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Abstract

This thesis consists of three independent essays. The first chapter introduces a model of

decision-making that is based on the procedure of rejection. Departing from the standard

model of choice via preference maximization, the decision maker (DM) rejects minimal

alternatives from a menu according to a preference relation. We axiomatically study the

correspondence of non-rejected alternatives which we call the acceptable correspondence

with different rationality conditions on the underlying preference relation. We also gen-

eralize our model to acceptable correspondences that are generated by the successive

elimination of minimal alternatives. We find that the rejection approach developed in

this chapter can offer explanations for various anomalies observed in decision theory,

such as the two-decoy effect or the two-compromise effect (Tserenjigmid (2019)).

The second chapter proposes a sequential model of the college admissions problem.

The selection criteria of institutions are formulated via choice rules that admit slot-

specific priorities introduced by Kominers and Sönmez (2016). We show that the appli-

cants can not be worse off in the subsequent stages when the candidates update their

preferences that adhere to their assignment in the previous stage. Moreover, the mech-

anism that sequentially implements individual-proposing deferred acceptance is stable

with respect to a generalized version of a sequential stability notion provided in this

chapter. These results generalize the findings presented in Haeringer and Iehlé (2021).

We use our results to analyze recently reformed admission procedures for engineering

colleges in India (Baswana et al. (2019)), where applicants are provided various options

to update their preferences in additional stages.

In the third chapter, we study the welfare consequences of merging Shapley–Scarf

housing markets (Shapley and Scarf (1974)). We show that in the worst-case scenario,

market integration can lead to large welfare losses and make the vast majority of agents

worse off. However, on average, the integration is welfare enhancing and makes all agents

better off ex-ante. The number of agents harmed by integration is a minority when all

markets are small or the agent’s preferences are highly correlated.
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Chapter 0

Introduction

This thesis consists of three independent essays that span topics in Choice and Matching

theory. Chapter 1 (co-authored with Bhavook Bhardwaj) studies the rejection behaviour

of a decision-maker. Chapter 2 (co-authored with Bertan Turhan) proposes a sequential

college admissions (two-sided matching) model that applies to engineering college admis-

sions in India. Chapter 3 (co-authored with Josué Ortega and Rajnish Kumar) studies

the consequences of merging Shapley–Scarf (one-sided matching) markets.

We provide a brief description of each chapter below.

Chapter 1. Rejection and Acceptable Correspondences

This chapter introduces a model of decision-making based on the procedure of rejec-

tion. The decision maker (DM) is endowed with an asymmetric binary relation, which

we call a rationale. Departing from the standard model of choice via preference max-

imization, the DM rejects at least the “worst” alternatives according to the rationale.

For any menu, the worst alternative, referred to as the minimal alternative (i) does not

“dominate” any alternative, and (ii) is “dominated” by at least one alternative according

to the rationale.

We axiomatically study the correspondence of non-rejected alternatives which we

call the acceptable correspondence with different rationality conditions on the underlying

rationale. The various classes of acceptable correspondences are characterized using

modified versions of Contraction Consistency and Expansion Consistency, which are

central to the characterization of maximal-element rationalizable (MR) correspondence

(see Sen (1971), Bossert et al. (2005)). An important implication of our results is that

selection by rejection does not follow from appropriate versions of selecting maximals.
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In other words, the procedure of rejection is substantively different from selection by

maximizing procedures.

The second part of our analysis considers a more general procedure where the DM

rejects the k−minimal set that is obtained by successively rejecting the worst alternatives

according to the underlying rationale. The DM is now represented by a pair (R, k), where

R is the underlying transitive rationale and k is a threshold function. The threshold

captures the idea of “satisficing” behaviour of Simon (1955), where the DM selects the

alternatives above a threshold. It also provides a measure of the degree of rationality

as discussed in Barberà et al. (2019), where a higher threshold indicates that the DM

is closer to the benchmark of the maximal set. We present the characterization of

two variants of the correspondence that rejects the k−minimal set, which we call the

threshold-acceptable (TA) correspondence. The first is when the threshold is fixed across

menus. The second is when the threshold can depend on the menu and accommodate

phenomena like choice overload (Frick (2016)). Both variants of this correspondence

have MR correspondence as a special case.

We find that the rejection approach developed in this chapter can offer explanations

for various anomalies observed in decision theory. It includes behaviour like cyclic choices,

choice reversals via the decoy effect and the compromise effect (see Huber et al. (1982),

Simonson (1989)). Threshold acceptability on the other hand explains phenomenon like

two-decoy effect and two-compromise effect (Tserenjigmid (2019)) (Teppan and Felfernig

(2009) and Manzini and Mariotti (2010)). As k increases, the TA correspondence merges

with the MR correspondence.

Chapter 2. sequential matching with affirmative action

In this chapter, we propose a sequential model of the college admissions problem. At

each stage, applicants can decide whether to finalize their assignments or participate in

the next stage by updating their submitted preferences. We assume that the selection

criteria of institutions are formulated via choice rules that admit slot-specific priorities

introduced by Kominers and Sönmez (2016). Each institution has a set of positions

(slots) that can be assigned to different individuals. Positions have their own (potentially

independent) rankings for individuals. Within each institution, a linear order – referred

to as the precedence order – determines the sequence in which positions are filled.

We investigate the restrictions on the preferences of individuals across different rounds

that result in monotone outcomes. We refer to a matching outcome as monotone when
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each individual is matched to an institution that is weakly higher than the match of

previous rounds. The proof of this result utilizes ideas in Kojima and Manea (2010). It

enables us to compare their static problem with our sequential model. We introduce a

“backward-looking” notion of stability for sequential matching mechanisms that takes

into consideration individual rationality, non-wastefulness and justified envy of individ-

uals across different rounds. We establish a relationship between this notion of stability,

which we refer to as sequential stability, and monotone outcomes.

We apply our theoretical findings to analyze the admissions problem in engineering

colleges in India. Admissions to engineering colleges in India are based on a multi-

period semi-centralized matching process and are subject to sophisticated affirmative

action constraints. Baswana et al. (2019) claim that the welfare of candidates improves

in every round of their mechanism, but do not provide a rigorous theoretical justification

for their claim. We do that by adopting the model in Haeringer and Iehlé (2021).

3. On the integration of Shapley-scarf markets

In this chapter, we investigate the welfare effects of integrating disjoint Shapley–Scarf

markets (Shapley and Scarf (1974)). We assume that the core allocation is implemented

before and after the merge occurs. The gains/losses from integration are assessed by

(i) the number of agents who obtain a better allocation, and (ii) the size of the welfare

gains, measured by the rank of the assigned house. We present worst- and average-case

results.

In the worst-case scenario, we show that when k communities with nj agents each

merge with n agents in total, it may harm a majority of agents (up to, but no more than,

n−k agents). Furthermore, the average rank of an agent’s house can decrease asymptot-

ically by, but not more than, 50% of the length of their preference list. These results are

substantially worse than those for Gale–Shapley markets Ortega (2018, 2019). On the

other side, the average-case results are more optimistic. We prove that the expected gains

from integration in random housing markets are equal to
(n+1)[(nj+1)Hnj−nj ]

nj(nj+1)n
− (n+1)Hn−n

n2 ,

where Hn is the n-th harmonic number. Our computation shows that the expected

welfare gains from integration are positive for all agents and larger for agents that are

initially in smaller markets. We also provide an upper bound on the expected number

of agents harmed by integration. This allows us to guarantee that a majority of agents

benefit from integration when all the markets are of equal size. The average case results
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rely on the previous probabilistic analysis of Shapley–Scarf markets in the computer

science literature (see Frieze and Pittel (1995); Knuth (1996)).

To guarantee that no more than half of the agents in any individual market are

harmed by integration, we identify a preference domain, which we call the sequential

dual dictatorship, that enforces a particular correlation among agent’s preferences. This

property is equivalent to assigning the title of the dictator to at most two agents at each

step of the top trading cycle algorithm, thereby bounding the length of cycles that can

occur.
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Chapter 1

Rejection and Acceptable

Correspondences1

1.1 Introduction

The standard theory of decision-making is founded on the principle of maximizing be-

haviour of the decision-maker, henceforth a DM. In the classical model, first developed

in Samuelson (1938), the DM selects from subsets of a given set of alternatives, called

menus. The DM chooses the set of maximal alternatives with respect to her underlying

preference ordering over the set2. A recent strand in the literature refines this procedure

to explain non-standard choice behaviour. The DM first forms a “consideration set”

by means of some procedure3 and in a subsequent stage, chooses a maximal alternative

from the remaining set using the underlying preference ordering. Significantly, this initial

stage involves some form of maximizing behaviour on the part of the DM, resulting in

the elimination of non-maximal alternatives. In this chapter, we develop an alternative

approach to consideration set formation where the DM, instead of maximizing, rejects a

set of “worst” alternatives. We axiomatically study this set of non-rejected alternatives;

referred to as the acceptable set.

Extensive research in consumer psychology and decision-making suggests that selec-

tion by choice and selection by rejection typically do not lead to the same outcome. In the

experiments, Huber et al. (1987) found that rejection behaviour typically generates larger

1Co-authored with Bhavook Bhardwaj (Indian Statistical Institute, Delhi Centre).
2The early literature in choice theory has a thorough treatment of decision-making via preference

maximization (see Houthakker (1950), Chernoff (1954) Arrow (1959), Sen (1971)).
3This includes “Shortlisting” (Manzini and Mariotti (2007)), “Categorization” (Manzini and Mar-

iotti (2012)) and “Rationalization” (Cherepanov et al. (2013)). Lleras et al. (2017) provides a list of
these procedures to illustrate that the formation of consideration sets varies significantly.
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consideration sets compared to choice behaviour. Several explanations may account for

the observed phenomenon. According to Shafir (1993), individuals tend to direct their

focus towards positive attributes while choosing, and towards negative attributes while

rejecting. Yaniv and Schul (2000) provide a theoretical framework suggesting that choice

and rejection procedures imply different types of status quo for the alternatives, thereby

invoking a different selection criterion for each procedure. Laran and Wilcox (2011) find

(in their Study 4) that cognitive load affects rejection more than choice, suggesting that

rejection might involve more deliberative processing4.

In certain situations, we wish to consider, rejection seems more appealing and plau-

sible than selection by choice. Consider a hiring process for a company looking to fill a

managerial position. The DM (hiring manager) has received several applications from

candidates. Before making the final selection through the interview, the process involves

screening the candidates. The DM compares the candidates with either a Finance or En-

gineering degree based on years of managerial experience. The DM then narrows down

the candidate pool by eliminating those with the lowest years of experience in each cate-

gory of qualification. Similarly, consider a case where a Ph.D. candidate has a GRE score

of X and research interests in Macroeconomics and Labour Economics. While applying,

the DM rejects all universities that require a GRE score of more than X and do not have

outstanding faculty in either of her research interests. There are situations —such as

wishlisting, adding items in a cart, saving articles to read later, etc —where the selection

is more appropriately described by rejection rather than by maximization. The process

of selection may involve the approval of several alternatives such as described in Manzini

et al. (2019).

We consider a model where the DM is endowed with an asymmetric5 binary relation,

which we call a rationale6. For any menu, the set of worst alternatives with respect to

the rationale is referred to as the minimal set. An alternative is minimal if (i) it does

not “strictly dominate” any alternative and (ii) is strictly dominated by at least one

alternative. In the earlier example, suppose candidates {a, b, c, d, e} have applied for the

position. Candidates a, b and d have Finance degrees while c and e have Engineering

4See Sokolova and Krishna (2016) for detailed empirical evidence suggesting that choice and rejection
procedures result in different outcomes.

5When the underlying preference relation is not complete, Eliaz and Ok (2006) show that one
can distinguish between indifference and indecisiveness of an agent by observing her choice behaviour.
To avoid technical complications, we assume the underlying relation to be asymmetric. For further
discussion on this issue, see Eliaz and Ok (2006).

6We follow the terminology of Manzini and Mariotti (2007)
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degrees. Based on years of experience, the DM ranks a better than b and b better than

d. Also, c is ranked better than e. The DM cannot compare candidates with different

degrees. The minimal alternatives in this case are d and e.

Using the notion of minimal alternatives, we define the acceptable set for a given

menu. An acceptable set is a subset of a menu that satisfies two properties. The first is

that the minimal alternatives are rejected from the menu. Secondly, maximal alternatives

are not rejected from the menu. In the earlier example, the acceptable sets are {a, c} and

{a, b, c}. An acceptable correspondence is a mapping that associates an acceptable set

for every menu. Within the class of acceptable correspondences, we mainly focus on two

subclasses. The first one, referred to asmaximal acceptable (MA) correspondence, selects

the largest acceptable set for every menu. In other words, the DM selects all alternatives

except the minimal set in the menu. In the example above, the MA correspondence

selects {a, b, c} from the menu {a, b, c, d, e}. We explore refinements of this subclass of

correspondences with additional restrictions imposed on the underlying rationale. These

restrictions include acyclicity, completeness, transitivity, and linearity.

We provide characterization results of these classes of acceptable correspondences.

The axioms we use are a modified version of Contraction Consistency and a modified

version of Expansion Consistency, which are central to the characterization of maximal-

element rationalizable (MR) correspondences (see Sen (1971), Bossert et al. (2005)).

Acceptable correspondences are characterized by a weakening of both axioms, restricting

to binary menus (see Theorem 1.1). Theorem 1.2 provides characterization results for

MA correspondences, where the first one is a weakening of Contraction Consistency and

the second one is a mild strengthening of Expansion Consistency. Theorem 1.3 and 1.4

characterize MA correspondences with added restrictions on the underlying rationale.

An important implication of our results is that selection by rejection does not follow from

appropriate versions of selecting maximals. In other words, the procedure of rejection is

substantively different from selection by maximizing procedures (see discussion in Section

1.4.2).

The second part of our analysis considers a more general procedure where the DM

rejects a larger set of worst alternatives using the underlying rationale. For convenience,

we assume that the rationale satisfies transitivity. The DM is now represented by a pair

(R, k), where R is the underlying transitive rationale and k is the threshold function.

Such a DM rejects the “worst” k layers of minimal alternatives with respect to R. We call

this rejected set as k−minimal set. The set of non-rejected alternatives is referred to as

7



a threshold-acceptable set and the associated correspondence to be threshold-acceptable

(TA) correspondence. The TA correspondence is a natural generalization of MA corre-

spondences. The threshold captures the idea of “satisficing” behaviour of Simon (1955),

where the DM selects the alternatives above a threshold. It also provides a measure of

the degree of rationality (as discussed in Barberà et al. (2019)) where a higher threshold

indicates that the DM is closer to the benchmark of the maximal set.

We consider two variants of TA correspondences. The first is when the threshold

is fixed across menus. The second is when the threshold can depend on the menu and

accommodate phenomena like choice overload (Frick (2016), Kovach and Ülkü (2020)).

Both variants of this correspondence have MR correspondences as a special case. We

provide a characterization result for both these models as Theorem 1.5 and 1.6 respec-

tively.

Maximal acceptability can explain a wide variety of empirically observed choice be-

haviour that cannot be rationalized by preference maximization. This includes behaviour

like cyclic choices, choice reversals via the decoy effect and the compromise effect (see

Huber et al. (1982), Simonson (1989)). Threshold acceptability on the other hand ex-

plains phenomena like two-decoy effect and two-compromise effect (Tserenjigmid (2019),

Teppan and Felfernig (2009) and Manzini and Mariotti (2010)). This can be done via low

values of k. As k increases, the TA correspondence merges with the MR correspondence.

These issues are discussed in detail in Section 1.6.

The layout of this chapter is as follows: the next subsection provides a brief litera-

ture review. Section 1.2 introduces the model formally and reviewsMR correspondences.

Section 1.3 introduces the concept of minimal sets and provides a characterization of ac-

ceptable correspondences. Section 1.4 and 1.5 characterize MA and TA correspondences

respectively. Section 1.6 provides an application of the model.

1.1.1 Related Literature

There is a vast literature that studies various sequential models of elimination. Tversky

(1972) provides a probabilistic theory of choice based on the sequential elimination of

alternatives. Each alternative consists of a set of attributes. At each stage, an attribute is

selected with some probability, and all the alternatives that do not include the attribute

are eliminated. The model assumes no fixed ordering over the attributes. Mandler et al.

(2012) presents a simplified (deterministic) version of Tversky (1972). They show that

8



the two approaches of utility maximization and choosing by sequential elimination are

nearly equivalent. Manzini and Mariotti (2007) looks at sequentially rationalizable choice

functions where the DM eliminates non-maximal alternatives according to rationales until

only one alternative remains as the final choice. The order in which the DM applies the

rationales is fixed. In our model, the DM rejects a set of alternatives non-sequentially.

The set of remaining alternatives is not necessarily a singleton set.

More recently, Masatlioglu and Nakajima (2007) introduced a deterministic theory

of choice that is based on the elimination of alternatives. In their model, an alternative

is eliminated only if it is dominated by another alternative in its “comparable” set. The

decision procedure is characterized by a single property called the “axiom of choice by

elimination”. According to it, there is at least one alternative from each menu that is

always chosen (not necessarily unique) if it is available in a sub-menu. This condition is

necessary but not sufficient in our model.

Another paper closely related to ours is Barberà et al. (2019). In their model, the

DM is endowed with a linear order and the assumption of perfect optimization is relaxed

in favour of “Order−k rationality”. The DM chooses from one of the top-k alternatives

according to the linear order. This concept is not equivalent to rejecting the bottom

m − k alternatives (m is the number of alternatives) in our framework for a number of

reasons. First is that we do not restrict ourselves to linear orders. So, the concept of the

worst k alternatives is not well defined in our framework. Secondly, we do not restrict to

singleton-valued selections. As a result, our characterization results differ considerably

from theirs.

Salant and Rubinstein (2008) develop a framework for modeling choice in the presence

of framing effects. A frame includes observable information that is irrelevant in the

assessment of the alternatives but affects choice. Our model can be regarded as an

attempt to formalize a frame that is based on the rejection of alternatives.

There is substantial empirical evidence in the literature that the DM does not consider

the entire menu when making a choice, restricting attention instead, to a subset of

alternatives. This has been referred to as a consideration set of a menu and has been

formalized in a variety of ways. Masatlioglu et al. (2012)) formalize this on the grounds

of “limited attention” while Manzini and Mariotti (2007) do so in terms of “shortlisting”

according to some criterion.

The concept of partial dominance proposed in Gerasimou (2016) is related to the

9



notion of minimal alternatives introduced in this chapter. The partially dominant cor-

respondence selects alternatives that are not dominated by any other alternative in the

menu and dominates some alternatives according to a rationale. All alternatives are

selected if none of the pair of alternatives are comparable in the menu. The correspon-

dence that selects the minimal set from each menu differs from the partially dominant

correspondence—this is discussed further in Section 1.4.2.

There are several two-stage models of choice (Manzini and Mariotti (2007), Manzini

and Mariotti (2012), Cherepanov et al. (2013), Masatlioglu et al. (2016), Bajraj and

Ülkü (2015)) where the first stage shortlisted set has different properties. Our analysis

can also be interpreted as a contribution to this strand of literature. There are several

differences between our model and these two-stage models. Firstly, we do not look at

the second stage of final selection, and secondly, our shortlisted set allows for a much

richer structure than their set of surviving alternatives. A shortlisting model close to

ours is Bhardwaj and Manocha (2021). This paper studies a choice procedure where

the set of minimal alternatives according to a transitive rationale are rejected in the first

stage. In the second stage, a unique maximal alternative is chosen from the remaining set

according to a possibly different rationale. The recent version Bhardwaj and Manocha

(2023) introduces a simple model of stochastic choice along the lines of Echenique and

Saito (2019). In this model, the DM first rejects the worst alternatives using a binary

relation and then follows a Luce procedure to assign probabilities to the non-rejected

alternatives.

There are other models that consider more general selections rather than final choices.

For instance, in situations like wishlisting, the DM expresses a positive interest in an item

by “approving” it. Manzini et al. (2019) provides a probabilistic model of this approval

behaviour using a stochastic choice function from lists framework (Rubinstein and Salant

(2006)). Instead, we work with a deterministic model of selection from menus.

1.2 Model

1.2.1 Preliminaries

Let X be a finite set of alternatives and P(X) be the set of all menus, that is, non-empty

subsets of X. A DM makes non-empty selections from every menu by rejecting certain
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alternatives. A decision correspondence d : P(X) → P(X) is a mapping that satisfies

the following properties (i) d(A) ̸= ∅ and (ii) d(A) ⊆ A for all A ∈ P(X).

A binary relation R over X is a subset of X×X. We will denote by xRy if (x, y) ∈ R

and ¬xRy if (x, y) /∈ R. The DM in our model is endowed with a strict binary relation

R (henceforth, a rationale), that is, an asymmetric relation where R is asymmetric (xRy

implies ¬yRx). If xRy, we shall interpret it as “y is dominated by x”.

A rationale is (i) complete (C) if for any x, y ∈ X and x ̸= y, if ¬xRy, then yRx

(ii) acyclic (Y) if for any x1, . . . xk, if x1Rx2R . . . xk, then ¬xkRx1 (iii) transitive (T) if

for any x1, x2, x3, if x1Rx2 and x2Rx3, then x1Rx3. Note that acyclicity is equivalent to

transitivity under completeness. The implication does not hold without completeness.

We will refer to a complete rationale as a tournament and a transitive rationale as a

partial order. A rationale satisfying acyclicity (transitivity) along with completeness

is a linear order, henceforth abbreviated as (TC). We work with rationales with the

interpretation that if DM is not able to rank x and y, she must be indecisive between

the two alternatives7.

