup{[(¢pf9)l : f,g € L, |fl,llgll <1}
= || Ly
= [l¢llo-
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Note the third equality follows because any Laurent polynomial can be multiplied by a

monomial to put it into polynomials. This completes the proof of the proposition. [

The above elegant proof is due to Professor Greg Knese and replaces our original

proof, which was longer and technical.
Before proceeding to the proof of the main theorem, we conclude this section with a

result concerning unimodular functions in L (T"™).

Corollary 1.2.3. Suppose ¢ is a nonzero function in L>(T"). If | T, f| = |lellscllfl

for some nonzero f € H*(D"), then @ 1s unimodular in L*°(T™).

1
llolloo

Proof. In view of Proposition 1.2.2, without loss of generality we may assume that
|T,|| = 1. Then

/ (=) 21 (=) Pdpa(z) = / ) Pdu(z).
Tn

'ﬂ‘ n

By Lemma 1.2.1, |p(z)| =1 for all z € T™ a.e. and the result follows. O

In particular, if T,,, ¢ € L>°(T"), is a partial isometry, then ¢ is unimodular.

1.3 Proof of Theorem 1.1.1

In this section, without explicitly mentioning it in each instance, we always assume that
Ty, ¢ € L>(T"), is partially isometric. Also, we frequently make use of the identification
H?(D") = H?(T™) without mentioning it (see Section 1.2).

For simplicity we denote by R(7T") the range of a bounded linear operator T'. Clearly,
R(T,) is a closed subspace of H?(D").

Lemma 1.3.1. R(T,) is invariant under M., i =1,...,n.

Proof. Note that, since ||T,|| = 1, we have ||¢|loc = 1. Suppose f € R(T,). By Corollary
1.2.3, it follows that ¢ is unimodular, and hence |[Lsf[| = || f||. Since T is an isometry
on R(T,), we have

A= T < Lo fIl = Tl fll = [1F1-
Therefore, || Pg2mny(2f)| = [|@f]], that is, Pg2mpny(@f) = @f. This implies that

¢f € H*(D"), (1.3.1)
and hence z;¢f € H*(D") for all i = 1,...,n. Then
T,T5(2if) = Tp(pzif) = Przn)(1@1*2if) = Przny(2if) = zif,

implies that z;f € R(T,) for all i = 1,...,n. This completes the proof. O
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In what follows, if i € {1,...,n} and k; is a negative integer, then we write zfi = 2;’“

Lemma 1.3.2. For each it = 1,...,n, the function ¢ cannot depend on both z; and Z;

variables at a time.

Proof. We shall prove this by contradiction. Assume without loss of generality that ¢
depends on both z; and Z;. Then

o0 oo
Y= Zifsﬁ—k ©® sz%,
=1 k=0
and ¢_p, # 0 for some ko # 0. Here ¢, € L?(T" 1), k € Z, is a function of {7, % :
i,7 = 2,...,n}. There exist non-negative integers ko, ..., k,, and lo,... 1, such that
the coefficient of 252 e Z’ﬁ"zéz -+ zln in the expansion of the Fourier series of ¢_j, is
nonzero. Set

ko kn 2 l
Ly = 2y

n n
...Zn 2'2 ...Zn7

and
f = TSO(Z{COZM) — ZlT‘p(Z'IfO_lel).

Note that f is a nonzero function in H?(D"), and f does not depend on z;. Since
T,(2F7'Zy) € R(T,), Lemma 1.3.1 implies that f € R(T,). In particular, by (1.3.1),
@f € H*(D"). On the other hand, since

of = K(for) @ H(fen),

k=1 k=0

it follows that f@g = 0 for all £ > 0. Since m({z € T" : f(z) = 0}) = 0, we have ¢, =0
for all £ > 0. This yields
oo
p=> 2o,
k=0

and hence ¢ depends on z; and does not depend on z;. This is a contradiction. O

We are now ready for the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. Suppose T, is a partial isometry. In view of Lemma 1.3.2,
there exists a (possibly empty) subset C' of {z1,...,2,} such that ¢ is analytic in z;
for all z; € A := C°, and co-analytic in z; for all z; € C. Let A = {2;,,...,2,} and
C=1{zj,...,2j,}- Then p+q=n, and

=k
o= Zteak
keZs

where @4, € H*(DP) is a function of {z;,, ..., 2, }, Z& = 2;?11 e EZI, and k = (k1,...,kq) €
7% . Note that
YAl € R(T¢) (le Zi).
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Indeed, pa,0 = T,1 € R(T,). Moreover, for each | € Z% \ {0}, we have

Tcle = PHZ(]D)")< Z ZlC«_kQDAyk),
keZs

that is

l -k
Tpz" = Z 20 PAk-
1—k>0

Here I — k > 0 means that [; — k; > 0 for all ¢ = 1,...,q. Thus the claim follows by
induction. By (1.3.1), we have gpa; € H*(D"), | € Z. Therefore

ppal= Z 2Parpay € H* (DY) (leZf).
kez?

Consequently, P4 a1 € H 2(DP) for all k and [, and hence, in particular, we have
Paipas € HX(DP)  (1ezZi).

This immediately implies that @ A1PA, is a constant function, and hence p4; = oy
for some inner function ¢; € H*°(D?) and scalar a; such that |oy| < 1,1 € Z%. Assume
without loss of generality that ¢4 # 0. Now by the fact that ©4 g4 and P4 040
are in H*(DP), we have o4 = Byto, k € ZL. Therefore

= ( > 51@@)% = P12,

q
keZ?

where ¢ = Zkezi Bkzé and ¢z = .

We now turn to the converse part. First we have clearly

Tp Ty, =TTy, - (1.3.2)
We also claim that

T\ Ty, =15, T, (1.3.3)
This holds trivially when one of the functions 1 or s is constant. We continue with the
above notation, and assume that both A and C are nonempty subsets of {z1,...,z2,}.
First we observe that ¢1 and 2 depends only on {z;,...,2;,} and {zj,...,2;,}, re-
spectively. Consider a monomial z¥ € C[z,...,2,]. Suppose k = (ki,...,k,), and
write

2P = zgcszl“,

where ke = (kj,,...,kj,) € Z1, and k, € Z is the ordered p tuple made out of
{ki}™; \ {kj, }{_;. Since the analytic function @9 depends only on z;, € C, s =1,...,p,
it is clear that

952286 = QYa + Pe,
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where ¢, depends only on {z;,}¥_; (and hence it is an analytic function) and ¢, €
L*(T9)© H?(DY) is a function of {zj,, Z;, }{_,. Note that the latter property ensures that
©c(0) = 0. Then, on one hand, we have

T, T, 2" = Pramn)(@212") = Pz ((‘Pa + @c)%Olfo) = papr2lye,

and on the other hand that
* k _ = k _ ka J— ka
T, T3,2" = 01 P2n) (¢22") = 01 P2 pr) ((@a + pe)zy ) = P1paz

Consequently, T, ;2T¢lzk = TQDIT;QZk for all £ € Z'', which proves our claim. Now

suppose that T, = TZ T,,,, where ¢; and ¢z depends on different variables. Using
(1.3.2) and (1.3.3), we obtain

T, T, =15 Tp, Tp, Tp, = (To, Ty ) (T, T75,) = Pr(1,,); (1.3.4)
which implies that T, is a partial isometry. O

We remark that the commutativity and doubly commutativity of T,,, and T, in
(1.3.2) and (1.3.3) will be useful in the particular applications to Theorem 1.1.1 in the

final section.

1.4 Inner functions and shifts

In this short section, we pause to prove an auxiliary result that is both a necessary
tool for our final refinement of partial isometric Toeplitz operators and a subject of

independent interest with its own applications.

Let ¢ € H*®(D"), and suppose the multiplication operator M, is an isometry on
H?(D"). Then
[elloo = 1Mol B(m2@n)) = 1,

and hence Corollary 1.2.3 implies that ¢ is a unimodular function in H*°(D"), that is,
 is an inner function. Now we prove that a nonconstant inner function always defines
a shift (and not only isometry). Recall that an operator V' € B(H) is said to be a shift

if V' is an isometry and V*™ — 0 as m — oo in the strong operator topology.

Recall that a closed subspace S C H?(D") is of Beurling type if there exists an inner
function § € H>°(D") such that S = §H?(D"). It is also known that (cf. [71, Corollary
6.3] and [67]) a closed subspace S C H?(D"), n > 1, is of Beurling type if and only
if RfR; = R;jR; for all 1 < i < j < n, where R, = M, |s € B(S) is the restriction
operator and p = 1,...,n. Note that

RIRj = PsM! M,,|s and R;R} = M,,PsM: s, (1.4.1)
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forallé,57=1,...,n.

Theorem 1.4.1. If p € H>*(D") is a nonconstant inner function, then M, is a shift.

Proof. Tt is well known (as well as easy to see) that M, is an isometry. Following the
classical von Neumann and Wold decomposition for isometries, we only need to prove
that -
M= () ¢"H*(D") = {0}.
m=0
Assuming the contrary, suppose that H, # {0}. We claim that #, is of Beurling type.
Since the n = 1 case is obvious, we assume that n > 1. As P H?(D") C ¢¢H?(D") for
all p > ¢, we have
Py, =S0T — mlgnC>O Pom gz mn)y.-

Since @™ H?(D"), m > 1, is a Beurling type invariant subspace, in view of (1.4.1), it
follows that
Py, M M, h = M., Py, M:.h,

for all h € H,. Then (1.4.1) again implies that H, is of Beurling type. Therefore,
there exists an inner function § € H°(D") such that H, = 6H?(D") (note that the
n = 1 case directly follows from Beurling). Then, for each m > 1, there exists an inner
function t,, € H*>(D") such that 8 = ¢™,, (for instance, see (1.5.1)). Since ¢ is a
nonconstant inner function, by the maximum modulus principle [97, §2, Theorem 6], we
have |p(z)| < 1 for all z € D". For each fixed zg € D", it follows that

16(20)| = [ (20)["[¥m(20)| < [ (20)™ = 0 as m — oo,
and hence § = 0. This contradiction shows that H, = {0}. O

In fact, the above argument yields something more: Suppose {S,, }m>1 be a sequence
of Beurling type invariant subspaces of H?(D"). Then (’v_; Sy, is also a Beurling type
invariant subspace. Indeed, we let Hy, = ()2 Sp. Then {Hyp, bm>1 forms a decreasing
sequence of Beurling type invariant subspaces, and hence

Prge_, s, =Pz #,, = SOT — lim Py

m—0o0

The rest of the proof is then much as before.

We also wish to point out that Theorem 1.4.1 can be proved by using (analytic) re-
producing kernel Hilbert space techniques. We believe that the algebraic tools described

above might be useful in other settings.
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1.5 Applications and further refinements

We begin with partially isometric Toeplitz operators that are hyponormal. A bounded

linear operator T acting on a Hilbert space is called hyponormal if [T*,T] > 0, where
[T*,T) = T*T — TT",

is the self commutator of T'.

Now suppose T.,, ¢ € L>(T"), is a partial isometry. If o € H>(D") is inner, then T,
is an isometry and hence is hyponormal. For the converse direction, we note by Theorem
1.1.1 that T, = T}, T, for some inner functions o1 and 2 in H°°(D") which depends
on different variables. If ¢ is a constant function, then T, = T,,, = M, is an isometry,
and hence T, is hyponormal. If @9 is a constant function, then T, = T2 = M7, is a co-
isometry, and hence T, cannot be hyponormal. Suppose both ¢ and ¢2 are nonconstant
functions. Now (1.3.2) and (1.3.3) imply that

TiT, = T0, T, T Ty = (15, T,) (T, T,) = T, T2,

Then, by (1.3.4) we see that [T7;,T,,] > 0 implies T, T, < Ty, T, . By noting that ¢

and o are analytic functions, we see

My, Mg, < My, Mg, ,
which, by the Douglas range inclusion theorem, is equivalent to M, = M, X for some
X € B(H?*(D")). Observe that

My, M., X = M., My, X = M. M,, = My, M., = My, XM, (1.5.1)

implies that M., X = XM, for all i = 1,...,n, and hence X = M, for some ¢ €
H>(D™). Hence, we conclude that po = p11). Since 1 and @y are inner functions,
1 € H*®(D") is inner. Moreover, since ¢ and @2 are nonconstant functions and depend
on different variables, by comparing the Fourier coefficients, one sees that the equality
w2 = 1 cannot be solved for ¢» € H*(D"™). We have therefore shown the following

result:

Corollary 1.5.1. Let T,,, ¢ € L*°(T"), be a partial isometry. Then T, is hyponormal

if and only if ¢ is an inner function in H*°(D").

Therefore, in view of Theorem 1.4.1, T, is hyponormal if and only if (up to unitary
equivalence) T, is a shift.

We recall [59, Halmos and Wallen| that a bounded linear operator 7" acting on some
Hilbert space is called a power partial isometry if T™ is partially isometric for all m > 1.

Clearly, Theorem 1.1.1 and the equalities in (1.3.2) and (1.3.3) imply the following

statement:
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Corollary 1.5.2. Partially isometric Toeplitz operators are power partial isometry.

We also recall from Halmos and Wallen [59] (also see [63]) that every power partial
isometry is a direct sum whose summands are unitary operators, shifts, co-shifts, and
truncated shifts. Recall that a truncated shift S of index p, p € N, on some Hilbert

space H is an operator of the form

[0 0 o 0 o0l
Iy, 0 0 0 0
S=10 Iy O 0 0 ’
S 0 0
[0 0 0 - Iy 0

where Hg is a Hilbert space, and H = Ho ® --- ® Ho.
p
We prove that, up to unitary equivalence, a partial isometric T, is simply direct
sum of truncated shifts, or a shift, or a co-shift (that is, adjoint of a shift). The proof
is essentially contained in Theorem 1.4.1 and the Halmos and Wallen models of power

partial isometries.

Theorem 1.5.3. Up to unitary equivalence, a partially isometric Toeplitz operator is

either a shift, or a co-shift, or a direct sum of truncated shifts.

Proof. Suppose Ty, ¢ € L>°(T"), is a partial isometry. By Theorem 1.1.1, Ty, = T Ty,
where @1 and ¢y are inner functions in H*°(D"™) and depends on different variables.
Moreover, by Corollary 1.5.2, T}, is a power partial isometry. If ¢ is a constant function,
then T}, is a shift, and if 9 is a constant function, then T, is a co-shift. Now let both
1 and 9 are nonconstant functions. Following the construction of Halmos and Wallen
[59, page 660] (also see [63]), we set Ey, = T;™T7" and Fy, = T*T;™ for the initial and
final projections of the partial isometry 7,)', m > 1. By (1.3.2) and (1.3.3) it follows

that E,, = T;?T;I” and F,, = T;’;T;;”, and hence

R(En) = @' H*(D") and R(Fy) = o5 H*(D"),
for all m > 1. Then, by Theorem 1.4.1, we have

() R(En) = [ ¢I*H*(D") = {0},

m>0 m>0

and similarly (| R(F,) = {0}. Therefore, the unitary part, the shift part, and the
m>0
co-shift part of the Halmos and Wallen model of T}, are trivial (see [59, page 661] or

[63]). Hence in this case, T, is a direct sum of truncated shifts. O

Clearly, Corollary 1.5.1 immediately follows from the above result as well. Also, note

that the Halmos and Wallen models of power partial isometries played an important
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role in the proof of the above theorem. We refer [63, 25, 52] for a more recent viewpoint

of power partial isometries.

