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Abstract

Quantum computers have shifted from a subject of theoretical interest to reality
in recent years with multiple devices now available at research industry labs such
as IBM, Google, and IonQ. However, quantum systems are highly susceptible to
noise. Interaction with the environment corrupts the information content, leading
to unreliable computation.

Near-term quantum computers do not have sufficient qubits to incorporate error
correction. Therefore, other mechanisms are studied to lower the effect of noise.
Quantum Approximate Optimization Algorithm (QAOA) is an algorithm family
for finding approximate solutions to combinatorial optimization problems. Any
such problem can be represented as a graph G = (V,E), and the number of 2-
qubit gates in the corresponding circuit scales linearly with the number of edges.
2-qubit gates are one of the noisiest components in current hardware. This thesis
proposes three hardware-independent algorithms to lower the number of 2-qubit
gates while ensuring functional equivalence. The first algorithm, based on Edge
Coloring, eliminates up to b |E|

2 c gates while retaining the original depth of the
circuit. The second algorithm, based on Depth First Search (DFS), eliminates
|V |� 1 2-qubit gates, which is shown to be optimal while increasing the depth of
the circuit to some extent. The third heuristic algorithm retains the |V |�1 2-qubit
gates elimination, yet restricts the increase in the circuit depth - thus yielding the
best performance of the three. Finally, the heuristic is modified to respect the
underlying hardware architecture and lower the number of SWAP gates.

Another method, called circuit cutting, where a circuit is partitioned into multiple
smaller subcircuits, is shown to effectively lower noise. The subcircuits are com-
puted individually, and the outcome is constructed on a classical computer. This
thesis proposes two error mitigation techniques, targeted particularly for circuit
cutting, which significantly improve the fidelity of the outcome.

These techniques for lowering the effect of noise are not sufficient for arbitrary
long quantum computation; there quantum error correction (QECC) is mandated.
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Quantum computers are inherently multi-valued, and accessing higher dimensions
allows storage of more information using fewer qubits. The second part of this
thesis shows the challenges of designing a ternary QECC from its binary coun-
terpart. Naive efforts require two-step error correction, leading to a significant
increase in the gate cost of the QECC circuit. Next, a necessary condition for
stabilizer formulation is provided which allows easy carry-over of binary QECC to
ternary, making error correction a single step.

For near-term devices, the decomposition of a 3-qubit Toffoli gate by temporary
access to higher dimensions is shown to provide an exponential reduction in the
depth of the decomposed circuit. The final chapter studies whether this decom-
position method is still beneficial when augmented with error correction and con-
catenation. An analytical criterion is provided for which the resource requirement
of error-corrected qutrit-assisted decomposition remains lower than the qubit-only
decomposition.

Overall, this thesis contributes both to near-term and long-term quantum comput-
ing. The findings from Part I provide useful methods to improve the performance
of algorithms in current quantum devices. Part II gives valuable insight into the
challenges of incorporating near-term methods in conjunction with error correction
and the design of higher dimensional QECC from binary codes.
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1.1 Introduction

The proposition to use a different kind of computation for the simulation of na-
ture was first proposed by Richard Feynman [F+18]. He asserted that nature is
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not classical, and therefore the computers that we have today, termed as classical
computers, are not sufficient to faithfully simulate it. The number of parame-
ters increases exponentially with the increment in the number of particles in the
system. Therefore, simulation of nature largely falls short even with current su-
percomputers. This leads to approximate methods of simulation, which are used
nowadays for most problems of interest.

Precise simulation of nature not only holds theoretical interest but also has ap-
plications in domains of practical importance such as chemistry, genetics, drug
discovery, transportation, finance, etc. Approximate solutions used presently in
problems from these domains put a limit on the quality of the result obtainable.
Feynman envisioned that since nature is inherently quantum, computers that make
explicit use of quantum mechanical principles called quantum computers, can aid
in such scenarios.

A quantum computer is often defined as a device that follows the laws of quantum
mechanics. However, this is a misnomer. Nature is inherently quantum, and every
device in use eventually consists of quantum particles, thus obeying the laws of
quantum mechanics. However, the computers used today are predominantly not
quantum computers. So, what makes a computer quantum? A computer can be
called a quantum computer if it makes explicit use of certain quantum mechanical
phenomena such as superposition, interference, and entanglement. These phenom-
ena are not observed in the macroscopic scale, and hence cannot be exploited by
almost all the current computing devices. The following subsection provides a brief
introduction to these three principles.

1.2 Quantum computer and its properties

A quantum state, in Dirac notation | i, satisfies the Schrödinger equation shown
in Eq. (1.1). Here H is called the Hamiltonian which corresponds to the total
energy of the system. Experimentally, such a quantum state can be realized using
superconductors, trapped ions, photons, or other entities. This entire thesis will
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not be concerned with the exact experimental implementation of a quantum state.
Rather, it shall always be treated in an abstract mathematical way where | i is
represented as a column vector with its norm as 1 [NC02].

i~d | i
dt

= H | i (1.1)

To adhere to the notation of bits generally used in computer science, the following
representation is used in the literature

|0i =
⇣
1 0

⌘T
|1i =

⇣
0 1

⌘T

These two states correspond to the bits 0 and 1 in electronic systems and are called
quantum bits or qubit. Qubits form the building blocks of quantum computers.
Next, let us review the relevant properties of qubits that are not observed in the
macroscopic world.

1. Superposition: As |0i and |1i are valid qubits, by linearity of the Schrödinger
equation any state of the form | i = ↵ |0i+ ei�� |1i, ↵, � 2 C, � 2 R, is also
a valid qubit. Such a state is said to be in a superposition of |0i and |1i. A
general qubit can be represented by a Bloch Sphere (refer to Fig. 1.1), where
the two poles |0i and |1i, correspond to the classical counterparts of 0 and
1. Any state within this sphere is a valid qubit.

Figure 1.1: A Bloch sphere representation of a qubit. While valid classical bits
correspond to the two poles only, any state within this sphere is a valid qubit
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Measurement plays a big role in quantum systems. While it is possible to
evolve the system in superposition, it collapses to |0i with probability |↵|2

or |1i with probability |�|2 when the state | i is measured.

2. Interference: Quantum mechanical systems have wave-particle duality, i.e.,
they exhibit the properties of both waves and particles. Therefore, when two
qubits interact, they can do so constructively or destructively by virtue of
their wave nature. Since the measurement of a qubit yields a probabilistic
outcome, this can cause a hindrance to computing with such a system. The
attempt of any quantum algorithm is to interfere these superposition states
such that the state encoding the desired solution interferes constructively,
while the others interfere destructively, thus increasing the probability of
obtaining the correct outcome. In other words, proper use of constructive
and destructive interference is a necessity for quantum computing systems.

3. Entanglement: Entanglement is a property where two qubits are so corre-
lated that the measurement of one qubit affects the state of the other, irre-
spective of the physical distance between them. This phenomenon, termed
spooky action at a distance by Einstein, has applications in quantum com-
munication, cryptography, and computing.

Note that quantum computing can broadly be classified into discrete and continu-
ous. When the computation deals with variables and observables that take discrete
values, it is said to be discrete variable quantum computation. On the other hand,
certain systems deal with variables and observables that can take values from a
continuous domain. Computation over such variables is termed continuous quan-
tum computing. This thesis deals only with discrete-variable quantum computers
For the rest of this thesis, any reference to quantum computing shall imply discrete-
variable quantum computing.



CHAPTER 1. INTRODUCTION 6

1.3 Multi-valued quantum computing

As mentioned before, every quantum state is a unit vector in a Hilbert Space. In
general, this Hilbert space is infinite-dimensional, going from |0i, |1i, |2i, . . . up
to infinity. The difference �Ei,i+1 in the energy of two consecutive states |ii and
|i+ 1i diminishes with increasing i, and the spectrum becomes continuous in the
asymptotic limit. In other words, a quantum state is inherently multi-valued. The
usage of higher-dimensional quantum systems comes with an increase in search
space. For example, the information content of an n-qubit quantum system can
be stored in d n

log2d
e d-dimensional quantum states. This increase in search space,

or equivalently the reduction in the number of quantum states, often leads to
performance enhancement in applications such as quantum cryptography, search
algorithms, decomposition of quantum gates, etc.

Nevertheless, it is an engineering challenge to deal with qudits in the labora-
tory. This is primarily because the energy difference �Ei,i+1 reduces to zero as
the dimension d increases. However, several studies have now shown experimen-
tal realization of 3-dimensional, or ternary quantum systems in superconductor
[GCK+21] and ion-trap [Low23] devices. Furthermore, pulse simulation in IBM
Quantum devices allows access to ternary quantum states. A ternary quantum
system, called a qutrit, has the form, | i = ↵ |0i+ ei�1� |1i+ ei�2� |2i, �1,�2 2 R,
where |↵|2 + |�|2 + |�|2 = 1 [NC02].

1.4 Challenges of quantum computing

Asher Peres once famously stated: “Quantum phenomena do not occur in a Hilbert
space. They occur in a laboratory." [Per97]. In other words, the theoretical studies
on quantum computing assume the existence of one or more ideal qubits in isolation
from the environment. However, in practice, this is impossible to achieve. Qubits
interact with the environment, leading to errors in the computation. Imperfection
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in the preparation of qubits, gate operations, measurement, and the natural ten-
dency of a qubit to spontaneously release energy and settle in its ground state are
some of the usual sources of noise or error in a quantum system. Fig. 1.2 shows
an estimate of the error probability on a 5-qubit IBM Quantum device.

Figure 1.2: The noise profile of a 5-qubit IBM quantum device

Error, or noise, is thus the primary challenge in designing large-scale quantum
computers capable of performing arbitrarily long and meaningful computations.

The goal of achieving reliable quantum computing naturally requires error cor-
rection and fault tolerance. However, the general working phenomenon of these
methods is to encode the information of a single logical qubit into multiple phys-
ical qubits in order to protect it from noise. It has been estimated that tens of
thousands of qubits may be necessary to achieve fault tolerance. Currently, the
largest hardware from IBM has 433 qubits, with the plan to scale up to a thousand
within a year. This is insufficient for error correction and fault tolerance. Algo-
rithms for integer factorization, database search, phase estimation, etc. have deep
circuits requiring multiple qubits. Therefore, such algorithms are not suitable for
execution in current quantum computers.
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This has led to rigorous studies on interim methods to lower the effect of noise and
have useful quantum computation. Recently IBM has been able to show reliable
computation of a 2D Ising model with more than 100 qubits using such error
mitigation methods [KE+23].

1.5 Motivation and scope of this thesis

The primary motivation of this thesis is to study various techniques to improve the
quality of computation under noise. While in the near term, this implies devising
methods to reduce the effect of noise, the long-term goal is to implement error
correction and fault tolerance. This thesis investigates both of these aspects in
two parts.

1.5.1 Near-term quantum computing

Part I of this thesis comprises methods to improve the quality of computation in
the absence of error correction. Hybrid quantum-classical algorithms have been
developed for this era, in particular, to divide the workload between quantum
hardware and classical hardware. This leads to lower qubit requirement, and lower
depth of the quantum circuit, which suits the current absence of error correction.
From a set of possible hybrid quantum-classical algorithms, this thesis focuses on
Quantum approximate optimization algorithms (QAOA) which are used to find
approximate solutions to combinatorial optimization problems. Efficient circuit
synthesis methods for these algorithms are proposed to eliminate a significant
number of noisy gates, leading to increased fidelity.

Another class of problems studied widely for near-term quantum computing is
the trotterized circuit used for condensed matter physics such as the computation
of ground state energy for Ising models. These circuits have a very symmetric
structure, but can quickly become pretty dense. Circuit cutting is a method used to
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partition a circuit into multiple smaller subcircuits such that each subcircuit can be
executed independently. The final outcome is calculated by classical postprocessing
over the outcomes of each subcircuit. This thesis explores the ability of circuit
cutting to lower noise (since each subcircuit has a smaller number of qubits and/or
gates), and proposes error mitigation methods specific to circuit cutting, to obtain
significantly higher fidelity for trotterized circuits.

1.5.2 Error corrected quantum computing

Part II of this thesis focuses on error correction and fault tolerance for the design
of quantum computers capable of performing arbitrary long computations. In par-
ticular, this part studies ternary quantum systems and discusses the challenges of
circuit synthesis for ternary quantum error correcting codes (QECC). The salient
questions are whether (i) it is non-trivial to carry over QECCs designed for bi-
nary quantum systems to the ternary systems without significantly increasing the
cost of the QECC circuit, and (ii) there are any necessary conditions for the de-
sign of ternary QECCs such that they can be designed efficiently as an extension
from known binary QECCs. This study concentrates on general stabilizer-based
concatenation QECCs. Furthermore, certain methods for the decomposition of
multi-qubit gates for near-term quantum computing, using intermediate ternary
states, to obtain a reduction in circuit depth are also taken up. An in-depth analy-
sis of the challenges of extending such methods to error correction, and an estimate
of the resource required for the same would be useful.

1.6 Contributions and Organization of the thesis

The chapter-wise contributions of the thesis are listed below.

• Chapter 1 covers the basic principles and challenges of quantum computing
and the scope of the thesis.
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• Chapter 2 provides a review of the related works such as QAOA, circuit
cutting, and the basic background of quantum error correction.

• Part I: Error suppression and mitigation for near-term quantum computa-
tion

– Chapter 3 proposes two deterministic classical algorithms for the elim-
ination of as many 2-qubit gates in a QAOA circuit corresponding to a
graph G = (V,E) as possible. The first algorithm based on edge col-
oring (EC) eliminates up to b |V |

2 c gates, without hampering the depth
of the circuit. The second one based on depth first search (DFS) elim-
inates |V |� 1 2-qubit gates, which is shown to be optimal, but with a
moderate increase in the depth of the circuit.

– Chapter 4 builds on the previous DFS-based algorithm by proposing a
heuristic method to retain the optimal 2-qubit gate elimination while
restraining the increase in the depth of the circuit. These three al-
gorithms are hardware-independent. This chapter also proposes the
modifications required to make the heuristic method more amenable to
hardware constraints.

– Chapter 5 shows the formulation of tomographic circuit cutting and
proposes two error mitigation methods.

• Part II: Error correction for reliable quantum computation

– Chapter 6 demonstrates the challenges of designing a 9-qutrit QECC
for ternary quantum systems as a carry-over of the 9-qubit QECC.
It enunciates that the resource requirement necessarily increases when
designing the ternary QECC. Next, attempts to reduce the resource
requirement are made by designing a 6-qutrit approximate QECC.

– Chapter 7 presents the root cause for the increase in resources for the
design of ternary QECC and provides a necessary condition for the
carry-over of binary QECCs to ternary quantum systems without in-
creasing the resources required.
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– Chapter 8 looks into the decomposition of multi-qubit gates using in-
termediate ternary states, proposed primarily for near-term quantum
computers. In particular, analytical estimates and necessary conditions
are derived for using this decomposition method together with quantum
error correction.

• Chapter 9 summarizes the contributions of this thesis and discusses potential
directions for future research.
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2.1 Introduction

Quantum computing has come a long way since it was initially proposed by Feyn-
man – from a theoretical notion to practical realization. The major hurdle for
quantum computing has always been noise. Several studies have been performed
to characterize, control, mitigate, and correct noise in quantum systems. These
efforts have led to a new type of algorithm, called hybrid quantum-classical algo-
rithms which are less susceptible to noise as these deal with low-depth quantum
circuits. In the absence of error correction, which is an engineering challenge now,
interim methods of error mitigation have been proposed to reduce the effect of
noise. Circuit cutting has come up as a method to lower the effect of noise at
the cost of some classical post-processing. In all these efforts, the final aim to be
achieved is always error correction and fault tolerance – without which arbitrary
long quantum computing is not possible.

This chapter first gives a broad overview of a few well-known types of noise which
affect quantum systems. Next, it presents a background on QAOA, which is a
hybrid quantum-classical algorithm and has been studied in this thesis from the
circuit synthesis perspective. Then, a brief discussion involves general ideas of
circuit cutting and error mitigation. Finally, an overview of error correction, in
particular stabilizer QECC, and the necessary conditions for resource reduction
are reviewed.

2.2 Noise in quantum systems

The imperfections of the laboratories and the interaction of qubits with the en-
vironment come into play for practical quantum computing. When the system
interacts with the environment, the system-environment pair evolves unitarily.
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However, this does not mandate that the evolution of the system alone is unitary
as well. The most general evolution of an open quantum system can be described
by the Kraus operators or the Lindblad Master Equation [NC02]. But a model, for
which the evolution of the noisy system itself is unitary, has a much simpler rep-
resentation since it can be denoted by a linear combination of the Pauli matrices
(or operators) [NC02] I, X, Z and Y whose matrix forms are shown below:

I =

 
1 0

0 1

!
X =

 
0 1

1 0

!
Z =

 
1 0

0 �1

!
Y = i.Z.X.

Three main types of noise, where the evolution of the quantum state ⇢ is unitary,
are as follows:

1. Depolarization noise [NC02]: The state ⇢ evolves to a maximally mixed
state by some probability of error p and remains unchanged by probability
(1� p) (eq. (2.1)). This is equivalent to the scenario where each of the Pauli
operators X, Y and Z occurs with equal probability.

⇢! (1� p)⇢+ p
I
2
. (2.1)

2. Stochastic Pauli noise [NC02]: This model is similar to the depolarization
model, except that the probability of the Pauli operators X, Y , and Z are
not necessarily the same. (eq. (2.2)).

⇢! (1� px � py � pz)⇢+ pxX⇢X + pyY ⇢Y + pzZ⇢Z. (2.2)

This simple change from the depolarization noise model can often lead to a
significant effect on the circuit. A general quantum circuit consists of gates
from both the Clifford group and the non-Clifford set of gates. Clifford gates
map a Pauli operator to another Pauli operator, but this does not hold for
non-Clifford gates. Therefore, if each gate in the circuit is suffering from
stochastic Pauli noise, the overall noise of the circuit may not have a simple
stochastic Pauli form.
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3. State preparation and measurement (SPAM) noise [BSK+21]: SPAM
is one of the primary sources of error in current quantum devices. This type
of error captures the scenario where preparing the initial state and/or the
final measurement are/is noisy. It is not possible to distinguish between these
two types of errors, and hence the combined nomenclature. This model has
a simple representation where the state is affected by a Pauli X operator
only with probability p (eq. (2.3)).

⇢! (1� p)⇢+ pX⇢X (2.3)

Note that this does not imply that other Pauli operators cannot act as noise
operators on state preparation and measurement. However, the phase occur-
ring from Pauli-Z or Y operators will not affect the measurement outcome.

However, as discussed before, not all noise models are unitary. Some of the models
which do not have simple unitary representation are as follows:

4. Amplitude and phase damping [NC02]: A quantum state prepared in
the excited state has a tendency to spontaneously emit the energy and return
to the ground state. Such a noise is characterized by the parameter T1 which
indicates the half-life of such a spontaneous amplitude decay. Furthermore,
the different energy states of a qubit in superposition tend to acquire dif-
ferent phases, thus causing a phase difference. The phase damping noise is
characterized by the parameter T2 which indicates the time required for the
different energy states to return to their original configuration after acquir-
ing different phases over time. The combined noise model, called amplitude
and phase damping, is governed by the three Kraus operators

E1 =

 
1 0

0
p

(1� pAD)(1� pPD)

!
E2 =

 
0
p
pAD

0 0

!

E3 =

 
0 0

0
p
(1� pAD)(1� pPD)

!
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where pAD = exp(�t/T1) and pPD = exp(�t/T2), t being time.

5. Crosstalk [SPR+20]: A major issue in current quantum devices is crosstalk.
In a device with H qubits Q1, Q2, . . . QH , if a subset of the qubits is under
operation, then ideally it should not affect the state of the remaining qubits.
However, this is not always the case. It is often observed that computation
over one qubit affects its neighboring, sometimes even far away, qubits. Such
an effect is termed crosstalk. The crosstalk noise between two qubits qi and qj

is, in general, modelled by an Rzz = CNOT (qi, qj)(I ⌦Rz(�))CNOT (qi, qj)

operator acting on the two qubits where � is a scalar.

6. Coherent rotation [GD17]: Any unitary operator is a valid quantum gate.
A quantum gate essentially rotates the qubit within the Hilbert Space. How-
ever, due to engineering defects, a rotation by an angle ✓ is often replaced
by ✓ + �✓ for a small value of �✓. If a gate G, having a coherent error of
�✓ is repeated k times, then the noise accumulates to k.�✓. But since this
is an over-rotation, coherent error results in a sinusoidal nature where the
resultant state first diverges from the ideal state, and then again converges
towards the ideal state as the accumulation of error due to over-rotation
increases.

Note that there are several other sources of noise that may affect a quantum sys-
tem, such as leakage, magnetic flux, etc. It is often difficult, if not impossible,
to completely characterize the noise on a quantum system. Therefore, a method
called Pauli twirling [WE16] is widely used now. In this method, an n-qubit quan-
tum channel ⇤ is sandwiched between single-qubit Pauli gates sampled uniformly
at random from the n-qubit Pauli group (see Fig. 2.1) such that the effective func-
tionality remains unchanged. Irrespective of the original nature of ⇤, the average
of multiple occurrences of Pauli twirling results in a stochastic Pauli channel for
any ⇤.

Pauli twirling is thus a method to convert a complicated quantum channel into
a simpler stochastic Pauli channel [VDBMT22a, vdBMKT22]. It also has an
important role to play in QECC. Most of the QECCs are designed to correct
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Figure 2.1: An example of Pauli twirling. Here the multi-qubit operator is a
quantum channel, and the single qubit gates are Pauli gates sampled uniformly at
random from the n-qubit Pauli group.

unitary error, which can always be expressed as a stochastic Pauli noise. Al-
though QECCs specific to other types of noise models such as amplitude damping
[GWYZ14, GKW+18] have been designed, these QECCs cannot be generalized to
other noise models. However, Pauli twirling over any channel can help to pro-
duce an average channel that has a stochastic Pauli nature. Error correction over
this average channel is a more generalized scenario to correct for any error on a
quantum computer [KG15].

Current quantum devices do not have sufficient qubits for incorporating error
correction. This era is often termed as the Noisy Intermediate-Scale Quantum
(NISQ) era [Pre18a]. This has led to the design of a new type of algorithm called
the hybrid quantum-classical algorithm which is predominantly aimed for NISQ
quantum computers. The next section gives an overview of this algorithm, in
particular the one relevant to combinatorial optimization.

2.3 Hybrid quantum-classical algorithms

Current quantum circuits need to be shallow with a small number of qubits. This
helps the circuit to be less susceptible to noise. In [PMS+14] the authors proposed
hybrid quantum-classical algorithms (also called variational algorithms), which
was further improved in [MRBAG16]. These algorithms are useful primarily when
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Figure 2.2: A schematic diagram of hybrid quantum-classical algorithms

the required outcome is the expectation value of an observable. The problem is an
optimization problem, and hence the requirement is to optimize the expectation
value. The entire workload is partitioned into a quantum part and a classical
part. In general, there is a parameterized quantum circuit, called ansatz, which
is executed on a quantum computer multiple times. From these outcomes, the
expectation value of an observable is calculated classically. A classical optimizer
is used to suggest a new set of parameters with the aim that the next iteration
will produce an expectation value closer to the optimal solution. Fig. 2.2 shows a
workflow of a hybrid quantum-classical algorithm.

Initial applications of these algorithms were in estimating the ground state energy
of molecules [PMS+14, MRBAG16, KMT+17, TSB+21, YABAS20]. In [TCC+22],
the authors provide a review of variational algorithms, primarily in the context
of quantum chemistry. Later, this technique was shown to have application in
quantum machine learning also [SSP15a, SWM+20, SSP15b, ASZ+21]. This the-
sis looks into the application of these variational algorithms for finding approxi-
mate solutions to combinatorial optimization problems, which is termed Quantum
approximate optimization algorithm (QAOA). The next subsection provides the
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general working principle and some background study on QAOA.

2.3.1 Quantum approximate optimization algorithm (QAOA)

QAOA is a hybrid quantum-classical algorithm, initially proposed by Farhi et al.
[FGG14], to find approximate solutions to a combinatorial optimization problem.
The idea of QAOA arises from Adiabatic Quantum Computing (AQC) [FGGS00].
Here, the goal is to find the ground state of an operator called the problem Hamil-
tonian HP . For example, the problem Hamiltonian may encode some NP-Hard
problems such as the Travelling Salesman [RMX+20], Vertex Coloring [CEB20],
etc. Therefore, it is non-trivial to find its ground state, which provides the solu-
tion to the problem. The system is therefore prepared in the ground state of an
initial Hamiltonian HM , which is varied from HM to HP over a time duration T

as H = (1 � t
T )HM + t

THP . Note that for t = 0, the Hamiltonian is HM , and
for t = T , it is HP . The only requirement for HM is that its ground state should
be easy to prepare, and [HP , HM ] 6= 0. The adiabatic theorem asserts that if this
evolution is slow enough, then the system, which is initially in the ground state of
HM , settles to the ground state of HP as T !1. For finite T , one can obtain an
approximate solution. Therefore, the goal is to have a good approximation of the
optimal solution within a reasonable T .

QAOA is a trotterization of AQC, where the adiabatic evolution is traced by
repeated application of two unitaries, namely the problem unitary U(HP , �) and
the mixer unitary U(HM , �), where � and � are parameters. A depth-p QAOA
ansatz can be represented mathematically as in Eq. (2.4).

| (~�, ~�)i = U(HP , �p)U(HM , �p) . . . U(HP , �1)U(HM , �1) | 0i (2.4)

Here ~� = {�p, . . . , �1} and ~� = {�p, . . . , �1} are the parameters which are optimized
in every iteration of the algorithm by a classical optimizer. The number of times
the problem and mixer Hamiltonians are applied is referred to as the depth p of
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the QAOA. The initial state | 0i can be an equal superposition state, or a special
state determined by the knowledge of the specific problem.

2.3.2 QAOA for Max-Cut

Farhi et al. first studied QAOA [FGG14] for the Max-Cut problem, which is
defined as

Max-Cut Problem

Given a graph G = (V,E) where |V | = n and |E| = m, find a bipartition of
the graph such that the number of edges crossing from one partition to the
other is maximized.

For Max-Cut, the problem Hamiltonian is HP = �1
2

P
(i,j)2E ZiZj, where Zi is

the Pauli operator Z acting on the qubit corresponding to vertex i. The mixer
Hamiltonian is not unique, but it is selected to be HM =

P
i2V Xi since this state

can be prepared by a depth 1 circuit by applying X gates simultaneously on all the
qubits. Farhi et al. also showed that their QAOA algorithm for p = 1 performs
better than random guessing, providing an approximation ratio of 0.6924 for 3-
regular graphs. This is still not as good as the best-known classical algorithm for
Max-Cut [GW95] which achieves an approximation ratio of 0.878. However, the
authors showed that the approximation ratio of QAOA is a non-decreasing function
of p. Therefore, it can be expected that with increasing p, the approximation ratio
of QAOA is likely to improve and that it can compete with, or even beat, the
best-known classical algorithm for an acceptable value of p. In [B+19], the authors
showed that it is not possible to outperform the algorithm of [GW95] using QAOA
if p is a constant. Nevertheless, this does not rule out the possibility of having a
p, which is polynomial in |V |, for which QAOA can outperform the algorithm of
[GW95].
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2.3.3 Variants of QAOA

Since the proposal of QAOA by Farhi et al. [FGG14], several studies have been
done to improve the quality of the outcome obtained from this algorithm. This
chapter reviews some of the major variations of QAOA proposed in the literature.

• Warm-start QAOA: The initial state of the vanilla QAOA is usually the
equal superposition of all the qubits. Therefore, the circuit to prepare the
initial state for QAOA has depth 1. In [EMW21], the authors showed that
QAOA can converge faster to more accurate results if the initial state is a
good solution of the optimization problem at hand, instead of an equal super-
position. In other words, this method involves running a classical polynomial
time heuristic algorithm for the optimization problem. This step produces a
good solution, which is then provided as the initial state of QAOA. Note that
the initial state of the QAOA can still be prepared with this method using
a depth 1 circuit. Nevertheless, in [CFG+22] the authors presented certain
scenarios where warm-start QAOA can get stuck in local optima, resulting
in its inability to reach the global optima for the problem.

• Quantum alternating operator ansatz: The original vanilla QAOA pro-
posed by Farhi et al. [FGG14] was aimed for unconstrained optimization
problems. In [HWO+19], the authors extended it to constrained optimization
problems. They called this version Quantum alternating operator ansatz so
that the acronym is still QAOA. In order for QAOA to extend to constrained
optimization problems, it is necessary to ensure that the Mixer Hamiltonian
maps one valid solution to another (or a superposition of) valid solutions.
Hence, the Mixer Hamiltonian for this version of QAOA is no longer a depth
1 circuit. Nevertheless, this extension allows QAOA to encompass signifi-
cantly more optimization problems. Moreover, for this version of QAOA, it
is necessary that the initial state is a valid solution, making it a version of
the warm-start QAOA.

• Adapt QAOA: The ansatz of a depth p QAOA is shown in Eq. (2.4).
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In [ZTB+22], the authors proposed a dynamical approach to the design of
QAOA ansatz. Suppose a depth p � 1 QAOA ansatz is prepared, and the
task is to create a depth p ansatz. In their method, the authors proposed
analytical methods involving gradient calculation to find the best circuit to
append to the depth p � 1 ansatz. This method makes the ansatz design
more complicated but was shown to converge faster than the vanilla QAOA.

• CVaR QAOA: The general notion of any variation algorithm is to find the
expectation value from the outputs of the quantum circuit, and feed it to the
classical optimizer which proposes a better set of parameters. However, when
the quantum circuit is executed multiple times, some of the times it may
produce low-quality outcomes. Calculating the expectation value over all the
outcomes lowers its value due to the presence of these low-quality outliers.
This, in turn, misguides the classical optimizer. Therefore, in [BNR+20],
the authors suggested the use of the top few best-quality outcomes from
circuit execution, and calculating expectation value over these outcomes only.
They called this method Conditional Variance at Risk (CVaR), which is
a term from finance. They studied QAOA, and more general variational
algorithms, using this CVaR method and showed improvement in the quality
of results primarily in domains such as finance and quantum chemistry. The
performance of CVaR QAOA was comparable to the vanilla QAOA and did
not offer a major improvement in general.

Apart from the ones reviewed here, there are several other minor variations of
QAOA studied for faster convergence [LJJG22, APZB21]. A great deal of effort has
been given to improve the overhead of classical optimization [AASG20, RSC+22,
CRAB21]. However, the issue of circuit synthesis and elimination of 2-qubit gates
for QAOA, which is studied in this thesis, deals only with the vanilla version of
QAOA [FGG14].

The next section deals with another method, called circuit cutting, used for near-
term quantum computation to lower the effective size of the circuit, and thus lower
the noise in the system.
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2.4 Circuit cutting

Circuit-knitting is an umbrella term that indicates various mechanisms to partition
a large circuit into multiple smaller subcircuits. These methods involve (i) wire
cutting where a circuit is partitioned into subcircuits by splitting between two
gates (figuratively along a wire) [PHOW20, TTS+21]; (ii) gate cutting where a
2-qubit gate is replaced by multiple single qubit gates with feed-forward classical
communication [MF21a, PS23]; and (iii) entanglement forging [EMG+22] where
the problem Hamiltonian is partitioned into a product of smaller sub-Hamiltonians
such that each sub-Hamiltonian leads to a smaller circuit.

These methods caught the eye of the community since they allowed users to execute
larger circuits even if they had access to smaller hardware. However, the overhead
that comes with these methods is that each subcircuit needs to be executed mul-
tiple times (usually to measure and/or prepare qubits in different basis states),
and classical postprocessing is required to determine the probability distribution
or expectation value of the uncut circuit from the outcome of the subcircuits. Ef-
forts have been made to combine wire and gate cutting [BPK23] and reduce the
overhead by incorporating classical communication [Ped23, BPS23].

This thesis focuses only on wire cutting mechanism. Although the term circuit
cutting encompasses both wire and gate cutting, in this thesis this term will hence-
forth imply wire cutting only. The idea of such circuit cutting was first proposed in
[PHOW20]. Given a circuit �, let us denote the expectation value of an observable
A as �(A). Note that, for A, it is possible to express it as [TTS+21]

A = Tr{A.I}I+Tr{A.X}X+Tr{A.Y }Y+Tr{A.Z}Z
2

where I,X, Y, Z are the Pauli operators [NC10]. In other words,

�(A) =
1

2

X

P2{I,X,Y,Z}

cP�P (A),
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where �P (A) = Tr{AP}⇢P . Here, ⇢P denotes the eigenstates of the Pauli oper-
ator P , and cP denotes the eigenvalue. Note that the mathematical expression
Tr{AP}⇢P takes instances of both subcircuits into account where the former is
measured in basis P and the latter is prepared in the state ⇢P . Since there are
two eigenstates corresponding to each Pauli operator, this method results in four
subcircuit instances for measurement basis and eight for preparation state. The
uncut expectation value (or probability distribution) is obtained via classical post-
processing.

In [TTS+21], the authors showed that the previous representation of the ob-
servable A is tomographically over-complete; It is possible to have a more suc-
cinct representation of �(A) =

P
i Tr{AOi}⇢i, where Oi 2 {X, Y, Z} and ⇢i 2

{|0i , |1i , |+i , |+ii}. These two sets Oi and ⇢i are tomographically complete and
hence denote the minimum number of subcircuits necessary. Here, there are three
subcircuit instances for measurement basis and four for preparation state. The
circuit-knitting-toolbox [BBB+23] is a useful tool for performing experiments for
both wire and gate cutting.

A general drawback of cutting is that the classical postprocessing time scales ex-
ponentially in the number of cuts when the full probability distribution needs to
be reconstructed. Therefore, this method is suitable only for circuits that can be
split into disjoint subcircuits using a small (ideally constant) number of cuts only.

2.4.1 Circuit cutting as a method to improve fidelity

Initially, circuit cutting was presented as a method for the simulation of larger cir-
cuits on smaller devices. However, currently, there is quantum hardware with 400+
qubits, whereas the largest reliable experiment to date involves only ⇠ 100 qubits
[KE+23]. In this scenario, circuit cutting has emerged as a promising method to
improve fidelity. Since each subcircuit has fewer qubits and/or gates, these are ex-
pected to be less susceptible to noise. In [ARS+21], the authors studied the effect
of circuit cutting in the improvement of fidelity for different types of noise and used
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circuit cutting on quantum circuits for combinatorial optimization in [STP+21]. In
[BSCSK21], the authors proposed a machine learning-based method to find a good
cut location so that the fidelity of each subcircuit is maximized. A follow-up of this
was studied in [BDS+23] where the points of cut were decided based on the hard-
ware noise profile. In [KMS+23], the authors used circuit cutting on variational
algorithms and obtained a better estimate of the ground state of a Hamiltonian
than the uncut circuit. This method was improved in [BMSSK23] where the au-
thors formally expressed the concept of scheduling subcircuits to hardware as an
optimization problem. Here, the authors obtained improved fidelity for different
types of circuits using circuit cutting and optimal scheduling of the subcircuits.

2.4.2 Tomographic circuit cutting

Reconstruction of expectation values of the full circuit assumes accurate estima-
tion of expectation values of each fragment, but statistical errors due to a finite
number of samples of each fragment can lead to an invalid distribution which may
be neither non-negative nor normalized. Scaling the distribution obtained and
converting it into a valid probability may be attempted. However, maximum-
likelihood tomography [PSSO21] to constrain each fragment to a valid physical
state or channel results in a valid final distribution is shown to yield a higher
fidelity with the ideal distribution as compared to scaling an invalid distribution.

Tomography is a procedure to characterize an unknown quantum state (called state
tomography), or quantum channel (called process tomography). Circuit cutting can
produce fragments that behave as an unknown quantum state or channel. Fig. 2.4
shows an example of cutting a 4-qubit GHZ circuit (shown in Fig. 2.3) into three
fragments. The first fragment in Fig. 2.4 (a) is essentially a density matrix or
quantum state characterized by the measurement Mj on the second qubit. The
second fragment shown in Fig. 2.4 (b) is a channel characterized by both the
preparation qubit Pi and the measurement basis Mj. Finally, the third fragment
in Fig. 2.4 (c) is a Positive Operator Valued Measure (POVM) [NC02] since it
corresponds to a measurement in some basis determined by the quantum gates
before the measurement in a computational basis.
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Figure 2.3: A 4-qubit GHZ circuit

|0i H

|0i Mj
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(b)

Pi

|0i
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Figure 2.4: An example of cutting the 4 qubits GHZ state shown in Fig. 2.3 into
3 fragments: (a) the first one has only a single tomographic measurement Mj and
behaves as a quantum state fragment, (b) the second one is a general fragment with
both tomographic preparation and measurement is a quantum channel fragment,
and (c) the third one has only a single tomographic preparation Pi and behaves
as a POVM. Note that the number of effective qubits of the conditional tensor in
the fragment corresponds to the number of tomographically prepared or measured
qubits, which is 1-qubit in all three cases, rather than the total number of qubits
in a fragment.

2.4.3 A brief introduction to quantum tomography

This study considers a general description of the tomography of a tensor T . This
encompasses (i) state tomography when T = ⇢ corresponds to a density matrix,
(ii) process tomography when T = ⇤ is a Choi-matrix [NC02], and (iii) measure-
ment tomography when T = Mj is a POVM element. In all three cases, quantum
tomography of T consists of choosing a basis {Bj} of tensors that spans T , where
such a spanning set is called tomographically complete and can be used to exper-
imentally measure the set of measurement probabilities pj = hhBj|T ii, where |T ii

denotes vectorization of the tensor T [GTW09]. For state, process, and measure-
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ment tomography, the basis can be chosen as Bi = Mi, Bij = ⇢Ti ⌦Mj, Bi = ⇢Ti
respectively, where {⇢i} is a tomographically complete preparation basis of input
states, and {Mj} is a tomographically complete basis of measurement POVMs.

Before proceeding further, a brief introduction to vectorization and Choi matrix
are provided herein for the sake of completeness.

1. Vectorization: Vectorization of a density matrix ⇢ can be obtained by
arranging the columns (row) of ⇢ one after another into a single column
(row) to form a column (row) matrix |⇢ii.

For example, if ⇢ =

 
a b

c d

!
, then its column vectorized form is given by

|⇢ii =
⇣
a c b d

⌘T
. The analysis [GTW09] over the vectorized form of a

density matrix is equivalent to that over the density matrix itself. However,
vectorization often makes the representation simpler.

2. Choi matrix: The action of a quantum channel is completely captured by
the Choi matrix representation [NC02]. The Choi matrix ⇤E corresponding
to a channel E , is denoted by ⇤E = (I ⌦ E) |⌦i h⌦|, where |⌦i is the un-
normalized Bell state. The dimension of ⇤E is twice that of E . Hence the
completely positive trace-preserving (CPTP) conditional of E is transferred
to the trace of the Choi matrix, as Trace(⇤E) = 2 for a single qubit channel.
If ⇤E corresponding to E is known, then E(⇢) = Tr1(⇤(⇢T ⌦I)) for any input
state ⇢, where Tr1 denotes partial trace over subsystem 1. In other words,
⇤E captures the entire information of a process E . A Choi matrix is also a
valid density matrix. Therefore, process tomography of a channel E boils
down to state tomography of ⇤E [WBC15].

If {Bj} is tomographically complete, then the probabilities {pj} contain sufficient
information to completely reconstruct T . This thesis considers two reconstruction
methods which both implement a form of maximum-likelihood estimation. The
first is linear inversion combined with re-scaling of the fitted tensor to enforce pos-
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itivity as described in [SGS12], and the second is constrained linear-least squares
estimation implemented as semidefinite program optimization problem.

Linear Inversion

For a tomographically complete basis {Bj} and outcome probabilities {pj} lin-
ear inversion amounts to constructing a dual basis [DMP00] {Dj} defined by the
orthogonality relation hhDi|Bjii = �ij as

|Djii =

 
X

i

|BiiihhBi|

!�1

|Bjii (2.5)

The linear inversion estimate of the tensor T is then given by

TLIN =
X

i

piDi. (2.6)

The linear inversion estimate of a state or channel is generally not positive or
completely-positive respectively, however, performing a specific re-scaling of eigen-
values will result in a physical state that is consistent with the maximum likelihood
estimated value under the assumption of Gaussian measurement noise [SGS12].

