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Abstract

In 1971, Professor Leon Chua introduced the notion of a memristor, the fourth funda-

mental passive circuit component alongside resistor, capacitor, and inductor. The resistance

of this two-terminal device depends on the current through it; thereby a memristor is sim-

ilar to a resistor with memory. In 2008, a group of researchers at HP Labs built the first

memristor successfully and demonstrated its characteristic resistance-switching behavior.

Its unique properties and compatibility with CMOS technology has made it a powerful

circuit element and has significantly influenced design paradigms.

Recent developments have shown that memristors are promising for designing memory

and logic subsystems, which can store multiple states of memory by utilizing the analog vari-

ation of resistance in the cells. By combining CMOS components with memristor cells, hy-

brid systems can be created where CMOS components can perform computation-in-memory

(CIM), while memristor cells can store data in a non-volatile manner. Memristor-based

crossbars (MBCs) realised as a 2D-array of memristors, have been particularly effective for

performing certain types of computations, such as vector-matrix multiplication (VMM) and

vector outer product, which are crucial in neuromorphic computing systems. Developing

practical and reliable memristive crossbar-based systems for various applications still poses

significant challenges which can hinder their performance and scalability. This thesis tack-

les several challenges head-on, offering innovative solutions that elevate their performance,

reliability, and scalability.

In this thesis, we introduce novel designs for an Arithmetic Logic Unit (ALU) that

utilize differential currents passing through a hybrid-memristor crossbar network. The

ALU performs integer addition, subtraction, multiplication, and logical operations in the

binary domain, using both analog and digital components. The analog component provides

the peripheral control circuit, input voltages and logic values to the crossbar in the form of

memristor-states. The variation of the analog output current is then sensed and converted

back to discrete logic bits using A/D converters. Our simulation studies demonstrate that

our proposed designs are more efficient than previous approaches, with lower memristor

cost and computation-cycle time required for integer addition and multiplication.

Next, we envisage a 2D memristor crossbar as a network and identify certain paths

that are suitable for fault sensitization. In order to optimize testing time for large scale

full-size square and rectangular memristive crossbars, we propose a path-based technique



i

guided by maximum matching in bipartite graphs. In order to address the testing opti-

mization problem in both complete and incomplete crossbars, we employ an Integer Linear

Programming (ILP) formulation. By comparing the results of the ILP formulation with

our proposed path-based techniques, we observe that our method minimizes the number of

paths required. Through simulations conducted in LTspice, we validate the effectiveness

and superiority of our approach over previous techniques in terms of test time and fault

coverage.

Finally, we present a thorough analysis of the impact of various hard faults on memris-

tive crossbars utilized in neuromorphic computing. This study is critical as comprehending

the effects of such faults can enhance the reliability and efficacy of fault-tolerant memristor

based neuromorphic computing systems with resource constraints. Moreover, understanding

the effect of faults on individual layers of memristive crossbar-based neural architecture can

guide the discovery of optimal architecture design to solve specific problems with predefined

accuracy.

Overall, this thesis contributes to advancing memristor-based computing systems by

addressing ALU design, fault sensitization, test time optimization, and the impact of faults

on neuromorphic architectures. The findings provide valuable insights to improve the relia-

bility and performance of future fault-tolerant memristor-based systems across a wide range

of applications.
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1.1 Introduction

Memristors are fundamental passive circuit elements that possess the traits of both memory

and resistors. Due to their unique properties and compatibility with CMOS technology, they
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have emerged as powerful circuit elements that significantly influence upcoming analog and

digital design paradigms. In the realm of memory subsystems, memristors have emerged as a

highly promising technology. Leveraging the analog variation of current-induced resistance,

a 2D-crossbar architecture constructed with memristor arrays offers an efficient platform

for storing multi-valued memory states. Memristors’ non-volatility, low power operation,

high density, and high switching speed make them promising candidates for providing al-

ternative solutions to conventional high-speed Static Random Access Memory (SRAM) and

Dynamic Random Access Memory (DRAM) (RK21). Moreover, memristors do not have

leakage power due to their non-volatile behavior, which makes them suitable candidates for

Flash memories. Integration of CMOS components with non-CMOS memristor cells further

enhances the scope of their applications in various complex system designs.

In recent times, memristors have shown significant promise in the context of a new

generation of logic synthesis. Memristor-based physical architectures have the ability to

store and process information on the same network, which supports a platform for enabling

computation-in-memory (CIM). In the realm of computing, CIM holds significant promise,

presenting a novel approach to data processing (LBL+18). However, its current performance

trails behind that of traditional CMOS designs. Notably, in-memory computing excels in

specific tasks characterized by low computational complexity but high demands for data

movement (REL+22; AMY+23). As applications demand enhanced performance in in-

memory computation, the variety of memristor technologies underscores the necessity for a

standardized benchmarking procedure. This ensures fair evaluations across crucial metrics

like multi-bit memory capacity, low-power operation, endurance, retention, and stability

(SMK+19).

The memristor demonstrates synaptic behavior akin to that of biological synapses

found in the human brain. Its features, such as non-volatility, the capacity to modify

resistance based on voltage amplitude and duration, and continuous input/output charac-

teristics, function similarly to biological synapses. A memristor-based crossbar (MBC) is

highly scalable, with a vast number of memristive devices arranged in a two-dimensional

grid. This configuration enables parallel processing of matrix-vector multiplication, vector

outer product, and other operations with high efficiency and low energy consumption, which

typically incur significant costs in terms of space, time, and energy. Additionally, the analog

nature of memristors makes them ideal for performing the computationally demanding tasks

required for neuromorphic computing. The inherent variability in memristor characteristics,

including resistance states and switching dynamics, may introduce inaccuracies in compu-
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tations and memory storage. However, in the context of neuromorphic computing, these

non-ideal characteristics can be reframed as opportunities for innovation. Research indicates

that embracing device non-ideality can benefit the development of neuromorphic systems.

Strategies like non-ideality-aware training algorithms and random weight initialization, as

explored in (LPL+21a; LPL+21b), illustrate that incorporating device imperfections into the

computational framework can enhance performance and efficiency in neuromorphic comput-

ing applications. The approaches presented in (ZLB+22; SBK+22) signify a paradigm shift,

leveraging inherent device characteristics to amplify the capabilities of neuromorphic sys-

tems, thereby demonstrating the potential for novel and more robust computing paradigms.

This introduction section covers the definition, characteristics, modeling, and applications

of memristors, as well as memristive crossbars, the motivation behind this thesis, and an

outline of the thesis.

1.2 Memristor Model

Circuit theory considers four primary circuit variables, namely the current i, the voltage v,

the charge q, and the flux-linkage ϕ. A passive two-terminal circuit element can be described

in terms of the relationship between any two of these four parameters. For instance, a

resistor is defined by the relationship between voltage v and current i, an inductor by

the relationship between flux-linkage ϕ and current i, and a capacitor by the relationship

between charge q and voltage v.

Chua demonstrated as in Figure 1.1 (Chu71) that there are six possible pairs of rela-

tions that can be represented by mathematical equations. Of these six equations, five are

well-established and have been extensively used in circuit theory. These equations are:

• For a resistor: v = R · i by Ohm’s law the voltage v across a resistor is linearly

proportional to the current i flowing through it, where R is the resistance of the

resistor.

• For a capacitor: i = C · dvdt which relates the current i flowing through a capacitor

to the rate of change of the voltage v across it, where C is the capacitance of the

capacitor.

• For an inductor: v = L · didt which relates the voltage v across an inductor to the rate of

change of the current i flowing through it, where L is the inductance of the inductor.

• dq = idt relates the infinitesimal change in charge (dq) to the current (i) and the

infinitesimal change in time (dt) through which the charge is flowing.
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• By Faraday’s law of electromagnetic induction, v = dϕ
dt , which relates the voltage v

induced in a circuit to the rate of change of the magnetic flux ϕ linking the circuit.

The relation of the magnetic flux ϕ between two terminals of a circuit element as a

function of the electric charge q passing through it was undefined until Chua proposed a

mathematical model for a two-terminal passive circuit element called a memristor. Memris-

tors exhibit unique properties that differ from the three traditional passive circuit elements,

namely, resistors, capacitors, and inductors.

• For a memristor: i = g(ϕ) which relates the current i flowing through a memristor

to the magnetic flux ϕ linking the circuit, where g(ϕ) is a non-linear function that

depends on the history of the current and magnetic flux.

v
Voltage Charge

q

Current
i

Flux
φ

dq
=
id
t

dφ
=
vdt

Capacitor (C)

dq = Cdv

dv = Rdi

dφ = Ldi
Inductor (L)

Memristor (M)

dφ =Mdq

Resistor (R)

Figure 1.1: Relations among the four basic circuit elements in circuit theory (Chu71)

Before the discovery of Chua, there were experimental observations of pinched hys-

teresis loops in two-terminal electrical measurements in various material systems, which

led to the development of devices based on those observations. In 1960, Bernard Widrow

proposed a three-terminal device called a Memristor, where the device’s memristance is

the time integral of the current that passes through it. However, he did not claim it as a

fundamental element in circuit theory. Chua later proved that it is impossible to construct

an equivalent circuit for a memristor using only passive nonlinear resistors, capacitors, and
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inductors. Furthermore, Chua proposed a rigorous mathematical model that can represent

all types of memristors developed through different processes and materials.

Undoped Doped

RON ∗ w(t)
D ROFF ∗ w(t)

D
+

−ve +ve

w(t)

Pt PtTiO2−xTiO2

D

Platinum plate Doped region

Undoped region Platinum plate

Doped

RON

Undoped

ROFF

(b)(a)

Figure 1.2: (a) Pt/TiO2 memristor proposed by HP Labs., (b) its equivalent resistive model.
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Figure 1.3: Change in length of doped region due to application of external bias voltage.

In 2008, researchers from HP Laboratory successfully produced the first memristor

(DBSW08). They proposed a simple structure consisting of a thin semiconductor film

(Tio2 in 1.2(a)) of length D, sandwiched between two metal contacts (Platinum in 1.2(a)).

A portion of the semiconductor film (w(t) in 1.2(a)) is doped with a high concentration of

dopants (by positive ions in 1.2(a)) which acts as a low resistance region Ron. The rest

of the film has very low or zero dopant concentration and has a much higher resistance

Roff . When an external bias voltage v(t) is applied across the device’s terminals, due to

the drift of the charged dopants, the boundary between the two regions are shifted as shown

in Figure 1.3. The device’s total resistance is determined by Ron and Roff , where Ron and

Roff are the device’s resistance values when w(t) = D and w(t) = 0, respectively. An

equivalent resistive model of a partially doped memristor is shown in 1.2(b).
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dv(t) = (Ron
w(t)

D
+Roff (1−

w(t)

D
))i(t) (1.1)

dw(t)

dt
= µv

R(on)

D
i(t) (1.2)

which yields the following formula for w(t):

w(t) = µv
Ron

D
q(t) (1.3)

(1.4)

By inserting equation (7) into equation (5) we obtain the memristance of this system, which

for Ron << Roff simplifies to:

M(q) = Roff (1−
µvRon

D2
q(t)) (1.5)

1.3 Memristive Crossbar

A memristive crossbar is an architecture that comprises a 2D array of memristors with

parallel horizontal metal wires, also known as Word Lines (WL), and parallel vertical metal

wires, also known as Bit Lines (BL). At each crosspoint of a pair of WL and a BL is a

memristor. Thus, a memristor, denoted by Mi,j , has one of its terminal connected to wire

WLi and the other connected to wire BLj . As a result, the crossbar becomes memristive

in nature.

Figure 1.4: Schematic illustration of a crossbar memory array with normal and sneak current paths.
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In order to read or write a conductance value of a memristor Mi,j , a pulse voltage

is applied between wires WLi and BLj . But, while accessing a particular memristor in a

crossbar architecture, along with the desired current (the blue solid line), a small amount of

current may also flow through some un-selected memristor cells. This current is known as

sneak-current (the orange solid line), and the path through which it flows is called a sneak-

path as shown in Figure 1.4. Though sneak-path has a less critical impact on both machine

learning and neuromorphic computing, but for sequential read-and-write of isolated mem-

ristors in crossbar arrays, the activation of sneak-paths is undesirable. Therefore, extensive

research has been conducted to mitigate sneak-path leakage current in memristive crossbar

architectures in functional mode. Techniques like adding an access element to a memristor

(1R) cell to form composite cells such as one-transistor-one memristor (1T1R), one diode-

one memristor (1D1R), one selector-one memristor (1S1R), self-rectifying memristors, etc.,

have been used to mitigate sneak paths (SZT+20; BS17; WRM+18; AT16).

1.4 Read and Write Operations in Memristive Crossbars

time (t)

0
Write 1

Read
Write 0

time (t)

VA

−VA

Mon

M
em

ri
st
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ce

(
Ω

)
V
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ta
ge

(v
)

Moff

Tw1 Tw0

Figure 1.5: Read and write operations in a memristor
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1.4.1 Read Operation

The read operation in a memristor is not as simple as the write operation. To read the

internal state of a memristor, a voltage pulse with a small pulse width and amplitude VA

is applied across the memristor, and the output current is sensed to extract the internal

information. However, the read voltage can perturb the memristor state. Therefore, if the

read operation is not properly designed, the memristor state may be perturbed beyond

its safety margin, resulting in soft errors after repeated reads. To prevent changes in the

memristance of the memristor during the read operation, a two-stage read operation is used.

The ideal read pattern consists of a negative pulse immediately followed by a positive pulse,

with the magnitude and duration adjusted to create a zero net change in memristance, as

shown in Figure 1.7. This ensures that the read operation does not affect the memristor

state, and hence, the memristor can be repeatedly read without soft errors.

Another concern for the read operation is that the initial state of the memristor is

not always guaranteed to be preserved after each read, especially when the memristor is in

its peak high resistance state or peak low resistance state. For instance, if a memristor is

stored at w0 = 0, a negative step pulse during read operation would not affect its state,

but a positive pulse would. The opposite is true when the memristor is in its opposite peak

state. To address this issue, a threshold margin is defined while writing the memristor,

and the read pulse width is limited such that the read process does not move the state

beyond the threshold safety margin. This ensures that the memristor can restore its initial

resistance value after a read cycle and prevents any undesired changes in its state.

1.4.2 Write Operation

To write into a memristor cell, one convenient method is to apply a voltage pulse with finite

duration across the terminal of the memristor cell (XDJX11; HHL09). Suppose a memristor

is initialized with a high resistance state, w(0) = w0 = 0, and one desires to change it to a

low resistance state, w(t) = D. In such cases, a positive voltage pulse with amplitude VA

and duration Tw1 is required, as shown in Figure 1.5. The expression for the flux can be

written as follows:

ϕ(t) =
βD2

2µv

[
(1− w0

D
)2 − (1− w(t)

D
)2
]

(1.6)

Where µ is the average drift mobility and β is the fit parameter. Therefore, for a fixed
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VA, the pulse width required to write a memristor from w(t) = 0 to w(t) = D is given as

Tw1,w0 ≥
ϕD

|VA|
where ϕD =

βD2

2µv
(1.7)

Accordingly, a pulse width of amplitude −VA with duration Tw0 guarantee the memristor

to reach from its low resistance state to high resistance state. Thus, a write signal that has

duration equal or larger than Equation 1.7 can insure a successful write.

1.5 Motivation and Scope of this thesis

The memristor is a novel device with unique characteristics such as non-volatility, low

power consumption, high density, and fast switching speed, make it an attractive choice for

various applications, such as non-volatile memory design, digital and analog circuits, and

neuromorphic computing, among others (Aka15; DK20; SHY18). Memristor-based Resistive

Random Access Memory (RRAM) is considered one of the most significant applications for

the next generation of memory technologies (VRK+09). RRAM has a similar structure to

SRAM, but with the RS flip-flop replaced by a memristor as the basic memory element. It

combines the advantages of current memories, such as SRAM’s fast access time, DRAM’s

high-density organization, and Flash’s non-volatile property. Several types of memristive

crossbar-based memory subsystems have been proposed based on the characteristics of the

memristor device (GKR19; GPJ+22).

One of the key advantages of memristors is their ability to be densely integrated into

a crossbar configuration, which is known as the memristive crossbar. This makes it an ideal

platform for various applications. Its compatibility with CMOS technology has further

increased its appeal to researchers around the world.

In this thesis, we have addressed the challenges related to applications of memristive

crossbars for in-memory computing and neuromorphic computing, in particular efficient

design, testing and fault sensitivity analysis.

1.5.1 Roadblocks in Computation-In-Memory (CIM)

Conventional machines that use Von Neumann architectures (vN93), where memory and

processing units are separated, often suffer from a bottleneck in processor-memory trans-

actions. Furthermore, the CMOS implementation of such processors can be slowed down

due to the limitations of power consumption. To address these issues, physical architectures
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based on memristors have emerged as a promising candidate, thanks to their ability to store

and process information on the same network (BSK+10). Memristors offer several advanta-

geous features, including low power consumption and compatibility with CMOS technology.

By using a ”computation-in-memory” (CIM) scheme, memristors can help overcome the ex-

isting processor-memory bottleneck (CSAE19). Consequently, many academic and indus-

trial research efforts are currently focused on logic implementation with memristors, and new

design paradigms for CIM (KSW+14; KBL+14; BS10; TAS+14; TGY+17; GS17a; ARB+19)

are continuously emerging. Memristive crossbars are particularly appealing in CIM archi-

tectures because they offer several potential benefits, such as high energy efficiency, fast

computation, and compact implementation.

Developing practical and reliable computation-in-memory (CIM) architectures based

on memristive crossbars poses several challenges that must be addressed. One such challenge

is the need for effective algorithms and architectures that can leverage the unique properties

of memristive crossbars for CIM applications. This includes efficient methods for performing

arithmetic and logical operations using memristive crossbars, as well as methods for storing

and accessing data in these systems. In this thesis, we propose a logic system based on

differential currents to implement an adder on a hybrid-memristor crossbar network. We

also describe how the adder modules can be repeatedly used to design a scalable arithmetic

logic unit for various applications.

Current Comparator-Based Adder on Memristive Crossbar

First, a current comparator based re-configurable adder module is proposed on a memristor-

based crossbar network. The module consists of two parts: a ripple carry adder (RCA)

inspired addition and a carry-lookahead adder (CLA) inspired addition. The bit-parallel

RCA module can be used to add k n-bit numbers in parallel, and the execution time for both

modules is proportional to n. An Output Control Unit (OCU) comprising a simple CMOS

current comparator followed by an A/D converter (ADC) analyze the output current. This

eliminates the need for an expensive current sensing amplifier. The proposed designs are

scalable and programmable according to the specifications and available crossbar area. The

design also allows for the implementation of an multiple module together simultaneously

on the same crossbar if available area is present.
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Design of Multiplier and Logical Units on Memristive Crossbar

Next, a scalable implementation of in-memory subtractor, multiplier and logic units using a

memristive crossbar that utilizes current sensing and analog peripheral circuits for computa-

tion in a mixed domain, is presented. The binary input is mapped as a state of a memristor

in the crossbar topology, while the outcome of the arithmetic and logic operations appear in

the analog domain. This strategy leads to reduced computation time and improved energy

efficiency.

Both the subtractor and the shift-and-add multiplier deal with two unsigned n-bit

binary numbers, and produce the output in O(n) cycles,. Logical operations on n-bit

words such as NOT, AND, and OR are proposed. All these operations have attained

reduction in memristor cost and computation-cycle time compared to previous approaches,

as demonstrated by simulation studies.

1.5.2 Challenges in Testing Memristive Crossbars

Memristor cells suffer from non-deterministic nanoscale fabrication, despite their potential

to revolutionize computing. Memristors are vulnerable to manufacturing defects and oper-

ational modalities (PFHE+21; HH11; SML21). Therefore, developing robust and efficient

testing methods is crucial for detecting faults and ensuring the reliability of memristive

crossbar-based systems (HKKC11; PAR15; XWG+21; JA22). In my research, I aim to ad-

dress these challenges by developing effective testing techniques capable of detecting and

diagnosing various types of faults, including stuck-at-faults, bridging faults, and open-faults.

However, testing memristive crossbars presents several challenges, including developing test

patterns and methods that can handle the inherent variability and noise present in mem-

ristive crossbars, while also being efficient and cost-effective for large-scale systems. Over-

coming these challenges will pave the way for the commercialization of memristor devices,

and significantly enhance their performance and reliability.

In this thesis, two novel test optimization techniques for producing test vectors for a

2D memristor-array are proposed. The first technique employs a graph-based path selection

approach for optimizing tests in memristive square and rectangular crossbars. The second

technique optimizes tests in memristive crossbars of any shape, including incomplete cross-

bars, through the use of an integer linear program (ILP). Our significant contributions are

summarized below.
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Test Optimization in Complete Memristive Crossbars

This study introduces a novel technique for testing the entire crossbar by accessing a single

memristor and analyzing the sensitization of paths. The method converts the memristor

network into an equivalent graph and utilizes path-covering algorithms to optimize the test

time for a general class of faults. The algorithm applies maximum matching and Eulerian

path algorithms to select paths in the graph that meet specific lower and upper bounds on

path length. These bounds are determined by the electrical parameters of memristors and

the resolution of the current-sense amplifier required for fault detection.

Not all sets of matchings provide a valid set of paths for optimal testing. Therefore, the

properties of a Latin square are employed to choose eligible sets of matchings that ensure

a valid path set. The proposed graph-based approach offers a minimum number of paths

and surpasses all previous methods in terms of test cost and fault coverage.

Test Optimization in Incomplete Memristive Crossbars

Previous studies have proposed memristive crossbar-based hardware designs with missing

memristors distributed randomly in the crossbar, also known as incomplete crossbars. While

graph-based path-covering techniques have been efficient, they may not always be appro-

priate for incomplete crossbars. Therefore, this study proposes an Integer Linear Program

(ILP ) formulation for optimal path covering that can handle both full and incomplete cross-

bars uniformly. By comparing the results obtained from ILP , the proposed graph-based

method offers a minimum number of paths (equivalent to the ILP solution) and surpasses

all previous approaches in terms of test cost and fault coverage.

1.5.3 Fault-Tolerant Memristive Neural Networks: Key Challenges

The development of energy-efficient and scalable computing systems is a promising direc-

tion for memristive neural architectures (YBT+22). These architectures employ memristive

devices that can modify their resistance based on the current that flows through them. This

property is ideal for neural networks since it allows information to be stored and retrieved in

a way that mimics the functionality of neurons in the brain. In particular, memristor-based

crossbars (MBC) have proven highly effective in computing operations such as matrix-vector

multiplication and vector outer product, which are typically costly in terms of space, time,

and energy. Consequently, a significant number of artificial neural networks (ANNs), recur-

sive neural networks (RNNs), and spiking neural networks (SNNs) have been proposed using
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MBCs (WCGW20; WSYZ15; BPC15; ZRCMPC+11; KASC+11). Compared to traditional

CMOS-based accelerators, MBC-based accelerators have significantly less power consump-

tion per computation due to their massive parallel computing capacity and low-latency data

movement capabilities.

The inherent fault tolerance of neural networks is largely attributed to their commonly

used activation functions, pooling layers, and ranking-based outputs, which are generally

insensitive to computing variations (THG17; Piu01). Despite this, there are various ob-

stacles associated with the development and evaluation of fault-tolerant memristive neural

architectures. One significant challenge is the presence of hard faults, as well as the high

variability and instability of memristive devices, which can result in unpredictable behavior

and degrade the performance of the neural network (YBT+22).

As the last contribution of this thesis, we have thoroughly examined how SA0 and

SA1 faults impact the accuracy degradation of both a memristive deep neural network

(MDNN) and the LeNet 5 (LBBH98) network. To simulate faults, we trained both the

networks with MNIST (Den12), and Fashion MNIST (XRV17) datasets, and converted

them into memristive networks. Our analysis focused on the sensitivity of each layer to the

SAFs, allowing us to determine the impact of each fault on network performance. These

fault analyses are essential for ensuring the reliable operation of memristive neuromorphic

computing systems and resource-constrained fault-tolerant system design.

1.6 Organization of the Thesis

The chapters of this thesis are as follows:

• Chapter 1 covers the basic structure, working principles, and read-write mechanisms

of memristors.

• Chapter 2 provides a review of related works. It discusses various types of memristor

models and crossbar architectures, as well as their applications in different areas.

• Chapter 3 presents two kinds of adder modules in a hybrid memristive crossbar for

computation-in-memory (CIM).

• Chapter 4 describes memristive modules for subtraction, multiplication, and logic

operations utilizing differentiable current, for a scalable design of an ALU.

• Chapter 5 proposes a novel technique of test optimization based on path selection in

memristive square and rectangular crossbars.

• Chapter 6 focuses on test optimization in an incomplete memristive crossbar and
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proposes an ILP based approach.

• Chapter 7 covers fault analysis in a memristive crossbar-based neural circuit and

presents a fault-tolerant design.

• Chapter 8 summarises the contributions of this thesis and discusses potential direc-

tions for future research.
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2.1 Introduction

Incorporating both memristor technology and CMOS, a new generation of hybrid memory-

array has emerged. This architecture employs memristors as a storage element and CMOS to

construct interface circuits, which shows promise in alleviating the memory-processor bottle-

neck in Von Neumann architectures (HCJ18; YNX+18; BAC18). Moreover, researchers have

proposed logic synthesis by activating sneak-paths in memristor crossbar-arrays (CJ17a).