Finally, summarizing our results from an operator theoretic point of view, we conclude
the following: Let T, ¢ € L°°(T"), be a partially isometric Toeplitz operator. Then
the following hold:

1. If n =1, then T, is either an isometry, or a coisometry. This is due to Brown and

Douglas. And, in view of Theorem 1.4.1, T}, is either a shift, or a co-shift.

2. If n > 1, then, up to unitary equivalence, T, is either a shift, or a co-shift, or a

direct sum of truncated shifts.






Chapter 2

Commutant Lifting And
Interpolation On The Polydisc

2.1 Introduction

In this chapter, we solve the commutant lifting problem on H?(T") and the Nevanlinna-
Pick interpolation problem for bounded analytic functions on D”. The commutant lifting
problem on D" refers to the following problem: Given a closed subspace Q C H?(T")
that is invariant under 73, i = 1,...,n, we classify contractions X € B(Q) satisfying

zZi)
the condition that
X(PoTlo) = (PoTylo)X  (i=1,...,n),

so that the following diagram commutes

Q Q

for some ¢ € S(D"). Recall that
SD") = {p € H(D") : [lpllc <1},

and the members of S(D™) are known as Schur functions. We apply the solution to the

above problem for solution to the Nevanlinna-Pick interpolation problem on D".

Let us point out some facts and thoughts regarding the commutant lifting and in-
terpolation problems, as well as the context of our approach. In 1968, Sz.-Nagy and

Foiag [70] generalized the Sarason lifting theorem to vector-valued Hardy spaces. In

29
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subsequent papers, many researchers presented a variety of alternative proofs of inde-
pendent interest (cf. [12, 46, 90]). However, the dilation theory (pioneered by Halmos
[57] and advanced by Sz.-Nagy [69]) is the primary technique employed in all of these
papers which is powerful enough to negate the heavy use of function theoretic tools.
For different versions of the commutant lifting theorem and its applications, we refer to
Bercovici, Foiag and Tannenbaum [22], and the monographs by Nikolski [82], Sz.-Nagy
and Foiag [100], and Foiag and Frazho [53] (also see Nikolski and Volberg [83] and Seip
[96]).

In several variables, the earlier approach to the lifting theorem also appears to be
dilation theoretic or under the assumption of von Neumann inequality, where dilation
theory and von Neumann inequality for commuting contractions are complex subjects

in and of themselves.

On the other hand, if the solution to the interpolation problem on D", n > 1, is sought
in terms of the Pick matrix’s positive semi-definiteness, then the interpolation problem
becomes equivalent to the commutant lifting theorem on finite-dimensional zero-based
subspaces (cf. Proposition 2.9.5). Consequently, in one variable, thanks to Sarason, the
commutant lifting property, the Pick positivity, and the solution to the interpolation
problem appear to be inextricably linked. In higher variables, however, because the
commutant lifting property is rather erratic (cf. Section 2.3), it is perhaps necessary to
disencumber the positivity of the Pick matrix from the interpolation problem. In some
ways, these observations seek a different perspective on the several variables interpolation
problem, one that is not as similar to the classical case of positivity of the Pick matrix
(nor even positivity of a family of Pick matrices as in [1, 31, 44, 60]). As a consequence,
we approach the problem from a completely different angle: more along the function
theoretic path pioneered by Sarason. The difficulty here, of course, is dealing with the
sensitivity of several complex variables as well as the lack of all standard one variable

tools.

Finally, a few words about this chapter’s methodology. We heavily use the duality

of classical Banach spaces, namely
(LH(T™))" = L*(T").

Other common tools used in this chapter include the classical Hahn-Banach theorem,

the geometry of Banach spaces, and the Hilbert function space theory.

The remainder of the chapter is structured as follows. Section 2.2 introduces some
preliminary concepts. Section 2.3 outlines explicit examples of non-liftable maps. Sec-
tion 2.5 presents the first classification of the interpolation on D". A quantitative clas-
sification for interpolation is presented in Section 2.6. In the same section, by using the
quantitative classification, we provide examples of interpolation on D", n > 2. The com-
mutant lifting theorem on D™ is tested in Section 2.7 with some concrete examples. As

an application to our main commutant lifting theorem, Section 2.8 provides new proof
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for the classical lifting theorem. In Section 2.9 we make some general observations such
as the Carathéodory-Fejér interpolation problem, weak interpolation, and decomposing
a polynomial as a sum of bounded analytic functions. Section 2.10 concludes with some

closing remarks and thoughts on some other known results.

The chapter contains an abundance of examples and counterexamples, as well as

numerous auxiliary results of independent interest in both one and several variables.

2.2 Preliminaries

In this section, we will introduce some necessary Hilbert function space theoretic pre-
liminaries. These include Hardy space, submodules, quotient modules, and a formal
definition of lifting. We begin by looking at the Hardy space. We again remind the
reader that throughout the chapter, n will denote a natural number, and (unless other-

wise stated) we always assume that n > 1.

We denote as usual by L?(T™) the space of square-integrable functions on T™. Recall
that T™ is the Shilov boundary of D". The Hardy space H 2(T™) is the closed subspace
of L?(T") consisting of those functions whose Fourier coefficients vanish off Z". More

specifically, consider f € L?(T™) with Fourier series representation

F=>Y ar  (zeT),
kezn
where 2 = zfl gk for all k = (k1,...,k,) € Z". Then f € H?(T") if and only if
ap = 0 whenever at least one of the kj, j = 1,...,n, in k = (ki,...,ky,) is negative.
The usage of radial limits is another neat way to represent the Hardy space (see Rudin
[87]). In other words, we will identify H?(T") with H2(D"), the Hilbert space analytic
functions f € O(D") such that

1

I71ei= (s [ 1762)Pdu(a))” < oc, (22.)
0<r<1 JTn
where du denotes the normalized Lebesgue measure on T", and rz = (rz1,...,7z,). The

identification is canonical, that is, given f € H?(D"), the radial limit

F() = tim f(r2),
r—1-
exists for almost every z € T", and f € H%(T"), and vice-versa. In what follows (and
unless otherwise stated) we will not distinguish between f € O(D") satisfying (2.2.1) and
its radial limit representation f € H 2(T™). Therefore, we will not distinguish between
H?(T™) and H?(D") and will use the same notation H?(T") for both.



32 Chapter 2. Commutant Lifting And Interpolation On The Polydisc

It is frequently useful to represent H?(T") as the Hilbert space of square-summable

analytic functions on D", that is
H*(T") = Z axz® € O(D") : Z lax|* < o0
keZ keZ?

The Hardy space H2(T") is equipped with the tuple of multiplication operators by
coordinate functions {zi,...,2,}, which we denote by (7,,...,T%,). Therefore, by

definition, we have

(T /) (w) = wif (w),

for all f € H?(T"),w € D", and i = 1,...,n. It is easy to see that (T%,,...,T%,) is an

n-tuple of commuting isometries, that is

TiT., = Ia(pny, and T2, T, = T, T,

2;
for all 7,5 =1,...,n. We will also need to use the doubly commutativity property

T, =TT, (i#]).

2j Tz

From the analytic function space perspective, recall that H?(T") is a reproducing kernel

Hilbert space corresponding to the Szego kernel S on D™, where

s(z0) = [ 1; (z,w € D).

— Z;W;
For each w € D", the kernel function S(-,w) : D™ — C defined by
(S(w))(z) =S(z,w) (2 €D"),

generates the joint eigenspace of the backward shifts, that is
n
(ker(T:, — wilprz(pny)* = CS(-, w). (2.2.2)
i=1

The above equality essentially follows from the fact that
T;S(, w) = w;S(-, w), (2.2.3)
foralweD®andi=1,...,n, and

Y (M7 = P,
ke{0,1}™

where Pr is the orthogonal projection onto the space of constant functions, and Tzk =
Tk... T for all k € {0,1}" C Z. Moreover, the set of kernel functions {S(-,w) : w €
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D"} forms a total set in H2(T") and satisfy the reproducing property

f(w) = (£.5(,w)) (2.2.4)

H2(T")
for all f € H?(T") and w € D"

Recall from Section 2.1 that a closed subspace Q C H?(T") is called a quotient module
if7;Q C Qforalli=1,...,n. A closed subspace S C H?(T™) is called a submodule
if 8 C S foralli=1,...,n. Equivalently, S* = H?(T")/S is a quotient module. In

summary, we have the following identifications:
{submodules} «— {shift invariant subspaces},

and

{quotient modules} <+— {backward shift invariant subspaces}.

The classical Laurent operator L, with symbol ¢ € L°°(T") is the bounded linear
operator on L?(T™) defined by

Lgof = of,
for all f € L?(T"). The corresponding Toeplitz operator is the compression of L, to
H?(T™), that is
Ty f = Przcrny(0f),
for all f € H?(T™). As usual, Ppp2(ny denotes the orthogonal projection from L?(T™)
onto H?(T"). Recall that (see [41])

I TllBer2(rm)) = [ LellBzecmy) = ¢l (2.2.5)

for all ¢ € L*°(T™). It is useful to point out that the Toeplitz operator with analytic
symbol ¢ € H*(D") is given by

TSO — LS&‘H2(T")’

This follows from the general fact that if S is a submodule of H?(T"), then ¢S C S for
all p € H>°(D"). Finally, given a quotient module Q of H?(T") and an analytic symbol
@ € H*(D"), we define the compression operator S, on Q by

Sp = PoTy|o-
In particular, for each 7 = 1,...,n, we have the compression of T, on Q as
S = PoTi o

Clearly, S,S., = S.,5, for all i = 1,...,n. From this point of view, we also call that S,

a module map. In general:
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Definition 2.2.1. Let Q be a quotient module of H?(T™). An operator X € B(Q) is

said to be a module map if

XS, =5,X (i=1,...,n).

Another common name for module maps is truncated Toeplitz operators (even with
L*>°(T"™)-symbols). See Sarason [88] and also the classic by Brown and Halmos [26].

We conclude this section with the definition of the central concept of this chapter.

Given a Hilbert space H, recall again that
Bi(H)={T € B(H) : |IT| < 1}.

Definition 2.2.2. Let Q C H%(T") be a quotient module and let X € B1(Q) be a module
map. If there is a ¢ € S(D") such that

X =8,

then we say that X has a lift, or X is liftable, or X admits a lift. We also say that ¢ is
a lift of X.

In the case of n = 1, Sarason’s result states that contractive module maps are always
liftable. In the following section, we demonstrate that such a statement is no longer true

whenever n > 1.

2.3 Homogeneous quotient modules

The purpose of this section is to outline explicit and basic examples of non-liftable
module maps on quotient modules of H2(T"), n > 1. Our quotient modules are as simple
as homogenous quotient modules and the module maps are compressions of homogeneous
polynomials. We begin with a (probably known) classification of inner polynomials on
D™. A function ¢ € H>*(D") is called inner if ¢ is unimodular a.e. on T" (in the sense

of radial limits).

Lemma 2.3.1. Let p be a nonzero polynomial in C[z1,...,z,|. Then p is inner if and

only if
p = unitmodular constant X monomial.

Proof. We assume n > 1 because the n = 1 case is simpler and follows the same line
of proof as the n > 1 case. By definition, p is inner if and only if [p| = 1 on T". The
sufficient part is now trivial. For the reverse direction, assume that p is inner. If p is
a constant multiple of a monomial, then passing to the boundary value, the assertion

will follow immediately. Therefore, assume that p has more than one term. There exists
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N7 € N such that
N
p=>Y_2p;,
5=0
where p; € Clzg,...,2y,] for all j =0,1,..., Ny, and

pN, # 0.

Here we are assuming without loss of generality that p has a monomial term with z; as
a factor (otherwise, we pass to the same but with respect to zo and so on). Since p is

inner, on T", we have
L =pp
_N. _
=2z 1(p0pN1 D -- )

This implies
pOle = 07

and hence pg = 0. Continuing exactly in the same way, we obtain that

_ M
b= Zl pr
for some py, € Clzg,...,2,]. Applying the above recipe to py,, we get pn, = zéVZpM
for some Ny € Z4 and py, € Clzs,...,,2,]. Hence

p= z{vlzé\bp]vz.
Therefore, applying this method repeatedly, we finally deduce that p is a unimodular

constant multiple of some monomial. O

Now we turn to the construction of the quotient modules of interest. As is well
known and also evident from the definition of the Hardy space, polynomials are dense
in H?(T™), that is

BT = Clory ol
Therefore, the standard grading on C[z1, . .., z,] induces a graded structure on H?(T").
We are essentially going to exploit this simple property in our construction of module
maps. For each t € Z,, denote by H; C Clz,...,2,] the complex vector space of

homogeneous polynomials of degree t. We have the vector space direct sum

C[Zl,...,zn] = @ Ht.

teZy
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We consider from now on the finite-dimensional subspace H; as a closed subspace of
H?(T™). Also, for each m € N, set

Since T7 Qm C Qp for all m > 1, it follows that Q,, C Clz1y. -+, 2n] is a finite-
dimensional quotient module of H%(T"), and degf < m for all f € Q,,. Fix m € N and

fix a homogeneous polynomial of degree m as

p= akzk € H,,.
=m

Suppose that ||p||2 = 1. By the definition of the norm on H?(T"), we have

> =1

k|=m
We aim to investigate the lifting of the module map
Sp = Po,, Tplo,,.-
By Spf = Po,,(pf), f € Qm, we have on one hand S,1 = p, and on the other hand
Spf =0,

for all f € Q,, such that f(0) = 0. Therefore, ker S, = Q,,, © C or, equivalently
ker S, = €P) H,.
t=1

This allows us to conclude that
[1Spll = 1. (2.3.1)

We recall in passing that ||T,||g(g2(1n)) = [|¢lleo for all ¢ € L%(T") (see (2.2.5)).

Theorem 2.3.2. S, admits a lift if and only if p is a unimodular constant multiple of

a monomial.
Proof. Suppose S, is liftable. There exists ¢ € S(D") such that S, = S,. Then
Sp = Scp = PQmTtp‘Qma

and
lelloe < 1.
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Note that 1 € Q,,. Since S,1 = p, it is clear that Pg, ¢ = p, and hence there exists
Y E Q#L such that
p=pDYEn® Q.

It is a well known general fact that ||¢ll2 < ||¢|leo. Indeed
lellz = 1T 12

< Tl gz erny) 112
= [¢lloo-

Now that ||p||2 = 1, we compute

L+ (19115 = llell3

< llell%
<1,

which implies ¢ = 0. Therefore
p=pc Qm-

By using the same computation (or the standard norm equality) as above, we have
L= pl2 <llpllc = lelloc =1,

which implies that ||p|lococ = 1. This combined with
1Ttz = lIpll2 = 1,

imply that the Toeplitz operator T}, is norm attaining. Consequently [41, Corollary 2.3],
p is inner (as p € H*°(D")). Then by Lemma 2.3.1 we conclude that p is a unimodular

constant multiple of a monomial. The converse is obvious. ]

The following corollary is now straight. Here we need to assume that n > 1.

Corollary 2.3.3. Suppose n > 1. Let p be a homogeneous polynomial of degree m and
assume that ||pll2 = 1. Suppose

p= akzk € H,,.
=m

If ag,ay # 0 for some k, A € Z, then S, on Qp, is not liftable.