Constrained Least-Squares

For a tomographically complete basis {Bj} and outcome probabilities {pj} con-
strained least-squares tomography is the optimization problem given as

TLS = argmin
T�0

1

2

��⌃�1/2 (SB|T ii � |pi)
��2
2

(2.7)

where |pi =
P

i pi |ii is a vector of measured outcome probabilities, ⌃�1/2 is a
covariance matrix for the measurement outcome probabilities {pj} and SB|T ii =P

i |iihhBi|T ii is a vector of expected probabilities for the model T .
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Typically, additional constraints are also included in Eq. (2.7), such as T is trace
1 for state tomography, trace-preserving for process tomography, or the sum of
POVM elements is the identity for measurement tomography. In all these cases,
these constraints are positive-semidefinite and the resulting optimization problem
is a semidefinite program.

A general issue with the tomographic approach is that tomography scales expo-
nentially, O(4n) for state tomography and O(12n) for process tomography, with
the number of qubits n. In [PSSO21] the authors proposed a mechanism called
conditional fragment tomography in which the tomography can be performed only
on a smaller number of qubits, and the reconstruction is conditioned on the qubits
not involved in tomography, thus making it more scalable, and applied it in the
context of circuit cutting. This method was shown to perform better than normal-
ization of the obtained distribution from the subcircuits. In other words, under
the noiseless scenario, the fidelity of the constructed distribution with the ideal
uncut distribution was higher using conditional fragment tomography. Chapter 5
of this thesis builds on this method for real noisy scenarios. In particular, error
mitigation methods particular to conditional fragment tomography are proposed
to improve the fidelity in the presence of noise.

The methods discussed so far are applicable to lower the effect of noise in quantum
computers in the absence of error correction. However, for arbitrary long compu-
tations, error correction is necessary. The following section provides a brief review
of quantum error correction.

2.5 Quantum error correction

Errors in quantum systems are unwanted unitary operators. The general difficulty
in developing error-correcting codes for quantum systems arises from the following
constraints: (i) there are infinitely many possible errors, (ii) it is not possible to
copy arbitrary quantum states [WZ82] to create redundancy, and (iii) measuring a
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quantum state to check for errors collapses the system, thus losing the information.

Any unitary error on a qubit can be represented as a linear combination of the
Pauli matrices [NC02], i.e.,

E = aI+ b�x + c�y + d�z.

This thesis uses both the terminologies �x, �y, �z and X, Y, Z interchangeably for
the Pauli matrices (or operators). Peter Shor first provided a scheme for error
correction [Sho95] where the system of interest is entangled with a few ancilla
qubits. When the ancilla qubits are measured, the system collapses to a state
with one of the four possible Pauli errors. This approach solves all the apparent
hindrances of quantum error correction.

While the approach of Shor was from the viewpoint of a circuit, where he created
the encoded states, Gottesman designed a mathematical formulation for quan-
tum error correction, called stabilizers [Got97]. The mathematical formulation of
Gottesman encompasses any stabilizer code, and the Shor code can also be de-
rived from this formulation. More concretely, the approach of Shor code was to
prepare the encoded state, while the approach of Gottesman was to find the group
of operators under which the noiseless encoded state is invariant.

For a n-qubit system, a set of operators S1, S2, . . . Sm ⇢ {I, ±�x, ±i�x, ±�y,
±i�y, ±�z, ±i�z}⌦n, where each �i is a Pauli operator [NC02], is said to stabilize
a quantum state | i if the following criteria are satisfied:

1. 8i, Si | i = | i, 1  i  m;

2. 8e 2 E , 9 j, such that Sj(e | i) = �(e | i) 1  j  m;

3. for e, e0 2 E , e 6= e0, 9 j, k such that Sj(e | i) 6= Sk(e0 | i), 1  j, k  m;

4. 8i, j, [Si, Sj] = 0, 1  i, j  m.

An n-qubit state with m stabilizers can encode k = n�m logical qubits (i.e., n�m
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qubits of information). A distance d quantum error correcting code (QECC) can
correct up to t = bd�1

2 c errors. Such a QECC is denoted as an [[n, k, d]] code. Shor
code is a [[9, 1, 3]] QECC, whose stabilizers are shown in Table 2.1. In this QECC,
the information of a single physical qubit is distributed into 9 physical qubits,
resulting in a single logical qubit. A logical qubit is more robust to noise than a
physical qubit. In the table, an empty location in each row (or column) indicates
the identity operator. Explicitly, the stabilizer S1 has the form ZZIIIIIII, where
the ith operator acts on qubit qi.