1.2.2 Maximal Element Rationalizability Revisited

A decision correspondence is maximal-element rationalizable (Bossert et al. (2005)) if

it selects just the set of maximal alternatives with respect to an underlying preference

relation. The existence of a maximal set is guaranteed with a mild restriction of acyclicity

on the preference relation. For a menu A and rationale R, the set of maximal alternatives

is defined as

M(A,R) := {x ∈ A| ¬yRx ∀y ∈ A}

Definition 1.1. A decision correspondence d : P(X) → P(X) is maximal element

rationalizable (MR) if there exists an acyclic rationale R, such that for all menus A,

d(A) = M(A,R)

Two simple consistency conditions characterize this behaviour, namely Contraction

Consistency (CC) and Expansion (Exp) (see Sen (1971)). Also referred to as the Chernoff

7The assumption of asymmetry is a mild one. One can alternatively allow for indifferences and
develop our model of rejection. However, without a richness assumption on the binary relation (reg-
ularity), one encounters the problem of distinguishing between indifference and incompleteness in the
identification exercise (see Eliaz and Ok (2006))
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axiom or Condition α, the CC condition states that if an alternative is selected in a menu,

then it will still be selected if the alternative belongs to the sub-menu. Formally,

Axiom 1(a) (Contraction Consistency (CC)). For all menus A and x ∈ A, we have

[x ∈ d(A)] =⇒ [x ∈ d(A′) ∀ {x} ⊂ A′ ⊂ A]

The second axiom requires consistency in selection as the set expands.

Axiom 2(a) (Expansion (Exp)). For all menus A,B and x ∈ A ∩B, we have

[x ∈ d(A) ∩ d(B)] =⇒ [x ∈ d(A ∪B)]

According to the axiom, an alternative that is selected in two menus must be selected

in their union as well. It is also referred to as Condition γ in the literature.

Lemma 1.1 (Sen (1971)). A decision correspondence is an MR correspondence if and

only if satisfies CC and Exp.

The analysis of necessary and sufficient conditions for maximal-element rationaliz-

ability by a binary relation has been explored thoroughly. We refer the reader to Moulin

(1985) and Bossert et al. (2005) for a comprehensive treatment of this issue for choice

correspondences.

1.3 Acceptable Correspondences

In this section, we first introduce the notion of a minimal alternative. Further, we

formally define and characterize acceptable correspondences using the set of minimal

alternatives of a menu.

Definition 1.2. For a menu A and rationale R, the set of minimal alternativesm(A,R)

is defined as

m(A,R) := {x ∈ A| ¬xRy ∀y ∈ A and yRx for some y ∈ A}

An alternative is minimal if it is dominated by some alternative of the menu and does

not dominate any alternative. We illustrate the notion of minimal set with an example.
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Example 1.1. Let A = {a, b, c, d, e}. Rationales R1, R2, R3 and R4 are depicted in Panel

(i), (ii), (iii), and (iv) respectively of Figure 1.1. Arrow from x to y depicts xRy. Else, x

and y are non-comparable. In Panel (i), the set of minimal alternatives is {c, d}. This is

d c

b

a e

←Minimal set

←Maximal set

d c

b

a e
←Maximal set

(i) (ii)

d c

b

a
←Minimal set

d c

b

a
←Minimal set

(iii) (iv)

Figure 1.1: Rationales R1, R2, R3, and R4.

because both c and d are dominated by b, and do not dominate any other alternative in

the set. Note that b is neither maximal nor minimal as it is dominated by a and dominate

c and d. Alternative e is not minimal as it is not dominated by any other alternative.

In Panel (ii), there are no minimal alternatives since each of the alternatives is either

“isolated” or dominates at least one alternative in the set. The maximal set exists and is

equal to {a, e}. In Panel (iii), there are no maximal alternatives, but the set of minimal

alternatives is {a}. Lastly, in Panel (iv), there are no maximal or minimal alternatives

as every alternative is both dominated and dominates some alternative in the menu.

This example illustrates that the set of maximal and minimal alternatives may be

null in a menu. Observe that by definition, the set of minimal alternatives does not

include any maximal alternative for a given rationale, that is, M(A,R) ∩m(A,R)=∅8.

For a menu A and rationale R, an alternative that does not belong to m(A,R)

is referred to as an acceptable alternative. We say that a decision correspondence is

8Our definition of minimal alternatives differs from the commonly known definition of minimality
which states that an alternative is minimal if it does not strictly dominate any alternative. In that
case, an alternative that is “isolated” in the menu is both a maximal as well as a minimal alternative.
Therefore, we do not include such alternatives in our definition of minimal set. We thank Yves Sprumont
for pointing this out to us.

13



acceptable if from each menu, (i) it selects a set of acceptable alternatives and (ii) it

includes the maximal set if it exists. Formally,

Definition 1.3. A decision correspondence d is an acceptable correspondence if there

exists a rationale R such that for all menus A,

M(A,R) ⊆ d(A) ⊆ A \m(A,R)

If d is an acceptable correspondence and the underlying rationale is R, we say that

“R generates d”. The following observation is important.

Observation 1.1. Let d be an acceptable correspondence generated by a rationale R.

Then, R = Rd where (i) d({x, y}) = {x} if and only if xRdy and (ii) d({x, y}) = {x, y}
iff ¬xRdy and ¬yRdx.

The observation above says that if a rationale R generates an acceptable correspon-

dence, then it must be unique. Also, it must be equal to the rationale revealed from the

selection in binary menus of d. An example of a correspondence that is not acceptable

is given below.

Example 1.2. Consider a decision correspondence d over the set A = {a, b, c} as follows.

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {a, c}

We claim that d is not an acceptable correspondence. Suppose it is generated by rationale

R. By Observation 1.1, we have aRb, bRc and aRc. Therefore, c is a minimal alternative

according to R in the menu {a, b, c}, contradicting c ∈ d({a, b, c}).

We now provide a characterization of acceptable correspondences. Our first axiom

is a weakening of the CC condition. It places restrictions only on selection in binary

menus.

Axiom 1(b) (Binary Contraction Consistency (BCC)). For all menus A and x ∈ A, we

have

[x ∈ d(A)] =⇒
[
x ∈ d({x, y}) ∀ y ∈ A \ {x}

]
∨
[
∃ y ∈ A \ {x}, d({x, y}) = {x}

]
This property has the following interpretation: if an alternative is selected in a menu,

it must be either selected in every binary sub-menu, or it must be uniquely selected in
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some binary sub-menu. In the case of single-valued choice correspondences, this condition

translates to a property called Never Chosen9, which requires that if an alternative is not

selected in every binary menu from a collection, then it must be rejected in their union.

Such restriction on binary menus enables us to derive a rationale R that generates d such

that for every menu A, d(A) ⊆ A \m(A,R) for some rationale R.

Our second axiom is a weakening of the Expansion condition. It requires that if an

alternative is not rejected (is acceptable) in every binary menu from a collection, then it

must be selected in their union as well. This property appears in Ehlers and Sprumont

(2008) and is also known as Always Chosen10. The condition is formally defined below.

Axiom 2(b) (Binary Dominance Consistency (BDC)). For all menus A and x ∈ A, we

have

[x ∈ d({x, y}) ∀ y ∈ A \ {x}] =⇒ [x ∈ d(A)]

This condition guarantees the existence of a rationale R that ensures M(A,R) ⊆
d(A) for every menu A. Such a correspondence that contains an MR correspondence

is referred to as subrationalizable (see Moulin (1985) and Echenique et al. (2011)). The

independence of BCC and BDC is illustrated in the Example 1.3 below.

Example 1.3. Consider decision correspondences d over the set X = {a, b, c} as follows

d({a, b}) = {a} d({a, c}) = {a, c} d({b, c}) = {b} d({a, b, c}) = {b}

This correspondence satisfies BCC but violates BDC as alternative a is selected in both

{a, b} and {a, c}. However, it is not selected in their union {a, b, c}. Now consider d in

Example 1.2. It satisfies BDC, but not BCC as c ∈ d(A) is not selected in {a, c} and is

also not selected uniquely in any other sub-menu.

The following straightforward result summarizes our discussion of this subsection.

Theorem 1.1. A decision correspondence is an acceptable correspondence if and only

if it satisfies BCC and BDC.

Unlike MR correspondences, we do not need acyclicity of the rationale to guarantee

the existence of an acceptable correspondence. The proof of this result is provided in

Appendix 1.A.1.

9This property is used in characterizing two-stage model of Bhardwaj and Manocha (2021)
10It is the choice-rule formulation of what is sometimes called the Condorcet winner principle.
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Note that MR correspondences, by definition, are a subclass of acceptable correspon-

dences. However, not every sub-rationalizable11 correspondence is acceptable. A trivial

example of such a correspondence is the identity mapping dI : P(X) → P(X) such that

for all menus A, dI(A) = A. Thus, the concept of acceptability strengthens the idea of

sub-rationalizability to accommodate the rejection behaviour of the DM.

An important distinction between MR and acceptable correspondences is that the

former satisfies a property of stability while the latter does not.

Definition 1.4. A correspondence d is stable if for all menus A,

d(A) = d(d(A))

Proposition 1.1. MR correspondences are stable while acceptable correspondences are

not.

Stability of MR correspondences follows from the property of maximality. To show

that acceptable correspondences are not stable, consider the example depicted in Figure

1.1 (Panel (i)). In the menu A = {a, b, c, d, e}, the set of acceptable alternatives is

{a, b, e}. However, b is not an acceptable alternative in the smaller set {a, b, e}. Thus,

d(d(A)) ⊊ d(A).

Note that, in this example d(d(A)) = {a, e} = d(d(d(A))). In fact, an acceptable

set is stable after a finite number of applications of the d operator. We will further

investigate this behaviour of acceptable correspondences in Section 1.5.

1.4 Maximal Acceptable Correspondences

In this section, we characterize a natural class of acceptable correspondences that is,

maximal acceptable correspondences. It selects the largest set of acceptable alternatives

in the menu. We now formally define maximal acceptable correspondence.

Definition 1.5. A decision correspondence d is a maximal acceptable (MA) corre-

spondence if there exists a rationale R such that for all menus A

d(A) = A \m(R,A)

11A correspondence that contains a maximal-element rationalizable correspondence is referred to as
a sub-rationalizable correspondence as defined in Moulin (1985).
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We proceed to characterize the class of MA correspondences. Our first axiom is a

mild weakening of the CC condition and a strengthening of the BCC condition. Unlike

BCC, this puts restrictions on all the sub-menus considered. Formally,

Axiom 1(c) (Partial Contraction Consistency (PCC)). For all menus A and x ∈ A, we

have

[x ∈ d(A)] =⇒
[
x ∈ d(A′) ∀ {x} ⊂ A′ ⊂ A

]
∨
[
∃ y ∈ A \ {x}, d({x, y}) = {x}

]
According to the axiom, an alternative that is selected in a menu must be selected

in all the sub-menus to which it belongs. Otherwise, it must be a unique choice in some

binary menu.

The second axiom we propose is a strengthening of Expansion Consistency. Formally,

Axiom 2(c) (Strong Expansion (S-Exp)). For all menus A, B and x ∈ A ∪B, we have

[
x ∈ d(A) ∩ d(B)

]
∨
[
d(A) = {x}

]
=⇒ [x ∈ d(A ∪B)]

The axiom has the following interpretation: consider two menus and an alternative x

that belongs to the union of the two menus. If this alternative is selected in both menus,

or uniquely selected in one of them, it must be selected in their union.

Our main result of this subsection is the following

Theorem 1.2. A decision correspondence is an MA correspondence if and only if it

satisfies PCC and S-Exp.

The proof of the theorem can be found in Appendix 1.A.2.

1.4.1 Refinements of Maximal Acceptable Correspondences

In this subsection, we provide characterization results for MA correspondences obtained

by imposing more structure on the rationale generating the correspondence. Note that

no assumptions are made on the rationale in Theorem 1.2. Completeness and transitivity

are standard rationality assumptions in the context of individual decision-making. In

group decision-making, the Pareto relation is transitive (or quasi-transitive) but not

complete. On the other hand, group decision-making via majority relations leading to

tournaments is complete but not transitive.
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We refer to an MA correspondence generated by an acyclic rationale as a Y−MA

correspondence. Similarly, a correspondence generated by a transitive rationale is re-

ferred to as a T−MA correspondence, one generated by a complete rationale, a C−MA

correspondence, and one generated by a linear order, a TC−MA correspondence. We

introduce several axioms which in conjunction with the axioms deployed in Theorem 1.2

characterize Y−MA, T−MA, C−MA and TC−MA correspondences.

Axiom 3(a) (No Rejection Consistency (NRC)). For all menus A, we have

[d(A) = A] =⇒ [d(A′) = A′ ∀A′ ⊂ A]

According to NRC12 if everything is acceptable in a menu, then everything must be

acceptable in all its’ sub-menus. This condition is necessary for the generating rationale

to be acyclic and together with PCC and S-Exp is also sufficient.

Axiom 3(b) (No Binary Cycles (NBC)). For all x, y, z ∈ X, we have

[d({x, y}) = {x}] ∧ [d({y, z}) = {y}] =⇒ [d({x, z}) = {x}]

The NBC axiom is well known in the literature (see Manzini and Mariotti (2007)). It

is a straightforward restriction that guarantees that the generating rationale is transitive.

Axiom 3(c) (Resoluteness). For all menus A with |A| = 2, we have d(A) ⊊ A.

The resoluteness axiom is introduced in Ehlers and Sprumont (2008). It requires the

DM to be decisive in binary menus.

The following straightforward result characterizes Y−MA, T−MA, C−MA and

TC−MA correspondences.

Theorem 1.3. A decision correspondence is

1. Y−MA if and only if it satisfies PCC, S-Exp, and NRC.

2. T−MA if and only if it satisfies PCC, S-Exp, and NBC.

12Sen (1971) introduces a property called δ which requires that if two alternatives are best in a menu
S, then neither of them can be uniquely best in a larger menu T where S ⊂ T . Similarly, this says
that if all the alternatives are best in a menu, then it cannot be that some alternatives are not the best
in a smaller menu. A condition called Aizerman discussed in Moulin (1985) is in a similar vein and
characterizes quasi-transitive rationalizability along with Contraction and Expansion Consistency.
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3. C−MA if and only if it satisfies PCC, S-Exp, and Resoluteness13.

Finally, we turn to MA correspondences that are generated by complete and acyclic

rationales. Note that transitivity is implied by acyclicity in the presence of completeness

and asymmetry. According to Theorem 1.3, the linearity of the generating rationale

is guaranteed if the MA correspondence is both resolute and satisfies NRC (or NBC).

Resoluteness along with NRC is equivalent to a stricter form of resoluteness, we call

strong resoluteness14.

Axiom 3(d) (Strong Resoluteness). For all menus A, we have d(A) ⊊ A.

An alternate characterization can be provided using strong resoluteness and a CC

condition for rejected alternatives.

Axiom 2(d) (Rejection Contraction Consistency (RCC)). For all menus A and x ∈ A,

[x /∈ d(A)] =⇒ [x /∈ d(A′) ∀ A′ ⊂ A]

This condition is very restrictive as an alternative that is selected in at least one

of a collection of menus must be selected in their union as well15. Observe that if the

generating rationale is a linear order, the set of rejected alternatives is unique. The RCC

condition can therefore be regarded as a counterpart of the CC condition for singleton-

valued correspondence of rejected alternatives.

The relationship between Axioms 3(a), 3(b), 3(c) and 3(d) is established in Figure

1.2.

NRC [3(a)]
Resolute [3(c)]

NBC [3(b)]

Strongly Resolute [3(d)]

Figure 1.2: Relationship between Axioms 3(a), 3(b), 3(c) and 3(d).

13A similar refinement result can be provided for acceptable correspondences, that follows from
Observation 1.1. The implications of that result are subsumed in this result.

14This condition is introduced in Gerasimou (2016) under the name of Choice implies Rejection.
15The contrapositive of this statement suggests that it is a strengthening of Axiom 2(c).
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Our final result in this subsection is stated below.

Theorem 1.4. The following statements are equivalent. The correspondence d is

1. TC−MA

2. resolute and satisfies PCC, S-Exp, and NRC

3. resolute and satisfies PCC, S-Exp, and NBC

4. strongly resolute and satisfies PCC and S-Exp

5. strongly resolute and satisfies RCC

The proof of Theorem 1.4 is provided in Appendix 1.A.2.

1.4.2 The Non-Equivalence of MR and MA Correspondences

It may be tempting to conclude that selection by maximization and selection by minimal

rejection are “essentially” the same because one is the dual of the other. We argue in

this section that it is not the case.

One possible interpretation of the equivalence claim is that an MA correspondence

is an MR correspondence - what we obtain by rejecting minimal alternatives is precisely

what we can obtain by maximizing, possibly different rationale. This claim is false which

can be confirmed by referring to Example 1.4.

Example 1.4. Consider decision correspondences d over the set X = {a, b, c} as follows

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {a, b}

The correspondence d is an MA correspondence generated by a linear order R :

aRbRc. However, d violates CC since b ∈ d({a, b, c}) and b /∈ {a, b}. Therefore, it is

not an MR correspondence. The falsity of the equivalence claim also follows the fact

that the conditions that characterize MA and MR correspondences are distinct. The

former is characterized by PCC and S-Exp and the latter by CC and Exp (Lemma 1.3

and Theorem 1.2). There is a special case when the equivalence holds. This is when MA

correspondence is generated by a dichotomous rationale.
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Definition 1.6. A rationale R is dichotomous if there exists a partition {G,B} of X

such that for all x, y ∈ X, xRy implies x ∈ G and y ∈ B.

The equivalence result is stated below.

Proposition 1.2. A decision correspondence d is an MA correspondence generated by

a rationale R. Then the following statements are equivalent.

1. d is an MR correspondence.

2. R is dichotomous.

Observation 1.1 provides an intuition of the result. A formal proof appears in Ap-

pendix 1.A.1.

An alternative interpretation of equivalence is that rejected alternatives are obtained

by a maximizing procedure. In other words, the set of minimal alternatives according

to a rationale is an MR correspondence for a possibly different rationale. Let d be an

arbitrary correspondence and let rd(A) = A \ d(A) be the set of alternatives that are

rejected while selecting d(A). According to this notion of equivalence, there exists a

rationale R′ such that rd(A) = M(A,R′) for every menu A. This claim is false as shown

in Example 1.5 below.

Example 1.5. Consider decision correspondences d over the set X = {a, b, c} as follows

d({a, b}) = {a} d({a, c}) = {a, c} d({b, c}) = {b, c} d({a, b, c}) = {a, c}

We note that d above is an MR correspondence generated by rationale R: aRb. Since

rd(A) is empty for the menus {a, c} and {b, c}, the equivalence does not hold. For rd

to be a decision correspondence, the condition of strong resoluteness is necessary. The

unique case when equivalence in this sense holds is when d is a TC−MA correspondence.

Proposition 1.3. A decision correspondence d is an MA correspondence generated by

a rationale R. Then the following statements are equivalent.

1. rd is an MR correspondence.

2. R is a linear order.
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The intuition of this result is the following: an alternative that is minimal in a menu

A with respect to linear order R is the unique maximal alternative with respect to the

linear order R−1.

The notion of minimal alternatives defined in this chapter mirrors the concept of a

partially dominant correspondence dPD of Gerasimou (2016). Their correspondence is a

refinement of MR correspondences. For every menu A and acyclic rationaleR, dPD(A,R)

consists of alternatives not dominated by any other alternative in A and dominate some

alternatives according to R. If all alternatives are non-comparable in A, dPD(A,R) =

A. Example 1.5 also indicates that rd associated with an MA correspondence is not

a PD correspondence. However, the equivalence holds when the rationale is a linear

order. This is reflected in Proposition 2 of Gerasimou (2016) that characterizes an MR

correspondence using strong resoluteness and CC.

1.5 Threshold Acceptable Correspondences

In this section, we refine the class of acceptable correspondences by allowing the DM to

reject more than the worst alternatives according to a rationale.

Definition 1.7. For all k ∈ N , menus A and rationales R, the k−minimal setmk(A,R)

is defined recursively as follows:

1. m0(A,R) := ∅.

2. Given mk−1(A,R),

mk(A,R) := mk−1(A,R) ∪m(A \mk−1(A,R), R)

The k−minimal set is obtained by successively removing the worst alternatives ac-

cording to R. In the first step, the DM eliminates the worst alternatives, that is, the

minimal set according to R. Then she removes the minimal set from the “survivor” set

and so on for k steps. The example below illustrates the k-minimal set.

Example 1.6. Let A = {a, b, c, d, e, f, g} and let R be a rationale shown in Figure 1.3.

An arrow from x to y signifies xRy. The rationale R is assumed to be transitive.

For k = 1, the m1(A,R) is the set of minimal alternatives m(A,R) = {b}. For k = 2,
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Figure 1.3: The rationale R

m2(A,R) is {b, d, e, f} as this is the minimal set of the survivor set {a, c, d, e, f, g}. For
k ≥ 3, mk(A,R) is A \ {a}.

The integer k is referred to as a threshold. Note that in general, the threshold can

depend on the menu and is specified by threshold function k : P(X) → N . Here k(A) is

the threshold for menu A.

It follows from the definition of k−minimal sets that for any menu A and rationale

R, mk(A,R) = mk+1(A,R) for some large enough k. In particular, this bound on k is

less than |A|. We can therefore assume W.L.O.G that k(A) ≤ |A| for every menu A. We

also assume that k(A) ≥ 1 for all menus A to exclude consideration of trivial cases.

An important observation that follows immediately from the Definition 1.7 is that

for any menu A and rationale R, mk(A,R) ∩M(A,R) = ∅ for every k ≥ 1.

Definition 1.8. A decision correspondence d is a threshold acceptable (TA) corre-

spondence if there exists a transitive rationale R and a threshold function k : P(X) → N

such that for all menus A,

d(A) = A \mk(A)(A,R)

We assume transitivity on the generating rationale R for analytical simplicity. Our

results can be extended to the acyclic case without generating any new significant insight.

In view of our discussion, a DM can now be represented by a pair (R, k) where R is the

rationale and k is the threshold function.
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1.5.1 Fixed-TA Correspondences: Characterization

In this section we introduce and characterize TA correspondences where the threshold

is menu-independent, that is, the threshold function is a constant function. This is

consistent with a situation where the DM has a fixed processing capacity. Note that

an MA correspondence discussed earlier is a special case of TA correspondence where

k(A) = 1 for all the menus A. We will refer to such correspondences as Fixed Threshold

Correspondences or fixed-TA correspondences.

The axioms that characterize fixed-TA correspondences are Independence of Undom-

inated Alternatives (IUA), Expansion, NBC, Weakened CC (WnCC) and Neutrality. We

have already introduced Expansion and NBC in Sections 1.2.2 and 1.4.1 respectively.

We proceed to formally introduce and discuss the other axioms.