The following fact was used to prove the above theorem [41, Corollary 2.3.]: For
@ € H®(T") with [|¢|lcc = 1, if the Toeplitz operator T}, is norm attaining, then the
symbol ¢ is inner. In this context, it is worth noting that the lift of a commutant is
highly nonunique, and the issue of uniqueness of Sarason’s commutant lifting theorem

is inextricably linked to the norm attaintment property [91, Section 5].
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Now we consider a simple class of quotient modules where all module maps admit
lifting. Our idea is fairly elementary: embed one Hardy space into another Hardy space.

Fix a natural number m such that 1 < m < n. Define
m
S=YzH T
j=1

Then S is a closed subspace and hence a submodule of H2(T") [93]. Our interest is in

the corresponding quotient module Q, that is

s 1
Q= (szHQ(T")) .
j=1
A simple calculation reveals that
Q =C® f[2(»’]1'anfm)7

that is, Q is simply the space of functions on H?(T") that does not depend on the

variables {z1,...,zn} (again, see [93]). Because S,, = PoT%,|o, we have

0 ifi=1,....,m
S, =

(3

T, ifi=m+1,...,n
Suppose X € B(Q). Then, by a routine argument, X is a module map, that is
XPoM:|g = PoM;,|oX,

foralli =1,...,n, if and only if there exists ¢ € H*>*(D") such that ¢ does not depend
on the variables {z1,..., 2, } and
X =T,.

This immediately implies the following result: Let X € B1(Q) be a module map. Then
X =T, for some ¢ € S(D"). In particular, X lifts to T, itself.

In Section 2.7, we will show examples of module maps on nonhomogeneous quotient

modules that cannot be lifted.

2.4 Classifications of commutant lifting

Given the examples in the preceding section, it is clear that a module map on a quotient
module of H?(T"), n > 2, may not admit a lift in general. In this section, we classify
liftable module maps defined on quotient modules of H?(T"), n > 1. We begin with the

well known duality of classical Banach spaces. Recall that L'(T") is a Banach space
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predual of L>°(T™). More specifically, we have
(LH(T™)*" = L=(T"),

via the isometrically isomorphic map x : L>(T") — (L*(T"))* defined by ¢ € L>®(T")
X € (LY(T™))*, where for each ¢ € L>(T"), x, € (L'(T"))* is defined by

Xef = /Tn of dp, (2.4.1)

for all f € L*(T™). Moreover, we have the isometric property
Ixell = Nl lloos
for all ¢ € L°°(T"). For a nonempty X C L?(T"), we define
Xemi _ (F: f e X},
We also define the subspace of “mixed functions” of L?(T") as
My, = LX(T™) © (H2(T™)™ + HY(T")).

This is the closed subspace of L?(T") generated by monomials that are neither analytic

nor coanalytic. Let I, = {1,...,n}. Given A C I,,, we set
’A‘ = #A4,

the cardinality of A. The following easy-to-see equality explains the terminology of

“mixed functions”:

M, =span{z"4z" . A BC I, ANB=0,4,B#0,kac 2 kp cZPh, (24.2)

where for a nonempty subset A = {i1,...,in} G I, and kg = (k1,...,kp) € Z‘fl, we
define the monomial
zlj{‘ = zfll . zf:

Note that M,, is self-adjoint, that is
MEM = M,,. (2.4.3)
It is also crucial to observe that if n = 1, then M,, is trivial:

M, = {0}. (2.4.4)
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Given a quotient module Q@ C H?(T"), as per our convention, we have Q" = {f: f €
9}, and hence Q™ is a closed subspace of L*(T") and

Qconj L Hg (Tn)’

where H3(T") = H?(T") & {1}. Tt is easy to check (for instance, by using S(-,0) = 1)
that
Hg(T") = {f € H*(T") : (0) = 0},

the closed subspace of H?(T") of functions vanishing at the origin. Finally, given a
quotient module @ C H?(T"), we set

Mg = Q° + (M, + HZ(T")).

The skew sums in the above definition are in fact Hilbert space orthogonal direct sums
in L?(T™). However, in what follows, we will represent Mg as a linear subspace of the
Banach space L'(T"), and denote it by

(Ma, [ - [1)-
We are now ready for our first lifting theorem.
Theorem 2.4.1. Let Q C H?(T") be a quotient module, let X € B1(Q) be a module

map, and suppose 1 = X (Pgl). Define Xg : (Mg, || |1) — C by

Xof = [ wf dn

for all f € Mg. Then X is liftable if and only if Xg is a contractive functional on
Ma, [ - 11)-

Proof. Let ¢ € S(D") be a lift of X. Then X = S, where, by definition, S, = PoT,|o.
Since ¢ € S(D") (that is, ||¢|cc < 1), it follows that the functional x, : L(T") — C
defined by

W= [ tedn,

for all f € L'(T™), is a contraction (see (2.4.1)). In view of the fact that pQ+ C Q' (as
submodules are invariant under H>°(D")), we have PoT,,Pg = PgT,, and hence

SSOPQI = PQTHQPQl
= PgT,1
= Pop.

Also, X = S, implies ¢ = S,Pgl. This combined with S,Pgl = Poy yields

Y = Poyp.
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We now prove that Xo on (Mg, ||-]|1) is a contractive functional. First we consider Xo
on Q% C Mg. Let h € Q. Then h € Q or, equivalently, Poh = h, and we have

/ whdp = (o, h) g2

= (¢, Poh) g2(Tn)
= (Pay, h>H2(1rn)
= (Y, h) g2 (Tn)-

/whduz/ ph dp,
TTL n

Xg = Xy On Qeond

Thus we conclude that

for all h € Q™ | equivalently

Next, we consider Xo on M,,. Since
Mn - L2(Tn) o (HQ(Tn) + HQ(Tn)conj)’

functions in M,, do not have an analytic part. Moreover, since M,, is self-adjoint (see
(2.4.3)), we have
PoM;?™ = PoM,, = {0}.

By using the identity ¢ = Poy and following the computation as in the previous case,
for each h € M,,, we have

[ whdu= ey

as Pgh = Pgh = 0. This proves that
Xo =xp=0o0n M,
Finally, if h € HZ(T"), then h(0) = 0, and hence (as 1 € Q C H?(T"))
(h, ) 2(1my = 0.
Therefore, again
|t = @) oo

=0,
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as 1) € Q@ C H?(T"). This implies, again, that
Xg =Xy =0 on HZ(T").

Thus we conclude that Xg = X, on Mg. On the other hand, x, : L'(T") — C
is a contraction. In particular, x,|rm, is a contraction, which proves our claim that

Xg : Mg — C is contractive.

For the converse direction, assume that Xo : (Mg, | - |1) — C is a contraction. By the
Hahn-Banach theorem, there is a linear functional Xg : L'(T") — C such that

XQ|MQ = XQ,

and
[Xol = I Xol < 1.

By the duality (L'(T™))* = L°°(T"), as outlined in (2.4.1), there exists ¢ € L°°(T")
such that

XSD = XQ7

and
lellos < 1.

In particular, x,[rmo = XQ|MQ = Xo. Since

xoh= [ o
TTL

for all h € Mg, it follows that
/ whdy = Yhdu, (2.4.5)
n ’]TTL

for all h € Mg. We consider a typical monomial f from M,, + HZ(T"). In other words,

we let
f=2z"

for some k € N”, or let

_ kazks
f—ZA 2B

for some k4 € Z'fl and kp € Z'fl, where A, B C {1,...,n}, ANB=0,and A,B # ()

(see the definition of M,, in (2.4.2)). As ¢ = X(Pgl) € Q C Hol(D"), it follows that

(¥, f)r2(rm) = 0 and hence
Y fdp=0.
Tn

Consequently, the identity in (2.4.5) yields

/ 0¥ dp =0,
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for all £ € N”, as well as
/ cpzlj‘Ang du =0,

for all k4 € Z‘f' and kp € Z'fl, where A, B C {1,...,n}, ANB =10, and A, B # {.
This implies ¢ is analytic, and hence ¢ € S(D"). To complete the proof, it remains to
show that X = S,. Note, by (2.4.5) again, we have that

/whduz/ ph dp,
’]I‘n n

for all h € Q™. Equivalently, for each h € Q™ we have

(@, M) p2(m = (¥, ) 2(1m),

and hence

(Paw, h) gz (rny = (¥, h) g2 (T,

from which we conclude that
Pop = 1.

As before, we write ¢ € S(D") C H?(T") with respect to Q @ Q+ = H?(T") as
p=1v®pc ot
Since Poyp = PoT,Pgl = S,(Pgl) and Poy = 1), we have
) = Sy(Pol).
This combined with ¢ = X (Pgl) yields
Sy(Pgl) = X(Pol).
Finally, let us fix k € Z} and observe

PozF = Pg2*(Pgl)
= S*(Pol).

Therefore, S,S% = S¥S,, implies

Sp(Po2*) = 8,5%(Pol)
= stcp(PQl)
= S*X(Pol)
= XS¥(Pol)
= X (Pgoz").
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Then, in view of the fact that Q = span{Pgz* : k € Z1}, the equality X = S, is

immediate. This completes the proof of the theorem. O

The proof of the above theorem says more than what it states. In fact, we have the
identity
Xo|pmy a2ty =0,

and hence
ker Xg D M,, + HF(T").

In other words, Q° is the supporting space of the functional Xg. Another way to put
it is that there is a contractive extension of Xg|gecon; to the entire Mg that vanishes on

the completely analytic and completely co-analytic parts.

Remark 2.4.1. It is clear from the construction that the subspace (Mg, | - |]1) is inde-
pendent of X.

Our second lifting theorem is a consequence of the first, and it appears to be in a more
compact form. Given a quotient module @ C H?(T") and a module map X € B(Q), we
define a subspace of L'(T") as

Mox = (M & {¢}) + (My + HF (T")).

Keep in mind, in contrast to Remark 2.4.1, that (MQ,X, || - |]1) is dependent on X.

Theorem 2.4.2. Let Q C H%(T") be a quotient module, let X € B1(Q) be a module
map, and suppose 1 = X (Pgl). Then X is liftable if and only if

distra 'H‘n)( |2,MQ X) >1

1]
Proof. In view of 1) € Q" first we observe that
Mg =Ct+ Mg x.
Suppose X is liftable. By Theorem 2.4.1, we have
| [ora] <iml (e Mo (2:46)
Pick g € Mg. There exists a scalar ¢ and a function g € ./\;lg x such that

g=c+g.
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We compute

|ovteisaydu=c [ widn+ [ vaan
= cl|¢l3 + (4. 9)
= c[|v I3,
as
<¢7§> = 07
which follows from the definition of § and the fact that 1 is analytic. Now (2.4.6) implies
| [ 9(ed+ g)du| < lled + 3l

and hence
lelll¥ll3 < [l + g,

or equivalently

H||$||§+§ 121,

for all g € ./\;lg x, and completes the proof of the forward direction. To prove the reverse

direction, let the above inequality holds for all g € MQ’ x. Equivalently

Iz <o +3gli (5 € Max).

Fix f € Mg, and write f = ctp + f for some scalar ¢ and some function f € /\;lgx.

Following the proof of the forward direction, we have

vl = [ vtei+ P
=cC Y fdpy,
Tn
which leads to (2.4.6). Theorem 2.4.1 now completes the proof of the theorem. O

Combining Theorem 2.4.1 and Theorem 2.4.2, we have the following:

Theorem 2.4.3. Let Q C H?(T") be a quotient module, and let X € B1(Q) be a module
map. Set

¥ = X(Pol),
and suppose
Mg = Q™ + (M, + HF(T")),
and

Mox = (QM & {¢}) + (Mn + HF (T")).

Then the following conditions are equivalent:
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1. X is liftable.

2. Xg: (Mag,||-|li) — C is a contractive functional, where

Xof = [ wfdu  (f€Mo).

3. diStLl(’]I‘n)(ﬁ,MQ’X) > 1.

The techniques involved in the association of the existence of commutant lifting with
the distance formula are far-reaching. In the following section, we will apply some of

the concepts introduced here to solve a perturbation problem.

2.5 Interpolation

The goal of this section is to provide a solution to the interpolation problem. As pre-
viously mentioned, Sarason’s commuting lifting theorem recovers the Nevanlinna-Pick
interpolation with an elegant proof. However, Sarason only needed to use his lifting
theorem for some special finite-dimensional quotient modules. These quotient modules

are generated by finitely many kernel functions.

First, we prove that Sarason-type quotient modules (we call them zero-based quotient
modules) in several variables always admit lifting to H*°(D")-functions (we call it weak
lifting).

Definition 2.5.1. Let Q C H?(D") be a quotient module, and let X € B(Q). Suppose
XS, = 8,X foralli =1,...,n. We say that X admits a weak lift or X 1is weakly
liftable if there exists ¢ € H*(D™) such that

X =3,

To put it another way, a weak lifting is a lifting that lacks control over the norm.
Given a set Z C D", define

Qz =span{S(-,w) :w € Z}.

Definition 2.5.2. A quotient module Q C H?(T") is said to be zero-based if there exists
Z C D" such that Q = O%.

For a zero-based quotient module Qz, by using the reproducing property (2.2.4),
we have the following representation of the corresponding submodule (hence the name
zero-based)

QL ={f € HX(T") : f(w) =0 for all w € Z}.
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Since {S(-,w) : w € Z} is a set of linearly independent vectors, a zero-based quotient

module Qz is finite-dimensional if and only if
#Z =dimQz < oo.

For each j € {1,...,n}, denote by m; : C* — C the projection map onto the j-th

coordinate. In particular, z € C™ can be expressed as
z=(m(2),...,m(2)).

The following easy-to-see lemma will be useful in what follows.

Lemma 2.5.3. Let Z = {z;}I"; C D" be a set of distinct points, and let X € B(Qz).
Then X is module map if and only if there exists {w;}"; C C such that

XS(+, 25) = w;S(+, 25),
forallj=1,....,m.

Proof. Let X € B(Qz) and suppose XS, = 5., X foralli=1,...,n. Since X*S} =
S7. X", using the fact that Qz is a quotient module, we find

T lo- X" = X"T7 |oz,
forall i =1,...,n. In view of (2.2.3), we compute

(T;‘QZX*)S(WZj) - (X*TZ|QZ)S('7Zj)
= X"T}S(, zj)

= Wi(Zj)X*S(-, Zj).

Since (17 |0 X*)S(+, 2;) = T7,(X*S(+, 25)), it follows that

T7(X7S(:, 25)) = miz;)(X7S(, 2j)),

foralli=1,...,n,and j =1,..., m. Equivalently
n
X*S(-, 2;) € () ker(Tx, — mi(zj) Iz (rm))
=1

for all j = 1,...,m. Now, in view of the joint eigenspace property (2.2.2), the right side

of the above is CS(-, z;), and hence, there exists a scalar w; such that
X*S(7 Zj) = ij('v zj)a

for all j = 1,...,m. The converse direction is easy and follows again from (2.2.3) and
the definition of Qz. O
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The proposition that follows is very crucial and will be used in what follows.

Proposition 2.5.4. Let Q C H%(T") be a quotient module. Let
If 6o € H>*(D"™), then Soo = 1o-

Proof. Since g = Pgl € QN H>(D"), in view of the decomposition H?(T") = Q@& O+,
there exists p € H*(D") N Q+ such that

l=0g@®pcQa .
Fix f € Q. In particular, since f € H?(T"), there exists a sequence

{p]};X:)I g (C[Z].) R Z’ﬂ]?

such that
pj — [ in H*(T™).