Table 2.1: Stabilizer for 9-qubit QECC (Shor code) [Sho95]
``````````````̀Stabilizers #

Qutrits !
q1 q2 q3 q4 q5 q6 q7 q8 q9

S1 Z Z
S2 Z Z
S3 Z Z
S4 Z Z
S5 Z Z
S6 Z Z
S7 X X X X X X
S8 X X X X X X

The circuit of this QECC is shown in Fig. 2.5, where the initial circuit corresponds
to encoding the information of a single qubit | i into nine qubits, and the error
block E is followed by decoding.

Shor’s seminal paper shows that it is possible to correct unitary errors in a quantum
system. Other QECCs such as the 7-qubit code by Steane [Ste96a] and the 5-qubit
code by Laflamme [LMPZ96] are other schemes of encoding using fewer qubits. The
5-qubit code was shown to be optimal in the number of qubits in order to correct
a single error.

All the QECCs mentioned above correct a single error only. However, bigger
quantum circuits may incur more errors. Furthermore, the quantum gates used for
encoding and decoding are also not perfect themselves and thus may incorporate
further errors. In fact, executing the Shor code on a noisy quantum simulator
of Qiskit [H+19], namely FakeCairo, which mimics the error map of the 27 qubit
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Figure 2.5: Circuit for Shor code
(Courtesy: https://quantumcomputinguk.org/tutorials/quantum-error-correction-shor-
code-in-qiskit)

quantum hardware IBMQ Cairo, provided a fidelity of 0.79, i.e., the QECC has
been unable to keep the state error-free. Correcting multiple errors can be achieved
by a process called concatenation [NC02], where the information of a logical qubit
itself is distributed into multiple logical qubits. This allows for correcting multiple
errors at the cost of increased qubit and gate costs. However, the rate of increase
in the number of gates due to concatenation is significantly less than the rate of
lowering of error. Thus, the resultant quantum circuit becomes robust to multiple
errors and can keep the system error-free even when each of its components is
faulty. This is termed as fault-tolerance [Sho96].

The encoding circuit of Shor Code (Fig. 2.5) requires CNOT gates between differ-
ent pairs of qubits which may not be adjacent in current hardware with restricted
connectivity. Therefore, topological codes [FMMC12, CKYZ20, CZY+20], which
restrict 2-qubit operations only between neighboring qubits, are widely studied.
Recently, a quantum LDPC code was proposed that can accommodate more logical
qubits than the other topological codes using the same number of physical qubits
[Jon13]. However, topological codes usually require a large number of qubits for
encoding. While LDPC code triumphs over topological codes with fewer qubit
requirements, it requires long-range qubit interaction – which is not available in
current quantum devices. Since resource reduction is a primary goal of this thesis,
these QECCs are out of scope.
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3.1 Introduction

Near-term quantum systems contain only a few hundred qubits, which are noisy.
Such a quantum computer cannot reliably execute the much-celebrated quan-
tum algorithms such as integer factorization [Sho97], search over unstructured
databases [Gro96a], estimation of eigenvalues [NC02], solving linear systems of
equations [HHL09] etc. for sufficiently large data. Quantum error correction is
also not feasible with such a small number of qubits, and the error rates of current
quantum hardware are not sufficiently small to allow fault tolerance. Therefore,
the execution of these celebrated algorithms must wait a few more years.

However, in the meantime, quantum-classical hybrid algorithms have been de-
veloped in which some portion of the computing effort is offloaded to classical
processors. This ensures that the quantum circuit is shallow, with a low gate
count, and is thus less susceptible to error. These algorithms have applications
in finding approximate solutions to NP-Hard combinatorial optimization problems
[FGG14, FH16, GSL18], quantum chemistry such as determining the ground state
of an electronic system [C+19, GEBM19, S+20, MRBAG16], and machine learning
[BWP+17, TM19].

The Quantum Approximate Optimization Algorithm (QAOA) [FGG14] was pro-
posed primarily for finding approximate solutions to combinatorial optimization
problems. A general notion, which Farhi expressed in a talk, was that we are
missing out good enough use cases of a quantum computer in search for the best.
In other words, apart from algorithms for integer factorization, database search,
etc., even hybrid quantum-classical NISQ algorithms for quantum chemistry, and
quantum machine learning thrive to obtain the best outcome. However, finding
the best solution is often NP-Hard for combinatorial optimization problems, and
therefore the users are happy to settle for a good enough solution. QAOA works in
this good enough regime and aims to improve the quality of approximation and/or
show quantum speed-up.
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Many such instances of combinatorial optimization can be mathematically ex-
pressed as a quadratic unconstrained binary optimization (QUBO) problem. The
following sections first briefly discuss QUBO, followed by QAOA and its formula-
tion for QUBO problems.

3.2 Quadratic Unconstrained Binary Optimization
(QUBO) and its Hamiltonian formulation

Many problems of interest can be expressed as a Quadratic Unconstrained Binary
Optimization (QUBO). In this formulation, a problem with n variables is expressed
as some function of xj, 8j, xj 2 {0, 1}, called the cost function. The cost function
C(x1, x2, . . . , xn), corresponding to the problem, can contain only single (xj) or
two variable interaction terms (xjxk) - thus the name quadratic. The target is to
assign values to each xj such that the cost function is minimized (or maximized).

An example of QUBO formulation is shown henceforth for the Max-Cut problem,
which is one of the most widely studied problems for QAOA. The formal definition
of the Max-Cut problem is given in Definition 3.1.

3.1: Max-Cut Problem

Given a graph G = (V,E) where |V | = n and |E| = m, find a bipartition of
the graph such that the number of edges crossing from one partition to the
other is maximized.

To obtain a QUBO formulation of this problem, consider a binary variable xj

assigned to each vertex j. If the graph is bipartitioned into V1 and V2 such that
V1 [ V2 = V and V1 \ V2 = �, then it can be decided that

xj =

8
<

:
1, if j 2 V1 (or V2)

0, otherwise.
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An edge (j, k) is said to belong to the cut if i 2 V1 and j 2 V2, or vice versa. The
cost function for the Max-Cut problem [Wes01] can, then, be represented as

Maximize C(x1, x2, . . . , xn) =
X

(j,k)2E

(xj + xk � 2xjxk)

For every edge (j, k), the cost function gets a value of 2 if (j, k) belongs to the cut, 0
otherwise. In general, QUBO formulation is meant for unconstrained optimization
problems. However, constrained optimization problems can also be formulated as
a QUBO by appending the constraints as penalties in the cost function [GKHD22].

A general QUBO has the form

X

j,k

Qjkxjxk +
X

j

bjxj + c (3.1)

where Qjk, bj and c are coefficients. The QUBO formulation and its graph structure
follow hand-to-hand. The previous example showed the QUBO formulation for a
graph problem, namely Max-Cut. The QUBO of Eq. (3.1) can be interpreted as
a graph with each xj representing a vertex with weight bj and each (xj, xk), for
which Qjk 6= 0 as an edge with weight Qjk. Henceforth, a QUBO and its graphical
representation will be used interchangeably.

To formulate a QUBO problem in the quantum domain, it is necessary to shift
from {0, 1} to {+1,�1} variables. Any information regarding a quantum state
corresponds to an observable, and the observable can be shown to have eigenval-
ues {+1,�1} [GS18, NC02]. Therefore, the quantum representation of a QUBO
problem belongs to the {+1,�1} variable domain, where a qubit is associated with
each vertex, and the outcome corresponds to the eigenvalue of some observable. A
{0, 1} variable xj can be represented as a {+1,�1} variable zj where

xj =
1� zj

2
.

For the rest of the thesis, zj shall denote a {+1,�1} variable, and Zj will be
the observable corresponding to zj. Under this change of variable, the Max-Cut
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problem has the representation

X

(j,k)2E

(xj + xk � 2xjxk) =
X

(j,k)2E

(
1� zj

2
+

1� zk
2
� 2

1� zj
2

1� zk
2

)

=
X

(j,k)2E

(
2� zj � zk � 1 + zj + zk � zjzk

2
)

=
X

(j,k)2E

1� zjzk
2

In the operator representation, each zj is replaced by its corresponding observable
Zj, and each 1 is replaced by I. Associated with a quantum system is a hermitian
operator H called the Hamiltonian [GS18], whose eigenvalue is the total energy
of the system. The Hamiltonian representation of the Max-Cut problem is, thus,
given in Eq. (3.2).

Maximize C(Z1, Z2, . . . , Zn) =
X

(j,k)2E

I � ZjZk

2
(3.2)

The Hamiltonian corresponding to the general QUBO in Eq. (3.1) is shown in
Eq. (3.3).

HP =
X

j,k

Qjk
I � Zj

2
·
I � Zk

2
+
X

j

bj
I � Zj

2
+ c

=
X

j,k

Qjk

4
ZjZk �

X

j

(
X

j,k

Qjk

4
)Zj �

X

k

(
X

j,k

Qjk

4
)Zk �

X

j

bj
2
Zj

+(
X

j,k

Qjk

4
+
X

j

bj
2
+ c)I

=
X

j,k

Qjk

4
ZjZk �

X

j

1

2
(bj +

X

k

Qjk)Zj + (
X

j,k

Qjk

4
+
X

j

bj
2
+ c)I(3.3)

Such a Hamiltonian HP has only one or two variable terms. Henceforth such a
Hamiltonian will be referred to as two-body interaction Hamiltonian.
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A Quantum Approximate Optimization Algorithm (QAOA) is a quantum algo-
rithm for finding good approximate solutions to combinatorial optimization prob-
lems. The initial studies on QAOA focused on the QUBO formulation of uncon-
strained optimization problems only. However, it is possible to design QUBO for
certain constrained optimization problems as well by adding the constraints as
penalty terms in the objective function [GKD18]. The following section provides
a brief introduction to QAOA.

3.3 Quantum Approximate Optimization Algorithm
(QAOA)

Quantum Approximate Optimization Algorithm (QAOA) is the trotterized version
of adiabatic quantum computing (AQC). Therefore, a brief introduction to AQC
is provided in the next subsection, followed by its trotterization, which is QAOA.

3.3.1 Adiabatic Quantum Computing (AQC)

Computation with quantum devices can be broadly classified into three types - (i)
gate-based, (ii) measurement-based, and (iii) continuous Hamiltonian evolution.
In the first one, a quantum state is evolved by application of multiple unitary
operators, termed as quantum gates, and is finally measured to obtain the desired
outcome with high probability. Most of the well-known quantum algorithms, such
as Shor algorithm [Sho97], Grover’s algorithm [Gro96a] fall under this category.
Another approach to quantum computing is measurement-based where the de-
sired state is prepared by repeated measurement in different bases [BBD+09]. It
has been shown that these two approaches are equivalent to one another. However,
there is another approach of quantum computation, used primarily for optimiza-
tion problems, called adiabatic quantum computation [AL18]. In this method,
a problem P is encoded as a Hamiltonian HP such that the ground state of this
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Hamiltonian is the optimal solution of the problem. The problems of interest, from
domains of graph theory, chemistry, etc., are, in general, NP-complete. Hence,
preparing the ground state of HP is not trivial.

Adiabatic quantum computation prepares a time-dependent Hamiltonian H(t) =

(1� t
T )HM + t

THP , where HM is some other Hamiltonian, such that [HM , HP ] 6= 0,
whose ground state is easy to prepare. The Hamiltonian H(t) is evolved slowly
from time t = 0 to T . The value of T is governed by Quantum Adiabatic Theorem.

Theorem 3.1: Quantum Adiabatic Theorem

Given a time-dependent Hamiltonian H(t) = (1 � t
T )HM + t

THP , a system
| (0)i, prepared in the ground state of HM , evolves to the ground state
| i (T ) of HP in time t = T if T / 1

g2min
, where gmin = min0s1 E1(s)�E0(s),

Ei(s) being the i-th energy state of H(t) at s = t
T .

A primary requirement for the success of adiabatic quantum computation is that
[HP , HM ] 6= 0, which ensures that gmin > 0 [FGGS00, FGG+01], leading to a
transition from the ground of HM to the ground state of HP . If [HP , HM ] = 0,
then it can be shown that such a transition doesn’t occur.

In general, it is often not trivial to determine gmin. Furthermore, for NP-Complete
problems, gmin ! 0, thus making T !1. Therefore, the primary interest is often
to find good approximate solutions to the optimization problem in some finite
time.

Currently, D-Wave has an adiabatic quantum computer with ⇠ 2000 qubits. How-
ever, this computation technique is suitable mainly for optimization problems and
does not conform with the gate-based quantum computation approach. A trotter-
ized version of adiabatic quantum computation is named Quantum Approximate
Optimization Algorithm (QAOA) and is suited for gate-based quantum computa-
tion.
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3.3.2 QAOA: Trotterization of AQC

Evolution of a quantum system, described by a Hamiltonian H, from the initial
state | (0)i to | (t)i in time t is expressed as

| (t)i = exp(�
i

~H · t) | (0)i

where ~ is the reduced Plank constant [GS18]. Now, H(t) = (1 � t
T )HM + t

THP .
Therefore,

exp(�
i

~H · t) = exp(�
i

~ [(1�
t

T
)HM +

t

T
HP ] · t)

= exp(�i(�0HM + �0HP ))

= lim
p!1

(exp(�i
�0

p
HM) · exp(�i

�0

p
HP ))

p

= lim
p!1

(exp(�i�pHM) · exp(�i�pHP ))
p

The above equation follows from the Suzuki-Trotter decomposition, also termed
as trotterization. This decomposition asserts that adiabatic quantum computing
can be approximated by two sets of quantum gates U(HM , �p) = exp(�i�pHM)

and U(HP , �p) = exp(�i�pHP ), applied alternately for p steps [FGG14], resulting
in a parameterized quantum circuit.

The Quantum Approximate Optimization Algorithm (QAOA) [FGG14] is a hybrid
quantum-classical algorithm studied primarily for finding an approximate solution
to combinatorial optimization problems. A QAOA is characterized by a Hamilto-
nian HP that encodes the combinatorial optimization problem and a Mixer Hamil-
tonian HM whose ground state is easy to prepare and [HP , HM ] 6= 0. Two param-
eterized unitaries U(HP , �) = exp(�i�HP ) and U(HM , �) = exp(�i�HM) are ap-
plied sequentially for p � 1 times on the initial state | 0i. Here � = {�1, �2, . . . , �p}

and � = {�1, �2, . . . , �p}, �i, �i 2 R 8 i, are the parameters. The algorithm starts
with some initial state | 0i, applies the two unitaries consecutively for p steps,
and is finally measured. A single epoch of a level-p QAOA is represented as in
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Eq. (3.4).
| (�, �)i = (⇧p

l=1e
(�i�lHM )e(�i�lHP )) | 0i (3.4)

Such a parameterized circuit | (�, �)i is termed as ansatz. The parameters are
usually initialized randomly, and after an epoch of iterations, that provides the
expectation value h (�, �)|HP | (�, �)i, the parameters are updated by a classical
optimizer. The next epoch uses this new set of parameters and is expected to
provide an expectation value that is closer to the optimum solution to the problem.
In other words, the objective function of a depth-p QAOA can be expressed as

max
 (�,�)

h (�, �)|HP | (�, �)i (3.5)

Farhi et al. first proposed QAOA [FGG14], and studied it in the context of finding
a maximum cut in a graph, known as the Max-Cut problem. For 3-regular graphs,
they showed that a p = 1 QAOA achieves an approximation ratio better than
random guessing, and the approximation ratio is a non-decreasing function of p
[GW95]. Therefore, QAOA is expected to be a potential candidate for quantum
advantage using near-term devices. Henceforth, QAOA has also been studied to
find approximate solutions to other combinatorial optimization problems as well
[HWO+19, Sal20, FB+18, CEB20, FGG20]. The study in this and the next chapter
will focus only on problems involving one- or two-body interaction Hamiltonians.

Eq. (3.3) shows the Hamiltonian formulation corresponding to generalized QUBO.
To solve such a problem via QAOA, the operator U(HP , �) takes the form as
in Eq. (3.6). The terms involving only scalar coefficients have been discarded
for brevity since they act as global phases and do not find their way into the
corresponding quantum circuit.

U(HP , �) = ⇧j,kexp(�i�
Qjk

4
ZjZk) · ⇧jexp(�i�

1

2
(bj +

X

k

Qjk)Zj (3.6)

The circuit representation of Eq. (3.6) involves a bunch of exp(�i✓1ZjZk) = RZjZk
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and exp(�i✓2Zj) = RZj terms. While the latter is realized as Rz(✓2) gates, with
✓2 =

1
2(bj+

P
k Qjk) for each such gate, the former is realized as in Fig. 3.1 [Had18],

where ✓1 =
Qjk

4 for each such gate.

qj

qk Rz(✓1)

Figure 3.1: Circuit realization of the operator RZiZj

For the rest of the thesis, a step would imply the part of a layer executing the
circuit of Fig. 3.1. Multiple operators of the form exp(�i�ZjZk) can be executed
in a single step for disjoint pairs (j, k).

For the sake of completeness, we show the circuit diagram of the operator U(HP , �)

for an example two body Hamiltonian as in Eq. (3.7).

HP =
Q01

4
Z0Z1 +

Q12

4
Z1Z2 �

1

2
(b0 +Q01)Z0 �

1

2
(b1 +Q12)Z1 (3.7)

Therefore the circuit for U(HP ), corresponding to this HP , has two Rzz operators,
and two Rz operators. For the sake of brevity, let us assume that the parameter
corresponding to each of Rzz and Rz operators is ✓1 and ✓2 respectively. Under
this assumption, the circuit of U(HP ) is shown in Fig. 3.2.

RZ0Z1

RZ1Z2

q0

q1

q2

RZ(✓2)

RZ(✓1) RZ(✓2)

RZ(✓1)

Figure 3.2: An example QAOA circuit of U(HP ) where HP is as in Eq. (3.7)
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3.4 CNOT elimination in QAOA circuit

Ideally, the expectation value h (�, �)|HP | (�, �)i of a QAOA is a non-decreasing
function of p [FGG14]. However, experiments in real noisy hardware show that
the expectation value starts decreasing beyond a certain p as an effect of noise
[HSN+21]. In the absence of error correction, several error mitigation methods
have been proposed in the literature [TBG17, BW20a, EBL18, ECBY21, BMKT22]
that aims to lower the effect of noise on the circuit. Apart from general error
mitigation techniques variation in the Mixer Hamiltonian [ZTB+22], or the Cost
Function [LJJG22, BNR+20] have been proposed that either lowers the noise in
the circuit or achieves faster convergence, thus reducing the depth of the circuit,
and hence the effect of decoherence.

One of the primary sources of noise in current quantum devices [ibm22] is two-
qubit operations such as CNOT. These gates are ⇠ 100 times more likely to be
erroneous than single qubit gates. However, the circuit realization of a level-
p QAOA corresponding to the generalized Hamiltonian of Eq. (3.3) requires 2mp

CNOT gates, where m = |E|. Theorem 3.4 prescribes the condition where the first
CNOT gate of an RZjZk

(Fig 3.1) is irrelevant to the effect of the said operator
and hence may be removed while retaining functional equivalence.

Theorem 3.4 depicts that the proposed elimination of CNOT gates is applicable
only when the initial state | 0i is an equal superposition of n qubits, where n is
the number of vertices in the graph. Since the RZjZk

terms appear as products
⇧j,kexp(�i�

Qjk

4 ZjZk), these operators can be arranged in any order. Thus, we
have the choice of randomly ordering the edges (j, k) in order to apply the oper-
ator RZjZk

. For example, in Fig. 3.2, RZ0Z1 precedes RZ1Z2 . But it would have
been functionally equivalent if RZ1Z2 preceded RZ0Z1 . However, from the above
discussion, it follows that if we arbitrarily choose edges for applying the operator
RZjZk

, then it cannot be guaranteed that a large number of edges will conform to
Corollary 3.1. The requirement, in fact, imposes a precedence ordering among the
edges.
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Theorem 3.2: Criteria for CNOT elimination

Let | i be an n-qubit state prepared in a uniform superposition (up to
relative phase) overall basis states |x1, . . . , xni such that the relative phase
on each basis state is a function of a subset S ⇢ {1, 2, ..., n} of the n qubits
(and independent of remaining qubits) i.e.

| i = 1p
2n

X

x1,...,xn

e(i�(xS)) |x1, ..., xni

where xS = {xi : i 2 S} and �(xS) depicts the relative phase of each
superposition state. For any two qubits |ji and |ki, where |ki /2 S, and
for the two operators U1 = CNOTjk(Ij ⌦ Rz(✓1)k)CNOTjk and U2 = (Ij ⌦

Rz(✓1)k)CNOTjk, we have

U1 | i = U2 | i.

Proof. See Appendix A.1.

Corollary 3.1

Given a graph G, a Rzjzk operator corresponding to an edge (j, k) can be
optimized by replacing U1 with U2, provided that the target vertex does
not occur in any of the edge operators applied earlier. In other words, the
following conditions are sufficient to optimize an edge:-

1. if the vertex j is being operated on for the first time, then it acts as
either a control or a target for the CNOT gate corresponding to the
operator;

2. The vertex j does not act as a target of the CNOT gate if it occurs as
a part of any other edge operator applied earlier in the circuit.

Proof. See Appendix A.2
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For the rest of the thesis, an edge is said to be optimized if the operator U2 can
be applied for that edge instead of U1 while retaining functional equivalence. This
process of eliminating CNOT gates is termed as ansatz optimization. Sections 3.5
and 3.6 provide two methods based on Edge Coloring (EC) and Depth First
Search (DFS) respectively to algorithmically remove CNOT gates while retaining
functional equivalence.

3.5 Edge Coloring based Ansatz Optimization

The Rzz operators are highly prone to noise since they require 2 CNOT gates each
for their implementation. Moreover, they can potentially contribute a lot to the
depth of the circuit since at a given step of the circuit, only the edge operators
corresponding to a vertex disjoint set of vertices can be applied parallelly. Thus
the minimum depth of the circuit corresponds to the minimum value k such that
the set of edges E can be partitioned as a disjoint union [iEi where each subset
Ei consists of a vertex disjoint collection of edges. This, in turn, corresponds to
the edge coloring problem in a graph [Wes01].

3.2: Edge Coloring (EC) Problem

Given a graph G = (V,E), color all the edges of the graph using the mini-
mum number of colors such that no two adjacent edges have the same color.

Given a graph G = (V,E) and a set of colors �0 = {�0
1,�

0
2, . . . ,�

0
k}, an edge coloring

[Wes01] assigns a color to each edge e 2 E, such that any two adjacent edges (i.e.,
edges incident on a common vertex) must be assigned distinct colors. The edge
coloring problem comprises coloring the edges using the minimum number of colors
k. The operators corresponding to edges having the same color can, therefore, be
executed in parallel. Moreover,

1. the number of colors in optimal coloring, called the chromatic index, corre-
sponds to the minimum depth of the circuit;
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2. edges having the same color corresponds to the operators Rzjzk that can be
executed simultaneously.

Lemma 3.1

Applying the Rzz operators of the QAOA ansatz circuit according to the
disjoint edge sets provided by the Edge Coloring Algorithm on the input
graph leads to a circuit with minimum depth.

Proof. See Appendix A.3.

Obtaining the optimal edge coloring for a given graph is an NP-complete problem
[Wes01]. It is not practical to allocate exponential time to find the optimal edge-
coloring as a pre-processing step for QAOA. Therefore, approximate polynomial
time solutions to the problem are investigated. Vizing’s Theorem states that every
simple undirected graph can be edge-colored using at most �+ 1 colors, where �
is the maximum degree of the graph [Viz64]. This is within an additive factor of
1 since any edge coloring must use at least � colors. Misra and Gries algorithm
[MG92] achieves the above bound constructively in O(n · m) time. Algorithm 1
below computes the sets of edges having the same color using the Misra and Gries
algorithm as a subroutine. It returns the largest set Smax of edges having the same
color in the coloring computed by the Misra and Gries algorithm.

Algorithm 1 Edge Coloring based Ansatz Optimization
Input: A graph G = (V,E).
Output: Largest set Smax of edges having the same color.
1: Use the Misra and Gries algorithm to color the edges of the graph G.
2: Si  set of edges having the same color i, 1  i  �0.
3: Smax  max{S1, S2, . . . , S�0}.
4: Return Smax.

This EC approach provides the minimum depth achievable for QAOA ansatz using
a polynomial time pre-processing. The operators corresponding to edges with the
same color can be executed in parallel. Therefore, the operators corresponding to
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the edges of Smax can be used as the first step of operators for maximum CNOT
elimination. The other steps can be executed in any order.

Theorem 3.3

Every edge in the first step can be optimized according to Corollary 3.4.

Proof. See Appendix A.4.

(a) Edge Coloring Based Optimization (b) Depth First Search Based Optimization

Figure 3.3: Depth of the QAOA ansatz circuit for Max-Cut when using (a) EC
and (b) DFS-based method; edges having the same color can be executed simulta-
neously. The depth of the spanning tree in the DFS-based method is 4, compared
to depth 2 for the EC-based method. However, the number of optimized edges in
the EC-based method is 2, while that in the DFS-based method is 3.

A question then arises whether it is possible to optimize a few more edges in
subsequent steps. It is, however, trivial to come up with examples where it cannot
be so. Recall that an edge (i, j) in a graph corresponds to a term / xixj in the
QUBO. For example, in the graph of Fig. 3.3 (a), if the red colored edges form
the first step, and the blue colored edges form the second, then both the red edges
can be optimized, but none of the blue edges can be done so. Therefore, there
may be some scenarios where edges in subsequent steps can be optimized. But, in
general, it is only the edges in the first step that can certainly be optimized. Since
this edge coloring-based ansatz optimization method does not increase the depth
of the circuit, it always leads to a more efficient circuit design than the traditional
QAOA circuit with a depth reduced by 1 as the first level of CNOT is eliminated.
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The figures and results are generated using the p = 1 QAOA circuit for the Max-
Cut problem whose Hamiltonian is shown in Eq. (3.2). It is a special case of
the generalized two-body interaction Hamiltonian with the one-body interaction
coefficient bj = 0 8 j. Although the figures and results are generated for the
Max-Cut problem only, the general idea, and hence the results, extend to all
Hamiltonians of the form of Eq. (3.3).

q0

q1

q2

q3

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

(a) Optimized circuit by EC method

q0

q1

q2

q3

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

H Rz(2�) Rx(2�)

(b) Optimized circuit by DFS method

Figure 3.4: Max-Cut QAOA ansatz with p = 1 corresponding to (a) EC and (b)
DFS-based optimization. In (a), the first CNOT gates of the operators have been
deleted. The operators corresponding to (q1, q2) and (q3, q0) act in parallel. In
(b), the first CNOT gates of three operators have been deleted, but the depth has
increased.

Fig. 3.3 shows a 2-regular graph with four vertices. In Fig. 3.3 (a), the depth of
the circuit corresponding to the operator exp(�i�HP ) is 2; the edges of the same
color can be operated on simultaneously. If the red (or blue) edges form the first
layer, then those two edges are optimized. The circuit corresponding to EC based
optimization method is shown in in Fig 3.4 (a).

3.5.1 Lower and upper bound on the number of optimized
edges

If �0 be the chromatic index of a graph G = (V,E), Misra and Gries Algorithm
[MG92] can find a polynomial time coloring using at most �+ 1 colors, where �
is the maximum degree of the graph. Therefore, on an average, d m

�+1e edges have
the same color.

More precisely, two extreme cases arise: (i) the colors may be uniformly dis-
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tributed, and the maximum number of edges having the same color is d m
�+1e,

or (ii) one of the colors is used dominantly for most of the edges. For all the edges
adjacent to the same vertex, a particular color can be assigned to one of the edges
only. Therefore, the dominant color can be used at most on bn2 c edges, where
n = |V |. Thus the possible number of optimized edges that can be obtained via
the EC method is as shown in Eq. (3.8).

d
m

�+ 1
e  # Optimized Edges  b

n

2
c. (3.8)

3.6 Depth First Search based Ansatz Optimization

The EC-based optimization method can eliminate  bn2 c CNOT gates. The natu-
ral questions that follow are - (i) Do there exist other methods that can eliminate
more CNOT gates while retaining functional equivalence, and (ii) what is the
maximum possible number of CNOT gates that can be eliminated?

Theorem 3.4

Optimization of an ansatz for a QAOA for a Hamiltonian of the form of
Eq. (3.3) with p=1, by deletion of the CNOT gate in the first level corre-
sponding to an edge of the graph, can be done for no more than n�1 edges.

Proof. See A.6.

Theorem 3.4 provides an answer to the second question. Corollary 3.1 provided
two criteria for CNOT elimination. The EC method uses the first criteria where
the edges in the first step are vertex disjoint, and therefore none of those vertices
have been associated with any other CNOT gates previously. The second criterion,
where a vertex is allowed to be associated with other CNOT gates as long as it
does not act as a target for those CNOTs, leads to an ordering of the edges. If
two CNOT gates acting on edges say (i, j) and (j, k), with the control on the first
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qubit, and target on the second, then the edge (j, k) satisfies the criteria for CNOT
elimination. This, in turn, refers to a spanning tree structure within the graph. A
procedure for generating a spanning tree is the Depth First Search (DFS).

Algorithm 2, for obtaining the optimized QAOA ansatz, uses the standard DFS
algorithm [CLRS09], by returning the tree edges or discovery edges forming the
DFS tree. The corresponding QAOA circuit starts from the first vertex of the DFS
tree; for every edge e = (u, v) in the DFS tree, the vertex u is made the control and
v the target for the CNOT gate and the edges are operated sequentially in the set
Edfs (the tree edges). Once every edge in the DFS tree has been operated on, the
remaining edges can be executed in any order. In fact, the EC method can be used
on the remaining edges to obtain the minimum depth of the circuit corresponding
to these edges; CNOT gates however cannot be reduced any further.

Algorithm 2 DFS-based Ansatz Optimization
Input: A graph G = (V,E).
Output: A list Edfs of n� 1 edges.
1: Edfs = {}

2: u randomly selected vertex from V .
3: Start DFS from the vertex u. For every vertex v discovered from its predecessor

v0, Edfs = Edfs [ (v0, v).
4: Return Edfs.

Theorem 3.5

Each edge in the DFS tree can be optimized according to Corollary 3.4.

Proof. See A.5.

For a graph with n vertices, the rooted spanning tree generated using DFS has
n � 1 edges. From Theorem 3.5, the DFS-based optimization method provides
n � 1 optimized edges, i.e., a reduction in the number of CNOT gates by n � 1.
Theorem 3.4 asserted that it is not possible to eliminate more than n � 1 edges.
Thus, the DFS method is optimal in the number of optimized edges. Fig 3.3 (b)
shows the edges corresponding to the DFS tree. If the root of the tree is vertex
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3, then the edges in the DFS tree, which can be optimized, are (3, 2), (2, 1) and
(1, 4). The last edge (4, 1) cannot be optimized. Fig 3.4 (b) shows the p = 1

QAOA circuit for Max-Cut corresponding to the graph in Fig 3.3 (b), optimized
using the DFS method.

Since the DFS method can eliminate almost twice as many CNOT gates as the EC
method, it is expected that the resultant circuit, optimized using the DFS method,
will be less noisy. If | i is the state obtained from the noise-free (ideal) computa-
tion of the QAOA ansatz circuit, and the state obtained from noisy computation
is | ei, then the probability of success of the noisy computation, then, is defined
as

Psuccess = | h | ei |
2 (3.9)

For a noise-free circuit, Psuccess = 1. The value lowers from 1 and approaches 0
as the noise in the system increases. Furthermore, executing a quantum circuit
in real hardware has its facets. The circuit is usually not executed as it is in the
hardware. It undergoes a process called transpilation in which

(i) the gates of the circuit are replaced with one, or a sequence of, basis gates
which are actually executed in the quantum hardware. The basis gates of the
IBM Quantum devices are {CNOT/ECR, SX, X, Rz and Identity} [ibm22],

(ii) the circuit is mapped to the underlying connectivity (called the coupling
map) of the hardware [BBMR20],

(iii) the number of gates in the circuit is reduced using logical equivalence [BW20b].

Transpilation can introduce SWAP gates in order to map the circuit to the hard-
ware connectivity. Each SWAP gate is decomposed into three CNOT gates [NC02].
However, both of these methods are hardware-independent and any facet corre-
sponding to the hardware does not affect the CNOT elimination. Fig. 3.5(a) - (d)
shows the Psuccess of the traditional QAOA ansatz [FGG14], EC based and the
DFS based optimization methods for Erdos-Renyi graphs, where pedge varies from
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(a) Erdos-Renyi graphs with pedge = 0.4 (b) Erdos-Renyi graphs with pedge = 0.6

(c) Erdos-Renyi graphs with pedge = 0.8 (d) Complete graphs

Figure 3.5: | h | ei |
2 for graphs of various sparsity: Erdos Renyi graphs (pedge =

0.4, 0.6, 0.8) and complete graphs

0.4 to 1 (complete graph). It is evident that the circuits generated using the DFS
method have a higher probability of success than the circuits generated using the
EC method, which, in turn, have a higher success probability than the traditional
QAOA circuits. Erdos-Renyi graphs with varying pedge ensure that the methods
are independent of the sparsity of the graph as well. Each of the values is averaged
over 80 input graph instances, and each instance is an average of 2048 shots of the
noisy circuits by the simulator model for ibmq_manhattan, which is a 65 qubit
device from IBM Quantum [ibm22].

Theorem 3.6 asserts that the DFS method eliminates n�1 CNOT gates. However,
the exact number of gates eliminated using the EC method is not predefined; rather
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Table 3.1: # CNOT gates in Max-Cut QAOA ansatz post transpilation on
ibmq_manhattan using (i) Traditional, (ii) Edge Coloring (EC), and (iii) DFS
based optimization

Graph Family # qubits (vertices)
# CNOT gates in Max-Cut QAOA ansatz circuit

Traditional EC DFS
# gates % reduction # gates % reduction

Complete graph

10 90 85 5.5 81 10
20 380 370 2.6 361 5
30 870 855 1.7 841 3.3
40 1560 1540 1.3 1521 2.5
50 2450 2425 1 2401 2
60 3540 3510 0.8 3481 1.6

Erdos-Renyi (pedge = 0.8)

10 70 66 5.7 61 12.8
20 302 292 3.3 283 6.3
30 698 683 2.1 669 4.2
40 1216 1197 1.6 1177 3.2
50 1956 1931 1.3 1907 2.5
60 2822 2792 1 2763 2.1

Erdos-Renyi (pedge = 0.6)

10 50 46 8 41 18
20 234 225 3.8 215 8.1
30 504 491 2.6 475 5.8
40 960 940 2.1 921 4.1
50 1504 1479 1.7 1455 3.3
60 2114 2085 1.4 2055 2.8

Erdos-Renyi (pedge = 0.4)

10 36 31 13.9 27 25
20 164 154 6.1 145 11.6
30 362 348 3.9 333 8
40 586 566 3.4 547 6.7
50 950 925 2.6 901 5.2
60 1468 1440 2 1409 4

it falls within the range of Eq. (3.8). Table 3.1 shows the CNOT count in the
post transpilation (optimization_level=3) circuit [qis22] for the ibmq_manhattan
device as the number of vertices varies from 10 to 60 for each of the graph families
considered. It can be noted that the percentage reduction in the number of CNOT
gates obtained by the DFS method is ⇠ 2⇥ that of the EC method for all graph
sizes and families.

3.6.1 Increase in depth vs CNOT elimination

The plots in Fig 3.5 assert that the DFS method outperforms the EC method
in the probability of success. However, it is evident from Fig 3.3 and 3.4 that
the DFS-based optimization can lead to an increase in the depth of the circuit.
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In that figure, the depth of the circuit using EC and DFS methods are 2 and 4
respectively, while the number of CNOT gates eliminated is respectively 2 and 3.
This mandates an investigation of the criteria for which the increase in depth is
overshadowed by the number of CNOT gates eliminated, and the resulting circuit
has a higher success probability.

In IBM Quantum Hardware, Rz gate is executed virtually [MWS+17a]. There-
fore, the error in the Rzz operator arises from the CNOT gates only. Moreover,
an increase in depth makes the circuit more prone to Amplitude Damping noise
[NC02]. Amplitude Damping noise is characterized by the time duration t and
the relaxation time T1 of the hardware. The probability of obtaining a state |qi,
q 2 {0, 1}, after time t is exp(� t

T1
).

Let the time duration and the error probability of each CNOT gate be tcx and
pcx respectively. Let there be N levels of CNOT operations.1 The time dura-
tion for multiple CNOT gates operating in parallel at each level is still tcx. The
probability of no error after N levels of operations, considering only relaxation
error, is exp

⇣
�

Ntcx
T1

⌘
. Let k be the number of CNOT gates in the original ansatz

circuit. Therefore, the probability of no error after the operation of the CNOT
gates, considering only CNOT gate error, is (1�pcx)k. Under the assumption that
relaxation and noisy CNOT gates are the only sources of error, Eq. (3.10) gives
the probability of success after a single iteration of the QAOA ansatz.

Psuccess = (1� pcx)
k
· exp

✓
�
Ntcx
T1

◆
(3.10)

Let after the optimization using the DFS-based method, k1 CNOT gates have been
reduced leading to an increase in N1 levels of operations. The probability that this
optimized circuit remains error-free is given in Eq. (3.11).

P opt
success = (1� pcx)

(k�k1) · exp

✓
�
(N +N1)tcx

T1

◆
(3.11)

1
A level is not the same as a step. A single step consists of two CNOT gates (or one if the

edge is optimized) and one Rz gate. So each step consists of three (or two for optimized edge)

levels.
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The optimization is fruitful only when P opt
success � Psuccess. Since P opt

success = Psuccess ·

exp
⇣
�

N1tcx
T1

⌘
/(1�pcx)k1 and both P opt

success and Psuccess  1, the required inequality

holds only if exp
⇣
�

N1tcx
T1

⌘
/(1� pcx)k1 � 1.

exp

✓
�
N1tcx
T1

◆
� (1� pcx)

k1

) N1  �⇥ k1 (3.12)

where � =
⇣

�ln(1�pcx)·T1

tcx

⌘
is defined in terms of parameters specific to the quantum

device.

If the DFS-based method is not applied, then the number of steps is equal to the
number of color classes (as in the EC method) +1 for a layer of Rz rotation gates
corresponding to Zi operators in HP (Eq. (3.3)). The maximum number of color
classes is �+ 1, and hence the number of levels of the circuit is 2�+ 2 (the first
step has one level of CNOT gates less than the others). When the DFS method is
applied, the circuit can be divided into two disjoint sets of edges:

(i) Edges belonging to the DFS tree which can be optimized. The number of
steps of this portion of the circuit is at most n�1 (i.e., the depth of the DFS
tree). Each of the operators corresponding to these edges contains a single
CNOT gate only, leading to n� 1 CNOT gates.

(ii) Edges that do not belong to the DFS tree and hence are not optimized.
The operators corresponding to these edges can be applied in any order but
after all the optimized edges. When removing the edges of the DFS tree,
the degree of each vertex is reduced by at least 1. Therefore, the maximum
degree of the remaining subgraph is at most � � 1. Thus the number of
steps for this portion of the circuit will be at most � (From Misra and Gries
Algorithm). Each of the steps in this portion contains 2 CNOT gates, and
hence the number levels of CNOT gates is 2�.

Therefore, the maximum number of steps of the circuit after applying the DFS-
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based optimization is n � 1 + 2� + 1, with the +1 accounting for a layer of Rz

gates corresponding to Zi operators in HP . The maximum increase in levels due
to this method is given by Eq. (3.13).

n� 1 + 2�+ 1� (2�+ 2) = n� 2 (3.13)

The number of CNOT gates eliminated due to the DFS method is always n � 1.
Therefore, from Eq. (3.12) and (3.13), we get

n� 2  � · (n� 1)

) � �
n� 2

n� 1
(3.14)

Table 3.2 shows the average value of � for some IBM Quantum [ibm22] devices,
ranging from the comparatively more noisy ibmq_melbourne (although this device
is no longer in action) to the latest ibm_washington having the 127 qubits eagle
processor. The lower bound on � by Eq. (3.14) is n�2

n�1 , which, in the asymptotic
limit, n�2

n�1 ! 1. Thus, the proposed DFS-based optimization method leads to
a lower error probability on any quantum device for which � � 1. Table 3.2
readily shows that the IBM Quantum devices satisfy this requirement. Moreover,
� =

⇣
�ln(1�pcx)·T1

tcx

⌘
. As the quantum systems evolve, it can be expected to have

higher values of T1, and lower values for pcx and tcx. This expectation ensures that
the value of � will increase with improved hardware. Therefore, it can be expected
that the proposed optimization will hold in future hardware also.

Table 3.2: Average value of � for four IBM Quantum machines [ibm22]
IBM Quantum devices Avg value of �

ibm_washington 13.78
ibmq_manhattan 3.6
ibmq_montreal 2.47
ibmq_sydney 3.35

ibmq_melbourne 2.03
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3.7 Summary

This chapter provides two methods to lower the number of CNOT gates for QAOA
circuit design for two-body Hamiltonian problems while maintaining functional
equivalence. The edge coloring method can eliminate at most bn2 c CNOT gates,
whereas the DFS method can eliminate n� 1 CNOT gates, with the latter being
proved to be optimal. The DFS method, however, can end up increasing the depth
of the circuit since it imposes an ordering on the execution of the CNOT gates.
An analytical inequality was derived such that the removal of noise due to CNOT
elimination overshadows the increase in noise due to an increase in depth. For
some IBM Quantum devices, it was shown that this inequality is satisfied, i.e.,
the optimized QAOA leads to lower noise. An argument was made on why it is
expected that this inequality will hold true in future devices too.

Although the DFS method is sufficient to lower the noise in the QAOA circuit, a
general hope is to restrict the increase in depth of the circuit while still retaining
the optimal CNOT elimination. A graph can have multiple DFS trees – not all of
them have the same height. If one can choose spanning trees of lower height, then
it might be possible to achieve the hope. The next chapter deals with a heuristic
approach that can achieve this by finding optimal spanning trees from the problem
graph.
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4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Introduction

Chapter 3 discussed Edge Coloring (EC) and Depth First Search (DFS) methods
for lowering the number of CNOT gates in the QAOA circuit corresponding to
a Hamiltonian of the form of Eq. (3.3), where n is the number of variables (or
the number of vertices in the graph corresponding to the Hamiltonian). The
former method can eliminate up to bn2 c CNOT gates, while the latter can eliminate
n � 1 CNOT gates, which was shown to be optimal. CNOT gates being one of
the primary sources of error in modern quantum devices [ibm22], these methods
significantly reduce the noise in the circuit. The DFS method, although optimal,
imposes an ordering of the edges, leading to an increase in the depth of the circuit.
However, an analytical criterion was discussed for which the elimination of the
CNOT gate overshadows the increase in depth, and the resulting circuit has a
lower probability of error. It was shown that all the current quantum hardware
conforms to the criteria, and hence the DFS method always leads to lower error
probability.

This chapter explores the fact that a graph can have multiple DFS trees that vary
in height. The maximum height of a DFS tree for an n vertex graph is n� 1. But
there exists other DFS trees (or other forms of rooted spanning tree) having lower
height which may result in circuits of lower depth. A circuit with lower depth is
naturally preferable since it lowers the effect of decoherence while still retaining
the optimal CNOT elimination. It is, however, not a trivial task to find a DFS
tree for a given graph that is guaranteed to provide a low-depth ansatz circuit.

This chapter formally formulates the problem of finding a depth-optimized rooted
spanning tree for a given graph and provides a heuristic method to find such a
spanning tree. The edge coloring, DFS (Chapter 3), and the heuristic method
are all hardware-independent. This chapter also proposes a method to modify the
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heuristic function to make it hardware-friendly and reduce some swap gates if the
coupling map and the initial layout are known.

4.2 Motivation for a heuristic algorithm

The maximum height of a DFS tree with n vertices is n � 1, and so is the depth
of the corresponding circuit. However, Corollary 3.4 required some ordered set of
edges forming a rooted spanning tree, and not necessarily a DFS tree. Therefore,
the general notion would be to look into other rooted spanning trees for a graph
that can arrest the increase in the depth of the QAOA circuit. This creates an
apparent illusion that a rooted spanning tree with a lower height will always lead
to a circuit with lower depth. If that were indeed always the case, then a Breadth
First Search (BFS) tree should provide a spanning tree with minimum height.
However, that is not always the case as depicted in Fig. 4.1. The two trees in
Fig 4.1 (a) and (b) have different heights but result in circuits with the same
depth (Fig 4.3). In both figures, the values associated with the edges depict the
level at which the operator corresponding to that particular edge can be operated
so that the optimization (i.e. elimination of CNOT gates) holds.

(a) A spanning tree of height 3 (b) A spanning tree of height 2

Figure 4.1: Two trees with different heights – the integer label on an edge is
the step at which the operator Rzjzk for edge (j, k) can be operated on. The
maximum value of these labels is the depth of the circuit. The heights of the trees
in subfigures (a) and (b) are 3 and 2 respectively. However, both of them lead to
the same circuit shown in Fig 2.2 (a)
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(a) A spanning tree of height 2 (b) Another spanning tree of height 2

Figure 4.2: Two trees with the same height but the number of steps of the circuit
corresponding to the tree in subfigure (a) is 3, while that corresponding to the tree
in subfigure (b) is 2.
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q4

Rz(2�l)

Rz(2�l)
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(a) Optimized QAOA circuit cor-

responding to both the trees in

Fig 4.1

Executed simultaneously

q1

q2

q3

q4

Rz(2�l)

Rz(2�l)

Rz(2�l)

(b) Optimized QAOA circuit corresponding

to the tree in Fig 4.2 (b)

Figure 4.3: The quantum circuit of U(HP , �) for Max-Cut QAOA ansatz corre-
sponding to (a) both the trees in Fig 4.1 and (b) the tree in Fig 4.2 (b)

From the labels on the edges of the tree in Fig 4.1 (a), the operators Rz1z2 , Rz2z3 and
Rz3z4 are operated in this order. Although the tree in Fig 4.1 (b) has a lower height,
it cannot result in a circuit with lower depth; here Rz2z3 , Rz2z4 must be executed
sequentially since they require access to the common qubit corresponding to vertex
2. On the other hand, both the trees in Fig 4.2 have the same height, but they
result in two circuits of different depths. This is because in Fig 4.2 (b), if Rz1z2 is
executed first, then Rz1z3 and Rz2z4 can be executed simultaneously. The circuits
corresponding to the U(HP ) operators for the two trees in Fig 4.2 are shown in
Fig 4.3 (a) and (b) respectively.
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4.2.1 Conjecture: Finding the rooted spanning tree that re-
sults in a circuit with minimum depth is NP-Complete

The examples in Fig. 4.1 and 4.2 show that simply finding a rooted spanning tree
with minimum height is not sufficient to reduce the depth of the corresponding
circuit. Rather, it is necessary to find a rooted spanning tree where multiple edges
can be executed in parallel. This is similar to the Edge Coloring problem [Wes01],
and was explored in Section 3.5. However, the problem here is more constrained
than edge coloring. In a tree, the same color can be used for edges in alternate
levels, i.e., it is possible to have edges of the same color in odd indexed levels 1, 3,
..., and in even indexed levels 2, 4, ... For example, in Fig. 4.1 (a), optimal edge
coloring assigns the same color to the edges in levels 1 and 3 since they are disjoint.
However, it was already discussed that operators corresponding to these two edges
cannot execute in parallel. Therefore, we have an added constraint that an edge
cannot be given the color of any of its ancestors. Therefore, a formal definition of
the problem at hand is as follows:

Problem 1: Given a graph G = (V,E), starting from a root vertex r, find a
spanning tree T of G whose edges can be colored with the minimum number of
colors satisfying the conditions that

i) no two edges incident on a common vertex have the same color; and

ii) no edge has the same color as that of any of its ancestors.

Optimal edge coloring itself is an NP-complete problem (although not for a tree),
and the problem here at hand has additional constraints to it. In [RK05], the
authors showed that finding a degree-constrained spanning tree, i.e., a spanning
tree where the degree of any vertex is upper bounded by a predefined value, is NP-
Complete. Problem 1 can be informally rephrased as finding a rooted spanning
tree where the degree of the vertices is not too large to avoid a large number of
edges on the same level, and yet not too small so that the number of levels is large.
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Therefore, it is conjectured that finding the rooted spanning tree resulting in a
minimum depth circuit is NP-complete. In this section, a greedy polynomial time
algorithm is proposed to find a better solution instead of the vanilla flavor depth
first search based method from Chapter 3.

4.2.2 Proposed cost function for the heuristic

First, a few terms are defined to clarify the requirements for a rooted spanning
tree that would lead to a circuit with lower depth.

1. Branching factor: The branching factor of a vertex v is defined as the
number of vertices that have been discovered in the rooted spanning tree
from v.

In other words, the branching factor of a vertex v is one less than the degree of
that vertex in the spanning tree except for the root vertex, whose branching
factor is equal to its degree. For example, in the tree of Fig. 4.1 (b), starting
from the root labeled 1, the branching factor of the root is 1, that of vertex
2 is 2, and that of the leaf vertices is 0.

2. Level: If a vertex v is discovered in the rooted spanning tree from a vertex
u, then the level of vertex v = level of vertex u + 1. The level of the root
vertex is 0.

The definition of level is essentially the same as that for BFS.

3. Delayed start: Delayed start is defined as the phenomenon where the ver-
tices v1, . . . vk are discovered in the spanning tree from the same vertex v,
and belong to the same level, but the edges (v, v1), . . . (v, vk) have to be op-
erated on sequentially. This is because the adjacent edges share a common
vertex, and simultaneous CNOT operations are not possible with a common
control or target qubit. Therefore, the operation corresponding to the edge
(v, vi) is delayed as long as all the operations corresponding to the edges
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(v, vj), 1  j < i are not completed. The operator Rzvzvi
can be operated

earliest at the level level(v) + i.

An example of delayed start is observed in the tree of Fig. 4.1 (b). Although both
the leaf vertices in that tree are at the same level, they cannot be operated on
simultaneously. Therefore, they must be operated on two disjoint levels. Indeed
delayed start is the reason that the depth of the circuit does not reduce directly
with the height of the tree. A tree with a higher branching factor can experience
more delayed start than a tree with a lower branching factor. On the other hand,
the height of the tree increases with decreasing branching factor. Therefore, the
objective is to find a rooted spanning tree that minimizes the two contrasting
requirements - (i) the height of the tree, and (ii) the number of delayed starts.

Since the problem is expected to be NP-complete, it is natural to look for heuristic
algorithms that optimize some cost functions. The criteria for designing a cost
function can be summarized as follows:

• If the branching factors of the vertices are very high, i.e., close to the degree
of the vertex, then the corresponding circuit will suffer from delayed start,
leading to an increase in the depth. On the other hand, if the branching
factor of the vertices is very low such as 1 or 2, then the height of the tree,
and hence the depth of the circuit, will increase.

• Between two vertices u and v, it is better to branch the one at a lower level of
the tree so that the edges in that branch may still have some opportunity to
be executed in parallel with other edges at a higher level even after delayed
start. An example of this is shown in Fig. 4.2 where both the trees have
the same height, but the tree of Fig. 4.2 (b) will lead to a circuit with lower
depth since the branching is closer to the root.

Respecting all the three criteria stated above, a cost function Cv, to be associated
with every vertex v, is proposed here. Let n be the number of vertices in the
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graph, lv and vbf be the level and the current branching factor of the vertex v

respectively, and B be the maximum branching factor decided for any vertex in
the spanning tree, then

Cv = (n� lv) · (B � vbf ) (4.1)

When growing the spanning tree from a root vertex, the edge (v, w) for which the
cost function Cv is maximum, is added to the tree. Note here that for a new edge
(v, w), the cost function does not depend on the vertex w, but rather on the vertex
v from which this edge is discovered (the algorithm is provided later on).

The term (n� lv) is always positive, since lv starts from 0 and can go up to n� 1

at most (for a tree). On the other hand,

B � vbf

8
>>><

>>>:

> 0 if vbf < B

= 0 if vbf = B

< 0 if vbf > B.

(4.2)

Hence, an algorithm that maximizes this cost function should, in principle, (i) avoid
branching lower down the tree, and (ii) avoid exceeding the maximum branching
factor B for any vertex.

Algorithm 3 avoids branching at a vertex v for which vbf � B. When vbf = B, the
cost function has a contribution of 0. Therefore, when generating the results, if
the required maximum branching factor for the spanning tree is f , then B is taken
to be f +1. Furthermore, the term (n� lv) is higher for the vertices with lower lv.
Thus, if for two vertices u 6= v, vbf = ubf < B, the algorithm chooses to branch
that vertex that has a lower level. This ensures that delayed start is closer to
the root so that those branches still have some opportunity for parallel execution
with some higher-level branches. Furthermore, if vbf > B, the product of (B�vbf )

with (n�lv) leads to significantly low values for low lv. This discourages branching
more than B in lower levels of the tree strongly to prevent excessive delayed start
(like in a BFS tree). In other words, the spanning tree generated by this heuristic
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cost function is neither a BFS nor a DFS one, but rather an intermediate one.

Figure 4.4: Two spanning trees of the graph in Fig. 4.5 – (a) generated using
the DFS method (Algorithm 2), (b) generated using the greedy heuristic method
(Algorithm 3) with B = 3.

Theorem 4.1: Runtime of heuristic algorithm

Algorithm 3 finds a rooted spanning tree for a graph with n vertices and
maximum degree � which satisfies the conditions in Problem 1 in O(� ·n2)

time.

Proof. See A.7

For sparse graphs, � = O(1) and for dense graphs � = O(n). Therefore, the time
complexity of the proposed Algorithm 3 varies between O(n2) to O(n3) depending
on the sparsity of the given graph.

4.2.3 An illustration of Algorithm 3

This subsection illustrates the DFS method in Algorithm 2 and the greedy heuristic
method in Algorithm 3 in action on an example graph given in Fig. 4.5 (a). First,
Fig. 4.5 (b) shows the traditional p = 1 QAOA circuit for Max-Cut for this graph.
Then, Fig. 4.4 gives two spanning trees of the graph. The spanning tree in Fig. 4.4
(a) is generated using Algorithm 2 whereas the one in Fig. 4.4 (b) is generated
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Algorithm 3 Cost function based rooted spanning tree generation
Input: A Graph G = (V,E), |V | = n, |E| = m; maximum branching factor B.
Output: A Rooted Spanning Tree T of the Graph G.
1: T = {}.
2: ubf  0 for all vertex u
3: r  randomly selected start vertex.
4: Visited = {r}; rbf = rbf + 1.
5: edges_to_add = neigh(r).
6: while |V isited| < n do

7: e = edges_to_add[0]; c = 0.
8: for all edge = (u, v) 2 edges_to_add do

9: cost = (n� lu) · (B � ubf ).
10: if cost > c then

11: c = cost; e = edge.
12: end if

13: end for

14: T = T [ {e}.
15: Visited = Visited [ {y}, where e = (x, y).
16: xbf = xbf + 1.
17: Remove all edges of the form (⇤, q) from edges_to_add.
18: for all edge = (p, q) 2 neigh(y) do

19: if q /2 V isited then

20: edges_to_add = edges_to_add [ {edge}.
21: end if

22: end for

23: end while
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using Algorithm 3 with B = 3. Fig. 4.6 (a) and (b) show the optimized circuits for
the p = 1 QAOA for Max-Cut for the graph in Fig. 4.5(a), where the optimized
circuits are generated using the Algorithms 2 and 3 respectively.

(a) An example graph with 6 vertices

q0

q1

q2

q3

q4

q5

H Rz(2�)

H

H Rz(2�)

H Rz(2�)

H Rz(2�) Rz(2�) Rz(2�)

H Rz(2�) Rz(2�)

(b) Traditional p = 1 QAOA circuit for Max-Cut

Figure 4.5: The traditional p = 1 QAOA circuit for Max-Cut corresponding to
U(HP , �) for an example graph with 6 vertices. The values of the parameters are
chosen randomly.

The depth of the entire circuits in Figs. 4.5(b), 4.6 (a) and 4.6 (b) are 11, 14
and 12 respectively. The number of CNOT gates in both the optimized circuits in
Fig. 4.6 is 5 less than that in Fig. 4.5 (b). Note that the depth of both the optimized
circuits is greater than that of the traditional QAOA for Max-Cut. However, the
optimized circuit in Fig. 4.6 (b) can be considered to be superior since it requires
5 CNOT gates fewer than that in Fig. 4.5 (b), with an increase of depth by 1 only.
Algorithm 3 can significantly arrest the increase in depth, and in certain cases can
lead to a QAOA circuit with a depth lower than its traditional circuit.
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(a) Optimized circuit using DFS method
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(b) Optimized circuit using greedy heuristic method

Figure 4.6: Optimized circuit for U(HP , �) of p = 1 QAOA for Max-Cut corre-
sponding to the two spanning trees in Fig. 4.4 respectively.

4.3 Simulation results

4.3.1 Increase in probability of success

QAOA consists of executing the same circuit with the same parameters multiple
times to obtain an expectation value of the cut. The performance of the algo-
rithm is determined by this expectation value of the obtained cut. Since our
optimized QAOA circuit is functionally equivalent to the traditional QAOA cir-
cuit, the performance remains unchanged in the ideal noiseless scenario. For each
iteration of the algorithm, let | i denote the ideal state vector obtained via noise-
less simulation. As real-world quantum devices are noisy, let | ei denote the noisy
outcome obtained via noisy simulation. The probability of success is defined as
Psuccess = | h | ei |

2. For a graph with n vertices, the optimization obtained by
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Algorithm 2 reduced the number of CNOT gates by n � 1. Algorithm 3 retains
the n� 1 reduction in the number of CNOT gates needed for the operator U(HP )

in the ansatz and also arrests the increase in depth to a bare minimum (shown in
the next subsection). This leads to a further improvement in Psuccess.

(a) Erdos-Renyi graphs with pedge = 0.4 (b) Erdos-Renyi graphs with pedge = 0.6

(c) Erdos-Renyi graphs with pedge = 0.8 (d) Complete graphs

Figure 4.7: 1�Psuccess for Erdos Renyi Graphs (pedge = 0.4, 0.6, 0.8) and complete
graphs

The entire circuit of U(HP , �) can be divided into two disjoint parts - one cor-
responding to the edges in the spanning tree, followed by the other edges in the
input graph. Algorithm 3 can reduce the depth of the circuit corresponding to the
spanning tree only. The circuit for the unoptimized edges remains the same as in