Today, memristors have found applications in memory systems, digital and analog cir-

cuits, neuromorphic computers, hardware implementation of deep neural networks, AI-

accelerators, and other domains (ZM17; CTSC20). In this chapter, we provide a brief

overview of various memristor models, memristive crossbars and their security implications,

along with previous research works relevant to this thesis.

2.2 Memristor Models

Memristors have several distinctive attributes, including good scalability, low power con-

sumption, flexibility, and compatibility with CMOS. Different types of memristor models

have been proposed based on their application-specific characteristics. In this section, we

discuss some of the major memristor models.

2.2.1 Linear ion-drift model

In the linear ion drift mode (JW08), the total width of the memristor D is shared into two

regions. One region with a width of w (which serves as the system’s state variable) has
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a high concentration of dopants and thus a higher conductance. The second region has a

width of D−w and is an oxide region with low conductance. It is assumed that memristors

have ohmic conductance, linear ion drift in a uniform field, and equal average ion mobility

µv. As a result, the state equation for the state variable is:

dw

dt
= µv

Ron

D
i(t) (2.1)

v(t) =

(
Ron

w(t)

D
+Roff

(
1− w(t)

D

))
(2.2)

Here, Ron is the resistance of the device at w(t) = D, and Roff is the resistance of the

device at w(t) = 0. The state variable w(t) is bounded within the interval limits of [0, D].

To prevent w(t) from exceeding the physical device size, a window function is multiplied by

the derivative.

2.2.2 Non-linear ion-drift model

The experimental studies of the fabricated memristors have proved that the behaviour of

the implemented memristors are quite different from the linear drift model and are non-

linear in nature which leads to the development of the non linear ion drift model (BBB09).

The current voltage relationship is described as;

i(t) = w(t)nβ sinh(αv(t)) + χ[exp(γv(t))− 1] (2.3)

where α, β, γ, χ are experimental fittings parameters. the differentiation of the state

variable can be expressed as,

dw

dt
= a.f(w).v(t)m (2.4)

where f(w) is the window function. The memristor model is well fitted for designing logic

gates.

2.2.3 Simmons tunnel barrier model

The Simmons Tunnel Barrier Model accounts for non-linearity and anti-symmetric switching

characteristics (AFC15). Unlike the linear ion drift model, this model includes a resistor in

series with the electron tunnel barrier. The state variable in this model is the width of the
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Simmons tunnel barrier, denoted by x. The changes in x are exponentially dependent on

the movements of the ionized dopants, as expressed below.

dw(t)

dt
= Coff sinh(

i

ioff
exp

[
−exp(

x− aoff
wc

− |i|
b
)
x

wc

]
, i > 0 (2.5)

Con sinh(
i

ion
exp

[
−exp(x− aon

wc
− |i|

b
)
x

wc

]
, i < 0 (2.6)

where b, con, coff , ion, ioff , aon, aoff are called as fitting parameters. The current-voltage

relation for this model is written as

v(t) =

[
Ron +

Roff −Ron

xoff − xon
(x− xon)

]
i(t) (2.7)

2.2.4 Yakopcic neuromorphic memristor model

Yakopcic proposed a memristor model that incorporates several fitting parameters to offer

greater flexibility in device structure (YTS+11). The state variable’s derivative in this

model is defined as the product of composite functions. One of these functions determines

the programming threshold voltage, which includes constants for instant phase transitions.

The other function is the window function.

This device model is particularly useful for neuromorphic computations. When sub-

jected to a linear DC sweep input, the resulting spikes more closely resemble neural spikes

than those obtained from a sinusoidal input.

2.2.5 TEAM – ThrEshold Adaptive Memristor model.

Many previously published memristor models had a complex and implicit current-voltage

relationship. In 2013, the Threshold Adaptive Memristor Model (TEAM) was proposed

to overcome this limitation to a large extent (KFKW13). This model extends the Sim-

mons Tunnel Barrier Model by assuming that the state variable does not change below the

threshold. The defined polynomial is a function of the device’s internal state derivative and

current. This assumption simplifies the model and improves its computational efficiency.

2.2.6 VTEAM – Voltage ThrEshold Adaptive Memristor model.

In many applications, the threshold voltage is more desirable than the threshold current.

To address this, a new model called the Voltage Threshold Adaptive Memristor Model
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(VTEAM) was proposed (KRFK15). Instead of using the threshold current, this model

uses the threshold voltage. Despite this difference, both the TEAM and VTEAM models

provide similar features. Both models are extensions of the Simmons Tunnel Barrier Model

and assume that the state variable does not change below the threshold.

2.2.7 Stanford-PKU model

The Stanford-PKU RRAM Model simplifies the complex process of ion and vacancy migra-

tion into the growth of a single dominant filament, while preserving the essential switching

physics (HAMC19). The device’s resistance is defined by the tunneling gap, which is the

distance between the tip of the filament and the opposite electrode. The current conduc-

tion is exponentially dependent on the tunneling gap distance, which is affected by the

electric field, temperature-enhanced oxygen ion migration, and local temperature due to

Joule heating.

2.3 Memristive Crossbars

The sneak-path problem is a significant challenge in memristive crossbars, which occurs

when unintended current flows through unintended paths, causing errors in the output. To

address this issue, researchers have proposed various memristive crossbar architectures.

BL

BL

BL

BL

WL WL

WL WL

(f) 1D1R

(d) SRC (e) SSC

(g) 1S1R

BL

(b) 1BJT1R

BL

(c) CRS

BL

WL WL WL

(a) 1T1R

Figure 2.1: Seven types of possible solutions to solve the sneak-path current issue (a) 1T1R (b)

1BJT1R (c) CRS (d) 1D1R (e) 1S1R (f) SRC and (g) SSC, respectively.
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2.3.1 1T1R cell and crossbar array

The 1T1M cell structure, as illustrated in Figure 2.1(a), utilizes a transistor connected in se-

ries with each memristor via RRAM/CMOS heterogeneous fabrication technology (LLY+14).

In a 1T1R crossbar architecture, a specific cell is accessed by selecting the corresponding

word line (WL), bit line (BL), and select line (SL) connected to the gate terminal of that

cell. Therefore, this crossbar architecture is the most commonly used for computing-in-

memory (CIM) applications. In the simple 1T1R, one entire row or column is selected at a

time, while in the unfolded crossbar architecture, an individual cell can be precisely accessed

by applying appropriate voltages to the corresponding WL, BL, and SL (MRHW10).

2.3.2 1S1R cell and crossbar array

A 1S1R cell is formed by connecting a selector in series with a memristor, as illustrated in

Figure 2.1(g). The 1S1R architecture is one of the most preferred choices for 3D integration

of RRAM-based crossbars since the selector is compatible with the memristor in terms of

operating current and voltage ranges during both read and write operations (BS14). Since

the selector is essentially a bidirectional highly nonlinear resistor, it has promising potential

for high-density integration with RRAM for various applications.

2.3.3 1D1R cell and crossbar array

The 1D1R crossbar architecture, illustrated in figure 2.1(f), consists of a diode connected in

series with a memristor. To address the sneak-path current issue, as recommended by the

International Technology Roadmap for Semiconductors (ITRS), a combination of diode and

transistor with a resistor in a single chip is more effective (CKS+10). The main advantage

of 1D1R over 1T1R is its smaller area requirement and ease of fabrication.

2.3.4 1BJT1R cell and crossbar array

Obtaining a large current drivability is a challenging task in 1T1R or 1D1R cell structures.

To address this issue, a new logic-compatible structure has been proposed, where a bipolar

junction transistor (BJT) is vertically stacked underneath the memristor as depicted in

Figure 2.1(b). The 1BJT1R structure provides high-performance current driving capability

due to the high gain of the BJT. It can efficiently operate at a low voltage of 2V for the

reset process and 1.5V for the set process (WTL+10).
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2.3.5 CRS memory cell and crossbar array

An effective approach to address the sneak current problem in memristive crossbars is to

utilize CRC cells, which consist of two bipolar memristors connected anti-serially, as shown

in Figure 2.1(c). In this configuration, one memristor is set to a low-resistance state (LRS)

while the other is in a high-resistance state (HRS), and a series resistor is added for stable

operation (PW20). CRC cells can be categorized into two groups based on the polarity of

the connection:

• CRC cells using two symmetric memory cells.

• CRC cells using two asymmetric memory cells.

This approach effectively reduces the sneak current in memristive crossbars, leading to

improved reliability and accuracy.

2.3.6 SRC and crossbar array

Additional devices used to mitigate sneak path (selector, diode, transistor, etc.) bring

advantages but also increase the read/write voltage, degrade memory stability, and affect

scaling. Self-rectifying resistive memory (SRC) is an alternative solution. It is a metal-

insulator-insulator-metal (MIIM) or MIM structure with a large work function difference

between the top and bottom electrodes enabling the rectifying feature (YHZ+19).

2.3.7 SSC and crossbar array

A self-selective resistive switching approach can be used to overcome the issue of sneak

path current. This approach involves integrating two oxide layers as an insulating layer in

a single cell, which enables it to exhibit selective functionality (LXY+17).

2.3.8 Comparison of various architectures

A comparative analysis of various crossbar architectures is presented in Table 2.1, high-

lighting their individual advantages and disadvantages. The choice of a specific crossbar

architecture depends on the intended application. Parameters such as on current, on/off

ratio, Vset/Vreset, polarity, operating temperature, retention, and endurance are compared

in the table.
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Table 2.1: Comparison of few important features of different types of memristor based crossbar

architectures.

Types
On current

Amp. [A]

On/Off

ratio

Operation

polarity

Operation

temperature [t]

Retentions

Sec. [s]
Endurance Ref.

1S1R 5× 10−4 109 Bipolar – – 106 (BS14)

1T1R 10−3 108 Unipolar 300 105 108 (BS14)

1D1R ≈ 10−4 108 Unipolar 473 ≈ 105 104 (CKS+10)

1BJT1R 10−5 ≈ 10 Unipolar – 103 105 (WTL+10)

CRS 10−2 102-103 Bipolar ≈ 360 104 ≈ 2× 102 (PW20)

SRC 10−4 ≈ 104 Unipolar 573 ≈ 2× 105 ≈ 102 (YHZ+19)

SSC 10−4 1010 Unipolar 450 106 106 (LXY+17)

2.4 Security Implications of Memristor-based Systems

ReRAM possesses inherent physical attributes that enhance content protection against hack-

ing attacks and increase resistance to reverse engineering. The absence of charges makes it

challenging to sense or alter its internal state using electron beams. Additionally, ReRAM

can effectively withstand magnetic attacks due to its immunity to electromagnetic fields.

The deep embedding of the ReRAM bit cell between two metal layers further enhances its

resilience to optical attacks. However, a significant drawback in contemporary memristor

computing systems, particularly in the era of artificial intelligence (AI), is the susceptibil-

ity of well-trained neural network (NN) models to theft threats when loaded onto these

systems, particularly in edge devices. Advanced attacks, such as learning attacks and side-

channel analysis, pose a substantial risk, potentially leading to the unauthorized acquisition

of valuable well-trained NN models, as outlined briefly next for completeness’ sake.

2.4.1 Black-box attacks and countermeasures

In specific memristor computing setups, attackers might not have access to the training

dataset or the network weights. Nevertheless, they maintain the capacity to influence

inputs, monitor outputs, and leverage side-channel analysis as integral components of their

attack tactics. These attacks are commonly referred to as black-box models. In order to

counter such threats, two primary approaches can be implemented for prevention.

One effective method for stealing neural network (NN) models is through learning at-

tacks. In this technique, the adversary interacts with the system, querying it and observing
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the corresponding outputs. After accumulating an adequate number of input/output pairs,

a functionally similar NN model can be trained using this dataset (CCSZ23). In order

to counter such attacks, the approach in (YLL+20) involved increasing voltage amplitude,

accelerating memristor device obsolescence, and leading to a substantial reduction in com-

puting system inference accuracy after a few queries. The authors in (RRP+23)) suggested

harnessing the inherent stochasticity as a defense against learning attacks.

Side-channel attacks represent a category of non-invasive strategies wherein the tar-

geted device is treated as a sealed black box. These techniques leverage various side chan-

nels, including power consumption, latency, and electromagnetism, to unveil sensitive infor-

mation. Several studies, (HZS18; BBJP19; YFT20a), have delved into the theft of NN mod-

els using side-channel attacks. These incursions are directed at either traditional computing

architectures or FPGAs. In the study by (YFT20b), a similar layer-by-layer processing ap-

proach was employed in the design of systems. The authors proposed using techniques to

conceal memory access patterns for addressing such potential threats.

2.4.2 White-box attacks and countermeasures

In the white-box threat model, potential vulnerabilities arise as attackers may read the NN

weights stored in the memristor crossbar, exploiting the non-volatility of memristor devices

(AYS+19; ZHX19). Additionally, adversaries could employ micro-probing techniques to

reverse-engineer the NN weight matrices stored in the memristor crossbar (HPJ+20).

Weight encryption methods involve straightforward encryption and decryption of NN

weights during usage, necessitating additional write operations to memristor devices. The

authors in (LCLL21) accelerated and optimized these processes to mitigate latency and

energy consumption, while (CCT+19) aimed at minimizing required encryption/decryption

data.

In the study cited ((ZZC+22)), NN weight transformation protection methods are

employed, storing secured NN weights directly in computing units. This eliminates the ne-

cessity for weight rewriting operations, reducing energy and latency concerns and providing

a distinct advantage over model encryption methods, as the weights remain consistently

protected.

Approaches outlined in (AHSP23; JLZ+18) that rely on fingerprint embedding leverage

the hardware variation of computing systems as a distinctive fingerprint, which is then

incorporated into the NN weights. The pilfered NN model is rendered ineffective without

this embedded fingerprint, as it is both hardware-dependent and challenging to replicate.
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2.5 Memristive ALU Design for Computation-In-Memory (CIM)

With the exponential growth of data generated from commercial and social transactions,

electronic devices, sensors, and scientific experiments, high-speed computation has become

a crucial necessity for processing large volumes of data and extracting valuable insights.

Traditional Von Neumann architectures (vN93) are hindered by processor-memory transac-

tion bottlenecks, and CMOS-based processors, limited by power consumption, may further

constrain their speed. These challenges have spurred research in the area of ”computation-

in-memory” (CIM), which is supported by a few promising technologies. Physical architec-

tures based on memristors (VPC09) have the unique ability to store and process informa-

tion on the same network (BSK+10). Memristors have emerged as a potential solution to

overcome the existing processor-memory bottleneck due to their low-power consumption,

compatibility with CMOS technology, and other supporting features (CSAE19).

In order to enable digital logic using memristors, the output logic can be determined

by either the memristance or the output voltage level of the output memristors. The hybrid

architecture of CMOS integrated with memristive networks provides a potential platform

for implementing Boolean logic (SL12), where memristors serve as reconfigurable switches.

Memristor ratioed logic (MRL)(TAAA16) employs a hybrid memristor-CMOS architecture

to perform AND, OR, and XOR operations. Fuzzy logic has also been implemented using a

similar technique(KS11). Bickerstaff and Swartzlander investigated the basic strategies for

implementing ripple-carry adders and array multipliers with memristor-based structures for

both analog and digital implementation (BS14). Memristor-based logic gained popularity

with the implementation of material implication (IMPLY) logic and memristor-aided logic

(MAGIC) (KSW+14; KBL+14), as all Boolean operations can be performed with either of

these two gates.

The memristor-based IMPLY gate uses resistance to represent logical states, where

high and low resistance correspond to logical zero and one, respectively. In this gate,

resistor RG (RON < RG < ROFF ) is connected to two memristors, P and Q, which act as

digital switches. The initial memristances of P and Q, denoted by p and q, respectively,

serve as the inputs to the gate, and the output of the gate is the final memristance of Q.

During operation, the memristance of both memristors changes. The circuit diagram is

shown in Figure 2.2.

The IMPLY gate has a few limitations, such as the need for sequential voltage activa-

tion, which destroys the input state of the output memristor as the final output is stored
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Figure 2.2: (a) An IMPLY logic gate operates as follows: the initial states of memristors p and q serve

as inputs to the logic gate, while the final state of memristor q is the output, resulting

from the application of voltages VSET and VCOND. Both memristors are connected to a

load resistor RG. (b) The truth table of the IMPLY function (KSW+14).

in that memristor. Moreover, it requires complex control circuitry and consumes signifi-

cant power. To address these challenges, a simple structure was proposed in (KBL+14),

called MAGIC that executes the operation by applying a single voltage pulse at the circuit’s

gateway. In the MAGIC gate, a separate memristor is used for the output, and the initial

logical state of the input memristors is the gate’s input, while the final logical state of the

memristor is the output, as illustrated in Figure 2.3.

Subsequently, many techniques have been developed for designing arithmetic struc-

tures based on IMPLY and MAGIC (BS10; TAS+14; TGY+17; GS17a). For example, an

adder design with a memristor-based crossbar is described in (TGY+17) (RS18), and with

memristor ratioed logic (MRL) in (ARB+19). A memristor-based shift-and-add multiplier

was proposed in (GS17a)(GS17b), and a skeleton-based synthesis flow for Computation-in-

Memory architectures was introduced in(YNA+20). Additionally, a supergate-aided (SAID)
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(i) (ii)

(iii) (iv)

Figure 2.3: (i).(a) Schematic of a two-input MAGIC NOR gate; (i).(b) Simulations for all input

combinations; (ii).(a) Schematic of a two-input MAGIC NAND gate; (ii).(b) Simulations

for all input combinations; (iii).(a) Schematic of a two-input MAGIC OR gate; (iii).(b)

Simulations for all input combinations; (iv).(a) Schematic of a two-input MAGIC NOT

gate; and (iv).(b) Simulations for all input combinations (KBL+14).

logic synthesis approach tailored to MAGIC crossbars was presented in (TRB+19), and

an exact synthesis method that utilizes IMPLY as its only logic primitives was proposed

in (CC20). In (PZP21), a new synthesis method for implication logic circuits based on

memristors was introduced, which provided a generalized rule for deriving the sequence

of operations needed to realize any logic function written in the classical AND-OR form.

However, these methods suffer from scalability issues and offer opportunities for further

optimization of cost and computation time.

In order to tackle the challenges mentioned above, various functional synthesis tech-

niques using data structures such as Binary Decision Diagrams (BDDs)(CJ17b; HCJ18),

And-Inverter Graphs (AIGs)(BTP13), and Majority-Inverter Graphs (MIGs)(SSGD16) have

been proposed for optimizing RRAM-based circuits. These techniques include free binary
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decision diagram (FBDD)-based synthesis for CIM with memristive networks(HCJ18), map-

ping large Boolean circuits to memristor-based crossbars (XNT+18), and designing redun-

dant binary adders with multi-valued memristor states for canonical signed digital (CSD)

systems (EFR15). In (KUH19), a framework for automated synthesis of crossbar designs

that implement approximate Free Binary Decision Diagrams (AFBDDs) using flow-based

computing is proposed. Logic synthesis with memristors that require fewer operational

pulses has also been studied previously (WLW+18). Numerous research endeavors focus on

the design of analog-based arithmetic circuits to tackle the scalability challenges associated

with memristor-based in-memory computing (KMNS21; AWY+23; MSR+20; QPMW21).

In (FSD19), a fully automated logic synthesis approach for sequential circuits on hybrid

CMOS-ReRAM architectures based on graph representations (i.e., BDDs and AIGs) is

proposed. Apart from theoretical advancements, the literature reports a detailed review of

experimental demonstrations of in-memory computations on a decent scale using memristor

arrays for optimization and various machine learning applications (BZL+22; ZJL+18).

2.5.1 Gaps addressed in our work

The utilization of a Memristor-CMOS hybrid architecture is gaining popularity for in-

memory arithmetic and modular designs to achieve adders and multipliers. This approach

has proven beneficial in various fields such as AI/ML, edge-computing, and image compres-

sion due to its ability to emulate artificial neural networks (ANN) and function as hardware

accelerators. The earlier ALU designs incorporating memristors faced challenges of multi-

step operations and interference, thereby necessitating numerous time steps for execution

and demanding a substantial chip area to implement a standard-size arithmetic logic unit.

Given the inherently modular nature of digital designs, it is crucial to construct fundamen-

tal computing circuit modules and subsequently cascade them to create larger, complex

units. Specifically, the design approach involves crafting arithmetic and logical circuits on a

hybrid crossbar network with memristors, utilizing current sensing and incorporating analog

peripheral circuits.

2.6 Testing of Memristive Crossbars

Memristor crossbars are susceptible to various manufacturing and field defects, which can

affect their functionality. Therefore, robust testing of memristive crossbars-based systems

is necessary to ensure their correctness. Various testing techniques have been proposed and
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implemented in literature to evaluate the performance of memristor crossbars (GPM09b;

HKKC11; HH11; HAS14; KKKS14; PAR15; LZW20; SML21; XWG+21; JA22).

In this regard, an electrical model of a MIM-based ReRAM memory element was pre-

sented in (GPM09b), and a robustness assessment was carried out in the presence of actual

defects. Testing methods based on traditional March algorithms (BA00) were observed to be

suitable for memristor-based memory arrays. In (CSW+15), the authors proposed the Over-

Forming (OF) defect and the Read-One-Disturb (R1D) fault, which are specific to RRAM,

and then a March algorithm called March C∗ for detecting stuck-at-faults (SAF ), read-

one-disturb (R1D), and coupling faults (CF ) in addition to the conventional RAM faults.

However, the test time may increase significantly for large-sized arrays in this scheme.

In (HTH15), a design-for-test (DfT) scheme was introduced for memristor arrays. The

authors presented a fault modeling approach for open defects using electrical simulation

and suggested test methods for RRAMs. Their analysis revealed that in addition to some

conventional memory faults, unique faults can also occur. They argued that traditional

march tests may not be sufficient to detect such unique faults. Therefore, the authors

proposed a new DfT concept that leverages the access time duration and supply voltage

level of RRAM cells to improve the detection of these unique faults. Simulation results

demonstrated that by making minor modifications to the circuit, the fault coverage was

increased.

Kannan et al. proposed a fault model for SAF in memristive crossbar architectures

by analyzing various physical defects. They also presented a test technique that utilizes

sneak-paths in their previous work (KRKS13b). In a later study (KKKS15), the fault

model was extended to include multi-valued cells, and the authors performed the test by

reading multiple memristor-cells simultaneously, referred to as region-of-detection (RoD) as

depicted in Figure 2.4. The size and shape of the RoDs are dependent on the nature of

faults, and at least one memristor from each RoD is required to be accessed for testing as

described in their earlier works (KRKS13b; KKKS15).

In (CL15), along with existing faults, two new faults, namely, a write disturbance

fault (WDF ) and dynamic write disturbance fault (dWDF ), are defined. The WDF occurs

when a write operation disturbs the stored data in adjacent cells, leading to errors in the

stored data. The dWDF, on the other hand, is a more complex fault that occurs when the

stored data in a cell is disturbed during a write operation and results in the disturbance

propagating to adjacent cells during a subsequent read operation. In addition, a March test

is proposed to cover the defined faults.
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Figure 2.4: Test locations and coverage for an SA1 fault with sneak paths (not shown); the red

lines demarcate the RoD, a dark blue square in a RoD is the memory element being

sensitised and the gray region has other memory elements in its RoD whose faults can

also be sensed at the output (KKKS15).

The work in (ZCX+16) introduced a testing technique that utilizes inherent sneak-

paths in the 3D stacked one-transistor-N-RRAM (1TNR) structure. This method signifi-

cantly improved the test time. In (MTH17), quick write operations were performed, and

the impact of sneak paths was eliminated by applying appropriate voltages at correspond-

ing WL and BL. Another work (LBJ+17) applied voltage bias to create various sneak-path

distributions and used them to determine the exact location of each faulty memristor within

three write-read operations.

In (XLN+17), a fault-tolerant online training method that includes two phases: fault

detection and fault-tolerant training, was presented. The quiescent-voltage comparison

method is utilized in the fault detection phase. In (SZZM18b), the author suggested a par-

allel testing technique based on memristive stateful logic that replaces the traditional March

algorithm, leading to significant test time improvement. A parallel March-like test algo-

rithm was presented for the CMOS Molecular (CMOL) architecture in (LWY+18), which

covers defined faults caused by electrical defects, resulting in reduced test time compared

to previous algorithms for the same architecture.
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In (EVR19), the robustness of a chaotic circuit network is analyzed, assuming the

existence of defective memristors (Stuck-at-OFF) arranged in a crossbar geometry. This

study presents a test methodology that employs sneak paths for efficient test generation

and establishes the relationship between additional test vectors and improved fault cover-

age. Another paper (JA22) proposes a test generation methodology that uses sneak-paths

and describes the relationship between added test vectors and improved fault coverage for

efficient test generation.

2.6.1 Gaps addressed in our work

Previous works use march or parallel march tests to detect faults in memristive crossbar

architecture. However, these approaches become impractical for large or dense memories,

as the testing time complexity becomes O(n2) for an n × n crossbar. Certain suggested

methodologies involve testing small clusters of memristor cells, leading to a reduction in

test time despite maintaining a time complexity of O(n2). A limitation arises as these meth-

ods necessitate access to at least one memristor from each cluster, which may not always

be feasible. Additionally, these approaches do not address multiple SA0 or SA1 faults.