Since ¢ € H>®(D") N Q* is a multiplier, the above implies
wp; — @f in H*(T™).
Moreover, ¢ € QF implies that

{pje}sey € O,

as QT is a submodule, and hence ¢f € Q+. Equivalently, we have

Po(pf) =0.

Finally, since g, € H>®(D"), it follows that

f=0of +of
=Po(lof +¢f) (as f€Q)
= Pg(fof)+0
= (Pa(Pol)lo) f,

which yields Sy, f = f, and completes the proof of the proposition. O

We are now ready for the weak lifting. It asserts, in essence, that a module map on

a finite-dimensional zero-based quotient module always admits a lift to H>°(D").

Corollary 2.5.5. Let Z = {z1,...,2m} C D" be m distinct points, and let X € B(Qz).
Then
XS, =5,X,
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foralli=1,...,n, if and only if there exists p € H*(D") such that
X =05,
Moreover, the function ¢ is given by
¢ =X(Pg;1),

and, in particular

v € H®(D") N Q.

Proof. The sufficient part is trivial. We prove the necessary part. For simplicity of
notation, we set @ = Qz. Suppose X € B(Q) and suppose that XS,, = S, X for all

i=1,...,n. As in Proposition 2.5.4, set
Oo = Pol.

As observed earlier, S(-,w) € H>®(D") for all w € D™ implies that @ C H*>°(D"). In
particular, 0o € H*>°(D™). By Proposition 2.5.4, we have

Spo = To.

Since X € B(Q), it follows that
¢ = X0g € H®(D").

Therefore

Sebo = Po(po)
= Spop
=¢
— X0o.

The remainder of the proof is based on the standard property of the module map X.

Indeed, we first observe that

Q = span{Pg2"Pol : k € Z}.
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On the other hand, for k € Z7, since XS* = S¥X | we have

X(Po(z*09)) = X(5%00)
= SFX0g
= szkcp
= Pg2"S,00
= Su(Po(2"09)).

This completes the proof of the fact that X = S,. The final assertion follows from the
definition of fg. O

As already pointed out, the weak lifting does not touch the delicate structure of the

Schur functions on D", n > 1.

We will now look at the interpolation problem. Recall once again that

S(z,w) = H 1% (z,w € D"),

e ZiWi
is the Szego kernel of D", and

S(z,w) = <S(-,w),S(~,z)>H2(Tn) (z,w € D").

Theorem 2.5.6. Let Z = {z;}", C D" be m distinct points, and let {w;}", C D be m
scalars. Set
Mo, = QF™ + (M, + HG (T)).

Then there exists ¢ € S(D™) such that

p(zi) = w,
foralli=1,...,m, if and only if
Mzwf = - vzwfdp  (f € Mg,),
defines a contraction Mz yy : (Mg, | - |l1) = C, where

vzw =Y S(s ),
i=1
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and the scalar coefficients {c;}", are given by the identity

-1

c1 S(z1,21)  S(z1,22) -+ S(z1,2m) w1
e S(z2,21)  S(z2,22) -+ S(z2,2m) Wy
Cm, S(zm,21) S(zm,22) - S(zm,2m) Wiy,

Proof. Consider the module map Xz)y on the quotient module Qz as (see Lemma
2.5.3)
X%,WS(W Zj) = H)J'S('a Zj)7

for all j =1,...,m. Define
Yzw=Xzw(Pos1). (2.5.1)

We note the crucial fact that (as Qz C H*(D"), or see Corollary 2.5.5)
Yz w € H(D").
Claim: A function ¢ € S(D") interpolates {z;}/*; C D™ and {w;}!"; C D, that is
p(zi) = wi,
for all = 1,...,m, if and only if
Sy =Xz w.
Indeed, since S(-, z;) € Qz, it follows that Po,S(-,2;) = S(-, z;) and hence

SeS(+,2i) = PoT;S(+ 2i)

= ¢(20)S(-, 21),

for all ¢ = 1,...,m. The definition of Xz )y now supports the claim. Of course, ¢ is a
lift of Xz)y. Then, by Theorem 2.4.1, it follows that ¢ € S(ID") interpolates {z;}7*,
and {w;}7*, if and only if

Mzwf = /Tn vz wfdu (f e Mg,),

defines a contraction Mz)y : (Mg,,| - |1) — C. This proves the first half of the
theorem. Now all that is left to do is calculate the representation of 1z ). Corollary
2.5.5 says that

Xzw =8p=Syz -

Since ¥z € Qz, there exists scalars {¢;}"; such that

Yz w = Z ciS(-, 2).
=1
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To compute the coefficients {c;}"; of the preceding expansion, we employ both repro-
ducing kernel Hilbert space methods and conventional linear algebra. Fix j € {1,...,m}.
Then

X%,WS(7 Z]) = S;ZZVWS(7 Z])
= ¥Yzw(z)S(- %),
where, on the other hand, X% ),S(, zj) = w;S(+, z;). Therefore
wj = Yzw(z),

and hence, by the reproducing property of kernel functions (2.2.4), it follows that

w; =Yz w(z)

= (2,8, %) )

<

H2(T™)

s

6iS(,20), 8 2))

P H2(T™)
= ZciS(Zj, Zi>,
i=1
for all j =1,...,m. In other words, we have
S(z1,21)  S(z1,22) -+ S(z1,2m) | | @1 w1
S(z2,21)  S(z2,22) -+ S(z2,2m) co| | w2
S(zm,21) S(zm,22) -+ S(zm,2m)| [cm Wiy,
equivalently
-1
c1 S(z1,21)  S(z1,22) -+ S(z1,2m) w1
c2| S(z2,21)  S(z2,22) -+ S(z2,2m) Wy
Cm S(zm,21) S(zm,22) - S(zm,2m) W,

The above m x m matrix is nothing but the Gram matrix of the linearly independent
kernel functions {S(+, z;) : ¢ = 1,...,m}. The invertibility of the matrix is now immedi-
ate. O

For solutions to the interpolation problem in the setting of bounded harmonic func-

tions and HP functions, we refer the reader to [47]
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2.6 Quantitative interpolation and examples

This section is a continuation of our investigation into the interpolation problem. To
begin, we will provide a quantitative solution to the interpolation problem on D". The
quantitative solution will then be employed to generate examples of interpolation with

interpolating functions in S(D"), n > 2.

Let Z = {%}", C D" be m distinct points, and let {w;}"; C D be m scalars. As

usual, define the m-dimensional zero-based quotient module Qz of H?(T") by
Qz =span{S(-,z;):i=1,...,m}, (2.6.1)
and Xz € B(Qz) b
XzwS(,2) =w;S(,2z)  (G=1,...,m).
As observed in Lemma 2.5.3, Xz )y is a module map, and hence Corollary 2.5.5 implies
Xz =Sy, (2.6.2)

where
w = Xg7w(szl).

Recall that
Y€ Qz C H®(D").

On the other hand, as observed in the proof of Theorem 2.5.6 (more specifically, the
claim part in the proof of Theorem 2.5.6), there exists a function ¢ € S(ID™) such that

p(zi) = wi,
for all  =1,...,m, if and only if

So =Xz w.
Equivalently, Xz )y on Qz is a contraction and admits a lift (namely, ¢ € S(D")). Based
on Theorem 2.4.2 and the fact that ¢ = Xz yy(Pg.1), this is the same as saying that

dist 1 Tn)( |2,MQZ) >1,

14|

where Mg, = (Q¥™ & {¢}) + (M, + HZ(T™)). This results in the quantitative solution

to the interpolatlon problem:
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Theorem 2.6.1. Let Z = {z;}]" | C D" be m distinct points, and let {w;}", C D be m
scalars. Suppose 1 := Xz w(Po,1) and
Mo, =(QZ" & {d}) + (Ma + HF(T")).
Then there exists p € S(D™) such that
p(zi) = wi,

foralli=1,...,m, if and only if
¥

I

diStLl(Tn) <W%, MQZ) Z 1.

Moreover, in this case, we have
Y(zi) = w,

foralli=1,...,m.

Here is how the proof of the final assertion works: For each ¢ = 1,...,m, in view of

the definition of Xz )y and (2.6.2), we compute

wiS(+, zi) = XZ WS(+, 2i)
_ 538(.2)
= PQZTJS(', ZZ)
= P(2)S(:, zi),

as S(-, z;) € Qz. Therefore, ¥(z;) = w; for all i = 1,...,m, which completes the proof.

The final assertion will play an important role in the discussion that follows.

The rest of this section will be devoted to exploring examples of interpolation. We
need to prove two lemmas. Before doing so, let us standardize some notations. We will
set aside m > 2 as the number of nodes of the given interpolation data. We use bold

letters such as a, v, w, etc. to denote vectors in C™. For instance
a=(ay,...,an)€C™

Also, denote by (-, -)cm the standard inner product on C™. In particular
n 1
2N\ =
lalicm = (O lasf*)2.
i=1

We write
at ={veC™: (a,v)cn =0}
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In view of the above notation, for each a € C™, we have the orthogonal decomposition
C" =Ca®at.

We will work in the following general setting: Fix m distinct points Z = {z}", C D"
and m scalars {w;}7, C D. The quotient module of interest will be Qz C H*>(D") as
defined in (2.6.1).

Lemma 2.6.2. Let ¢ € Qz, and suppose ¥(z;) = w; for alli =1,...,m. Then there

exits v € wr such that

19113 Z SCo20) +sz %)

- lwlEn &

Proof. Since i € Qz, there exists ¢ € C™ such that

Moreover, there exist a scalar o € C and a vector v € ¢t such that ¢ = aw @ v. Then

m
¢=azwi Zz +ZU1 z
=1

By assumption, » € H*(D") and ¥(z;) = w; for all i = 1,...,m. The above equality

then results in

||w||%=<ai§:;wi i +sz ) o
:a<T$(gwi ZZ+Z% )
:a<(iwi¢<a ¥ +ZW 208, 70), >2<Tn>

ol (St St 0) 1)

= aflw|zn + vai
=1

— O[HwH(%nL,

as v L w. We have also used the general property that (S(-,w),1)g2ny = 1 for all
w € D". The above identity yields

113

lw|E’
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which completes the proof of the lemma. O

The proof of the following lemma is similar to the proof of the previous one.

Lemma 2.6.3. Let ¢ € Qz, and suppose Y(z;) = w; for alli=1,...,m. Then
Qzo{y} = {ZwS(-,zi) v E wL}.
i=1

Proof. Given v € C™, observe that

if and only if

This completes the proof of the lemma. O

Now we are ready for examples of interpolation on D", n > 2. First, we elaborate on

the construction of the 3-point interpolation problem. Suppose:

1. {bo, b1, by} is an orthogonal basis for C3, where

bO = (17 17 1)
b1 = (Ci1, C12,C13)
by = (C21,¢22,(23)-

2. [|biflcs, [|b2flcs > 1.
3. {z1, 22,23} C D" are three distinct points such that
z1 = (C11, Ca1, 21)

2o = (C12, (22, 22)

23 = (C13, (23, 23),
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for some (arbitrary) Z;, 71, 23 € D" 2.

4. w = (w1, wp, w3) € D? such that [wl|es < Tz

Claim: There exists ¢ € S(D™) such that ¢(z;) = w; for all i = 1,2, 3.

Here is how the proof of the claim goes: In view of Theorem 2.6.1, it is enough to prove
that

dist: Tn)( |2,MQZ) >1,

1]
where ¢ = Xz y(Pg.1) and
Mo, = (95" & {4}) + (My + Hi(T™)).
Recall that Xz )y € B(Qz) is defined by
XZWS(:, 2i) = wiS(-, i),
for all i = 1,...,m. Also recall the crucial fact that (see Theorem 2.6.1)
U(z) = w; (i=1,...,m).

Using the conjugation invariance property of L!'-norm (that is, ||f|| iy = || fll LY(T")
for all f € LY(T")), we infer that

dist 71 (pny ( |2,MQZ> dist 1 (pn) ( M%m))

4] 113’

where (recall that MEI — M)
ME = (Qz & {#}) + (M, + HI(T ™).

It will be convenient (as well as enough) to prove that

dist 1 (T") ( Mcon]>

Y
113’

Also, to avoid notational confusion, we use {Z1, ..., Z,} for the variables of C". By the

definition of Szego kernel, we have

S(,21) =14+ (121 + (1 Za + -+
S(+,22) =1+ (1221 + (2220 + - - - (2.6.3)
S(,23) =14 1321 + (2322 + - - .

We will need to prove the following inequality

(f e MCO?’LJ)

L1(T»)

I+
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Since 1(z;) = w; for all i = 1,...,m, in view of Lemma 2.6.3, an element f € Mconj

admits the following representation

f= sz 722 [

for some v € w and f € M,, + H3 (T”)Com Therefore, for each f € MCO"] by Lemma
2.6.2, we conclude that

3
Y w;
+f= zi)+ Yy vS(z) + f,
oz = 2 gz, S0 ZZ Z

for some v € w* and f € M, + Hg(T”)Conj. For each v € w™, we set

1
Fy=——5wowv.
lwlls

It is important to keep in mind that v and f depend on f. By assumption, |lw]|cs < %,

and hence

1Folles = V3.

Using the kernel functions’ power series expansion as in (2.6.3), we find

\w*” Z|| %+Z“’%

- ((Fv,b()}(csl - (Fy, b)) s Z1 + (Foy, bo)gs Zo + - ) s

IICs

There exists i € {0, 1,2} such that
‘<F’Ua bi>(C3‘ > L

If not, suppose [(Fy,b;)cm| < 1 for all i = 0,1,2. Then

(For il <||b e b))| <1,

(P (g < o <1

1 2
bz} ’
{Hbz‘ch% i=0

is an orthonormal basis for C3, the above inequality contradicts the fact that ||Fy|cs >

implies

for all = 0,1,2. Since

V3. On the other hand, since f does not have an analytic part and

(f, Lz2(rny =0,
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it follows that
(Fy,bo)cs ifg=1

w = .
<H¢|§ * f’g>L2('ﬂ‘n) - <Fva bl>@3 if g= 2
(Fy,ba)cs if g = Zs.

Therefore

> 1,

‘<u$||%+f’g>

for some g € {1, Z1, Z>}. On the other hand (see the duality (2.4.1))

L2(T™)

m(ﬁJrf) if g =1

<H1Z}H% +f’g>L2<1rn> =\xalpr+s) te=2
w(pE+s) o=2%
However
Ixzll =1,
for all g € {1, Z1, Z>}, and hence
H||$|yg+f‘ ey 2 1

for all f € /\;lCQOZJ . This completes the proof of the claim. Furthermore, in this case, we

can specify an explicit interpolating function. Note that {ei}%zo is an orthonormal basis

for C3, where
1

e, = ——0b;
© lbilles

for all ¢ = 0,1,2. We write
2
w = Eaiei,
i=0

and set

(7)) a7 a9
= + 1+ ——
[bollcs ~ [|b1]lcs [b2]|cs

for all Z = (Z1,...,Z,) € D™. Since |w||%; < 1, it follows that

(Z)

ZZ?

2

1
g ‘ai‘2 S o)
=0 3

and hence, by the Cauchy-Schwarz inequality, we conclude that

2
Z ‘Ozz| <1.
=0
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Moreover, since ||b;||cs > 1 for all i = 0,1, 2, for each Z € D", we infer that

aQ aq Q2
P2 = | o+ o A 7
[Bollcs  [|bllcs 1B2 (s
|| |a] |as|
< + | Z1| + | Zs|
1Bollcs ~ [|balcs B2 cs
2
<2 lad
i=0
<1,
and consequently, ¢ € S(D"). Finally, we compute
(7)) (65} a9
o(z;) = + Cri + G2
U bolles  llballes T [lbefles ™

= apmi(eg) + armi(er) + aami(e2)

for all ¢+ = 1,2,3. Therefore, ¢ is a solution to the interpolation problem with data
{2}, c D" and {w;}3_, C D.