Axiom 1(d) (Independence of Undominated Alternatives (IUA)). For all menus A and

x, y ∈ A such that y ∈ d({x, y}), we have

[x ∈ d(A)] =⇒ [x ∈ d(A \ {y})]

Axiom 1(e) (Weakened Contraction Consistency (WnCC)). For all menusA and x, y1, y2 ∈
A such that d({y1, y2}) = {y1, y2}, we have

[x ∈ d(A)] =⇒ [x ∈ d(A \ {yi}) for some i ∈ {1, 2}]

The conditions IUA and WnCC are weakening of CC16 condition that relates selec-

tions in larger menus and selections in appropriate sub-menus. Suppose alternative x is

selected in menu A and y is “at least as strong as” x in the sense that y is selected in

the binary menu {x, y}. Then the removal of y from the menu should make x “stronger”

in the sub-menu. The IUA axiom requires x should continue to be selected in this

sub-menu. However, this condition is stronger than PCC condition17 (see Section 1.4).

The WnCC axiom considers a similar situation. Suppose there exist two alternatives

16The CC condition is also stated as Independence of Irrelevant Alternatives (IIA) in the literature.
IIA says that for all menus A and x, y ∈ A such that x ̸= y, we have x ∈ d(A) =⇒ x ∈ d(A \ {y}).
Axioms 1(d) and 1(e) are similar in spirit.

17Let d be correspondence and X = {a, b, c, d} such that selections in binary menus are depicted
in Figure 1.1, Panel (i). Let d(X) = {a, b, c}, d({a, b, c}) = {a, b} = d({a, b, d}), d({a, c, d}) = {a, c}
and d({b, c, d}) = {b}. This satisfies PCC but violates IUA. This is so because d(X) = {a, b, c} and
c /∈ d({b, c, d}) = {b}, when d({a, c}) = {a}.
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y1 and y2 in the menu which is equally strong relative to each other, that is, d({y1, y2}) =
{y1, y2}. Then the selection from the original menu must continue to be selected in one

of the sub-menus where either y1 or y2 is removed. This condition does not require the x

to be distinct from either y1 or y2. If x = yi for some i ∈ {1, 2}, then WnCC is implied by

IUA. However, in the case when x, y1, y2 are distinct and d({x, y1}) = d({x, y2}) = {x},
then WnCC cannot be deduced from IUA. The relationship between the various CC

axioms is discussed in Appendix 1.C.

The WnCC axiom is a modification of the Weak Contraction Consistency (WCC)

condition that appears in Lahiri (2001), Ehlers and Sprumont (2008). According to

WCC, a selection in a menu of size T ≥ 3 must be the selection in at least one sub-menu

of cardinality T − 1.

In order to define our last axiom, we introduce the concept of isomorphism between

two menus for a given correspondence.

Definition 1.9 (Isomorphic sets). Let d be a correspondence. Menus A and B are

isomorphic with respect to d if there exists a bijection σ : A → B such that for all

x, y ∈ A, we have

[d{x, y} = {x}] ⇐⇒ [d({σ(x), σ(y)}) = {σ(x)}]

The notion of isomorphism only involves selections in binary menus. Consider a

correspondence d and the menus A = {a, b, c, d} and B = {b, c, e, f} in Figure 1.4.

Arrows depict selections in binary menus of the decision correspondence and dotted

lines depict non-comparable pairs. For instance, d({a, b}) = {a, b} and d({b, c}) = {b}.
The menus A = {a, b, c, d} and B = {b, c, e, f} in Figure 1.4 are isomorphic with respect

to the decision correspondence d for σ as,

σ(a) = b, σ(b) = e, σ(c) = f, σ(d) = c

Axiom 4 (Neutrality (N)). For all menus A, B and x ∈ A such that A and B are

isomorphic with respect to d with bijection σ, we have

[x ∈ d(A)] =⇒ [σ(x) ∈ d(B)]

The Neutrality axiom extends the selection behaviour of binary menus to the menus
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Figure 1.4: The Rationale R restricted to menus A and B.

themselves. This axiom requires that if a DM displays the same selection behaviour in

the binary sub-menus of two menus, then she must display the same selection behaviour

in the menus as well. Therefore, this precludes certain menu-dependent behaviour.

The independence of these axioms is illustrated in Appendix 1.B.1. Our main result

in this section is the following:

Theorem 1.5. A decision correspondence is a fixed-TA correspondence if and only if

it satisfies IUA, WnCC, Exp, NBC, and N.

The proof of Theorem 1.5 can be found in Appendix 1.A.2. Here, we provide a sketch

of the proof which heavily relies on the notion of a chain. A chain is defined below.

Definition 1.10 (Chain). Let d be a decision correspondence. Then, ⟨x1, x2, . . . , xn⟩
is a chain of length n if, ∀ i ∈ {1, ..., n − 1}, d({xi, xi+1}) = {xi} and d({xi, xj}) =

{xi} implies i < j.

In Figure 1.4, ⟨b, c, d⟩ is a chain in menu {a, b, c, d} of length 3 and ⟨e, f, b, c, d⟩ is

a chain in menu {a, b, c, d, e, f} of length 5. A menu is a chain if it comprises of all

alternatives in the menu. Let Rd be a transitive rationale. We say that a “chain of

length n below x” exists in menu A if for some {x1, . . . , xn} ⊂ A, ⟨x, x1, x2, . . . , xn⟩ is a
chain.

Sketch of the proof: In the necessity part of the proof of Theorem 1.5, the generating

rationale R is recovered from the strict relation derived by selections in binary menus.

In particular, R = Rd. It will be transitive due to NBC. In order to recover the threshold

k, we identify the smallest cardinality menu, say A∗, such that there exists x ∈ d(A∗)

but x is not selected in some sub-menu to which it belongs. In other words, a violation

of CC is observed. If such a set does not exist, then the threshold is set equal to |X|. In
this case, d is actually an MR correspondence.
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Suppose a menu A∗ exists. By hypothesis, maximal alternatives with respect to

R are selected for menus of cardinality smaller than |A∗|. This is proved using the

characterization of MR correspondence (see Sen (1971)) since all the menus of cardinality

lesser than |A∗| satisfy Exp and CC conditions. In the next step, we prove that A∗ is

a chain. This is proved using IUA and WnCC, which together guarantee that only the

largest chain below an alternative is relevant while selecting a non-maximal alternative.

The threshold k is defined to be the cardinality of A∗ minus the number of alternatives

selected in this menu. In fact we show that this cardinality is equal to |A∗| − 2. This

is so because exactly one non-maximal alternative is selected in this set. Since A∗ is a

chain, there is a chain of length |A∗| − 2 below it.

The result for general menus is established using induction on the cardinality of

menus. The base case for menus with cardinality |A∗| relies on an application of Neu-

trality. For larger menus A, the IUA condition ensures k(A) ≥ k. On the other hand,

the Exp condition ensures k(A) ≤ k. Thus, k is fixed across all menus.

The characterization result in Theorem 1.5 is built on the characterization result of

acceptable correspondences. Both the axioms, IUA and Exp are strengthening of BCC

and BDC respectively (see Theorem 1.1). NBC ensures that the rationale generating d

is transitive. (see Observation 1.1). Axioms WnCC and Neutrality impose restrictions

on the correspondence so that the threshold in each menu is fixed.

This result is also related to the characterization result in Theorem 1.2 as T−MA

correspondence is a special case of fixed-TA correspondence, with threshold k = 1. A

Corollary of Theorem 1.5 gives an alternate characterization of T−MA correspondence.

Corollary 1.1. A decision correspondence is a T−MA correspondence if and only if it

satisfies IUA, S-Exp, and NBC.

The S-Exp condition ensures |A∗| = 3. This is so for the following reason: for all

x, y ∈ X, if d({x, y}) = {x}, then for all z ∈ X \ {x, y} it is true that x ∈ d({x, y, z}).
The other two axioms are redundant in this case.

1.5.2 TA Correspondences: Characterization

In this section, we characterize TA correspondences when the threshold may vary across

menus. This includes situations where the threshold depends on factors like the size
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Figure 1.5: Violation of Monotonicity with d(A) = {a, c, d, g}

of the menu, complexity (in terms of selections in binary menus), number of desired

selections from a menu, etc.

The characterization of TA correspondences is built on the characterization of ac-

ceptable correspondences (see Theorem 1.1.). In addition to BDC and BCC, we require

a monotonicity axiom that gives a threshold structure to the correspondence. The intu-

ition behind the monotonicity condition is the following: if an alternative is “stronger”

than the other alternative in a menu, then rejection of the former implies rejection of

the latter. The strength of an alternative is defined in terms of the length of the largest

chain below the alternative. All maximal alternatives are the best alternatives in a menu.

Thus, our monotonicity condition only compares the non-maximal alternatives.

For a decision correspondence d, let L(x,A) denote the set of chains below x in menu

A with respect to d. For each menu A, we define a menu-specific revealed relation ⊵A

using L(x,A) for every x ∈ A.

Definition 1.11. Let d be a decision correspondence. For all menus A and x, y ∈ A,

we have

[ x ⊵A y ] ⇐⇒ [ |L(x,A)| ≥ |L(y, A)| ]

where |L(x,A)| is the length of the longest chain in this collection.

The asymmetric and symmetric components of ⊵A are denoted by ▷A and ∼A re-

spectively. It can be observed that ⊵A is complete and both ▷A and ∼A are transitive

for any menu A. Thus, ⊵A is a menu-dependent weak order over the set of alternatives.

A correspondence d with the strict relation derived by selections in binary sub-menus of

the menu A = {a, b, c, d, e, f, g} is depicted in Figure 1.3. The corresponding ⊵A is equal

to the weak relation derived from selections in binary menus.
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In view of the transitivity of R, it is legitimate to regard x being stronger than y if

x and y belong to a chain and x is above y in the chain. If they do not belong to the

same chain, then x ∼A y indicates that x and y are equivalent in terms of their strength.

Likewise, x ▷A y indicates that there is an alternative z below x in the chain, and y is

equivalent to z in terms of their strength. Note that the strength of an alternative in

a menu is not proportional to the number of alternatives, or the number of chains that

are below it. This is illustrated in Figure 1.6. Arrow from x to y depicts xRy. All other

relations xRy are deduced by the transitivity of R. In Panel (i), there are 3 alternatives

below b, and in Panel (ii), there are only 2 alternatives below it. Yet, b is stronger in

Panel (ii) than in Panel (i).

d c

b

a

e

a b c d

(i) (ii)

Figure 1.6: The Rationales R1 and R2.

The monotonicity axiom reflects a natural requirement: if a “weak” alternative y is

selected in a menu, then a “stronger” alternative in the same menu must also be selected.

Axiom 5 (Monotonicity (MON)). For all menus A and x, y ∈ A such that d({y, z}) =
{z} for some z ∈ A and x ⊵A y, we have

[y ∈ d(A)] =⇒ [x ∈ d(A)]

This condition has an important implication: if d({x, y}) = {x}, then y ∈ d(A) =⇒
x ∈ d(A)18. If Rd is transitive, the axiom ensures that every chain in the menu has

an associated chain-specific threshold: all alternatives that are above the threshold are

selected. This is illustrated in Figure 1.5.

For the case when x and y are not a part of any chain, MON ensures that an “internal

neutrality” condition is satisfied. This is violated in the example in Figure 1.5.

The relationship between all the Contraction and Expansion Consistency axioms is

18This condition is referred to as Condorcet Transitivity in Moulin (1986) for a given tournament.

29



presented in Appendix 1.C.1. The following result is a characterization result of TA

correspondences. The proof of this result is in Appendix 1.A.2.

Theorem 1.6. A decision correspondence is a TA correspondence if and only if it

satisfies BCC, BDC, NBC, and MON.

1.6 Applications

The rejection approach developed in this chapter can offer explanations for various

anomalies observed in decision theory. These anomalies include some common boundedly

rational behaviours, such as the attraction effect and compromise effect19. Understand-

ing these effects is essential for accurately predicting shifts in market shares resulting

from the introduction or removal of products.

A succinct way to think about these phenomena is in terms of choice reversals. A

decision correspondence d displays a reversal with respect to an alternative x ∈ X if, for

some {x} ⊂ B ⊂ A, we have x /∈ d(B) and x ∈ d(A). The classical model of selection

does not allow for any reversal and is characterized by the CC and Expansion conditions.

However, in our model, we relax the assumption of the CC condition while still satisfying

the Expansion condition, thereby accommodating reversals.

It should be noted that there exist several other models that offer explanations

for such behaviour, including Manzini and Mariotti (2007), Masatlioglu and Nakajima

(2007), Gerasimou (2016), Lleras et al. (2017), and many others. However, it is im-

portant to highlight that these models allow for at most one reversal with respect to a

particular alternative. A decision correspondence d displays a single reversal with re-

spect to an alternative x ∈ X if, for some {x} ⊂ B ⊂ A ⊂ A′, x ∈ d(B) and x /∈ d(A),

then x /∈ d(A′).

In contrast, certain empirically observed phenomena, such as the two-decoy effect

or the two-compromise effect, involve what can be described as a double reversal (see

Tserenjigmid (2019); Manzini and Mariotti (2010); Teppan and Felfernig (2009)). This

behaviour can also be accommodated in our model. To better understand this concept,

consider the following example:

19These effects, also referred to as the asymmetric dominance effect or the decoy effect, were initially
identified in experimental studies conducted by Simonson (1989) and Huber et al. (1982).
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Example 1.7. Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, b, c}) = {a, b}

d({b, d}) = {b, d} d({a, b, d}) = {a} d({a, b, c, d}) = {a, b, d}

d({a, c}) = {a} d({a, c, d}) = {a, d}

d({b, c}) = {b} d({b, c, d}) = {b, d}

d({a, d}) = {a}

d({c, d}) = {d}

The correspondence presented above is anMA correspondence generated by the rationale

R : aRbRc, aRdRc. It exhibits more than two reversals with respect to the alternative

‘d’ as the menus expand from {b, d} to {a, b, d} and then to {a, b, c, d}.

Interestingly, our model allows for more than two reversals. In general, a decision

correspondence exhibits a t-reversal with respect to an alternative x ∈ X if there exist

subsets S1, S2, . . . , Sk+1 such that {x} ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sk+1, and it satisfies the

following conditions: x /∈ d(S1), and for all i ∈ 2, . . . , k + 1, x ∈ d(Si) if and only if

x /∈ d(Si−1). The models in the papers cited previously are not able to accommodate

this general behaviour. Example 1.8 illustrates that acceptable correspondences can

allow for up to |X| − 2 reversals with respect to an alternative.

Example 1.8. Consider a TA correspondence d and X = {x1, x2, x3, . . . , xn}. Let

the generating rationale R be a strict linear order such that xiRxi+1 holds for all i =

1, . . . , n− 1. The threshold function k(.) is the following:

k({x1, x2}) = k({x1, x2, x3}) = 1

k({x1, x2, x3, x4}) = k({x1, x2, x3, x4, x5}) = 3

k({x1, x2, x3, x4, x5, x6}) = k({x1, x2, x3, x4, x5, x6, x7}) = 5

and so on..

This results in a t-reversal with respect to x2 where t = |X| − 2.

It may be tempting to conclude that every non-standard behaviour can be explained

by TA correspondences. However, this is not the case, as indicated by the characteri-

zation of TA correspondences (see Theorem 1.6). A smaller number of reversals can be

accommodated as the threshold k increases in the case of fixed-TA correspondences.
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Appendix 1.A

1.A.1 Proof of Proposition 1.2

Proof. Let d be an MA correspondence and rationale R be such that for all menus A,

d(A) = A \m(A,R).

First, we show that if d be an MR correspondence, that is, for all menus A, d(A) =

M(A,R′) for some acyclic rationale R′, then R is dichotomous. Consider some x, y ∈ X.

If d({x, y}) = {x} = M(A,R′), then xR′y holds. Also, by Observation 1.1, d({x, y}) =
{x} implies xRy. Therefore, R = R′ and for all menus A, d(A) = M(A,R) = A\m(A,R).

Consider a partition of X, {G,B} where G = M(X,R) and B = A \ M(X,R). By

definition, if xRy then y ∈ B. It remains to show that x ∈ G. If possible, let zRx holds

for some z ∈ X \{x, y}, that is, x /∈ M(X,R). Then, it must be that x ∈ m(X,R), which

is a contradiction as xRy is true. We conclude that x ∈ G and thus, R is dichotomous.

Now, we prove that if R is dichotomous, then d is an MR correspondence. By

hypothesis, for all menus A, d(A) = A\m(A,R) for some dichotomous rationale R. That

is, there exists a partition of X, {G,B} where xRy implies x ∈ G and y ∈ B. We now

show that for all menus A, d(A) = M(A,R). Since R is acyclic, M(A,R) ⊆ A \m(A,R)

by definition, it remains to A \ m(A,R) ⊆ M(A,R). Consider x ∈ A \ m(A,R) and

suppose x /∈ M(A,R). Then, there exists y, z ∈ X \ {x} such that yRxRz holds. By

definition of the partition, x ∈ G ∩ B which is a contradiction. Thus, d is an MR

correspondence.

1.A.2 Proofs of Theorems

Proof of Theorem 1.1

Proof. Let us first prove the necessity of axioms. Let d be an acceptable correspondence

generated by a rationale R. By Observation 1.1, R = Rd. BDC follows from M(A,R) ⊆
d(A) and BCC follows from d(A) ⊆ A \m(A,R).

To prove the “if” part, let R = Rd. Note that, R is asymmetric by definition.

Consider any arbitrary A ∈ P(X). Suppose x ∈ M(A,R). Then x ∈ d({x, y}) for all

y ∈ A and by BDC, we have x ∈ d(A). Therefore, M(A,R) ⊆ d(A). Now, suppose
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that x ∈ m(A,R), that is, yRx for some y ∈ A \ {x} and ¬xRy for all y ∈ A. Since

x /∈ d({x, y}) for all y ∈ A\ and y = d({x, y}) for some y ∈ A \ {x}, by BCC, we have

x /∈ d(A) and we are done.

Proof of Theorem 1.2

Proof. Let us first prove the necessity of axioms. Let d be an MA correspondence gen-

erated by a rationale R. By Observation 1.1, R = Rd.

− PCC: Consider a menu A and x ∈ A such that x ∈ d(A). As d is generated by

R, x /∈ m(A,R). There are two possible cases: (i) x ∈ M(A,R), then x ∈ M(A′, R) for

all A′ ⊂ A. This implies x ∈ d(A′) (ii) x ∈ A\ (M(A,R)∪m(A,R)). By definition, there

exists a y ∈ A \ {x} such that xRy is true. This implies, d(A′) = {x} for for A′ = {x, y}.

− S-Exp: Consider menus A,B and x ∈ A ∪ B such that (i) x ∈ d(A) ∩ d(B). As

d is generated by R, x /∈ m(A,R)∪m(B,R). Therefore, x /∈ m(A∪B,R), which further

implies that x ∈ d(A ∪ B). Now consider the case (ii) d(A) = {x}. As d is generated

by R, for every y ∈ A \ {x}, xRy holds. Therefore, x /∈ m(A ∪ B,R), further implying

x ∈ d(A ∪B).

Now we prove the “if” part. Suppose d satisfies PCC and S-Exp. Define R = Rd.

Note that, R is asymmetric by definition. Define dR as dR(A) = A \ m(A,R) for all

A. It is clear that dR is well defined. Now, we show that d = dR. It is immediate

that d(A) = dR(A) for all A such that |A| ≤ 2. Consider an arbitrary A ∈ P(X)

and x ∈ dR(A). There are two possible cases: (i) ¬yRx for all y ∈ A \ {x}, that is,

x ∈ d({x, y}) for all y ∈ A \ {x}. By repeated application of PCC, we have x ∈ d(A).

(ii)yRx for some y ∈ A \ {x}. Since x /∈ m(A,R), we have xRy for some y ∈ A \ {x},
that is, d({x, y}) = x. By the second part of S-Exp, again we get x ∈ d(A). Therefore,

we conclude that dR(A) ⊂ d(A) . Now, suppose that x ∈ d(A). By PCC, there are

possible two cases: (i) x ∈ d(A′) for all {x} ⊂ A′ ⊂ A which implies x ∈ d({x, y}) for

all y ∈ A \ {x} and by definition of R, we have ¬yRx for all y ∈ A \ {x}. Therefore

x /∈ m(A,R), implying x ∈ dR(A). (ii) {x} = d(A′) for some A′ ⊂ A. If |A′| = 2, then

we have xRy for y ∈ A′ ⊂ A, implying x /∈ m(A,R) and hence x ∈ dR(A). Suppose

|A′| ≥ 3. Let A′ = {x, y1, . . . , yk} for some k ≥ 2. Observe that d({yi, yj}) = {yi, yj}
for all i, j ∈ {1, . . . , k} (suppose not, then S-Exp would imply d(A) ̸= {x}). Consider
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any arbitrary yi ∈ A′. Suppose yi ∈ d({x, yi}). Then S-Exp implies that y ∈ d(A′), a

contradiction. Therefore, {x} = d({x, yi}) implying xRy. Hence x /∈ m(A,R) which

implies x ∈ dR(A). So, we have d(A) = dR(A). Since A was arbitrary, we have shown

that d = dR .

Proof of Theorem 1.3

Proof. We only prove (1.). Proofs of (2.) and (3.) are straightforward.

Following the proof of Theorem 1.2, it remains to prove that Rd is acyclic. We first

show necessity the of NRC.

− NRC: Consider a menu A ∈ P(X) such that d(A) = A. As d is generated by an

acyclic R, x /∈ m(A,R) for every x ∈ A. Now there are two possible cases (i) for every

x, y ∈ A, ¬xRy. In this case, A = M(A,R). Thus, A′ = M(A′, R) for every A′ ⊂ A. In

case (ii) there exists a x, y ∈ A such that xRy holds. Suppose A = {x1, x2, . . . , xn} such

that x1Rx2 is true. If n = 2, then there is a contradiction as x2 ∈ m(A,R). Thus, the

only case possible is (i). If n > 2, then given that x2 /∈ m(A,R), there is a y ∈ A\{x1, x2}
such that x2Ry is true. This is because if y = x1, then R is not a rationale. W.L.O.G,

let this y be x3. If n = 3, then by the argument above, we have a contradiction. Suppose

then n > 3. By similar argument, there is a y ∈ A \ {x2, x3} such that x3Ry holds.

Observe that if y = x1, then there is a cycle in R, again leading to a contradiction as R

is acyclic. By repeated application of these arguments and finiteness of A, we reach a

contradiction as there would exist at least one alternative belonging to the minimal set

of A.