Additionally, previous approaches focus on testing full memristor arrays with regular struc-

tures, while some crossbars may have missing memristors scattered randomly (incomplete

crossbars (XNT+18; KDRB16)). Considering various hardware architectures that utilize

incomplete crossbars, developing a universal crossbar testing technique becomes crucial to

address all crossbar types and potential manufacturing faults.

2.7 Fault Analysis in Memristive Neuromorphic Architectures

Numerous artificial neural networks (ANNs) have been proposed using MBC technology, in-

cluding recursive neural networks (RNNs) and spiking neural networks (SNNs)(WCGW20;

WSYZ15; BPC15; ZRCMPC+11; KASC+11). MBCs offer significant advantages over tra-

ditional CMOS-based accelerators in terms of parallel computing capacity and low latency

data movement, resulting in less power consumption per computation. However, the CMOS-

memristor heterojunction fabrication process makes MBCs prone to faults, including per-

manent hard faults that occur during manufacturing and cannot be corrected, as well as soft

faults resulting from inaccurate writing of memristor cells during data processing(DFR+15).

As a result, the accuracy of MBC-based computing systems is limited and cannot reach their

maximum achievable value (PMBH+15).
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A lot of studies have investigated the implementation of spiking neural networks

(SNNs) using MBC technology and spike-timing-dependent plasticity (STDP) to mimic bio-

logical neuroscience results (ZRCMPC+11; QBG11; NOBT12; CL12; LBSGCM+11; QBDG13;

SGMP+13). However, guaranteeing the convergence of STDP-based learning for general

purpose inputs is challenging (LNM05). MBC-based single-layer neural networks (SNNs)

have also been proposed for small-scale problems, but they are not capable of handling

large datasets (CZQK11; MRR12; SKM+13). Subsequently, MBC has been applied in com-

plex artificial neural network hardware designs capable of handling large datasets to solve

complex problems, including MNNS (HTY17; HGL+18a; YZS19; SSS+20), LSTM (ASKJ18;

WWY+21), CNN (YAT17; WWZH18), pulse coupled neural networks (PCNNs)(XWZH18),

and computing systems(HGL+18b).

While deep neural networks (DNNs) are often considered fault-tolerant due to their

network connections and other features, this characteristic does not guarantee tolerance

against hardware faults or prevent significant accuracy variations (LCX+22). Memristor

devices, which are heterogeneous and high-density, are susceptible to manufacturing de-

fects and process variations, leading to faulty crossbars that can significantly impact the

classification accuracy of ANNs (CLC19).

A lot of research works have been conducted to detect, locate, and recover from faults

in neural circuits. Paper (HFNT19) proposes systematic testing of computation-in-memory

(CIM) architectures designed for bit-wise logical operations. In (XA19), two safety design

techniques, Algorithm Based Atomic Error Checking-1 (ABAEC-1) and ABAEC-2, are

presented for a Weight Stationary (WS) Convolutional Neural Network (CNN), along with

fault diagnosis. Paper (LHSL17) proposes a defect-rescuing design that uses retraining and

remapping algorithms to identify significant weights. In (ZUFE20), a framework that uses

matrix transformations to handle stuck-at-faults and enable robust inference of deep neural

networks (DNNs) is presented. Fault-tolerant training algorithms for DNNs are proposed

in (LWJ+19; WXY+20), while paper (XCG+20) proposes a fault tolerance-aware hierarchi-

cal clustering method for ex-situ training. Finally, papers (CC21b; CC21a; CC22) propose

the misclassification-driven training (MDT) algorithm to efficiently identify critical faults

(FCFs) in the crossbar. In (SFP+23; SSB+22), the researchers have developed a special-

ized fault injection framework for logic-in memory (LiM) systems. This framework enables

the simulation of various hardware faults and facilitates the evaluation of their impact on

system behavior by introducing faults at different levels within the LiM architecture. The

findings indicate that specific fault types, such as stuck-at faults or coupling faults, have a
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significant detrimental effect on the performance of LiM-based neuromorphic systems.

2.7.1 Gaps addressed in our work

Many studies have shown that faults can affect classification accuracy differently depending

on their type and location. However, the impact of different types of faults on different

weight values at the same position is not well understood, and designing fault-tolerant algo-

rithms without prior knowledge of the faulty cell’s location is a promising area of research.

Investigating the sensitivity of SAFs across various layers of a neural network and devising

fault-tolerant mapping algorithms could be an intriguing avenue of research to address these

concerns.
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3.1 Introduction

An enormous amount of data is generated nowadays by various electronics gadgets, in ad-

dition to that from complex scientific experiments. High-speed computation is an essential

requirement to process such large volume of data and to extract information embedded

therein. Von Neumann architectures (vN93) are known to suffer from processor-memory

transaction bottleneck, and CMOS-implementation of such processors being confronted with

the power wall, may further impede their speed. These drawbacks have opened up a wide

area of research concerning computation-in-memory (CIM) supported by a few promis-

ing technologies. Memristors have shown significant promise both in logic synthesis and

memory-subsystem design. A 2D-crossbar of memristors can be used to store multi-valued

memory states by utilizing the analog variation of current-induced resistance through mem-

ristor cells. The integration of CMOS components with memristor cells can further widen

their design space for handling various complex systems. A crossbar built with CMOS-

memristor hybridization supports a potential platform that enables computation-in-memory

(CIM).

In this chapter we propose a logic system based on differential currents for implement-

ing ADDER on a hybrid-memristor crossbar network. Simulation studies demonstrate that

the proposed design reduces both memristor cost and computation-cycle time compared to

previous approaches.

3.2 Motivation

Let us consider the addition of k unsigned numbers in parallel, each comprising n-bits.

Considering bit-wise addition, the sum bit will be 1, if k is odd, and 0 otherwise; furthermore,

at most ⌊log k⌋ carry bits are generated. We perform binary addition in a memristive

network, where we map input bit 0 (1) to a high (low) resistance path. The output bit

is determined by sensing the total output current that is determined by the number of

low-resistance paths activated through the network.

Motivating Example: Consider a resistive model of a two-bit binary adder that

adds two binary numbers, say A = a1a0 = 11 and B = b1b0 = 01 as shown in Figure 3.1.

Each resistive block contains a pair of resistors having resistance Ron and Roff and at a



3.2. MOTIVATION 35

Vin

CMOS-based

generator
output

Q1 Q0

S0 = 0c0 = 1

I
r
e
f

=
V
i
n

R
o
n

a0 = 1 b0 = 1 c−1 = 0

CBA

Vin

CMOS-based

generator
output

Q0

S1 = 0c1 = 1

I
r
e
f

=
V
i
n

R
o
n

a1 = 1 b1 = 0 c0 = 1

CBA

(b) At second cycle, t = 1

(a) At first cycle, t = 0

R
o
n

R
o
f
f

R
o
n

R
o
f
f

R
o
n

R
o
f
f

R
o
n

R
o
f
f

R
o
n

R
o
f
f

Q1
R

o
n

R
o
f
f

Iout = 2 ∗ Vin

R0n
+ Vin

R0ff

Iout = 2 ∗ Vin

R0n
+ Vin

R0ff
∼ 2 ∗ Vin

R0n

Figure 3.1: Input connections of the resistive circuit for a 2-bit adder at (a) t = 0 and (b) t = 1 to

add two 2-bit binary numbers A and B.

time only one resistor is connected to the source voltage. Therefore, for designing a 2-bit

adder, three resistive blocks A, B, and C (two blocks for the two input bits and one for

the carry bit) are required. If the input bit is 1 (0) the source voltage is connected to

Ron (Roff ) in the corresponding block. When source voltage Vin is applied, the current

passing through Ron or Roff is equal to Ion = Vin
Ron

and Ioff = Vin
Roff

, respectively. Usually,

Ion >> Ioff (
Roff

Ron
≥ 104), and hence, Ioff can be ignored. In order to process the output

current, a CMOS-based circuit is used which identifies the number of low resistance paths

(l) by measuring the total output current and then converts l into equivalent binary bits.

As the maximum value of l can be three, the output needs two pins Q = Q1Q0, where Q0

is the LSB and Q1 is the MSB, respectively. In this setup, the output bit Q0 represents the

sum bit and Q1 corresponds to the next stage carry bit.

The addition is completed in two cycles. At t = 0 (Figure 3.1(a)), the LSBs (a0 = 1
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and b0 = 1) of the two input numbers are applied to the circuit, i.e., in both blocks A and B,

Ron is connected to the voltage source. The initial carry being zero, Roff of C is connected

to Vin. Total active blocks being two, the output is Q = Q1Q0 = 10 where the sum bit

Q0 = S0 = 0 and next stage carry Q1 = c0 = 1. Similarly, at t = 1, the output is Q = 10

where S1 = 0 and c1 = 1 as shown in Figure 3.1(b). Therefore, the final result comprises

two sum bits and the outgoing carry bit; thus the output becomes Q = c1S1S0 = 100.

Tables 3.1 and Table 3.2 depict the details of output-generation logic and mapping of input

bits to the resistive network, respectively.

Table 3.1: Output generation logic for binary adder

Iref = Vin/Ron, l = ⌊Iout/Iref⌋
Output current

Iout
#Low-resistance path (l) Output logic

Q1 Q0

3 ∗ Vin/Roff 0 0 0

Vin/Ron + 2 ∗ Vin/Roff 1 0 1

2 ∗ Vin/Ron + Vin/Roff 2 1 0

3 ∗ Vin/Ron 3 1 1

Table 3.2: Addition of two unsigned binary numbers A = 11 and B = 01

Time Input Bit l = ⌊Iout/Iref⌋ Output logic

t at bt ct−1 where Iref = Vin/Ron Carry (Q1 = ct) Sum (Q0 = St)

0 1 1 0 2 1 0

1 1 0 1 2 1 0

3.3 Designing Adders Based on Current-Comparison

We augment a memristor crossbar with associated CMOS peripheral circuits to implement

scalable arithmetic as well as logical computing units where the crossbar layer is employed

as a processing and storing unit, and the peripheral circuits act as a control unit for writing
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Figure 3.2: Direction of current flow in the crossbar from WL1 to OCU

input bits into the crossbar and generation of output bits by processing the output current.

In order to execute any operation in an M × N crossbar, at any cycle k input bits

are fed in terms of low/high memresistance to k memristors connected to the bottom-most

word-lines (WL). The rest of N − k memristors, connected to it are set to Moff state. The

remaining M(N − 1) memristors are set to either in Moff or Mon state, depending on the

applications. One peripheral circuit is connected to each of the (M − 1) WLs to generate

the output bits. When a fixed input voltage Vin is applied to the bottom-most WL, the

corresponding output bits are generated for that cycle. The current flow in a crossbar

configuration is depicted in Figure 3.2, demonstrating the direction of current originating

from WL1 (the input line) to all other m − 1 WLs in an m × n crossbar array. During

each cycle, a single WL is selectively activated by setting all the connected memristors

to a logical state of 1, thereby generating an output. Consequently, the output current is

contributed by a maximum of n conducting paths.

The computation is done in analog domain to achieve reduced computation time and

improved energy efficiency. Rather than applying different voltages to WLs and BLs as

suggested in (HCJ18; EFR15) at different time instants, the proposed design applies a

constant voltage to a fixed WL. In order to generate the output values, we employ a simple

peripheral circuit to generate the output logic bits by analyzing the output current of the
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Figure 3.3: Block diagram of an Output Computing Unit (OCU)

crossbar, as described below.

3.3.1 Design of output computing unit (OCU)

Here, we propose a simple peripheral circuit connected to each BL to process the output

current for generating the output logic, and is termed henceforth as the output computing

unit (OCU). The underlying working principle of OCU is to count the number of high

current conducting paths and to convert it into digital bits. In an M ×N crossbar, at any

cycle the output current is sensed in any of the N − 1 Bls and the OCU connected to that

BL generates the output bit for that cycle. An OCU may comprise an analog multi-valued

current (voltage) comparator followed by a CMOS analog to digital converter (ADC) as

shown in Figure 3.3. A multi channel current input ADC can also be employed as an OCU.

In the proposed method, Ihigh = Vin
2Mon

and Ilow = Vin
Moff+Mon

denote the current passing

through ON- and OFF-memristance paths, Vin, Mon and Moff denote the input voltage,

ON and OFF memristance, respectively. At any cycle, if l inputs are 1, then the total

output current at BL is Itot = l ∗ Ion + (N − l) ∗ Ioff . An analog current comparator

can compute l by comparing Itot
Ion

as Ion >> Ioff . Next, l is converted into an equivalent

(rounded) binary number by an ADC. Table 3.3 present a notation-list used in this chapter.

Addition is one of the most elementary and frequently used operations in almost all

applications. Therefore, efficient and fast in-memory addition technique in CIM is very

essential for memristor-based processors. Depending on the application, numerous binary

adders have been proposed such as ripple carry adder (RCA), carry-lookahead adder (CLA)
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Table 3.3: Glossary of notations

Description Notation

⌈log2(k + log2 k)⌉ αk

OCU having k output pins OCUk

ith output bit of OCU connected to BLj+1 Qj
i

Input voltage to WL1 Vin

and carry-save adder (CSA) (Man79). Here, we propose the design of a fast and scalable

adder using hybrid-memristive crossbar. Two types of adder circuits are presented that

significantly reduce the number of execution cycles as well as crossbar area compared to

prior art.

3.3.2 Fast multi-operand addition inspired by Carry-Save Adder

A scalable design of a fast adder is proposed where k n-bit integers are added in parallel.

Thus, it is a multi-operand adder where in each step, k bits are added starting from the

least significant bit (LSB) and moving towards the most significant bit (MSB), with diagonal

carry propagation as in a CSA.

In order to execute the addition of k n-bit numbers, we require a crossbar of size

2× (k + αk) where αk = ⌈log2(k + log2 k)⌉. At any cycle t, the tth bits of k inputs and αk

carry bits are written into the memristors connected to WL1. The remaining memristors,

connected to the other word line WL2, are set to logic-1. When an input readout voltage

Vin is applied to WL1, the output bits for the t
th cycle are generated by the OCU. The LSB

of the OCU represents the tth sum bit, and the rest of the output bits represent the carry

bits are to be added with starting from (t + 1)th bit and aligning them towards the MSB

position, and summing them in the subsequent execution cycles. The complete procedure

is illustrated with the next two examples.

Example 3.3.1. Consider the addition of two unsigned binary numbers A = 1101 and

B = 1001 on a 2 × 3 crossbar connected to an OCU having two output pins. In the first

cycle, the LSB, i.e., 0th bit of both the numbers are added and the generated carry bit is

shifted to the left, i.e., to the 1st bit position. In the next cycle, all bits in the 1st bit position
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Figure 3.4: Feeding binary inputs in the tth cycle for adding two unsigned binary 4-bit numbers, and

the corresponding five execution cycles

Table 3.4: Input mapping on the crossbar and the output generation at each time step of addition

t

Memristor cells
Output at OCU

Memristors connected to WL1
Memristors

connected to WL2

M11 ← A[t] M12 ← B[t] M13 ← c[t− 1] M21,M22,M23 Q1 = c[t− 1] Q0 = S[t]

0 1 1 0* (let) 1* 1 0

1 0 0 1 1* 0 1

2 1 0 0 1* 0 1

3 1 1 0 1* 1 0

4 0* 0* 1 1* 1

The entries marked with * are predetermined logic bits used for execution.

along with the previously generated carry bits are added together. This process continues for

five cycles to generate all the sum bits, i.e., four cycles for adding the four bits of the input

numbers and one extra cycle for the last shifted carry bit.

In order to implement this addition on a memristive crossbar, we set, at t = 0, A[0] = 1

and B[0] = 1 into memristor cells M11 and M12, respectively. The initial carry bit c[−1] = 0

is written into memristor cell M13. Logic-1 is written in M21, M22 and M23. When Vin

is applied to WL1, Q = 10 is generated at OCU where Q0 = S[0] = 0 is the sum bit and

Q1 = c[0] = 1 is the carry bit for the next cycle. In the consecutive cycle at t = 1, A[1] = 0,

B[1] = 0 and c[0] = 1 are written into memristor cells M11, M12 and M13, respectively.

Logic-1 is written to the cells connected to WL2 and addition is performed. Thus the process

is completed in five execution cycles as shown in Figure 3.4 and the output bits after each

execution cycle is shown in Table 3.4.
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Figure 3.5: Crossbar mapping and the execution cycles for adding four unsigned binary numbers

Example 3.3.2. Let us consider another example where four binary numbers A = 1111,

B = 1110, C = 1101 and D = 1100 are added together. The addition can be performed

on a 2× 6 crossbar with an OCU having three output pins. At tth cycle, the four tth input

bits along with two (log2 4) carry bits, generated at (t− 1)th and (t− 2)th cycle, are added

together. Three output bits are generated including the tth output bit, and two are carry bits

that are added at (t+ 1)th and (t+ 2) cycle, as shown in Figure 3.5. The memristor states

and the execution cycles are shown in Table 3.5.

Algorithm 1 captures the detailed execution of unsigned addition inspired by CSA,

for adding k n-bits numbers. The whole addition takes n + αk cycles where n cycles are

required for performing additions in n bit-positions and αk cycles for adding the shifted

carry bits (the longest carry propagation being αk).

The design is scalable in the sense that addition with large values of k and n can be

performed on a memristive array of a given size, by adopting a divide-and-conquer strategy

that relies on judicious partitioning of the input space. However, for a particular application,

the maximum value of k and n that can be handled in a single pass depend on the available

crossbar size as well as the number of output pins of the OCU (resolution of the ADC). The

cost of the ADC increases sharply with increasing converter resolution. Therefore, to fit the

problem into the available crossbar size and ADC resolution, k and n can be partitioned

into smaller sets and addition can be done separately. For example, if k = 60 and ADC

resolution is 4-bit, then k can be divided into four groups, each containing 24 − 1 = 15

binary numbers. Firstly, these four groups are added separately and the outputs are added

in the final step. Therefore, the design is referred to as dynamic design and in order to
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Table 3.5: State of the memristors at each cycle while adding four 4-bit binary numbers.

t

Memristor cells
Output at OCU

Cell connected to WL1

Cell(s)

connected

to WL2

M11

↑
A[t]

M12

↑
B[t]

M13

↑
C[t]

M14

↑
D[t]

M15

↑
c1[t− 2]

M16

↑
c0[t− 1]

M21 . . .M26 Q2 = c1[t] Q1 = c0[t] Q0 = S[t]

0 1 0 1 0 0* 0* 1* 0 1 0

1 1 1 0 0 0* 1 1* 0 1 1

2 1 1 1 1 0 1 1* 1 0 1

3 1 1 1 1 0 0 1* 1 0 0

4 0* 0* 0* 0* 1 0 1* 0 1

5 0* 0* 0* 0* 1 0 1* 0 1

5 0* 0* 0* 0* 1 0* 1* 1

Algorithm 1: Pseudo-code of fast multi operand binary addition of k n-bit unsigned

integers on a memristive crossbar, inspired by CSA.

Data: k n-bit unsigned binary numbers, a crossbar of

size 2× (k + αk), Vin, OCUαk ;

Result: Final sum bits S[n], 0 ≤ n ≤ (n+ αk)

1 for time t = 0 to n− 1 do

2 Write tth-bit of all k numbers as memristor state in

3 M1,1 to M1,k;

4 Write αk carry bits, each generated from last αk cycles into memristors

5 M1,k+1 to M1,k+αk

6 for m = 1 to αk do

7 Carry bit generated at pin Qm in tt−mth cycle is written to memristor M1,k+m;

8 Write logic-1 to memristors M2,1 to M2,k+αk
;

9 Apply voltage Vin to WL1;

10 Final tth sum bit is generated at Q0 = S[t];

11 Bit generated on Q1 to Qαk−1 are the carry bits to be used in the next αk cycles;

12 for t = n to n+ αk do

13 The carry bits to be executed in tth cycles are added to produce the tth sum bit and

carry bits for future execution;
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Algorithm 2: Crossbar mapping for fast multi operand binary addition of k n-bit

unsigned integers on a memristive crossbar, inspired by CSA.

Data: k, n-bit binary numbers,

Ak−1 = ak−1[n− 1]ak−1[n− 2] . . . ak−1[1]ak−1[0];

Ak−2 = ak−2[n− 1]ak−2[n− 2] . . . ak−2[1]ak−2[0];
...

A1 = a1[n− 1]a1[n− 2] . . . a1[1]a1[0];

A0 = a0[n− 1]a0[n− 2] . . . a0[1]a0[0];

A crossbar of size 2× (k + αk), where αk = ⌊log2(k + log2 k)⌋;
Voltage source Vin;

OCUαk −→ OCU having αk output pins;

Result: Final sum bits S = s[n+ αk]s[n+ αk − 1] . . . s[1]s[0];

1 for time, t = 0 to n− 1 do

2 for j=0 to k − 1 do

3 M1,j+1 ← aj [t]; % mapping of tth bit of jth input integer

4 for m = 1 to αk do

5 M1,k+m ← cm−1[t−m]; % mapping of previously generated carry bits

6 for l = 1 to (k + αk) do

7 M2,l ← logic-1;

8 WL1 ← Vin;

9 s[t]← Q0[t]; % generation of tth sum bit

10 for p = 0 to αk − 1 do

11 cp[t]← Qp+1[t]; % carry bits for next state operations

12 for t = n to n+ αk do

13 for i = 1 to t do

14 M1,i ← logic-0;

15 for j = 1 to αk do

16 M1,t+j ← cj−1[t− j];

17 WL1 ← Vin;

18 S[t]← Q0[t]; % generation of tth sum bit

19 for p = 0 to αk − 1 do

20 cp[t]← Qp+1[t]; % carry bits for next state operations
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2× (m+ blog2(m+ log2 m)c) crossbar

Input bits Carry bits

am−1[t] c0[t− 1] c1[t− 2] cα−1[t− α]

s[t] c0[t] c1[t] c2[t] cα−1[t]

a1[t] a2[t] a3[t]a0[t]

Figure 3.6: Block diagram of a multi-operand adder inspired by CSA on a 2× (k + αk) crossbar.

execute the addition of k unsigned binary numbers in one pass, the OCU ought to have αk

output pins and crossbar size greater than or equal to 2× (k + αk). Addition of operands

with large word size (n) can be handled on a crossbar of smaller size by increasing the

number of execution cycles.

The block diagram of the proposed CSA-based unsigned adder circuit on a memristive

crossbar is shown in Figure 3.6. Table 3.6 shows the size of the maximum carry bits, the

required crossbar size, the size of OCU and the number of cycles required for complete

execution against different input binary numbers (referred to as model size). The most

notable point is that the number of execution cycles primarily depends on the size of the

input numbers (n) rather than count of the input numbers (k). Therefore, the proposed

circuit is suitable for multi-operand addition.
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Table 3.6: Characteristics of the proposed CSA-based adder circuit

Module size # carry bits Crossbar size #OCU pins #Cycles

k αk − 1 2× (k + αk) αk n+ αk − 1

2 1 2× 3 2 n+1

3 2 2× 5 3 n+2

4 2 2× 6 3 n+2

5 2 2× 7 3 n+2

6 3 2× 9 4 n+3

7 3 2× 10 4 n+3

8 3 2× 11 4 n+3

16 4 2× 20 5 n+4

32 5 2× 37 6 n+5

64 6 2× 70 7 n+6

128 7 2× 135 8 n+7

256 8 2× 264 9 n+8

3.3.3 Memristive Addition inspired by Carry-Look Ahead Adder

The design of a general-purpose CLA suffers from high hardware overhead because of the

fact that all carry bits need to be generated directly from the inputs. However, in memristive

realization, the OCU unit can be conveniently used for this purpose. When two input bits

a and b are applied to the memristive crossbar as proposed in Section 3.3.2, the two output

pins of the OCU from the LSB-side directly provide the carry-propagate P (P = a⊕ b) and

the carry-generate G (G = a∧ b) signal. Leveraging this property, a CLA-inspired adder is

proposed where the P [t]s and G[t]s are produced for each bit position of the binary inputs.

Next, we generate carry bits for each bit position using previously generated P [t]s and G[t]s.

In the third cycle, the final sum is obtained by using the generated carry bits.

Cycle-1: Carry-propagate (P [t]) and Carry-generate (G[t]) computation

Algorithm 3 explains the generation of P [t] and G[t] for an n-bit CLA-inspired adder

while adding two unsigned binary numbers A[n] and B[n] by employing a crossbar of size

(n+ 1)× 2n with n OCUs in one cycle.