For general m-point interpolation, m > 2, the same proof concept applies, but the
computation would be more laborious. We only report the general result and leave the

other details to the interested readers.

Theorem 2.6.4. Let n > 2, m > 3, and suppose n > m — 1. Let {z}[*, C D" be

m distinct points, and let {w;}7, C D be m scalars. Suppose {b;};' € C™, where
bo=(1,...,1), and
bj = (lea Cj?a s 7ij)a
forallj=1,...,m—1. Assume that:
1. {b;},! is an orthogonal basis for C™.
2. ||billcm > 1 foralli=1,...,m—1.
3. 2j = (C15,C2jy - -+ Cm—1.4 %), where Z; € D""™FL qrbitrary, and j =1,...,m.

b lwllen < 2, where w = (wr,.. wy).
Then there exists p € S(D™) such that
p(zi) = wi,

foralli=1,...,m. Furthermore, @ can be chosen as a polynomial.
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Evidently, there is no dearth of examples of data that meet the aforementioned

conditions. The following remark elaborates on this:

Remark 2.6.1. If the number of variables n(> 2) and the number of nodes m(> 3)
satisfies the condition n > m — 1, and if one restricts the first m — 1 slots of the
coordinates of the interpolation nodes {z;}I", (so that the corresponding columns along

with the constant vector 1 forms a basis of C™) along with the norm bound on w as

1
||’lU||(Cm < )

3

then one can ensure that interpolation will occur for any choice of {2}, C pr—mtl
The relationship between the orthogonal set of vectors {b; ;1711 C C™ and interpolation

nodes {z;}7*, C D™ can be represented by the formal matrix:

by by by - by
21 [ CG1 G @31 o Gme11
zo | G2 G2 (32 Gme12
Zm Clm CZm CSm te Cm—l,m

What this means is that there is an abundance of examples of interpolation in hand in

several variables.

We refer the reader to [75] for interpolation from operator algebraic perspective.

2.7 Commutant lifting and examples

This section contains illustrations of commutant lifting on quotient modules of H?(T"),
n > 1. Our first aim is to validate the examples in Section 2.3 using our commutant

lifting theorem. We begin with a lemma.

Lemma 2.7.1. Let h € H?(T™). Then ||h|j1 = ||hll2 = 1 if and only if h is inner.

Proof. Suppose ||h|1 = ||hll2 = 1. In particular, h € H(T") C LY(T"). By the
Hahn-Banach theorem, there exists ¢ € L*>°(T") such that ||¢||cc =1 (as ||h|l1 = 1) and

[ =l = 1.
T’I’L
In the above, we used the duality (L'(T"))* =2 L°(T") once more. We claim that ¢ is

unimodular. Indeed, if
|p] < 1on A,
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for some measurable set A C T™ such that p(A) > 0, then

1= ‘/ hgodu‘
< ‘/ hgodu‘ +’/ hgodu’
¢ A

< / bl ldp + / Ihlloldy
Ac A

</ |h|d,u+/ ||dye
Ac A

= [1Allx,

that is, 1 < ||h||1, a contradiction. Since h € H?(D") C L?(T"), we find a scalar ¢ and
a function g € L?(T™) such that
Y= ch ® g.

Observe that (h, g) = (h,g) = 0. Therefore

1= / hodp
:/ h(ch @ g)dp
= (h,ch @ g) r2(Tn)
= c’

and hence, ¢ = h @ g. Then

L+ gl = 1[5 + llgll3

= llel3
< llell%
=1,

implies that g = 0, and hence ¢ = h. Since ¢ € L°°(T"), it follows that h € H>(D")
is an inner function. The converse simply follows from the integral representation of
norms on H2(T") and H!(T") and the fact that |h| = 1 a.e. on T". O

Now we follow the setting of Corollary 2.3.3: For a fixed m € N, we consider the

homogeneous quotient module
m
Qn =P Hi,
t=0

a homogeneous polynomial p € Q,, as

p=Y azt,

|k|=m



2.7. Commutant lifting and examples 63

with [|p|l2 = 1, and that ay,a; # 0 for some k # [ in Z";. We know, by Theorem 2.4.1,
that S, is liftable if and only if

Xo, (f)= [ ¥fdu  (feMg,),

TTL

defines a contraction on (Mg,,, | - |l1), where ¢ = S,(Pg,,1). Since 1 and p are in Q,,,
it follows that ¥ = p, and hence

Xo, () = [ puds

However

12l = llpl < 1.

Indeed, since ag,a; # 0, Lemma 2.3.1 ensures that p is not inner. This, together with
the fact that ||p|l2 = 1 and Lemma 2.7.1 completes the proof of the claim. Therefore,
Xo,, on (Mg, .| -|l1) is not a contraction, and hence S, is not liftable. As a result, we

recover Corollary 2.3.3 using Theorem 2.4.1.

The idea used in the preceding example can be extended to provide further nontrivial
examples of module maps that do not admit any lift. The following is an example, and
this time we will use Theorem 2.4.1 directly to prove that such a module map does not

lift. Suppose n > 1. Consider the submodule
S =z 2, H*(T™).

We will be working on the corresponding quotient module Q = S+. Clearly

Q=ter ([72).
i=1
We observe that
Q=HZ(T")+---+ H? (T"),

where H i(T"), i = 1,...,n, is the closed subspace of H?(T") of functions that are

independent of the z; variable, or equivalently
HZ(T") =ker T;.
Indeed, it is clear that H2 (T™)+---+HZ (T™") C Q. Let f € ker([]}", 7% ), and suppose

f= Z apz”.

kezn
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Then
0=T7..,f
= PHz(T”)( Z apz1--- ank),
keZny
implies

> apz -2zt € (H(T™)
keZn

In other words, if aj, # 0 for some k = (ki,...,k,) € Z7, then we must have k; = 0
for some i = 1,...,n. Therefore, there exists f; € H?Z,(T"), i = 1,...,n, such that

f=/fi+ -+ fn. This proves the claim. Now for each i = 1,...,n, set

G=1]2:

JFi

and pick inner function ¢; € HZ (T"). Let 2o € T" and suppose ¢;(zg) is well defined

and

|pi(20)] = 1,

for all i = 1,...,n. Choose {ai,...,a,} C R>g such that a,,ay # 0 for some p # g,

n

2 _
g a; =1.
i=1

The preceding set of assumptions ensures that

n
ZO@ > 1.
=1

and

Finally, define ¢ € S(D™) by
= aiBiipi,

i=1

where 8; = (Gpi)(z0) for all i =1,...,n. We claim that ¢ is not inner. Indeed, since
n —
0(20) =Y iBifi,
i=1
and |3;] = 1, it follows that
n
o(z0) = Zai > 1.
i=1
Therefore, there exists r € (0,1) such that (note that ¢ is well defined at z)

lo(rzo)| > 1,

and hence, by the maximum modulus theorem, we conclude that |yl > 1, which
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completes the proof of the claim. Next, we claim that S, is a contraction. Fix f € Q.

For each i € {1,...,n}, we have
Qe HZ(T") = (ker T7) N Q= {zg€ Q:ge H}(T")},
and hence there exist f; € HZ (T") and g; € H*(T") such that
f=fi®zgi€ H(T") & (Qe HZ(T")).
Then

Scipif = Scipi(fi + 2i93)
= S¢ipi fi + Po(Ciizigi)
= S fi + Pal21 - 2nigs)
= S¢ipi fis

as 21+ znpig; € S, and hence
SCi%‘f = SCi%'PHEZ. (T")f'

Observe moreover that (o HZ (T™) € HZ(T"). In view of HZ(T") C Q, we conclude
that SCz‘SOiPHE.(T")f = Ci(Pz'PHg,(’]I‘n)f, which yields

Scioif = Cipilrz (om) -
Therefore, for ¢ # j, we have
(Scioif S¢je,f) = (GiwiPpz (on) [, CjSDjPng ).f)
= {I¢, GiwilPrz (on) o 9Pz (o) f)

= (T%,zjpiPuz (1) 1 iPhz, ) f)

as zjcpiPszi (tn)f € ker 7. So we find

SCisDif 1 SCjapjf (Z # ]) (2.7.1)
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This allows us to compute the norm of S, f as follows (note that |3;| = 1 and S, is a

contraction for all i =1,...,n):

1SS 17 = 11D iBiSeipi fII?

i=1

n
= a}lISee /I
i=1

n

< adlfI
i=1

= |11

This means that S, is a contraction. Our final claim is that S, is incapable of admitting
any lift, which, in view of Theorem 2.4.1, is equivalent to the assertion that Xo :

(Mo, |l - |l1) = C is not a contraction, where

Xof = [ wfdn  (feMo)

and
Y= S@(PQD-
Indeed, since 1, € Q, it follows that
Y=g

On the other hand, since € Mg (recall that Mg = Q% 4 (M,, + HZ(T"))), we

observe that

XQ¢=/T ppdp

= H‘P”?{?(T")
=1.

Finally, applying (2.7.1) to f =1 € Q, we obtain that
”SOHJZW(T”) =1

This also follows from the equalities following (2.7.1) corresponding to the choice f =1
along with the fact that (;p; is inner for all ¢ = 1, ..., n. Since ¢ is not an inner function,

by Lemma 2.7.1, we conclude that

1@l = llel <1,

and hence Xg : (Mg, | - ]1) = C is not a contraction. This proves the following result:
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Proposition 2.7.2. Let {a1,...,a,} C R>q, suppose oy, g # 0 for some p # q, and

n

2 _
g a; =1.
i=1

Let zg € T, and let @; be an inner function independent of the variable z;, and suppose

vi(z0) is well defined and
lpi(z0)| = 1,

foralli=1,...,n. Define p € S(D™) by

n
= aiBitipi,
1=1

where B; = (Gpi)(20) and G = [l;, 2 for all i = 1,...,n. Then S, on Q =
ker([[;, T7) does not admit any lift.

2.8 Recovering Sarason’s lifting theorem

In this section, we explain how to recover Sarason’s commutant lifting theorem from
Theorem 2.4.1. We will employ several tools (just like Sarason) that are commonly used
and are valid only in one variable function theory. We start with the Beurling theorem
[23]. Let Q & H?(T) be a closed subspace. Then Q is a quotient module if and only if
there exists an inner function § € H*°(D) such that Q = Qp, where

Qg := H*(T) © 0H*(T).
Observe that §H?(T) is a closed subspace (as Ty is an isometry on H?(T)) and
Qp = H?*(T)/0H?(T).

Therefore, quotient modules of H?(T) are inner function based - a typical one variable
phenomenon (see Rudin [87] for counterexamples in several variables). In the following,

we prove a key result.

Lemma 2.8.1. Let § € H*(D) be an inner function. Then
Q5™ @ zH*(T) = G(zH*(T)).
Proof. Let g € Qg. Then g € ngnj , and hence, for each m > 0, we have

(09,2™) r2(1) =
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as 02 € Qg . This implies Q5™ C 2H?(T) and hence Q™™ C 6(zH?(T)). Also, for
all h € H?(T), since

zh = 0(0zh) = 0(20h),

it follows that zH?(T) C §(zH?(T)). Therefore
Qg™ @ zH*(T) C 6(=H*(T)).
For the reverse inclusion, first we observe that for f € Qg and m > 1, since

(Ozf, 2™ p2ery = (2f, 202" ") 2y
= (f,02"" N2
— 0,

it follows that 02Qg 1 zH?(T), and hence 2Qy C H?(T)®%. On the other hand, we
know

HQ( )can] Qcon] ® (HHQ(T))COnj.

In view of this, for each f € Qp and g € H%(T), we further compute

which implies that 82Qy L (QH?(T))™. As a result, 0205 C Q5" Finally
2H?*(T) = 2Qy ® 20 H*(T),
yields

0zH*(T) = 02Q9 + zH*(T)
C Q5™ + zH*(T),

and completes the proof of the lemma. O

We are now almost ready to prove Sarason’s commutant lifting theorem. Just one
more result is required with regard to representations of polynomials as the sum of
H(D)-functions. Since this result holds true in several variables and is of independent

interest, we prove it in the later part of this chapter (see Proposition 2.9.7).

Theorem 2.8.2. Contractive module maps on quotient modules of H*(T) are liftable.

Proof. Since we are dealing with one variable quotient module, we fix a quotient module
Qp of H*(T) corresponding to an inner function § € H*®(D). Since M; = {0} and
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HZ(T) = 2H?(T), it follows that
Mo, = Q5™ @ zH*(T),
and hence Lemma 2.8.1 yields a compact form of Mg, as
Mo, = 0(zH*(T)).

Let X € B1(Q) and suppose ¢ = X (Pg,1). In view of the above and Theorem 2.4.1, it
is enough to prove that Xo, : (Mg,, |- [l1) — C is a contraction, where

Xo,(Bf) = /T G dp,

for all f € zH?(T). To this end, fix f € zH*(T). Then f € H*(T) and f(0) = 0. There

exists a sequence of polynomials {py, }m>0 C C[z] such that

for all m > 0, and
pm — f in H*(T).

Using the contractive containment H?(T) — H'(T), we see that
Pm — f in HY(T).

It also follows that
Opm, — 0f, (2.8.1)

in both L?(T) and L!(T). Then

/T $0pmdys — /T “0fdp,

and

10pmllx — 1011,

and hence it is enough to prove that

‘/Twﬁpdu‘ < 116pll1,

for all p € C[z] such that p(0) = 0. Fix such a polynomial p. Consider the inner-outer

factorization of p as

p = nh,
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where 7 is an inner function, h is outer, and 7(0) = 0. Since p € H*°(D), it follows that
h € H®(D). Using the fact that vh € H*(D) C H?(T), we rewrite p as

p= (Vh)Vh.

It is easy to see that

Iplls = I VAII3.

Moreover, we have a sequence of polynomials {¢:}+>0 C Clz] such that
g — V'h in H*(T).
As nvh € H®(D), we have
(4, OamV ) — {46, 05V ),

and then, rewriting vhAnvh = p, we conclude that

(0, 0qinvV'h) — (¥, 0p) = /T YOpdy,
as t — oo. Since (7v/h)(0) = 0, Lemma 2.8.1 implies
onv'h € Qp ® 2H(T),

and consequently

h = Pya(q)(0nVh) € Q.

Then, recalling ¢ = X (Pg,1), we compute

¢Qt,977\r>

PH2 )¢QtaPH2(T)9WW>
Pyz(mybar, )

PQGI/)% >

(1, 9%77[> (
=
=
=

We also observe, for a general polynomial r € C[z], that

XPg,r = Xr(S,)Po,1
=r(5:)XPg,1
=r(S52)¢,

that is, X Pg,r = Pg,r. It is important to note that (by virtue of Proposition 2.9.7)

Po,r € H®(D).
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Since {g;}+>0 C C[z], we conclude

(1/}7 GQtT/\/E> = <XPQQQt7 iL>7

and hence

)

‘(Xngqt,wa‘ — ’/Tw@pdu
as t — co. But, ||X|| <1, and ||A| < ||v/h|, and hence
(X Poyar, )| < laello [Vl
As t — oo, we have (note that € is an inner function)
lgell2l[VRll2 = [IVA]I3 = [lplx = [18pl],

and hence

’/lepdu‘ < 116plJ1,

which completes the proof of the theorem. O

Sarason’s proof of the above theorem used similar one-variable tools.