To prove the “if” part, let R = Rd. Suppose d satisfies PCC, S-Exp, and NRC.

By PCC and S-Exp, dR = d where dR(A) = A \ m(A,R) for all A′ ∈ P(X). As-

sume for contradiction that R is not acyclic. So, there exists x1, . . . , xn such that

x1Rx2R . . . xnRx1 for some n ≥ 3 (the case n = 2 is ruled out by asymmetry of R).

Consider A = {x1, . . . , xn}. We have dR(A) = d(A) = A and d(A′) = A′ for all A ⊂ A

by S-Exp. However d({x1, x2}) = x1, a contradiction. Therefore, R is acyclic.
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Proof of Theorem 1.4

Proof. (1.) =⇒ (2.) follows from Theorem 1.3.

(2.) =⇒ (3.) follows from the equivalence of acyclicity and transitivity under the

completeness of a rationale.

To prove (3.) =⇒ (4.), it is sufficient to prove the following lemma:

Lemma 1.2. A decision correspondence satisfies resoluteness and NRC if and only if it

satisfies strong resoluteness

Proof. The “if” part is straightforward. Let us now prove the “only if” part. Consider

a correspondence d that satisfies resoluteness and NRC. For the sake of contradiction,

there exists a A ∈ P(X) such that d(A) = A. By resoluteness, |A| > 2. Now by

NRC, for every A′ ⊂ A, d(A′) = A′. Thus, there exists a pair {x, y} ⊂ A such that

d({x, y}) = {x, y} which contradicts resoluteness.

To prove (4.) =⇒ (5.), it is sufficient to prove that if a correspondence d is strongly

resolute, then PCC and S-Exp imply RCC. Consider an arbitrary A ∈ P(X) and some

x ∈ d(A). To show the contra-positive of RCC, we need to prove that x ∈ d(A′) for all

A′ ⊃ A. As d satisfies PCC and S-Exp, by arguments in the proof of Theorem 1.2, d is an

MA and underlying rationale R is defined as xRy iff d({x, y}) = {x}. Strong resoluteness
implies d({x, y}) ̸= {x, y} for all x, y ∈ X. Thus, we have R that is complete. Now, as

x ∈ d(A), it must be that x /∈ m(A,R). By completeness of R, there exists a y ∈ A\{x}
such that xRy holds. Thus, we get x /∈ m(A′, R) for all A′ ⊃ A. As d is generated by R,

this completes the proof.

Now we prove (5.) =⇒ (1.).

Suppose d is strongly resolute and satisfies RCC. Let R = Rd. By definition, R is

asymmetric. Since d is strongly resolute, it is complete as well. Assume for contradiction

that it is not transitive. Then there exists x, y, z such that xRyRzRx. Note, however

that d(A) ⊊ A for A = {x, y, z}. W.L.O.G. assume that z /∈ d(A). Then by RCC,

we must have z /∈ d({x, z}) a contradiction to zRx. Therefore, R is transitive. Now,

let dR be defined as in the proof of Theorem 1.2. Note that, since R is a strict linear

order |dR(A)| = |A| − 1 for all A ∈ P(X). We will show that |d(A)| = |A| − 1 for all

A ∈ P(X). Suppose not, then there exists A such that |d(A)| ≤ |A| − 2, that is, there

exists x, y ∈ A such that x /∈ d(A) and y /∈ d(A). However, RCC implies x /∈ d({x, y})
and y /∈ d({x, y}), a contradiction to the assumption that d is non-empty valued. Note
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that dR(A) = d(A) for all A with |A| = 2. Now, consider any arbitrary A and assume

for contradiction that dR(A) ̸= d(A). Suppose x /∈ d(A) and x ∈ dR(A). RCC implies

that x /∈ d({x, y}) for all y ∈ A \ {x}. However, since x ∈ dR(A), we have xRy for some

y ∈ A \ {x}, that is, d({x, y}) = x, which is contradiction. Therefore dR = d.

Proof of Theorem 1.5

Proof. We begin with the “only if” part.

Necessity: Let d be a fixed-TA correspondence generated by a partial order R and a

constant threshold k ∈ N . By Observation 1.1, R = Rd. We now prove the necessity of

the axioms.

− IUA: Consider a menu A ∈ P(X) and x ∈ A such that x ∈ d(A). As d is rep-

resented by (R, k), x /∈ mk(A,R). If for some y ∈ A \ {x} (i) d({x, y}) = {y}, then
there exists a k length chain ⟨x, x1, x2, . . . , xk⟩ in menu A. As R is transitive, y ̸= xi

for all i ≤ k. As this chain also belongs to A \ {y}, x /∈ mk(A \ {y}, R). Consider (ii)

d({x, y}) = {x, y}. If x ∈ M(A,R), then we are done. If not, then there is a chain as in

case (i). By transitivity of R, ⟨x, x1, x2, . . . , xk⟩ is a linear order, that is, d({x, xi}) = {x}
for all i ≤ k. This implies y ̸= xi for all i ≤ k, further implying x /∈ mk(A \ {y}, R). As

d(A) = A \mk(A,R), x ∈ d(A \ {y}) holds.

− Exp: Let A,B ∈ P(X) and x ∈ A be such that x ∈ d(A) ∩ d(B). This im-

plies x /∈ mk(A,R) and x /∈ mk(B,R). If x ∈ M(A,R) and x ∈ M(B,R), then

x ∈ M(A ∪ B,R) and we are done. If x is not the maximal alternative in either of

the menu, say x /∈ M(A,R), then there is a chain ⟨x, x1, x2, . . . , xk⟩ in menu A. As this

chain exists in A ∪B as well, x /∈ mk(A ∪B,R) holds which implies x ∈ d(A ∪B,R).

− NBC: This condition follows directly from transitivity of R.

− WnCC: Consider a menu A ∈ P(X) and x ∈ A such that x ∈ d(A). Let y1, y2 ∈ A

be such that d({y1, y2}) = {y1, y2}. If x ∈ {y1, y2} or yi ∈ d({x, yi}) for some i ∈ {1, 2},
then we are done by the arguments in proving the necessity of IUA. Let x /∈ {y1, y2}
and x = d({x, yi}) for all i. If x ∈ M(A,R), then x ∈ M(A \ {yi, R}) and we are done.

Consider the case when x /∈ M(A,R). This implies there is a chain ⟨x, x1, x2, . . . , xk⟩ in
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menu A. As d({y1, y2}) = {y1, y2}, atmost one of them belongs to this chain. If y1, y2

both do not belong to this chain, then the removal of any yi assures the existence of this

chain and hence x ∈ d(A \ {yi}, R). Let y1 W.L.O.G belong to this chain. Then removal

of y2 assures the existence of this chain and as argued above, x ∈ d(A \ {y2}, R).

− N: As mk(A,R) is a the function of R restricted to a menu, N is satisfied.

We now prove the “if” part in several steps.

Sufficiency: Consider d satisfying our axioms.

Step 1. First we define R and k. Let R = Rd. Note that R is asymmetric by

construction and transitive by NBC. We need to prove that d(A) = A \ mk(A,R) for

some k ≥ 1. Before we define k, let us prove an intermediate lemma. We say a menu

A ∈ P(X) satisfies property P if dA satisfies property P, where dA : P(A) → P(A) is

restriction of d on P(A).

Lemma 1.3. Consider a menu A ∈ P(X) that satisfies CC and Exp, then d(A) =

M(A,R).

Proof. By [T9] of Sen (1971), dA is normal as A satisfies CC and Exp.20. Hence, dA(A) =

M(A,RA) where RA is the relation Rd restricted to a menu A. As d(B) = dA(B) for all

B ∈ P(A), this concludes, d(A) = M(A,R).

Let A∗ ∈ P(X) be the smallest cardinality menu such that there exists x ∈ d(A∗)

and x /∈ d(A) for some {x} ⊂ A ⊂ A∗, that is, there is a violation of CC. If there is

no such A∗, then d satisfies CC and Exp, and by Lemma 1.3, d(A) = M(A,R) for all

A ∈ P(X). Note that for all A ∈ P(X) and k′ ≥ 1, M(A,R) ⊂ A \ mk′(A,R). Let

k = |X| in this case. Then, M(A,R) = A \m|X|(A,R) holds.

Suppose such A∗ exists. There may be multiple such menus. Pick anyone arbitrarily.

Note that CC is satisfied for all A ∈ P(X) such that |A| = 2 and therefore |A∗| > 2.

Define k = |A∗| − 2.

20Here a correspondence d is normal if for all A ∈ P(X), d(A) = {x ∈ A | ∀y ∈ A,∃By ∈
P(X) such that x ∈ d(By) and y ∈ By}. Condition [T9] is as follows: A correspondence is normal
if and only if it satisfies CC and Exp.
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Now, we show that for all A ∈ P(X) such that |A| < |A∗|, we have d(A) = M(A,R) =

A\mk(A,R). We consider two cases: (i) |A∗| = 3. In this case, since k = 1, it is straight-

forward to see that d(A) = A \mk(A,R) = M(A,R). (ii) |A∗| > 3. In this case, CC and

Exp is satisfied for all A ∈ P(X) such that |A| < |A∗|. By Lemma 1.3, it is true that

d(A) = M(A,R). Since at most |A| − 1 steps are required in successive elimination to

reach the maximal set for any A and k = |A∗| − 2, we have M(A,R) = A \mk(A,R) .

Step 2. Before showing d(A) = A \mk(A,R) for all A, we will first show that IUA

and Exp imply WCC which is formally stated as follows.

Definition 1.12 (Weak Contraction Consistency(WCC)). For all menus A and

x ∈ A, we have

x ∈ d(A) =⇒ x ∈ d(A \ {y}) for some y ∈ A \ {x}

Lemma 1.4. A decision correspondence d satisfies IUA and EXP, then d satisfies WCC.

Proof. Consider any arbitraryA ∈ P(X) and x ∈ d(A). We have two cases possible cases:

(i) Suppose y ∈ d({x, y}) for some y ∈ A \ {x}. Then by IUA, we have x ∈ d(A \ {y}).
(ii) y /∈ d({x, y}) for all y ∈ A\{x}, that is, {x} = d({x, y}). By Exp, we have x ∈ d(B)

for all {x} ⊂ B ⊂ A and therefore d satisfies WCC.

Now, we prove the following important lemma.

Lemma 1.5. A∗ is a chain.

Proof. Let A∗ = {x, y1, . . . , yk+1} (recall |A∗| = k+2) such that x ∈ d(A∗) and x /∈ d(B)

for some B ⊂ A∗. Now, since d satisfies WCC, there exists yi ∈ A∗ \ {x} such that

x ∈ d(A∗ \ {yi}). By the previous step, we know that x ∈ M(A∗ \ {yi}, R) implying

¬yjRx for all j ̸= i. As x /∈ d(B) for some B ⊂ A∗, by the previous step, we have

x /∈ M(B,R), that is, ylRx for some l ∈ {1, . . . , k+1}. Also, ¬yjRx for all j ̸= i implies

l = i. Since yiRx, x /∈ M(A∗ \ {yj}, R) for all j ̸= i and by our previous step, we have

x /∈ d(A∗ \ {yj}). By IUA, we must have yj /∈ d({x, yj}), that is, {x} = d({x, yj}) for

all j ̸= i. Therefore, by definition of R, we have xRyj for all j ̸= i. Now, consider

any yj and yl with j, l ̸= i. Suppose d({yj, yl}) = {yj, yl}. Then, by WnCC, we must

have x ∈ d(A∗ \ {yj}) or x ∈ d(A∗ \ {yl}), a contradiction. Therefore, we must have

d({yj, yk}) ̸= {yj, yl} implying yjRyl or ylRyj. We have shown that R is complete on
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A∗ \ {yi}. Since yiRx, NBC implies that R is complete and transitive on A∗, that is, A∗

is a chain.

Remark. Observe that since x was arbitrary, we have shown that only the top two

alternatives will be selected in A∗. To see this, suppose yj ∈ d(A∗) for some j ̸= i, then

IUA implies that yj ∈ d(A∗ \ {yi}) which is a contradiction since yj /∈ M(A∗ \ {yi}, R).

Further, we have {yi} = d({yi, yj}) for all j ̸= i and {yi} = d({yi, x}) implying y ∈ d(A∗)

by Exp. Therefore d(A) = {x, yi}.

Step 3. To show d(A) = A \ mk(A,R) for all A such that |A| ≥ |A∗|, we use

strong induction on |A| with the base case, k′ = |A∗| = k + 2. All A ∈ P(X) with

cardinality k + 2 are of two types: (i) A satisfies CC, then by argument in Step 1,

d(A) = M(A,R) ⊆ A \mk(A,R). If A is a chain, given that k = |A∗| − 2, A \mk(A,R)

consists of top two alternatives of R. By Neutrality, d(A) = A \ mk(A,R) and thus

CC is violated at A. Since A is not a chain, d(A) = M(A,R) = A \mk(A,R) as each

non-maximal alternative will have a chain less than size k below it (ii) A violates CC.

Note that by Lemma 1.5, A is a chain of length k + 2. Neutrality implies that the top

two alternatives of A will be selected in A, therefore we get d(A) = A \mk(A,R)

For the inductive step, consider any k′ ≥ |A∗| and suppose that d(A) = A \mk(A,R)

for all A such that |A| ≤ k′. Now, we will show that d(A) = A \mk(A,R) for all A such

that |A| = k′ + 1.

Consider an arbitrary A such that |A| = k′ + 1 and suppose x ∈ d(A). Then WCC

implies that x ∈ d(A \ {y}) for some y ∈ A \ {x}. By our inductive hypothesis, x /∈
mk(A \ {y}). There are two possible cases: (i) x /∈ M(A \ {y}, R), that is, there exists

z ∈ A \ {y} such that zRx and there exists a chain of length at least k below x implying

x /∈ mk(A,R). (ii) x ∈ M(A \ {y}, R). Suppose ¬yRx, that is, x ∈ d({x, y}), then, x ∈
M(A,R) and implying x /∈ mk(A,R). Now, suppose yRx. If there exist z, z′ ∈ A\{x, y}
such that d({z, z′}) = {z, z′}, then by WnCC, we must have x ∈ d(A\{z})∪d(A\{z′}).
W.L.O.G, let x ∈ d(A\{z}). Since yRx, by our inductive hypothesis, we know that there

exists a chain of length k below x and hence x /∈ mk(A,R). Therefore, d({z, z′}) ̸= {z, z′}
for all z, z′ ∈ A \ {x, y} which implies A \ {x, y} is a chain by NBC. If possible, there

exists some z ∈ A \ {x, y} such that z ∈ d({x, z}). IUA then implies that x ∈ d(A \ {z})
and hence by our inductive hypothesis, since yRx, there exists a k length chain below x.

Therefore, {x} = d({x, z}) for all z ∈ A \ {x, y}. Since A \ {x, y} is a chain, we have a
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k long chain below x implying x /∈ mk(A,R).

Now, to show the other direction, suppose x /∈ mk(A,R) and assume for contradiction

that x /∈ d(A). Note that |A| ≥ k + 3 (since |A∗| = k + 2) and let A = {x, y1, . . . , yp}
where p ≥ k + 2. Suppose, x ∈ d(A \ {yi}) ∩ d(A \ {yj}) for some yi ̸= yj, then by Exp,

we have x ∈ d(A). Therefore x ∈ d(A\{yi}) for at most one yi ∈ {y1, . . . , yp}. W.L.O.G,

let i = 1. Then we must have x /∈ d(A \ {yj}) for all j ∈ {2, . . . , p}. By our inductive

hypothesis, x ∈ mk(A \ {yj}) for all j ∈ {2, . . . , p}. Since x /∈ mk(A,R), we have xRyj

for all j ∈ {2, . . . , p} and there is a k length chain below x. W.L.O.G, let the chain be

⟨x, y2, . . . , yk+1⟩. Since p ≥ k + 2, there exists yj with j ∈ {k + 2, . . . , p} such that this

chain is below x in A \ {yj}. Thus, x /∈ mk(A \ {yj}, R). By our induction hypothesis,

x ∈ d(A\{yj}) and since j ̸= 1, we have a contradiction. Therefore, we have established

that x ∈ d(A) and the proof is complete.

Proof of Theorem 1.6

Proof. The “only if” is straightforward. Condition BCC and BDC hold true as cor-

respondence d is an acceptable correspondence (Theorem 1.1). NBC follows from the

arguments in proof of Theorem 1.5. Let us now prove MON.

− MON: Consider a menu A ∈ P(X) and x, y ∈ A such that x ⊵A y and d({y, z}) = {z}
for some z ∈ A. As d is a TA correspondence, there exists threshold function k(.) and

partial order R such that d(A) = A \ mk(A)(A,R). x /∈ mk(A,R). If y ∈ d(A), then

y /∈ mk(A)(A,R). As d({y, z}) = {z} for some z ∈ A, by definition of R, it is true that

zRy. This implies there exists at least k(A) length chain below y in menu A. As the

longest chain below x is larger than the longest chain below x in A, it must be that there

also exists at least k(A) length chain below x in menu A. Thus, x /∈ mk(A)(A,R), further

implying x ∈ d(A).

We now show the “if” part. Define R as xRy if and only if {x} = d({x, y}) and

k : P(X) → N as

k(A) = min{maxx∈A|L(x,A)|, 1}

where maxx∈A|L(x,A)| denotes the length of the largest chain in A. If the largest chain

is empty, then k is considered equal to 1. Relation R is asymmetric by construction

40



and transitive by NBC. Now, we show that d(A) = A \ mk(A)(S,R). There are two

possible cases: (i) d(A) = A. By BCC and NBC, it must be that d({x, y}) = {x, y}
for all x, y ∈ A. It is straightforward to see that d(A) = mk(A)(A,R) for all k(A). (ii)

d(A) ̸= A. Suppose x ∈ d(A) and assume for contradiction that x ∈ mk(A)(A,R). Then

there exists a y ∈ A \ d(A) such that y ⊵A x and by MON, we must have y ∈ d(A),

a contradiction. Therefore d(A) ⊂ A \mk(A)(A,R). Now, suppose x /∈ mk(A)(A,R). If

¬yRx for all y ∈ A, then x ∈ d(A) by BDC. Suppose yRx for some y ∈ A. Assume

for contradiction that x /∈ d(A). Then by the definition of k(A), x ∈ mk(A)(R,A), a

contradiction.

Appendix 1.B

1.B.1 Independence of axioms in Theorem 1.5

Example 1.9. (Exp, NBC, WnCC, N is satisfied, but IUA is violated)

Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {a, c}

Condition IUA is violated as c ∈ d({a, b, c}) and b ∈ d({b, c}), but c /∈ d({a, c}).

Example 1.10. (IUA, NBC, WnCC, N is satisfied, but Exp is violated)

Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {b}

Condition Exp is violated as a ∈ d({a, b}) ∩ d({a, c}), but a /∈ d({a, b, c}).

Example 1.11. (IUA, Exp, WnCC, N is satisfied, but NBC is violated)

Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, c}) = {c} d({b, c}) = {b} d({a, b, c}) = {a, b}

Condition NBC is violated as d({a, b}) = {a} and d({b, c}) = {b}, but d({a, c}) ̸= {a}.

Example 1.12. (IUA, Exp, NBC, N is satisfied, but WnCC is violated)
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Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {a}

d({a, d}) = {a} d({b, d}) = {b} d({c, d}) = {c, d} d({b, c, d}) = {b}

d({a, c, d}) = {a} d({a, b, d}) = {a} d({a, b, c, d}) = {a, b}

Condition WnCC is violated as b ∈ d({a, b, c, d}) and d({c, d}) = {c, d}, but b /∈
d({a, b, c}) ∪ d({a, b, d}).

Example 1.13. (IUA, Exp, NBC, WnCC is satisfied, but N is violated)

Let X = {a, b, c}. Selections in all the menus is as follows:

d({a, b}) = {a} d({a, c}) = {a} d({b, c}) = {b} d({a, b, c}) = {a, b}

d({a, d}) = {a} d({b, d}) = {b} d({c, d}) = {c, d} d({b, c, d}) = {b}

d({a, c, d}) = {a} d({a, b, d}) = {a} d({a, b, c, d}) = {a, b}

Condition WnCC is violated as b ∈ d({a, b, c, d}) and d({c, d}) = {c, d}, but b /∈
d({a, b, c}) ∪ d({a, b, d}).

Appendix 1.C

1.C.1 Relationship between classes of acceptable correspondences

We denote the class of acceptable correspondences by A (acceptable), Ak (TA), Ak̄

(fixed-TA), A1 (MA) and A⋆ (MR). Figure 1.7 illustrates the set-inclusion property of

all sub-classes of acceptable correspondences.

A⋆

A1Ak̄AkA

Figure 1.7
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We summarize the characterization results presented in this chapter (for a transitive

rationale) in the Table below. The condition NBC is satisfied for all the sub-classes.

A⋆ A1 Ak̄ Ak A

Modified CC axioms CC PCC IUA+WnCC BCC BCC

Modified Exp axioms Exp S-Exp Exp BDC BDC

Other axioms Neutrality Mon

The relationship between the properties characterizing these sub-classes is presented

below. Arrow from Property X to Y indicates that X is a strengthening of Y .

(I) Relationship between modified Contraction Consistency axioms

CC [1(a)]

IUA [1(d)] PCC [1(c)] BCC [1(b)]

WnCC [1(e)]

(II) Relationship between modified Expansion Consistency axioms

RCC [2(d)] S-Exp [2(c)] Exp [2(a)] BDC [2(b)]
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Chapter 2

Sequential Matching with Affirmative

Action1

2.1 Introduction

Recently, there has been a great deal of discussion on multi-round assignment procedures

in college admissions in countries such as India, Brazil, China, France, and Germany.

Baswana et al. (2019) proposed a semi-centralized, multi-round matching mechanism

for engineering college admissions in India. They claim that the welfare of candidates

improves in every round of the mechanism.

“New semi-centralized, multi-period matching mechanism enjoys monotonic-

ity across runs. The options available to candidates are only enhanced in

going from one period to the next....”

However, they did not provide a rigorous theoretical justification for their claim. In this

chapter, we provide one in the context of a general sequential college admissions problem.