46 3.3. DESIGNING ADDERS BASED ON CURRENT-COMPARISON

Algorithm 3: Pseudo-code for generating Carry-propagate (P [t]) and Carry-

generate (G[t]) bits for CLA-inspired addition of two n-bit numbers

Data: Two n-bit unsigned numbers;

A crossbar of size (n+ 1)× 2n, OCU2;

Result: P [t] and G[t], 0 ≤ t ≤ n− 1;

1 Make bit-wise addition of all the bits simultaneously such that OCU connected to BLt+1

produces the addition for tth bit positions where Q0 (LSB) produces carry propagate and

Q1, carry generate;

2 P [t] = Qt+1
0 ;

3 G[t] = Qt+1
1 ;

Algorithm 4: Crossbar mapping for generating Carry-propagate (P [t]) and Carry-

generate (G[t]) bits for CLA inspired addition of two n-bit numbers

Data: Two n-bit binary numbers, A = an−1...a2a1a0 and B = bn−1...b2b1b0;

A crossbar of size (n+ 1)× 2n ;

n units OCU;

Result: P [t] and G[t], 0 ≤ t ≤ n− 1;

1 for t=0 to (n− 1) do

2 M1,2t+1 ← A[t];

3 M1,2t+2 ← B[t];

4 for j= 1 to 2 do

5 M(2+t),(2t+j) ← logic-1;

6 logic-0 is written to the rest of the memristors in the crossbar;

7 WL1 ← Vin;

8 for t=0 to n− 1 do

9 P [t] = Qt+1
0 ;

10 G[t] = Qt+1
1 ;
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Cycle-2: Carry c[t] generation

In the second cycle, the carry bits for each bit position of the two numbers are determined

ahead of time utilizing P [t]s and G[t]s. In Algorithm 6, we present the generation of carry

bits c[t], 1 ≤ t ≤ n using P [t]s and G[t]s. A crossbar of size (n + 1) × 2n is required to

generate n carry bits.

Algorithm 5: Pseudo-code for the generation of Carry bits c[t] using P [t]s and G[t]s

generated at Cycle-1.

Data: P [t] and G[t], 0 ≤ t ≤ n− 1 produced in Algorithm 3;

A crossbar of size (n+ 1)× 2n;

Result: List c[t] 1 ≤ t ≤ n+ 1;

1 Implementation of carry function c[1] is effected on the memristive-crossbar by setting two

parallel paths G[0] and c[0]P [0] from input line WL1 to output line BL1 using two rows

and two columns;

2 To synthesize c[2], the output line of c[1] is utilized to set two parallel path G[1] and c[1]P [1]

from input line WL1 to output line BL2 using one extra row and one extra column;

3 In order to generate each of the higher-order carry bits, one additional row and column is

required;

4 This process is repeated through n steps;

Cycle-3: Final addition and generation of sum bits S[t]

In the third cycle, the final sum bits are generated by adding two inputs and carry bits

generated in Cycle-2. Only the LSB bit of each OCU is considered as corresponding sum

bit. However, for the leftmost bit position, the MSB bit of the OCU is treated as the final

sum bit. Algorithm 8, presents the generation of final sum-bits S[t], 0 ≤ t ≤ n using the

generated carry bits. A crossbar of size (n + 1) × 3n is required to generate the final sum

with n OCU units.

Example 3.3.3. Here, we perform the addition of two unsigned binary numbers A = 1110

and B = 1001. Figure 3.7 shows the input mapping as well as the generation of P [t] and

the G[t] for each bit position in the first cycle. Carry bits are generated in the second cycle

and four carry generation functions are given below.

1. c[1] = G[0] + c[0]P [0]

2. c[2] = G[1] +G[0]P [1] + c[0]P [0]P [1]

3. c[3] = G[2] +G[1]P [2] +G[0]P [1]P [2] + c[0]P [0]P [1]P [2]

4. c[4] = G[3] +G[2]P [3] +G[1]P [2]P [3] +G[0]P [1]P [2]P [3] + c[0]P [0]P [1]P [2]P [3]
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Algorithm 6: Crossbar mapping for the generation of Carry bits c[t] using P [t]s and

G[t]s generated at cycle-1.

Data: P [t] and G[t], 0 ≤ t ≤ n− 1 produced in Algorithm 3;

A crossbar of size (
(
n+1
2

)
− n+ 1)× (

(
n+1
2

)
− 1);

Result: List c[t] 1 ≤ t ≤ n− 1;

1 countO = 0;

2 for t = (n− 1) to 1 do

3 k = n(n+1)
2 − (t+1)(t+2)

2 ;

4 a = ⌊ t+1
2 ⌋+ 1

5 b = ⌈ t+1
2 ⌉

6 countI = 1;

7 x, y=0;

8 for j ← (n− 1− countO) to 1 do

9 if j = n− 1− countO then

10 M1,(k+1) ← P [j − 1]

11 M1,(k+j+1) ← G[j − 1]

12 countI=countI + 1;

13 else if (countI ≥ 2) & (countI=even) then

14 δ=countI/2;

15 x = (k + 1 + δ − countO);

16 y = (k + δ);

17 Mx,y ← P [j − 1]

18 Mx+j,y ← G[j − 1]

19 countI=countI + 1;

20 else

21 Mx,y+1 ← P [j − 1]

22 Mx,y+j+1 ← P [j − 1]

23 countI=countI + 1;

24 M(k+a−countO),(k+b) ← c[0];

25 WLk+t+1−countO ← c[t];

26 countO = countO + 1;
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Algorithm 7: Pseudo-code for the generation of Sum bits S[t], 0 ≤ t ≤ n

Data: n carry bits c[t], 1 ≤ t ≤ n+ 1 produced in Algorithm 6;

Initial carry c[0], (n+ 1)× 3n crossbar, OCU2;

Result: Final n+ 1 sum-bits.

1 The tth bit of two input numbers, and the carry bit c[t] are written at memristors M1,2t+1,

M1,2t+2, and M1,3(t+1), respectively;

2 Addition of these three bits are executed using BLt+1;

3 The final tth sum bit is generated at Qt+1
0 ;

4 Additions for all bit-positions are executed simultaneously;

Algorithm 8: Crossbar mapping for the generation of Sum bits S[t], 0 ≤ t ≤ n

Data: n-2 carry bits c[t], 1 ≤ t ≤ n− 1 produced in Algorithm 6;

Initial carry c[0];

A crossbar of size (n+ 1)× 3n;

n units of OCU;

Result: Final n+ 1 sum bits.

1 for t = 0 to n− 1 do

2 M1,2t+1 ← A[t];

3 M1,2t+2 ← B[t];

4 M1,3(t+1) ← c[t];

5 for j= 1 to 3 do

6 M(2+t),(3t+j) ← logic-1;

7 logic-0 is written to the rest of the memristors in the crossbar;

8 WL1 ← Vin;

9 for j = 0 to n− 1 do

10 S[j] = Qj+1
0 ;

11 S[n] = Qn
1 ;
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Table 3.7: Characteristics of a CLA-inspired adder

Word size
Crossbar size

#OCU used
Cycle-1 Cycle-2 Cycle-3

n (n+ 1)× 2n (n+ 1)× 2n (n+ 1)× 3n n

4 5× 8 5× 8 5× 12 4

6 7× 12 7× 12 7× 18 6

8 9× 16 9× 16 9× 24 8

16 17× 32 17× 32 17× 48 16

32 33× 64 33× 64 33× 96 32

64 65× 128 65× 128 65× 192 64

The emulation of carry functions for c[1], c[2], c[3] and c[4] require an 5 × 8 crossbar and

the mapping is shown in Figure 3.8. The final output is computed in the third cycle and the

input mapping to the crossbar and final sum generation are shown in Figure 3.9.

The block diagram of an n-bit CLA-inspired fast adder circuit is shown in Figure 3.10.

The addition is completed in three cycles which need crossbars of different sizes. However,in

practice, all three cycles can be executed on a single crossbar (the one with the largest size)

one after another, thus limiting the hardware overhead. Table 3.7 shows the size of the max-

imum carry bits, required crossbar size, the number of OCU units used, and the number of

the cycles needed for complete execution against different input number size. Compared to

the CSA-based adder described earlier which requires O(n) cycles, the CLA-based approach

completes addition in only three cycles. However, it needs a larger memristive crossbar for

emulation as well as a complex peripheral control circuit. Furthermore, it is not suitable

for handling addition of more than two operands, concurrently.



3.4. EVALUATION OF OUR MEMRISTIVE ADDERS 51

Q1
1 = G[0] = 1

OCU Q1
0 = P [0] = 0

Q2
1 = G[1] = 0

OCU Q2
0 = P [1] = 0

Q3
1 = G[2] = 0

OCU Q3
0 = P [2] = 1

Q4
1 = G[3] = 1

OCU Q4
0 = P [3] = 0

Vin
A[0]=1 B[0]=1 A[1]=0 B[1]=0 A[2]=1 B[2]=0 A[3]=1 B[3]=1

Figure 3.7: Mapping on a 5 × 8 crossbar with four OCU units for generating carry-
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OCU Q0 = S[1] = 1

OCU Q0 = S[2] = 1

Q1 = S[4] = 1
OCU Q0 = S[3] = 0

Figure 3.9: Generation of the final sum bits S = 10110 on a 5× 12 crossbar
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Figure 3.10: Block diagram of a CLA-inspired n-bit adder

3.4 Evaluation of our Memristive Adders

3.4.1 Simulation results

Table 3.8: Comparative results with prior works

Operation (TGY+17),(YT18) Proposed method

#mem cycle crossbar size #mem cycle

Full Adder 15M 13 2× 3 8M 2

4-bit RCA 57M 49 2× 3 29M 8

4-bit CLA 109M 101 7× 12 50M 6

n-bit RCA 14n+1 12n+1 2× 3 7n+1 2n

n-bit CLA N.A. N.A. (n+ 1)× 3n 7(n2 + 1) 6

We define the step current I∆ as v/2R, the amount of current passing through an active

path. All other possible values of current are multiples of I∆. Now, I∆ depends only on

Vin, the input voltage and RON of a memristor. A modified current comparator can be

configured on the basis of these two parameters so that the step current is large enough.

Example 3.4.1. The spice code for simulating the five parallel paths in a 5 × 5 crossbar

is presented here.
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Figure 3.11: Simulation results with five discrete current values.

* HP MEMRISTOR MODEL USING JOGLEKAR WINDOW FUNCTION

* Connections:

*TE: Top Electrode

*BE: Bottom electrode

*XSV: External connection to plot state variable that is not used otherwise

.subckt Mem_joglekar TE BE XSV

* Ron: minimum device resistance

*Roff : maximum device resistance

*D : Width of the thin film

*uv: Dopant mobility

*p: parameter for window function

*x0: state variable initial value

.param Ron=100 Roff=100k x0=0.56 D=16n p=7 uv=40F
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*JOGLEKAR window function definition

.func f(V1)=1-pow((2*V1-1),(2*p))

*MEMRISTOR I-V relationship

.func IVRel(V1,V2)=V1/(Ron*V2+Roff*(1-V2))

*circuit to determine state variable, Gx Linear voltage controlled current source

Gx 0 XSV value={I(Gmem)*Ron*uv*f(V(XSV,0))/pow(D,2)}

Cx XSV 0 {1}

.ic V(XSV)=x0

*Current sourcerepresenting memristor

Gmem TE BE value={IVRel(V(TE,BE),V(XSV,0))}

.ends Mem_joglekar

Xmemristor1 p1 q1 XSV Mem_joglekar x0=1

Xmemristor2 p1 q2 XSV Mem_joglekar x0=1

Xmemristor3 p1 q3 XSV Mem_joglekar x0=1

Xmemristor1 p1 q4 XSV Mem_joglekar x0=1

Xmemristor1 p1 q5 XSV Mem_joglekar x0=1

Xmemristor4 q1 p2 XSV Mem_joglekar x0=1

Xmemristor5 q2 p2 XSV Mem_joglekar x0=1

Xmemristor6 q3 p2 XSV Mem_joglekar x0=1

Xmemristor4 q4 p2 XSV Mem_joglekar x0=1

Xmemristor5 q5 p2 XSV Mem_joglekar x0=1

vin p1 0 5

R1 p2 0 100

.tran 0.1

.end

We perform resistive spice simulation using LTSpice with V = 5V , RON = 100Ω

and ROFF = 100kΩ. We measure the sum of current-values passing through five parallel
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paths in a 5 × 5 crossbar, as shown in Fig. 3.11, where I∆ = 25mA. The four other

values of current are consecutive integer multiples of I∆. As ROFF >> RON , the current

passing through the off memristor (IOFF ) is negligible in comparison to I∆, so the effect of

IOFF is not considered while calculating I∆. Further, we observed that the value of I∆ is

nearly constant when RON
ROFF

is very small (< 10−3), but becomes unstable as RON
ROFF

increases

significantly.

3.4.2 Discussion

In Table 3.8, we compare the results of our method with that in (TGY+17) where both the

methods include the time for writing input-bits as well as the execution. For the memristor

count, we have included those in the pre-defined output block where the final output of the

module is to be stored. Our method reduces not only the memristor count, but also the

number of time cycles significantly.

For implementing in-memory module, available crossbar size is very important. To the

best of our knowledge, no previous attempt was made to scale the module size based on

available memory. In our design, the size of the module can be optimized depending on the

task schedule and available memory size. For the CLA, we generate only the rightmost n

carry bit in Step II, and then cn only in the final step to optimize the crossbar size.

3.5 Concluding Remarks

We have proposed here an area-aware binary adder suitable for in-memory computation

on a hybrid-memristor crossbar, where the output logic is determined based on differential

output currents. A simple CMOS-based OCU comprising of a current comparator and an

ADC is capable of analyzing the output current to determine the output. The proposed

method is fast, and the size of a module can be tuned according to available memory

space. Addition is one of the key operations for updating node-weight in neuromorphic

computation for which CIM would be promising candidate.
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4.1 Introduction

A 2D memristive crossbar can be used to store multi-valued memory states corresponding to

the analog variation of current-induced resistance through memristor cells. The integration

of CMOS components with memristors further widens their design space for managing

various complex systems, and such hybridization supports a potential platform for enabling

computation-in-memory (CIM).

In this chapter, we present a scalable implementation of in-memory arithmetic logic

units on a memristive crossbar. Digital designs being inherently modular, our objective here

is to build basic circuit modules and then cascade them to realize a large-size complex unit.

In particular, we propose designs for arithmetic and logical circuits on a memristor-based

hybrid crossbar network that relies on current sensing along with some analog peripheral

circuits. Thus, computation is performed in a mixed domain, i.e., a binary input is mapped

as a state of a memristor in the crossbar topology, whereas the outcome of the arithmetic

and logic operations appear in the analog domain, a hybridized strategy that leads to

reduced computation time and improved energy efficiency. The peripheral circuits capture

output currents and produce either intermediate logic outputs to be mapped again to the

crossbar for the next cycle of execution or to provide the final digital outputs. The proposed

designs are scalable and programmable in tune with the specification and available crossbar

area. This technique allows parallel computation on large-size binary operands and is thus

suitable for machine learning applications. The major contributions of our work on designing

memristive circuits employing CIM for various operations are listed below:

• shift-and-add multiplication of two unsigned n-bit binary numbers, in O(n) cycles.

The multiplication procedure takes (2n+⌈log2(n+log2 n)⌉) cycles, employing a cross-

bar of size (2n+ ⌊log2(n+ log2 n)⌋)× (n+ ⌊log2(n+ log2 n)⌋);
• subtraction involving two unsigned n-bit binary numbers. It requires three cycles

involving a crossbar of size (n+ 1)× 2n, (n+ 1)× 5n and (n+ 1)× 2n, respectively;

• logical operations on n-bit words. NOT and AND operations are executed in a single

cycle whereas an OR operation would need four cycles.

4.2 Binary Subtraction and Multiplication

Chapter 3 addresses the design of a fast and scalable adder using hybrid-memristive crossbar

as addition is one of the most elementary and frequently used operations in almost all



58 4.2. BINARY SUBTRACTION AND MULTIPLICATION

applications. Therefore, efficient and fast in-memory addition techniques in CIM are very

essential for memristor-based processors. Depending on the application, we have designed

different types of memristive crossbar based binary adders such as ripple carry adder (RCA),

carry-lookahead adder (CLA) and carry-save adder (CSA) (Man79). In this chapter, we

next present the design of two more arithmetic operations, namely binary subtraction and

multiplication of two unsigned binary numbers using the CSA-inspired adder module of

Chapter 3.

4.2.1 Binary subtractor

The design of a subtractor with 2′s complement for unsigned binary subtraction is proposed

in a memristive crossbar. The subtraction is completed in three cycles as follows.

1. 1′s complement of the subtrahend is generated.

2. The minuend, the computed 1′s complement of the subtrahend and constant 1 are

added.

3. If the final carry bit is 1,

• then the carry bit is discarded and the rest of the bits are saved as result (which

is a positive number).

4. else, the resultant bits output the 2′s complement of the final answer (this may be

considered as a negative number).

Generation of 1′s complement, 2′s complement, and addition are thus necessary for

implementing subtraction of two unsigned binary numbers. The memristive circuit proposed

in Section 4.2 can be deployed for addition, and 1′s and 2′s complement are computed as

described below.

Computing 1′s complement

When we apply two input bits a and b to a memristive adder circuit, the output value at

two pins of the OCU are Q0 = a⊕b and Q1 = a∧b, respectively. If we set a = 1 then output

value at Q0 will be the complement of the input bit b i.e. Q0 = ¬b. Leveraging this property,
1′ss complement is generated for each bit position. To generate the 2′s complement, the

constant 1 is added to the 1′s complement of the input binary number.

Example 4.2.1. An example is shown in Figure 4.1 where subtraction of B = 1001 from

A = 1101, both unsigned binary numbers, is performed, i.e., A is the minuend and B
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Vin
B[0]=1 B[1]=0 B[2]=0 B[3]=1

Q1
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Q2
0 = 1

Q3
0 = 1

Q4
0 = 0

Figure 4.1: Generation of 1′s complement of B, the subtrahend

the subtrahend. In the first cycle, 1′s complement of B is generated in a 5 × 8 crossbar.

The input bits B[0], B[1], B[2] and B[3] are written to memristors M12, M14, M16 and

M18, respectively. Logic-1 is written to memristors M11, M13, M15, M17, M21, M22,

M33, M34, M45, M46, M57, M58. Logic-0 is written in all the other cells. 1′s complement

is generated at the output pin, Qt
0 = ¬B[t] for 1 ≤ t ≤ 4. In the next cycle, the input

number A, 1′s complement of B and the constant 1 are added, as shown in Table 4.1. The

final carry being 1, is discarded from the result. So 0100 is the final result.

Table 4.1: Adding A to the 1′s complement of B and the constant 1

time t 4 3 2 1 0

A[t] 1 1 0 1

¬B[t] 0 1 1 0

1 0 0 0 1

c[t-1] 1 1 1 1

SUM 1 0 1 0 0

The computation of 1′s complement is given in Algorithm 5. The block diagram

of a memrisor-based subtractor is given in Figure 4.2 which can be used to subtract an

unsigned n-bit number B = bn−1 . . . bi . . . b1b0 from an another unsigned n-bit number
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A = an−1 . . . ai . . . a1a0.

Algorithm 9: Generation of 1′s complement of an n-bit number

Data: An n-bit unsigned number B = bn−1...b2b1b0;

A crossbar of size (n+ 1)× 2n, Vin, OCU2;

Result: ¬B[t], 0 ≤ t ≤ n− 1;

1 for t=0 to (n− 1) do

2 The tth bit of the input number is written in memristor M1,2t+2;

3 logic-1 is written in memristor M1,2t+1;

4 Addition of these two bits is executed in BLt+1;

5 Qt+1
1 = ¬B[t] produces the negation of the tth bit;

Algorithm 10: Crossbar mapping for generation of 1’s complement of a n-bit number

Data: AN n-bit unsigned number B = bn−1...b2b1b0;

A crossbar of size (n+ 1)× 2n ;

n units OCU;

Result: ¬B[t], 0 ≤ t ≤ n− 1;

1 for t=0 to (n− 1) do

2 M1,2t+1 ← logic-1;

3 M1,2t+2 ← B[t];

4 for j= 1 to 2 do

5 M(2+t),(2t+j) ← logic-1;

6 logic-0 is written in the rest of the memristors of the crossbar;

7 WL1 ← Vin;

8 for t=0 to n− 1 do

9 ¬B[t] = Q1
0;
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Figure 4.2: Block diagram of an n-bit subtractor

4.2.2 Shift-and-add multiplier

For multiplying two unsigned n-bit numbers, a memristive crossbar-based design is proposed

here based on shift-and-add strategy. Two input numbers are written to an (n+αn)×(2n+

αn) memristive crossbar in such a way that at each cycle, one output and αn− 1 carry bits

are generated.

Example 4.2.2. An example for multiplying two 4-bits unsigned numbers A = 1101 and

B = 1001 is presented here. The input mapping to the memristive crossbar is shown in

Figure 4.3 and output generation at each cycle is given in Table 4.2. When an input voltage

is applied at cycle t = 0, three output bits are generated where the Q0
0 = M [0] is the final

output bit for that bit position, and Q0
1 = c0[0], Q0

2 = c1[0] are the carry bits written back to

the crossbar to be executed in cycle t = 1 and t = 2, respectively, as shown in Figure 4.3.

The process goes on to t = 8 and at the end of the ninth cycle, all output bits are generated.
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Figure 4.3: A 4-bit multiplier on a 10× 6 memristive crossbar

Table 4.2: Execution steps for a 4-bit multiplier
t = 8 t = 7 t = 6 t = 5 t = 4 t = 3 t = 2 t = 1 t = 0

A[0]B[3] A[0]B[2] A[0]B[1] A[0]B[0]

A[1]B[3] A[1]B[2] A[1]B[1] A[1]B[0]

A[2]B[3] A[2]B[2] A[2]B[1] A[2]B[0]

A[3]B[3] A[3]B[2] A[3]B[1] A[3]B[0]

c0[7] c0[6] c0[5] c0[4] c0[3] c0[2] c0[1] c0[0]

c1[5] c1[4] c1[3] c1[2] c1[1] c1[0]

M[8] c0[7]M[7] c0[6]M[6] c1[5]c0[5]M[5] c1[4]c0[4]M[4] c1[3]c0[3]M[3] c1[2]c0[2]M[2] c1[1]c0[1]M[1] c1[0]c0[0]M[0]

Algorithm 11 explains the implementation of a shift-and-add multiplication of two n-

bit unsigned binary numbers A[n] and B[n] on a memristor-based hybrid crossbar of size

(2n+αn)×(n+αn) employing CIM. The input number A is written to the first nmemristors
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Algorithm 11: Memristive crossbar based multiplication of two n-bit unsigned num-

bers
Data: Two n-bit unsigned numbers A[n] and B[n];

A crossbar of size (2n+ αn)× (n+ αn), Vin, OCUαn ;

Result: Final output product bits M [t] where 0 ≤ t ≤ (2(n− 1) + αn);

1 The multiplicand input A is written into memristors M1,1 to M1,t s.t. A[t] is written into

M1,t;

2 Logic-1 is written into memristors M1,t+1 to M1,(n+αn);

3 The multiplier input B is written along the each BL starting from BL1 to BLn s.t. along

BLk, B[t] is written into memristor M(k+t+1),k;

4 for t = 1 to 2n+ αn do

5 At tth cycle, the output is generated at WLt+2 where Q0 is the final output bit, i.e.,

Qt+1
0 = M [t];

6 Rest of the output bits are carry bits to be written back to the memristors for future

execution s.t. Qt+1
k is used in cycle k + t+ 1;

connected to the WL1, and the other number B is repeatedly written on the n BLs of the

crossbar starting from BL1 to BLn with one row of upward shift. In the crossbar, the last

αn BLs are reserved for applying the carry bits produced in each cycle. In this context,

Algorithm 12 demonstrates the precise mapping of input bits and generated carry bits to

the corresponding memristor cells within the crossbar structure. During each iteration, one

final product bit is generated along with αn carry bits to be utilized for future iterations,

i.e., at tth cycle, the output is generated at OCU connected to WLt+2 where Qt
0 = M [t]

and the remaining (n + αn) bits are carry bits. The peripheral control circuit writes the

carry bits to the appropriate memristors connected to BLs reserved for the carry bits for

future iterations. The complete multiplication procedure takes (2n + αn) cycles. A block

diagram is shown in Figure 4.4 where multiplication is performed for two unsigned n-bit

binary numbers. Table 4.3 shows the required crossbar size, OCU size, and the number of

cycles required for executing the multiplication of binary numbers with different word-size.