Algorithms 1 and 2. Furthermore, the initialization and the Mixer Hamiltonian
remain unchanged from the original QAOA design [FGG14]. Therefore, here only
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the depth of the circuit corresponding to the spanning tree is compared.

When executing a circuit on hardware, the graph has to be mapped to the un-
derlying hardware connectivity graph. This process is called transpilation. All
the results in this section are generated after transpiling the original circuit in the
ibmq_manhattan connectivity graph using the transpilation procedure of qiskit
[H+19] with optimization_level = 3.

4.3.2 Reduction in the depth of the circuit

Table 4.1: Variation in the slope of the increase in depth with n for different values
of B

Graph Family B = 3 B = 6 B = 10
Erdos Renyi (pedge = 0.4) 0.35 0.1875 0.1125
Erdos Renyi (pedge = 0.6) 0.35 0.1875 0.1125
Erdos Renyi (pedge = 0.8) 0.3375 0.1875 0.125

Complete graph 0.3375 0.1875 0.125

In the worst case, the height of the DFS tree, and hence the depth of the cor-
responding circuit, can be as large as n � 1, n being the number of vertices in
the graph. Fig. 4.8 (a)-(d) shows the reduction in the depth of the circuit of the
spanning tree by the heuristic algorithm compared to the worst-case depth of the
circuit corresponding to the maximum height of the DFS tree. Fig. 4.8 (a)-(d)
show the reduction in depth for Erdos-Renyi graphs with pedge, the probability of
an edge, varying from 0.4 to 0.8, and complete graphs. For each type of graph the
number of vertices n is varied from 20 to 100, and the value of the depth corre-
sponding to each n is an average over 80 graph instances. The graph instances are
the same for all the values of B. The graphs in Fig. 4.8 and Fig. 4.7 are averaged
over all the possible n spanning trees generated by selecting each of the n vertices
once as the root.

The graphs in Fig 4.8 indicate that the increase in the depth with n for various
values of B is still linear. This is acceptable since the depth of a tree scales at
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(a) Erdos-Renyi graphs with pedge = 0.4 (b) Erdos-Renyi graphs with pedge = 0.6

(c) Erdos-Renyi graphs with pedge = 0.8 (d) Complete graphs

Figure 4.8: Depth of the circuit for different values of B: Erdos Renyi Graphs
(pedge = 0.4, 0.6, 0.8) and complete graphs

least logarithmically with the number of vertices. Moreover, a balanced tree is not
necessarily the best in this scenario since it can suffer severely from delayed start.

In the worst case, where the depth is n � 1 for a graph with n vertices, the
slope is ' 1. Table 4.1 shows the slopes of the curves for B = 3, 6, and 10 for
each of the graph families considered. From the values, it is evident that the
slope corresponding to the increase in depth is lowered by ' 1

10 as the value of B
increases.
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Figure 4.9: The expectation value of the optimized and unoptimized/original
QAOA for Erdos-Renyi graph with n = 12 vertices and pedge = 0.4. Optimized
QAOA outperforms the unoptimized one for all values of p in the figure.

4.4 Usefulness of the method for p > 1 QAOA

A general issue with the optimization processes is that they are applicable only
for the p = 1 level of QAOA. In general, it is not expected that p = 1 QAOA for
any problem is sufficient to match up to the best classical algorithm known for it.
However, note that if r is the number of CNOT gates in each level of QAOA, then
for a level-p QAOA the total number of CNOT gates is rp. On the other hand,
if the proposed optimization method is applied, then the total number of CNOT
gates for a level-p QAOA becomes rp � n + 1, where n is the number of qubits.
This is still a considerable improvement in the number of CNOT gates for large
n for small values of p. Ideally, the approximation ratio produced by QAOA is a
non-decreasing function of p, with the value becoming 1 as p ! 1. However, in
[HSN+21] the authors showed that in current hardware, the approximation ratio
of QAOA starts to decrease for p > 3. In this regime, the noise of the circuit
overwhelms the performance of the algorithm. Fig. 4.9 shows a similar trend for
Erdos-Renyi graphs with n = 12 vertices, and the probability of edge pedge = 0.4.
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In this regime, the figure clearly shows that the optimized QAOA outperforms the
unoptimized one. Although beyond p = 3, the approximation ratio goes down for
both cases, the optimized QAOA outperforms the unoptimized one for 1  p  4.
This clearly shows that the effect of elimination of CNOT gates at p = 1 propagates
to higher values of p as well.

The three algorithms proposed for optimized QAOA design were all hardware-
independent. The following subsection looks into the modification of the heuristic
in Algorithm 3 to make it more hardware-agnostic.

4.5 Hardware coupling map aware optimization

4.5.1 Motivation for hardware coupling map-based modifi-
cation

Chapters 3 and 4 till now proposed three methods to lower the number of CNOTs
in the QAOA ansatz for two-body interaction Hamiltonian problems, and the
greedy heuristic algorithm (Algorithm 3) was shown to be superior among the
three. All these three methods are oblivious of the hardware, and holds for any
underlying hardware coupling map. However, while the number of CNOT gates
can be eliminated irrespective of the underlying coupling map, the placement of
the optimized QAOA circuit may lead to increased number of SWAP gates. This
section focuses on the possibility of finding a rooted spanning tree that conforms
with the underlying hardware connectivity if the hardware coupling map and the
initial placement of the qubits are known a priori. In other words, during the
construction of the rooted spanning tree, those edges can be preferably chosen
for optimization for which there is a direct connection between the corresponding
qubits in the hardware.

Quantum hardware can be represented as a graph with the vertices denoting phys-
ical qubits, and the edges denoting pairs of qubits between which two-qubit oper-
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ations are possible – generally called coupling map. Fig. 4.10 shows the coupling
map of a 5-qubit IBM Quantum device, named IBMQ Lima. From the figure, it is
evident that 2-qubit gates between, say, qubits 0 and 2 are not possible. To per-
form such an operation, either qubit 0 or qubit 2 must be swapped with qubit 1. A
swap gate is implemented via 3 CNOT gates. Therefore, inserting many swap gates
in a circuit makes the computation slower and incorporates more error due to the
increased number of CNOT gates. A large volume of research has been devoted to
the placement of quantum circuits on the physical hardware [LDX19, YI22]. This
study takes a different direction. Instead of designing a placement algorithm for
the circuit generated by the greedy heuristic algorithm, it is possible to tweak the
cost function itself to respect the placement constraints on a given hardware.

Figure 4.10: Coupling map and error probabilities of IBMQ Lima

This can be motivated with a simple example. Consider a graph with 5 vertices
(Fig. 4.11) on which the QAOA algorithm is to be applied. Note that Algorithm 3
does not lead to a unique rooted spanning tree construction. The algorithm can
randomly choose one of multiple edges for the construction of the rooted spanning
tree if they all lead to the same cost function. Fig. 4.12 shows two QAOA circuits
for Max-Cut obtained by applying the heuristic cost function method on the graph
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of Fig. 4.11.

Figure 4.11: An example graph with 5 vertices

Qiskit [H+19] uses a method called transpilation that maps a circuit to the un-
derlying hardware coupling map. Transpilation often follows randomized steps,
and therefore different rounds of transpilation of the same circuit on the same
hardware do not always lead to the same initial placement of the qubits. There-
fore, as stated before, the hardware-aware heuristic algorithm will assume that the
initial placement of the qubits on the underlying hardware is known beforehand.
Experimentally, this can be achieved in Qiskit by fixing the seed of transpila-
tion. For the motivational example, let the initial placement of the qubits be
{q0 : 2, q1 : 1, q2 : 0, q3 : 3, q4 : 4}, where the notation qi : j implies that the logical
qubit qi, corresponding to vertex i of the input graph, is placed on the physical
qubit j of the underlying hardware. With this information, one immediately no-
tices that the implementation of some of the CNOT gates of Fig. 4.12 (a), such as
CNOT (q0, q3) would require one or more SWAP gates. On the other hand, this
SWAP gate could have been avoided if one would have chosen the edge (q1, q3)

instead. A different QAOA ansatz, also obtained by applying the heuristic cost
function, is shown in Fig. 4.12 (b) which, now, contains the optimized edge (q1, q3)

instead of (q0, q3). However, Algorithm 3 does not distinguish between these two
cases as long as they do not lead to different values of the cost function.
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Figure 4.12: Two different QAOA circuits corresponding to the graph of Fig. 4.11
obtained using the greedy heuristic Algorithm 3

Fig. 4.13 (a) and (b) show the transpiled circuits corresponding to the two QAOA
circuits of Fig. 4.12 (a) and (b) respectively. The initial placement of the qubits
for both cases is the same. It is easy to see that the circuit of Fig. 4.13 (b) is
preferable since it contains fewer SWAP gates.

The following subsection modifies the heuristic cost function of Algorithm 3 based
on hardware information. Note that some transpilation methods have been pro-
posed specifically for QAOA ansatz on the heavy hexagonal architecture of IBM
Quantum machines [WVG+22]. This study adheres to the general transpilation
procedure used in Qiskit and focuses on modifying the heuristic cost function to
lower the number of SWAP gates. It may be possible to design more optimized
transpilation for the methods introduced in this thesis, which is postponed for
future endeavors.
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Figure 4.13: Transpilation of the two different circuits (a) corresponding to
Fig. 4.12 (a), and (b) corresponding to Fig. 4.12 (b), obtained by applying the
greedy heuristic method on the QAOA ansatz of the graph in Fig. 4.11.

4.5.2 Hardware oriented modification of cost function

Let QH = {H1, H2, . . . , Hm} be the physical qubits in a quantum hardware, and
QG = {q1, q2, . . . , qn} be the logical qubits associated with the n-vertex input graph
G, m � n. A hardware coupling map is a graph H with QH as the vertices. If two
qubits Hi and Hj can perform a 2-qubit operation, then there is an edge (Hi, Hj)

in H, and these two qubits are called neighbors. If two qubits Hk and Hl are not
neighbors, then one or more SWAP gates are used on one or both of them to bring
them adjacent to each other before applying the 2-qubit operation involving them.
For example, in Fig. 4.10, qubits 0 and 1 are neighbors, while 0 and 2 are not.
Each SWAP gate is realized using 3 CNOT gates. Since the primary motivation of
the circuit optimization is to lower the number of CNOT gates, this section shows
the usage of hardware information for designing a better heuristic cost function
that, when selecting the edges that can be optimized, giving preference to those
vertices in the transpiled circuit which are neighbors.

Let DH be a hardware distance matrix such that the value of DH [i][j] is the
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distance between the qubits i and j on the hardware. Two adjacent qubits are
considered to have a distance of 1. In other words, the number of SWAP gates
required to make the two qubits i and j adjacent is DH [i][j]� 1. One can find this
hardware distance matrix by deploying the Floyd-Warshall All-Pair-Shortest-Path
Algorithm [CLRS09]. Note that the hardware graph is static. Therefore, although
the required runtime to find the distance matrix DH is O(n2), n being the number
of qubits in the hardware, this needs to be performed only once. The information
can be stored for subsequent uses on different input graphs.

Ideally, choosing an edge between two far-away qubits for optimization should be
discouraged. The higher the distance between the two qubits, the more should
such an edge be avoided for optimization. This information is stored in the initial
placement I such that I(q) = i implies that the vertex (or circuit qubit) q has been
placed in the hardware qubit i. Therefore, the distance between two vertices, say u

and v, in the hardware, is given by DH [I(u)][I(v)]. This information is inserted into
the cost function algorithm by subtracting a penalty term ⌘ · (DH [I(u)][I(v)]� 1)

from the cost function. Furthermore, a pre-defined maximum branching factor
B is no longer suitable for this modified cost function. Rather, once a vertex v

has been placed to a qubit q, the maximum branching factor vbf of that vertex is
assigned to be

vmax
bf

8
<

:
= degree(q) if v is the root

= degree(q)� 1 otherwise.
(4.3)

The degree of the qubits in the hardware can be easily obtained by using Breadth-
First-Search in a time linear in the number of vertices and edges. Once more,
since the hardware graph is fixed, the time complexity for finding the degree of
each qubit is O(1). One can consider finding the degree of the qubits and the
distance matrix as a constant time pre-processing step to the algorithm.

Algorithm 4 depicts the modified greedy heuristic algorithm tailored to the under-
lying hardware information.
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4.5.3 Reduction in the number of SWAP gates

Previous results using Algorithm 3 were already shown to outperform the edge
coloring, DFS, and the traditional QAOA ansatz in terms of error probability.
For those simulations, as discussed before, the circuits were transpiled to the un-
derlying heavy hexagonal architecture of ibmq_manhattan. Therefore, the error
probability obtained in those results included any SWAP gates that had to be
inserted during the transpilation procedure. The results were shown to be better
even with the errors due to inserted SWAP gates. Naturally Algorithm 4 cannot
perform any worse in terms of error probability than Algorithm 3 since the former
tries to lower the number of SWAP gates inserted. In the worst-case scenario,
where the number of SWAP gates remains the same for both algorithms, the er-
rors will be the same. In other scenarios, Algorithm 4 will provide lower error due
to a lower number of SWAP gates. The results in this section, therefore, focus
only on the number of SWAP gates that can be lowered using Algorithm 4 over
Algorithm 3. The experiments are performed for QAOA for the Max-Cut problem,
and the results are averaged over 50 random instances of Erdős-Renyi graphs with
probability of edge pedge 2 {0.4, 0.6, 0.8, 1}.

(a) Number of swap gates in the transpiled cir-

cuit with and without hardware information

(b) Zoomed in plot of the same graph

Figure 4.14: Number of SWAP gates in the transpiled circuit by using Algorithm 4
(termed Hardware Heuristic) and Algorithm 3 (termed Heuristic)

The results in Fig. 4.14 show that for a small number of qubits, both approaches
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lead to the same number of SWAP gates. This is expected because it is easier
to place a small circuit on a large hardware due to the available redundancy.
However, as the number of qubits in the circuit increases, an average reduction
in the number of SWAP gates by ' 30 is observed when Algorithm 4 is used.
The obtained percentage reduction for different Erdős-Renyi graphs is reported
in Table 4.2. A very similar result is obtained for all four types of Erdős-Renyi
graphs used. Therefore, only the results for Erdős-Renyi graphs with pedge = 0.4

are shown in Fig. 4.14 (a). Fig. 4.14 (b) shows a zoomed-in portion of the plot of
Fig. 4.14 (a) when the number of qubits is high, for better visualization.

Algorithm 4 Hardware aware cost function based rooted spanning tree generation
Input: A graph G = (V,E), |V | = n, |E| = m; hardware distance matrix DH ;

initial placement I; vmax
bf for all v; penalty ⌘.

Output: A rooted spanning tree T of the graph G.
1: T = {}.
2: ubf  0 for all vertex u.
3: r  randomly selected start vertex.
4: Visited = {r}; rbf = rbf + 1.
5: edges_to_add = neigh(r).
6: while |V isited| < n do

7: e = edges_to_add[0]; c = 0.
8: for all edge = (u, v) 2 edges_to_add do

9: cost = (n� lu) · (umax
bf � ubf )� ⌘ · (DH [I(u)][I(v)]� 1).

10: if cost > c then

11: c = cost; e = edge.
12: end if

13: end for

14: T = T [ {e}.
15: Visited = Visited [ {y}, where e = (x, y).
16: xbf = xbf + 1.
17: Remove all edges of the form (⇤, q) from edges_to_add.
18: for all edge = (p, q) 2 neigh(y) do

19: if q /2 V isited then

20: edges_to_add = edges_to_add [ {edge}.
21: end if

22: end for

23: end while

Finally, Table 4.2 provides the maximum and the average percentage reduction in
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SWAP gates obtained over all the graphs used for simulation. Note that, as obvious
from Fig. 4.14, the maximum reductions are obtained for graphs with a higher
number of vertices. The average is lower than the maximum since graphs with a
smaller number of vertices show little to no improvement when using Algorithm 4
over Algorithm 3.

Table 4.2: Maximum and average percentage reduction in the number of SWAP
gates when using Algorithm 4 instead of Algorithm 3 for various classes of Erdős-
Renyi graphs with probability of edge pedge

pedge = 0.4 pedge = 0.6 pedge = 0.8 pedge = 1
Maximum 8.37 8.57 11.24 11.54
Average 4.91 4.94 5.7 5.73

The results show that the maximum percentage reduction in the number of SWAP
gates remains more or less the same for pedge 2 {0.4, 0.6} and pedge 2 {0.8, 1}

and increases from the former to the later set. This is legitimate since with the
increasing density of the graph more SWAP gates become essential. Therefore, a
better choice of edges is expected to be more critical in such cases than for more
sparse graphs. A similar trend is observed for the average percentage reduction as
well.

Note that the results reported are for ⌘ = 1. Varying ⌘ did not have an impact on
the result. A reason for this seems to be that the penalty (DH [I(u)][I(v)]� 1), for
some pair of vertices u and v, is dependent on the distance between them in the
hardware. Increasing the value of ⌘ simply scales the penalty term, and therefore
does not add any extra information to the algorithm. For the same reason, any
other function of the distance (polynomial, exponential, logarithmic, etc.) as the
penalty term is not studied. The expectation is that any monotonically increasing
function of (DH [I(u)][I(v)]�1) should suffice as the penalty term in the algorithm,
and should provide the same outcome.

These results, therefore, establish that if the knowledge of hardware connectivity
and the initial placement of qubits is known beforehand, then the heuristic cost
function can be tweaked appropriately to reduce a few SWAP gates. It may be
possible to design a better transpilation method targeted to this type of optimized
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ansatz circuit only which is postponed for future studies.

4.6 Summary

This chapter proposed a hardware-independent polynomial time method to elimi-
nate CNOT gates in the ansatz design of QAOA for 2-body Hamiltonian problems
for discrete combinatorial optimization. This method outperforms the previously
proposed methods based on DFS and Edge Coloring (Chapter 3) by retaining the
elimination of n � 1 CNOT gates but restricting the increase in depth of the cir-
cuit. Finally, if the hardware coupling map and the initial placement of the qubits
are known a priori, then this heuristic method can be further improved to select
those edges for the spanning tree that conform to the underlying coupling map –
thus reducing the number of SWAP gates required. Both of these methods work
only on p = 1 QAOA. However, although there is no such optimization known for
p > 1, the effect of CNOT elimination at p=1 propagates to the higher values of
p and better expectation values of the optimization results for p > 1 QAOA even.

Chapter 3 and 4 provided some algorithmic methods to lower the gate count in
the circuit, effectively lowering the noise. Another method for noise reduction is to
partition a circuit into multiple smaller subcircuits, such that each subcircuit is less
susceptible to noise. This method, called circuit cutting, and some improvements
on it, are discussed in the following chapter.
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5.1 Introduction

The limited number of qubits on near-term quantum devices is a significant con-
straint on the size and type of quantum computation problems that can be eval-
uated on them. Circuit knitting, an umbrella term for combining results of two
or more smaller quantum processors to logically form a larger device, has been
suggested as a top-down approach to scalability [BDG+22], in addition to the
approaches addressed in the last two chapters. For such a logical device, it is
useful to cut a quantum circuit into smaller pieces so that each of them can be
executed on the hardware at hand. Circuit knitting can be broadly classified into
(i) cutting the wire (termed as circuit cutting henceforth) [PHOW20, PSSO21,
TTS+21, LMH+22, UADM22], (ii) replacing two-qubit gates by mid circuit mea-
surements and classical feed-forward conditional options (often called gate cutting)
[MF21a, PS22, MF21b], and (iii) partitioning the problem into multiple weakly in-
teracting sub-problems (e.g. entanglement forging [EMG+22], frozen-qubit QAOA
[AADQ22]). This chapter focuses on cutting the wire to create smaller circuit frag-
ments such that each fragment is small enough to be computed on the quantum
hardware individually. Henceforth, the term circuit cutting will imply cutting the
wire only. Since the cutting is along the wire, all the gates from the original circuit
are retained in the ensemble of the fragments (see Figs. 5.1 and 5.2).

The expectation value of the original circuit can be retrieved by classically com-
bining the expectation values of the individual fragments obtained in different
preparation and measurement bases [PHOW20]. An example to reconstruct the
probability distribution of Fig. 5.1 from the two fragments in Fig. 5.2 is given
below. The calculation of the probability of obtaining the outcome 0000, denoted
as P (0000), from the circuit of Fig. 5.1 is presented and the probabilities of the



CHAPTER 5. ERROR MITIGATION BY QUANTUM CIRCUIT CUTTING88

|0i

|0i Z Rz

|0i T Sdg

|0i S Rx

Figure 5.1: An example circuit with the red cross signifying the location of cut

|0i

|0i Z Rz

|0i T Mj

(a) First subcircuit

Pi Sdg

|0i S Rx

(b) Second subcircuit

Figure 5.2: An example of cutting the 4 qubits quantum circuit of Fig. 5.1 into 2
fragments. Pi and Mj denote tomographically complete preparation and measure-
ment basis respectively.

other states can be computed similarly.

The variable to be calculated from the first subcircuit (Fig. 5.2 (a)), where P (abc)Mj

denoting the probability of obtaining the outcome abc when the cut qubit under-
goes measurement Mj 2 {I,X, Y, Z}, are considered in Eq. (5.1). Note that
measurements in I and Z bases are essentially the same. Therefore, a single mea-
surement in the Z basis is sufficient to calculate the terms involving measurement
in I and Z bases.

p1,1 = P (000)I + P (001)I + P (000)Z � P (001)Z

p1,2 = P (000)I + P (001)I � P (000)Z + P (001)Z

p1,3 = P (000)X � P (001)X

p1,4 = P (000)Y � P (001)Y (5.1)
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Similarly, the variables to be calculated from the second subcircuit (Fig. 5.2 (b)),
where P (ab) |Pii denoting the probability of obtaining the outcome ab when the
cut qubit was prepared in state Pi 2 {|0i , |1i , |+i , |+ii}, are given in Eq. (5.2).

p2,1 = P (00) |0i

p2,2 = P (00) |1i

P2,3 = 2P (00) |+i � P (00) |0i � P (00) |1i

P2,4 = 2P (00) |+ii � P (00) |0i � P (00) |1i . (5.2)

The final probability P (0000) for the original circuit in Fig. 5.1 is then retrieved
as

P (0000) =
1

2

X

i

p1,i ⌦ P2,i. (5.3)

Note that recombination of the probability for a single cut requires four multipli-
cations. Therefore, for k cuts, the classical recombination time scales as O(4k),
thus making a large number of cuts impractical. There is no method to find the
best cut location in a given circuit, and indeed, there is no clear definition as to
which cut qualifies as the best cut. However, studies have been performed to find
the cut locations which minimize (i) the empirical postprocessing time [TTS+21],
or (ii) the error on each fragment [BSCSK21].

As mentioned in Chapter 2, circuit cutting can produce fragments that behave as
an unknown quantum state or channel. Sec. 2.4.2 of Chapter 2 discussed about the
role of tomography in this context, and its different forms such as Linear Inversion
and Constrained Least Square. The description of tomography from Chapter 2 has
also been extended to conditional fragment tomography in the noiseless scenario
for the sake of efficiency. This chapter proposes two error mitigation methods
specific to conditional fragment tomography.
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5.2 Error mitigation for Conditional Fragment To-
mography

First, we provide a brief introduction on Conditional Fragment Tomography, as
introduced by Perlin et al. in [PSSO21].

5.2.1 A brief introduction to Conditional Fragment Tomog-
raphy

Consider a cut fragment F with m-qubit measurements corresponding to the origi-
nal circuits outputs, and k qubits corresponding to the cut qubits as either a state,
channel, or POVM fragment. For example, in Fig. 5.2 (a), m = 2 and k = 1.

Rather than reconstructing a full description of the fragment tensor which would
be inefficient, one can take advantage of the block-diagonal structure and instead
reconstruct the set of conditional fragment components {T (s)} for s 2 {0, 1}m.
This is done by choosing a tomographically complete basis {Bj} on the k cut qubit
subsystem, and also defining an orthonormal (but tomographically incomplete)
basis {⇧s} on the m conditional measurement outcome qubits. Typically, this
second basis is chosen as computational basis ⇧s = |sihs|. With these two bases,
tomography of the fragment tensor TF can be considered in terms of the tensor
product basis Bi⌦⇧s, where the probability of observing an outcome (i, s) is given
by

pi,s = hhBi ⌦ ⇧s|TFii =
X

s0

hhBi|T (s0)ii hs
0
|⇧s |s

0
i (5.4)

For ⇧s = |sihs|, we have

pi,s = hhBi|T (s)ii. (5.5)
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This tomographic reconstruction of T (s) can be performed via linear inversion,
least-squares optimization, or any other tomography fitter by fixing the index
s and performing tomography fitting using the set of probabilities {pi,s}. The
fragment F can thus be represented as a block-diagonal n = k +m qubit tensor

TF =
X

s2{0,1}m
T (s)⌦ |sihs| (5.6)

This implies that in general, for a fragment F with m conditioning measurements
and k cut qubits, there are 2m conditional k-qubit tensor tomography fitting pro-
cedures to run on the measurement data.

5.3 Error mitigation on quantum circuit cutting

In general, tomography is used to accurately characterize the system at hand. As
the system is often noisy, tomography is usually used to accurately characterize
the noise in the system. Therefore the use of error correction or mitigation with
tomography is fallacious. However, for circuit cutting, tomography is used as a
subroutine to characterize the ideal system. Therefore, mitigation of the errors
in the system to accurately characterize the ideal system is mandated. Circuit
cutting presents several opportunities for error mitigation in addition to those
that can be applied to standard circuits (e.g., Zero Noise Extrapolation, Prob-
abilistic Error Cancellation) [TBG17]. Since individual fragments contain fewer
gates than the original circuit (Refer to Fig. 5.2), they may contain less overall
noise [ARS+21, BSCSK21], which may make them more amenable to error mitiga-
tion techniques such as probabilistic error cancellation which exhibit exponential
scaling with the total noise strength of the circuit [TBG17, EBL18, BMKT22].
Furthermore, tomography is used as a subroutine for reconstruction [PSSO21]
mitigation techniques, such as eigenvalue truncation or re-scaling, and hence can
be applied during the fitting which would not have been possible otherwise.

This chapter proposes and investigates the performance of two new forms of
tomography-specific error mitigation which are not possible with standard cir-
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cuit execution. These are (i) measurement error mitigated constrained least square
(MEMCLS) tomography, which aims to remove the effect of measurement errors
during the tomographic reconstruction by performing a constrained fit of all con-
ditional fragments simultaneously using the knowledge of the readout error model,
and (ii) dominant eigenvalue truncation (DEVT) which involves truncation of the
reconstructed state or channel to its largest eigenstate.

5.3.1 Measurement Error Mitigated Constrained Least Square
(MEMCLS)

A significant source of error in tomographic experiments is so-called state prepa-
ration and measurement (SPAM) errors. If an ideal preparation and measurement
basis is used in a tomography fitter, any errors in these processes are attributed
to those in the reconstructed state or channel itself. In current quantum de-
vices, measurement errors are the dominant source of SPAM error and are in
the range of 0.5%-10% for a single-qubit measurement depending on the archi-
tecture [NKSG21]. Thus a variety of error mitigation schemes for classical read-
out errors have been proposed which involve some characterization process of the
measurement error model, and processing of measurement outcomes to attempt to
undo these effects [CBB+22, NKSG21, VDBMT22a]. When performing tomogra-
phy, it is inadvisable to apply such mitigation techniques to process counts before
using them during tomographic fitting. The reason is that these techniques modify
the circuit outcome without properly modifying the variance of the distribution
which are then used in the tomographic fitting. Instead, one can perform gen-
eral measurement error mitigation as part of the fitting procedure if they have a
well-characterized measurement error model by using the noisy POVM elements
directly in the tomography fitter basis, which in turn can be used to construct a
noisy error mitigated dual basis for linear inversion [SGS12], or used directly in
the least-squares objective function to find the maximum likely fit.

A simple example can be considered for this. Let us assume that a density matrix
⇢ can be represented as ⇢ =

P
j pj⇧j, where ⇧j are the projectors and pj are the
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corresponding probabilities. In other words, if N copies of ⇢ are measured in the
basis {⇧j}, then the probability of observing the outcome ⇧j = nj

N = pj. Now,
let us assume that due to measurement error, the projectors that are actually
getting measured are ⇧0

j, and the corresponding probabilities are p0j. Since ⇧0
j

are unknown, the reconstructed state will be ⇢0 =
P

j p
0
j⇧j, which will not agree

with the actual state ⇢. On the other hand, if some characterization experiment
is performed to learn the noisy projector (or POVMs) ⇧0

j, then the reconstruction
⇢ ⇡

P
j p

0
j⇧

0
j is more accurate. The accuracy of this reconstruction depends on

the characterization of the noisy POVMs ⇧0
j – the better the characterization, the

more accurate the reconstruction. Measurement error mitigated tomography uses
this ideology by determining the noise POVMs and fitting the tomographic data
using this noisy basis.

Conditional tomography presents a challenge since this kind of error mitigation
can only be applied to the basis elements of the tomography fitter, while the non-
tomographic measurements used to condition the data for each fragment com-
ponent will also be noisy. This means that instead of using Eq. (5.5) to define
our conditional probability distribution, we should use Eq. (5.4) where ⇧s is no
longer diagonal, but represents our measurement error model on the conditioning
qubit measurements. If a classical readout error model is considered, then these
conditional qubit bases can be written as

⇧noise
s =

X

s0

P (s|s0) |sihs0| (5.7)

where P (s|s0) is the probability of recording a true outcome s as the noisy outcome
s0. The matrix of readout error probabilities A =

P
s,s0 P (s|s0) |sihs0| is typically

called an assignment matrix [NKSG21]. Using the assignment matrix readout
error model our noisy conditional probabilities for fragment tomography are given
by

pnoisei,s =
X

s0

P (s|s0)hhBi|T (s0)ii. (5.8)

where Bi can also be chosen to be a noisy basis element corresponding to the
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measurement error on the cut-qubit measurements. To apply mitigation during
reconstruction a modification of the conditional least-squares fitter in Eq. (2.7)
can be made to simultaneously fit all fragments T (s) using the readout error prob-
abilities P (s|s0) using the optimization objective in Eq. 5.9.

{T (s)mit
LS } = arg min

{T (s)�0}

1

2

�����⌃
�1/2

X

s

 
X

s0

P (s|s0)hhBi|T (s0)ii � pi,s

!
|si

�����

2

2

(5.9)

5.3.2 Dominant Eigenvalue Truncation (DEVT)

Ideally, a noiseless quantum circuit maps a pure state ⇢in to another pure state
⇢out. However, in reality, the output state ⇢noisy is a mixed state due to the
effect of noise. Dominant eigenvalue truncation (DEVT) asserts that when the
strength of the noise is low, the largest eigenvector | 1i of ⇢noisy has a significant
overlap with ⇢out, and hence can be considered to be a very close approximation
of ⇢out. The inaccuracy, when the noiseless state is approximated by the largest
eigenvalue of the noisy state, is captured by a quantity termed coherent mismatch.
If ⇢out = | i h |, then the coherent mismatch c is defined as [Koc21]

c = 1� h 1| i (5.10)

Applicability of DEVT assumes a noise model for which the noisy output state
⇢noisy can be represented as a convex mixture of the ideal outcome ⇢out and some
error density matrix ⇢err as in Eq. (5.11), p is the probability of error [Koc21].

⇢noisy = (1� p)⇢out + p⇢err (5.11)

In such a scenario, the coherent mismatch c is upper bounded as in Eq. (5.12)
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[Koc21], where � = ( 1
1�p � 1)µ1, µ1 being the largest eigenvalue of ⇢err.

c 
�2

4
+O(

�4

16
) (5.12)

This study will focus on applying the DEVT to quantum channels as the example
circuits in Fig. 5.3, and 5.4 contain only channel fragments. The Choi-matrix for
an n-qubit CPTP quantum channel E can be written in its eigenbasis as

⇤E =
X

i

|KiiihhKi| (5.13)

where the matrices {Ki} correspond to the canonical Kraus decomposition [WBC15],
and we assume they are ordered such that hhKi|Kiii � hhKi+1|Ki+1ii. The DEVT
approximation to E is then the pure-state Choi-matrix

⇤DEV T (E) =
2n

hhK0|K0ii
|K0iihhK0|. (5.14)

To include this as a mitigation strategy in circuit cutting, DEVT is applied to each
individual channel tensor fragment ⇤E = Ti(si) in Eq. (5.6), and these truncated
fragments are used when computing the outcome probabilities.

Note that when applied to quantum channels the DEVT may result in a truncated
channel which is not trace-preserving, even if the non-truncated channel is. This is
because a channel truncated to a single eigenvector is trace-preserving if and only
if K†

0K0 = pI, which requires that the largest Kraus matrix be a scaled unitary
K0 =

p
pU .

5.4 Simulation and numerical results

This section shows the simulation result of conditional fragment tomography ap-
plied to circuit cutting in the presence of various noise models. For performing
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the circuit cutting reconstruction, three different tomography fitters are consid-
ered: linear inversion (LIN), constrained least-squares (CLS) (both discussed in
Chapter 2), and measurement error mitigated constrained least squares (MEM-
CLS) (discussed in Sec. 5.2). Each fitter is compared with and without Dominant
Eigenvalue Truncation (DEVT) error mitigation. All tomography reconstruction
experiments consisted of 10, 000 trials, or shots, and were implemented using a
modified version of the process-tomography experiment from the Qiskit Experi-
ments [qex22] Python package. For comparison with direct simulation, the effect of
standard A-matrix inversion readout error mitigation was also included on the es-
timated probabilities using the M3 mitigation package in Qiskit [NKSG21, mth22].

To study the effects of error mitigation, a variety of noise models were considered.
All noisy simulations were done using the Qiskit Aer simulator [aer22] with a local
noise model by decomposing the simulated circuits into Controlled-NOT, and 1-
qubit gates (SX, X, RZ), which is currently the basis gate set of IBM quantum
devices), and Z-basis measurements. The noise was then added to either the
2-qubit gates, 1-qubit gates, or single-qubit measurements using the same noise
parameters for all qubits to simplify analysis. Note that in IBM Quantum devices,
the RZ gate is not physically executed, rather its effect is accounted for in the
software by a rotation of axis [MWS+17b]. Hence, RZ is essentially a virtual gate
causing no error. Therefore, a single qubit gate error was added to the X and SX
gates only.

Measurement errors were simulated using the classical readout error model as de-
scribed in Sec. 5.4.1. For gate errors, a local Markovian gate model was considered
where each noisy gate is simulated as Unoise = E·U where U is the ideal gate unitary,
and E is a completely-positive trace preserving (CPTP) quantum noise channel,
which can be written in the Kraus representation as E(⇢) =

P
i Ki⇢K

†
i , where

P
i K

†
iKi = I [WBC15]. Four different gate noise models were simulated for the

channel E – namely, (i) depolarizing, (ii) stochastic Pauli, (iii) amplitude damping,
and (iv) coherent noise, where the noise was applied to both 1 and 2 qubit gates.
The results from the gate error are shown in Sec. 5.4.2. Finally, Sec. 5.4.3 shows
the simulation results for non-mixed unitary errors such as amplitude damping
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and coherent rotation.

Figure 5.3: Cutting a 4-qubit cluster unitary circuit into 2 fragments. The dotted
red line denotes the cut.

Figure 5.4: Cutting an 8-qubit cluster unitary circuit into 2 fragments. The dotted
red line denotes the cut.

The numerical studies consider a cluster unitary circuit consisting of alternating
layers of random 2-qubit unitary gates. Such circuits are representative of Trot-
terized simulation used in applications for near-term quantum devices [BMKT22,
CA+21]. The experiments consider clusters with a fixed depth of 3 layers of ran-
dom unitaries between adjacent qubits and the problem of estimating the full out-
come probability distribution of Z-basis measurements on all qubits. The direct
simulation of the full uncut circuit is compared to the simplest circuit cutting con-
figuration with 2 or 3 fragments under a variety of noise models. For 2-fragments,
comparison simulations were performed for original uncut circuits containing 4
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qubits (Fig. 5.3), 8 qubits (Fig. 5.4) and 12 qubits, resulting in 1-qubit condi-
tional process tomography fragment tensors with 2, 4, and 6 conditioning qubit
measurements from the uncut circuit respectively.

To evaluate the performance of circuit cutting compared to direct simulation, the
estimated probability distribution from both methods is compared to the expected
ideal distribution using the 1-norm distance measure

D(P ) =
1

2
kP �Qk1 =

1

2

X

i

|pi � qi| (5.15)

where pi and qi are the outcome probabilities for the estimated distribution P , and
ideal target distribution Q respectively. Note that this measure is equivalent to the
trace distance T (⇢, �) = 1

2Tr|⇢� �| between two quantum states if the probability
distributions are considered to be diagonal density matrices [NC02]. Therefore,
when P = Q (or ⇢ = �), it is expected that D(P ) = 0.

5.4.1 Measurement Noise

First measurement noise was simulated with a symmetric single-qubit assignment
matrix

A =

 
1� pmeas pmeas

pmeas 1� pmeas

!
. (5.16)

In this noise model, the gates are considered to be ideal. Fig. 5.5 shows the recon-
structed distributions trace distance for CLS, MEMCLS both with and without
DEVT, and the uncut circuit both with and without M3 readout error mitigation
when using pmeas 2 {0.01, 0.05}. For pmeas = 0.01, circuit cutting alone improves
the performance for all the scenarios. When pmeas = 0.05, for 8-qubit and 12-qubit
2-fragment circuits, again circuit cutting alone improves performance, as was re-
ported in prior studies [ARS+21, BSCSK21]. This improvement increases with the
number of measurement qubits in the original circuit, while for the 4-qubit case,
the opposite is seen with the uncut circuit having lower error than the cut circuit
reconstruction. This is because, for the 4-qubit case, the total number of outcome
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probabilities used in each fragment for the tomographic reconstruction is larger
than the number of probabilities in the original circuit (24 vs 16), while for the
8 and 12-qubit cases, each fragment has significantly fewer probabilities than the
original circuit (96 vs 256 and 384 vs 4096 respectively).

Including readout error mitigation using MEMCLS or CLS with DEVT improves
the circuit cutting performance, with CLS+DEVT outperforming MEMCLS alone,
and being comparable to MEMCLS+DEVT. This suggests that DEVT is more
effective than MEMCLS for mitigating pure readout errors in tomographic recon-
structions. The same trends are also observed for reconstruction using 3 fragments
shown in Fig. 5.5 (c) and (d). Henceforth, for other noise models, only the results
for circuit cutting with 2 fragments are presented, since for equal-sized fragments
the reconstruction error per fragment is constant and the 2-fragment case is rep-
resentative of the relative performance of the different methods.

5.4.2 Gate Noise

Next, the effects of gate error are included as well as measurement readout error.
In current devices 2-qubit gate error is one of the dominant sources of circuit error,
so we consider several different 2-qubit noise models applied to all CNOT gates in
our circuit. In all cases, we fix the measurement error to be the symmetric classical
readout error described in Sec. 5.4.1 with pmeas = 0.01 or 0.05, and including a
1-qubit gate error model (depolarizing or Pauli) with p1 = 10�4 on single-qubit
gates.

The first case we consider is a 2-qubit depolarizing noise channel given by the map

Edepol(⇢) = (1� pdepol)⇢+ pdepol
I
4
. (5.17)

First, 2-qubit depolarizing probabilities of pdepol = 0.01 and 0.02, shown respec-
tively in Fig. 5.6 (a) and (b) was simulated. The results show that both CLS and
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(a) 2 fragment circuit cutting with pmeas =
0.01

(b) 2 fragment circuit cutting with pmeas =
0.05

(c) 3 fragment circuit cutting with pmeas =
0.01

(d) 3 fragment circuit cutting with pmeas =
0.05

Figure 5.5: Performance of tomographic circuit cutting reconstruction using 2
and 3 fragments under the effect of local symmetric readout error with a read-
out error probability of pmeas 2 {0.01, 0.05}. The vertical axis is the trace dis-
tance (Eq. (5.15)) of the reconstructed probability distribution from the noiseless
probability distribution. The cut circuit reconstruction was performed using both
constrained least-squares conditional tomography fitter (CLS) and a readout er-
ror mitigated fitting (MEMCLS) fitter using the noisy basis corresponding to the
classical readout error noise parameter both with and without DEVT mitigation.
The original circuit (uncut) was measured with and without M3 readout error
mitigation for comparison.

LIN tomography fitters with DEVT perform better than MEMCLS alone and that
when applying DEVT mitigation all tomography fitters have comparable perfor-
mance. This suggests that if one is employing DEVT, then full MEMCLS is not
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(a) pdepol = 0.01, pmeas = 0.01 (b) pdepol = 0.02, pmeas = 0.01

(c) pdepol = 0.01, pmeas = 0.05 (d) pdepol = 0.02, pmeas = 0.05

Figure 5.6: Performance of error mitigated 2-fragment tomographic circuit cutting
reconstruction under 2-qubit depolarizing gate noise (Eq. (5.17)) with pdepol = 0.01
(left) or pdepol = 0.02 (right), local symmetric readout error with pmeas = 0.01 (top)
or pmeas = 0.05 (bottom), and single qubit gate depolarizing error of p1 = 10�4.
The two-qubit depolarizing noise parameter was Errors on single qubit gates are
fixed to 10�4. Cut circuit reconstruction was compared using linear inversion
(LIN), constrained least-squares (CLS), and readout error mitigated CLS (MEM-
CLS) tomography fitters both with and without dominant eigenvalue truncation
(DEVT) mitigation. The original circuit (uncut) was measured with and without
M3 readout error mitigation for comparison.

required over standard CLS or basic LIN tomography fitting, since DEVT alone
is sufficient to mitigate the effect of both depolarizing gate error and measure-
ment readout error on quantum circuits. However, as the size of the fragments
increases, so does the number of conditional qubits and the effect of measurement
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error on them, making measurement error more and more dominant. Thus the
performance gap between MEMCLS and CLS with DEVT lowers with increasing
size of fragments. Moreover, numerical data suggests that the rate of increase of
trace distance increases with the increase in pdepol and the number of qubits in the
fragment, which is expected. If one considers that circuit error in a layer can be
approximated as a depolarizing error, then 1�D(P ) obtained using DEVT would
scale as O(nmp)2, where n is the number of qubits, m is the number of gate layers,
and p is the layer depolarizing error probability (See Appendix A.9 for details).

Depolarizing noise was expected to be the most favorable case for DEVT. However,
it is not a realistic model for most quantum devices. A more general mixed-unitary
model is a general Pauli channel with different error rates. Here, a biased Pauli
channel was considered where the Z error term is more likely than the X or Y
terms. This is given by the map

Epauli(⇢) = (1� (3 + b)p)⇢+ pX⇢X + pY ⇢Y + p(1 + b)Z⇢Z (5.18)

where p is the X and Y error probability, and b is a bias term added to the Z

error. The simulations were with values of p = 0.01 and 0.02 in Fig. 5.7 (a) and
(b) respectively with a bias term of b = 0.1, and in Fig. 5.7 (c) and (d) respectively
with a bias term of b = 0.5. An n-qubit Pauli noise channel is defined as the tensor
product of individual qubit noise channel (Epauli)⌦n.

While DEVT does not improve the results as much as for depolarizing noise for
2-qubit gates with an error probability of 0.01 and for both tomography fitters
and both values of bias, it still provides an advantage over both the uncut circuit
and the cut circuit without DEVT. However, when the probability of gate error is
increased to 0.02, for a bias of 0.1, it is noticed that DEVT hardly provides any
improvement over the uncut circuit. In fact, for the 12 qubit circuit, when the bias
is 0.5, even DEVT provides a result that is slightly worse than that of the uncut
circuit. Appendix A.10 discusses that the form of the output density matrix for
the biased Pauli noise model deviates from Eq. (5.11), leading to a poorer result
as compared to the uniform depolarization noise model. However, these numerical
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(a) Two qubit gate error p = 0.01 and bias

b = 0.1
(b) Two qubit gate error p = 0.02 and bias

b = 0.1

(c) Two qubit gate error p = 0.01 and bias

b = 0.5
(d) Two qubit gate error p = 0.02 and bias

b = 0.5

Figure 5.7: Performance of error mitigated 2-fragment tomographic circuit cut-
ting reconstruction under a 2-qubit tensor product biased Pauli error channel
(Eq. (5.18)) with pX = pY = p, and pz = p(1 + b) with probabilities p = 0.01
(left) and p = 0.02 (right), and biases b = 0.1 (top) and b = 0.5 (bottom), local
symmetric readout error with pmeas = 0.05, and single qubit gate depolarizing
error of p1 = 10�4. Cut circuit reconstruction was compared using linear inversion
(LIN), constrained least-squares (CLS) tomography fitters, and readout error mit-
igated CLS (MEMCLS) both with and without dominant eigenvalue truncation
(DEVT) mitigation. The original circuit (uncut) was measured with and without
M3 readout error mitigation for comparison.

results clearly suggest that DEVT provides an improvement over circuit cutting
without DEVT in every scenario, thus consolidating its necessity for circuit cutting
with noise.
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In both Fig. 5.6 and 5.7 it can be observed that the reconstruction error increases
by a larger amount when increasing the gate noise parameter for all tomographic
circuit cutting methods than is observed when measuring the uncut circuit. This
effect was consistent across all noise models considered henceforth and requires
further investigation.

5.4.3 Non-Mixed Unitary Gate Errors

Next two other representative cases of non-mixed-unitary error were considered,
amplitude damping and coherent noise, both of which result in an error map,
not of the form in Eq. (5.11), and hence should be unfavorable for DEVT. For
these simulations, measurement readout error was not included so as to asses
DEVT for these gate errors without including improvement from its effectiveness
for mitigating measurement readout errors.

First, a 2-qubit gate error consisting of a tensor product of 1-qubit amplitude
damping channels Eamp(⇢) = K0⇢K

†
0 +K1⇢K

†
1 with

K0 =

 
1 0

0
p
1� �

!
K1 =

 
0
p
�

0 0

!
(5.19)

was considered where the simulation was for damping parameter values of � =

0.001, shown in Fig. 5.8 (a), and � = 0.01, shown in Fig. 5.8 (b). It is observed
that for � = 0.001, when the channel can be considered to be very close to identity,
DEVT, and circuit cutting in general, are able to attain improved performance.
For � = 0.01, both LIN and CLS with DEVT provide an improvement over either
fitter without DEVT, however, it is not able to match the performance of the full
circuit, and in fact, the cut circuit reconstruction appears more sensitive to the
gate errors than the uncut circuit.

Next, a coherent error of the form

Uerr = exp(�i�✓HCNOT ), (5.20)
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(a) Amplitude damping error with � = 0.001 (b) Amplitude damping error with � = 0.01

Figure 5.8: Performance of error mitigated 2-fragment tomographic circuit cutting
reconstruction under a 2-qubit tensor product amplitude damping error channel
(Eq. (5.19)) with damping parameter � = 0.001 (a), and � = 0.01 (b). Cut circuit
reconstruction was compared using linear inversion (LIN) and constrained least-
squares (CLS) tomography fitters, both with and without dominant eigenvalue
truncation (DEVT) mitigation. Direct measurement of the original circuit (uncut)
is shown for comparison.

was considered where HCNOT = log(UCNOT )/(�i) is the generator of a CNOT as a
rotation gate, which is an approximate model of coherent errors due to imperfect
gate calibration. The results for values of �✓ = ⇡

64 and �✓ = ⇡
32 are shown in

Fig. 5.9 (a) and Fig. 5.9 (b) respectively. In this case, it was observed that DEVT
provides essentially no improvement to regular tomography fitting, though impor-
tantly it can be seen that it also does not make the circuit cutting reconstruction
significantly worse. One additional observation is that for the largest fragment
size, the cut circuit performs better than the uncut circuit, likely due to there
being fewer total gates for the coherent error to accumulate in a single fragment.
Moreover, for both of these noise models, measurement error was not considered,
and therefore, MEMCLS essentially becomes equivalent to CLS.

For the case of amplitude damping, the gate errors will also affect the condition-
ing qubit measurement outcomes, which could amplify errors in the tomographic
reconstruction. This is because, for such a noise model, not only the individual
circuit fragments are expected to be erroneous, but also the conditional qubits are
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(a) Coherent error with �✓ = ⇡
64 (b) Coherent error with �✓ = ⇡

32

Figure 5.9: Performance of error mitigated 2-fragment tomographic circuit cut-
ting reconstruction under a 2-qubit tensor product coherent rotation error channel
(Eq. (5.20)) with rotation error �✓ = ⇡/64 (a), and �✓ = ⇡/32 (b). Cut circuit
reconstruction was compared using linear inversion (LIN) and constrained least-
squares (CLS) tomography fitters, both with and without dominant eigenvalue
truncation (DEVT) mitigation. Direct measurement of the original circuit (un-
cut) is shown for comparison.

accumulated towards some value, thus making the entire reconstruction severely
faulty. Similarly, for coherent noise, the noisy density matrix is expected to deviate
significantly from the ideal one, so that the overlap of the largest eigenvalue with
the ideal state lowers. DEVT is not expected to generate fruitful results in such
scenarios [Koc21]. However, the numerical results show that DEVT still achieves a
better performance than simple circuit cutting even under such scenarios. There-
fore, it seems safe to deduce that if circuit cutting is used in such noisy scenarios,
it is still not detrimental to apply DEVT.

5.4.4 DEVT with twirled noise

The numerical results verify that DEVT is not very useful for noise models that
do not conform to the form of Eq. (5.11). However, a general method to convert
any quantum channel into a mixed unitary channel is Twirling. In this method,
the gates in a quantum circuit are padded with single qubit gates such that the
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overall functionality remains constant. However, these extra padding gates rotate,
or twirl the noise in the channel. This twirling process is repeated multiple times,
with the twirling gates selected uniformly at random. The average over multiple
such twirled instances is shown to generate a mixed unitary channel. The most
widely used form of twirling is Pauli twirling, where the twirling gates are sampled
uniformly at random from the single qubit Pauli gates [WE16]. For example,
Fig. 5.10 shows an instance where a CNOT gate is padded with arbitrary Pauli
gates. Note that the gates in the left padding can be chosen arbitrarily, whereas
the right padding is selected to ensure that the overall functionality remains the
same.

⌘

Z

Y Y

Figure 5.10: An example of Pauli twirling on CNOT gate

In the case of an amplitude damping channel Pauli twirling will result in a biased
Pauli channel with px = py = �

4 and pz = (1�
p
1��)2
4 , which in terms of the Pauli

noise model considered in Sec. 5.4.2 corresponds to a negative bias parameter, i.e.,
the channel has a higher probability of Pauli X or Y error than that of Pauli Z
error. For � = 0.01, px = py = 0.0025, and pz = 6 ⇥ 10�6. As shown in Fig. 5.7,
DEVT will be expected to perform best when the resulting Pauli channel is closer
to a combination of 1 or more depolarizing channels on any of the collections of
subsystems; in other words, when the bias is close to 0. On the other hand, Clifford
twirling [MGE12] is shown to result in an average channel that is depolarizing in
nature. Therefore, naturally, DEVT is expected to perform well on such a channel.
However, the set of Clifford gates contains CNOTs, which itself is a prominent
source of noise in current quantum devices. Therefore, using Clifford gates to
twirl a channel, in reality, may end up increasing the noise even more.

Fig. 5.11 shows the results for simulating both the Pauli-twirled approximation
(PTA) and Clifford-twirled approximation (CTA) to the amplitude damping and
coherent error noise models from Sec. 5.4.3. The CTA is performed via numerical
methods, without running the twirling under noise; in other words, it assumes ideal
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(a) Amplitude damping error with � = 0.01 (b) Coherent error with �✓ = ⇡
32

Figure 5.11: Performance of error mitigated 2-fragment tomographic circuit cut-
ting reconstruction using the Pauli-twirled approximation (PTA) and Clifford
twirled approximation (CTA) of 2-qubit tensor product amplitude damping noise
with � = 0.01 (a) and coherent noise with �✓ = ⇡

32 (b). Cut circuit reconstruction
was compared using linear inversion (LIN), constrained least-squares (CLS) to-
mography fitters, both with and without dominant eigenvalue truncation (DEVT)
mitigation, and PTA or CTA. Direct measurement of the original circuit (uncut)
is shown for comparison.

twirl gates. The results from Fig. 5.11 indicate that, under this assumption, CTA
should produce a channel that is amenable to DEVT mitigation. However, such
an assumption is not practical in reality. In Fig. 5.11 it is observed that applying
DEVT to the biased Pauli channel resulting from PTA of these noise models leads
to significantly worse results compared to the un-twirled noise models. These
results indicate that in the context of circuit cutting Pauli twirling should only
employed if the resulting noise is not highly biased and close to a depolarizing
channel.

5.5 Scalability of tomographic circuit cutting

Tomography itself is not a very scalable process; process tomography scales as 12k

with the number of qubits k. The method of conditional tomography [PSSO21]
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arrests the value of k to a small number per fragment under the assumption that
the number of cut qubits per fragment is small. However, even then conditional
process tomography is unscalable beyond a few cut qubits. Moreover, the number
of conditional tomography increases exponentially with the number of conditional
qubits as well. This section addresses the possibility of reducing the resources
required for tomographic circuit cutting in terms of (i) using partial tomographic
data, and (ii) the number of conditional tomography experiments.

5.5.1 Circuit cutting with partial data

A k-qubit conditional tomography experiment using the standard Pauli basis and
all measurement outcomes require the execution of 12k quantum circuits from
the 4k preparation states and 3k measurement bases respectively. This means
that full tomography is typically only practical for 2-3 qubit fragments in the
process tomography case, or up to 5-6 qubits for state tomography fragments.
For a larger number of qubits, the classical post-processing required for linear
inversion tomography can be significantly faster than for constrained least-squared
tomography, which in the basic implementation of linear-least squares requires
storing the full basis matrix of all vectorized basis elements. A natural question is
whether partial tomography techniques are suitable for circuit cutting to reduce
the number of experiments that need to be run. While there are many proposals
for more scalable tomography fitters, this subsection investigates the two standard
fitters, linear inversion and constrained least squares, with partial data.

Using the same experiment data as in Sec. 5.4.2 with a 2-qubit depolarizing gate
error of p2 = 0.01, 1-qubit depolarizing gate error of p1 = 10�4 and symmetric
readout error of pmeas = 0.05, tomographic reconstruction was performed using a
randomly sampled fraction f of the full tomographic data ranging from f = 0.1

to f = 1, where the 100% case corresponds to the previously presented results.
The results corresponding to partial tomography are shown in Fig. 5.12. For each
data point the average of 10 trials over random basis selection were considered
for both the LIN and CLS. Fig. 5.12 shows that when using partial data the CLS
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(a) Noiseless data where the uncut circuit

contains 4 qubits

(b) Noisy data where the uncut circuit con-

tains 4 qubits

(c) Noisy data where the uncut circuit con-

tains 8 qubits

(d) Noisy data where the uncut circuit con-

tains 12 qubits

Figure 5.12: Performance of error mitigated 2-fragment tomographic circuit cut-
ting reconstruction using partial tomography data. Data is sampled as a subset
of full data from Sec. 5.4.2 and averaged over 10 samples per data point. The
noise model is a 2-qubit depolarizing gate noise with pdepol = 0.01, local symmet-
ric readout error with pmeas = 0.05, and single qubit gate depolarizing error of
p1 = 10�4. Cut circuit reconstruction was compared using linear inversion (LIN),
constrained least-squares (CLS) tomography fitters, and readout error mitigated
CLS (MEMCLS) both with and without dominant eigenvalue truncation (DEVT)
mitigation. The original circuit (uncut) was measured with and without M3 read-
out error mitigation for comparison.

fitter greatly outperforms linear inversion. This is to be expected as it has been
shown that the positive constraints added to linear least squares are equivalent to
compressed sensing tomography [KKD15].
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In the absence of noise, Fig. 5.12 (a) shows that CLS tomography performs at