The admission process for engineering colleges in India matches approximately 1.3

million students to 34,000 university positions. The Indian Institute of Technologies

(henceforth, IITs) and the non-IIT Centrally Funded Technical Institutes (henceforth,

non-IITs) have implemented the mechanism developed by Baswana et al. (2019). Before

that, both types of institutions conducted their admission processes separately and inde-

pendently. Each applicant received an offer from both types of institutions, resulting in a

vacancy in one set of institutions when the candidate chose a program. These vacant seats

were either left unfilled or allocated in an ad-hoc and decentralized manner, which caused

1Co-authored with Bertan Turhan (Department of Economics, Iowa State University, USA).

44



inefficiency and/or unfairness. Under this new combined seat allocation procedure, stu-

dents are required to rank all programs (including both IITs and non-IITs) according

to their preferences and submit a single ranking. Both types of colleges, IITs, and non-

IITs, independently run the individual-proposing deferred acceptance (DA) mechanism

introduced by Gale and Shapley (1962) to find a match. The assignment of students is

determined based on their complete ranking. In the subsequent rounds of the admissions

process, students are given various options to update their preferences. These options

include “withdraw”, “reject”, “freeze”, “slide”, and “float”. Depending on the option

chosen, the student may either exit the procedure with or without an assignment or

choose to participate in the subsequent rounds. After the completion of a fixed number

of rounds, each student is then assigned to their finalized program.

This process is subject to a comprehensive affirmative action program, which has

been implemented via a reservation system. There are two types of reservations: vertical

and horizontal. Each institution reserves a certain percentage of its slots for students

from a vertical reserved category–Scheduled Castes (SC), Scheduled Tribes (ST), Other

Backward Classes (OBC), and Economically Weaker Sections (EWS). Specifically, 15%,

7.5%, 27%, and 10% of the slots are reserved for SC, ST, OBC, and EWS students,

respectively. Applicants who do not belong to any of these vertical reserved categories

are referred to as General Category (GC) and positions that are not reserved are referred

to as open-category positions. They are available to all applicants, including those

from reserved categories who do not declare their membership. A minimum number of

positions within each vertical category are earmarked for women students as horizontal

reservations. Vertical reservations are implemented “over-and-above” by filling open-

category positions before vertically reserved categories, while horizontal reservations are

implemented as a minimum guarantees by filling horizontally reserved positions before

unreserved positions.

Situations such as the one described earlier can be modeled using gradual matching

mechanisms, introduced in Haeringer and Iehlé (2021) (henceforth, H&I). They introduce

a multi-round college admissions problem where individuals are offered repeated oppor-

tunities to participate in the mechanism, using updated preferences. The final matching

is constructed gradually over several rounds. An important assumption made in the H&I

model is that each institution has a responsive2 choice rule. However, the underlying

2An institution has a responsive choice rule if it can be generated by a strict preference order that
always selects the q−best alternatives whenever available. Here q is the capacity of the institution (see
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assumption of responsiveness does not accommodate affirmative action considerations.

Motivated by engineering college admissions in India, we adopt the gradual matching

problem of H&I. We assume that institutions implement affirmative action policies via

the slot-specific priorities approach Kominers and Sönmez (2016). The latter is a model

of the individual-institution matching model where each institution has a set of positions

(slots) that can be assigned to different individuals. Positions have their own (potentially

independent) rankings for contracts (here individuals). Within each institution, a linear

order – referred to as the precedence order – determines the sequence in which positions

are filled.

In this chapter, we investigate the restrictions on the preferences of individuals across

different rounds that result in monotone outcomes. We refer to a matching outcome as

monotone when each individual is matched to an institution that is weakly higher than

the match of previous rounds (see Theorem 2.1). Further, we introduce a “backward-

looking” notion of stability for sequential matching mechanisms that take into consid-

eration individual rationality, non-wastefulness and justified envy of individuals across

different rounds. Theorem 2.2 establishes a relationship between this notion of stability,

we refer to as sequential stability, and monotone outcomes. These results generalize the

findings presented in H&I. However, we do not rely on the proof of H&I to validate our

first result.

We apply our theoretical findings to analyze the multi-run multi-stage DA mechanism

that has been implemented in engineering college admissions in India since 2016. We

also relate our findings to the to the characterization result of Kojima and Manea (2010)

for the DA mechanism.

The layout of the chapter is as follows: the next subsection provides a brief literature

review. Section 2.2 formally introduces the framework of thematching problem at each

stage. Section 2.3 introduces a multi-round matching problem and Section 2.4 considers

a class of multi-round matching problems, referred to as sequential matching problems.

Section 2.5 introduces the stability notion for sequential matching problems. Section 2.6

provides an application of the model.

Chambers and Yenmez (2018)).
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2.1.1 Related Literature

There is a vast literature dedicated to the study of dynamic matching problems. Bo and

Hakimov (2022) introduce a family of iterative deferred acceptance mechanism, where

the students are asked to sequentially make choices or submit partial rankings from sets

of colleges. These are used to produce a tentative allocation at each step. If a student is

unacceptable to their previous choice in some round, she is asked to make another choice

among colleges that would tentatively accept her. Kesten (2010) study dynamic structure

of deferred-acceptance algorithm in the form of rejection-cyles. The closest sequential

model to ours is that of Haeringer and Iehlé (2021). We extend their framework to a

more generalized setting where institutions’ choice rules that have slot-specific priorities

(SSP) choice rules. They offer a comprehensive review of dynamic matching models and

emphasize how their sequential matching problem3 differs from other dynamic models.

While our results are broader in scope, they align closely with the findings presented in

their work.

The SSP framework of Kominers and Sönmez (2016) provides a tool for market

designers to handle diversity and affirmative action constraints in two-sided matching

models. Aygün and Bó (2021) design SSP choice rules for the Brazilian college admission

problem. More recently, Pathak et al. (2021) use the SSP framework to design a triage

protocol for ventilator rationing. Avataneo and Turhan (2021) extend the framework to

a more general one by defining SSP choice rules that allow transfers as in many real-world

applications.

Our paper also contributes to the recently active literature on affirmative action in

India from a market design perspective. Aygün and Turhan (2017) and Aygün and

Turhan (2020) focus on IIT admissions and transferring vacant OBC positions to open-

category. Similarly, Aygün and Turhan (2022) introduce a new transfer scheme with

superior theoretical and practical properties. Aygün and Turhan (2023) offers another

choice rule to implement affirmative action constraints and transfer vacant seats. This

chapter discusses the joint implementation of vertical and horizontal reservations in

engineering college admissions in India via position-specific priorities choice rules in a

setting where applicants can update their preferences for additional rounds. Another

related paper is Sönmez and Yenmez (2022), in which the authors study the allocation

of government jobs in India and relate matching theory to Indian law. Unlike their

3They refer to such matching problems as gradual matching problem.
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work, our chapter considers engineering college admissions in India. None of the above

papers study the sequential implementation of individual-proposing deferred acceptance

in a setting where individuals can update their preferences. Other papers studying

affirmative action implementations include Echenique and Yenmez (2015), Kamada and

Kojima (2015), Correa et al. (2021) among others.

This chapter is also related to the characterization results for the DA mechanism of

Kojima and Manea (2010), Morrill (2013). Their main axiom is built on individually

rational monotonic transformations (i.r.m.t) of a preference relation. A preference profile

R′ is an i.r.m.t of a preference profile R at an allocation, if for every individual, any object

that is acceptable and preferred to this allocation under R′ is preferred to the allocation

under R. An outcome satisfies IR monotonicity if every individual weakly prefers the

new allocation with respect to R′ over the earlier allocation whenever R′ is i.r.m.t of

R. They show that the DA mechanism satisfies IR monotonicity when the choice rules

are substitutable and acceptant. We utilize this condition in the sequential framework by

referring to i.r.m.t of preference profile of active individuals in the sequential framework

as proposal-adhering rules4. We prove that when the mechanism in each round is DA,

then the outcome will be monotone.

Our sequential stability notion is the generalization of gradual stability introduced

in H&I. When institutions’ choice rules are responsive, our sequential stability reduces

to gradual stability. A related stability concept was introduced in Pereyra (2013) in

the context of seniority-based allocation rules. Feigenbaum et al. (2020) study the two-

stage dynamic matching problem where a main round of admission is followed by a

reassignment stage to fill vacancies.

2.2 Model

There is a finite set of institutions S = {s1, ..., sm} and a finite set of individuals I =

{i1, ..., in}. Each individual i ∈ I has an asymmetric and transitive preference relation

Pi over S ∪ {∅}, where ∅ denotes remaining unmatched (henceforth a preference order).

We write sPi∅ to mean that institution s is acceptable for individual i. Similarly, ∅Pis

means institution s is unacceptable for individual i. We denote the profile of individual

preferences by P = (Pi)i∈I . We let P denote the set of all strict preferences over S∪∅. We

4H&I refers to this property of preference update rule as regularity. However, they do not mention
this comparison with Kojima and Manea (2010).
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denote by Ri the weak preference relation associated with the strict preference relation

Pi and by R = (Ri)i∈I the profile weak preferences.

Institution s has qs positions, and its selection criterion is summarized by a choice

rule Cs, which selects a subset from any given set of individuals. That is, Cs (I) ⊆ I.

We let Ξ = (I, S, (Pi)i∈I , (Cs, qs)s∈S) denote a stage problem. A stage matching

in a stage problem Ξ is a mapping µ : I ∪ S → 2I ∪ S such that, for each i ∈ I and

s ∈ S, (i) µ(i) ∈ S ∪ {∅}, (ii) µ(s) ⊆ I, and (iii) µ(i) = s if and only if i ∈ µ(s). A stage

matching is feasible if |µ(s)| ≤ qs for all s ∈ S.

Definition 2.1. A feasible stage matching µ is stage stable if for all i ∈ I and s ∈ S,

1. Individual rationality for individuals: µ(i)Ri∅,
2. Individual rationality for institutions: Cs(µ(s)) = µ(s), and

3. Unblockedness: sPiµ(i) implies i /∈ Cs(µ(s) ∪ {i}).

The first condition, individual rationality for individuals, guarantees that no individ-

ual is assigned to an institution they find unacceptable. The second condition, individual

rationality for institutions, ensures that institutions’ selection procedures are respected.

This condition guarantees the implementation of affirmative action constraints when

they are encoded into institutions’ choice rules.5 The last condition is the standard no

blocking pair condition.

A stage matching mechanism φ maps every stage problem Ξ to a feasible stage

matching µ. The mechanism φ is stable if φ(Ξ) is stable for every stage problem.

2.2.1 Institutions’ Choice Rules

We model institutions’ selection criterion to accommodate affirmative action consid-

erations via choice rules that have slot (position)-specific priorities (SSP) structure

(Kominers and Sönmez (2016)). Institution s has a set of qs positions denoted by

Bs ≡ {p1s, ..., p
qs
s }. Each position pjs ∈ Bs has a linear priority order ≻j

s over elements of

I∪{∅s}, where ∅s represents remaining unassigned and can be assigned to at most one in-

dividual. We denote the positions’ priority order profile by ≻s= (≻j
s)

j=qs
j=1 . The positions

in Bs are ordered according to a linear order of precedence ▷s with the interpretation

that if p ▷s p
′, whenever possible, institution s fills position p before filling p′.

5See Alva and Doğan (2021) for in depth discussion of this point.
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Given the priority order profile ≻s and the precedence order ▷s, the choice of insti-

tution s from a given set of individuals A ⊆ I, Cs(A,≻s, ▷s), is given as follows:

� First, position p1s is assigned to the individual who is ≻1
s–maximal among the

individuals in A. Call this individual i1.

� Then, position p2s is assigned to the individual who is ≻2
s–maximal among the

remaining individuals in A \ {i1}. Call this individual i2.

� This process continues with each position pks is being assigned to the individual

who is ≻k
s–maximal among the remaining individuals in A \ {i1, ..., ik−1}.

If no individual is assigned to a position pls ∈ Bs, then pls is assigned ∅s. We say

that a choice rule has an SSP structure if it is “generated” by a (≻s, ▷s). A special case

when ≻i
s=≻j

s for all positions pis, p
j
s ∈ Bs is referred to as responsive preferences in the

literature (see Chambers and Yenmez (2018)). This structure accommodates a variety

of other constraints, including admission criteria in engineering colleges in India (see

Section 2.6).

We deal with choice rules of institutions that have SSP structures. A stage problem

can now be alternatively represented as

Ξ = (I, S, (Pi)i∈I , (≻s, ▷s, qs)s∈S)

where (≻s, ▷s, qs) encapsulates the choice structure of an institution s.

The SSP structure of the choice rule Cs enables us to define an associated matching

of a feasible stage matching µ. The associated matching µ̂ maps each individual to an

institution-position pair. For a given (≻s, ▷s), the choice rule Cs assigns a position pjs ∈ Bs

to each individual i ∈ µ(s). We denote this derived matching6 as µ̂ : I∪S → 2I ∪(S×B)
where B =

⋃
s∈S{Bs} is the collection of all the positions in the set of institutions S.

Definition 2.2. Slot-specific matching (SSM) of a stage matching µ is a mapping µ̂ :

I ∪ S → 2I ∪ (S × B) such that for all s ∈ S and i ∈ I,

1. i ∈ µ̂(s) if and only if i ∈ µ(s).

2. µ̂(i) = (s, p) for some p ∈ Bs if and only if µ(i) = s.

6The matching function µ̂ is different from the matching outcome µ̃ of the associated one-to-one
matching problem defined in Kominers and Sönmez (2016).
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We illustrate with the example below that not every feasible matching µ can be

associated with an SSM.

Example 2.1. Let I = {a, b, c, d} and S = {s1, s2} with capacities q1 = q2 = 2. Each

institution with Bs1 = {p11, p21} and Bs2 = {p12, p22} has priority structure ≻1= (≻1
1,≻2

1)

and ≻2= (≻1
2,≻2

2) respectively. The precedence order is p11 ▷s1 p
2
1 and p12 ▷s2 p

2
2.

≻1
1: a− b− c− d ≻1

2: c− b− ∅s2
≻2

1: b− c− a− ∅s1 ≻2
2: d− c− b− a

Consider a feasible matching µ such that µ(s1) = {b, c} and µ(s2) = {a, d}. For s2,

there is no associated µ̂ as the first position p12 finds a and d unacceptable. Also, the

second position p22 prefers d over a. Thus, a cannot be associated with a position for this

matching. However, the associated µ̂ for s1 assigns b to p11 and c to p21.

Proposition 2.1. Let µ be a stage matching of a stage problem Ξ = (I, S, (Pi)i∈I , (≻s

, ▷s, qs)s∈S). Then µ has an associated SSM µ̂ if and only if µ is individually rational for

institutions. Moreover, µ̂ is unique.

For a matching µ such that Cs(µ(s)) = µs, each individual i ∈ µ(s) can be associated

with a position in s. This is because each position finds the maximal individual of the

surviving set acceptable. It can therefore be concluded that every stage stable matching

µ has an SSM µ̂.

2.3 Multi-Period Matching with Preference and Pri-

ority Updates

We study a multi-period matching problem that consists of a sequence of stage problems

(Ξt)1≤t≤T where Ξt = (I t, St, (P t
i )i∈I , (≻t

s, ▷
t
s, q

t
s)s∈S) is the stage problem at stage t. The

choice rule of an institution s has an SSP structure associated with the set of positions

Bt
s, profile of linear order ≻t

s and the precedence order ▷ts.

Definition 2.3. A sequence of T stage problems Ξ1, Ξ2,..., ΞT is nested if for all

t = 1, ..., T − 1 and s ∈ S,

1. I t+1 ⊆ I t
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2. St = St+1 = S

3. Bt+1
s ⊆ Bt

s

An individual i ∈ I t means that i is active at stage t. Individual i ∈ I t \I t+1 (t < T )

means that i finalize her assignment at stage t before the final stage. We denote by

ti := argmax1≤t≤T{i ∈ I t}, the stage at which individual i finalizes her assignment. In

this round, the individual i is last active. Once the individual finalizes her assignment,

she can not be active in further stages.

2.3.1 Updating Institutions’ Choice Rules

For a feasible matching µt of stage problem Ξt at stage t, the institutions update their

choice rule to accommodate the reduction in their capacity. The profile of linear order

and precedence order (≻t
s, ▷

t
s) is updated by removing “positions that are assigned to

individuals” who finalize their assignments7. The idea is that when an individual finalizes

her assignment, she leaves with the position she is assigned to. No other positions are

added or removed in this process. The relative precedence order between two positions

and the priority order over the set of active individuals remains unchanged.

Definition 2.4. A choice update rule is consistent if for all s ∈ S and t = 1, . . . , T −1,

given µt,

1. ▷t+1
s = ▷ts.

2. For all p ∈ Bt+1
s and i, j ∈ I t+1, i(≻p

s)
tj implies i(≻p

s)
t+1j.

3. if i ∈ I t \ I t+1 and µ̂t(i) = (s, p) for some p ∈ Bt
s, then p /∈ Bt+1

s .

Let us illustrate this choice update rule with an example.

Example 2.2. Consider an institution s with three positions p1, p2, and p3 at stage

(t − 1). That is, Bt−1
s = {p1, p2, p3}. The precedence order is such that p1 ▷s p2 ▷s p3.

The set of active individuals at (t− 1) stage is denoted by I t−1 = {i1, i2, i3, i4}. Priority
7Based on the discussion in Section 2.2, µt is individually rational for institutions to guarantee that

each individual matched to an institution is assigned a position at the institution. When we are referring
to a feasible matching generated by the SSP structure, this condition is assumed in the background.
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orderings of the positions at stage (t− 1) are as follows:

(≻1
s)

t−1 : i1 − i2 − i3 − i4 − ∅s
(≻2

s)
t−1 : i2 − i3 − ∅s

(≻3
s)

t−1 : i1 − i3 − ∅s

Let the assigment at stage (t− 1) be the following: i1, i2, and i3 are assigned to p1,

p2, and p3 respectively. Suppose that i2 finalizes her assignment, but i1 and i3 decide to

participate in the next stage. That is, I t = {i1, i3, i4}.

Then the choice rule is updated such that, at stage t, two positions are available: p1

and p3 with the precedence order p1 ▷s p3. The priority orders are updated as follows:

(≻1
s)

t : i1 − i3 − i4 − ∅s
(≻3

s)
t : i1 − i3 − ∅s

It can be observed that if the choice rule of the institution is responsive, that is,

the choice rule is generated by a preference order Ps, then updating the choice rule

consistently reduces to the following: P t
s = P 1

s |It where = P 1
s |It is the restriction of P t

s

to the set of active individuals I t. As all the positions are homogenous, the updating

rule is not dependent on the matching outcome of the previous period.

The second observation is that this rule implicitly puts a restriction on the rela-

tionship between the capacity of the institutions at every stage. The capacity of an

institution is the number of unassigned seats plus the number of active individuals from

the previous period. That is, for all t ≤ T − 1,

qt+1
s = (qts − |µt(s)|) + |{i ∈ I t+1 : µt(i) = s}|

This relationship between the capacities across stages is assumed explicitly in H&I. Thus,

our choice update rule is more general than their preference-capacity update rule.

2.3.2 Updating Individual Preferences

A preference update rule maps a preference order Pi of individual i and an institution

s ∈ S that is assigned to her at stage t, to a set of permissible preference orders she can
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submit at stage t + 1. In general, Γ : P × (S ∪ {∅}) → P is a selection correspondence

that maps a preference order and an institution s to a set of preference orders. Formally,

for each (P, s) ∈ P × (S ∪ {∅}),

� If s ∈ AP , then AP ′ ̸= ∅ for some P ′ ∈ Γ(P, s);

� For each P ′ ∈ Γ(P, s), we have AP ′ ⊆ AP .

Both conditions require that an institution unacceptable at previous stages can not

be expressed as acceptable via preference update. There is a wider class of preference

update rules that satisfy these mild conditions, including identity mapping8, truncation

mapping9 and others. H&I provides a detailed discussion on this mapping, referred to

as refitting rules. In the subsequent section, we discuss a practical application where the

preference update rule of institutions satisfies these restrictions.

2.4 Sequential Matching Mechanisms

The multi-period matching problem that we are interested in has the following properties

(i) the sequence of stage problems (Ξt)1≤t≤T is nested, and (ii) choice rule of institutions

is updated consistently. We refer to this class of multi-period matching problems as

sequential matching problems10.

Note that the nestedness of problems and consistency of institutions enables us

to reduce this sequential problem to a simpler centralized framework. Instead of de-

centralized decisions of individuals to continue or finalize the match, it requires only

the first stage problem Ξ1 of the sequence (Ξt)1≤t≤T and a list of preference orders

(P 1
i , P

2
i , . . . , P

ti
i ) for every i ∈ I1 denoted by Pi = (P t

i )t≤ti . We denote this reduced form

by Ξ = (I1, S, (Pi)i∈I , (≻1
s, ▷

1
s, q

1
s)s∈S).

An outcome of a sequential matching problem is a sequence (Ξt, µt)t≤T that associates

a feasible matching to every stage problem at every t = 1, . . . , T . This outcome implicitly

defines a matching ν : I ∪ S → 2I ∪ S such that ν(i) = µti(i) for all i ∈ I1. We refer to

this sequence as a sequential outcome.

8An identity mapping is a singleton-valued selection correspondence such that for all (P, s) ∈ P ×
(S ∪ {∅}), Γ(P, s) = {P}.

9A truncation mapping is a singleton-valued selection correspondence discussed in Manjunath and
Turhan (2016a) such that Γ(P, s) = {P ′} where sPs′ =⇒ ∅P ′s′ and s′Ps′′Ps =⇒ s′P ′s′′P ′s

10H&I refer to this class of multi-round matching problems as gradual matching problems.
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For a given preference update rule Γ and a stage mechanism φ, a sequential match-

ing mechanism, denoted by Mφ
Γ, maps every sequential matching problem to a sequen-

tial outcome Mφ
Γ(Ξ) ≡ (Ξt, µt)t≤T such that

� µt = φ(Ξt) for all t = 1, . . . , T

� P t
i = Γ(P t−1

i , µt−1(i)) for all i ∈ I1 and t = 2, . . . , T

We restrict our attention to stable stage mechanisms, that play a key role in the

matching literature.

A desirable property of a sequential matching outcome is that for each period when

an individual is active, she is assigned to an institution that is ranked weakly higher than

the previous assignment. In effect, the current assignment is acceptable for individuals

with respect to the outside option—assignment proposed in the previous period. We

refer to such outcomes as monotone outcomes.