4.3 Logical Operations

Logical operations such as NOT, AND, and OR can be implemented on a hybrid memristive

crossbar for enabling CIM. In the proposed method, AND and NOT operations would

require a single cycle whereas OR can be executed multiple cycles.
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Algorithm 12: Crossbar mapping for the memristive Crossbar based multiplication

of two n-bit unsigned numbers

Data: Two n-bit unsigned numbers

A = an−1 . . . a2a1a0 and

B = bn−1 . . . b2b1b0;

A crossbar of size (2n+ ⌊log2(n+ log2 n)⌋)× (n+ ⌊log2(n+ log2 n)⌋);
Result: Final output product bits M;

1 for i = 1 to n do

2 M1,i ← A[i− 1];

3 for j ← 1 to n do

4 Mj+i,i ← B[j − 1];

5 for k = (n+ 1) to (n+ ⌊log2(n+ log2 n)⌋) do
6 M1,j ← logic-1;

7 t = 1;

8 while t ≤ (2n+ ⌊log2(n+ log2 n)⌋) do
9 for k = 1 to (⌊log2(n+ log2 n)⌋) do

10 M(t+2),(n+k) ← ck−1[t− k];% feed carry bits from addition of partial products using

bit-parallel RCA

11 WL1 ← Vin;

12 M [t] = Qt
0;

13 for l = 1 to ⌊log2(n+ log2 n)⌋ do
14 cl−1[t] = Qt

l ;

15 t = t+ 1

(b0b1b2...bn)
t
1

(b0b1b2...bn)
t
2

(b0b1b2...bn)
t
3

(b0b1b2...bn)
t
n

at0 at1 at2 atn ct−1
0 ct−1

1 ct−1
k

ctk

ct1

ct0

Mt

(2n+ blog2(n+ log2 n)c)× (n+ blog2(n+ log2 n)c)
CROSSBAR

Figure 4.4: Block diagram of a multiplier for two n-bit numbers
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Table 4.3: Crossbar size and the number of cycles for multiplying two n-bit unsigned numbers

Word size Crossbar size #OCU pin #Cycle

n (2n+ αn)× (n+ αn) (n+ αn) (2n+ αn)− 1

2 3×5 3 5

4 6×10 6 10

8 11×19 11 19

16 20×36 20 36

32 37×69 37 69

64 70×134 70 134

128 135×263 135 263

4.3.1 NOT-operation

NOT is implemented on a 2 × 2 crossbar where one input bit a is used to set memristor

M11 and all other memristors are set to logic-1. When an input voltage is applied to WL1,

Q1 = ¬a is observed at the output of an OCU having two output pins. Using the same

procedure, word-level NOT-operation can be performed in one pass based on the available

crossbar size.

Example 4.3.1. The mechanism of word-level NOT-operation of on B = 1001 is illustrated

in Figure 4.5.

4.3.2 AND-operation

Two separate techniques are proposed for implementing multi-bit AND-operation on a

memristive hybrid crossbar. One is single-cycle execution where all bits of the inputs are

written in the crossbar and the final output is generated. However, it would need a large-

size crossbar. The other one is executed in multiple cycles but consumes requires crossbar

area.



66 4.3. LOGICAL OPERATIONS

OCU

OCU

OCU

OCU

Vin
B[0]=1 B[1]=0 B[2]=0 B[3]=1

Q1
0 = 0

Q2
0 = 1

Q3
0 = 1

Q4
0 = 0

Figure 4.5: Word-level NOT-operation on B = 1001

Single-cycle implementation

We consider an AND operation on n binary bits where 2i−1 ≤ n < 2i, and i ∈ N. A crossbar

of size 2× 2i is required to complete the operation in one cycle. Among all the memristors

connected to WL1, n input bits are written to the first n memristors and logic-1 is set to

the rest of the memristors. An OCU having i+ 1 output pins is connected to WL2 where

the MSB pin (Qi) provides the final output.

Example 4.3.2. Here two examples are present for executing AND operation in hybrid

memristive crossbar.

1. y1 = 1 ∧ 0 ∧ 1

2. y2 = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1

The output y1 is generated on a 2× 4 crossbar as shown in Figure 4.6(a) and the output y2

is generated on a 2× 8 crossbar as shown in Figure 4.6(b), respectively.
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Figure 4.6: Implementing bitwise AND-operation for (a) the word y1 = 101 with output Q2 = 0 and

(b) the word y2 = 1111 with output Q3 = 1



4.3. LOGICAL OPERATIONS 67

Multiple-cycle implementation

A multi-cycle AND module is proposed for optimizing the size of the memristive crossbar.

In order to execute AND operation on n binary bits, the idea is to represent n as a sum of

power of 2 and execute each of them in a single cycle. In the next cycle, the output bits of

the previous cycle are executed. This process is continued till the operation is completed.

Example 4.3.3. Consider AND-operation on 13-bits. Since 13 = 23+22+20, three distinct

AND operations are realised on a crossbar of size 2×7 (23−1+22−1+20). In the next cycle,

the three generated output bits are again inserted into an 2× 2 zone of the same crossbar to

generate the final output bit as shown in Figure 4.7.

Depending on the value of n, single- or multi-cycle implementation of AND-operation

would be convenient as described below. Case-1 (Case-2) will be suitable for single-(multi-)

cycle realization.

Case-1: 2i−1 < n ≤ 2i and 2i − n ≤ i where i ∈ N
Case-2: 2i−1 < n < 2i and 2i − n > i where i ∈ N
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Figure 4.7: Implementation of 13-bit wide AND-operation

4.3.3 OR-Operation

Multi-bit OR-operation can be performed by applying a sequence of NOT-, AND-, and

NOT-operation. In order to reduce complexity, this can be done following a sequence:

Binary-addition, NOT, AND, NOT. An example with 6 bits is illustrated in Figure 4.8.
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Figure 4.8: Implementation of k-bit OR-operation on a memristive crossbar

Table 4.4: Crossbar size and the number of cycles for implementing logical operations

#bits NOT gate AND gate OR gate

n Crossbar size #cycles Crossbar size #cycles Crossbar size #cycles

1 1×1 1 NA NA NA NA

2 3×4 1 1×1 1 2×2 4

3 4×6 1 2×2 1 3×4 4

4 5×8 1 2×2 1 4×6 4

8 9×16 1 4×4 1 5×8 4

13 14×26 1 4×7 2 5×8 4

15 16×30 1 4×8 2 5×8 4

24 25×48 1 3×12 2 6×10 4

31 32×62 1 5×16 2 6×10 4

63 64×126 1 6×32 3 7×12 4

4.4 Simulation Results and Discussion

4.4.1 Results

Table 4.4 provides the crossbar size and execution cycles required for performing three

logical operations: NOT, AND, and OR. Table 4.5 provides a comprehensive overview of

the utilized crossbar, including its crossbar-size and the number of memristor cells required

for writing the input bits, logic-1 bits, and logic-0 bits. Additionally, the table presents

the number of execution cycles needed for the proposed arithmetic and logic operation. In

Table 4.6, we compare the results of our method with previous work. For implementing



4.4. SIMULATION RESULTS AND DISCUSSION 69

Table 4.5: Crossbar size, number of memristors used and execution cycles for the proposed ALU

designs

Operation Step Crossbar size
#Memristors for writing

#cycles
input bits logic-1 logic-0

4-bit CSA inspired addition 2× 3 3 3 0 6

4-bit CLA

inspired addition

P (t) & G(t)

generation
5× 8 8 8 24 1

carry generation 7× 9 15 6 42 1

final addition 5× 12 12 12 36 1

4-bit subtraction
1’s complement 5× 8 4 12 24 1

addition 2× 3 3 3 0 6

4-bit multiplication 10× 6 34 2 24 1

4-bit NOT operation 5× 8 4 12 24 1

4-bit AND operation 2× 2 4 0 0 1

4-bit OR operation

addition 2× 4 4 4 0 1

NOT operation 4× 6 3 9 12 1

AND operation 2× 2 3 1 0 1

Table 4.6: Comparison of number of memristors and execution cycles for our designs vs. prior works

Operation (TGY+17),(YT18) (GS17a) (BS14) Proposed method

#mems #cycles #mems #cycles #mems #cycles #mems #cycles

Full Adder 15 13 N.A. N.A. N.A. 19 8 2

4-bit CSA 57 49 N.A. N.A. N.A. 44 24 4

4-bit CLA 109 101 N.A. N.A. N.A. 38 119 3

n-bit CSA 14n+ 1 12n+ 1 N.A. N.A. N.A. N.A. 6n n

n-bit CLA N.A. N.A. N.A. N.A. N.A. N.A. 7(n2 + 1) 3

4-bit Multiplier N.A. N.A. 29 116 N.A. 127 30 9

n-bit Multiplier N.A. N.A. 7n+ 1 2n2 + 21 N.A. N.A. (2n+ αn)× (αn + 1) 2n+ αn − 1
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an in-memory module, the size of the available crossbar is very important. To the best of

our knowledge, no previous attempt was made to scale the module size based on available

memory. In our design, the size of the module can be optimized depending on the task

schedule and available memory size.

We define the step current I∆ = Vin/2Mon, the amount of current passing through an

active path. When multiple active paths are present in the crossbar, the output current is

the integer multiple of I∆. The value of I∆ depends only on the input voltage vin, and the

ON-resistance Mon of the memristor. We perform resistive spice simulation using LTSpice

with V = 5V , Mon = 100Ω and Moff = 100kΩ. We measure the sum of current-values

passing through five parallel paths in a 5 × 5 crossbar, as shown in Figure 4.9, where

I∆ = 25mA. The four other values of current are consecutive integer multiples of I∆. As

Moff >> Mon, the current passing through the OFF-memristor (IOFF ) is negligible in

comparison to I∆, so the effect of IOFF is not considered while calculating I∆. Further,

we observed that the value of I∆ is nearly constant when Mon
Moff

is very small (< 10−3), but

becomes unstable as Mon
Moff

increases significantly.
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Figure 4.9: Simulation results with five discrete current values

4.4.2 Discussion

Although previously proposed methods used different implementation strategies with mem-

ristors, we present a comparative study of crossbar-size and execution time needed for var-

ious arithmetic and logical operations. The method proposed in (TGY+17) used MAGIC-
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based design to implement the operations whereas in (GS17a), the authors have imple-

mented IMPLY- and MAD-based design. IMPLY-based synthesis suffers from difficulties

in multi-step operations and interference. MAGIC-based design often leads to high latency

and area. A set of mMPU instructions, including FILL and MCMP instructions, to execute

various set operations (union, cartesian product, transitive closure, and power set genera-

tion) on the memristor crossbar is proposed in (KP23). The energy savings achieved through

in-memory set operations are significant. However, the delay of in-memory comparison and

other ALU operations is high. In our work, we perform all computations in analog domain

in order to speed up in execution, and the final output is converted to digital domain. For

the memristor count, we have also included those needed to save the final output of the

module. Our method reduces not only the memristor count but also the number of time

cycles significantly. Even though some operations discussed in Section 3.3.3 and 4.3.3 may

not perform as efficiently as others, we have included them for completeness of in-memory

computation.

4.5 Summary

Implementations of several ALU and logical modules have been proposed that are suitable

for in-memory computation on a hybrid-memristor crossbar where each input bit is mapped

to a memristor-state.. Computation is executed in the analog domain by generating output

current. A simple CMOS-based peripheral circuit OCU consisting of a current comparator

and an ADC is employed that checks the output current and maps it to the corresponding

output logic. While determining the output current the wire resistance is not considered

as the length of each current-conducting path is the same. The proposed methods are

fast as all computations are performed in the analog domain by leveraging the intrinsic

nature of the memristor. In the proposed method, the ratio always generates integer values

which are then converted into binary numbers by ADC. However, in practice, round-off

errors may arise and additional circuits may be required to mitigate those. The method is

capable of handling only unsigned integers. While executing operations with large inputs,

the generated outputs may sometime exceed the crossbar space. In order to tackle such

cases, the inputs are partitioned into smaller-size groups so as to fit into the crossbar size.

The number of execution cycles will thus increase accordingly. Also, memory overflow has

not been addressed in this work.
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5.1 Introduction

In recent times, memristors have demonstrated great potential in the development of mem-

ory and logic subsystems. Utilizing memristor arrays, a 2D-crossbar architecture offers a

practical solution for storing multi-valued memory states, capitalizing on the analog varia-

tion of current-induced resistance within these cells. The integration of CMOS components

with non-CMOS memristor cells expands their applicability to diverse and intricate system

designs. Nevertheless, it’s important to note that present-day resistive random access mem-

ory (RRAM) is susceptible to manufacturing defects and sensitive to operational modalities

due to its inherent structure. The high integration density of RRAM elements may induce

resistive shorts or opens like in static random access memory (SRAM) or dynamic random

access memory (DRAM). The behavior of RRAM elements in presence of such defects needs

robust testing to determine the correctness level of such a memory.Existing techniques for

testing memristor arrays are either ad-hoc in nature or suited for application-specific de-

signs. These techniques consumes huge time to test a large sized crossbar and very few of

them have shown concern for optimizing the test time.

In this chapter, we propose a network-based approach to analyze a 2D memristive cross-

bar and identify fault-sensitization paths. Specifically, our method optimizes test time for

full-size square and rectangular memristive crossbars using a path-based technique guided

by maximum matching in bipartite graphs. Through simulation results with LTspice, we

showcase the effectiveness and superiority of our approach compared to prior methods in

terms of test time and fault-coverage.

5.2 Preliminaries

5.2.1 Sneak-path

Since memristors are bi-directional devices, while accessing a particular memristor in a

crossbar architecture, a small amount of current may also flow through some un-selected

memristor cells. This current is known as sneak-current, and the path through which it

flows is called a sneak-path (see Figure 5.1). In an ideal functional mode the current flows

from the source line to the ground line passing through only the desired memristor cell at

the intersection between the activated WL and BL. Unfortunately in most of the practical

applications the sneak current flows through many sneak paths beside the desired one.

These paths act as an unknown parallel resistance to the desired cell resistance. Therefore,
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the actual output current differs from that of the desired one which causes errors in output

reading. The added resistance of the sneak paths also significantly narrows the noise margin

and reduces the maximum possible size of a memristor array. In the functional mode, the

activation of sneak-paths is undesirable and various techniques are used to mitigate the

sneak path current as listed below.

• Multistage reading

• Unfolded architecture

• Diode gating

• Transistor gating

• Complimentary memristors

• Using memristors nonlinearity

• AC sense

Among all the proposed solutions mentioned above for mitigating the sneak paths, the most

popular solution is to to add a diode or a transistor to each memory cell, producing a new

cell of one diode and one memristor (1D1M) or one transistor and one memristor (1T1M),

respectively. Although, Such a arrangement would eliminate sneak paths but this will ruin

the high memristor-memory density, since the gating transistor’s size is much larger than

that of the memristor and also increase delay of the signal. In the proposed work, an 1T1M

unfolded crossbar architecture is used for test optimization.

5.2.2 Fault model

We consider a memristive crossbar where each memristor element has two memristance

states. The general convention is that the high memristance state of a memristor is defined

as OFF state and denoted as logic-0, and the low memristance state of a memristor is

defined as ON state and denoted as logic-1, respectively. A fault said to be occurred when

the observed output differs from the expected output. Different types of fault may occur due

to hetero-structure fabrication process and parametric variations (KRKS13a) (GPM09a),

which can be broadly categorized into two classes as given below (BA13).

1. Self-fault: If a memristor Mi,j is targeted for sensitization and fault occur in the same

memristor element then the fault is called as self-fault.

2. Coupling-fault: If a memristor Mi,j is targeted for sensitization and fault occur in

some different memristor Mk,l for the effect of sensitization then the fault is called as

coupling-fault.
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Figure 5.1: Desired current (green line), sneak-current (red line) and total current (blue line) in a

4× 4 crossbar architecture when input voltage is applied across memristor M11.

Reading logic-0 and logic-1 from the memristors, and writing logic-0 and logic-1 into the

memristors are four basic operations denoted by {w0, w1} and {r0, r1}, respectively. These
Four standard memristor-access operations are required in order to detect all self-faults,

described below:

• Stuck-at-0 (SA0): The SA0 fault is said to occur when the output of a memristor is

always logic-0 irrespective of the voltage applied across it. One of the major causes

behind the SA0 fault is the deficiency of doping density in a memristor. When there

is an “open” circuit in any of the WLs, BLs, or at the crosspoint, SA0 faults may also

occur. In order to detect SA0 fault in a memristor, the memristor cell is sensitized

with logic-1 when the memristor state is set to logic-0. This fault is represented by

⟨1/0⟩ which denotes logic-1 is the required state while logic-0 is the actual output state.

• Stuck-at-1 (SA1): If SA1 occurs, the output of a memristor is permanently logic-

1 regardless of the voltage applied. It generally happen due to excessive doping

concentration in the memristor. In opposite to SA0 faults, an SA1 fault can also

occur when the WLs or BLs are shorted to Vdd. In order to detect SA1 fault in a

memristor, the memristor cell is sensitized with logic-0 when the memristor state is
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set to logic-1. This fault is represented by ⟨0/1⟩.
• Slow-write-1 (SW1): When a single voltage-pulse for performing write operation is

inadequate to change a memristor from logic-0 to logic-1 state, the fault in called SW1.

Insufficiency in doping concentration causes this kind fault in the memristor. In place

of single excitation, a sequence of excitation ({w0, w1, r1}) are required to detect

SW1 fault. In order to detect an SW1 fault, first two consecutive write operations of

logic-0 and logic-1 is performed, and then the memristor is sensitized with logic-1.

• Slow-write-0 (SW0): Similarly, in case of SW0 faults, a single voltage-pulse for per-

forming write operation is inadequate to change a memristor from logic-1 to logic-0

state. This transition is slow due to the excessive doping concentration in memristor

cell. In order to detect an SW0 fault, the sequence {w1, w0, r0} is required.
• Deep-0 (D0): An increase in the length or a decrease in the cross-section of a mem-

ristor results in D0 fault. This physical defect causes a shift in the upper (Roff )

resistance limits of the memristor by a constant value δ. In presence of D0 fault,

the new upper limit of the resiatance is Roff + δ. Therefore, a logic-1 write pulse,

determined for fault free memristor is unable to change state from OFF to ON. The

sequence {w0, w0, w1, r1} is applied to detect D0 fault.

• Deep-1 (D1): An decrease in the length or a increase in the cross-section of a mem-

ristor results in D1 fault. This physical defect causes a shift in the lower resistance

(Ron) limits of the memristor by a constant value δ. In presence of D1 fault, the new

upper limit of the resiatance is Ron + δ. Therefore, a logic-0 write pulse, determined

for fault free memristor is unable to change state from ON to OFF. The sequence

{w1, w1, w0, r0} is applied to detect D1 fault.

Note that the detection of hybrid faults (i.e., multiple types of faults occurring simul-

taneously) is very complex, as they may impact crossbar-functionality in different fashions.

The proposed method is capable of handling multiple faults of the same type only. The

path-selection techniques described in our work are invariant to the location of faults in the

crossbar.

5.3 Problem Formulation

We consider 1T1M crossbar architecture in order to conveniently sensitize either a single

or a set of memristors for testing. A memristor Mij is said to be accessed if a voltage

source is applied between word line WLi and bit line BLj . Therefore, when we access a
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specific memristor in an m × n crossbar, we get a corresponding memristor network com-

prising of all possible sneak-paths (hereafter referred to as sneak path network). Due to the

symmetric nature of the crossbar, the structure of all the mn sneak path networks gener-

ated from an m × n crossbar is invariable with respect to the selection of the memristor

only the position of the memristors differs from structure to structure. In Figure 5.2(a)

and 5.2(b), we have shown (only the memristors) a 4 × 4 1T1M crossbar and its corre-

sponding sneak path network while accessing memristor M11.
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Figure 5.2: (a) M11 is accessed in a 4× 4 crossbar (b) corresponding sneak path network.

Current is the key parameter for memristor-based crossbar testing. Current collects

important information while passing through the internal cells of the memristor-based cross-

bar. In the proposed architecture, we purposefully activate a few signal paths through the

memristive crossbar (hereafter referred to as sneak-paths) to facilitate testing. By control-

ling individual memristors of the unfolded crossbar and by using a special decoder, one can

select multiple rows and columns in order to activate a desired path through it. Single or

multiple sneak-paths have to be suitably selected out of the large number of possible paths

from the source line to the ground line so that the current passing through these serve as

an indicator of the presence of a fault, if any. The paths should be so chosen that Iideal, the
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nominal sneak current differs notably from Ifaulty in the presence of a fault. The values of

Iideal and Ifaulty are compared in order to detect a potential fault present in the crossbar.

In the sneak path network, corresponding to an n× n crossbar, the length lp of a selected

sneak-path is the number of memristors present in it. The length of all these paths lies

between 3 and 2n − 1, but in order to test a path the maximum and minimum allowable

path lengths (lp)max and (lp)min respectively, depend on the memristor parameters, fault

types, applied voltage, and the resolution of the current sense-amplifier.

5.3.1 Problem statement for the sneak-path network

In order to detect SA0 or SA1 faults, all the memristors on the selected path/paths are

sensitized with logic-1 (Mon) or logic-0 (Moff ), respectively. Let Ith and Isat be the mini-

mum and maximum current value of the current-sense amplifier. If k1 and k2 be the path

length for detecting SA0 or SA1 faults then Ith ≤ Vin
k1∗Mon

≤ Isat and Ith ≤ Vin
k2∗Moff

≤ Isat

where Vin is the input voltage. As Mon << Moff , k2 << k1, long single path is preferred

for SA0 testing while multiple short paths are preferred for SA1 testing. In our work, we

assume that (lp)max=(lp)min=lp then the problem statement for single path testing as well

as multiple paths testing is as given below.

Single path detection: Given a sneak path network and path-length lp, determine

the minimum number of paths from source to the ground line in the network such that the

length of each path is equal to lp, and these collectively cover all the edges.

Multiple paths detection: Given a sneak path network, path-length lp and an

integer k, determine the minimum number of path sets where each set consists of k parallel

paths from source to the ground line in the network such that the length of each path is equal

to lp, and this path sets collectively cover all the edges.

Finding a single path or multiple paths in a sneak path network is a difficult task. In

order to circumvent it, we have converted a sneak path network into an equivalent graph

and by utilizing well-known graph algorithms, we have identified the desired sneak-paths in

the network which are to be sensitized.

5.3.2 A graph-based formulation

Given a sneak path network shown in Figure 5.2(b), we construct a graph Gspn = (V,E)

where there is a vertex v for each of the BLs and the WLs, and an edge (vi, vj) in E for

each memristor connecting a WL to a BL in the network.
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Figure 5.3: (a) Sneak path network and (b) its corresponding graph Gspn.

The graph Gspn(V,E) contains a source vertex s and a destination vertex d represent-

ing the WL connected to the source voltage, vIN , and the BL connected to the ground,

respectively. Vertex sets containing all the vertices adjacent to s and d are named as L

and R, respectively, such that V = L ∪ R ∪ {s, d}. The Gspn(V,E) defined above is used

for our all future analysis. A sneak path network generated from a 4× 4 crossbar (shown

in Figure 5.2) and its corresponding graph Gspn(V,E) are shown in Figure 5.3(a) and Fig-

ure 5.3(b), respectively. therefore, the test-time reduction for a given memristor-based

crossbar array can be formulated as the path selection in the graph Gspn as follows:

Test Optimization by Single Path Selection (TOSPS): Given a path-length lp,

determine the minimum number of paths ν in the graph Gspn(V,E) from source vertex s

to destination vertex d such that the length of each path is equal to lp, and these paths

collectively cover all the edges in E.

Test Optimization by Multiple Paths Selection (TOMPS):Given a path-length

lp and an integer k, determine the minimum number ν of path sets in its graph Gspn, where

each path set contains k disjoint parallel paths from source vertex s to destination vertex d

such that the length of each path is equal to lp, and these ν path sets collectively cover all
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the edges in E.

5.4 Testing of Full Square Crossbars

5.4.1 Graph decomposition

In order to solve TOSPS and TOMPS, we first decompose Gspn(V,E) into three sub-graphs

as follows.
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Figure 5.4: Decomposition of Gspn(V,E) in Fig. 5.3(b): (a) Gbds(Vs, Es) (b) Gbdd(Vd, Ed) (c)

Gicb(Vi, Ei).

Boundary Directed Source Graph (Gbds(Vs, Es): This sub-graph contains the

source vertex s and all the vertices in set L and all the edges incident at vertex s. Gbds =

(Vs, Es) where Vs = {s} ∪ L and Es = {< s, li > | li ∈ L} (Figure 5.4(a)).

Boundary Directed Destination Graph (Gbdd(Vd, Ed)): The destination vertex d

and all the vertices in set R and all the edges incident at vertex d forms this sub-graph.

Gbdd = (Vd, Ed) where Vd = R ∪ {d} and Ed = {< rj , d > | rj ∈ R} (Figure 5.4(b)).

Intermediate Complete Bipartite Graph (Gicb(Vi, Ei)): All the vertices in set

L ∪ R along with the associated edges form this sub-graph. This graph is a complete

bipartite graph and most of the edges of Gspn(V,E) is contained by this graph. Gicb =
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(Vi, Ei) where Vi = L ∪R and Ei = {(li, rj)| li ∈ L, rj ∈ R} (Figure 5.4(c)).

The decomposition of the graph Gspn(V,E) is done in such a way that there is no

common edge among Gbds(Vs, Es), Gbdd(Vd, Ed) and Gicb(Vi, Ei) i.e. Es ∩ Ed ∩ Ei. In our

path construction algorithm, in order to select a path og length lp exactly one edge each

from Gbds and Gbdd is selected in the solution path. The rest of the (lp − 2) edges come

from Gicb. Therefore our path selection in Gspn is equivalence to find long edge-disjoint

path/paths in Gicb efficiently.

5.4.2 Square crossbar testing

The graph Gspn(V,E) for an n × n crossbar has |V | = 2n and |E| = n2 − 1; note

that the edge corresponding to the memristor across which the input voltage is applied, is

not included in the sneak path network and is absent in Gspn. Here we propose matching

based algorithms for selecting paths of length lp and based on the value of lp two cases arise

as given below.