its maximum value when f ' 0.6. The standard deviation also drops to ⇠ 0 as
the value of trace distance saturates. However, for LIN, the trace distance lowers
almost linearly with an increasing fraction of data and attains its optimal trace
distance only when the entire data set (i.e., f = 1) is used. This holds true in the
presence of depolarizing gate and symmetric readout noise in Fig. 5.12 (b), (c),
and (d) respectively, though when noise is included the fraction of data required to
match the full data case also increases. This is to be expected as more noisy states
and channels are higher ranks and will be less suitable with compressed sensing.
Furthermore, as the number of qubits in the circuit increases, so does the effect
of noise and the saturation point shifts towards higher values of f . In all cases
with measurement error, the results show that MEMCLS has slightly superior
performance to CLS for all fractions of data, with the improvement increasing
slightly the fraction of data used.

When including DEVT mitigation it is observed that applying DEVT performs
markedly better with partial data when using CLS and MEMCLS than with LIN.
With both CLS and MEMCLS, DEVT provides a noticeable improvement when
using f > 0.5, i.e., 50% of the data, with the exact value changing slightly with
the size of the fragments, while for smaller fractions of data, it increases the re-
construction error. For LIN, however, DEVT is only beneficial for f > 0.8.

In conclusion, if partial tomography measurement is used to reduce the overall
number of experiments required for circuit cutting reconstruction, then there is a
noticeable difference between CLS and LIN fitters, both with and without DEVT,
and CLS should be strongly preferred over LIN. Furthermore, DEVT is still ben-
eficial to reduce the overall error in the circuit cutting reconstruction with partial
data using f > 0.5 of the data.
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5.5.2 Reducing the number of conditional tomography ex-
periments

Poor scalability of tomography limits the number of cut qubits per fragment that
is feasible in applications. The previous subsection addressed the issue of using
tomography with partial data to improve the scalability. Furthermore, even after
reconstructing all conditional fragment components for each fragment, there are
2n tensor contractions that must be performed to reconstruct a full probability
distribution of an n-qubit uncut circuit. However, there are myriads of problems
in quantum chemistry, combinatorial optimization, quantum machine learning, etc.
that only require computing the expectation value of low-weight Pauli observables,
not the full distribution, and circuit cutting can be implemented more efficiently in
these cases to reduce the exponential number of tensor contractions to a polynomial
number.

In order to evaluate the expectation value of a weight d < m Pauli operator for a
fragment F with k cut qubits and m qubit measurements from the original circuit,
it suffices to evaluate the conditional components Ts only over the d non-identity
qubits corresponding to the observable, and marginalize over the rest. This reduces

the complexity of tensor contractions required to compute hP i to O(2d ·

 
m

d

!
). For

a fixed d, 2d is O(1), and

 
m

d

!
is O(md), which becomes the effective complexity

of tensor contraction.

To take a more concrete example, consider the estimation of a Hamiltonian

H =
X

i

ciZi +
X

i 6=j

�ijZiZj

which requires only one and two-body interactions over the qubits. Such Hamilto-
nians are extremely common in Quantum Chemistry and other hardware-efficient

near-term applications. For such a Hamiltonian, there will be

 
m

2

!
weight-2 ob-
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servables, and m weight-1 observables per fragment. Therefore, the overall com-
plexity of tensor contraction boils down to {22 ·O(m2)+2 ·O(m)} which is O(m2).
For most practical purposes, m scales as O(n) where n is the total number of
qubits in the fragment. For example, when there are k cut qubits in a fragment,
m = n � k. Therefore, the complexity of tensor contraction can be lowered to
O(n2) if finding expectation values of weight-2 Pauli observables is sufficient. It
remains an interesting open problem to determine problems of interest where these
proposed methods can be implemented to make circuit cutting more scalable.

5.6 Summary

This study explored how an error-mitigated tomography approach to circuit cut-
ting can improve the overall performance of evaluating quantum circuit outputs
in the presence of gate and measurement noise. This builds on the previous work
in [PSSO21] which showed the advantages of using tomography over the original
circuit cutting method [PHOW20] in noiseless ideal simulations where only errors
due to measurement sampling statistics were included. Across all simulations, it
is observed that in the presence of gate noise, the circuit cutting reconstructed
probabilities exhibit a greater sensitivity to the gate noise strength than the un-
cut circuit. This was true across all noise models considered and emphasizes the
importance of error mitigation techniques that can be applied to circuit cutting.
The results from simulations demonstrated that in the presence of symmetric read-
out error measurement noise and certain forms of gate noise, applying DEVT can
greatly improve tomographic circuit cutting estimates during tomography recon-
struction. For non-symmetric readout noise, this can be made to look symmetric
by Pauli twirling of the measurements to randomly flip the expected bit outcomes
and then correcting in post-processing [vdBMT22b]. The form of the gate noise
is important for DEVT to be effective, and in particular uniform noise close to
a depolarizing channel is most effective with DEVT. While DEVT was found to
provide little advantage for amplitude damping and coherent noise, it did not sig-
nificantly increase the error in the reconstruction. One important result is that
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DEVT was shown to perform very poorly for highly biased Pauli noise, and could
dramatically increase the error in the reconstruction. This is an important con-
sideration to keep in mind if techniques such as Pauli-twirling are used to convert
gate noises to Pauli channels. One possible way that this might be circumvented
is to use probabilistic error amplification techniques, such as used in [LB17], to
make a highly biased gate noise more uniform, and hence more amenable to DEVT
mitigation.

Another important consideration when performing tomographic circuit cutting is
the choice of tomography fitting procedure. The required time for post-processing
can be a significant factor in applying circuit cutting to problems that have more
than a handful of circuit fragments to be evaluated. However, since the tomo-
graphic reconstruction of each fragment is independent from other fragments this
can be easily parallelized on classical computing resources. In this study, two
of the most commonly used full tomography fitters, namely linear inversion and
constrained least-squares optimization, were compared. In typical tomography
applications, the main trade-off between these two fitters is that linear inversion
fitting is significantly faster, while constrained least squares is more accurate, es-
pecially when including readout error mitigation via noisy basis elements in the
fitting or only using partial tomography data. In the context of circuit cutting
with DEVT mitigation, it was observed that linear inversion was comparable to
constrained least squares when full tomographic data was available, and in par-
ticular, DEVT was effective at mitigating the effect of measurement errors in
tomography without requiring the specialized measurement-error mitigated condi-
tional tomographic fitter proposed in this study. This can allow for significantly
faster tomographic post-processing.

If circuit cutting is to be considered for applications requiring a number of cut
qubits that are not realistic for obtaining full tomographic data then partial tomo-
graphic techniques will be required for the reconstruction. The simulation results
indicate that in this case constrained least squares method performed significantly
better than linear inversion, both with and without DEVT, since this method ex-
hibits properties of compressed sensing. This also indicates that estimation tech-



115CHAPTER 5. ERROR MITIGATION BY QUANTUM CIRCUIT CUTTING

niques such as classical shadow tomography are most likely not an important con-
sideration for circuit cutting since techniques such as shadow estimation [HKP20],
which are equivalent to linear inversion partial tomography in the Pauli basis as
considered here, should not be expected to provide a benefit for circuit cutting
problems over constrained tomography fitting methods, and furthermore are not
suitable for use with DEVT as a mitigation method to improve their performance
with partial data.
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Quantum error correcting code for ternary logic
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6.1 Introduction

The first part of this thesis dealt with near-term quantum systems, where the
number of qubits is not enough to incorporate error correction. Therefore, methods
such as the efficient design of circuits to lower the number of noisy gates, circuit
cutting, etc. were employed to lower the effect of noise. However, error correction
is necessary for arbitrary long computation. This part of the thesis looks into the
efficient design of error correction circuits, and the challenges of extending NISQ
methods to the error correction era.

Quantum systems are inherently multi-valued. A general d-dimensional quantum
state called a qudit, consists of 0, 1, . . ., and d�1 levels. An arbitrary qudit has the

form | id =
d�1X

k=0

↵k |ki, where ↵k 2 C 8 k, and
d�1X

k=0

|↵k|
2 = 1. Higher dimensional

quantum systems can express a larger computational space using less number of
qudits. For example, an n qubit system has a computational space of 2n. This
computational space can be achieved using k < n qudits, where k = d n

logde. In
terms of practical implementation, for example in superconductors, a qudit is an
anharmonic oscillator, whose energy levels are the levels of the qudit. However,
the gap �Ei,i+1 between two adjacent energy levels Ei and Ei+1 decreases with
increasing i; the system essentially becoming continuous as i!1 [GS18]. There-
fore, it is often a difficult engineering problem to effectively handle computations
involving higher dimensions, thus increasing the error in the system.

Nevertheless ternary quantum system (or qutrit), i.e., a system involving lev-
els |0i , |1i and |2i have been realized experimentally [CLKAGG22, GJAE+20,
GCK+21]. Qutrit systems have been shown to outperform qubit systems in cryp-
tographic protocols [BPP00], quantum random walk [AAKV01, Won15, SMS+18,
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SMS+21], and decomposition of unitary matrices [GBD+19, SMS+20]. The de-
composition of unitary matrices will be explored in more detail in Chapter 8.

The realization of arbitrary large ternary quantum systems mandates error cor-
rection. In [Cha97] the author suggested that a higher dimensional quantum error
correcting code (QECC) can be carried over from its binary counterpart. In other
words, a binary QECC can be extended to a d-dimensional QECC by replacing the
binary error channel with its d-dimensional formulation. This chapter shows the
extension of such a binary error channel into a ternary one and presents a ternary
version of the 9-qubit QECC [Sho95].

6.2 Errors in ternary quantum system

An arbitrary ternary quantum system, or a qutrit, can be represented as | i =

↵ |0i + � |1i + � |2i, where ↵, �, � 2 C and |↵|2 + |�|2 + |�|2 = 1. Any arbitrary
unwanted unitary operator can be considered as an error on the qutrit. In general,
for error correction, the notion is to find a spanning set of unitaries such that
correcting the errors from the spanning set is sufficient to correct any error on the
system. For qubit systems, Pauli matrices form this spanning set. A well-known
trace 0 spanning set for 3⇥ 3 unitaries is the Gell-Mann matrices [GM62]. This is
a set of eight matrices as shown below.
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0 0 �2

1

CA
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However, the first seven of the Gell-Mann matrices map a qutrit to a qubit. For
example, the action of �1 on | i = ↵ |0i+ � |1i+ � |2i is given by

0

B@
0 1 0

1 0 0

0 0 0

1

CA

0

B@
↵

�

�

1

CA =

0

B@
�

↵

0

1

CA = � |0i+ ↵ |1i.

In other words, �1 mapped the qutrit to a qubit. Therefore, the Gell-Mann ma-
trices are not suitable as a spanning basis for unitary errors on ternary quantum
systems. So, in the spirit of errors in binary systems, different types of bit and
phase errors for ternary quantum systems are studied first. Both the bit and phase
errors can affect the entire three-dimensional space or any two-dimensional sub-
space of the vector. The former is termed as ternary errors and the latter as binary
errors.

6.2.1 Bit errors on qutrits

As discussed above, it is possible to have errors in a three-dimensional system
whose support is one or two dimensions only. In other words, 9 ri and cj, which
are respectively the i � th row and the j � th column of the error matrix, to be
identical to that of the identity operator. In a ternary system, there can be three
such pairwise swaps, namely X01, X12, X20. A single qutrit pairwise swap error
operates only on any two of the three basis states, i.e., the amplitudes of two out
of the three basis states get swapped in the presence of such an error. The matrices
corresponding to these errors are as follows:

X01 =

0

B@
0 1 0

1 0 0

0 0 1

1

CA; X01 | i = ↵ |1i+ � |0i+ � |2i

X12 =

0

B@
1 0 0

0 0 1

0 1 0

1

CA; X12 | i = ↵ |0i+ � |2i+ � |1i
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X20 =

0

B@
0 0 1

0 1 0

1 0 0

1

CA; X20 | i = ↵ |2i+ � |1i+ � |0i.

These matrices are self-adjoint. Hence if any of these errors occur, applying the
same error matrix again can correct it. In addition to bit-flip errors, purely ternary
errors, affecting all three dimensions non-trivially, are possible. These errors cause
cyclic shifts of the basis vectors. Two types of shifts are possible - clockwise shift
(0! 1! 2) and anticlockwise shift (0 1 2). The mathematical formulation
of clockwise shift (X1) is |ji X1

�! |j + 1i mod 3 and that of anticlockwise shift (X2)
is |ji

X2
�! |j � 1i mod 3. It is interesting to note that the stabilizer proposed by

Gottesman in [Got99] for higher dimensional errors corresponds to the clockwise
shift (X1).

It can be easily verified that the respective matrices corresponding to errors X1

and X2 are -

X1 =

0

B@
0 0 1

1 0 0

0 1 0

1

CA X2 =

0

B@
0 1 0

0 0 1

1 0 0

1

CA

The action of these cyclic shift errors on the error-free state | i can be mathemat-
ically represented as

X1 | i = ↵ |1i+ � |2i+ � |0i

X2 | i = ↵ |2i+ � |0i+ � |1i .

The matrices for shift errors are not self-adjoint. However, each type of shift error
occurring twice in succession produces the other type of shift error, i.e., X2 = X2

1

and X1 = X2
2 ; further X�1

1 = X2 and X�1
2 = X1. Thus to correct an X1 error,

one can apply X2 and vice-versa. It can be checked that any combination of these
five types of errors (pairwise swap and shift) results in one of these five errors or
identities. Thus these five errors exhaust the list of possible bit errors on a qutrit.
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6.3 Phase errors on qutrits

Phase errors on qutrits are different from those on qubits. Dephasing error on a
qubit adds a phase of exp(i�) to the ideal state. It is possible to express exp(i�)

as
exp(i�) = cos(�)I + i.sin(�)Z

where Z =

 
1 0

0 �1

!
. Therefore, it suffices to correct the phase error Z on a

system. In a ternary system, it is more convenient to deal with phase errors being
the cube root of unity !. However, this initial argument keeps the form of Z error
unchanged from binary systems and later shows that the phase of ! is easier to
deal with in ternary systems.

On interaction with the environment, a qutrit can undergo rotation by some ar-
bitrary angles, where the basis states |1i and |2i may incur different phase errors
given by ei✓ and ei� respectively. Note that a phase can occur on |0i as well, which
can be ignored as a global phase by suitably modifying the phases on |1i and |2i.
Such an error changes the error-free state | i as

↵ |0i+ � |1i+ � |2i ! ↵eia0 |0i+ �eia1 |1i+ �eia2 |2i

= eia0(↵ |0i+ �ei(a1�a0) |1i+ �ei(a2�a0) |2i)

' ↵ |0i+ �ei✓ |1i+ �ei� |2i .

The corresponding error operator is denoted as R✓� =

0

B@
1 0 0

0 ei✓ 0

0 0 ei�

1

CA. Using the

formula e±i✓ = cos✓ ± isin✓, the error matrix can be represented up to a global
phase of ei

✓+�
2 , as in Eq. (6.1).

[cos ✓2

0

B@
1 0 0

0 1 0

0 0 1

1

CA� isin ✓2

0

B@
1 0 0

0 �1 0

0 0 1

1

CA] · [cos�2

0

B@
1 0 0

0 1 0

0 0 1

1

CA� isin�2

0

B@
1 0 0

0 1 0

0 0 �1

1

CA]
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= cos
✓

2
cos

�

2
I� isin

✓

2
cos

�

2
Z1 � icos

✓

2
sin

�

2
Z2

�sin
✓

2
sin

�

2
Z12.

(6.1)

where

Z1 =

0

B@
1 0 0

0 �1 0

0 0 1

1

CA Z2 =

0

B@
1 0 0

0 1 0

0 0 �1

1

CA Z12 =

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA = Z1Z2 = Z2Z1

The action of these operators on an arbitrary qutrit is given by

↵ |0i+ � |1i+ � |2i
Z1
�! ↵ |0i � � |1i+ � |2i

↵ |0i+ � |1i+ � |2i
Z2
�! ↵ |0i+ � |1i � � |2i

↵ |0i+ � |1i+ � |2i
Z12
��! ↵ |0i � � |1i � � |2i

Eq. (6.2) depicts the overall error model considered henceforth, which consists of
bit errors, phase errors, and their combination, called Y errors. A different phase
error, using the cube root of unity !, is considered later in this section, and the
spanning of any arbitrary unitary errors is shown later in Chapter 7.

E = aI3 +
2X

i=1

biZi +
2X

m,n=0
m 6=n

(cmnXmn +
2X

j=1

dmnjYmnj) (6.2)

where a, b, cmn, dmnj 2 C are constants. I3 is the 3 ⇥ 3 identity operator and
Ymnj = iZjXmn takes into account when both bit error (X) and phase error (Z)
occur simultaneously. This error model tackles both binary as well as ternary bit
and phase errors.



125 CHAPTER 6. QECC FOR TERNARY LOGIC

6.4 Shor code for qutrits

This section deals with the possibility of extending the 9-qubit QECC by Shor
(discussed in Chapter 2) to the ternary regime. In accordance with the encoding
scheme of Shor code, the information of a single qutrit | i = ↵ |0i + � |1i + � |2i

is encoded into nine qutrits to form a logical qutrit | iL = ↵ |0iL+� |1iL+ � |2iL,
where

|0iL =
1

3
p
3
(|000i+ |111i+ |222i)(|000i+ |111i+ |222i)

(|000i+ |111i+ |222i)

|1iL =
1

3
p
3
(|000i+ ! |111i+ !2

|222i)(|000i+ ! |111i+ !2
|222i)

(|000i+ ! |111i+ !2
|222i)

|2iL =
1

3
p
3
(|000i+ !2

|111i+ ! |222i)(|000i+ !2
|111i+ ! |222i)

(|000i+ !2
|111i+ ! |222i).

In short, the logical basis states can be represented as

|iiL =
1

3
p
3
(|000i+ !i

|111i+ !2i
|222i)⌦3

It is easy to check that |0iL, |1iL and |2iL are orthogonal to each other. In order
to correct the error in Eq.(6.2), ancilla state(s) |⇣i is entangled with the system.
Finally, the ancilla state(s) is measured which gives a classical outcome called error
syndrome. The error syndrome denotes the type of error that has occurred. The
resultant state after entanglement of the ancilla state(s) |⇣i is a superposition of
the form

cos
✓

2
cos

�

2
I | i |⇣Ii � isin

✓

2
cos

�

2
Z1 | i |⇣Z1i � icos

✓

2
sin

�

2
Z2 | i |⇣Z2i

�sin
✓

2
sin

�

2
Z12 | i |⇣Z12i



CHAPTER 6. QECC FOR TERNARY LOGIC 126

where |⇣ii indicates the ancilla qubit with i-th error syndrome. Upon measurement
of the ancilla qubits, the superposition collapses. If the ancilla state collapses with
i-th syndrome, then the encoded state also collapses with the i-th error on the
system.

0

B@
1 0 0

0 0 1

0 1 0

1

CA =

0

B@
1 0 0

0 1 0

0 0 1

1

CA+

0

B@
1 0 0

0 ! 0

0 0 !2

1

CA+

0

B@
1 0 0

0 !2 0

0 0 !

1

CA

+

0

B@
0 1 0

0 0 1

1 0 0

1

CA+

0

B@
0 ! 0

0 0 1

!2 0 0

1

CA+

0

B@
0 !2 0

0 0 1

! 0 0

1

CA

+

0

B@
0 0 1

1 0 0

0 1 0

1

CA+

0

B@
0 0 !

1 0 0

0 !2 0

1

CA+

0

B@
0 0 !2

1 0 0

0 ! 0

1

CA (6.3)

6.4.1 Stabilizer formulation for ternary Shor code

A ternary quantum system can be perturbed with both binary and ternary errors.
However, it is not trivial to deal with binary errors in this setting. However, any
binary error can be represented as a linear combination of ternary error. For
example, the error operator X12 can be written (up to a normalization factor) as
a linear combination of shift and phase operators as shown in Eq. (6.3). Note
that the error operators with angles ! and !2 can be considered as R✓� errors for
particular values of ✓ and �. Hence, a code that can correct shift and phase errors
can also correct pairwise swap errors occurring on qutrits.

6.4.2 Stabilizer structure for error detection

Gottesman defined stabilizers for higher dimensional spin systems as



127 CHAPTER 6. QECC FOR TERNARY LOGIC

Xd |ji = |j + 1i mod d Zd |ji = !j
|ji

where d is the dimension of the quantum state. For qutrit systems, d = 3. Chap-
ter 2 discussed the stabilizers for binary Shor code. Consider the first two stabi-
lizers S1 = ZZIIIIIII and S2 = IZZIIIIII. It is easy to see that if each Z

is replaced by Zd in the two stabilizers, they no longer commute. Therefore, S1

and S2 cannot be valid stabilizers for ternary Shor code. This mandates a differ-
ent stabilizer structure altogether for the ternary Shor code. For this study, the
stabilizers are selected to be

S1 = ZdZdZdIIIIII, S2 = IIIZdZdZdIII, S3 = IIIIIIZdZdZd

S4 = XdXdXdIIIIII, S5 = IIIXdXdXdIII, S6 = IIIIIIXdXdXd.

It can be verified that [Si, Sj] = 0 8 1  i, j  6. Stabilizers S1, S2, S3 only checks
for shift errors while stabilizers S4, S5, S6 only checks for errors with !, !2 phase.
Table 6.1 notes the eigenvalues corresponding to stabilizers ZdZdZdIIIIII and
XdXdXdIIIIII for different error states. The actions of the other stabilizers are
similar. However, the stabilizers for shift errors can only detect the presence and
the type of error, but not their location. Hence, a second step is required to find
the location of the errors.

Table 6.1: Stabilizers for ternary errors
Error state ZdZdZdIIIIII XdXdXdIIIIII

|000i+ |111i+ |222i 1 1
|200i+ |011i+ |122i !2

|020i+ |101i+ |212i !2

|002i+ |110i+ |221i !2

|100i+ |211i+ |022i !
|010i+ |121i+ |202i !
|001i+ |112i+ |220i !

|000i+ ! |111i+ !2
|222i !2

|000i+ !2
|111i+ ! |222i !
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6.4.3 Circuit for error correction

After applying the stabilizer ZdZdZdIIIIII, if the eigenvalue is !2, it implies
that X2 error has occurred in any one of the first three qutrits. However, it
cannot identify the qutrit which has incurred the error. Therefore, a second step
is required which can compare the first three qutrits and identify the erroneous
one. Note here that in the absence of error, the first three qutrits are always in the
same state. This property can be exploited to find the mismatch in parity between
different groups of two qutrits from the first three, thus identifying the erroneous
one.

|q0i

|q1i

|a1i

|a2i

C1 C1

C2 C2

Figure 6.1: Circuit to compare the parity of two qutrits

Fig 6.1 shows the circuit that checks whether two qutrits are in the same state.
In this circuit, |q0i and |q1i are the qutrits of interest, and |a0i and |a1i are the
ancilla which stores the outcome of the parity measurement. The ancilla can be
qubits only since the possible values to store are 0 and 1 corresponding to parity
match or mismatch respectively. Using qutrits as an ancilla does not hamper the
error correction procedure, but qutrits are not necessary. The action of the gates
C1 and C2 are defined as

Ci : if (control = i) then target = target + 1 (mod 3), i 2 {1, 2}.

The truth table of this circuit is shown in Table 6.2. The states of the ancilla
qubits comprise the error syndrome. When the syndrome is 00, it implies that
both the qutrits are in the same state. Any other error syndrome indicates that
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the qutrits are in different states. Note that, the states of the ancilla qubits do
not specify the exact states of the qutrits. Therefore, this does not collapse the
qutrit superposition but provides only the parity information between the qutrits.
However, the values in the ancilla qubit reveal sufficient information. For example,
if the ancilla qubits are 10, it implies one of the two qutrits is in state 1, but does
not reveal which one.

Table 6.2: Truth table for the circuit in Fig 6.1
|q0i |q1i |a0i |a1i
0 0 0 0
0 1 1 0
0 2 0 1
1 0 1 0
1 1 0 0
1 2 1 1
2 0 0 1
2 1 1 1
2 2 0 0

Muthukrishnan and Stroud proposed a set of single and two-qubit ternary gates in
[MS00] and showed their implementation in Ion-trap devices. These gates, often
termed MS gates, are universal in that any ternary gate can be implemented by
cascading one or more MS gates. C2 is one of the MS gates. Two other types of
MS gates, namely MS+1 and MS+2, are defined as

MS + i |ji = |j + ii mod 3.

While C1 is not an MS gate, it can be implemented using three MS gates as shown
in Fig 6.2.

|q0i

|q1i

MS + 1 MS + 2

C2

Figure 6.2: Implementation of C1 gate using 3 MS gates
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Fig 6.3 shows the circuit to determine whether the three qutrits are in the same
state or not. In the figure, |q0i � |q2i are the qutrits on interest which form the
logical qutrit, and |a0i�|a3i are ancilla qubits initialized in |0i. Following the truth
table from Table 6.2, if all the qutrits are in the same state, then the syndrome
is 000. Otherwise one of the three bits will differ, which identifies the qutrit on
which the error has occurred.

|q0i

|q1i

|q2i

|a0i

|a1i

|a2i

|a3i

C1 C1

C2 C2

C1 C1

C2 C2

Figure 6.3: Circuit for qutrit error correction

Next, the problem of correcting phase errors (Z1, Z2 and Z12) is addressed. In
qubit systems, phase errors can be corrected by changing to the Hadamard basis,
where phase errors behave like bit errors. The {|+i, |�i, ||i} basis for qutrits is
equivalent to the Hadamard basis for qubits.

|+i =
1
p
3
(|0i+ |1i+ |2i).

|�i =
1
p
3
(|0i+ !2

|1i+ ! |2i).

||i =
1
p
3
(|0i+ ! |1i+ !2

|2i).

However, it is clear that the bit-flip nature of the Hadamard basis does not hold
true in a three-dimensional system. In order to correct a phase error in qutrit, the
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three unitary matrices as proposed in [DW11] are considered:

H01 = 1p
2

0

B@
1 1 0

1 �1 0

0 0
p
2

1

CA H12 = 1p
2

0

B@

p
2 0 0

0 1 1

0 1 �1

1

CA

H20 = 1p
2

0

B@
1 0 1

0
p
2 0

1 0 �1

1

CA.

These matrices are similar to Hadamard operation on two states while the third
state is kept unchanged. Applying H01 on these states changes |0i and |1i to |+i

and |�i respectively, while the state |2i remains unchanged. Hence, if there is a
phase error on |1i with respect to |0i, then it can be easily detected as it will flip
the states |+i and |�i. Similarly, by applying H20 any phase error between |0i

and |2i can be detected. Since Z12 = Z1Z2, correcting Z1 and Z2 one after the
another corrects Z12.

6.4.4 Performance analysis of ternary Shor code

The code proposed here is a repetition code, where each of the logical qutrits
(|0iL, |1iL, |2iL) are arranged in three blocks of three qutrits each. This approach is
similar to Shor code [Sho95] for qubits. If p is the probability that a single qutrit is
affected by decoherence, then the probability that none of the nine qutrits decohere
is (1�p)9. This code fails if more than one qutrit incurs an error. The probability
that at least two qutrits have error is 1�(1�p)9�9p(1�p)8 = 1�(1+8p)(1�p)8 ⇡

36p2. Hence, when the error probability is less than 1
36 , this technique provides

an improved method to preserve the coherence of the qutrits. The performance of
our proposed code is in accordance with the Shor code. However, this apparent
similarity to Shor Code vanishes in the error correction process. Unlike Shor
Code, the error correction is twofold - in the first step error is detected, and then
its location is identified.
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In the error model chosen for qutrits in this thesis, there are two independent bit
errors (X1, X2) and two independent phase errors (Z1, Z2) and their product (Z12).
So there are three phase errors. Hence, according to Eq.(7.2), there can be six
Ymnj = iZjXmn errors. Reliable detection of these eleven errors and the error-free
state demands each error state and the error-free state to be in different orthogonal
subspaces. An n-qutrit quantum system resides in a 3n-dimensional Hilbert Space.
So, in an n-qutrit code, the number of orthogonal subspaces required cannot be
more than 3n. To accommodate all these eleven errors and the error-free state in
separate orthogonal subspaces for each of the three logical qutrits in an n-qutrit
code, Eq.(6.4) should be satisfied.

3(11n+ 1)  3n. (6.4)

The minimum value of n for which this inequality is satisfied is five. So five qutrits
are necessary for correcting a single error in a qutrit. A similar bound was achieved
by Laflamme et al [LMPZ96] for qubits. Therefore, the ternary Shor code is not
optimal in the number of qutrits. Moreover, since the correction steps for this
proposed QECC are two-fold, the overhead of error correction is significant. The
next portion of this chapter thrives to design a QECC such that (i) it requires a
fewer number of qutrits, and (ii) can correct errors in a single step.

6.5 Six qutrit degenerate approximate QECC

The aim of designing efficient QECC is to reduce: (i) the number of qutrits for
encoding, and (ii) the cost of encoding and decoding circuits. These two require-
ments are often difficult to achieve simultaneously. Encoding and decoding circuits
with higher gate count tend to reduce the computational speedup, and can also
incorporate further errors [MBMSK16]. The previous attempt at extending a bi-
nary QECC to ternary resulted in a two-step error correction. Therefore, the focus
of this section is more on designing QECCs focused on ternary systems.
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QECC can be designed by combining two classical error-correcting codes. If C1 =

[n, k1, d1] and C2 = [n, k2, d2] are two classical linear codes such that C?
2 ✓ C1 and

k2 < k1, then the parity check matrices of the two codes can be combined to form
the stabilizers of an [[n, k2 � k1,min{d1, d2}]] QECC [CS96]. Such QECC, called
CSS code, readily implies that the set of stabilizers S can be partitioned into two
disjoint subsets Sx and Sz, where the operators in Sx 2 {I, �x}⌦n and the operators
in Sz 2 {I, �z}⌦n. Sx(Sz) is obtained by converting the 0 and 1 of the parity check
matrix of one of the classical codes into I and �x(�z) respectively. The quantum
circuit for CSS QECCs usually has a lower gate count [DMN13, MBSK17], and
unlike non-CSS codes, these codes can correct a single bit flip and a single phase
flip error simultaneously if they occur on different qubits. Shor [Sho95] and Steane
code [Ste96a] are examples of CSS code, but Laflamme’s code [LMPZ96] is not.
Sarvepalli et al. [SK10] showed that encoding the information of a single qubit into
at least 6 qubits is necessary for the existence of a CSS code. Nevertheless, Shaw
et al. [SWO+08] proved that a 6-qubit CSS code can exist only when external
entanglement is shared between the encoder and the decoder. Their argument
readily carries over to ternary systems as well. This raises the question of whether
it is possible to achieve approximate error correction with a CSS structure for 6
qutrits in the absence of shared entanglement, and whether such an approximate
QECC (AQECC) can have lower gate counts as well.

Consider a QECC where k qutrits of information are encoded into a codeword of
n > k qutrits, and the encoded state is | i. If E is the set of all single qutrit
errors on | i, then the QECC is said to be degenerate if there exists e, e0 2 E ,
e 6= e0 such that e | i = e0 | i = |�i. For such scenarios, it is not necessary to
distinguish between those errors. Rather, if the error state |�i can be identified,
then the recovery map can operate either e† or e0† on |�i in order to correct the
error.

For qubit systems, Shor’s 9-qubit code [Sho95] is a degenerate code, but Steane’s
7-qubit [Ste96a] and Laflamme’s 5-qubit codes [LMPZ96] are not. The 9-qutrit
QECC discussed before is also a degenerate code. In the error model of Eq. (6.2),
the number of possible bit (phase) errors on a qutrit is 2. Assuming the presence
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of at most a single error at any instant, there are at most 2n possible bit (phase)
error patterns for an n-qutrit QECC. Each stabilizer has three possible outcomes
(1, !, !2) for qutrit systems. In order to uniquely identify 2n bit (phase) error
patterns and the error-free state, the required number of stabilizers is at least
log3(2n + 1). Since for an n-qutrit code, the total number of stabilizers is n � 1

[Got97], the necessary condition for a non-degenerate CSS code is

2dlog3(2n+ 1)e  n� 1 (6.5)

Eq. (6.5) is satisfied for n � 7. Therefore, a 6-qutrit code, which maintains the
CSS structure, must be degenerate.

6.5.1 Proposed encoding scheme for the AQECC

The information of a single qutrit | i = ↵ |0i + � |1i + � |2i is encoded into six
qutrits as | iL = ↵ |0iL + � |1iL + � |2iL, where

|0iL = |000000i+ |010201i+ |020102i+ |102010i+ |112211i+ |122112i

+ |201020i+ |211221i+ |221122i

|1iL = |111111i+ |121012i+ |101210i+ |210121i+ |220022i+ |200220i

+ |012101i+ |022002i+ |002200i

|2iL = |222222i+ |202120i+ |212021i+ |021202i+ |001100i+ |011001i

+ |120212i+ |100110i+ |110011i

This encoding is degenerate since there are multiple errors that take | iL to the
same error state. For example, Z1 error on either the second or the sixth qutrit
maps | iL to the same error state.

This encoding scheme satisfies the necessary condition for error correction [KLV00]
which states that for any error � 2 E
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h0L| � |0Li = h1L| � |1Li = h2L| � |2Li

The sufficient condition for error correction [KLV00] states that for any errors
�m, �n 2 E ,

hiL| �†
m�n |jLi = �ij↵mn

where i, j 2 {0, 1, 2}, ↵mn 2 C and �ij is the Dirac-delta function. Let �j
k denote

the error �k on the jth qubit. It can be checked that the sufficient condition is
satisfied for all �m, �n 2 E except when {�m, �n} = {X3

k , X
4
k}, k 2 {1, 2}. Thus

although the encoding scheme can detect a bit error (and hence Y error) on the
3rd or the 4th qutrit of the encoded state, it fails to distinguish (and hence correct)
the error states. It can, however, correct every other error in E exactly. Due to this
single instance where the code behaves like an error-detecting code instead of an
error-correcting code, the term approximate QECC (AQECC) has been assigned
to it.

6.5.2 Proposed stabilizer structure for the AQECC

The stabilizer structure for the 9-qutrit QECC seems insufficient for single-step
error correction. Therefore, here the stabilizer structure of [Got98] is extended to

X1 |ji = |j + 1i mod 3 X2 |ji = |j + 2i mod 3

Z1 |ji = !j
|ji Z2 |ji = !2j

|ji

where j 2 {0, 1, 2}, and !3 = 1. Note that

X2 = X1X1 Z2 = Z1Z1.

The ternary stabilizers, presented below, are n-fold tensor products of {I,X1, X2, Z1, Z2}.
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Correcting phase errors

The stabilizers for phase error correction are

S1 = I ⌦X1 ⌦ I ⌦X2 ⌦ I ⌦X1

S2 = X1 ⌦ I ⌦X2 ⌦ I ⌦X1 ⌦ I

These two stabilizers partition the qutrits into probable phase error subsets due to
degeneracy, as shown in Table 6.3.

Table 6.3: Partition of the qutrits into probable phase error subsets
Error type S1 S2 Probable error qutrits

1

Z1

1 ! q3
2 1 !2 q1, q5
3 ! 1 q4
4 !2 1 q2, q6
5

Z2

1 ! q1, q5
6 1 !2 q3
7 ! 1 q2, q6
8 !2 1 q4

For example, Z1 error on q1, q5, and Z2 error on q3 map the codeword to the same
error state. Because of this degeneracy, it is neither necessary to uniquely identify
the phase error, nor the affected qutrit. Rather, if S2 = !2, one can either correct
Z1 error on q1 or q5, or Z2 error on q3 to restore the error-free state. A similar
argument holds for the other probable error subsets as well. From the stabilizer
structure, the qutrits can be partitioned into two subsets g1 = {q1, q3, q5} and g2 =

{q2, q4, q6} such that for a single phase error in g1, only S2 has eigenvalue 6= 1 and
for a single phase error in g2, only S1 has eigenvalue 6= 1. A single phase error can
be corrected, as stated before, even without uniquely identifying the error type or
the erroneous qutrit.
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Lemma 6.1

The proposed 6-qutrit AQECC can correct two phase errors simultaneously
if these occur on two qutrits such that one of them belongs to g1 and the
other belongs to g2.

Proof. Since the stabilizers S1 and S2 operate on a disjoint set of qutrits, a single
phase error cannot result in both the stabilizers having eigenvalues 6= 1. Therefore,
if both the stabilizers show outcome 6= 1, then obviously there is a single phase
error in a qutrit of g1 as well as g2. Since, for this code, it is not necessary to
distinguish among qutrits of the same subset for reliable correction, if both the
eigenvalues are 6= 1, the phase of a single qutrit from each subset can be corrected
according to Table 6.3 in order to obtain the error-free state. Therefore, two-phase
errors, when occurring on the two qutrits from two disjoint subsets g1 and g2, can
be reliably corrected by the proposed AQECC.

Correcting bit errors

The stabilizers for bit error correction are

S3 = Z1 ⌦ Z2 ⌦ Z1 ⌦ Z2 ⌦ I ⌦ I

S4 = I ⌦ I ⌦ Z1 ⌦ Z2 ⌦ Z1 ⌦ Z2

S5 = Z1 ⌦ Z1 ⌦ I ⌦ I ⌦ Z2 ⌦ Z2

Let Xj
i denote the error Xi occurring on the jth qutrit. In Table 6.4 we explicitly

show the action of the stabilizers on the error states.

As stated earlier, the two pairs of rows (3, 4) and (9, 10) in Table 6.4 indicate that
a bit error on the third or fourth qutrit can be detected, but neither the affected
qutrit nor the type of error can be uniquely identified. All the other bit errors can
be uniquely identified and hence exactly corrected.
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Table 6.4: Correcting a single bit error with the proposed AQECC
Error Type S3 S4 S5

1 X1
1 ! 1 !

2 X2
1 !2 1 !

3 X3
1 ! ! 1

4 X4
1 !2 !2 1

5 X5
1 1 ! !2

6 X6
1 1 !2 !2

7 X1
2 !2 1 !2

8 X2
2 ! 1 !2

9 X3
2 !2 !2 1

10 X4
2 ! ! 1

11 X5
2 1 !2 !

12 X6
2 1 ! !

6.5.3 Performance Analysis

The proposed AQECC fails if the error is of type X or Y and it occurs on the
third or fourth qutrit. In fact for the Y = ZX type of error, the proposed code
can correct the Z part, and the state is left with uncorrected X error. Let p be
the probability of a single error, then the probability that the proposed AQECC
fails is

Prob (uncorrected single error)

= Prob (error on q3 or q4 | error type X or Y ) ·

Prob (error type X or Y ) (6.6)

For a symmetric error model, as in Eq. 6.2,

Prob (error is of type X or Y ) = 6p/8
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Since each qutrit is equally likely to be erroneous,

Prob (error on q3 or q4 | error type X or Y ) = 1/3

Therefore, for a symmetric error model, where each type of error occurs with
probability p/8, the probability that the proposed AQECC fails to correct a single
error is 1/3 · 6p/8 = p/4. In other words, our proposed AQECC is able to correct
a single error exactly with probability 0.75 for a symmetric error model.

In general in quantum systems error is asymmetric. Let px, pz, and py be the
probability of a single bit error, phase error, and Y error respectively, then typically
[IM07], py = px = 0.01pz. Therefore,

Prob (error is of type X or Y ) = 6px/8

Using the relation py = px = 0.01pz in Eq. (6.2), we note that

2pz + 2px + 4py = p

) px = p/208

Therefore,

Prob (error is of type X or Y ) = 6p/1648

Each qutrit is equally likely to be erroneous in the asymmetric error model as
well. Therefore, the probability that the proposed AQECC fails to correct a single
error is 1/3 · 6p/1648 = p/824. In other words, for an asymmetric error model,
the proposed AQECC, on average, is able to correct a single error exactly with
probability 823/824 (= 0.9988).
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6.5.4 Error correction circuit for the proposed AQECC

Instead of the C1 and C2 gates used for the 9-qutrit QECC, a more generalized
form is considered here called the C + T gate, whose action is defined as

C + T :
X

x,y2{0,1,2}

|x, (x+ y)%3i hx, y| .

Since Z2 = Z1Z1, each Z2 operator is realized using a cascade of two C+T gates.
For the realization of each C + T gate, it is required to cascade two gates for the
two cases: (i) the first one changes the target only if the control is 2, and (ii) the
second one changes the target only if the control is 1. Case (i) itself is one of the
MS gates [MS00], while the gate of the case (ii) requires 3 MS gates (Fig. 6.2).
Therefore, 4 MS gates are necessary to implement a single C + T gate.

The circuit to correct a single bit error, shown in Fig. 6.4, follows from the sta-
bilizers S3, S4 and S5. In the circuit, |q0i to |q5i are the six data qutrits, whereas
|a0i to |a2i are ancilla qutrits necessary for syndrome detection without measuring
the data qutrits directly.

q0

q1

q2

q3

q4

q5

a0

a1

a2

C + T C + T C + T C + T C + T C + T

C + T C + T C + T C + T C + T C + T

C + T C + T C + T C + T C + T C + T

Figure 6.4: Circuit to correct a single bit error with the 6-qutrit AQECC

For qubit systems, phase errors behave like bit errors on the Hadamard basis.
The natural extension of the Hadamard basis in ternary quantum systems is the
Chrestenson basis [HMM85]. Two conjugate Chrestenson bases b1 and b2 are de-
fined below.
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Chrestenson basis bi, i 2 {1, 2}:

|+ii =
1
p
3
(|0i+ |1i+ |2i)

|�ii =
1
p
3
(|0i+ !i

|1i+ !2i
|2i)

||ii =
1
p
3
(|0i+ !2i

|1i+ !i
|2i)

Conversion from the usual computational basis to the bases b1 and b2 can be done
using the following Chrestenson gates Ch1 and Ch2 respectively [HMM85]:

Ch1 =
1p
3

0

B@
1 1 1

1 ! !2

1 !2 !

1

CA Ch2 =
1p
3

0

B@
1 1 1

1 !2 !

1 ! !2

1

CA

The circuit to correct (multiple) phase errors is shown in Fig. 6.5. The circuits for
correcting bit error and phase error require three and two ancilla qutrits respec-
tively. Therefore, a total of 5 ancilla qutrits are required.

q0

q1

q2

q3

q4

q5

a3

a4

C + T

C + T

C + T C + T

C + T C + T

C + T

C + T

Ch1 Ch2

Ch1 Ch2

Figure 6.5: Circuit to correct phase error with the 6-qutrit AQECC
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6.5.5 Comparison of quantum cost

This subsection shows a comparative analysis of the quantum cost for the error
correction circuits of the 9-qutrit QECC and the 6-qutrit AQECC. The quantum
cost is analyzed in terms of MS gates and Chrestenson gates.

As discussed earlier, each C+T gate can be implemented using 4 MS gates. From
Fig. 6.4, the circuit to correct a single bit error requires 18 C + T gates and thus
has a quantum cost of 18⇥ 4 = 72. The circuit for phase error correction requires
8 C + T gates (i.e. 32 MS gates), along with 4 Chrestenson gates. Therefore, the
total quantum cost of the circuit of the 6-qutrit AQECC is 72 + 32 + 4 = 108.

In the circuit of the 9-qutrit QECC, each stabilizer to correct a bit error comprises
three Z1 operators. Therefore the quantum cost for each stabilizer is 3 ⇥ 4 = 12.
The total quantum cost for three such stabilizers is, therefore, 36. However, in
addition to that, it requires a second step for detecting the location of the error.
The quantum cost of the gates for that step is 16, which makes the total quantum
cost of their circuit for correcting bit error to be 36 + 16 = 52.

However, in order to correct phase errors, the individual subspaces ({0,1},{1,2}
and {2,0}) are corrected. Phase errors behave like bit errors when each subspace
is converted to the Hadamard basis, and hence must be corrected similarly to bit
error correction. Therefore, the quantum cost to correct a single subspace is the
same as that of the bit error correction circuit. Furthermore, in order to correct
a single subspace, the following procedure is necessary: apply Hadamard gates
to each qutrit, apply the bit error correction circuit, and restore the qutrits to
the computational basis by applying the Hadamard gates again. Therefore the
quantum cost for correcting a single subspace is 52 + 18 = 70. This procedure
is repeated thrice in order to correct all three subspaces. Therefore, the total
quantum cost of the circuit in [MBGSK18] for correcting a single phase error is
210. Table 6.5 reports the comparison of the quantum cost of the circuit for
9-qutrit exact QECC in [MBGSK18] and our proposed 6-qutrit AQECC.
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Table 6.5: Comparison of the Quantum Cost of the circuits of the 9-qutrit QECC
and the 6-qutrit AQECC

Circuit for Circuit for Totalbit error phase error
9-qutrit QECC 52 210 262

Proposed AQECC 72 36 106
% reduction 59.5

6.6 Summary

This chapter provides the first effort to design a ternary QECC as a carry-over
of its binary counterpart. It shows that the cost of the QECC circuit increases
necessarily since the error correction needs to be performed in two steps. A follow-
up effort to lower the qubits and gate counts was shown by the formulation of
a 6-qutrit AQECC. However, this AQECC fails to detect the location of errors
in certain cases. The next chapter dives into the fundamental question of the
necessary condition required to design a ternary QECC as a carry-over of its binary
counterpart and shows the design of a 9-qutrit QECC which has significantly less
gate count and can correct errors in a single step.
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7.1 Introduction

Quantum systems are inherently multi-valued. It was expected that QECC for bi-
nary quantum systems could readily be carried over to higher dimensional systems
[Cha97]. A generalized higher dimensional Pauli group was proposed by Gottes-
man [Got98] for designing stabilizers for higher dimensional QECCs consisting of
the operators X1 and Z1, where

X1 |ji = |j + 1i mod d; Z1 |ji = !j
|ji

where j 2 {0, 1, . . . , d � 1}, X and Z commonly denote bit and phase errors re-
spectively. For a ternary system, d = 3, and ! is the cube root of unity. However,
Chapter 6 showed otherwise. The ternary Shor code, whose stabilizer formulation
was based on the generalized higher dimensional Pauli group, was necessarily dif-
ferent than the binary Shor code. This resulted in error correction with multiple
steps, leading to higher gate costs. This made error correction largely impractical
in ternary QECC, since such a high gate count and depth of the QECC circuit
would make the computation slower, and may incorporate significant errors in the
system. This implied that binary QECCs extended to higher dimensions would
necessarily have higher implementation complexity (i.e., increased gate count and
depth of the QECC).

Chapter 6 also presented a 6-qutrit approximate QECC (AQECC). Although this
formulation failed to correct errors in every possible instance, it provided an ex-
tension of the higher dimensional Pauli group proposed in [Got98]. This chapter
revisits the ternary Shor code with the set of stabilizer components used in the
6-qutrit AQECC. This chapter also shows that the extended higher dimensional
Pauli group spans the 3 ⇥ 3 operator space. Therefore, any 3 ⇥ 3 unitary er-
ror can be corrected by a QECC which can correct the errors in this extended
higher-dimensional Pauli group. Apart from X1 and Z1, this group also comprises
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X2 = X1.X1 and Z2 = Z1.Z1. Although these are not independent stabilizer
terms, these are shown to be necessary if a ternary QECC is to be designed as
an extension of a binary QECC. Furthermore, it is shown that only three of the
four operators {X1, X2, Z1, Z2} are sufficient to derive a ternary stabilizer structure
similar to Shor code for the encoding of the 9-qutrit QECC proposed in Chapter 6.
The circuit design of the 9-qutrit QECC, with stabilizer derived from the extended
Pauli group, using the gate set proposed by Muthukrishnan and Stroud [MS00]
achieves 51.9% and 23.07% reductions respectively in the quantum cost and depth
of the error correction circuit from the ternary Shor code in Chapter 6.

It is shown that for ternary Steane and Laflamme codes, the extended higher
dimensional Pauli group is necessary for stabilizer formulation in order to retain the
structure of their binary counterpart. This study paves a path for easy extension
of existing binary QECCs to ternary.

7.2 A Spanning Basis for Ternary Quantum Oper-
ators

This section proposes a set of operators that span the space of all 3 ⇥ 3 unitary
operators. A QECC which can correct these errors, can also correct any unitary
error on the system. In continuation of the terminology used in Chapter 6, errors
on ternary quantum systems are classified as binary or ternary where

1. A binary error acts non-trivially on a subspace of the 3-dimensional Hilbert
Space;

2. A ternary error acts non-trivially on the entire 3-dimensional Hilbert Space.

Consider the set of matrices �i, i = 1, 2, ..., 9, where ! is the cube-root of unity.
Note that each �i is a binary error corresponding to either a bit error or a product
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of bit and phase errors. For example, �1 is a binary bit error occurring on the
subspace of {|1i , |2i}; and �2 has a phase error in addition to �1. It adds a phase
of ! and !2 on |1i and |2i respectively. The other matrices can be interpreted
similarly.

�1 =

0

B@
1 0 0

0 0 1

0 1 0

1

CA �2 =

0

B@
1 0 0

0 0 !2

0 ! 0

1

CA �3 =

0

B@
1 0 0

0 0 !

0 !2 0

1

CA

�4 =

0

B@
0 0 1

0 1 0

1 0 0

1

CA �5 =

0

B@
0 0 !2

0 1 0

! 0 0

1

CA �6 =

0

B@
0 0 !

0 1 0

!2 0 0

1

CA

�7 =

0

B@
0 1 0

1 0 0

0 0 1

1

CA �8 =

0

B@
0 !2 0

! 0 0

0 0 1

1

CA �9 =

0

B@
0 ! 0

!2 0 0

0 0 1

1

CA

Before presenting the new single step 9-qutrit QECC, it is required to show that
�i, 1  i  9 form a basis for 3 ⇥ 3 unitary operators. In particular, Lemma 7.2
shows that the �is are linearly independent, and Lemma 7.2 shows that they span
the 3⇥ 3 operator space.

Lemma 7.1

The �is, 1  i  9 are linearly independent.

Proof. Let us assume that there exists ⇤i, 1  i  9 such that
9P

i=1
⇤i�i = 0, and

⇤i 6= 0 for all i. Then:

⇤1 + ⇤2 + ⇤3 = 0 ⇤1 + !2⇤2 + !⇤3 = 0

⇤1 + !⇤2 + !2⇤3 = 0 ⇤4 + ⇤5 + ⇤6 = 0

⇤4 + !2⇤5 + !⇤6 = 0 ⇤4 + !⇤5 + !2⇤6 = 0

⇤7 + ⇤8 + ⇤9 = 0 ⇤7 + !2⇤8 + !⇤9 = 0

⇤7 + !⇤8 + !2⇤9 = 0
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Note that these nine equations can be grouped into three sets, each set containing
three equations. No two sets of equations involve the same coefficients. The first
three, the second three, and the last three equations form such sets. The proof
is shown for the set of first three equations involving coefficients ⇤1,⇤2,⇤3. The
proof for the other two sets is similar.

If the set of matrices �i, 1  i  9 are not linearly independent, at least two of
the three coefficients ⇤1,⇤2,⇤3 must be non-zero. If only one of them is non-zero,
then the first equation is not satisfied. Without loss of generality, let us assume
that ⇤1 = �(⇤2 + ⇤3) 6= 0. Substituting for ⇤1 in the second and third equations
yields

(!2
� 1)⇤2 = (1� !)⇤3 )

⇤2

⇤3
=

1� !

!2 � 1

(! � 1)⇤2 = (1� !2)⇤3 )
⇤2

⇤3
=

1� !2

! � 1

Equating the ratios of ⇤2 and ⇤3 gives ! = !2, which is also not possible. There-
fore, in order to satisfy the first set of three equations, each of the coefficients must
be zero.

Extending a similar argument to the other two sets yields the contradiction that

if
9P

i=1
⇤i�i = 0, then ⇤i = 0 for all i.

Lemma 7.2

For any 3⇥ 3 matrix M , there exists �i, 1  i  9 such that
9P

i=1
�i�i = M .

Proof. For ternary systems, any 3⇥3 unitary operator is a probable error. Consider
a 3⇥ 3 matrix

M =

0

B@
M11 M12 M13

M21 M22 M23

M31 M32 M33

1

CA (7.1)
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where Mij 2 C, 1  i, j  3. It is to be noted that a matrix M may not necessarily
be unitary for all values of Mij and hence may not represent a quantum error.
Nevertheless, this generalized 3⇥ 3 matrix is considered for now.

Let us consider that M =
9P

i=1
�i�i and check for the existence of suitable �is. This

yields the following nine equations:

�1 + �2 + �3 = M11 �1 + !2�2 + !�3 = M23

�1 + !�2 + !2�3 = M32 �4 + �5 + �6 = M22

�4 + !2�5 + !�6 = M13 �4 + !�5 + !2�6 = M31

�7 + �8 + �9 = M33 �7 + !2�8 + !�9 = M12

�7 + !�8 + !2�9 = M21

Note that each set of three equations has a similar structure. Therefore, proof
with the first three equations is presented, and that for the other two sets of three
equations are similar.

The first three equations can be represented as

0

B@
1 1 1

1 !2 !

1 ! !2

1

CA

0

B@
�1

�2

�3

1

CA =

0

B@
M11

M23

M32

1

CA

Therefore,

0

B@
�1

�2

�3

1

CA =

0

B@
1 1 1

1 !2 !

1 ! !2

1

CA

�10

B@
M11

M23

M32

1

CA

= ⌦�1

0

B@
M11

M23

M32

1

CA

Since the determinant of the matrix ⌦ is non-zero, it is invertible. Therefore it
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is always possible to find �1,�2,�3 which satisfy the set of three equations. Since
each set of three equations has a disjoint set of coefficients, similar arguments hold
for the other two sets also. Therefore, for any such matrix M , it is always possible

to find linearly independent parameters �i, 1  i  9 such that
9P

i=1
�i�i = M .

Now the theorem states

Theorem 7.1

A QECC that can correct the matrices �i, 1  i  9 can correct any error
on a qutrit.

Proof. If {M} is the set of all 3 ⇥ 3 matrices, and {E} is the set of all possible
quantum errors such that every E 2 {E} is a unitary matrix, then {E} ⇢ {M}.
Therefore, any E 2 {E} can also be written as a linear combination of �i, 1  i  9

by Lemma 7.2. If a QECC can correct each of the �is, it can also correct any error
E on the quantum system.

Lemma 7.2 considered a spanning set of binary errors. However, ternary errors are
more suitable to deal with in a ternary QECC. Four ternary errors, corresponding
to binary bit and phase errors, are presented whose actions on a general qutrit
| i = ↵ |0i+ � |1i+ � |2i are shown below:

Zi | i = ↵ |0i+ !i� |1i+ !2i� |2i ;

Xi | i = ↵ |0� ii+ � |1� ii+ � |2� ii

where i 2 {1, 2} and� represents addition modulo 3. In accordance with [MBGSK18],
the errors X1 and X2 are named as bit shift errors, and the errors Z1 and Z2 as
phase errors. The matrix representation of these four ternary errors is shown
below:
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X1 =

0

B@
0 0 1

1 0 0

0 1 0

1

CA X2 =

0

B@
0 1 0

0 0 1

1 0 0

1

CA

Z1 =

0

B@
1 0 0

0 ! 0

0 0 !2

1

CA Z2 =

0

B@
1 0 0

0 !2 0

0 0 !

1

CA

All the �i, 1  i  9 matrices can be written as a linear combination of these
matrices and their products. Therefore, any 3⇥ 3 quantum error E can be written
as a linear combination of X1, X2, Z1 and Z2 and their products. The formulation
(upto a scalar coefficient) of �1 and �2 using X1, X2, Z1 and Z2 is shown explicitly.
The other matrices can also be formulated similarly.

�1 =

0

B@
1 0 0

0 0 1

0 1 0

1

CA =

0

B@
1 0 0

0 1 0

0 0 1

1

CA+

0

B@
1 0 0

0 ! 0

0 0 !2

1

CA+

0

B@
1 0 0

0 !2 0

0 0 !

1

CA

+

0

B@
0 1 0

0 0 1

1 0 0

1

CA+

0

B@
0 ! 0

0 0 1

!2 0 0

1

CA+

0

B@
0 !2 0

0 0 1

! 0 0

1

CA

+

0

B@
0 0 1

1 0 0

0 1 0

1

CA+

0

B@
0 0 !2

! 0 0

0 1 0

1

CA+

0

B@
0 0 !

!2 0 0
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CA

= I + Z1 + Z2 +X2 + !Z2X2 + !2Z1X2

+X1 + !2Z2X1 + !Z1X1
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�2 =

0

B@
1 0 0

0 0 !2

0 ! 0

1

CA =

0

B@
1 0 0

0 !2 0

0 0 !

1

CA

0

B@
1 0 0

0 0 1

0 1 0

1

CA

= I + Z1 + Z2 + Z2X2 + !Z1X2 + !2X2

+Z2X1 + !2Z1X1 + !X1

Hence, any 3⇥3 unitary error on a qutrit can be expressed as a linear combination
of X1, X2, Z1, and Z2 or the product of two or more of them. Further, a general
1-qutrit unitary error can be represented as in Eq. (7.2).

E = �I3 +
2X

i=1

⌘iZi +
2X

j=1

µjXj +
X

i,j

⇠ijYij (7.2)

where I3 is the 3⇥ 3 identity matrix, Xj and Zi are the bit shift and phase errors
respectively, Yij / ZiXj; and �, ⌘, µ, ⇠ 2 C.

7.3 Stabilizers for 9-qutrit QECC

It was shown in Sec. 7.2 that any 3 ⇥ 3 unitary operator, which is a potential
error, can be represented as a linear combination of the products of X1, X2 and
Z1, Z2. Therefore, a QECC that corrects for each of these four errors sequentially
can correct any 3⇥ 3 unitary error.

The operators X and Z do not commute. One can verify that

ZiXi = !XiZi for i 2 {1, 2};

ZiXj = !2XjZi for i, j 2 {1, 2} i 6= j (7.3)
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This implies that if two n-qutrit stabilizers, Sk 2 {Xp, I}⌦n and Sl 2 {Zq, I}⌦n,
where p, q 2 {1, 2}, then

1. Sk and Sl commute if and only if the number of locations where both the
stabilizers have non-identity operators is 3h, h 2 Z+

[ {0};

2. If Sk (or Sl) has non-identity operators in more than one location, then it
alone cannot distinguish between errors in those locations.

In other words, if two such stabilizers Sk and Sl are to commute, then they must
have non-identity operators at three mutual locations. For example, consider the
stabilizers Sk = Z1⌦Z1⌦ I and Sl = X1⌦X1⌦X1. These two are the stabilizers
operating on the first three qubits of the binary Shor Code. In binary system,
[X ⌦X,Z ⌦Z], and therefore these two commute. But now, in ternary, these two
do not commute, and can no longer be considered valid stabilizers.

Since in a binary setting [X ⌦X,Z ⌦ Z] = 0, the stabilizers of the binary QECC
are designed so that the locations of X and Z in different stabilizers overlap in an
even number of positions. Therefore, it may be possible to directly carry over a
binary QECC to the ternary regime using only X1 and Z1 as stabilizer components
if the locations overlap in 6h locations, for h � 0. However, for binary QECCs
such as the Shor [Sho95], Steane [Ste96a] and Laflamme codes [LMPZ96], the X

and Z operators in the stabilizers do not overlap in 6h locations.

Consider another simple example for illustration: it was already shown that the
stabilizers, extended directly from binary Shor code, no longer commute. In order
for these stabilizers to commute, the X and Z operators must overlap in three
locations.

Suppose an example three qutrit codeword (not a complete QECC) | i is stabilized
by two operators Sk = X1X1X1 and Sl = Z1Z1Z1. First note that it is necessary to
have three non-identity operators in both Sk and Sl to ensure that they commute.
Therefore, it has already deviated from the stabilizer structure of binary Shor
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Code [Sho95]. Furthermore, if, say, an X1 error occurs on any one of the three
qutrits, resulting in an erroneous state | ie, the eigenvalue of Sl | ei remains the
same irrespective of the location of the error. Therefore, this stabilizer can only
detect the presence of error. Some follow-up steps will be necessary to determine
the location of the error.

7.3.1 Retrieving the binary 9-qubit QECC stabilizer struc-
ture

The logical states from the encoding scheme used for the 9-qutrit code in [MBGSK18],
similar to that of the Shor code, is

|iiL =
1

3
p
3
(|000i+ !i

|111i+ !2i
|222i)⌦3

for i 2 {0, 1, 2}. The set of stabilizers that was used is

Z1Z1Z1IIIIII, IIIZ1Z1Z1III, IIIIIIZ1Z1Z1

X1X1X1IIIIII, IIIX1X1X1III, IIIIIIX1X1X1.

It is to be noted that this immediately deviates from the stabilizer structure of
the Shor code. On the other hand, this structure is also necessary to ensure that
the stabilizers commute. Further, as illustrated before, using Z1Z1Z1IIIIII as a
stabilizer restricts its ability to distinguish between bit errors on the first three
positions, which led to a second step of correction in [MBGSK18]. Therefore if the
stabilizer components are restricted to X1 and Z1 (or X2 and Z2) only, then the
structure of the Shor code cannot be retained in the ternary settings.

In order to extend QECCs from binary to ternary regime, it is useful to retain the
stabilizer structure that completely characterizes a QECC. For fault-tolerance, a
qudit is encoded once, while detection and correction of errors may be performed
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multiple times along the computation. The same stabilizer structure implies that
the error correction circuit remains similar. In order to retain the stabilizer struc-
ture, more than one X and/or Z type component can be used in the stabilizer
formulation. Usage of all four of them is sufficient (as used in [MSK20]), but not
necessary, as we show below.

Table 7.1 shows the set of ternary stabilizers, constructed using {Z1, Z2} and X1,
that has the exact stabilizer structure of the Shor code. In Table 7.1, the empty
locations indicate the identity operator and an operator in column qi indicates
that the operator is applied on qutrit qi. For example, the entire stabilizer S1 is
Z1⌦Z2⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I, which implies the operators Z1 and Z2 operate
on qutrits q1 and q2 respectively, and the rest of the qutrits have identity acting
on them. The stabilizer structure of Table 7.1 shows a technique for deriving a
ternary QECC from its binary counterpart.

Table 7.1: Ternary stabilizer for 9-qutrit QECC retaining the structure of Shor
code [Sho95]