2.9 Other results

In this section, we present a variety of results with varying flavors. First, we present
a solution to the Carathéodory-Fejér interpolation problem on D™. Then we discuss
the interpolation problem from the standpoint of Pick matrix positivity. The lifting
theorem for the Bergman space over D" is then compared, followed by decompositions

of polynomials in light of Beurling-type quotient modules of H?(T").

2.9.1 Carathéodory-Fejér interpolation

We use the notations that were introduced in Section 2.3. Recall that for ¢t € Z,,
H; C Clz1,..., 2] is the complex vector space of homogeneous polynomials of degree t.
Moreover, for each m € N, define the finite-dimensional homogeneous quotient module
Q. of H?(T™) by

O =P H..
t=0
Fix a natural number m. Given p € C|z1,..., z,], it follows that p € Q,, if and only if

degp < m. In the context of S(D"™), the Carathéodory-Fejér interpolation problem asks
the following: Given a polynomial p € Q,,, when does there exist a function f € Qi
such that

p® fesSD)?
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Here and in what follows, p @ f is in the sense of the direct sum Q,, ® Qi. This
formulation of the Carathéodory-Fejér interpolation problem is more appropriate for

the case of n > 1, see [21, page 670].

The following is an interpretation of the Carathéodory-Fejér problem in terms of

commutant lifting.

Proposition 2.9.1. Let p € Q,,. There exists f € Q- such that p® f € S(D") if and

only if Sy, is a contraction and admits a lift.

Proof. Suppose there exists a function f € Q) such that
p:=p®d feSD").

For each q € Q,,, we have

S@q = PQmqu
=Po,,(p® f)q
= Po,,(pq) + Po,,(fq)-

But, Q; is a submodule and ¢ is a polynomial. This implies fq € Q;-, and consequently

Seq = Po,, (pq)-
On the other hand, ¢ € 9,, and
p € Qm CClz,..., 2
yield
Po, (pq) = Po,, Tplonq
= ©p4,

which proves that S, = S),. The contractivity of S}, also follows from the same of S,
(recall that [|¢]le < 1).

For the reverse direction, suppose S, € Bi(Q,,) admits a lift. Then there exists ¢ €
S(D") such that S, = S,. Using 1 € Q,y,, it follows that

p = Spl
= 5,1
= Po,.¢,

and hence there exists f € Q;- such that ¢ = p @ f. This completes the proof of the

proposition. O
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We are now ready for the solution to the Carathéodory-Fejér interpolation problem.
We will apply our commutant lifting theorem to the above. In view of Theorem 2.4.1,

we set
Ma,, = Q7 + (M, + Hi(T")).
Recall that

conj

My = LA(T") & (H*(T")™ + H*(T")).

Corollary 2.9.2. Given p € Q,,, there exists f € QF such that p® f € S(D") if and
only if €z : (Ma,,, | - l1) = C is a contraction, where

@iz,w(g)z/ pg dp (g€ Mag,,).

Proof. By Theorem 2.4.1 and the preceding proposition, the assertion is equivalent to

the contractivity of the functional ygo,, on (Mg, , | - |/1), where

Xong = | Ygdu (g€ Mag,),

and ¢ = S,(Pg,,1). However, 1 € Q,, implies Py, (1) = 1, and p € Q,, implies
Sp(1) = p. Then
Xo, = €zw on Mg,,,

completes the proof of the corollary. ]

We refer the reader to Eschmeier, Patton and Putinar [49], and Woerdeman [102]
for the Carathéodory interpolation problem in the context of Agler-Herglotz class func-
tions and Agler-Herglotz-Nevanlinna formula on the polydisc. Also see the paper by
Kalyuzhnyi-Verbovetzkii [64].

2.9.2 Weak interpolation

Given Z = {z}/*; C D" and W = {w;}~, C D, we define the m xm Pick matriz Bz
as

_ m

Pz = ((1 — wiw;)8(zi, Zj)),

ij=1

Recall that a matrix (a;j)mxm is positive semi-definite (in short (a;j)mxm > 0) if
m
Z Q0 Qg5 >0,
ij=1
for all scalars {a;}7*, C C.

Definition 2.9.3. A set of distinct points Z = {z;}]*; C D" is said to be a Pick set if,
for W ={w;}7, C D satisfying
PBzw >0,
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there exists p € S(D™) such that ¢(z;) = w; for alli=1,...,m.

This definition is in view of the classical Pick positivity and the Nevanlinna-Pick
interpolation on ID. We need another definition along the lines of Sarason’s commutant

lifting theorem:

Definition 2.9.4. A quotient module Q C H?(T™) satisfies the commutant lifting prop-

erty if every contraction on Q admits lifting.

In other words, for a module map X € Bi(Q), there exists ¢ € S(D") such that
X = S,. Now we use Sarason’s trick to prove the Nevanlinna-Pick interpolation but
in the setting of S(D") for any n > 1. The proof is standard and follows in Sarason’s

footsteps.

Proposition 2.9.5. Let Z = {2;}7"; C D" be a set of m distinct points. Then Z is a
Pick set if and only if Qz satisfies the commutant lifting property, where

Qz = span{S(-,z;) : i =1,...,m}.

Proof. We begin with a simple observation. Given W = {w;}7", C D, we define X €
B(Qz) by (note that Qz is a finite-dimensional Hilbert space)

XS(+, zi) = w;S(+, 2;) (i=1,....,m).

By Lemma 2.5.3, it follows that X* is a module map. Moreover, we have

<(IQZ - X*X)(f:ajS(.’zj)>, (Em:aiS(-,zi))> _
J=1 i=1

m

Oéjdi(l — wﬂf}j)S(ZZ’, Zj),
] 1

Z?j:

for all scalars {a;}", C C. It follows that X is a contraction if and only if

Pzw > 0.

Now suppose that Z is a Pick set, and suppose Y € B;(Qz) is a module map. We
claim that Y has a lift. If we define X := Y™, then we are precisely in the setting of
the above discussion. The contractivity of X (as |[|[Y*|| < 1) then implies that the Pick
matrix is positive, that is, Pz v > 0. There exists ¢ € S(D") such that p(z;) = w; for
alli=1,...,m. Then

YIS(2j) =TgS(h %) (G=1,...,m),

and we conclude that Y* = T7|g_, or equivalently, Y = S,,.

To show the converse, assume that Qz satisfies the commutant lifting property. Suppose
W = {w;}"; C D, and let Pz » > 0. Then X, as defined at the beginning of the proof,
is a contraction, and hence X = S, for some ¢ € S(D"). It is now routine to check that

o(z;)) =w; foralli=1,...,m. O
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In the case of n = 1, the classical Nevanlinna Pick interpolation theorem now follows
directly from Sarason’s lifting theorem. The above formulation also works verbatim the
same way as for multiplier spaces for general reproducing kernel Hilbert spaces over

domains in C" (including the open unit ball in C").

In view of the above proposition, we conclude that the solution to the interpolation
problem in terms of Pick positivity is simply equivalent to the commutant lifting problem
for quotient modules of the form Qz for finite subsets Z C D™. Again, this is true for

general multiplier spaces.

2.9.3 Bergman space and lifting

Although all of the observations in this subsection hold true for weighted Bergman spaces
(even for a large class of reproducing kernel Hilbert spaces) over D™ along with verbatim
proofs, we will stick to the Bergman space only. Denote by A%(D") the Bergman space
over D". Recall that an analytic function f on D" is in A%(D") if and only if

Il = ([ 150 i) <o

where do(z) denotes the normalized volume measure on D". We know that A?(D") is a

reproducing kernel Hilbert space corresponding to the Bergman kernel

K(zw) =] (1—iw)2 (z,w € D).

Recall that the multiplier space of A?(D") is again H°(D"), which for simplicity of

notation (or, to avoid confusion), we denote by M (A%(D")). In other words
M(A%(D™)) = H®(D").

For each ¢ € M(A%(D")), the map f € A%2(D") — pf € A%(D") defines a multiplication
operator on A%(D"), which we denote by M.

Let Q C A?(D") be a quotient module (that is, Q is closed and M;Q C Q for all
i=1,...,n). For each ¢ € H>*(D"), set

Bs@ = PQMso‘Q-

Suppose X € B1(Q) is a module map, that is, XB,, = B, X foralli =1,...,n. We say
that X is liftable or X has a lift if there exists ¢ € H>®(D") = M(A%(D")) such that

X =B,

and
| Bollazmny) < 1. (2.9.1)
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We are interested in the commutant lifting for finite-dimensional zero-based quotient
modules of A2(D"). For a set of distinct points Z = {2}, C D", we define (following

Section 2.5) the m-dimensional zero-based quotient module Bz C A%(D") as
Bz =span{K (-, %) :i=1,...,m} C A*(D").

At the same time, keep in mind that Qz is also a zero-based quotient module of H?(T")

(again, see the preceding subsection or Section 2.5), where
Qz =span{S(-,z):i=1,...,m} C H*(T").

Note that module maps on Qz are parameterized by m scalars. To be more precise, let
X € B(Qz). Then X is a module map if and only if there exists {w;}"; C C such that

X*S(, Zz) = wiS(~, Zi),

for all i = 1,...,m. This was observed in Lemma 2.5.3. The same conclusion and proof
apply to Bz. Therefore, a module map X € B(Qz) is associated with {w;}*, C C,
which further defines a module map X € B(Bz) as

X*K(, Zi) = le(, Zi),
for all = 1,...,m. Consequently, we have the bijective correspondence

X € B(Qz) +— X € B(Bz).

In the case of n = 1, the problem of commutant lifting for quotient module Bz
of A%(D) was studied in the thesis of Sultanic [98]. While she was focused on finite-
dimensional quotient modules of A?(D), but the zero-based quotient modules played the

most crucial role. Here we aim at proving the following proposition:

Proposition 2.9.6. Let Z = {z}I"; C D" be a set of distinct points, and let X €
B1(Qz) be a module map. Then X on Qz is liftable if and only if X on Bz is liftable.

Proof. We start by stating a general (and well known) fact: Let ¢ € M(A?(D")). Then

the operator norm (or multiplier norm) of M, on A*(D") is given by

1Mol (azmny) = [llloo-
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Indeed, for f € A?(D"), we have

lofllann = ([ losido)’
< ([ olilspar)’
<ol ( [ I1Pd0)",

that is, || Myl ga2@ny) < [|¢llcc- On the other hand, for each w € D",

1 N

p(w) = W(Mw), p(w)K (- w))

',”LU)
1
K w)l?

o Klw) \ K(w)
=~ (T (wcon) TR

<K('7 w), T;K(-, w))

implies that |p(w)| < [|[My|[ga2mn)), and completes the proof of the claim. Now,
suppose that X on Bz is liftable, that is X = B,, for some ¢ € M(A?(D")) = H>(D")
with || Myl ga2@pny) < 1. In view of the above observation, we have ¢ € S(D"). Suppose
{w;}™, C C be the scalars corresponding to X, that is

X*K(, Zi) = le(, ZZ'),

for all i = 1,...,m. This and the equality X = B, imply that

and hence X* = S7. Therefore, X = S,, and hence ¢ is a lift of X. Proof of the reverse

direction is similar. O

In other words, the lifting problem on zero-based quotient modules of A%(D") is
equivalent to the lifting problem on zero-based quotient modules of H?(T"). In the case
n = 1, for a module map X € By (Bz), if [ X1Bgs) <1, then X can be lifted (thanks
to Sarason). On the other hand, if X € B;(Qz) is a module map, then automatically
X € B1(Bz), and hence X has a lift.

2.9.4 Decompositions of polynomials

In this subsection, we decompose polynomials with respect to Beurling-type quotient
modules of H?(T™). This result has already been used (n = 1 case) to recover Sarason’s

commutant lifting theorem (see Theorem 2.8.2).
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A quotient module Q@ C H?(T") is said to be of Beurling type if there exists an inner
function ¢ € S(D™) such that
Q = (pH*(T")*.

Recall that all one variable quotient modules are of Beurling type [23].

Proposition 2.9.7. Let ¢ € S(D") be an inner function, and let p € Clzy,. .., zy,].
Write
p=1[®gepHT") & (pH*(T")) .

Then f,g € H>*(D").

Proof. 1t is enough to prove that f € H*°(D"). It is also enough to consider p as a

monomial. Fix k € Z", and suppose
= f@gepH)(T") @ (pH*(T")".

Let A € Z't, and suppose [; > k; for some i = 1,...,n. Since TZ*)‘(zk) = 0, it follows
that
TAf = -T2y,

Since g is in the quotient module (pH?(T"))*, we conclude that
SO € (pH(T))
Now there exists f; € H?(T") such that f = ¢f;. Consequently
TAf = T Ao f1 € (pHA(T™)*,

and hence
(T: X1, 0h) =0,
for all A € H2(T"). Then, TiT: = TATE and T3T, = I yield

(T 1 B) = (T o 1, oh)
— 07

for all h € H?(T™) and [ € Z" such that l; > k; for some i = 1,...,n. Therefore

fie ﬂ ker T

[|=[k|+1

and hence
f1 €span{z' 1t € Z" || < |k| + 1}.

We conclude that

f€span{zlp:t € Z7 |t| < |k| + 1} C H>®(D").
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This completes the proof of the proposition. O

A similar question could be posed for other classes of functions. What about the
decomposition of a rational function with respect to a Beurling decomposition, for ex-

ample?

2.10 Concluding remarks

We start off by commenting on the commutant lifting theorem. Let us recall Ball,
Li, Timotin, and Trent’s commutant lifting theorem [20, Theorem 5.1], which is only

relevant for n = 2 case in our context.

Theorem 2.10.1. Let Q C H%(T?) be a quotient module, and let X € B1(Q) be a module
map. Then X admits a lift if and only if there exist positive operators G1,Ga € B(Q)
such that Gy — S,,G15%, > 0 and G3 — S,,G2S%, > 0, and

I-XX*"=Gh+Gs.

The proof is based on Agler’s transfer function realization formula for functions in
S(D?) (which we will comment on more about below). In contrast to the preceding
theorem, however, our commutant lifting theorem appears to be more explicit. For
instance, Theorem 2.4.1 has been validated for the examples constructed in Corollary
2.3.3 (see Section 2.7).

Now we turn to the interpolation problem. We already mentioned in Section 2.1 that
the traditional approach to solving the interpolation problem in terms of the positivity
of the Pick matrix (or family of Pick matrices) in higher variables produces only limited
results. There is, however, likely to be one notable exception: interpolation on D?, which

Agler [5, 6] pioneered in his seminal papers in the late '80s (also see [8, Theorem 1.3]):

Theorem 2.10.2. Let {(ay, 8;)}™ be a set of distinct points in D? and let {w;}, C D.
There exists ¢ € S(D?) such that

(i, Bi) = wi,

for all i = 1,...,m, if and only if there exist positive semi-definite m X m matrices

I' = (T'y;) and A = (Ayj) such that
(1 — wiw;) = (1 — )Ty + (1 = BiBy) Aij,
foralli,j=1,...,m.