Case Q1: lp ≥ n− 1

In a selected path of length lp, there are (lp − 2) edges from graph Gicb and one edge

each from Gbds and Gbdd. The longest path in Gspn has length lp = (2n− 1). If the length

of each selected path is 2n−1, then the number of paths required to cover all the edges is at

least ν = n2−1
2n−1 = ⌈n2 ⌉. However, no two edges of Gbds(Vs, Es) as well as of Gbdd(Vd, Ed) can

appear on the selected path. As |Es| = |Ed| = (n− 1), there must be at least (n− 1) paths

to cover all the edges of Gspn. Therefore, we restrict the length lp of a path to n − 1 and

aim to find n− 1 paths, each of length n− 1, in Gspn. Since Gicb is the complete bipartite

graph Kn−1,n−1, we have n− 1 perfect matchings and each matching has n− 1 edges.

In order to construct paths from matchings in Gicb, the pertinent question is whether

any set of distinct perfect matchings covering all the edges of Gicb are suitable for finding

the paths in Pn−1. In Figure 5.7 we demonstrate a negative answer to this question with an

example for K4,4 where a cycle is formed when the four perfect matchings are concatenated

according to Algorithm 13.

Finding valid matching sets using a Latin Square

A Latin square is an (n×n) matrix with elements from a set of n distinct symbols such that

each symbol appears exactly once in each row and in each column (KD15). Each entry is

written as a triple (r, c, s), where r is its row index, c its column index, and s is the symbol.
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Figure 5.5: (a) K3,3 Gicb and (b) a cover with three edge-disjoint perfect-matching (c) the three

paths in Gicb, and (b) three complete sneak-paths in Gsnp indicated by different colours

taking one edge from Gbds and Gbdd.

Let us illustrate how to form a Latin square with all the distinct perfect matchings of

a Kn,n. Consider G = K4,4 with the vertex set L = {a, b, c, d} and R = {1, 2, 3, 4}. We

represent four of its distinct perfect matchings by a 4 × 4 Latin square where each row is

labeled by a distinct vertex in L and each column represents a distinct perfect matching.

Therefore, in our representation for an entry (r, c, s), s is the vertex in R which is the mate

of the vertex in L associated with its rth row in the cth perfect matching. The four perfect

matchings need to be such that each vertex of R appears exactly once in a row and exactly

once in a column of the Latin square.

Here, a set of four matchings forms a distinct Latin square, but not all the Latin

squares can produce a valid path for TOSPS-Q. Our observation is that only when all the
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Figure 5.7: Four loops (not path) are formed while connecting the matchings obtained in Fig. 5.6(b).

elements in each row and column of a Latin square are in either lexicographic ascending

or descending order, then the set of perfect matchings obtained from the Latin square

constitute a valid path as shown in the Figure 5.8. Therefore, there exist at least n−1 valid

distinct Latin squares (corresponding to n − 1 circular shifts) each of which yields a valid

path for TOSPS-Q. Algorithm 13 describes the steps to select n− 1 edge disjoint paths by

leveraging the set of n− 1 matchings.

In Figure 5.5, we show three edge sets corresponding to three distinct perfect matchings

for Gicb which is K3,3; and the formation of the three edge-disjoint paths each of length

three. These complete s − d paths, each of length five, are obtained by including the two

appropriate boundary edges, one each from Gbds and Gbdd. Now, the pertinent question is

whether any set of distinct perfect matchings covering all the edges of Gicb are suitable for

finding the paths in Pn−1.

Case Q2: lp < n− 1

By incorporating this constraint, TOSPS-Q problem reduces to finding the minimum

number of paths of length lp in Gicb covering all the edges in Ei. In (MSB19), the authors
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Algorithm 13: Path finding using matching in Gicb

Data: The graph Gicb = Kn−1,n−1, with L = {1, 2, . . . (n− 1)} and
R = {n, (n+ 1, . . . (2n− 2)}

Result: Pn−1: a set of (n− 1) paths, each of length (n− 1)

1 Mcomplete = ∅; a list of lists to store n− 1 matchings, each of size n− 1;

2 for i← 0 to (n− 1) do

3 Mi = ϕ ;

4 Find a complete matching in Gicb using a Latin square with the entries in either

ascending or descending order, and store it in Mi;

5 Append Mi to the list Mcomplete;

6 Delete all edges in Mi from the graph Gicb

7 end

8 j = 1;

9 while j ≤ (n− 1) do

10 Pj = ϕ, to store the n− 1 edge of a selected path in Gicb;

11 vs = j, start vertex of a path;

12 for matching ← Mcomplete do

13 Append to Pj only the matched edge (vs, vt| vs, vt ∈ L ∪R) in matching ;

14 vs ← vt, store the other end vertex for next search;

15 Delete the edge (vs, vt) from all the matchings in Mcomplete;

16 end

17 Append the path Pj to Pn−1;

18 j = j + 1;

19 end
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Figure 5.8: Latin square with (a) naturally increasing order, (b) naturally decreasing order.

proposed a method where an Eulerian cycle is constructed from the graph Gicb (Kn−1,n−1),

and the paths are generated by decomposing the cycle into consecutive paths of length lp.

For any tour in the graph Kn−1,n−1 which covers each edge exactly once, each vertex

appears exactly n−1
2 times. However, such a tour may not guarantee that a sub-tour of

length lp will have no repetition of a vertex. In order to overcome this difficulty, we con-

struct a tour by concatenating the paths selected by Algorithm 13 with the help of a Latin

square (KD15). This construction guarantees that there is no repetition of any vertex for

any chosen sub-tour section of length lp < n− 1. While constructing the tour, we concate-

nate all the n − 1 paths sequentially as produced by Algorithm 13, i.e., the path Pn−1[0]

in Algorithm 13 is concatenated with the path Pn−1[1] followed by Pn−1[2] and so on as in

Algorithm 14.

In Algorithm 14, two consecutive paths are concatenated via two unused vertices not

present in those paths in order to ensure that no vertex repeats within the length n−1
2 in

the output cycle. In Lemma 5.4.1, we show that for n ≥ 6 there always exist two unused

vertices, one in L and the other in R, while augmenting these two consecutive paths. Let

Pn−1 be the set of n − 1 paths, each of length n − 1, produced by Algorithm 13. Let

V i
l , V

i+1
l ∈ L be the two sets of vertices of the paths Pn−1[i] and Pn−1[i + 1] respectively,

and V i
L = V i

l ∪ V i+1
l . Similarly, let V i

r , V
i+1
r ∈ R be the two sets of vertices of the paths

Pn−1[i] and Pn−1[i + 1] respectively, and V i
R = V i

r ∪ V i+1
r . Let the index sequence for

L = {1, 2, 3, . . . , n− 1} and for R = {n, n+ 1, n+ 2, . . . , 2n− 2}.

Lemma 5.4.1. For a given bipartite graph Gicb (Kn−1,n−1) where n ≥ 6, and its paths



86 5.4. TESTING OF FULL SQUARE CROSSBARS

Algorithm 14: Concatenation of paths obtained by Algorithm 13 in the graph

Gicb(K(n−1),(n−1))

Data: Pn−1, set of n− 1 paths generated by Algorithm 13

Result: Cycle of length (n− 1)2 + 3(n− 2) and (n− 1)2 + (n− 2) for odd and even

n− 1, respectively

1 i = 0;

2 while i ≤ n− 1 do

3 The vertices for paths Pn−1[i] and Pn−1[i+ 1]

4 V i = V i
l + V i

r , V
i+1 = V i+1

l + V i+1
r

5 V i
l , V

i+1
l ⊂ L, V r

l , V
r+1
l ⊂ R;

6 Find vl ∈ L \ V i
l ∪ V i+1

l and vr ∈ L \ V i
r ∪ V i+1

r ;

7 if n− 1 is odd then

8 Concatenate the path Pn−1[i+ 1] to Pn−1[i] via vertices vl and vr;

9 else

10 Join paths Pn−1[i] and Pn−1[i+ 1] via vertices vr;

11 end

12 i= i+ 1 ;

13 end

Pn−1[i] and Pn−1[i + 1], 0 ≤ i ≤ n − 1, found by Algorithm 13 in consecutive iterations,

there exists two vertices vil ∈ L \ V i
L and vir ∈ R \ V i

R.

Proof. In Algorithm 13, Let the index sequence for Pn−1[i]

V i
l = {i, (i− 1), . . . , 2, 1, (n− 1), (n− 2), . . . , (n− k)} ⊂ L;

V i
r = {(n+ i− 1), (n+ i), . . . , (2n− 2), n, . . . , (n+ l)} ⊂ R;

where k, l ∈ N

and for Pn−1[i+ 1]

V i+1
l = {i+ 1, i, . . . , 2, 1, (n− 1), (n− 2), . . . , (n− k − 1)} ⊂ L

V i+1
r = {(n+ i), (n+ i+ 1), . . . , (2n− 2), n, . . . , (n+ l + 1)} ⊂ R

The sets of vertices in L and R common to Pn−1[i] and Pn−1[i+ 1] are

V i,i+1
l = V i

l ∩ V i+1
l = {i, (i− 1), . . . , 2, 1, (n− 1), (n− 2), . . . , (n− k − 1)}

V i,i+1
r = V i

r ∩ V i+1
r = {(n+ i), (n+ i+ 1), . . . , (2n− 2), n, . . . , (n+ l)}

It follows that

VL = V i,i+1
l ∪ {i+ 1} ∪ {n− k}



5.5. TESTING OF FULL RECTANGULAR CROSSBARS 87

VR = V i,i+1
r ∪ {n+ i− 1} ∪ {n+ l + 1}

Since |V i
l | = |V

i+1
l | = ⌊n−1

2 ⌋+ 1; |V i
r | = |V i+1

r | = ⌈n−1
2 ⌉

therefore, |VL| = |V i,i+1
l |+ 2 = ⌊n−1

2 ⌋+ 2;

|VR| = |V i,i+1
r |+ 2 = ⌈n−1

2 ⌉+ 1

The number of unused vertices in Pn−1[i] and Pn−1[i+1] are, |L|−|VL| = (n−1)−(⌊n−1
2 ⌋+

2) = ⌈n−1
2 ⌉ − 2 > 0

|R| − |VR| = (n− 1)− (⌈n−1
2 ⌉+ 1) = ⌊n−1

2 ⌋ − 1 > 0.

5.4.3 Test Optimization by Multiple Paths Selection (TOMPS-Q)

Here, we select multiple paths from source vertex s to destination vertex d in Gspn, and

test them simultaneously. Therefore, our problem reduces to that of finding a maximum

number of vertex-disjoint paths each having one edge in Gicb. This is equivalent to finding a

set of n− 1 perfect matchings each of size n− 1 in Gicb (Kn−1,n−1). All the matched edges

in each perfect matching can be tested simultaneously. For each perfect matching in Gicb,

the matched edges are augmented to one edges each from Gbds and Gbdd, respectively, to

get n − 1 parallel paths, each of length three in Gspn. For n − 1 edge disjoint matchings,

the total testing time is equal to n− 1. Figure 5.9 illustrates four matchings that covers all

edges of the graph Gicb = K4,4.

5.5 Testing of Full Rectangular Crossbars

Let Gspn(V,E) be the graph corresponding to an m× n memristive crossbar where m > n,

|V | = m+n and |E| = mn− 1. For the simplicity of the analysis, based on the values of m

and n, the crossbars are split into two categories and the testing algorithms are designed

accordingly.

Case-R1: ⌈m−1
2 ⌉ ≤ (n− 1) ≤ (m− 1)

Gicb(Vi, Ei) = Km−1,n−1 is the intermediate bipartite graph where |L| = m− 1, |R| =
n − 1 and |Ei| = (m − 1) ∗ (n − 1). In this method the complete path selection is done in

two discrete steps. In the first step, |L| − |R| = m− n dummy vertices is augmented to the

vetex set R and also augment (m−1)∗ (m−n) dummy edges to convert Gicb into the graph

G′
icb(V

′
i , E

′
i) = Km−1,m−1. Now we apply the same heuristic used for square crossbar and

select m−1 paths each of length m−1 including m−n dummy vertices and (m−1)∗(m−n)
dummy edges as given in Algorithm 15.
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Figure 5.9: (a) K4,4 Gicb and a cover with four edge-disjoint perfect-matching in Gicb, and (b) four

complete sneak-paths in Gsnp indicated by different colours taking all edges from Gbds

and Gbdd.

In the final step, asm−n dummy vertices, as well as (m−1)∗(m−n) dummy edges, are

present in the solution paths, for each path in the selected path set all the dummy vertices

(if any) along with the dummy edges (if any) are deleted. Then the disconnected path

sections ( created due to deletion of vertices and edges) are stitched together by utilizing

real vertices and real edges not present in that path as described in Algorithm 16. After

the deletion of all the dummy vertices and all the dummy edges from the selected paths the

length of all the paths or a section, the path is reduced but the overall counting remains

the same.

Therefore, for a rectangular m × n crossbar, Algorithms 15&16 provide m − 1 paths

of various length covering all the edges. Figure 5.10 describes the selection of five paths

including dummy vertices and dummy edges as well as the deletion of dummy vertices and

edges and the stitching of path sections for a 5× 3 rectangular crossbar.

Now, in Algorithm 16, our argument is that after the deletion of vertices if a selected

path is decomposed into k sub-paths then there must be k − 1 real vertices not present

in that path which are to be used to join these k sub-paths into a single path of length

lp ≤ (m − 1). In Lemma 5.5.1, we ensure that there always be an unused real vertex for
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Algorithm 15: Selection of m− 1 paths including the dummy vertices and edges

Data: Gicb corresponding to an m× n memristive crossbar

Result: P ′
m−1: Set of m− 1 paths each of length m− 1 including dummy edges

1 Vm = m− 1: Vertex set containing m− 1 vertices;

2 Vn = n− 1: Vertex set containing n− 1 vertices;

3 Add m− n dummy vertices to the set Vn;

4 Add (m− 1) ∗ (m− n) dummy edges to convert Gicb into a complete bipartite graph

(Km−1,m−1);

5 Apply Algorithm 13 to find Pm−1

Algorithm 16: Removal of dummy vertices and edges from the selected path and

stitching of disjoint path sections.

Data: P ′
m−1 solution paths including dummy edges.

Result: Pm−1 solution paths containing real vertices only

1 Vr: Set containing (m− 1)(n− 1) real vertices;

2 Vd: Set containing m− n dummy vertices;

3 for path, P ← P ′
m−1 do

4 Vp = V r
p ∪ V d

p |V r
p ⊂ Vr, V

d
p ⊂ Vd: Set of vertices in path for vertex, v ← Vp do

5 if v ∈ Vd then

6 Delete the two edges incident on v

7 else

8 pass;

9 end

10 end

11 Remove all the isolated vertices;

12 Vleft = Vr \ V r
p ;

13 Stitch the disconnected path sections using v ∈ Vleft and corresponding edges;

14 Append the path to Pm−1;

15 end

16 Report Pm−1 containing real vertices and real edges only;
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Figure 5.10: (a) An 5 × 3 crossbar (b) corresponding Gspn by adding two dummy vertices and 10

dummy edges (c) five selected paths including dummy vertices and edges (d) five paths

of various length containing real edges only.

every single or multiple consecutive dummy vertices.

Lemma 5.5.1. For each path in the selected paths set, if k dummy vertices are present on

that path then there exist k real vertices not present on that path.

Proof. The paths are selected from the graph Km−1,m−1 by Algorithm 15. In each selected

path there are m vertices (m− 1 edges).

Let Vp = V L
p ∪ V R

p = |m| be the set of vertices present in a selected path p such that

V L
p ∈ L, V R

p ∈ R where |V L
p | = ⌊m−1

2 ⌋+ 1 and V R
p | = ⌈m−1

2 ⌉, respectively. Let also assume

that V R
p = V R

p (real) ∪ V R
p (dummy) where V R

p (real) and V R
p (dummy) be the set of real

and dummy vertices, respectively. If |V R
p (dummy)| = k (0 ≤ k < ⌊m−1

2 ⌋) dummy vertices

are used in the selected path p then number of real vertices in p belongs to R must be
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|V R
p (real)| = ⌈m−1

2 ⌉− k. Therefore there are at least ⌈m−1
2 ⌉− (⌈m−1

2 ⌉− k) = k unused real

vertices in p.

Case-RII: (n− 1) < ⌈m−1
2 ⌉

Here, the number of dummy vertices required in order to convertKm−1,n−1 toKm−1,m−1

being high, Lemma 5.5.1 does hold true. For testing these type of crossbars, each time we

select n− 1 vertices (un-selected) out of m− 1 vertices from set L and all the n− 1 vertices

from set R to construct an Kn−1,n−1 and apply the Algorithm 13 to find n− 1 paths each

of length n − 1. This process is repetitively done until all vertices in set L are covered.

Therefore, in order to test the complete graph Km−1,n−1, total number of selected path is

⌈m−1
n−1 ⌉ × (n − 1). While comparing the number of selected paths for testing a rectangular

crossbar we find that in this case excess number of paths is (m−1)−(⌈m−1
n−1 ⌉×(n−1)) = n−2.

Figure 5.11 demonstrates path selection in the graph Gicb.

5.5.1 Test Optimization by Multiple Paths Selection (TOMPS-R)
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Figure 5.11: Illustrating path selection method on Gicb: (a) (L ∪ R,E) = K8,3 where L =

{v1, v2, ..., v8}, R = {va, vb, vc}, by decomposing into the three subgraphs (each being a

K3,3) namely, (b) G1 = (L1 ∪R,E1), (c) G2 = (L2 ∪R,E2) and (d) G3 = (L3 ∪R,E3),

where L1 = {v1, v2, v3}, L2 = {v4, v5, v6}, L3 = {v6, v7, v8} and L = L1 ∪ L2 ∪ L3.

Testing of multiple parallel paths together in an m × n crossbar is done in the same
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way as in for square one in Section 5.4. Since here m > n,each time maximum n−1 number

of vertex disjoint parallel paths of length three is activated from s to d in Gspn. Therefore,

from the Gicb, each time we construct an Kmi,n−1 such that V L
m(i) ⊂ V L

m−1 where V L
m(i) is

the set of vertices selected for ith iteration and |V L
m(i)| = n−1. For each Kmi,n−1, there are

n− 1 perfect matching which collectively cover all the edges in Kmi,n−1. Therefore testing

time is equal to n− 1. Now, as there are ⌈m−1
n−1 ⌉ subgraphs to cover all the edges, the total

testing time is proportional to ⌈m−1
n−1 ⌉ · (n− 1).

5.6 Evaluation of the proposed methods

Table 5.1: Time to test different types of faults, depending on lp for a complete square crossbar.

[
lp = Path Length, depends on memristor parameters,

fault types, applied voltage and current sense amplifier
]

α = (n− 1), γ = ⌈ (n−1)2+3(n−2)
lp

⌉, δ = ⌈ (n−1)2+(n−2)
lp

⌉

Fault

SPS

MPS
lp ≥ n− 1

lp < n− 1

n is odd n is even

SA0 α ∗ (tw1 + tr1) γ ∗ (tw1 + tr1) δ ∗ (tw1 + tr1) α ∗ (tw1 + tr1)

SA1 α ∗ (tw0 + tr0) γ ∗ (tw0 + tr0) δ ∗ (tw0 + tr0) α ∗ (tw0 + tr0)

D0 α ∗ (2tw0 + tw1 + tr1) γ ∗ (2tw0 + tw1 + tr1) δ ∗ (2tw0 + tw1 + tr1) α ∗ (2tw0 + tw1 + tr1)

D1 α ∗ (2tw1 + tw0 + tr0) γ ∗ (2tw1 + tw0 + tr0) δ ∗ (2tw1 + tw0 + tr0) α ∗ (2tw1 + tw0 + tr0)

SW0 α ∗ (tw1 + tw0 + tr0) γ ∗ (tw1 + tw0 + tr0) δ ∗ (tw1 + tw0 + tr0) α ∗ (tw1 + tw0 + tr0)

SW1 α ∗ (tw0 + tw1 + tr1) γ ∗ (tw0 + tw1 + tr1) δ ∗ (tw0 + tw1 + tr1) α ∗ (tw0 + tw1 + tr1)

Reading logic-0 and logic-1 from the memristors and writing logic-0 and logic-1 into the

memristors are two basic operations for memristor testing. We deploy these four standard

memristor-access operations as mentioned below (BA00):

• {w0, w1} ⇒ Writing logic-0 and logic-1 into a memristor, respectively.

• {r0, r1} ⇒ Reading logic-0 and logic-1 from a memristor, respectively.

We apply appropriate combinations of four access-modes sequentially in order to test all

faults considered in the fault model. For each selection, we are only considering one type of

fault and for a particular selected path, fault detection is performed for each type of fault

in the fault model one by one. Sensitization of a particular sneak-path allows concurrent

write of logic-0 and logic-1 in all the memristors present on the selected path. Consequently,
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this technique leads to a reduction of test-time as demonstrated below.

Stuck-at-0 (SA0): A SA0 fault is detected by applying the sequence {w1, r1}. In the

first step, logic-1 is written concurrently into all the memristors of the selected path. Then

read the path by applying a predetermined voltage source across the path with expected

logic-1 in all the memristors in the path. SA0 fault is detected by sensing the difference

between expected current and actual current in the path. When lp ≥ n − 1 in an n × n

crossbar, n− 1 tests are sufficient for writing {w1} and for reading {r1} whereas for lp ≤ n,

test time will be ⌈ (n−1)(n−1)
lp

⌉ and ⌈ (n−1)(n−2)
lp

⌉+
⌈2(n−1)

lp

⌉
for even and odd n, respectively.

As all the memristors in the path are set to logic-1, the equivalence memristance of the path

is very low therefore current value is high. So single path sensitization is preferable for this

this fault testing.

Stuck-at-1 (SA1): The sequence {w0, r0} detects a SA1 fault. Here, logic-0 is written

into all the memristors in the path, and then a read voltage is applied with expected logic-0

in all the memristor in the path. SA1 fault is sensed from the difference in the expected,

and actual current value. In this case, as all the memristors of the selected path are set

to logic-0, the equivalence memristance of the path is very high and subsequently, current

value is low. Therefore multiple parallel path sensitization is more effective for detecting

these faults. A total of (n− 1) tests cover all such faults in the entire n× n crossbar.

Deep-0 (D0): The sequence {w0, w0, w1, r1} is applied to test deep-zero faults. In

order to take the memristor into Deep-0 state two consecutive w0 pulses are applied. The

next pulses are the same as SA0 detection. Due to the application of three consecutive

write pulses, write-time is three-time more than that of read-time.

Deep-1 (D1): For testing D1, the following sequence {w1, w1, w0, r0} is applied. In

order to take the memristor into Deep-1 state two consecutive w1 pulses are applied. The

next pulses are same as SA1 detection. Here also the write-time is three time more than

read-time.

Slow-write-0 (SW0): The following sequence is applied to test a SW0 fault: {w1, w0, r0}.
In this case, write-time is two times larger than read-time.

Slow-write-1 (SW1): Applied sequence is {w0, w1, r1} with write-time two times

larger than read-time.

Due to the concurrent read and write operation on all the memristors in the selected

path, test time is proportional to the number of selected paths in the crossbar. Let, the

write time and read time for logic-0 and logic-1 of the selected path (irrespective of its

length) is defined as below.
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Table 5.2: Time to test for various types of faults depending on lp in a rectangular crossbar.

[
lp = Path Length, depends on memristor parameters,

fault types, applied voltage and current sense amplifier
]

α = (n− 1), σ = (m− 1), ϕ = ⌈ (m−1)
n−1 ⌉

Fault
SPS

MPS
n− 1 ≥ m−1

2 n− 1 < m−1
2

SA0 σ ∗ (tw1 + tr1) ϕ ∗ α ∗ (tw1 + tr1) ϕ ∗ α ∗ (tw1 + tr1)

SA1 σ ∗ (tw0 + tr0) ϕ ∗ α ∗ (tw0 + tr0) ϕ ∗ α ∗ (tw0 + tr0)

D0 σ ∗ (2tw0 + tw1 + tr1) ϕ ∗ α ∗ (2tw0 + tw1 + tr1) ϕ ∗ α ∗ (2tw0 + tw1 + tr1)

D1 σ ∗ (2tw1 + tw0 + tr0) ϕ ∗ α ∗ (2tw1 + tw0 + tr0) ϕ ∗ α ∗ (2tw1 + tw0 + tr0)

SW0 σ ∗ (tw1 + tw0 + tr0) ϕ ∗ α ∗ (tw1 + tw0 + tr0) ϕ ∗ α ∗ (tw1 + tw0 + tr0)

SW1 σ ∗ (tw0 + tw1 + tr1) ϕ ∗ α ∗ (tw0 + tw1 + tr1) ϕ ∗ α ∗ (tw0 + tw1 + tr1)

• tw0, tw1: Time required for writing logic-0 and logic-1, respectively, into all the mem-

ristors of a selected path.

• tr0, tr1: Time required for reading logic-0 and logic-1, respectively, from all the mem-

ristors of a selected path.

While calculating test time for a particular fault, we multiply the number of paths

with the number of reading time and write time required to detect the fault and add them

together to get the total testing time for that fault. In Table 5.1 and Table 5.2, total testing

time is calculated for different approach for a square complete crossbar of size n× n and a

rectangular crossbar of size m× n where m > n, respectively.