Definition 2.5. A sequential outcomes (Ξt, µt)t≤T is monotone if, for each 2 ≤ t ≤ T

and i ∈ I t,

µt(i)Rt
iµ

t−1(i).

A mechanism Mφ
Γ is monotone if for every sequential matching problem Ξ, the se-

quential outcome (Ξt, µt)t≤T is monotone. We illustrate the monotonicity of sequential

outcome by Example 2.3 below.

Example 2.3. Consider a sequential matching problem with T = 2. For t = 1, let

I1 = {1, 2, 3, 4, 5, 6} and S = {s1, s2}. Capacity of institutions is q1s1 = 3, q1s2 = 2.

Preference profile of individuals, P 1 is as follows:

P 1
1 P 1

2 P 1
3 P 1

4 P 1
5 P 1

6

s1 s1 s1 s2 s2 s2

s2 ∅ s2 s1 ∅ s1

∅ ∅ ∅ ∅

Suppose running a mechanism φ at stage one results in a matching µ1 such that

µ1(s1) = {2, 3, 4} and µ1(s2) = {1, 5}. The assignment is depicted in the preference

profile above.

Now, let i = 2 finalize its allocation at t = 1 and other individuals participate

in the next period. The choice rule of institution s1 is updated consistently. Thus,
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I2 = {1, 3, 4, 5, 6} and q2s1 = 2, q2s2 = 2. Preference profile is updated to P 2 = Γ(P 1, µ1)

as follows:

P 2
1 P 2

3 P 2
4 P 2

5 P 2
6

s1 s2 s2 s2 s1

s2 s1 s1 ∅ s2

∅ ∅ ∅ ∅

Now suppose running the mechanism φ at stage two results in the matching µ2 such that

µ2(s1) = {4, 6} and µ2(s2) = {1, 5} as underlined above. Note that for i = 3, outcome is

not monotone as s1 = µ1(3)P 2
3 µ

2(3) = ∅. However, for i = 6, the assignment is strictly

better in the second period with respect to P 2
6 .

The notion of monotonicity of the outcome defined above has a parallel interpretation

in the static setting where the preference profile in the current period is a transformation

of the previous period’s preference profile11. Kojima and Manea (2010) introduce a

notion of individually rational monotonic transformation (i.r.m.t) of a preference profile

that guarantees the outcome to be monotone when the stage mechanism φ is the DA

algorithm. A preference profile R is an i.r.m.t of R at s ∈ S ∪{∅} if for every individual

i, any institution that is ranked above both s and ∅ under R′i is ranked above s under

Ri. In other words, each individual’s set of acceptable institutions that are preferred

to institution s shrinks. In the sequential matching setting, we refer to this property of

preference update rule for an arbitrary proposal v as proposal-adhering. Formally,

Definition 2.6. The preference update rule Γ is proposal-adhering if for all (P, v) ∈
P × (S ∪ {∅}) and s ∈ S \ {v}, if P ′ ∈ Γ(P, v) then,

sP ′v and sP ′∅ =⇒ sPv

Example 2.4. In Example 2.3, Γ is not proposal-adhering with respect to assignment

at stage one. That is because for i = 3, s2P
2µ1(3) = s1 and s2P

2∅. But, s1P
2s2. A

proposal adhering preference profile P 2 is presented below.

11The monotonicity of sequential outcome is not identical to the static interpretation as the underlying
stage problems in both the periods is not the same.
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P 2
1 P 2

3 P 2
4 P 2

5 P 2
6

s1 s1 s2 s2 s1

s2 ∅ s1 ∅ s2

∅ ∅ ∅

Our first main result of this chapter is the following

Theorem 2.1. Let Mφ
Γ be the sequential mechanism where φ is individually-optimal

stage stable mechanism (IOSSM) and Γ is preference-update rule. Then the following

statements are equivalent:

1. Mφ
Γ is monotone.

2. Γ is proposal-adhering.

Theorem 2.1 generalizes Theorem 1 of H&I. However, our proof does not depend on

their result. Instead, we establish a connection of our result with the characterization

result of the DA mechanism in Kojima and Manea (2010). This provides an alternative

proof for Theorem 1 of H&I (see Appendix 2.A.1 ). A Corollary of Theorem 1 in Kojima

and Manea (2010) is stated below.

Proposition 2.2. Let φ be the deferred acceptance mechanism and Cs be an acceptant,

substitutable choice rule. Then, φ satisfies IR monotonicity. That is, for all Ξ and

proposal-adhering Γ,

P ′i ∈ Γ(Pi, µ(i)) =⇒ µ′(i)P ′iµ(i) ∀ i ∈ I

Note that the existence of an IOSSM is not guaranteed in the case of a general choice

rule. To address this, we rely on the results presented in Hatfield and Milgrom (2005)

and Aygün and Sönmez (2013) to show the existence of such mechanisms when the choice

rule has an SSP structure. Refer to Appendix 2.A.1 for the proof.

2.5 Sequential Stability

In this section, we introduce a stability notion for sequential matching problems. Our

definition of sequential stability generalizes the notion of gradual stability introduced in

H&I. When institutions’ choice rules are responsive, our definition reduces to theirs.
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Definition 2.7. A sequential outcome (Ξt, µt)t≤T is sequentially stable if for all i ∈ I1,

t′ ≤ t ≤ ti,

1. Individual Rationality: µt(i)Rt
i∅ and µt(i)Rt

iµ
t′(i),

2. Non-wastefulness: if |µt′(s)| < qt
′
s for some s ∈ S, then sP t

i µ
t(i) implies ∅s ≻p

s i

where p ∈ Bt′
s is unassigned at t′,

3. No justified envy: for all j ∈ I t
′ \ I t′+1, if µ̂t′(j) = (s, p) for some s ∈ S, p ∈ Bt′

s ,

then sP t
i µ

t(i) implies j ≻p
s i.

The stability of the stage matching mechanism considers only the final assignments

of the individuals and institutions. However, in the sequential matching mechanism,

individuals finalize their matchings at different stages. As a result, the definition above

extends the notion of stage stability to also include the claims by individuals across

stages as long as they are active.

The first condition requires that each individual’s assignment must be individually

rational for each individual at every stage. Here, individual rationality is defined by

comparing an assignment with the “outside option”. In the case of a stage problem, this

outside option corresponds to being unmatched or having an empty matching. In the

sequential problem, proposals from previous periods also serve as an outside option.

The second condition is a sequential version of non-wastefulness. If an individual i

prefers institution s to her stage t assignment, this condition ensures that all positions

in s that are deemed acceptable by individual i, must be assigned to someone else in the

current period and all of the previous periods.

Finally, the last condition is a no justified envy condition adapted to our sequential

environment with an SSP structure. Consider two individuals i and j such that j finalizes

her assignment before i. Then, justified envy by i against j is checked for all periods

tj ≤ t ≤ ti using the preference order of the position that is assigned to j when she

finalizes her assignment.

A sequential mechanism is sequentially stable if the outcome for each sequential

problem is stable. The theorem we propose in this section shows a relationship between

sequential stability, stage stability, and the monotonicity of sequential outcomes.

Theorem 2.2. Let Γ be a proposal-adhering preference update rule and φ be a stage

mechanism. Then the following statements are equivalent:
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1. Mφ
Γ is sequentially stable.

2. Mφ
Γ is monotone and φ is stage stable.

This result generalizes Theorem 2 in H&I to a more general setup where the choice

rules have an SSP structure. The proof of this theorem can be found in Appendix 2.A.2.

2.6 Admissions to Engineering Colleges in India

The admission process in engineering colleges in India is subject to a comprehensive

affirmative action program, which has been implemented via a reservation system. The

reservation scheme at an institution s partitions the set of positions Bs in various cat-

egories R and the set of individuals in categories C. It consists of the following key

components:

� R = {SC, ST,OBC,EWS} denote the set of reserved categories. The students

that belong to no reserved category are in General Category (GC).

� C = {o, SC, ST,OBC,EWS} denote the set of all position categories (o is the

open category).

� The vector qs =
(
qos , q

SC
s , qSTs , qOBC

s , qEWS
s

)
describes the initial distribution of posi-

tions over reserved categories where qos = qs−qSCs −qSTs −qOBC
s −qEWS

s . The profile

of vectors for the initial distribution of positions over categories at institutions is

denoted by q = (qs)s∈S .

� The function t : I → R ∪ {GC} denotes the category membership of individuals.

For every individual i ∈ I, t(i), or ti, denotes the category individual i belongs to.

We denote a profile of reserved category membership by T = (ti)i∈I , and let T be

the set of all possible reserved category membership profiles.

Merit scores induce strict meritorious ranking of individuals at each institution s,

denoted by ≻s, which is a linear order over I ∪ {∅}. i ≻s j means that applicant i has

a higher priority (higher merit score) than applicant j at institution s. We write i ≻s ∅
to say that applicant i is acceptable for institution s. Similarly, we write ∅ ≻s i to say

that applicant i is unacceptable for institution s. The profile of institutions’ priorities is

denoted ≻= (≻s1 , ...,≻sm).
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For each institution s ∈ S, the merit ordering for individuals of type r ∈ R, denoted

by ≻r
s, is obtained from ≻s in a straightforward manner as follows:

� for i, j ∈ I such that ti = r, tj ̸= r, i ≻s ∅, and j ≻s ∅, we have i ≻r
s ∅ ≻r

s j, where

∅ ≻r
t j means individual j is unacceptable for category r at institution s.

� for any other i, j ∈ I, i ≻r
s j if and only if i ≻s j.

The over-and-above implementation requires filling open-category positions before

the reserved categories. Formally, given an initial distribution of positions qs, a set of

applicants A ⊆ I, and a category membership profile T ∈ T for the members of A, the

set of chosen applicants CRes
s (A, qs), is computed as follows:

Step 1: Unreserved positions are considered first. Individuals are chosen one at a

time following ≻s up to the capacity qos . Let us call the set of chosen applicants Co
s (A, q

o
s).

Step 2: Among the remaining applicants A′ = A\Co
s (A, q

o
s), for each reserve cate-

gory r ∈ R, applicants are chosen one at a time following ≻r
s up to the capacity qrs . Let

us call the set of chosen applicants for reserve category r as Cr
s (A

′, qrs).

Then, CRes
s (A, qs) is defined as the union of the set of applicants chosen in Steps 1

and Step 2. That is,

CRes
s (A, qs) = Co

s (A, q
o
s) ∪

⋃
t∈R

Ct
s

(
A′, qts

)
This leads to our first lemma of this section, which we state formally below.

Lemma 2.1. The selection rule of engineering colleges in India can be modeled via choice

rule, CRes
s that admits SSP structure.

2.6.1 The Multi-round Deferred Acceptance Mechanism

Admissions to engineering colleges in India implement a multi-round matching proce-

dure. Each individual submits a preference list over all programs, including IITs and

non-IITs. Each program provides the number of available positions and a merit list of
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eligible individuals. After collecting this information, the individual-proposing Deferred

Acceptance mechanism is run in each round for IITs and non-IITs separately12. Some

individuals may finalize their assignments, while others may want to participate in fu-

ture rounds. In each round, the inputs of individual-proposing DA are modified. The

options available to individuals at the end of each round are freeze, float, slide, reject,

and withdraw (see Baswana et al. (2019)).

Lemma 2.2. The permitted preference update rule is proposal-adhering.

This lemma is validated by the description of the options available to the individuals.

Reject. If a candidate rejects an assigned program, then the candidate is completely

removed from the assignment process by setting his/her rank-ordered list to an empty

set.

Γ(P, s) = P ′, where ∅P ′s′ for all s′ ∈ S.

Freeze. Individuals who choose this option accept the assigned program. Their

preferences are modified so the assigned program and all other programs ranked below

it are kept while the rest are removed. Formally,

Γ(P, s) = P ′

where ∅P ′s for all s′ ∈ S such that s′Ps, and P and P ′ agree for the rest.

Float. Preferences of the individuals who choose the float option remain unchanged.

These candidates are willing to participate in future rounds in the hopes of getting

assigned to a better program in their rank-ordered lists.

Γ(P, s) = P.

Slide. Individuals who choose the slide option want to participate the future rounds

but be considered only for the programs in the same university as the assigned program.

In this case, programs in all other universities above the assigned program are removed.

The assigned program and other programs below it remain unchanged. Let U(s) be the

set of programs that are in the same university as program s.

Γ(P, s) = P ′

12akin to the algorithm proposed by Manjunath and Turhan (2016a).
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where ∅P ′s for all s′ /∈ U(s) such that s′Ps , and P and P ′ agree for the rest.

Withdraw. Individuals who choose this option are removed from the problem. The

preferences of these applicants are set to an empty set.

Γ(P, s) = P ′

where ∅P ′s for all s ∈ S.

Note that the ‘reject’ and ‘withdraw’ options have the same effect on the rank-ordered

lists. Their difference is about the timing. A candidate who previously accepts an offered

program may withdraw in later stages.

Lemmas 2.1 and 2.2 suggest that we can use Theorems 2.1 and 2.2 to state our final

result.

Proposition 2.3. Multi-round deferred acceptance mechanism implemented in engineer-

ing colleges in India is monotone and sequentially stable.

2.7 Conclusion

This chapter studies a special class of multi-round matching mechanisms. By generalizing

the framework of H&I, we can explain a wider range of applications, including the college

admissions process in engineering colleges in India. The French college admission system

(studied in H&I) is another application that can be explained by our model.

One possible approach to understanding our results is to consider an associated one-

to-one matching market that corresponds to the original many-to-one matching market.

This technique is utilized in Kominers and Sönmez (2016), where positions, rather than

institutions, compete for individuals. In the one-to-one market with unit capacity, the

priority structure of institutions is responsive. Therefore, the results of H&I can be

employed to understand the one-to-one market. However, these results do not straight-

forwardly extend to the original many-to-one market. In our study, we take an alternate

approach to comprehend our results. Our first result to a great extent relies on the proof

of the first characterization result of DA by Kojima and Manea (2010). This enables us

to draw a comparison of their static problem with our sequential model.
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Appendix 2.A

Before we begin the proof of Theorem 2.1, let us establish some properties of choice rules

with an SSP structure.

Definition 2.8. A choice rule C satisfies Irrelevance of Rejected Alternatives if for every

set A,B ⊂ I such that C(B) ⊆ A ⊆ B, C(A) = C(B).

Definition 2.9. A choice rule C satisfies substitutability if for every set A,B ⊂ I,

a ∈ A ⊆ B, a ∈ C(B) =⇒ a ∈ C(A).

Lemma 2.3. If Ct
s has an SSP structure, then it satisfies substitutability and IRA.

The bilateral substitutes condition of Hatfield and Milgrom (2005) is equivalent to

the substitutability condition defined above. As Kominers and Sönmez (2016) prove

that SSP choice rules satisfy bilateral substitutes condition, this implies Ct
s satisfies

substitutability. IRA is proved in Aygün and Sönmez (2013) for contracts setting.

Lemma 2.4. If Ct
s has an SSP structure and the choice update rule is consistent, then

for all A,B ⊂ I t,

A ⊆ Ct
s(B) =⇒ A ∩ I t+1 ⊆ Ct+1

s (B ∩ I t+1)

Proof. Let Ct
s be a choice rule that is generated by (≻t

s, ▷
t
s) and Ct+1

s is updated as per

Definition 2.4. Let i ∈ A ∩ I t+1 such that µ̂t(i) = (s, pjs) for some pjs ∈ Bt
s. As i is

active at stage t+ 1, pjs ∈ Bt+1
s . Since i is ≻j

s maximal at stage t of the surviving set of

individuals at Step j, it must be that i is ≻j
s maximal at stage t+ 1 as no individual is

added to the set. Thus, µ̂t+1(i) = (s, pks) for some k ≤ j. This completes the proof.

2.A.1 Proof of Theorem 2.1

Proof. Let Ξ = (I1, S, (Pi)i∈I , (≻1
s, ▷

1
s, q

1
s)s∈S) be a sequential matching problem with the

outcome MIOSSM
Γ (Ξ) ≡ (Ξt, µt)1≤t≤T . We first prove that IOSSM exists when the choice

rule has an SSP structure.

Lemma 2.5 (Hatfield and Milgrom (2005), Aygün and Sönmez (2013)). When Cs sat-

isfies substitutability and IRA, then IOSSM exists, and it is unique. Moreover, it is the

outcome of the deferred acceptance algorithm.
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Lemma 2.3 and 2.5 prove the existence of IOSSM.

To prove that (1.) =⇒ (2.), let MIOSSM
Γ be monotone and Γ be not proposal-

adhering. That is, there exists a Ξ such that for some t ≤ T − 1, and i ∈ I t, P t+1
i /∈

Γ(P t
i , µ

t(i)). The counter-example provided in Proposition 1 of H&I suffices as responsive

choice rules are a special case of choice rules with SSP structure where each institution

is decomposed to identical multiple copies with unit demand.

Lemma 2.6 (Proposition 1, H&I). Let Mφ
Γ be a sequential matching mechanism such that

≻p
s=≻p′

s for all s ∈ S and p, p′ ∈ Bs. If Mφ
Γ is monotone, then Γ is proposal-adhering.

Following the methodology used in Kojima and Manea (2010), we now show (2.)

=⇒ (1.). Let Γ be a proposal-adhering preference update rule. Consider Ξt for some

t ≥ 2. Let µt−1 = φ(Ξt−1) and µt = φ(Ξt) be stage matchings at period t − 1 and t

respectively. We need to prove that for all i ∈ I t, µt(i)Rt
iµ

t−1(i). We prove this with the

steps below.

Step 1: Define x0 as the allocation µt−1 restricted to I t. That is, x0(s) = µt−1(s)∩I t.

Define for all i ∈ I t,

x1(i) =

x0(i), if x0(i)P
t
i ∅,

∅, otherwise.

If x1 is a stable matching at (P t
It , (C

t
s)s∈S), then using the fact that φ generates

individual optimal stable matching, µt(i)Rt
ix1(i) for all i ∈ I t holds and we are done.

Let us define a sequence (xk)k≥1 as follows:

Definition 2.10 (Step-wise unblocking process). Define for all k ≥ 1 and i ∈ I t,

xk+1(i) =

sk, if i ∈ Ct
sk

(
xk(i) ∪

{
j ∈ I t | skP t

jxk(j)
})

,

xk(i), otherwise.

where sk is an arbitrary institution that is part of a blocking pair if xk can be blocked

at (P t
It , (C

t
s)s∈S). If xk cannot be blocked, then xk+1 = xk.

We now prove the following lemma.

Lemma 2.7. The sequence (xk)k≥0 satisfies for every k ≥ 1:

(I) xk is a feasible stage matching.
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(II) xk(i)R
t
ixk−1(i) for all i ∈ I t.

(III) xk(s) ⊆ Ct
s

(
xk(s) ∪

{
j ∈ I t | sP t

jxk(j)
})

for all s ∈ S.

As xk+1(i)R
t
ixk(i) for all i ∈ I t, the step-wise unblocking process generates a sequence

(xk)k≥0 that converges to a matching xK in finite number of steps K. Each iteration

results in a different allocation if the initial matching within the iteration is not stable.

Hence, xK is stable at (P t
It , (C

t
s)s∈S).

Because xK(i)R
t
ix1(i)R

t
i∅ for all i ∈ I t, the matching xK is individually rational for

agents. Also, as the outcome MSOSM
F (Ξ) at time period t is the individual optimal

among all the stable outcomes at t, we get for all i ∈ I t,

µt(i)Rt
ixK(i)R

t
iµ

t−1(i)

It remains to prove Lemma 2.7.

Proof. We prove the lemma by induction with the base case k = 1. (I) and (II) hold

for k = 1 by definition of x1. Consider any s ∈ S. We now prove that x1(s) ⊆
Ct

s

(
x1(s) ∪

{
j ∈ I t | sP t

jx1(j)
})

. By definition of x1(i), we have

x1(s) ⊆ x0(s) ⊆ µt−1(s)

As Γ is proposal-adhering,

{j ∈ I t | sP t
jx1(j)} ⊆ {j ∈ I t | sP t−1

j x0(j)}.

Together we get

x1(s) ∪ {j ∈ I t | sP t
jx1(j)} ⊆ x0(s) ∪ {j ∈ I t | sP t−1

j x0(j)} (2.1)

As the period t− 1 outcome is stable at (P t−1
It−1 , (C

t−1
s )s∈S), we have

1. Ct−1
s (µt−1(s)) = µt−1(s) for all s ∈ S, and

2. i /∈ Ct−1
s (µt−1(s) ∪ {i}), for all i ∈ {j ∈ I t | sP t−1

j x0(j)}.

By consistency of Ct−1
s , we have

Ct−1
s (µt−1(s) ∪ {j ∈ I t | sP t−1

j x0(j)}) = µt−1(s).
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In order to state the set-inclusion property at stage t, we state our next lemma, which

is straightforward to prove. Using Lemma 2.4, we have

x0(s) ⊆ Ct
s(x0(s) ∪ {j ∈ I t | sP t−1

j x0(j)})

By substitutability of choice fuction Ct
s derived by updating structure of choice function,

x1(s) ⊆ Ct
s

(
x1(s) ∪

{
j ∈ I t | sP t

jx1(j)
})

.

This concludes our proof for the base case.

Assuming the conclusions of step k ≥ 1 hold, we now prove it for k+1 (the only case

to prove is when xk ̸= xk+1).

Let us prove (I) first. Consider s ̸= sk. Observe that xk+1(s) ⊆ xk(s) by construction.

As xk is an allocation, by the inductive hypothesis we get |xk+1(s)| ≤ |xk(s)| ≤ qts.

For institution sk, xk(sk) ⊆ Ct
sk

(
xk(sk) ∪

{
j ∈ I t | skP t

jxk(j)
})

holds by inductive

hypothesis at k. Then using definition of xk+1(i),

xk+1(sk) = Ct
sk

(
xk(sk) ∪

{
j ∈ I t | skP t

jxk(j)
})

Feasibility of choice rule Ct
sk

thus guarantees that |xk+1(sk)| ≤ qtsk .

We now prove (II). Observe that

xk+1(sk)\xk(sk) ⊆
{
j ∈ I t | skP t

jxk(j)
}

(2.2)

Thus, for j ∈ xk+1(sk)\xk(sk), we get

sk = xk+1(j)P
t
jxk(j) (2.3)

Each agent outside of xk+1(sk)\xk(sk) is assigned the same institution under xk+1 and

xk. Therefore, xk+1(i)R
t
ixk(i) for all i ∈ I t.