This is clearly an analogue of the solution to the classical Nevanlinna—Pick interpo-

lation problem (also see Cole and Wermer [32, 33, 34]). In a slightly different context,
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see Kosiniski [65] for three-point interpolation problem (also, see Cotlar and Sadosky
[35, 36, 37]). Whereas the above result appears to be abstract (particularly the ex-
istence of positive semi-definite matrices), the approach is useful in a variety of other
problems. Indeed, based on the Ando dilation and the von Neumann inequality for pairs
of commuting contractions [11], Agler derived a realization formula for Schur functions
in terms of colligation matrices, which leads to the above solution to the interpolation
problem. His realization formula has proven very useful in operator theory and function
theory on D", n > 2. Whereas we believe Theorem 2.5.6 is more concrete and provides
a new perspective on the interpolation problem in general, we are unsure how to relate
it to Theorem 2.10.2. We are also unclear about using Theorem 2.10.2 to validate the

examples of interpolation in Theorem 2.6.4 for the specific case of n = 2.

Finally, we remark that, unlike the present case of scalar functions, the earlier lifting
theorem and the solutions to the interpolation problem work equally well for the operator
or vector-valued functions [8, 20, 18]. The powerful n-variables von Neumann inequality
(which is automatic in the case of n = 2 but not so when n > 2), like the Sz.-Nagy
and Foiag [70] effective dilation theoretic approach appears to be a key factor. However,
as previously stated, we followed a function theoretic route pioneered by Sarason in
his work [91]. The results reported here, we think, will be also helpful in building
related theories like isometric dilations for commuting contractions, several variables

von Neumann inequality, Nehari problem on D", etc., similar to Sarason’s classic result.



Chapter 3

Perturbations Of Analytic
Functions On The Polydisc

3.1 Introduction

Our aim in this chapter is to present a classification of H?(T")-functions that can be
perturbed by H?(T")-functions so that the resultant functions are in S(D"). Our per-
turbation result is of independent interest and not directly related to the commutant
lifting theorem. However, the technique involved here is motivated by the one used in

the proof of the lifting theorem in the preceding chapter.

Our interest is in the following question: Given a nonzero function f € H?(T"), does
there exist g € H2(T") such that

f+geSD)?
Of course, to avoid triviality (that g = —f, for instance), we assume that g € {f}*. Set
L, =M, & Hj(T"),

and treat it as a subspace of L!(T").

To answer this, we first formalize some notations. Throughout the sequel, we denote
L, =M, ®HT").

Recall that HZ(T") = H?(T") © {1} is the closed subspace of H?(T") of functions

vanishing at the origin. Recall also that

M, = LT © (HA(T")™ + H>(T"),

81
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the closed subspace of L?(T") generated by all the trigonometric monomials that are

neither analytic nor co-analytic. In particular, we have the crucial property that

(fir2my =0 (f € Ly).

Finally, we recall a basic fact from Banach space theory: Let x be a vector in a Banach
space B. Then
lz]|p = sup{|z*(x)| : " € B, [|=7[| < 1}.

Now we are ready for the perturbation theorem.

Theorem 3.1.1. Let f € H*(T™) be a nonzero function. There exists g € {f}* such
that f + g € S(D™) if and only if

. f
d’LStLl(Tn) (Hf”%7 ,Cn) 2 1

Proof. We start by recalling the definition of distance function (in the present case):

demKﬁEIO:qué

Suppose g € {f}+ be such that ) := f + g € S(D"). It is enough to prove that

%+4Lme£*.

Mﬁg+ﬂhz1 (h € Ln).

Fix h € L,. Since ¢ € S(D") and S(D") is a subset of the closed unit ball of L>(T"),
we have 1) € L>®(T") and ||¢||c < 1. By the duality (see (2.4.1))

(LY(T™)" = L=(T"),
it follows that x, € (L'(T"))* and

[Plloo = Il <1,

where

Xyg = /T g du,

for all g € L*(T"). In particular, for

+he LNT),

7
9= 2
13

I/
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we compute

/Tn‘”(w{n% £h)di=(f+o ||}f||% B ey

f _
=14+(g, =5 +h
9 17112 >L2<w>
=1.

The last but one equality follows from the fact that (note that h has no analytic part)

(f,h)2(my = 0,

and the last equality is due to the fact that g € {f}+ and

(9, h)p2(rny = 0,

similar reason as in the preceding equality. We also have used the fact that f is analytic
and (h,1)p2(pny = 0. Therefore, xy € (L'(T™))* with |xy|| < 1 and

I

The norm identity for Banach spaces stated preceding the statement of this theorem

immediately implies that ~
f
T =1
H 1713 1

For the reverse direction, suppose the above inequality holds for all h € £,,. Equivalently
IAF =+ Rl = INLFI3,
for all h € L, and A € C. Define S a subspace of L!(T") as

S:= span{f, En}y

and then define a linear functional ¢y : § — C by

GOF+h) = / (\F+ 1) du,

n

for all h € £,, and A € C. As in the proof of the forward direction, we have

i fhdu = (h, f) 2T
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for all h € L,,. Moreover, since

/ FFdu =712,
']1‘77,
it follows that

[CrOF + Bl = NIIIF1I3
< IAF+ Al

for all h € £, and A € C. This ensures that (; is a contractive functional on S; hence,
by the Hahn-Banach theorem, there exists ¢ € (L*(T"))* such that ||(|| < 1 and

Cls = ¢

Again, by the duality (2.4.1), there exists ¢ € L>(T") such that ||¢||cc < 1 and

Xels = (ls = (;.

Therefore

/n(Aerh)fdu:/n()\erh)godu, (3.1.1)

for all h € £, and A € C. We now claim that ¢ is analytic (which would clearly imply
that ¢ € H>(D")). As in the proof of Theorem 2.4.1, we consider a typical monomial
F from L, = M,, + H3(T"). Therefore

F:zk,

for some k£ € N”, or

F= zﬁAZZB,
for some ky € Z'f' and kp € Z'f', where A,B C {1,...,n}, ANB =0, and A,B # ()
(see the representation of M,, in (2.4.2)). We compute

0= (f, F)r2(rny

= [ [Fdu
Tn

=/ oF dp

= (p, F) L2 (1),

which proves the claim. Since [|¢|lec < 1, we conclude that ¢ € S(D"). Using the
containment H>°(D") C H?(D"), first we conclude ¢ € H?(D"), and then write

p=cf®y,
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for some scalar ¢ and function g € H?(D") such that g € {f}*. It remains to show that

¢ =1. Observe, if h =0, and
1

A=,
1713
then (3.1.1) along with the fact that (g, f) = 0 yields

i
1= ——d
Sl Tike

7
= d
/Tn“oufu% :

f
= (@ HfH%>H2<T">

f
~erogl)
< I£1[3 7 722
=c.
This completes the proof of the theorem. O

We know, in particular, that M; = {0} (see (2.4.4)). Moreover, as observed earlier,
that H3(T) = 2H?(T). Therefore

Ly = zH*(T),

and as a result, the preceding theorem is simplified as follows:

Corollary 3.1.2. Given f # 0 in H?(T), there exists g € {f}* such that

f+geSD),

if and only if

zH2(T)) > 1.

| 7
d“t“m<||fu%’

The following example illustrates the above theorem.

Example 3.1.3. Fiz a real number 0 < ¢ < 1, and pick b € (¢%,¢). Also fir a multiindex
ko € Z, ko # (0,...,0), and set

A =77\ {ko}.
Finally, choose a sequence {ay}ren C Ry such that

1. Zak diverges, and
keA

2. Zai + b2 =c.
ke
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Set
f= Z apz® + b2ko.

keA

We want to show that f can be perturbed to become a Schur function. To this end, we
first observe that f(0,...,0) = agp and

FOA D) =0+ ) ag,
keA

and hence (by continuity)
f(L) = (ao, o0),

where L is the line joining (0,...,0) and (1,...,1). We conclude, in particular, that
f¢& H>(D").
Moreover

Ifll2 = ¢,

by construction of f. We now consider the functional x_x, € (L1(T™))* (see the duality
(2.4.1)). Clearly

a0 | = 1.

Given arbitrary functions g € My, and h € H3(T™), we compute

xzk(,(CJ;Jrngh) :Anzk°<£+g+h>du
=<C‘€+g+h,z’“°>

:<f ko

L2(T™)

Since b > 2, it follows that -
X 20 (12 +g+h) >1,
c

and consequently, the norm identity that was mentioned preceding the statement of The-
orem 2.5.6 infers that

f
4 hH > 1.
H02+g+ 1

Given that L, = My, + H3(T™), the above is equivalent to saying that
d’L.StLl(']I‘n) (%, ﬁn) 2 ].,
17112

and hence, by Theorem 3.1.1, we conclude that f ® g € S(D") for some g € {f}+.
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It may appear to be a coincidence that the distance recipe in Theorem 3.1.1 as well as
in Theorem 2.4.2 (and the quantitative interpolation theorem in Section 2.6) is similar
to the well known Nehari theorem [79] for Hankel operators. Recall that the Hankel
operator with symbol ¢ € L>°(T) is defined by

Hy = Py 1)Lyl m2(1),
where H2(T) = L?(T) © H?(T). The Nehari theorem states:
[ Hp|| = dist(p, H(D)) = [[¢¢loo-

Furthermore, it is well known that the Nehari problem is related to the Nevanlinna-Pick
interpolation problem for rational functions. See also the well known Adamyan, Arov,
and Krein theorem, also known as the AAK step-by-step extension [81, Chapter 2].

Another important formula is due to Adamyan, Arov and Krein [4]:
[Hoplless = dist(p, C(T) + H>*(D)),

for all ¢ € L*(T), where C(T) denotes the space of all continuous functions on T.
Hankel operators in several variables [86] are also complex objects. We refer the reader
to Coifman, Rochberg, and Weiss [30] for some progress to the theory of Hankel operators
(also see [50]).






Chapter 4

Commutant Lifting And
Nevanlinna-Pick Interpolation On
The Unit Ball

4.1 Introduction

In this chapter we make a contribution to a commutant lifting theorem and a version of
Nevanlinna-Pick interpolation in several variables. To be more precise, let m > 1 and
let H,, denotes the reproducing kernel Hilbert space corresponding to the kernel k,,, on

B"™, where
n

km(z,w) = (1= zw) ™ (z,w €B"),
=1

andIB%”z{z:(21,...,zn)€C":Z|zi|2 < 1}.
i=1

Our main result, restricted to H,,, m > 1, can now be formulated as follows:

Commutant lifting theorem (Theorem 4.5.4): Suppose Q; and Qs are joint (M., , ..., M, )
co-invariant subspaces of H2(= Hi) and H,,, respectively. Let X € B(Q1, Q) and
| X <1.1If

X(Pg, M, |g,) = (Po, Mz]0,) X,

for all ¢ = 1,...,n, then there exists a holomorphic function ¢ : B" — C such that
the multiplication operator M, € B(H2, Hy), |[My| < 1 (that is, ¢ is a contractive
multiplier), and

X = Po,M,|g,-

The chapter is organized as follows. Section 4.2 discusses some useful and known
facts about reproducing kernel Hilbert spaces. Section 4.3 presents the commutant lifting

theorem. Section 4.4 is devoted to factorizations of multipliers. The factorization results

89
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obtained here may be of independent interest. Section 4.5 provides the interpolation

theorem.

4.2 Preliminaries

The Drury-Arveson space over the unit ball B” in C" will be denoted by HZ2. Recall

that H? is a reproducing kernel Hilbert space corresponding to the kernel function
n
ki(z,w)=(1- Zziwi)_l (z,w € B").
i=1

Let k : B" x B" — C be a kernel such that k& is analytic in the first variables {z1,..., 2, }.
We say that k is reqular if there exists a kernel k : B" x B™ — C, analytic in {z1,..-,2n},
such that

k(z,w) = k1(z, w)k(z, w) (z,w € B").

If k is a regular kernel, then Hj, the reproducing kernel Hilbert space corresponding to

the kernel k, will be referred as a regular reproducing kernel Hilbert space.

In the case of a regular reproducing kernel Hilbert space Hy, it follows [66] that M,,,

the multiplication operator by the coordinate function z;, is bounded. Note that

(M, f)(w) = wif(w),

for all f € Hi, w € B" and ¢ = 1,...,n. Moreover, it also follows that the commuting

tuple (M., ,..., M., ) on Hy is a row contraction, that is
n
> MM < Iy,
i=1

If £ is a Hilbert space, then we also say that Hi ® £ is a regular reproducing kernel
Hilbert space. Note that the kernel function of Hy ® £ is given by

B" x B" 5 (z,w) — k(z,w)Ig.

The E-valued Drury-Arveson space, denoted by H2(E), is the reproducing kernel Hilbert

space corresponding to the B(&)-valued kernel function
B" x B" 5 (z,w) — ki(z,w)l¢.

To simplify the notation, we often identify H2(£) with H2 ® £ via the unitary map
defined by 2*n — ¥ @ n for all k € Z% and n € £. This also enable us to identify
(M,,,...,M, ) on H(E) with (M,, ® I¢,..., M, @ I¢g) on H2 ®E.
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Typical examples of regular reproducing kernel Hilbert spaces arise from weighted

Bergman spaces over B". More specifically, let A > 1, and let

n
kx(zow) =(1-) zw)™  (z,weB"). (4.2.1)

i=1
Then Hy, is a regular reproducing kernel Hilbert space. Note that Hj, is the Hardy
space, Bergman space and weighted Bergman space for A\=n, n+ 1 and n+ 1 + « for

any « > 0, respectively.

Suppose H and &, are Hilbert spaces and (71,...,T;,) is a commuting tuple of
bounded linear operators on H. We say that (11,...,7,) on H dilates to (M., ®
Ie,,..., M, ® Ig,) on H? ® &, if there exists an isometry Il : H — H2 ® &, such
that

T} = (M., ® Ie, 1L

for all i = 1,...,n (cf. [92]). We often say that II : H — H2 ® &, is a dilation of
(Tlv s 7Tn)

If H = Hy, is a regular reproducing kernel Hilbert space, then by [Theorem 6.1, [66]],
it follows that (M., ® I¢,..., M, @ Ig) on Hj ® € dilates to (M., @ I¢,,..., M, ® Ig,)
on H2 ® &, for some Hilbert space &. More specifically:

Theorem 4.2.1. Let £ be a Hilbert space. If Hy is a reqular reproducing kernel Hilbert

space, then there exist a Hilbert space £, and an isometry
I : "y @E — H2®E,,
such that
Hk(le ® IS)* = (le & Ig*)*]._.[k,
foralli=1,...,n.
Since (M, ® I¢,...,M,, ® I¢) on Hj, ® £ is a pure row contraction [66], the above

result also directly follows from Muller-Vasilescu [76] and Arveson [13].

In what follows, given a Hilbert space H and a closed subspace Q of H, we will denote
by ig the inclusion map
’iQ : Q — H.

Note that ig is an isometry and

iQi*Q = Po.

We now recall the commutant lifting theorem in the setting of the Drury-Arveson
space (see [10] or Theorem 5.1, page 118, [19]). A closed subspace Q of a regular
reproducing kernel Hilbert space Hi ® £ is said to be shift co-invariant if

(M., ®I)*QCQ  (i=1,...,n).
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Theorem 4.2.2. Let & and & be Hilbert spaces. Suppose Q1 and Qz are shift co-
invariant subspaces of H2(E1) and H2(Ey), respectively, X € B(Q1, Qs) and let || X|| < 1.

If
X(PglMZi|Ql) = (PQzMZ¢|Qz)X7

for all i = 1,...,n, then there exists a multiplier ® € M(H2(&1), H2(E2)) such that
HM‘I)H <1 and PQzM‘i’|Ql = X.