In order to compare our results with the previously published works, we assume tw0 =

tw1 = tr0 = tr1 = 1 and represent the test time in terms of selected paths only. We also

assume that there is no constraint on the length (lp) of the selected path and hence for

comparison we have taken the results for the square complete crossbar with path length

lp ≥ (n − 1). We find that in all earlier work (BA00), (HH11), (KRKS13a), (SZZM18a)

test time varies quadratically with n. On the other hand, in the proposed scheme, the total

test-time (including both read- and write-time) grows linearly with n as shown in Table 5.3.

In order to have a visual impression, in Figure 5.12, test time by our proposed method

for detecting SA0 fault for different sizes of the memristive crossbar is compared with

the proposed works in (BA00) and (KRKS13b; KRKS13a), respectively. The difference in
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Table 5.3: Comparison of test time between TOSPS and earlier methods; improvement

over (KRKS13a).

[NT : Faults not covered by the test technique.]

Fault

March Algo.

(BA00)
(HH11)

March MoM

(KRKS13a) TOSPS

% Improvement
(MarchMoM)−(TOSPS)

March−MoM × 100

8× 8crossbar 64× 64crossbar

SA0 2n2 2n2 n2 + n 2(n− 1) 80.55 96.97

SA1 2n2 2n2 n2 + n2

15 2(n− 1) 80.55 97.11

D0 NT NT 3n2 + n2

5 4(n− 1) 86.32 98.03

D1 NT NT 3n2 + n2

5 4(n− 1) 86.32 98.03

SW0 NT 4n2 2n2 + n2

5 3(n− 1) 85.08 97.90

SW0 NT 4n2 2n2 + n2

5 3(n− 1) 85.08 97.90

testing time being extremely large it is inconvenient to plot on a linear scale. As an example,

difference in test time for the crossbar of size 32×32 between the work in (KRKS13a) and our

proposed method is 1056−62 = 994. For the sake of compactness and better comprehension,

the test time plot given in Figure 18 is in log scale.

5.6.1 Simulation results

Simulation is performed in LTspice XVII on a 4-core 3GHz Intel Xeon processor with 32GB

RAM in UBUNTU 18.04 LTS Operating System using the memristor model as given in

(KFKW13) with the following memristor parameters: Roff = 200kΩ, Ron = 100Ω, Rinit

= 120kΩ, D = 10N, p = 2, Ith = 0.120µA (minimum change in output current to detect

a fault). The parameters used in the plot denote the following currents through sensitized

sneak-path.

• ISk(m,n): Read current value for single path selection in m×m crossbar in presence

of n SAk faults where m,n ∈ N and k ∈ {0, 1}.
• IMk(m,n): Read current value for multiple paths selection in m × m crossbar in

presence of n SAk faulty paths where m,n ∈ N and k ∈ {0, 1}.

SA0 Detection : In order to test SA0 faults, memristors are sensitized with logic-1.

Therefore, for single path selection, the difference in overall impedance between the faulty

and fault free path is very large and so is it in the values of the peak currents. The read

current IS0(8, 0) of 5.549mA and IS0(16, 0) of 3.123mA is 100× greater than IS0(8, 1) of
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Figure 5.12: Comparison of time to test SA0 faults for different crossbar sizes.

0.0496mA) and IS0(16, 1) of 0.0492mA for full 8 × 8 and 16 × 16, respectively. So, the

current difference is easily detectable.

Figure 5.17 depicts simulation results for identifying the number of SA0 faults present

in single path selection mode, or the number of faulty paths present in multiple paths

selection modes for full 8× 8 and 16× 16 crossbar, respectively.

The difference in the peak currents between all pairs of SA0 faults for single path

selection mode is shown Figure 3 in Appendix B where the minimum value is well above

the Ith. Hence, the number of faults present in a selected path is precisely identifiable.

SA1 Detection : Figure 5.22 describes the detection of SA1 faults present in 8 × 8

and 16 × 16 crossbar both in single as well as multiple selection mode. While detecting

SA1 faults, memristors are sensitized with logic-0. So the initial impedance is very high.

As the number of faults increases the overall impedance decreases and hence the current

increases. The simulation results suggest that the number of faults present in a selected path
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or the number of faulty paths for multiple selections is easily identifiable as the difference

in reading current for all the cases are well above the threshold current value Ith as shown

in Figure 5.23 and Figure 5.24.

5.7 Concluding Remarks

We have addressed the problem of fault detection in a full 2D square and rectangular

memristor-array as well as in an incomplete memristor-array with irregular structure. Var-

ious fault models such as multiple stuck-at-0/1, deep-0/1, and slow-write-0/1 faults are

considered. A formulation based on a graph-theoretic representation of the sneak-path net-

work for a given memristor-array is presented, and test generation is then abstracted as

an optimal path-covering problem subject to certain constraints on path length and dif-

ferentiable current sensing. For selecting paths in a square and rectangular shaped full

crossbar, the proposed method relies on finding matching in a bipartite graph. All possible

matchings being not eligible for path selection, a Latin square based method is next pro-

posed for determining optimal test paths. Although for multiple memristor selection (i.e.

multiple test point insertions) fewer paths may suffice, our method provides the optimum

number for a single memristor selection (single test point insertion). Simulation results are

presented to demonstrate the efficacy of the method. During simulation, the resistance of

wires (i.e., WLs and BLs) are ignored as the differentiable current is being measured. In

future, one may study test optimization for multiple memristor selection as well as how

it can be used for the localization of memristor faults. Investigation on fault analysis in

multi-valued memristor logic is also left as an open problem.
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Figure 5.13: Single path for 8*8 Figure 5.14: Multiple paths for 8*8

Figure 5.15: Single path for 16*16 Figure 5.16: Multiple paths for 16*16

Figure 5.17: Read current in the presence of different number of SA0 faults for single and multiple

paths selection in full 8×8 and 16×16 crossbar; IS0(8, 0) = 5.549mA and IS0(16, 0) =

3.123mA.
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Figure 5.18: Single path for 8*8 Figure 5.19: Multiple paths for 8*8

Figure 5.20: Single path for 16*16 Figure 5.21: Multiple paths for 16*16

Figure 5.22: Read current in the presence of different number of SA1 faults for single and multiple

paths selection in full 8× 8 and 16× 16 crossbar.
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Figure 5.23: Difference in read current for single path selection in 16 × 16 crossbar in presence of

SA0 faults.

Figure 5.24: Difference in read current for single path selection in 16 × 16 crossbar in presence of

SA1 faults.
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6.1 Introduction

In Chapter 5, we have discussed testing methods for square or a rectangular full memristive

crossbar i.e., there is a memristor element at each (WL, BL) cross point. However, mem-

ristive crossbar-based hardware designs have been proposed where a substantial number of

memristors are missing in the crossbar, and the location(s) of these missing memristor(s)

are distributed randomly in the crossbar.

101
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We observe that the graph-based path-covering techniques proposed in Chapter 5

reduces testing time efficiently for square or a rectangular full crossbar. But, this techniques

may not always be applicable for crossbar with irregular structure or for an incomplete

crossbar. In order to cover all types of crossbar (including incomplete), in this chapter

we have proposed an Mixed Integer Linear Program (MILP) formulation for optimal path

covering that can uniformly handle both full and incomplete crossbars.

6.2 Motivation

An incomplete crossbar of size 7 × 4 is shown in Figure 6(a). Figure 6(b) is the graph

Gspn representation of the crossbar as described in Chapter 5.3.2. The graph Gspn can

be decomposed into three sub graph as shown in Figure 6.2. The intermediate bipartite

graph Gicb corresponding to such incomplete crossbar is incomplete bipartite as shown in

Figure 6.2(b). Note that the methods for path-selection discussed in Chapter 5 utilize the

graph theoretic properties of complete bipartite graph, and hence cannot be readily used for

incomplete bipartite graphs. Unfortunately, no efficient method is yet known for testing such

a general-purpose crossbar architecture. Therefore, in this Chapter, we propose a Mixed

Integer Linear Program (MILP) to solve the general version of the problem. Although ILP

takes longer than our method presented in this section to select the paths for sneak path

testing, it is applicable for all types of crossbar architectures.

BL3BL2BL1 BL4 BL5 BL6 BL7

WL4

WL3

WL2

WL1

Vin

GND

BL2

BL3

BL4

BL5

BL6

BL7

WL2

WL3

WL4

BL1WL1

(a) (b)

Figure 6.1: (a) An incomplete crossbar of dimension 7× 4 with 16 memristor (b) the corresponding

graph Gspn when input voltage is applied between WL1 and BL1.
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Figure 6.2: Decomposition of Gspn(V,E) in Fig. 6.1(b): (a) Gbds (b) Gicb (c) Gbdd.

6.3 ILP formulation

Finding the minimum number of paths between two given vertices in an un-directed con-

nected graph in order to cover all the edges in the graph is not possible in polynomial time

as it necessitates of finding longest path between the given two vertices which is NP-hard

problem. Here, in this chapter, we develop a mixed Integer Linear Program (ILP) to select

minimum number of paths between two given vertices of a graph Gspn to cover all the edges

of the graph where Gspn is the graph corresponds to any given crossbar architecture.

Here in Figure 6.3(a) , we have taken an undirected connected graph Gspn = (V,E)

with vertex s and d as the source and destination vertex of the graph, respectively. Now,

the goal is to find a minimum number of paths from a source vertex s to a destination

vertex d covering all the edges of Gspn = (V,E). All the neighbours vertices of vertex s and

d are grouped into vertex sets L and R, respectively s.t. V = {s} ∪L∪R ∪ {d}. We define

another subgraph Gicb = (Vi, Ei) such that Vi = L ∪R and Ei =
∑

∀j∈L, ∀k∈R ejk.

6.3.1 Path construction

In order to select a path of length lp in a graph Gspn(V,E), lp−1 vertices need to be selected.

If an intermediate (other than vertex s and d) vertex of degree k is selected, exactly two
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Figure 6.3: In the path construction model, (a) The graph G(V,E) containing vertices s, d and

vertex set L and R. (b) Construction of a path from s to d in G having maximum

length.

edges incident on that vertex is selected. Since the graph is undirected, the total possibility

of selection is
(
k
2

)
. Instead of modeling these directions directly, we model how the path

passes through the surrounding vertices. Suppose all edges can be covered by no more than

np paths in the test set, where np is a given constant. We assign binary (0-1) variables elij
and vli to the edges and vertices of the graph, respectively. The variable elij=1 if the edge

e(i, j) ∈ E is present in the lth selected path and elij=0 otherwise. Similarly, vli=1 only if

the vertex vi ∈ V is present in the lth selected path, otherwise set to 0.

In order to construct the lth path from vertex s to d, exactly one edge must be selected

from the edges incident in the source vertex s and destination vertex d. These constraints

are written as,

∑
∀i∈L

elsi = 1;∑
∀i∈R

elid = 1;
(6.1)

For the intermediate vertices i.e. ∀vi ∈ L∪R if a vertex is selected in the lth path, then

exactly two edges incident on that vertex must be selected. These constraints are written

as
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∑
∀i∈L, ∀j∈R∪{s}

elij = 2 ∗ vli;∑
∀i∈R, ∀j∈L∪{d}

elij = 2 ∗ vli;
(6.2)

This constraint is formulated in order to ensure the coverage of all the edges of the

graph G(V,E) at least once. If the solution provided by the ILP contains np paths, then each

edge of G(V,E) lies on any of the np paths at least once. These constraints are formulated

as

np∑
l=1

elij ≥ 1, ∀ eij ∈ E. (6.3)

Equations 6.1-6.3 guarantee the construction of a path from the source vertex s to

destination vertex d in a graph Gspn, and coverage of all the edges. But for a selected path,

there might arise a close loop of even length (hereafter refer as path-loop) in the subgraph

Gicb. For example, the above constraint does not prevent the disjoint loop as shown in

Figure 6.4 from appearing in the selected path. All the edges and vertices on the loop meet

the constraints 6.1 and 6.2, and this loop gives a false counting of edge coverage in path

selection.

6.3.2 Disjoint path-loop removal

The constraints given by Equations 6.1-6.3 do not prevent the path-loop to arise in the

solution path. As the loop is not connected to the source vertex s and destination vertex d,

during testing of the path, the current does not flow through the memristor corresponding

to the edges of the loop. Hence, it provides a false edge count during path selection.

To prevent the occurrence of the loop in the selected path, we define a current flow

integer variable fij for each edge variable which forces the current to flow through each

selected edge in the path. It must be noted that the current will flow only through the edge

if the edge is present in the selected path, i.e. fij ̸= 0 only when eij = 1, else fij = 0. These

constraints are written as

f l
ij ≤M ∗ elij ;

f l
ij ≥ −M ∗ elij ;

(6.4)
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Figure 6.4: Construction of disjoint path-loop (mark with dark red) in a selected path.

where M is a large integer, and in our formulation we set it to the value ⌊ |E|
2 ⌋.

Now ∀vl ∈ L in the lth selected path the sum of current value through all the incident

edges at vertex vl is equal to vl. Similarly, ∀vr ∈ R in the lth selected path the sum of

current value through all the incident edges at vertex vr is equal to the negative value of

vr. These constraints are formulated as

∑
∀i∈L, ∀j∈R∪{s}

f l
ij = vli;∑

∀i∈R, ∀j∈L∪{d}

f l
ij = −vli;

(6.5)

Figure 6.5, illustrate the removal of disjoint loop with the help of constraints 6.4 and

6.5. Here, for the lth selected path, flow variable corresponding to the edges are assign

integer values such that f l
17 = 5, f l

19 = −4, f l
57 = −2, f l

59 = 3. These four combination

of flow variables satisfies three constraints where vl1 = v − 5l = 1 and vl9 = −1. But, did

not satisfy the constraints for vl7. Similarly, it can be shown that no combination of flow

variables are able to satisfy all the four constraints for disjoint loop. Therefore, constraints
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6.4 to 6.5 effectively prevent the disjoint path-loop to appear the the solution path.
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Figure 6.5: Removal of disjoint path-loop (mark with dark red) in a selected path.

6.3.3 Path minimization and formulation of the ILP

Our goal is to select a minimum number of paths from vertex s to d which satisfies all

the constraints formulated above. In order to get the solution, we first consider a constant

value of np (preferably starting from np = 1) and try to satisfy all the constraints. Since we

assign a fixed value to np, it is possible that the formulated ILP has no solution implying

that all the edges are not covered. Then we repeatedly increment np by one and try to

solve the ILP until a valid solution is obtained. The minimum value of np which solves the

ILP is our required solution. Therefore, our mixed ILP formulation effectively becomes a

constraint satisfaction problem, rather than that of an optimization one.

For a fixed np, the complete ILP is given below.

np a positive integer constant (objective function)
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subject to

∑
∀i∈L

elsi = 1;∑
∀i∈R

elid = 1;∑
∀i∈L, ∀j∈R∪{s}

elij = 2 ∗ vli;∑
∀i∈R, ∀j∈L∪{d}

elij = 2 ∗ vli;

np∑
l=1

elij ≥ 1, ∀ eij ∈ E;

f l
ij ≤M ∗ elij ;
f l
ij ≥ −M ∗ elij ;∑

∀i∈L, ∀j∈R∪{s}

f l
ij = vli;∑

∀i∈R, ∀j∈L∪{d}

f l
ij = −vli;

∀l ∈ {1, 2, . . . , np}.

Example 6.3.1. Here, an complete ILP formulation for crossbar of size 4 × 4 (as shown

in Figure) is presented. The corresponding solution with IBM ILOG CPLEX Optimisation

Studio is also presented below.

Maximize

obj: e12 + e13 + e14 + e25 + e26 + e27 + e35 + e36 + e37 + e45

+ e46 + e47 + e85 + e86 + e87

Subject To

e12 + e13 + e14 = 1

e85 + e86 + e87 = 1

e12 + e25 + e26 + e27 - 2 v2 = 0

e13 + e35 + e36 + e37 - 2 v3 = 0

e14 + e45 + e46 + e47 - 2 v4 = 0

e85 + e25 + e26 + e45 - 2 v5 = 0

e86 + e35 + e36 + e46 - 2 v6 = 0

e87 + e45 + e46 + e47 - 2 v7 = 0
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Figure 6.6: Graph Gspn for ILP formulation

f12 - 7 e12 <= 0; - f12 - 7 e12 <= 0

f25 - 7 e25 <= 0; - f25 - 7 e25 <= 0

f26 - 7 e26 <= 0; - f26 - 7 e26 <= 0

f27 - 7 e27 <= 0; - f27 - 7 e27 <= 0

f27 - 7 e85 <= 0; - f27 - 7 e85 <= 0

f13 - 7 e13 <= 0; - f13 - 7 e13 <= 0

f35 - 7 e35 <= 0; - f35 - 7 e35 <= 0

f36 - 7 e36 <= 0; - f35 - 7 e35 <= 0

f37 - 7 e37 <= 0; - f36 - 7 e36 <= 0

f14 - 7 e14 <= 0; - f14 - 7 e14 <= 0

f45 - 7 e45 <= 0; - f45 - 7 e45 <= 0

f46 - 7 e46 <= 0; - f46 - 7 e46 <= 0

f47 - 7 e47 <= 0; - f47 - 7 e47 <= 0

f47 - 7 e87 <= 0; - f47 - 7 e87 <= 0

f12 + f25 + f26 + f27 - v2 = 0

f13 + f35 + f36 + f37 - v3 = 0

f14 + f45 + f46 + f47 - v4 = 0

f85 + f25 + f26 + f45 + v5 = 0

f86 + f35 + f36 + f46 + v6 = 0

f87 + f45 + f46 + f47 + v7 = 0
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Bounds

- 7 <= f12, f25, f26, f27, f85, f13, f35, f36, f37, f86, f14,

f45, f46, f47, f87 <= 7

Integers

f12, f25, f26, f27, f85, f13, f35, f36, f37, f86, f14, f45,

f46, f47, f87

Binaries

e12, e25, e26, e27, e85, e13, e35, e36, e37, e86, e14, e45,

e46, e47, e87, v2, v3, v4, v5, v6, v7

End

Solutions:

Total edge covered = 21

Extra edge covered = 6

The path list are following:

Path1: [‘e14’, ‘e86’, ‘e25’, ‘e27’, ‘e35’, ‘e36’, ‘e47’]

Path2: [‘e13’, ‘e85’, ‘e26’, ‘e27’, ‘e37’, ‘e45’, ‘e46’]

Path3: [‘e12’, ‘e87’, ‘e26’, ‘e35’, ‘e37’, ‘e45’, ‘e46’]

ILP formulation for Gspn not for the crossbar

In the proposed mixed ILP, each constraint is formulated for the graph Gspn, not for the

memristive crossbar itself. For a full square or rectangular crossbar, the structure of the

graph Gspn is invariant to the selection of memristors. But for an incomplete crossbar, the

graph Gspn for the same particular crossbar is not fixed and varies with the choice of the

selected WL and BL; hence the complexity of the ILP differs. In Figure 6.8 we have shown

two different Gspn corresponding to the same incomplete crossbar based on two different

selections of the WL and BL in the crossbar.

Very large number of constraints and variables

It is observed that for crossbar size greater than 16×16, solving ILP with either IBM ILOG

CPLEX Optimization Studio or LINGO 16.0 Optimization Modeling Software takes a very

long time, possibly due to a large number of constraints and variables in the ILP. Table 6.1
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presents the number of constraints and variable of the ILP formulated for a square full

crossbar of size n× n.

Table 6.1: Number of constrainrs required for ILP formulation of a crossbar of size n× n

Formulation of
# Con-

straints

Constraints 6.1 2

Constraints 6.2 2(n − 1)

Constraints 6.3 n2 − 1

Constraints 6.4 2(n2 − 1)

Constraints 6.5 2(n − 1)

Table 6.2: Number of variables required for ILP formulation of a crossbar of size n× n

Variables Count

Binary: Edges eij |∀ eij ∈ E n2 − 1

Binary: vertices vi|∀i ∈ R ∪ L 2(n − 1)

Integer: flow variavles fij n2 − 1

It is found from the theoretical proposition in Chapter 5 that np = n−1 is the minimum

value that satisfies the ILP. Therefore, for an n× n square complete crossbar, this ILP has

(n − 1)(2n − 1)(n + 3) constraints and 2(n − 1)2(n + 2) variables in total. Plot 6.9 shows

the number of constraints and variables required for different sizes of the crossbar.

6.4 Evaluation of the proposed methods

We have already mentioned in the previous chapter that our proposed heuristics provide the

optimum (minimum) number of selected paths for full square and rectangular crossbars. In

order to prove our proposition, we formulate ILP for full square crossbar of different sizes

and in Table 6.3, we showed that the test time obtain from the proposed algorithm, and

from the formulated ILP are the same. We run the ILP both in IBM ILOG CPLEX

Optimization Studio as well as in LINGO 16.0 Optimization Modeling Software on a 4-core



112 6.5. SUMMARY

3GHz Intel Xeon processor with 32GB RAM and came up with the same result. It is clear

from the Table 6.3 that the solution time for the ILP is increasing rapidly with crossbar

size and both the solver is unable to solve the ILP formulated for the crossbar of size grater

than 16 × 16 (may be due to a large number of constraints). Therefore, though both the

proposed heuristics as well as the ILP is providing the same result in terms of solution time,

our proposed heuristics are much more efficient.

Table 6.3: Comparison of the proposed method with ILP solution.

Crossbar size
Path count Edge count

ILP solution time (s)
TOSPS ILP TOSPS ILP

4× 4 3 3 15 15 0.01

6× 6 5 5 35 35 0.13

8× 8 7 7 63 63 0.65

10× 10 9 9 99 99 1.38

12× 12 11 11 143 143 4.96

14× 14 13 13 195 195 527.83

16× 16 15 15 255 255 6521.79

6.5 Summary

In this chapter, we present an Integer Linear Program (ILP) designed to tackle the path

selection issue in an incomplete crossbar. While the current ILP solver works effectively for

crossbars with sizes up to 16, its performance notably deteriorates when dealing with larger

crossbars, resulting in longer computation times. To overcome this challenge, a promising

direction could involve developing an ILP tailored for memristive crossbars of arbitrary sizes

and shapes, with an optimal number of variables and constraints. Such an approach has

the potential to enhance the efficiency and scalability of path selection in diverse crossbar

configurations.
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Figure 6.7: Three selected paths for the ILP using IBM ILOG CPLEX Optimisation Studio.
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Figure 6.8: (a) The graph for ILP corresponding to the crossbar shown in 6.1(a) if input voltage is

applied between WL1 and BL1, and (b) if input voltage is applied between WL4 and

BL7.

Figure 6.9: Number of constraints and variables required for different sizes of crossbar.



CHAPTER

SEVEN

ANALYSIS OF FAULT SENSITIVITY IN
MEMRISTIVE NEURAL ARCHITECTURES

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.2 Faults in neural models . . . . . . . . . . . . . . . . . . . . . . 117

7.2.3 Basics of fault-tolerance . . . . . . . . . . . . . . . . . . . . . . 118

7.2.4 Active and passive fault-tolerance . . . . . . . . . . . . . . . . . 119

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Overview of the proposed method . . . . . . . . . . . . . . . . . 121

7.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 122

7.5.1 Effect of SA0 faults on accuracy . . . . . . . . . . . . . . . . . . 123

7.5.2 Effect of SA1 faults on accuracy . . . . . . . . . . . . . . . . . . 125

7.5.3 Layer-wise sensitivity analysis of LeNet architecture to fault locations 129

7.5.4 Layer-wise sensitivity analysis of MDNN architecture to fault loca-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.5 Distribution of weights in trained LeNet architecture . . . . . . . 129

7.5.6 Discussion on Experimental Results . . . . . . . . . . . . . . . . 130

115



116 7.1. INTRODUCTION

7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 Introduction

Memristive crossba-based architectures have emerged as an emerging candidate for a new

generation computing platform (HXZ+21; BGS+18; BSS+17). The storage along with the

computing ability of the memristor element has the potential to overcome the memory-

processor bottleneck of the Von Neumann architecture to a certain extent. The properties

like non-volatility and continuous input/output characteristics of the memristor are ideal

for analog computations. Memristor based crossbar (MBC) is very efficient in computing

matrix-vector multiplication, vector outer product, etc. which are very costly operations in

terms of space, time, and energy (PMBH+15). Memristive crossbar has the ability to per-

form massive parallel computations with minimum data movement. resulting less consump-

tion of energy per computations than the traditional CMOS based accelerators (KJC20).

Therefore, a lot of research work have been proposed to implement artificial neural network

(ANN), recursive neural network (RNN), and spiking neural network (SNN) in memristive

crossbar (SSS+20; ASKJ18; YAT17; WWZH18).

Due to the parallel and distributed structure, and the presence of additional neurons

or processing elements than the necessary to solve a given problem, neural networks are

assumed to be inherently fault tolerant (AJB00). However, it is very hard to generalize

fault tolerance assessment across different neural architectures as well as the architectures

made of different computing elements as there is no systematic methods and tools for

evaluation across neural models. Due to the CMOS-memristor heterojunction fabrication,

MBCs suffers from various defects and faults, leading to a significant accuracy loss and

errors in neural networks (ZUFE20; XCG+20; CC22; SSB+22). Manufacturing faults are

permanent and make the memristor get stuck at high or low resistance state. There are

other types of faults which occur due to inaccurate writing of memristor cells while data

processing. This are called soft faults (DFR+15). The occurrence of the hard and soft faults

in the memristor cell of MBC limits the accuracy of the MBC based computing system from

reaching to its maximum achievable value (PMBH+15).