``````````````̀Stabilizers #
Qutrits ! q1 q2 q3 q4 q5 q6 q7 q8 q9

S1 Z1 Z2

S2 Z2 Z1

S3 Z1 Z2

S4 Z2 Z1

S5 Z1 Z2

S6 Z2 Z1

S7 X1 X1 X1 X1 X1 X1

S8 X1 X1 X1 X1 X1 X1

Table 7.2 shows the actions of the stabilizers S1, S2 for bit error correction when an
error occurs on one of the first three qutrits. The block structure of this encoding
implies that the same follows trivially for the other two blocks of three qutrits
as well. The codeword is denoted as | i, and Xj

i (Zj
i ) implies the error Xi (Zi)

on qutrit j, i 2 {1, 2}, j 2 {1, 2, 3}. Similarly, Table 7.3 shows the action of the
stabilizers when a phase error occurs on qutrits q1, q4, and q7. The first qutrit
from each block of three qutrits is selected deliberately. Since this is a degenerate
code, the action of phase error on any qutrit in the same block is equivalent.



CHAPTER 7. DESIGNING TERNARY QECC FROM BINARY CODES 156

Table 7.2: Correction of bit errors``````````````̀Errors #
Stabilizers !

S1 S2

| i +1 +1
X1

1 | i ! +1
X2

1 | i !2 !
X3

1 | i +1 !2

X1
2 | i !2 +1

X2
2 | i ! !2

X3
2 | i +1 !

Table 7.3: Correction of phase errors``````````````̀Errors #
Stabilizers !

S7 S8

| i +1 +1
Z1

1 | i !2 +1
Z4

1 | i !2 !2

Z7
1 | i +1 !2

Z1
2 | i ! +1

Z4
2 | i ! !

Z7
2 | i +1 !

Note that changing the positions of Z1 and Z2 in the stabilizers keeps the code, and
its quantum cost (discussed in next section) unchanged. For the error correction in
Table 7.2, this change simply swaps between the ! and !2 eigenvalues. Similarly,
one can use X2 as the stabilizer component as well, without effectively changing
the code. But since X2 = X1X1, the quantum cost of the circuit will increase.

There may be a different 9-qutrit QECC similar to Shor code that uses {X1, X2}

and Z1/Z2 as the stabilizer components. However, using X1 and X2 together can
largely change the structure of the encoded qutrit — that structure is not pursued
here.

The ability to retain the stabilizer structure of binary QECC comes with some
restrictions on the definition of a logical operator on the encoded state, which is
presented in the next subsection.
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7.3.2 Restrictions on logical Pauli Operators

An operator on the encoded quantum state is said to be a logical operator if it
changes the encoded state. For example, an operator XL is said to be a logical
X operator if |0iL

XL
��! |1iL

XL
��! |2iL. Two criteria that a logical operator must

satisfy are as follows:

1. the logical operator should commute with all the stabilizers;

2. the weight of a logical operator, i.e., the number of non-identity operators,
must be greater than or equal to the distance of the code.

The first requirement is trivial, since if the logical operator does not commute with
all the stabilizers, then the operator is treated as an error. On the other hand,
the distance of the code is determined by the minimum weight of an operator that
commutes with all the stabilizers [Got97]. If a weight w operator commutes with
all the stabilizers, then it is not treated as an error, and therefore the distance of
the QECC must be less than w.

It is posited that, as proposed by Gottesman [Got98], the logical Pauli X and
Z operators contain only X1 |ji = |j + 1i mod d; Z1 |ji = !j

|ji . It may be
tempting to consider any combination of X1, X2 or Z1, Z2 as logical operators.
However,

(i) Applying X2 = X1.X1 and Z2 = Z1.Z1 as components of the logical operator
would imply that two operations are performed sequentially on a qutrit (see
Sec. 7.4) as a part of a logical operator.

(ii) This cannot retain the stabilizer structure of the Shor code in a ternary
system.

While the first claim is trivial, a deeper dive is required into the second one. Since
Shor code has the tensor product structure of three qutrits, the argument can be
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restricted to the first three qutrits only; it follows trivially to the other two sets as
well. Suppose any combination of X1, X2 or Z1, Z2 is accepted as a logical operator
as long as they commute with all the stabilizers, and are themselves not stabilizers.
Since this code can correct a single error on the qutrit, the distance of the code
must be at least 3. In other words, there should not exist any operator e, which is
not a stabilizer, that commutes with all the stabilizers but has a weight less than
3. Note that the operator Z1IZ2IIIIII with a weight of 2, is not a stabilizer but
commutes with all the stabilizers. This would imply that it is a logical operator.
On the other hand, one can verify that there is no such operator of weight less
than 3 consisting only of {I,X1} or {I, Z1} that has this property.

Next, it may appear that using all four of {X1, X2, Z1, Z2} to construct the sta-
bilizers can serve the purpose. Table 7.4 shows an example to certify that it is
indeed not the case. Even in the stabilizer structure of Table 7.4, Z1Z1IIIIIII is
an operator with the weight of 2 that satisfies the requirements of a logical opera-
tor. It can be verified that any permutation of the components of these stabilizers
carries the same drawback.

Table 7.4: An attempt to a different stabilizer structure for ternary Shor code``````````````̀Stabilizers #
Qutrits ! q1 q2 q3

S1 Z1 Z2

S2 Z1 Z2

S7 X1 X2 X1

Therefore, this implies that in order to design a QECC for a ternary quantum
system similar to the binary Shor code, one of the following conditions must be
satisfied:

(i) the stabilizer structure needs to be changed if only X1 and Z1 are used as
components for stabilizers;

(ii) the components of the logical operator must be restricted to X1 and Z1 only.

The primary intent of this study is to retain the stabilizer structure, since that
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allows easy extension of binary QECCs to the ternary regime, and conforms to
this restriction on logical operators.

7.4 Circuit Realization of the 9 qutrit QECC

While any 3 ⇥ 3 unitary matrix is a valid quantum gate, it may not be imple-
mentable in quantum hardware. Therefore, usually a set of basis gates is defined
which can be implemented in practice and used to realize any unitary matrix. In
[MS00], Muthukrishnan and Stroud proposed a set of single and two-qutrit gates,
called the MS gates, that can be implemented on an Ion-Trap device. The ternary
counterpart of the Hadamard gate, called the Chrestenson gate [HMM85], is also
known to be implementable. The MS gates and the Chrestenson gate form a uni-
versal basis set for ternary systems and can be used to realize any ternary quantum
gate [MS00].

To the best of our knowledge, there is no notion of the quantum cost of gates for
ternary quantum systems. For this study, the quantum cost of each MS gate and
Chrestenson gate is assumed to be 1. The quantum cost of all the circuits hence-
forth is provided in terms of the number of MS and Chrestenson gates required to
implement them.

The multi-step correction procedure required in [MBGSK18] led to a very high gate
cost of the QECC circuit. Next, the circuit design of the 9-qutrit code is revisited
using the updated stabilizer structure proposed above. A lone Z1 operator is
equivalent to a C + T gate, having outer product notation as

C + T :
X

x,y2{0,1,2}

|x, (x+ y)%3i hx, y| .

Since Z2 = Z1Z1, it is equivalent to a cascade of two C + T gates. The bit error
correction circuit corresponding to each stabilizer is shown in Fig. 7.1.
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|q0i

|q1i

|ancillai C + T C + T C + T

Figure 7.1: Circuit corresponding to each stabilizer of the form Z1 ⌦ Z2 for bit
error correction

For the six stabilizers S1, . . . , S6, that correct bit errors on the codeword, the total
gate count in terms of C+T gates is thus 18. It was shown by Majumdar et al. in
[MSK20] that a single C +T gate can be decomposed into 3 MS gates. Therefore,
the quantum cost of the circuit corresponding to bit error correction is 18⇥3 = 54.

Phase error correction is usually performed in a basis that is a 45� rotation from
the computational basis. Conversion from the usual computational basis to this
rotated basis can be done using the following Chrestenson gates Ch1 and Ch2

respectively [HMM85]:

Ch1 =
1p
3

0

B@
1 1 1

1 ! !2

1 !2 !

1

CA Ch2 =
1p
3

0

B@
1 1 1

1 !2 !

1 ! !2

1

CA

It can be verified that Ch1Ch2 = I, and

Ch1X1Ch2 = Z1 Ch1X2Ch2 = Z2.

Therefore, the circuit for phase error correction can be implemented using C + T

gates as necessary, with each of the 9 qutrits padded with a Ch1 and Ch2 on the
two ends (see Fig. 7.2). Each phase error correction stabilizer thus requires six
C + T gates and two Chrestenson gates. Therefore, the quantum cost for phase
error correction is 2 ⇥ (6 ⇥ 3 + 2 ⇥ 9) = 72. The total quantum cost of the error
correction circuit, thus, becomes 126. The quantum cost of the previous 9-qutrit
QECC circuit was 262 (see Table 7.5), which gives this implementation a 51.9%
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reduction in gate cost.

|q0i

|q1i

|q2i

|q3i

|q4i

|q5i

C + T

C + T

C + T

C + T

C + T

Ch1 Ch2

Figure 7.2: Circuit corresponding to each stabilizer of the form ⌦5
i=0Xi for phase

error correction

Another parameter necessary to assess a circuit design is the depth of the circuit.
The depth of a quantum circuit is defined as the maximum number of gates on
any input-to-output path. In the 9-qutrit QECC structure proposed here, the
maximum number of stabilizer operators is 6 for each of S6 and S7. Since each X1

operator can be realized using 3 MS gates, and considering the two Chrestenson
gates padded for the basis change, the depth of the error correction circuit is
6⇥ 3 + 2 = 20. This obtains a percentage savings of 23.07 in terms of depth.

Table 7.5 compares the quantum cost and the depth of the circuits of the previ-
ous 9-qutrit QECC [MBGSK18], the 6-qutrit AQECC [MSK20], and the 9-qutrit
QECC proposed in this article. Although the cost of the proposed circuit is higher
than that for the 6-qutrit AQECC, this QECC can correct all single errors on the
system, unlike the 6-qutrit AQECC.
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Table 7.5: Comparison of the Quantum Cost and depth of circuit of the 6-qutrit
AQECC and the 9-qutrit QECC

Circuit for Circuit for Total Depth
bit error phase error

9-qutrit QECC [MBGSK18] 52 210 262 26
6-qutrit AQECC [MSK20] 72 44 116 8
Proposed 9-qutrit QECC 54 72 126 20

% Savings w.r.t [MBGSK18] 51.9 23.07

7.5 Ternary Steane and Laflamme codes

The previous sections showed the limitations of the earlier approach to carry over
binary QECCs to ternary and proposed a method to overcome that limitation. The
stabilizer structure of binary Shor Code for its ternary counterpart was derived
as well. It can be easily verified that the limitations mentioned are retained in a
direct carryover from the 7-qubit Steane Code [Ste96a] and the 5-qubit Laflamme
Code [LMPZ96] to their corresponding ones in the ternary regimen as well, if only
X1 and Z1 are used as stabilizer operators.

7.5.1 Binary to ternary Steane code

The stabilizer structure of binary Steane code is

S1 = I ⌦ I ⌦ I ⌦X ⌦X ⌦X ⌦X

S2 = I ⌦X ⌦X ⌦ I ⌦ I ⌦X ⌦X

S3 = X1 ⌦ I ⌦X ⌦ I ⌦X ⌦ I ⌦X

S4 = I ⌦ I ⌦ I ⌦ Z ⌦ Z ⌦ Z ⌦ Z

S5 = I ⌦ Z ⌦ Z ⌦ I ⌦ I ⌦ Z ⌦ Z

S6 = Z1 ⌦ I ⌦ Z ⌦ I ⌦ Z ⌦ I ⌦ Z (7.4)



163 CHAPTER 7. DESIGNING TERNARY QECC FROM BINARY CODES

Recall from Sec. 7.3 that for ternary systems, [X⌦3, Z⌦3] = 0. Therefore, it is
sufficient to use only X1(X2) and Z1(Z2) operators for ternary stabilizers if the X

and Z operators overlap in 6h positions (h � 1). In the stabilizers of binary Steane
Code, the X and Z operators overlap in 4 locations. Therefore, direct extension
of this QECC to the ternary regime using only X1(X2) and Z1(Z2) operators will
violate the commutation requirement of the stabilizers.

However, by using X1, Z1, and Z2, the stabilizer structure of binary Steane QECC
can be retained in the ternary regime, as shown below:

S1 = I ⌦ I ⌦ I ⌦X1 ⌦X1 ⌦X1 ⌦X1

S2 = I ⌦X1 ⌦X1 ⌦ I ⌦ I ⌦X1 ⌦X1

S3 = X1 ⌦ I ⌦X1 ⌦ I ⌦X1 ⌦ I ⌦X1

S4 = I ⌦ I ⌦ I ⌦ Z1 ⌦ Z2 ⌦ Z2 ⌦ Z1

S5 = I ⌦ Z1 ⌦ Z2 ⌦ I ⌦ I ⌦ Z2 ⌦ Z1

S6 = Z1 ⌦ I ⌦ Z2 ⌦ I ⌦ Z2 ⌦ I ⌦ Z1 (7.5)

7.5.2 Binary to ternary Laflamme code

Similarly, the stabilizer structure of binary Laflamme code is

S1 = I ⌦X ⌦ Z ⌦ Z ⌦X

S2 = X ⌦ I ⌦X ⌦ Z ⌦ Z

S3 = Z2 ⌦X ⌦ I ⌦X ⌦ Z

S4 = Z ⌦ Z ⌦X ⌦ I ⌦X (7.6)

Unlike Shor and Steane code, Laflamme code is a non-CSS code, i.e., X and Z
operators are present in the same stabilizer. The X and Z operators overlap in 2
positions, and hence cannot be extended to a ternary regime by using only X1(X2)

and Z1(Z2) operators. On the other hand, using X1, Z1 and Z2, the stabilizer
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structure of binary Laflamme QECC can be retained in the ternary regime, as
shown below:

S1 = I ⌦X1 ⌦ Z1 ⌦ Z2 ⌦X1

S2 = X1 ⌦ I ⌦X1 ⌦ Z1 ⌦ Z2

S3 = Z2 ⌦X1 ⌦ I ⌦X1 ⌦ Z1

S4 = Z1 ⌦ Z2 ⌦X1 ⌦ I ⌦X1 (7.7)

The examples of Steane and Laflamme’s code further solidify that using {Z1, Z2}

and X1 is sufficient to derive ternary stabilizer QECCs similar to its corresponding
binary one. Otherwise, the structure of ternary QECCs cannot be derived directly
from its binary counterpart.

7.6 Summary

This chapter explored a fundamental question of what is required to extend a
binary QECC to the ternary regime without changing its stabilizer structure. The
chapter illustrates that using X1 and Z1 alone as components of the stabilizers
is not sufficient to design a ternary QECC which is a direct extension of the
corresponding binary QECC. Instead, it is necessary to use Z1, Z2 and X1 for this
purpose. The reasons for the shortcoming of the 9-qutrit QECC in Chapter 6 is
discussed in detail, and the 9-qutrit QECC, maintaining the stabilizer structure
of binary Shor code, was then derived using the operators Z1, Z2 and X1. This
proposed QECC attains a percentage reduction of 51.9 and 23.07 in quantum cost
and depth respectively over the previous one. It is also shown that this requirement
is not special for Shor code only. Rather the same requirement remains for any
ternary QECC designed as a carry-over of its binary counterpart — design of
ternary Steane and Laflamme codes were shown as explicit examples. This result
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opens up a myriad of research prospects. It may be worth designing a ternary
QECC using X1, X2 and Z1/Z2, and comparing its quantum cost and depth with
the design pursued in this article. For any d-dimensional quantum system, there
are Z1, . . . , Zd�1 possible phase errors. The stabilizer design of any d-dimensional
QECC, as a low-cost implementable extension of binary QECC, remains to be
explored.
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8.1 Introduction

Current quantum devices are engineered to execute a finite number of one or two-
qubit gates, termed as the basis gate set [ibm22]. Any arbitrary quantum operator
O is equivalent to a cascade of gates taken from this basis gate set [NC02]. This
method is often termed as the decomposition of the operator O. A Toffoli gate is
a gate with 3 qubits and finds applications in many important aspects of quantum
computing such as quantum error correction [NC02], Grover’s algorithm [Gro96b],
etc. Several works have focused on the efficient decomposition of the Toffoli gate
due to its significance in quantum computing [Sel13, AMMR13, Jon13]. A trade-
off between depth and qubit-count of Toffoli decomposition has been observed in
the literature [AMMR13]: the depth of the decomposed circuit can be reduced by
allowing ancilla qubits whereas the depth increases when the qubit-count is kept
fixed to the original three qubits.

In [GBD+20], the authors proposed temporary usage of |2i, a higher dimension
state within a qubit system, and showed an exponential reduction in the depth
of the decomposition circuit for a Toffoli gate without any ancilla qubits. This
has triggered studies on potential applications of temporary usage of |2i within
a qubit system. It has been shown to improve the implementation of arithmetic
circuits [SCCC22, SCC23], and even eliminate the need for SWAP gates in a
limited connectivity quantum hardware [SSC22]. This method was experimentally
verified on a superconducting quantum device in [GCK+21], and generalized to
d � 2 dimensional quantum circuit for multi-controlled Toffoli gates in [SMS+22].

Accessing higher dimensions and applying higher dimensional gates, nevertheless,
invoke more errors in the system than qubits. On the other hand, the exponential
reduction in the depth of the circuit lowers the effect of damping error. Numerical
studies [GBD+20, SMS+22, SCCC22, SCC23] show that the overall error on the
system is reduced by this method. In other words, the exponential reduction in
depth overshadows the temporary usage of higher dimensions. This method of
lowering the depth of the circuit via intermediate qutrits is proposed primarily for
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the Noisy Intermediate Scale Quantum (NISQ) era [Pre18b], where the number of
qubits is up to a few hundred, and the qubits are noisy due to the absence of error
correction. In general, a reduction in the depth of the circuit is expected to be
useful both with and without error correction. However, in this method, reduction
in depth comes at the cost of higher noise arising from higher dimensional qudits
and gates which may incur more cost in terms of error correction. In this paper, we
focus on the study of the resources required, especially the number of gates when
this decomposition is applied together with error correction and concatenation.
The primary question that we address is whether this method, involving more error
due to usage of the higher dimension, can lead to lower resources than the earlier
decomposition methods, which have a higher number of gates in the decomposition
when error correction and concatenation are involved.

Adopting the qutrit-assisted decomposition technique for error correction is not
without challenges. For concatenated quantum circuits, the qubits must be en-
coded at the beginning of the computation, and every operation (e.g. gate opera-
tion, syndrome measurement, error correction) must be performed on the encoded
qubits. We show here that an encoded qubit cannot be made to access dimension
|2i temporarily without entertaining the possibility of errors that remain unde-
tected. In other words, a qubit accessing the higher dimension at any point in
time must be treated as a qutrit throughout the computation. This immediately
deviates from the fact that in the NISQ era, the qubit is raised to the higher dimen-
sion only temporarily. In other words, the error-corrected circuit now becomes a
hybrid qubit-qutrit circuit. As qutrits are in general noisier than qubits [FMT+22],
the number of levels of concatenation is expected to be higher to reach the desired
accuracy, which in turn increases the resource requirement of the circuit.

This chapter looks into the resource requirement, in terms of gate count, when error
correction and concatenation are associated for both the qubit-only decomposition
and qutrit-assisted decomposition.
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8.2 Decomposition of gates using higher dimension

In [GBD+19, BDG+20], the authors proposed temporary occupation of the state
|2i for decomposition of Toffoli gates. Maintaining binary input and output al-
lows this circuit construction to be inserted into any pre-existing qubit-only cir-
cuit. A Toffoli decomposition via qutrits has been portrayed in Fig. 8.1 [GBD+19,
BDG+20]. More specifically, the goal is to carry out a NOT operation on the
target qubit (the third qubit |q2i) as long as the two control qubits are both |1i.
First, a |1i-controlled X+1, where +1 denotes that the target qubit is incremented
by 1(mod 3), is performed on |q0i and |q1i, the first and the second qubits. This
upgrades |q1i to |2i if and only if both |q0i and |q1i are |1i. Then, a |2i-controlled
X gate is applied to the target qubit |q2i. Therefore, X is executed only when
both |q0i and |q1i are initially |1i. These control qubits are reinstated to their
original states by a |1i-controlled X�1 gate, which reverses the effect of the first
gate. That the |2i state from ternary quantum systems can be used instead of
an ancilla to store temporary information, is the most important aspect of this
decomposition. Thus, to decompose the Toffoli gate, 3 generalized ternary CNOT

gates are sufficient with circuit depth 3. In fact, no T gate is required.

Figure 8.1: An example of Toffoli decomposition with an intermediate qutrit,
where input and output are qubits. The red controls activate on |1i and the blue
controls activate on |2i. The first gate temporarily elevates q1 to |2i if both q0 and
q1 were |1i. X operation is then only performed if q1 is |2i. The final gate acts as
a mirror of the first gate and restores q0 and q1 to their original states. [GBD+19].
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8.3 Criterion for qutrit-assisted Toffoli decomposi-
tion along with error correction

Consider a quantum circuit qc that has been encoded using a QECC C. This
circuit can be decomposed into basis gates using either the qubit or qubit-qutrit
decomposition method as discussed above. Let p2 and p2,3 be the respective prob-
ability of error in these two cases. A few of the qubits behave as qutrits at certain
cycles of execution in the qubit-qutrit decomposition [GBD+19]. Literature sug-
gests that these qubits are treated as qutrits only for a limited period of time when
it requires access to the state |2i. For example, in Fig. 8.1, |q1i behaves as a qutrit
only during the execution of the two qutrit gates on |q1i and |q2i, and as a qubit
otherwise. However, Theorem 8.1 shows that when error-corrected qubit-qutrit
decomposition is considered, a qubit that requires access to the state |2i at any
point in the circuit, must be treated as a qutrit all along.