Recall also that, given regular reproducing kernel Hilbert spaces Hy, ®&1 and Hp, ®E2,
a function ® : B" — B(&1, &) is called a multiplier from Hy, ® & to Hy, @ & if

O (Hy, ®&1) C Hy, @ Ea.

The multiplier space M(Hy, @ &1, Hy, @ E2) is the set of all multipliers from Hi, ® &
to Hy, ® E. In what follows, M1 (H2 ® &1, Hy ® &) will denote the closed ball of radius
one:

M1(H§ ®REL,Hr®E)={P ¢ M(Hg@gl,ﬂk ® &) || Ms| < 1}.

We have the following useful characterization of multipliers (cf. Proposition 4.2, [92]):
Let Hj, be a regular reproducing kernel Hilbert space, and let X € B(H2® &, Hi ® &).
Then

X (M, @ 1) = (Mz; @ Ie,) X,

if and only if X = Mg for some ® € M(Hg ® &1, Hi ® &).

4.3 Commutant lifting theorem

We begin with a general result concerning intertwiner of bounded linear operators.

Lemma 4.3.1. Suppose Il : H — K and 11 : H — K are isometries, V. € B(K),
Ve B(K), T =I*VII and T = II*VII. Moreover, let X € B(H,H) satisfies

XT =TX.

If we define
Q=1IH and O =IIH,

and
X = 11X,

then X € B(Q, Q) and
X(PgVl]o) = (PaV]g)X.

Proof. Notice that Pg = IIII* and Py = II1*. Hence

X = (III")IIXTT*|g = Py (TIIXTIY) o,
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and in particular

(IXT")Q € Q,
which shows that X € B (9, Q) Moreover
X (PgV|g) = IXIT* PV |g = IIXIT*V|g = IIXTII*|g
{1 X | = CT A () X T
= PaV|lIXII*|g = (PaV|g)X. O
Now we are ready to prove a variation, in terms of dilations, of Theorem 4.2.2.

Theorem 4.3.2. Let H and H be Hilbert spaces. Suppose T = (T1,...,T,) and T =
(Ty,...,T,) are commuting tuples on H and H, respectively, X € B(H,H), |X]| < 1,
and

XT; = T;X,

foralli=1,....,n. IfTl:H— H2®E andﬂ:?—l—>Hﬁ®<‘:’ are dilations of T and T,
respectively, then there exists a multiplier ® € My(H2 ® £, H? ® é) such that
X = II" M1l
Proof. Let
Q=1IIH and Q:ﬂ”;’:l

If
X =1IX1I*|g,

then by Lemma 4.3.1, it follows that X € B(Q, Q) and

X(Po(M:, ® Ig)lg) = (Pa(M:, ® I¢)|5) X,

forall i =1,...,n. It then follows from the commutant lifting theorem, Theorem 4.2.2,
that
X = PQM4>\Q,

for some ® € M(H2® &, H2 ® €) and || Mg]|| < 1. Then
IXTT*|g = Py Ms|o.
It then follows from
Q = ran II = ran IIIT*,

that
(ILXTI*)(IIT*) = Pp Mg (TIIT*).

Thus
X = PaMgIl = (IIIT*) Mo II,
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and hence X = ﬂ*Mq,H. ]

Now let Q be a shift co-invariant subspace of H; ® £. An isometry II : Q@ — Hfl ® Ex
is said to be a dilation of Q if

H(Po(M, ® Ig)|g)" = (M, ® Ig,) I,

foralli =1,...,n, thatis (PoM,,|o,...,PoM.,,|o) on Q dilates to (M, ®I¢,,..., M, &
I¢,) on H2 ® &, via the isometry I1.

Lemma 4.3.3. Let Hy be a regular reproducing kernel Hilbert space, and let £ and &, be
a Hilbert spaces. Suppose Q is a shift co-invariant subspace of Hy ®E. If11 : Hp @ E —
H,QL ® &« is a dilation of Hy @ £, then llg: Q — H,QL ® &, defined by

I[Iop =Moig,
1s a dilation Q.
Proof. We first observe that
Hpllg = ip*Ilig = Ig.
Now we compute

Ho(Po(M, @ Ig)|o)" = ligPo (M., ® Ig)*|g = II(M,, ® I¢)*|o
= (M, ® I, )"l g = (M, ® I¢,)*(Ilig)iglo
= (M, ® I¢, )" Tgiglo-

Now
igle = Io,
and so
Mo (Po(M:; ® Ig)lo)* = (M, ® Ie, ) Tlg,
foralli=1,...,n. ]

We are now ready to present and prove the commutant lifting theorem.

Theorem 4.3.4. Let Hi be a reqular reproducing kernel Hilbert space, £ and &y be
Hilbert spaces, and let Q1 and Qz be shift co-invariant subspaces of H2®E1 and Hy ®Es,
respectively. Let X € B(Q1, Q2), and suppose that || X| <1 and

X(Pg,(Mz; @ Ig,)|0,) = (Poy (M, ® Ig, )| 0,) X,
foralli=1,...,n. Then there exists a multiplier ® € My(H?2 ® E1,Hy ® ) such that

X = Pg,Ms|o, -
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Proof. Observe that the inclusion map ig, : Q1 — H2 ® &; is a dilation of Q;. Let
Oy : Hpy @ E — H2® & be a dilation of H,, (see Theorem 4.2.1), that is, Il is an

isometry and
Hk(MZi ® 152)* = (Mzi & Ig)*ﬂk, (4.3.1)

for all i = 1,...,n and some Hilbert space €. Set
g, = Ilxig,.

By Lemma 4.3.3, it follows that Ilg, : Q2 — H,% ® £ is a dilation of Q5. Then Theorem
4.3.2 yields
X = H*QZMq,ligl,

for some multiplier ®; € M(H2? ® &1, H2 ® £). Hence
X = 7:*92 <H2M‘1>1)i91'
Since
M‘?l (le ® 151) = (MZz ® I(‘:')Mq’l7

we have, using also the adjoint of (4.3.1),
HZM‘IH (MZ'L' ® 151) = HZ(M% ® IS)M‘IH = (MZ'L ® 152)H2M<1>1’

forall i =1,...,n, that is, II; Mg, : H?2 ® & — Hi ® & intertwines the shifts. Conse-
quently
Iy Mg, = Mg,

for some multiplier ® € M(H2 @ &1, Hi, ® ). Hence
X =ig,Msiog,,
and thus
109, X = Pg,Maig,.

Hence, we have
X = Pg,Ms|g, -

Finally
Mol < [[Msg,]| < 1. O
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A simpler way of presenting the above theorem, from Hilbert module point of view,

is to say that the following diagram commutes:

H%@Sl Y sy Hi @ E

P
PQlJ{ PQQ‘L

O ——— Qs

4.4 Factorizations

Let k be a regular reproducing kernel on B™. Then there exists a positive definite kernel
k:B" x B" — C such that

k(z,w) =k (z,w)k(z,w) (z,weB").

Let Hj be the reproducing kernel Hilbert space corresponding to the kernel k. Suppose
w € B" and ev(w) : Hj — C is the evaluation map, that is

ev(w)(f) = flw)  (f €M)

Then

k(z,w) = ev(z)ev(w)* (z,w € B"),
and so
k(z,w) = kl(z,w)(ev(z)ev(w)*) (z,w € B"). (4.4.1)

From Corollary 4.2 in [66] it follows that the map
(1F)(2) = F(z,2).

for all F € H? @ H; and z € B", defines a coisometry from H2 ® H; = Hi, ® Hj to
Hip =H,, - If we view H2® H; as a reproducing kernel Hilbert space of functions with
values in Hj, then the map = is actually the multiplier Me,; indeed, if we compute the

action on reproducing kernels, we have
Meo(f ® g)(w) = f(w) ® ev(w)(g) = f(w) ® g(w) = 7(f @ g)(w).

This formula may be extended by tensorizing with I¢, where £ is a Hilbert space. If
we define ¥y : H; @ & — & by ¥y, := ev ® I¢, then ¥y is obviously also a coisometric
multiplier. Taking into account (4.4.1), we obtain the following theorem (see also [29,
Theorem 4.1] and [66, Theorem 6.2]):
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Theorem 4.4.1. Let k : B" x B" — C be a regular kernel, and let
k(z,w) = ki (z,w)k(z,w) (z,w € B"),

for some kernel k on B". Suppose Hj. is the reproducing kernel Hilbert space correspond-
ing to the kernel k. If £ is a Hilbert space, then there exists a co-isometric multiplier
U e M(H2® (H;; @ E), Hi @ E) such that

k(z,w)lg = T (zw)

(z,w € B").
It is worth noting that except the explicit identification of the state space Hj and

the fact that ¥y, € M(H2® (H; ® €),Hi ® £), Theorem 4.4.1 essentially follows from

the Kolmogorov decomposition of a positive definite kernel.

It is instructive to consider, in particular, the familiar case: weighted Bergman spaces

over B". Let m > 1 be an integer and let
n
kEm(z,w) = (1— Zziwi)_m (z,w € B").
i=1

Then

km(z,w) = kp—1(z,w),

and hence Uy, (w)* : € — Hy,, , ® € is given by

m—1

U, (W)™ = k1 (- w) @,

for all z,w € B™ and n € £. Note also that

(Y, (w)(f @n),¢) = f(w)(n, (),

for all f € Hy, n,¢ € € and w € B™.

m—17
For this particular case, the representation of Wy~ has been computed explicitly in [24,

Section 4] and [16].

m

Now suppose & and & are Hilbert spaces, and k is a regular kernel on B". Let
© : B" — B(&1,&2) be an analytic function. From [84, Theorem 6.28] it follows that
O € My(H2 ® &, Hi, ® &) if and only if

k(z,w) — ki(z,w)0(z)0(w)*

is a positive definite kernel. By virtue of Theorem 4.4.1, this is equivalent to positive

definiteness of the kernel

(z,w) = k1 (z,w) (Vi (2)V(w)" — O(2)0(w)").
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We may then apply [7, Theorem 8.57((i) = (4i))] to obtain the following theorem.

Theorem 4.4.2. Let & and & be Hilbert spaces, and let © : B" — B(&1, &) be an an-
alytic function. In the setting of Theorem 4.4.1, the following conditions are equivalent:
(i) © € Mi(H2® &, Hi, ® &),
(i) there exists © € My(H? ® &, H? ® (H; ® &2)) such that

Me = My, My,

More specifically, the multiplier ¥;, makes the following diagram commutative:

H2® (H; ® &)

M~ 2
@ ~
Phd JM‘I’)C

-

- M
Hg®51—®>7'[k®52

The above factorization theorem, in the scalar-valued multiplier case, is due to Ale-
man, Hartz, McCarthy and Richter (see Proposition 4.10 in [9]). The proof relies solely
on Leech’s theorem. One should also compare Theorems 4.4.1 and 4.4.2 with Lemma
4.1 and Theorem 4.2 in [24] and Theorem 2.1 in [16].

4.5 Nevanlinna-Pick interpolation

We now turn to the interpolation problem. Let & and & be Hilbert spaces. We denote
by Bi(&1,E&2) the open unit ball of B(&, &), that is

61(51752) = {A S 3(51,52) : ||A” < 1}.

We aim to solve the following version of Pick-type interpolation problem: Suppose
{zi}7, CB", {W;}", C Bi(&1,&2) and m > 1. Find necessary and sufficient conditions
(on {z;}™, and {W;}™,) for the existence of a multiplier ® € M;(H2 @ &1, Hy ® &)
such that

D(z) =W, (4.5.1)

foralli=1,...,m.

Given such data {z;}", C B", {W;}7, C Bi(&1,&2), set
Q=D ki, 2)6: el
i=1

and
m

Qo = {D k(- zi)mi : mi € &}

i=1
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Obviously Q; and Qs are shift co-invariant subspaces of H2®E&; and H®Es, respectively.
Define X : Qs — Q1 by
Xk(-,zi)n = k1(, z) (Wi'n),

foralli=1,...,m and n € &. Then
X(Mzi ® 152)*’Q2 = (Mzi ®Igl)*‘QlX7

for all ¢ = 1,...,n. Then, by Theorem 4.3.4, X is a contraction if and only if there
exists ® € My (H2 ® &, Hy. ® &) such that

PQ2M¢|Q1 = X"

In particular

k(e zi) (Win) = X (k(-, zi)n)
= k1(, 2i)(®(2i)"n),
for all n € & and ¢ = 1,...,m, and so ® satisfies (4.5.1). Conversely, if ® satisfies
(4.5.1), then it is easy to see that X defines a contraction from Qs to Q.

Now X is a contraction if and only if

0< <(I - X*X) Zk('vzi)niazk('vzi)m>
=1 =1
= Y (k(zozpnpm) — Y (Wiki(zi, 2)Wing,mi) > 0
1<i,j<m 1<i j<m
W;W*
ey R B P
= Z <<k(zlazj)152 1— <zi’zj>)77]7771> fel 07

for all ny,...,nm € &, where the last equality follows from Theorem 4.4.1.

On the other hand, Theorem 4.4.2 says that ® € M (H?2 ® &, Hy @ &) if and only if
there exists ® € My (H2 ® &1, H2 ® (Hi ® &)) such that

B(2) = Up(2)0(2),

for all z € B". Summarizing, we have established the following interpolation theorem:

Theorem 4.5.1. Let & and & be Hilbert spaces, k be a regular kernel on B™, and let
k(z,w) = ki (2, w)k(z, w) (z,w e B"),

for some kernel k on B". Suppose {z;}", C B" and {W;}™, C Bi(E1,E). Then the

following conditions are equivalent:
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(i) There exists a multiplier ® € My (H2® €1, Hi ® &) such that ®(z;) = W; for all
1=1,...,m.
i) Y (k2 2, -
1<i,j<m

(iii) There exists a multiplier ® € M1(H2 ® &, H? ® (Hj ® &2)) such that

WWr

—— Y, Uni,... 1w € E.
1_<zi7zj>)mm>fm“a M- m € &2

\Iik(zl)&)(zl) == Wz (Z == 1, .. .,n).

As we pointed out before, in the case of scalar-valued multipliers (that is, & = & =
C), the equivalence of (i) and (ii) in Theorem 4.5.1 is due to Aleman, Hartz, McCarthy
and Richter (see Proposition 4.4 in [9]). Moreover, if n = 1 and k(z,w) = (1 — z@)™™,
m € N (that is, weighted Bergman space over D with an integer weight), then the

equivalence of (i) and (ii) in Theorem 4.5.1 was proved by Ball and Bolotnikov [16].

Note that, the positivity condition in part (ii) of Theorem 4.5.1 does not hold in

general:

Example: Consider the regular kernel k£ as the Bergman kernel on D, that is

k(z,w) = (1—1,zw_)2 (z,w € D).

Here
k(2 w) = Bz w) = Up(2) T (w) = (1—12w) (2,w € D).

Then, for a given pair of points {wy,ws} C D, condition (ii) in Theorem 4.5.1 holds for
some pair {z1,22} C D if and only if

1

1 _ 2 1 _ -
1—|z1]? Jwr 1-2122 wle] o
1—202z1 1—|22‘2

— Jwol?

1 1
1—|z1 2 1—2z122
e U

— WaW1q

1
1—2271 1—[22[?

where ‘¢’ denotes the Schur product of matrices. However, if 21 = wo = 0 and 29 # 0,

then it is easy to see that the positivity condition fails to hold for any w; € D such that

1 — [w]?

< 1.
1— |2’2’2
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