We now show (III) for all s ̸= sk. By construction, we have xk+1(s) ⊆ xk(s). By

Equation 2.3, we have
{
j ∈ I t | sP t

jxk+1(j)
}
⊆
{
j ∈ I t | sP t

jxk(j)
}
. Therefore,

xk+1(s) ∪ {j ∈ I t | sP t
jxk+1(j)} ⊆ xk(s) ∪ {j ∈ I t | sP t

jxk(j)} (2.4)
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Now, substitutability of Ct
s, inductive hypothesis for k (condition (II)), and Equation 2.4

implies

xk+1(s) ⊆ Ct
s

(
xk+1(s) ∪

{
j ∈ I t | sP t

jxk+1(j)
})

.

Let us now consider institution sk. By Equation 2.2, agents in xk+1(sk)\xk(sk) prefer sk

over their allocation in xk. Individuals who are not chosen from this set in this iteration

are those who still prefer sk over their allocation in xk+1. This is because xk+1(i)R
t
ixk(i)

for all i ∈ I t. This implies

xk+1(sk)\xk(sk) =
{
j ∈ I t | skP t

jxk(j)
}
\
{
j ∈ I t | skP t

jxk+1(j)
}
.

Or equivalently,

xk+1(sk) ∪
{
j ∈ I t | skP t

jxk(j)
}
= xk(sk) ∪

{
j ∈ I t | skP t

jxk+1(j)
}

(2.5)

Using substitutability of Ct
s, (III) for k and Equation 2.5, we obtain

xk+1(sk) ⊆ Ct
sk

(
xk+1(sk) ∪

{
j ∈ I t | skP t

jxk+1(j)
})

.

This concludes our proof of Lemma 2.7.

2.A.2 Proof of Theorem 2.2

We employ the technique utilized by H&I in the proof of Theorem 2. The notions of

stage stability and sequential stability introduced in this chapter are generalized versions

of spot stability and gradual stability, respectively, as defined by H&I. Thus, it remains

to show the equivalence between Definition 2.1 and Definition 2.7 for an arbitrary stage

t and t = t′ for the stage mechanism φ. We refer to the conditions of Definition 2.1 as

C1, C2, and C3, and the conditions of Definition 2.7 as C1’, C2’, and C3’, respectively.

We first show that Definition 2.7 implies Definition 2.1. Then, C1 directly follows

from C1’. If possible, assume that C2 is not true. That is, there exists an s ∈ S such that

µt(s) ⊊ Cs(µ
t(s)). As |µt(s)| ≤ qs, this implies |Cs(µ

t(s))| < qs. Suppose i /∈ Cs (µ
t(s)).

Since Cs is an SSP choice rule, at each position pk ∈
{
p1, . . . , pqs

}
, either (i) ∅s ≻pk

s i or

(ii) there exists some other individual j such that µ̂(j) = (s, pk) and j ≻pk
s i. Both cases
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contradicts with our supposition that (Ξt, µt)t is sequentially stable. Thus C2 is true.

If possible, assume that C3 is not true. That is, there exists an institution-individual

pair (s, i) such that sP t
i µ

t(i) and i ∈ Ct
s(µ

t(s) ∪ {i}). Let i be assigned to the position

pks ∈ Bs. If pks is unassigned at µ, then C2’ is violated and if µ̂(j) = (s, pks), then C3’ is

violated. Thus, φ is stage stable.

We now prove that Definition 2.1 implies Definition 2.7. first, C1’ follows from C1. If

possible, C2’ is violated. That is, there exists an institution s and individual i such that

sP t
i µ

t(i). Also, for some unassigned position p ∈ Bs, i ≻p
s ∅s. This contradicts C3 as this

implies i ∈ Ct
s(µ

t(s) ∪ {i}). We now prove C3’ by contradiction. Consider i, j ∈ I t such

that µ̂t(j) = (s, p), µt(i) ̸= s and i ≻p
s j for some p ∈ Bt

s. This implies i ∈ Ct
s(µ

t(s)∪{i}).
If sP t

i µ
t(i), C3 is violated. Thus, Definition 2.7 is true for t = t′.
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Chapter 3

On the Integration of Shapley–Scarf

Markets1

3.1 Introduction

Shapley–Scarf markets, in which agents own one house each which they can exchange

among themselves without using monetary transfers, have been helpful to analyze sev-

eral real-life allocation problems, such as the assignment of campus housing to students

(Chen and Sönmez, 2002), house allocation with existing tenants (Abdulkadiroğlu and

Sönmez, 1999) and kidney exchanges involving incompatible donor-patient pairs (Roth

et al., 2004). A common complication in these allocation problems is that a big market

is fragmented into several small and disjoint ones, causing inefficiencies. For example,

house swaps in Australia are restricted to tenants within the same constituencies and

community housing provider, blocking potentially beneficial exchanges (Powell et al.,

2019). Similarly, most kidney exchanges in the US are conducted locally, despite the

existence of centralized clearinghouses, which if used could increase the number of trans-

plants by up to 63 percent (Agarwal et al., 2019).

Motivated by these observations, we investigate theoretically the welfare effects of

integrating disjoint Shapley–Scarf markets. In our model, there are k Shapley–Scarf

markets with nj agents each (nj is potentially different for each market) and n agents in

total. The segregated allocation is obtained by treating each community separately and

calculating the core allocation for each of them. The integrated allocation is the core

allocation for the entire economy.

1Co-authored with Josué Ortega and Rajnish Kumar (Queen’s Management School, Queen’s Univer-
sity Belfast, UK). A version of this chapter has been previously published in the Journal of Mathematical
Economics (2022).

69



Our first result (Proposition 3.1) states that up to, but not more than, n− k agents

may be harmed by integration, that is, they receive a house they prefer more when trade

is only allowed within their own disjoint markets. This upper bound holds for any choice

of n and k. It shows that Shapley–Scarf markets may fail to integrate because doing so

could generate significantly more losers than winners.

Our second result (Proposition 3.2) concerns the size of the gains from integration

in terms of house rank. For example, if an agent receives her 3rd best house before

integration, but her 1st best after integration, the size of her gains from integration is

3−1 = 2. Even if most agents are harmed by the merger of disjoint markets, integration

may still be justified if the size of the gains from integration experienced by a few is

substantially larger than the size of the losses from many. We show that, in the worst-

case scenario, the size of the average gains from integration may be down to, but not

less than, −n
2+n+k2+k

2n2 . This lower bound can be achieved for any choice of n and k, and

shows that, asymptotically, integration may increase the average house rank by 50% of

the size of agents’ preference lists.

Taken together, our first two results show that there are real obstacles to the integra-

tion of Shapley–Scarf markets. For example, if we have three small markets that merge

into one with 60, 30, and 10 agents respectively, up to 97 agents may obtain a worse

house after integration occurs, and on average (across all agents) each agent may receive

a house 50 positions down on her preference list, equivalent to going from her top choice

to her 51st choice.

However, these results are obtained in worst-case scenarios, which occur only when

preferences are very specific. Consequently, studying the expected gains from integration

across all possible preference profiles may be more informative. Therefore, our third

result studies the size of the expected gains from integration in random Shapley–Scarf

markets, in which agents’ preferences over houses are drawn uniformly and independently.

In Proposition 3.3, we compute the exact expected gains from integration, which

equal
(n+1)[(nj+1)Hnj−nj ]

nj(nj+1)n
− (n+1)Hn−n

n2 (where Hn is the n-th harmonic number). This

result shows that the expected welfare gains from integration are positive for all agents

and larger for agents belonging to smaller markets. Going back to our example of three

markets integrating with 60, 30 and 10 agents, the agents of the market with size ten go

up 16 positions in their expected house rank, whereas those in the market of size sixty

also increase their expected allocated house rank, but only by 2 rank positions. Our
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third result gives some context to our first two propositions, and shows that on average

we should expect an overall positive effect from integration in Shapley–Scarf markets for

agents from all disjoint markets.

Our fourth result (Proposition 3.4) establishes a connection between the number of

trading cycles that occur in the top trading cycles algorithm and the expected number of

agents harmed by integration. We use this connection to show that the expected number

of agents harmed by integration in each economy is less than nj −
√

2πnj − O(log nj),

and consequently the expected number of agents harmed by integration in the entire

economy is smaller than n−
√
2π(
∑k

j=1

√
nj)−O(log

∏k
j=1 nj). In our example regarding

the integration of markets with sizes 60, 30 and 10, our result implies that the expected

number of agents harmed by integration is less than 44, 19, and 4 for each respective

market. A consequence of our result is that, when all markets are of the same size, the

expected fraction of agents harmed by integration is less than 50% whenever each market

has less than 8π ≈ 25.13 agents.

A different approach to ensure that integration does not harm a majority of agents

is to focus on specific preference domains. We find a preference domain that achieves

this purpose, called sequential dual dictatorship, which enforces a particular correlation

among agents’ preferences. When preferences satisfy this property, we can guarantee

that no more than 50% of agents in any individual market are harmed by integration

(Proposition 3.5). The sequential dual dictator property is equivalent to assigning the

title of a dictator to at most two agents at each step of the top trading cycle algorithm,

therefore bounding the length of cycles that can occur.

Structure of the paper Next subsection 3.1.1 discusses the literature. Section 3.2

presents our model. Section 3.3 introduces a running example. Section 3.4 presents

worst-case results. Section 3.5 discusses average-case results. Section 3.6 studies prefer-

ence domains. Section 3.7 concludes.

3.1.1 Related Literature

A few other papers study the effects of integration on variations of Shapley–Scarf mar-

kets. For example, Ashlagi and Roth (2014) study the incentives for hospitals to fully

reveal their patient–donor pairs to a centralized clearinghouse. In their model, agents do

not have preferences but only dichotomous compatibility restrictions. Thus, welfare is
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measured by the size of the matching. They obtain worst- and average-case results that

have a similar flavour to ours: the average-case cost for hospitals to fully integrate into a

centralized clearinghouse is small, but the worst-case cost is high. In the same framework

as them, Toulis and Parkes (2015) propose a mechanism that is efficient and asymptot-

ically individually rational for hospitals. Our paper differs from the aforementioned

articles in that we measure welfare in terms of how desirable the integrated allocation is

with respect to the segregated one, rather than by the number of total exchanges (which

is constant in the canonical Shapley–Scarf market that we consider where preferences are

strict). Both welfare measures are relevant in different real-world settings and therefore

we think of these two research strands as complementary.

Our work is also related to a series of recent articles that have studied the integration

of other types of markets without money, in particular for Gale–Shapley one-to-one

matching markets (Ortega, 2018, 2019), Gale–Shapley many-to-one matching markets

with applications to school choice (Manjunath and Turhan, 2016b; Doğan and Yenmez,

2019; Ekmekci and Yenmez, 2019; Turhan, 2019; Aue et al., 2020), exchange economies

(Chambers and Hayashi, 2017, 2020) and networking markets (Gersbach and Haller,

2021). Among these, the closest to ours are Ortega (2018, 2019). He shows that, in

Gale–Shapley marriage markets, market integration never harms more agents than it

benefits, even though the average rank of an agent’s spouse can decrease by 37.5% of

the length of the agents’ preference list. He also provides an approximation for the gains

from integration in random markets. Some of our results parallel his for Gale–Shapley

marriage markets, although ours are more general as: i) they apply to the integration of

markets of different sizes, ii) they provide tight bounds on the welfare losses, and iii) in

the case of the gains from integration in random markets, our results are exact rather

than approximations.

Our average-case results rely on two seminal papers from the computer science litera-

ture regarding random Shapley–Scarf markets with uniform and independent preferences.

The first of these, by Frieze and Pittel (1995), computes the expected number of itera-

tions that the top trading cycles algorithm takes to find the unique core allocation and

the number of cycles created in the process. The second paper, by Knuth (1996), finds

the expected sum of ranks of obtained houses and establishes the equivalence between

the core allocation obtained from random endowments and the random serial dictator-

ship mechanism with no property rights.2 Che and Tercieux (2019) use a similar random

2The latter result was also independently discovered by Abdulkadiroğlu and Sönmez (1998).
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market approach to show that, in a related two-sided model, the top trading cycles

algorithm achieves efficiency and stability asymptotically when agents’ preferences are

independent.

3.2 Model

Preliminary definitions We study the housing market proposed by Shapley and Scarf

(1974), where there are n agents, each of them owning an indivisible good (say a house).

The agents have strict ordinal preferences over all houses, including their own, and no

agent has any use for more than one house.3

Formally, let N := {1, . . . , n} be the set of agents and let ω := {ω1, . . . , ωn} be the

initial endowment of the market. Let ≻i denote the strict preference of agent i and let

≻:= (≻i)i∈N . The weak preference corresponding to ≻i is denoted by ≽i. A housing

market (HM) is a pair (N,≻). An allocation x = {x1, . . . , xn} is any permutation of the

initial endowment. That is, ωi (resp. xi) denotes the house endowed (resp. allocated)

to agent i.

An allocation x is individually rational if xi ≽i ωi for all i ∈ N . An allocation x

is a core allocation if there does not exist a coalition S ⊆ N and an allocation y such

that {yi : i ∈ S} = {ωi : i ∈ S} and yi ≻i xi for all i ∈ S. An allocation x is Pareto

optimal if, for every alternative allocation x′ such that x′i ≻i xi for some i ∈ N , there

exists some j ∈ N for which xj ≻j x
′
j. A matching mechanism M is a map from HMs to

allocations, and is said to be a core one (resp. individually rational, Pareto optimal) if

it produces a core (resp. individually rational, Pareto optimal) allocation for every HM.

The mechanismM is strategy-proof if, for every i,≻′i,≻, Mi(N,≻) ≽i Mi(N, (≻′i,≻−i)).

There is a unique core allocation (henceforth denoted by x∗) in every housing market.

The unique core allocation can be found with an algorithm known as top trading cycles

(TTC) (Shapley and Scarf, 1974; Roth and Postlewaite, 1977), which works by repeating

the following two steps until all agents have been assigned a house.

1. Construct a graph with one vertex per agent. Each agent points to the owner of

his top-ranked house among the remaining ones. At least one cycle exists and no

3We only consider the case where agents have strict preferences; for an analysis of housing markets
with weak preferences, see Quint and Wako (2004); Alcalde-Unzu and Molis (2011); Aziz and De Keijzer
(2012); Jaramillo and Manjunath (2012); Saban and Sethuraman (2013) and Aslan and Lainé (2020).
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two cycles overlap. Select the cycles in this graph.

2. Permanently assign to each agent in a cycle the object owned by the agent he

points to. Remove all agents and objects involved in a cycle from the problem.

TTC is the only mechanism satisfying individual rationality, Pareto-efficiency and

strategy-proofness on the strict preference domain (Ma, 1994).

New definitions We study extended housing markets (EHM), which consist of an HM

and a partition of the set of agents into k disjoint communities C1, . . . , Ck. That is, an

EHM is a triple (N,≻, C), where C := {C1, . . . , Ck}. An integrated allocation is any

allocation for the HM (N,≻), whereas a segregated allocation is an allocation for (N,≻)

in which every agent receives a house owned by an agent in her own community. That

is, a segregated allocation x is such that {xi : i ∈ S} = {ωi : i ∈ S} ∀S ∈ C. A matching

scheme σ is a map from EHMs into a segregated and integrated allocation, denoted by

σ(·, C) and σ(·, N), respectively.4

For agent’s i ∈ Cj preference ≻i, we denote its restriction to Cj by ≻̃i. In other

words, ≻̃i is the strict ranking of agent i on all the houses belonging to agents in the

community Cj (including his own) that is consistent with ≻i. The matching scheme σ∗

is the core matching scheme if σ∗(·, N) is the core matching for the HM (N,≻) and,

for every community Cj, σ
∗(·, Cj) is the core matching for the HM (Cj, ≻̃Cj

), where

≻̃Cj
:= (≻̃i)i∈Cj

.

The rank of house ωh in the preference order of agent i is defined by rki(ωh) :=

|{j ∈ N : ωj ≽i ωh}|. The gains from integration for agent i under the matching scheme

σ are defined as γi(σ) := rki(σ(i, C)) − rki(σ(i, N)). The total gains from integration

is given by Γ(σ) :=
∑

i∈N γi. If these are negative, we speak of the total losses from

integration. The average percentile gains from integration are denoted by Γ(σ) := Γ(σ)
n2 .

We divide by n2 to account for both the number of agents (n) and the length of an

agent’s preference list (which is also n). Thus, Γ(σ) ∈ (−1, 1), where Γ(σ) = −1 means

that everybody was harmed by integration and moved from their best possible house to

the worst possible one.

We use N+(σ) := {i ∈ N : σ(i, N) ≻i σ(i, C)} to denote the set of agents who benefit

from integration. Similarly, N0(σ) := {i ∈ N : σ(i, N) = σ(i, C)} and N−(σ) := {i ∈
4Matching schemes are similar to the concept of assignment schemes in cooperative game theory

(Sprumont, 1990).
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N : σ(i, C) ≻i σ(i, N)} denote the set of agents that are unaffected and harmed by

integration, respectively. For all j ∈ {1, . . . , k}, we define N+
Cj
(σ) := {i ∈ Cj : σ(i, N) ≻i

σ(i, C)} to be the set of agents in community Cj who benefit from integration. The sets

N0
Cj
(σ) and N−Cj

(σ) are defined analogously.

Henceforth we focus on σ∗, that is, we study the gains from integration that oc-

cur when the allocation obtained before and after integration occurs is the unique core

allocation.

3.3 Running Example

Example 3.1 presents an EHM that we will use throughout the paper to illustrate how

market integration may harm the majority of agents, and the welfare losses of such

agents can be significant. In this EHM, n = 7 and k = 2 with C1 = {a, b, c} and

C2 = {d, e, f, g}. The integrated (resp. segregated) core allocation appears in a diamond

(resp. circle).

Table 3.1: An EHM with C1 = {a, b, c} and C2 = {d, e, f, g}.

a b c d e f g

d a b a d e f

c d a g a a a
... b d

... b d d
... c c b b

e c c
... f e

g g

In Example 3.1, there are two communities with three and four agents each, such

that one agent from each community (in this case a and d) is assigned to their second

best house in the segregated core allocation, whereas all remaining agents are assigned to

their most preferred house. However, when both communities integrate, a and d exchange

their houses, each obtaining their most preferred house, thus making that all other five

agents are assigned to their own house, which they prefer less than the segregated core

allocation.
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The two agents who experience welfare gains (a and d) go from their second to their

first best after integration occurs, obtaining a rank gain of +1. However, agent c goes

from his first to his third best (a change of -2 in rank), agent g goes from his first to

his fourth best (a change of -3 in rank), and so on, until agent e who goes from his

best to his worst option (a change of -6 in rank). When we add the total welfare losses

(+1+1−2−3−4−5−6), we obtain −1
2
(n2−n−k2−k) = −18. Dividing -18 by n2 = 49,

we find an average welfare reduction of 36.7% of the length of agents’ preferences.

In the next section, we generalize these findings, providing upper bounds for i) the

number of agents harmed by integration, and ii) the size of average welfare losses.

3.4 Worst-case Results

Unfortunately, the integration of housing markets may harm the vast majority of agents.

In the worst-case scenario, up to n− k agents are harmed by integration, and this upper

bound is tight.

Proposition 3.1. For any pair (n, k), there exists an EHM in which |N−(σ∗)| = n− k;

whereas there is no EHM in which |N−(σ∗)| > n− k.

Proof. The EHM in Example 3.1 illustrates an EHM showing that the n − k bound is

attainable. We can extend the construction of this example to arbitrary values of n and

k as follows:

1. Enumerate agents arbitrarily so that agents from community C1 are first, then

those in C2, and so on. Separate agents into two sets, namely X and N \ X.

The set X contains the first agent from each community only. The agent from

community Cj in X is denoted by j∗. The last agent in community Cj (which is

in N \X) is denoted by j.

2. The preferences for any agent i∗ ∈ X are such that:

(a) rk≻i∗ ((i+ 1)∗) = 1 (modulo k) and

(b) rk≻i∗ (i) = 2.

3. The preferences for any agent i ∈ N \X are such that:

(a) rk≻i
(i− 1) = 1,
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(b) For any j∗ ∈ X and h ∈ N \X (with h ̸= i+ 1), rk≻i
(j∗) < rk≻i

(h), and

(c) For any two h, h′ ∈ N \X and h, h′ ̸= i+ 1, rk≻i
(h) < rk≻i

(h′) if h < h′.

Constructing the preferences in such a way guarantees that, in the segregated core

allocation, every agent in N \ X obtains their first choice, whereas every agent in X

gets their second choice. In contrast, in the integrated core allocation, every agent in X

obtains their first choice, whereas everybody in N \ X obtains an object ranked from

k + 1 to n. Example 3.1 was constructed in this fashion.

To see that the n− k upper bound is tight, assume by contradiction that more than

n − k agents are harmed by integration, which implies that there is one community

in which all agents are harmed by integration, say Cj. But then σ∗(·, N) is not a core

allocation for (N,≻), because any alternative allocation x such that xi = σ∗(i, C) ∀i ∈ Cj

dominates it (since Cj is effective for allocation x and every agent in Cj prefers the

segregated over the integrated allocation). That the integrated core allocation is not a

core allocation is a contradiction, which terminates the proof.

Proposition 3.1 implies that integration may harm the majority of agents in Shapley–

Scarf markets. This is a striking observation, since the integration of Gale–Shapley

marriage markets (in which two sets of agents are matched to each other) always benefits

more agents than those it harms (see Proposition 2 in Ortega (2018), also Gale and

Shapley (1962); Gärdenfors (1975)).5

Given the negative result in Proposition 3.1, we may think that integration can still

be justified if the size of the welfare gains experienced by a minority are much larger

than the size of the welfare losses suffered by a majority. Unfortunately, in the worst-

case scenario, the size of the losses from integration is much larger than the size of the

gains from integration. In particular, we show below that the agents’ average welfare

loss may be negative and asymptotically equivalent to an increase in ranking of 50% of

the length of the agents’ preference list. We provide a tight lower bound on the size of

agents’ average welfare loss.