Theorem 8.1

Given an error-corrected qubit-qutrit decomposition, a quantum state which
requires access to the state |2i at any point in the circuit, must be encoded
using a qutrit QECC.

Proof. Let C be the codespace for a QECC, where each basis state |ii is mapped
to the logical state |iiL =

P
ci
|cii, where each |cii 2 Ci ✓ C. Now, for a general

qubit QECC, ci 2 {0, 1}⌦n
8 i. For some time period [t, t + �t], this state is

raised to access the basis state |2i for the purpose of computation. This can be

modelled as an operator X1 acting on the logical state, where X1 =

0

B@
0 0 1

1 0 0

0 1 0

1

CA

[MSK20, MSK22]. For an n-qubit QECC, |cii = |ci1ci2 . . . cini, since initially ci 2

{0, 1}⌦n
8 i, applying X1 takes ci to ci 2 {1, 2}⌦n. Now, during the time period

[t, t+�t], a bit error occurring on the physical qubit (or qutrit) cik which was in the
state |2i makes it |0i. As a result, now the erroneous logical state ci 2 {0, 1, 2}⌦n.
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In other words, the system, which should have been spanned by the {1, 2} subspace
only, is now spanned by {0, 1, 2} subspace. Therefore, when the system is lowered
back to the original computational space by applying an operator X2 = X�1

1 , it no
longer returns to the {0, 1} subspace but remains in the {0, 1, 2} subspace. Such an
error behaves like a leakage, and cannot be corrected by general qubit QECCs.

It is obviously possible that some errors, even acting during the [t, t + �t] time
period, do not leak the system out of its computational space. However, Theorem
8.1 argues that there exists errors which can do so, and hence cannot be corrected
using a qubit QECC. An example can be given using the simplest QECC – a 3-
qubit repetition code. Consider a qubit | i = ↵ |0i + � |1i, which requires access
to the computational state |2i during time period [t, t + �t], has been encoded
as | iL = ↵ |000i + � |111i for error correction. When this qubit requires access
to state |2i, the logical state | iL is raised to ↵ |111i + � |222i using the X1

operator. If a bit error occurs on, say, the first qubit while it is accessing the state
|2i, the erroneous state becomes ↵ |211i + � |022i. Restoring this system back
to a qubit configuration by applying X2 on this erroneous state takes the state
to ↵ |100i + � |211i, which has undergone leakage from the computational space.
Hence, error correction using binary QECC is no longer possible.

Therefore, if a qubit is allowed to access the state |2i at any point in the circuit,
it must be treated as a qutrit from the input stage and encoded accordingly for
error correction. Theorem 8.1 does not pose any restrictions on the qubits that
do not require access to the state |2i to be encoded using binary QECC for error
correction. For example, in Fig. 8.1, |q0i and |q2i may be encoded using binary
QECC, but |q1i must be encoded using a ternary QECC.

A general notion is that qutrits and ternary quantum gates are noisier than qubits
and binary quantum gates respectively [FMT+22]. Therefore, it may be possible
to attain an accuracy of ✏ using k2 and k3 levels of concatenation for qubits and
qutrits respectively, where k2  k3. A natural inference, therefore, is to use fewer
levels of concatenation for qubits than for qutrits in the concatenated circuit to
reduce the qubit cost. In other words, the circuit complexity can be reduced if



CHAPTER 8. QUTRIT-ASSISTED TOFFOLI DECOMPOSITION 172

one can use k2 < k3 levels of concatenation for qubits and qutrits respectively,
to acquire the same accuracy for both qubits and qutrits. However, Theorem 8.2
below asserts otherwise.

Theorem 8.2

For the implementation of two-qubit logical gates via interaction between the
participating qubits (or qutrits), both the qubits and qutrits in the hybrid
qubit-qutrit circuit must be encoded with the same number of levels of con-
catenation for fault-tolerant implementation irrespective of their respective
probability of error.

Before proceeding into the proof of this theorem, it is necessary to revisit a first
principle requirement of fault-tolerance [Sho96] – error from one component should
flow to at most a single component. For example, in Fig. 8.2 (a), an error on one
qubit can flow to at most another qubit via the CNOT gate. However, in Fig. 8.2
(b), error on qubit q0 will flow to both qubits q2 and q3. Such a scenario violates
the requirement of fault tolerance.

q0

q1

q2

q3

q4

q5
(a) Fault-tolerant represen-

tation of encoded CNOT

gate

q0

q1

q2

q3

q4
(b) Non fault-tolerant repre-

sentation of encoded CNOT

gate

Figure 8.2: Two realizations of an encoded CNOT gate – (a) can be made fault-
tolerant via concatenation since error from a qubit can flow to one qubit only,
while (b) cannot be made fault-tolerant via concatenation since error from q0 will
flow to both q2 and q3

Proof. On the contrary, assume that the qubits and qutrits can be concatenated
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using k2 and k3 levels of concatenation, where k2 6= k3. WLOG, k2 < k3. Let G be
a transversal two-qubit gate for the QECC used, operating over q2 and q3, where q2
(q3) is a qubit (qutrit). However, since k2 < k3, the number of qubits encoding q2

is less than the number of qutrits encoding q3. Therefore, by pigeonhole principle,
there exists at least one qubit on which two encoded gates, involving two distinct
qutrits, operate. This violates the requirement of fault tolerance.

There exist other methods to implement logical two-body gates such as topological
effects in a surface code [FMMC12]. This method assumes the existence of multiple
logical qubits in a single surface code lattice, and the CNOT operation is performed
by applying a bunch of operators extending from one logical qubit around the other.
Nevertheless, having both qubits and qutrits in a single surface code lattice would
require a significant change in the structure of the lattice (where some stabilizers
will be binary and others ternary). It is an engineering challenge to implement it if
it is at all possible. It is left out as a future scope to study such qubit-qutrit surface
code design and whether this theorem still holds good under such a scenario. For
now, it can be considered that a single surface code lattice encodes a single logical
qubit (or qutrit), and two-body gates are performed by the interaction between
these two lattices [MBMSK16], where this theorem still holds good.

Theorem 8.2 asserts that the level of concatenation, and hence the size of the cir-
cuit, is governed by the probability of error on qutrits. Thus the error-corrected
representation of the qubit-qutrit decomposition (i) has a lower depth of the cir-
cuit due to its more efficient decomposition, and (ii) leads to circuits with higher
resource requirements since it is governed by the probability of errors on qutrits.
The pertinent issue is to determine the criteria for which the increase in the size of
the circuit is overshadowed by the number of gates reduced due to more efficient
qubit-qutrit decomposition. Theorems 8.3 and 8.4 address the following two pa-
rameters: (i) the accuracy of the two types of decomposition if both use the same
number of levels of concatenation and (ii) the increase in the number of levels
of concatenation required for the qubit-qutrit decomposition to obtain the same
accuracy as that of the qubit only based decomposition.
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Theorem 8.3

Given a quantum circuit C, let C2 and C3 be the two decompositions for C
involving qubit gates only and qubit-qutrit gates, with error probabilities p2
and p2,3 respectively. After k levels of concatenation in both, the accuracy
✏3 = � · ✏2 obtained by C2,3, where ✏2 is the accuracy obtained by C2 and
� > 0, is given by

log(�) = 2klog(
c3.p2,3
c2.p2

) + log(
c2
c3
)

where 1
c2

and 1
c3

are the thresholds of the binary and the ternary QECCs
respectively.

For example, Fig. 8.3 and 8.1 show examples of decomposition of a Toffoli gate
using only qubit gates, and both qubit and qutrit gates respectively.

In all the proofs in this chapter henceforth, the logarithm is with respect to base
2. Note that any other base is equally acceptable for the logarithm for all the
calculations. However, base 2 makes some calculations easier, and the final form
of the equations simpler.

Proof. Follows from the Threshold Theorem [NC02]; see Appendix A.11.

Theorem 8.4

Given a quantum circuit C, let C2 and C2,3 be the two decompositions for
C involving qubit gates only and qubit-qutrit gates, with error probabilities
p2 and p2,3 respectively. Then, C2 as well as C2,3 achieves an accuracy of ✏
after k2 and k3 levels of concatenation respectively, where

k3 = dk2 + log(
log(c2.p2)�

1
2k2

log( c2c3 )

log(�) + log(c3.p2)
)e

and 1
c2

, 1
c3

are the thresholds of the binary and ternary QECCs respectively.
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Before presenting the proof of this theorem, it should be emphasized here that
fault-tolerance is attainable only if c.p < 1, where p is the probability of error
and 1

c is the threshold of the QECC used. Here, both c.p2 and c.p2,3 = �.c.p2 are
required to be less than 1 for effective fault tolerance via concatenation. Moreover,
the value of log(

log(c2.p2)� 1

2k2
log(

c2
c1

)

log(�)+log(c1.p2)
) can be a fraction. Therefore, ceiling is used to

ensure that k3 is an integer.

Proof. Follows from the Threshold Theorem [NC02]; see Appendix A.12.

Currently, surface code is known to have a threshold of 1% = 0.01 [FSG09]. For
IBM Quantum devices, CNOT is one of the most prominent sources of error in
the quantum systems today, having an error probability > 0.01. Therefore, it is
not possible to lower the error probability by increasing the levels of concatenation
in current quantum systems. This prohibits an experimental comparison of con-
catenation on the qubit-qutrit decomposition and the qubit-only decomposition.
Therefore, for the rest of the paper, any numerical values will assume a futuristic
scenario, where p is sufficiently low enough so that c.p < 1.

For the sake of better visualization, Table 8.1 assumes c.p2,3 = 0.9 and 0.5, and
vary � to determine the difference in the level of concatenations k3 and k2.

Table 8.1: Difference in levels of concatenation dk3 � k2e with varying �
c.p2,3 � c.p2 dk3 � k2e

0.9

1.5 0.6 3
2 0.45 3
3 0.3 4
4 0.225 4
5 0.18 5

0.5

1.5 0.33 1
2 0.25 1
3 0.167 2
4 0.125 2
5 0.1 2

Since the value of p2,3 � p2, it is expected that dk3 � k2e � 1. Increasing levels of
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concatenation increases the size of the resulting circuit exponentially. Therefore,
the question we ask is whether the resource requirement can be lowered using
the qutrit-assisted decomposition in contrast to the qubit-only decomposition in a
concatenated error correction scenario.

8.4 Resource estimation of fault-tolerant circuits

Assume that the error-correcting code used requires at most G gates to encode a
single gate at each level of concatenation. Note that the exact value of G depends
on whether the implementation of a logical gate is transversal [EK09]. This issue
is addressed later on. Therefore, the size of a circuit consisting of R gates after k

levels of concatenation are upper bounded by Gk
· R. Let the number of gates in

qubit-qutrit and qubit-only decomposition of a circuit be R2,3 and R2 respectively.
Then, the resource of qubit-qutrit decomposition is lower if

Gk3 ·R2,3  Gk2 ·R2

) R2,3 
R2

Gdk3�k2e
(8.1)

Eq. (8.1) provides the criteria for which the qubit-qutrit decomposition can result
in a smaller circuit even though it requires more levels of concatenation.

Consider a circuit where G denotes the set of individual gates used in the circuit.
Let ng denote the number of gate type g 2 G in the circuit. Then, after k levels of
concatenation, the total number of gates Nk in the concatenated circuit is given in
Eq. (8.2), where g denotes the number of gates required for the implementation
of the gate logical gate gL.

Nk = (
X

g2G

gng)
k (8.2)

The exact value of g depends on whether the gate g can be implemented transver-
sally in the QECC used.
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Theorem 8.5

Let G2 and G2,3 be the set of types of gates in a circuit, realized respectively
by using the qubit-only and the qubit-qutrit decomposition and ng be the
number of gates of type g. Then the qubit-qutrit decomposition leads to a
smaller number of gates if

log(
log(c2.p2)�

1
2k2

log( c2c3 )

log(�) + log(c3.p2)
)  k2 ·

log
P

g2G2
(gng)P

g2G2,3
(gng)

log
P

g2G2,3
(gng)

(8.3)

where 1
c2

and 1
c3

are the thresholds of the binary and ternary QECCs respec-
tively.

Proof. See Appendix A.13.

Theorem 8.5 provides a relation involving p2 the probability of error, 1
c the thresh-

old of the QECC used, � the ratio of error probabilities for qutrits and qubits,
k2 the levels of the concatenation of qubit-only system, and the gate counts of
both types of decompositions. The value of g for each gate g depends on whether
it can be implemented transversally or not. For gates that can be implemented
transversally, g is equal to the distance of the QECC. For other cases, the value
of g can increase significantly [MBSK17] because the implementation may even
be probabilistic [GBL+23].

8.5 Challenges for achieving fault-tolerance

This chapter so far has derived the necessary conditions for using the qutrit-assisted
decomposition of Toffoli gate in conjunction with quantum error correction. It also
discussed the resource requirement for concatenation code and provided the crite-
rion for which this method uses fewer resources compared to the qubit-only decom-
position. However, in order to achieve fault-tolerance, it is necessary to implement
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the gates in encoded form. This implementation dictates the error flow between
encoded components. An encoded gate that cannot be implemented transversally,
may lead to a significant increase in error among the encoded components and
hence may pose a challenge in achieving fault-tolerance.

The qutrit-assisted Toffoli decomposition primarily consists of two types of CNOT
gates (refer to Fig. 8.3), namely 1-controlled and 2-controlled CNOT gate – while
the former is transversal in the Steane Code, the latter is not.

8.5.1 Implementing encoded gates for Steane Code

Let us assume that Steane Code [Ste96b] has been used for encoding the qubits. As
discussed earlier, qubits that require access to higher dimensions at any point in the
computation must be treated as a qutrit throughout the computation. Therefore,
7-qutrit ternary Steane Code is required for encoding some of the quantum states,
and the stabilizers are [MSK23]:

S1 = I ⌦ I ⌦ I ⌦X1 ⌦X1 ⌦X1 ⌦X1

S2 = I ⌦X1 ⌦X1 ⌦ I ⌦ I ⌦X1 ⌦X1

S3 = X1 ⌦ I ⌦X1 ⌦ I ⌦X1 ⌦ I ⌦X1

S4 = I ⌦ I ⌦ I ⌦ Z1 ⌦ Z2 ⌦ Z2 ⌦ Z1

S5 = I ⌦ Z1 ⌦ Z2 ⌦ I ⌦ I ⌦ Z2 ⌦ Z1

S6 = Z1 ⌦ I ⌦ Z2 ⌦ I ⌦ Z2 ⌦ I ⌦ Z1 (8.4)

where X1 |ji = |j + 1i mod 3, Z1 |ji = !j
|ji Z2 = Z1Z1. The stabilizers of

binary Steane code are similar, with only X and Z operators, where the addition
is modulo 2.

For a qubit-qutrit setting with binary and ternary Steane code, it was verified via
an exhaustive search that the 1-controlled ternary CNOT gate can be implemented
transversally, i.e., CNOTL(|iiL |jiL), i 2 {0, 1}, j 2 {0, 1, 2} can be implemented
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by executing CNOT gate individually on the 7 qubits used to encode |iiL and |jiL.
Note that in this case, the control is always a qubit, and the target is a qutrit.
However, the 2-controlled CNOT gate does not seem to adhere to any transversal
implementation for the Steane Code.

With this additional observation, the resource estimation for an adder circuit, in
terms of gate count, is studied in the next subsection for both qubit-only and
qubit-qutrit decompositions.

8.6 Comparison of resource requirements for de-
composition of an adder circuit

This section studies the resource estimation for qubit-only and qubit-qutrit decom-
position of an adder circuit. The gain in resource for qubit-qutrit decomposition is
estimated using the inequality of Theorem 8.5 for different levels of concatenation
when the cost of non-transversal implementation of the 2-controlled CNOT gate is
taken to be a multiplicative constant of the transversal implementation of the 1-
controlled CNOT gate. Note that, since the exact non-transversal implementation
is not available, this study does not reflect on the flow of error in the concatenated
circuit.

8.6.1 Overview of circuit decomposition for the adder

For an n-qubit adder circuit [DKRS06], the qubit-only decomposition of the Toffoli
gate is shown in Fig. 8.3.

Let Toffoli_count, CNOT_count, T_count, and H_count denote the total
count of Toffoli, CNOT , T , and Hadamard gates required respectively. Then
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q0

q1

q2

T

T T †

H T † T T † T H

Figure 8.3: Toffoli decomposition with Clifford+T gates

Toffoli_countadd = 10n� 3w(n)� 3w(n� 1)� 3 log2 n

� 3 log2(n� 1)� 7 (8.5)

where w(n) denotes the number of ones in the binary representation of n. For the
sake of simplicity, w(n) is taken to be equal to n and w(n � 1) equal to n � 1.
With these values, the gate counts for the qubit-only decomposition of the Toffoli
gates are given in Table 8.2.

Table 8.2: Gate counts for qubit-only decomposition of Toffoli gate for adder circuit
Gate Gate Count
type (as a function of n)

CNOT 24n� 18 log2 n� 18 log2(n� 1)� 24
H 8n� 6 log2 n� 6 log2(n� 1)� 8
T 14n� 28 log2 n� 28 log2(n� 1)� 21

For qubit-qutrit decomposition, a Toffoli gate is decomposed using only 1-controlled
and 2-controlled ternary CNOT gates. From Fig. 8.1 the number of 1-controlled
ternary CNOT gates required for a Toffoli decomposition is noted to be twice
that of 2-controlled ternary CNOT gates. The total number of 1-controlled and
2-controlled ternary CNOT gates required for qubit-qutrit decomposition of the
adder circuit, as obtained from [SCCC22], are:

#1-controlled ternary CNOT = 8n� 6 log2 n� 6 log2(n� 1)� 8

#2-controlled ternary CNOT = 4n� 3 log2 n� 3 log2(n� 1)� 4.
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8.6.2 Comparison of resource requirements

While the qubit-qutrit decomposition is capable of removing the requirement of
T gates from the circuit, the 2-controlled ternary CNOT gate still remains non-
transversal like the T gate. A T gate is a non-transversal gate for many QECCs
and has a much costlier implementation. Several techniques have been proposed in
the literature for efficient fault-tolerant implementation of T gates [P+22, Lit19],
which are primarily for surface codes, and often involve complicated processes
such as teleportation. For the sake of simplicity, in this chapter the fault-tolerant
decomposition of T gates is considered with respect to Steane code [NC02] as
shown in Fig. 8.4. The H, T , and SX gates are implemented transversally to
attain the overall effect of an encoded T gate. Therefore, if Steane code is used,
then g for transversal gates is 7, whereas that for T gates is 4⇥ 7 = 28. Denote
the gate count of the non-transversal implementation of a gate using Steane Code
by ̃g = g/7. Therefore, for T gate, ̃g = 4. Note that this implementation
requires ancilla qubits. Therefore, if an n-qubit circuit involves m T gates, it leads
to an overall circuit with n+m qubits.

|0i H T SX T | i

| i

Figure 8.4: Fault tolerant implementation of T gate with Steane code

Let N2 and N2,3 denote the total number of gates required for the error-corrected
implementation of the adder circuit using qubit-only and qubit-qutrit decomposi-
tion for a single level of concatenation. The number of gates increases exponentially
with the number of levels of concatenation. N2(g) denotes the number of gates g

in the concatenated implementation for qubit-only decomposition and N2,3(g) for
qubit-qutrit decomposition.
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Then for the qubit-only decomposition of an adder

N2 = 7⇥ (N2(CNOT ) +N2(H) + 4⇥N2(T ))

= 616n� 952log2n� 952log2(n� 1)� 798. (8.6)

As discussed earlier, for the Steane Code the 1-controlled ternary CNOT gate is
transversal but the 2-controlled ternary CNOT is not. Then for the qubit-qutrit
decomposition of an adder,

N2,3 = 7⇥N2,3(1-controlled ternary CNOT) +N2,3(2-controlled ternary CNOT)

= (56n� 42log2n� 42log2(n� 1)� 56)

+ ̃g ⇥ (28n� 21log2n� 21log2(n� 1)� 28). (8.7)

Note that if a transversal implementation were possible for the 2-controlled ternary
CNOT, then ̃g = 1. In the following subsection, the value of ̃g is varied to
determine the scenarios (i.e. the gate cost of non-transversal implementation of
the 2-controlled ternary CNOT gate) for which qubit-qutrit decomposition leads
to a lower gate cost. For simplicity, in the numerical analysis, c2 = c3 = c.

8.6.3 Numerical analysis

Fig. 8.5 presents the numerical values for the adder.

The resource requirement of the qubit-qutrit decomposition is lower than that for
the qubit-only decomposition if the LHS of the inequality of Eq. (8.3) is less than
that of the RHS. In Fig. 8.5, the RHS is shown as bars for different values of g
and levels of concatenation. The LHS for different values of � and c.p are shown
as horizontal dashed lines. Therefore, the requirement of the inequality translates
to the fact that qubit-qutrit decomposition requires a lower number of gates than
that for the qubit-only decomposition if the bar goes above the corresponding
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(a) 50 qubit adder (b) 100 qubit adder

(c) 300 qubit adder (d) 800 qubit adder

Figure 8.5: For 2  ̃g  6 (refer to Eq. (8.7), the values of the RHS of the
inequality of Eq. (8.3) are the heights of the bar-plots. The LHS of the inequality
is indicated by the horizontal dashed lines for different values of � and c.p. The
qubit-qutrit decomposition leads to lower resource requirements for certain � and
c.p when the LHS of Eq. (8.3) is less than RHS, i.e., the bar plots are higher than
the corresponding horizontal dashed line.

horizontal dashed line. The primary observations from the plots are summarized
below:

(i) For a fixed value of ̃g, increasing the level of concatenation increases the
height of the bars. This implies that if a higher level of concatenation is
used, then the qubit-qutrit decomposition eventually triumphs because of
the exponential reduction in the number of gates required for the same.
On the other hand, as the value of ̃g increases, the heights of the bars
are lower. This is also expected because as the cost of the non-transversal
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implementation of the 2-controlled ternary CNOT gate increases, the benefit
of the exponential reduction in gate count by the qubit-qutrit decomposition
also diminishes.

(ii) The horizontal plots appear higher as the values of � and c.p increase. In
other words, the noisier the qutrit hardware, the more difficult it is to obtain
lower resources using qubit-qutrit decomposition. In the future, if the noise
profile of qubit and qutrit devices become similar, then we expect that this
qubit-qutrit decomposition will lead to lower resource requirements even for
a high value of ̃g.

(iii) Finally, as the number of qubits is increased, the height of the bars increases
initially and then decreases again. Therefore, apart from the value of ̃g and
the noise profile of the hardware, the number of qubits also plays a role in
determining whether qubit-qutrit decomposition can provide benefit in terms
of resource.

Fig. 8.5 illustrates the key observations with an adder circuit. Similar observations
may be performed for other circuits of interest that require the decomposition of
the Toffoli gates.

8.7 Summary

Many methods have been devised for the near-term quantum circuits which aim
to lower the gate count and/or depth of the circuit. Although these methods may
not be necessary in the error-corrected era of quantum computation, it may be
beneficial to make use of these methods in that era as well. The question that
remained largely unanswered is whether it is trivial to carry over those methods
from near-term to error-corrected quantum computation. One such method is the
use of higher dimensions in some intermediate cycles of computation to lower the
depth of the circuit. This chapter analytically studied the challenges of extending
this method to the error-corrected regime.
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This study opens up a myriad of research directions. Primarily the study of re-
sources for different binary and ternary QECCs by finding the proper transversal
and non-transversal implementation of the gates is very salient. It can provide
deeper insight into the settings where this type of decomposition is useful in the
fault-tolerant era. It is also of interest whether using higher dimensions allows
transversal (or non-transversal implementation with a low value of g) implemen-
tation of the 2-controlled ternary CNOT gates. Future studies along this direction
can conclusively dictate whether it is beneficial to use qutrit-assisted Toffoli de-
composition in the fault-tolerant era.



CHAPTER 9

Conclusions and future directions
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This thesis contributed to advancing the performance of both near-term and long-
term quantum computing. For near-term quantum computation, in particular
QAOA, the thesis provided algorithms to eliminate multiple 2-qubit gates, thus
lowering the effect of noise, and improving the fidelity of the outcome. For general
quantum circuits, the thesis provides two novel methods of error mitigation, tar-
geted particularly for circuit cutting, to improve the performance of computation.
For long-term quantum computing, this thesis provides insights into the challenges
of designing ternary QECCs and provides the necessary conditions to ensure that
errors can be corrected in a single step. Finally, this thesis also looks into the
challenges of using methods from near-term quantum computing in conjunction
with error correction, particularly in the context of Toffoli decomposition.
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9.1 Summary

The contributions of this thesis are summarized on a chapter-by-chapter basis as
follows -

• Chapter 3 provides two hardware-independent algorithms to eliminate multi-
ple CNOT gates in a QAOA circuit while maintaining functional equivalence.
The first method, based on Edge Coloring can eliminate b |E|

2 c CNOT gates
for a graph G = (V,E). The second method, based on Depth First Search,
eliminates |V |� 1 CNOT gates, which is shown to be optimal, but increases
the depth of the circuit to some extent which can be, at most, linear in
the number of vertices. However, it was shown analytically that the noise
lowered due to the elimination of CNOT gates overshadows the excess noise
due to increased circuit depth, and the final optimized circuit exhibits lower
noise probability.

• Chapter 4 proposes a heuristic algorithm that retains the optimal CNOT
elimination for QAOA but restricts the increase in the depth of the circuit.
It was numerically shown that, while the increase in depth using the heuristic
algorithm is still linear in the number of vertices, the slope is lowered by ' 1

10

as compared to the DFS approach. Finally, this algorithm is modified to
respect the connectivity constraints of current quantum computers in order
to lower the number of SWAP gates. The simulation results show that this
modified heuristic, on average, exhibits a 5% reduction in the number of
SWAP gates when compared to the original heuristic algorithm.

• Chapter 5 studies the performance of tomographic circuit cutting for differ-
ent noise models. While circuit cutting itself can suppress the effect of noise,
it still requires computing multiple instances for each subcircuit which may
result in accumulation of noise. This chapter proposes two circuit-cutting-
specific error mitigation methods, namely Measurement Error Mitigated
Constrained Least Square (MEMCLS) and Dominant Eigenvalue Truncation
(DEVT), which are shown to improve the fidelity of the outcome. DEVT,
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together with MEMCLS, showed the best performance when the noise was
close to depolarization. However, for stochastic Pauli noise, the performance
degrades as the asymmetry in the noise increases; although even for this case
they are shown to perform better than circuit cutting alone. Finally, some
discussions are done on the scalability of this method. The results show that
tomographic circuit cutting, together with DEVT, retains optimal perfor-
mance even with partial (⇠ 60%) tomographic data.

• Chapter 6 studies the design of ternary QECC circuits as a carry-over of
known binary codes. It shows that the stabilizer structure, and hence the
gate cost, necessarily increases for the ternary counterpart. In particular, for
the 9-qubit QECC, this chapter shows that the ternary counterpart requires
more than one step to correct errors. Finally, this chapter proposed a 6-qutrit
approximate code (AQECC) that can correct multiple phase errors in a single
step but fails to identify the location of bit-flip errors in a few scenarios. The
probability of success of the AQECC is ⇠ 75% for depolarization noise and
increases to ⇠ 99% when the probability of Pauli-Z error is 100x that of
Pauli-X error. The quantum cost of the circuit of this AQECC is 59.5%

lower than that of the 9-qutrit QECC.

• Chapter 7 provides the necessary condition for the design of a ternary QECC
as a carry-over of a binary one. It provides reasons why the previous attempts
to design ternary QECC from binary one could not correct errors in a single
step. Using the necessary condition, it shows the design of 9-qutrit, 7-qutrit,
and 5-qutrit codes from their respective binary QECC, which can correct
errors in a single step. In particular, designing the circuit of the 9-qutrit
QECC maintaining this criterion achieves a reduction in the quantum cost
by 51.9% as compared to the design of Chapter 6.

• Chapter 8 deals with the challenges of extending methods from near-term
quantum computation to the error-corrected era. In particular, this chapter
looks at the decomposition of Toffoli gates using intermediate qutrits. This
method, without error correction, is shown to provide an exponential reduc-
tion in the depth of the decomposed circuit. This chapter first points out the
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changes that need to be made to equip this method with error correction. For
example, any qubit, that requires access to intermediate qutrits at any com-
putation cycle, must be treated as a qutrit throughout for successful error
correction. Finally, this chapter provides the analytical criterion for which
the qutrit-assisted decomposition, in conjunction with error correction and
concatenation, requires a lower gate count than qubit-only decomposition.

9.2 Future directions

There are several promising directions for future research based on the key contri-
butions of this thesis.

The method for elimination of CNOT gates has been studied only for the context
of QAOA in this thesis. However, such elimination methods are useful for any
quantum circuits since they can immediately lower the noise. One future direction
is to study similar methods for the circuits of other domains of importance such
as VQE, Quantum machine learning, etc.

Chapter 7 provides a necessary condition for the design of ternary QECCs from
binary ones. Recently, efficient preparation of qudits up to 5 dimensions, which
have the same noise probability as qubits, has been proposed. Using higher dimen-
sions can show significant improvement in the qubit count for certain problems. It
may be worthwhile to study similar necessary conditions for the design of higher
dimensional QECCs as carry-over of binary ones. It is expected that the necessary
criteria will be very similar, with some room for freedom in circuit design. It is
of interest to verify which of those design mechanisms leads to the lowest gate
count, or if they are all equivalent in that respect. Moreover, this study is specific
to concatenation stabilizer codes. Extension of other codes, such as topological
codes, and LDPC codes, to ternary systems remains an open area of study.

The qubit-qutrit decomposition has a plethora of future prospects. It will be
interesting to have a fault-tolerant design for some problem of interest, which
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requires qubit-qutrit decomposition of Toffoli gates. Such a study will provide
more concrete evidence of whether this method is useful in the fault-tolerant era
of quantum computing or not. Eventually, it was shown in that chapter that some
gates, required for qubit-qutrit decomposition, are not transversal in Steane Code.
It is of utmost importance to study the non-transversal implementation of those
gates for the Steane Code and to find some QECC where it is transversal.

These future studies are expected to provide further insights into improving the
performance of quantum computation both in the near-term and long-term. Con-
tinued research efforts in these future directions will pave the way for more prac-
tical use-cases of quantum computation, and enable the design of fault-tolerant
quantum computing for the future.
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Proofs

A.1 Proof of Theorem 3.4

Let us consider the action of the operators U1 and U2 on any edge (j, k).

U1 | i = CNOTjk(Ij ⌦Rz(✓1)k)(CNOTjk) | i

=
X

x1,...,xn

CNOTjk(Ij ⌦Rz(✓1)k)(CNOTjk)e
i�(xS) |x1, ..., xni

=
X

x1,...,xn

CNOTjk(Ij ⌦Rz(✓1)k)e
i�(xS) |x1, .., x

0
k = xj � xk, ., xni

=
X

x1,...,xn

ei(�(xS)�
✓1
2 (xj�xk))CNOTjk |x1, .., x

0
k = xj � xk, ., xni

=
X

x1,...,xn

ei(�(xS)�
✓1
2 (xj�xk)) |x1, ..., xni (A.1)

where ei�(xS) is the cumulative effect of operators acting on previous edges; it is 0
if (j, k) is the first one in the circuit. We have dropped the normalization constant

i
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for brevity.

Similarly,
U2 | i = CNOTjk(Ij ⌦Rz(✓1)xk

) | i

= CNOTjk

X

x1,...,xn

ei((�(xS))�
✓1
2 xk) |x1, ..., xni

=
X

x1,...,xn

ei((�(xS))�
✓1
2 xk) |x1, .., xj � xk, .., xni (A.2)

where the qubit in the kth position changes to xj�xk due to the CNOTjk operation.
By substituting x0

k = xj � xk in the above equation, we get

U2 | i =
X

x1,...,xn

ei((�(xS))�
✓1
2 xk) |x1, .., xj � xk, .., xni

=
X

x1,..,x0
k,..,xn

ei((�(xS))�
✓1
2 (xj�x0

k)) |x1, .., x
0
k, .., xni

=
X

x1,..,xk,..,xn

ei((�(xS))�
✓1
2 (xj�xk)) |x1, .., xk, .., xni (A.3)

Here since k /2 S, the substitution in the second last step, does not change the
phase ei�(xS). The last step is valid since x0

k is a running index and hence can be
changed to xk. Thus Eq. (A.1) and Eq. (A.3) are identical.

A.2 Proof of Corollary 3.4

The first time we consider an edge adjacent to a vertex j, where j /2 xS, (see
Theorem 3.4) the relative phase �(xS) does not depend on j. Thus it satisfies the
condition of Theorem 3.4 and allows optimization of the operator.

On the other hand, if the vertex j occurs as part of an edge operator already



iii APPENDIX A. APPENDIX

applied, the phase on the basis state � can potentially depend on S, i.e. j 2 S.
By not allowing it to act as target, we satisfy the conditions of Theorem 3.4.

A.3 Proof of Lemma 3.5

Let us assume that there exists some other method to obtain a circuit with a lower
depth. It is evident that all the edges, which can be operated on simultaneously,
correspond to the same color in the graph. Therefore, if a circuit with a lower
depth exists, then we can color the edges in the same layer with the same color,
and obtain a better edge coloring of the input graph. However, we already assumed
an optimal edge coloring, and this contradicts our assumption.

A.4 Proof of Theorem 3.5

For every edge (u, v) in the first layer, both the vertices are adjacent to an edge for
the first time, i.e., both u, v /2 S. Therefore, it satisfies the criteria of Corollary 3.4,
and hence can be optimized. In fact, any one of the qubits corresponding to the
two vertices can be selected as the control for the CNOT operation.

A.5 Proof of Theorem 3.6

We prove this by the method of induction. Let u be the vertex from which the
DFS tree starts. Then u is being operated on for the first time, and, hence, can
act both as a control/target for the CNOT operation corresponding to the first
edge (Corollary 3.4). Choose u to be the control.

Base case: If v is the vertex that is discovered from u via the edge (u, v), then
choosing u as the control and v as the target satisfies Corollary 3.4. Therefore,
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the edge (u, v) can be optimized.

Induction hypothesis: Let the DFS tree has been constructed upto some vertex
j, and every edge (e1, e2) in this DFS tree so far can be optimized, i.e. e1 acts as
the control and e2 as the target.

Induction step: Let the next vertex in the DFS tree, that is discovered from
some vertex i, is k. From DFS algorithm, the vertex i must have been discovered
in some previous step. Since vertex k was not previously discovered, so k /2 xS

and hence the edge (i, k) can be optimized if we select i to be the control and k

as the target.

A.6 Proof of Theorem 3.6

Let us assume that there is some method by which at least n edges can be op-
timized. Now, the connected subgraph which contains all the n vertices and at
least n optimized edges must contain a cycle. Let (u, v) be an edge of this cycle,
i.e., if (u, v) is removed then the residual graph is a tree (in case there are > n

edges, the removal of edges can be performed recursively till such an edge (u, v)

is obtained whose removal makes the residual graph a tree). For this edge (u, v),
both the vertices u and v are endpoints of some other optimized edges as well.
Therefore, from Corollary 3.4 both u and v must act as the control for the CNOT
gate corresponding to the edge (u, v) in order for this edge to be optimized, which
is not possible. Therefore, it is not possible to optimize for more than n� 1 edges.

A.7 Proof of Lemma 4.2.2

Let r be the randomly chosen root vertex of the spanning tree. Therefore, the
choice of root does not require any computational time. Since � is the maximum
degree of the graph, r can have at most � neighbours. Finding the maximum cost



v APPENDIX A. APPENDIX

function among these neighbours require O(�) time. Subsequent vertices in the
spanning tree can have at most �� 1 neighbours since one of its neighbour must
be its parent in the spanning tree. Therefore, the total time requirement in all the
steps is

W  � (to create the spanning tree upto two vertices)

 �+ (�� 1) (to create the spanning tree upto three vertices)

 3�� 2 (to create the spanning tree upto four vertices)
...

Therefore,

W 

n�1X

i=1

(i ·�� (i� 1))

= � ·

n�1X

i=1

i�
n�1X

i=1

(i� 1)

= O(� · n2)

A.8 DEVT with Measurement Errors

The results in fig. 5.5 establish numerically that DEVT mitigates measurement er-
ror better than MEMCLS, and padding MEMCLS with DEVT does not improve
the result any further. In other words, DEVT is self sufficient for measurement
error mitigation. Here it is shown analytically for linear inversion method of to-
mography that tomography with measurement error results in a noisy density
matrix (or Choi matrix) of the form E(⇢) = (1 � p)⇢ + p⇢err. Therefore, DEVT
alone is sufficient to mitigate the effect of measurement error.

Consider that {⇧j} is a tomographically complete basis, with each ⇧j being a
projector. However, due to measurement error, the projectors are replaced by
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POVMs of the form ⇧̃j = (1�p)⇧j +p⇧0
j, p being the probability of measurement

error, and ⇧0
j is the linear combination of one or more unwanted projectors forming

the POVM. If ⇢ be the state which is being measured, then the probability of
success after measuring ⇧̃j is

p̃j = Tr[⇧̃j⇢]

= (1� p)Tr[⇧j⇢] + pTr[⇧0
j⇢]

= (1� p)pj + pp0j

The recreation of the state is carried out by creating the dual basis |Djii =

(
P

j |⇧jiihh⇧j|)�1
|⇧jii [DMP00]. Since, it is not expected that the exact form of

POVM due to noise is known, it can be assumed that the dual basis remains the
same irrespective of the noise. Therefore, the recreated state ⇢̃

⇢̃ =
X

j

p̃jDj

= (1� p)
X

j

pjDj + p
X

j

p0jDj

= (1� p)⇢+ p⇢err

Therefore, as long as the largest eigenvalue of ⇢̃ has a significant overlap with ⇢,
DEVT is sufficient to reestablish the error-free state ⇢ from the state ⇢̃ created
due to measurement error. In other words, DEVT alone is sufficient to mitigate
measurement errors.

A.9 DEVT with depolarizing noise

Effect of depolarization error on a quantum state ⇢ is denoted as in eq. (5.17).
Note that the effect of depolarization noise model is readily similar to the required
effect of noise for applying DEVT, as shown in eq. (5.11) [Koc21]. A depolarization
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channel remains depolarization even after m � 1 layers of gates. A single qubit
state in a depolarization channel, after m layers of gates, has the form ⇢noisy =

(1�p)m⇢+[1�(1�p)m] I2 , where, for simplicity, p is assumed to be the probability
of error for each gate. Therefore, for a n-qubit circuit with depth m, the effective
erroneous state can be represented as

⇢nnoisy = ⌦
n
i=1⇢

noisy
i (A.4)

= ⌦
n
i=1(1� p)m⇢i + [1� (1� p)m]

I
2

= (1� p)n.m⇢nout + ⇢err.

Note that ⇢err is a summation of multiple density matrices. It is not possible
to ascertain the largest eigenvalue of ⇢err without explicit information of ⇢i, 8 i.
Hence, the only consideration possible is the worst case scenario that the largest
eigenvalue of ⇢err  1. Therefore, putting �  ( 1

(1�p)n.m � 1), an upper bound of
the coherent mismatch c is obtained for depolarization noise model.

c 
�2

4
=

1

4
(

1

(1� p)n.m
� 1)2 (A.5)

=
1

4
[
1� (1� n.m.p+O(n2m2p2))

1� n.m.p+O(n2m2p2)
]2

⇡
1

4
[

n.m.p

1� n.m.p
]2 = O((n.m.p)2)

A.10 DEVT with Pauli noise

This section briefly touches upon the seemingly worse performance of DEVT for
pauli noise as opposed to that of depolarization noise. The evolution of a density
matrix under pauli noise is shown in eq. (5.18), which conform to the form required
for DEVT as in eq. (5.11). However, consider a circuit which applies k layers of
gates on the input density matrix ⇢in. The ideal output density matrix ⇢out is,
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thus, given by
⇢out = GkGk�1 . . . G1⇢inG

†
1 . . . G

†
k�1G

†
k

Considering noisy implementation of each gate layer Gi to be G0
i = PiGi, where

Pi consists of one or more pauli errors, the noisy output density matrix, under the
action of such a noisy channel, becomes

⇢noisyout = ⇧k
i=1PiGi⇢inG

†
iPi

Since, in general, each Gi does not necessarily consist of Clifford gates only, the
following scenario is obtained:

⇢noisyout = PkPk�1GkGk�1⇧
k�2
i=i (PiGi⇢inG

†
iPi)G

†
k�1G

†
kPk�1Pk + [Pk�1, Gk]

In other words, the noisy output density matrix takes the eventual form

⇢noisyout = ⇧k
i=1Pi(⇧

k
j=1Gj⇢inG

†
j)Pi + comm (A.6)

where comm denotes all the commutator terms, i.e., stochastic Pauli noise on
each gate does not create a resultant stochastic Pauli circuit error. Therefore, the
eventual form of the noisy density matrix deviates from eq. (5.11), resulting in a
poorer performance of DEVT for this noise model.