In this chapter, we conducted a comprehensive analysis of the effect of stuck-at-zero

(SA0) and stuck-at-one (SA1) faults on the accuracy degradation of an MNN consisting

of two convolutional layers, two fully connected layers, and a memristive LeNet network.

In the course of our simulations, we opted for the utilization of an open-source framework
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specifically designed for conducting large-scale memristive Deep Learning (DL) simulations,

known as MemTorch (LXLBR22). Within the confines of this framework, we undertook the

task of generating a fault model, and further tailored a fault injection technique to suit the

specific requirements of our study. This area of research is particularly important because

understanding the influence of such faults and variations can contribute to the development

of fault-tolerant neuromorphic computing systems with limited resources. Additionally,

by gaining insight into the impact of faults on individual layers of memristive crossbar-

based neural architectures, we may discover optimal architecture designs for solving specific

problems with predefined accuracy.

7.2 Preliminaries

7.2.1 Neural networks

Memristive neural models are artificial neural networks that utilize memristors as a comput-

ing as well as processing elements. Memristive neural models have been proposed as a po-

tential alternative to traditional artificial neural networks, which are typically implemented

using electronic circuits or software. There are several different approaches that have been

proposed for implementing memristive neural models, including both hardware-based and

software-based approaches. Hardware-based approaches typically involve designing circuits

or systems that utilize memristors to implement the neural network, while software-based

approaches typically involve developing algorithms that can be implemented on traditional

computing platforms and simulate the behavior of a memristive neural network.

7.2.2 Faults in neural models

One major challenge with MNNs is the issue of faults, which can occur due to various factors

such as manufacturing defects, wear and tear, or external factors such as temperature.

Faults in MNNs can lead to incorrect or unreliable operation, which can significantly degrade

the performance of the network.

Stuck-at-one (SA1) faults and stuck-at-zero (SA0) faults are common types of hard

faults that can occur in memristors. SA1 faults are caused by permanent open switch defects

and broken word-lines, while SA0 faults are caused by permanent short circuit defects and

broken bit-lines. Both SA1 and SA0 faults can significantly impact the performance of a

memristive neural network (MNN) and can lead to incorrect or unreliable operation. A
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Figure 7.1: Memristor based crossbar using a differential pair of memristor for representing a weight

value.

memristor device with SA1 fault is always in the high resistance state (HRS), whereas SA0

faults force the on-chip memristors in a low resistance state (LRS).

Stochastic variation in memristors refers to the inherent uncertainty or randomness in

the behavior of these devices. Memristors are passive two-terminal devices that can change

their resistance based on the amount of current that has passed through them. However, the

resistance of a memristor can also vary due to random fluctuations in the device’s physical

properties, such as the mobility of dopants or impurities within the device. Stochastic

variation in memristors can impact the performance of a memristive neural network (MNN)

by introducing uncertainty into the operation of the network. This can lead to variations

in the output of the network, which can affect its accuracy and reliability.

7.2.3 Basics of fault-tolerance

Here are some terms related to fault tolerance:

• Reliability: Reliability is an important characteristic of any system, as it determines
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the likelihood that the system will perform correctly and meet the required specifi-

cations over a specified period of time. Reliability can be affected by various factors,

including the quality of the components used in the system, the design of the system,

and the operating conditions. Systems with high reliability are often designed with

built-in redundancies and failover mechanisms to ensure that they can continue to

operate correctly even in the event of failures or faults.

• Fault tolerance: Fault tolerance is the ability of a system to continue functioning

correctly despite the occurrence of faults or failures within some of its components.

This means that the system is able to withstand or recover from these faults without

disrupting its normal operation. Fault tolerance can be achieved through various

methods, such as using redundant components, implementing failover mechanisms,

and designing the system to be resilient to failures.

• Robustness: Robustness refers to the ability of a system to maintain its performance

and functionality despite variations in its inputs or parameters. A system that is

robust is able to tolerate noise or uncertainties in its inputs and still produce the

desired output. This is important in situations where the system may be subjected

to variations in its operating conditions, such as changes in temperature, humidity, or

other environmental factors.

• Error resilience: Error resilience is the ability of a system to tolerate inexact or

approximate computations without affecting its overall performance or functionality.

This means that the system is able to continue operating correctly even when some

of the computations or calculations being performed are not exactly accurate. Error

resilience is often important in situations where the system may be subject to noise

or other sources of error, such as when working with data that has been transmitted

over a noisy channel or when performing calculations with limited precision.

7.2.4 Active and passive fault-tolerance

In the context of fault tolerance, fault tolerance can be classified into passive and active,

depending the mechanisms by which it is achieved in a system.

Active fault tolerance refers to approaches that actively detect and mitigate the effects

of faults or failures in a system. This can involve using redundant components or systems

that can take over the function of a failed component, implementing failover mechanisms to

switch to a backup system when a primary system fails, or using other proactive measures

to prevent or mitigate the impact of failures.



120 7.3. PROBLEM FORMULATION

On the other hand, passive fault tolerance refers to approaches that do not actively

detect or mitigate the effects of faults, but rather rely on the system’s inherent resilience

to continue functioning correctly despite the occurrence of faults. Passive fault tolerance

approaches may involve designing the system to be resilient to failures, using redundant

components or systems to increase reliability, or other methods that allow the system to

continue operating correctly in the event of a failure. In such passive fault tolerant system,

no diagnostics, relearning, or reconfiguration is required. Thus, fault detection and location

can be totally avoided under this approach.

Both active and passive fault tolerance approaches can be effective in increasing the

reliability and fault tolerance of a system, and the appropriate approach will depend on the

specific requirements and constraints of the system.

7.3 Problem Formulation

Memristive devices can fail or experience errors due to various factors such as manufacturing

defects, environmental conditions, or wear and tear. This can have a significant impact on

the performance and reliability of the neuromorphic computing system. Therefore, it is

important to conduct fault analysis to identify and diagnose any potential issues with the

memristive devices and take corrective action to ensure the system is operating correctly.

Tile architecture is a type of design used in memristive crossbar arrays, which are

a common building block in neuromorphic computing systems. In a tile architecture, the

crossbar array is divided into smaller units, called tiles, which can be individually addressed

and controlled. Each tile consists of a group of memristive devices arranged in a row

and column configuration, with one row and one column of devices per tile. The tiles

are connected together to form the larger crossbar array. The advantage of using a tile

architecture in a memristive crossbar is that it allows for more flexible and scalable designs.

It allows for the independent control of each tile, enabling the system to perform more

complex computations and tasks. It also allows for easier maintenance and repair, as faulty

or damaged tiles can be replaced without affecting the rest of the system. Overall, the

tile architecture is an important design feature in memristive crossbar arrays, providing

flexibility, scalability, and maintenance benefits for neuromorphic computing systems. In

order to design a neuromorphic computing system, there is no systemetic approach for

selecting the tile size. Our aim is to select tile size depending on the stochastic variation of

the weight values in the memristive crossbar.
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In this chapter, we explore fault simulation, which involves using computer simulations

to determine the impacts on system performance, including:

1. Evaluating the natural fault tolerance of an individual layer to injected SAFs.

2. Identifying which layer of a memristive neural network has the greatest impact on

accuracy in the presence of SAFs.

3. Determining which layer is most sensitive to the location of injected faults.

4. Examining whether SA0 and SA1 doses have the same effect on the network.

Answers to these questions are significant as understanding the influence of faults and

variations can contribute to research areas such as determining the tile size for each layer,

designing fault-tolerant MNN with limited resources and searching for optimal architecture

designs to solve specific problems with predefined accuracy.

7.4 Overview of the proposed method

Insert fault(s) into

Convert to Memristive DNN Inject faults into crossbar

a dataset

Traditional DNN design

Define a DNN

architecture

Define a

memristor model

conductances
to memristive

Map DNN weights

Map each DNN

layer to a crossbar

Select a fault

model

crossbar

Feed dataset
and

measure accuracy

Feed dataset
and

measure accuracy

Train DNN with

Compare
Accuracy

Figure 7.2: Flowchart for our method for Analysis of Fault Sensitivity

Figure 7.2 illustrates the design flow for implementing a MNN using the PyTorch

framework and MNIST dataset. Initially, a DNN architecture is designed and trained using

PyTorch and the MNIST dataset in the first block. Then, the trained ANN is converted

into a MNN in the second block. This conversion involves replacing each weight value with

the conductance difference of two memristor devices, as shown in Figure 7.1. The weight-
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to-conductance mapping rule is used to map each trained layer to a memristive crossbar,

and the accuracy of the MNN framework is evaluated.

In the third block, SAFs are intentionally inserted into the memristive crossbar at

different locations, and the accuracy of the faulty MNN is measured. Finally, the accuracy

of the second and third blocks is compared to determine the effect of the inserted faults.

The impact of the fault insertion is discussed further below.

To account for the random nature of fault insertion in crossbars, it is essential to

conduct multiple runs when validating a defective MNN. Even with a fixed fault percentage,

the locations of faults in the crossbars can vary in each run. Running the MNN multiple

times helps to verify its performance, ensuring robustness, generalizability, and avoiding

overfitting. To validate our experiments, we conducted ten runs for each fault percentage,

and the resulting plots are presented in Section 7.4.

7.5 Experimental Evaluation

Our experiments were conducted on a 4-core 3GHz Intel(R) Xeon(R) Platinum 8164 CPU

@ 2.00GHz processor with 32GB RAM, running Ubuntu 22.04 LTS. All simulations were

performed using the MemTorch platform, and the VTEAM memristor model was used to

convert trained architectures into MNNs. For simulation, we have taken two MNNs as

follows:

1 . A memristive deep neural network (MDNN) containing two convolutional and two

fully connected layers.

2. LeNet 5 architecture containing three convolutional and two fully connected layers.

Table 7.1 presents the datasets used for training two MNNs, along with the number

of trainable parameters at each layer used for experimental evaluation. To observe the

maximum impact of faults, we plotted the accuracy drop with an increasing fault percentage,

taking the average accuracy value among all ten simulations. We varied the fault percentage

from zero to ninety percent, although practical circuit faults typically remain below 25%. We

included the full range of fault percentages for analysis purposes to obtain a comprehensive

spectrum of accuracy drops.
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Table 7.1: MDNN architectures with trainable parameters of all the layers and the datasets used

Neural

Architecture

Trainable parameters
Datasets

First

Convolution

layer (conv1)

Second

Convolution

layer (conv2)

First fully

connected

layer (fc1)

Second fully

connected

layer (fc2)

Third fully

connected

layer (fc1)

MDNN 520 25050 400000 5000 NA
MNIST &

FashionMNIST

LeNet 5 156 24164 48120 10164 850
MNIST &

FashionMNIST

7.5.1 Effect of SA0 faults on accuracy

In order to demonstrate the influence of randomly inserting SA0 faults in each layer on accu-

racy, the subsequent section showcases the results. The accuracy is plotted against varying

percentages of fault injection, focusing on one layer at a time. To assess the true impact,

ten simulations were conducted for each layer at every fault percentage. Subsequently, the

mean of the ten accuracy values was plotted to provide a comprehensive overview.

LeNet architecture trained with MNIST, and Fashion MNIST datasets

The accuracy plots in Figure 7.3a for each layer in the LeNet architecture trained with

MNIST data reveal that the conv1 layer exhibits the most significant decrease in accuracy.

The decline in accuracy becomes notable when the percentage of injected faults exceeds

twenty. Both conv2 and fc2 layers have a similar impact on accuracy, slightly lower than

that of conv1, with the accuracy drop occurring after injecting 40% of faults. The two

linear layers, fc1 and fc3, have minimal effects on accuracy, showing a negligible impact

until 60% of faults are injected.

The plots in Figure 7.3b for each layer in the LeNet architecture trained with Fashion

MNIST data exhibit a similar pattern, with slightly lower values of accuracy for all fault

percentages compared to MNIST dataset. However, upto 40% fault injection mark, the

impact on accuracy for all the layers is insignificant.

MDNN architecture trained with MNIST and Fashion MNIST datasets

The accuracy plots depicted in Figure 7.4ashowcase the impact on accuracy for each layer

in the MDNN architecture trained with MNIST data. The results reveal that the maximum
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(a) LeNet trained with MNIST

(b) LeNet trained with Fashion MNIST

Figure 7.3: Effect on Accuracy of randomly located varying number hrs (SA0) hardware faults on

each layer of Memristive LeNet architecture trained on (a) MNIST and (b) Fashion

MNIST.
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drop in accuracy occurs in the conv1 layer, followed by the fc1 layer. On the other hand,

the accuracy of the conv2 and fc2 layers is minimally affected, with nearly equal accuracy

values observed for each fault percentage.

However, Figure 7.4b displays a different behavior for each layer in the MDNN archi-

tecture trained with Fashion MNIST data. Upto 40% of faulty memristors, the accuracy of

the conv1 layer is the lowest. Beyond that point, all the three remaining layers experience

lower accuracy, with the fc1 layer displaying the minimum value.

7.5.2 Effect of SA1 faults on accuracy

This section demonstrates the consequences of introducing SA1 faults randomly across all

layers. Following the previous section, ten simulations were conducted for each layer at

every fault percentage. Subsequently, the mean of the ten accuracy values was plotted to

provide a comprehensive overview.

LeNet architecture trained with MNIST, and Fashion MNIST datasets

Figure 7.5a illustrates the accuracy plots for each layer in the LeNet architecture trained

with MNIST data. The plots reveal that all layers exhibit a high sensitivity to injected

faults, with a decrease in accuracy observed even at a minimal fault rate of 0.2%. Notably,

layers conv1, conv2, and fc2 display the most significant impact on the introduced faults.

Among them, the conv1 layer has the lowest accuracy for upto 40% faulty memristors,

followed by conv2 and fc2 layers. Conversely, layers fc1 and fc3 exhibit minimal effects

on the injected faults.

The accuracy plots for each layer in the LeNet architecture trained with MNIST data,

depicted in Figure 7.5b, demonstrate similar trends as observed in case of MNIST dataset.

MDNN architecture trained with MNIST and Fashion MNIST datasets

Figures 7.6a and 7.6b illustrate the ranges of accuracy, which highlight the influence of

each layer within the MDNN architecture trained on MNIST and Fashion MNIST datasets

respectively. The findings demonstrate that the most significant decrease in accuracy is

observed in the layer conv1, while the impact on accuracy in the fc1 layer is minimal for

both the cases.

An interesting observation arises from comparing the impact of SA1 and SA0 faults

across all four scenarios. Notably, the effect of SA1 faults differs considerably from that
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(a) MDNN trained with MNIST

(b) MDNN trained with Fashion MNIST

Figure 7.4: Effect on Accuracy of randomly located varying number hrs (SA0) hardware faults on

each layer of MDNN architecture trained on (a) MNIST and (b) Fashion MNIST.
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(a) LeNet trained with MNIST

(b) LeNet trained with Fashion MNIST

Figure 7.5: Effect on Accuracy of randomly located varying number lrs (SA1) hardware faults on

each layer of LeNet architecture trained on (a) MNIST and (b) Fashion MNIST.



128 7.5. EXPERIMENTAL EVALUATION

(a) MDNN trained with MNIST

(b) MDNN trained with Fashion MNIST

Figure 7.6: Effect on Accuracy of randomly located varying number lrs (SA1) hardware faults on

each layer of MDNN architecture trained on (a) MNIST and (b) Fashion MNIST.
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of SA0 faults. In the case of high resistance states (hrs) injection, a significant drop in

accuracy becomes apparent starting from a fault rate of 20%. Conversely, in the case of

low resistance states (lrs), the accuracy experiences a noticeable decline when the fault rate

exceeds approximately one percentage. This discrepancy presents an intriguing avenue for

further investigation and exploration.

7.5.3 Layer-wise sensitivity analysis of LeNet architecture to fault locations

In order to observe the sensitivity to the fault location of SAFs for a particular layer, we have

presented the box plots of fault simulation for each layer in this section. Figure 7.7 showcases

the layer-wise sensitivity of SA0 faults at various fault percentages for all the layers. It

becomes evident that the conv1 layer (Figure 7.7(a)) exhibits the highest sensitivity to

fault location, as indicated by its maximum accuracy distribution compared to other layers.

As the fault value surpasses the 40% threshold, the accuracy distribution demonstrates a

noticeable increase.

It is noteworthy that layer conv1 consistently exhibits the highest sensitivity across all

cases. Consequently, Figure 7.8 showcases the accuracy distribution of the conv1 layer in the

LeNet architecture trained on both the MNIST and Fashion MNIST datasets. Figures 7.8(a)

and (b) illustrate that the range of the distribution expands as the fault percentages increase.

In contrast, Figure 7.8(c) highlights that the sensitivity is greater at lower fault percentages.

7.5.4 Layer-wise sensitivity analysis of MDNN architecture to fault locations

Figure 7.9 depicts the accuracy distribution of the MDNN architecture trained on the

MNIST and Fashion MNIST datasets, considering the injection of both SA0 and SA1 faults.

In Figure 7.9(a), the range of the distribution expands as the fault percentage increases.

Conversely, in Figure 7.9(c), the distribution remains relatively uniform throughout the

range of faults. Notably, Figures 7.9(b) and (d) indicate that the range of the distribution

is highest at lower fault percentages and decreases as the fault percentages increase.

7.5.5 Distribution of weights in trained LeNet architecture

To gain insights into the behavior of the trained LeNet network when confronted with SA0

faults, we examined the distribution of weight values in the LeNet network trained on the

MNIST and Fashion MNIST datasets. Figure 7.10 showcases these weight distributions.
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Surprisingly, despite the weight distribution being mostly centered around a middle value,

there is no apparent indication of the significant loss of accuracy observed in the network.

7.5.6 Discussion on Experimental Results

In this study, we conducted experiments to investigate the impact of fault injection on ac-

curacy of two memristive CNN architectures trained using the MNIST and Fashion MNIST

datasets. The results revealed that the conv1 layer is most susceptible to faults, indicating

its vulnerability in the presence of errors. Additionally, we observed that among the linear

layers, the one positioned right after the output layer displays the highest sensitivity in

terms of accuracy. Moreover, a significant observation emerged, highlighting the differing

impact of SA0 and SA1 faults, with SA1 faults exhibiting much greater sensitivity across all

cases. An efficient misclassification-driven training (MDT) algorithm for detecting critical

faults (FCFs) in the crossbar is proposed in (CC22). The algorithm successfully identifies

the number of CFCs in each deep neural network (DNN) layer. However, the specific role

of fault type as a location for being a CFC is not explored in the study. The researchers

in (SFP+23) have introduced a fault injection platform that allows BNNs execution on

logic-in memory while injecting in-field faults. While they extensively studied the impact

of these faults on individual layers and different BNN models, the study does not explore

the effects on general DNNs. Furthermore, we explored the sensitivity of fault location and

found that accuracy variations were widespread. At times, the fluctuations exceeded 1.5

times the median value in ten simulations. Remarkably, this variation occurred randomly

across architectures, datasets, and fault percentages, indicating the complex and unpre-

dictable nature of the fault effects. It is important to note that all the observed effects were

solely attributed to fault injection, as we did not find any discrepancies in the weight dis-

tribution of the trained architecture. This further confirms that the faults themselves were

responsible for the accuracy loss in the memristive neural architectures under investigation.

7.6 Concluding Remarks

Examining faults in the crossbar of memristive neural architectures is a crucial undertaking

in ensuring the reliability and robustness of these systems. To tackle this challenge, a fault

analysis technique has been devised to determine the impact of stuck-at faults in different

layers of LeNet neural architectures. This approach can evaluate the effect of injected

faults on both the entire system and individual layers. The experimental results reveal that
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the conv1 layer is most affected by fault injection, while among the linear layers, the one

immediately behind the output layer shows the highest sensitivity in terms of accuracy;

moreover, the impact of SA1 faults is considerably greater than SA0 faults. Overall, fault

analysis in the crossbar of memristive neural architectures has the potential to contribute to

research areas such as creating fault-tolerant MDNNs with limited resources and searching

for optimal architecture designs to solve specific problems with predetermined accuracy.
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(a)

(b) (c)

(d) (e)

Figure 7.7: Accuracy range for ten simulations with hrs (SA0) fault injection in (a) conv1, (b)

conv2, (c) fc1, (d) fc2, and (e) fc3 layer of the LeNet architecture trained with MNIST

dataset.
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(a)

(b)

(c)

Figure 7.8: Accuracy range for ten simulations of LeNet architecture trained for (a) MNIST with

lrs (SA1) fault injected in conv1, (b) Fashion MNIST with hrs (SA0) fault injected in

conv1, and (c) Fashion MNIST with lrs (SA1) fault injected in conv1.
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Weight

Weight

Weight histogram of layer conv1 of LeNet
architecture trained with Fashion MNIST

Weight histogram of layer conv1 of LeNet
architecture trained with MNIST

(a)

(b)

Figure 7.10: Histogram of weights in LeNet architecture trained with (a) Fashion MNIST dataset,

and (b) MNIST dataset, respectively.
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This thesis contributes to advancing memristor-based computing systems by addressing

fault sensitization, testing optimization, ALU design, and the impact of faults on neuro-

morphic architectures. The findings provide valuable insights to improve the reliability and

performance of future fault-tolerant memristor-based systems across a wide range of appli-

cations. The novel contributions and outline future plans in Sections 8.1 and 8.2. These

sections provide a concise summary of the original findings and their implications, as well

as the intended directions for further exploration and development in our research.

8.1 Summary

The thesis contributions are organized on a chapter-by-chapter basis as follows:

• In Chapter 5, we envisage a 2D memristive crossbar as a network and identify certain

paths that are suitable for fault sensitization. For full-size square and rectangular

memristive crossbars, the proposed method optimizes test time using a path-based

136
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technique guided by maximum matching in bipartite graphs. Simulation results with

LTspice demonstrate the effectiveness and superiority of the method to the prior art

in terms of test time and fault-coverage.

• We observe that the graph-based path-covering techniques proposed in Chapter 5

reduces testing time efficiently for square or a rectangular full crossbar. But, this

techniques may not always be applicable for crossbar with irregular structure or for an

incomplete crossbar. In order to cover all types of crossbar (including incomplete), in

Chapter 6 we have proposed an Mixed Integer Linear Program (MILP) formulation for

optimal path covering that can uniformly handle both full and incomplete crossbars.

• In Chapter 3 we propose a logic system based on differential currents for implementing

ADDER on a hybrid-memristor crossbar network. The addition is performed in the

binary domain, using both analog and digital components. The analog component

provides the peripheral control circuit, input voltages and logic values to the cross-

bar in the form of memristor-states. The variation of the analog output current is

then sensed and converted back to discrete logic bits using A/D converters. Simula-

tion studies demonstrate that the proposed design reduces both memristor cost and

computation-cycle time compared to previous approaches.

• In Chapter 4, we propose designs for arithmetic and logical circuits on a memristor-

based hybrid crossbar network that relies on current sensing along with some analog

peripheral circuits. Thus, computation is performed in a mixed domain, i.e., a binary

input is mapped as a state of a memristor in the crossbar topology, whereas the out-

come of the arithmetic and logic operations appear in the analog domain, a hybridized

strategy that leads to reduced computation time and improved energy efficiency.

• In chapter 7, we conducted a comprehensive analysis of the effect of stuck-at-zero

(SA0) and stuck-at-one (SA1) faults on the accuracy degradation of an MNN consist-

ing of two convolutional layers, two fully connected layers, and a memristive LeNet

network. This area of research is particularly important because understanding the

influence of such faults and variations can contribute to the development of fault-

tolerant neuromorphic computing systems with limited resources. Additionally, by

gaining insight into the impact of faults on individual layers of memristive crossbar-

based neural architectures, we may discover optimal architecture designs for solving

specific problems with predefined accuracy.
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8.2 Future Directions

There are several promising directions for future research based on the key contributions

of this thesis. By combining the proposed techniques, it is possible to develop fast and

energy-efficient memristive crossbar-based fault-tolerant neuromorphic computing systems,

even with limited resources.

One important future direction is to focus on the development of memristive crossbar-

based fault models. Investigating the impact of different faults on circuit operation, perfor-

mance, and system reliability can lead to significant advancements in the development of

fault-tolerant memristive crossbar-based neuromorphic computing systems.

Additionally, there is great potential in designing energy-efficient operations for neuro-

morphic systems that utilize minimal peripheral components. By optimizing system archi-

tecture and reducing unnecessary overhead, it is possible to achieve higher energy efficiency

while maintaining desired performance levels. Exploring novel techniques and approaches

to achieve such energy-efficient operation holds promise for future advancements.

Another important future direction is the analysis and understanding of the effects of

variability, non-ideal characteristics, and read-write noise on system performance. Gaining

deeper insights into these factors and developing strategies to mitigate their impact can

enhance the reliability and performance of memristor-based neuromorphic systems.

Overcoming these challenges will be crucial for the realization of efficient and high-

performance memristor-based neuromorphic systems with transformative capabilities in

cognitive computing and artificial intelligence. Continued research efforts in these future

directions will pave the way for the practical implementation and widespread adoption of

such advanced systems.
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