Proposition 3.2. For any pair (n, k), there exists an EHM in which Γ(σ∗) = −n2+n+k2+k
2n2 ;

whereas there is no EHM in which Γ(σ∗) < −n2+n+k2+k
2n2

5One may consider the opposite scenario, in which an integrated market of size n breaks into
k disjoint communities. Simple examples show that all agents can become worse off after markets
disintegrate, irrespective of the value of k.
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Proof. Example 3.1 shows that our lower bound for Γ(σ∗) is attainable. We constructed

the EHM in Example 3.1 in such a way that the minimum possible number of agents

gain from integration (that is, k, per Proposition 3.1), and that the size of such gains is

as small as possible (+1). On the other side, the welfare losses of the remaining n − k

individuals go from −2 to −n + 1 (the largest possible welfare loss). We can replicate

such construction for EHMs with arbitrary values of n and k as described in the proof

of Proposition 3.1 to obtain:

Γ(σ∗) =
1

n2

(
k ∗ 1−

n−k∑
i=1

n− i

)
(3.1)

=
1

n2

(
k − n(n− k) +

n−k∑
i=1

i

)
(3.2)

=
1

n2

(
k − n2 + nk +

(n− k)(n− k + 1)

2

)
(3.3)

= − 1

2n2
(n2 − n− k2 − k) (3.4)

This establishes that our lower bound can be attained for arbitrary values of n and k.

Interestingly, our lower bound does not depend on the size of each community relative

to the size of the whole society. Note that when n grows and k remains constant,

Γ(σ∗) ∼ −1/2.

We now show that our lower bound for Γ(σ∗) is tight, with the help of some additional

definitions and two auxiliary lemmas. Given a core allocation x∗ for a HM (N,≻) and

an integer r such that 1 ≤ r ≤ n, let m(r, x∗) := |{i ∈ N : rki(x
∗
i )}| = r. Similarly, let

M(r, x∗) := |{i ∈ N : rki(x
∗
i )}| ≥ r.

Lemma 3.1. In any core allocation x∗, rki(x
∗
i ) ≤ rki(ωi).

Proof. This is a well-known fact due to any core allocation being individually rational.

Lemma 3.2. In any core allocation x∗, m(r, x∗) ≤ n− r + 1.

Proof. For r = n, our lemma says m(n, x∗) ≤ 1. Note that if rki(x
∗
i ) = n, then xi

∗ = ωi

because of Lemma 3.1. Therefore, we cannot have m(n, x∗) > 1, as otherwise two agents

are assigned their own house but they would like to exchange their house with each other,

and thus x∗ is not a core allocation.
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For r = n − 1, suppose by contradiction that m(n − 1, x∗) > 2. Then there exists

three agents j, l, h for which rk(x∗i ) = n − 1 for all i ∈ {j, l, h}. But for each of those

agents, there exists a house ω′i ∈ {ωj, ωl, ωh} such that ω′i ≻i x
∗
i and ω′i ≻i ωi for all

i ∈ {j, l, h}. Therefore, x∗ is not a core allocation, since there is a reallocation of houses

among j, l, h that is effective for such coalition and that is strictly preferred.

The same argument applies to any other values of r < n−1. Suppose by contradiction

that there exists some r′ ≤ n − 1 such that m(r′, x∗) > n − r′ + 2. Then there are

n − r′ + 2 agents for which rk(x∗i ) = r′. But for each of these agents i, there exists a

house ωj belonging to one of these n − r′ + 2 agents such that ωj ≻i x
∗
i and ωj ≻i ωi.

Therefore, x∗ is not a core allocation, since there is a reallocation of houses among those

n− r′+2 agents that is effective for such coalition and that is strictly preferred. Hence,

the argument holds for all r.

Lemma 3.3. In any core allocation x∗, M(r, x∗) ≤ n− r + 1.

Proof. For r = n, the statement in Lemma 3.3 is the same as in Lemma 3.2. For r = n−1,

assume by contradiction that M(n− 1, x∗) > 2. By Lemma 2 we cannot have that two

agents are allocated a house ranked n for both, or that three agents are allocated a house

ranked n− 1. Thus, it must be that one agent gets a house ranked n (agent j) and two

agents get a house ranked n − 1 (agents h and l). Then we have xj = ωj by Lemma

3.1. Furthermore, for i ∈ {h, l}, there are two houses x′i, x
′′
i ∈ {ωj, ωh, ωl} such that

x′i ≻i xi and xi ≻i x
′′
i , where x′i ̸= ωi per Lemma 3.1. If, for either agent h or l, x′i = ωj,

then j and such agent would like to exchange their endowments and would be strictly

better off, and thus rkh(ωj) = rkl(ωj) = n. But because rkh(xh) = rkl(xl) = n− 1, they

must be getting their own houses, that is, xh = ωh and xl = ωl. But then, agents h

and l are better of by trading their endowments, and thus x∗ is not a core allocation, a

contradiction. The same argument applies for all other values of r < n− 1.

Armed with these three auxiliary lemmas, we are ready to prove that Γ(σ∗) ≥
−n2+n+k2+k

2n2 . By Proposition 3.1, at most n − k people may experience negative gains

from integration. These are defined, for each agent i, as γi(σ
∗) := rki(σ

∗
i (i, C)) −

rki(σ
∗
i (i, N)). To make γi(σ

∗) as small as possible, we need to fix rki(σ
∗
i (i, C)) = 1

and make rki(σ
∗
i (i, N)) as large as possible. But Lemma 3.3 shows that rk(σ∗i (i, N)) = n

for at most one agent, rki(σ
∗
i (i, N)) ≥ n− 1 for at most two agents, and so on. Thus, in
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the worst-case scenario, the sum of the welfare gains from integration among those n−k

agents equals

−
n−k∑
i=1

(n− i) =
−n2 + n+ k2 − k

2
(3.5)

Similarly, the smallest positive gains from integration for the remaining k agents

(which must exist by Proposition 3.1) are equal to 1. Thus, the smallest possible value

for Γ(σ∗) is

Γ(σ∗) = − 1

2n2
(n2 − n− k2 − k) (3.6)

Proposition 3.2 can be compared to an analogous result in Gale–Shapley marriage

markets. The average welfare gains may also be negative in Gale–Shapley markets,

but only up to 37.5% of the length of preference lists (Ortega, 2019).6 Taken together,

Propositions 3.1 and 3.2 show that the integration of Shapley–Scarf markets can be hard

to achieve, and in particular is more difficult to obtain (in the worst-case scenario) than

in Gale–Shapley marriage markets.

3.5 Average-case Results

In the previous section, we found two negative results regarding the integration of

Shapley–Scarf markets; however, both results are about worst-case scenarios. While

these results are interesting on their own, one may argue that these are knife-edge sce-

narios, and wonder whether market integration would generate welfare gains on average.

To answer this question, we study random housing markets (RHM). Given a set of

agents, an RHM is generated by drawing a complete preference list for each agent in-

dependently and uniformly at random. Similarly, a random extended housing market

(REHM) is an RHM where the set of agents is partitioned into disjoint communities

C1, . . . , Ck, each of size n1, . . . , nk (where n = n1 + . . . + nk). We emphasize that the

randomness refers to agents’ preferences and not to the partition C, which is determin-

istic. Random housing markets were first studied by Frieze and Pittel (1995) and Knuth

(1996). The latter proved the following seminal result.

6This lower bound is not proven to be tight but is the best bound available.
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Lemma 3.4 (Knuth, 1996). In a RHM, E(
∑n

i=1 rki(x
∗
i )) = (n + 1)Hn − n, where Hn is

the n-th harmonic number, that is, Hn :=
∑n

i=1
1
i
.

We can use Knuth’s theorem to find the expected size of the average welfare gains in

REHMs. Let us define the total gains from integration for community Cj as ΓCj
(σ) :=∑

i∈Cj
γi.

7 The average percentile gains from integration for community Cj are denoted

by ΓCj
(σ) := Γ(σ)

nnj
. We divide by nj to take the average across all agents in the community

Cj, and by n to normalize by the length of agents’ preference lists. Equipped with these

new definitions, we can compute average gains from integration, which are positive for

agents belonging to any community.

Proposition 3.3. E[ΓCj
(σ∗)] =

(n+1)[(nj+1)Hnj−nj ]

nj(nj+1)n
− (n+1)Hn−n

n2 .

Proof. For any i, j ∈ Cj and any community Cj, define the relative rank of house ωh in

the preference order of agent i by r̂ki(ωh) := |{l ∈ Cj : ωl ≽i ωh}|. This is, the relative

rank indicates the position of a house in an agent’s preference ranking compared only to

houses owned by other agents belonging to the same community. Knuth’s result directly

implies that

E[
n∑

i=1

rki(σ
∗(i, N))] = (n+ 1)Hn − n, and (3.7)

E[
nj∑
i=1

r̂ki(σ
∗(i, Cj))] = (nj + 1)Hnj

− nj, ∀j ∈ {1, . . . , k} (3.8)

So that before integration, agents are assigned to a house relatively ranked (nj +

1)Hnj
− nj. To complete the proof, we need to figure out which position is such a house

in the absolute rank of all houses (that is, convert the relative rank into the full rank). To

do so, suppose that a house assigned to an agent in a segregated allocation has a relative

rank q. A randomly chosen house, belonging to an agent from another community, could

be better ranked than house 1, between houses 1 and 2, ..., between houses q − 1 and q,

and so on. Therefore, a random house belonging to another agent is in any of those gaps

with probability 1
nj+1

and thus has q
nj+1

chances of being more highly ranked than the

house with relative ranking q. There are (n − nj) houses from other communities. On

average,
q(n−nj)

nj+1
houses will be better ranked. Furthermore, there were already q houses

in his own community ranked better than it. This implies that its expected ranking is

7Recall that γi(σ) := rki(σ(i, C))− rki(σ(i,N)).
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q +
q(n−nj)

nj+1
= q(n+1)

nj+1
. Substituting q for the expression obtained in equation (3.8), we

obtain

E[ΓCj
(σ∗))] =

(n+ 1)[(nj + 1)Hnj
− nj]

nj(nj + 1)n
− (n+ 1)Hn − n

n2
(3.9)

Proposition 3.3, which is interesting per se, provides valuable comparative statics,

which we present in the following Corollary.

Corollary 3.1. The expected welfare gains from integration are positive for all agents

and higher for agents in smaller communities.

For example, if we merge three Shapley–Scarf markets of size 60, 30, and 10, the

corresponding welfare gains in terms of house rank are 1.98, 5.95, and 16.16, that is,

agents from the market with only 10 agents improve the ranking of their assigned house

by 16 positions, whereas those in the market with 60 agents only improve theirs by

2 positions. In percentile terms, agents from the smallest market improve the rank

of their assigned house by 16% of the length of their preference list, whereas agents

from the largest market increase their corresponding rank only by 2% of the length of

their preference list. Our theoretical predictions match very accurately the gains from

integration observed in simulated random markets. Averaging the results of a thousand

random markets (with three markets each of sizes 60, 30 and 10), we obtain that the

realized gains from integration are 2.07, 5.93, and 16.12 (with standard deviations of

1.31, 2.27, and 5.82, respectively).8

We now turn to study the expected number of agents who are harmed by integration

in each community, that is, |N−Cj
(σ∗)|. To do so, we relate the number of trading cycles

in TTC for the segregated markets to the number of agents harmed by integration via

two auxiliary Lemmas. For any community, Cj, let tj be the number of cycles obtained

by TTC when computing the segregated core allocation σ∗(·, Cj), and let t :=
∑k

j=1 tj.
9

Our first auxiliary Lemma relates |N−Cj
(σ∗)| to tj.

Lemma 3.5. In any EHM, |N−Cj
(σ∗)| ≤ nj − tj.

8The corresponding code is available from www.josueortega.com.
9To clarify, t is the number of cycles, not of iterations. One iteration in TTC may generate more

than one cycle.
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Proof. In any cycle obtained by TTC when computing the segregated core allocation

σ∗(·, Cj), we must either have that all agents in the cycle are in N0
Cj
(σ∗) or that at least

one agent is in N+
Cj
(σ∗). Otherwise, there is a cycle (involving a set of agents S) with

at least one agent in N−Cj
(σ∗) and with no agent in N+

Cj
(σ∗). Such a combination cannot

occur. If all agents in the cycle are in N−Cj
(σ∗), then those agents are clearly a blocking

coalition to the integrated core allocation. If some agents are in N−Cj
(σ∗) and some in

N0
Cj
(σ∗), then when we run TTC to find the integrated core allocation, there is an agent

i ∈ N−Cj
(σ∗) who is pointed by an agent h ∈ N0

Cj
(σ∗), that is, h’s assignment does not

change (it is ωi before and after integration) but the one of i becomes worse. But when

we run TTC, i points to the agent owning the best house available. Now, if σ∗(i, C) is

no longer available, it means that its owner exited in an earlier cycle during TTC, and

thus she must have received a better house, and thus there is an agent in N+
Cj
(σ∗), a

contradiction.

Our second auxiliary lemma computes the expected number of cycles in random

housing markets. It appears as Theorem 2 in Frieze and Pittel (1995). Let t′ denote the

number of cycles formed during the execution of TTC in an RHM with n′ agents. Then,

Lemma 3.6 (Frieze and Pittel, 1995). E[t′] =
√
2πn′ +O(log n′).

Note that Lemma 3.6 implies that, in a REHM:

E[tj] =
√
2πnj +O(log nj) (3.10)

Combining Lemmas 3.5 and 3.6, we obtain an upper bound on the expected number

of agents harmed by integration in each community. Proposition 3.4 below presents this

upper bound.

Proposition 3.4. E[|N−Cj
(σ∗)|] ≤ nj −

√
2πnj −O(log nj).

Proof. Substituting tj in Lemma 3.6 for its value in equation (3.10) together, we directly

obtain the proof of our result.

Proposition 3.4 provides, as a Corollary, a bound on the expected total number of

agents in the whole economy that are harmed by integration.

Corollary 3.2. E[N−(σ∗)] ≤ n−
√
2π(
∑k

j=1

√
nj)−O(log

∏k
j=1 nj).
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Proposition 3.4 is our only bound that is not tight, but is nevertheless informative.

Returning to our example of an EHM divided into three communities of sizes 60, 30,

and 10, Proposition 3.4 tells us that, on average, the TTC algorithm generates around

30 trading cycles when computing the integrated core allocation. In each of those cycles,

at least one person is not harmed by integration. Consequently, at most 70 agents can

be harmed by integration. But Proposition 3.4 says more: it tells us the distribution

of agents harmed by integration across communities. Thus, in the market of size 60,

the expected number of agents harmed by integration is smaller than 44. Similarly, for

the markets of sizes 30 and 10, the expected number of agents harmed by integration is

smaller than 19 and 4, respectively.

Another Corollary of Proposition 3.4 is that whenever all communities have the same

number of agents n1, market integration never harms more than half of the total popu-

lation if n1 is sufficiently small.

Corollary 3.3. If n1 = . . . = nk, then E[|N−(σ∗)|] ≤ n
2
if n1 ≤ 8π ≈ 25.13.

Proof. From Corollary 3.2, we have that:

E[N−(σ∗)] = kn1 − k
√
2πn1 −O(log nk

1) (3.11)

and therefore E[N−(σ∗)] is less than n/2 when

k(n1 −
√
2πn1)−O(log nk

1) ≤ kn1

2
(3.12)

n1 ≤ 2[
√
2πn1 +O(log nk

1)/k] (3.13)

In particular, condition (13) is satisfied whenever:

n1 ≤ 2[
√
2πn1] = 8π ≈ 25.13 (3.14)

For several sensible combinations of parameters, we never observe that the number

of agents harmed by integration was over 50%. The fraction of agents harmed by inte-

gration was between 14% to 22%, and becomes smaller as k increases and as n decreases

(see Table 3.2). The intuition behind these changes is that as k grows, integrations of-

fer more opportunities for trade; whereas when n grows (and k remains constant) the
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probability that the integrated and segregated matchings are the same becomes smaller,

and therefore more agents benefit and are harmed by market integration (because fewer

agents are unaffected by integration). Our simulations show that the bound in Propo-

sition 3.4 regarding the number of agents harmed by integration can be improved. We

leave this interesting question for future research.

Table 3.2: Fraction of agents affected by integration.
Average over a thousand simulations with preferences drawn uniformly at random. Standard errors in parenthesis.

n k
2 3 5

Benefit Harmed Benefit Harmed Benefit Harmed

25 53.52 19.95 64.68 17.63 75.05 14.08
(6.8) (4.66) (5) (3.54) (3.59) (2.55)

50 54.64 21.45 65.57 18.47 75.54 14.67
(4.47) (3.47) (3.52) (2.66) (2.41) (1.84)

100 55.4 22.17 66.06 18.99 75.88 14.88
(3.28) (2.34) (2.42) (1.8) (1.78) (1.34)

Other Interpretations As discussed in the related literature section, the core from

random endowments is equivalent to the allocation obtained with random serial dictator-

ship in a market with no property rights, that is, assigning a random order among agents

and letting them choose their most preferred object that remains available according to

such order (Knuth, 1996; Abdulkadiroğlu and Sönmez, 1998). Therefore, the results ob-

tained for random markets in this section also apply to the integration of markets with

no endowments in which random serial dictatorship is used.

3.6 Specific Preference Domains

Although uniform and independent preferences are the most natural and simple prefer-

ences to consider in random markets, it is well-known that in real-life applications such as

kidney exchange, agents’ preferences are strongly correlated, with some “houses” being

particularly desired by most agents. In this section, we show that if preferences satisfy a

particular type of correlation structure, we can guarantee that no more than half of the

total population of agents is harmed by integration.
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To do so, let q(r, ≻̃Cj
) be the set of agents in the community Cj placed at rank r by

any agent in their own community (including themselves) in preference profile ≻̃Cj
. This

is, for any positive integer r and any j ∈ {1, . . . , k}, q(r, ≻̃Cj
) := {i ∈ Cj : ∃h ∈ Cj :

rkj(ωi) = r}. Similarly, let Q(r, ≻̃Cj
) :=

r⋃
t=1

q(t, ≻̃Cj
) be the set of agents in community

j placed at rank r and above.

Now we introduce the property that will ensure that market integration does not

harm a majority of agents, which we call sequential dual dictator. This property was

recently introduced by Troyan (2019) in a two-sided extension of a Shapley–Scarf market,

which he used to characterize the obvious strategy-proof implementation of TTC.

Definition 1 (Sequential dual dictator property). A preference profile ≻ satisfies the

sequential dual dictator property if, for any positive integer r and ∀j ∈ {1, . . . , k}, each
of their corresponding preference restriction ≻Cj

satisfies

|Q(r, ≻̃Cj
)| ≤ r + 1

In Example 3.3, we show that the preference profile in Example 3.1 does not satisfy

the sequential dual dictator property and provides a preference profile that does. In

Example 3.1, |Q(1, ≻̃C1)| = |{b, c, a}| > 2, violating the sequential dual dictator property.

Similarly, |Q(1, ≻̃C2)| = |{e, f, g, d}| > 2. In contrast, in the profile on the right in

Example 3.3, |Q(1, ≻̃C1)| = |{c, a}| ≤ 2, |Q(1, ≻̃C2)| = |{e, f}| ≤ 2 and |Q(2, ≻̃C2)| =
|{e, f, d}| ≤ 3. Whenever preferences satisfy the sequential dual dictator property, we

can guarantee that no more than half of the agents in each community are harmed by

integration. Note that, in contrast to Proposition 3.4, here we bound the number of

agents harmed by integration in every EHM, instead of the expected number of agents

harmed by integration across all REHMs.

Example 3.3: The preference profile on the right satisfies the sequential dual dictator
property, unlike the one on the left.

a b c d e f g
b c a e f g d
...

...
...

...
...

...
...

a b c d e f g
c c a e f f e
b b c f d e d
a c b d g g f

g e d g
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Proposition 3.5. If ≻ satisfies the sequential dual dictator property, then |N−Cj
(σ∗)| ≤

nj

2
.

Proof. To complete the proof, we examine the number and length of trading cycles

generated by the TTC algorithm when computing the segregated core allocation σ∗(·, Cj)

for community Cj. At the first iteration, all agents point to the owner of their most

preferred house, and if the sequential dual dictator property is satisfied, there are only

two vertices with a positive in-degree. A trading cycle is created, either of those agents

pointing to themselves or pointing at each other, and therefore each cycle created in the

first iteration of TTC has length at most 2. In the second iteration, at most two agents

have positive in-degree (because at least one agent was removed in the first iteration).

Either one or two cycles are formed in iteration 2, and they have length of at most 2.

The argument repeats for each iteration: each trading cycle has length at most 2.

Now we invoke an argument that we used in the proof of Lemma 5, showing that in

any cycle, we must either have that all agents are in N0(σ∗) or that at least one agent

is in N+
Cj
(σ∗). We have shown that there are at least nj/2 cycles in each community.

Therefore, |N−Cj
(σ∗)| ≤ nj

2
.

One particular case of preference profiles satisfying the sequential dual dictator prop-

erty are those in which all agents have the same preferences. Such preferences have

been extensively studied in Gale–Shapley marriage markets because they guarantee the

uniqueness of the core allocation and ensure that truth-telling is a Nash equilibrium of

the revelation game induced by any stable mechanism (Gusfield and Irving, 1989). The

sequential dual dictator preference domain is larger than this classical domain of equal

preferences. The sequential dual dictatorship only imposes a particular structure on the

preferences of each community over its own houses and is therefore substantially less

restrictive than identical preferences.

3.7 Conclusion

Market integration leads to more efficient outcomes and yet real-life offers plenty of

examples of markets that fail to integrate and operate disjointly. In this paper, we have

provided results that shed light on why this might be the case for a specific type of

market where monetary transfers are not permitted.
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Our explanation lies in the fact that market integration may have negative conse-

quences for most traders. These negative consequences are so dire that they vastly

outweigh the welfare benefits of those who become better off with market integration.

Somewhat surprisingly, the average effect on the economy can be so bad that the average

trader ends up with an allocation in the lower half of their preference list.

These negative consequences of market integration, however, are the exception rather

than the rule, as we have shown formally. Two interesting open problems for further

research are: i) to obtain conditions that fully characterize which types of Shapley–Scarf

markets benefit from integration, and more generally, ii) to provide a comprehensive and

unified discussion of the institutional features that prevent markets from integrating.
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