A.11 Proof of Theorem 8.3

Proof. Let the accuracy obtained using only qubit and qubit-qutrit decomposition
after k levels of concatenations be ✏2 and ✏3 respectively, where ✏3 = � · ✏2. Let
1
c3

and 1
c2

be the thresholds of the ternary and binary QECCs used for encoding.
Then,
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1

c3
(c3.p2,3)

2k =
�

c2
(c2.p2)

2k

)
c2
c3
(c3.p2,3)

2k = �(c2.p2)
2k

) c(c3.p2,3)
2k = �(c2.p2)

2k where c =
c2
c3

) log(c) + 2klog(c3.p2,3) = log(�) + 2k.log(c2.p2)

) log(�)� log(c) = 2k[log(c3.p2,3)� log(c2.p2)]

) log(�)� log(c) = 2klog
p2,3
c.p2

) log(�) = 2klog
p2,3
c.p2

+ log(c) (A.7)

A.12 Proof of Theorem 8.4

Proof. The accuracy obtained after k levels of concatenation with a QECC having
threshold 1

c is 1
c (c.p)

2k , where p is the probability of error. In the current setting,
both types of decomposition are attaining the same accuracy after k2 and k3 levels
of concatenations. If 1

c3
and 1

c2
be the thresholds for ternary and binary QECCs

used, then,
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1

c3
(c3.p2,3)

2k3 =
1

c2
(c2.p2)

2k2

)
c2
c3
(c3.p2,3)

2k3 = �(c2.p2)
2k2

) c(c3.p2,3)
2k3 = �(c2.p2)

2k2 where c =
c2
c3

) log(c) + 2k3log(c3.p2,3) = 2k2log(c2.p2)

) 2k3log(c3.p2,3) = 2k2log(c2.p2)� log(c)

) 2k3�k2log(c3.p2,3) = log(c2.p2)�
1

2k2
log(c)

) 2k3�k2log(c3.p2,3) = log(c2.p2)� log(c)
1

2k2

) 2k3�k2 =
log(c2.p2)� log(c)

1

2k2

log(c3.p2,3)

) k3 � k2 = log(
log(c2.p2)� log(c)

1

2k2

log(c3.p2,3)
)

) k3 = k2 + log(
log(c2.p2)�

1
2k2

log( c2c3 )

log(�) + log(c3.p2)
) where p2,3 = �.p2

A.13 Proof of Theorem 8.5

Proof. Qutrit-assisted decomposition is beneficial when the overall gate count of
such decomposition is lower than that of the qubit decomposition. In other words,

(
X

g2G2,3

gng)
k3  (

X

g2G2

gng)
k2
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Now,

(
X

g2G2,3

gng)
k3  (

X

g2G2

gng)
k2

) k3log(
X

g2G2,3

gng)  k2log(
X

g2G2

gng)

)
k3
k2


log(
P

g2G2
gng)

log(
P

g2G2,3
gng)

)
k3
k2
� 1 

log(
P

g2G2
gng)

log(
P

g2G2,3
gng)

� 1

) k3 � k2  k2 ·
log(

P
g2G2

gngP
g2G2,3

gng
)

log(
P

g2G2,3
gng)

(A.8)

By Theorem 8.3,
k3 = k2 + log(

log(c2.p2)� 1

2k2
log(

c2
c3

)

log(�)+log(c3.p2)
). Substituting this in Eq. (A.8),

log(
log(c2.p2)�

1
2k2

log( c2c3 )

log(�) + log(c3.p2)
))  k2 ·

log
P

g2G2
(gng)P

g2G2,3
(gng)

log
P

g2G2,3
(gng)



Bibliography

[AADQ22] R Ayanzadeh, N Alavisamani, P Das, and M Qureshi. Frozenqubits:
Boosting fidelity of qaoa by skipping hotspot nodes. arXiv preprint
arXiv:2210.17037 [quant-ph], 2022.

[AAKV01] D Aharonov, A Ambainis, J Kempe, and U Vazirani. Quantum
walks on graphs. In Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, STOC ’01, pages 50–59, New
York, NY, USA, 2001. ACM.

[AASG20] M Alam, A Ash-Saki, and S Ghosh. Accelerating quantum ap-
proximate optimization algorithm using machine learning. In 2020
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 686–689. IEEE, 2020.

[aer22] Qiskit aer. https://github.com/Qiskit/qiskit-aer, 2022.

[AL18] T Albash and D A Lidar. Adiabatic quantum computation. Reviews
of Modern Physics, 90(1):015002, 2018.

[AMMR13] M Amy, D Maslov, M Mosca, and M Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(6):818–830, 2013.

xii

https://github.com/Qiskit/qiskit-aer


xiii BIBLIOGRAPHY

[APZB21] V Akshay, H Philathong, I Zacharov, and J Biamonte. Reachability
deficits in quantum approximate optimization of graph problems.
Quantum, 5:532, 2021.

[ARS+21] T Ayral, F Régent, Z Saleem, Y Alexeev, and M Suchara. Quantum
divide and compute: exploring the effect of different noise sources.
SN Computer Science, 2(3):1–14, 2021.

[ASZ+21] A Abbas, D Sutter, C Zoufal, A Lucchi, A Figalli, and S Woerner.
The power of quantum neural networks. Nature Computational
Science, 1(6):403–409, 2021.

[B+19] S Bravyi et al. Obstacles to state preparation and varia-
tional optimization from symmetry protection. arXiv preprint
arXiv:1910.08980, 2019.

[BBB+23] Luciano B, Agata M B, Sergey B, et al. Circuit Knit-
ting Toolbox. https://github.com/Qiskit-Extensions/
circuit-knitting-toolbox, 2023.

[BBD+09] H J Briegel, D E Browne, W Dür, R Raussendorf, and M Van den
Nest. Measurement-based quantum computation. Nature Physics,
5(1):19–26, 2009.

[BBMR20] A Bhattacharjee, C Bandyopadhyay, B Mondal, and H Rahaman.
A survey report on recent progresses in nearest neighbor realization
of quantum circuits. In Soft Computing: Theories and Applications,
pages 57–68. Springer, 2020.

[BDG+20] J M Baker, C Duckering, P Gokhale, N C Brown, K R Brown, and
F T Chong. Improved quantum circuits via intermediate qutrits.
ACM Transactions on Quantum Computing, 1(1), October 2020.

[BDG+22] S Bravyi, O Dial, J M Gambetta, D Gil, and Z Nazario. The future
of quantum computing with superconducting qubits. Journal of
Applied Physics, 132(16):160902, 2022.

https://github.com/Qiskit-Extensions/circuit-knitting-toolbox
https://github.com/Qiskit-Extensions/circuit-knitting-toolbox


BIBLIOGRAPHY xiv

[BDS+23] S Basu, A Das, A Saha, A Chakrabarti, and S Sur-Kolay. Fragqc:
An efficient quantum error reduction technique using quantum cir-
cuit fragmentation. arXiv preprint arXiv:2310.00444, 2023.

[BMKT22] E Berg, Z K Minev, A Kandala, and K Temme. Probabilistic error
cancellation with sparse pauli-lindblad models on noisy quantum
processors. arXiv preprint arXiv:2201.09866, 2022.

[BMSSK23] D Bhoumik, R Majumdar, A Saha, and S Sur-Kolay. Distributed
scheduling of quantum circuits with noise and time optimization.
arXiv preprint arXiv:2309.06005, 2023.

[BNR+20] P Barkoutsos, G Nannicini, A Robert, I Tavernelli, and S Woerner.
Improving variational quantum optimization using cvar. Quantum,
4:256, 2020.

[BPK23] S Brandhofer, I Polian, and K Krsulich. Optimal partitioning of
quantum circuits using gate cuts and wire cuts. arXiv preprint
arXiv:2308.09567, 2023.

[BPP00] H Bechmann-Pasquinucci and A Peres. Quantum cryptography
with 3-state systems. Phys. Rev. Lett., 85:3313–3316, Oct 2000.

[BPS23] L Brenner, C Piveteau, and D Sutter. Optimal wire cutting with
classical communication. arXiv preprint arXiv:2302.03366, 2023.

[BSCSK21] S Basu, A Saha, A Chakrabarti, and S Sur-Kolay. i-qer: An intel-
ligent approach towards quantum error reduction. ACM Transac-
tions on Quantum Computing, 2021.

[BSK+21] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C Mckay,
and Jay M Gambetta. Mitigating measurement errors in multiqubit
experiments. Physical Review A, 103(4):042605, 2021.

[BW20a] G Barron and C Wood. Measurement error mitigation for varia-
tional quantum algorithms. arXiv preprint arXiv:2010.08520, 2020.



xv BIBLIOGRAPHY

[BW20b] L Burgholzer and R Wille. Advanced equivalence checking for quan-
tum circuits. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 2020.

[BWP+17] J Biamonte, P Wittek, N Pancotti, P Rebentrost, N Wiebe, and
S Lloyd. Quantum machine learning. Nature, 549(7671):195–202,
2017.

[C+19] Y. Cao et al. Quantum chemistry in the age of quantum computing.
Chemical reviews, 119(19):10856–10915, 2019.

[CA+21] M Cerezo, A Arrasmith, et al. Variational quantum algorithms.
Nature Reviews Physics, 3(9):625–644, 2021.

[CBB+22] Z Cai, R Babbush, S C Benjamin, S Endo, W J. Huggins, Y Li,
J R McClean, and T E O’Brien. Quantum error mitigation. arXiv
preprint arXiv:2210.00921, 2022.

[CEB20] J Cook, S Eidenbenz, and A Bärtschi. The quantum alternating
operator ansatz on maximum k-vertex cover. In 2020 IEEE In-
ternational Conference on Quantum Computing and Engineering
(QCE), pages 83–92. IEEE, 2020.

[CFG+22] M Cain, E Farhi, S Gutmann, D Ranard, and E Tang. The qaoa
gets stuck starting from a good classical string. arXiv preprint
arXiv:2207.05089, 2022.

[Cha97] H. F. Chau. Correcting quantum errors in higher spin systems.
Phys. Rev. A, 55:R839–R841, Feb 1997.

[CKYZ20] C Chamberland, A Kubica, T J Yoder, and G Zhu. Triangular color
codes on trivalent graphs with flag qubits. New Journal of Physics,
22(2):023019, 2020.

[CLKAGG22] A Cervera-Lierta, M Krenn, A Aspuru-Guzik, and A Galda. Ex-
perimental high-dimensional greenberger-horne-zeilinger entangle-
ment with superconducting transmon qutrits. Phys. Rev. Applied,
17:024062, Feb 2022.



BIBLIOGRAPHY xvi

[CLRS09] T Cormen, C Leiserson, R Rivest, and C Stein. Introduction to
algorithms. MIT press, 2009.

[CRAB21] E Campos, D Rabinovich, V Akshay, and J Biamonte. Training sat-
uration in layerwise quantum approximate optimization. Physical
Review A, 104(3):L030401, 2021.

[CS96] A R Calderbank and P W Shor. Good quantum error-correcting
codes exist. Physical Review A, 54(2):1098, 1996.

[CZY+20] C Chamberland, G Zhu, T J Yoder, J B Hertzberg, and A W Cross.
Topological and subsystem codes on low-degree graphs with flag
qubits. Physical Review X, 10(1):011022, 2020.

[DKRS06] T G Draper, S A Kutin, E M Rains, and K M Svore. A logarithmic-
depth quantum carry-lookahead adder. Quantum Info. Comput.,
6(4):351–369, jul 2006.

[DMN13] S J Devitt, W J Munro, and K Nemoto. Quantum error correction
for beginners. Reports on Progress in Physics, 76(7):076001, 2013.

[DMP00] G M D’Ariano, L Maccone, and M Paris. Orthogonality relations
in quantum tomography. Physics Letters A, 276(1):25–30, 2000.

[DW11] Y Di and H Wei. Elementary gates for ternary quantum logic cir-
cuit. arXiv preprint arXiv:1105.5485, 2011.

[EBL18] S Endo, S Benjamin, and Y Li. Practical quantum error mitigation
for near-future applications. Physical Review X, 8(3):031027, 2018.

[ECBY21] S Endo, Z Cai, S Benjamin, and X Yuan. Hybrid quantum-classical
algorithms and quantum error mitigation. Journal of the Physical
Society of Japan, 90(3):032001, 2021.

[EK09] B Eastin and E Knill. Restrictions on transversal encoded quantum
gate sets. Physical review letters, 102(11):110502, 2009.



xvii BIBLIOGRAPHY

[EMG+22] A Eddins, M Motta, T P Gujarati, S Bravyi, A Mezzacapo, C Had-
field, and S Sheldon. Doubling the size of quantum simulators by
entanglement forging. PRX Quantum, 3(1):010309, 2022.

[EMW21] D J Egger, J Mareček, and S Woerner. Warm-starting quantum
optimization. Quantum, 5:479, 2021.

[F+18] R P Feynman et al. Simulating physics with computers. Int. J.
Theor. Phys, 21(6/7), 2018.

[FB+18] M Fingerhuth, T Babej, et al. A quantum alternating operator
ansatz with hard and soft constraints for lattice protein folding.
arXiv preprint arXiv:1810.13411, 2018.

[FGG+01] E Farhi, J Goldstone, S Gutmann, J Lapan, A Lundgren, and
D Preda. A quantum adiabatic evolution algorithm applied to ran-
dom instances of an np-complete problem. Science, 292(5516):472–
475, 2001.

[FGG14] E Farhi, J Goldstone, and S Gutmann. A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[FGG20] E Farhi, D Gamarnik, and S Gutmann. The quantum approximate
optimization algorithm needs to see the whole graph: A typical
case. arXiv preprint arXiv:2004.09002, 2020.

[FGGS00] E Farhi, J Goldstone, S Gutmann, and M Sipser. Quantum com-
putation by adiabatic evolution. arXiv preprint quant-ph/0001106,
2000.

[FH16] E. Farhi and A. Harrow. Quantum supremacy through the
quantum approximate optimization algorithm. arXiv preprint
arXiv:1602.07674, 2016.

[FMMC12] A G Fowler, M Mariantoni, J M Martinis, and A N Cleland. Surface
codes: Towards practical large-scale quantum computation. Physi-
cal Review A, 86(3):032324, 2012.



BIBLIOGRAPHY xviii

[FMT+22] L E Fischer, D Miller, F Tacchino, P K Barkoutsos, D J Egger,
and I Tavernelli. Ancilla-free implementation of generalized mea-
surements for qubits embedded in a qudit space. arXiv preprint
arXiv:2203.07369, 2022.

[FSG09] A G Fowler, A M Stephens, and P Groszkowski. High-threshold
universal quantum computation on the surface code. Physical Re-
view A, 80(5):052312, 2009.

[GBD+19] P Gokhale, J M Baker, C Duckering, N C Brown, K R Brown,
and F T Chong. Asymptotic improvements to quantum circuits
via qutrits. In Proceedings of the 46th International Symposium on
Computer Architecture, pages 554–566, 2019.

[GBD+20] P Gokhale, J Baker, C Duckering, F Chong, N Brown, and
K Brown. Extending the frontier of quantum computers with
qutrits. IEEE Micro, 40(3):64–72, 2020.

[GBL+23] A Gonzales, A Babu, J Liu, Z Saleem, and M Byrd. Fault tolerant
quantum error mitigation. 2023.

[GCK+21] A Galda, M Cubeddu, N Kanazawa, P Narang, and N Earnest-
Noble. Implementing a ternary decomposition of the toffoli gate on
fixed-frequencytransmon qutrits. arXiv preprint arXiv:2109.00558,
2021.

[GD17] Daniel Greenbaum and Zachary Dutton. Modeling coherent errors
in quantum error correction. Quantum Science and Technology,
3(1):015007, 2017.

[GEBM19] H Grimsley, S Economou, E Barnes, and N Mayhall. An adaptive
variational algorithm for exact molecular simulations on a quantum
computer. Nature communications, 10(1):1–9, 2019.

[GJAE+20] P Gokhale, A Javadi-Abhari, N Earnest, Y Shi, and F T Chong. Op-
timized quantum compilation for near-term algorithms with open-



xix BIBLIOGRAPHY

pulse. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 186–200. IEEE, 2020.

[GKD18] F Glover, G Kochenberger, and Y Du. A tutorial on formulating
and using qubo models. arXiv preprint arXiv:1811.11538, 2018.

[GKHD22] F Glover, G Kochenberger, R Hennig, and Y Du. Quantum bridge
analytics i: a tutorial on formulating and using qubo models. Annals
of Operations Research, pages 1–43, 2022.

[GKW+18] M Grassl, L Kong, Z Wei, Z Q Yin, and B Zeng. Quantum error-
correcting codes for qudit amplitude damping. IEEE Transactions
on Information Theory, 64(6):4674–4685, 2018.

[GM62] M Gell-Mann. Symmetries of baryons and mesons. Phys. Rev.,
125:1067–1084, Feb 1962.

[Got97] D Gottesman. Stabilizer codes and quantum error correction. arXiv
preprint quant-ph/9705052, 1997.

[Got98] D Gottesman. Fault-tolerant quantum computation with higher-
dimensional systems. In NASA International Conference on Quan-
tum Computing and Quantum Communications, pages 302–313.
Springer, 1998.

[Got99] D Gottesman. Fault-Tolerant Quantum Computation with Higher-
Dimensional Systems, pages 302–313. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[Gro96a] L K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-eighth Annual ACM Sympo-
sium on Theory of Computing (STOC), STOC ’96, pages 212–219,
New York, NY, USA, 1996. ACM.

[Gro96b] L K Grover. A fast quantum mechanical algorithm for database
search. STOC ’96, pages 212–219, New York, NY, USA, 1996.
ACM.



BIBLIOGRAPHY xx

[GS18] D J Griffiths and D F Schroeter. Introduction to quantum mechan-
ics. Cambridge university press, 2018.

[GSL18] A. Garcia-Saez and J. I. Latorre. Addressing hard classical problems
with adiabatically assisted variational quantum eigensolvers. arXiv
preprint arXiv:1806.02287, 2018.

[GTW09] A Gilchrist, D R Terno, and C J Wood. Vectorization of quantum
operations and its use. arXiv preprint arXiv:0911.2539, 2009.

[GW95] M Goemans and D Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefi-
nite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

[GWYZ14] M Grassl, Z Wei, Z Q Yin, and B Zeng. Quantum error-correcting
codes for amplitude damping. In 2014 IEEE International Sympo-
sium on Information Theory, pages 906–910. IEEE, 2014.

[H+19] A Héctor et al. Qiskit: An open-source framework for quantum
computing, 2019.

[Had18] S A Hadfield. Quantum algorithms for scientific computing and
approximate optimization. Columbia University, 2018.

[HHL09] A W Harrow, A Hassidim, and S Lloyd. Quantum algorithm for
linear systems of equations. Physical review letters, 103(15):150502,
2009.

[HKP20] H Huang, R Kueng, and J Preskill. Predicting many properties of
a quantum system from very few measurements. Nature Physics,
16(10):1050–1057, 2020.

[HMM85] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in
Digital Logic. London; Toronto: Academic Press, 1985.



xxi BIBLIOGRAPHY

[HSN+21] M Harrigan, K Sung, M Neeley, K Satzinger, F Arute, K Arya,
J Atalaya, J Bardin, R Barends, S Boixo, et al. Quantum ap-
proximate optimization of non-planar graph problems on a planar
superconducting processor. Nature Physics, 17(3):332–336, 2021.

[HWO+19] S Hadfield, Z Wang, B O’Gorman, E G Rieffel, D Venturelli, and
R Biswas. From the quantum approximate optimization algorithm
to a quantum alternating operator ansatz. Algorithms, 12(2):34,
2019.

[ibm22] IBM Quantum. https://quantum-computing.ibm.com/, 2022.

[IM07] L Ioffe and M Mézard. Asymmetric quantum error-correcting codes.
Phys. Rev. A, 75:032345, Mar 2007.

[Jon13] C Jones. Low-overhead constructions for the fault-tolerant toffoli
gate. Phys. Rev. A, 87:022328, Feb 2013.

[KE+23] Y Kim, A Eddins, et al. Evidence for the utility of quantum com-
puting before fault tolerance. Nature, 618(7965):500–505, 2023.

[KG15] A Katabarwa and M R Geller. Logical error rate in the pauli twirling
approximation. Scientific reports, 5(1):1–6, 2015.

[KKD15] A Kalev, R L Kosut, and I H Deutsch. Quantum tomography proto-
cols with positivity are compressed sensing protocols. npj Quantum
Information, 1(1):15018, 2015.

[KLV00] E Knill, R Laflamme, and L Viola. Theory of quantum error cor-
rection for general noise. Phys. Rev. Lett., 84:2525–2528, Mar 2000.

[KMS+23] T Khare, R Majumdar, R Sangle, A Ray, P V Seshadri,
and Y Simmhan. Parallelizing quantum-classical workloads:
Profiling the impact of splitting techniques. arXiv preprint
arXiv:2305.06585, 2023.

https://quantum-computing.ibm.com/


BIBLIOGRAPHY xxii

[KMT+17] A Kandala, A Mezzacapo, K Temme, M Takita, M Brink, J M
Chow, and J M Gambetta. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature,
549(7671):242–246, 2017.

[Koc21] B Koczor. The dominant eigenvector of a noisy quantum state. New
Journal of Physics, 23(12):123047, 2021.

[LB17] Y Li and S C Benjamin. Efficient variational quantum simulator
incorporating active error minimization. Phys. Rev. X, 7:021050,
Jun 2017.

[LDX19] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit map-
ping problem for nisq-era quantum devices. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1001–
1014, 2019.

[Lit19] D Litinski. A game of surface codes: Large-scale quantum comput-
ing with lattice surgery. Quantum, 3:128, 2019.

[LJJG22] J Larkin, M Jonsson, D Justice, and G G Guerreschi. Evaluation
of qaoa based on the approximation ratio of individual samples.
Quantum Science and Technology, 2022.

[LMH+22] A Lowe, M Medvidović, A Hayes, L J O’Riordan, T R Bromley, J M
Arrazola, and N Killoran. Fast quantum circuit cutting with ran-
domized measurements. arXiv preprint arXiv:2207.14734 [quant-
ph], 2022.

[LMPZ96] R Laflamme, C Miquel, J P Paz, and W H Zurek. Perfect quantum
error correcting code. Phys. Rev. Lett., 77:198–201, Jul 1996.

[Low23] P J Low. Control and readout of high-dimensional trapped ion
qudits. 2023.



xxiii BIBLIOGRAPHY

[MBGSK18] R Majumdar, S Basu, S Ghosh, and S Sur-Kolay. Quantum error-
correcting code for ternary logic. Phys. Rev. A, 97:052302, May
2018.

[MBMSK16] R Majumdar, S Basu, P Mukhopadhyay, and S Sur-Kolay. Error
tracing in linear and concatenated quantum circuits. arXiv preprint
arXiv:1612.08044, 2016.

[MBSK17] R Majumdar, S Basu, and S Sur-Kolay. A method to reduce re-
sources for quantum error correction. In International Conference
on Reversible Computation, pages 151–161. Springer, 2017.

[MF21a] K Mitarai and K Fujii. Constructing a virtual two-qubit gate
by sampling single-qubit operations. New Journal of Physics,
23(2):023021, 2021.

[MF21b] K Mitarai and K Fujii. Overhead for simulating a non-local channel
with local channels by quasiprobability sampling. Quantum, 5:388,
2021.

[MG92] J Misra and D Gries. A constructive proof of vizing’s theorem. In
Information Processing Letters. Citeseer, 1992.

[MGE12] E Magesan, J M Gambetta, and J Emerson. Characterizing quan-
tum gates via randomized benchmarking. Phys. Rev. A, 85:042311,
Apr 2012.

[MRBAG16] J McClean, J Romero, R Babbush, and A Aspuru-Guzik. The the-
ory of variational hybrid quantum-classical algorithms. New Jour-
nal of Physics, 18(2):023023, 2016.

[MS00] A Muthukrishnan and C. R. Stroud. Multivalued logic gates for
quantum computation. Phys. Rev. A, 62:052309, Oct 2000.

[MSK20] R Majumdar and S Sur-Kolay. Approximate ternary quantum error
correcting code with low circuit cost. In 2020 IEEE 50th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL), pages 34–39.
IEEE, 2020.



BIBLIOGRAPHY xxiv

[MSK22] R Majumdar and S Sur-Kolay. Designing ternary quantum error
correcting codes from binary codes. Journal of Multiple-Valued
Logic & Soft Computing, To Appear, 2022.

[MSK23] R Majumdar and S Sur-Kolay. Designing ternary quantum error
correcting codes from binary codes. Journal of Multiple-Valued
Logic & Soft Computing, 40, 2023.

[mth22] Mthree. https://github.com/Qiskit-Partners/mthree, 2022.

[MWS+17a] D McKay, C Wood, S Sheldon, J Chow, and J Gambetta. Efficient
z gates for quantum computing. Physical Review A, 96(2):022330,
2017.

[MWS+17b] D C. McKay, C J. Wood, S Sheldon, J M. Chow, and J M. Gam-
betta. Efficient z gates for quantum computing. Phys. Rev. A,
96:022330, Aug 2017.

[NC02] M A Nielsen and I Chuang. Quantum computation and quantum
information, 2002.

[NC10] M A Nielsen and I L Chuang. Quantum computation and quantum
information. Cambridge university press, 2010.

[NKSG21] P D. Nation, H Kang, N Sundaresan, and J M Gambetta. Scalable
mitigation of measurement errors on quantum computers. PRX
Quantum, 2(4):040326, 2021.

[P+22] L Postler et al. Demonstration of fault-tolerant universal quantum
gate operations. Nature, 605(7911):675–680, 2022.

[Ped23] E Pednault. An alternative approach to optimal wire cutting with-
out ancilla qubits. arXiv preprint arXiv:2303.08287, 2023.

[Per97] Asher Peres. Quantum theory: concepts and methods, volume 72.
Springer, 1997.

https://github.com/Qiskit-Partners/mthree


xxv BIBLIOGRAPHY

[PHOW20] T Peng, A W Harrow, M Ozols, and X Wu. Simulating large quan-
tum circuits on a small quantum computer. Physical Review Letters,
125(15):150504, 2020.

[PMS+14] A Peruzzo, J R McClean, P Shadbolt, et al. A variational eigenvalue
solver on a photonic quantum processor. Nature communications,
5(1):4213, 2014.

[Pre18a] J Preskill. Quantum computing in the nisq era and beyond. Quan-
tum, 2:79, 2018.

[Pre18b] J Preskill. Quantum computing in the nisq era and beyond. Quan-
tum, 2:79, Aug 2018.

[PS22] C Piveteau and D Sutter. Circuit knitting with classical communi-
cation. arXiv preprint arXiv:2205.00016 [quant-ph], 2022.

[PS23] C Piveteau and D Sutter. Circuit knitting with classical communi-
cation. IEEE Transactions on Information Theory, 2023.

[PSSO21] M A Perlin, Z H Saleem, M Suchara, and J C Osborn. Quantum
circuit cutting with maximum-likelihood tomography. npj Quantum
Information, 7(1):1–8, 2021.

[qex22] Qiskit experiments. https://github.com/Qiskit/
qiskit-experiments, 2022.

[qis22] Qiskit Transpiler. https://qiskit.org/documentation/apidoc/
transpiler.html, 2022.

[RK05] M Rahman and M Kaykobad. Complexities of some interest-
ing problems on spanning trees. Information Processing Letters,
94(2):93–97, 2005.

[RMX+20] Yue Ruan, Samuel Marsh, Xilin Xue, Zhihao Liu, Jingbo Wang,
et al. The quantum approximate algorithm for solving trav-
eling salesman problem. Computers, Materials and Continua,
63(3):1237–1247, 2020.

https://github.com/Qiskit/qiskit-experiments
https://github.com/Qiskit/qiskit-experiments
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html


BIBLIOGRAPHY xxvi

[RSC+22] D Rabinovich, R Sengupta, E Campos, V Akshay, and J Biamonte.
Progress towards analytically optimal angles in quantum approxi-
mate optimisation. Mathematics, 10(15):2601, 2022.

[S+20] N. Sawaya et al. Strategies for digital quantum simulation of bosons.
Bulletin of the American Physical Society, 65, 2020.

[Sal20] Z H Saleem. Max-independent set and the quantum alternating
operator ansatz. International Journal of Quantum Information,
18(04):2050011, 2020.

[SCC23] A Saha, A Chattopadhyay, and A Chakrabarti. Robust quantum
arithmetic operations with intermediate qutrits in the NISQ-era.
International Journal of Theoretical Physics, 62(4), apr 2023.

[SCCC22] A Saha, T Chatterjee, A Chattopadhyay, and A Chakrabarti. In-
termediate qutrit-based improved quantum arithmetic operations
with application on financial derivative pricing. arXiv preprint
arXiv:2205.15822, 2022.

[Sel13] P Selinger. Quantum circuits of t-depth one. Phys. Rev. A,
87:042302, Apr 2013.

[SGS12] J A Smolin, J M Gambetta, and G Smith. Efficient method for com-
puting the maximum-likelihood quantum state from measurements
with additive gaussian noise. Physical review letters, 108(7):070502,
2012.

[Sho95] P W. Shor. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995.

[Sho96] P W Shor. Fault-tolerant quantum computation. In Proceedings of
37th conference on foundations of computer science, pages 56–65.
IEEE, 1996.

[Sho97] P W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, October 1997.



xxvii BIBLIOGRAPHY

[SK10] P Sarvepalli and A Klappenecker. Degenerate quantum codes and
the quantum hamming bound. Phys. Rev. A, 81:032318, Mar 2010.

[SMS+18] A Saha, R Majumdar, D Saha, A Chakrabarti, and S Sur-Kolay.
Search of clustered marked states with lackadaisical quantum walks.
arXiv preprint arXiv:1804.01446, 2018.

[SMS+20] A Saha, R Majumdar, D Saha, A Chakrabarti, and S Sur-Kolay.
Asymptotically improved grover’s algorithm in any dimensional
quantum system with novel decomposed n-qudit toffoli gate. arXiv
preprint arXiv:2012.04447, 2020.

[SMS+21] A Saha, R Majumdar, D Saha, A Chakrabarti, and S Sur-Kolay.
Faster search of clustered marked states with lackadaisical quantum
walks. arXiv preprint arXiv:2107.02049, 2021.

[SMS+22] A Saha, R Majumdar, D Saha, A Chakrabarti, and S Sur-Kolay.
Asymptotically improved circuit for a d-ary grover’s algorithm with
advanced decomposition of the n-qudit toffoli gate. Physical Review
A, 105(6):062453, 2022.

[SPR+20] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin
Young, Erik Nielsen, and Robin Blume-Kohout. Detecting crosstalk
errors in quantum information processors. Quantum, 4:321, 2020.

[SSC22] A Saha, D Saha, and A Chakrabarti. Moving quantum states with-
out swap via intermediate higher-dimensional qudits. Physical Re-
view A, 106(1):012429, 2022.

[SSP15a] M Schuld, I Sinayskiy, and F Petruccione. An introduction to quan-
tum machine learning. Contemporary Physics, 56(2):172–185, 2015.

[SSP15b] M Schuld, I Sinayskiy, and F Petruccione. Simulating a perceptron
on a quantum computer. Physics Letters A, 379(7):660–663, 2015.

[Ste96a] A. M. Steane. Error correcting codes in quantum theory. Phys.
Rev. Lett., 77:793–797, Jul 1996.



BIBLIOGRAPHY xxviii

[Ste96b] A M Steane. Error correcting codes in quantum theory. Physical
Review Letters, 77(5):793, 1996.

[STP+21] Z H Saleem, T Tomesh, M A Perlin, P Gokhale, and M Suchara.
Divide and conquer for combinatorial optimization and distributed
quantum computation. arXiv preprint arXiv:2107.07532, 2021.

[SWM+20] R Sweke, F Wilde, J Meyer, M Schuld, P K Fährmann, B Meynard-
Piganeau, and J Eisert. Stochastic gradient descent for hybrid
quantum-classical optimization. Quantum, 4:314, 2020.

[SWO+08] B Shaw, M M. Wilde, O Oreshkov, I Kremsky, and D A. Lidar.
Encoding one logical qubit into six physical qubits. Phys. Rev. A,
78:012337, Jul 2008.

[TBG17] K Temme, S Bravyi, and J M Gambetta. Error mitigation for short-
depth quantum circuits. Physical review letters, 119(18):180509,
2017.

[TCC+22] J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant, L Woss-
nig, I Rungger, et al. The variational quantum eigensolver: a review
of methods and best practices. Physics Reports, 986:1–128, 2022.

[TM19] G. Torlai and R. Melko. Machine-learning quantum states in the
nisq era. Annual Review of Condensed Matter Physics, 11, 2019.

[TSB+21] H L Tang, V Shkolnikov, G S Barron, H R Grimsley, N J Mayhall,
E Barnes, and S E Economou. qubit-adapt-vqe: An adaptive al-
gorithm for constructing hardware-efficient ansätze on a quantum
processor. PRX Quantum, 2(2):020310, 2021.

[TTS+21] W Tang, T Tomesh, M Suchara, J Larson, and M Martonosi. Cutqc:
using small quantum computers for large quantum circuit evalua-
tions. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 473–486, 2021.



xxix BIBLIOGRAPHY

[UADM22] G Uchehara, T M. Aamodt, and O Di Matteo. Rotation-inspired
circuit cut optimization. arXiv preprint arXiv:2211.07358, 2022.

[vdBMKT22] E van den Berg, Z K Minev, A Kandala, and K Temme. Proba-
bilistic error cancellation with sparse pauli-lindblad models on noisy
quantum processors. arXiv e-prints, pages arXiv–2201, 2022.

[VDBMT22a] E Van Den Berg, Z K Minev, and K Temme. Model-free readout-
error mitigation for quantum expectation values. Physical Review
A, 105(3):032620, 2022.

[vdBMT22b] E van den Berg, Z K Minev, and K Temme. Model-free readout-
error mitigation for quantum expectation values. Phys. Rev. A,
105:032620, Mar 2022.

[Viz64] V Vizing. On an estimate of the chromatic class of a p-graph.
Discret Analiz, 3:25–30, 1964.

[WBC15] C J Wood, J D Biamonte, and D G Cory. Tensor networks and
graphical calculus for open quantum systems. Quant. Inf. Comp.,
15:0579–0811, 2015.

[WE16] J J Wallman and J Emerson. Noise tailoring for scalable quantum
computation via randomized compiling. Phys. Rev. A, 94:052325,
Nov 2016.

[Wes01] D West. Introduction to Graph Theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[Won15] T G Wong. Grover search with lackadaisical quantum walks. Jour-
nal of Physics A: Mathematical and Theoretical, 48(43):435304,
2015.

[WVG+22] J Weidenfeller, L Valor, J Gacon, C Tornow, L Bello, S Woerner,
and D Egger. Scaling of the quantum approximate optimization
algorithm on superconducting qubit based hardware. arXiv preprint
arXiv:2202.03459, 2022.



BIBLIOGRAPHY xxx

[WZ82] W K Wootters and W H Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802–803, 1982.

[YABAS20] Y S Yordanov, V Armaos, C Barnes, and D Arvidsson-Shukur. Iter-
ative qubit-excitation based variational quantum eigensolver. arXiv
preprint arXiv:2011.10540, 2020.

[YI22] Ed Younis and Costin Iancu. Quantum circuit optimization and
transpilation via parameterized circuit instantiation. In 2022 IEEE
International Conference on Quantum Computing and Engineering
(QCE), pages 465–475. IEEE, 2022.

[ZTB+22] L Zhu, H L Tang, G S Barron, F A Calderon-Vargas, N J May-
hall, E Barnes, and S E Economou. Adaptive quantum approxi-
mate optimization algorithm for solving combinatorial problems on
a quantum computer. Physical Review Research, 4(3):033029, 2022.


	List of Figures
	List of Tables
	Introduction and the scope of the thesis
	Introduction
	Quantum computer and its properties
	Multi-valued quantum computing
	Challenges of quantum computing
	Motivation and scope of this thesis
	Near-term quantum computing
	Error corrected quantum computing

	Contributions and Organization of the thesis

	Background and Related works
	Introduction
	Noise in quantum systems
	Hybrid quantum-classical algorithms
	Quantum approximate optimization algorithm (QAOA)
	QAOA for Max-Cut
	Variants of QAOA

	Circuit cutting
	Circuit cutting as a method to improve fidelity
	Tomographic circuit cutting
	A brief introduction to quantum tomography

	Quantum error correction

	I Error suppression and mitigation for NISQ devices
	Graph algorithmic approach to QAOA circuit size optimization
	Introduction
	Quadratic Unconstrained Binary Optimization (QUBO) and its Hamiltonian formulation
	Quantum Approximate Optimization Algorithm (QAOA)
	Adiabatic Quantum Computing (AQC)
	QAOA: Trotterization of AQC

	CNOT elimination in QAOA circuit
	Edge Coloring based Ansatz Optimization 
	Lower and upper bound on the number of optimized edges

	Depth First Search based Ansatz Optimization
	Increase in depth vs CNOT elimination

	Summary

	Greedy approach to QAOA circuit optimization
	Introduction
	Motivation for a heuristic algorithm
	Conjecture: Finding the rooted spanning tree that results in a circuit with minimum depth is NP-Complete
	Proposed cost function for the heuristic
	An illustration of Algorithm 3

	Simulation results
	Increase in probability of success
	Reduction in the depth of the circuit

	Usefulness of the method for p > 1 QAOA
	Hardware coupling map aware optimization
	Motivation for hardware coupling map-based modification
	Hardware oriented modification of cost function
	Reduction in the number of SWAP gates

	Summary

	Error mitigation by quantum circuit cutting
	Introduction
	Error mitigation for Conditional Fragment Tomography
	A brief introduction to Conditional Fragment Tomography

	Error mitigation on quantum circuit cutting
	Measurement Error Mitigated Constrained Least Square (MEMCLS)
	Dominant Eigenvalue Truncation (DEVT)

	Simulation and numerical results
	Measurement Noise
	Gate Noise
	Non-Mixed Unitary Gate Errors
	DEVT with twirled noise

	Scalability of tomographic circuit cutting
	Circuit cutting with partial data
	Reducing the number of conditional tomography experiments

	Summary


	II Error correction for reliable quantum computation
	Quantum error correcting code for ternary logic
	Introduction
	Errors in ternary quantum system
	Bit errors on qutrits

	Phase errors on qutrits
	Shor code for qutrits
	Stabilizer formulation for ternary Shor code
	Stabilizer structure for error detection
	Circuit for error correction
	Performance analysis of ternary Shor code

	Six qutrit degenerate approximate QECC
	Proposed encoding scheme for the AQECC
	Proposed stabilizer structure for the AQECC
	Performance Analysis
	Error correction circuit for the proposed AQECC
	Comparison of quantum cost

	Summary

	Designing Ternary Quantum Error Correcting Codes from Binary Codes
	Introduction
	A Spanning Basis for Ternary Quantum Operators
	Stabilizers for 9-qutrit QECC
	Retrieving the binary 9-qubit QECC stabilizer structure
	Restrictions on logical Pauli Operators

	Circuit Realization of the 9 qutrit QECC
	Ternary Steane and Laflamme codes
	Binary to ternary Steane code
	Binary to ternary Laflamme code

	Summary

	Intermediate Qutrit-assisted Toffoli Decomposition with Quantum Error Correction
	Introduction
	Decomposition of gates using higher dimension
	Criterion for qutrit-assisted Toffoli decomposition along with error correction
	Resource estimation of fault-tolerant circuits
	Challenges for achieving fault-tolerance
	Implementing encoded gates for Steane Code

	Comparison of resource requirements for decomposition of an adder circuit
	Overview of circuit decomposition for the adder
	Comparison of resource requirements
	Numerical analysis

	Summary

	Conclusions and future directions
	Summary
	Future directions

	Proofs
	Proof of Theorem 3.4
	Proof of Corollary 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.6
	Proof of Lemma 4.2.2
	DEVT with Measurement Errors
	DEVT with depolarizing noise
	DEVT with Pauli noise
	Proof of Theorem 8.3
	Proof of Theorem 8.4
	Proof of Theorem 8.5

	Bibliography


